

High-Speed Elliptic Curve and Pairing-Based

Cryptography

by

Patrick Longa

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

© Patrick Longa 2011

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Elliptic Curve Cryptography (ECC), independently proposed by Miller [Mil86] and Koblitz

[Kob87] in mid 80’s, is finding momentum to consolidate its status as the public-key system of

choice in a wide range of applications and to further expand this position to settings traditionally

occupied by RSA and DL-based systems. The non-existence of known subexponential attacks on

this cryptosystem directly translates to shorter keylengths for a given security level and,

consequently, has led to implementations with better bandwidth usage, reduced power and

memory requirements, and higher speeds. Moreover, the dramatic entry of pairing-based

cryptosystems defined on elliptic curves at the beginning of the new millennium has opened the

possibility of a plethora of innovative applications, solving in some cases longstanding problems

in cryptography. Nevertheless, public-key cryptography (PKC) is still relatively expensive in

comparison with its symmetric-key counterpart and it remains an open challenge to reduce

further the computing cost of the most time-consuming PKC primitives to guarantee their

adoption for secure communication in commercial and Internet-based applications. The latter is

especially true for pairing computations. Thus, it is of paramount importance to research methods

which permit the efficient realization of Elliptic Curve and Pairing-based Cryptography on the

several new platforms and applications.

This thesis deals with efficient methods and explicit formulas for computing elliptic curve

scalar multiplication and pairings over fields of large prime characteristic with the objective of

enabling the realization of software implementations at very high speeds.

To achieve this main goal in the case of elliptic curves, we accomplish the following tasks:

iv

identify the elliptic curve settings with the fastest arithmetic; accelerate the precomputation stage

in the scalar multiplication; study number representations and scalar multiplication algorithms for

speeding up the evaluation stage; identify most efficient field arithmetic algorithms and optimize

them; analyze the architecture of the targeted platforms for maximizing the performance of ECC

operations; identify most efficient coordinate systems and optimize explicit formulas; and realize

implementations on x86-64 processors with an optimal algorithmic selection among all studied

cases.

In the case of pairings, the following tasks are accomplished: accelerate tower and curve

arithmetic; identify most efficient tower and field arithmetic algorithms and optimize them;

identify the curve setting with the fastest arithmetic and optimize it; identify state-of-the-art

techniques for the Miller loop and final exponentiation; and realize an implementation on x86-64

processors with optimal algorithmic selection.

The most outstanding contributions that have been achieved with the methodologies above in

this thesis can be summarized as follows:

• Two novel precomputation schemes are introduced and shown to achieve the lowest costs

in the literature for different curve forms and scalar multiplication primitives. The

detailed cost formulas of the schemes are derived for most relevant scenarios.

• A new methodology based on the operation cost per bit to devise highly optimized and

compact multibase algorithms is proposed. Derived multibase chains using bases {2,3}

and {2,3,5} are shown to achieve the lowest theoretical costs for scalar multiplication on

certain curve forms and for scenarios with and without precomputations. In addition, the

zero and nonzero density formulas of the original (width-w) multibase NAF method are

derived by using Markov chains. The application of “fractional” windows to the

multibase method is described together with the derivation of the corresponding density

formulas.

• Incomplete reduction and branchless arithmetic techniques are optimally combined for

devising high-performance field arithmetic. Efficient algorithms for “small” modular

operations using suitably chosen pseudo-Mersenne primes are carefully analyzed and

optimized for incomplete reduction.

• Data dependencies between contiguous field operations are discovered to be a source of

performance degradation on x86-64 processors. Three techniques for reducing the

number of potential pipeline stalls due to these dependencies are proposed: field

arithmetic scheduling, merging of point operations and merging of field operations.

• Explicit formulas for two relevant cases, namely Weierstrass and Twisted Edwards

curves over pF and 2p
F , are carefully optimized employing incomplete reduction,

minimal number of operations and reduced number of data dependencies between

v

contiguous field operations.

• Best algorithms for the field, point and scalar arithmetic, studied or proposed in this

thesis, are brought together to realize four high-speed implementations on x86-64

processors at the 128-bit security level. Presented results set new speed records for

elliptic curve scalar multiplication and introduce up to 34% of cost reduction in

comparison with the best previous results in the literature.

• A generalized lazy reduction technique that enables the elimination of up to 32% of

modular reductions in the pairing computation is proposed. Further, a methodology that

keeps intermediate results under Montgomery reduction boundaries maximizing

operations without carry checks is introduced. Optimized formulas for the popular tower

 are explicitly stated and a detailed operation count that permits

to determine the theoretical cost improvement attainable with the proposed method is

carried out for the case of an optimal ate pairing on a Barreto-Naehrig (BN) curve at the

128-bit security level.

• Best algorithms for the different stages of the pairing computation, including the

proposed techniques and optimizations, are brought together to realize a high-speed

implementation at the 128-bit security level. Presented results on x86-64 processors set

new speed records for pairings, introducing up to 34% of cost reduction in comparison

with the best published result.

From a general viewpoint, the proposed methods and optimized formulas have a practical

impact in the performance of cryptographic protocols based on elliptic curves and pairings in a

wide range of applications. In particular, the introduced implementations represent a direct and

significant improvement that may be exploited in performance-dominated applications such as

high-demand Web servers in which millions of secure transactions need to be generated.

2 6 12p p p p
→ → →F F F F

vii

Acknowledgements

This Ph.D. thesis would not have been possible without the support and encouragement of many

people. My thanks go first to my supervisor, Dr. Catherine Gebotys, for her invaluable support

and guidance during all my Ph.D. studies.

I am also grateful to all my professors at the University of Waterloo, especially to Dr. Anwar

Hasan and Dr. David Jao for providing me with very useful feedback and comments on my

preliminary technical reports that later became part of Chapter 4, and to Dr. Hiren Patel for his

useful feedback on my research about efficient ECC implementation that later became part of

Chapter 5.

I would like to thank my committee members, Dr. Gordon Agnew, Dr. Anwar Hasan, Dr.

Michael Scott and Dr. Doug Stinson, for taking the time for reading this thesis and providing

many useful suggestions that helped me improve this work.

My thanks go to Dr. Michael Scott for his valuable help and feedback when I was developing

the ECC implementations presented in Chapter 5 on top of the MIRACL crypto library that he

developed; and to Dr. Huseyin Hisil for very valuable discussions on elliptic curves. Works from

both authors have been an inspiration and the basis for several developments in this thesis.

I would like to thank Diego F. Aranha, Dr. Catherine Gebotys, Dr. Koray Karabina and Dr.

Julio Lopez for our joint work on pairings [AKL+10], which is part of Chapter 6.

Special thanks go to Diego F. Aranha for his friendship, our always interesting discussions on

viii

cryptography and its efficient implementation, and our joint effort to develop the pairing

implementation presented in Chapter 6.

My thanks go to Tom St Denis, Diego F. Aranha and Dr. Colin Walter for providing valuable

comments for several sections of this thesis.

I would like to thank my colleagues in the Laboratory for Side-Channel Security of

Embedded Systems at the University of Waterloo, including Dr. Solmaz Ghaznavi, Farhad

Haghighizadeh, Marcio Juliato, David Kenney, Dr. Amir Khatibzadeh and Edgar Mateos, for

their friendship and our very interesting discussions that made my studies more enjoyable and

productive.

This work would not have been possible without the financial support of the NSERC

Alexander Graham Bell Canada Graduate Scholarship – Doctoral (CGS-D) and the University of

Waterloo President's Graduate Scholarship. Also, many test results presented in Chapters 5 and 6

were obtained using the facilities of the Shared Hierarchical Academic Research Computing

Network (SHARCNET) and Compute/Calcul Canada. My sincere gratitude goes to all of them.

Last but not least, I am profoundly grateful to my mother, Patricia Pierola, and my brothers,

Patricia and Franccesco Longa, for their love and unconditional encouragement. Especially, I

dedicate this work to my wife, Veronica Zeballos, and my daughter, Adriana Longa, because

their infinite love, support, patience and faith in my work were the ones that actually made this

thesis possible.

ix

 To my wife and daughter,

 Veronica and Adriana,

 my lights in this World

xi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements vii

Dedication ix

Table of Contents xi

List of Tables xvii

List of Algorithms xxi

List of Acronyms xxiii

Chapter 1: Introduction 1

1.1. Motivation 1

1.2. Contributions 6

1.3. Outline 8

Chapter 2: Background 11

2.1. Preliminaries 11

Table of Contents

xii

2.2. Introduction to Elliptic Curves 13

2.2.1. Short Weierstrass Form 14

2.2.2. Scalar Multiplication and the Elliptic Curve Discrete Logarithm Problem

(ECDLP) 15

2.2.3. Elliptic Curve Cryptographic Schemes 17

2.2.4. ECC Scalar Multiplication Arithmetic 20

2.2.5. Special Curve Forms 27

2.2.6. The Galbraith-Lin-Scott (GLS) Method 30

2.3. Introduction to Pairings 33

2.3.1. Optimal Ate Pairing on BN Curves 35

Chapter 3: New Precomputation Schemes 37

3.1. Previous Work 38

3.1.1. Precomputation for Single Scalar Multiplication 38

3.1.2. Special Addition with Identical Z Coordinate 40

3.1.3. Precomputation for Special Curves and Multiple Scalar Multiplication 40

3.2. Precomputation Scheme Based on the Addition with Identical Z Coordinate: LM

Scheme 42

3.2.1. Method Description 42

3.2.2. Cost Analysis 45

3.3. Precomputation Scheme based on Conjugate Additions: LG Scheme 46

3.3.1. The Strategy: Conjugate Addition using Projective Coordinates 46

3.3.2. Precomputation Scheme for Table of the Form diP 48

3.3.3. Precomputation Scheme for Table of the Form ciP±diQ 53

3.4. Performance Comparison 55

3.4.1. Evaluation of LM and LG Schemes on Standard Curves 55

3.4.2. Evaluation of LG Scheme for Extended Jacobi Quartic and Inverted

Edwards Coordinates 60

3.4.3. Evaluation of LG Scheme for a Table of the Form ciP±diQ 61

Table of Contents

xiii

3.5. Other Applications of Conjugate Additions 65

3.6. Conclusions 66

Chapter 4: Scalar Multiplication using Multibase Chains 69

4.1. Previous Work 70

4.1.1. Double- and Multi-Base Number Representations 71

4.2. Multibase NAF (mbNAF) and Width-w Multibase NAF (wmbNAF) 74

4.2.1. Zero and Nonzero Density of Multibase NAF Methods 77

4.3. The Fractional Width-w Multibase Non-Adjacent Form (Frac-wmbNAF) 79

4.4. A Methodology to Find Faster Multibase Chains 82

4.4.1. Refined Multibase Chains 84

4.5. Performance Comparison 94

4.6. Other Applications, Variants and Challenges 99

4.6.1. Open Challenges 100

4.7. Conclusions 101

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in

ghjjjjjjjjSoftware 103

5.1. Previous Work and the x86-64 Processor Family 104

5.2. Optimizing Modular Reduction using a Pseudo-Mersenne Prime 107

5.2.1. Incomplete Reduction (IR) 107

5.2.2. Elimination of Conditional Branches 111

5.3. Minimizing the Effect of Data Dependencies 114

5.3.1. Field Arithmetic Scheduling 117

5.3.2. Merging Point Operations 119

5.3.3. Merging Field Operations 120

Table of Contents

xiv

5.4. Minimizing the Cost of Point Operations 122

5.5. Optimizations for the Quadratic Extension Field Arithmetic 123

5.5.1. Scheduling of Field Operations 124

5.5.2. Merging of Point and Field Operations 124

5.6. Performance Evaluation 126

5.6.1. Details of the “Traditional” Implementations 126

5.6.2. Details of the GLS-based Implementations 128

5.6.3. The Curves 129

5.6.4. Timings 130

5.7. Conclusions 132

Chapter 6: Efficient Techniques for Implementing Pairings in Software 135

6.1. Previous Work 136

6.2. Lazy Reduction for Tower Fields 138

6.2.1. Selecting a Field Size Smaller than the Word-Size Boundary 141

6.2.2. Practical Application of the Generalized Lazy Reduction 143

6.3. Optimizing Curve Arithmetic in Miller Loop 147

6.3.1. Jacobian Coordinates 148

6.3.2. Homogeneous Coordinates 149

6.4. High-Speed Pairing Implementation 153

6.4.1. Optimal Ate Pairing on BN Curves 153

6.4.2. Operation Count 155

6.4.3. Implementation Results 157

6.5. Conclusions 159

Chapter 7: Conclusions 161

7.1. Summary of Contributions 161

7.2. Future Work 164

Table of Contents

xv

Appendices

A1 Pseudocode of the LM Precomputation Scheme 167

A2 Cost Analysis of the LM Precomputation Scheme 173

A3 Conjugate Addition Formulas 175

A4 Calculation of Precomputed Points for the LG Scheme 179

A5 Cost Analysis of the LG Scheme, Table diP 181

A6 Cost Analysis of the LG Scheme, Table ciP ± diQ 183

A7 Comparison of LG and LM Schemes using Jacobian Coordinates 185

B1 Explicit Formulas for “Traditional” Implementations 189

B2 Explicit Formulas for GLS-Based Implementations 193

C1 Optimizing Compressed Squarings 195

Permissions 197

Bibliography 199

xvii

List of Tables

Table 2.1. Key sizes for ECC and RSA for equivalent security levels [NIST07].17

Table 2.2. Costs (in terms of multiplications and squarings) of point operations using Jacobian

(J) and mixed Jacobian-affine coordinates. ..24

Table 2.3. Costs of point operations for an extended Jacobi quartic curve with d = 1 using

extended Jacobi quartic (e
JQ) coordinates. ..28

Table 2.4. Costs of point operations for a Twisted Edwards curve using inverted Edwards (IE)

and mixed homogeneous/extended homogeneous (/
e

E E) coordinates.30

Table 3.1. Pseudocode of an “interlaced” execution of an addition/conjugate addition pair in J.

 ...47

Table 3.2. Costs of addition/conjugate addition formulas using projective (J, IE and eJQ) and

affine coordinates. ...48

Table 3.3. Costs of the LG precomputation scheme: case 1 in projective coordinates using J,

eJQ and IE; case 2 using one inversion; and case 3 in A. ...53

Table 3.4. Cost of the LG precomputation scheme for tables of the form i ic P d Q± : case 1 in

projective coordinates; case 2 using one inversion; and case 3 in affine coordinates.54

List of Tables

xviii

Table 3.5. Costs of different schemes using multiple inversions (case 3) and I/M ranges for

which each scheme achieves the lowest cost on a standard curve form (1M = 0.8S).55

Table 3.6. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

160-bit scalar multiplication on a standard curve form (1M = 0.8S). ..56

Table 3.7. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

256-bit scalar multiplication on a standard curve form (1M = 0.8S). ..57

Table 3.8. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

512-bit scalar multiplication on a standard curve form (1M = 0.8S). ..57

Table 3.9. Performance comparison of LG and LM Schemes with the DOS method in 160-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S).59

Table 3.10. Performance comparison of LG Scheme with methods using a traditional chain for

cases 1 and 2 on eJQ and IE coordinates (1M = 0.8S). ..61

Table 3.11. Cost of 160-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ and IE (1M = 0.8S). ..62

Table 3.12. Cost of 512-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ and IE (1M = 0.8S). ..62

Table 3.13. Performance comparison of LG Scheme and a scheme using traditional additions for

computing tables of the form i ic P d Q± , cases 1 and 2 (1M = 0.8S). ..63

Table 3.14. Cost of 160-bit multiple scalar multiplication using window-based JSF and LG

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S. ..64

Table 3.15. Cost of 512-bit multiple scalar multiplication using window-based JSF and LG

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S. ..64

Table 4.1. Cost-per-bit for statements in CONDITION1, bases {2,3}, w = 2, J coordinates.87

Table 4.2. Cost-per-bit for statements in CONDITION2, bases {2,3}, w = 2, J coordinates.89

List of Tables

xix

Table 4.3. Comparison of double-base and triple-base scalar multiplication methods (n = 160

bits; 1S = 0.8M). ...96

Table 4.4. Comparison of double-base and triple-base scalar multiplication methods (n = 256

bits; 1S = 0.8M). ...97

Table 4.5. Comparison of lowest costs using multibase and radix-2 methods for scalar

multiplication, n = 160 bits (cost of precomputation is not included). ..98

Table 5.1. Cost (in cycles) of modular operations when using incomplete reduction (IR) and

complete reduction (CR); 2562 189p = − . .. 111

Table 5.2. Cost (in cycles) of modular operations without conditional branches (w/o CB) against

operations using conditional branches (with CB); 2562 189p = − . .. 113

Table 5.3. Cost (in cycles) of point operations with Jacobian coordinates when using incomplete

reduction (IR) or complete reduction (CR) and with or without conditional branches (CB);

2562 189p = − ... 114

Table 5.4. Various sequences of field operations with different levels of contiguous data

dependence. .. 118

Table 5.5. Average cost (in cycles) of modular operations using best-case (no contiguous data

dependencies, Sequence 1) and worst-case (strong contiguous data dependence, Sequence 2)

“arrangements” (2562 189p = − , on a 2.66GHz Intel Core 2 Duo E6750). 118

Table 5.6. Cost (in cycles) of point doubling using Jacobian coordinates with different number of

contiguous data dependencies and the corresponding reduction in the cost of point multiplication.

“Unscheduled” refers to implementations with a high number of dependencies (here, 10

dependencies per doubling). “Scheduled and merged” refers to implementations optimized

through the scheduling of field operations, merging of point operations and merging of field

operations (here, 1.25 dependencies per doubling); 2562 189p = − 121

Table 5.7. Cost (in cycles) of point multiplication on 64-bit architectures. 131

Table 6.1. Different options to convert negative results to positive after a subtraction with the

form c a l b= + ⋅ , where 2, [0,]a b mp∈ , m
+∈Z and s.t. 2Nlmp < 142 0l < ∈Z

List of Tables

xx

Table 6.2. Operation counts for arithmetic required by Miller’s algorithm when using: (i)

generalized lazy reduction technique; (ii) basic lazy reduction applied to 2
p
F

arithmetic only. 156

Table 6.3. Performance comparison of our implementations on several x86-64-based processors:

(i) Basic implementation using lazy reduction below 2
p
F arithmetic; (ii) Fully optimized

implementation using generalized lazy reduction for the whole pairing computation. Timings are

in millions of clock cycles. .. 158

Table 6.4. Performance comparison of state-of-the-art pairing implementations on several x86-

64-based processors. Timings are in clock cycles. ... 159

Table A.1. Performance comparison of LG and LM Schemes with the DOS method in 256-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S)………185

Table A.2. Performance comparison of LG and LM Schemes with the DOS method in 512-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S)………186

xxi

List of Algorithms

Algorithm 2.1. Elliptic curve key generation ...17

Algorithm 2.2. Elliptic curve Diffie-Hellman key exchange (ECDH)18

Algorithm 2.3. ElGamal elliptic curve encryption ..18

Algorithm 2.4. ElGamal elliptic curve decryption ..18

Algorithm 2.5. ECDSA signature generation ...19

Algorithm 2.6. ECDSA signature verification ...19

Algorithm 2.7. Left-to-right methods for scalar multiplication ...26

Algorithm 2.8. Pairing-based tree-party one-round key exchange ..33

Algorithm 2.9. Optimal ate pairing on BN curves (including the case)...........................35

Algorithm 3.1. Computation of precomputed points using the LG Scheme50

Algorithm 4.1. Computing an mbNAF (wmbNAF) of a positive integer76

Algorithm 4.2. Recoding rules for “fractional” windows (mod2wr k=)80

Algorithm 4.3. Computing “refined” multibase chains of a positive integer84

0u <

List of Algorithms

xxii

Algorithm 5.1. Modular addition with a pseudo-Mersenne prime .. 108

Algorithm 5.2. Modular subtraction with a pseudo-Mersenne prime and complete reduction . 109

Algorithm 5.3. Modular division by 2 with a pseudo-Mersenne prime 110

Algorithm 5.4. Point doubling using Jacobian coordinates ... 123

Algorithm 6.1. Multiplication in 2pF without reduction (
2× , cost of 3 8u um M A= +)............ 144

Algorithm 6.2. Multiplication in 6pF without reduction (
6× , cost of 6 28um a+) 145

Algorithm 6.3. Multiplication in 12pF (
12× , cost of 18 6 110um r a+ +)................................... 146

Algorithm 6.4. Squaring in 12pF (cost of 12 6 73um r a+ +) ... 147

Algorithm 6.5. Point doubling in Jacobian coordinates (cost of 6 5 10 10 4u um s r a M+ + + +) 149

Algorithm 6.6. Point addition in Jacobian coordinates (cost of 10 3 11 10 4u um s r a M+ + + +) 150

Algorithm 6.7. Point doubling in homogeneous coordinates (cost of 3 6 8 22 4u um s r a M+ + + +)

 ... 151

Algorithm 6.8. Point addition in homogeneous coordinates (cost of 11 2 11 12 4u um s r a M+ + + +)

 ... 152

Algorithm 6.9. Modified optimal ate pairing on BN curves (generalized for 0u <) 154

Algorithm A.1. Point doubling 2A → J, 2 3:E y x ax b= + + .. 168

Algorithm A.2. Special addition with identical Z coordinate J + J → J, 2 3:E y x ax b= + +

 ... 169

Algorithm A.3. Special addition with identical Z coordinate J + J → J,

 ... 170

Algorithm A.4. Modified Montgomery’ simultaneous inversion method, 2 3:E y x ax b= + +

 ... 171

2 3:E y x ax b= + +

xxiii

List of Acronyms

a, m, s, r, i Addition, multiplication, squaring, reduction and inversion over 2p
F

A, D, M, S, R, I Addition, multiplication by curve constant, multiplication, squaring,

reduction and inversion over pF

A, C, J, ,m
J H, LD Affine, Chudnovsky, Jacobian, modified Jacobian, homogeneous and

Lopez-Dahab coordinates

AES Advanced Encryption Standard algorithm

AVX Advanced Vector Extensions

BDHP Bilinear Diffie-Hellman Problem

BN Barreto-Naehrig curve

CBEA Cell Broadband Engine Architecture

DBL, TPL, QPL, ADD Point doubling, tripling, quintupling and addition

DBLADD Point doubling-addition

DBNS Double-Base Number System

DHP Diffie-Hellman Problem

DL Discrete Logarithm

DLP Discrete Logarithm Problem

DOS Dahmen-Okeya-Schepers precomputation method

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman key exchange

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

Frac-wmbNAF Fractional Width-w Multibase Non-Adjacent Form method

List of Acronyms

xxiv

Frac-wNAF Fractional Width-w Non-Adjacent Form method

GLS Galbraith-Lin-Scott method

GLV Gallant-Lambert-Vanstone method

GPR General Purpose Register

GPU Graphical Processing Unit

HECC Hyperelliptic Curve Cryptosystem

IBE Identity-Based Encryption

IE, E ,
e
E Inverted Edwards, Twisted Edwards homogeneous and extended

Twisted Edwards homogeneous coordinates

ILP Instruction-Level Parallelism

IR Incomplete reduction

ISA Instruction Set Architecture
e

JQ Extended Jacobi quartic coordinates

JSF Joint Sparse Form method

LG Longa-Gebotys precomputation scheme

LM Longa-Miri precomputation scheme

NFS Number Field Sieve

NIST U.S. National Institute of Standards and Technology

NSA U.S. National Security Agency

PKC Public-Key Cryptography

RAW Read-After-Write or true data dependence

RSA Rivest-Shamir-Adleman cryptosystem

SCA Side-Channel Analysis attack

SIMD Single Instruction, Multiple Data

SSE2 Streaming SIMD Extensions 2

(w)mbNAF (Width-w) Multibase Non-Adjacent Form method

(w)NAF (Width-w) Non-Adjacent Form method

1

1 Chapter 1

Introduction

1.1. Motivation

Since its discovery by Diffie and Hellman in 1976 [DH76], public-key cryptography (PKC) has

revolutionized the way communications are securely achieved by governments, banks,

enterprises and even plain people. Based on clever mathematical constructs, public-key systems

appeared to alleviate the difficult problem of key management and distribution, and provide such

powerful tools as digital signatures. See, for example, [HMV04, Section 1.2] or [ACD+05,

Section 1] for an introduction to PKC.

Nonetheless, RSA, the dominant public-key system during many years, and discrete

logarithm (DL)-based cryptosystems are already exhibiting clear limitations to keep an

acceptable performance level in the plethora of new applications and platforms in the new

millennium that range from constrained, power-limited wireless devices [BCH+00, Lau04] to

cluster servers performing millions of secure transactions for e-commerce and e-banking

[GGC02, GSF04]. A relatively new, more “compact” player in the public-key crypto arena has

been gaining increasing attention in academia and commercial applications: elliptic curve

cryptosystems.

Elliptic Curves for Cryptography

The complex and elegant mathematics behind elliptic curves have attracted number theorists and

Chapter 1: Introduction

2

algebra geometers long time before the remarkable work by Lenstra [Len87] using elliptic curves

for factoring led to the independent discovery by Miller [Mil86] and Koblitz [Kob87] of Elliptic

Curve Cryptography (ECC) in 1985. Since then, with the exception of some studies that found

vulnerabilities in certain special curves [MOV93, Sma99], it has not been possible to find better

attacks than Pollard’s rho [Pol78], which runs in exponential time, for elliptic curves with large

prime order subgroup. As a consequence, elliptic curve cryptosystems require shorter keys to

attain a certain security level in comparison with those required by the traditional RSA and DL-

based systems. For instance, to achieve a level of security equivalent to the Advanced Encryption

Standard algorithm with 256 bits (AES-256), the National Institute of Standards and Technology

(NIST) recommends the use of ECC keys of 512 bits, whereas RSA would require keylengths of

more than 15000 bits [NIST07]. This significant difference in favour of ECC has led in many

scenarios to faster, more power-efficient and/or memory-friendly implementations, which make

this cryptosystem especially attractive for constrained devices such as wireless sensor nodes,

smartcards, personal digital assistants (PDAs), cellphones, smartphones, and many others.

Moreover, the superior speed of ECC over RSA supports the improvement of performance of

Web servers in which public-key transactions may be a bottleneck, thus enabling the use of

strong cryptography on a wider range of Internet-based applications [GSF04].

A clear example of the importance of ECC in future commercial and governmental

applications has been set by the inclusion of ECC primitives in the U.S. National Security

Agency (NSA) Suite B Cryptography, which contains a set of recommended algorithms for

classified and unclassified U.S. security systems and information [NSA09]. In particular, the

Elliptic Curve Digital Signature (ECDSA) algorithm and the Elliptic Curve Diffie-Hellman

(ECDH) key exchange over prime fields (see §2.2.3) are recommended in Suite B for providing

security up to top secret level. Hence, ECC is arguably getting positioned as the dominant public-

key system in many applications, and is expected to occupy that privileged position for several

years to come. As direct consequence of this technological shift, the efficient implementation of

ECC schemes in software and hardware platforms is gaining key importance to realize strong

cryptography.

In that direction, this thesis deals with the fast and efficient computation of elliptic curve

scalar multiplication. This critical operation, denoted by kP (where k is a scalar and P a point on

an elliptic curve), is the central and most time-consuming operation in ECC. Although several

methods to compute kP efficiently have been proposed and extensively studied in past years, it is

still a very interesting challenge to improve further the performance of this operation. Elliptic

curve scalar multiplication comprises three arithmetic layers: field arithmetic, point arithmetic

and scalar arithmetic. Cryptographic protocols and schemes work on top of these layers; see

Section 2.2.3 and [HMV04, Chapter 4] for an overview. In this thesis, we focus on improving the

overall computation at all three arithmetic layers to try to achieve the highest speed possible in

Chapter 1: Introduction

3

software. In this effort we follow the next steps: (i) identify the elliptic curve settings with the

fastest arithmetic; (ii) accelerate the precomputation stage of scalar multiplication; (iii) study

number representations and scalar multiplication algorithms for speeding up the evaluation stage;

(iv) identify most efficient field arithmetic algorithms and optimize them; (v) analyze the

architecture of the targeted platforms for maximizing the performance of ECC operations; (vi)

identify most efficient coordinate systems and optimize explicit formulas; and (vii) realize

implementations on x86-64 processors with an optimal algorithmic selection among all studied

cases.

Grouping together the steps above, let us consider in greater detail the most relevant

problems and aspects that are considered in this study.

Precomputation Stage: step (ii)

A practical strategy that reduces the number of required operations at the expense of some extra

memory is the use of precomputations. In this case, a table of points is built and stored in

advance (precomputation stage) for later use during the execution of the scalar multiplication

itself (evaluation stage). The effect of computing these additional points in the overall cost

basically depends on the context in which the scalar multiplication occurs. In [HMV04],

Hankerson et al. distinguishes two possible scenarios that depend on the prior knowledge of the

initial point P, and classifies the different methods for scalar multiplication according to them.

Let us illustrate both scenarios, and their subtleties, in the context of the ECDH key exchange

(see Section 2.2.3): when each Bob and Alice computes the initial scalar multiplication using a

random scalar in the first phase of the ECDH scheme, both use a publicly known point P for the

computation. Because P is available beforehand, it is obvious that methods that extensively

exploit precomputations to reduce the cost of the evaluation stage are preferable in this scenario.

Examples of efficient methods in this case are comb methods [HMV04, Section 3.3.2]. On the

other hand, during the second phase of the ECDH scheme, Bob and Alice exchange the results

from the first phase and calculate a new scalar multiplication. This time, however, the results

(which are also points on the curve) are not known in advance by their corresponding receptors.

Although methods may still exploit precomputations, this time the overall cost includes the costs

of both the precomputation and evaluation stages. A well-known method in this case is width-w

NAF (wNAF) [Sol00], which is the windowed version of the standard non-adjacent form (NAF).

Scalar Representation in the Evaluation Stage: step (iii)

The cost of the evaluation stage in the computation kP is strongly tied to the representation used

for the scalar k. With the exception of Montgomery’s method [Mon87], the most popular

approach has been the use of the NAF or wNAF representation in combination with some version

Chapter 1: Introduction

4

of the double-and-add algorithm (see Section 2.2.4.3). However, recently there has been an

increased interest in using novel arithmetic representations of integers based on double- and

multi-base number systems [DJM98, DIM05]. In general, it has been observed that these

representations enable a reduction in the number of point operations required for computing kP.

However, it is still an open question to determine up to what extent and in which scenarios the

new multibase representations reduce the computational cost of scalar multiplication. It has been

shown that these methods in fact reduce the number of point operations but in exchange they

require more complex formulas besides point doubling and addition. Partially, the question above

could be answered by trying to find the “optimal” (or close to “optimal”) multibase

representation of a given scalar for a particular setting, where “optimal” is defined here as

relative to the computational cost and not to the minimization of the number of additions.

Efficient Implementation on x86-64 Processors: steps (iv)-(vii)

Over the years, many efforts have focused on efficient implementation of ECC primitives on

different platforms [BHL+01, GPW+04, GAS+05, Ber06, CS09]. An incomplete list includes the

analysis on 8-bit microcontrollers, 32-bit embedded devices, graphical processing units,

processors based on the x86 Instruction Set Architecture (ISA) or the cell broadband engine

architecture, among many others. At a high-level, these works provide two main contributions:

• The compilation of state-of-the-art algorithms and their efficient combination trying to

achieve the highest performance possible on the targeted platforms.

• The publication of benchmark results that illustrate the potential performance achievable

by the particular cryptographic primitive on the targeted platforms.

As a side-effect, when different test results are made available, readers learn from direct

comparisons among alternative methods or algorithms.

Processors based on the x86-64 ISA [AMD] have become increasingly popular in the last few

years and are now being extensively used for notebook, desktop and server computers. Hence,

efficient cryptographic computation on these processors is of paramount importance to realize

strong cryptography in a wide variety of applications. Relevant questions are then: what are the

methods, formulas and parameters that once combined achieve the highest performance for

computing ECC primitives on these processors? and what are the features of these devices that

can be exploited to gain (or sometimes, not to lose) performance? It is then obvious that, for best

results, the analysis should contemplate architectural features of the processors under analysis.

Chapter 1: Introduction

5

Elliptic Curve Forms: step (i)

Elliptic curves over prime fields have been traditionally represented in its short Weiertrass form,
2 3y x ax b= + + , where , pa b∈F . More specifically, the projective form of this curve equation

using Jacobian coordinates has been the preferred elliptic curve shape for many years by most

implementers and standardization bodies such as NIST and IEEE [NIST00, NIST09, IEEE00].

However, in the last few years intense research has been working on new and improved curve

forms. Although these curves have not been standardized by national/international bodies up to

date, they provide attractive advantages such as faster arithmetic and/or higher resilience against

certain side-channel analysis (SCA) attacks [Sma01, BJ03b, BL07]. Since in this thesis we are

particularly interested in high-speed cryptography, we focus on two curve forms that currently

exhibit the lowest point operation costs: extended Jacobi quartic form, 2 4 22 1y dx ax= + + ,

, pa d ∈F ; and Twisted Edwards form, 2 2 2 21ax y dx y+ = + , , .pa d ∈F For each case, we

consider in our analysis and implementations the coordinate system(s) and curve parameters that

in our experience provide the highest performance (see Section 2.2.5 for further details):

• Mixed homogeneous/extended homogeneous coordinates for the Twisted Edwards curve
2 2 2 21ax y dx y+ = + with 1a = − [HWC+08, His10].

• Inverted Edwards coordinates for the Twisted Edwards curve
2 2 2 21ax y dx y+ = + with

1a = [BL07b].

• Extended Jacobi quartic coordinates for the extended Jacobi quartic curve
2 4 22 1y dx ax= + + with 1d = [HWC+07, HWC+08b].

We also include the short Weierstrass form because of its widespread use in practice:

• Jacobian coordinates for the short Weierstrass form
2 3y x ax b= + + with 3a = − .

Pairing-Based Cryptography

Since Boneh and Franklin [BF01], following pioneering works by several authors [Jou00,

SOK00, Ver01], formalized the use of pairings based on elliptic curves with the introduction of

Identity-Based Encryption (IBE) in 2001, the interest of cryptographers and implementers in this

new research area have grown dramatically. This is mainly due to the potential of pairings for

elegantly solving many open problems in cryptography such as Identity-Based Encryption

[BF01], short signatures [BLS04], multi-party key agreements [Jou00], among many others. See,

for example, [Men09] for an introduction to pairing-based cryptography.

Nevertheless, the pairing computation, which is the central and most time-consuming

operation in most pairing-based schemes, is still relatively expensive in comparison with ECC

Chapter 1: Introduction

6

operations (e.g., an elliptic curve scalar multiplication is about ten times faster than a pairing

computation at the 128-bit security level on x86-64 processors [BGM+10, GLS09]). Hence, the

development of techniques and methods leading to optimization of the pairing computation are of

great importance. Given the technological shift to x86-64-based processors, a series of efforts

have recently developed faster pairing implementations targeting these platforms [HMS08,

NNS10, BGM+10]. However, it remains a challenging effort to try to optimize further this

crucial operation for incentivizing the adoption of these elegant cryptosystems in commercial

applications.

In this thesis, we focus on improving the overall pairing computation to try to achieve the

highest speed possible in software. In this effort we follow the next steps: (i) accelerate tower and

curve arithmetic; (ii) identify most efficient tower and field arithmetic algorithms and optimize

them; (iii) identify elliptic curve setting with the fastest arithmetic and optimize it; (iii) identify

state-of-the-art techniques for the Miller loop and final exponentiation; and (iv) realize

implementation on x86-64 processors with an optimal algorithmic selection.

1.2. Contributions

In this thesis, we propose efficient methods and optimized explicit formulas for accelerating the

computation of elliptic curve scalar multiplication and pairings on ordinary curves over prime

fields. In many cases, the improvements are generic and apply to different types of (hardware and

software) platforms.

Our main contributions can be summarized as follows:

• At the precomputation stage, we propose two innovative low-cost precomputation

schemes. The first scheme, intended for standard curves using Jacobian coordinates, is

based on a special addition formula due to Meloni [Mel07]. The second scheme,

especially effective for some special curves and multiple scalar multiplication methods

such as the Joint Sparse Form (JSF) [Sol01], is based on the concept of conjugate

addition in projective coordinates. We provide the theoretical costs for single and

multiple scalar multiplications and perform an extensive comparative analysis for three

specific systems: Jacobian, extended Jacobi quartic and inverted Edwards coordinates.

• At the evaluation stage, we provide the theoretical cost analysis of the multibase NAF

representation and its windowed variant [Lon07], adapt the concept of “fractional”

windows [Möl03] to width-w multibase NAF to obtain a more generic method that

allows choosing a flexible number of precomputed points, and introduce a method for

deriving high-performance multibase algorithms based on the operation cost per bit that

apply to a wide set of scenarios, ranging from very constrained environments to

Chapter 1: Introduction

7

applications where memory is not scarce. An extensive comparison with other works is

performed on curves using Jacobian, extended Jacobi quartic and inverted Edwards

coordinates at different security levels. A relevant comparison with the fastest curves

using radix-2 methods is presented and demonstrates that “slower” curves employing

refined multibase chains become competitive for suitably chosen curve parameters on

memory-constrained devices.

• We bring together the most efficient ECC algorithms for performing elliptic curve scalar

multiplication on x86-64 processors and optimize them using techniques from computer

architecture. We study the optimal combination of incomplete reduction technique and

elimination of conditional branches to achieve high-speed field arithmetic over pF using

a pseudo-Mersenne prime. We also demonstrate the high penalty incurred by data

dependencies between instructions in neighbouring field operations. Three generic

techniques are proposed to minimize the number of pipeline stalls due to true data

dependencies and to reduce the number of function calls and memory accesses. Further,

explicit formulas are optimized by minimizing the number of “small” field operations,

which are not inexpensive on the targeted platforms. Improved explicit formulas

exploiting incomplete reduction and exhibiting minimal number of operations and

reduced number of data dependencies between contiguous field operations are derived

and explicitly stated for Jacobian coordinates and mixed Twisted Edwards

homogeneous/extended homogeneous coordinates for two cases: with and without using

the GLS method [GLS09]. Record-breaking implementations demonstrating the

significant performance improvements obtained with the optimizations and techniques

under analysis at the 128-bit security level are described. Benchmark results for different

x86-64 processors exhibiting up to 34% cost reduction in comparison with the best

published results are presented.

• We introduce a generalized lazy reduction technique that allows us to eliminate up to

32% of the total number of modular reductions when applied to the towering and curve

arithmetic in the pairing computation. Furthermore, we present a methodology to keep

intermediate results under Montgomery reduction boundaries so that the number of

operations without carry checks is maximized. We illustrate the method with the well-

known tower , for which case we explicitly state the improved

formulas. Curve arithmetic using Jacobian and homogeneous coordinates is optimized

using the projective equivalence class and with the application of lazy reduction. A

detailed operation count that allows us to determine the theoretical cost improvement

attainable with the proposed method is carried out for the case of an optimal ate pairing

on a BN curve [BN05] at the 128-bit security level. To illustrate the practical

performance boost obtained with the new formulas we realize a record-breaking

2 6 12p p p p
→ → →F F F F

Chapter 1: Introduction

8

implementation of the pairing above, also incorporating state-of-the-art techniques.

Benchmark results for different x86-64 processors exhibiting up to 34% cost reduction in

comparison with the best published results in the literature are presented.

The details above only highlight the most relevant contributions of this thesis. The reader is

referred to Chapters 3, 4, 5 and 6 for additional outcomes.

Partial results that have been developed further in this thesis already appear in the following

relevant publications:

[1] “New Composite Operations and Precomputation Scheme for Elliptic Curve

Cryptosystems over Prime Fields”, with A. Miri. In Proc. Int. Conference on Practice

and Theory in Public Key Cryptography (PKC 2008), 2008. This corresponds to part of

Chapter 3.

[2] “Novel Precomputation Schemes for Elliptic Curve Cryptosystems”, with C. Gebotys. In

Proc. Int. Conference on Applied Cryptography and Network Security (ACNS 2009),

2009. This corresponds to part of Chapter 3.

[3] “Fast Multibase Methods and Other Several Optimizations for Elliptic Curve Scalar

Multiplication”, with C. Gebotys. In Proc. Int. Conference on Practice and Theory in

Public Key Cryptography (PKC 2009), 2009. This corresponds to Chapter 4.

[4] “Efficient Techniques for High-Speed Elliptic Curve Cryptography”, with C. Gebotys. In

Proc. Workshop on Cryptographic Hardware and Embedded Systems (CHES 2010),

2010. This corresponds to Chapter 5.

[5] “Faster Explicit Formulas for Computing Pairings over Ordinary Curves”, with D.F.

Aranha, K. Karabina, C. Gebotys and J. Lopez. In Proc. Advances in Cryptology -

Eurocrypt 2011 (to appear), 2011. This corresponds to Chapter 6.

1.3. Outline

This thesis is organized as follows. In Chapter 2, we present the mathematical background

necessary for the understanding of Elliptic Curve and Pairing-based Cryptography, including

curve definitions and operation costs that will be accessed throughout the thesis.

In Chapter 3, we introduce the novel precomputation schemes, namely LM and LG schemes,

and present their operation costs when applied to different curve forms in various settings.

In Chapter 4, we discuss our contributions for accelerating the evaluation stage using

multibase representations. We present the theoretical analysis of the (width-w) multibase NAF

method, optimize the windowed variant by applying fractional windows and introduce the new

methodology to derive refined algorithms able to find improved multibase chains.

Chapter 1: Introduction

9

In Chapter 5, we discuss the efficient implementation of elliptic curve scalar multiplication

on x86-64 processors, present highly optimized field and point arithmetic and discuss our

implementation results on a variety of 64-bit platforms.

In Chapter 6, we discuss the generalization of the lazy reduction technique for the efficient

computation of pairings, present the highly optimized formulas and illustrate the performance

improvement with a high-speed implementation of an optimal ate pairing on a BN curve.

Finally, in Chapter 7 we summarize the contributions of this thesis and discuss future work.

At the end, we present several appendices. In Appendices A1 and A2 we present the detailed

pseudocode of the LM precomputation scheme and derive the costs of the method for the

different variants. In Appendix A3, we present the explicit formulas for conjugate addition using

Jacobian, extended Jacobi quartic and inverted Edwards coordinates. In Appendix A4 we detail

the calculation of points using the LG precomputation scheme for different number of

precomputations. In Appendices A5 and A6, we prove the theoretical costs of the LG method for

single and multiple scalar multiplication cases. Appendix A7 presents extended cost comparisons

between precomputation methods using 256- and 512-bit scalars. In Appendix B1 and B2, we

detail the optimized point formulas used in our traditional and GLS-based implementations of

scalar multiplication, respectively. Appendix C1 discusses the application of the generalized lazy

reduction technique to compressed squarings.

11

2 Chapter 2

Background

In this chapter, we introduce the mathematical tools that are considered fundamental for the

understanding of Elliptic Curve and Pairing-based Cryptography. For more extensive treatments,

the reader is referred to [HMV04, ACD+05]. First, we begin with an exposition of basic abstract

algebra and elliptic curves, and then discuss the security foundations of ECC, some of the most

popular EC-based cryptographic schemes and the arithmetic layers that constitute the

computation of elliptic curve scalar multiplication. Following, we summarize some advanced

research topics related to special curves and the Galbraith-Lin-Scott (GLS) method, which are

extensively used in Chapters 3-5. We end this chapter with a brief introduction to Pairing-based

Cryptography, including a description of the optimal ate pairing used in Chapter 6.

2.1. Preliminaries

In this section, we introduce some fundamental concepts about finite groups, finite fields, cyclic

subgroups and the generalized discrete logarithm problem.

Finite Groups

A set G is called a finite group with order q, and denoted by (G,∗), if it has a finite number q of

elements, has a binary operation : G G G∗ × → and satisfies the following properties [HMV04]:

Chapter 2: Background

12

• Associativity: () ()a b c a b c∗ ∗ = ∗ ∗ , for all elements , , Ga b c ∈ .

• Existence of an identity: there exists an element Ge∈ such that a e e a a∗ = ∗ = for all

Ga ∈ . Element e is called the identity of the group.

• Existence of inverses: for each element Ga ∈ , there exists an element Gb ∈ such that

a b b a e∗ = ∗ = . Element b is called the inverse of a.

In addition, the group is called abelian if it satisfies the commutativity law, that is,

a b b a∗ = ∗ , for all elements , Ga b∈ .

If the binary (group) operation is called addition (+), then the group is additive. In this case,

the identity element is usually denoted by 0 (zero) and the additive inverse of an element a is

denoted by a− . If, otherwise, the binary (group) operation is called multiplication ()i , then the

finite group is multiplicative. In this case, the identity element is usually denoted by 1 and the

multiplicative inverse of an element a is denoted by 1
a

− .

Finite Fields

A field is a set F

together with two operations, addition (+) and multiplication ()i , s.t. (F , +)

and (∗
F , i) are abelian groups and the distributive law ()a b c a c b c+ ⋅ = ⋅ + ⋅ holds for all

elements , ,a b c ∈F . There exists a finite field if and only if its order q is a prime power with the

form mq p= , where p is a prime and 1m ≥ . We denote this field by qF and distinguish the

following cases:

• If 1m = , it is called prime field and is denoted by pF . In this case, {0,1,2, , 1}p p= −…F ,

which are all the integers modulo p. The group operations are then addition and

multiplication modulo p.

• If 2m ≥ , it is called extension field and is denoted by mp
F . Using polynomial basis

representation, one can define mp
F as the set of all polynomials in the indeterminate x

with coefficients in pF and degree at most (1)m − :

 1 2
1 2 1 0[] / () { : }m

m m
p m m i pp

x f x a x a x a x a a− −
− −= = + + + + ∈…F F F .

The group operations are polynomial addition and multiplication with coefficients

reduced modulo p. Multiplication is performed modulo an irreducible polynomial ()f x .

Special cases of extension fields are, for example,
2mF , which are known as binary

extension fields (or, simply, binary fields), and 2p
F , which are known as quadratic

extension fields.

Two notable cases are extensively used today to build elliptic curve cryptosystems: prime

fields pF and binary fields
2mF . In this thesis, we focus on the former case. Also, other

extension fields mp
F

of large prime characteristic are employed in many applications including

Chapter 2: Background

13

pairing-based cryptography (see Section 2.3) and new ECC systems based on the GLS method

(see Section 2.2.6).

Cyclic Subgroups

Let G be a finite group of order n with multiplication ()i as binary operation, and let g be an

element of G such that { :0 1}ig g i r= ≤ ≤ − is the subgroup of G generated by g, where r is the

order of the element g, that is, r is the smallest positive integer for which 1rg = . It is known that

r always exists and is in fact a divisor of n. Then, G is a cyclic group with generator g if G g=

(i.e., r n= holds). The set g is also a group itself under the same binary operation and is called

the cyclic subgroup of G generated by g. More precisely, G contains exactly one cyclic subgroup

of order d for each divisor d of n.

In the next section, we explore the way in which all the points belonging to an elliptic curve

over a prime field pF form an abelian group under addition, and how the cyclic subgroups of this

group can be used to implement EC-based cryptosystems.

Generalized Discrete Logarithm Problem (DLP)

Given a multiplicative cyclic group (G,)i of order n with generator g and an element y g∈ ,

the DLP is defined as the problem of determining the unique integer [0, 1]x n∈ − such that
xy g= . In this case, a system based on this problem is considered suitable for cryptography if

the discrete logarithm problem is intractable and there are fast algorithms to compute the group

operation in G.

Two groups are extensively used in discrete logarithm (DL) systems: the cyclic subgroups of

the multiplicative group of a finite field and cyclic subgroups of elliptic curve groups. The former

case has been studied since the late 70’s. Hence, cryptosystems based on this setting will be

regarded as traditional DL-based systems.

2.2. Introduction to Elliptic Curves

A non-singular elliptic curve E over a finite field K, which is denoted by E/K, is defined by the

general Weierstrass equation:

1 2 3 4 6

2 3 2
, , , , , 1 3 2 4 6:W a a a a aE y a xy a y x a x a x a+ + = + + + , (2.1)

where: 1 2 3 4 6, , , ,a a a a a K∈ , the discriminant 2 3 2
2 8 4 6 2 4 68 27 9 0d d d d d d d∆ = − − − + ≠ ,

2
2 1d a= + 24a , 4 4 1 32d a a a= + ,

2
6 3 64d a a= + and

2 2 2
8 1 6 2 6 1 3 4 2 3 44d a a a a a a a a a a= + − + − .

The condition 0∆ ≠ guarantees that there does not exist more than one tangent line for a given

point on the curve, i.e., the curve is “smooth”.

Chapter 2: Background

14

If we define elliptic curve points as the pairs (,)x y solving the curve equation (2.1) and L is

any extension field of K, the set of L -rational points on
1 2 3 4 6, , , , ,W a a a a aE is:

 2 3 2
1 3 2 4 6() (,) : 0{ } { }WE x y y a xy a y x a x a x a= ∈ × + + − − − − = ∪L L L O , (2.2)

where O represents the point at infinity and is an L -rational point for all extension fields L of

K.

Definition 2.1. Two elliptic curves
1 2 3 4 61 , , , , ,W a a a a aE E= and

1 2 3 4 62 , , , , ,W b b b b bE E= defined over K

in Weierstrass form are said to be isomorphic over K if there exist , ,r s t K∈ and \ {0}u K∈

such that the mapping (also called an admissible change of variables):

 ()2 3 2
(,) ,x y u x r u y u sx t+ + +� (2.3)

transforms 1E into 2E .

Definition 2.2. If , ,r s t K∈ (closure of K) and \ {0}u K∈ in the setting of Definition 2.1, then

curves 1E into 2E are isomorphic over K or twists of each other. Moreover, 1 2() ()j E j E= if

and only if 1E into 2E are twists, where ()j denotes the j-invariant of a given curve equation.

Following Definition 2.2, the j-invariant can be used to determine if two curves are twists.

The Weierstrass equation has had a privileged role in most standards and cryptographic

applications because of the fact that every elliptic curve can be expressed in this form. Moreover,

it enables efficient computation when simplified to its isomorphic forms over K known as short

Weierstrass curves, which are obtained through an admissible change of variables.

2.2.1. Short Weierstrass Form

Since in the present work we mainly focus our attention on prime fields pF with p > 3, we limit

following definitions to pF only. However, the reader should be aware that the same descriptions

extend to any prime field K with prime characteristic > 3.

For the case of pF with p > 3, the general Weierstrass equation (2.1) simplifies to the

following form, known as short Weierstrass form:

 2 3
, , :W a bE y x ax b= + + , (2.4)

where , pa b∈F , 3 216(4 27) 0a b∆ = − + ≠ and 3
, ,() 1728 / 4W a bj E a= ∆ . In the remainder of this

work, we refer to eq. (2.4) as simply WE . Since this curve form has been recommended (and

even enforced in some cases) by numerous international standardization bodies, we will also

Chapter 2: Background

15

refer to it as standard curve.

The set of elliptic curve points (,)x y solving the curve equation (2.4) plus the point at

infinity, which is given by:

 2 3() (,) : 0{ } { }W p p pE x y y x ax b= ∈ × − − − = ∪F F F O , (2.5)

form an additive abelian group ((),)W pE +F when the so called chord-and-tangent rule is used to

define the group operation. In this case, the point at infinity O acts as the identity element of the

group law (see Section 2.2.4.2 for more details).

Cyclic subgroups of the group ((),)W pE +F

can be used to build elliptic curve cryptosystems.

The hardness of these constructs is based on the so-called Elliptic Curve Discrete Logarithm

Problem (ECDLP), described next.

2.2.2. Scalar Multiplication and the Elliptic Curve Discrete Logarithm

Problem (ECDLP)

Let / pE F

be an elliptic curve defined over pF . If ()pP E∈ F is a point of order r, the cyclic

subgroup of ()pE F generated by P is { , ,2 , (1) }P P r P−…O . Then, if we define the scalar k as an

integer in the range [1, 1]r − , we can represent the main operation in ECC, namely, scalar

multiplication (a.k.a. point multiplication), as the following computation:

 Q k P= , (2.6)

where the result Q is also a point in the subgroup of ((),)pE +F generated by P.

Although the scalar multiplication with form (2.6) is the most common operation in elliptic

curve cryptosystems, some settings such as digital signatures require a computation with the form

k P lQ+ , where , ()pP Q E∈ F are points of order r and k, l are integers in the range [1, 1]r − .

This operation is also known as multiple scalar multiplication. To make a clear distinction

between both primitives, we will refer to operation (2.6) as single scalar multiplication whenever

necessary.

The hardness of systems based on elliptic curve scalar multiplication is based on the Elliptic

Curve Discrete Logarithm Problem (ECDLP), which is an adaptation of the traditional DLP to

elliptic curve groups.

Definition 2.3. Given the cyclic group ((),)pE +F

with generator P and a point Q P∈ , the

ECDLP is defined as the problem of determining the unique integer [0, 1]k r∈ − such that

Q kP= , where r is the order of points P and Q.

Chapter 2: Background

16

The ECDLP is assumed to be harder than other recognized problems such as integer

factorization and the discrete logarithm problem in the multiplicative group of a finite field,

which are the foundations of RSA [RSA78] and the ElGamal [ElG84] cryptosystems,

respectively.

To assess more precisely the impact of the attacks available for each problem, we first

introduce the following definition about algorithmic running time.

Definition 2.4. If we define the running time of a given algorithm with input n by

()1[,] exp(()(ln) (ln ln))a a
nL a c O c n nε −= + , where 0c > and 0 1a≤ ≤ are constants and

lim 0n ε→∞ = , then it is said to be polynomial in ln n (i.e., ((ln))c
O n

ε+) if a = 0, exponential in

n (i.e., ()c
O n

ε+) if a = 1, and subexponential if 0 1a< < .

Then, the parameter a can be seen as a measure of the efficacy of an attack to solve a

particular problem, where higher values indicate inefficiency (as it is approximating to

exponential running time) and lower values indicate efficiency (as it is approximating to

polynomial running time). As consequence, one would prefer systems for which only exponential

attacks are known.

In particular, the need for increasingly larger keys in RSA and traditional DL-based systems

is due to the existence of a sub-exponential attack, known as the Number Field Sieve (NFS)

[LLM+93, Gor93], which solves the integer factorization and discrete logarithm problems. This

attack falls in the category of the well-known index calculus attacks, and has an expected running

time of
1

3
[,1.923]nL . In contrast, the fastest known method to solve ECDLP is Pollard’s rho

[Pol78], which falls in the category of square root attacks and has the exponential running time

()O r , where r is the order of the cyclic group with generator P in the setting of Definition 2.3.

Note that there are “weaker” curves such as supersingular curves for which it is feasible to

transport the ECDLP to the DLP in the group *
k

q
F using the Weil pairing and then to apply index

calculus attacks [MOV93]. However, for the wide range of remaining elliptic curves with large

prime order subgroup there are still no better attacks than Pollard’s rho.

In conclusion, it is expected that the key sizes required for ECC using a suitably chosen curve

and underlying field for a given security level are significantly smaller than those required for

traditional cryptosystems based on the integer factorization and DL problems.

Table 2.1 shows the key sizes for EC-based and RSA cryptosystems for equivalent security

levels, as recommended by [NIST07]. Security levels are shown at the bottom of the table and

refer to the bitlength n of keys in a well-designed symmetric cryptosystem such that a brute force

attack would require performing 2
n

 steps in order to break the system. For instance, an attacker

would need to go through all
256

2 possible keys to break AES-256, where 256n = . Estimates for

ECC and RSA systems are based on the key size necessary to successfully run the fastest

Chapter 2: Background

17

algorithm that solves each problem (i.e., Pollard’s rho and NFS, respectively) in a number of

steps that matches the corresponding security level.

Table 2.1. Key sizes for ECC and RSA for equivalent security levels [NIST07].

Cryptosystem Key size (bits)

ECC 160 224 256 384 512

RSA 1024 2048 3072 7680 15360

Security level 80 112
128

(AES-128)

192

(AES-192)

256

(AES-256)

As we can observe from Table 2.1, ECC requires much smaller keys. This directly translates

to important savings in bandwidth and memory requirements to transmit/store key material.

Moreover, with the rapid advances in software/hardware implementation during the last years,

that advantage has also been extended to faster execution times.

These advantages directly reflect on cryptographic systems based on elliptic curves that have

single and multiple scalar multiplications as their main primitives. Next, we review some of the

best known elliptic curve cryptosystems.

2.2.3. Elliptic Curve Cryptographic Schemes

Elliptic Curve Key Generation

First, a public-key system requires a key pair consisting of the private and public keys. This is

given in Algorithm 2.1 for the case of ECC.

Algorithm 2.1. Elliptic curve key generation

Input: domain parameters (, , ,)E p P r

Output: private key k and public key Q

1: Select a random integer [1, 1]k r∈ −

2: Compute Q kP=

3: Return Q

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Based on the original key exchange proposed by Diffie and Hellman in [DH76], this scheme

makes use of elliptic curve groups to allow that two parties establish a shared secret key over a

Chapter 2: Background

18

public medium. The protocol is illustrated in Algorithm 2.2 for the case of ECC.

Algorithm 2.2. Elliptic curve Diffie-Hellman key exchange (ECDH)

Input: domain parameters (, , ,)E p P r

Output: shared secret key Q = abP

 Alice side: Bob side:

1: Select a random integer [1, 1]a r∈ − 1: Select a random integer [1, 1]b r∈ −

2: Compute aQ aP= and send it to Bob 2: Compute bQ bP= and send it to Alice

3: Upon reception of bQ , compute bQ aQ= 3: Upon reception of aQ , compute aQ bQ=

ElGamal Elliptic Curve Cryptosystem

This cryptosystem is an adaptation to ECC of the encryption/decryption system proposed by

ElGamal in [ElG84]. Encryption and decryption schemes are illustrated in Algorithms 2.3 and

2.4, respectively.

Algorithm 2.3. ElGamal elliptic curve encryption

Input: domain parameters (, , ,)E p P r , public key Q and plaintext m

Output: ciphertext 0 1(,)C C

1: Represent m as a point ()pM E∈ F

2: Select a random integer [1, 1]d r∈ −

3: Compute 0C dP=

4: Compute 1C M dQ= +

5: Return 0 1(,)C C

Algorithm 2.4. ElGamal elliptic curve decryption

Input: domain parameters (, , ,)E p P r , private key k and ciphertext 0 1(,)C C

Output: plaintext m

1: Compute 1 0M C kC= −

2: Extract m from M

3: Return m

Elliptic Curve Digital Signature Algorithm (ECDSA)

This is the elliptic curve analogue of the Digital Signature Algorithm (DSA) and is the most

Chapter 2: Background

19

popular EC-based signature scheme. It has been standardized in ANSI X9.62, FIPS 186-2, IEEE

1363-2000 and ISO/IEC 15946-2. Signature generation and verification are illustrated in

Algorithms 2.5 and 2.6 . H denotes a hash function that is assumed to be preimage and collision

resistant.

Algorithm 2.5. ECDSA signature generation

Input: domain parameters (, , ,)E p P r , private key k and message m

Output: signature 0 1(,)s s

1: Select a random integer [1, 1]d r∈ −

2: Compute 1 1(,)dP x y= and set 1z x=

3: Compute 0 (mod)s z r≡ . If 0 0s = , go to step 1

4: Compute ()e H m=

5: Compute 1
1 () mods d e kz r

−= + . If 0 0s = , go to step 1

6: Return 0 1(,)s s

Algorithm 2.6. ECDSA signature verification

Input: domain parameters (, , ,)E p P r , public key Q, message m and signature 0 1(,)s s

Output: reject or accept the signature

1: If 0 1(,) [1, 1]s s r∉ − , return (reject the signature)

2: Compute ()e H m=

3: Compute 1
1 modt s r
−≡ .

4: Compute modu et n= and 0 modv s t n=

5: Compute 1 2(,)T uP vQ x x= + =

and set 1z x= . If T =O , return (reject the signature)

6: If 0 (mod)s z r≡ , return (accept the signature)

7: Else return (reject the signature)

The security of the ECDH key exchange, ElGamal elliptic curve cryptosystem and ECDSA is

based on the intractability of the ECDLP in P . In addition, the ECDSA requires that the hash

function H be preimage and collision resistant. As can be seen, scalar multiplication (or multiple

scalar multiplication) constitutes the central (and most time-consuming) operation of the schemes

above. Hence, speeding up this operation has a direct impact in the computing performance of

any cryptographic protocol based on elliptic curves.

 In the following section, we briefly describe the arithmetic layers that constitute the

computation of elliptic curve scalar multiplication. The interested reader is referred to [HMV04,

ACD+05] for a more detailed look at the topic.

Chapter 2: Background

20

2.2.4. ECC Scalar Multiplication Arithmetic

The computation of elliptic curve scalar multiplication consists of three arithmetic levels or

layers: field, point and scalar arithmetic. As previously seen, a cryptographic protocol or scheme

works on top of scalar multiplication. However, since this thesis focuses on the efficient

computation of this operation, our discussion will center on the aforementioned arithmetic levels.

2.2.4.1. Level 1: Finite Field Arithmetic

The lowest level of scalar multiplication over prime fields consists of finite field operations,

which are basically traditional arithmetic operations reduced modulo the prime p:

• Addition: given , pa b ∈F , compute ()moda b p r+ = , where r a b p= + − if a b p+ ≥

or r a b= + if a b p+ < .

• Subtraction: given , pa b∈F , compute ()moda b p r− = , where r a b p= − + if

0a b− < or r a b= − if 0a b− ≥ .

• Multiplication: given , pa b ∈F , compute ()moda b p r⋅ = , where r is the remainder of

dividing ()a b⋅ by p s.t. 0 1r p≤ ≤ − .

• Squaring: given pa ∈ F , compute
2

moda p r= , where r is the remainder of dividing 2
a

by p s.t. 0 1r p≤ ≤ − .

• Inversion: given a nonzero element pa ∈F , compute
1

moda p r
− = , where r is the

unique integer in pF for which ()mod 1a r p⋅ = .

Since modular reduction represents an important portion of the cost of computing modular

arithmetic, it is relevant to optimize this operation. In the setting of elliptic curve point

multiplication, the selection of a prime of special form (e.g., a pseudo-Mersenne prime p s.t.

2mp ≈) enables very efficient modular reduction; see Chapter 5 for an implementation of the

field arithmetic using a pseudo-Mersenne prime. If a general form for the prime p is mandatory

for security concerns (e.g., in pairing-based cryptosystems), then the use of Montgomery

arithmetic [Mon85] is a popular choice given its relatively efficient reduction step. In this case,

elements x are represented with the form 2 modNa x p= ⋅ , where N t w= ⋅ , 2N p> , w is the

computer wordlength and t is the number of words. Montgomery reduction produces

2 modNa p−⋅ for an input 2Na p< ⋅ . Then, Montgomery multiplication of elements a =

2 modNx p⋅ and 2 modNb y p= ⋅ can be performed as 2mod (2) 2 (mod)N Nc ab p x y p−= = ⋅ ⋅ ⋅ =

2 modNxy p⋅ , which is in Montgomery representation; see Chapter 6 for an implementation of

the field arithmetic using Montgomery arithmetic with a prime of “general” form.

The reader is referred to [HMV04, Chapter 2] and [ACD+05, Chapter 10] for more detailed

discussions about efficient algorithms to perform integer arithmetic and field operations.

Chapter 2: Background

21

In the remainder of this work, we use the following notation in italics to specify the

computing time (or computing cost) required to perform field operations in pF : A (field addition

or subtraction), S (field squaring), M (field multiplication) and I (field inversion). In some cases,

multiplication by a curve parameter is required. The cost of this operation is denoted by D.

In theoretical estimates throughout this work, we make the following assumptions:

1 0.8S M= , which is commonly used in the literature; the costs of computing field addition/

subtraction and division/multiplication by a small constant are roughly equivalent to one another

and/or negligible in comparison with the cost of field multiplication and squaring; and curve

parameters are suitably chosen such that the cost of multiplying by these constants is negligible.

Whenever required for simplification purposes, the assumptions above are applied in our

theoretical cost analysis. However, the reader should be aware that these assumptions may vary

from one implementation to another.

2.2.4.2. Level 2: Point Arithmetic

This level consists of the binary (group) operation accompanying the defined additive abelian

group ((),)pE +F . The different variants of this group operation are better known as point

operations.

The elementary representation of points is based on the natural representation using (,)x y

coordinates, which is called in the context of ECC affine coordinates (denoted by A for the

remainder of this work). As previously stated, the group addition is geometrically defined by the

chord-and-tangent rule: (i) the result of adding two points is the projection over the x axis of the

point that intersects the line that crosses the two original points being added. This operation is

referred to as point addition and can be visualized in Figure 2.1(a) over the real numbers; (ii) the

result of adding a point to itself can be geometrically defined as the projection over the x axis of

the point that intersects the tangent of the original point. This operation is referred to as point

doubling and can be visualized in Figure 2.1(b) over the real numbers.

Following the geometrical definition, it is relatively easy to derive the following formula to

add two points. Let WE be an elliptic curve over pF
in short Weierstrass form (2.4), where p >

3. Given two points 1 1(,)P x y= and 2 2(,) ()W pQ x y E= ∈ F , where P Q≠ ± , the addition

3 3(,)P Q x y+ = is obtained as follows:

2
3 1 2x x xλ= − − , ()3 1 3 1y x x yλ= − − , (2.7)

where:
2 1

2 1

y y

x x
λ

−
=

−
. This addition formula has a cost of 1I + 2M + 1S.

Similarly, formula for point doubling in affine coordinates can be easily derived from the

previously described geometric description. Let WE be an elliptic curve over pF
in short

Weierstrass form (2.4), where p > 3. Given a point 1 1(,) ()W pP x y E= ∈ F , 3 32 (,)P x y= can be

Chapter 2: Background

22

 (a) Addition P+Q (b) Doubling 2P

Figure 2.1. Group law over � .

obtained as follows:

2
3 12x xλ= − , ()3 1 3 1y x x yλ= − − , (2.8)

where:a

2
1

1

3

2

x a

y
λ

+
= . The cost of the previous formula is 1I + 2M + 2S.

There are a few exceptions to the previous formulas that can be solved by applying the

identity element, namely, the point at infinity O. Recall that the point at infinity can be

geometrically defined as the point “lying far out on the y-axis such that any line x = c, for some

constant c, parallel to the y-axis passes through it” [ACD+05]. Thus, if 1 1(,)P x y= and

1 1(,)Q x y= − , then the addition is given by: 1 1 1 1(,) (,)P Q x y x y+ = + − =O . 1 1(,)Q x y= − is

called the negative of P and is denoted by P− . Similarly, P P P+ = + =O O , and = −O O .

Inversion-Free (Projective) Coordinates

As we have seen in the previous section, point formulas based on affine coordinates require the

computation of field inversions. Particularly over prime fields, inversions are highly expensive in

comparison with other field operations, and should be avoided as much as possible. Although

their relative cost depends on the characteristics of a particular implementation, it has been

observed that, especially in the case of efficient forms for the prime p as recommended by

[NIST00], 1 30I M> . For instance, benchmarks presented by [LH00] and [BHL+01] show I/M

ratios between 30-40 and 50-100, respectively.

To solve this problem, one can use instead projective coordinates with the form (: :)X Y Z ,

y

x

y

x

1 1(,)P x y=

1 1(,)P x y=

2 2(,)Q x y=

3 3(,)P Q x y+ =

3 32 (,)P x y=

Chapter 2: Background

23

in which case the third coordinate Z permits to replace inversions for a few other field operations.

More precisely, given a prime field pF and ,c d
+∈Z , there is an equivalence relation ∼ among

nonzero triplets over pF , such that [HMV04]:

1 1 1 2 2 2(, ,) (, ,)X Y Z X Y Z∼ ⇔ 1 2
cX Xλ= , 1 2

dY Yλ= and 1 2Z Zλ= , for some *
pλ ∈F , (2.9)

The equivalence class of a projective point is *(: :) {(, ,) : }c d
pX Y Z X Y Zλ λ λ λ= ∈F , where

any element (, ,)X Y Z can be used as a representative of such a point. In particular,

(/ , / ,1)c dX Z Y Z is the only representative in the set for which 1Z = . That means that there is a

one-to-one mapping between affine points and projective points.

If, for instance, one fixes 2c = and 3d = the new representation is known as Jacobian

coordinates (denoted by J in the remainder), which is a special case of projective coordinates

that has yielded very efficient point formulae [HMV04, Elm06]. Then, in this case the

equivalence class of a (Jacobian) projective point is given by:

 2 3 *(: :) {(, ,) : }pX Y Z X Y Zλ λ λ λ= ∈F . (2.10)

Note that, in the Jacobian representation, each projective point (: :)X Y Z corresponds to the

affine point 2 3(/ , /)X Z Y Z . In this case, the curve equation (2.4) acquires the projective form
2 3 4 6

Y X aXZ bZ= + + , the negative of a point (: :)P X Y Z= is given by (: :)P X Y Z− = − and

the point at infinity corresponds to (1 :1 : 0)=O .

In Table 2.2, we summarize costs of the most efficient point formulas in J coordinates,

including recently proposed composite operations such as tripling (3P) and quintupling (5P) of a

point, which are built on top of traditional doubling and addition operations and are relevant for

the efficient implementation of multibase scalar multiplication methods (see Chapter 4). Also, we

include the highly efficient doubling-addition operation proposed by the author in [Lon07] which

computes the recurrent value 2P Q+ and is more efficient than performing a doubling followed

by an addition when using Jacobian coordinates (see also [LM08b]). Besides “traditional” costs

in each case, we also show costs of formulas after applying the technique of replacing

multiplications by squarings (labeled as “Using S-M tradings”) [LM08] using the algebraic

substitutions 2 2 2() 2a b a b a b ⋅ = + − −  or 2 2 22 ()a b a b a b ⋅ = + − −  . In general, this

technique is more efficient always that 4M S A− > or 2M S A− > (respect.). The reader is

referred to our online database [Lon08] for complete details about state-of-the-art formulas using

Jacobian coordinates.

Note that formulas considered in Table 2.2 fix 3a = − in the curve equation (2.4) for

efficiency purposes. This assumption, which has been shown not to impose significant restrictions

to the cryptosystem [BJ03], has been recommended and incorporated in public-key standards

[NIST00, IEEE00].

Chapter 2: Background

24

Table 2.2. Costs (in terms of multiplications and squarings) of point operations using Jacobian

(J) and mixed Jacobian-affine coordinates.

Point operation
Cost

“Traditional” Using S-M tradings

Doubling (DBL), 2 →J J 4M + 4S 3M + 5S

Mixed doubling (mDBL), 2 →A J 2M + 4S 1M + 5S

Tripling (TPL), 3 →J J 9M + 5S 7M + 7S

Mixed tripling (mTPL), 3 →A J 7M + 5S 5M + 7S

Quintupling (QPL), 5 →J J 13M + 9S 10M + 12S

Mixed quintupling (mQPL), 5 →A J 12M + 8S 8M + 12S

Mixed addition (mADD), + →J A J 8M + 3S 7M + 4S

Mixed2 addition (mmADD), + →A A J 4M + 2S 4M + 2S

Addition (ADD), + →J J J 12M + 4S 11M + 5S

Addition with two stored values ([1,1]ADD), + →J J J 11M + 3S 10M + 4S

Addition with four stored values ([2,2]ADD), + →J J J 10M + 2S 9M + 3S

Mixed doubling-addition (mDBLADD), 2 + →J A J 13M + 5S 11M + 7S

Doubling-addition (DBLADD), 2 + →J J J 17M + 6S 14M + 9S

Doubling-addition ([1,1]DBLADD), 2 + →J J J 16M + 5S 13M + 8S

For the remainder, doubling (2P), tripling (3P), quintupling (5P), addition (P+Q) and

doubling-addition (2P+Q) are denoted by DBL, TPL, QPL, ADD and DBLADD, respectively. If

at least one of the inputs is in affine and the output is in J coordinates, the operations use mixed

coordinates (see Cohen et al. [CMO98]) and are denoted by mDBL, mTPL, mQPL, mADD and

mDBLADD, corresponding to each of the previous point operations. For addition, the case in

which both inputs are in affine is denoted by mmADD. Costs are expressed in terms of field

multiplications (M) and squarings (S) only. The reader is referred to [Lon08] for the full

operation count.

In some cases, it is possible to reduce the cost of certain operations if some values are

precomputed in advance. That is the case of addition and doubling-addition with stored values

(identified by the subscripts [,]M S , where M and S denote the number of precalculated

multiplications and squarings, respect.). If, for instance, values 2
iZ and 3

iZ are calculated for

each precomputed point id P in windowed methods the costs of the aforementioned operations

can be reduced by 1M + 1S. Maximum savings can be achieved if four values, namely, 2
iZ , 3

iZ ,
2
2Z and 3

2Z , can be precalculated before performing an addition of the form 1 1 1(: :)X Y Z +

2 2 2(: :)X Y Z . In this case, we can save up to 2M + 2S.

Chapter 2: Background

25

Variants of J coordinates have also been explored in the literature. In particular, the four-

tuple
4(: : :)X Y Z aZ and five-tuple

2 3
:(: : :)X Y Z Z Z , known as modified Jacobian (m

J)

[CMO98] and Chudnovsky (C) [CC86] coordinates, respectively, permit the saving of some

operations by passing recurrent values between point operations. However, most benefits

achieved with these representations are virtually cancelled by assuming 3a = − in the EC

equation and with the alternative use of operations with stored values. Other (somewhat less

efficient) system, referred to as homogeneous (H) coordinates, is defined by fixing 1c d= = in

(2.9).

The costs presented in Table 2.2 (specifically, costs labeled as “Using S-M tradings”) will be

used later for assessing the methods proposed for precomputation and multibase scalar

multiplication in Chapters 3 and 4, respectively. Also, our high-speed implementations of scalar

multiplication in Chapter 5 are based on standard curves using this system. In this case, given the

relatively high cost of additions and other “small” operations on x86-64 processors, we make use

of “traditional” operations without exploiting S-M tradings.

2.2.4.3. Level 3: Scalar Arithmetic

This level of computation refers to the efficient execution of scalar multiplication (2.6)

employing the point operations discussed in the previous section. Because the naïve method

computing kP P P P= + + +… using (1)k − point additions is highly expensive, it is important

the use of efficient number representations for the scalar k to make this operation reasonably

efficient.

In that direction there have appeared a myriad of methods for computing scalar multiplication

in the last few years. These methods are generically classified according to their applicability to

two possible scenarios: (i) the initial point P is fixed and known before execution; (ii) the initial

point P varies and is not known in advance. If the initial point P is known in advance, as happens

in the ElGamal elliptic curve encryption scheme or the first phase of the Diffie-Hellman key

exchange (see Section 2.2.3), efficient methods can precalculate multiples of P almost for “free”

to reduce costs during the evaluation stage (e.g., comb methods). On the other hand, if the point

P is not known in advance, as happens during the ElGamal decryption or the second phase of the

Diffie-Hellman key exchange, methods should include the precomputation cost in the overall cost

and, hence, precomputed points should be used sensibly.

In this thesis we focus on methods falling in the second category (i.e., point P is not known in

advance). In this case, it is standard to use the so-called double-and-add algorithm, which is the

analogue of the square-and-multiply method used for exponentiation in multiplicative groups.

This method uses the binary representation of integers, as can be seen in Algorithm 2.7(a).

Moreover, since negating points is inexpensive and can be performed on-the-fly it is convenient

to use signed binary representations that potentially allow the reduction of nonzero digits (which

Chapter 2: Background

26

directly translates to a reduction in the number of required additions). By adjusting the double-

and-add for this case, we obtain what is known as the double-and-(add-or-subtract) method. See

Algorithm 2.7(b). Popular signed binary representations are the standard non-adjacent form

(NAF) and its variants, which are briefly described in the next subsection.

Algorithm 2.7. Left-to-right methods for scalar multiplication

Input: (a) 1 2 0 2(, , ,)t tk k k k− −= …

or (b) 1 2 0 NAF(, , ,)t tk k k k− −= … ; and ()pP E∈ F

Output: kP

 (a) (b)

1: Q =O 1: Q =O

2: For 1i t= − downto 0 do 2: For 1i t= − downto 0 do

3:

2Q Q← 3:

2Q Q←

4: If 1ik = then Q Q P← + 4: If 1ik = then Q Q P← +

5: Return Q 5: If 1ik = − then Q Q P← −

 6: Return Q

Note that Algorithm 2.7 presents left-to-right versions of the methods discussed above. There

are also right-to-left variants which can be advantageous when protection against side-channel

analysis (SCA) attacks is required. The same observation applies to other methods such as the

Montgomery Ladder [Mon87].

In the remainder of this work, for a scalar multiplication kP, we assume that ()pP E∈ F is of

order r and ()pE F is of order # ()pE h r= ⋅F , where r is prime and h << r. Since it is known

that # ()pE p≈F following Hasse’s theorem (see Theorem 3.7 in [HMV04]), we have that

.r p≈ Then, if k is a scalar randomly chosen in the range [1, 1]r − , the average length of k in

binary representation is 2logn p= and the corresponding operation will be referred as n-bit

scalar multiplication. In this case, double-and-add and double-and-(add-or-subtract) algorithms

will require in average (1)n − main loop iterations. We refer as nonzero density or Hamming

weight to the number of nonzero digits in a given scalar representation. In particular, for scalar

multiplication, the nonzero density of the representation of k directly translates to the number of

required point additions to compute kP.

Non-Adjacent Form (NAF) and Width-w Non-Adjacent Form (wNAF)

Among different signed radix-2 representations using digits from the set {0, 1}D = ± , NAF is a

canonical representation with the fewest number of nonzero digits for any scalar k [Rei60]. The

NAF representation of k contains at most one nonzero digit among any two successive digits. The

expected nonzero density of this representation is NAF 1/ 3δ = . Hence, the average cost of an n-

Chapter 2: Background

27

bit scalar multiplication using NAF is approximately (1)DBL (/3)ADDn n− + , where DBL and

ADD represent the cost of doubling and addition, respectively.

If there is memory available, one can exploit the use of precomputations by means of a

method known as wNAF [Sol00], which uses precomputed values to “insert” windows of width

w. The latter permits the consecutive execution of several doublings to reduce the density of the

expansion. The wNAF representation of k contains at most one nonzero digit among any w

successive digits, and uses the digit set
1{0, 1, 3, 5, , (2 1)}wD −= ± ± ± ± −… , where 2w

+> ∈Z . The

average density of nonzero digits for a window of width w is NAF 1/(1)w wδ = + , and the number

of required precomputed points is
2(2 1)w− − (hereafter we refer as precomputed points to non-

trivial points not including { , }PO). Hence, the cost using this method is approximately

(1)DBL (/(1))ADDn n w− + + plus the cost of the precomputation stage.

Fractional Width-w NAF (Frac-wNAF)

The wNAF representation requires the precomputation of
2(2 1)w− − non-trivial points, i.e., 1, 3,

7, 15 points, and so on. However, a specific implementation could have memory restrictions that

do not adjust to these values. Moreover, because the applicable scenario involves an initial point

P not known in advance, the precomputed table must be built every time a scalar multiplication is

performed. Hence, it is often the case that a table with a number of points different to that fixed

by standard windows achieves the minimal cost.

Möller [Möl03] proposed to solve this problem by recoding the binary representation of an

integer with windows of flexible size using a digit set of the form {0, 1, 3, 5, , }D m= ± ± ± ±… ,

where 1m ≥ is an odd integer. In this way, one can flexibly choose any number of precomputed

points. This method is denoted by Frac-wNAF and its expected nonzero density is given by

()2
1

log
Frac- NAF 2log (1) /(2) 1

m
w m mδ

−
  = + + +   [Möl05].

Note that if 1m = , Frac-wNAF is actually reduced to the NAF method with a nonzero density

of about 1/3. Similarly, Frac- NAFwδ attains the same values as NAFwδ for the standard window

values of wNAF. For instance, Frac-wNAF with 7m = reduces to wNAF with w = 4 (in this case,

0.2δ =).

2.2.5. Special Curve Forms

During the last few years, there has been a growing interest in studying curve forms different to

the standardized Weierstrass form (2.4). These special curves have gained increasing attention

because in some cases they offer higher resilience against side-channel analysis attacks and/or

enable faster implementations. In this work, we focus on two special curve forms that have been

shown to achieve very high performance: extended Jacobi quartics and Twisted Edwards curves.

Next, we briefly describe both curve shapes in their most generalized form.

Chapter 2: Background

28

Extended Jacobi Quartic Curve

It is defined by the non-singular curve equation:

2 4 2

: 2 1JQE y dx ax= + + , (2.11)

where , pa d ∈F and
2() 0d a d− ≠ . Results by Billet and Joye [BJ03b] show that every elliptic

curve of even order can be written in extended Jacobi quartic form. The projective curve in

weighted projective coordinates is given by 2 4 2 2 42Y dX aX Z Z= + + , where a projective point

(: :)X Y Z corresponds to the affine point
2(/ , /)X Z Y Z . In this case, the negative of a point

(: :)P X Y Z= is represented by (: :)P X Y Z− = − and the identity element is given by (0 :1:1) .

The most efficient formulae for this case have been developed by Hisil et al. [HWC+07,

HWC+08b] using an extended coordinate system of the form
2 2(: : : :)X Y Z X Z that will be

referred in the remainder of this work as e
JQ .

Note that, recently, Hisil et al. [HWC+09] proposed the use of a mixed system that

efficiently combines homogeneous coordinates with an extended homogeneous coordinate

system with the form (: : :)X Y Z T , where 2 /T X Z= . However, formulas for composite

operations known to date are faster in weighted projective coordinates e
JQ .

In Table 2.3, we summarize the costs of formulas using extended Jacobi quartic coordinates

[HWC+07, HWC+08b]. Note that it is also possible to trade multiplications for squarings in some

cases (labeled as “Using S-M tradings”). And similarly to the case of operations with stored values

Table 2.3. Costs of point operations for an extended Jacobi quartic curve with d = 1 using

extended Jacobi quartic (e
JQ) coordinates.

Point operation Coord.
Cost

“Traditional” Using S-M tradings

 DBL 2()e e→JQ JQ 3M + 4S + 1D 2M + 5S + 1D

 mDBL 2() e→A JQ 1M + 6S + 1D 7S + 1D

 TPL 3()e e→JQ JQ 8M + 4S + 1D 8M + 4S + 1D

 mTPL 3() e→A JQ 5M + 6S + 2D 5M + 6S + 2D

 QPL 5()e e→JQ JQ 14M + 4S + 1D 14M + 4S + 1D

 mQPL 5() e→A JQ 11M + 6S + 2D 11M + 6S + 2D

 mADD e e+ →JQ A JQ 7M + 2S + 1D 6M + 3S + 1D

 mmADD e+ →A A JQ 4M + 3S + 1D 4M + 3S + 1D

 ADD e e e+ →JQ JQ JQ 8M + 3S + 1D 7M + 4S + 1D

[0,1]ADD e e e+ →JQ JQ JQ 8M + 2S + 1D 7M + 3S + 1D

Chapter 2: Background

29

using Jacobian coord. (see Section 2.2.4.2), the original cost of addition can be reduced further.

For instance, the addition with cost of 7M + 4S can be reduced to 7M + 3S by noting that

2()i iX Z+ can be precomputed for each precomputed point (see [HWC+07] for complete

details).

Given the relatively “well-balanced” performance among all point operations listed in Table

2.3, we use these costs (specifically, the costs labeled as “Using S-M tradings”, assuming that

1 0D M≈) for evaluating the multibase methods in Chapter 4. We also use this system for

illustrating the use of the LG precomputation scheme in Chapter 3.

Twisted Edwards Curve

This form is a generalization of Edwards curves [Edw07] and is defined by the non-singular

curve equation:

2 2 2 2: 1TEE ax y dx y+ = + , (2.12)

where , pa d ∈F and () 0ad a d− ≠ . An efficient projective system for performing arithmetic on

these curves is known as inverted Edwards coordinates (referred to as IE coordinates for the

reminder) [BL07b]. In this system, the equation takes the form
2 2 2 2 2 4()X Y Z X Y dZ+ = + ,

assuming that 1a = , where 0X Y Z ≠ , each projective point (: :)X Y Z corresponds to (/ ,Z X

/)Z Y in affine and the negative of a point (: :)P X Y Z= is given by (: :)P X Y Z− = − .

Recently, there have been remarkable improvements in the case of Twisted Edwards curves

using homogeneous coordinates (denoted by E). For this case, the curve acquires the projective

form 2 2 2 2 2 2 4
aX Z Y Z dX Y Z+ = +

for which each triplet (: :)X Y Z corresponds to the affine

point (/ , /)X Z Y Z , 0Z ≠ . Hisil et al. [HWC+08] introduced extended homogeneous coordinates

(denoted by
e
E), where each point (: : :)X Y Z T corresponds to (/ , /)X Z Y Z

in affine and

/T XY Z= . The negative of (: : :)X Y Z T

is given by (: : :)X Y Z T− − , and (: : :)X Y Z T =

*
{(, , ,) : }pX Y Z Tλ λ λ λ λ ∈ F . In [HWC+08], Hisil et al. also suggest the map (,) (/ ,)x y x a y−�

to convert the Twisted Edwards curve to
2 2 2 21x y d x y′− + = + , where /d d a′ = − , allowing

further reductions in the cost of point operations. For the point multiplication, they ultimately

propose to compute a doubling followed by an addition as 2
e→E E and e e+ →E E E or

e + →E A E (which can be unified into a doubling-addition operation with the form

(2)e e+ →E E E

or (2)e + →E A E) and to compute the remaining doublings as 2 →E E . This

combined system is called mixed homogeneous/extended homogeneous coordinates and is

denoted by /
e

E E .

In Table 2.4, we summarize the costs of formulas using IE [BL07b] and /
e

E E [HWC+08]

coordinates. Again, it is possible to trade multiplications for squarings in some cases (labeled as

“Using S-M tradings”).

Chapter 2: Background

30

Table 2.4. Costs of point operations for a Twisted Edwards curve using inverted Edwards (IE)

and mixed homogeneous/extended homogeneous (/
e

E E) coordinates.

Point operation

IE (a = 1) /
e

E E (a = −1)

Coord. “Traditional”
Using S-M

tradings
Coord. “Traditional”

Using S-M

tradings

 DBL 2()→IE IE 4M + 3S + 1D 3M + 4S + 1D 2() →E E 4M + 3S 3M + 4S

 mDBL 2()→A IE 4M + 2S 3M + 3S 2() →A E - -

 TPL 3()→IE IE 9M + 4S + 1D 9M + 4S + 1D 3() →E E - -

 mTPL 3()→A IE 7M + 3S 7M + 3S 3() →A E - -

 mADD + →IE A IE 8M + 1S + 1D 8M + 1S + 1D e e+ →E A E 7M 7M

 mmADD + →A A IE 7M 7M e+ →A A E - -

 ADD + →IE IE IE 9M + 1S + 1D 9M + 1S + 1D e e e+ →E E E 8M 8M

 mDBLADD

2() + →IE A IE - - (2)e + →E A E 11M + 3S 10M + 4S

 DBLADD 2() + →IE IE IE - - (2)e e+ →E E E

12M + 3S 11M + 4S

Given the availability of a tripling formula of relatively good performance in IE coordinates,

we use this system (costs labeled as “Using S-M tradings”, assuming that 1 0D M≈) for

evaluating the multibase methods discussed in Chapter 4. We also use IE coordinates for

illustrating the use of the LG precomputation scheme in Chapter 3. On the other hand, /
e

E E

coordinates currently offer the highest performance for scalar multiplication using traditional

radix-2 methods, even surpassing the performance of mixed Jacobi quartic homogeneous/

extended homogeneous coordinates (see [HWC+09]). Hence, our high-speed implementations of

scalar multiplication in Chapter 5 are based on Twisted Edwards curves using this system. In this

case, given the relatively high cost of additions and other “small” operations on x86-64

processors, we make use of “traditional” operations without exploiting S-M tradings.

2.2.6. The Galbraith-Lin-Scott (GLS) Method

Recently, Galbraith et al. [GLS09] proposed to perform ECC computations on the quadratic twist

E ′ of an elliptic curve E over 2p
F with an efficiently computable homomorphism (,)x yψ →

(,)x yα β such that ()P Pψ λ= and 2 1 0(mod)rλ + ≡ , where 2()[]
p

P E r′∈ F . Then, following

[GLV01], kP can be computed as a multiple point multiplication with form 0 1()k P k Pλ+ ,

where 0k and 1k have approximately half the bitlength of k. Integers 0k and 1k can be calculated

by solving a closest vector in a lattice or (in the case of a random scalar k) by simply choosing

the integers directly [GLS09].

Chapter 2: Background

31

It has also been observed that the GLS method can be adapted to different curve forms. In

Chapter 5, we evaluate various techniques and optimizations in combination with this method to

realize high-speed elliptic curve implementations on software. For this purpose, we choose

curves in Weierstrass and Twisted Edwards form. The details of these curve forms using the GLS

method, mainly taken from the literature, are summarized next. For complete details, please refer

to [GLS09, GLS08].

The Case with Weierstrass Form

Corollary 2.1. Let curve WE

over pF be defined by (2.4) with # () 1W pE p t= + −F points,

where t is called the trace of /W pE F , 2t p≤ , and µ be a quadratic non-residue in 2
p
F . If

0ab ≠ , WE

is isomorphic to the curve:

 2
2 3/ :W p

E y x a x b′ ′ ′= + +F , (2.13)

with
2a aµ′ = and 2

3

p
b bµ′ = ∈ F , and 2

2 2
() (1)W p

E p t′ = − +F . Curve WE ′ is the quadratic

twist of WE

over 2
p
F . The twisting isomorphism is given by : W WE Eφ ′→ , (,)x yφ =

3
(,)ux u y , which is defined over 4pF . The group homomorphism is given by:

 3 3(,) (, /)p

p
x y x y

µ
ψ µ µ

µ
= ⋅ ⋅ , (2.14)

where x and y denote the Galois conjugates of x and y, respectively.

The Case with Twisted Edwards Form

Corollary 2.2. Let curve TEE

over pF be defined by (2.12) with # () 1TE pE p t= + −F points

4 | (1)p t+ − , 2t p≤ , and µ be a quadratic non-residue in 2p
F .Then TEE

is isomorphic to the

curve:

 2
2 2 2 2/ : 1TE p

E a x y d x y′ ′ ′+ = +F , (2.15)

with a aµ′ = and 2p
d dµ′ = ∈ F , and 2

2 2
() (1)TE p

E p t′ = − +F . Curve TEE′ is the quadratic

twist of TEE

over 2p
F . The twisting isomorphism is given by : TE TEE Eφ ′→ , (,)x yφ =

(,)x u y , and the group homomorphism is:

 (,) (/ ,)px y x yψ µ µ= ⋅ . (2.16)

Following [GLS09], for our implementations on Weierstrass and Twisted Edwards curves in

Chapter 5 we fix 1272 1 3(mod 4)p = − ≡

and 22 piµ = + ∈F where 1 pi = − ∈ F . The chosen

prime is assumed to provide approximately 128 bits of security.

Chapter 2: Background

32

2.2.6.1. Arithmetic over Quadratic Extension Fields

Since for our case 2 ()pp i=F F with 1 pi = − ∈F , elements in 2p
F can be represented by

x a bi= + , where , pa b ∈F . The conjugate of x is given by x a bi= − .

Then, field arithmetic consists of usual polynomial addition and multiplication in i with

coefficients reduced modulo p. Moreover, as suggested in [GLS09], 2p
F multiplication can be

sped up by using Karatsuba method [Kar95] such that () () () ()a bi c di ac bd bc ad i+ ⋅ + = − + + is

computed as () (()())ac bd a b c d ac bd i− + + + − − , which requires 3 pF multiplications and 5

pF additions/subtractions instead of 4 pF multiplications and 2 pF additions/subtractions.

Similarly, a squaring with the form 2()a bi+ can be computed as ()() 2a b a b abi+ − + with 2

pF multiplications and 3 pF additions/subtractions, which is more efficient than computing
2 2 2() () 2a bi a b abi+ = − + always that 2S M A> + or 2 2 2 2 2 2() () [()]a bi a b a b a b i+ = − + + − −

always that 3 2S A M+ > .

2.2.6.2. Security of the GLS Method

An attack by Gaudry [Gau09] has been shown to solve the ECDLP on general abelian varieties of

small dimension. Specifically, this attack can solve the ECDLP in ()mq
E F in

2 2 /()m
O q

−� , which

is faster than Pollard’s rho algorithm if 2m > . Hence, it does not have any implications on the

practical implementations in 2()
q

E F discussed in this work.

Definition 2.5. Let E be an elliptic curve defined in qF , a point ()qP E∈ F of order r, a point

xP P∈ for a random integer [0, 1]x r∈ − and a reusable point aP P∈ for an integer

[0, 1]a r∈ − . The Static Diffie-Hellman Problem (denoted by Static DHP) is defined as the

problem of determining axP .

Recently, Granger [Gra10] introduced a new attack that was shown to solve the Static DHP in

heuristic time
1 1/(1)()m

O q
− +� for any elliptic curve in ()mq

E F if an attacker has access to a Static

DHP oracle. Hence, this result is immediately more efficient than Gaudry’s attack and, most

importantly, faster than Pollard’s rho attack if 2m = . Accordingly, it is suggested to avoid the

use of the GLS method in settings where the Static DHP applies (e.g., when the same Diffie-

Hellman secret is reused for various Diffie-Hellman key agreements). Alternatively, one may

increase the key size accordingly to make this attack and Pollard’s rho algorithm roughly

equivalent for solving the ECDLP in 2()
q

E F .

We remark that it is known that the Static DHP can be solved for any arbitrary curve in

()qE F with
1/3()O q Static DHP oracle queries and

1/3()O q group operations [BG04], which is

faster than the best generic attack achieving complexity
1/ 2()O q , namely Pollard’s rho.

Chapter 2: Background

33

2.3. Introduction to Pairings

An admissible bilinear pairing is an efficiently computable function 1 2 T: G G Ge × → , where

1G and 2G are cyclic subgroups of elliptic curve groups, TG is a cyclic subgroup of the

multiplicative group of a finite field, 1G , 2G and TG have order r, and the following conditions

hold:

• Bilinearity: for all 1, GP Q ∈ and all 2, GR S ∈ , (,) (,) (,)e P Q R e P R e Q R+ = ⋅ and

(,) (,) (,)e P R S e P R e P S+ = ⋅ .

• Non-degeneracy: (,) 1e P R ≠ for some 1GP ∈ and 2GR ∈ . Or, equivalently,

(,) 1e P R = for all 2GR ∈ if and only if P = O ; and (,) 1e P R = for all 1GP ∈ if and

only if R = O .

Also, it immediately follows that (,) (,) (,)ab
e aP bR e P R e bP aR= = for any two integers a

and b.

Bilinear pairings provide elegant solutions to some longstanding problems in cryptography

such as Identity-Based Encryption (IBE) [BF01, SOK00], three-party one-round Diffie-Hellman

key exchange [Jou00], short signatures [BLS04], among others, and has been the focus of intense

research since its introduction by Boneh, Franklin and others at the beginning of the new

millennium. For illustration purposes we show in Algorithm 2.8 the three-party one-round key

agreement by Joux using a bilinear pairing on 1 T(G ,G) . The reader is referred to [Men09] for a

discussion of other fundamental pairing-based protocols.

Algorithm 2.8. Pairing-based tree-party one-round key exchange

Input: domain parameters 1 T(G ,G , , , ,)E p P r

Output: shared secret key (,)abcK e P P=

 Alice side: Bob side:

1: Select a random integer [1, 1]a r∈ − 1: Select a random integer [1, 1]b r∈ −

2: Send aQ aP= to Bob and Charlie 2: Send bQ bP= to Alice and Charlie

3: Upon reception of bQ and cQ , compute 3: Upon reception of aQ and cQ , compute

 (,)aK e bP cP= (,)bK e aP cP=

 Charlie side:

1: Select a random integer [1, 1]c r∈ −

2: Send cQ cP= to Alice and Bob

3: Upon reception of aQ and bQ , compute

 (,)cK e aP bP=

Chapter 2: Background

34

The security of Algorithm 2.8 relies on the impossibility of computing (,)abc
e P P given P,

aP, bP and cP by an eavesdropper. This is an instance of the so-called Bilinear Diffie-Hellman

Problem, whose intractability is the security basis of many pairing-based protocols. As will be

evident later, the hardness of this problem implies the hardness of the Diffie-Hellman Problem.

Definition 2.6. The Bilinear Diffie-Hellman Problem (denoted by BDHP) is the problem of

computing (,)xy
e P R given P, xP, yP and R.

Definition 2.7. The (Computational) Diffie-Hellman Problem (denoted by DHP) is the problem

of computing xyP given P, xP, yP.

Note that if the DHP can be solved in 1G , the value xyP is available and (,)xy
e P R can be

easily computed as (,)e xyP R . A similar conclusion is achieved for TG . Since the DHP can be

easily solved if the DLP can be solved (assumption P assumptionDLP DHP≥ , that is, DHP is not harder

than the DLP), it can be concluded that assumption P assumption P assumptionDLP DHP BDHP≥ ≥ . Since

nothing else is known about the difficulty of solving the BDHP, it is assumed to be as difficult as

the DHP and that the security of pairing-based cryptographic schemes ultimately relies on the

hardness of the DLP in 1G , 2G and TG .

Miller introduced in [Mil86b] an algorithm to evaluate rational functions on algebraic curves,

enabling the efficient computation of pairings at linear complexity with respect to the input size

(see also [Mil04]). Since then many optimizations have been proposed to improve the so called

Miller’s algorithm by, for instance, reducing the loop length [HSV06, LLP09, Ver10] or

constructing pairing-friendly elliptic curves [BN05, BW05, SB06].

When 1 2G G= the pairing is called symmetric and is defined over supersingular curves. In

this case, Tη pairing is arguably the most efficient algorithm [BGO+07]. If, otherwise, 1 2G G≠ ,

the pairing is called asymmetric and is defined over ordinary elliptic curves. In this case, the

optimized variants of the Tate pairing [BKL+02] (e.g., ate [HSV06], R-ate [LLP09], optimal ate

[Ver10] pairing) achieve the highest performance.

In this work, we focus on the efficient implementation of asymmetric pairings with ordinary

curves (see Chapter 6). Accordingly, we will assume the following groups for the construction of

pairings: 1G , 2G = cyclic subgroups of ()pE F ; TG = cyclic subgroup of
*

k
p
F .

For the case of ordinary curves, Barreto and Naehrig [BN05] proposed a large and easy-to-

generate family of elliptic curves (called BN curves) with embedding degree 12k = , which is

optimal for implementing pairings at the 128-bit security level. For our analysis and tests we

choose the optimal ate pairing algorithm [Ver10]. We stress, however, that according to our tests

other variants of the Tate pairing achieve similar performance on the targeted platforms (i.e.,

x86-64-based processors).

Chapter 2: Background

35

2.3.1. Optimal Ate Pairing on BN Curves

A Barreto-Naehrig (BN) curve has the form:

2 3:BNE y x b= + , (2.17)

defined over with 0b ≠ and embedding degree k = 12, where
4 3 236 36 24 6 1p u u u u= + + + + ,

prime order and u∈Z .

Let the map :p BN BNE Eπ → be the p-power endomorphism (,) (,)
p p

p x y x yπ = , []BNE n the

n-torsion subgroup of BNE , BNE′ the sextic twist 2
2 3

/ :BN p
E y x b ξ′ = +F with ξ neither a

cube nor a square in 2p
F , 1G [] Ker([1]) ()[]BN p BN pE n E nπ= ∩ − = F , 2G the preimage

2()[]BN p
E n′ F of 12[] Ker([]) ()[]BN p BN p

E n p E nπ∩ − ⊆ F and 12
*

TG n p
µ= ⊂F the group of n-th

roots of unity. The optimal ate pairing on equation (2.17) is defined as [NNS10]:

 2 1 T: G G Gopta × →

 ()
12

2

1

, [] , () [] (), ()
(,) () () ()

p p p

p

n
r Q r Q Q r Q Q Q

Q P f P l P l Pπ π π

−

+ −
→ ⋅ ⋅ , (2.18)

where 6 2r u= + ∈Z , , ()r Qf P is a normalized function with divisor ,() () ([])r Qf r Q r Q= − −

(1)()r − O and
1 2,Q Ql is the line arising in the addition of points 1Q and 2Q evaluated at point P.

Precisely, Miller’s algorithm computes the function ,r Qf using a double-and-add approach that

involves the computation of point doublings, point additions and line evaluations. In Algorithm

2.9, the so-called Miller loop corresponds to lines 2-4. The pairing computation is completed by the

Algorithm 2.9. Optimal ate pairing on BN curves (including the case)

Input:
2log

1 2 0
G , G , 6 2 2

r i
ii

P Q r u r
=

∈ ∈ = + =∑

Output:

 1: , 1T Q f← ←

 2: For 2log 1i r= −   downto 0 do

 3:

 4:

 5:

 6: If 0u < then 1,T T f f −← − ←

 7:
1, 1(),T Qf f l P T T Q← ⋅ ← +

 8:
2, 2(),T Qf f l P T T Q−← ⋅ ← −

 9:

10: Return f

pF

4 3 2
36 36 18 6 1n u u u u= + + + +

0u <

(,)opta Q P

2
, (), 2T Tf f l P T T← ⋅ ←

,if 1 then (),i T Qr f f l P T T Q= ← ⋅ ← +

2
1 2(), ()p pQ P Q Qπ π← ←

6 2 4 2(1)(1)(1) /p p p p nf f − + − +←

Chapter 2: Background

36

final exponentiation, which corresponds to line 9 in the same algorithm. Note that the power

 is factored in the exponents , and .

12(1) /p n− 6(1)p − 2(1)p + 4 2(1) /p p n− +

37

3 Chapter 3

New Precomputation Schemes

This chapter revisits the problem of calculating precomputations efficiently when the base

point(s) is not known in advance. There are two standard table forms used by most elliptic curve

scalar multiplication methods in the literature: id P

and i ic P d Q+ , where {, 0, 1,i ic d D∈ = ±

}3, 5,..., m± ± ± with m odd. In the first case, it is required the on-line calculation of the non-trivial

points id P , where { }\ {0,1} 3,5,...,id D m+∈ =

with m odd. In the second case, it is required (in

the extreme case) the on-line calculation of the non-trivial points ,i ic P d Q± where

{ }, 0,1,3,5,...,i ic d D m+∈ = , 1ic > if 0id = , 1id > if 0ic = , and m odd. The negative of these

points can be computed on-the-fly at negligible cost. In the remainder, we will refer to these

tables built with non-trivial points as simply id P and ,i ic P d Q± respectively. Well-known

methods to compute scalar multiplication using the former table are wNAF and Frac-wNAF in

the case of single scalar multiplication, and the interleaving NAF method in the case of multiple

scalar multiplication [HMV04]. Methods that employ a table with the form i ic P d Q±

are

commonly intended for multiple scalar multiplication, such as the Joint Sparse Form (JSF)

[Sol01] and its variants [KZZ04, OKN10].

In this chapter, we propose two novel methods for precomputing points and carry out an

exhaustive analysis at different memory and security requirement levels:

• The first scheme, referred to as Longa-Miri (LM) Scheme, is based on the special

addition with identical Z coordinate [Mel07] and is intended for tables with the form

Chapter 3: New Precomputation Schemes

38

id P using Jacobian coordinates on standard curves.

• The second scheme, referred to as Longa-Gebotys (LG) Scheme, is based on the concept

of conjugate addition in projective coordinates and offers superior flexibility since it can

be applied to any curve form and adapted to tables with forms id P

and i ic P d Q± .

The different schemes are adapted and analyzed (whenever relevant) in three possible

scenarios (see Section 3.1.1): case 1, without using inversions; case 2, using only one inversion;

and case 3, using multiple inversions. The analysis of the proposed schemes includes three

curves of interest: Weiertrass curves using Jacobian coordinates J, extended Jacobi quartics

using extended Jacobi quartic coordinates e
JQ , and Twisted Edwards curves using inverted

Edwards coordinates IE .

This chapter is organized as follows. §3.1 discusses the most relevant previous work. §3.2

introduces the LM precomputation scheme for standard curves using Jacobian coordinates,

targeting the single scalar multiplication case. §3.3 introduces the LG precomputation scheme

and discusses its applicability to different curves forms for both single and multiple scalar

multiplication. §3.4 presents the performance analysis of the proposed schemes, including

detailed comparisons with previous methods. §3.5 discusses other applications for conjugate

additions. And, finally, some conclusions are drawn in §3.6.

3.1. Previous Work

In this section we summarize most relevant efforts in the literature to reduce the time complexity

of the precomputation stage of scalar multiplication. We also recall the special addition by

Meloni [Mel07], which is used here to build a novel precomputation scheme. We remark that, in

the present work, we focus on methods that are efficient when the initial point P in the

computation kP is not known in advance.

3.1.1. Precomputation for Single Scalar Multiplication

The most commonly used precomputation table has the form id P , where \{0,1}id D
+∈ =

{ }3,5,...,m , for some odd integer m. This table form can be found in most algorithms to compute

scalar multiplication such as the wNAF and Frac-wNAF methods (see Section 2.2.4.3).

The traditional approach is to compute the points by following the sequence P → 3P → 5P

→ … → mP with the application of an addition with 2P at each step. Depending on the

coordinate system(s) applied for the calculation, we can distinguish three different cases:

• Case 1: points are precomputed and left in some projective system. This scenario has the

Chapter 3: New Precomputation Schemes

39

potential advantage of having very low cost because no additional coordinate system

conversion is required. However, because points are left in certain projective system,

additions during the evaluation stage have general form and one cannot make use of

efficient mixed addition or mixed doubling-addition operations.

• Case 2: points are computed in some projective system and then converted to affine

coordinates. The latter step is usually performed with the Montgomery’ simultaneous

inversion method in order to reduce the number of inversions (see Alg. 2.26 of

[HMV04]). In this scenario, precomputation cost is higher because of the conversion to

affine step. However, the use of mixed additions (or mixed doubling-additions) allows

reducing costs during the evaluation stage.

• Case 3: points are computed and left in affine coordinates. This case is probably the most

expensive approach of all three cases in terms of speed, mainly because inversion is

especially expensive over prime fields. One potential advantage of this approach is that

memory requirement is kept to a minimal.

Cases 1 and 2 were studied by Cohen et al. [CMO98] when proposed the use of mixed

coordinates to implement scalar multiplication on Weiertrass curves. In particular, Cohen et al.

proposed two alternatives using different coordinate systems:
1 2 3(, ,) (, ,)m

C C C = J J C and
1 2 3(, ,) (, ,)m

C C C = J J A , where 1
C represents the system to perform doublings, 2

C represents

the system for every doubling before an addition, and 3
C represents the system to perform

additions (in the evaluation and precomputation stages). In particular, the first approach, which

computes precomputations in C coordinates (corresponding to case 1), was shown to be more

efficient than the second approach using A coordinates combined with the Montgomery’

simultaneous inversion method (corresponding to case 2) always that 1I > 30M approximately.

Nevertheless, the conclusions drawn in [CMO98] are somewhat outdated because mJ

coordinates (proposed for the evaluation stage in both cases) do not provide any advantage if

3a = − , as discussed in Section 2.2.4.2. Also, Cohen et al.’s approach to case 2 involves the use

of Montgomery’s method over groups of points. However, a more popular alternative in recent

years has been to apply the method to all points in the table so that the number of inversions is

limited to only one. In this scenario, possible approaches are to compute precomputed points in

J, C or H coordinates and then use Montgomery’s method over all the partial points.

Very recently, Dahmen et al. [DOS07] proposed a highly efficient method (called the DOS

method) and showed that it is more cost-effective than all other previous schemes using one

inversion (case 2). Also, when compared to the approach using only A coordinates (case 3), the

DOS method exhibits superior performance for a wide range of I/M ratios. The DOS method’s

cost is 1 (10 1) (4 4)I L M L S+ − + + , where (1) / 2L m= − is the number of non-trivial points in

the table, and it has a memory requirement of (2 4)L + registers (in this thesis, we assume that

Chapter 3: New Precomputation Schemes

40

each “register” can store a field element). One disadvantage of the DOS method is that there is no

straightforward version to compute points as in case 1.

3.1.2. Special Addition with Identical Z Coordinate

The following formula was proposed by Meloni in [Mel07]. Let 1 1(: :)P X Y Z= and

2 2(: :)Q X Y Z= be two points with the same Z coordinate in J on an elliptic curve WE defined

over pF . The addition 3 3 3(: :)P Q X Y Z+ = can be obtained as follows:

() () ()2 3 2
3 2 1 2 1 1 2 12X Y Y X X X X X= − − − − − ,

() () ()2 3

3 2 1 1 2 1 3 1 2 1Y Y Y X X X X Y X X = − − − − −  ,

()3 2 1Z Z X X= − . (3.1)

Remarkably, Meloni also noticed that one can extract from (3.1) a new representative of

1 1(: :)P X Y Z= given by () () ()()2 3
,1 2 1 1 2 1 2 1,X X X Y X X Z X X− − − , which has identical Z

coordinate to 3 3 3(: :)P Q X Y Z+ = . So one can continue applying the same formula recursively.

The new addition only costs 5M + 2S, which represents a significant reduction in comparison

with 8M + 3S (or 7M + 4S), corresponding to the mixed Jacobian-affine addition (see Table 2.2).

Unfortunately, it is not possible to directly replace traditional additions with this special

operation since, obviously, it is expected that additions are computed over operands with

different Z coordinates during standard scalar multiplication. Hence, Meloni [Mel07] applied his

formula to the context of scalar multiplication with star addition chains, where the particular

sequence of operations allows the replacement of each traditional addition by formula (3.1)

(referred to as Co-ADD Z for the remainder, borrowing notation from [GMJ10]).

Nevertheless, the author noticed in [Lon07] that the new addition can in fact be useful to

devise new formulas for composite operations such as doubling-addition that are applicable to

traditional scalar multiplication methods (see [Lon07] and also [LM08b]).

In Section 3.2, we again exploit the Co-ADD Z operation to build low-cost precomputation

tables. The new approach is called LM Scheme, offers very low cost and can be easily adapted to

cases 1 and 2, exhibiting higher performance and flexibility than the DOS method.

3.1.3. Precomputation for Special Curves and Multiple Scalar

Multiplication

To the best of our knowledge, most research in the literature has only explored the efficiency of

precomputation schemes on standard curves of Weierstrass form (2.4). Although the traditional

Chapter 3: New Precomputation Schemes

41

sequence P → 3P → 5P → … → mP can be easily adapted to special curves, it is still lacking a

thorough performance analysis. In this work, we derive for first time the costs involved in

computing the precomputed table on certain special curves using the traditional sequence and

applying the most efficient point operations at our disposal. Moreover, we propose a new scheme

based on the concept of “conjugate” additions (see Section 3.3). The new method is called LG

Scheme and is shown to achieve the lowest costs on extended Jacobi quartics using eJQ

coordinates and Twisted Edwards curves using IE coordinates.

For the case of multiple scalar multiplication, JSF-based methods need the calculation of a

table of the form i ic P d Q± , where { }, 0,1,3,5,...,i ic d m∈ for some odd integer value m [KZZ04].

In [OTV05], Okeya et al. observed that an inversion can be saved when computing P Q± in

affine coordinates (which can be seen as an addition/conjugate addition in A). However, the

derived scheme was basically intended for implementations using the affine representation only

and, hence, inefficient when compared to cases using some projective system over prime fields.

Recently, Järvinen et al. [JFS07] extended Okeya et al.’s idea of exploiting redundancies in affine

formulae to precompute points. To get rid of the multiple inversions, they took advantage of

Montgomery’ simultaneous inversion method and derived an efficient scheme for a table with the

form dP lQ kR± ± , where , , {0,1}d l k ∈ . Hence, in its actual format their methodology only

applies to that specific table form and is expected to be efficient on standard curves only since it

is still based on affine formulae.

Because the concept of “conjugate” addition, as discussed in this work, takes advantage of

redundancies in the computation of P Q± in projective coordinates, it naturally applies to

precomputation tables that appear in multiple scalar multiplication algorithms and enables

efficient computation over prime fields. In Section 3.3.3, we analyze the savings achieved with

this approach and show its advantages in terms of computing cost. Moreover, we analyze for first

time the performance of precomputation methods on certain special curves in this setting.

Specifically, we study the case with Jacobi quartics using eJQ coordinates and Twisted

Edwards curves using IE coordinates.

NOTE: Okeya et al.’s idea is similar to the proposed concept of “conjugate” addition. However,

their observation was restricted to affine coordinates whereas we discovered the idea of saving

operations in the computation P Q± when observing redundancies in projective coordinate

formulae. In general, projective coordinates are largely preferred over prime fields (especially on

special curves), so savings in these settings are more valuable.

For the remainder of this chapter, we assume that curve parameters for the curves under

analysis can be chosen such that the cost of multiplying a curve constant can be considered

negligible in comparison with a regular multiplication. Also, in most cases additions and

Chapter 3: New Precomputation Schemes

42

subtractions are neglected in our cost analysis. These assumptions greatly simplify our analysis

without affecting the conclusions.

3.2. Precomputation Scheme Based on the Addition with
Identical Z Coordinate: LM Scheme

The proposed scheme, computes the precomputed table as follows:

 2 2 2id P P P P P= + + + +… , (3.2)

performing additions from right to left. We will show that all the additions in (3.2) can be

computed with the Co-ADD Z operation proposed by Meloni [Mel07], reducing costs in

comparison with previous approaches.

The direct scheme applying (3.2) and calculating the points in J coordinates is referred to as

LM Scheme, case 1. Furthermore, although the author proposed in [Lon07, Section 3.4.1] a

version of the method using only one inversion (case 2), in this work we observe that some

values computed during the aforementioned additions can be efficiently exploited to minimize

costs during conversion to A coordinates. In this regard, we present two new and optimized

schemes which are referred to as LM Scheme, cases 2a and 2b.

3.2.1. Method Description

Our method can be summarized in the following two steps.

Step 1: Computation of precomputed points in Jacobian coordinates

Point P is assumed to be initially in A coordinates. By applying the mixed coordinates approach

proposed in [CMO98], we can compute the point 2P required in (3.2) in J as follows:

2
2 2X α β= − , () 4

2 2 1Y X yα β= − − , 2 1Z y= , (3.3)

where
2
1(3) 2x aα = + , 2 2 2 4

1 1 1 1() 2x y x yβ  = + − −  , and the input and result are 1 1(,)P x y=

and 2 2 22 (: :) ()pP X Y Z E= ∈ F , respectively. Formula (3.3) can be easily derived from the

doubling formula (5.2), Section 5.4, by setting 1 1Z = , and has a cost of only 1 5 12M S A+ + .

Note that, if 1 1 4M S A− < , then computing β as
2

1 1x y⋅ is more efficient with a total cost of

2 4 8M S A+ + .

Then, by fixing 1yλ = in (2.10) we can set a point
(1)

P equivalent to P given by:

() ()(1) (1) (1)(1) 2 4
1 1 1 11 1 1 1 1, , , , (, ,1)P X Y Z x y y y P x y= = ≡ = ,

Chapter 3: New Precomputation Schemes

43

whose computation does not involve additional costs since its coordinates have already been

computed in (3.3). Following additions to compute points id P are performed using the special

addition Co-ADD Z as follows:

1
st
 Compute () () ()(1) (1) (1)(1)

2 2 2 3 3 31 1 13 2 , , , , , ,P P P X Y Z X Y Z X Y Z= + = + = :

() () ()
2 3 2

(1) (1) (1)
3 2 2 2 21 1 12X Y Y X X X X X= − − − − − ,

() () ()
2 3

(1) (1) (1)
3 2 2 2 3 2 21 1 1Y Y Y X X X X Y X X

 
= − − − − − 

 
,

()(1)
3 2 21Z Z X X= − .

2
nd

Fix () () () () ()
2 3

(1) (1) (1) (1) (1) (1)(1)
2 2 2 2 2 2 2 2 22 2 2 1 1 12 , , , , , ,P X Y Z X X X Y X X Z X X X Y Z

 
= = − − − ≡ 

 
,

and compute () () ()(1) (1) (1)(1)
3 3 3 4 4 42 2 25 2 3 , , , , , ,P P P X Y Z X Y Z X Y Z= + = + = :

() () ()
2 3 2

(1) (1) (1) (1)
4 3 3 32 2 2 22X Y Y X X X X X= − − − − − ,

() () ()
2 3

(1) (1) (1) (1) (1)
4 3 3 4 32 2 2 2 2Y Y Y X X X X Y X X

 
= − − − − − 

 
,

()(1) (1)
4 32 2Z Z X X= − , ()(1)

4 3 2A X X= − , ()
2

(1)
4 3 2B X X= − , ()

3
(1)

4 3 2C X X= − .

�
th

1

2

m− 
 
  Fix () ()(2

((3) / 2) ((3) / 2) ((3) / 2) ((5) / 2) ((5) / 2)((3) / 2)
(1) / 22 2 2 2 22 , ,

m m m m mm
mP X Y Z X X X

− − − − −−
−= = − ,

() ())
3

((5) / 2) ((5) / 2) ((5) / 2) ((5) / 2)
(1) / 2 (1) / 22 2 2 2,

m m m m
m mY X X Z X X

− − − −
− −− −

≡ (((5) / 2) ((5) / 2)

2 2, ,
m m

X Y
− −

)((5) / 2)
2

m
Z

−
, and compute ()((3) / 2) ((3) / 2) ((3) / 2)((3) / 2)

2 2 22 (2) , ,
m m mm

mP P m P X Y Z
− − −−= + − = +

() ()(1) / 2 (1) / 2 (1) / 2 (3) / 2 (3) / 2 (3) / 2, , , ,m m m m m mX Y Z X Y Z+ + + + + += :

() () ()
2 3 2

((3) / 2) ((3) / 2) ((3) / 2) ((3) / 2)
(3) / 2 (1) / 2 (1) / 2 (1) / 22 2 2 22m m m m
m m m mX Y Y X X X X X

− − − −
+ + + += − − − − − ,

() ()
2

((3) / 2) ((3) / 2) ((3) / 2)
(3) / 2 (1) / 2 (1) / 2 (3) / 22 2 2

m m m
m m m mY Y Y X X X X

− − −
+ + + +

 
= − − − − 

 
…

 ()
3

((3) / 2) ((3) / 2)
(1) / 22 2

m m
mY X X

− −
+ −… ,

()((3) / 2) ((3) / 2)
(3) / 2 (1) / 22 2

m m
m mZ Z X X

− −
+ += − , ()((3) / 2)

(3) / 2 (1) / 2 2
m

m mA X X
−

+ += − ,

()
2

((3) / 2)
(3) / 2 (1) / 2 2

m
m mB X X

−
+ += − , ()

3
((3) / 2)

(3) / 2 (1) / 2 2
m

m mC X X
−

+ += − .

Intermediate values iA and (,)i iB C , for i = 4 to (3) / 2m + , are stored for LM Scheme,

cases 2a and 2b, respectively, and used in Step 2 to save some computations when converting

points to A coordinates. Note that the LM Scheme, case 1, does not require neither storing values

Chapter 3: New Precomputation Schemes

44

(, ,)i i iA B C nor executing Step 2.

Step 2: Conversion to affine coordinates (cases 2a and 2b only)

This step involves the conversion from J to A of points (): :i i iX Y Z computed in Step 1, for i =

3 to (3) / 2m + , 3m > , enabling the use of the efficient mixed addition operation during the

evaluation stage of scalar multiplication.

Conversion from J to A is achieved by applying
2 3(/ , / , 1)i i i iX Z Y Z (see Section 2.2.4.2).

Then, to avoid the computation of several expensive inversions we use a modified version of the

Montgomery’s method of simultaneous inversion to limit the requirement to only one inversion

for all the points in the precomputed table id P .

In LM Scheme, case 2a, we first compute the inverse 1
(3) / 2mr Z
−

+= , and then recover every

point using
2 3(/ , / , 1)i i i iX Z Y Z as follows:

mP : 2
(3) / 2 (3) / 2m mx r X+ += ⋅ , 3

(3) / 2 (3) / 2m my r Y+ += ⋅ ,

(m−2)P : (3) / 2mr r A += ⋅ , 2
(1) / 2 (1) / 2m mx r X+ += ⋅ , 3

(1) / 2 (1) / 2m my r Y+ += ⋅ ,

� �

3P : 4r r A= ⋅ , 2
3 3x r X= ⋅ , 3

3 3y r Y= ⋅ .

It is important to observe that 3 4
j

j iiZ Z A== × ∏ , for j = 4 to (3) / 2m + , according to Step 1

and, hence, for (2), (4), ,3i m m= − − … , the value 1
(3) / 2iZ
−

+ for each point iP is recovered at

every multiplication (5) / 2ir A +⋅ .

For LM Scheme, case 2b, we first compute ()
2

1
1 (3) / 2mr Z

−
+= and ()

3
1

2 (3) / 2mr Z
−

+= , and then

recover every point using
2 3(/ , / , 1)i i i iX Z Y Z as follows:

mP : (3) / 2 1 (3) / 2m mx r X+ += ⋅ , (3) / 2 2 (3) / 2m my r Y+ += ⋅ ,

(m−2)P : 1 1 (3) / 2mr r B += ⋅ , 2 2 (3) / 2mr r C += ⋅ , (1) / 2 1 (1) / 2m mx r X+ += ⋅ , (1) / 2 2 (1) / 2m my r Y+ += ⋅ ,

� �

3P : 1 1 4r r B= ⋅ , 2 2 4r r C= ⋅ , 3 1 3x r X= ⋅ , 3 2 3y r Y= ⋅ .

In this case: 2 2
3 4

j
j iiZ Z B== ×∏ and 3 3

3 4
j

j iiZ Z C== ×∏ , for j = 4 to (3) / 2m + , according to

Step 1 and, hence, for (2), (4), ,3i m m= − − … , the pair 2 3
(3) / 2 (3) / 2(,)i iZ Z
− −

+ + for each point iP is

recovered with 1 (5) / 2ir B +⋅ and 2 (5) / 2ir C +⋅ .

The reader is referred to Appendix A1 for the detailed pseudocode of the LM Scheme.

Chapter 3: New Precomputation Schemes

45

3.2.2. Cost Analysis

The cost of the LM Scheme, case 1, is given by:

 LM Scheme, case 1Cost (6 1) (3 5)L M L S= + + + , (3.4)

where (1)/2L m= − is the number of non-trivial points in the table id P . The cost (3.4) assumes

the use of the addition (or doubling-addition) with stored values during the evaluation stage that

requires precalculating values
2
iZ and

3
iZ (see Table 2.2). Otherwise, the cost can be reduced to

only (5 1) (2 5)L M L S+ + + . In terms of memory usage (for temporary calculations and point

storage), LM Scheme, case 1, requires (5 6)L + registers if using the addition or doubling-

addition with stored values or

(3 6)L + registers if using operations without stored values.

The LM Scheme, case 2a, has the following cost:

 LM Scheme, case 2aCost 1 (9) (3 5)I L M L S= + + + , (3.5)

In terms of memory usage, LM Scheme, case 2a, requires (3 3)L + registers overall. In the

case of LM Scheme, case 2b, the cost is as follows:

 LM Scheme, case 2bCost 1 (9) (2 6)I L M L S= + + + , (3.6)

For this scheme, we require (4 1)L + registers when L > 1. For L = 1, the requirement is fixed

at 6 registers. It will be shown later that memory requirements of cases 2a and 2b do not exceed

the memory allocated for scalar multiplication for small or intermediate values of L, whereas case

1 does not exceed memory constraints in any case. For the detailed estimation of costs and

memory requirements of the LM Scheme, cases 1, 2a and 2b, please refer to Appendix A2.

For the record, the original scheme in [Lon07] has a cost of 1 (11 2) (3 5)I L M L S+ + + + . As

can be seen in (3.5) and (3.6), the new LM Scheme variants represent an important improvement

in terms of computing cost. In particular, case 2b achieves the lowest cost in scenarios using one

inversion at the expense of some extra memory.

Next, we analyze the memory requirements for scalar multiplication and determine if our

method adjusts to such constraints.

In the case of using general (doubling-additions) additions or general (doubling-additions)

additions with stored values for the evaluation stage (i.e., case 1), scalar multiplication requires in

total (3L+R) or (5L+R) registers, respectively, where R is the number of registers needed by the

most memory-consuming point operation in a given implementation. In scalar multiplications

using solely radix 2, addition and doubling-addition are usually such operations. Depending on

the implementation details, these operations can require up to 8 registers [Lon08]. Consequently,

the LM Scheme, case 1, adjusts to the above requirements as it always holds that 3 6 3L L R+ ≤ +

Chapter 3: New Precomputation Schemes

46

and 5 6 5L L R+ ≤ + for the two aforementioned cases.

In the case of using mixed additions (or mixed doubling-addition) during evaluation (i.e.,

case 2), the total requirement of scalar multiplication is given by (2L+R) registers. Thus, LM

Scheme, case 2b, adjusts to the previous requirements for small precomputed tables. If mixed

addition or doubling-addition is the most memory-consuming operation then 4 1 2 7L L+ ≤ + for

3L ≤ . A similar analysis for case 2a allows us to verify that this scheme adjusts to memory

constraints for 4L ≤ , which demonstrates that it is efficient for practical implementations based

on fractional windows if n = 160 bits. Although cases 2a and 2b require more memory resources

for higher values of L necessary in 256- and 512-bit scalar multiplications, we show in Section

3.4.1 that these schemes still achieve the lowest costs for most scenarios for equivalent memory

constraints.

In Section 3.4, we analyze in great detail the performance of the proposed method in

comparison with the best previous efforts on standard curves.

3.3. Precomputation Scheme based on Conjugate Additions:
LG Scheme

The proposed scheme is based on the following simple observation: if P Q+ has been computed

for two distinct points P, Q, the subtraction of those points only requires a few additional field

operations. In the remainder, we will refer to this operation, namely (())P Q P Q− = + − , as

“conjugate” addition and denote it by ADD′ . It will turn out that this operation allows the

efficient computation of precomputed tables.

Next, we describe the strategy of the conjugate addition in projective coordinates, and then

discuss its application to computing tables of the form id P and i ic P d Q± .

3.3.1. The Strategy: Conjugate Addition using Projective Coordinates

First, ()P Q P Q− = + − . As the negative of a point only involves the change of at most one of the

coordinate values in the projective representation (see Sections 2.2.4.2 and 2.2.5), it is then

expected than computing P Q+ and P Q− share most of the intermediate computations.

Let us illustrate the latter with the point addition formula using J coordinates. Let

1 1 1(: :)P X Y Z= and 2 2 2(: :)Q X Y Z= be two points on an elliptic curve /W pE F . If the

addition 3 3 3(: :)P Q X Y Z+ = is performed using the optimized addition formula:

2 3 2 2
3 2 12X Z Xα β β= − − , 2 2 3 3

3 2 1 3 2 1()Y Z X X Z Yα β β= − − , 3Z θβ= , (3.7)

where
3 3
1 2 2 1Z Y Z Yα = − ,

2 2
1 2 2 1Z X Z Xβ = − and

2 2 2
1 2 1 2[()] 2Z Z Z Zθ = + − − , then P Q− can be

Chapter 3: New Precomputation Schemes

47

computed as 1 1 1 2 2 2 4 4 4() (: :) (: :) (: :)P Q X Y Z X Y Z X Y Z+ − = + − = reusing the partial values
3 2 2

2 1(2)Z Xβ β+ , 2 2
2 1Z X β , 3 3

2 1Z Y β , 3Z , 3
1 2Z Y and 3

2 1Z Y . Thus, the conjugate addition can be

computed with the following:

2 3 2 2
4 2 12X Z Xγ β β= − − , 2 2 3 3

4 4 2 1 2 1()Y X Z X Z Yγ β β= − − , 4 3Z Z= , (3.8)

where 3 3
1 2 2 1Z Y Z Yγ = + . Note that (3.8) only involves the extra cost of 1 1M S+ , which is

significantly less than the cost of a general addition (3.7) (i.e., 11 5M S+). If we also consider

other usually neglected operations, the cost drops from 11 5 9 1(2) 1(2)M S A+ + + × + ÷ to only

1 1 4M S A+ + . In total, the addition/conjugate addition pair costs 12 6 13 1(2) 1(2)M S A+ + + × + ÷ .

It may seem that performing this conjugate operation would involve several extra registers to

store partial values temporarily. However, memory requirements can be minimized by

performing P Q+ and P Q− concurrently. For instance, a possible execution sequence for

computing P Q± using formulas (3.7) and (3.8) would be as the one shown in Table 3.1.

The execution of the addition/conjugate addition pair detailed in Table 3.1 requires 8 registers

only (including temporary registers and registers storing input/output coordinates), which is the

same memory requirement of the addition formula alone. Thus, executing the conjugate addition

does not increase the memory consumption in this case. Similar results are expected for other

coordinate systems.

Table 3.1. Pseudocode of an “interlaced” execution of an addition/conjugate addition pair in J.

INPUT: 1 1 1(: :)P X Y Z=

and 2 2 2(: :)Q X Y Z= ; 1 1T X← , 2 1T Y← , 3 1T Z← , 4 2T X← , 5 2T Y← , 6 2T Z←

OUTPUT: 3 3 3 1 2 3(: :) (: :)P Q X Y Z T T T+ = =

and 4 4 4 4 5 3(: :) (: :)P Q X Y Z T T T− = =

 1. 2
7 3T T= 2

1{ }Z 12. 8 1 8T T T= × 2
2 1{ }Z X 23. 2

1 6T T= 2{ }α

 2. 4 4 7T T T= × 2
1 2{ }Z X 13. 7 4 8T T T= −

 { }β 24. 1 1 4T T T= − 3{ }X

 3. 8 3 7T T T= × 3
1{ }Z 14. 3 3 / 2T T=

 { }θ 25. 7 2 7T T T= × 3 3

2 1{ }Z Y β

 4. 5 5 8T T T= × 3
1 2{ }Z Y 15. 3 3 7T T T= ×

 3 4{ }Z Z= 26. 2 8 1T T T= −

2 2
2 1 3{ }Z X Xβ −

 5. 2
8 6T T= 2

2{ }Z 16. 2
6 7T T= 2{ }β 27. 2 2 6T T T= ×

2 2
2 1 3{ ()}Z X Xα β −

 6. 7 7 8T T T= + 2 2
1 2{ }Z Z+ 17. 7 6 7T T T= × 3{ }β 28. 2 2 7T T T= − 3{ }Y

 7. 3 3 6T T T= + 1 2{ }Z Z+ 18. 8 6 8T T T= × 2 2
2 1{ }Z X β 29. 2

6 5T T= 2{ }γ

 8. 2
3 3T T= 2

1 2{ () }Z Zω = + 19. 4 82T T= 2 2
2 1{2 }Z X β 30. 4 6 4T T T= − 4{ }X

 9. 3 3 7T T T= − 2 2
1 2{ }Z Zω = − 20. 4 4 7T T T= +

3 2 2

2 1{ 2 }Z Xβ β+ 31. 8 4 8T T T= −

2 2
4 2 1{ }X Z X β−

10. 6 6 8T T T= × 3
2{ }Z 21. 6 5 2T T T= −

{ }α 32. 8 5 8T T T= ×

2 2

4 2 1{ ()}X Z Xγ β−

11. 2 2 6T T T= × 3
2 1{ }Z Y 22. 5 5 2T T T= +

{ }γ 33. 5 8 7T T T= − 4{ }Y

Chapter 3: New Precomputation Schemes

48

We have derived conjugate addition formulas in projective coordinates (J, eJQ and IE

coordinates) and in affine for the three curves under analysis. The costs of the different variants

of addition/conjugate addition pairs are summarized in Table 3.2. Note that, in some cases, the

traditional operations have been slightly modified so that the cost of the overall formula is

minimized. Refer to Appendix A3 for complete details.

Table 3.2. Costs of addition/conjugate addition formulas using projective (J, IE and eJQ) and

affine coordinates.

Point Operation

Cost

Standard curve

(a = −3), J

Twisted Edwards

(a = 1), IE

Ext. Jacobi quartic

(d = 1), e
JQ

 ADD-ADD′ , ± →P P P 12M + 6S 14M + 1S 9M + 5S

 [,]ADD-ADD M S
′ , ± →P P P 11M + 5S - 9M + 4S

 [2,2]ADD-ADD′ , ± →P P P 10M + 4S - -

 mADD-mADD′ , ± →P A P 8M + 5S 13M + 1S 8M + 4S

 mmADD-mmADD′ , ± →A A P 5M + 3S 11M 6M + 4S

 ADD-ADD′ , ± →A A A 1I + 4M + 2S (1) 1I + 13M + 1S 1I + 10M + 4S

 (1) Formula in affine coordinates from [OTV05]. P: projective coordinates (J, e
JQ or IE).

In the following section, we introduce novel precomputation schemes for tables with the

forms id P and i ic P d Q± that take advantage of the new conjugate formulas. We again consider

all three precomputation scenarios, i.e., cases 1, 2 and 3.

3.3.2. Precomputation Scheme for Table of the Form diP

We propose a recursive scheme that first reaches a “strategic” point and then applies efficiently

the conjugate addition technique described in the previous section. In the following, we define as

“strategic” to those points that can be efficiently computed and from which it is possible to

calculate the maximum possible number of precomputed points at the lowest cost. The steps of

our scheme are detailed in the following.

Step 1: Computation of precomputed points

The main body of our scheme is detailed in Algorithm 3.1. In this step, points can be computed in

projective coordinates using operations from Tables 2.2, 2.3 or 2.4 (case 1), or directly in A

coordinates (case 3). If projective points are to be converted to A (case 2) then Step 2 should be

Chapter 3: New Precomputation Schemes

49

executed right after.

Basically, Algorithm 3.1 first reaches certain “strategic” point and then computes all the

points that are close to it by efficiently computing additions and conjugate additions. The

“strategic” points S proposed in our scheme have the form 1 2i iP P+ = , for 0i ∈ ≥Z and 0 3P P=

(that is, max{6 ,12 ,24 , , , , }P P P rP r P= … …S), which are computed using a combination of one

tripling (performed at the beginning; step 2 of Algorithm 3.1) and a sequence of doublings (step

11). Note that there is a minimum number of close points that makes the computation of a

“strategic” point worthwhile. If that minimum is not fulfilled (evaluation in step 5) then the

algorithm calculates the remaining points from the previous “strategic” point (loop in steps 6-8).

The value of such a minimum depends on the particular costs of point operations. For J, eJQ

and IE coordinates, we have determined that the lowest cost is achieved if the next “strategic”

point is computed always that the value m is greater or equal to such a “strategic” point (i.e., if

2m r≥), in which case steps 10-19 are executed.

Let us illustrate the proposed scheme with the following example.

Example 3.1. If m = 13, Algorithm 3.1 computes the first points as 3 6P P P→ → , where 6P is

the first “strategic” point. From this, 5P and 7P (close points) are calculated by adding

6 ()P P+ − and 6P P+ . Note that the latter operations can be calculated with a low cost

addition/conjugate addition pair. Then, Algorithm 3.1 calculates the following “strategic” point

(since m > 12) by doubling max6 12P P r P→ = , and finally computes close points 9P, 11P and

13P by performing 12 (3)P P+ − , 12 ()P P+ − and 12P P+ , respectively. Again the last two

operations can also be computed with an addition/conjugate addition pair.

In Appendix A4, we have sketched the derivation of points for tables with different values m.

Note that the described method does not include the case m = 5. For a table with m = 5, eJQ and

J coordinates, it is more efficient to compute points by performing 2 4P P P→ → , and then

obtaining 3P and 5P with an addition/conjugate addition pair (i.e., 4 ()P P+ − and 4P P+). For

the case IE, we suggest to compute the table following the sequence 2 3 5P P P P→ → → .

Step 2: Conversion to affine coordinates (case 2 only)

If mixed addition (or mixed DBLADD) is significantly more efficient than general addition (or

general DBLADD) in a given setting, then it could be convenient to express the precomputed

table in A coordinates.

It is known that conversion to A can be achieved by calculating 2 3(/ , /)i i i iX Z Y Z ,
2(/ , /)i i i iX Z Y Z and (/ , /)i i i iZ X Z Y for points in J, eJQ and IE coordinates, respectively. For

each setting, calculation of denominators (denoted by iu) can be efficiently carried out by using

Chapter 3: New Precomputation Schemes

50

Algorithm 3.1. Computation of precomputed points using the LG Scheme

Input: a point P in affine coordinates, and

 an odd value 5m ≠ to build a table of the form id P , where {3,5,7, , }id m∈ …

Output: the precomputed table 1 (1) / 2{ 3 , , }mT T P T mP−= = =… in P or A coordinates

 1: r = 3, l = 1, i = 2, n = v = 0

 2: 0T P= , 1T rP=

 3: 1R T=

 4: While n < (m – 3)/2

 5: If 2m r<

 6: While n < (m – 3)/2

 7: s lT R T= +

 8: n = n + 1, 1l l= + , 1s s= +

 9: Else

10: t = 2
v

11: R = 2R, v = v + 1, r = 2r, j = t −1, first = 1

12: While 0j ≥ do

13: Ti = R – Tj , n = n + 1

14: If first = 1, then 1l j= + , s r i= − , first = 0

15: 1i i= +

16: If 2 1m r j≥ + + , then

17: T(r + 2j) / 2 = R + Tj , n = n + 1

18: If Tj = T0 then 1i i= +

19: 1j j= −

20: Return 1 (1) / 2{ , , }mT T T −= …

the Montgomery’s method of simultaneous inversion. In this way, the number of expensive

inversions can be limited to only one.

 First, we compute the inverse
1

1 2()tU u u u
−= … , where iu are all distinct denominators of

the conversion expressions above (without considering exponents) from all the non-trivial points

in the table {3P, 5P, …, mP}. For J and eJQ , the number of such denominators reduces to only

(1) / 2t m c= − − , where c is the number of points computed via conjugate addition, since points

computed with addition/conjugate addition pairs share the same Z coordinate (see Appendix A3).

For IE, 1t m= − as each point has two distinct denominators, namely iX and iY .

Then, individual denominators iu are recovered from U and scaled with the corresponding

exponent (if any), and the results are finally multiplied to their corresponding numerator

following the conversion expressions.

Chapter 3: New Precomputation Schemes

51

Thus, the use of conjugate additions reduces the cost of the Montgomery’s method for J and
eJQ . Following the details above, it can be verified that one saves (4 1)M S+ and (3 1)M S+

per point computed with a conjugate addition using J and eJQ coordinates, respectively.

3.3.2.1. Cost Analysis

The “generic” costs of the proposed scheme, cases 1-3 and case 2, are given by:

LG Scheme, cases 1/3Cost 1TPL (2)DBL + (2 1)ADD + (1)ADD-ADDL Lω ε ε ′= + − − + − − , (3.9)

LG Scheme, case 2Cost 1TPL (2)DBL + (2 1)ADD + (1)ADD-ADD CostL Lω ε ε →′= + − − + − − + P A ,

 (3.10)

respectively, where 5m > , (1) / 2L m= − ,
2

max 3 2r
ω−= × is the value of the highest “strategic”

point, ()max max max max(6 2 3) /(6 3) 1 2 /3 (/ 3) 1L r r L r rε = + − − + − + −   is the total number of

regular additions and Cost →P A denotes the cost of converting points from projective to affine

coordinates and is defined by the following formulas for J, eJQ and IE coordinates:

 Cost 1 (6 4 3) ()I L c M L c S→ = + − − + −J A , (3.11)

 Cost 1 (5 3 3) (2)e I L c M L c S
→

= + − − + −
JQ A

, (3.12)

 Cost 1 (6 (2) / 1)I L L L M→ = + + − −  IE A , (3.13)

respectively, where 1c L ε= − − represents the number of conjugate additions. Formulas (3.9)

and (3.10) can be refined further for cases 1 and 2 with the use of mixed coordinates (case 2

additionally includes the cost of conversion to affine, i.e., Cost →P A):

LG Scheme, case 1(2)Cost 1mTPL (2)DBL + (2)mADD-mADD +ω ω ′= + − − …

 ()1 ADD-ADD (2 1)ADD (Cost)L Lε ω ε →′− − + + − + +… P A . (3.14)

Please, refer to Appendix A5 for the proof. We remark that cost formula (3.14) is generalized

to any projective system. Hence, depending on the curve form selected, some additional speed-

ups are available. Let us discuss some of these optimizations in the context of J coordinates.

First, when performing additions with a “strategic” point Q, the values 2
QZ and 3

QZ are calculated

in the first mixed addition, say (: :) (,)Q Q Q P PQ P X Y Z x y+ = + . Then, following general

additions of the form (: :) (: :)Q Q Q R R RQ R X Y Z X Y Z+ = + can be executed using [1,1]ADD in

case 1 and save (1 1)M S+

per operation. This can be optimized further by using [2,2]ADD

instead and save (2 2)M S+ per general addition if one assumes that the evaluation stage

Chapter 3: New Precomputation Schemes

52

employs additions with stored values and all values
2
iZ and

3
iZ need to be precomputed in case

2. Also, one squaring can be saved every time a doubling 2 jP is performed to get a “strategic”

point since the value 2
jZ can be obtained from the initial tripling or the mixed addition preceding

this doubling. Moreover, as observed before addition and conjugate addition formulas share the

same Z coordinate. Hence, in case 2 we only require (1 1)M S+ to get
2
iZ and

3
iZ for two points

computed with an addition/conjugate addition pair. Similar savings apply to conversion to affine

for case 1, where one saves (4 1)M S+ per conjugate addition as discussed in the previous

section. By applying these optimizations to (3.14) with (3.11), we obtain the following cost

formulas for the LG Scheme, cases 1 and 2, using Jacobian coordinates:

LG Scheme, , case 1Cost (9 2) + (3 5 4)L M L Sε ω ε ω= + + + + + −J , (3.15)

LG Scheme, , case 2Cost 1 (13 3 5) + (4 4 1)I L M L Sε ε ω= + + + + + −J . (3.16)

Note that it is still possible to optimize further cost (3.16) for case 2 if every addition with 3P

is computed with [1,1]ADD by reusing values
2
3PZ and

3
3PZ computed in the tripling operation.

This saves an extra (1 1)M S+

per addition with 3P.

The following optimizations to cost formula (3.14) using eJQ coordinates are analogous to

the ones described for J coordinates. First, one squaring can be saved every time a doubling 2 jP

is performed to get a “strategic” point by noting that
2

()j jX Z+ can be obtained from the initial

tripling or the mixed addition preceding this doubling. Also, when performing additions with a

“strategic” point Q, the value
2

()Q QX Z+ is calculated in the first mixed addition. Then, each

extra addition with the same point Q can be executed using [0,1]ADD in case 1 and save 1S
per

operation. This can be optimized further by using [0,2]ADD instead and save 2S per general

addition if one assumes that the evaluation stage employs additions with stored values and all

values
2()i iX Z+ need to be precomputed in case 2. Thus, the optimized costs of the LG

Scheme, case 1 and case 2, using extended Jacobi quartic coordinates are given by:

LG Scheme, , case 1
Cost (5 2 1) + (2 5 5)e L M L Sε ω ε ω= + + + + + −

JQ
, (3.17)

LG Scheme, , case 2
Cost 1 (8 4 1) + (3 2 4 1)e I L M L Sε ω ε ω= + + + + + + −

JQ
. (3.18)

Again, it is still possible to optimize further cost (3.18) for case 2 if every addition with 3P is

computed with [0,1]ADD by reusing the value
2

3 3()P PX Z+ computed in the tripling operation.

This saves an extra squaring

per addition with 3P.

In Table 3.3 we list the cost of the LG Scheme for various values L using the derived

formulas (3.15), (3.16), (3.17), (3.18). Costs for IE coordinates can be obtained by simply

applying operations from Tables 2.4 and 3.2 to cost formulas (3.14) and (3.13). As operations in

Chapter 3: New Precomputation Schemes

53

affine are relatively expensive in extended Jacobi quartic and Twisted Edwards curves (see Table

3.2), we only show the performance of case 3 in the setting of standard curves estimated with

formula (3.9). In Sections 3.4.1 and 3.4.2, we carry out an exhaustive evaluation of this method’s

performance.

Table 3.3. Costs of the LG precomputation scheme: case 1 in projective coordinates using J,
eJQ and IE; case 2 using one inversion; and case 3 in A.

L
Case 1 Case 2 Case 3

J e
JQ IE J e

JQ IE Standard curve

3 17M + 17S 15M + 17S 22M + 8S 1I + 27M + 18S 1I + 24M + 20S 1I + 40M + 8S 3I + 13M + 8S

7 40M + 32S 34M + 32S 51M + 14S 1I + 64M + 33S 1I + 57M + 37S 1I + 93M + 14S 6I + 23M + 14S

15 85M + 57S 71M + 57S 108M + 22S 1I + 139M + 60S 1I + 122M + 68S 1I + 198M + 22S 11I + 41M + 24S

3.3.3. Precomputation Scheme for Table of the Form ciP±diQ

This scenario mainly applies to methods for computing multiple scalar multiplication such as

those based on JSF [Sol01, OKN10, SEI10]. In this case, the application of our strategy of

conjugate additions is straightforward since precomputed points have the form i ic P d Q± and

each point pair i ic P d Q+ and i ic P d Q−

with , 0i ic d ≠ can be computed with an addition/

conjugate addition pair. Points ic P

and id Q are computed using the chain P → P+2P = 3P →

3P+2P = 5P → … → (m−2)P+2P = mP. Interestingly enough, we note that, for the case of

Jacobian coordinates with 5m ≥ , this chain can be performed using the LM Scheme and, thus,

reduce the costs further.

In the following, we analyze the cost involved when precomputing points for the window-

based JSF [OKN10, SEI10]. Extension of the method to similar table forms easily follows.

3.3.3.1. Cost Analysis

First, a precomputed table i ic P d Q± , where { }, 0,1,3,5,...,i ic d D m+∈ = , 1ic > if 0id = , 1id >

if 0ic = and m odd, consists of 2(4 1) / 2L m m= + − non-trivial points. For example, assuming

that both P and Q are unknown before execution, if m = 3 one needs to precompute ten points:

3P , 3Q , P Q± , 3P Q± , 3P Q± and 3 3P Q± . Recall that the negative of these points can be

computed on-the-fly at negligible cost and, hence, are not included in the table.

Then, the “generic” cost of the LG Scheme for this table form, cases 1, 2 and 3, is given by:

Chapter 3: New Precomputation Schemes

54

2

LG Scheme, cases 1/3(2)

(1) 1
Cost (1)ADD (ADD ADD) 2 DBL (+Cost)

4

m m
m

m
→

+ − 
′= − + − +   

P A ,

 (3.19)

where 2(4 1) / 2 1L m m= + − >
and again Cost →P A (that only applies to case 2) denotes the cost

of converting points from projective to affine coordinates and is defined by cost formulas (3.11),

(3.12) and (3.13) for J, eJQ and IE, respectively. For these formulas, 2(1) / 4c m= + . Cost

(3.19) assumes that points i ic P d Q±

for which ic or 0id = are computed using the chain P →

P+2P = 3P → 3P+2P = 5P → … → (m−2)P+2P = mP. As mentioned before, one can apply the

LM Scheme to this computation when using J coordinates. The cost of this combined LG/LM

Scheme is given by (5)m ≥ :

2

LG Scheme, ,cases 1(2) Co

(1)
Cost 2DBL + (1)ADD (ADD ADD) (+Cost2),

4
-Z

m
m →

+
′= − + −J J A (3.20)

where 2Cost2 [2 (4) 1] [(1) / 4 2]m m M m S→ = + − + + +J A applies to case 2 only and represents

the cost of converting points from Jacobian to affine coordinates using a modified Montgomery’

simultaneous inversion method that has been adapted to case 2b of LM Scheme and the use of

conjugate additions. Please, refer to Appendix A6 for the proof and extended details.

We remark that further optimizations are possible, such as the use of mixed coordinates or

efficient tripling formulas. Similarly, certain coordinate systems such as J and eJQ allow again

the use of efficient addition formulas with stored values, following the same optimizations

described in Section 3.3.2.1.

In Table 3.4, we show the cost performance of the proposed scheme for the curve forms

under analysis and considering the discussed optimizations. As operations in affine are relatively

expensive in eJQ and IE coordinates, we only show the performance of case 3 in the setting of

standard curves. We carry out the evaluation of this method’s performance in Section 3.4.3.

Table 3.4. Cost of the LG precomputation scheme for tables of the form i ic P d Q± : case 1 in

projective coordinates; case 2 using one inversion; and case 3 in affine coordinates.

L
Case 1 Case 2 Case 3

J e
JQ IE J e

JQ IE Standard curve

2 6M + 4S 6M + 8S 11M 1I + 10M + 4S 1I + 10M + 7S 1I + 22M 1I + 4M + 2S

10 42M + 32S 41M + 35S 65M + 9S 1I + 80M + 35S 1I + 76M + 43S 1I + 125M + 9S 6I + 30M + 16S

22 107M + 65S 100M + 74S 159M + 18S 1I + 175M + 68S 1I + 180M + 91S 1I + 291M + 18S 15I + 48M + 26S

Chapter 3: New Precomputation Schemes

55

3.4. Performance Comparison

3.4.1. Evaluation of LM and LG Schemes on Standard Curves

There are different schemes to compute precomputed points on standard curves in the literature

(see Section 3.1.1). The simplest approaches suggest performing computations in A or C

coordinates using the chain P → 3P → 5P → … → mP. The latter requires one doubling and

(1)/2L m= − additions, which can be expressed as follows in terms of field operations:

 Cost (1) (2 2) (2)L I L M L S= + + + + +A , (3.21)

 Cost (10 1) (4 5)L M L S= − + +C . (3.22)

Note that (3.22) shows a better performance than the estimated cost given by [DOS07] since

we are considering that the initial doubling 2P is computed as 2A → C with a cost of 2M + 5S,

the first addition P + 2P computed with a mixed addition as A + C → C (7 4)M S+ , and the

following (1)L − additions as C + C → C (10 4)M S+ . The new operation costs are obtained by

applying the technique of replacing multiplications by squarings [LM08]. The memory

requirements of the A- and C-based methods are (2)L R+ and (5)L R+ registers, respectively,

where R is again the memory requirement of the most memory-demanding point operation used

for scalar multiplication.

Let us first compare the performance of the proposed methods with approaches using several

inversions (case 3). In this case, we show in Table 3.5 the performance comparison of the LG

Scheme, case 3, with the traditional A-based approach whose cost is given by (3.21). Also, the

I/M ratios for which the traditional, LG and LM methods achieve the lowest cost are shown at the

Table 3.5. Costs of different schemes using multiple inversions (case 3) and I/M ranges for

which each scheme achieves the lowest cost on a standard curve form (1M = 0.8S).

Points (L) 2 3 (w = 4) 6 7 (w = 5) 14 15 (w = 6)

LG Scheme (case 3) 3I + 12.8M 3I + 19.4M 6I + 31.4M 6I + 34.2M 11I + 57.4M 11I + 60.2M

Traditional (3.21) 3I + 9.2M 4I + 12M 7I + 20.4M 8I + 23.2M 15I + 42.8M 16I + 45.6M

I/M range (LM, case 2b) I > 8.4M I > 8.6M I > 8M I > 9M I > 9.6M I > 10.4M

I/M range (LG, case 3) - 7.4M < I < 8.6M - 5.5M < I < 9M 3.7M < I < 9.6M 2.9M < I < 10.4M

I/M range (traditional) I < 8.4M I < 7.4M I < 8M I < 5.5M I < 3.7M I < 2.9M

Chapter 3: New Precomputation Schemes

56

bottom of the table. Note that we are including in the comparison LM Scheme, case 2b, to

determine the efficiency gained by using an approach based on only one inversion (case 2).

An important result from Table 3.5 is that the LM Scheme, case 2b, outperforms approaches

using several inversions for a wide range of I/M ratios. In general, this method is superior always

that inversion is more than 8-10 times the cost of multiplication, which holds on the majority of

implementations over prime fields. On the other hand, the LG Scheme, case 3, is only suitable for

low/intermediate values I/M.

Now, let us evaluate methods for case 1, and consider the C-based approach, whose cost is

given by (3.22), for our comparisons. In this case, we should also consider the cost of scalar

multiplication as the evaluation stage in C coordinates has a cost different to our methods.

When precomputations are in C, Cohen et al. [CMO98] proposed the use of J + C → mJ to

perform additions (10M + 6S), 2 m →J J (2M + 5S) to every doubling preceding an addition,

and 2 m m→J J (3M + 5S) to the rest of doublings. Again, we have reduced the cost of these

operations by applying the technique discussed in [LM08] to trade multiplications for squarings.

Using this scheme the scalar multiplication cost including precomputations (3.22) is as follows:

() ()() () ()Frac- NAF Frac- NAF12 11 1 3 5 10 1 4 5w wn M S n M S L M L Sδ δ ⋅ + + − + +  − + +    . (3.23)

In the case of LG and LM Schemes, case 1, we consider the use of addition with stored

values. Thus, the approximated cost of scalar multiplication is given by:

Frac- NAF Frac- NAF
[1,1] scheme, case 1

(1) (1)
DBL mADD ADD Cost

(1) (1)

w wn L n
n

L L

δ δ    − −
⋅ + + +    

+ +    
, (3.24)

where 1DBL 3 5M S= + , 1mADD 7 4M S= + , [1,1]1ADD 10 4M S= + (as in Table 2.2) and

scheme, case 1Cost is given by (3.4) or (3.15) for LM and LG Schemes, respectively.

Tables 3.6, 3.7 and 3.8 show the costs of performing an n-bit scalar multiplication using the

different methods above (case 1) for n = 160, 256 and 512 bits, respectively. We show results for

Table 3.6. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

160-bit scalar multiplication on a standard curve form (1M = 0.8S).

Points (L) 2 3 (w = 4) 4 5 6 7 (w = 5)

 LM Scheme, case 1 1573M 1546M 1540M 1534M 1529M 1524M

 LG Scheme, case 1 1577M 1547M 1545M 1544M 1537M 1526M

 C-based [CMO98] 1640M 1604M 1596M 1591M 1586M 1583M

Chapter 3: New Precomputation Schemes

57

Table 3.7. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

256-bit scalar multiplication on a standard curve form (1M = 0.8S).

Points (L) 2 3 (w = 4) 4 5 6 7 (w = 5) 8

 LM Scheme, case 1 2505M 2457M 2443M 2428M 2414M 2401M 2400M

 LG Scheme, case 1 2509M 2458M 2448M 2438M 2422M 2403M 2407M

 C-based [CMO98] 2607M 2541M 2521M 2503M 2489M 2476M 2477M

Points (L) 9 10 11 15 (w = 6)

 LM Scheme, case 1 2399M 2398M 2397M 2397M

 LG Scheme, case 1 2410M 2414M 2418M 2397M

 C-based [CMO98] 2479M 2481M 2484M 2498M

Table 3.8. Performance comparison of LG and LM Schemes with the C-based method (case 1) in

512-bit scalar multiplication on a standard curve form (1M = 0.8S).

Points (L) 2 3 (w = 4) 4 5 6 7 (w = 5) 8

 LM Scheme, case 1 4991M 4887M 4849M 4811M 4774M 4740M 4730M

 LG Scheme, case 1 4995M 4887M 4854M 4821M 4783M 4742M 4736M

 C-based [CMO98] 5184M 5040M 4986M 4938M 4895M 4857M 4846M

Points (L) 9 10 11 12 13 14 15 (w = 6)

 LM Scheme, case 1 4719M 4709M 4700M 4690M 4681M 4673M 4665M

 LG Scheme, case 1 4731M 4725M 4721M 4710M 4694M 4679M 4665M

 C-based [CMO98] 4836M 4827M 4819M 4812M 4805M 4800M 4794M

all the possible and practical values L. Also, note that all the methods considered exhibit the same

memory requirement, namely, 5L + R.

As we can see above, the LM method, case 1, achieves the highest performance in all the

cases for any number of precomputed points, surpassing the C-based approach by up to 4.1%.

Chapter 3: New Precomputation Schemes

58

Also, it is important to note that LG Scheme’s performance is comparable (or equivalent) to that

of LM Scheme in several cases. The latter especially holds for standard window values w (L = 3,

7, 15).

Let us now compare methods using one inversion only (case 2). Previous methods in this

scenario perform computations in H, J or C coordinates and then convert the points to A by

using Montgomery’ simultaneous inversion method to limit the number of inversions to one.

Costs of these methods are extracted from [DOS07] (assuming that 1S = 0.8M):

Cost 1 (16 3) (3 5) 1 (18.4 1)I L M L S I L M→ = + − + + = + +H A , (3.25)

Cost 1 (16 5) (5 5) 1 (20 1)I L M L S I L M→ = + − + + = + −J A , (3.26)

Cost 1 (16 4) (5 5) 1 (20)I L M L S I L M→ = + − + − = +C A . (3.27)

Recently, Dahmen et al. [DOS07] proposed a new scheme, known as DOS, whose

computations are efficiently performed using formulae in affine solely. This scheme has a low

memory requirement given by (2 4)L + registers and computing cost:

DOSCost 1 (10 1) (4 4) 1 (13.2 2.2)I L M L S I L M= + − + + = + + , (3.28)

that shows its superiority when compared to methods (3.25), (3.26), (3.27) requiring only one

inversion. However, the proposed LM Scheme achieves even lower computing costs given by

LM, case 2aCost 1 (11.4 4)I L M= + + and LM, case 2bCost 1 (10.6 4.8)I L M= + +

(assuming that 1S

= 0.8M in formulas (3.5) and (3.6)). Therefore, LM Scheme (specifically, case 2b) achieves the

lowest cost in the literature when the number of inversions is limited to one. LM Scheme, case

2a, also achieves high performance with the advantage of requiring less memory.

The previous comparison applies to scenarios where memory is not limited. For applications

with strict memory constraints, it would be more realistic to compare methods for a certain

number of available registers. In Table 3.9, the cost of each method is restricted by the maximum

number of registers available for the evaluation stage. For each method, we show the total cost of

performing a 160-bit scalar multiplication and the optimal number of precomputed points L when

considering that a maximum of (2)ESL R+ registers are available for the evaluation stage (i.e.,

ESL L≤). For our analysis, we set R = 7. Also, to compare the performance of schemes using no

inversions (case 1) with methods using one inversion (case 2), we include costs of the most

efficient scheme found for case 1 (i.e., LM Scheme, case 1; see Tables 3.6, 3.7 and 3.8) and show

at the bottom of each table the I/M range for which LM Scheme, case 1, would achieve the

lowest cost. For comparisons for n = 256, 512, please refer to Appendix A7.

Chapter 3: New Precomputation Schemes

59

Table 3.9. Performance comparison of LG and LM Schemes with the DOS method in 160-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S).

Registers ()
ES

L 11 (2) 13 (3) 15 (4) 17 (5) 19 (6)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 2 1I + 1506M 3 1I + 1481M 3 1I + 1481M 4 1I + 1476M 4 1I + 1476M

LM, case 2a 2 1I + 1507M 3 1I + 1483M 4 1I + 1479M 4 1I + 1479M 5 1I + 1476M

LG, case 2 2 1I + 1511M 3 1I + 1486M 4 1I + 1489M 5 1I + 1494M 6 1I + 1489M

DOS [DOS07] 2 1I + 1509M 3 1I + 1486M 4 1I + 1484M 5 1I + 1483M 5 1I + 1483M

LM, case 1 1 1596M 1 1596M 1 1596M 2 1573M 2 1573M

I/M range (LM, case1) I > 90M I > 115M I > 117M I > 97M I > 97M

Registers ()
ES

L 23 (8) 27 (10) 29 (11) 39 (16) ≥ 41 (17)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 5 1I + 1473M 6 1I + 1470M 7 1I + 1469M 7 1I + 1469M 7 1I + 1469M

LM, case 2a 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M

LG, case 2 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M

DOS [DOS07] 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M

LM, case 1 3 1546M 4 1540M 4 1540M 6 1529M 7 1524M

I/M range (LM, case1) I > 73M I > 70M I > 71M I > 60M I > 55M

From results in Tables 3.9, A.1, and A.2 that target case 2, it can be seen that LM Scheme

achieves the lowest cost for most cases for different security levels (lowest cost per register

allowance is shown in bold). For n = 160 bits, the LM Scheme, case 2b, offers the lowest costs

excepting for 4ESL = , in which case LM Scheme, case 2a, is slightly cheaper. For n = 256 bits,

LM Scheme, cases 2a and 2b, again achieves the lowest cost for all cases, excepting for 5ESL = ,

for which the DOS method offers a slight advantage. In the case of n = 512 bits, the DOS method

finds its best performance by achieving the lowest cost for 5,ESL = 6 and 8. Also, the LG

Scheme, case 2, results more advantageous for 7ESL = and 8. Nevertheless, for most cases the

LM Scheme still achieves the highest performance. Also, in settings where memory is not

constrained the highest speed-up is achieved with LM Scheme, case 2b, for any value n.

Finally, when comparing methods for case 1 and case 2, it can be observed that LM Scheme,

case 1, can be advantageous for n = 160 bits if the ratio I/M is at least 50-60 and there are a high

number of registers available. For n = 256 bits, that margin reduces to ratios greater than 90-100.

And for n = 512 bits, the LM Scheme, case 1, would be the most efficient method for extremely

Chapter 3: New Precomputation Schemes

60

high ratios, which seem unrealistic in practical scenarios.

3.4.2. Evaluation of LG Scheme for Extended Jacobi Quartic and

Inverted Edwards Coordinates

In this section, we analyze and compare the performance of the proposed LG Scheme (Section

3.3) with extended Jacobi quartics and inverted Edwards coordinates. As we could not find any

literature related to precomputation schemes on these settings, we have derived the cost formulas

of precomputing points using the traditional chain P → 3P → 5P → … → mP. For the case

without inversions (case 1), the cost of precomputation is given by (1 0.8)S M= :

, case 1Cost (9 2) (1 3) (9.8 4.4)L M L S L M= + + + = +IE , (3.29)

, case 1
Cost (7 1) (3 8) (9.4 5.4)e L M L S L M= − + + = +

JQ
, (3.30)

for IE and eJQ coordinates, respectively. These costs have been derived by adding the costs of

performing one mixed doubling, one mixed addition and (1)L − general additions. For eJQ we

consider the use of [0,1]ADD to reduce costs during the evaluation stage. For case 2, the costs are

given by (1 0.8)S M= :

, case 2Cost 1 (15.8 (2) / 3.4)I L L L M= + + − +  IE , (3.31)

, case 2
Cost 1 (12 4) (5 7) 1 (16 1.6)e I L M L S I L M= + − + + = + +

JQ
, (3.32)

which have been derived by adding the cost of eq. (3.13) and (3.12) with c = 0 (for Montgomery’

simultaneous inversion method) to eq. (3.29) and (3.30), respectively.

In Table 3.10, we compare the costs of these schemes with the LG Scheme for different

standard windows w. Costs for LG Scheme are calculated with formulas (3.14), (3.17), (3.18). As

can be seen, the LG Scheme outperforms the methods using traditional chains in all covered

cases for both IE and eJQ coordinates. Note also that the advantage increases with the window

size. For instance, if 1I = 30M, w = 6, eJQ , the cost reduction is as high as 20% and 24% in

cases 1 and 2, respectively.

Let us now compare the performance of cases 1 and 2 of LG Scheme with the objective of

determining the best method for each possible scenario. In this analysis we should also consider

the scalar multiplication cost since different point operation costs apply to different cases. We

consider the fractional width-w NAF method for our analysis. For case 1, the approximated cost of

Chapter 3: New Precomputation Schemes

61

Table 3.10. Performance comparison of LG Scheme with methods using a traditional chain for

cases 1 and 2 on eJQ and IE coordinates (1M = 0.8S).

Case Method
Curve

form

L = 1

(w = 3)

L = 3

(w = 4)

L = 7

(w = 5)

L = 15

(w = 6)

Case 1

 LG Scheme
e

JQ 10.6M 28.6M 59.6M 116.6M

 Scheme (3.30) e
JQ 14.8 M 33.6M 71.2M 146.4M

 LG Scheme IE 9.4M 28.4M 62.2M 125.6M

 Scheme (3.29) IE 14.2 M 33.8M 73.0M 151.4M

Case 2

 LG Scheme
e

JQ - 1I + 40.0M 1I + 86.6M 1I + 176.4M

 Scheme (3.32) e
JQ - 1I + 49.6M 1I + 113.6M 1I + 241.6M

 LG Scheme IE - 1I + 46.4M 1I + 104.2M 1I + 215.6M

 Scheme (3.31) IE - 1I + 51.8M 1I + 115.0M 1I + 241.4M

scalar multiplication is given by eq. (3.24), and for case 2, the cost is given by:

[]Frac- NAF scheme, case 2DBL (1) mADD Costwn nδ⋅ + − ⋅ + , (3.33)

Tables 3.11 and 3.12 show the performance of scalar multiplication including the costs of the

LG Scheme, cases 1 and 2. At the bottom of the table, we display the I/M range for which case 1

is the most efficient approach.

As can be observed from Tables 3.11 and 3.12, on IE and eJQ coordinates LG Scheme,

case 1, achieves the best performance for most common I/M ratios if n = 160 bits. This result

differs from that for standard curves where the use of one inversion during precomputation is

only efficient for high I/M ratios (see Table 3.9). For higher security levels (n = 512 bits), the

difference between case 1 and case 2 reduces. Ultimately, the most effective approach would be

determined by the particular I/M ratio of a given implementation. However, as the window size

grows, case 1 would be again largely preferred. Therefore, for applications where memory is not

scarce, LG Scheme, case 1, achieves the lowest cost in both eJQ and IE coordinates.

3.4.3. Evaluation of LG Scheme for a Table of the Form ciP±diQ

In this section, we analyze and compare the performance of LG Scheme when targeting multiple

scalar multiplication methods such as JSF (Section 3.3.3). In particular, we first compare our

approach with the computation using traditional additions and then we evaluate performance of

cases 1 and 2 for the window-based JSF.

Chapter 3: New Precomputation Schemes

62

Table 3.11. Cost of 160-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ and IE (1M = 0.8S).

Method Curve
of Points (L)

2 3 (w = 4) 6 ≥ 7 (w = 5)

 LG Scheme, case 1

e
JQ

1305M 1280M 1272M 1265M

 LG Scheme, case 2 1I + 1286M 1I + 1267M 1I + 1273M 1I + 1269M

 I/M range (case 1) I > 19M I > 13M I > 0M I > 0M

 LG Scheme, case 1

IE

1351M 1324M 1316M 1311M

 LG Scheme, case 2 1I + 1338M 1I + 1318M 1I + 1329M 1I + 1329M

 I/M range (case 1) I > 13M I > 6M I > 0M I > 0M

Table 3.12. Cost of 512-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ and IE (1M = 0.8S).

Method Curve
of Points (L)

2 3 (w = 4) 6 7 (w = 5)

 LG Scheme, case 1

e
JQ

4126M 4036M 3951M 3922M

 LG Scheme, case 2 1I + 4055M 1I + 3970M 1I + 3900M 1I + 3874M

 I/M range (case 1) I > 71M I > 66M I > 51M I > 48M

 LG Scheme, case 1

IE

4273M 4179M 4090M 4061M

 LG Scheme, case 2 1I + 4209M 1I + 4120M 1I + 4050M 1I + 4028M

 I/M range (case 1) I > 64M I > 59M I > 40M I > 33M

Method Curve
of Points (L)

14 ≥ 15 (w = 6)

 LG Scheme, case 1

e
JQ

3879M 3870M

 LG Scheme, case 2 1I + 3867M 1I + 3862M

 I/M range (case 1) I > 12M I > 8M

 LG Scheme, case 1

IE

4018M 4011M

 LG Scheme, case 2 1I + 4033M 1I + 4032M

 I/M range (case 1) I > 0M I > 0M

Chapter 3: New Precomputation Schemes

63

The “generic” cost of precomputation using ordinary additions is given by:

scheme, cases 1(2)

(4) 1 1
Cost ADD 2 DBL (+Cost)

2

m m m

m
→

+ − −   
= +      

P A , (3.34)

where Cost →P A applies to case 2 only and represents the cost of conversion from projective to

affine coordinates given by eq. (3.11), (3.12), (3.13) with c = 0 for J, eJQ , IE coordinates, resp.

For J and eJQ , cost (3.34) can again be optimized further by using mixed coordinates, tripling

formulas and additions with stored values. In Table 3.13, we compare the performance of this

scheme with the LG Scheme. The costs for the latter method are taken from Table 3.4.

Table 3.13. Performance comparison of LG Scheme and a scheme using traditional additions for

computing tables of the form i ic P d Q± , cases 1 and 2 (1M = 0.8S).

Method Curve
of Points (L)

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5)

 LG Scheme, case 1

J

9M 68M 159M

 Scheme (3.34), case 1 11M 102M 225M

 LG Scheme, case 2 1I + 13M 1I + 108M 1I + 229M

 Scheme (3.34), case 2 1I + 22M 1I + 154M 1I + 373M

 LG Scheme, case 1

e
JQ

12M 69M 159M

 Scheme (3.34), case 1 16M 88M 204M

 LG Scheme, case 2 1I + 16M 1I + 110M 1I + 253M

 Scheme (3.34), case 2 1I + 25M 1I + 145M 1I + 331M

 LG Scheme, case 1

IE

11M 72M 173M

 Scheme (3.34), case 1 14M 88M 212M

 LG Scheme, case 2 1I + 22M 1I + 88M 1I + 305M

 Scheme (3.34), case 2 1I + 25M 1I + 147M 1I + 343M

As can be seen, the LG Scheme outperforms the method using traditional additions in all

cases covered. For instance, if 1I = 30M, L = 22, eJQ , the cost reduction is as high as 22% for

both case 1 and 2. Remarkably, the higher improvements are obtained with J coordinates due to

the combined use of LG and LM Schemes (see Section 3.3.3), especially in case 2, where larger

savings are obtained through both methods when converting points to affine coordinates. For

instance, if 1I = 30M, L = 22, J, the cost reduction is as high as 38% in case 2.

Assuming that points P and Q are unknown before execution and given in affine, a multiple

scalar multiplication with the form kP lQ+ using windowed JSF costs approx. [DBLn⋅ +

Chapter 3: New Precomputation Schemes

64

JSF JSF scheme, case 1(/(2))(1)ADD (2/(2))(1)mADD] CostL L n L nδ δ+ − + + − + and [DBLn ⋅ +

()JSF scheme, case 21 mADD] Costnδ − + for cases 1 and 2, respectively, where JSF 0.5δ = if m = 1,

JSF 0.3575δ = if m = 3, JSF 0.31δ = if m = 5 [SEI10], and scheme, case Cost x represents the cost of

precomputation given by formula (3.19). For J and eJQ , we use again [,]ADD M S instead of

ADD . The estimates using these cost formulas are displayed in Tables 3.14 and 3.15.

Table 3.14. Cost of 160-bit multiple scalar multiplication using window-based JSF and LG

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S.

Method Curve
of Points (L)

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5)

 LG Scheme, case 1

J

2059M 1909M 1917M

 LG Scheme, case 2 1I + 1944M 1I + 1808M 1I + 1851M

 I/M range (case 1) I > 115M I > 101M I > 66M

 LG Scheme, case 1

e
JQ

1680M 1554M 1578M

 LG Scheme, case 2 1I + 1643M 1I + 1548M 1I + 1627M

 I/M range (case 1) I > 37M I > 6M I > 0M

 LG Scheme, case 1

IE

1742M 1612M 1644M

 LG Scheme, case 2 1I + 1714M 1I + 1624M 1I + 1731M

 I/M range (case 1) I > 28M I > 0M I > 0M

Table 3.15. Cost of 512-bit multiple scalar multiplication using window-based JSF and LG

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S.

Method Curve
of Points (L)

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5)

 LG Scheme, case 1

J

6583M 5972M 5794M

 LG Scheme, case 2 1I + 6203M 1I + 5555M 1I + 5428M

 I/M range (case 1) I > 380M I > 417M I > 366M

 LG Scheme, case 1

e
JQ

5358M 4828M 4707M

 LG Scheme, case 2 1I + 5234M 1I + 4717M 1I + 4655M

 I/M range (case 1) I > 124M I > 111M I > 52M

 LG Scheme, case 1

IE

5562M 5006M 4887M

 LG Scheme, case 2 1I + 5445M 1I + 4914M 1I + 4874M

 I/M range (case 1) I > 117M I > 92M I > 13M

Chapter 3: New Precomputation Schemes

65

Similarly to the case of single scalar multiplication (see Table 3.11), case 1 achieves the best

performance for most common I/M ratios for n = 160 bits with eJQ and IE coordinates.

However, if n = 512 bits, the range of I/M ratios for which case 2 is more efficient increases

significantly. Also, note that case 2 appears to be the best choice for J coordinates for a wide

range of I/M ratios, especially for high levels of security, i.e., n = 512.

3.5. Other Applications of Conjugate Additions

We have discussed in detail the application of the conjugate addition strategy in the design of

efficient precomputation tables with the forms id P and i ic P d Q± . However, this technique can

be easily applied to other table forms such as the one required by the generalized JSF [Pro03],

which involves the precomputation of (3 1) / 2k
k− − non-trivial points. For instance, for k = 3

scalars, the previous algorithm requires the precomputation of P Q± , P R± ,Q R± , P Q R+ ± ,

P Q R− ± , which costs about 10 general additions (case 1). By using conjugate additions, the

latter is reduced to only 5 addition/conjugate addition pairs. Note that the advantage grows

exponentially with the number of scalars. As mentioned in Section 3.1.3, Järvinen et al. [JFS07]

also proposed a method to precompute points with the form dP lQ kR± ± . However, their

approach makes use of Okeya’s conjugate addition in affine coordinates in combination with

Montgomery’ simultaneous inversion method. Therefore, it is limited to the Weierstrass form and

always requires one inversion (i.e., it only applies to case 2). Moreover, in its current format their

scheme only applies to tables dP lQ kR± ± where , , {0,1}d l k ∈ .

Other obvious application is the extension of our strategy to other settings such as binary

fields. Let us illustrate the latter with the addition formula due to [LD99] and later refined by

[HT00]. The cost of adding two points P Q+ with the formula by [HT00] takes 13M + 4S. Then,

if the value P Q− is required right after, one can store most partial results from the original

addition and obtain the previous value with a cost of only 5M by noticing that Q− =

2 2 2 2 2(, ,)X X Z Y Z+ in Lopez-Dahab (LD) coordinates. Note that the partial term 2
2 1Y Z from the

original formula is replaced by 2 2 2 2
2 1 2 2 2 1 2 2 1 2 1()Y Z X Z Y Z X Z Z Y Z− = + = + , which only cost one

extra multiplication.

We have also analyzed other relevant settings such as Twisted Edwards using /
e

E E .

Unfortunately, conjugate additions in this case are relatively expensive. Accordingly, we use a

traditional sequence to calculate precomputations on this system in the corresponding

implementations of single scalar multiplication in Chapter 5 (see §5.6.1 and §5.6.2).

In summary, generalizations of this technique and the derived precomputation schemes may

be applied to other scalar multiplication methods, coordinate systems and/or elliptic curve forms,

provided the corresponding conjugate formulas are efficient. For instance, Goundar, Joye and

Miyaji [GMJ10] recently proposed improved formulas combining the concept of conjugate

Chapter 3: New Precomputation Schemes

66

addition with the Co-ADD Z operation in order to improve side-channel-protected scalar

multiplication methods.

A note on related work:

After developing the LG Scheme, we became aware of other (virtually simultaneous) efforts

based on similar ideas. Avanzi, Heuberger and Prodinger [AHP08] also noticed the savings

introduced by computations with the form P Q± when precomputing points in projective

coordinates. They, however, analyzed the applicability of this idea in the context of Koblitz

curves with τ–adic representations using LD coordinates. In a talk in ECC2008 [Sco08], Scott

described an approach similar to the LG Scheme for the case of single scalar multiplication. He

also proposed to exploit similarities between P + Q and P – Q during precomputation but using a

slightly different sequence to compute points. After an analysis on the settings discussed in this

chapter, we conclude that our calculation sequence achieves better performance.

3.6. Conclusions

This chapter introduced new schemes for precomputing points, a basic ingredient to accelerate

the fastest variable-scalar-variable-point scalar multiplication methods which are based on

window-based strategies.

After presenting most relevant previous work in §3.1, we introduced in §3.2 the LM Scheme,

which is intended for standard curves using Jacobian coordinates, and adapted it to two typical

scenarios for precomputation: case 1, without using inversions; and case 2, using one inversion.

For the latter, we presented two variants that have slightly different speeds and memory

requirements. The theoretical costs for each case were derived (with the corresponding proofs in

the appendix), exploiting state-of-the-art formulas and techniques for maximal performance. In

particular, for a number L of non-trivial points, case 1 has a cost of (5 1) (2 5)L M L S+ + + (or

(6 1) (3 5)L M L S+ + + when using operations with stored values) and case 2b has a cost of

1 (9) (2 6)I L M L S+ + + , which are the lowest in the literature for tables id P .

In §3.3, we introduced the highly-flexible LG Scheme, which is based on the concept of

conjugate addition and that can be adapted to any curve form or type of scalar multiplication (i.e.,

single and multiple scalar versions). We also discussed its applicability to cases 1, 2 and 3, and

analyzed its efficiency on three curve settings: standard curves using Jacobian coordinates,

extended Jacobi quartics using extended Jacobi quartics coordinates and Twisted Edwards curves

using inverted Edwards coordinates. Moreover, for the case of multiple scalar multiplication

using Jacobian coordinates, we proposed a novel scheme combining the LG and LM approaches.

The theoretical costs for each case were derived (with the corresponding proofs in the appendix),

Chapter 3: New Precomputation Schemes

67

exploiting state-of-the-art formulas and techniques for maximal performance.

In §3.4, we carried out an extensive analysis of the proposed methods, presenting detailed

comparisons with previously most efficient methods in terms of speed and memory consumption

and for different security levels. We showed that for most cases the LM Scheme remains as the

most efficient method on standard curves using Jacobian coordinates for the case of a table with

the form id P (implementers may consult Tables 3.9, A.1, and A.2 for the best scheme given the

number of registers and precomputed points, I/M ratio and security level). This result is

especially relevant for implementations following NIST recommendations. On the other hand,

the LG Scheme was shown to achieve the lowest costs on the special curves under study for both

table forms, id P and i ic P d Q± . Also, the combined LG/LM approach for tables i ic P d Q± using

Jacobian coordinates was shown to provide substantial cost reductions with advantage growing

with the number of precomputations. Implementers may consult Tables 3.11 and 3.12 (Tables

3.14 and 3.15) for the best variant of the LG Scheme for a table id P (for a table ,i ic P d Q±)

given the curve form, number of precomputations, I/M ratio and security level. Extensions of this

work would enable the use of the LG Scheme on other curve forms and coordinate systems. This

is left for future work.

Finally, in §3.5 we discussed more possibilities for the use of conjugate addition. We detailed

potential applications that could be fully explored in future work and discussed recent research

that has already taken advantage of this idea.

69

4 Chapter 4

Scalar Multiplication using

Multibase Chains

In this chapter, we describe efficient methods based on multibase representations and analyze

their performance to compute elliptic curve scalar multiplication at the evaluation stage. Our

contributions can be summarized as follows:

• We include a thorough discussion and analysis of the most relevant methods based on

double- and multi-base representations in the literature. We categorize the different

approaches and highlight their advantages and disadvantages.

• We provide an improved and more thorough exposition of the original multibase NAF

(mbNAF) method and its variants, which were introduced by the author in [Lon07]. In

particular, we include the analysis of the average density of these methods when using

bases {2,3} and {2,3,5} that was deferred in [Lon07].

• We apply the concept of “fractional” windows to improve the flexibility of the windowed

variant of mbNAF so that implementers can freely choose the optimal number of

precomputations in a given application.

• We apply the concept of operation cost per bit to the derivation of efficient multibase

algorithms able to find cheaper multibase chains for scalar multiplication. We argue that

this approach, assuming unrestricted resources, leads to optimal multibase chains for any

Chapter 4: Scalar Multiplication using Multibase Chains

70

given scalar. For practical scenarios, we present very compact algorithms that yield

(conjecturally, close to optimal) multibase chains.

• Finally, we perform an exhaustive performance evaluation of the various methods for

different security levels and for three different curve forms: standard curves using

Jacobian coordinates (J), extended Jacobi quartics using extended Jacobi quartic

coordinates (e
JQ) and Twisted Edwards curves using inverted Edwards coordinates

(IE). These results allow us to assess the state of affairs of the use of double bases and

multibases in practice.

For the remainder of this chapter, we assume that curve parameters can be chosen such that

the cost of multiplying a curve constant can be considered negligible in comparison with a

regular multiplication. Also, additions and subtractions are neglected when performing cost

analysis. These assumptions greatly simplify our analysis without affecting the conclusions.

This chapter is organized as follows. §4.1 discusses the most relevant previous work and

categorizes the different approaches based on double- and multi-base representations. §4.2

discusses the mbNAF method and its variants, and provides the zero and nonzero density

formulas obtained with the use of Markov chains. §4.3 details the application of “fractional”

windows to mbNAF. §4.4 presents the methodology based on the operation cost per bit to derive

more efficient multibase chains. §4.5 evaluates the performance of the different methods in

comparison with other works in the literature for different security levels and memory

constraints. §4.6 discusses potential variants of the proposed methods and their application to

other settings. This section also discusses the challenges still faced by methods using double- and

multi-base representations. Finally, some conclusions are drawn in §4.7.

4.1. Previous Work

As discussed in Section 2.2.4.3, in the last few years there have appeared a plethora of works

proposing efficient methods to compute scalar multiplication. In the case under study, namely,

when the initial point P is not known in advance, well-known methods to efficiently execute kP

are non-adjacent form (NAF) [Rei60] and width-w NAF (wNAF) [Sol00], which use short signed

radix 2-based representations of the scalar to minimize the number of point operations, namely

doubling of a point (2P) and addition of points (P+Q). In particular, wNAF offers very high

performance at the cost of a few precomputations.

Later, Möller [Möl03] generalized wNAF to any number of precomputations using

“fractional” windows. The new recoding, called fractional width-w NAF (denoted by Frac-

wNAF; see Section 2.2.4.3), allows a better coupling between the scalar multiplication

computation and the memory resources available in a given implementation.

Chapter 4: Scalar Multiplication using Multibase Chains

71

4.1.1. Double- and Multi-Base Number Representations

Recently, there have been proposed new methods for scalar multiplication using number

representations based on double- and multi-base number systems, which basically mix different

bases to decrease the number of terms required in the representation of integers. Based on

previous work by Dimitrov and Cooklev [DC95], the use of the so-called Double Base Number

System (DBNS) for cryptographic applications was first proposed by Dimitrov et al. in [DJM98].

In this number system an integer k is represented as follows:

1

2 3i i

K
b c

i

i

k s
=

= ⋅∑ , (4.1)

where { 1,1}is ∈ − .

To enable the use of DBNS in the setting of ECC, Dimitrov et al. [DIM05] were the first to

introduce the concept of double-base chains where ib and ic must decrease as i increases. This

was later generalized to multi-base chains (i.e., using two or more bases) by the author in

[Lon07] and Mishra and Dimitrov in [MD07]. Of particular interest are the facts that multibase

chains are redundant and that some representations are highly sparse, which, as consequence,

allow a reduction in the Hamming weight of the scalar expansion (that is, a reduction in the

number of additions in the point multiplication). Let us illustrate the latter with the following

example.

Example 4.1. The representation of 9750k = using NAF is given by 13 11 9
9750 2 2 2= + − +

5 32 2 2− − , which requires 13DBL + 5ADD using Horner’s scheme for scalar multiplication

(i.e., the computation uses the expansion 2 2 4 2 29750 2(2 (2 (2 (2 (2)))))P P P P P P P= + − + − −).

If one, otherwise, uses the double-base chain 10 2 6 49750 2 3 2 3 2 3 2 3= × + × − × + × , the scalar

multiplication takes the form 3 2 49750 2 3 (2 (2 3(2)))P P P P P= × × + − + and costs 10DBL +

2TPL + 3ADD, which reduces the nonzero density in comparison with the NAF representation.

Multibase chains using {2 3 }-i ib c
terms or {2 3 5 }-i i ib c d

terms are particularly attractive for

ECC because operations associated with these bases (namely, point doubling, tripling and

quintupling) are the cheapest-per-bit point operations available for some elliptic curves.

Nevertheless, multibase chains are not unique and this poses the conjecturally hard problem

of determining (in a reasonable amount of time and utilization of resources) the optimal

multibase chain for a given integer. Hereinafter, we use the term optimal to define a multibase

chain for a given scalar k that achieves the lowest cost when applied to the computation of the

point multiplication kP. In contrast to radix 2-based representations, the complexity of this

analysis is significantly higher as the point operations involved (e.g., doubling, tripling,

quintupling and addition) have different costs per bit that even vary with the type of elliptic

Chapter 4: Scalar Multiplication using Multibase Chains

72

curve. Hence, it does not necessarily hold that representations with the lowest nonzero density

achieve the lowest cost. Note that this complexity increases with the number of bases in the

representation.

Although it remains an open problem to find the optimal double- or multi-base chains, there

have appeared in the literature several efforts trying to find “efficient” multibase chains and using

them advantageously in the computation of elliptic curve scalar multiplication. In general, there

are two main approaches to find a double-base or multi-base representation for a given integer in

the setting of elliptic curves: using a “Greedy” algorithm [DIM05, DI06] and using division

chains [CJL+06, Lon07] (borrowing the term from [Wal98]).

4.1.1.1. Multibase Methods based on a “Greedy” Algorithm

The “Greedy”-based approach, first proposed in [DIM05], works as follows. To find a

representation with the form (4.1) first establish “efficient” maximum bounds bmax and cmax for

the powers of 2 and 3, respectively. Then search for the closest {2 3 }-termi ib c

 to the scalar k,

subtract it from k and search again for the closest {2 3 }-termi ib c

 to the updated value. Repeat the

procedure until k = 0. It can be easily deduced that ib and ic will form decreasing sequences

max 1 2 0Kb b b b≥ ≥ ≥ ≥ ≥… and max 1 2 0Kc c c c≥ ≥ ≥ ≥ ≥… , respectively. Later, Doche and

Imbert [DI06] extended the “Greedy” algorithm to applications that can afford precomputations

by allowing the precomputation of a table with the form 1 22 2{2,2 , ,2 ,3,3 , ,3 }w w
P… … , where 1w

and 2w represent the maximum exponents expanding the search range in the “Greedy”

algorithm, or a table with the form id P , where id are odd digits coprime to 3 (for instance,

{1,5,7,11, }id D∈ = …). This approach was later optimized by [BBL+07] with the use of

precomputed tables using the digit sets {1,2,3,5,7, , }m… , with m odd. Finally, Mishra and

Dimitrov [MD07] extended the “Greedy”-based approach to chains using bases {2,3,5}.

The use of a “Greedy” algorithm has several drawbacks. First, from a theoretical point of

view, double-base chains found with a “Greedy” algorithm cannot (until today) be defined

adequately. Hence, the expected number of zero and nonzero terms for an n-bit scalar is

estimated empirically. Also, looking for closest {2 3 }-termsi ib c
 implies having a table storing

many powers of 2, 3 and combinations of these. This is directly impractical in constrained

environments. One can trade memory for speed and store only part of the required table.

However, this leads to higher conversion times (to double-base representation), lower

performance and/or very expensive precomputation stages [BPP07]. This issue obviously

worsens with expanded digit sets and more bases.

4.1.1.2. Multibase Methods based on Division Chains

This approach consists in the derivation of scalar representations by consecutive division with

integers from a suitably chosen set of bases. When the partial result is not divisible by at least one

Chapter 4: Scalar Multiplication using Multibase Chains

73

base then a particular rule defines how to approximate the value to a close number that is again

divisible by one or more bases. Note that methods using division chains are apparently easier to

analyze by using, for instance, Markov chains. Moreover, they do not rely on pre-stored tables

for conversion, immediately enabling their use in memory-constrained applications. In the 90’s

several algorithms with different division rules were proposed for reducing the cost of

exponentiation [DC95, CCY96, Wal98] (the term “division chain” was coined by Walter in

[Wal98]). Walter [Wal02] also exploited these ideas to develop an exponentiation method with

random selection of bases to protect against certain SCA attacks. Nevertheless, it seems that the

binary/ternary algorithm by Ciet et al. [CJL+06] was the first method using division chains that

was intended for ECC applications. In this case, a partial result obtained after dividing by bases 2

and 3 is approximated to the closest term that is congruent to 0(mod6) . Since this approximation

gives roughly equivalent “weight” to bases 2 and 3, the method has some efficiency limitations

especially in most common ECC settings where doubling is much faster than tripling and

addition. In fact, if one does not take into account the memory/conversion overhead, it can be the

case that “Greedy”-based approaches achieve better performance (see, for example, Table 2 in

[DH08]). In [Lon07] (see also [LM08c]), the author introduced new algorithms able to find

generalized multi-base chains, solving efficiently for first time the problem of memory penalty

and difficulty to analyze the zero and nonzero density of a multibase expansion. Remarkably, it

also achieves better cost performance than the “Greedy” approach. The new method finds

multibase chains by creating a “window” with a fixed width with one of the bases (referred to as

“main base”) and then approximates the partial scalar value to it. The latter guarantees the

execution of a minimum number of operations with the “main base” before the following

addition happens, similar to the way NAF of a scalar is generated with base 2. Moreover, the

nonzero density is further reduced because, once an addition is performed, not only doublings but

also triplings, quintuplings, and so on, can be used. This new approach is called multibase NAF

(denoted by mbNAF). Its window-based version using an extended digit set appears as a natural

extension and is referred to as width-w multibase NAF (wmbNAF).

NOTE: one does not need to restrict the “window” in mbNAF to only one base. In fact, in

[Lon07] (see also [LM08c, Section 5.3]), the author proposed an extended wmbNAF method that

generalizes the use of windows, such that the approximation after the divisibility tests is

performed to the generic value 1 2
1 2

Jww w
Ja a a a= ⋅ ⋅ ⋅… for a set of bases 1 2{ , , , }Ja a a… , where

0jw ≥ are integers. For instance, the use of 1 22 3
w w

a = ⋅

was shown to be especially efficient on

the elliptic curves with degree 3 isogenies proposed in [DIK06] and known as DIK curves (see

Table 8 in [LM08c]). Note that this method was recently rediscovered by Adikari, Dimitrov and

Imbert in [ADI10, Section 3.1] and [Adi10, Chapter 5] for the case of bases {2,3}. Also, note that

the binary/ternary algorithm by [CJL+06] is a special case of extended wmbNAF when 2 3a = ⋅ .

Chapter 4: Scalar Multiplication using Multibase Chains

74

More recently, Doche et al. [DH08] introduced a new method that also finds double-base

chains using division chains, although using a somewhat more complex tree-based approach in

comparison with multibase NAF. Their method basically divides by 2 and 3 values (1)ik + and

(1)ik − for B distinct values ik that are coprime to 6, and keeps the B division sequences that

reach the lowest values. This procedure is repeated with the new values until reaching 1.

Initialization proceeds as above although in this case the algorithm keeps all the possible

sequences until B distinct values ik are obtained. As will be evident later, the disadvantage of

this method is that the division sequences that are chosen at each iteration are the ones whose

final values are the lowest ones. However, a long sequence of divisions alone does not guarantee

optimal cost. This drawback is somewhat minimized by keeping up to B values at each iteration

(and then the probability that a long sequence is also among the cheapest ones increases).

However, it is evident that one may avoid storing unnecessary sequences by applying an

operation cost analysis instead.

In Section 4.4, we introduce a methodology to derive algorithms able to find more efficient

multibase chains. Our technique is based on the careful analysis of the operation cost per bit,

which helps to choose the most efficient division sequence per iteration. We argue that the

inclusion of this analysis in the design of any multibase algorithm potentially enables the

derivation of the fastest multibase chains.

4.2. Multibase NAF (mbNAF) and Width-w Multibase NAF
(wmbNAF)

Determining and finding the optimal multibase chain in the setting of ECC seems to be a hard

problem, mainly due to the fact that an optimal multibase chain is not necessarily the shortest one

(with the minimal number of additions), but the one that requires the "right" balance in the

number of additions and all other point operations (which depends on the chosen elliptic curve

form). Although finding such optimal multibase chains remains an open problem, the author

[Lon07] proposed a representation that adjusts more efficiently to most ECC settings, in which

one of the point operations is usually significantly more efficient than the others. Such a generic

multibase representation, known as mbNAF, has the form:

()

1 1

JK c ji
i j

i j

k s a
= =

= ∑ ∏ (4.2)

where: 1 Ja a≠ ≠… are prime integers from a set of bases 1{ , , }Ja a= …A (1:a main base),

 K is the length of the expansion,

 is are signed digits from a given set \ {0}D , i.e., 1 and \{0}i is s D≥ ∈ ,

 ()ic j are decreasing exponents, s.t. 1 2() () () 0Kc j c j c j≥ ≥ ≥ ≥… for 2 j J≤ ≤ , and

Chapter 4: Scalar Multiplication using Multibase Chains

75

 (1)ic are decreasing exponents for the main base 1a (i.e., j = 1), s.t. 1(1) (1) 2 2i ic c +≥ + ≥

 for 1 1i K≤ ≤ − .

Note that the last two conditions above guarantee that an expansion of the form (4.2) is

efficiently executed by a scalar multiplication using Horner’s method as follows:

()1 1() () () ()
1 2 1

1 1 1 1 1

i K K
J J J JK

c j d j d j d j
i j j j j K K

i j j j j

kP s a P a a a s P s P s P s P−
−

= = = = =

     
= = + + + +∑  ∏ ∏ ∏ ∏           

… … (4.3)

where (1) 0Kd ≥ , and (1) 2id ≥ for 1 1i K≤ ≤ − . The latter is equivalent to the last condition in

(4.2) and incorporates the non-adjacency property in the multibase representation. Basically, it

fixes the minimal number of consecutive operations with the “main base” (i.e., 1a) between any

two additions to two. Note that an operation with the main base refers to doubling if 1 2a = or

tripling if 1 3a = , and so on.

On the other hand, if we relax the previous condition and allow larger window sizes (i.e.,

allowing 3, 4, or more, consecutive operations with the main base between any two additions) we

can reduce further the average number of nonzero terms in the scalar representation at the

expense of a larger digit set D and, consequently, a larger precomputed table. The previous

technique is known as wmbNAF.

The mbNAF and wmbNAF representations require the following digit set [Lon07]:

1
1 1

1 1 1

1 1
0, 1, 2, , \ 1 , 2 , ,

2 2

w wa a
D a a a

−      − −   
= ± ± ± ± ± ±      

          
… … (4.4)

where 2w
+≥ ∈Z (2w = for mbNAF). Without considering { , }PO , the digit set (4.4) implies

that a scalar multiplication would require precomputing id P , where \{0,1}id D
+∈ (note that

only positive values id P need to be stored in the table as the negative of points can be computed

on-the-fly at negligible cost). Thus, the precomputation table consists of 1
1 1(2) / 2w wa a −− −

points. Note that if 2w = (mbNAF case), the requirement of precomputations is minimal. For

instance, in the case 1 2a = we do not need to store any points besides { , }PO .

It can be easily seen that selecting the main base according to the relative efficiency of its

corresponding operation will guarantee that more of these operations are used in average, which

potentially could decrease the computational cost of scalar multiplication. In the remainder (and

following what is observed in most common ECC settings over prime fields), we will assume

that doubling is the most efficient point operation available, and hence, 1 2a = .

It is important to remark that, obviously, eq. (4.2) does not involve unique representations.

For instance, both expressions 10 2 6 2 4
2 3 2 3 2 3 2 3× + × − × + × and 9 3 7 3 5 3

2 3 2 3 2 3× − × − × +
3 3 2 2

2 3 2 3 3 3× + × + + enable two different mbNAF representations for the integer 9750

Chapter 4: Scalar Multiplication using Multibase Chains

76

following (4.2). In [Lon07], the author provided algorithms based on division chains that

efficiently find an (w)mbNAF chain of the form (4.2) and, given a window width and set of bases,

is unique for each integer. Note that we have integrated algorithms for finding mbNAFs and

wmbNAFs in Algorithm 4.1.

Algorithm 4.1. Computing an mbNAF (wmbNAF) of a positive integer

Input: scalar k, bases 1 2{ , , , }Ja a a= …A , where +
ja ∈Z are primes for 1 j J≤ ≤ ,

 window 2w = for mbNAF, and window 2w > for wmbNAF, where +
w∈Z

Output: 2 1() ()
1 2 2 1(, ,...,)NAF () = (..., ,)

b b
J wa a a k k k , where ib ∈A

 1: i = 1

 2: While k > 0 do

 3: If 1mod 0k a = or 2mod 0k a = or … or mod 0Jk a = , then 0ik =

 4: Else

 5: 1mods w
ik k a=

 6: ik k k= −

 7: If 1mod 0k a = , then () ()1
1/ , ib a

i ik k a k k= =

 8: Elseif 2mod 0k a = , then () ()2
2/ , ib a

i ik k a k k= =

 � �

J+6: Elseif mod 0Jk a = , then () ()
/ , i Jb a

J i ik k a k k= =

J+7: i = i + 1

J+8: Return 2 1() ()
2 1(..., ,)
b b

k k

()ib
ik in Algorithm 4.1 represent the digits in the multibase NAF representation, where

,ik D∈ see (4.4); and the superscript ()ib represents the base ib ∈A associated to the digit in

position i. The function mods represents the following computation:

()1 1 1 1

1

If mod / 2, then mod

Else, mod

w w w w
i

w
i

k a a k k a a

k k a

 ≥ = −


=

Let us illustrate the method using Algorithm 4.1 with the following example.

Example 4.2. The mbNAF representation of 9750 obtained with Algorithm 4.1 using the division

sequence 9750 4875 1624 204 51 16
1625 1 203 1 17 1 1

2 3 8 4 3 16
→ → − → → + → → → − → → is (2) (2)

2(2,3)NAF (9750) 1 0=
(2) (2) (2) (3) (2) (2) (2) (2) (2) (3) (2)0 0 1 0 0 1 0 0 1 0 0− , which allows us to compute the corresponding scalar

multiplication 9750P as
3 2 42 3 (2 (2 3(2)))P P P P× × + − + , using Horner’s method. The latter

involves 1mDBL + 9DBL + 2TPL + 3mADD. For instance, using Table 2.4 (e
JQ ,1 0.8S M=),

Chapter 4: Scalar Multiplication using Multibase Chains

77

9750P costs 107.2M. Compare this to the cost using NAF: NAF(9750) 1010 10= −

0010 10 10− − , given by 1mDBL + 12DBL + 5mADD = 119.6M.

For brevity (and whenever understood in the context), we will refer as the multibase NAF of

an integer k to the unique representation found through Algorithm 4.1.

4.2.1. Zero and Nonzero Density of Multibase NAF Methods

One of the attractive properties of multibase NAF representations found with Algorithm 4.1 is

that the average number of operations can be precisely determined by using Markov chains. The

following theorems are presented on this regard. With a slight abuse of notation, density refers to

the number of certain point operation relative to the total number of zero and nonzero digits in a

given representation.

Theorem 4.1. The average densities of additions, doublings and triplings for the (w)mbNAF

using bases ={2,3}A are approximately:

 1 2

2

3(2) 2 (1)

w

w w
s w

δ
−

=
− + +

, 2 2

2 (1)

3(2) 2 (1)

w

w wx

w

s w
δ

−

+
=

− + +
, 3

2

2

3(2)

3(2) 2 (1)

w

w wx

s

s w
δ

−

−

−
=

− + +
,

respectively, where
2

(2 1) / 3
w

s
− = + 

and 2w
+≥ ∈Z (2w = for mbNAF).

Proof. The method can be modeled as a Markov chain with three states in the case of bases

{2,3}: (2)"0 ",
(3)

"0 " and
(2) (2) (2)

-1

"0 0 "i

w

k…��	�
 , with the following probability matrix:

2 2 2 2

(2)

(3)

2 2 2 2

(2) (2) (2)

-1

2 (2 1) /3 2 (2 1) / 3
"0 " : 1/2

2 2

"0 " : 0 1/ 3 2 / 3

2 (2 1) / 3 2 (2 1) /3
"0 0 " : 1/2

2 2

w w w w

w w

w w w w

i w w
w

k

− − − −

− − − −

    − + + +    
 
 
 
 

   − + + +    
  
 

…��	�

This Markov chain is irreducible and aperiodic, and hence, it has stationary distribution,

which is given by:

() ()

()
()

2

(2) (2) (2) (2) (3)

1 2 1 2 1 2
-1

3 22 2
"0 0 ","0 ","0 " :

2 3 2 2 3 2 2 3 2

w
w w

i w w w w w w
w

s
k

s s s

−

+ − + − + −

 −
 
 + − + − + −
 

…��	�
 .

Therefore, nonzero digits ik appear 2w out of ()2 22 2 3 2 (2 1) /3w w w ww − − ⋅ + + − +  digits,

Chapter 4: Scalar Multiplication using Multibase Chains

78

which proves the assertion about the nonzero density. Doublings and triplings (i.e., number of

zero and nonzero digits with bases 2 and 3, respectively) appear 2 2
w w

w⋅ + and

()2 23 2 (2 1) /3w w− − − +  out of ()2 22 2 3 2 (2 1) /3w w w ww − − ⋅ + + − +  digits, respectively. This

proves assertion about the average density of doublings and triplings. □

Theorem 4.2. The average densities of additions, doublings, triplings and quintuplings for the

(w)mbNAF using bases = {2,3,5}A are approximately:

3

1 1 3

2

17 2 5 24 5 2 (1)

w

w w
r s t w

δ
+

− +
=

⋅ − − − + +
 , 2

3

1 3

2 (1)

17 2 5 24 5 2 (1)x

w

w w

w

r s t w
δ

+

− +

+
=

⋅ − − − + +
 ,

 3

2

1 3

24(2)

17 2 5 24 5 2 (1)x

w

w w

s

r s t w
δ

−

− +

−
=

⋅ − − − + +
 and 5

1

1 3

5(2)

17 2 5 24 5 2 (1)x

w

w w

r t

r s t w
δ

−

− +

− −
=

⋅ − − − + +
,

respectively, where 2(2 2) /5w
r

− = +  , 2(2 1) / 3w
s

− = +  and 2(2 7) /15w
t

− = +  .

Proof. For the case of bases {2,3,5}=A , this method can be modeled with four states: (2)
"0 " ,

(3)
"0 " , (5)

"0 " and (2) (2) (2)

-1

"0 0 "i

w

k…��	�
 . The probability matrix in this case is as follows:

2 2 2
(2)

2 2

(3)

(5)

2 2 2
(2) (2) (2)

2 2
-1

2 2 3 2 3
"0 " : 1/2

2 2 2

"0 " : 0 1/ 3 1/ 6 1/ 2

"0 " : 0 0 1/ 5 4/ 5

2 2 3 2 3
"0 0 " : 1/2

2 2 2

w w w

w w w

w w w

i w w w
w

s r s t r s t

s r s t r s t
k

− − −

+ +

− − −

+ +

 − − + − ⋅ + + +
 
 
 
 
 
 
 − − + − ⋅ + + +
  
 

…��	�

This Markov chain is irreducible and aperiodic with stationary distribution:

() ()2 1
3 3

(2) (2) (2) (2) (3) (5)

-1

24 2 5 22 2
"0 0 ","0 ","0 ","0 " :

w w
w w

i

w

s r t
k

ω ω ω ω

− −+ + − − −
 
 



…��	�
 ,

where 1
49 2 5 24 5

w
r s tω −= ⋅ − − − . Therefore, nonzero digits ik appear 32w+ out of 3

2
w

w
+ ⋅ +

() ()3 2 12 24 2 5 2w w w
s r t

+ − −+ − + − − digits, which proves our assertion about the nonzero density.

Doublings, triplings and quintuplings (i.e., number of zero and nonzero digits with bases 2, 3 and

5, respectively) appear 3 3
2 2

w w
w

+ +⋅ + , ()224 2w
s

− − and ()15 2w
r t

− − − out of 3 3
2 2

w w
w

+ +⋅ + +

() ()2 124 2 5 2w ws r t− −− + − − digits, respectively. This proves our assertion about the average

density for the aforementioned operations. □

Let us determine the average number of operations for the multibase NAF method with the

Chapter 4: Scalar Multiplication using Multibase Chains

79

help of the presented theorems. First, it is known that the expected number of doublings, triplings

and additions is given by 2#DBL
x

digitsδ= ⋅ , 3#TPL
x

digitsδ= ⋅ and 1#ADD digitsδ= ⋅ , where

digits represents the total number of (zero and nonzero) digits in the expansion (note that a

nonzero digit involves one doubling and one addition). Then, we can assume that
#DBL #TPL 1

2 3 2
n−⋅ ≈ , where n represents the average bitlength of the scalar k. Thus,

#DBL log2 #TPL log3 (1)log2n⋅ + ⋅ ≈ − , and replacing #DBL and #TPL, we can estimate digits

with the following:

2 3

(1)log2

log2 log3
x x

n
digits

δ δ

−
≈

⋅ + ⋅
, (4.5)

which allow us to determine #DBL, #TPL and #ADD using the expressions above and Theorem

4.1. For instance, in the case of mbNAF, bases ={2,3}A and w = 2, the average densities for

doublings, triplings and additions derived from Theorem 4.1 are 4/5, 1/5 and 4/15. If n = 160 bits,

we determine that digits = 142.35 using (4.5). Then, the average cost of a scalar multiplication

using Table 2.4 (e
JQ , 1 0.8S M=) is approximately 113.88DBL + 28.47TPL + 37.96mADD =

1321M. Similarly, if we use bases = {2,3,5}A , the average cost can be estimated as

approximately 97.06DBL + 24.27TPL + 10.11QPL + 32.35mADD = 1299.82M. Compare the

previous costs to that one offered by NAF: 159DBL + 53mADD = 1399.2M (in this case,

NAF 1/3δ =). Hence, theoretically, it is determined that (2,3)NAF and (2,3,5)NAF surpasses NAF

(case with no precomputations, e
JQ) by about 5.6% and 7.1%, respectively.

It is still possible to find more efficient multibase chains at the expense of some increment in

the complexity of the original multibase NAF. The improved algorithms will be discussed in

Section 4.4. Following, we optimize the basic multibase NAF methods using a recoding based on

fractional windows.

4.3. The Fractional Width-w Multibase Non-Adjacent Form

(Frac-wmbNAF)

One disadvantage of wmbNAF is that it restricts the allowed number of non-trivial precomputed

points to
2(2 1)w− − for > 2w

+∈Z , following the same restriction of its analogous counterpart in

the radix-2 domain, namely wNAF. In some settings, it is possible that the optimal performance

is achieved by precomputing a number of points that do not follow such a standard window size.

Also, some applications could have memory constraints different to the ones dictated by the

standard windows. In this section, we apply the concept of “fractional” windows due to Möller

[Möl03] to the multibase NAF method to allow a flexible number of points in the precomputed

table. The new representation is called fractional wmbNAF (denoted by Frac-wmbNAF).

Chapter 4: Scalar Multiplication using Multibase Chains

80

For the remainder, we will assume that the main base 1a is 2. First, let us establish our ideal

table with unrestricted number of non-trivial points id P , where { }\{0,1} 3, 5, ,id D m
+∈ = … and

3m
+≥ ∈Z is an odd integer. If we define m in terms of the standard windows w, it would be

expressed as:

 2
2

w
m h

−= + , (4.6)

where 2 1
2 2

w w
m

− −< < and 1h
+≥ ∈Z is odd.

We define the rules of the recoding scheme for bases 2{2, , , }Ja a= …A in Algorithm 4.2.

Algorithm 4.2. Recoding rules for “fractional” windows (mod2wr k=)

1: If (mod 2 0k = or 2mod 0k a = or … or mod 0Jk a =), then 0ik =

2: Elseif 0 < r m≤ , then ik r=

3: Elseif < (3 4)m r m h< − , then
12w

ik r −= −

4: Elseif (3 4) 2wm h r− ≤ < , then 2w
ik r= −

5: ik k k= −

Basically, the proposed recoding first detects if k is divisible by one of the bases. Else, it

establishes a window w and checks if k can be approximated to the closest extreme of the

window using any of the digits id available. It can be verified that the latter will be accomplished

if steps 2 or 4 are satisfied. Otherwise, the established window is too large and, hence, it is

“reduced” to the immediately preceding window size to which k can be approximated (condition

in step 3).

An algorithm to convert any integer to Frac-wmbNAF representation can be easily derived by

replacing steps 3-6 in Algorithm 4.1 by steps 1-5 of Algorithm 4.2. In this case, we will denote

the Frac-wmbNAF of an integer k by 2 1() ()
2 2 1(2, ,...,)NAF () = (..., ,)

b b
J w,La a k k k , where w is the

standard window width according to (4.6) and L represents the number of precomputed points,

that is, (1)/ 2L m= − .

Let us illustrate the new recoding with the following example.

Example 4.3. If 9750k = and 5m = , then \{0,1} {3,5}id D +∈ = , and 4w = and 1h = by means

of eq. (4.6). Then, the Frac-wmbNAF of 9750 is (2) (2) (2) (2) (2) (2)
4,2(2,3)NAF (9750) 1 0 0 0 3 0= −

(2) (2) (2) (2) (2) (2) (3) (2)0 0 5 0 0 1 0 0− , and the conversion process can be visualized as the division

chain 9750 4875 1624 208 16
1625 1 203 5 13 3 1

2 3 8 16 16
→ → − → → + → → + → → .

Observe that, when 1625 is obtained, it requires an addition with 7 to approximate the value

to 1632 (which is the closest number 40 (mod2)≡ , as required by a standard window 4w =).

However, 7 is not part of the precomputed table, so the window width is reduced accordingly to

Chapter 4: Scalar Multiplication using Multibase Chains

81

3w = and the value 1625 is approximated to the closest value in the new window (i.e., 1624)

using an addition with −1.

We now present the following theorem regarding the average density of this method for the

case {2,3}=A .

Theorem 4.3. The average densities of nonzero terms, doublings and triplings of the Frac-

wmbNAF using bases {2,3}=A , window size w and L available points (represented by

,(2,3)NAFw L) are approximately:

 1 2

2

8(1) 3() 2 (4 1)

w

w
L u v w

δ
−

=
+ − + + −

, 2 2

8(1) 2 (1)

8(1) 3() 2 (4 1)x

w

w

L w

L u v w
δ

−

+ + −
=

+ − + + −
 and

 3

2

2

3(2 ())

8(1) 3() 2 (4 1)x

w

w

u v

L u v w
δ

−

−

− +
=

+ − + + −
,

respectively, where (2) / 3u L= +   and 2(2) / 3w
v L

− = −  .

Proof. Let us consider the following states to model this fractional window method using Markov

chains: (2)
"0 " , (3)

"0 " ,
(2) (2) (2)

-2

"0 0 "i

w

k…��	�

and
(2) (2) (2)

-1

"0 0 "i

w

k…��	�
 . Then, the probability matrix is as

follows:

()()2

(2)

2
(3)

3 3

2 2 2 2

(2) (2) (2)

2 1
-2

(2) (2)

2 (1) / 3(1) / 3 (1) / 3
"0 " : 1/2

4 2 2

2
"0 " : 0 1/3

3 2 3 2

(2) (2 1) / 3 (2) (2 1) /3
"0 0 " : 0 1

2(2) 2

"0 0

w

w w

w

w w

w w w w

i w w
w

t t tt t t t

t t

t t

t t t t
k

t
α β α β

−

−

− −

− − − −

− −

− + + − + + +       

−

⋅ ⋅

   − − − + − + − +   = = − −
−

…��	�

…
()()2

(2)

-1

2 (1) /3(1) /3 (1) /3
" : 1/2

4 2 2

w

i w w
w

t t tt t t t
k

t t

−

 
 
 
 
 
 
 
 
 
 
 
 − + + − + + +        
 
 
��	�

This Markov chain is irreducible and aperiodic with the stationary distribution:

2 2
(2) (3) (2) (2) (2) (2) (2) (2)

-2 -1

16 12(2 ()) 16(2) 16
"0 ","0 ","0 0 ","0 0 " :

w w

i i

w w

t u v t t
k k

µ µ µ µ

− − − + −
  
 

… …��	�
 ��	�
 ,

where 16 12() 7 2wt u vµ = − + + ⋅ and 1t L= + . Therefore, the nonzero digits ik appear 2w out of

() ()28 3 2 4 1wt u v w−− + + − digits, proving the assertion about the nonzero density. Doublings

and triplings (i.e., the number of zero and nonzero digits with bases 2 and 3, respect.) appear

()8 2 1wt w+ − and ()()23 2w
u v

− − + out of () ()28 3 2 4 1wt u v w−− + + − digits, respectively. This

proves the assertion about the average density of doublings and triplings. □

Chapter 4: Scalar Multiplication using Multibase Chains

82

With Theorem 4.3, it is possible to theoretically estimate the expected number of doublings,

triplings and additions using this method. For instance, following the procedure detailed in

Section 4.2.1, we can estimate the cost of scalar multiplication (without including

precomputation cost) for 160n = bits using L = 2 points (w = 4) as 132.7DBL + 16.6TPL +

29.5mADD = 1229.9M (e
JQ , 1 0.8S M=). Compare to the cost achieved by Frac-wNAF,

namely 159DBL + 35.3mADD = 1250.5M (Frac- NAF 1/ 4.5wδ = when using m = 5; see Section

2.2.4.3). Further cost reductions are observed for the case of {2,3,5}=A .

4.4. A Methodology to Find Faster Multibase Chains

The multibase NAF method and its variants are simple and straightforward to implement and

analyze theoretically. However, if we increase the complexity of the derivation algorithms it is

still possible to find more efficient multibase chains. In this section, we propose a new

methodology based on the operation cost per bit for deriving multibase algorithms. The method

is illustrated in detail for the case of bases {2,3}.

Definition 4.1. The operation cost per bit of an elliptic curve point operation is given by

ς(operation) = cost(operation)/bitlength(operation).

Following a common practice in the literature, we express operation costs in terms of field

multiplications and squarings, assuming the approximation 1S = 0.8M. For instance, a point

doubling in Jacobian coordinates costs 2(DBL) DBL / log 2 7ς = = field multiplications per bit,

where DBL = 3M + 5S (see Table 2.2).

Note that the definition above can be readily extended to division sequences. In this case, one

should take into account the cost of all the operations involved and their corresponding

bitlengths.

Corollary 4.1. From all possible chains using a given set of bases A , the optimal chains for a

given integer k are the ones with the lowest cost per bit.

If, for instance {2,3}=A , Corollary 4.1 implies that the optimal chains for a given integer k

have ()chainς = # DBL DBL #TPL TPL+ #ADD ADD

DBL (DBL) #TPL (TPL) # ADD (ADD)bitlength bitlength bitlength

× + × ×

× + × + ×
 minimal, where OP

and #OP denote the cost of certain operation and the number of times this operation is used,

respectively. With a slight abuse of notation, bitlength(ADD) represents the number of bits added

or subtracted from the total bitlength after addition with a digit from a given digit set.

Obviously, an exhaustive search evaluating costs per bit of all possible division sequences

from k would yield the optimal chains for this scalar. Nevertheless, for cryptographic purposes,

one should constrain the search to “smaller” ranges. For instance, it seems natural to limit the

Chapter 4: Scalar Multiplication using Multibase Chains

83

cost-per-bit evaluation to sequences between additions.

The following proposition slightly relaxes the definition of an optimal chain while simplifies

significantly the cost analysis.

Proposition 4.1. Let a digit set \{0} { 1, 3, 5, , }D m= ± ± ± ±… , where m k<< for a scalar

multiplication kP. Then, the “bitlength” of an addition with any digit \ {0}id D∈ (i.e., the bit

reduction or increase due to the addition operation) is negligible in comparison with the total

bitlength and approximates to zero in average.

Following Proposition 4.1, we can eliminate bitlength(ADD) from the denominator of

()chainς without losing too much precision in our cost approximations. For the remainder, we

focus our analysis on “measuring” costs between additions. As stated, nothing really deters from

extending the cost analysis to wider ranges of division sequences, in which case cheaper

multibase chains could be found at the expense of a more complex “searching” algorithm.

Proposition 4.2. Let 1 2{ , , , }Ja a a= …A be a set of bases where ja ∈A are all primes and

1
1 | ()Jww

iJa a k k⋅ ⋅ −… for an integer k, a digit {0, 1, 3, 5, , }ik D m∈ = ± ± ± ±… and integers 0jw ≥ .

Then, for given values , ()i pkP k P E∈ F , the cost per bit of computing 1
1 ()Jww

iJa a kP k P⋅ ⋅ ⋅ −… ,

which is denoted by ()ik kς − , can be estimated as follows:

 1 1 2 2

1 2 1 2 2 2 2

() () () ADD
()

log log log

J J
i

J J

w a P w a P w a P v
k k

w a w a w a
ς

+ + + + ⋅
− =

+ + +

…

…
, (4.7)

where ja P represents the cost of the point operation corresponding to base ja (for instance,

DBLja P = if 2ja =) and v represents the number of additions such that 2v = if 0ik ≠ and

1v = if 0ik = .

Equation (4.7) employs the function cost()/bitlength()operations operations to determine the

cost per bit and can be used to compare the practical efficiency of various possible sequences

1
1

Jww
Ja a⋅ ⋅… between an addition with a digit ik and the next addition.

There are different ways of exploiting this tool for finding efficient multibase chains. For

instance, the costs per bit of the possible sequences can be calculated and compared on-the-fly.

Another approach would involve the use of on-line congruency tests with pre-determined

combinations of bases for which the costs per bit are known [LG09]. In this case, the evaluated

congruencies are fixed off-line according to the chosen curve, window size w and set of bases .A

In this thesis, we choose to implement the second approach based on on-line congruency

evaluations. A detailed description of the method follows.

Chapter 4: Scalar Multiplication using Multibase Chains

84

4.4.1. Refined Multibase Chains

 In this section we propose a new algorithm that has been derived by rewriting the original

multibase NAF and adding a few conditional statements. The refined multibase algorithm is

shown as Algorithm 4.3. In the remainder, we will refer to chains obtained from this algorithm as

refined multibase chains.

Algorithm 4.3. Computing “refined” multibase chains of a positive integer

Input: scalar k, bases 1 2{ , , , }Ja a a= …A , where +
ja ∈Z are primes for 1 j J≤ ≤ ,

 window 2w ≥ , where +
w∈Z

Output: a multibase chain 2 1() ()
2 1(..., ,)
b b

k k , where ib ∈A

1: i = 1

 2: While k > 0 do

 3: If 1 1mod 0, 0,i ik a k b a= = =

 4: Elseif 2mod 0k a =

4.1: If CONDITION2.1 = true, 1,i i ik d b a= =

4.2: Else 20,i ik b a= =

 � �

J+2: Elseif mod 0Jk a =

(J+2).1: If CONDITION2.(J−1) = true, 1,i i ik d b a= =

(J+2).2: Else 0,i i Jk b a= =

J+3: Else

J+4: 1 1, mods w
i ib a k k a= =

J+5: If CONDITION1 = true, i ik d=

J+6: ()/i ik k k b= −

J+7: i = i + 1

J+8: Return 2 1() ()
2 1(..., ,)
b b

k k

We remark that Algorithm 4.3 is a straightforward generalization of the Refined mbNAF

algorithm introduced by the author and Gebotys in PKC2009 [LG09] to a generic set of bases

1 2{ , , , }Ja a a= …A . Moreover, statements have been reordered and modified to improve

readability. To add the capability of using fractional windows, one should simply replace

1mods w
ik k a= in step (J+4) of Algorithm 4.3 by steps 2-4 of Algorithm 4.2.

Similar to multibase NAF, Algorithm 4.3 evaluates congruency with a pre-ordered set of

bases 1 2{ , , , }Ja a a= …A , which again is chosen according to the targeted setting and fixes 1a as

the main base. The main difference is the insertion of conditional statements that are intended for

Chapter 4: Scalar Multiplication using Multibase Chains

85

evaluating division sequences according to the cost per bit function (4.7).

Now, let k be a partial value of the scalar during execution of Algorithm 4.3, , 0j jw w′ ≥ be

integers, 1
, {0, 1, 3, 5, , (2 1)}w

i id k D −∈ = ± ± ± ± −… , 0id ≠ , with a standard window width w, e be

a parameter > 0 and ,φ µ be odd integers such that 1 2{ , , , } | ,Ja a a φ µ/… . The conditional

statements to be inserted in Algorithm 4.3 follow the next criteria:

• CONDITION1: given an approximation 2
1 2

Jwww
i Jk k a a a φ− = ⋅ ⋅ ⋅ ⋅… using a standard

window w, if there exists some value id such that 1 2
1 2

Jww w
i Jk d a a a µ

′′ ′
− = ⋅ ⋅ ⋅ ⋅… , i id k≠ ,

and its associated cost per bit ()ik dς − is lower than the cost per bit ()ik kς − associated

to the sequence guaranteed by the standard window w, that is, if () ()i ik d e k kς ς− + < − ,

the approximation ik d− replaces ik k− .

• CONDITION2.j, for 1 1j J≤ ≤ − : given the partial scalar value 2
2

Jww
Jk a a φ= ⋅ ⋅ ⋅… , if

there is a nonzero digit \{0}id D∈ such that 1 2
1 2

Jww w
i Jk d a a a µ

′′ ′
− = ⋅ ⋅ ⋅ ⋅… and its

associated cost per bit ()ik dς − is lower than the cost per bit ()kς , that is, if

() ()ik d e kς ς− + < , the approximation ik d− replaces the zero digit 0ik = .

CONDITION1 aims at reducing the length of the expansion by using more expensive point

operations (i.e., operations with bases ja , where 1j >) that yield cheaper-per-bit chains than the

usual sequence of operations with base 1a , after each nonzero term. Similarly, CONDITION2

determines if there is a chain involving an addition that is cheaper-per-bit than the sequence

directly dividing by the bases.

Note that if one assumes that values after executing a given sequence followed by an addition

are approximately uniformly distributed over odd numbers, then choosing the cheapest-per-bit

sequence for a partial value k would ultimately yield a multibase chain for the full point

multiplication that is cheaper in average. However, Algorithm 4.3 does not necessarily execute

the full sequence that was chosen. It instead re-evaluates and analyzes the costs of new sequences

after each doubling, tripling or quintupling. Hence, CONDITION1 and 2 above include a security

parameter, namely e, to guarantee that the chosen sequence is significantly better than the usual

one.

Although the number of divisibility tests with different combinations of bases A that can be

evaluated in CONDITION1 and 2 of Algorithm 4.3 is potentially high, we show in the following

that only a few tests are necessary to achieve performance (conjecturally) close to optimal.

Next, we illustrate the design of efficient CONDITION1 and 2 for the case {2,3}=A . Since

extension to other cases easily follows, we simply sketch the design for the case {2,3,5}=A (see

Section 4.4.1.2). As before, we fix the main base 1a to 2.

Chapter 4: Scalar Multiplication using Multibase Chains

86

4.4.1.1. Refined Multibase Chains with Bases {2,3}

We discuss next the design of CONDITION1 and 2 for the case {2,3}=A .

CONDITION1:

Following the criteria discussed previously and given a partial scalar k, standard window width w

and set of bases 1 2{ , } {2,3}a a= =A , where +
ja ∈Z , we propose the following format for

CONDITION1 in Algorithm 4.3:

1,1 2,1

1,2 2,2

1, 2,

1
,1

2
,2

,

1 : if (()mod 2 3 0 and ()mod 2 0) or

2 : (()mod 2 3 0 and ()mod 2 0) or

: (()mod 2 3 0 and ()mod 2 0)C C

w w w
i i

w w w
i i

w w w C
i C i

k d k k

k d k k

C k d k k

′ ′ +

′ ′ +

′ ′ +

− ⋅ = − ≠

− ⋅ = − ≠

− ⋅ = − ≠

…

…

�
 (4.8)

where , 0j cw′ ≥

are integers, mods2w

ik k= , c is the condition number such that 1 c C≤ ≤ and
1

, \ {0} { 1, 3, 5, , (2 1)}w
i cd D

−∈ = ± ± ± ± −… . In order to guarantee a cheaper-per-bit sequence at

each evaluation of CONDITION1 it is required that ,() ()i c c ik d e k kς ς− + < − , which compares

the sequence costs up to the next addition using positive values ce for 1 c C≤ ≤ . Using function

(4.7), this is roughly equivalent to the following comparison:

1, 2,

1, 2, 2

DBL TPL 2ADD (1) DBL 2ADD

log 3 1

c c

c

c c

w w w c
e

w w w c

′ ′⋅ + ⋅ + + − ⋅ +
+ <

′ ′+ + −
. (4.9)

We next illustrate the procedure for selecting values ,j cw′ and ce for format (4.8) using eq.

(4.9) when 2w = . The procedure can be easily extended to other window sizes.

First, we build two tables: one with the costs per bit corresponding to sequences containing

exactly d doublings (for congruency of ()ik k−) and another with the costs per bit corresponding

to sequences divisible by 1, 2,2 3c cw w′ ′
⋅ (for congruency of ,()i ck d−). Note that since 2w = it

always holds that 1, 1cw′ = . We show in Table 4.1 the results for Jacobian coordinates using costs

from Table 2.2 (assuming that 1 0.8)S M= . Since 2w = calculations are performed with mixed

additions (the cost of one mixed addition is obtained as ADD DBLADD DBLm m= −).

Using Table 4.1, it is easy to see that () mod 4, () mod8i ik k k k− ≡ − ≡ yields a sequence

that is more expensive per bit than, at least, ,() mod3i ck d− ≡ ; () mod8, () mod16i ik k k k− ≡ − ≡

yields a sequence that is more expensive per bit than, at least, ,() mod9i ck d− ≡ ;

() mod16, () mod32i ik k k k− ≡ − ≡ yields a sequence that is more expensive per bit than, at

least, ,() mod27i ck d− ≡ ; and so on. This analysis gives a close idea about the statements that

should be defined in (4.8) for CONDITION1. In fact, if we plug the congruency evaluations above

Chapter 4: Scalar Multiplication using Multibase Chains

87

Table 4.1. Cost-per-bit for statements in CONDITION1, bases {2,3}, w = 2, J coordinates.

Congruency of ()
i

k k− d
Cost per

bit

Congruency of

,
()

i c
k d−

,
1, 2,

()
c c

w w′ ′
Cost per

bit

mod 4, mod 8≡ ≡ 2 16.6 mod3≡ (1, 1) 15.0

mod 8, mod16≡ ≡ 3 13.4 mod9≡ (1, 2) 12.3

mod16, mod 32≡ ≡ 4 11.8 mod27≡ (1, 3) 11.1

mod 32, mod 64≡ ≡ 5 10.8 mod81≡ (1, 4) 10.4

mod 64, mod128≡ ≡ 6 10.2 mod243≡ (1, 5) 10.0

mod128, mod 256≡ ≡ 7 9.7 mod729≡ (1, 6) 9.7

mod 256, mod 512≡ ≡ 8 9.4

to (4.8) for conditions c = 1, 2, 3, and so on (in that order), the multibase chains obtained are

expected to be cheaper in average than those produced by the case without conditions (i.e.,

mbNAF, given by Algorithm 4.1). Nevertheless, choosing the minimal condition for which

congruency with ()ik k− is more expensive is not necessarily optimal. In other words, it is still

possible to do better by choosing the optimal parameter ce for each case.

For the latter, it is necessary to perform an analysis of costs of the possible combinations. For

instance, consider the evaluation “ ,1if (()mod 3 0 and () mod8 0)t
i ik d k k− = − ≠ ” with 2w = ,

1t ≥ ∈Z and 1C c= = in (4.8) to implement CONDITION1. The cost per bit in this case is

approximately given by:

2 2

1 2DBL 1TPL 2ADD 1 3DBL 2ADD 3DBL 1TPL 2ADD

4 2 log 3 4 3 3 log 3
α
   + + + + +

+ + +   
+ +   

, (4.10)

where
(1) (1)

2

1 1 2DBL 2ADD 1 3DBL 2ADD 1 1DBL TPL 2ADD
1

2 2 2 3 1 log 33 3
t t

t

t
α

− −

+ + + ⋅ +
= − × + × +

+ ⋅

   
    
    

.

It can be seen from (4.10) that optimality is achieved with min()α . For example, for J, e
JQ

 and IE coordinates (using operation costs from Tables 2.2, 2.3 and 2.4 and assuming

1 0.8)S M= , min()α is obtained with 2t = . Notice that analysis in α can go deeper and include

a higher number of consecutive doublings and triplings. However, the occurrence decreases

rapidly with the number of consecutive operations and so their impact in the cost. A similar

analysis can be carried out to determine optimal values for following conditions c in (4.8).

Additionally, it is necessary to determine the influence of C in the cost performance. A

probability analysis similar to the one performed above can be carried out to determine the

optimal C. However, the analysis increases in complexity very rapidly. Instead, we ran several

Chapter 4: Scalar Multiplication using Multibase Chains

88

tests to evaluate the cost performance of full 160-bit scalar multiplications. The results are

discussed in the subsection “Analysis of Multiple Conditions”, pp. 90.

CONDITION2:

Following the criteria discussed previously and given a partial scalar k, standard window width w

and set of bases 1 2{ , } {2,3}a a= =A , where +
ja ∈Z , we propose the following format for

CONDITION2 in Algorithm 4.3:

1,1

1,2

1,

2
,1

3
,2

1
,

1 : if (()mod 2 0 and mod3 0) or

2 : (()mod 2 0 and mod3 0) or

: (()mod 2 0 and mod3 0)C

w

i

w

i

w C
i C

k d k

k d k

C k d k

′

′

′ +

− = ≠

− = ≠

− = ≠

…

…

�
 (4.11)

where again , 0j cw′ ≥ are integers, c is the condition number s.t. 1 c C≤ ≤ , and , \ {0}i cd D∈ =
1{ 1, 3, 5, , (2 1)}w−± ± ± ± −… . To guarantee a cheaper-per-bit sequence at each evaluation of

CONDITION2 it is required that ,() ()i c ck d e kς ς− + < , which compares the sequence costs up to

the next addition using positive values ce for 1 c C≤ ≤ . Using function (4.7), this is roughly

equivalent to the following comparison:

 1, 1,

1, 1, 2

DBL 2ADD (1) DBL 2ADD1 (1)TPL+1ADD

2 1 (1) log 3

c c
c

c c

w w c
e

w w c

′ ′ ⋅ + + ⋅ + +
+ + <  ′ ′ + + ⋅ 

. (4.12)

Let us now illustrate the procedure for selecting values ,j cw′ and ce for format (4.11) using

eq. (4.12) when 2w = .

Similarly to the case with CONDITION1, we first build two tables: one with the costs per bit

corresponding to sequences divisible by 1,2 cw′
 (for congruency of ,()i ck d−) and another with the

costs per bit corresponding to sequences with exactly t triplings (for congruency of k). In Table

4.2, we show the results for Jacobian coordinates using costs from Table 2.2 (assuming that

1 0.8)S M= . Again, we assume that 2w = , calculations are performed with mixed additions and

the cost of one mixed addition is obtained as ADD DBLADD DBLm m= − .

Using Table 4.2, we can see that mod3, mod9k k≡ ≡ yields a sequence that is more

expensive per bit than, at least, ,() mod8i ck d− ≡ ; mod9, mod 27k k≡ ≡ yields a sequence that

is more expensive per bit than, at least, ,() mod32i ck d− ≡ ; mod27, mod81k k≡ ≡ yields a

sequence that is more expensive per bit than, at least, ,() mod128i ck d− ≡ ; and so on. If these

congruency evaluations are directly plugged into (4.11) for conditions c = 1, 2, 3, and so on (in

that order), the multibase chains obtained are expected to be cheaper in average than those produced

Chapter 4: Scalar Multiplication using Multibase Chains

89

Table 4.2. Cost-per-bit for statements in CONDITION2, bases {2,3}, w = 2, J coordinates.

Congruency of k t
Cost per

bit

Congruency of

,
()

i c
k d− 1,c

w′
Cost per

bit

mod 3, mod 9≡ ≡ 1 14.0 mod 4≡ 2 15.0

mod 9, mod 27≡ ≡ 2 11.0 mod8≡ 3 12.6

mod 27, mod 81≡ ≡ 3 10.0 mod16≡ 4 11.3

mod81, mod 243≡ ≡ 4 9.5 mod32≡ 5 10.5

mod 243, mod 729≡ ≡ 5 9.2 mod64≡ 6 10.0

mod 729, mod 2187≡ ≡ 6 9.0 mod128≡ 7 9.6

 mod256≡ 8 9.3

by the case without conditions (i.e., mbNAF; Algorithm 4.1). However, choosing the minimal

condition for which congruency with k is more expensive is not necessarily optimal. In this case,

it is necessary to perform a more in detail analysis of costs of the possible combinations. For

instance, consider the evaluation “ ,1if (()mod 2 0 and mod 9 0)d
ik d k− = ≠ ” with 2w = ,

1d > ∈Z and 1C c= = in (4.11) to implement CONDITION2 in Algorithm 4.1. The cost per bit

in this case is approximately given by:

2

2 1 2TPL 1ADD

3 3 2log 3
β

 +
+  

 
, (4.13)

where
2 2

2 2

1 2 1TPL 1ADD 1 2TPL 1ADD 1 1 DBL 2ADD 1 (1) DBL 2ADD
1

3 log 3 3 2 log 3 2 2 12 2d d

d d

d d
β

− −

 + + ⋅ + + ⋅ +   
= − × + × + × + ×    

+    
.

By analyzing (4.13), it can be seen that optimality is achieved with min()β . For instance, for

J, e
JQ and IE coordinates (using operation costs from Tables 2.2, 2.3 and 2.4 and assuming

1 0.8)S M= , min()β is obtained with 4d = . Although analysis in β can go deeper and include

higher numbers of consecutive doublings and triplings, the occurrence decreases rapidly with the

number of consecutive operations and so the impact in the cost. A similar analysis can be carried

out to determine optimal values for following conditions c in (4.11).

In the following example, we illustrate the derivation of a multibase chain using Algorithm

4.3 with an efficient selection of parameters for CONDITION1 (4.8) and CONDITION2 (4.11), as

discussed in this section. In the remainder, conditions from (4.8) and (4.11) are denoted by

pairing values 1, 2,2 3c cw w′ ′
⋅ and 2w c+ , and values 1,2 cw′

 and 1
3

c+ , respectively, as follows:

 1,1 2,1 1,2 2,2 1, 2, 1,1 1,2 1,1 2 2 3 1(2 3 - 2 ,2 3 - 2 , ,2 3 - 2 | 2 - 3 ,2 - 3 , ,2 - 3)C C Cw w w w w w w w ww w w C C′ ′ ′ ′ ′ ′ ′ ′ ′+ + + +⋅ ⋅ ⋅… … ,

Chapter 4: Scalar Multiplication using Multibase Chains

90

where paired values for CONDITION1 and 2 are separated by “|”. For instance, in Example 4.4

conditions denoted by (9-8|32-9) mean that Algorithm 4.3 includes the evaluation

“ ,1if (()mod9 0 and ()mod8 0)i ik d k k− = − ≠ ” as CONDITION1 and the evaluation

“ ,1if (()mod32 0 and mod9 0)ik d k− = ≠ ” as CONDITION2.

Example 4.4. Using Algorithm 4.3, we find the following refined multibase chain for computing

8821P by using bases {2,3}, w = 2 and conditions (9-8|32-9): (3) (2) (2) (2) (2) (2)8821 1 0 0 0 1 0= −
(2) (2) (2) (2) (3) (2) (2)

0 0 0 1 0 0 1− , which has been derived using the division sequence 8820
8821 1

2
− → →

4410 2205 736 368 184 92 46 24 12 6 3
735 1 23 1 1

2 2 2 2 2 2 2 2 2 33
→ → + → → → → → → + → → → → → .

Notice that, for instance, the partial value 735 is conveniently approximated to 736, by means

of CONDITION1, instead of dividing it by 3, allowing the efficient insertion of several

consecutive doublings that ultimately reduce the nonzero density of the expansion. If we compare

the performance of this multibase chain when computing 8821P against the basic multibase NAF

approach using the same window size, we can observe that the cost reduces from 8DBL + 3TPL

+ 4mADD = 115.2M to only 10DBL + 2TPL + 3mADD = 107.6M (e
JQ , 1S = 0.8M).

Finally, a probability analysis can be carried out to determine the optimal C for

CONDITION1 and 2. As stated before, this analysis increases in complexity very rapidly, so

instead we have run many tests to evaluate the cost performance of full 160-bit scalar

multiplications. The results are discussed in the following subsection.

Analysis of Multiple Conditions

The use of multiple conditions in CONDITION1 (4.8) and CONDITION2 (4.11) enable a wider

search for cheaper multibase chains. However, as the number of conditions C increases the

impact on the cost decreases. We have run several tests with 160-bit point multiplications to

explore empirically the behavior of Algorithm 4.3 when increasing C. The results are displayed

in Fig. 4.1-4.2.

In our tests, we average the cost of 1000 point multiplications using 160-bit random scalars.

To determine the conditional statements in each case, we performed the analysis described in the

previous section. We also carried out multiple tests to confirm our parameter selection and when

analysis got excessively complex.

In Figures 4.1 and 4.2, x and y in (x|y) denote the number of conditions C for CONDITION1

and 2, respectively.

As can be seen, selection (1|1) achieves the higher relative speed up. As C increases the gain

also decreases. In general, for 2C ≥ the costs do not vary significantly. On the negative side, this

implies that even deeper searching for efficient sequences will only provide smaller speed ups.

On the positive side, this feature enables the possibility of very compact algorithms that achieve,

Chapter 4: Scalar Multiplication using Multibase Chains

91

Figure 4.1. Cost of 160-bit point multiplication without precomputations using refined multibase chains. Conditional

statements: nc = no conditions, (1|1) = (9-8|32-9), (2|2) = (9-8,27-16|32-9,64-27), (3|3) = (9-8,27-16,81-32|32-9,64-

27,128-81) ,(4|4) = (9-8,27-16,81-32,243-64|32-9,64-27,128-81,256-243).

Figure 4.2. Cost of 160-bit point multiplication with w = 5 using refined multibase chains. Conditional statements: nc

= no conditions, (1|1) = (144-64|64-9), (2|2) = (144-64,324-128|64-9,512-27), (3|3) = (144-64,324-128,648-256|64-

9,512-27,1024-81), (4|4) = (144-64,324-128,648-256,972-512|64-9,512-27,1024-81,2048-243).

1480

1500

1520

C
o
s
t

(M
)

Jacobian coordinates

1280

1300

1320

C
o
s
t

(M
)

Extended Jacobi Quartic coordinates

nc (1|1) (2|2) (3|3) (4|4)

1360

1380

1400

C
o
s
t

(M
)

Inverted Edwards coordinates

1440

1450

1460

C
o
s
t

(M
)

Jacobian coordinates

1210

1220

1230

C
o
s
t
(M

)

Extended Jacobi Quartic coordinates

nc (1|1) (2|2) (3|3) (4|4)
1265

1270

1275

C
o
s
t

(M
)

Inverted Edwards coordinates

Chapter 4: Scalar Multiplication using Multibase Chains

92

conjecturally, close to optimal performance.

Highly Compact Multibase Algorithms, Bases {2,3}

The generalized formats for conditions (4.8) and (4.11) allow one to perform a relatively simple

and scalable analysis of Algorithm 4.3. However, following observations by Walter [Wal11] it is

obvious that much more compact algorithms can be easily derived once the design parameters

(i.e., conditional statements, window width and bases) are fixed. The following examples

illustrate how the original algorithm for finding refined multibase chains can be rearranged to

obtain very compact algorithms with fixed parameters.

Example 4.5. If we select conditions (9-8|32-9), window size w = 2 and bases {2,3}, then it is

straightforward to transform Algorithm 4.3 and replace lines 3 to J+5 with the following:

[]

mods 4, 2

if mod 2 0, 0

elseif mod3 0 and ~ ()mod32 0 and mod9 0 , 0, 3

elseif ()mod9 0 and ()mod8 0,

i i

i

i i i

i i i i

k k b

k k

k k k k k b

k k k k k k

= =


= =


= − = ≠ = =
 + = − ≠ = −

Example 4.6. If we select conditions (144-64|64-9), window size w = 5 and bases {2,3}, then

lines 3 to J+5 of Algorithm 4.3 can be replaced with the following:

[]

mods 32, 2

if mod 2 0, 0

elseif mod3 0 and ~ ()mod64 0 and mod9 0 , 0, 3

elseif (mods16) 0mod9 and ()mod 64 0, mods16

i i

i

i i i

i i

k k b

k k

k k k k k b

k k k k k k

= =


= =


= − = ≠ = =
 − = − ≠ =

Modified algorithms above are obtained by removing redundancy in the evaluations and

rearranging conditional statements once design parameters are fixed. We remark that these

algorithms are equivalent to Algorithm 4.3 and yield the same output for a given scalar when

using the same design parameters. As consequence, we observe that the refined multibase

methodology described in this section can achieve (conjecturally) close to optimal performance

with highly compact algorithms.

4.4.1.2. Refined Multibase Chains with Bases {2,3,5}

A methodology similar to the one described in §4.4.1.1 can be applied to the case {2,3,5}=A .

Chapter 4: Scalar Multiplication using Multibase Chains

93

Suggested formats for CONDITION1 and 2 in this case are provided below.

CONDITION1:

Given a partial scalar k, standard window width w and set of bases 1 2 3{ , , } {2,3,5}a a a= =A ,

where +
ja ∈Z , we propose the following format for CONDITION1 in Algorithm 4.3:

1,1 2,1 3,1

1,2 2,2 3,2

1, 2, 3,

1
,1

2
,2

,

1 : if (()mod 2 3 5 0 and ()mod 2 0) or

2 : (()mod 2 3 5 0 and ()mod 2 0) or

: (()mod 2 3 5 0 and ()mod 2 0)C C C

w w w w
i i

w w w w
i i

w w w w C
i C i

k d k k

k d k k

C k d k k

′ ′ ′ +

′ ′ ′ +

′ ′ ′ +

− ⋅ ⋅ = − ≠

− ⋅ ⋅ = − ≠

− ⋅ ⋅ = − ≠

…

…

�
 (4.14)

where , 0j cw′ ≥

are integers, mods2w

ik k= , c is the condition number such that 1 c C≤ ≤ and
1

, \ {0} { 1, 3, 5, , (2 1)}w
i cd D

−∈ = ± ± ± ± −… .

CONDITION2:

Given a partial scalar k, standard window width w and set of bases 1 2 3{ , , } {2,3,5}a a a= =A ,

where +
ja ∈Z , we propose the following format for CONDITION2.1 in Algorithm 4.3:

1,1

1,

1,1

1,

2
,1

1
,

,1

,

1 : if (mod5 0) and

1.1 : [if (()mod 2 0 and mod3 0) or

1. : (()mod 2 0 and mod3 0)] or

2 : if (mod5 0) and

2.1 : [if (()mod 2 0 and mod3 5 0) or

2. : (()mod 2 0 and mod3 5

B

C

w

i

w B
i B

w

i

w u v
i C

k

k d k

B k d k

k

k d k

C k d k

′

′ +

′′

′′

≠

− = ≠

− = ≠

=

− = ⋅ ≠

− = ⋅ ≠

…

�

…

…

�

0)]

 (4.15)

where , ,, , , 0j b j cw w u v′ ′′ ≥ are integers, b and c are the condition numbers such that 1 b B≤ ≤ ,

1 c C≤ ≤ , and 1
, ,, \ {0} { 1, 3, 5, , (2 1)}w

i b i cd d D
−∈ = ± ± ± ± −… . Note that the upper section of

(4.15) evaluates conditions when sequences are not divisible by 5, whereas the lower section

evaluates conditions when sequences are divisible by both 3 and 5.

For CONDITION2.2, we propose the following format:

Chapter 4: Scalar Multiplication using Multibase Chains

94

1,1

1,2

1,

2
,1

3
,2

1
,

1 : if (()mod 2 0 and mod5 0) or

2 : (()mod 2 0 and mod5 0) or

: (()mod 2 0 and mod5 0)C

w

i

w

i

w C
i C

k d k

k d k

C k d k

′

′

′ +

− = ≠

− = ≠

− = ≠

…

…

�
 (4.16)

where again , 0j cw′ ≥ are integers, c is the condition number s.t. 1 c C≤ ≤ , and , \{0}i cd D∈ =
1{ 1, 3, 5, , (2 1)}w−± ± ± ± −… .

4.5. Performance Comparison

We have carried out extensive tests to evaluate the performance of the multibase algorithms

discussed in this chapter when applied on standard, extended Jacobi quartic and Twisted Edwards

curves using Jacobian (J), extended Jacobi quartic (e
JQ) and inverted Edwards (IE)

coordinates, respectively. We implemented the traditional wNAF, wmbNAF (Algorithm 4.1) and

the refined multibase method (Algorithm 4.3) in Matlab, and ran the algorithms with different

window sizes for 1000 160- and 256-bit scalars chosen randomly. In the case of multibase

algorithms, we evaluated the methods when using the sets of bases {2,3} and {2,3,5}.

We distinguish two cases: scenarios with minimal storage (without precomputations) and

scenarios with no memory constraints (with optimal number of precomputations).

To estimate costs for each method, we first counted the required number of point operations

per scalar, averaged the results and then calculated the cost using Tables 2.2, 2.3 and 2.4 (costs

labeled as “Using S-M tradings”), ignoring costs of additions and multiplications by curve

parameters for simplification purposes. Also, for scenarios with no memory constraints we

included in the overall cost the cost of calculating the precomputed points. For computing these

points, we consider two cases (see Chapter 3): points are left in projective coordinates (case 1),

and points are converted to affine using one inversion (case 2). As observed in Section 3.4.1

(Table 3.9, 17ESL = ; and Table A.1, 27ESL =), n = 160 and 256 bits, case 2 is advantageous

using Jacobian coordinates for low and intermediate I/M ratios, whereas case 1 is more efficient

for high I/M values. Thus, the particular I/M ratio of an implementation will decide which case is

more effective on a standard curve. In the case of e
JQ and IE coordinates, we only consider

case 1 as this scheme should be largely preferred because of the minimal difference of costs

between general and mixed additions (see Section 3.4.2, Table 3.11, 5w = ; and Table 3.12,

6w =). Following the analysis in Section 3.4, for Jacobian coordinates, we use the LM Scheme,

case 1 and case 2b, whose costs are given by formulas (3.4) and (3.6), respectively, and for e
JQ

and IE coordinates we apply the LG Scheme, whose costs are displayed in Table 3.3.

Chapter 4: Scalar Multiplication using Multibase Chains

95

The costs using the different methods are summarized in Tables 4.3 and 4.4 for n = 160 and

256 bits, respectively. We have sped up further the proposed multibase methods by saving some

initial computations. This technique is similar to that proposed in [Elm06, Section 4.2.2] plus

some additional savings gained with the use of composite operations (i.e., tripling, quintupling).

Note that for Jacobian coordinates we use the efficient doubling-addition (DBLADD)

operation instead of traditional addition for all the proposed methods. This operation has also

been used to improve the performance of the tree-based approach by Doche et al. [DH08].

As can be seen, in the scenario without precomputations, the new refined multibase chains

obtained from Algorithm 4.3 achieve the lowest costs for all curves under analysis and security

levels. For instance, our results reduce costs in 3% and 10% in comparison with the tree-based

method and NAF, respectively, on both e
JQ and J coordinates with 160n = bits. On the other

hand, the basic multibase NAF using bases {2,3} and {2,3,5} achieves better performance than

the original double-base method based on the “Greedy” algorithm [DIM05]. That is in addition to

the attractive features of mbNAF such as simplicity, memory efficiency and easiness to be

analyzed theoretically. The tree-based method achieves slightly lower costs than mbNAF for

bases {2,3} when using IE coordinates. However, mbNAF with bases {2,3,5} surpasses the

performance of this method in all the remaining cases. We remark that the tree-based method

also finds double-base chains using division chains, although using a search-based approach that

consumes more memory than the basic multibase NAF.

Remarkably, in some scenarios using J , refined multibase chains with bases {2,3,5} and no

precomputations surpasses the performance of the fastest NAF-based method using an optimal

number of precomputed points. For instance, if n = 160 bits the multibase method is superior

always when 1I > 19M.

For comparison in the scenario with optimal number of precomputations, we include results

by Bernstein et al. [BBL+07]. This work uses a double-base method based on the “Greedy”

algorithm that has been optimized for the use of precomputations. We can see that both the basic

wmbNAF and the refined multibase chains offer lower computing costs for all the cases under

analysis. Note that in this case the performance gap is due to a combination of superior multibase

chains and precomputation schemes, faster point operations (e.g., we use the doubling-addition

operation in Jacobian coordinates) and the inclusion of the technique to save initial computations.

A more serious competition is brought by the recent work by Meloni and Hasan [MH09],

which proposes the use of DBNS representations in combination with Yao’s algorithm. This

method, denoted by Yao-DBNS, is not based on division chains and has been shown to be

efficient when using DBNS representations obtained with the “Greedy” algorithm. Therefore, it

is intended for platforms where memory is not scarce.

If there are no memory restrictions, the refined multibase chains using bases {2,3,5} and Yao-

96

Table 4.3. Comparison of double-base and triple-base scalar multiplication methods (n = 160 bits; 1S = 0.8M).

Method # pts

ExtJQuartic (e
JQ)

pts

InvEdw (IE)

pts

Jacobian (J)

Precomp Total Precomp Total Precomp Total

 Refined multibase (this work) 0 0 1261M
(2) 0 0 1351M

(1) 0 0 1451M
(2)

 mbNAF (this work) 0 0 1292M
(2) 0 0 1380M

(1) 0 0 1485M
(2)

 Tree-based double-base, Doche et al. [DH08] 0 0 1303M 0 0 1377M 0 0 1493M

 Double-base (Greedy), Dimitrov et al. [DIM05] 0 0 1328M 0 0 1403M 0 0 1545M †

 NAF 0 0 1394M 0 0 1448M 0 0 1616M

 Refined multibase (this work) 7 59.6M 1214M
(2)

 7 62.2M 1267M
(1)

6 55.4M 1427M

(2)

6 1I+68.4M 1I + 1388M
(2)

 (Frac-)wmbNAF (this work) 7 59.6M 1222M
(2) 7 62.2M 1274M

(1)
6 55.4M 1432M

(2)

6 1I+68.4M 1I + 1397M
(2)

 Yao-DBNS (Greedy), Meloni et al. [MH09] N/A N/A 1211M N/A N/A 1259M N/A N/A 1475M

 Double-base (Greedy), Bernstein et al. [BBL+07] 7 N/A 1311M 7 N/A 1290M 7 N/A 1504M †

 (Fractional) wNAF 7 59.6M 1246M 7 62.2M 1291M
6 55.4M 1476M

6 1I+68.4M 1I + 1432M

† Without using doubling-addition operation [LM08b].

(1) Bases {2,3}.

(2) Bases {2,3,5}.

97

Table 4.4. Comparison of double-base and triple-base scalar multiplication methods (n = 256 bits; 1S = 0.8M).

Method # pts

ExtJQuartic (e
JQ)

pts

InvEdw (IE)

pts

Jacobian (J)

Precomp Total Precomp Total Precomp Total

 Refined multibase (this work) 0 0 2026M
(2) 0 0 2174M

(1) 0 0 2330M
(2)

 mbNAF (this work) 0 0 2077M
(2) 0 0 2218M

(1) 0 0 2387M
(2)

 Tree-based double-base, Doche et al. [DH08] 0 0 2084M 0 0 2202M 0 0 2388M

 Double-base (Greedy), Dimitrov et al. [DIM05] 0 0 2125M 0 0 2244M 0 0 2472M †

 NAF 0 0 2244M 0 0 2329M 0 0 2601M

 Refined multibase (this work) 8 69M 1925M
(2)

 8 72M 2013M
(1)

8 72.2M 2277M

(2)

8 1I+89.6M 1I + 2204M
(2)

 (Frac-)wmbNAF (this work) 8 69M 1940M
(2) 8 72M 2025M

(1)
8 72.2M 2291M

(2)

8 1I+89.6M 1I + 2219M
(2)

 Yao-DBNS (Greedy), Meloni et al. [MH09] N/A N/A 1911M N/A N/A 1993M N/A N/A 2316M

 Double-base (Greedy), Bernstein et al. [BBL+07] 8 N/A 2071M 8 N/A 2041M 7 N/A 2379M †

 (Fractional) wNAF 8 69M 1954M 8 72M 2023M
8 72.2M 2326M

8 1I+89.6M 1I + 2235M

† Without using doubling-addition operation [LM08b].

(1) Bases {2,3}.

(2) Bases {2,3,5}.

Chapter 4: Scalar Multiplication using Multibase Chains

98

DBNS achieve very close performance for all cases and security levels under analysis. The gap

when using e
JQ and IE coordinates is between ~0%-1% in favor of Yao-DBNS. Given the

small theoretical gap and because factors such as cache performance and operation cost

variations influence computing time in practice, both methods are expected to achieve equivalent

performance for all practical purposes. When using J coordinates the refined multibase chains

remain faster than Yao-DBNS with an advantage between 2%-3%.

Comparison with High-Speed Curves using Radix-2 Methods

Recently, new special curve forms with very efficient group arithmetic have been proposed.

These curves achieve high performance in part because they have very efficient doubling and

addition formulas. Among them, Twisted Edwards curves (2.12) with parameter 1a = − using

mixed /
e

EE coordinates seem to currently offer the best operation count over prime fields

[HWC+09]. Unfortunately, there are no known efficient formulas for tripling and quintupling

and, hence, these curves cannot benefit from multibase methods.

A performance comparison with the best results from this chapter is relevant. Table 4.5

shows the results using NAF and wNAF for Twisted Edwards with mixed /
e

EE coordinates,

refined multibase chains with bases {2,3} for Twisted Edwards using IE coordinates and refined

multibase chains with bases {2,3,5} for extended Jacobi quartics using e
JQ coordinates. Since

curve settings using e
JQ and IE involve formulas with multiplications by curve parameters

and /
e

EE coordinates do not, in this case we consider three scenarios: 1 0.1D M= , 1 0.5D M=

and 1 1D M= . Operation costs are taken from Tables 2.3 and 2.4 and cost of precomputation is

not included for simplification purposes.

It can be seen that the fastest curve using refined multibase chains (ExtJQuartic, e
JQ) with

no precomputations outperforms the best performer using radix-2 methods (TEdwards, /
e

EE) if

curve parameters do not introduce a significant overhead. For other cases, /
e

EE using (w)NAF is

Table 4.5. Comparison of lowest costs using multibase and radix-2 methods for scalar

multiplication, n = 160 bits (cost of precomputation is not included).

Curve Method
Cost (0 pts) Cost (7 pts)

1 0.1D M= 1 0.5D M= 1 1D M= 1 0.1D M= 1 0.5D M= 1 1D M=

ExtJQuartic, d = 1, eJQ refined (2,3,5) 1281M 1346M 1428M 1186M 1254M 1339M

TEdwards, a = 1, IE refined (2,3) 1372M 1444M 1534M 1233M 1303M 1390M

TEdwards, a = −1, /
e

EE (w)NAF 1353M 1353M 1353M 1181M 1181M 1181M

Chapter 4: Scalar Multiplication using Multibase Chains

99

the clear winner given the significant overhead introduced by extra multiplications by constants

and/or the reduced gain margin obtained with the use of multibases.

In conclusion, if curve parameters are suitably chosen then curves using multibase methods

(which otherwise would be slower) may become competitive and even faster than the fastest

known curves using radix-2 in memory-constrained devices. For other applications with no

memory constraints, it is suggested the use of the fastest curves using (Frac-)wNAF.

4.6. Other Applications, Variants and Challenges

In this chapter, we have argued that an analysis based on the operation cost per bit should allow

one to find the optimal multibase chain(s) for a given scalar. We showed that constraining that

analysis to a “portion” of the chain at a time still enables efficient performance. Nevertheless,

there are many unexplored possibilities that arise from this new approach. In particular, we have

used Algorithm 4.3 for evaluating the different sequences using the operation cost per bit.

However, the same methodology can be applied to different variants of this algorithm that could

achieve better performance in settings with different relative operation costs.

As stated before, provided formats for CONDITION1 and 2 evaluate sequences up to the next

addition only. However, expanding the “range” of testing could improve performance further.

The study of the potential improvement is left as future work.

Also, as discussed in Section 4.4, Algorithm 4.3 employs an on-line congruency testing

approach to select the division sequences. An alternative approach would involve on-the-fly

calculation and comparison of the costs per bit of the possible sequences. This on-the-fly

approach would lead to alternative algorithms different to the ones proposed here.

Remarkably, other methods in the literature can take advantage of the proposed method. For

instance, the tree-based approach by [DH08] can be optimized by employing the operation cost

per bit to select division sequences instead of simply selecting the sequences that reach the lowest

values. This could potentially allow one to select only one node (and to avoid keeping B nodes

each time, saving memory). In this case, the method would take the form of the on-the-fly

approach described above. Similar ideas apply to the case of multiple scalar multiplication

[DKS09].

In the proposed algorithms, the congruency testing is performed after every performed

(doubling, tripling, quintupling) operation (see Algorithm 4.3). In this case the number of

iterations for conversion is determined by the total number of doublings, triplings and

quintuplings. A simplified variant with faster conversion to multibase would involve the full

execution of the chosen sequence until another addition is required, which reduces dramatically

Chapter 4: Scalar Multiplication using Multibase Chains

100

the number of iterations required to the number of additions. The impact in the cost of scalar

multiplication is left as future work.

Closely following developments for single scalar multiplication, there have appeared recent

efforts for speeding up multiple scalar multiplication with the form kP lQ+ using double-base

chains. See for instance [DKS09] that presents the analogous of the original tree-based approach

[DH08], or [ADI10]. All these works employ division chains and can be improved by exploiting

the methodology based on the operation cost per bit exposed in this chapter. The different

variants discussed in this subsection could also be adapted to this case.

A note on recent work in the literature:

Very recently and working on top of our techniques published in PKC2009 [LG09], Walter

[Wal11] also proposed the use of the cost per bit to derive multibase algorithms based on division

chains. Although his methodology is based on a slightly more elaborated cost function, results

are expected to be similar to the ones obtained with the methodology in Section 4.4.1.1.

Algorithms in [Wal11] are similar (with some variations) to the ones proposed in PKC2009 and

revisited here. Although [Wal11] presented slightly better results, we implemented and tested the

modified algorithms under the same conditions in which all our algorithms were tested and they

achieved equivalent or slightly lower performance than our results. Walter proposed to simplify

algorithms to obtain much more compact versions. Following these suggestions, we derived

compact versions for our algorithms in the subsection “Highly Compact Multibase Algorithms,

Bases {2,3}”, pp. 92.

4.6.1. Open Challenges

It has been shown in this chapter that the use of double- and multi-base representations enables

faster scalar multiplication in terms of field multiplications and squarings. However, the

conversion step in double-base and multi-base methods is more time consuming than using

methods based on radix 2. This may or may not be a limiting factor depending on the

characteristics of a particular implementation and the chosen platform.

If scalar conversion to multibase representation is expensive, then it must be performed off-

line, limiting the applicability of these methods to scenarios in which the same scalar k is reused

several times or the conversion can be carried out during an idle time (e.g., between the first and

second phases of the ECDH scheme during data transmission). To overcome this restriction,

more research is necessary for developing efficient conversion mechanisms for popular

Chapter 4: Scalar Multiplication using Multibase Chains

101

platforms, accompanied by stringent benchmarking strategies (an inefficient implementation with

an “optimized” binary-to-multibase conversion function would obviously lead to misleading

conclusions).

Another challenge relates to the efficiency gain that these methods provide. Following results

from Section 4.5, theoretical estimates indicate that cost reductions for constrained and non-

constrained devices are in the ranges 7%-10% and 1%-3% in comparison with (w)NAF,

respectively. The gain margin is expected to reduce further on certain platforms or even vanish in

the case of non-constrained devices when considerations such as cache performance are taken

into account; see illustrative test results on x86-64 processors in Section 5.6.4, subsection

“Timings using Multibase Methods”. These observations are confirmed by recent results in the

literature that achieve very close theoretical performance at the cost of highly expensive

conversion steps [SEI11]. Moreover, for non-constrained devices there are curves that offer

higher performance using classical radix 2 methods (see Table 4.5). In conclusion, implementers

would probably prefer the adoption of multibase strategies when conversion (if expensive) can be

performed off-line and the platform is a memory-constrained device, for which the cost

reductions are non-negligible in comparison with radix-2 methods.

A more somber horizon is envisioned for multiple scalar multiplication methods using double

bases in the literature. A popular application of the operation uP vQ+ is signature verification

(as needed for ECDSA; see §2.2.3). However, in this case integers u and v are calculated on-line

as part of the verification process and, hence, conversion time from binary to double-base must

be included in the computing cost. This reduces drastically (or completely eliminates) the

possible gain obtained with these methods in multiple scalar multiplication.

4.7. Conclusions

This chapter discussed the efficient design of scalar multiplication algorithms based on double

and multibase chains.

In §4.1, we categorized and analyzed the most relevant methods using double-base and multi-

base representations in the literature, highlighting advantages and disadvantages. Then in §4.2 we

formally described the original (width-w) multibase NAF method, presenting the theoretical

analysis of the different variants using Markov chains. In §4.3, we applied the fractional window

recoding to multibase NAF. The revised method allows any number of precomputations,

enabling lower costs and/or better coupling to memory-constrained environments.

In §4.4, we introduced a novel methodology based on the analysis of point operation cost per

bit to design flexible algorithms able to find more efficient multibase chains. This approach was

Chapter 4: Scalar Multiplication using Multibase Chains

102

implicitly used in Longa and Gebotys [LG09] to derive refined mbNAF chains, although an

explicit description of the algorithm derivation was missing. We have filled the gap in this

chapter. Intuitively, given unlimited resources this approach is expected to lead to optimal

multibase chains. We demonstrated that very compact algorithms are still able to achieve high

performance. We derived algorithms for the case of bases {2,3} and {2,3,5}, and analyzed the

performance gain with the increase in the complexity of the multibase evaluation. For illustration

purposes, we focused the analysis on three scenarios: standard curves using Jacobian coordinates,

extended Jacobi quartics using extended Jacobi quartics coordinates and Twisted Edwards curves

using inverted Edwards coordinates.

In §4.5 we carried out a detailed comparison of the studied methods with the best approaches

in the literature. For further cost improvement, we applied the best precomputation method

developed in Chapter 3 for each scenario. After extensive comparisons with the most efficient

methods in the literature, we concluded that the refined multibase chains achieve the highest

performance on all scenarios with no precomputations, introducing cost reductions in the range

7%-10% in comparison with NAF. For the case of optimal use of precomputations, we show that

the proposed algorithms are among the fastest ones, achieving practically equivalent performance

to recent methods such as Yao-DBNS [MH09]. In this case, the theoretical cost reductions are in

the range 1%-3% in comparison with (Frac)-wNAF.

Finally, in §4.6 we discussed many potential possibilities for the multibase approach based on

the analysis of the operation cost per bit. We detailed how this tool could potentially lead to

different variants of the proposed multibase algorithms and how it could even improve existent

methods in the literature. Other possible applications such as multiple scalar multiplications were

also covered, as well as a discussion of open problems that challenge the practicality of double-

base and multi-base methods in real applications. In conclusion, we suggested the use of

multibases for memory-constrained devices when the conversion step (if expensive) can be

performed off-line. When precomputations are allowed, the gain may be negligible and faster

curves without exploiting multibases are available.

103

5 Chapter 5

Efficient Techniques for

Implementing Elliptic Curves in

Software

In this chapter, we analyze and present experimental data evaluating the efficiency of several

techniques for speeding up the computation of elliptic curve point multiplication on emerging

x86-64 processor architectures. Our approach is based on a careful optimization of elliptic curve

operations at all arithmetic layers in combination with techniques from computer architecture.

Our contributions can be summarized as follows:

• We analyze the efficient combination of two well-known techniques: elimination of

conditional branches and incomplete reduction (IR), to achieve high-speed field

arithmetic over pF . Specifically, we apply these techniques to the optimization of field

arithmetic modulo a pseudo-Mersenne prime.

• We study the impact of true data dependencies on elliptic curve operations. Moreover, to

reduce the number of pipeline stalls, memory reads/writes and function calls in the

execution of field and point arithmetic operations, we propose three generic techniques:

field arithmetic scheduling, merging of point operations and merging of field operations.

• The cost of explicit formulas is reduced further by minimizing the number of additions/

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

104

subtractions and small constants and maximizing the use of operations exploiting IR.

• We study the extension of all the previous techniques to field arithmetic over 2p
F , which

has several applications in cryptography including its use as underlying field by the

recently proposed Galbraith-Lin-Scott (GLS) method.

• We explicitly state the improved explicit formulas using IR, with minimal number of

operations and reduced number of data dependencies between contiguous field

operations for two relevant cases: standard curves using J coordinates and Twisted

Edwards curves using mixed homogeneous/extended homogeneous (/
e

E E) coordinates.

• Finally, to illustrate the significant savings obtained by combining all the previous

techniques with state-of-the-art ECC algorithms we present high-speed implementations

of point multiplication that are up to 34% faster than the best previous results on x86-64

processors. Our software takes into account results from Chapter 3 and includes the best

precomputation scheme corresponding to each setting.

Analysis and tests presented in this chapter are carried out and applied on emerging x86-64

processors, which are getting widespread use in notebooks, desktops, workstations and servers.

The reader should note, however, that some techniques and analysis are generic and can be

extended to other computing devices based on 32-, 16- or 8-bit architectures. Whenever relevant,

we briefly discuss the applicability of the techniques under analysis to other architectures.

This chapter is organized as follows. After discussing some relevant previous work and

background related to x86-64 processors in §5.1, we describe the techniques for optimizing

modular reduction using a pseudo-Mersenne prime, namely incomplete reduction and elimination

of conditional branches, in §5.2. Then, in §5.3 we study data dependencies between field

operations and analyze some efficient countermeasures when their effect is potentially negative

to performance. In §5.4, we describe our optimizations to explicit formulas that enable a

reduction in the number of additions and other “small” operations. The extension of the

techniques above to quadratic extension fields is presented in §5.5. Our high-speed

implementations with and without exploiting the GLS method that illustrate the performance gain

obtained with the techniques under analysis are presented in §5.6. Some conclusions are drawn in

§5.7.

5.1. Previous Work and the x86-64 Processor Family

Since the 80’s and 90’s there have appeared an increasing number of studies focused on the

optimization of the arithmetic of elliptic curves with application to cryptography. For example,

some works have proposed methods using efficient arithmetic representations for scalars [Mor90,

Sol00, DIM05, Lon07] and efficiently computable endomorphisms [GLV01, GLS08] to reduce

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

105

the number of point operations required for computing scalar multiplication. Other approaches

have focused on constructing curve forms with fast group arithmetic and/or improved resilience

against certain side-channel analysis (SCA) attacks [Sma01, BJ03b, Edw07], complemented by

research studying efficient projective systems and optimized explicit formulas for point

operations [CC86, CMO98, HWC+08, LM08b, HWC+09]. Yet another important aspect refers to

the efficient implementation of long integer modular arithmetic [Kar95, Mon85, Com90,

YSK02]. Given the myriad of possibilities, it is a very difficult task to determine which methods,

once combined for the computation of scalar multiplication, are the most efficient ones for a

specific platform. Notorious efforts in this direction are the efficient implementations on

constrained 8-bit microcontrollers by [GPW+04, UWL+07], on 32-bit embedded devices by

[XB01, GAS+05], on Graphical Processing Units (GPUs) by [SG08], on processors based on the

Cell Broadband Engine Architecture (CBEA) by [CS09], on 32-bit processors by [BHL+01,

Ber06], among others. In this work, we try to cover this analysis for the increasingly popular x86-

64-based processors.

Elliptic Curve Scalar Multiplication on x86-64 Processors

Modern CPUs from the notebook, desktop and server classes are decisively adopting the 64-bit

x86 instruction set (a.k.a. x86-64) developed by [AMD]. The most relevant features of this new

instruction set are the expansion of the general-purpose registers (GPRs) from 32 to 64 bits, the

execution of arithmetic and logical operations on 64-bit integers and an increment in the number

of GPRs, among other enhancements. In addition, these processors usually exhibit a highly

pipelined architecture, improved branch predictors and complex execution stages that offer

parallelism at the instruction level. Thus, this increasingly high complexity brings new paradigms

to the software and compiler developer.

It seems that the move to 64 bits, with the inclusion of a powerful 64-bit integer multiplier,

favors prime fields. Although the analysis becomes complex and processor dependent, our tests

on the targeted processors suggest that SSE2 and its extensions [Intel] are apparently not

advantageous by themselves for the prime field arithmetic. This is probably due to the lack of

carry handling and the fact that SSE2 multipliers can perform vector-multiplication with

operands up to 32 bits only [HMS08]. However, this outcome could change in the near future

with improved SIMD extensions, such as the upcoming Advanced Vector Extensions (AVX) that

supports 256-bit SIMD vector registers.

As consequence, it is still expected that a traditional approach for computing multiplication

such as the “schoolbook” method performs better in this case. Methods such as Karatsuba

multiplication theoretically reduce the number of integer multiplications but increase the number

of other (usually cheaper) operations. Given the high performance of the multiplier on these

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

106

platforms, the cost of addition and other similar operations becomes non-negligible. Another

aspect from this observation is that it now becomes relevant for the targeted 64-bit platforms the

optimization of these usually neglected “small” operations.

Another important feature is the highly pipelined architectures of these processors. For

instance, experiments by [Fog2] suggest that Intel Atom, Intel Core 2 Duo and AMD

architectures have pipelines with 16, 15 and 12 stages, respectively. Although sophisticated

branch prediction techniques exist, it is expected that the “random” nature of cryptographic

computations, specifically of modular reduction, causes expensive mispredictions that force the

pipeline to flush.

In this work, we analyze the performance of combining incomplete reduction (IR) and the

elimination of conditional branches to obtain high-speed field arithmetic for performing

operations such as addition, subtraction and multiplication/division by small constants using a

very efficient pseudo-Mersenne prime. This effort puts together in an optimal way techniques by

[YSK02], which only provided IR algorithms targeting primes of general form, with branchless

field arithmetic recently adopted by some cryptographic libraries [mpFq, MIR]. In the process,

we present experimental data quantifying the performance improvement obtained by eliminating

branches in the field arithmetic.

We also analyze the influence of deeply pipelined architectures in the ECC point

multiplication execution. In particular, the increased number of pipeline stages makes (true) data

dependencies between instructions in contiguous field operations expensive because these can

potentially stall the execution for several clock cycles. These dependencies, also known as read-

after-write (RAW), are typically found between several field operations when the result of an

operation is required as input by a following operation. In this work, we demonstrate the

potentially high cost incurred by these dependencies, which is hardly avoided by compilers and

dynamic schedulers in processors, and propose three techniques to reduce its effect: field

arithmetic scheduling, merging of field operations and merging of point operations.

The techniques above are first applied to modular operations using a prime p, which are used

for performing the pF arithmetic in ECC over prime fields. However, some of these techniques

are generic and can also be extended to different scenarios using other underlying fields. For

instance, Galbraith et al. [GLS09] recently proposed a faster way to do ECC that exploits an

efficiently computable endomorphism to accelerate the execution of point multiplication over a

quadratic extension field (a.k.a. GLS method); see Section 2.2.6. Accordingly, we extend our

analysis to 2
p
F arithmetic and show that the proposed techniques also lead to significant gains in

performance in this case.

Our extensive tests assessing the techniques under analysis cover at least one representative

x86-64-based CPU from each processor class: 1.66GHz Intel Atom N450 from the notebook/

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

107

netbook class, 2.66GHz Intel Core 2 Duo E6750 from the desktop class, and 2.6GHz AMD

Opteron 252 and 3.0GHz AMD Phenom II X4 940 from the server/workstation class.

Finally, to assess their effectiveness for a full point multiplication, the proposed techniques

are applied to state-of-the-art implementations using Jacobian (J) and mixed Twisted Edwards

homogeneous/extended homogeneous (/
e

E E) coordinates on the targeted processors. Our

measurements show that the proposed optimizations (in combination with state-of-the-art point

formulas/coordinate systems, precomputation schemes and exponentiation methods) significantly

speed up the execution time of point multiplication, surpassing by considerable margins best

previous results. For instance, we show that a point multiplication at the 128-bit security level

can be computed in only 181000 cycles (in about 60µsec.) on an AMD Phenom II X4 when

combining with GLS. This represents a cost reduction of about 29% over the closest

previous result; see Section 5.6.4 for complete details.

5.2. Optimizing Modular Reduction using a Pseudo-
Mersenne Prime

In this section, we evaluate the performance gain of two techniques, namely incomplete reduction

and elimination of conditional branches, and combine them to devise highly efficient field

arithmetic with very fast modular reduction for operations such as addition, subtraction and

division/multiplication by constants. We also show that incomplete reduction is not exclusive to

addition/subtraction and can be easily extended to other operations, and that subtraction does not

necessarily benefit from incomplete reduction when p is a suitably chosen pseudo-Mersenne

prime. All tests described in this section were performed on our assembly language module

implementing the field arithmetic over pF and compiled with GCC version 4.4.3.

5.2.1. Incomplete Reduction (IR)

This technique was introduced by Yanik et al. [YSK02] for the case of primes of general form.

Given two numbers in the range [0, 1]p − , it consists of allowing the result of an operation to

stay in the range [0,2 1]s − instead of executing a complete reduction, where 2 2 1sp p< < − ,

s n w= ⋅ , w is the basic wordlength (typically, 8,16,32,64w =) and n is the number of words. If

the modulus is a pseudo-Mersenne prime of the form 2m c− such that m s= and 2wc < , then

the method gets even more advantageous. In the case of addition, for example, the result can be

reduced by first discarding the carry bit in the most significant word and then adding the

correction value c, which fits in a single w-bit register. Also note that this last addition does not

produce an overflow because 2 (2 1) (2) 2m m mc c× − − − − < . The procedure is illustrated for the

case of modular addition in Algorithm 5.1(b), for which the reduction step described above is

/ eE E

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

108

performed in steps 4-8. In contrast, it can be seen in Algorithm 5.1(a) that a complete reduction

requires additionally the execution of steps 9-14 that perform a subtraction r p− in case

2mp r≤ < , where r is the partial result from step 3.

Yanik et al. [YSK02] also shows that subtraction can benefit from IR when using a prime p

of arbitrary form. However, we show in the following that for primes of special form, such as

pseudo-Mersenne primes, that is not necessarily the case.

Algorithm 5.1. Modular addition with a pseudo-Mersenne prime

Input: integers , [0, 1]a b p∈ − , 2m
p c= − , m n w= ⋅ , where +, ,n w c ∈ Z and 2

w
c <

 Output: (a) (mod)r a b p= + ; (b) [0,2 1]m
r a b= + ∈ −

 (a) With complete reduction (b) With incomplete reduction

 1: carry = 0 1: carry = 0

 2: For i from 0 to 1n − do 2: For i from 0 to 1n − do

 3: (, []) [] []carry r i a i b i carry← + + 3: (, []) [] []carry r i a i b i carry← + +

 4: If 1carry = 4: If 1carry =

 5: carry = 0 5: carry = 0

 6: (, [0]) [0]carry r r c← + 6: (, [0]) [0]carry r r c← +

 7: For i from 1 to 1n − do 7: For i from 1 to 1n − do

 8: (, []) []carry r i r i carry← + 8: (, []) []carry r i r i carry← +

 9: Else 9: Return r

10: borrow = 0

11: For i from 1 to 1n − do

12: (, []) [] []borrow R i r i p i borrow← − −

13: If borrow = 0

14: r R←

15: Return r

Modular Subtraction:

Let us consider Algorithm 5.2. After step 3 we obtain the completely reduced value r a b= − if

0borrow = . If, otherwise, 1borrow = then this bit is discarded and the partial result is given by

2
m

r a b= − + , where b a> . This value is incorrect, because it has the extra addition with 2m .

Step 6 performs the computation r p+
= (2) (2)m ma b c− + + − = 12ma b c +− − + , where

1 12 2 2m m ma b c + +< − − + < since 2 0m c a b− + < − < . Then, by simply discarding the final carry

from this result (i.e., by subtracting 2m) we obtain the correct, completely reduced result

, where 0 a b p p< − + < . Since Algorithm 5.2 gives the 12 2m ma b c a b p+− − + − = − +

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

109

correct result without evaluating both values of borrow after step 3 (similarly to the case of carry

in Algorithm 5.1(b)), there is no need for incomplete reduction in this case.

Algorithm 5.2. Modular subtraction with a pseudo-Mersenne prime and complete reduction

Input: integers , [0, 1]a b p∈ − , 2mp c= − , m n w= ⋅ , where +, ,n w c ∈ Z and 2
w

c <

Output: (mod)r a b p= −

1: borrow = 0

2: For i from 0 to 1n − do

3: (, []) [] []borrow r i a i b i borrow← − −

4: If 1borrow =

5: carry = 0

6: For i from 1 to 1n − do

7: (, []) []carry r i r i carry← +

8: Return r

Nevertheless, there are other types of “small” operations that may benefit from the use of IR.

Next we analyze the cases that are useful to the setting of ECC over prime fields.

Modular Addition with IR, [0,2 1]ma b+ ∈ −+ ∈ −+ ∈ −+ ∈ − , where [0, 1]a p∈ −∈ −∈ −∈ − and [0,2 1]mb ∈ −∈ −∈ −∈ − :

In this case, after addition we get 10 2 2ma b c+≤ + ≤ − − , where 1 12 2 2 2m m mc+ +< − − < for

practical values of m. Thus, if there is no final carry the result r is incompletely reduced such that

[0, 2 1]mr ∈ − , as wanted. Otherwise, for the case 12 2 2m ma b c+≤ + ≤ − − we discard the carry

and add the correction value c such that 0 2 2 2 2m m mc a b c< ≤ + − + ≤ − < to obtain an

incompletely reduced result [0, 2 1]mr ∈ − . Consequently, Algorithm 5.1(b) also allows adding

two terms where one of them can be in incompletely reduced form.

Modular Multiplication by 3 with IR, 3 [0,2 1]ma ∈ −∈ −∈ −∈ − , where [0, 1]a p∈ −∈ −∈ −∈ − :

If this operation is performed by executing a a a+ + , internally, the first addition r a a= +

can

be left incompletely reduced using Algorithm 5.1(b). Then, following the previous subsection,

we can again use Algorithm 5.1(b) to perform the addition of the incompletely reduced value r

with the completely reduced operand a to obtain the final result [0, 2 1]mr a+ ∈ − .

Modular Division by 2 with IR, /2 [0,2 1]ma ∈ −∈ −∈ −∈ − , where [0,2 1]ma ∈ −∈ −∈ −∈ − :

This operation is illustrated when using IR by Algorithm 5.3(b). If the value a is even, then a

division by 2 can be directly applied through steps 5-7, where (, []) (, []) / 2carry r i carry r i←

represents the concurrent assignments (1).[] (2 []) / 2i wr i carry r i+ ← ⋅ +  and [](mod 2)carry r i← .

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

110

In this case, if [0,2 2]ma ∈ − then the result 1[0,2 1]mr −∈ − is completely reduced since
12 1 2m m c− − << − for practical values of m, such that 2wc < and 1w m< − . If, otherwise, the

operand a is odd, we first add p to a in steps 3-4 to obtain an equivalent from the residue class

that is even. Then, 12 1 2 1m mc p a c+− + < + < − − , where the partial result has 1m + bits

maximum and is stored in (,)carry r . The operation is then completed by dividing by 2 through

steps 5-7, where the final result 12 (1) / 2 () / 2 2 (1) / 2m mc p a c− − − < + < − + . Hence, the result is

incompletely reduced because 2 2 (1) / 2 2 1m m mc c− ≤ − + ≤ − . If the result needs to be

completely reduced then, for the case that () / 2 [,2 (1) / 2]mp a p c+ ∈ − +   , one needs to

additionally compute a subtraction with p such that 0 () / 2 (1) / 2 2mp a p c c≤ + − < − < − , as

performed in steps 9-12 of Algorithm 5.3(a).

It is also interesting to note that in the case that input a is in completely reduced form, i.e., if

, after steps 6-7 in Algorithm 5.3(b) we get 12 (1) / 2 () / 2 2m mc p a c− − + < + < − ,

which is in completely reduced form.

Algorithm 5.3. Modular division by 2 with a pseudo-Mersenne prime

Input: integer [0,2 1]m
a ∈ − , 2m

p c= − , m n w= ⋅ , where +, ,n w c ∈ Z and 2
w

c <

 Output: (a) / 2(mod)r a p= ; (b) / 2 [0,2 1]m
r a= ∈ −

 (a) With complete reduction (b) With incomplete reduction

 1: carry = 0 1: carry = 0

 2: If a is odd 2: If a is odd

 3: For i from 0 to 1n − do 3: For i from 0 to 1n − do

 4: (, []) [] []carry r i a i p i carry← + + 4: (, []) [] []carry r i a i p i carry← + +

 5: (, [1]) (, [1]) / 2carry r n carry r n− ← − 5: (, [1]) (, [1]) / 2carry r n carry r n− ← −

 6: For i from 2n − to 0 do 6: For i from 2n − to 0 do

 7: (, []) (, []) / 2carry r i carry r i← 7: (, []) (, []) / 2carry r i carry r i←

 8: borrow = 0 8: Return r

 9: For i from 0 to 1n − do

10: (, []) [] []borrow R i r i p i borrow← − −

11: If borrow = 0

12: r R←

13: Return r

To evaluate in practice the advantage of using incomplete reduction, we implemented in

assembly language both versions with and without IR of each operation discussed in this section.

In Table 5.1, we summarize our results on the targeted Intel and AMD processors.

[0, 1]a p∈ −

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

111

Table 5.1. Cost (in cycles) of modular operations when using incomplete reduction (IR) and

complete reduction (CR); 2562 189p = − .

Modular Operation

Atom N450 Core 2 Duo E6750 Opteron 252

IR CR
Cost

reduction (%)
IR CR

Cost

reduction (%)
IR CR

Cost reduction

(%)

 Addition 31 45 31% 20 25 20% 13 20 35%

 Multiplication by 2 27 40 33% 19 24 21% 10 17 41%

 Multiplication by 3 43 69 38% 28 43 35% 15 23 35%

 Division by 2 57 61 7% 20 25 20% 11 18 39%

As can be seen, in our experiments using the pseudo-Mersenne prime 2562 189p = − we

obtain significant reductions in cost ranging from 7% to up to 41% when using IR.

It is important to note that, because multiplication and squaring may accept inputs in the

range [0, 2 1]m − , an operation using IR can precede any of these two operations. Thus, the

reduction process (which is left “incomplete” by the operation using IR) is fully completed by

these multiplications or squarings without any additional cost. If care is taken when

implementing point operations, virtually all additions and multiplications/divisions by small

constants can be implemented with IR because most of them have results that are later required

by multiplications or squarings only. See Appendix B1 for details about the scheduling of field

operations pF suggested for point formulas using J and /
e

E E coordinates.

5.2.2. Elimination of Conditional Branches

Conditional branches may be expensive in several modern processors with deep pipelines if the

prediction strategy fails in most instances in a particular implementation. Recovering from a

mispredicted branch requires the pipeline to flush, wasting several clock cycles that may increase

the overall cost significantly. In particular, the reduction portion of modular addition, subtraction

and other similar operations is traditionally expressed with a conditional branch. For example, let

us consider the evaluation in step 4 of Algorithm 5.1(b) for performing a modular addition with

IR. Because , [0, 1]a b p∈ − and 2m p c− = (again considering 2mp c= − and m s=), where c

is a relatively small number such that 2m p≈ for practical estimates, the possible values for

carry after computing a b+ in steps 2-3, where () [0,2 2]a b p+ ∈ − , are (approximately) equally

distributed and describe a “random” sequence for all practical purposes. In this scenario, only an

average of 50% of the predictions can be correct in the best case. Similar results are expected for

conditional branches in other operations (see Algorithms 5.1, 5.2, 5.3).

To avoid the latter effect, it is possible to eliminate conditional branches by using techniques

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

112

such as look-up tables or branch predication. In Figure 5.1, we illustrate the replacement of the

conditional branch in step 4 of Algorithm 5.1(b) by a predicated move instruction (Figure 5.1(a))

and by a look-up table with indexed indirect addressing (Figure 5.1(b)). In both cases, the

strategy is to perform an addition with 0 if there is no carry-out (i.e., the reduction step is not

required) or an addition with 189c = , where 2562 189p = − , if there is carry-out and the

computation 256(2) 189a b+ − + is necessary. On the targeted CPUs, our tests reveal that branch

predication performs slightly better in most cases. This conclusion is platform-dependent and, in

the case of the targeted processors, may be due to the faster execution of cmov in comparison to

the memory access required by the look-up table approach.

(a) (b)

 > � > �

 > cmovnc %rax,%rcx > adcq $0,%rax

 > addq %rcx,%r8 > addq (%rcx,%rax,8),%r8

 > movq %r8,8(%rdx) > movq %r8,8(%rdx)

 > adcq $0,%r9 > adcq $0,%r9

 > movq %r9,16(%rdx) > movq %r9,16(%rdx)

 > adcq $0,%r10 > adcq $0,%r10

 > movq %r10,24(%rdx) > movq %r10,24(%rdx)

 > adcq $0,%r11 > adcq $0,%r11

 > movq %r11,32(%rdx) > movq %r11,32(%rdx)

 > ret > ret

Figure 5.1. Steps 4-9 of Alg. 5.1(b) for executing modular addition using IR, where
256

2 189p = − . The conditional

branch is replaced by (a) cmov instruction (initial values %rax=0, %rcx=189) and (b) look-up table using indexed

indirect addressing mode (preset values %rax=0, (%rcx)=0, 8(%rcx)=189). Partial addition a b+ from step 3 is

stored in registers %r8-r11 and final result is stored in x(%rdx). x86-64 assembly code uses AT&T syntax.

To quantify in practice the difference in performance obtained by implementing modular

arithmetic with and without conditional branches, we tested both schemes on the targeted Intel

and AMD processors. The results are summarized in Table 5.2. For addition, subtraction and

division by 2, we use Algorithms 5.1(a), 5.2 and 5.3(a), respectively. In the case of addition and

division by 2 using IR, we use Algorithms 5.1(b) and 5.3(b), respectively. Multiplication by 2 is a

variation of the addition operation for which 2a is computed as (mod)a a p+ .

In Table 5.2, the cost reductions obtained by eliminating CBs can be as high as 50%.

Remarkably, the greatest performance gains are obtained in the cases of operations exploiting IR.

For instance, on Core 2 Duo, an addition using IR reduces its cost in 46% when CBs have been

eliminated in comparison to only the 36% reduction obtained by an addition with complete

reduction. Thus, elimination of CBs favors more strongly modular arithmetic using IR. This is

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

113

Table 5.2. Cost (in cycles) of modular operations without conditional branches (w/o CB) against

operations using conditional branches (with CB); 2562 189p = − .

Modular Operation

Atom N450 Core 2 Duo E6750 Opteron 252

w/o

CB

With

CB

Cost

reduction (%)

w/o

CB

With

CB

Cost

reduction (%)

w/o

CB

With

CB

Cost reduction

(%)

 Subtraction 34 37 8% 21 37 43% 16 23 30%

 Addition with IR 31 35 11% 20 37 46% 13 21 38%

 Addition 45 43 −4.4% 25 39 36% 20 23 13%

 Mult. by 2 with IR 27 34 21% 19 38 50% 10 19 47%

 Mult. by 2 40 42 5% 24 38 37% 17 20 15%

 Div. by 2 with IR 57 66 14% 20 36 44% 11 18 39%

 Div. by 2 61 70 13% 25 39 36% 18 27 33%

due to the fact that modular operations exploiting IR allow very compact implementations that

are even easier to schedule efficiently when branches are removed. It is also interesting to note

that, when comparing Core 2 Duo’s and Opteron’s performances, gains are higher for the former

processor, which has more stages in its pipeline. Roughly speaking, the gain obtained by

eliminating (poorly predictable) CBs on these architectures grows proportionally with the number

of stages in the pipeline. In contrast, the gains on Intel Atom are significantly smaller since the

pipeline execution and Instruction-Level Parallelism (ILP) on this in-order processor are much

less efficient and, hence, the relative cost of misprediction penalty reduces.

Following the conclusions above, we have implemented ECC point formulas such that the

gain obtained by combining IR and the elimination of CBs is maximal. The reader is referred to

Appendix B1 for details about the cost of point formulas in terms of field operations when using

J and /
e

E E coordinates.

Next, we evaluate the cost of point doubling and doubling-addition (using Jacobian

coordinates) when their “small” field operations are implemented with complete or incomplete

reduction and with or without conditional branches. For the analysis, we use the revised doubling

formula (5.2), Section 5.4, and the doubling-addition formula introduced in [Lon07, formula

(3.5), Section 3.2]. The results are shown in Table 5.3.

As can be seen, the computing costs of point doubling and doubling-addition on the AMD

processor reduce in 12% and 9%, respectively, by combining the elimination of conditional

branches with the use of incomplete reduction. Without taking into account precomputation and

the final inversion to convert to affine, these reductions represent about 11% of the computing

cost of point multiplication. A similar figure is observed for Intel Core 2 Duo in which doubling

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

114

Table 5.3. Cost (in cycles) of point operations with Jacobian coordinates when using incomplete

reduction (IR) or complete reduction (CR) and with or without conditional branches (CB);
2562 189p = − .

Point operation

Atom N450 Core 2 Duo E6750 Opteron 252

CR and

CBs

CR and

no CBs

IR and

no CBs

CR and

CBs

CR and

no CBs

IR and

no CBs

CR and

CBs

CR and

no CBs

IR and no

CBs

Doubling (DBL) 3480 3430 3381 1184 1094 1051 910 824 803

Relative reduction (%) - 1% 3% - 8% 11% - 9% 12%

Doubling-addition 8828 8697 8663 2656 2468 2443 2037 1851 1849

Relative reduction (%) - 1% 2% - 7% 8% - 9% 9%

Estimated relative

reduction for 256-bit

point multiplication (%)

- 1% 3% - 8% 10% - 9% 11%

and doubling-addition are reduced by approx. 11% and 8%, respectively. These savings represent

a reduction of about 10% in the cost of point multiplication (again, without considering

precomputation and the final inversion). In contrast, following previous observations (see Table

5.2) the techniques are less effective on architectures such as Intel Atom, where the ILP is less

powerful and branch misprediction penalty is relatively less expensive. In this case, the cost

reduction of point multiplication is only about 3%.

We remark that the algorithms discussed in this section combining completely and

incompletely reduced numbers are generic and can be applied to different platforms. Also, the

gain obtained by eliminating conditional branches is strongly tied to the pipeline length. So in

general it is expected to provide a performance improvement on any architecture with high

number of pipeline stages such as most AMD and Intel processors.

5.3. Minimizing the Effect of Data Dependencies

In this section, we analyze (true) data dependencies between “close” field operations and propose

three techniques to minimize their effect in the point multiplication performance.

Definition 5.1. Let i and j be the computer orders of instructions iI and jI in a given program

flow. We say that instruction jI depends on instruction iI if:

 [() ()] [() ()] [() ()]i j i j i jW I R I R I W I W I W I∩ ∪ ∩ ∪ ∩ ≠ ∅ , (5.1)

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

115

where ()xR I is the set of memory locations or registers that are read by xI and ()xW I is the set

of memory locations or registers written by xI .

Modern out-of-order processors and compilers deal relatively well with anti-dependencies

(() ()i jR I W I∩ , i.e., if iI reads a location later updated by jI) and output dependencies

(() ()i jW I W I∩ , i.e., if both iI and jI write on the same location) through register renaming.

However, true or RAW dependencies (() ()i jW I R I∩ , i.e., if jI reads something written by iI)

cannot be removed in the strict sense of the term and are more dangerous to the performance of

architectures exploiting ILP.

Corollary 5.1. Let iI and jI be write and read instructions, respectively, holding true data

dependence, i.e., () ()i jW I R I∩ ≠ ∅ , where i j< and iI and jI are scheduled to be executed at

the thi and thj cycle, respectively, in a non-superscalar pipelined architecture. Then, if

writej iρ δ= − < the pipeline is to be stalled for at least ()writeδ ρ− cycles, where writeδ specifies

the number of cycles required by the write instruction iI to complete its pipeline latency after

instruction fetching.

Although Corollary 5.1 considers an ideal non-superscalar pipeline, it allows us to simplify

the analysis on more complex processors. In particular, the value writeδ , which strongly depends

on the particular characteristics of a given architecture, can be considered for practical purposes

roughly equal to the pipeline size. There are two approaches to minimize the appearance of

pipeline stalls due to RAW dependencies: by instruction scheduling and using data forwarding.

Although modern compilers and out-of-order schedulers of processors have powerful

capabilities, in our targeted application these still have great limitations to calculate addresses so

that rescheduling of instructions between neighboring field operations is possible. On the other

hand, hardware techniques such as data forwarding allow a significant reduction in the value

writeδ by sending back the result of an operation into the decode stage so that this result is

immediately available to a coming instruction before the current instruction commit/store the

output. Unfortunately, in our application most field operations are not able to efficiently exploit

forwarding in case the result is required by the following operation because several consecutive

writings to memory are involved in the process.

The problems above are illustrated by the execution of two consecutive field additions in

Figure 5.2. For the remainder, given a field operation “ ∗ ”, the computation ← ∗res op1 op2 is

denoted by operation(op1,op2,res).

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

116

 �

 > addq %rcx,%r8

 > movq %r8,8(%rdx)

 > adcq $0,%r9

 > movq %r9,16(%rdx)

 > adcq $0,%r10

 > movq %r10,24(%rdx)

 � > adcq $0,%r11

 > Add(op1,op2,res1) > movq %r11,32(%rdx)

 > Add(res1,op3,res2) > xorq %rax,%rax

 � > movq $0xBD,%rcx

 > movq 8(%rdi),%r8

 > addq 8(%rsi),%r8

 > movq 16(%rdi),%r9

 > adcq 16(%rsi),%r9

 > movq 24(%rdi),%r10

 > adcq 24(%rsi),%r10

 > movq 32(%rdi),%r11

 > adcq 32(%rsi),%r11

 �

Figure 5.2. Field additions with RAW dependencies on an x86-64 CPU (
256

2 189p = −). High-level field operations

are in the left column and low-level assembly instructions corresponding to each field operation are to the right.

Destination x(%rdx) of first field addition = source x(%rdi) of second field addition. RAW dependencies are

indicated by arrows.

As can be seen in Figure 5.2, results stored in memory in the last stage of the first addition

are read in the beginning of the second addition. First, if a compiler or out-of-order scheduler is

unable of identifying the common addresses then it will not be able of exploiting rescheduling to

prevent pipeline stalls due to inter-field operation dependencies. Moreover, four consecutive

writings to memory and then four consecutive readings need to be performed because operands

are 256-bit long distributed over four 64-bit registers. This obviously complicates the extraction

of any benefit from data forwarding. If write xδ ρ> for at least one of the dependences x indicated

by arrows then the pipeline is expected to stall for at least ()write xδ ρ− cycles. Thus, for the

writing/reading sequence in Figure 5.2, the pipeline is roughly stalled by for

0 4x≤ < .

Definition 5.2. Two field operations (, ,)i m n pOP op op res and (, ,)j r s tOP op op res are said to be

data dependent at the field arithmetic level if i j< and p rres op= or p sres op= , where iOP

and jOP denote the field operations performed at positions thi and thj during a program

execution, and op and res are registers holding the inputs and result, respectively. Then, this is

called a contiguous data dependence in the field arithmetic if 1j i− = , i.e., iOP and jOP are

consecutive in the execution sequence. When understood in the context we refer to these

max()write xδ ρ−

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

117

dependencies happening at the field arithmetic level as simply contiguous data dependencies for

brevity.

For the applications targeted in this work all field operations follow a similar writing/reading

pattern to that one shown in Figure 5.2, and hence, two contiguous, data dependent field

operations hold several data dependencies x between their internal write/read instructions.

Following Definition 5.2 and Corollary 5.1, contiguous data dependencies pose a problem when

write xδ ρ> in a given program execution, in which case the pipeline is stalled by roughly

max()write xδ ρ− cycles for all dependencies x. Note that at fewer dependent write/read

instruction pairs (i.e., at smaller field sizes) the expression max()write xδ ρ−

grows as well as the

number of potential stalled cycles. Similarly, at larger computer wordlengths w the value

max()write xδ ρ− is expected to increase, worsening the effect of contiguous data dependencies.

For instance, neglecting other architectural factors and assuming a fixed pipeline length, these

dependencies are expected to affect performance more dramatically in 64-bit architectures in

comparison with 32-bit architectures.

Closely following the analysis above, we propose three techniques that help to reduce the

number of contiguous data dependencies and study several practical scenarios in which this

would allow us to improve the execution performance of point multiplication. As a side effect

our techniques also reduce the number of function calls and memory accesses. The reader should

note that these additional benefits are processor-independent.

5.3.1. Field Arithmetic Scheduling

A straightforward solution to eliminate contiguous data dependencies is to perform a careful

scheduling of field operations inside point formulas in such a way that data-dependent field

operations are not contiguous. For all practical purposes, we can consider that any field operation

has an executing latency insδ that is longer than the latency of a write instruction, i.e.,

ins writeδ δ> . Hence, by inserting any “independent” field operation between two consecutive

operations holding contiguous data dependence we guarantee that the new relative positions

,new xρ of the data-dependent instructions accomplishes ,new x x ins writeρ ρ δ δ= + > for all data

dependencies x, where xρ denotes the original relative positions between data-dependent

write/read instructions.

We have tested several field operation “arrangements” to observe the latter behavior on

different processors. We detail here a few of our experiments with field multiplication on an Intel

Core 2 Duo. For example, let us consider the field multiplication sequences given in Table 5.4.

As can be seen, Sequence 1 involves a series of “ideal” data-independent field multiplications,

where the output of a given operation is not an input to the immediately following operation. In

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

118

this case, the execution reaches its maximal performance with an average of 110 cycles per

multiplication because for any pair of data-dependent multiplications we have x writeρ δ>> . In

contrast, Sequence 2 is highly dependent because each output is required as input in the

following operation. In this case, write xδ ρ> for at least one dependence x. This is the worst-case

scenario with an average of 128 cycles per multiplication, which is about 14% less efficient than

the “ideal” case. We have also studied other possible arrangements such as Sequence 3, in which

operands of Sequence 2 have been reordered. This slightly amortizes the impact of contiguous

data dependencies because xρ is increased, improving the performance to 125 cycles/mult.

Table 5.4. Various sequences of field operations with different levels of contiguous data

dependence.

 Sequence 1 Sequence 2 Sequence 3

> Mult(op1,op2,res1) > Mult(op1,op2,res1) > Mult(op2,op1,res1)

> Mult(op3,op4,res2) > Mult(res1,op3,res2) > Mult(op3,res1,res2)

 > Mult(res1,op5,res3) > Mult(res2,op4,res3) > Mult(op4,res2,res3)

 > Mult(res2,op6,res4) > Mult(res3,op5,res4) > Mult(op5,res3,res4)

Similarly, we have also tested the effect of contiguous data dependencies on other field

operations. In Table 5.5, we summarize the most representative field operation “arrangements”

and their costs. As can be seen, the reductions in cost obtained by switching from an execution

with strong contiguous data dependence (worst-case scenario with Sequence 2) to an execution

Table 5.5. Average cost (in cycles) of modular operations using best-case (no contiguous data

dependencies, Sequence 1) and worst-case (strong contiguous data dependence, Sequence 2)

“arrangements” (2562 189p = − , on a 2.66GHz Intel Core 2 Duo E6750).

Modular Operation

Core 2 Duo E6750

Sequence 1 Sequence 2
Cost

reduction (%)

 Subtraction 21 23 9%

 Addition with IR 20 24 17%

 Multiplication by 2 with IR 19 23 17%

 Multiplication by 3 with IR 28 34 18%

 Division by 2 with IR 20 30 33%

 Squaring 101 113 11%

 Multiplication 110 128 14%

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

119

with no contiguous data dependencies (best-case scenario with Sequence 1) range from

approximately 9% to up to 33% on an Intel Core 2 Duo. Similar results were observed for the

targeted AMD Opteron and Phenom II processors, where the high performance of their

architectures significantly reduce relative positions xρ between their data-dependent write/read

instructions, increasing the value max()write xδ ρ− . Thus, minimizing contiguous data

dependencies is expected to improve the execution of point multiplication on all these processors.

In contrast, Sequence 1 and Sequence 2 perform similarly on processors such as Intel Atom, in

which the much less powerful architecture tends to increase values xρ such that write xδ ρ< for

all dependencies x.

5.3.2. Merging Point Operations

This technique complements and increases the gain obtained by scheduling field operations. As

expected, in some cases it is not possible to eliminate all contiguous data dependencies in a point

formula. A clever way to increase the chances of eliminating more of these dependencies is by

“merging” successive point operations into unified functions.

For example, let us consider the following sequence of field operations for computing a point

doubling using Jacobian coordinates, 1 1 1 1 1 12(: :) (: :)X Y Z X Y Z→

(DblSub(b,c,a) represents

the operation 2 (mod)a b c p← − ; see Section 5.3.3):

 > Sqr(Z1,t3) > Mult(X1,t2,t4) > Sqr(t1,t2)

 > Sqr(Y1,t2) > Mult(t1,t0,t3) > DblSub(t2,t4,X1) •

 > Add(X1,t3,t1) > Sqr(t2,t0) > Sub(t4,X1,t2) •

 > Sub(X1,t3,t3) > Div2(t3,t1) > Mult(t1,t2,t4) •

 > Mult3(t3,t0) • > Mult(Y1,Z1,Z1) > Sub(t4,t0,Y1) •

In total, there are five contiguous data dependencies between field operations (denoted by

" ")• in the sequence above. Note that the last stage accounts for most dependencies, which are

very difficult to eliminate. However, if another point doubling follows, one could merge both

successive operations and be able to reduce the number of contiguous data-dependent operations.

Consider, for example, the following arrangement of two consecutive doublings:

 > Sqr(Z1,t3) > Mult(t1,t0,t3) > DblSub(t2,t4,X1) > Mult3(t3,t1)

 > Sqr(Y1,t2) > Sqr(t2,t0) > Sub(t4,X1,t2) • > Sqr(Y1,t2)

 > Add(X1,t3,t1) > Div2(t3,t1) > Add(X1,t3,t5) > Mult(t1,t5,t3)

 > Sub(X1,t3,t3) > Mult(Y1,Z1,Z1) > Mult(t1,t2,t4) > Mult(t2,X1,t4)

 > Mult3(t3,t0) • > Sqr(t1,t2) > Sub(X1,t3,t3) > Div2(t3,t1)

 > Mult(X1,t2,t4) > Sqr(Z1,t3) > Sub(t4,t0,Y1) > …

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

120

As can be seen, the sequence above (instructions from the second doubling are in bold)

allows us to further reduce the number of dependencies from five to only two.

In ECC implementations, it appears natural to merge successive doubling operations or a

doubling and an addition. Efficient elliptic curve point multiplications kP use NAF in

combination with some windowing strategy to recode the scalar k (see Section 2.2.4.3). For

instance, wNAF guarantees at least w successive doublings between point additions. Also, one

could exploit the efficient doubling-addition operation by [Lon07] for Jacobian coordinates or the

combined (dedicated) doubling-(dedicated) addition by [HWC+08] for mixed Twisted Edwards

homogeneous/extended homogeneous coordinates (see Table 2.4). Hence, an efficient solution

for these systems is to merge (1)w − consecutive doublings (for an optimal choice of w) in a

separate function and merge each addition with the precedent doubling in another function. On

the other hand, if an efficient doubling-addition formula is not available for certain setting, then it

is suggested to merge w consecutive doublings in one function and have the addition in a

separate function. Note that for different coordinate systems/curve forms/point multiplication

methods the optimal merging strategy may vary or include different operations.

Remarkably, a side-effect of this technique is that the number of function calls to point

formulas is also reduced.

5.3.3. Merging Field Operations

This technique consists in merging various field operations with common operands to implement

them in a joint function. There are two scenarios where this approach becomes attractive:

• The result of a field operation is required as input by a following operation: merging

reduces the number of memory reads/writes and eliminates directly potential contiguous

data dependencies.

• Operands are required by more than one field operation: merging reduces the number of

memory reads/writes.

We remark that the feasibility of merging certain field operations strictly depends on the

chosen platform and the number of general purpose registers available to the programmer/

compiler. Also, before deciding on a merging option implementers should analyze and test the

increase in the code size and how this affects the performance of the cache for example.

Accordingly, in the setting of ECC over prime fields, multiplication and squaring are not

recommended to be merged with other operations if multiple functions containing these

operations are necessary. The code increase could potentially affect the cache performance.

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

121

Example 5.1. Taking into account the considerations above, the following merged field

operations can be advantageous on x86-64-based processors using J and /
e

E E coordinates:

2 (mod)a b p− , (mod)a a a p+ + , and the merging of (mod)a b p− and () 2 (mod)a b c p− − .

We remark that the list in the example above is not exhaustive. Different platforms with more

registers may enable a much wider range of merging options. Also, other possibilities for

merging could be available for different coordinate systems and/or underlying fields (for

instance, see Section 5.5.2 for the merging options suggested for ECC implementations over

quadratic extension fields).

To illustrate the impact of scheduling field operations, merging point operations and merging

field operations, we show in Table 5.6 the cost of point doubling using Jacobian coordinates

when using these techniques in comparison with a naïve implementation with a high number of

dependencies. As can be seen, by reducing the number of dependencies from ten to about one per

doubling, minimizing function calls and reducing the number of memory reads/writes, we are

able to reduce the cost of a doubling by 12% and 8% on Intel Core 2 Duo and AMD Opteron

processors, respectively. It is also important to note that on a processor such as AMD Opteron,

which has a smaller pipeline and consequently less lost due to contiguous data dependencies

(smaller writeδ with roughly the same values xρ as Intel Core 2 Duo), the estimated gain

obtained with these techniques in the point multiplication is lower (5%) in comparison with the

Intel processor (9%). Finally, following our analysis in previous sections, Intel Atom only

obtains a very small improvement in this case because contiguous data dependencies do not affect

the execution performance significantly (see Section 5.3.1).

Table 5.6. Cost (in cycles) of point doubling using Jacobian coordinates with different number of

contiguous data dependencies and the corresponding reduction in the cost of point multiplication.

“Unscheduled” refers to implementations with a high number of dependencies (here, 10

dependencies per doubling). “Scheduled and merged” refers to implementations optimized

through the scheduling of field operations, merging of point operations and merging of field

operations (here, 1.25 dependencies per doubling); 2562 189p = − .

Point Operation

Atom N450 Core 2 Duo E6750 Opteron 252

 Unscheduled
Scheduled

and merged
Unscheduled

Scheduled

and merged
Unscheduled

 Scheduled

and merged

Doubling 3390 3332 1115 979 786 726

Relative reduction (%) - 2% - 12% - 8%

Estimated reduction for

256-bit point mult. (%)
- 1% - 9% - 5%

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

1
 Mul = multiplication, Sqr = squaring, Add = addition, Sub = subtraction, Mulx = multiplication

by x, Divx = division by x.

122

The reader is referred to Appendix B1 for the explicit formulas optimized by scheduling or

merging field operations and merging point operations for the case of J and /
e

E E .

5.4. Minimizing the Cost of Point Operations

Several explicit formulas in the literature can be further optimized with the insertion of divisions

by 2 by means of the equivalence relation (2.9) of projective coordinates. This trick helps to

eliminate constants or reduce their value, which minimizes the need of multiple additions.

Let us illustrate this technique with point doubling. Consider, for example, the doubling

formula using Jacobian coordinates in pp. 90-91 of [HMV04] that has a cost of 4Mul 4Sqr ++

1Add + 4Sub + 2Mul2 +1Mul3 +1Div2

1
. If we fix 1 *2 pλ −= ∈F in the projective equivalence

relation (2.10) that formula can be modified as follows:

2
2 2X α β= − , () 4

2 2 1Y X Yα β= − − , 2 1 1Z Y Z= , (5.2)

where 2 2
1 1 1 13()() 2X Z X Zα = + − and 2

1 1X Yβ = . With formula (5.2), the operation count is

reduced to 4Mul 4Sqr +1Add + 5Sub +1Mul3 +1Div2+ , replacing two multiplications by 2 with

one subtraction. Moreover, because constants are minimized, there are greater chances that

more “small” operations are executed using incomplete reduction. In Algorithm 5.4, we show an

efficient implementation of point doubling (5.2) with optimal use of incomplete reduction (every

addition and multiplication/division by constant precedes a multiplication or squaring),

minimized number of contiguous data dependencies between field operations and exploiting the

use of merged field operations. This execution costs IR4Mul 4Sqr +1Add + 3Sub +1DblSub ++

IR IR1Mul3 +1Div2 (where operationIR represents an operation using incomplete reduction) and

has 5 contiguous data dependencies. In Algorithm 5.4, operators ⊕, ⊗ and � represent addition,

multiplication by constant and division by constant using incomplete reduction, respectively.

These operations are computed with Algorithm 5.1(b) for addition and multiplication by 3, and

with Algorithm 5.3(b) for division by 2 (see Section 5.2.1 for details).

In certain formulas, another optimization is possible. If 1Mul 1Sqr 4Add− > and the values
2

a and 2
b are available, one can compute a b⋅ as . See for example

addition and doubling-addition formulas, option 1, of the online database EPAF [Lon08].

We remark that the optimizations above are not limited to 64-bit architectures and that are in

general advantageous on any platform whenever division by 2 is approximately as efficient as

field addition.

Finally, we observe that in some settings field subtraction is more efficient than addition with

complete reduction (see for example Table 5.2, when using a pseudo-Mersenne prime). Thus,

2 2 2() 2a b a b + − − 

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

123

Algorithm 5.4. Point doubling using Jacobian coordinates

Input: point 1 1 1(: :) ()pP X Y Z E= ∈ F

 Output: 2 (: :) ()out out out pP X Y Z E= ∈ F

 1:

2 2
4 31 1,t Z t Y← ←

 2:
 1 1t X← ⊕ 4t (use Algorithm 5.1(b))

 3:
 4 1 4t X t← −

 4:
 0 3t ← ⊗ 4t (use Algorithm 5.1(b))

 5:
 5 1 3t X t← ×

 6:
 4 0 1t t t← ×

 7:

2
0 3t t←

 8:
 1 4t t← � 2 (use Algorithm 5.3(b))

 9:

2
3 1 11 , outt t Z Y Z← ← ×

10:
 3 52outX t t← − ×

11:
 3 5 outt t X← −

12:
 5 1 3t t t← ×

13:
 5 0outY t t← −

14: Return 2 (: :)out out outP X Y Z=

whenever possible, one can convert those additions that cannot exploit IR to subtractions. For this

case, one applies
*

1 pλ = − ∈F to the corresponding formula.

5.5. Optimizations for the Quadratic Extension Field
Arithmetic

The techniques and optimizations described so far are not exclusive to the popular
pF

field

arithmetic. In fact, the scheduling/merging of field operations and merging of point operations

are generic and can be extended to different finite fields with similar benefits and results. In this

section, we analyze how the aforementioned techniques can be applied to the arithmetic over a

quadratic extension field 2
p
F . This application has gained sudden importance thanks to the

recently proposed GLS method [GLS09], which exploits an efficiently computable

homomorphism to speed up the execution of point multiplication over 2
p
F .

For our study, we consider the highly-optimized assembly module of the field arithmetic over

2
p
F written by M. Scott [MIR]. This module exploits the “nice” Mersenne prime 1272 1p = − ,

which allows a very simple reduction step with no conditional branches. Although IR can also be

applied to this scenario, in practice we observe that the gain is negligible on the platforms under

study. Future work may consider the analysis of this technique on different platforms.

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

124

5.5.1. Scheduling of Field Operations

As described in Section 2.2.6.1, each 2
p
F operation consists of a few field operations over .

Thus, the analysis of data dependencies and scheduling of operations should be performed taking

into account this underlying layer. For instance, let us consider the execution of a 2
p
F

multiplication followed by a subtraction shown in Figure 5.3. Note that multiplication is

implemented using Karatsuba with 3 pF multiplications and 5 additions/subtractions.

As can be seen in Figure 5.3, the scheduling of the internal operations of the 2
p
F

multiplication has been performed in such a way that contiguous data dependencies are minimal

between
pF operations (there is only one dependency between DblSub and Sub in the last stage

of multiplication). A similar analysis can be performed between contiguous higher-layer 2
p
F

operations. In Figure 5.3, the last
pF

operation of the multiplication and the first

operation of

the subtraction hold contiguous data dependence. There are different solutions to eliminate this

problem. For example, it can be eliminated by rescheduling the subtraction and addition, as

shown in Figure 5.4(a). Note that addition does not hold any dependence with the multiplication

or subtraction, as required. Alternatively, if internal pF field operations of the subtraction in

 are rescheduled, as shown in Figure 5.4(b), the contiguous data dependence is also

eliminated.

These strategies can be applied to point formulas to minimize the appearance of such

dependencies. The reader is referred to Appendix B2 for details about the scheduling of

operations suggested for point formulas using J and /
e

E E coordinates.

5.5.2. Merging of Point and Field Operations

In the case of the GLS method, merging of point doublings is not as advantageous as in the

traditional scenario of ECC over because most contiguous data dependencies can be

eliminated by simply rescheduling field operations inside point formulas using the techniques

from the previous subsection (see Appendix B2). Moreover, GLS employs point multiplication

techniques such as interleaving, which do not guarantee a long series of consecutive doublings

between additions. Nevertheless, it is still advantageous the use of the merged doubling-addition

operation (when applicable), which is a recurrent operation in interleaving.

On the other hand, merging field operations is more advantageous in this scenario than over

There are two reasons for this to happen. First, arithmetic over works on top of the arith-

metic over , which opens new possibilities to merge more operations. Second, operations

are on fields of half size, which means that fewer registers are required for representing field

elements and more registers are available for holding intermediate operands.

pF

pF

pF

pF

2
p
F

2
p
F

2
p
F

pF

.pF 2p
F

pF pF

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

125

 �

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 > Mult(op1[2],op2[1],res1[1])

 � > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Sub(res1,op3,res2) > Sub(res1[1],op3[1],res2[1])

 > Add(op4,op5,res3) > Sub(res1[2],op3[2],res2[2])

 � �

Figure 5.3. 2p
F operations with contiguous data dependencies. High-level 2p

F operations are in the left column and

their corresponding low-level pF operations are in the right column. 2p
F

elements ()a bi+ are represented as

(op[1],op[2]). Dependencies are indicated by arrows.

(a)

 �

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 >

 � > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Add(op4,op5,res3) ...

 > Sub(res1,op3,res2) > Sub(res1[1],op3[1],res2[1])

 � > Sub(res1[2],op3[2],res2[2])

 �

(b)

 �

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 > Mult(op1[2],op2[1],res1[1])

 � > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Sub(res1,op3,res2) > Sub(res1[2],op3[2],res2[2])

 > Add(op4,op5,res3) > Sub(res1[1],op3[1],res2[1])

 � �

Figure 5.4. (a) Contiguous data dependencies eliminated by scheduling 2p
F field operations; (b) Contiguous data

dependencies eliminated by scheduling pF field operations.

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

126

Example 5.2. The following merged field operations can be advantageous on x86-64-based

processors using J and coordinates over quadratic extension fields: ,

, , the merging of and , the merging

of and , and the merging of and (mod)a a a p+ + .

Again, we remark that the list above is not intended to be exhaustive and different merging

options could be more advantageous or be available on different platforms with different

coordinate systems or underlying fields. The reader is referred to Appendix B2 for the explicit

formulas optimized with the proposed techniques for the case of J and coordinates using

the GLS method.

5.6. Performance Evaluation

In this section, we combine and demonstrate the efficiency of the techniques described in this

chapter to accelerate the computation of a full point multiplication. For our implementations, we

use the well-known MIRACL library by M. Scott [MIR], which contains an extensive set of

cryptographic functions that simplified the development and optimization process of our

cryptographic routines. Comparisons focus on implementations of variable-scalar-variable-point

elliptic curve point multiplication with approximately 128 bits of security.

5.6.1. Details of the “Traditional” Implementations

Field Arithmetic

As previously described, the field arithmetic over using the pseudo-Mersenne prime

 was written using x86-64 compatible assembly language and optimized by

exploiting incomplete reduction and elimination of conditional branches for modular addition,

subtraction and multiplication/division by constants (see Section 5.2). For the case of squaring

and multiplication, there are two methods that are commonly preferred in the literature for

implementation on general purpose processors: schoolbook (or operand scanning method) and

Comba [Com90] (or product scanning method) (see Section 5.3 of [EYK09] or Section 2.2.2 of

[HMV04]). Both methods require 2n w-bit multiplications when multiplying two n-digit

numbers. However, we choose to implement Comba’s method since it requires approx. 23n w-bit

additions, whereas schoolbook requires 2
4 .n Modular reduction for both operations was

performed exploiting the fact that 256
2 189≡ so 256(% 2) 189(256)r r r≡ + >> , where r is the

result of integer multiplication or squaring. Our code was aggressively optimized by carefully

scheduling instructions to exploit the instruction-level parallelism.

/
e

E E 2 (mod)a b p−

()/ 2 (mod)a a a p+ + (mod)a b c p+ − (mod)a b p+ (mod)a b p−

(mod)a b p− (mod)c d p− (mod)a a p+

/ eE E

pF

2562 189p = −

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

127

Point Arithmetic

For our implementations, we chose J and / eE E coordinates and used the execution patterns

based on doublings and doubling-additions proposed by [Lon07] and [HWC+08] for J and

/ eE E , respectively. The costs in terms of multiplications and squarings can be found in Tables

2.2 and 2.4. Note that we use general additions (or general doubling-additions) because inversion

is relatively expensive and its inclusion during precomputation cancels any gain using addition

with mixed coordinates during the evaluation stage.

This arithmetic layer was optimized through the use of the techniques described in Sections

5.3 and 5.4, namely field arithmetic scheduling, merging of field and point operations and

minimization of field operations. Because the maximal performance was found with a window of

size 5 for the scalar recoding using wNAF (see next subsection), we merged four consecutive

doublings into a joint function and every addition with the precedent doubling into another

function. Please refer to Appendix B1 for complete details about the employed formulas

exhibiting minimal number of field operations, different merged field operations and reduced

number of contiguous data dependencies.

Point Multiplication and Precomputation

For scalar recoding we use wNAF, which offers minimal nonzero density among signed binary

representations for a given window width (i.e., for certain number of precomputed points)

[Ava05]. In particular, we use Alg. 3.35 of [HMV04] for conversion from integer to wNAF

representation. Although left-to-right conversion algorithms exist [Ava05], which save memory

and allow on-the-fly computation of point multiplication, they are not advantageous on the

targeted CPUs. In fact, our tests show that converting the scalar to wNAF and then executing the

point multiplication achieves higher performance than interleaving conversion and point

multiplication. That is because the latter approach “interrupts” the otherwise smooth flow of

point multiplication by calling the conversion function at every iteration of the double-and-add

algorithm. Our choice is also justified because there are no stringent constraints in terms of

memory in the targeted platforms.

For precomputation on J coordinates, we choose the variant of the LM scheme that does not

require inversions, whose cost is given by formula (3.4) (Section 3.2.2). This method achieves

the lowest cost for precomputing points, given by (6 2) (3 4)L M L S+ + + , where L represents the

number of non-trivial points (note that we avoid here the S-M trading in the first doubling). On

/ eE E , we precompute points in the traditional way using the sequence 2 2 2P P P P+ + + +… ,

adding 2P with general additions. Because precomputed points are left in projective form no

inversion is required and the cost is given by (8 4) 2L M S+ + . This involves computing 2P as

2 e→A E , which costs 5 2M S+ (one squaring is saved because 1PZ = ; one extra multiplication

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

128

is required to compute T coordinate of 2P), one mixed addition to compute 2P P+ as
e e+ →A E E that costs 7M and (1)L − general additions e e e+ →E E E that cost 8M each. For

both coordinate systems, we chose a window width w = 5 (i.e., precomputing {3 ,5 , ,15 }P P P… ,

L = 7), which is optimal and slightly better than fractional windows using L = 6 or 8.

5.6.2. Details of the GLS-based Implementations

For this case we make use of the optimized assembly module of the field arithmetic over 2
p
F

written by M. Scott [MIR], which exploits the Mersenne prime 1272 1p = − allowing the use of a

very simple reduction step with no conditional branches.

For the point arithmetic, we slightly modify formulas for the “traditional” implementations

since in this case these require a few extra multiplications with the twisted curve parameter µ (see

Section 2.2.6). For example, the (dedicated) addition using extended Twisted Edwards

coordinates with cost 8M (pp. 332 of [HWC+08]) cannot be used in this case and has to be

replaced by a formula that costs 9M (also discussed in pp. 332 of [HWC+08] as “9M+1D”),

which is one multiplication more expensive (“1D” is avoided because parameter a is still set to

−1). Accordingly (and also following our discussions in Sections 5.3.1 and 5.5.1), the scheduling

of the field arithmetic slightly differs. Moreover, different merging options for the field and point

arithmetic are exploited (see Section 5.5.2). The reader is referred to Appendix B2 for complete

details about the revised formulas exhibiting minimal number of field operations, different

merged operations and reduced number of contiguous data dependencies.

For point multiplication, each of the two scalars 0k and 1k in the multiple point multiplication

0 1()k P k Pλ+ is converted using fractional wNAF [Möl05], and then the evaluation stage is

executed using interleaving (see Alg. 3.51 of [HMV04]). Similarly to our experiments with the

“traditional” implementations, we remark that the separation of the conversion and evaluation

stages yields better performance in the targeted platforms.

For precomputation on J, we use the LM scheme that has minimal cost among methods

using only one inversion. The cost in this case is given by eq. (3.6). We avoid here the S-M

trading in the first doubling, so the precomputing cost is 1 (9 1) (2 5)I L M L S+ + + + , where L

represents the number of non-trivial points. A fractional window with L = 6 achieves the optimal

performance in our case.

Again, on / eE E coordinates we precompute points using general additions in the sequence

2 2P P P+ + +… . Precomputed points are better left in projective coordinates, in which case the

cost is given by (9 4) 2L M S+ + . This cost involves the computation of 2P as 2 e→A E , which

costs 5 2M S+ (one squaring is saved because 1PZ = ; one extra multiplication is required to

compute T coordinate of 2P), one mixed addition to compute 2P P+ as e e+ →A E E that costs

8M and (1)L − general additions e e e+ →E E E that cost 9M each. In this case, an integral

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

129

window of size w = 5 (i.e., L = 7) achieves optimal performance. As pointed out by [GLS09],

precomputing { ,[3] (),[5] (), ,[2 1] ()}P P P L Pψ ψ ψ+… can be done on-the-fly at low cost.

5.6.3. The Curves

Next, we detailed the curves used for our implementations. These curves provide approximately

128 bits of security and were found with a modified version of the Schoof’s algorithm provided

with MIRACL.

• For the implementation on short Weierstrass form over using J, we chose the curve
2 3: 3WE y x x B= − + , where 2562 189p = − , 0 fd63c3319814da55e88e9328e962B = ×

73c483dca6cc84df53ec8d91b1b3e0237064 and # () 10W pE r=F where r is the 253-bit

prime:

 11579208923731619542357098500868790785394551372836712768287417232790500318517 .

The implementation corresponding to this curve is referred to as jac256189 in the

remainder.

• For Twisted Edwards over using / eE E coordinates, we chose the curve :TEE

2 2x y− + = 2 21 358 x y+ , where 2562 189p = − and # () 4TE pE r=F where r is the 255-

bit prime:

28948022309329048855892746252171976963381653644566793329716531190136815607949 .

The implementation corresponding to this curve is referred to as ted256189 in the

remainder.

• Let 2 3: 3 44W GLSE y x x− = − + be defined over pF , where 1272 1p = − . For the case of

Weierstrass form using GLS, we use the quadratic twist 2 3: 3 44W GLSE y x xµ µ−′ = − + of

2/W GLS p
E − F , where 22

p
iµ = + ∈F is non-square. 2# ()W GLS p

E −′ F is the 254-bit prime:

28948022309329048855892746252171976962649922236103390147584109517874592467701 .

The same curve is also used in [GLS09]. Our implementation corresponding to this curve

is referred to as jac1271gls in the remainder.

• Let 2 2 2 2: 1 109TE GLSE x y x y− − + = + be defined over , where 1272 1p = − . For the

case of Twisted Edwards using the GLS method, we use the quadratic twist
2 2 2 2: 1 109TE GLSE x y x yµ µ−′ − + = + of 2/TE GLS p

E − F , where 22
p

iµ = + ∈F is non-

square. In this case, 2# () 4TE GLS p
E r−′ =F where r is the 252-bit prime:

7237005577332262213973186563042994240709941236554960197665975021634500559269 .

The implementation corresponding to this curve is referred to as ted1271gls in the

remainder.

pF

pF

pF

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

130

5.6.4. Timings

Here we summarize the timings obtained by the “traditional” implementations labeled as

ted256189 and jac256189 and the implementations using GLS labeled as ted1271gls and

jac1271gls, when running them on a single core of Intel and AMD processors based on the x86-

64 ISA. For verification of each implementation, the results of 10
4
 point multiplications with

“random” scalars were all validated using MIRACL. Several “random” point multiplications

were also verified with Magma.

All the tested programs were compiled with GCC v4.3.4 on the AMD Opteron 252 and with

GCC v4.4.3 on the AMD Phenom II X4, Intel Core 2 Duo E6750 and Intel Atom N450

processors. For measuring computing time, we follow [GT07b] and use a method based on cycle

counts. To obtain our timings, we ran each implementation 10
5
 times with randomly generated

scalars, averaged and approximated the results to the nearest 1000 cycles. Table 5.7 summarizes

our results, labeled as ted1271gls, jac1271gls, ted256189 and jac256189. All costs include scalar

conversion, the point multiplication computation (precomputation and evaluation stages) and the

final normalization step to affine. For comparison purposes, Table 5.7 also includes the cycle

counts that we obtained when running the implementations by M. Scott (displayed as gls1271-

ref4 and gls1271-ref3 [MIR]) on exactly the same platforms. Finally, the last 5 rows of the table

detail cycle counts of several state-of-the-art implementations as reported in the literature.

However, these referenced results are used only to provide an approximate comparison since the

processor platforms are not identical (though they use very similar processors).

As can be seen, our fastest implementation on the targeted platforms is ted1271gls, using

/ eE E with the GLS method. This implementation is about 28% faster than the previous record

set by gls1271-ref4 [GLS08] on a slightly different processor (1.66GHz Intel Core 2 Duo). A

more precise comparison, however, would be between measurements on identical processor

platforms. In this case, ted1271gls is approx. 20%, 29%, 28% and 29% faster than gls1271-ref4

[MIR] on Atom N450, Core 2 Duo E6750, Opteron 252 and Phenom II X4 940, respectively.

Although [MIR] uses inverted Twisted Edwards coordinates (IE), the improvement with the

change of coordinates only explains a small fraction of the speed-up. Similarly, in the case of J

combined with GLS, jac1271gls is about 30% faster than the record set by gls1271-ref3 [GLS09]

on a 1.66GHZ Intel Core 2 Duo. When comparing cycle counts on identical processor platforms,

jac1271gls is 23%, 31%, 30% and 34% faster than gls1271-ref3 [MIR] on Atom N450, Core 2

Duo E6750, Opteron 252 and Phenom II X4 940, respect. Our implementations are also

significantly faster than the implementation of Bernstein's curve25519 by Gaudry and Thomé

[GT07b]. For instance, ted1271gls is 46% faster than curve25519 [GT07b] on a 2.66GHz Intel

Core 2 Duo.

If the GLS method is not considered, the fastest implementations using / eE E and J

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

131

coordinates are ted256189 and jac256189, respectively. In this case, ted256189 and jac256189

are 22% and 28% faster than the previously best cycle counts due to Hisil et al. [HWC+09] using

also / eE E and J coordinates, respectively, on a 2.66GHz Intel Core 2 Duo.

It is also interesting to note that the performance boost given by the GLS method strongly

depends on the characteristics of a given platform. For instance, ted1271gls and jac1271gls are

about 40% and 45% faster than their “counterparts” over
pF , namely ted256189 and jac256189,

respectively, on an Intel Atom N450. On an Intel Core 2 Duo E6750, the differences reduce to

25% and 32% (respect.). And on an AMD Opteron processor, the differences reduce even further

to only 9% and 13% (respect.). Thus, it seems that there exists certain correlation between an

architecture’s “aggressiveness” for scheduling operations/exploiting ILP and the gap between the

costs of

and

operations on x86-64 based processors. In general, the greater such

“aggressiveness” the smaller the

gap. And since working on the quadratic extension

involves a considerable increase in the number of multiplications and additions, GLS loses its

attractiveness if such gap is not large enough on certain platform. For the record, ted1271gls

achieves the best cycle counts on an AMD Opteron, with an advantage of about 31% over the

best previous result in the literature by [GT07b], and on an AMD Phenom II X4, with an

advantage of about 29% over the closest result obtained by gls1271-ref4 [MIR].

For extended benchmark results and comparisons with other previous works on different 64-

bit processors, the reader is referred to our online database [Lon10].

Table 5.7. Cost (in cycles) of point multiplication on 64-bit architectures.

Implementation Coordinates
Field

Arithmetic
Atom N450

Core 2 Duo

E6750
Opteron 252

Phenom II

X4 940

 ted1271gls / eE E 2pF , 127-bit 588000 210000 211000 181000

 jac1271gls J 2pF , 127-bit 644000 228000 238000 188000

 ted256189 / eE E pF , 256-bit 982000 281000 232000 213000

 jac256189 J pF , 256-bit 1168000 335000 274000 252000

 gls1271-ref4 [MIR] IE 2pF , 127-bit 732000 295000 295000 255000

 gls1271-ref3 [MIR] J 2pF , 127-bit 832000 332000 341000 287000

 gls1271-ref4 [GLS08] IE 2pF , 127-bit - 293000 (1) - -

 gls1271-ref3 [GLS09] J 2pF , 127-bit - 326000 (1) - -

 curve25519 [GT07b] Montgomery pF , 255-bit - 386000 (2) 307000 (4) -

 Hisil et al. [HWC+09] / eE E pF , 256-bit - 362000 (3) - -

 Hisil et al. [HWC+09] J pF , 256-bit - 468000 (3) - -

(1) On a 1.66GHz Intel Core 2 Duo. (2) On a 2.66GHz Intel Core 2 Duo E6700.
(3) On a 2.66GHz Intel Core 2 Duo E6550. (4) On a 2.4GHz AMD Opteron 250.

pF 2p
F

2p p
−F F

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

132

Timings using Multibase Methods

We also implemented the refined multibase algorithm using bases {2,3} and {2,3,5} proposed in

Chapter 4 to assess its effectiveness on x86-64 processors. With an optimal number of

precomputations (L = 7 points) and using J coordinates, a 256-bit scalar multiplication runs in

approximately 252000 cycles using refined {2,3,5} multibase chains or wNAF on a Phenom II

X4, without including the conversion cost. Thus, the small theoretical advantage of the multibase

method (see §4.5) vanishes in this case because the inclusion of tripling and quintupling

functions that are not used too frequently seems to degrade the cache performance and because

radix-2 methods are able to exploit more advantageously additional techniques such as the

merging of point operations (see §5.3.2).

For illustrative purposes, in the same implementation above we eliminated the use of

precomputations. In this case, the refined {2,3,5} multibase chains and NAF allowed the

computation in 261000 and 277000 cycles, respectively, on a Phenom II X4 processor. Thus, on

this processor the use of multibases introduces a cost reduction of about 6%.

In all cases above, when conversion to multibase was included in the measurements the total

cost of scalar multiplication became more expensive than the cases using (w)NAF.

These results confirm our analysis and recommendations in Section 4.6.1, and justify the use

of radix-2 methods in the x86-64-based implementations presented in this chapter.

5.7. Conclusions

In this chapter we have proposed and evaluated different techniques and optimizations to speed

up elliptic curve scalar multiplication over prime fields on the increasingly popular x86-64-based

processors. We have carefully studied the architecture of these processors and optimized the

arithmetic of elliptic curves at the different computational levels accordingly. Extensive tests

have been carried out on at least one x86-64 processor representative from the notebook/netbook,

desktop and server/workstation processor classes. Whenever relevant, we have also discussed the

extension of the analysis and optimizations to other microarchitectures.

After detailing in §5.1 some previous work and the general features of x86-64 processors that

are most relevant to this work, we studied the performance boost obtained when combining

incomplete reduction and elimination of conditional branches with the use of a highly-efficient

pseudo-Mersenne prime in §5.2. We provided explicit algorithms for performing different

variants of modular addition, subtraction, multiplication by constant and division by constant

with incompletely and completely reduced numbers. Our tests on the targeted platforms reveal

cost reductions as high as 9% and 12% in the computation of point doubling and doubling-

addition, respectively, when combining the techniques above. Overall, the cost reduction in a

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software

133

256-bit scalar multiplication was estimated to be up to 11%.

In §5.3, we analyzed the effect of RAW dependencies between contiguous field operations in

the performance of scalar multiplication. We demonstrated that by rescheduling or merging field

operations and merging point operations the cost of point doubling may be reduced in up to 12%

in the targeted processors. This gain is obtained by the compound effect of reducing the number

of pipeline stalls, memory reads/writes and function calls. Overall, the cost reduction in a 256-bit

scalar multiplication was estimated in up to 9%, demonstrating that some modern compilers and

dynamic out-of-order schedulers inside processors are unable to fully eliminate these contiguous

dependencies.

In §5.4, some optimizations exploiting the projective equivalence were proposed for point

operations. Revised formulas carefully optimized with the techniques described in this chapter

are explicitly stated in Appendix B1 for the case of Jacobian (J) and mixed Twisted Edwards

homogeneous/extended homogeneous () coordinates.

The application of the rescheduling/merging of field operations and merging of point

operations over quadratic extension fields was studied in §5.5. Revised formulas carefully

optimized with these techniques (and techniques exploiting the projective equivalence; §5.4) are

explicitly stated in Appendix B2 for the case of J and coordinates when using the GLS

method over 2
p
F .

In §5.6, we illustrated the significant performance improvement obtained with the techniques

under analysis with high-speed implementations of variable-scalar-variable-point scalar

multiplication at the 128-bit security level. Our software was extensively code-optimized and

incorporates state-of-the-art ECC algorithms, including the best precomputation scheme for each

setting following results from Chapter 3. We presented four variants using either or J

coordinates and with or without exploiting the GLS method. Remarkably, we showed that a point

multiplication can be computed in only 181000 cycles (~60µsec.) on an AMD Phenom II X4

when combining with GLS. This represents a cost reduction of about 29% over the closest

competitor. In the case of Jacobian coordinates with GLS, we reported a computation in only

188000 cycles (~60µsec.) in the same platform, which represents an improvement of about 34%.

For the traditional case without using GLS, our implementations using and J coordinates

are 22% and 28% faster than the previously best published results using the same coordinate

systems. In summary, our implementations compute scalar multiplication up to 34% faster than

the best previous results on x86-64 processors. We also reported that the use of GLS enables cost

reductions as high as 45% on an Intel Atom and as high as 13% on an AMD Opteron.

Similar results are expected when exploiting the proposed optimizations with other curve

forms and coordinate systems or with other scenarios involving, for instance, multiple scalar

multiplication and fixed-point scalar multiplication, among others.

/ eE E

/ eE E

/ eE E

/ eE E

/ eE E

135

6 Chapter 6

Efficient Techniques for

Implementing Pairings in Software

In this chapter, we propose efficient methods and optimized explicit formulas that speed up

significantly the computation of pairings on ordinary curves over prime fields. Our contributions

can be summarized as follows:

• We generalize the well-known technique of lazy reduction, previously applied to

quadratic extension fields only [Sco07], to the whole pairing arithmetic including

towering and curve arithmetic. We show that this approach leads to the elimination of at

least 32% of the total number of reductions in a state-of-the-art implementation of the

optimal ate pairing over a Barreto-Naehrig (BN) curve at the 128-bit security level.

• For dealing with more costly higher-precision additions required by lazy reduction, we

develop a flexible methodology that keeps intermediate values under Montgomery

reduction boundaries and maximizes the use of operations without carry checks.

• Following the approach detailed in Section 5.4, formulas for point doubling and addition

in Jacobian and homogeneous coordinates are carefully optimized by eliminating several

commonly neglected operations that are not inexpensive on modern 64-bit platforms.

• Finally, we illustrate the significant savings obtained by the new techniques with a high-

speed implementation of the optimal ate pairing over a BN curve at the 128-bit security

Chapter 6: Efficient Techniques for Implementing Pairings in Software

136

level. By combining our methods with other state-of-the-art techniques, we obtain an

implementation that improves the best available timings in the literature by 28%-34% on

several x86-64-based processors.

This chapter is organized as follows. After discussing relevant previous work in §6.1, we

describe the generalization of lazy reduction to pairing-friendly tower fields in §6.2. In the same

section, we discuss how to optimize the implementation of tower field arithmetic when dealing

with both single- and double-precision operations, and illustrate the flexible methodology with

the popular tower 2 6 12p p p p
→ → →F F F F . In §6.3, we present our optimizations to the curve

arithmetic in the Miller loop, including the application of lazy reduction. Then, in §6.4 we

describe our high-speed implementation of an optimal ate pairing on BN curves, carry out a

detailed operation count and compare our results with the previously best results in the literature.

We end this chapter with some conclusions in §6.5.

6.1. Previous Work

In recent years there has been a growing interest in pairing-based cryptography with numerous

efforts focused on improving the efficiency of the pairing computation. Some works have

proposed optimizations inside the Miller loop [BLS03, BLS04b] including the denominator

elimination technique [BKL+02], while other works have focused on minimizing the length of

the Miller’s algorithm [HSV06, BGO+07, ZZH08, Ver10], constructing pairing-friendly elliptic

curves [BLS03b, BW05, SB06, Fre06] and devising tower extensions of finite fields k
p
F

[KM05, BS10]. An important research effort involves the development and optimization of

explicit formulas for the curve arithmetic; see for example [CHB+09, CLN10]. Yet another

crucial study involves the efficient implementation of the tower field k
p
F

and base field

arithmetic in pF [FVV09, NNS10, BGM+10]. In this chapter we focus on the latter two issues

and propose efficient methods for speeding up computations in the towering and curve

arithmetic.

In the case of efficient implementation of the towering and base field arithmetic, some

research warns of the potential danger of employing a prime p with low Hamming weight (e.g.,

Mersenne primes), in which case a modified NFS could reduce the security level [Sch10].

Therefore, the chosen prime should ideally have a general form, in which case Montgomery

reduction is the most efficient method available [Mon85]; see Section 2.2.4.1. This ultimately

makes modular reduction one of the most expensive operations in the underlying field arithmetic

of pairings. Some efforts focus on improving the interaction between field multiplication and

reduction to minimize costs [FVV09, NNS10]. A different approach involves instead the

elimination of reductions by using the so-called lazy reduction [Sco07]. This technique goes back

Chapter 6: Efficient Techniques for Implementing Pairings in Software

137

to at least Crypto’98 [WD98], and has been advantageously exploited by many works in different

scenarios [LH00, Ava04, Sco07]. According to [LH00], multiplication in k
p
F can be performed

with k reductions modulo p when k
p
F is seen as a direct extension over pF via an irreducible

binomial. This improves the traditional method that requires 2
k reductions (or (1) / 2k k +

reductions when using Karatsuba multiplication). Lazy reduction was first employed in the

context of pairing computation by [Sco07] to eliminate reductions in 2
p
F multiplication.

Essentially, when using Karatsuba method for multiplication in 2
p
F , lazy reduction allows us to

lower the number of reductions from 3 to only 2. Note that these savings are at the cost of

somewhat more expensive additions. If, for instance, one considers the tower

2 6 12p p p p
→ → →F F F F , then this approach requires 3 6 3 54⋅ ⋅ = integer multiplications with

2 6 3 36⋅ ⋅ = reductions modulo p for performing one multiplication in 12
p
F ; see [Sco07, HMS08,

BGM+10].

In this work we go a step further and generalize lazy reduction to the whole pairing

computation, including the tower extension and curve arithmetic. For instance, these

optimizations allow us to eliminate about 32% of reductions in a state-of-the-art implementation

of the optimal ate pairing using a BN curve with 128 bits of security; see Section 6.4.2 for

complete details.

Recently, many authors have targeted the efficient software implementation of bilinear

pairings at the 128-bit security level. Most remarkable results include the computation of the R-

ate pairing in 10,000,000 cycles on one core of an Intel Core 2 Duo processor by Hankerson et al.

[HMS08], and the computation of the optimal ate pairing in 4,380,000 cycles on one core of an

Intel Core 2 Quad Q9550 by Naehrig et al. [NNS10] and in 2,950,000 cycles on one core of an

Intel Core 2 Duo T7100 by Beuchat et al. [BGM+10]. Beuchat et al. also reports an optimal ate

pairing computation in 2,330,000 cycles on one core of an Intel Core i7 860 processor.

In this work, to demonstrate the effectiveness of our optimizations, we realize a high-speed

implementation of an optimal ate pairing at the 128-bit security level that additionally

incorporates the latest advancements in the area, including software techniques by Beuchat et al.

[BGM+10] to optimize carry handling and eliminate function call overheads in the 2
p
F

arithmetic, and the use of efficient compressed squarings and decompression in cyclotomic

subgroups to speed up computations in the final exponentiation by Karabina (see [Kar10] and

also [AKL+10, Section 5.2]). We report a pairing computation in 2,194,000 cycles on one core of

an Intel Core 2 Duo E6750 and in 1,688,000 cycles on an Intel Core i5 540M. Moreover, we also

report a pairing computation in only 1,562,000 cycles (~0.5msec.) on an AMD Phenom II X4

940 processor. Taking into account timings in identical platforms, our results introduce

improvements between 28% and 34% in comparison with the best previous results.

Chapter 6: Efficient Techniques for Implementing Pairings in Software

138

6.2. Lazy Reduction for Tower Fields

In this section, we generalize the lazy reduction technique to towering-friendly fields k
p
F , with

2 3
i j

k = , 1i ≥ , 0j ≥ , as defined by [BS10], which are conveniently built with irreducible

binomials. We show that multiplication (and squaring) in a tower extension k
p
F only requires k

reductions and still benefits from different arithmetic optimizations available in the literature to

reduce the number of subfield multiplications/squarings. For instance, with our approach one

now requires integer multiplications and 2 3 2 12⋅ ⋅ = reductions modulo p using the

tower 2 6 12p p p p
→ → →F F F F to compute one multiplication in 12

p
F (eliminating 24 reductions

in comparison with the traditional approach); or 36 integer multiplications and 12 reductions

modulo p to compute one squaring in 12
p
F (eliminating 18 reductions in comparison with the

traditional approach). Although wider in generality, these techniques are analyzed in detail in the

context of Montgomery multiplication and Montgomery reduction [Mon85], which are

commonly used in the context of pairings over ordinary curves. We explicitly state our formulas

for the towering construction 2 6 12p p p p
→ → →F F F F in Section 6.2.2. In the remainder, the

term modular reduction modulo p always refers to modular reductions of double-precision

integers.

Lemma 6.1. A sum of products with the form modi ia b p± ⋅∑ , where ,i ia b are elements in

Montgomery representation, can be reduced with only one Montgomery reduction modulo p by

accumulating inner products as double-precision integers always that 2N
i ia b p± ⋅ < ⋅∑ , where

N n w= ⋅ , n is the exact number of words required to represent p, i.e., 2logn p w =     , and w

is the computer word-size.

Lemma 6.1 defines the basic lazy reduction technique in the context of Montgomery

reduction. Readers should note that internal additions and subtractions with partial results r

“slightly” outside the Montgomery reduction range [0,2]N p⋅ , i.e., 12 2N Np r p+⋅ ≤ < ⋅ , can be

easily corrected at negligible cost by performing a subtraction with 2N p⋅ .

Next, we present our main result applying lazy reduction to towering-friendly fields.

Theorem 6.1. In a towering-friendly field k
p
F , multiplications and squarings can be computed

with k reductions.

Proof. We will proof this theorem in a wider context for generic tower extensions built with

irreducible binomials. Let k
p
F be a direct extension of , where

1

t

ii
k n

=
=∏ , and an element

k
p

a ∈F be represented in polynomial basis as 1
0 1 1() k

ka X a a X a X −
−= + + +… . Then one can

use the following tower construction
0 1 1 2 1 2

 n n n n n n n ktp pp pp p
⋅ ⋅ ⋅ ⋅= → → → → =……F F F F F F to

represent the extension field k
p
F s.t.

1np
=F 1[] ()

n
p u u β−F , 2

1 2 1
[] ()n n n

n

p p
v v ξ⋅ = −F F ,…,

3 6 3 54⋅ ⋅ =

pF

Chapter 6: Efficient Techniques for Implementing Pairings in Software

139

1 2 1
[] ()t

k n n nt

n

p p
w w γ⋅ ⋅ ⋅ −

= −…F F . Assuming that an element
1np

c ∈F is represented as

1

1

1
0 1 1()

n
nc u c c u c u

−
−= + + +… , where i pc ∈F , polynomial multiplication of two elements

1
, n

p
a b∈F can be expressed as:

1 1

1

1 1

0 0

() () () mod()

n n
ni i

i i

i i

c u a u b u a u b u u β
− −

= =

= ⋅ = ⋅ −∑ ∑

1 1

1

1 1

0 0 1

mod mod

n nm
m

j m j j m j n

m j j m

a b p a b p uβ
− −

− − +

= = = +

 
 = +
 
 

∑ ∑ ∑

 ()
1 1 1

1

1 1 1

0 0 1 0

mod mod ,

n n nm
m m

j m j j m j n m

m j j m m

a b a b p u c p uβ
− − −

− − +
= = = + =

  
  = + =
  
  

∑ ∑ ∑ ∑ (6.1)

where only 1n reductions are necessary by applying Lemma 6.1.

Similarly, assuming that an element
1 2n n

p
f ⋅∈F is represented as 0 1()f v f f v= + + +…

2

2

1
1

n
nf v

−
− , where

1ni p
f ∈F , polynomial multiplication of two elements

1 2
, n n

p
d e ⋅∈F can be

expressed by:

2 2

2

1 1

0 0

() () () mod()

n n
ni i

i i

i i

f v d v e v d v e v v ξ
− −

= =

= ⋅ = ⋅ −∑ ∑

2 2

2

1 1

0 0 1

n nl
l

j l j j l j n

l j j l

d e d e vξ
− −

− − +

= = = +

 
 = +
 
 

∑ ∑ ∑ . (6.2)

Then, by using (6.1) to perform
1np

F multiplications x yd e⋅ from (6.2) and applying Lemma

6.1 again, we obtain the following expression for multiplication in
1 2n n

p
⋅F :

() ()
2 1 2 1

2

1 1 1 1

, , , ,

0 0 0 1 0

() mod mod

n n n nl
m m l

m j l j m j l j n

l j m j l m

f v c p u c p u vξ
− − − −

− − +

= = = = + =

 
 = +
 
 

∑ ∑∑ ∑ ∑

2 1 2

2

1 1 1

, , , ,

0 0 0 1

mod

n n nl
m l

m j l j m j l j n

l m j j l

c c p u vξ
− − −

− − +
= = = = +

   
   = +

   
   

∑ ∑ ∑ ∑

 ()
2 11 1

,

0 0

mod

n n
m l

l m

l m

f p u v

− −

= =

 
=  

 
 

∑ ∑ , (6.3)

where , ,m x yc correspond to coefficients mc in (6.1) for each multiplication x yd e⋅ from (6.2).

Note that again reductions have been shifted and only 1 2n n⋅ reductions are required in each

1 2n n
p

⋅F multiplication. If one continues applying this procedure recursively it can be easily seen

that a multiplication in
1 2k n n ntp p

⋅ ⋅ ⋅= …F F requires 1 2 tk n n n= ⋅ ⋅ ⋅… reductions. □

It is important to note that there is no restriction in the selection of parameters for the

Chapter 6: Efficient Techniques for Implementing Pairings in Software

140

irreducible binomials (e.g., β and ξ in the proof above). However, for efficiency purposes one

should select parameters with small values such that multiplications with them can be converted

to a few additions and subtractions (see for example the chosen parameters in the illustrative

tower in Section 6.2.2).

The next theorem extends our result to towering-friendly fields exploiting Karatsuba

multiplication.

Theorem 6.2. Multiplications in a towering-friendly field k
p
F built with irreducible binomials,

where 2 3
d e

k = , 1d ≥ , 0e ≥ , can be computed with k reductions and 3 6
d e multiplications.

Proof. Let the tower
0 1 1 2 1 2 1 2

 k k n k n n k n n nt tp p p p pp p p
⋅ ⋅ ⋅ ⋅= → = → = → → = ……F F F F F F F F represent

ktp
F s.t.

1
[] ()i

k ki i i

n
kp p

x x β
−

= −F F with {2,3}in ∈ , 0i > integer, and assume
ikβ are chosen

such that multiplication by these values can be computed with a few additions or subtractions.

Then, multiplication c a b= ⋅ of two elements 0 1 0 1(), () kip
a a a x b b b x= + = + ∈F with 2in =

(second degree irred. binomial) and
1

, kii i p
a b −∈F

can be computed using Karatsuba method as

follows:

 []0 0 1 1 0 1 0 1 0 0 1 1() ()()
ikc a b a b a a b b a b a b xβ= + + + + − − , (6.4)

which requires 3 integer multiplications in
1kip −F . Similarly, multiplication c a b= ⋅ of two

elements 2
0 1 2()a a a x a x= + + and 2

0 1 2() kip
b b b x b x= + + ∈F with 3in = (third degree irred.

binomial) and
1

, kii i p
a b −∈F

can be computed using Karatsuba method as follows:

 0 0 0 1 1 1 2 2 2, ,v a b v a b v a b= ⋅ = ⋅ = ⋅ ,

 []0 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2()() , ()() ,
i ik kc v a a b b v v c a a b b v v vβ β= + + + − − = + + − − +

 2
1 0 2 0 2 0 1 2 0 1 1()() ,c a a b b v v v c c c x c x= + + − + − = + + , (6.5)

which requires 6 integer multiplications in
1kip −F . Therefore, a tower consisting of d second

degree extensions (i.e., 2in =) and e third degree extensions (i.e., 3in =) can be executed with

3 6
d e multiplications. Following Theorem 6.1, we only require k reductions in total since terms in

both expressions (6.4) and (6.5) are simply sums of products as required. □

Theorem 6.2 shows that lazy reduction can be combined with Karatsuba multiplication for

efficient computation in tower extension fields. In fact, it is straightforward to generalize lazy

reduction to any formula that also involves only sums (or subtractions) of products of the form

i ia b± ⋅∑ , with , kli i p
a b ∈F , such as complex squaring or the asymmetric squaring formulas

devised by Chung and Hasan [CH07].

For efficiency purposes, we suggest a different treatment for the highest layer in the tower

Chapter 6: Efficient Techniques for Implementing Pairings in Software

141

arithmetic. Proof of Theorem 6.1 implies that reductions can be completely delayed to the end of

the last layer by applying lazy reduction, but in some cases (when the optimal k is already

reached and no reductions can be saved) it will be more efficient to perform reductions right after

multiplications or squarings. This will be illustrated later with the computation of squaring in

12
p
F in Section 6.2.2.

In summary, the generalized lazy reduction can be applied to every computation involving

operations in tower extension fields in the Miller loop and final exponentiation, including the

recently proposed compressed squarings by [Kar10] (see Appendix C1).

Remarkably, in the Miller Loop reductions can also be delayed from the underlying 2
p
F field

during multiplication and squaring to the arithmetic layer immediately above, i.e., the point

arithmetic and line evaluation. Similarly to the tower extension, reductions on this upper layer

should only be delayed in the cases where this technique leads to fewer reductions. For details,

see Section 6.3.

There are some penalties when delaying reductions. In particular, single-precision operations

(with operands occupying 2logn p w =     words, where w is the computer word-size) are

replaced by double-precision operations (with operands occupying 2n words). However, this

disadvantage can be minimized in terms of speed by selecting a field size smaller than the word-

size boundary because this technique can be exploited more extensively for optimizing double-

precision arithmetic.

6.2.1. Selecting a Field Size Smaller than the Word-Size Boundary

If the modulus p is selected such that 2logl p N= <   , where again N n w= ⋅ , n l w=    and w

is the computer word-size, then several consecutive additions without carry-out in the most

significant word (MSW) can be performed before a multiplication with the form c a b= ⋅ , where

, [0,2 1]Na b∈ − s.t. 2
2

N
c < . In the case of Montgomery reduction, the restriction is given by the

upper bound 2Nc p< ⋅ . Similarly, when delaying reductions the result of a multiplication without

reduction has maximum value 2 2(1) 2 Np − < (assuming that , [0,]a b p∈) and several

consecutive double-precision additions without carry-outs in the MSW (and, in some cases,

subtractions without borrow-outs in the MSW) can be performed before reduction. When using

Montgomery reduction up to ∼ 2
N

p 
  additions can be performed without carry checks.

Furthermore, cheaper single- and double-precision operations exploiting this “extra room”

can be combined for maximal performance. The challenge is to optimally balance their use in the

tower arithmetic since both may interfere with each other. For instance, if intermediate values are

allowed to grow up to 2p before multiplication (instead of p) then the maximum result would be
24 p . This strategy makes use of cheaper single-precision additions without carry checks but

limits the number of double-precision additions that can be executed without carry checks after

Chapter 6: Efficient Techniques for Implementing Pairings in Software

142

multiplication with delayed reduction. As it will be evident later, to maximize the gain obtained

with the proposed methodology one should take into account relative costs of operations and

maximum bounds.

In the case of double-precision arithmetic, different optimizing alternatives are available. Let

us analyze them in the context of Montgomery arithmetic. First, as pointed out by [BGM+10], if

2Nc p> ⋅ , where c is the result of a double-precision addition, then c can be restored with a

cheaper single-precision subtraction by 2N p⋅ (note that the first half of this value consists of

zeroes only). Second, different options are available to convert negative numbers to positive after

double-precision subtraction. In particular, let us consider the computation c a l b= + ⋅ , where
2, [0,]a b mp∈ , m

+∈Z and , which is a recurrent operation (for instance, when l β=

from Section 6.2.2). For this operation, we have explored the alternatives listed in Table 6.1,

which can be integrated in the tower arithmetic with different advantages.

Table 6.1. Different options to convert negative results to positive after a subtraction with the

form c a l b= + ⋅ , where 2, [0,]a b mp∈ , m
+∈Z and s.t. 2Nlmp < .

Option 1: (2 / 2)N hr c p= + ⋅ , 2[0, 2 / 2]N hr mp p∈ + ⋅ , where h is a small integer s.t.

 2 2| | 2 / 2 2N h Nlmp p p mp< ⋅ < ⋅ − .

Option 2: if c < 0 then 2Nr c p= + ⋅ , [0, 2]Nr p∈ ⋅ .

Option 3: 2r c lmp= − , 2[0, (| | 1)]r l mp∈ + , s.t. (| | 1) 2Nl mp+ < .

Option 4: if c < 0 then 2r c lmp= − , 2[0, | |]r lmp∈ .

In particular, Options 2 and 4 in Table 6.1 require conditional checks that make the

corresponding operations more expensive. Nevertheless, these options may be valuable when

negative values cannot be corrected with other options without violating the upper bound. Also

note that Option 2 can make use of a cheaper single-precision subtraction for converting negative

results to positive. Options 1 and 3 are particularly efficient because no conditional checks are

required. Moreover, if l is small enough (and h maximized for Option 1) several following

operations can avoid carry checks. Between both, Option 1 is generally more efficient because

adding 2 / 2N hp⋅ requires less than double-precision if h w≤ , where w is the computer word-

size.

Next, we demonstrate how the different design options discussed in this section can be

exploited with a clever selection of parameters and applied to different operations combining

single- and double-precision arithmetic to speed up the extension field arithmetic.

0l < ∈Z

0l < ∈Z

Chapter 6: Efficient Techniques for Implementing Pairings in Software

143

6.2.2. Practical Application of the Generalized Lazy Reduction

For our illustrative analysis, we use the tower 2 6 12p p p p
→ → →F F F F constructed as follows

[PSN+10]:

• 2
2

[]/(), where 1pp
i i β β= − = −F F .

• 6 2
3

[]/(), where 1
p p

v v iξ ξ= − = +F F .

• 12 6
2

[] /()
p p

w w v= −F F .

We use a similar tower construction for our illustrative implementation of the optimal ate

pairing on a BN curve (see Section 6.4.1 for complete details).

When targeting the 128-bit security level, single- and double-precision operations are defined

by operands with sizes N = 256 and 2N = 512, respectively. For our selected prime,

2log 254p =   and 22 6.8N p p⋅ ≈ . We use the following notation [AKL+10]:

(i) , ,+ − × are operators not involving carry handling or modular reduction for boundary

keeping;

(ii) ⊕, �, ⊗ are operators producing reduced results through carry handling or modular

reduction;

(iii) a superscript in an operator is used to denote the extension degree involved in the

operation;

(iv) notation ,i ja is used to address j-th subfield element inside extension field element ia ;

(v) variables with lower case t and upper case T represent single- and double-precision

integers or extension field elements composed of single and double-precision integers,

respectively.

The following notation is used for the cost of operations:

(i) M, S, A denote the cost of multiplication, squaring, addition in , respectively;

(ii) m, s, a, i denote the cost of multiplication, squaring, addition and inversion in 2
p
F ,

respectively;

(iii) , ,u uM S R denote the cost of unreduced multiplication and squaring producing double-

precision results, and modular reduction of double-precision elements in , respect.;

(iv) , ,u um s r denote the cost of unreduced multiplication and squaring, and modular

reduction of double-precision elements in 2
p
F , respectively.

For the remainder of the chapter, we assume that (except when explicitly stated) double-

pF

pF

Chapter 6: Efficient Techniques for Implementing Pairings in Software

144

precision addition has the cost of 2A and 2a in and 2
p
F , respectively, which approximately

follows what we observe in practice.

Note that, as stated before, if after adding in double-precision we correct

the result by computing . Similar to subtraction (see Table 6.1), we refer to the latter as

“Option 2”. Remaining references to “Option x” are taken from Table 6.1.

We will now illustrate a selection of operations for efficient multiplication in 12
p
F , beginning

with multiplication in 2
p
F . Let 2, ,

p
a b c∈F such that 0 1a a a i= + , 0 1b b b i= + , 0 1c a b c c i= ⋅ = +

. The required operations for computing 2
p
F multiplication are detailed in Algorithm 6.1. As

explained in Beuchat et al. [BGM+10, Section 5.2], when using the Karatsuba method and

,i i pa b ∈F , 2
1 0 1 0 1 0 0 1 1 0 1 1 0()() 2 2Nc a a b b a b a b a b a b p p= + + − − = + < < ⋅ , additions are single-

precision, reduction after multiplication can be delayed and hence subtractions are double-

precision (steps 1-3 in Algorithm 6.1). Obviously, these operations do not require carry checks.

For 0 0 0 1 1c a b a b= − , 0c is in interval 2 2
[,]p p− and a negative result can be converted to positive

using Option 1 with 2h = or Option 2, for which the final 0c is in the range
2[0, (2 / 4)] [0,2]N Np p p⋅ + ⊂ ⋅ or [0,2]N p⋅ , respectively (step 4 in Algorithm 6.1). Following

Theorem 6.1, all reductions can be completely delayed to the next arithmetic layer (higher

extension or curve arithmetic).

Algorithm 6.1. Multiplication in 2pF without reduction (
2× , cost of 3 8u um M A= +)

Input: 0 1()a a a i= + and 20 1() pb b b i= + ∈F

 Output: 20 1() pc a b c c i= ⋅ = + ∈F

1: 0 0 0 1 1 1 0 0 1 1 0 1, , ,T a b T a b t a a t b b← × ← × ← + ← +

2: 2 0 1 3 0 1,T t t T T T← × ← +

3: 3 2 3T T T← −

4: 4 0T T← � 1T (Option 1 or 2)

5: Return 4 3()c T T i= +

Let us now define multiplication in 6
p
F . Let 6, ,

p
a b c∈F such that 2

0 1 2()a a a v a v= + + ,
2

0 1 2()b b b v b v= + + , 2
0 1 2()c a b c c v c v= ⋅ = + + . The required operations for computing 6

p
F

multiplication are detailed in Algorithm 6.2. In this case, 0 0 1 2 1 2 1 2[()()]c v a a b b v vξ= + + + − − ,

1 0 1 0 1 0 1 2()()c a a b b v v vξ= + + − − + and 2 0 2 0 2 0 2 1()()c a a b b v v v= + + − − + , where 0 0 0v a b= ,

1 1 1v a b= and 2 2 2v a b= . First, note that the pattern ()()x i j i j i js a a b b v v= + + − − repeats for each

xc , 0 2x≤ ≤ . After multiplications using Algorithm 6.1 with Option 1 (h = 2), we have
2

,0 ,0, [0,(2 /4)]
N

i jv v p p∈ ⋅ + and
2

,1 ,1, [0,2]i jv v p∈ (step 1 of Alg. 6.2). Outputs of single-precision

additions of the forms ()i ja a+ and ()i jb b+ are in the range [0, 2p] and hence do not produce

carries (steps 2, 9 and 17 of Alg. 6.2). Corresponding multiplications ()()x i j i jr a a b b= + +

pF

2Nc p> ⋅ c a b= +

2Nc p− ⋅

2
p
F

Chapter 6: Efficient Techniques for Implementing Pairings in Software

145

Algorithm 6.2. Multiplication in 6pF without reduction (
6× , cost of 6 28um a+)

Input: 2
0 1 2()a a a v a v= + + and 6

2
0 1 2() pb b b v b v= + + ∈F

 Output: 6
2

0 1 2()
p

c a b c c v c v= ⋅ = + + ∈F

 1: 2 2 2
0 0 0 1 1 1 2 2 2, ,T a b T a b T a b← × ← × ← × (Option 1, h = 2)

 2: 2 2
0 1 2 1 1 2,t a a t b b← + ← +

 3: 2
3 0 1T t t← × (Option 2)

 4: 2
4 1 2T T T← +

 5: 3,0 3,0T T← � 4,0T (Option 2)

 6: 3,1 3,1 4,1T T T← −

 7: 4,0 3,0T T← � 3,1 4,1 3,0,T T T← ⊕ 3,1 4 3()T T Tξ≡ ← ⋅ (Option 2)

 8: 5 4T T← ⊕
2

0T (Option 2)

 9: 2 2
0 0 1 1 0 1,t a a t b b← + ← +

10: 2
3 0 1T t t← × (Option 2)

11: 2
4 0 1T T T← +

12: 3,0 3,0T T← � 4,0T (Option 2)

13: 3,1 3,1 4,1T T T← −

14: 4,0 2,0T T← � 2,1T (Option 1, h = 1)

15: 4,1 2,0 2,1 4 2(steps14-15)T T T T Tξ← + ≡ ← ⋅

16: 6 3T T← ⊕
2

4T (Option 2)

17: 2 2
0 0 2 1 0 2,t a a t b b← + ← +

18: 2
3 0 1T t t← × (Option 2)

19: 2
4 0 2T T T← +

20: 3,0 3,0T T← � 4,0T (Option 2)

21: 3,1 3,1 4,1T T T← −

22: 7,0 3,0T T← ⊕ 1,0T (Option 2)

23: 7,1 3,1 1,1T T T← +

24: Return 2
5 6 7()c T T v T v= + +

using Algorithm 6.1 with Option 2 give results in the ranges and

(steps 3, 10 and 18). Although , note that and

 since . Hence, for ,

double-precision subtractions for computing using Karatsuba do not require carry checks

(steps 4 and 6, 11 and 13, 19 and 21). For computing ,0 ,0 ,0 ,0()x x i js r v v= − +

addition does not

require carry check (output range 2[0, 2(2 / 4)] [0,2]N Np p p⋅ + ⊂ ⋅) and subtraction gives result

in the range [0,2]N p⋅ when using Option 2 (steps 5, 12 and 20). For computing 0c ,

multiplication by ξ , i.e., 0 0S sξ= involves the operations 0,0 0,0 0,1S s s= − and 0,1 0,0 0,1S s s= + ,

,0 [0, 2]N
xr p∈ ⋅ 2

,1 [0,8]xr p∈
2

,1max() 8 2
N

xr p p= > ⋅ 2 28 2 Np <
2

,1 ,0 ,1 ,1 ,0 ,0 ,1 ,1 ,0 [0,4]x i j i j j i j is a b a b a b a b p= + + + ∈ x i j j is a b a b= + 0 2x≤ ≤

,1xs

Chapter 6: Efficient Techniques for Implementing Pairings in Software

146

which are computed in double-precision using Option 2 to get the output range [0,2]N p⋅ (step

7). Similarly, final additions with 0v require Option 2 to get again the output range [0,2]N p⋅

(step 8). For computing 1c , 1 2S vξ= is computed as 1,0 2,0 2,1S v v= − and 1,1 2,0 2,1S v v= + , where

the former requires a double-precision subtraction using Option 1 (h = 1) to get a result in the

range 2[0,2 / 2 2 / 4)] [0,2]N N N
p p p p⋅ + ⋅ + ⊂ ⋅ (step 14) and the latter requires a double-precision

addition with no carry check to get a result in the range 2[0, (2 / 4) 3] [0,2]N Np p p⋅ + ⊂ ⋅ (step

15). Then, 1,0 1,0 1,0c s S= + and 1,1 1,1 1,1c s S= + involve double-precision additions using Option 2

to obtain results in the range [0,2]N p⋅ (step 16). Results 2,0 2,0 1,0c s v= + and 2,1 2,1 1,1c s v= +

require a double-precision addition using Option 2 (final output range [0,2]N p⋅ , step 22) and a

double-precision addition without carry check (final output range 2[0,6] [0,2]Np p⊂ ⋅ , step 23),

respectively. Modular reductions have been delayed again to the last layer 12
p
F .

Finally, let 12, ,
p

a b c∈F such that 0 1a a a w= + , 0 1b b b w= + , 0 1c a b c c w= ⋅ = + . Algorithm

6.3 details the required operations for computing multiplication in 12
p
F . In this case, 1c =

0 1 0 1 0 0 1 1()()a a b b a b a b+ + − − . At step 1, 6
p
F multiplications 0 0a b and 1 1a b give outputs in range

[0, 2]
N

p⊂ ⋅ using Algorithm 6.2. Additions 0 1a a+ and 0 1b b+ are single-precision reduced

modulo p so that multiplication 0 1 0 1()()a a b b+ + in step 2 gives output in range [0, 2]
N

p⊂ ⋅ using

Algorithm 6.2. Then, subtractions by and use double-precision operations with Option

2 to have an output range so that we can apply Montgomery reduction at step 5 to

obtain the result modulo p. For , multiplication by v, i.e., , where

, involves the double-precision operations , , and

, all performed with Option 2 to obtain the output range (steps 6-7). Final addi-

Algorithm 6.3. Multiplication in 12pF (12× , cost of 18 6 110um r a+ +)

Input: 0 1()a a a w= + and 120 1() pb b b w= + ∈ F

 Output: 120 1() pc a b c c w= ⋅ = + ∈F

 1: 6 6
0 0 0 1 1 1 0 0, ,T a b T a b t a← × ← × ← ⊕

6
1 1 0,a t b← ⊕

6
1b

 2: 6
2 0 1T t t← ×

 3: 3 0T T← ⊕
6

1T (Option 2)

 4: 2 2T T← �
6

3T (Option 2)

 5: 6
1 2 modc T p←

 6: 2,2,0 1,2,0T T← � 1,2,1 2,0,1 1,2,0,T T T← ⊕ 1,2,1T (Option 2)

 7: 2,1 1,0 2,2 1,1 2 1, (steps 6-7)T T T T T v T← ← ≡ ← ⋅

 8: 2 0T T← ⊕
6

2T (Option 2)

 9: 6
0 2 modc T p←

10: Return 0 1()c c c w= +

1 1a b 0 0a b

[0,2]N
p⋅

0 0 0 1 1c a b va b= + 1T v v= ⋅

i i iv a b= 0,0 2,0 2,1T v v= − 0,1 2,0 2,1T v v= + 1 0T v=

2 1T v= [0,2]N p⋅

Chapter 6: Efficient Techniques for Implementing Pairings in Software

147

tion with uses double-precision with Option 2 again so that we can apply Montgomery

reduction at step 9 to obtain the result modulo p. We remark that, by applying the lazy reduction

technique using the operation sequence above, we have reduced the number of reductions in

 from 3 to only 2, or the number of total modular reductions in from 54 (or 36 if lazy

reduction is employed in 2pF) to only k = 12.

As previously stated, there are situations when it is more efficient to perform reductions right

after multiplications and squarings in the last arithmetic layer of the tower construction. We

illustrate the latter with squaring in 12
p
F . As shown in Algorithm 6.4, a total of 2 reductions in

6
p
F are required when performing 6

p
F multiplications in step 4. If lazy reduction was applied,

the number of reductions would stay at 2, and worse, the total cost would be increased because

some operations would require double-precision. The reader should note that the approach

suggested by [PSN+10], where the formulas in [CH07] are employed for computing squarings in

internal cubic extensions of 12
p
F , saves 1m in comparison with Algorithm 6.4. However, we

experimented such approach with several combinations of formulas and towering, and it

remained consistently slower than Algorithm 6.4 due to an increase in the number of additions.

Algorithm 6.4. Squaring in 12pF (cost of 12 6 73um r a+ +)

Input: 120 1() pa a a w= + ∈F

 Output: 12
2

0 1() pc a c c w= = + ∈F

1: 0 0t a← ⊕
6

1 1,0,0 1,2,0,a t a← � 1,2,1 1,0,1 1,2,0,a t a← ⊕ 1,2,1a

2: 1,1 1,0 1,2 1,1 1 1, (steps 2-3)t a t a t v a← ← ≡ ← ⋅

3: 1 0t a← ⊕
6

1t

4: 6 6 6 6
1 0 1 0 0 1() mod , ()modc a a p t t t p← × ← ×

5: 1,0,0 1,2,0t c← � 1,2,1 1,0,1 1,2,0,c t c← ⊕ 1,2,1c

6: 1,1 1,0 1,2 1,1 1 1, (steps 6-7)t c t c t v c← ← ≡ ← ⋅

7: 1 1t t← ⊕
6

1c

8: 0 0c t← �
6

1 1 1,t c c← ⊕
6

1c

9: Return 0 1()c c c w= +

6.3. Optimizing Curve Arithmetic in Miller Loop

In this section, we present our optimizations to the curve arithmetic. Remarkably, we show that

the technique proposed in Section 6.2 for delaying reductions can also be applied to the point

arithmetic over a quadratic extension field. Reductions can be delayed to the end of each 2
p
F

multiplication/squaring and then delayed further for those sums of products that allow reducing

the number of reductions. Although not plentiful (given the nature of most curve arithmetic

0 0a b

6
p
F pF

Chapter 6: Efficient Techniques for Implementing Pairings in Software

148

formulas which have consecutive and redundant multiplications/squarings), there are a few

places where this technique can be applied. To be consistent with other results in the literature,

we only assume that double-precision addition has the cost of 2A and 2a in pF and 2
p
F

when

applying the lazy reduction technique. When this technique is not applied, we do not distinguish

between single- and double-precision additions.

6.3.1. Jacobian Coordinates

The curve arithmetic in the Miller loop is traditionally performed using Jacobian coordinates

[HMS08, BGM+10]. Let the point 21 1 1(, ,) ()
p

T X Y Z E ′= ∈ F be in Jacobian coordinates. The

point doubling computation 3 3 32 (, ,)T X Y Z= and evaluation of the arising line function l at

point (,) ()P P pP x y E= ∈ F are traditionally performed with the following formulae [HMS08,

Section 2]:

 4 2
3 1 1 19 8X X X Y= − , 2 2 4

3 1 1 1 3 13 (4) 8Y X X Y X Y= − − , 3 1 12Z Y Z= ,

 2 2 2 3 2
3 1 1 1 1 13 (3 2)P Pl Z Z y X Z x X Y= − + − . (6.6)

An operation count of (6.6) reveals that this formula can be performed with

6 5 11 4m s a M+ + + . We present the following revised formula that requires fewer 2
p
F additions:

4

21
3 1 1

9
2

4

X
X X Y= − ,

2
2 41

3 1 1 3 1

3
()

2

X
Y X Y X Y= − − , 3 1 1Z Y Z= ,

2 2 3

2 21 1 1
3 1 1

3 3
() ()

2 2

P
P

X Z x X
l Z Z y Y= − + − . (6.7)

This doubling formula only requires 6 5 8 4m s a M+ + + if computed as follows (P Px x= − is

precomputed):

 2 2 2
1 1 1 13 2, , , 2 ,A X B Y C X Y D C= = = ⋅ =

 2 2 2
3 3 3 3 1 1 1, , , , ,X A D E C X Y A E B Z Y Z F Z= − = − = ⋅ − = ⋅ =

 0,0 3 1,0 1,1 1, , .P Pl Z F y l A F x l A X B= ⋅ ⋅ = ⋅ ⋅ = ⋅ −

Applying Lazy Reduction:

Let the point 21 1 1(, ,) ()
p

T X Y Z E′= ∈ F be in Jacobian coordinates. Formula (6.7) combined with

the lazy reduction technique to compute 3 3 32 (, ,)T X Y Z= and the tangent line evaluated at point

Chapter 6: Efficient Techniques for Implementing Pairings in Software

149

(,) ()P P pP x y E= ∈ F has a total cost of 6 5 10 10 4u um s r a M+ + + + if computed as detailed in

Algorithm 6.5.

Algorithm 6.5. Point doubling in Jacobian coordinates (cost of 6 5 10 10 4u um s r a M+ + + +)

Input: 21 1 1(, ,) (), (,) () andP P p P PpT X Y Z E P x y E x x′= ∈ = ∈ = −F F

 Output: 23 3 32 (, ,) ()pT X Y Z E′= ∈ F and the tangent line 12pl ∈F

 1: 0 1t X← ⊗
2

1 2 1,X t Z← ⊗
2

1Z

 2: 1 0t t← ⊕
2

0 3 1,t Z Y← ⊗
2

1Z

 3: 0 0t t← ⊕
2

1 3 1,t t Y← ⊗
2

1Y

 4: 2
0 0 / 2t t←

 5: 1 0t t← ⊗
2

2 4 0,t t t← ⊗
2

1X

 6: 1,0,0 1,0l t← ⊗ 1,0,1 1,1,Px l t← ⊗ 1,1 4,Px l t← �
2

3 2 3,t t Z← ⊗
2

2t

 7: 1 3t t← ⊗
2

1X

 8: 0,0,0 2,0l t← ⊗ 0,0,1 2,1,Py l t← ⊗ 1 1,Py Y t← ⊕
2

1 1 0,t X t← ⊗
2

0t

 9: 3 1X X← �
2

1Y

10: 1 1t t← �
2

3X

11: 2 2
0 3 3 1 0 1,T t t T t t← × ← × (Option 1, h = 2)

12: 1 1T T← �
2

0T (Option 2)

13: 2
3 1 modY T p←

14: Return 3 3 32 (, ,)T X Y Z= and 0 1(,)l l l=

Let the points 1 1 1(, ,)T X Y Z= and 22 2 2(, ,) ()
p

R X Y Z E ′= ∈ F be in Jacobian coordinates. To

compute 3 3 3(, ,)T R X Y Z+ = and the tangent line l evaluated at point (,) ()P P pP x y E= ∈ F we

use the following addition formula:

 3 2
2 1 1 2 1 1, ,Y Z Y X Z Xθ λ= − = −

 2 2 3 2 2 3 3
3 1 3 1 1 3 12 , (3) , ,X X Y X Y Z Zθ λ λ θ λ θ λ λ λ= − − = − + − =

 3 2 2 3() (),P Pl Z y x X Y Zθ θ= + + − (6.8)

that costs 10 3 11 10 4u um s r a M+ + + + when exploiting lazy reduction (see Algorithm 6.6).

6.3.2. Homogeneous Coordinates

Costello et al. [CLN10, Section 5] proposed the use of homogeneous coordinates to perform the

curve arithmetic entirely on the twist. Their point doubling/line evaluation formula costs 2 7m s+ +

Chapter 6: Efficient Techniques for Implementing Pairings in Software

150

Algorithm 6.6. Point addition in Jacobian coordinates (cost of 10 3 11 10 4u um s r a M+ + + +)

Input: 21 1 1 2 2 2(, ,) and (, ,) (), (,) () andP P p P PpT X Y Z R X Y Z E P x y E x x′= = ∈ = ∈ = −F F

 Output: 23 3 3(, ,) ()pT R X Y Z E′+ = ∈ F and the tangent line 12pl ∈F

 1: 1 1t Z← ⊗
2

1Z

 2: 3 2t X← ⊗
2

1 1 1,t t t← ⊗
2

1Z

 3: 3 3t t← �
2

1 4 1,X t t← ⊗
2

2Y

 4: 3 1Z Z← ⊗
2

3 0 4,t t t← �
2

1 1 3,Y t t← ⊗
2

3t

 5: 4 1t t← ⊗
2

3 3 0,t X t← ⊗
2

0t

 6: 1 1t t← ⊗
2

1X

 7: 3 1t t← ⊕
2

1t

 8: 3 3X X← �
2

3t

 9: 3 3X X← �
2

4t

10: 1 1t t← �
2

3X

11: 2 2
0 0 1 1 4 1,T t t T t Y← × ← × (Option 1, h = 2)

12: 0 0T T← �
2

1T (Option 2)

13: 2
3 0 1,0,0 0,0mod ,Y T p l t← ← ⊗ 1,0,1 0,1,Px l t← ⊗ Px

14: 2 2
0 0 2 1 3 2,T t X T Z Y← × ← × (Option 1, h = 2)

15: 0 0T T← �
2

1T (Option 2)

16: 2
1,1 0 0,0,0 3,0mod ,l T p l Z← ← ⊗ 0,0,1 3,1,Py l Z← ⊗ Py

17: Return 3 3 3(, ,)T R X Y Z+ = and 0 1(,)l l l=

'23 4 1 ba M M+ + . The twisting of point P, given in our case by

vw), is eliminated by multiplying the whole line evaluation by and relying on the final

exponentiation to eliminate this extra factor [CLN10]. Clearly, the main drawback of this formula

is the high number of additions. We present the following revised formula:

 2 21 1
3 1 1(9)

2

X Y
X Y b Z′= − , 2 2 2 4

3 1 1 1

1
(9) 27

2
Y Y b Z b Z

 
′ ′= + −  

, 3
3 1 12Z Y Z= ,

 2 2 2 2
1 1 1 1 1(2) (3) (3).P Pl Y Z y vw X x v b Z Yξ ′= − − + − (6.9)

This doubling formula gives the cost of 3 6 17 4 1 1bm s a M M Mξ′+ + + + + . Moreover, if the

parameter b ′ is cleverly selected as in [PSN+10], multiplication by b ′ can be performed with

minimal number of additions and subtractions. For instance, if one fixes b = 2 then b′ =

2 /(1) 1i i+ = − . Accordingly, the following execution has a cost of 3 6 19 4m s a M+ + + (note that

computations for E and 0,0l are over pF and P Py y= − is precomputed):

 2 2
1 1 1 1 0 0 1 1 1 02, , , 3 , , ,A X Y B Y C Z D C E D D E D D= ⋅ = = = = + = −

2 3
(,) (p px w y w = px

ξ

2
,v py

ξ
ξ

Chapter 6: Efficient Techniques for Implementing Pairings in Software

151

 2 2
3 33 , (), () / 2, 3 ,F E X A B F G B F Y G E= = ⋅ − = + = −

2

1 1 3 0,0,0 0 1() (), , , ,H Y Z B C Z B H I E B l I I= + − + = ⋅ = − = −

2

0,0,1 0 1 1,1 0,2 1, , 3 .P Pl I I l H y l X x= + = ⋅ = ⋅ (6.10)

We point out that in practice we have observed that 3m s a− ≈ . Hence, it is more efficient to

compute 1 1X Y directly than using 2
1 1()X Y+ , B and 2

1X . If this was not the case, the formula

could be computed with cost 2 7 23 4m s a M+ + + .

Applying Lazy Reduction:

Doubling formula (6.9) requires 25 reductions (3 per 2
p
F multiplication using Karatsuba, 2

per squaring and 1 per multiplication). First, by delaying reductions inside arith-

metic the number of reductions per multiplication goes down to only 2, with 22 reductions in

total. Moreover, reductions corresponding to 2G and 23E in (see execution (6.10)) can be

Algorithm 6.7. Point doubling in homogeneous coordinates (cost of 3 6 8 22 4u um s r a M+ + + +)

Input: 21 1 1(, ,) (), (,) () andP P p P PpT X Y Z E P x y E y y′= ∈ = ∈ = −F F

 Output: 23 3 32 (, ,) ()pT X Y Z E′= ∈ F and the tangent line 12pl ∈F

 1: 0 1t Z← ⊗
2

1 4 1,Z t X← ⊗
2

1 1 1,Y t Y← ⊗
2

1Y

 2: 3 0t t← ⊕
2 2

0 4 4 5 0, / 2,t t t t t← ← ⊕
2

1t

 3: 0 0t t← ⊕
2

3t

 4: 2,0 0,0t t← ⊕ 0,1 2,1 0,1,t t t← � 0,0 2 2()t t b t′≡ ← ⋅

 5: 0 1t X← ⊗
2

1 3 2,X t t← ⊕
2

2t

 6: 3 2t t← ⊕
2 2

3 0,2 0 0,t l t t← +

 7: 3 1X t← �
2 2

3 0,2 0,2 0 3 1, ,t l l t t t← + ← ⊕
2

3t

 8: 3 4X t← ⊗
2 2

3 3 3, / 2X t t←

 9: 2 2
0 3 3 1 2 2,T t t T t t← × ← × (Option 1, h = 2)

10: 2
2 1 1 3 1,T T T t Y← + ← ⊕

2
1Z

11: 2
2 1 2 3 3,T T T t t← + ← ⊗

2
3t

12: 3 3t t← �
2

5t

13: 0 0T T← �
2

2T (Option 2)

14: 2
3 0 3 1mod ,Y T p Z t← ← ⊗

2
3 2 2,t t t← �

2
1t

15: 0,0,0 2,0l t← � 2,1 0,0,1 2,0,t l t← ⊕ 2,1 0,0 2()t l tξ≡ ← ⋅

16: 0,2,0 0,2,0l l← ⊗ 0,2,1 0,2,1,Px l l← ⊗ Px

17: 1,1,0 3,0l t← ⊗ 1,1,1 3,1,Py l t← ⊗ Py

18: Return 3 3 32 (, ,)T X Y Z= and 0 1(,)l l l=

pF

2
p
F pF 2

p
F

3Y

Chapter 6: Efficient Techniques for Implementing Pairings in Software

152

further delayed and merged, eliminating the need of two reductions. Thus, the number of

reductions is now 20 and the total cost of formula (6.9) is . The

details are shown in Algorithm 6.7.

Let and be points in homogeneous coordinates.

To compute and the tangent line l evaluated at point (,)P P pP x y= ∈F we

use the following addition formula:

 2
2 2() () ,P Pl y x v X Y vwλ θ ξ θ λ= − + − (6.11)

that costs when employing lazy reduction (see Alg. 6.8 below).

Algorithm 6.8. Point addition in homogeneous coordinates (cost of 11 2 11 12 4u um s r a M+ + + +)

Input: 21 1 1 2 2 2(, ,) and (, ,) (), (,) () andP P p P PpT X Y Z R X Y Z E P x y E y y′= = ∈ = ∈ = −F F

 Output: 23 3 3(, ,) ()pT R X Y Z E′+ = ∈ F and the tangent line 12pl ∈F

 1: 1 1t Z← ⊗
2

2 2 1,X t Z← ⊗
2

2Y

 2: 1 1t X← �
2

1 2 1,t t Y← �
2

2t

 3: 3 1t t← ⊗
2

1t

 4: 3 3X t← ⊗
2

1 4 2,X t t← ⊗
2

2t

 5: 3 1t t← ⊗
2

3 4 4,t t t← ⊗
2

1Z

 6: 4 3t t← ⊕
2

4t

 7: 4 4t t← �
2

3X

 8: 4 4t t← �
2

3X

 9: 3 3X X← �
2

4t

10: 2 2
1 2 3 2 3 1,T t X T t Y← × ← × (Option 1, h = 2)

11: 2 1T T← �
2

2T (Option 2)

12: 2
3 2 3 1mod ,Y T p X t← ← ⊗

2
4 3 3,t Z t← ⊗

2
1Z

13: 0,2,0 2,0l t← ⊗ 0,2,1 2,1,Px l t← ⊗ Px

14: 2
0,2 0,2l l← −

15: 2 2
1 2 2 2 1 2,T t X T t Y← × ← × (Option 1, h = 2)

16: 2 1T T← �
2

2T (Option 2)

17: 2
2 1 modt T p←

18: 0,0,0 2,0l t← � 2,1 0,0,1 2,0,t l t← ⊕ 2,1 0,0 2()t l tξ≡ ← ⋅

19: 1,1,0 1,0l t← ⊗ 1,1,1 1,1,Py l t← ⊗ Py

18: Return 3 3 3(, ,)T R X Y Z+ = and 0 1(,)l l l=

3 6 8 22 4u um s r a M+ + + +

1 1 1(, ,)T X Y Z= 22 2 2(, ,) ()
p

R X Y Z E′= ∈ F

3 3 3(, ,)T R X Y Z+ =

1 2 1 1 2 1, ,Y Y Z X X Zθ λ= − = −

3 2 2 2 3 2 3 3
3 1 1 3 1 1 1 3 1(2), (3) , ,X Z X Y X Z Y Z Zλ λ θ λ θ λ λ θ λ λ= + − = − − − =

11 2 11 12 4u um s r a M+ + + +

Chapter 6: Efficient Techniques for Implementing Pairings in Software

153

6.4. High-Speed Pairing Implementation

In this section, we evaluate theoretically and empirically the performance gain obtained by

exploiting the lazy reduction technique and improved explicit formulas. As a side effect, we

demonstrate that a careful selection of curve and parameters, efficient coding and the use of other

additional optimizations allow us to realize a high-speed software implementation that surpasses

the best results in the literature by significant margins.

6.4.1. Optimal Ate Pairing on BN Curves

For our analysis and tests, we use the Barreto-Naehrig (BN) curve:

 (6.12)

defined over , where , embedding degree k = 12,

prime order 4 3 2
36 36 18 6 1n u u u u= + + + + and 62 55(2 2 1) 0u = − + + < ∈Z .

To implement the arithmetic over extension fields efficiently, we follow the

recommendations in [IEEE08] to represent k
p
F with a tower of extensions using irreducible

binomials. Accordingly, we represent 12
p
F using the flexible towering scheme used in [DSD07,

HMS08, BGM+10, PSN+10] combined with the parameters suggested by [PSN+10]:

• 2
2

[]/(), where 1pp
i i β β= − = −F F .

• 4 2
2

[] /(), where 1
p p

s s iξ ξ= − = +F F .

• 6 2
3

[]/(), where 1
p p

v v iξ ξ= − = +F F .

• 12 4 6
3 2

[]/() or []/()
p p p

t t s w w v= − −F F F .

As can be seen in Algorithm 6.1, the selection of 1β = − , enabled by the fact that

3(mod 4)p ≡ , accelerates 2
p
F arithmetic since multiplications by β can be computed as simple

subtractions [PSN+10].

Although several variants of the Tate pairing are available (e.g., R-ate, optimal ate, X-ate),

our experiments reveal that they achieve very similar performance. For testing purposes, we

choose to implement the optimal ate pairing given by:

 2 1 T: G G Gopta × →

 ()
12

2

1

, [] , () [] (), ()
(,) () () ()

p p p

p

n
r Q r Q Q r Q Q Q

Q P f P l P l Pπ π π

−

+ −
→ ⋅ ⋅ , (6.13)

2 3: 2BNE y x= +

pF
4 3 236 36 24 6 1 3(mod 4)p u u u u= + + + + ≡

Chapter 6: Efficient Techniques for Implementing Pairings in Software

154

where 6 2 0r u= + < since 0u < . To accommodate the negative r, Arahna et al. [AKL+10]

modifies Algorithm 2.9 with the replacement of an expensive inversion by a simple conjugation.

The details are shown in Algorithm 6.9. For complete details, the reader is referred to [AKL+10,

Section 5.1].

Curve arithmetic and line evaluation in Algorithm 6.9 (lines 1, 2, 5, 6, 9) were implemented

with the optimized formulas in homogeneous coordinates discussed in Section 6.3.2 (Algorithm

6.7 and Algorithm 6.8). Towering arithmetic (lines 3, 5, 6, 9, 10) was optimized with the lazy

reduction technique as described in Section 6.2. Following [AKL+10], for accumulating line

evaluations into the Miller variable, is represented using the towering 2p p
→ →F F

4 12
p p

→F F and a special (dense× sparse)-multiplication (called sparse multiplication) costing

13 6 61um r a+ + is used (steps 5 and 6 of Algorithm 6.9). Aranha et al. also points that, during

the first iteration of the loop, a squaring in 12
p
F can be eliminated since the Miller variable is

initialized as 1 (step 1 in Algorithm 2.9) and a special (sparse× sparse) multiplication (called

sparser multiplication) costing 7 5 30um r a+ + is used to multiply the first two line evaluations

(step 3 of Algorithm 6.9). This sparser multiplication is also used for multiplying the two final

line evaluations in step 9 of the algorithm. Final exponentiation in step 10 was implemented with

the method by Scott et al. [SBC+09], in which the power is factored in the exponents

, and . Among them, the most expensive part is the computation

with the exponent . In this case, the execution can be performed in the cyclotomic

subgroup , which requires, among other operations, 3 exponentiations by . In order

to speed up these exponentiations, we use the faster compressed squarings by Karabina [Kar10].

Algorithm 6.9. Modified optimal ate pairing on BN curves (generalized for 0u <)

Input:
2log

1 2 0
G , G , 6 2 2

r i
ii

P Q r u r
=

∈ ∈ = + =∑

 Output: (,)opta Q P

 1: , (), 2 , 1Q Qd l P T Q e← ← ←

 2:  2log 1 ,if 1 then (),r T Qr e l P T T Q− = ← ← +

 3: f d e← ⋅

 4: 2for log 2 downto 0 doi r= −  

 5:
2

, (), 2T Tf f l P T T← ⋅ ←

 6: ,if 1 then (),i T Qr f f l P T T Q= ← ⋅ ← +

 7: 2
1 2(), ()p pQ P Q Qπ π← ←

 8:
6

if 0 then , pu T T f f< ← − ←

 9:
1 2, 1 , 2(), , (), , ()T Q T Qd l P T T Q e l P T T Q f f d e−← ← + ← ← − ← ⋅ ⋅

10:
6 2 4 2(1)(1)(1) /p p p p nf f − + − +←

11: Return f

12
p
F

12(1) /p n−
6

(1)p − 2(1)p + 4 2(1) /p p n− +
4 2(1) /p p n− +

2
6
()

pφG F u

Chapter 6: Efficient Techniques for Implementing Pairings in Software

155

Remarkably, we note that these compressed squarings can be sped up by applying the generalized

lazy reduction again. In total, about 8% of reductions can be eliminated per exponentiation by

. The reader is referred to Appendix C1 for complete details.

6.4.2. Operation Count

We now consider all the described improvements and state-of-the-art techniques to carry out a

detailed operation count of an optimal ate pairing over BN curves using Algorithm 6.9. We aim

to determine the performance gain obtained with the use of the generalized lazy reduction

technique introduced in Section 6.2.

Operation counts for arithmetic performed by the Miller’s algorithm when using the

generalized lazy reduction are detailed in Table 6.2. For reference, we also include costs when

using lazy reduction for 2pF arithmetic only (referred to as basic lazy reduction).

First, using the parameter selection detailed in Section 6.4.1 the Miller loop in Algorithm 6.9

requires 1 negation in pF

to precompute the coordinate Py− ; 64 point doublings with line

evaluations, 6 point additions with line evaluations, 2 negations, 1 p-power Frobenius and 1 p
2
-

power Frobenius in 2()
p

E F ; and 1 conjugation, 66 sparse multiplications, 63 squarings, 2

sparser multiplications and 1 multiplication in 12
p
F . Thus, the cost of the Miller loop when using

the generalized lazy reduction technique ()GLML is given by:

1 64(3 6 8 22 4) 6(11 2 11 12 4) 5 (2 2 2)GL u u u u uML A m s r a M m s r a M a m r A= + + + + + + + + + + + + + +

 (1 2) 66(13 6 61) 63(12 6 73) 2(7 5 30) (18 6 110)u u u ua M m r a m r a m r a m r a+ + + + + + + + + + + + + +

1906 396 1370 10281 282 3GL u uML m s r a M A= + + + + + . (6.14)

And the total cost of the Miller loop when using basic lazy reduction ()BLML is given by:

1 64(3 6 19 4) 6(11 2 10 4) 5 (2 2) (1 2)BLML A m s a M m s a M a m A a M= + + + + + + + + + + + + +

 66(13 36) 63(12 51) 2(7 18) (18 67)m a m a m a m a+ + + + + + + +

1906 396 6974 282 3BLML m s a M A= + + + + . (6.15)

The final exponentiation in Algorithm 6.9 requires 1 inversion, 4 conjugations, 15

multiplications, 3 u-th powers, 4 cyclotomic squarings, 5 p-power Frobenius and 3 p
2
-power

Frobenius in . Thus, the cost of the final exponentiation when using the generalized lazy

reduction technique is given by:

u

12
p
F

()GLFE

Chapter 6: Efficient Techniques for Implementing Pairings in Software

156

Table 6.2. Operation counts for arithmetic required by Miller’s algorithm when using: (i)

generalized lazy reduction technique; (ii) basic lazy reduction applied to 2
p
F

arithmetic only.

Curve Arithmetic
Operation count

(generalized lazy reduction)

Operation count

(basic lazy reduction)

Point doubling/line evaluation 3 6 8 22 4u um s r a M+ + + + 3 6 8 19 4m s r a M+ + + +

Point addition/line evaluation 11 2 11 12 4u um s r a M+ + + + 11 2 11 10 4m s r a M+ + + +

p-power Frobenius 2 2 2um r A+ + 2 2m A+

p2-power Frobenius 1 2a M+

Negation 1a

2pF Arithmetic Operation count Operation count

Add/Sub 1 2a A=

Double-precision Add/Sub 2a

Multiplication by ξ 2A

Double-precision Mult. by ξ 4A -

Conjugation 1A

Reduction 2r R=

Multiplication 3 2 8u um m r M R A= + = + + 3 2 8u um m r M R A= + = + +

Squaring 2 2 3u us s r M R A= + = + + 2 2 3u us s r M R A= + = + +

Inversion 1 2 2 2i I M S A= + + +

12pF Arithmetic Operation count Operation count

Add/Sub 6 12a A=

Conjugation 3a

Multiplication 18 6 110um r a+ + 18 67m a+

Sparse Multiplication 13 6 61um r a+ + 13 36m a+

Sparser Multiplication 7 5 30um r a+ + 7 18m a+

Squaring 12 6 73um r a+ + 12 51m a+

Cyclotomic Squaring 9 6 46us r a+ + 6 61m a+

Compressed Squaring 6 4 31us r a+ + 4 27m a+

p-power Frobenius 5 6m A+ 5 6m A+

p2-power Frobenius 10 2M a+ 10 2M a+

Inversion 1 25 9 24 112u ui m s r a+ + + + 1 25 9 82i m s a+ + +

1 2a M+

1a

1 2a A=

2a

2A

1A

2r R=

1 2 2 2i I M S A= + + +

6 12a A=

3a

Chapter 6: Efficient Techniques for Implementing Pairings in Software

157

. (6.16)

And the total cost of the final exponentiation when using basic lazy reduction is

given by:

. (6.17)

After adding (6.14) with (6.16) and adding (6.15) with (6.17), we obtain:

 . (6.18)

. (6.19)

Therefore, in the case of a state-of-the-art optimal ate pairing the generalized lazy reduction

technique allows us to eliminate about 32% of reductions. For instance, if we assume that

 and (neglecting the cost of field inversions for simplification purposes)

the expected cost reduction for the whole pairing computation is approximately 9%. Obviously,

this estimate is expected to grow with the ratios R/A (reduction/addition) and (reduction/

integer multiplication).

6.4.3. Implementation Results

A software implementation was developed in collaboration with Diego F. Aranha to evaluate the

performance boost obtained with the introduced techniques and improved explicit formulas. To

optimize carry handling and eliminate function call overheads, we followed suggestions by

[BGM+10] and implemented the 2
p
F arithmetic purely in Assembly. Higher-level algorithms

were implemented using the C language and compiled with GCC. To obtain our cycle counts, we

ran our implementations 10
4
 times, averaged and approximated the results to the nearest 1000

(1 25 9 24 112) 4(3) 15(18 6 110) 3(1 36 372 9 6GL u u u u uFE i m s r a a m r a i m s m s= + + + + + + + + + + + + +

260 2164) 4(9 6 46) 5(5 6) 3(10 2)ur a s r a m A M a+ + + + + + + + +

4 394 61 1158 21 906 8456 30 30GL u uFE i m m s s r a M A= + + + + + + + +

()BLFE

(1 25 9 82) 4(3) 15(18 67) 3(1 293 6 1830) 4(6 61)BLFE i m s a a m a i m s a m a= + + + + + + + + + + + +

5(5 6) 3(10 2)m A M a+ + + +

4 1223 27 6839 30 30BLFE i m s a M A= + + + + +

4 2361 1575 2358 18737 30 30GL GL u uML FE i m s r a M A+ = + + + + + +

4 10561 5044 61128uI M R A= + + +

4 3129 423 13813 312 33BL BLML FE i m s a M A+ = + + + + +

4 10561 7432 53968uBL BL I MF AM RL E+ = + + +

1 0.65uM R= 1 0.1A R=

/ uR M

Chapter 6: Efficient Techniques for Implementing Pairings in Software

158

cycles. Table 6.3 compares the timings of our Basic and Optimized implementations: the former

employs lazy reduction below 2
p
F only, whereas the latter is fully optimized with the lazy

reduction technique applied to the whole pairing computation. Both implementations exploit

faster compressed squarings and our optimized explicit formulas using homogeneous

coordinates. Therefore, Table 6.3 directly illustrates the benefits of using the generalized lazy

reduction technique discussed in Section 6.2. As can be seen, this technique enables in practice

cost reductions between 12% and 18% on x86-64-based processors.

Table 6.3. Performance comparison of our implementations on several x86-64-based processors:

(i) Basic implementation using lazy reduction below 2
p
F arithmetic; (ii) Fully optimized

implementation using generalized lazy reduction for the whole pairing computation. Timings are

in millions of clock cycles.

Implementation Phenom II
Cost

reduct.
Core i5

Cost

reduct.
Opteron

Cost

reduct.
Core 2

Cost

reduct.

Basic 1.777 - 2.020 - 2.005 - 2.677 -

Optimized 1.562 12% 1.688 16% 1.710 15% 2.194 18%

Table 6.4 compares our implementation results with Beuchat et al. [BGM+10], which

presented the previously fastest implementation at the 128-bit security level in the literature. We

remark that the tested Core i5 exhibits a microarchitecture that is equivalent to the Core i7

processor employed by [BGM+10]. To confirm this assumption, we benchmarked software by

Beuchat et al. and compared the results with the ones reported in [BGM+10]. We also note that

Phenom II was not considered in [BGM+10] and that we could not find a Core 2 Duo machine

producing the same timings as in [BGM+10]. Hence, timings for these two architectures were

measured independently by the authors using the available software.

First, observe that the basic implementation in Table 6.3 consistently outperforms Beuchat et

al.’s results. This is due to our careful implementation using an optimal choice of parameters

combined with optimized curve arithmetic in homogeneous coordinates and faster cyclotomic

formulas. When lazy reduction is enabled (optimized implementation), pairing computation

becomes faster than the best previous result by 28%-34%.

For extended benchmark results and comparisons with other previous works on different 64-

bit processors, the reader is referred to our online database [Lon10b].

Chapter 6: Efficient Techniques for Implementing Pairings in Software

159

Table 6.4. Performance comparison of state-of-the-art pairing implementations on several x86-

64-based processors. Timings are in clock cycles.

Operation
Beuchat et al. [BGM+10]

 Phenom II (1) Core i7 (2) Opteron (3) Core 2 Duo (4)

Multiplication in 440 435 443 590

Squaring in 353 342 355 479

Miller Loop 1,338,000 1,330,000 1,360,000 1,781,000

Final Exponentiation 1,020,000 1,000,000 1,040,000 1,370,000

Optimal Ate Pairing 2,358,000 2,330,000 2,400,000 3,151,000

Operation
This work

 Phenom II (1) Core i5 (5) Opteron (6) Core 2 Duo (4)

Multiplication in 368 412 390 560

Squaring in 288 328 295 451

Miller Loop 898,000 990,000 988,000 1,275,000

Final Exponentiation 664,000 713,000 722,000 919,000

Optimal Ate Pairing 1,562,000 1,688,000 1,710,000 2,194,000

Improvement 34% 28% 29% 30%

 (1) On a 3.0GHz AMD Phenom II X4 940.
 (2) On a 2.8GHz Intel Core i7 860.
 (3) On a 2.3GHz AMD Opteron 2376.
 (4) On a 2.66GHz Intel Core 2 Duo E6750.
 (5) On a 2.53GHz Intel Core i5 M540.
 (6) On a 2.2GHz AMD Opteron 275.

6.5. Conclusions

In this chapter, we have proposed efficient methods and improved explicit formulas that speed up

significantly the computation of pairings on ordinary curves over prime fields. Most remarkably,

the introduced generalized lazy reduction technique is shown to apply to every computation

involving tower field operations found in the Miller loop and final exponentiation, including the

recently proposed compressed squarings by [Kar10] (see Appendix C1).

After discussing relevant previous work in §6.1, we introduced the generalized lazy reduction

technique in the context of tower extension fields in §6.2. We described a methodology that relies

on the careful selection of the field size to keep intermediate results under Montgomery

boundaries with the objective of reducing costs of additions/subtractions and maximizing the use

of operations without carry checks. Moreover, we illustrated the efficient realization of these

techniques with the popular tower 2 6 12p p p p
→ → →F F F F , detailing the improved explicit

2p
F

2p
F

2p
F

2p
F

Chapter 6: Efficient Techniques for Implementing Pairings in Software

160

formulas for multiplication and squaring in 2
p
F , 6

p
F and 12

p
F .

In §6.3, we presented our optimizations to doubling/line evaluation and addition/line

evaluation formulas using Jacobian and homogeneous coordinates. The revised formulas require

fewer additions and “small” operations, which are not negligible in certain platforms.

Furthermore, we also applied the generalized lazy reduction technique to the curve arithmetic and

explicitly stated the new formulas with minimal number of reductions.

In §6.4, we evaluated the new techniques and explicit formulas on a state-of-the-art

implementation of the optimal ate pairing on BN curves at the 128-bit security level. We carried

out a detailed operation count and determined that the generalized reduction technique allows us

to eliminate about 32% of reductions, which represents (under certain assumptions) an estimated

cost reduction of about 9% for the whole pairing computation. This improvement strongly relies

on the typically large gap between reduction and addition costs, so the cost reduction is expected

to grow with the R/A ratio. This analysis was confirmed in practice with a high-speed software

implementation that was intensively code optimized and includes state-of-the-art techniques such

as the fast compressed squaring formulas and efficient decompression by [Kar10]. We reported

improvements between 12% and 18% on different 64-bit platforms when using our method.

These results surpass the expected theoretical estimate since they include our methodology to

optimize carry handling and maximize the number of operations without carry checks (see

Section 6.2.1). As a side effect, we reported the fastest pairing implementation on x86-64-based

processors with improvements ranging between 28% and 34% in comparison with the previously

best results due to Beuchat et al. [BGM+10]. In particular, we reported a pairing computation in

~0.5msec. on a 3.0GHz AMD Phenom II X4 processor.

161

7 Chapter 7

Conclusions

In the last few years, intense research has been focused on the efficient computation of elliptic

curve and pairing primitives to enable their realization in the plethora of potential applications

and emerging platforms of the new millennium. This thesis has focused on devising efficient

methods and formulas for enabling high-speed elliptic curve and pairing-based cryptography

over fields of large prime characteristic. These results have a practical impact in the performance

of cryptographic protocols and schemes based on elliptic curves and pairings. Most remarkably, a

careful selection of state-of-the-art algorithms has led to the realization of record-breaking

implementations in software. For instance, these results may directly increase the number of

secure transaction requests per second that can be processed by a Web server in an Internet-based

application such as e-banking or e-commerce. This could potentially lead to savings in hardware

costs for corporations, to more Web-based content being protected and to reduced waiting times

during online transactions for consumers, among other benefits.

A more detailed description of the contributions of this thesis follow in §7.1. Possible future

research directions are described in §7.2.

7.1. Summary of Contributions

In Chapter 2 a summary of fundamental concepts of ECC and Pairing-based Cryptography was

provided. Also, some advanced research topics regarding special curves and the GLS method

Chapter 7: Conclusions

162

were described.

Chapter 3 introduced two new schemes for precomputing points. The LM Scheme, which is

intended for tables of form id P on standard curves using Jacobian coordinates, was adapted to

the case using only one inversion (case 2) and to the case without inversions (case 1). For case 2,

two variants were proposed with slightly different memory requirements and speeds, case 2a and

case 2b. It was shown that the new method achieves the lowest costs in the literature when using

an optimal number of precomputations. For instance, LM Scheme, case 2b, has a cost of

1 (9) (2 6)I L M L S+ + + with L non-trivial points, which is the lowest in the literature among

methods using one inversion only. The cost formulas for the different variants were derived (see

proofs in Appendices A1 and A2). On the other hand, the LG Scheme, which is based on the

proposed idea of conjugate additions in projective coordinates, was shown to apply to different

curve forms and types of scalar multiplication. Conjugate addition formulas were derived for J,
e

JQ and IE coordinates (see Appendix A3). Moreover, an efficient method combining the LM

and LG Schemes was proposed for the case of multiple scalar multiplication on standard curves

using J. The generic cost formulas for single and multiple scalar multiplications were derived

(see proofs in Appendices A5 and A6), as well as the cost formulas of the optimized schemes for

J, e
JQ and IE coordinates. Finally, an extensive comparative analysis of different pre-

computations methods for different scenarios, memory requirements and security levels was

carried out to determine the most efficient scheme for each case when using J, e
JQ and IE

coordinates. In general, it was shown that for the great majority of cases the proposed schemes

achieve the best performance. Refer to §3.4 for complete details. Finally, potential applications

for the use of conjugate additions were described (see §3.5). The outcomes of this chapter were

exploited for speeding up further scalar multiplication in Chapters 4 and 5.

Chapter 4 was about efficient multibase representations for scalar multiplication and how

efficient these methods are in different scenarios. First, a taxonomy and comparative analysis of

the various double- and multi-base methods for scalar multiplication were discussed. Then, the

theoretical analysis of the multibase NAF (mbNAF) method and its windowed variant, wmbNAF,

were developed. Our methods were modeled using Markov chains and formulas for estimating

the average zero and nonzero densities for cases with bases {2,3} and {2,3,5} were derived.

Then, the “fractional” windows recoding was applied to the setting of wmbNAF to solve the

problem of restricted number of precomputations imposed by standard windows. The new

method, denoted by Frac-wmbNAF, allows a flexible number of precomputations in the

execution of scalar multiplication, which makes it ideal for applications with restricted memory.

The method was also analyzed theoretically using Markov chains for the case with bases {2,3}.

Furthermore, a new methodology based on the operation cost per bit to derive efficient multibase

algorithms was introduced. The optimized algorithms were implemented in Matlab to perform an

extensive comparison for computing scalar multiplication when using J, e
JQ and IE

Chapter 7: Conclusions

163

coordinates. The cases with bases {2,3} and {2,3,5} using (Frac-w)mbNAF and the refined

multibase chains were compared with the performance of standard NAF-based methods and the

most efficient double-base methods in the literature. For proposed and standard NAF methods,

the best precomputation scheme available for each case was applied (using results from Chapter

3). The conclusion was that, currently, the proposed refined multibase chains achieve the lowest

costs found in the literature among methods without precomputations, for all curve forms under

analysis. For instance, using bases {2,3,5} and {2,3} for n = 160 bits we can perform a scalar

multiplication with costs of only 1451M (field multiplications) and 1351M in Jacobian and

inverted Edwards coordinates, respectively. With e
JQ , that cost can be as low as 1261M using

bases {2,3,5}. These results provide cost reductions between 7%-10% in comparison with NAF.

Similar results were attained by the refined multibase chains using an optimal number of

precomputations, although in this case the gain was only 1%-3% in comparison with (Frac)-

wNAF (see §4.5 for complete details). A relevant comparison with the fastest curves using

standard radix-2 methods followed. In conclusion, “slower” curves that can advantageously

exploit multibase chains may become competitive with the “fastest” curves using radix-2

methods when curve parameters are suitably chosen and no precomputations are allowed.

Finally, a discussion of potential applications and variants of the proposed methods was included,

as well as a critical look at the practical implications of double- and multi-base number systems

in the computation of scalar multiplication (see §4.6). In conclusion, the use of multibases was

recommended for memory-constrained devices and when the conversion step (if expensive) can

be performed off-line. For non-constrained devices, it was shown that the gain may be negligible

and that faster curves without exploiting multibases are available. These conclusions were

confirmed by tests on real x86-64-based implementations in §5.6.4, subsection “Timings using

Multibase Methods”.

Chapter 5 studied and brought together most efficient algorithms for the field, point and

scalar arithmetic levels with the objective of achieving high-speed implementations of ECC on

x86-64 processors. Optimizations at different levels were carefully tuned for the targeted

architectures. First, incomplete reduction and branchless arithmetic were optimally combined for

suitably chosen pseudo-Mersenne primes for achieving efficient arithmetic in pF . Dependencies

between consecutive field operations were found to degrade the performance on the targeted

processors by stalling the pipeline. The rescheduling and merging of field operations and the

merging of point operations were proposed to minimize this problem. These techniques also

reduce the number of function calls and memory accesses. Explicit point formulas for the

relevant cases of J and /
e

E E over pF and 2
p
F were optimized by reducing the number of

“small” operations and by applying the techniques aforementioned (see Appendices B1 and B2).

By combining all optimized formulas with state-of-the-art algorithms, including the use of the

LM precomputation scheme (see §5.6.1 and §5.6.2 for further details), we presented two

Chapter 7: Conclusions

164

traditional and two GLS-based implementations using J or /
e

E E coordinates at the 128-bit

security level. The various tests throughout the chapter as well as the benchmark results for full

point multiplication were discussed for at least one x86-64 processor representative from the

notebook, desktop and server computing classes. Presented implementations set new speed

records and were shown to achieve up to 34% of cost reduction in comparison with best

previous results. For instance, we reported a point multiplication computation in about 60µsec.

on a 3.0GHz AMD Phenom II X4 processor.

Finally, Chapter 6 studied and brought together most efficient algorithms for computing

pairings with the objective of enabling high-speed implementations on x86-64 processors. First,

the well-known technique of lazy reduction was generalized to the whole pairing arithmetic

including towering and curve arithmetic. By carrying out a detailed operation count, this

technique was shown to eliminate at least 32% of the total number of reductions in a state-of-the-

art implementation of the optimal ate pairing over a BN curve at the 128-bit security level.

Furthermore, for dealing with more costly higher-precision additions required by lazy reduction,

a flexible methodology that keeps intermediate values under Montgomery reduction boundaries

maximizing the use of operations without carry checks was developed. Optimized formulas were

derived for the case using the tower and for the new compressed

squarings by [Kar10] (see §6.2.2 and Appendix C1). Following the approach detailed in Section

5.4, formulas for point doubling and addition in Jacobian and homogeneous coordinates were

carefully optimized by eliminating several commonly neglected operations that are not

inexpensive on modern 64-bit platforms (see §6.3). Finally, the significant savings obtained by

the new techniques were illustrated with a high-speed implementation of the optimal ate pairing

over a BN curve at the 128-bit security level. By combining our techniques with other state-of-

the-art methods, the presented implementation set new speed records and was shown to achieve

up to 34% of cost reduction on x86-64 processors in comparison with the best results in the

literature. For instance, we reported a pairing computation in about half a millisecond on a

3.0GHz AMD Phenom II X4 processor.

7.2. Future Work

New potential research directions have arisen from the outcomes of this dissertation. We

summarize them below:

Precomputations for other special curves and settings. In particular, for the efficient Twisted

Edwards curve using /
e

E E or extended Jacobi quartics using homogeneous/extended

homogeneous coordinates it is still unknown if other precomputation schemes with higher

efficiency than the traditional scheme using 3 5P P P mP→ → → →… exist. Further

2 6 12p p p p
→ → →F F F F

Chapter 7: Conclusions

165

research could focus on the development of improved schemes for these systems. Also, in §3.5 it

was observed that conjugate additions can be derived for formulas over
2

mF . The application of

LG-like precomputation schemes to this setting requires further analysis.

More composite formulas and efficient conversion to multibase. In §4.6.1, it was argued that

the main obstacle that opposes to the use of multiple bases in a wide range of applications is the

computing cost of conversion from binary to multibase. Further research is needed to improve the

implementation of conversion algorithms on different platforms. This effort can be

complemented by the development of efficient tripling and quintupling formulas for other

coordinate systems such as /
e

E E where radix-2 methods are still more efficient.

Implementation on constrained devices. Following the results and analysis in §4.5 and §4.6.1,

the use of multibase methods is more promising for devices with constrained memory resources

in which the gain is maximal in terms of speed. However, these devices are usually limited in

terms of power. Further investigation supported with implementations is required for assessing

the practical impact of using multibase methods in these platforms with such a constraint.

Analysis on other platforms; improving ECC over binary fields, HECC. Several software

techniques and optimizations were proposed for elliptic curve point multiplication over pF and

2
p
F in Chapter 5. The analysis and implementations targeted x86-64 processors. In many cases,

the proposed techniques and optimized formulas are generic and further study could be devoted

to test them on different platforms, e.g., embedded devices with 32-bit and 8-bit

microarchitectures. Moreover, further research can be focused on applying similar methods to the

case over
2mF . For instance, it would be interesting to analyze whether data dependencies

degrade performance of field operations and if similar countermeasures also apply. In fact,

further study could analyze the application of these methods to other settings such as

Hyperelliptic Curve Cryptosystems.

Generalized lazy reduction on other platforms. This technique was shown to reduce

significantly the computing cost of pairings on various x86-64-based processors. Practical

implementation of the technique in Field Programmable Gate Arrays (FPGAs), 32-bit embedded

devices or microcontrollers with 8-bit architectures would be highly valuable. In certain cases,

the gain is expected to grow even further as the ratio multiplication/addition is usually larger on

smaller devices in which embedded multipliers are much less powerful.

167

A Appendix A

A1 Pseudocode of the LM Precomputation Scheme

In this section, we present the pseudocode of the LM Scheme described in Section 3.2.

Appendix A1: Pseudocode of the LM Precomputation Scheme

168

Lemma A.1. Algorithm A.1, that computes the initial doubling (3.3) of Step 1 (see Section

3.2.1), costs 1M + 5S and requires 6 temporary registers.

Algorithm A.1. Point doubling 2A → J, 2 3:E y x ax b= + +

Input: point 1 1(,)P x y= in ()pE F , 1 1T x← , 3 1T y← , curve parameter a

Output: point 2 2 22 (: :)P X Y Z= and
(1) (1) (1)(1)

1 11 1 1(, ,) (, ,1)P X Y Z x y= ≡

 1: 2
2 3T T=

 2: 4 1 2T T T= +

 3:
2

4 4T T=

 4: 2
5 2T T= (1) 4

11{ }Y y=

 5:
2

1 1T T=

 6: 4 4 1T T T= −

 7: 6 4 2T T T= − 2 2 2 4
1 1 1 1{2 () }x y x yβ = + − −

 8: 4 6 / 2T T=

(1) 2
1 11{ }X x yβ= =

 9: 1 13T T=

10: 2 1T T a= +

11: 2 2 / 2T T=

2
1{ (3) / 2}x aα = +

12: 2
1 2T T= 2

{ }α

13: 1 1 6T T T= − 2
2{ 2 }X α β= −

14: 6 4 1T T T= −
 2{ }Xβ −

15: 2 2 6T T T= × 2{ ()}Xα β −

16: 2 2 5T T T= − 4
2 2 1{ () }Y X yα β= − −

17: Return
(1) (1)

1 2 3 4 5 2 2 2 1 1(, , , ,) (, , , ,)T T T T T X Y Z X Y=

Lemma A.2. Algorithm A.2, that computes the first addition 2P P+ in sequence (3.2) using

CoADD Z− , costs 5M + 2S and requires 6 temporary registers if the precomputed table contains

only one point. Otherwise, Algorithm A.2 requires 6 temporary registers for calculations plus 2

extra registers to store the (,)X Y coordinates of 3P. To adapt Algorithm A.2 to case 1, it should

also store the Z coordinate of 3P in register 3Z .

2
1{ }y

2
1 1{ }x y+

2 2
1 1{() }x y+

2
1{ }x

2 2 2
1 1 1{() }x y x+ −

2
1{3 }x
2
1{3 }x a+

Appendix A1: Pseudocode of the LM Precomputation Scheme

169

Algorithm A.2. Special addition with identical Z coordinate J + J → J, 2 3:E y x ax b= + +

Input: points 2 2 22 (: :)P X Y Z= and
(1) (1) (1)(1)
1 1 1(, ,)P X Y Z= in ()pE F ,

 T1 ← X2, T2 ← Y2, T3 ← Z2,
(1)

4 1T X← ,
(1)

5 1T Y←

Output: point (1)
3 3 313 2 (: :)P P P X Y Z= + =

 1: 6 4 1T T T= −
(1)

21{ }X X−

 2: 3 3 6T T T= ×
(1)

3 2 21{ ()}Z Z X X= −

 3:
2

4 6T T=
(1) 2

21{() }X X−

 4: 6 4 6T T T= ×
(1) 3

21{() }X X−

 5: 4 1 4T T T= ×
(1) (1) 2

2 22 1{ () }X X X X= −

 6: 1 42T T=
(1) 2

2 21{2 () }X X X−

 7: 1 1 6T T T= +
(1) (1)3 2

2 2 21 1{() 2 () }X X X X X− + −

 8: 6 2 6T T T= ×
(1) (1) 3

2 22 1{ () }Y Y X X= −

 9: 2 5 2T T T= −
(1)

21{ }Y Y−

10:
2

5 2T T=
(1) 2

21{() }Y Y−

11: 1 5 1T T T= −
(1) (1) (1)2 3 2

3 2 2 2 21 1 1{ () () 2 () }X Y Y X X X X X= − − − − −

12: 5 4 1T T T= −
(1) 2

2 2 31{ () }X X X X− −

13: 5 2 5T T T= ×
(1) (1) 2

2 2 2 31 1{()[()]}Y Y X X X X− − −

14: 2 5 6T T T= −
(1) (1) (1)2 3

3 2 2 2 3 2 21 1 1{ ()[()] () }Y Y Y X X X X Y X X= − − − − −

15: 5 6T T=
(1)

2{ }Y

16: If m > 3 then:

17: 3 1X T=

18: 3 2Y T=

19: Return
(1) (1)

1 2 3 4 5 3 3 3 3 3 3 32 2(, , , , , ,) (, , , , , ,)T T T T T X Y X Y Z X Y X Y=

Lemma A.3. Algorithm A.3, that computes following additions in sequence (3.2) using

CoADD Z− operations, costs 5M + 2S per extra point, requires 6 temporary registers for

calculations and 3 (4) extra registers per each point for case 2a (case 2b) to store the values

, ,X Y A (, , ,)X Y B C . In the last iteration the memory requirement is reduced by storing values

,X Y (, ,)X Y B in temporary registers. To adapt Algorithm A.3 to case 1, one should execute the

steps that correspond to case 2a except that, instead of values , one should store Z

coordinates of points iP.

(3) / 2iA +

Appendix A1: Pseudocode of the LM Precomputation Scheme

170

Algorithm A.3. Special addition with identical Z coordinate J + J → J,

Input: and 3 3 33 (: :)P X Y Z= ,

 , , ,
(1)

4 2T X← ,
(1)

5 2T Y←

Output: points , for , i odd

 LM Scheme, case 2a: LM Scheme, case 2b:

 1: For i = 5 to m do (i odd) For i = 5 to m do (i odd)

 2: If i ≠ m then:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16: If i ≠ m then:

17:

18:

19: Return Else:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35: Return

2 3:E y x ax b= + +

(1) (1) (1)(1)
2 2 22 (, ,)P X Y Z=

1 3T X← 2 3T Y← (1)
3 2T Z←

((3) / 2)
(3) / 2 (3) / 2 (3) / 22 (2) (, ,)i
i i iiP P i P X Y Z

−
+ + += + − = 5 toi m=

(3) / 2 1 4iA T T+ = − ((3) / 2)
(3) / 2 (1) / 2 2{ }i
i iA X X

−
+ += −

3 (3) / 2 3iT A T+= × (3) / 2{ }iZ + 1 1 4T T T= − ((3) / 2)
(1) / 2 2{ }i
iX X

−
+ −

2
1 (3) / 2iT A += 2

(3) / 2{ }iA + 3 1 3T T T= × (3) / 2{ }iZ +

4 1 4T T T= × ((1) / 2) ((3) / 2) 2
(3) / 22 2{ }i i
iX X A− −
+= 2

(3) / 2 1iB T+ = ((3) / 2) 2
(3) / 2 (1) / 2 2{ () }i
i iB X X −
+ += −

1 1 (3) / 2iT T A += × 3
(3)/ 2{ }iA + (3) / 2 1 (3) / 2i iC T B+ += × ((3) / 2) 3

(3) / 2 (1) / 2 2{ () }i
i iC X X −
+ += −

2 2 5T T T= − ((3) / 2)
(1) / 2 2{ }i
iY Y −
+ − 4 4 (3) / 2iT T B += × ((1) / 2) ((3) / 2)

(3) / 22 2{ }i i
iX X B− −
+=

5 1 5T T T= × ((1) / 2) ((3) / 2) 3
(3) / 22 2{ }i i
iY Y A− −
+= 1 42T T= ((3) / 2)

(3) / 22{2 }i
iX B−
+

6 42T T= ((3) / 2) 2
(3) / 22{2 }i
iX A−
+ 1 1 (3) / 2iT T C += + ((3) / 2)

(3) / 2 (3) / 22{ 2 }i
i iC X B

−
+ ++

1 1 6T T T= + 3 ((3) / 2) 2
(3) / 2 (3) / 22{ 2 }i
i iA X A

−
+ ++ 2 2 5T T T= − ((3) / 2)

(1) / 2 2{ }i
iY Y

−
+ −

2
6 2T T= ((3) / 2) 2

(1) / 2 2{() }i
iY Y

−
+ − 5 5 (3) / 2iT T C += × ((1) / 2) ((3) / 2)

(3) / 22 2{ }i i
iY Y C

− −
+=

1 6 1T T T= − (3) / 2{ }iX +
2

6 2T T= ((3) / 2) 2
(1) / 2 2{() }

i
iY Y

−
+ −

6 4 1T T T= − ((3) / 2) 2
(3) / 2 (3) / 22{ }

i
i is X A X

−
+ += − 1 6 1T T T= − (3) / 2{ }iX +

2 2 6T T T= × ((3) / 2)
(1) / 2 2{ ()}

i
is Y Y

−
+⋅ − 6 4 1T T T= − ((3) / 2)

(3) / 2 (3) / 22{ }
i

i is X B X
−

+ += −

2 2 5T T T= − (3) / 2{ }iY + 2 2 6T T T= × ((3) / 2)
(1) / 2 2{ ()}

i
is Y Y

−
+⋅ −

2 2 5T T T= − (3) / 2{ }iY +

(3) / 2 1iX T+ = (3) / 2 1iX T+ =

(3) / 2 2iY T+ = (3) / 2 2iY T+ =

1 2 3 (3) / 2 (3) / 2 (3) / 2(, , , , ,)i i iT T T A X Y+ + +

1 1 4T T T= − ((3) / 2)
(1) / 2 2{ }

i
iX X

−
+ −

3 1 3T T T= × (3) / 2{ }iZ +

2
6 1T T= ((3) / 2) 2

(3) / 2 (1) / 2 2{ () }
i

i iB X X
−

+ += −

(3) / 2 1 6iC T T+ = × ((3) / 2) 3
(3) / 2 (1) / 2 2{ () }

i
i iC X X

−
+ += −

2 2 5T T T= − ((3) / 2)
(1) / 2 2{ }

i
iY Y

−
+ −

5 5 (3) / 2iT T C += × ((3) / 2)
(3) / 22{ }

i
iY C

−
+

4 4 6T T T= × ((3) / 2)
(3) / 22{ }

i
iX B

−
+

4 42T T= ((3) / 2)
(3) / 22{2 }

i
iX B

−
+

2
1 2T T= ((3) / 2) 2

(1) / 2 2{() }
i

iY Y
−

+ −

1 1 (3) / 2iT T C += − ((3) / 2) 2
(1) / 2 (3) / 22{() }

i
i iY Y C

−
+ +− −

1 1 4T T T= − (3) / 2{ }iX +

4 4 / 2T T= ((3) / 2)
(3) / 22{ }

i
iX B

−
+

4 4 1T T T= − ((3) / 2)
(3) / 2 (3) / 22{ }

i
i is X B X

−
+ += −

2 2 4T T T= × ((3) / 2)
(1) / 2 2{ ()}

i
is Y Y

−
+⋅ −

2 2 5T T T= − (3) / 2{ }iY +

1 2 3 6 (3) / 2 (3) / 2 (3) / 2 (3) / 2(, , , , , , ,)i i i iT T T T B C X Y+ + + +

Appendix A1: Pseudocode of the LM Precomputation Scheme

171

Lemma A.4. Algorithm A.4, that computes the modified Montgomery’s method corresponding

to Step 2 (see Section 3.2.1), costs 1I + (3M + 1S) + (4M + 1S)(L − 1) and 1I + (3M + 1S) + 4(L

− 1)M for cases 2a and 2b, respectively, and requires 4 temporary registers for calculations and

storage for the affine coordinates (x, y) of (L − 1) precomputed points. In addition, case 2a

requires (L − 1) registers for values jA , and case 2b requires 2(L − 1) registers for values

(,)j jB C . This step is not executed in case 1.

Algorithm A.4. Modified Montgomery’ simultaneous inversion method, 2 3:E y x ax b= + +

Input: 1 2 3 6 (3) / 2 (3) / 2 (3) / 2 (3) / 2, , , , , ,m j j jT T T T B A B C+ + + += , for 5 toj m= , j odd

 (3) / 2 (3) / 2,i iX Y+ + , for 3 toi m= , i odd

Output: points (3) / 2 (3) / 2(,)i iiP x y+ += for 3 toi m= , i odd

 LM Scheme, case 2a: LM Scheme, case 2b:

 1:
1

3 3T T
−= 1

(3)/ 2{ }mZ
−

+ (3) / 2 6mB T+ =

 2:
2

4 3T T= 2
(3)/ 2{ }mZ
−

+
1

3 3T T
−= 1

(3)/ 2{ }mZ
−

+

 3: (3) / 2 1 4mX T T+ = × (3) / 2{ }mx +
2

4 3T T= 2
(3)/ 2{ }mZ
−

+

 4: 4 3 4T T T= × 3
(3)/ 2{ }mZ
−

+ (3) / 2 1 4mX T T+ = ×

 (3) / 2{ }mx +

 5: (3) / 2 2 4mY T T+ = ×

 (3) / 2{ }my + 3 3 4T T T= × 3

(3)/ 2{ }mZ
−

+

 6: For (2) downto 3i m= − do (i odd) (3) / 2 2 3mY T T+ = ×

 (3) / 2{ }my +

 7: 3 3 (5) / 2iT T A += × 1
(3)/ 2{ }iZ
−
+ For (2) downto 3i m= − do (i odd)

 8:
2

4 3T T= 2
(3)/ 2{ }iZ
−
+ 4 4 (5) / 2iT T B += × 2

(3)/ 2{ }iZ
−
+

 9: (3) / 2 (3) / 2 4i iX X T+ += × (3) / 2{ }ix + 3 3 (5) / 2iT T C += × 3
(3)/ 2{ }iZ
−
+

10: 4 3 4T T T= × 3
(3)/ 2{ }iZ
−
+ (3) / 2 (3) / 2 4i iX X T+ += × (3) / 2{ }ix +

11: (3) / 2 (3) / 2 4i iY Y T+ += × (3) / 2{ }iy + (3) / 2 (3) / 2 3i iY Y T+ += × (3) / 2{ }iy +

12: Return (3) / 2 (3) / 2(,)i iX Y+ + Return (3) / 2 (3) / 2(,)i iX Y+ +

173

A2 Cost Analysis of the LM Precomputation Scheme

Theorem A.1. The LM Scheme, case 1, has the following cost:

 LM Scheme, case 1Cost (6 1) (3 5)L M L S= + + + ,

and requires (3L + 6) registers, where L is the number of non-trivial points in the precomputed

table id P . The requirement increases to (5L + 6) if values
2
iZ and

3
iZ are also stored in order to

use the addition (or doubling-addition) with stored values during evaluation.

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 cost 1 5M S+ , 5 2M S+ and

(5 2)(1)M S L+ − , respectively. Also, precomputing values 2
iZ , 3

iZ (to enable the use of ADD or

DBLADD with store values during the evaluation stage) costs (1 1)M S L+ . By adding these

values we obtain the cost of the LM Scheme, case 1, above. In terms of memory, this method

only requires 6 temporary registers during the execution of Algorithms A.1, A.2 and A.3 plus 3

registers to store the (: :)X Y Z coordinates of each precomputed point. That makes a total

requirement of 3L + 6 registers. If the pair 2 3/i iZ Z is also stored per point, the total requirement

increases to 5L + 6. □

Theorem A.2. The LM Scheme, case 2a, has the following cost:

 LM Scheme, case 2aCost 1 (9) (3 5)I L M L S= + + + ,

and requires (3L + 3) registers.

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 cost 1M + 5S, 5M + 2S and

(5M + 2S)(L − 1), respectively. According to Lemma A.4, Algorithm A.4 costs 1I + (3M + 1S) +

(4M + 1S)(L − 1). By adding these values, we obtain the cost of the LM Scheme, case 2a, above.

Regarding memory requirements, Algorithm A.1 needs 6 temporary registers 1 6, ,T T… . The same

registers can be reused by Algorithm A.2 for calculations. Additionally, it needs 2 extra registers

to store (,)X Y coordinates corresponding to 3P, making a total of 6 + 2 = 8 registers (see

Lemma A.2). Algorithm A.3 also reuses temporary registers 1 6, ,T T… , and requires 3 registers

per point, excepting the last one, to store (X, Y, A) values. For the last iteration, we only require

registers 1 6, ,T T… and 1 extra register to store A since the last coordinates are stored in 1T

and 2T

(see Lemma A.3). That makes an accumulated requirement of 6 + 2 + 3(L − 2) + 1 = 3L +

3 at the end of Algorithm A.3, for L ≥ 2. If L = 1, we do not compute Algorithm A.3, and the

requirement is fixed by Algorithm A.2 at only 6 registers (note that in this case (X, Y) coordinates

(,)X Y

Appendix A2: Cost Analysis of the LM Precomputation Scheme

174

are stored in 1T and 2T). Algorithm A.4 requires 4 temporary registers for calculations (where

and can store the (x, y) coordinates of the last point mP), 2(L − 1) − 2 registers for (x, y)

coordinates of the remaining (L − 1) points (assuming that 3T and 4T can store the (x, y)

coordinates of 3P) and (L – 1) registers for values jA for 4 (3) / 2j m≤ ≤ + , 3m > odd, making

a total requirement of 3L – 1. In conclusion, LM Scheme, case 2a, requires 3L + 3 registers. □

Theorem A.3. The LM Scheme, case 2b, has the following cost:

 LM Scheme, case 2bCost 1 (9) (2 6)I L M L S= + + + ,

and requires (4L + 1) registers.

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 have the same costs as cases 1

and 2a, and Algorithm A.4 costs 1I + (3M + 1S) + (4M)(L − 1). Adding these costs we obtain the

value indicated for the LM Scheme, case 2b. Regarding memory requirements, Algorithm A.1

needs 6 registers 1 6, ,T T… , which can be reused by Algorithm A.2 for temporary calculations.

Additionally, Algorithm A.2 needs 2 extra registers to store (,)X Y coordinates corresponding to

3P, making a total of 6 + 2 = 8 registers (see Lemma A.2). Algorithm A.3 also reuses registers

1 6, ,T T… , and requires 4 registers per point, excepting the last one, to store (X, Y, B, C) values.

For the last iteration, we only require registers 1 6, ,T T… and 1 extra register to store C since the

last (,)X Y coordinates are stored in 1T and 2T , and 6T stores B (see Lemma A.3). That makes an

accumulated requirement of 6 + 2 + 4(L − 2) + 1 = 4L + 1 at the end of Algorithm A.3, for L ≥ 2.

If L = 1, we do not compute Algorithm A.3, and the requirement is fixed by Algorithm A.2 at

only 6 registers as pointed out in the analysis for case 2a. Algorithm A.4 requires 4 registers for

calculations (where and can store the (x, y) coordinates of the last point mP), 2(L − 1) − 2

registers for (x, y) coordinates of the remaining (L − 1) points (assuming that 3T and 4T can store

the (x, y) coordinates of 3P) and 2(L – 1) registers for values ,j jB C for 4 (3) / 2j m≤ ≤ + , 3m >

odd, making a total requirement of 4L – 2 registers. In conclusion, case 2b requires 4L + 1

registers. □

1T

2T

1T 2T

175

A3 Conjugate Addition Formulas

Conjugate (Mixed) Addition in Jacobian Coordinates

Let 1 1 1(: :)P X Y Z= and 2 2 2(: :)Q X Y Z= be two points in Jacobian coordinates on an elliptic

curve WE over pF . If the general addition P Q+ is performed using [LM08, formula (15)] and

the partial values 3 2 2
12(4 8)Z Xβ β+ , 2 2

12Z X β , 3 3
12Z Y β− , 3Z , 3

21Z Y and 3
12Z Y are temporarily

stored, the conjugate addition 1 1 1 2 2 2 4 4 4() (: :) (: :) (: :)P Q P Q X Y Z X Y Z X Y Z− = + − = + − = can

be performed with the following:

2 3 2 2
4 12(4 8)X Z Xγ β β= − + , 2 2 3 3

4 1 4 12 2()Y Z X X Z Yγ β β= − − , 4 3Z Z= , (A.1)

where 3 3
2 11 22()Z Y Z Yγ = − + . This formula only requires 1M + 1S + 4A + 1 (2)× .

In the case of mixed addition, let 1 1 1(: :)P X Y Z= and 2 2(,)Q x y= be two points on an

elliptic curve WE over pF . If the mixed addition P Q+ is performed using [LM08, formula

(16)] and the partial values 3 2
1(4 8)Xβ β+ , 2

14X β , 3
18Y β− , 3Z and 3

21Z y are temporarily

stored, the conjugate mixed addition 1 1 1 2 2 4 4 4() (: :) (:) (: :)P Q P Q X Y Z x y X Y Z− = + − = + − =

can be performed as follows:

2 3 2
4 1(4 8)X Xγ β β= − + , 2 3

4 1 4 1(4) 8Y X X Yγ β β= − − , 4 3Z Z= , (A.2)

where 3
1 2 12()Z y Yγ = − + . This formula only costs 1M + 1S + 4A + 1 (2)× .

To obtain the costs of the different addition/conjugate addition variants from Table 3.2, one

needs to add the costs from Table 2.2 to costs of formulas (A.1) or (A.2). For instance, an

addition/conjugate addition pair using [2,2]ADD has a cost of (10M + 2S) + (1M + 1S) = 11M +

3S, or (9M + 3S) + (1M + 1S) = 10M + 4S if applying one S-M trading.

Conjugate (Mixed) Addition in eJQ Coordinates

Let 2 2
1 1 1 1 1(: : : :)P X Y Z X Z= and 2 2

2 2 2 2 2(: : : :)Q X Y Z X Z=

be two points in eJQ coordinates

on an extended Jacobi quartic curve /JQ pE F with 1d = in (2.11). If the addition P Q+ is

performed using the following formula due to [HWC+07, HWC+08b]:

3 1 2 1 2(2)(2) 4X Y Y Y Yα β αβ= + + − − , 2 2 2 2
3 1 2 1 24 4Z Z Z X X= − , 2 2

33 ()X X= , 2 2
33 ()Z Z= ,

2 2 2 2 2 2 2 2 2 2
3 1 21 2 1 2 1 1 2 2 3 3(4 4 2)[4()() 4] 16()Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + + + + + + − + , (A.3)

where 2 2 2
1 1 1 1() ()X Z X Zα = + − + , 2 2 2

2 2 2 2() ()X Z X Zβ = + − + , and the partial values β ,

Appendix A3: Conjugate Addition Formulas

176

1(2)Yα + , 22Y , α β , 1 24Y Y− , 2 2 2 2
1 2 1 2(4 4)X X Z Z+ , 2αβ , 2 2 2 2

1 21 1 2 24()() 4X Z X Z Y Y+ + + , aαβ ,

3Z and 2
3Z are temporarily stored, then the conjugate addition ()P Q P Q− = + − =
2 2 2 2

1 1 1 2 2 2 4 4 41 1 2 2(, , , ,) (, , , ,) (, ,)X Y Z X Z X Y Z X Z X Y Z+ − = can be performed with only 2M + 1S +

7A + 1 (16)× as follows:

4 1 2 1 2(2)(2) 4X Y Y Y Yα β αβ= + − + + − , 2 2 2 2
4 31 2 1 24 4Z Z Z X X Z= − = , 2 2

44 ()X X= , 2 2
4 3Z Z= ,

2 2 2 2 2 2 2 2 2 2
4 1 2 1 2 1 1 2 2 1 2 4 4(4 4 2)[4()() 4] 16()Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + − + + − + − + , (A.4)

Thus, the cost of an addition/conjugate addition pair is of (7M + 4S) + (2M + 1S) = 9M + 5S

if using an ADD operation or (7M + 3S) + (2M + 1S) = 9M + 4S, if using an [0,1]ADD operation.

See Tables 2.4 and 3.2.

In the case of mixed addition, let 2 2
1 1 1 1 1(: : : :)P X Y Z X Z= and 2

2 2 2(, ,)Q x y x= be two points

in eJQ and A coordinates, respectively, on an extended Jacobi quartic curve /JQ pE F with

1d = in (2.11). If the mixed addition P Q+ is performed using the following formula due to

[HWC+07, HWC+08b]:

3 1 2 2 2 1 2(2)() 2X Y x y x Y yα α= + + − − ,
2 2 2

3 1 1 22()Z Z X x= − ,
2 2
3 3()X X= ,

2 2
3 3()Z Z= ,

2 2 2 2 2 2 2 2
3 1 2 1 2 1 1 2 2 1 2 3 32(()[2()(1) 2] 2())Y X x Z x X Z x a x Y y X Zα α= + + + + + + − + , (A.5)

where 2 2 2
1 1 1 1() ()X Z X Zα = + − + , and the partial values 1(2)Yα + , 2xα , 1 22Y y− , 2 2 2

1 2 1()X x Z+ ,
2 2 2
1 1 2 1 2[2()(1) 2]X Z x Y y+ + + , 2a xα , 3Z and 2

3Z are temporarily stored, then the conjugate

mixed addition 2 2 2 2 2
1 1 1 1 1 2 2 2 4 4 4 4 4() (: : : :) (, ,) (: : : :)P Q P Q X Y Z X Z x y x X Y Z X Z− = + − = + − =

can be performed with 2M + 1S + 7A + 2 (2)× as follows:

4 1 2 2 2 1 2(2)() 2X Y x y x Y yα α= + − + + − ,
2 2 2

4 1 1 2 32()Z Z X x Z= − = ,
2 2
4 4()X X= ,

2 2
4 3Z Z= ,

2 2 2 2 2 2 2 2
4 1 2 1 2 1 1 2 2 1 2 4 42(()[2()(1) 2] 2())Y X x Z x X Z x a x Y y X Zα α= + − + + − + − + . (A.6)

Thus, the cost of a mixed addition/conjugate mixed addition pair is of (6M + 3S) + (2M + 1S)

= 8M + 4S. See Tables 2.4 and 3.2.

Conjugate (Mixed) Addition in IE Coordinates

Let 1 1 1(: :)P X Y Z= and 2 2 2(: :)Q X Y Z= be two points in IE coordinates on a Twisted

Edwards curve /TE pE F with 1a = in (2.12). If the general addition P Q+ is performed using

the following formula due to [BL07b] (note that some terms have been rearranged to save a few

Appendix A3: Conjugate Addition Formulas

177

field additions):

2
3 1 2 1 2 1 2 1 2 1 2[()]()X X X Y Y d Z Z X X Y Y= + − , 2

3 1 2 1 2 1 2 1 2 2 1[()]()Y X X Y Y d Z Z X Y X Y= − + ,

3 1 2 1 2 1 2 1 2 2 1()()Z Z Z X X Y Y X Y X Y= − + , (A.7)

and the partial values 2
1 2 1 2 1 2[()]X X Y Y d Z Z+ , 1 2X X , 1 2Y Y , 2

1 2 1 2 1 2[()]X X Y Y d Z Z− , 1 2X Y ,

2 1X Y and 1 2Z Z are temporarily stored, then the conjugate addition ()P Q P Q− = + − =

1 1 1 2 2 2 4 4 4(: :) (: :) (: :)X Y Z X Y Z X Y Z+ − = can be performed with the following (with a cost of

only 4M + 2A):

2
4 1 2 1 2 1 2 1 2 1 2[()]()X X X Y Y d Z Z X X Y Y= − + , 2

4 1 2 1 2 1 2 1 2 2 1[()]()Y X X Y Y d Z Z X Y X Y= − + − ,

4 1 2 1 2 1 2 1 2 2 1()()Z Z Z X X Y Y X Y X Y= − + − , (A.8)

Thus, the cost of an addition/conjugate addition pair is of (10M + 1S) + 4M = 14M + 1S.

The formula for mixed addition can be obtained by setting 2 1Z = in formula (A.7) and has a

cost of 9M + 1S + 4A. Then, if the partial values 2
1 2 1 2 1()X x Y y dZ+ , 2

1 2 1 2 1()X x Y y dZ− , 1 2X x ,

1 2Y y , 1 2X y and 2 1x Y are temporarily cached, the conjugate mixed addition ()P Q P Q− = + − =

1 1 1 2 2 4 4 4(: :) (:) (: :)X Y Z x y X Y Z+ − = can be performed by:

2
4 1 2 1 2 1 2 1 21[]()X X x Y y dZ X x Y y= − + , 2

4 1 2 1 2 1 2 2 11[]()Y X x Y y dZ X y x Y= − + − ,

4 1 1 2 1 2 1 2 2 1()()Z Z X x Y y X y x Y= − + − , (A.9)

which only costs 4M + 2A. Therefore, the cost of a mixed addition/conjugate mixed addition pair

is of (9M + 1S) + 4M = 13M + 1S.

179

A4 Calculation of Precomputed Points for the LG Scheme

The following table shows the proposed sequences for computing a table with the form id P ,

where { }\ {0,1} 3,5,...,id D m
+∈ =

with m odd. For m = 5, the first sequence corresponds to J

and , and the second one to IE coordinates. Tied arrows denote an addition/conjugate

addition pair (or mixed addition/conjugate mixed addition pair if addition is performed with

affine point P).

m Precomputation Scheme m Precomputation Scheme

3

15

5

17

7

19

9

27

11

29

13

31

eJQ

181

A5 Cost Analysis of the LG Scheme, Table diP

Theorem A.4. Given an elliptic curve E of arbitrary form, the cost of using the LG Scheme for

computing a precomputed table with the form , where

with m

odd and the base point , is given by:

,

where , , is the value of the highest “strategic” point,

 and denotes the cost of

converting points from projective to affine coordinates in case 2.

Proof: first, note that . If is defined as the value of the highest “strategic” point, then

it holds that for some integer 2ω ≥ since “strategic” points have the form

, for integers with . It easily follows that calculating all “strategic” points

up to

requires one tripling and doublings. Then, additions are

required to compute each point in the table except , which is already calculated. Since there

are L non-trivial points in the table, we require additions in total. Let us now estimate the

number of regular additions required for computing points below maxr P , and then above maxr P .

First, up to there are odd points, from which are computed with a

conjugate addition. If P and 3P are discarded we require

regular additions up to . Above maxr P there is a range for which points are computed with

conjugate additions. Then we need to establish the value s.t. points kP , (2)k P+ ,

… , mP are calculated with regular additions. Following Appendix A4, it is straightforward to

note that if , if , if , and so on. Thus, k =

max(4 3) /3r + and, hence, max(4 3) / 3

2

m r− +
max1 1 2 / 3L r+ = + − regular additions are required above

maxr P . However, an exception happens when , for which case the number of additions

above maxr P should be zero. The latter can be accomplished by simply multiplying

 with max1 2 / 3L r+ − .

Therefore, the total number of regular additions is given by the expression

. Since it was established that

there are additions in total, then are addition/conjugate addition pairs and

 are individual additions. By definition, case 2 requires the addition of

the cost of converting projective points to affine. □

id P \{0,1}id D+∈ = { }3,5,...,m

()pP E∈ F

case1/3 (2)Cost 1TPL (2)DBL + (2 1)ADD + (1)ADD-ADD (Cost)L Lω ε ε →′= + − − + − − + P A

3m ≥ (1) / 2L m= − 2
max 3 2r ω−= × ε =

()max max max max(6 2 3) /(6 3) 1 2 / 3 (/ 3) 1L r r L r r+ − − + − + −   Cost →P A

3m ≥ maxr
2

max 3 2r ω−= ×

1 2i iP P+ = 0i ≥ 0 3P P=
2

max (3 2)r P Pω−= × (2)ω −

3P

(1)L −

maxr P max / 2r max(/ 6) 1r −

max max max(/ 2) (/ 6) 1 2 (/3) 1r r r− + − = −

maxr P

maxr k m< <

9k = max 6r = 17k = max 12r = 33k = max 24r =

m k<

max max max max max(2 1 (4 3) / 3) (2 1) (6 2 3) /(6 3)r m r r L r r− + − + − = + − −      

()max max max max(6 2 3) /(6 3) 1 2 / 3 (/ 3) 1L r r L r rε = + − − + − + −  
(1)L − (1)L ε− −

(1) 2 1L Lε ε ε− − − = − +

Appendix A5: Cost Analysis of the LG Scheme, Table diP

182

Corollary A.1. In the setting of Theorem A.4, the cost of the LG Scheme when using mixed

coordinates is given by:

 .

Proof: assuming that the base point P is given in affine coordinates, then can be

computed using a mixed tripling with the form 3 →A P . Since doublings are required,

there are also

“strategic” points. By definition, , so for each “strategic” point

there is always a pair of points with the form . Then, there are points that can be

calculated with an addition/conjugate addition pair using mixed Projective-affine coordinates,

that is, computing ± →P A P . According to Theorem A.4, there are addition/

conjugate addition pairs in total. Hence, are addition/

conjugate addition pairs using Jacobian coordinates, that is, computing ± →P P P . □

()case 1(2)Cost 1mTPL (2)DBL + (2)mADD-mADD + 1 ADD-ADD +Lω ω ε ω′ ′= + − − − − + …

(2 1)ADD (Cost)Lε →− + +… P A

0 3P P=

(2)ω −

(2)ω − maxm r> jP

jP P± (2)ω −

(1)L ε− −

(1) (2) 1L Lε ω ε ω− − − + = − − +

183

A6 Cost Analysis of the LG Scheme, Table ciP ± diQ

Theorem A.5. Given an elliptic curve E of arbitrary form, the cost of using the LG Scheme for

computing a precomputed table with the form i ic P d Q± , where { }, 0,1,3,5,...,i ic d D m
+∈ = ,

1ic > if 0id = , 1id > if 0ic = , m odd and P, Q are points in ()pE F , is given by:

2

cases 1/3(2)

(1) 1
Cost (1)ADD (ADD ADD) 2 DBL (+Cost)

4

m m
m

m
→

+ − ′= − + − +   
P A ,

where 2(4 1) / 2 1L m m= + − > is the number of non-trivial points in the table and Cost →P A

denotes the cost of converting points from projective to affine coordinates in case 2.

Proof: first, let us establish the value L. There are (1)m + points with the form ic P or id Q ,

which can be combined in 2(1) 2m + ways to get points of the form i ic P d Q± with 0i ic d ≠ .

By discarding points P and Q, we obtain the total number of non-trivial points as L =
2(1)

2

m +

(1) 2m+ + − = (4) 1

2

m m + −
. As it always holds that 1m ≥ , then 1L > . The points ic P or id Q with

3ic ≥ and 3id ≥

can be computed with two sequences with the form P → P+2P = 3P → 3P+2P

= 5P → … → (m−2)P+2P = mP. This requires in total two doublings and (1)m − additions. Note

that when 1m = , there are no calculations required for this part. Hence, for 1m ≥ the number of

required doublings can be expressed by 2 (1) /m m−   . Finally, the computation of the

2(1) 2m + points i ic P d Q± with 0i ic d ≠ involves 2(1) 4m + addition/conjugate addition pairs.

By definition, case 2 requires in addition the cost of converting points from projective to affine

coordinates. □

Theorem A.6. In the setting of Theorem A.5 and assuming that 5m ≥ , the cost of the LG

Scheme when using Jacobian coordinates is given by:

2

cases 1(2) Co

(1)
Cost 2DBL + (1)ADD (ADD ADD) (+Cost2)

4
-Z

m
m →

+
′= − + − J A ,

where 2Cost2 [2 (4) 1] [(1) / 4 2]m m M m S→ = + − + + +J A for case 2.

Proof: according to Theorem A.1, if 3m ≥ points with the form id P , where \ {0,1}id D+∈ =

{3,5, , }m… can be computed with the sequence P → P+2P = 3P → 3P+2P = 5P → … →

(m−2)P+2P = mP using one (mixed) doubling and (1) / 2m − additions with identical Z

coordinate. Then, points ic P and id Q with 3ic ≥ and 3id ≥

can be computed with two

doublings and (1)m − additions with identical Z coordinate. The restriction 5m ≥ is because

when 3m = it is more efficient to compute 3P directly with a (mixed) tripling operation.

Following Theorem A.5, the computation of the 2(1) 2m + points i ic P d Q± with 0i ic d ≠

Appendix A6: Cost Analysis of the LG Scheme, Table ciP ± diQ

184

involves 2(1) 4m + addition/conjugate addition pairs. Let us now proof Cost2 →J A . Following

the LM Scheme, case 2b, sequences for ic P and id Q using additions with identical Z coordinate

yield the two Z-coordinates mPZ and mQZ . Since conjugate additions share the same Z

coordinate, the 2(1) 4m + addition/conjugate addition pairs i ic P d Q± with 0i ic d ≠ yield
2(1) 4t m= + Z-coordinates. In total, there are (2)t + distinct Z-coordinates. Applying

Montgomery’s method for simultaneous inversion, the latter first requires one inversion and

3(1)t + multiplications to invert all Z coordinates combined and then recover each of them.

Second, recovering (: :)X Y Z coordinates of the 2t = 2(1) 2m + points i ic P d Q±

 involves

(3 1)M S t+ and (2)M t for points obtained by addition and conjugate addition, respectively; and

recovering (: :)X Y Z coordinates of the points ic P and id Q by applying LM Scheme, case 2b,

to coordinates mPZ and mQZ costs []2 (2 3) 1m M S− + . In total, the cost of conversion to affine is

1 3(1) (3 1) (2) 2(2 3) 2I t M M S t M t m M S+ + + + + + − + = 1 (8 4 3) (2)I t m M t S+ + − + + . □

185

A7 Comparison of LG and LM Schemes using Jacobian

Coordinates

The tables below compare the performance of LM and LG Schemes with the DOS method for

n = 256 and 512. For each method, we show the cost of performing an n-bit scalar multiplication

and the optimal number of precomputed points L when considering that a maximum of

(2)ESL R+ registers are available for the evaluation stage (i.e., ESL L≤). For our analysis, R =

7. Also, to compare the performance of schemes for cases 1 and 2, we include costs of the most

efficient scheme for case 1 (i.e., LM Scheme, case 1) and show at the bottom of each table the

I/M range for which LM Scheme, case 1, would achieve the lowest cost.

Table A.1. Performance comparison of LG and LM Schemes with the DOS method in 256-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S).

Registers ()
ES

L 11 (2) 13 (3) 15 (4) 17 (5) 19 (6)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 2 1I + 2396M 3 1I + 2349M 3 1I + 2349M 4 1I + 2335M 4 1I + 2335M

LM, case 2a 2 1I + 2397M 3 1I + 2350M 4 1I + 2337M 4 1I + 2337M 5 1I + 2326M

LG, case 2 2 1I + 2401M 3 1I + 2354M 4 1I + 2347M 5 1I + 2345M 6 1I + 2331M

DOS [DOS07] 2 1I + 2399M 3 1I + 2354M 4 1I + 2342M 5 1I + 2333M 6 1I + 2326M

LM, case 1 1 2548M 1 2548M 1 2548M 2 2505M 2 2505M

I/M range (LM, case1) I > 152M I > 199M I > 211M I > 172M I > 179M

Registers ()
ES

L 23 (8) 27 (10) 29 (11) 35 (14) ≥ 61 (27)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 5 1I + 2323M 6 1I + 2313M 6 1I + 2305M 7 1I + 2305M 7 1I + 2305M

LM, case 2a 6 1I + 2317M 7 1I + 2309M 7 1I + 2309M 7 1I + 2309M 7 1I + 2309M

LG, case 2 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M

DOS [DOS07] 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M

LM, case 1 3 2457M 4 2443M 4 2443M 5 2414M 6 2397M

I/M range (LM, case1) I > 141M I > 134M I > 138M I > 109M I > 92M

Appendix A7: Comparison of LG and LM Schemes using Jacobian Coordinates

186

Table A.2. Performance comparison of LG and LM Schemes with the DOS method in 512-bit

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S).

Registers ()
ES

L 11 (2) 13 (3) 15 (4) 17 (5) 19 (6)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 2 1I + 4768M 3 1I + 4663M 3 1I + 4663M 4 1I + 4624M 4 1I + 4624M

LM, case 2a 2 1I + 4769M 3 1I + 4665M 4 1I + 4626M 4 1I + 4626M 5 1I + 4593M

LG, case 2 2 1I + 4773M 3 1I + 4668M 4 1I + 4636M 5 1I + 4611M 6 1I + 4577M

DOS [DOS07] 2 1I + 4771M 3 1I + 4668M 4 1I + 4632M 5 1I + 4600M 6 1I + 4572M

LM, case 1 1 5089M 1 5089M 1 5089M 2 4991M 2 4991M

I/M range (LM, case1) I > 321M I > 426M I > 463M I > 391M I > 419M

Registers ()
ES

L 21 (7) 23 (8) 25 (9) 27 (10) 29 (11)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 5 1I + 4589M 5 1I + 4589M 6 1I + 4559M 6 1I + 4559M 7 1I + 4532M

LM, case 2a 6 1I + 4563M 6 1I + 4563M 7 1I + 4537M 8 1I + 4530M 8 1I + 4530M

LG, case 2 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M

DOS [DOS07] 7 1I + 4547M 8 1I + 4543M 9 1I + 4539M 10 1I + 4536M 11 1I + 4533M

LM, case 1 3 4887M 3 4887M 3 4887M 4 4849M 4 4849M

I/M range (LM, case1) I > 344M I > 344M I > 350M I > 319M I > 319M

Registers ()
ES

L 31 (12) 33 (13) 35 (14) 37 (15) 39 (16)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 7 1I + 4532M 8 1I + 4525M 8 1I + 4525M 9 1I + 4518M 9 1I + 4518M

LM, case 2a 9 1I + 4525M 10 1I + 4520M 10 1I + 4520M 11 1I + 4515M 12 1I + 4512M

LG, case 2 7 1I + 4543M 13 1I + 4536M 14 1I + 4525M 15 1I + 4516M 15 1I + 4516M

DOS [DOS07] 12 1I + 4531M 13 1I + 4530M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M

LM, case 1 5 4811M 5 4811M 5 4811M 6 4774M 6 4774M

I/M range (LM, case1) I > 286M I > 291M I > 291M I > 259M I > 262M

Appendix A7: Comparison of LG and LM Schemes using Jacobian Coordinates

187

Registers ()
ES

L 41 (17) 43 (18) 47 (20) 51 (22) 55 (24)

Method L Cost L Cost L Cost L Cost L Cost

LM, case 2b 10 1I + 4512M 10 1I + 4512M 11 1I + 4507M 12 1I + 4503M 13 1I + 4499M

LM, case 2a 12 1I + 4512M 13 1I + 4508M 14 1I + 4506M 15 1I + 4504M 15 1I + 4504M

LG, case 2 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M

DOS [DOS07] 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M

LM, case 1 7 4740M 7 4740M 7 4740M 8 4730M 9 4719M

I/M range (LM, case1) I > 228M I > 232M I > 234M I > 227M I > 220M

Registers ()
ES

L 59 (26) 61 (27) ≥ 81 (37)

Method L Cost L Cost L Cost

LM, case 2b 14 1I + 4495M 15 1I + 4492M 15 1I + 4492M

LM, case 2a 15 1I + 4504M 15 1I + 4504M 15 1I + 4504M

LG, case 2 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M

DOS [DOS07] 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M

LM, case 1 10 4709M 11 4699M 15 4665M

I/M range (LM, case1) I > 214M I > 207M I > 173M

189

B Appendix B

The following Maple scripts detail the improved explicit formulas for the case of Jacobian (J)

and mixed Twisted Edwards homogeneous/extended homogeneous (/)
e

E E coordinates

exploiting the techniques discussed in Chapter 5, namely incomplete reduction, merging and

scheduling of field operations and merging of point operations.

B1 Explicit Formulas for “Traditional” Implementations

These formulas have been used for the “traditional” implementations discussed in Section 5.6.1.

Temporary registers are denoted by it and Mul = multiplication, Sqr = squaring, Add = addition,

Sub = subtraction, Mulx = multiplication by x, Divx = division by x, Neg = negation. DblSub

represents the computation 2 (mod)a b p− and SubDblSub represents the merging of

(mod)a b p− and () 2 (mod).a b c p− − Underlined field operations are merged and operationIR

represents a field operation using incomplete reduction. In practice, input registers are reused to

store the result of an operation.

Explicit Formulas using Jacobian Coordinates

Weierstrass curve (for verification):

x1:=X1/Z1^2; y1:=Y1/Z1^3; x2:=X2/Z2^2; y2:=Y2/Z2^3; ZZ2:=Z2^2; ZZZ2:=Z2^3; a:=-3;

x3:=((3*x1^2+a)/(2*y1))^2-2*x1; y3:=((3*x1^2+a)/(2*y1))*(x1-x3)-y1;

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

Appendix B1: Explicit Formulas for “Traditional” Implementations

190

DBL, 2 →J J : 1 1 12(: :) (: :)out out outX Y Z X Y Z→ . Cost = 4Mul+4Sqr+3Sub+1DblSub+

1AddIR +1Mul3IR+1Div2IR; 5 contiguous data dependencies

In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^2;

t1:=t4/2; t3:=t1^2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check

4DBL, 8 →J J : 1 1 18(: :) (: :)out out outX Y Z X Y Z→ . Cost = 4*(4Mul+4Sqr+3Sub+1DblSub+

1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data dependencies/doubling

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^2;

t1:=t4/2; Zout:=Y1*Z1; t3:=t1^2; t4:=Z1^2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4;

t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3;

t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-Xout;

t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2;

t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2;

t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2;

t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5;

t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

mDBLADD, 2 + →J A J : 1 1 1 2 22(: :) (,) (: :)out out outX Y Z x y X Y Z+ → . Cost = 13Mul+5Sqr+

7Sub+2DblSub+1AddIR+1Mul2IR; 5 contiguous data dependencies

t5:=Z1^2; t6:=Z1*t5; t4:=x2*t5; t5:=y2*t6; t1:=t4-X1; t2:=t5-Y1; t4:=t2^2; t6:=t1^2;

t5:=t6*X1; t0:=t1*t6; t3:=t4-2*t5; t4:=Z1*t1; t3:=t3-t5; t6:=t0*Y1; t3:=t3-t0; t1:=2*t6;

Zout:=t4*t3; t4:=t2*t3; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; t7:=t1^2; t5:=t0*t3; Xout:=t7-

2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

DBLADD, 2 + →J J J :
2 3

1 1 1 2 2 2 2 22(: :) (: : : :) (: :)out out outX Y Z X Y Z Z Z X Y Z+ → . Cost = 16Mul+

5Sqr+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data dependencies

t0:=X1*ZZ2; t5:=Z1^2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6; t6:=t1^2;

t2:=t5-t7; t4:=t2^2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-t5; t4:=Z2*t6;

t3:=t3-t0; t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^2; t1:=t1+t4; t4:=t0*t5;

t7:=t1^2; t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3;

Yout:=t4-t0;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

Explicit Formulas using E/E e Coordinates

Twisted Edwards curve (for verification):

x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1;

x3:=(2*x1*y1)/(y1^2+a*x1^2); y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2);

x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

Appendix B1: Explicit Formulas for “Traditional” Implementations

191

DBL, 2 →E E : 1 1 12(: :) (: :)out out outX Y Z X Y Z→ . Cost = 4Mul+3Sqr+1SubDblSub+1AddIR+

1Mul2IR+1Neg; no contiguous data dependencies

t1:=2*X1; t2:=X1^2; t4:=Y1^2; t3:=Z1^2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3; t2:=t1*Y1;

Yout:=-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2;

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check

Iterate this code n times to implement nDBL with cost n(4M+3S+1SubDblSub+1AddIR+

1Mul2IR+1Neg)

Merged DBL–ADD, (2)e e+ →E E E : 1 1 1 2 2 2 2 2 22(: :) (() : () : 2 : 2)X Y Z X Y X Y Z T+ + − → (:outX

:)out outY Z . Cost = 12Mul+3Sqr+3Sub+1SubDblSub+4AddIR+1Mul2IR; no contiguous data

dependencies

If Z2=1 (Merged DBL-mADD), t5:=(2*Z2)*t6 is replaced by t5:=2*t6 and the number of

multiplies reduces to 11M at the expense of one extra Mul2

t1:=2*X1; t5:=X1^2; t7:=Y1^2; t6:=Z1^2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6; t5:=t1*Y1;

t8:=t7*Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8; t7:=(2*T2)*t0;

t5:=(2*Z2)*t6; t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-t7; t7:=t0-t6;

t0:=t0+t6; Xout:=Xout*t7; Yout:=t1*t0; Zout:=t0*t7;

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

193

B2 Explicit Formulas for GLS-Based Implementations

These formulas have been used for the GLS-based implementations discussed in Section 5.6.2.

Temporary registers are denoted by it and Mul = multiplication, Sqr = squaring, Add = addition,

Sub = subtraction, Mulx = multiplication by x, Divx = division by x, Neg = negation. DblSub

represents the operation 2 (mod)a b p− or (mod)a b c p− − , Mul3Div2 represents the operation

() / 2 (mod)a a a p+ + , AddSub represents the merging of (mod)a b p+ and (mod)a b p− ,

AddSub2 represents (mod)a b c p+ − , SubSub represents the merging of (mod)a b p− and

(mod)c d p− , and Mul2Mul3 represents the merging of (mod)a a p+ and (mod)a a a p+ + .

Underlined field operations are merged and operationIR represents a field operation using

incomplete reduction. In practice, input registers are reused to store the result of an operation.

Explicit Formulas using Jacobian Coordinates

Weierstrass curve (for verification):

x1:=X1/Z1^2; y1:=Y1/Z1^3; a:=-3;

x3:=((3*x1^2+u^2*a)/(2*y1))^2-2*x1; y3:=((3*x1^2+u^2*a)/(2*y1))*(x1-x3)-y1;

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

DBL, 2 →J J : 1 1 12(: :) (: :)out out outX Y Z X Y Z→ . Cost = 4Mul+4Sqr+2Sub+1DblSub+

1Mul3Div2+1AddSub+1Mulµ ; no contiguous data dependencies

In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.

t2:=Z1^2; t3:=Y1^2; t1:=u*t2; t2:=X1+t1; t1:=X1-t1; t1:=3*t1/2; t4:=t3*X1; t1:=t2*t1;

t3:=t3^2; Xout:=t1^2; Zout:=Y1*Z1; Xout:=Xout-2*t4; t2:=t4-Xout; t1:=t1*t2; Yout:=t1-t3;

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check

mADD, + →J A J : 1 1 1 2 2(: :) (,) (: :)out out outX Y Z x y X Y Z+ → . Cost = 8Mul+3Sqr+5Sub+

1DblSub; no contiguous data dependencies

t2:=Z1^2; t1:=Z1*t2; t2:=t2*x2; t1:=t1*y2; t2:=t2-X1; t1:=t1-Y1; t3:=t2^2; t4:=t1^2;

Zout:=Z1*t2; t2:=t2*t3; t3:=t3*X1; Xout:=t4-t2; Xout:=Xout-2*t3; t3:=t3-Xout; t1:=t1*t3;

Yout:=t2*Y1; Yout:=t1-Yout;

simplify([x4-Xout/Zout^2]), simplify([y4-Yout/Zout^3]); # Check

mDBLADD, 2 + →J A J : 1 1 1 2 22(: :) (,) (: :)out out outX Y Z x y X Y Z+ → . Cost = 13Mul+5Sqr+

2Sub+2DblSub+1SubSub+1Add+1Mul2+1Mul2Mul3+1Div2; no contiguous data depend.

t2:=Z1^2; t1:=Z1*t2; t3:=x2*t2; t1:=y2*t1; t2:=t3-X1; t1:=t1-Y1; t3:=t2^2; t5:=t1^2;

t4:=X1*t3; t3:=t2*t3; Xout:=2*t4; t4:=3*t4; Zout:=Z1*t2; t5:=t5-t3-t4; Yout:=t3*Y1; t1:=

t1*t5; t2:=2*Yout; t3:=t5^2; t1:=t1+t2; t2:=Xout*t3; Xout:=t1^2; t3:=t5*t3; Xout:=Xout-

t2-t3; t2:=t2/2; Zout:=Zout*t5; Yout:=Yout*t3; t2:=Xout-t2; t1:=t1*t2; Yout:=t1-Yout;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

Appendix B1: Explicit Formulas for GLS-Based Implementations

194

Explicit Formulas using E/E e Coordinates

Twisted Edwards curve (for verification):

x1:=X1/Z1; y1:=Y1/Z1; a:=-1;

x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; x5:=X5/Z5; y5:=Y5/Z5; T5:=X5*Y5/Z5;

x3:=(2*x1*y1)/(y1^2+u*a*x1^2); y3:=(y1^2-u*a*x1^2)/(2-y1^2-u*a*x1^2);

x4:=(x3*y3+x2*y2)/(y3*y2+u*a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

x6:=(x4*y4+x5*y5)/(y4*y5+u*a*x4*x5); y6:=(x4*y4-x5*y5)/(x4*y5-y4*x5);

DBL, 2 →E E : 1 1 12(: :) (: :)out out outX Y Z X Y Z→ . Cost = 4Mul+3Sqr+1Sub+1AddSub+2Mul2+

1Mulµ ; no contiguous data dependencies

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; t2:=

Yout-Xout; Yout:=Yout+Xout; Zout:=Zout-t2; Yout:=t2*Yout; Xout:=t1*Zout; Zout:= t2*Zout;

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check

Merged DBL–ADD, (2)e e+ →E E E : 1 1 1 2 2 2 22(: :) (: : :) (: :)out out outX Y Z X Y Z T X Y Z+ → . Cost

= 13Mul+3Sqr+3Sub+1Add+2AddSub+1AddSub2+2Mul2+2Mulµ ; no contiguous dependencies

If Z2=1 (Merged DBL-mADD), T1:=T1*Z2 is not needed and the number of multiplies reduces

to 12M

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; t2:=

Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; Xout:=t1*Zout;

Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; t3:=T1+Zout; Zout:=T1-

Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; Xout:=Xout*Yout; Yout:=

Zout*t2; t1:=Xout+T1-t1; Zout:=t1*t2; Xout:=t1*t3;

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

Merged DBL–ADDADD, (2)e e e+ + →E E E E : 1 1 1 2 2 2 22(: :) (: : :)X Y Z X Y Z T+ + 3 3(: :X Y

3 3:) (: :)out out outZ T X Y Z→ . Cost = 22Mul+3Sqr+5Sub+2Add+3AddSub+2AddSub2+2Mul2+

3Mulµ ; no contiguous data dependencies

If Z2=1, T1:=T1*Z2 is not needed and the number of multiplies reduces in 1M

If Z5=1, T1:=T1*Z5 is not needed and the number of multiplies reduces in 1M

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout;

t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; Xout:=t1*Zout;

Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; t3:=T1+Zout; Zout:=T1-

Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; Xout:=Xout*Yout; Yout:=

Zout*t2; Xout:=Xout+T1-t1; T1:=Zout*t3; Zout:=Xout*t2; Xout:=Xout*t3; t1:=Xout*X5; T1:=

T1*Z5; Zout:=Zout*T5; t2:=u*t1; t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y5; Xout:=Xout-Yout;

Yout:=X5+Y5; t2:=T1-t2; Xout:=Xout*Yout; Yout:=Zout*t2; Xout:=Xout+T1-t1; Zout:=Xout*t2;

Xout:=Xout*t3;

simplify([x6-Xout/Zout]), simplify([y6-Yout/Zout]); # Check

195

C Appendix C

C1 Optimizing Compressed Squarings

Karabina [Kar10] introduced a new method for computing an exponentiation
u

g in cyclotomic

subgroups 26
()

pφG F using efficient compressed squarings.

Let 26

2

2 2 1
0
() ()

i
i i pi

g g g s t φ+=
= + ∈∑ G F and

22
2 2 1

0
()

i
i i

i
g h h s t+=

= +∑ where 2,i i p
g h ∈F .

Karabina showed that g and 2g can be compressed to 2 3 4 5() [, , ,]C g g g g g= and
2

2 3 4 5() [, , ,]C g h h h h= , respectively, where:

 2 2 4,52(3)h g Bξ= + , 3 4,5 4,5 33((1)) 2h A B gξ= − + − ,

 4 2,3 2,3 43((1)) 2h A B gξ= − + − , , (C.1)

with and .

The formulae above have a cost of 4 multiplications and 4 reductions in . The following

improved version was proposed in [AKL+10]:

 , ,

 , , (C.2)

with and .

It is straightforward to see that the formulae above have a cost of 6 integer squarings and only

4 reductions in 2pF by applying lazy reduction.

5 5 2,32(3)h g B= +

, ()()i j i j i jA g g g gξ= + + ,i j i jB g g=

2
p
F

2 2 4,5 4 52 3 ()h g S S Sξ= + − − 3 4 5 33() 2h S S gξ= + −

4 2 3 43() 2h S S gξ= + − 2 5 2,3 2 32 3()h g S S S= + − −

2
, ()i j i jS g g= + 2

i iS g=

Appendix C1: Optimized Compressed Squarings

196

In total, the computation of an exponentiation involving compression and decompression

in the cyclotomic subgroup requires 62 compressed squarings (C.2) during

compression, for decompression and 2 multiplications to obtain the

final result. Then, the total cost when applying the generalized lazy reduction technique is given

by (see [AKL+10, Section 5.2] for complete details):

.

In contrast, the traditional computation would cost (using lazy reduction below 2pF only):

,

Hence, our technique reduces the number of reductions in in about 8% (from 299 to

275) in one exponentiation computed with the new compressed squarings.

u
g

26
()

pφG F

1 9 6 22i m s a+ + + 12p
F

62(6 4 31) (1 9 6 22) 2(18 6 110)u uExp s r a i m s a m r a= + + + + + + + + +

1 36 372 9 6 260 2164u ui m sp m sEx r a= + + + + + +

' 62(4 27) (1 9 6 22) 2(18 67)Exp m a i m s a m a= + + + + + + +

1 293 0' 6 183i mE p s ax = + + +

2p
F

u
g

197

PERMISSIONS

Partial results that have been included and extended in this Dissertation appear in [LM08b,

LG09, LG09b, LG10, AKL+10]. Complete references to original publications have been

included in the Bibliography in compliance with Springer’s copyright, which states: “The Author

retains the right to use his/her Contribution for his/her further scientific career by including the

final published paper in his/her dissertation or doctoral thesis provided acknowledgement is

given to the original source of publication.”

199

Bibliography

[ACD+05] R. Avanzi, H. Cohen, D. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren,

"Handbook of Elliptic and Hyperelliptic Curve Cryptography," CRC Press, 2005.

[Adi10] J. Adikari, "Efficient Algorithms for Elliptic Curve Cryptography," PhD. Thesis, University of

Calgary, 2010. Available online at: https://ece.uwaterloo.ca/~jadikari/

[ADI10] J. Adikari, V. Dimitrov and L. Imbert, "Hybrid Binary-Ternary Number System for Elliptic

Curve Cryptosystems," IEEE Transactions on Computers, Vol. 60(2), pp. 254-265, 2010.

[AHP08] R. Avanzi, C. Heuberger and H. Prodinger, "Redundant τ-adic Expansions I: Non-Adjacent
Digit Sets and their Applications to Scalar Multiplication," Cryptology ePrint Archive, Report 2008/148,

2008.

[AKL+10] D.F. Aranha, K. Karabina, P. Longa, C. Gebotys and J. Lopez, "Faster Explicit Formulas for
Computing Pairings over Ordinary Curves," Advances in Cryptology - Eurocrypt 2011,Springer, 2011 (to

appear).

[AMD] Advanced Micro Devices, "AMD64 Architecture Programmer’s Manual, Volume 1: Application
Programming," 2009. Available online at:
http://developer.amd.com/DOCUMENTATION/GUIDES/Pages/default.aspx

[Ava04] R. Avanzi, "Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations," International Workshop on Cryptographic Hardware and Embedded Systems (CHES

2004), LNCS Vol. 3156, pp. 148-162, Springer, 2004.

[Ava05] R. Avanzi, "A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right
Analogue," International Workshop on Selected Areas in Cryptography (SAC 2004), LNCS Vol. 3357, pp.

130-143, Springer, 2005.

[BBL+07] D. Bernstein, P. Birkner, T. Lange and C. Peters, "Optimizing Double-Base Elliptic-Curve
Single-Scalar Multiplication," International Conference on Cryptolology - Indocrypt 2007, LNCS Vol.

4859, pp. 167-182, Springer, 2007.

Bibliography

200

[BBT+08] D. Bernstein, P. Birkner, T. Lange, C. Peters and M. Joye, "Twisted Edwards Curves,"

Progress in Cryptology - Africacrypt 2008, LNCS Vol. 5023, pp. 389-405, Springer, 2008.

[BCH+00] M. Brown, D. Cheung, D. Hankerson, J. Lopez, M. Kirkup and A. Menezes, "PGP in

Constrained Wireless Devices," Usenix Security Symposium, pp. 247-261, 2000.

[Ber06] D. Bernstein, "Curve25519: New Diffie-Hellman Speed Records," International Conference on

Practice and Theory in Public Key Cryptography (PKC 2006), LNCS Vol. 3958, pp. 207-228, Springer,

2006.

[BF01] D. Boneh and M. Franklin, "Identity-Based Encryption from the Weil Pairing," Advances in

Cryptology - Crypto 2001, LNCS Vol. 2139, pp. 213-229, Springer, 2001.

[BG04] D. Brown and R. Gallant, "The Static Diffie-Hellman Problem," Cryptology ePrint Archive,

Report 2004/306, 2004.

[BGM+10] J. Beuchat, J.E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-Henríquez and T.
Teruya, "High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves,"
International Conference on Pairing-Based Cryptography (Pairing 2010), LNCS Vol. 6487, pp. 21-39,

Springer, 2010.

[BGO+07] P.S.L.M. Barreto, S. Galbraith, C. O'hEigeartaigh and M. Scott, "Efficient Pairing
Computation on Supersingular Abelian Varieties," Designs, Codes and Cryptography, Vol. 42, pp. 239-

271, 2007.

[BHL+01] M. Brown, D. Hankerson, J. Lopez and A. Menezes, "Software Implementation of the NIST
Elliptic Curves over Prime Fields," Topics in Cryptology - CT-RSA 2001, LNCS Vol. 2020, pp. 250-265,

Springer, 2001.

[BJ03] O. Billet and M. Joye, "Fast Point Multiplication on Elliptic Curves through Isogenies," Applied

Algebra, Algebraic Algorithms, and Error Correcting Codes Symposium (AAECC-15), LNCS Vol. 2643,

pp. 43-50, Springer, 2003.

[BJ03b] O. Billet and M. Joye, "The Jacobi Model of an Elliptic Curve and Side-Channel Analysis,"
International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC

'03), LNCS Vol. 2643, pp. 34-42, Springer, 2003.

[BKL+02] P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott, "Efficient Algorithms for Pairing-Based

Cryptosystems," Advances in Cryptology - Crypto 2002, LNCS Vol. 2442, pp. 354-368, Springer, 2002.

[BL07] D. Bernstein and T. Lange, "Faster Addition and Doubling on Elliptic Curves," Advances in

Cryptology - Asiacrypt 2007, LNCS Vol. 4833, pp. 29-50, Springer, 2007.

[BL07b] D. Bernstein and T. Lange, "Inverted Edwards Coordinates," Applied Algebra, Algebraic

Algorithms, and Error Correcting Codes Symposium (AAECC-17), LNCS Vol. 4851, pp. 20-27, Springer,

2007.

[BL08] D. Bernstein and T. Lange, "Analysis and Optimization of Elliptic-Curve Single-Scalar

Multiplication," Finite Fields and Applications: Proceedings of Fq8, Vol. 461, pp. 1-18, 2008.

[BLS03] P.S.L.M. Barreto, B. Lynn and M. Scott, "On the Selection of Pairing-Friendly Groups," Int.

Workshop on Selected Areas in Cryptography (SAC 2003), LNCS Vol. 3006, pp. 17-25, Springer, 2003.

[BLS03b] P.S.L.M. Barreto, B. Lynn and M. Scott, "Constructing Elliptic Curves with Prescribed
Embedding Degrees," Security in Communication Networks, LNCS Vol. 2576, pp. 257-267, Springer,

2003.

Bibliography

201

[BLS04] D. Boneh, B. Lynn and H. Shacham, "Short signatures from the Weil pairing," Journal of

Cryptology, Vol. 17, pp. 297-319, 2004.

[BLS04b] P.S.L.M. Barreto, B. Lynn and M. Scott, "Efficient Implementation of Pairing-Based

Cryptosystems," Journal of Cryptology, Vol. 17, pp. 321-334, 2004.

[BN05] P.S.L.M. Barreto and M. Naehrig, "Pairing-Friendly Elliptic Curves of Prime Order,"
International Workshop on Selected Areas in Cryptography (SAC 2005), LNCS Vol. 3897, pp. 319-331,

Springer, 2005.

[BPP07] R. Barua, S.K. Pandey and R. Pankaj, "Efficient Window-Based Scalar Multiplication on
Elliptic Curves using Double-Base Number System," International Conference on Cryptolology -

Indocrypt 2007, LNCS Vol. 4859, pp. 351-360, Springer, 2007.

[BS10] N. Benger and M. Scott, "Constructing Tower Extensions of Finite Fields for Implementation of
Pairing-Based Cryptography," International Workshop on Arithmetic of Finite Fields (WAIFI 2010), LNCS

Vol. 6087, pp. 180-189, Springer, 2010.

[BW05] F. Brezing and Z. Weng, "Elliptic Curves Suitable for Pairing Based Cryptography," Designs,

Codes and Cryptography, Vol. 37(1), pp. 133-141, 2005.

[CC86] D.V. Chudnovsky and G.V. Chudnovsky, "Sequences of Numbers Generated by Addition in
Formal Groups and New Primality and Factorization Tests," Advances in Applied Mathematics, Vol. 7(4),

pp. 385-434, 1986.

[CCY96] C.-Y. Chen, C.-C. Chang and W.-P. Yang, "Hybrid Method for Modular Exponentiation with

Precomputation," Electronics Letters, Vol. 32(6), pp. 540-541, 1996.

[CH07] J. Chung and M.A. Hasan, "Asymmetric Squaring Formulae," IEEE Symposium on Computer

Arithmetic (ARITH-18 2007), pp. 113-122, 2007.

[CHB+09] C. Costello, H. Hisil, C. Boyd, J. Gonzalez Nieto and K.K. Wong, "Faster Pairings on Special
Weierstrass Curves," International Conference on Pairing-Based Cryptography (Pairing 2009), LNCS

Vol. 5671, pp. 89-101, Springer, 2009.

[CJL+06] M. Ciet, M. Joye, K. Lauter and P.L. Montgomery, "Trading Inversions for Multiplications in

Elliptic Curve Cryptography," Designs, Codes and Cryptography, Vol. 39(2), pp. 189-206, 2006.

[CLN10] C. Costello, T. Lange and M. Naehrig, "Faster Pairing Computations on Curves with High-
Degree Twists," International Conference on Practice and Theory in Public Key Cryptography (PKC

2010), LNCS Vol. 6056, pp. 224-242, Springer, 2010.

[CMO98] H. Cohen, A. Miyaji and T. Ono, "Efficient Elliptic Curve Exponentiation using Mixed

Coordinates," Advances in Cryptology - Asiacrypt '98, LNCS Vol. 1514, pp. 51-65, Springer, 1998.

[Com90] P.G. Comba, "Exponentiation Cryptosystems on the IBM PC," IBM Systems Journal, Vol. 29,

pp. 526-538, 1990.

[CS09] N. Costigan and P. Schwabe, "Fast Elliptic-Curve Cryptography on the Cell Broadband Engine,"

Progress in Cryptology - Africacrypt 2009, LNCS Vol. 5580, pp. 368-385, Springer, 2009.

[DC95] V. Dimitrov and T. Cooklev, "Two Algorithms for Modular Exponentiation based on
Nonstandard Arithmetics," IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Science (Special Issue on Cryptography and Information Security), Vol. E78-A, pp. 82–87,

1995.

Bibliography

202

[DH76] W. Diffie and M. Hellman, "New Directions in Cryptography," IEEE Transactions on

Information Theory, Vol. 22(6), pp. 644-654, 1976.

[DH08] C. Doche and L. Habsieger, "A Tree-Based Approach for Computing Double-Base Chains,"
Australasian Conference on Information Security and Privacy (ACISP 2008), LNCS Vol. 5107, pp. 433-
446, Springer, 2008.

[DI06] C. Doche and L. Imbert, "Extended Double-Base Number System with Applications to Elliptic
Curve Cryptography," Progress in Cryptology - Indocrypt 2006, LNCS Vol. 4329, pp. 335-348, Springer,

2006.

[DIK06] C. Doche, T. Icart and D.R. Kohel, "Efficient Scalar Multiplication by Isogeny
Decompositions," International Conference on Practice and Theory of Public Key Cryptography (PKC

2006), LNCS Vol. 3958, pp. 191-206, Springer, 2006.

[DIM05] V. Dimitrov, L. Imbert and P.K. Mishra, "Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains," Advances in Cryptology - Asiacrypt 2005, LNCS Vol. 3788,

pp. 59-78, Springer, 2005.

[DJM98] V. Dimitrov, G. Jullien and W. Miller, "An Algorithm for Modular Exponentiation,"

Information Processing Letters, Vol. 66. pp. 155-159, 1998.

[DKS09] C. Doche, D.R. Kohel and F. Sica, "Double-Base Number System for Multi-Scalar
Multiplications," Advances in Cryptology - Eurocrypt 2009, LNCS Vol. 5479, pp. 502-517, Springer,

2009.

[DOS07] E. Dahmen, K. Okeya and D. Schepers, "Affine Precomputation with Sole Inversion in Elliptic
Curve Cryptography," Australasian Conference on Information Security and Privacy (ACISP 2007), LNCS

Vol. 4586, pp. 245-258, Springer, 2007.

[DOT07] E. Dahmen, K. Okeya and T. Takagi, "A New Upper Bound for the Minimal Density of Joint
Representations in Elliptic Curve Cryptosystems," IEICE Transactions on Fundamentals of Electronics,

Vol. E90-A(5), pp. 952-959, 2007.

[DSD07] A.J. Devegili, M. Scott and R. Dahab, "Implementing Cryptographic Pairings over Barreto-
Naehrig Curves," International Conference on Pairing-Based Cryptography (Pairing 2007), LNCS Vol.

4575, pp. 197-207, Springer, 2007.

[Edw07] H. Edwards, "A Normal Form for Elliptic Curves," Bulletin of the American Mathematical

Society, Vol. 44(3), pp. 393-422, 2007.

[ElG84] T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms," Advances in Cryptology – Crypto ‘84, LNCS Vol. 196, pp. 10-18, Springer, 1985.

[Elm06] L. Elmegaard-Fessel, "Efficient Scalar Multiplication and Security against Power Analysis in
Cryptosystems based on the NIST Elliptic Curves over Prime Fields," Master's Thesis, University of

Copenhagen, 2006.

[EYK09] S.S. Erdem, T. Yanik and C.K. Koç, "Fast Finite Field Multiplication," Cryptographic

Engineering, Chapter 5, Springer, 2009.

[Fog1] A. Fog, "Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-operation
Breakdowns for Intel, AMD and VIA CPUs," 2009. Available online at:

http://www.agner.org/optimize/#manuals, accessed on January 2010.

Bibliography

203

[Fog2] A. Fog, "The Microarchitecture of Intel, AMD and VIA CPUs," 2009. Available online at:

http://www.agner.org/optimize/#manuals, accessed on January 2010.

[Fre06] D. Freeman, "Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10,"
International Symposium on Algorithmic Number Theory (ANTS-VII), LNCS Vol. 4076, pp. 452-465,
Springer, 2006.

[FVV09] J. Fan, F. Vercauteren and I. Verbauwhede, "Faster Fp-Arithmetic for Cryptographic Pairings
on Barreto-Naehrig Curves," International Workshop on Cryptographic Hardware and Embedded Systems

(CHES 2009), LNCS Vol. 5747, pp. 240-253, Springer, 2009.

[GAS+05] J. Großschädl, R. Avanzi, E. Savaş and S. Tillich, "Energy-Efficient Software Implementation
of Long Integer Modular Arithmetic," International Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2005), LNCS Vol. 3659, pp. 75-90, Springer, 2005.

[Gau09] P. Gaudry, "Index Calculus for Abelian Varieties of Small Dimension and the Elliptic Curve

Discrete Logarithm Problem," Journal of Symbolic Computation, Vol. 44, pp. 1690-1702, 2009.

[GGC02] V. Gupta, S. Gupta and S. Chang, "Performance Analysis of Elliptic Curve Cryptography for

SSL," ACM Workshop on Wireless Security (WiSe), Mobicom 2002, 2002.

[GLS08] S. Galbraith, X. Lin and M. Scott, "Endomorphisms for Faster Elliptic Curve Cryptography on

a Large Class of Curves," Cryptology ePrint Archive, Report 2008/194, 2008.

[GLS09] S. Galbraith, X. Lin and M. Scott, "Endomorphisms for Faster Elliptic Curve Cryptography on
a Large Class of Curves," Advances in Cryptology - Eurocrypt 2009, LNCS Vol. 5479, pp. 518-535,

Springer, 2009.

[GLV01] R. Gallant, R. Lambert and S. Vanstone, "Faster Point Multiplication on Elliptic Curves with
Efficient Endomorphisms," Advances in Cryptology - Crypto 2001, LNCS Vol. 2139, pp. 190-200,

Springer, 2001.

[GMJ10] R.R. Goundar, A. Miyaji and M. Joye, "Co-Z Addition Formulæ and Binary Ladders on
Elliptic Curves," International Workshop on Cryptographic Hardware and Embedded Systems (CHES

2010), LNCS Vol. 6225, pp. 65-79, Springer, 2010.

[Gor93] D. Gordon, "Discrete Logarithms in GF(p) using the Number Field Sieve," SIAM Journal on

Discrete Mathematics, Vol. 6, pp. 124-138, 1993.

[GPW+04] N. Gura, A. Patel, A. Wander, H. Eberle and S.C. Shantz, "Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs," International Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2004), LNCS Vol. 3156, pp. 119-132, Springer, 2004.

[Gra10] R. Granger, "On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields,"

Advances in Cryptology - Asiacrypt 2010, LNCS Vol. 6477, pp. 283-302, Springer, 2010.

[GSF04] V. Gupta, D. Stebila and S. Fung, "Speeding up Secure Web Transactions using Elliptic Curve

Cryptography," Annual Network and Distributed System Security (NDSS) Symposium, 2004.

[GT07b] P. Gaudry and E. Thomé, "The mpFq Library and Implementing Curve-Based Key

Exchanges," SPEED 2007, pp. 49-64, 2007.

[His10] H. Hisil, "Elliptic Curves, Group Law, and Efficient Computation," PhD. Thesis, Queensland

University of Technology, 2010. Available online at: http://eprints.qut.edu.au/33233/

Bibliography

204

[HMS08] D. Hankerson, A. Menezes and M. Scott, "Software Implementation of Pairings," Identity-

Based Cryptography, Chapter 12, pp. 188-206, IOS Press, 2008.

[HMV04] D. Hankerson, A. Menezes and S. Vanstone, "Guide to Elliptic Curve Cryptography,"

Springer, 2004.

[HSV06] F. Hess, N. Smart and F. Vercauteren, "The Eta Pairing Revisited," IEEE Transactions on

Information Theory, Vol. 52(10), pp. 4595-4602, 2006.

[HT00] A. Higuchi and N. Takagi, "A Fast Addition Algorithm for Elliptic Curve Arithmetic in GF(2n)

using Projective Coordinates," Information Processing Letters, Vol. 76(3), pp. 101-103, 2000.

[HWC+07] H. Hisil, K. Wong, G. Carter and E. Dawson, "Faster Group Operations on Elliptic Curves,"

Cryptology ePrint Archive, Report 2007/441, 2007.

[HWC+08] H. Hisil, K. Wong, G. Carter and E. Dawson, "Twisted Edwards Curves Revisited,"

Advances in Cryptology - Asiacrypt 2008, LNCS Vol. 5350, pp. 326-343, Springer, 2008.

[HWC+08b] H. Hisil, K. Wong, G. Carter and E. Dawson, "An Intersection Form for Jacobi-Quartic

Curves," Personal Communication, 2008.

[HWC+09] H. Hisil, K. Wong, G. Carter and E. Dawson, "Jacobi Quartic Curves Revisited,"
Australasian Conference on Information Security and Privacy (ACISP 2009), LNCS Vol. 5594, pp. 452-
468, Springer, 2009.

[IEEE00] The Institute of Electrical and Electronics Engineers (IEEE), "IEEE Standard Specifications

for Public-Key Cryptography," IEEE Std 1363-2000, 2000.

[IEEE08] The Institute of Electrical and Electronics Engineers (IEEE), "IEEE Draft Standard for

Identity-based Public-key Cryptography Using Pairings," IEEE P1636.3/D1, 2008.

[Intel] Intel Corporation, "Intel64 and IA-32 Architectures Software Developer's Manual, Volume 1:

Basic Architecture," 2009. Available online at: http://www.intel.com/products/processor/manuals/

[JFS07] K. Jarvinen, J. Forsten and J. Skytta, "FPGA Design of Self-Certified Signature Verification on
Koblitz Curves," International Workshop on Cryptographic Hardware and Embedded Systems (CHES

2007), LNCS Vol. 4727, pp. 256-271, Springer, 2007.

[Jou00] A. Joux, "A One Round Protocol for Tripartite Diffie-Hellman," Algorithmic Number Theory

Symposium IV, LNCS Vol. 1838, pp. 385-394, Springer, 2000.

[Kar95] A.A. Karatsuba, "The Complexity of Computations," Proceedings of the Steklov Institute of

Mathematics, Vol. 211, pp. 169-183, 1995.

[Kar10] K. Karabina, "Squaring in Cyclotomic Subgroups," Cryptology ePrint Archive, Report
2010/542, 2010.

[KM05] N. Koblitz and A. Menezes, "Pairing-Based Cryptography at High Security Levels,"

International Conference on Cryptography and Coding, LNCS Vol. 3796, pp. 13-36, Springer, 2005.

[Kob87] N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, Vol. 48, pp. 203-

209, 1987.

[KZZ04] B. Kuang, Y. Zhu and Y. Zhang, "An Improved Algorithm for uP+vQ using JSF3,"
International Conference on Applied Cryptography and Network Security (ACNS 2004), LNCS Vol. 3089,

pp. 467-478, Springer, 2004.

Bibliography

205

[Lau04] K. Lauter, "The Advantages of Elliptic Cryptography for Wireless Security," IEEE Wireless

Communications, Vol. 11(1), pp. 62-67, 2004.

[LD99] J. Lopez and R. Dahab, "Improved Algorithms for Elliptic Curve Arithmetic in GF(2n),"
International Workshop on Selected Areas in Cryptography (SAC '98), LNCS Vol. 1556, pp. 201-212,
Springer, 1999.

[Len87] H. Lenstra, "Factoring Integers with Elliptic Curves," Annals of Mathematics, Vol. 126, pp.

649-673, 1987.

[LG08] P. Longa and C. Gebotys, "Setting Speed Records with the (Fractional) Multibase Non-Adjacent
Form Method for Efficient Elliptic Curve Scalar Multiplication," CACR Technical Report, CACR 2008-06,

2008.

[LG09] P. Longa and C. Gebotys, "Fast Multibase Methods and Other Several Optimizations for Elliptic
Curve Scalar Multiplication," International Conference on Practice and Theory in Public Key

Cryptography (PKC 2009), LNCS Vol. 5443, pp. 443-462, Springer, 2009.

[LG09b] P. Longa and C. Gebotys, "Novel Precomputation Schemes for Elliptic Curve Cryptosystems,"
International Conference on Applied Cryptography and Network Security (ACNS 2009), LNCS Vol. 5536,

pp. 71-88, Springer, 2009.

[LG10] P. Longa and C. Gebotys, "Efficient Techniques for High-Speed Elliptic Curve Cryptography,"
Workshop on Cryptographic Hardware and Embedded Systems (CHES 2010), LNCS Vol. 6225, pp. 80-94,

Springer, 2010.

[LH00] C.H. Lim and H.S. Hwang, "Fast Implementation of Elliptic Curve Arithmetic in GF(pm),"
International Conference on Practice and Theory in Public Key Cryptography (PKC 2000), LNCS Vol.

1751, pp. 405-421, Springer, 2000.

[LLM+93] A. Lenstra, H. Lenstra, M. Manasse and J. Pollard, "The Number Field Sieve," The

Development of the Number Field Sieve, LNCS Vol. 1554, pp. 11-42, Springer, 1993.

[LLP09] E. Lee, H.-S. Lee and C.-M. Park, "Efficient and Generalized Pairing Computation on Abelian

Varieties," IEEE Transactions on Information Theory, Vol. 55(4), pp. 1793-1803, 2009.

[LM08] P. Longa and A. Miri, "Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields,"
IEEE Transactions on Computers, Vol. 57(3), pp. 289-302, 2008.

[LM08b] P. Longa and A. Miri, "New Composite Operations and Precomputation Scheme for Elliptic
Curve Cryptosystems over Prime Fields," International Conference on Practice and Theory in Public Key

Cryptography (PKC 2008), LNCS Vol. 4939, pp. 229-247, Springer, 2008.

[LM08c] P. Longa and A. Miri, "New Multibase Non-Adjacent Form Scalar Multiplication and its
Application to Elliptic Curve Cryptosystems (extended version)," Cryptology ePrint Archive, Report

2008/052, 2008.

[Lon07] P. Longa, "Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime
Fields," Master's Thesis, University of Ottawa, 2007. Available online at:

http://patricklonga.bravehost.com.proxy.lib.uwaterloo.ca/publications.html

[Lon08] P. Longa, "ECC Point Arithmetic Formulae (EPAF) Database," 2008. Available online at:

http://patricklonga.bravehost.com/jacobian.html#jac

[Lon10] P. Longa, "Speed Benchmarks for Elliptic Curve Scalar Multiplication," 2010. Available online

at: http://www.patricklonga.bravehost.com/speed_ecc.html#speed

Bibliography

206

[Lon10b] P. Longa, "Speed Benchmarks for Pairings over Ordinary Curves," 2010. Available online at:

http://patricklonga.bravehost.com/speed_pairing.html#speed

[MD07] P.K. Mishra and V. Dimitrov, "Efficient Quintuple Formulas for Elliptic Curves and Efficient
Scalar Multiplication using Multibase Number Representation," Information Security Conference (ISC

2007), LNCS Vol. 4779, pp. 390-406, Springer, 2007.

[Mel07] N. Meloni, "New Point Addition Formulae for ECC Applications," International Workshop on

Arithmetic of Finite Fields (WAIFI 2007), LNCS Vol. 4547, pp. 189-201, Springer, 2007.

[Men09] A. Menezes, "An Introduction to Pairing-Based Cryptography," Recent Trends in

Cryptography, Vol. 477 of Contemporary Mathematics, pp. 47-65, AMS-RSME, 2009.

[MH09] N. Meloni and A. Hasan, "Elliptic Curve Scalar Multiplication Combining Yao's Algorithm and
Double Bases," International Workshop on Cryptographic Hardware and Embedded Systems (CHES

2009), Lecture Notes in Computer Science Vol. 5747, pp. 304-316, Springer, 2009.

[Mil86] V. Miller, "Use of Elliptic-Curves in Cryptography," Advances in Cryptology - Crypto '85,

LNCS Vol. 218, pp. 417-426, Springer, 1986.

[Mil86b] V. Miller, "Short Programs for Functions on Curves," 1986. Available online at:

http://crypto.stanford.edu/miller

[Mil04] V. Miller, "The Weil Pairing, and its Efficient Calculation," Journal of Cryptology, Vol. 17, pp.

235-261, 2004.

[MIR] M. Scott, "Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL)." Available

online at: http://www.shamus.ie/

[Möl01] B. Möller, "Algorithms for Multi-Exponentiation," Selected Areas in Cryptography (SAC

2001), LNCS Vol. 2259, pp. 165-180, Springer, 2001.

[Möl03] B. Möller, "Improved Techniques for Fast Exponentiation," International Conference on

Information Security and Cryptology (ICISC 2002), LNCS Vol. 2587, pp. 298-312, Springer, 2003.

[Möl05] B. Möller, "Fractional Windows Revisited: Improved Signed-Digit Representations for
Efficient Exponentiation," International Conference on Information Security and Cryptology (ICISC

2004), LNCS Vol. 3506, pp. 137-153, Springer, 2005.

[Mon85] P.L. Montgomery, "Modular Multiplication without Trial Division," Mathematics of

Computation, Vol. 44, pp. 519-521, 1985.

[Mon87] P.L. Montgomery, "Speeding the Pollard and Elliptic Curve Methods of Factorization,"

Mathematics of Computation, Vol. 48, pp. 243-264, 1987.

[Mor90] F. Morain and J. Olivos, "Speeding up the Computations on an Elliptic Curve using Addition-

Subtraction Chains," Theoretical Informatics and Applications, Vol. 24(6), pp. 531-544, 1990.

[MOV93] A. Menezes, T. Okamoto and S. Vanstone, "Reducing Elliptic Curve Logarithms to

Logarithms in a Finite Field," IEEE Transactions on Information Theory, Vol. 39, pp. 1639-1646, 1993.

[mpFq] P. Gaudry and E. Thomé, "mpFq – A Finite Field Library." Available online at:

http://mpfq.gforge.inria.fr/mpfq-1.0-rc2.tar.gz

Bibliography

207

[NIST00] National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS),"
FIPS PUB 186-2, 2000. Available online at:

http://csrc.nist.gov.proxy.lib.uwaterloo.ca/publications/PubsFIPS.html

[NIST07] National Institute of Standards and Technology (NIST), "Recommendation for Key
Management - Part 1: General (Revised)," NIST Special Publication 800-57, 2007. Available online at:

http://csrc.nist.gov/publications/PubsSPs.html

[NIST09] National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS),"
FIPS PUB 186-3, 2009. Available online at:
http://csrc.nist.gov.proxy.lib.uwaterloo.ca/publications/PubsFIPS.html

[NNS10] M. Naehrig, R. Niederhagen and P. Schwabe, "New Software Speed Records for
Cryptographic Pairings," Progress in Cryptology - Latincrypt 2010, LNCS Vol. 6212, pp. 109-123,

Springer, 2010.

[NSA09] U.S. National Security Agency (NSA), "NSA Suite B Cryptography," Fact Sheet NSA Suite B
Cryptography, 2009. Available online at:

http://www.nsa.gov.proxy.lib.uwaterloo.ca/ia/programs/suiteb_cryptography/index.shtml

[OKN10] K. Okeya, H. Kato and Y. Nogami, "Width-3 Joint Sparse Form," International Conference on

Information Security, Practice and Experience (ISPEC 2010), LNCS Vol. 6047, pp. 67-84, Springer, 2010.

[OTV05] k. Okeya, T. Takagi and C. Vuillaume, "Efficient Representations on Koblitz Curves with
Resistance to Side Channel Attacks," Australasian Conference on Information Security and Privacy

(ACISP 2005), LNCS Vol. 3574, pp. 218-229, Springer, 2005.

[Pol78] J. Pollard, "Monte Carlo Methods for Index Computation mod p," Mathematics of Computation,

Vol. 32, pp. 918-924, 1978.

[Pro03] J. Proos, "Joint Sparse Forms and Generating Zero Columns when Combing," Technical Report

CORR 2003-23, University of Waterloo, 2003.

[PSN+10] G. Pereira, M. Simplicio Jr, M. Naehrig and P.S.L.M. Barreto, "A Family of Implementation-

Friendly BN Elliptic Curves," Cryptology ePrint Archive, Report 2010/429, 2010.

[Rei60] G.W. Reitwiesner, "Binary Arithmetic," Advances in Computers, Vol. 1, pp. 231-308, 1960.

[RSA78] R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-

Key Cryptosystems," Communications of the ACM, Vol. 21(2), pp. 120-126, 1978.

[SB06] M. Scott and P.S.L.M. Barreto, "Generating more MNT Elliptic Curves," Designs, Codes and

Cryptography, Vol. 38(2), pp. 209-217, 2006.

[SBC+09] M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez and E. Kachisa, "On the Final
Exponentiation for Calculating Pairings on Ordinary Elliptic Curves," International Conference on

Pairing-Based Cryptography (Pairing 2009), LNCS Vol. 5671, pp. 78-88, Springer, 2009.

[Sch10] O. Schirokauer, "The Number Field Sieve for Integers of Low Weight," Mathematics of

Computation, Vol. 79(269), pp. 583-602, 2010.

[Sco07] M. Scott, "Implementing Cryptographic Pairings," International Conference on Pairing-Based

Cryptography (Pairing 2007), LNCS Vol. 4575, pp. 177-196, Springer, 2007.

[Sco08] M. Scott, "A Faster Way to Do ECC," Talk at the 12th Workshop on Elliptic Curve

Cryptography (ECC 2008), 2008. Available online at: http://www.hyperelliptic.org/tanja/conf/ECC08/

Bibliography

208

[SEI10] V. Suppakitpaisarn, M. Edahiro and H. Imai, "Optimal Average Joint Hamming Weight and

Minimal Weight Conversion of d Integers," Cryptology ePrint Archive, Report 2010/300, 2010.

[SEI11] V. Suppakitpaisarn, M. Edahiro and H. Imai, "Fast Elliptic Curve Cryptography using Optimal

Double-Base Chains," Cryptology ePrint Archive, Report 2011/030, 2011.

[SG08] R. Szerwinski and T. Güneysu, "Exploiting the Power of GPUs for Asymmetric Cryptography,"
International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2008), LNCS Vol.

5154, pp. 79-99, Springer, 2008.

[Sma99] N.P. Smart, "The Discrete Logarithm Problem on Elliptic Curves of Trace One," Journal of

Cryptology, Vol. 12, pp. 193-196, 1999.

[Sma01] N.P. Smart, "The Hessian Form of an Elliptic Curve," International Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2001), LNCS Vol. 2162, pp. 118-125, Springer,

2001.

[SOK00] R. Sakai, K. Ohgishi and M. Kasahara, "Cryptosystems Based on Pairings," The 2000

Symposium on Cryptography and Information Security, 2000.

[Sol00] J. Solinas, "Efficient Arithmetic on Koblitz Curves," Designs, Codes and Cryptography, Vol.

19(2-3), pp. 195-249, 2000.

[Sol01] J. Solinas, "Low-Weight Binary Representations for Pairs of Integers," Technical Report CORR

2001-41, University of Waterloo, 2001.

[UWL+07] O. Ugus, D. Westhoff, R. Laue, A. Shoufan and S.A. Huss, "Optimized Implementation of
Elliptic Curve Based Additive Homomorphic Encryption for Wireless Sensor Networks," Workshop on

Embedded Systems Security (WESS 2007), 2007.

[Ver01] E. Verheul, "Self-Blindable Credential Certificates from the Weil Pairing," Advances in

Cryptology - Asiacrypt 2001, LNCS Vol. 2248, pp. 533-551, Springer, 2002.

[Ver10] F. Vercauteren, "Optimal Pairings," IEEE Transactions on Information Theory, Vol. 56(1), pp.

455-461, 2010.

[Wal98] C.D. Walter, "Exponentiation using Division Chains," IEEE Transactions on Computers, Vol.

47(7), pp. 757-765, 1998.

[Wal02] C.D. Walter, "MIST: an Efficient, Randomized Exponentiation Algorithm for Resisting Power

Analysis," Topics in Cryptology – CT-RSA 2002, Vol. 2271, pp. 142-174, 2002.

[Wal11] C.D. Walter, "Fast Scalar Multiplication for ECC over GF(p) Using Division Chains,"
International Workshop on Information Security Applications (WISA 2010), LNCS Vol. 6513, pp. 61-75,

Springer, 2011.

[WD98] D. Weber and T. Denny, "The Solution of McCurley's Discrete Log Challenge," Advances in

Cryptology - Crypto '98, LNCS Vol. 1462, pp. 458-471, Springer, 1998.

[XB01] S.-B. Xu and L. Batina, "Efficient Implementation of Elliptic Curve Cryptosystems on an
ARM7 with Hardware Accelerator," International Conference on Information and Communications

Security (ICICS '01), LNCS Vol. 2200, pp. 11-16, Springer, 2001.

[YSK02] T. Yanik, E. Savaş and C.K. Koç, "Incomplete Reduction in Modular Arithmetic," IEE

Proceedings of Computers and Digital Techniques, Vol. 149(2), pp. 46-52, 2002.

Bibliography

209

[ZZH08] C.-A. Zhao, F. Zhang and J. Huang, "A Note on the Ate Pairing," International Journal of

Information Security, Vol. 7(6), pp. 379-382, 2008.

