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Abstract 

Elliptic Curve Cryptography (ECC), independently proposed by Miller [Mil86] and Koblitz 

[Kob87] in mid 80’s, is finding momentum to consolidate its status as the public-key system of 

choice in a wide range of applications and to further expand this position to settings traditionally 

occupied by RSA and DL-based systems. The non-existence of known subexponential attacks on 

this cryptosystem directly translates to shorter keylengths for a given security level and, 

consequently, has led to implementations with better bandwidth usage, reduced power and 

memory requirements, and higher speeds. Moreover, the dramatic entry of pairing-based 

cryptosystems defined on elliptic curves at the beginning of the new millennium has opened the 

possibility of a plethora of innovative applications, solving in some cases longstanding problems 

in cryptography. Nevertheless, public-key cryptography (PKC) is still relatively expensive in 

comparison with its symmetric-key counterpart and it remains an open challenge to reduce 

further the computing cost of the most time-consuming PKC primitives to guarantee their 

adoption for secure communication in commercial and Internet-based applications. The latter is 

especially true for pairing computations. Thus, it is of paramount importance to research methods 

which permit the efficient realization of Elliptic Curve and Pairing-based Cryptography on the 

several new platforms and applications. 

 

This thesis deals with efficient methods and explicit formulas for computing elliptic curve 

scalar multiplication and pairings over fields of large prime characteristic with the objective of 

enabling the realization of software implementations at very high speeds. 

 

To achieve this main goal in the case of elliptic curves, we accomplish the following tasks: 
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identify the elliptic curve settings with the fastest arithmetic; accelerate the precomputation stage 

in the scalar multiplication; study number representations and scalar multiplication algorithms for 

speeding up the evaluation stage; identify most efficient field arithmetic algorithms and optimize 

them; analyze the architecture of the targeted platforms for maximizing the performance of ECC 

operations; identify most efficient coordinate systems and optimize explicit formulas; and realize 

implementations on x86-64 processors with an optimal algorithmic selection among all studied 

cases.  

In the case of pairings, the following tasks are accomplished: accelerate tower and curve 

arithmetic; identify most efficient tower and field arithmetic algorithms and optimize them; 

identify the curve setting with the fastest arithmetic and optimize it; identify state-of-the-art 

techniques for the Miller loop and final exponentiation; and realize an implementation on x86-64 

processors with optimal algorithmic selection. 

The most outstanding contributions that have been achieved with the methodologies above in 

this thesis can be summarized as follows: 

• Two novel precomputation schemes are introduced and shown to achieve the lowest costs 

in the literature for different curve forms and scalar multiplication primitives. The 

detailed cost formulas of the schemes are derived for most relevant scenarios. 

• A new methodology based on the operation cost per bit to devise highly optimized and 

compact multibase algorithms is proposed. Derived multibase chains using bases {2,3} 

and {2,3,5} are shown to achieve the lowest theoretical costs for scalar multiplication on 

certain curve forms and for scenarios with and without precomputations. In addition, the 

zero and nonzero density formulas of the original (width-w) multibase NAF method are 

derived by using Markov chains. The application of “fractional” windows to the 

multibase method is described together with the derivation of the corresponding density 

formulas.   

• Incomplete reduction and branchless arithmetic techniques are optimally combined for 

devising high-performance field arithmetic. Efficient algorithms for “small” modular 

operations using suitably chosen pseudo-Mersenne primes are carefully analyzed and 

optimized for incomplete reduction. 

• Data dependencies between contiguous field operations are discovered to be a source of 

performance degradation on x86-64 processors. Three techniques for reducing the 

number of potential pipeline stalls due to these dependencies are proposed: field 

arithmetic scheduling, merging of point operations and merging of field operations. 

• Explicit formulas for two relevant cases, namely Weierstrass and Twisted Edwards 

curves over pF  and 2p
F , are carefully optimized employing incomplete reduction, 

minimal number of operations and reduced number of data dependencies between 
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contiguous field operations. 

• Best algorithms for the field, point and scalar arithmetic, studied or proposed in this 

thesis, are brought together to realize four high-speed implementations on x86-64 

processors at the 128-bit security level. Presented results set new speed records for 

elliptic curve scalar multiplication and introduce up to 34% of cost reduction in 

comparison with the best previous results in the literature.      

• A generalized lazy reduction technique that enables the elimination of up to 32% of 

modular reductions in the pairing computation is proposed. Further, a methodology that 

keeps intermediate results under Montgomery reduction boundaries maximizing 

operations without carry checks is introduced. Optimized formulas for the popular tower 

 are explicitly stated and a detailed operation count that permits 

to determine the theoretical cost improvement attainable with the proposed method is 

carried out for the case of an optimal ate pairing on a Barreto-Naehrig (BN) curve at the 

128-bit security level.  

• Best algorithms for the different stages of the pairing computation, including the 

proposed techniques and optimizations, are brought together to realize a high-speed 

implementation at the 128-bit security level. Presented results on x86-64 processors set 

new speed records for pairings, introducing up to 34% of cost reduction in comparison 

with the best published result.   

From a general viewpoint, the proposed methods and optimized formulas have a practical 

impact in the performance of cryptographic protocols based on elliptic curves and pairings in a 

wide range of applications. In particular, the introduced implementations represent a direct and 

significant improvement that may be exploited in performance-dominated applications such as 

high-demand Web servers in which millions of secure transactions need to be generated. 

2 6 12p p p p
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1 Chapter 1 

Introduction 

1.1. Motivation 

Since its discovery by Diffie and Hellman in 1976 [DH76], public-key cryptography (PKC) has 

revolutionized the way communications are securely achieved by governments, banks, 

enterprises and even plain people. Based on clever mathematical constructs, public-key systems 

appeared to alleviate the difficult problem of key management and distribution, and provide such 

powerful tools as digital signatures. See, for example, [HMV04, Section 1.2] or [ACD+05, 

Section 1] for an introduction to PKC. 

Nonetheless, RSA, the dominant public-key system during many years, and discrete 

logarithm (DL)-based cryptosystems are already exhibiting clear limitations to keep an 

acceptable performance level in the plethora of new applications and platforms in the new 

millennium that range from constrained, power-limited wireless devices [BCH+00, Lau04] to 

cluster servers performing millions of secure transactions for e-commerce and e-banking 

[GGC02, GSF04]. A relatively new, more “compact” player in the public-key crypto arena has 

been gaining increasing attention in academia and commercial applications: elliptic curve 

cryptosystems.  

Elliptic Curves for Cryptography 

The complex and elegant mathematics behind elliptic curves have attracted number theorists and 
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algebra geometers long time before the remarkable work by Lenstra [Len87] using elliptic curves 

for factoring led to the independent discovery by Miller [Mil86] and Koblitz [Kob87] of Elliptic 

Curve Cryptography (ECC) in 1985. Since then, with the exception of some studies that found 

vulnerabilities in certain special curves [MOV93, Sma99], it has not been possible to find better 

attacks than Pollard’s rho [Pol78], which runs in exponential time, for elliptic curves with large 

prime order subgroup. As a consequence, elliptic curve cryptosystems require shorter keys to 

attain a certain security level in comparison with those required by the traditional RSA and DL-

based systems. For instance, to achieve a level of security equivalent to the Advanced Encryption 

Standard algorithm with 256 bits (AES-256), the National Institute of Standards and Technology 

(NIST) recommends the use of ECC keys of 512 bits, whereas RSA would require keylengths of 

more than 15000 bits [NIST07]. This significant difference in favour of ECC has led in many 

scenarios to faster, more power-efficient and/or memory-friendly implementations, which make 

this cryptosystem especially attractive for constrained devices such as wireless sensor nodes, 

smartcards, personal digital assistants (PDAs), cellphones, smartphones, and many others. 

Moreover, the superior speed of ECC over RSA supports the improvement of performance of 

Web servers in which public-key transactions may be a bottleneck, thus enabling the use of 

strong cryptography on a wider range of Internet-based applications [GSF04].   

A clear example of the importance of ECC in future commercial and governmental 

applications has been set by the inclusion of ECC primitives in the U.S. National Security 

Agency (NSA) Suite B Cryptography, which contains a set of recommended algorithms for 

classified and unclassified U.S. security systems and information [NSA09]. In particular, the 

Elliptic Curve Digital Signature (ECDSA) algorithm and the Elliptic Curve Diffie-Hellman 

(ECDH) key exchange over prime fields (see §2.2.3) are recommended in Suite B for providing 

security up to top secret level. Hence, ECC is arguably getting positioned as the dominant public-

key system in many applications, and is expected to occupy that privileged position for several 

years to come. As direct consequence of this technological shift, the efficient implementation of 

ECC schemes in software and hardware platforms is gaining key importance to realize strong 

cryptography.    

In that direction, this thesis deals with the fast and efficient computation of elliptic curve 

scalar multiplication. This critical operation, denoted by kP (where k is a scalar and P a point on 

an elliptic curve), is the central and most time-consuming operation in ECC. Although several 

methods to compute kP efficiently have been proposed and extensively studied in past years, it is 

still a very interesting challenge to improve further the performance of this operation. Elliptic 

curve scalar multiplication comprises three arithmetic layers: field arithmetic, point arithmetic 

and scalar arithmetic. Cryptographic protocols and schemes work on top of these layers; see 

Section 2.2.3 and [HMV04, Chapter 4] for an overview. In this thesis, we focus on improving the 

overall computation at all three arithmetic layers to try to achieve the highest speed possible in 
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software. In this effort we follow the next steps: (i) identify the elliptic curve settings with the 

fastest arithmetic; (ii) accelerate the precomputation stage of scalar multiplication; (iii) study 

number representations and scalar multiplication algorithms for speeding up the evaluation stage; 

(iv) identify most efficient field arithmetic algorithms and optimize them; (v) analyze the 

architecture of the targeted platforms for maximizing the performance of ECC operations; (vi) 

identify most efficient coordinate systems and optimize explicit formulas; and (vii) realize 

implementations on x86-64 processors with an optimal algorithmic selection among all studied 

cases.  

Grouping together the steps above, let us consider in greater detail the most relevant 

problems and aspects that are considered in this study. 

Precomputation Stage: step (ii) 

A practical strategy that reduces the number of required operations at the expense of some extra 

memory is the use of precomputations. In this case, a table of points is built and stored in 

advance (precomputation stage) for later use during the execution of the scalar multiplication 

itself (evaluation stage). The effect of computing these additional points in the overall cost 

basically depends on the context in which the scalar multiplication occurs. In [HMV04], 

Hankerson et al. distinguishes two possible scenarios that depend on the prior knowledge of the 

initial point P, and classifies the different methods for scalar multiplication according to them.    

Let us illustrate both scenarios, and their subtleties, in the context of the ECDH key exchange 

(see Section 2.2.3): when each Bob and Alice computes the initial scalar multiplication using a 

random scalar in the first phase of the ECDH scheme, both use a publicly known point P for the 

computation. Because P is available beforehand, it is obvious that methods that extensively 

exploit precomputations to reduce the cost of the evaluation stage are preferable in this scenario. 

Examples of efficient methods in this case are comb methods [HMV04, Section 3.3.2]. On the 

other hand, during the second phase of the ECDH scheme, Bob and Alice exchange the results 

from the first phase and calculate a new scalar multiplication. This time, however, the results 

(which are also points on the curve) are not known in advance by their corresponding receptors. 

Although methods may still exploit precomputations, this time the overall cost includes the costs 

of both the precomputation and evaluation stages. A well-known method in this case is width-w 

NAF (wNAF) [Sol00], which is the windowed version of the standard non-adjacent form (NAF).     

Scalar Representation in the Evaluation Stage: step (iii) 

The cost of the evaluation stage in the computation kP is strongly tied to the representation used 

for the scalar k. With the exception of Montgomery’s method [Mon87], the most popular 

approach has been the use of the NAF or wNAF representation in combination with some version 
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of the double-and-add algorithm (see Section 2.2.4.3). However, recently there has been an 

increased interest in using novel arithmetic representations of integers based on double- and 

multi-base number systems [DJM98, DIM05]. In general, it has been observed that these 

representations enable a reduction in the number of point operations required for computing kP. 

However, it is still an open question to determine up to what extent and in which scenarios the 

new multibase representations reduce the computational cost of scalar multiplication. It has been 

shown that these methods in fact reduce the number of point operations but in exchange they 

require more complex formulas besides point doubling and addition. Partially, the question above 

could be answered by trying to find the “optimal” (or close to “optimal”) multibase 

representation of a given scalar for a particular setting, where “optimal” is defined here as 

relative to the computational cost and not to the minimization of the number of additions.  

Efficient Implementation on x86-64 Processors: steps (iv)-(vii) 

Over the years, many efforts have focused on efficient implementation of ECC primitives on 

different platforms [BHL+01, GPW+04, GAS+05, Ber06, CS09]. An incomplete list includes the 

analysis on 8-bit microcontrollers, 32-bit embedded devices, graphical processing units, 

processors based on the x86 Instruction Set Architecture (ISA) or the cell broadband engine 

architecture, among many others. At a high-level, these works provide two main contributions: 

• The compilation of state-of-the-art algorithms and their efficient combination trying to 

achieve the highest performance possible on the targeted platforms. 

• The publication of benchmark results that illustrate the potential performance achievable 

by the particular cryptographic primitive on the targeted platforms. 

As a side-effect, when different test results are made available, readers learn from direct 

comparisons among alternative methods or algorithms.  

Processors based on the x86-64 ISA [AMD] have become increasingly popular in the last few 

years and are now being extensively used for notebook, desktop and server computers. Hence, 

efficient cryptographic computation on these processors is of paramount importance to realize 

strong cryptography in a wide variety of applications. Relevant questions are then: what are the 

methods, formulas and parameters that once combined achieve the highest performance for 

computing ECC primitives on these processors? and what are the features of these devices that 

can be exploited to gain (or sometimes, not to lose) performance? It is then obvious that, for best 

results, the analysis should contemplate architectural features of the processors under analysis.  
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Elliptic Curve Forms: step (i) 

Elliptic curves over prime fields have been traditionally represented in its short Weiertrass form, 
2 3y x ax b= + + , where , pa b∈F . More specifically, the projective form of this curve equation 

using Jacobian coordinates has been the preferred elliptic curve shape for many years by most 

implementers and standardization bodies such as NIST and IEEE [NIST00, NIST09, IEEE00]. 

However, in the last few years intense research has been working on new and improved curve 

forms. Although these curves have not been standardized by national/international bodies up to 

date, they provide attractive advantages such as faster arithmetic and/or higher resilience against 

certain side-channel analysis (SCA) attacks [Sma01, BJ03b, BL07]. Since in this thesis we are 

particularly interested in high-speed cryptography, we focus on two curve forms that currently 

exhibit the lowest point operation costs: extended Jacobi quartic form, 2 4 22 1y dx ax= + + , 

, pa d ∈F ; and Twisted Edwards form, 2 2 2 21ax y dx y+ = + , , .pa d ∈F  For each case, we 

consider in our analysis and implementations the coordinate system(s) and curve parameters that 

in our experience provide the highest performance (see Section 2.2.5 for further details):   

• Mixed homogeneous/extended homogeneous coordinates for the Twisted Edwards curve 
2 2 2 21ax y dx y+ = +  with 1a = −  [HWC+08, His10]. 

• Inverted Edwards coordinates for the Twisted Edwards curve 
2 2 2 21ax y dx y+ = +  with 

1a =  [BL07b]. 

• Extended Jacobi quartic coordinates for the extended Jacobi quartic curve  
2 4 22 1y dx ax= + +  with 1d =  [HWC+07, HWC+08b]. 

We also include the short Weierstrass form because of its widespread use in practice: 

• Jacobian coordinates for the short Weierstrass form 
2 3y x ax b= + +  with 3a = −  . 

Pairing-Based Cryptography   

Since Boneh and Franklin [BF01], following pioneering works by several authors [Jou00, 

SOK00, Ver01], formalized the use of pairings based on elliptic curves with the introduction of 

Identity-Based Encryption (IBE) in 2001, the interest of cryptographers and implementers in this 

new research area have grown dramatically. This is mainly due to the potential of pairings for 

elegantly solving many open problems in cryptography such as Identity-Based Encryption 

[BF01], short signatures [BLS04], multi-party key agreements [Jou00], among many others. See, 

for example, [Men09] for an introduction to pairing-based cryptography. 

Nevertheless, the pairing computation, which is the central and most time-consuming 

operation in most pairing-based schemes, is still relatively expensive in comparison with ECC 
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operations (e.g., an elliptic curve scalar multiplication is about ten times faster than a pairing 

computation at the 128-bit security level on x86-64 processors [BGM+10, GLS09]). Hence, the 

development of techniques and methods leading to optimization of the pairing computation are of 

great importance. Given the technological shift to x86-64-based processors, a series of efforts 

have recently developed faster pairing implementations targeting these platforms [HMS08, 

NNS10, BGM+10]. However, it remains a challenging effort to try to optimize further this 

crucial operation for incentivizing the adoption of these elegant cryptosystems in commercial 

applications.         

In this thesis, we focus on improving the overall pairing computation to try to achieve the 

highest speed possible in software. In this effort we follow the next steps: (i) accelerate tower and 

curve arithmetic; (ii) identify most efficient tower and field arithmetic algorithms and optimize 

them; (iii) identify elliptic curve setting with the fastest arithmetic and optimize it; (iii) identify 

state-of-the-art techniques for the Miller loop and final exponentiation; and (iv) realize 

implementation on x86-64 processors with an optimal algorithmic selection.  

1.2. Contributions 

In this thesis, we propose efficient methods and optimized explicit formulas for accelerating the 

computation of elliptic curve scalar multiplication and pairings on ordinary curves over prime 

fields. In many cases, the improvements are generic and apply to different types of (hardware and 

software) platforms. 

Our main contributions can be summarized as follows: 

• At the precomputation stage, we propose two innovative low-cost precomputation 

schemes. The first scheme, intended for standard curves using Jacobian coordinates, is 

based on a special addition formula due to Meloni [Mel07]. The second scheme, 

especially effective for some special curves and multiple scalar multiplication methods 

such as the Joint Sparse Form (JSF) [Sol01], is based on the concept of conjugate 

addition in projective coordinates. We provide the theoretical costs for single and 

multiple scalar multiplications and perform an extensive comparative analysis for three 

specific systems: Jacobian, extended Jacobi quartic and inverted Edwards coordinates.  

• At the evaluation stage, we provide the theoretical cost analysis of the multibase NAF 

representation and its windowed variant [Lon07], adapt the concept of “fractional” 

windows [Möl03] to width-w multibase NAF to obtain a more generic method that 

allows choosing a flexible number of precomputed points, and introduce a method for 

deriving high-performance multibase algorithms based on the operation cost per bit that 

apply to a wide set of scenarios, ranging from very constrained environments to 
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applications where memory is not scarce. An extensive comparison with other works is 

performed on curves using Jacobian, extended Jacobi quartic and inverted Edwards 

coordinates at different security levels. A relevant comparison with the fastest curves 

using radix-2 methods is presented and demonstrates that “slower” curves employing 

refined multibase chains become competitive for suitably chosen curve parameters on 

memory-constrained devices.  

• We bring together the most efficient ECC algorithms for performing elliptic curve scalar 

multiplication on x86-64 processors and optimize them using techniques from computer 

architecture. We study the optimal combination of incomplete reduction technique and 

elimination of conditional branches to achieve high-speed field arithmetic over pF  using 

a pseudo-Mersenne prime. We also demonstrate the high penalty incurred by data 

dependencies between instructions in neighbouring field operations. Three generic 

techniques are proposed to minimize the number of pipeline stalls due to true data 

dependencies and to reduce the number of function calls and memory accesses. Further, 

explicit formulas are optimized by minimizing the number of “small” field operations, 

which are not inexpensive on the targeted platforms. Improved explicit formulas 

exploiting incomplete reduction and exhibiting minimal number of operations and 

reduced number of data dependencies between contiguous field operations are derived 

and explicitly stated for Jacobian coordinates and mixed Twisted Edwards 

homogeneous/extended homogeneous coordinates for two cases: with and without using 

the GLS method [GLS09]. Record-breaking implementations demonstrating the 

significant performance improvements obtained with the optimizations and techniques 

under analysis at the 128-bit security level are described. Benchmark results for different 

x86-64 processors exhibiting up to 34% cost reduction in comparison with the best 

published results are presented. 

• We introduce a generalized lazy reduction technique that allows us to eliminate up to 

32% of the total number of modular reductions when applied to the towering and curve 

arithmetic in the pairing computation. Furthermore, we present a methodology to keep 

intermediate results under Montgomery reduction boundaries so that the number of 

operations without carry checks is maximized. We illustrate the method with the well-

known tower , for which case we explicitly state the improved 

formulas. Curve arithmetic using Jacobian and homogeneous coordinates is optimized 

using the projective equivalence class and with the application of lazy reduction. A 

detailed operation count that allows us to determine the theoretical cost improvement 

attainable with the proposed method is carried out for the case of an optimal ate pairing 

on a BN curve [BN05] at the 128-bit security level. To illustrate the practical 

performance boost obtained with the new formulas we realize a record-breaking 

2 6 12p p p p
→ → →F F F F
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implementation of the pairing above, also incorporating state-of-the-art techniques. 

Benchmark results for different x86-64 processors exhibiting up to 34% cost reduction in 

comparison with the best published results in the literature are presented. 

The details above only highlight the most relevant contributions of this thesis. The reader is 

referred to Chapters 3, 4, 5 and 6 for additional outcomes. 

Partial results that have been developed further in this thesis already appear in the following 

relevant publications: 

[1] “New Composite Operations and Precomputation Scheme for Elliptic Curve 

Cryptosystems over Prime Fields”, with A. Miri. In Proc. Int. Conference on Practice 

and Theory in Public Key Cryptography (PKC 2008), 2008. This corresponds to part of 

Chapter 3. 

[2] “Novel Precomputation Schemes for Elliptic Curve Cryptosystems”, with C. Gebotys. In 

Proc. Int. Conference on Applied Cryptography and Network Security (ACNS 2009), 

2009. This corresponds to part of Chapter 3. 

[3] “Fast Multibase Methods and Other Several Optimizations for Elliptic Curve Scalar 

Multiplication”, with C. Gebotys. In Proc. Int. Conference on Practice and Theory in 

Public Key Cryptography (PKC 2009), 2009. This corresponds to Chapter 4. 

[4] “Efficient Techniques for High-Speed Elliptic Curve Cryptography”, with C. Gebotys. In 

Proc. Workshop on Cryptographic Hardware and Embedded Systems (CHES 2010), 

2010. This corresponds to Chapter 5. 

[5] “Faster Explicit Formulas for Computing Pairings over Ordinary Curves”, with D.F. 

Aranha, K. Karabina, C. Gebotys and J. Lopez. In Proc. Advances in Cryptology - 

Eurocrypt 2011 (to appear), 2011. This corresponds to Chapter 6.     

1.3. Outline  

This thesis is organized as follows. In Chapter 2, we present the mathematical background 

necessary for the understanding of Elliptic Curve and Pairing-based Cryptography, including 

curve definitions and operation costs that will be accessed throughout the thesis.  

In Chapter 3, we introduce the novel precomputation schemes, namely LM and LG schemes, 

and present their operation costs when applied to different curve forms in various settings. 

In Chapter 4, we discuss our contributions for accelerating the evaluation stage using 

multibase representations. We present the theoretical analysis of the (width-w) multibase NAF 

method, optimize the windowed variant by applying fractional windows and introduce the new 

methodology to derive refined algorithms able to find improved multibase chains. 
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In Chapter 5, we discuss the efficient implementation of elliptic curve scalar multiplication 

on x86-64 processors, present highly optimized field and point arithmetic and discuss our 

implementation results on a variety of 64-bit platforms.   

In Chapter 6, we discuss the generalization of the lazy reduction technique for the efficient 

computation of pairings, present the highly optimized formulas and illustrate the performance 

improvement with a high-speed implementation of an optimal ate pairing on a BN curve. 

Finally, in Chapter 7 we summarize the contributions of this thesis and discuss future work.  

At the end, we present several appendices. In Appendices A1 and A2 we present the detailed 

pseudocode of the LM precomputation scheme and derive the costs of the method for the 

different variants. In Appendix A3, we present the explicit formulas for conjugate addition using 

Jacobian, extended Jacobi quartic and inverted Edwards coordinates. In Appendix A4 we detail 

the calculation of points using the LG precomputation scheme for different number of 

precomputations. In Appendices A5 and A6, we prove the theoretical costs of the LG method for 

single and multiple scalar multiplication cases. Appendix A7 presents extended cost comparisons 

between precomputation methods using 256- and 512-bit scalars. In Appendix B1 and B2, we 

detail the optimized point formulas used in our traditional and GLS-based implementations of 

scalar multiplication, respectively. Appendix C1 discusses the application of the generalized lazy 

reduction technique to compressed squarings.   
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2 Chapter 2 

Background 

In this chapter, we introduce the mathematical tools that are considered fundamental for the 

understanding of Elliptic Curve and Pairing-based Cryptography. For more extensive treatments, 

the reader is referred to [HMV04, ACD+05]. First, we begin with an exposition of basic abstract 

algebra and elliptic curves, and then discuss the security foundations of ECC, some of the most 

popular EC-based cryptographic schemes and the arithmetic layers that constitute the 

computation of elliptic curve scalar multiplication. Following, we summarize some advanced 

research topics related to special curves and the Galbraith-Lin-Scott (GLS) method, which are 

extensively used in Chapters 3-5. We end this chapter with a brief introduction to Pairing-based 

Cryptography, including a description of the optimal ate pairing used in Chapter 6.   

2.1. Preliminaries 

In this section, we introduce some fundamental concepts about finite groups, finite fields, cyclic 

subgroups and the generalized discrete logarithm problem. 

Finite Groups 

A set G is called a finite group with order q, and denoted by (G,∗ ), if it has a finite number q of 

elements, has a binary operation : G G G∗ × →  and satisfies the following properties [HMV04]: 
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• Associativity: ( ) ( )a b c a b c∗ ∗ = ∗ ∗ , for all elements , , Ga b c ∈ .    

• Existence of an identity: there exists an element Ge∈ such that a e e a a∗ = ∗ =  for all 

Ga ∈ . Element e is called the identity of the group. 

• Existence of inverses: for each element Ga ∈ , there exists an element Gb ∈  such that 

a b b a e∗ = ∗ = . Element b is called the inverse of a.  

In addition, the group is called abelian if it satisfies the commutativity law, that is, 

a b b a∗ = ∗ , for all elements , Ga b∈ .     

If the binary (group) operation is called addition (+), then the group is additive. In this case, 

the identity element is usually denoted by 0 (zero) and the additive inverse of an element a is 

denoted by a− . If, otherwise, the binary (group) operation is called multiplication ( )i , then the 

finite group is multiplicative. In this case, the identity element is usually denoted by 1 and the 

multiplicative inverse of an element a is denoted by 1
a

− .  

Finite Fields 

A field is a set F
 
together with two operations, addition (+) and multiplication ( )i , s.t. (F , + ) 

and ( ∗
F , i ) are abelian groups and the distributive law ( )a b c a c b c+ ⋅ = ⋅ + ⋅  holds for all 

elements , ,a b c ∈F . There exists a finite field if and only if its order q is a prime power with the 

form mq p= , where p is a prime and 1m ≥ . We denote this field by qF  and distinguish the 

following cases: 

• If 1m = , it is called prime field and is denoted by pF . In this case, {0,1,2, , 1}p p= −…F , 

which are all the integers modulo p. The group operations are then addition and 

multiplication modulo p.  

• If 2m ≥ , it is called extension field and is denoted by mp
F . Using polynomial basis 

representation, one can define mp
F  as the set of all polynomials in the indeterminate x 

with coefficients in pF  and degree at most ( 1)m − :  

                   1 2
1 2 1 0[ ] / ( ) { : }m

m m
p m m i pp

x f x a x a x a x a a− −
− −= = + + + + ∈…F F F . 

The group operations are polynomial addition and multiplication with coefficients 

reduced modulo p. Multiplication is performed modulo an irreducible polynomial ( )f x . 

Special cases of extension fields are, for example, 
2mF , which are known as binary 

extension fields (or, simply, binary fields), and 2p
F , which are known as quadratic 

extension fields.  

Two notable cases are extensively used today to build elliptic curve cryptosystems: prime 

fields pF  and binary fields 
2mF . In this thesis, we focus on the former case. Also, other  

extension fields mp
F

 
of large prime characteristic are employed in many applications including 



 
 

 

Chapter 2: Background                                                                                                                    

 

13 

 

pairing-based cryptography (see Section 2.3) and new ECC systems based on the GLS method 

(see Section 2.2.6).  

Cyclic Subgroups 

Let G be a finite group of order n with multiplication ( )i  as binary operation, and let g be an 

element of G such that { :0 1}ig g i r= ≤ ≤ −  is the subgroup of G generated by g, where r is the 

order of the element g, that is, r is the smallest positive integer for which 1rg = . It is known that 

r always exists and is in fact a divisor of n. Then, G is a cyclic group with generator g if G g=  

(i.e., r n=  holds). The set g  is also a group itself under the same binary operation and is called 

the cyclic subgroup of G generated by g. More precisely, G contains exactly one cyclic subgroup 

of order d for each divisor d of n.      

In the next section, we explore the way in which all the points belonging to an elliptic curve 

over a prime field pF  form an abelian group under addition, and how the cyclic subgroups of this 

group can be used to implement EC-based cryptosystems. 

Generalized Discrete Logarithm Problem (DLP) 

Given a multiplicative cyclic group (G, )i  of order n with generator g and an element y g∈ , 

the DLP is defined as the problem of determining the unique integer [0, 1]x n∈ −  such that 
xy g= . In this case, a system based on this problem is considered suitable for cryptography if 

the discrete logarithm problem is intractable and there are fast algorithms to compute the group 

operation in G. 

Two groups are extensively used in discrete logarithm (DL) systems: the cyclic subgroups of 

the multiplicative group of a finite field and cyclic subgroups of elliptic curve groups. The former 

case has been studied since the late 70’s. Hence, cryptosystems based on this setting will be 

regarded as traditional DL-based systems. 

2.2. Introduction to Elliptic Curves 

A non-singular elliptic curve E over a finite field K, which is denoted by E/K, is defined by the 

general Weierstrass equation: 

                                
1 2 3 4 6

2 3 2
, , , , , 1 3 2 4 6:W a a a a aE y a xy a y x a x a x a+ + = + + + ,                           (2.1) 

where: 1 2 3 4 6, , , ,a a a a a K∈ , the discriminant 2 3 2
2 8 4 6 2 4 68 27 9 0d d d d d d d∆ = − − − + ≠ , 

2
2 1d a= + 24a , 4 4 1 32d a a a= + , 

2
6 3 64d a a= +  and 

2 2 2
8 1 6 2 6 1 3 4 2 3 44d a a a a a a a a a a= + − + − . 

The condition 0∆ ≠  guarantees that there does not exist more than one tangent line for a given 

point on the curve, i.e., the curve is “smooth”.  



 
 

 

Chapter 2: Background                                                                                                                    

 

14 

 

If we define elliptic curve points as the pairs ( , )x y  solving the curve equation (2.1) and L  is 

any extension field of K, the set of L -rational points on 
1 2 3 4 6, , , , ,W a a a a aE  is: 

                   2 3 2
1 3 2 4 6( ) ( , ) : 0{ } { }WE x y y a xy a y x a x a x a= ∈ × + + − − − − = ∪L L L O ,        (2.2) 

where O represents the point at infinity and is an L -rational point for all extension fields L  of 

K.   

Definition 2.1. Two elliptic curves 
1 2 3 4 61 , , , , ,W a a a a aE E=  and 

1 2 3 4 62 , , , , ,W b b b b bE E=  defined over K 

in Weierstrass form are said to be isomorphic over K if there exist , ,r s t K∈  and \ {0}u K∈  

such that the mapping (also called an admissible change of variables):  

                                                  ( )2 3 2
( , ) ,x y u x r u y u sx t+ + +�                                            (2.3) 

transforms 1E  into 2E . 

Definition 2.2. If , ,r s t K∈  (closure of K) and \ {0}u K∈  in the setting of Definition 2.1, then 

curves 1E  into 2E  are isomorphic over K  or twists of each other. Moreover, 1 2( ) ( )j E j E=  if 

and only if 1E  into 2E  are twists, where ()j  denotes the j-invariant of a given curve equation. 

Following Definition 2.2, the j-invariant can be used to determine if two curves are twists.  

The Weierstrass equation has had a privileged role in most standards and cryptographic 

applications because of the fact that every elliptic curve can be expressed in this form. Moreover, 

it enables efficient computation when simplified to its isomorphic forms over K known as short 

Weierstrass curves, which are obtained through an admissible change of variables.  

2.2.1. Short Weierstrass Form 

Since in the present work we mainly focus our attention on prime fields pF  with p > 3, we limit 

following definitions to pF  only. However, the reader should be aware that the same descriptions 

extend to any prime field K with prime characteristic > 3.  

For the case of pF  with p > 3, the general Weierstrass equation (2.1) simplifies to the 

following form, known as short Weierstrass form:              

                                                      2 3
, , :W a bE y x ax b= + + ,                                             (2.4) 

where , pa b∈F , 3 216(4 27 ) 0a b∆ = − + ≠  and 3
, ,( ) 1728 / 4W a bj E a= ∆ . In the remainder of this 

work, we refer to eq. (2.4) as simply WE . Since this curve form has been recommended (and 

even enforced in some cases) by numerous international standardization bodies, we will also 
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refer to it as standard curve. 

The set of elliptic curve points ( , )x y  solving the curve equation (2.4) plus the point at 

infinity, which is given by:  

                                2 3( ) ( , ) : 0{ } { }W p p pE x y y x ax b= ∈ × − − − = ∪F F F O ,                         (2.5)       

form an additive abelian group ( ( ), )W pE +F  when the so called chord-and-tangent rule is used to 

define the group operation. In this case, the point at infinity O acts as the identity element of the 

group law (see Section 2.2.4.2 for more details).  

Cyclic subgroups of the group ( ( ), )W pE +F
 
can be used to build elliptic curve cryptosystems. 

The hardness of these constructs is based on the so-called Elliptic Curve Discrete Logarithm 

Problem (ECDLP), described next. 

2.2.2. Scalar Multiplication and the Elliptic Curve Discrete Logarithm 

Problem (ECDLP) 

Let / pE F
 
be an elliptic curve defined over pF . If ( )pP E∈ F  is a point of order r, the cyclic 

subgroup of ( )pE F  generated by P is { , ,2 , ( 1) }P P r P−…O . Then, if we define the scalar k as an 

integer in the range [1, 1]r − , we can represent the main operation in ECC, namely, scalar 

multiplication (a.k.a. point multiplication), as the following computation: 

                                                                      Q k P= ,                                                           (2.6) 

where the result Q is also a point in the subgroup of ( ( ), )pE +F  generated by P.  

Although the scalar multiplication with form (2.6) is the most common operation in elliptic 

curve cryptosystems, some settings such as digital signatures require a computation with the form                                            

k P lQ+ , where , ( )pP Q E∈ F  are points of order r and k, l are integers in the range [1, 1]r − . 

This operation is also known as multiple scalar multiplication. To make a clear distinction 

between both primitives, we will refer to operation (2.6) as single scalar multiplication whenever 

necessary. 

The hardness of systems based on elliptic curve scalar multiplication is based on the Elliptic 

Curve Discrete Logarithm Problem (ECDLP), which is an adaptation of the traditional DLP to 

elliptic curve groups. 

Definition 2.3. Given the cyclic group ( ( ), )pE +F
 
with generator P and a point Q P∈ ,  the 

ECDLP is defined as the problem of determining the unique integer [0, 1]k r∈ −  such that 

Q kP= , where r is the order of points P and Q.  
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The ECDLP is assumed to be harder than other recognized problems such as integer 

factorization and the discrete logarithm problem in the multiplicative group of a finite field, 

which are the foundations of RSA [RSA78] and the ElGamal [ElG84] cryptosystems, 

respectively.  

To assess more precisely the impact of the attacks available for each problem, we first 

introduce the following definition about algorithmic running time.    

Definition 2.4. If we define the running time of a given algorithm with input n by 

( )1[ , ] exp(( )(ln ) (ln ln ) )a a
nL a c O c n nε −= + , where 0c >  and 0 1a≤ ≤  are constants and 

lim 0n ε→∞ = , then it is said to be polynomial in ln n  (i.e., ((ln ) )c
O n

ε+ ) if a = 0, exponential in 

n (i.e., ( )c
O n

ε+ ) if a = 1, and subexponential if 0 1a< < . 

Then, the parameter a can be seen as a measure of the efficacy of an attack to solve a 

particular problem, where higher values indicate inefficiency (as it is approximating to 

exponential running time) and lower values indicate efficiency (as it is approximating to 

polynomial running time). As consequence, one would prefer systems for which only exponential 

attacks are known. 

In particular, the need for increasingly larger keys in RSA and traditional DL-based systems 

is due to the existence of a sub-exponential attack, known as the Number Field Sieve (NFS) 

[LLM+93, Gor93], which solves the integer factorization and discrete logarithm problems. This 

attack falls in the category of the well-known index calculus attacks, and has an expected running 

time of
1

3
[ ,1.923]nL . In contrast, the fastest known method to solve ECDLP is Pollard’s rho 

[Pol78], which falls in the category of square root attacks and has the exponential running time

( )O r , where r is the order of the cyclic group with generator P in the setting of Definition 2.3.  

Note that there are “weaker” curves such as supersingular curves for which it is feasible to 

transport the ECDLP to the DLP in the group *
k

q
F  using the Weil pairing and then to apply index 

calculus attacks [MOV93]. However, for the wide range of remaining elliptic curves with large 

prime order subgroup there are still no better attacks than Pollard’s rho.   

In conclusion, it is expected that the key sizes required for ECC using a suitably chosen curve 

and underlying field for a given security level are significantly smaller than those required for 

traditional cryptosystems based on the integer factorization and DL problems. 

Table 2.1 shows the key sizes for EC-based and RSA cryptosystems for equivalent security 

levels, as recommended by [NIST07]. Security levels are shown at the bottom of the table and 

refer to the bitlength n of keys in a well-designed symmetric cryptosystem such that a brute force 

attack would require performing 2
n

 steps in order to break the system. For instance, an attacker 

would need to go through all 
256

2  possible keys to break AES-256, where 256n = . Estimates for 

ECC and RSA systems are based on the key size necessary to successfully run the fastest 
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algorithm that solves each problem (i.e., Pollard’s rho and NFS, respectively) in a number of 

steps that matches the corresponding security level.   

Table 2.1. Key sizes for ECC and RSA for equivalent security levels [NIST07]. 

Cryptosystem Key size (bits) 

ECC 160 224 256 384 512 

RSA 1024 2048 3072 7680 15360 

Security level 80 112 
128 

(AES-128) 

192 

(AES-192) 

256 

(AES-256) 

 

As we can observe from Table 2.1, ECC requires much smaller keys. This directly translates 

to important savings in bandwidth and memory requirements to transmit/store key material. 

Moreover, with the rapid advances in software/hardware implementation during the last years, 

that advantage has also been extended to faster execution times.  

These advantages directly reflect on cryptographic systems based on elliptic curves that have 

single and multiple scalar multiplications as their main primitives. Next, we review some of the 

best known elliptic curve cryptosystems. 

2.2.3. Elliptic Curve Cryptographic Schemes 

Elliptic Curve Key Generation 

First, a public-key system requires a key pair consisting of the private and public keys. This is 

given in Algorithm 2.1 for the case of ECC.  

 

Algorithm 2.1.  Elliptic curve key generation  

Input:  domain parameters ( , , , )E p P r  

Output:  private key k and public key Q 

1: Select a random integer [1, 1]k r∈ −    

2: Compute Q kP=           

3: Return Q    

 

Elliptic Curve Diffie-Hellman Key Exchange (ECDH) 

Based on the original key exchange proposed by Diffie and Hellman in [DH76], this scheme 

makes use of elliptic curve groups to allow that two parties establish a shared secret key over a 
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public medium. The protocol is illustrated in Algorithm 2.2 for the case of ECC.  

 

Algorithm 2.2.  Elliptic curve Diffie-Hellman key exchange (ECDH)  

Input:  domain parameters ( , , , )E p P r  

Output:  shared secret key Q = abP 

                        Alice side:                        Bob side: 

1: Select a random integer [1, 1]a r∈ −  1: Select a random integer [1, 1]b r∈ −  

2: Compute aQ aP=  and send it to Bob       2: Compute bQ bP=  and send it to Alice      

3: Upon reception of bQ , compute bQ aQ=  3: Upon reception of aQ , compute aQ bQ=
 

ElGamal Elliptic Curve Cryptosystem 

This cryptosystem is an adaptation to ECC of the encryption/decryption system proposed by 

ElGamal in [ElG84]. Encryption and decryption schemes are illustrated in Algorithms 2.3 and 

2.4, respectively.  

 

Algorithm 2.3.  ElGamal elliptic curve encryption  

Input:  domain parameters ( , , , )E p P r , public key Q and plaintext m 

Output:  ciphertext 0 1( , )C C  

1: Represent m as a point ( )pM E∈ F    

2: Select a random integer [1, 1]d r∈ −         

3: Compute 0C dP=           

4: Compute 1C M dQ= +           

5: Return 0 1( , )C C    

 

Algorithm 2.4.  ElGamal elliptic curve decryption  

Input:  domain parameters ( , , , )E p P r , private key k and ciphertext 0 1( , )C C  

Output:  plaintext m 

1: Compute 1 0M C kC= −           

2: Extract m from M          

3: Return m   
 

Elliptic Curve Digital Signature Algorithm (ECDSA) 

This is the elliptic curve analogue of the Digital Signature Algorithm (DSA) and is the most 
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popular EC-based signature scheme. It has been standardized in ANSI X9.62, FIPS 186-2, IEEE 

1363-2000 and ISO/IEC 15946-2. Signature generation and verification are illustrated in 

Algorithms 2.5 and 2.6 . H denotes a hash function that is assumed to be preimage and collision 

resistant. 

 

Algorithm 2.5.  ECDSA signature generation  

Input:  domain parameters ( , , , )E p P r , private key k and message m 

Output:  signature 0 1( , )s s  

1: Select a random integer [1, 1]d r∈ −         

2: Compute 1 1( , )dP x y=  and set 1z x=    

3: Compute 0 (mod )s z r≡ . If 0 0s = , go to step 1   

4: Compute ( )e H m=           

5: Compute 1
1 ( ) mods d e kz r

−= + . If 0 0s = , go to step 1          

6: Return 0 1( , )s s    

 

Algorithm 2.6.  ECDSA signature verification  

Input:  domain parameters ( , , , )E p P r , public key Q, message m and signature 0 1( , )s s  

Output:  reject or accept the signature 

1: If  0 1( , ) [1, 1]s s r∉ − , return (reject the signature)       

2: Compute ( )e H m=           

3: Compute 1
1 modt s r
−≡ .    

4: Compute modu et n=  and 0 modv s t n=          

5: Compute 1 2( , )T uP vQ x x= + =
 
and set 1z x= . If T =O , return (reject the signature)      

6: If 0 (mod )s z r≡ , return (accept the signature)       

7: Else return (reject the signature)   

 

The security of the ECDH key exchange, ElGamal elliptic curve cryptosystem and ECDSA is 

based on the intractability of the ECDLP in P . In addition, the ECDSA requires that the hash 

function H be preimage and collision resistant. As can be seen, scalar multiplication (or multiple 

scalar multiplication) constitutes the central (and most time-consuming) operation of the schemes 

above. Hence, speeding up this operation has a direct impact in the computing performance of 

any cryptographic protocol based on elliptic curves.    

 In the following section, we briefly describe the arithmetic layers that constitute the 

computation of elliptic curve scalar multiplication. The interested reader is referred to [HMV04, 

ACD+05] for a more detailed look at the topic. 
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2.2.4. ECC Scalar Multiplication Arithmetic 

The computation of elliptic curve scalar multiplication consists of three arithmetic levels or 

layers: field, point and scalar arithmetic. As previously seen, a cryptographic protocol or scheme 

works on top of scalar multiplication. However, since this thesis focuses on the efficient 

computation of this operation, our discussion will center on the aforementioned arithmetic levels.  

2.2.4.1. Level 1: Finite Field Arithmetic 

The lowest level of scalar multiplication over prime fields consists of finite field operations, 

which are basically traditional arithmetic operations reduced modulo the prime p: 

• Addition: given , pa b ∈F , compute ( )moda b p r+ = , where r a b p= + −  if a b p+ ≥  

or  r a b= +  if a b p+ < . 

• Subtraction: given , pa b∈F , compute ( )moda b p r− = , where r a b p= − +  if 

0a b− <  or  r a b= −  if 0a b− ≥ .  

• Multiplication: given , pa b ∈F , compute ( )moda b p r⋅ = , where r is the remainder of 

dividing ( )a b⋅  by p s.t. 0 1r p≤ ≤ − . 

• Squaring: given pa ∈ F , compute 
2

moda p r= , where r is the remainder of dividing 2
a  

by p s.t. 0 1r p≤ ≤ − .  

• Inversion: given a nonzero element pa ∈F , compute 
1

moda p r
− = , where r is the 

unique integer in pF  for which ( )mod 1a r p⋅ = . 

Since modular reduction represents an important portion of the cost of computing modular 

arithmetic, it is relevant to optimize this operation. In the setting of elliptic curve point 

multiplication, the selection of a prime of special form (e.g., a pseudo-Mersenne prime p s.t. 

2mp ≈ ) enables very efficient modular reduction; see Chapter 5 for an implementation of the 

field arithmetic using a pseudo-Mersenne prime. If a general form for the prime p is mandatory 

for security concerns (e.g., in pairing-based cryptosystems), then the use of Montgomery 

arithmetic [Mon85] is a popular choice given its relatively efficient reduction step. In this case, 

elements x are represented with the form 2 modNa x p= ⋅ , where N t w= ⋅ , 2N p> , w is the 

computer wordlength and t is the number of words. Montgomery reduction produces 

2 modNa p−⋅  for an input 2Na p< ⋅ . Then, Montgomery multiplication of elements a =  

2 modNx p⋅  and 2 modNb y p= ⋅  can be performed as 2mod ( 2 ) 2 (mod )N Nc ab p x y p−= = ⋅ ⋅ ⋅ =  

2 modNxy p⋅ , which is in Montgomery representation; see Chapter 6 for an implementation of 

the field arithmetic using Montgomery arithmetic with a prime of “general” form.       

The reader is referred to [HMV04, Chapter 2] and [ACD+05, Chapter 10] for more detailed 

discussions about efficient algorithms to perform integer arithmetic and field operations. 
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In the remainder of this work, we use the following notation in italics to specify the 

computing time (or computing cost) required to perform field operations in pF : A (field addition 

or subtraction), S (field squaring), M (field multiplication) and I (field inversion). In some cases, 

multiplication by a curve parameter is required. The cost of this operation is denoted by D.  

In theoretical estimates throughout this work, we make the following assumptions: 

1 0.8S M= , which is commonly used in the literature; the costs of computing field addition/ 

subtraction and division/multiplication by a small constant are roughly equivalent to one another 

and/or negligible in comparison with the cost of field multiplication and squaring; and curve 

parameters are suitably chosen such that the cost of multiplying by these constants is negligible. 

Whenever required for simplification purposes, the assumptions above are applied in our 

theoretical cost analysis. However, the reader should be aware that these assumptions may vary 

from one implementation to another.  

2.2.4.2. Level 2: Point Arithmetic 

This level consists of the binary (group) operation accompanying the defined additive abelian 

group ( ( ), )pE +F . The different variants of this group operation are better known as point 

operations.  

The elementary representation of points is based on the natural representation using ( , )x y  

coordinates, which is called in the context of ECC affine coordinates (denoted by A for the 

remainder of this work). As previously stated, the group addition is geometrically defined by the 

chord-and-tangent rule: (i) the result of adding two points is the projection over the x axis of the 

point that intersects the line that crosses the two original points being added. This operation is 

referred to as point addition and can be visualized in Figure 2.1(a) over the real numbers; (ii) the 

result of adding a point to itself can be geometrically defined as the projection over the x axis of 

the point that intersects the tangent of the original point. This operation is referred to as point 

doubling and can be visualized in Figure 2.1(b) over the real numbers.     

Following the geometrical definition, it is relatively easy to derive the following formula to 

add two points. Let WE  be an elliptic curve over pF  
in short Weierstrass form (2.4), where p > 

3. Given two points 1 1( , )P x y=  and 2 2( , ) ( )W pQ x y E= ∈ F , where P Q≠ ± , the addition 

3 3( , )P Q x y+ =  is obtained as follows:  

2
3 1 2x x xλ= − − ,  ( )3 1 3 1y x x yλ= − − ,                                                                                    (2.7)   

where: 
2 1

2 1

y y

x x
λ

−
=

−
. This addition formula has a cost of 1I + 2M + 1S. 

Similarly, formula for point doubling in affine coordinates can be easily derived from the 

previously described geometric description. Let WE  be an elliptic curve over pF  
in short 

Weierstrass form (2.4), where p > 3. Given a point 1 1( , ) ( )W pP x y E= ∈ F , 3 32 ( , )P x y=  can be 
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                   (a) Addition P+Q                                                                  (b) Doubling 2P     

Figure 2.1. Group law over � .          

obtained as follows:
 

2
3 12x xλ= − ,  ( )3 1 3 1y x x yλ= − − ,                                                                                          (2.8) 

where:a

2
1

1

3

2

x a

y
λ

+
= . The cost of the previous formula is 1I + 2M + 2S. 

There are a few exceptions to the previous formulas that can be solved by applying the 

identity element, namely, the point at infinity O. Recall that the point at infinity can be 

geometrically defined as the point “lying far out on the y-axis such that any line x = c, for some 

constant c, parallel to the y-axis passes through it” [ACD+05]. Thus, if 1 1( , )P x y=  and 

1 1( , )Q x y= − , then the addition is given by: 1 1 1 1( , ) ( , )P Q x y x y+ = + − =O . 1 1( , )Q x y= −  is 

called the negative of P and is denoted by P− . Similarly, P P P+ = + =O O , and = −O O .          

Inversion-Free (Projective) Coordinates 

As we have seen in the previous section, point formulas based on affine coordinates require the 

computation of field inversions. Particularly over prime fields, inversions are highly expensive in 

comparison with other field operations, and should be avoided as much as possible. Although 

their relative cost depends on the characteristics of a particular implementation, it has been 

observed that, especially in the case of efficient forms for the prime p as recommended by 

[NIST00], 1 30I M> . For instance, benchmarks presented by [LH00] and [BHL+01] show I/M 

ratios between 30-40 and 50-100, respectively. 

To solve this problem, one can use instead projective coordinates with the form ( : : )X Y Z , 

y

x

y

x

1 1( , )P x y=

1 1( , )P x y=

2 2( , )Q x y=

3 3( , )P Q x y+ =

3 32 ( , )P x y=
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in which case the third coordinate Z permits to replace inversions for a few other field operations. 

More precisely, given a prime field pF  and ,c d
+∈Z , there is an equivalence relation ∼  among 

nonzero triplets over pF , such that [HMV04]: 

1 1 1 2 2 2( , , ) ( , , )X Y Z X Y Z∼   ⇔ 1 2
cX Xλ= , 1 2

dY Yλ=  and 1 2Z Zλ= , for some *
pλ ∈F ,          (2.9) 

The equivalence class of a projective point is *( : : ) {( , , ) : }c d
pX Y Z X Y Zλ λ λ λ= ∈F , where 

any element ( , , )X Y Z  can be used as a representative of such a point. In particular, 

( / , / ,1)c dX Z Y Z  is the only representative in the set for which 1Z = . That means that there is a 

one-to-one mapping between affine points and projective points.    

If, for instance, one fixes 2c =  and 3d =  the new representation is known as Jacobian 

coordinates (denoted by J in the remainder), which is a special case of projective coordinates 

that has yielded very efficient point formulae [HMV04, Elm06]. Then, in this case the 

equivalence class of a (Jacobian) projective point is given by: 

                                            2 3 *( : : ) {( , , ) : }pX Y Z X Y Zλ λ λ λ= ∈F .                                       (2.10) 

Note that, in the Jacobian representation, each projective point ( : : )X Y Z  corresponds to the 

affine point 2 3( / , / )X Z Y Z . In this case, the curve equation (2.4) acquires the projective form 
2 3 4 6

Y X aXZ bZ= + + , the negative of a point ( : : )P X Y Z=  is given by ( : : )P X Y Z− = −  and 

the point at infinity corresponds to (1 :1 : 0)=O . 

In Table 2.2, we summarize costs of the most efficient point formulas in J coordinates, 

including recently proposed composite operations such as tripling (3P) and quintupling (5P) of a 

point, which are built on top of traditional doubling and addition operations and are relevant for 

the efficient implementation of multibase scalar multiplication methods (see Chapter 4). Also, we 

include the highly efficient doubling-addition operation proposed by the author in [Lon07] which 

computes the recurrent value 2P Q+  and is more efficient than performing a doubling followed 

by an addition when using Jacobian coordinates (see also [LM08b]). Besides “traditional” costs 

in each case, we also show costs of formulas after applying the technique of replacing 

multiplications by squarings (labeled as “Using S-M tradings”) [LM08] using the algebraic 

substitutions 2 2 2( ) 2a b a b a b ⋅ = + − −   or 2 2 22 ( )a b a b a b ⋅ = + − −  . In general, this 

technique is more efficient always that 4M S A− >  or 2M S A− >  (respect.). The reader is 

referred to our online database [Lon08] for complete details about state-of-the-art formulas using 

Jacobian coordinates.  

Note that formulas considered in Table 2.2 fix 3a = −  in the curve equation (2.4) for 

efficiency purposes. This assumption, which has been shown not to impose significant restrictions 

to the cryptosystem [BJ03], has been recommended and incorporated in public-key standards 

[NIST00, IEEE00]. 
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Table 2.2. Costs (in terms of multiplications and squarings) of point operations using Jacobian 

(J ) and mixed Jacobian-affine coordinates.  

Point operation 
Cost 

“Traditional” Using S-M tradings 

Doubling (DBL), 2 →J J  4M + 4S 3M + 5S
 

Mixed doubling (mDBL), 2 →A J  2M + 4S 1M + 5S                           

Tripling (TPL), 3 →J J  9M + 5S 7M + 7S
 

Mixed tripling (mTPL), 3 →A J  7M + 5S 5M + 7S
 

Quintupling (QPL), 5 →J J  13M + 9S 10M + 12S
 

Mixed quintupling (mQPL), 5 →A J  12M + 8S 8M + 12S
 

Mixed addition (mADD), + →J A J   8M + 3S 7M + 4S 

Mixed2 addition (mmADD), + →A A J   4M + 2S 4M + 2S 

Addition (ADD), + →J J J  12M + 4S 11M + 5S
 

Addition with two stored values ( [1,1]ADD ), + →J J J  11M + 3S 10M + 4S
 

Addition with four stored values ( [2,2]ADD ), + →J J J  10M + 2S 9M + 3S
 

Mixed doubling-addition (mDBLADD), 2 + →J A J  13M + 5S 11M + 7S
 

Doubling-addition (DBLADD), 2 + →J J J  17M + 6S 14M + 9S
 

Doubling-addition ( [1,1]DBLADD ), 2 + →J J J  16M + 5S 13M + 8S
 

 

For the remainder, doubling (2P), tripling (3P), quintupling (5P), addition (P+Q) and 

doubling-addition (2P+Q) are denoted by DBL, TPL, QPL, ADD and DBLADD, respectively. If 

at least one of the inputs is in affine and the output is in J coordinates, the operations use mixed 

coordinates (see Cohen et al. [CMO98]) and are denoted by mDBL, mTPL, mQPL, mADD and 

mDBLADD, corresponding to each of the previous point operations. For addition, the case in 

which both inputs are in affine is denoted by mmADD. Costs are expressed in terms of field 

multiplications (M) and squarings (S) only. The reader is referred to [Lon08] for the full 

operation count.  

In some cases, it is possible to reduce the cost of certain operations if some values are 

precomputed in advance. That is the case of addition and doubling-addition with stored values 

(identified by the subscripts [ , ]M S , where M and S denote the number of precalculated 

multiplications and squarings, respect.). If, for instance, values 2
iZ  and 3

iZ  are calculated for 

each precomputed point id P  in windowed methods the costs of the aforementioned operations 

can be reduced by 1M + 1S. Maximum savings can be achieved if four values, namely, 2
iZ , 3

iZ , 
2
2Z  and 3

2Z , can be precalculated before performing an addition of the form 1 1 1( : : )X Y Z +

2 2 2( : : )X Y Z . In this case, we can save up to 2M + 2S. 
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Variants of J coordinates have also been explored in the literature. In particular, the four-

tuple 
4( : : : )X Y Z aZ  and five-tuple 

2 3
:( : : : )X Y Z Z Z , known as modified Jacobian ( m

J ) 

[CMO98] and Chudnovsky (C) [CC86] coordinates, respectively, permit the saving of some 

operations by passing recurrent values between point operations. However, most benefits 

achieved with these representations are virtually cancelled by assuming 3a = −  in the EC 

equation and with the alternative use of operations with stored values. Other (somewhat less 

efficient) system, referred to as homogeneous (H) coordinates, is defined by fixing 1c d= =  in 

(2.9).    

The costs presented in Table 2.2 (specifically, costs labeled as “Using S-M tradings”) will be 

used later for assessing the methods proposed for precomputation and multibase scalar 

multiplication in Chapters 3 and 4, respectively. Also, our high-speed implementations of scalar 

multiplication in Chapter 5 are based on standard curves using this system. In this case, given the 

relatively high cost of additions and other “small” operations on x86-64 processors, we make use 

of “traditional” operations without exploiting S-M tradings.  

2.2.4.3. Level 3: Scalar Arithmetic 

This level of computation refers to the efficient execution of scalar multiplication (2.6) 

employing the point operations discussed in the previous section. Because the naïve method 

computing kP P P P= + + +…  using ( 1)k −  point additions is highly expensive, it is important 

the use of efficient number representations for the scalar k to make this operation reasonably 

efficient.  

In that direction there have appeared a myriad of methods for computing scalar multiplication 

in the last few years. These methods are generically classified according to their applicability to 

two possible scenarios: (i) the initial point P is fixed and known before execution; (ii) the initial 

point P varies and is not known in advance. If the initial point P is known in advance, as happens 

in the ElGamal elliptic curve encryption scheme or the first phase of the Diffie-Hellman key 

exchange (see Section 2.2.3), efficient methods can precalculate multiples of P almost for “free” 

to reduce costs during the evaluation stage (e.g., comb methods). On the other hand, if the point 

P is not known in advance, as happens during the ElGamal decryption or the second phase of the 

Diffie-Hellman key exchange, methods should include the precomputation cost in the overall cost 

and, hence, precomputed points should be used sensibly.  

In this thesis we focus on methods falling in the second category (i.e., point P is not known in 

advance). In this case, it is standard to use the so-called double-and-add algorithm, which is the 

analogue of the square-and-multiply method used for exponentiation in multiplicative groups. 

This method uses the binary representation of integers, as can be seen in Algorithm 2.7(a). 

Moreover, since negating points is inexpensive and can be performed on-the-fly it is convenient 

to use signed binary representations that potentially allow the reduction of nonzero digits (which 
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directly translates to a reduction in the number of required additions). By adjusting the double-

and-add for this case, we obtain what is known as the double-and-(add-or-subtract) method. See 

Algorithm 2.7(b). Popular signed binary representations are the standard non-adjacent form 

(NAF) and its variants, which are briefly described in the next subsection. 

 

Algorithm 2.7.  Left-to-right methods for scalar multiplication  

Input:  (a) 1 2 0 2( , , , )t tk k k k− −= …
 
or (b) 1 2 0 NAF( , , , )t tk k k k− −= …  ; and ( )pP E∈ F  

Output:  kP 

 (a)  (b) 

1: Q =O  1: Q =O  

2: For 1i t= −  downto  0  do 2: For 1i t= −  downto  0  do 

3: 
    

2Q Q←  3: 
    

2Q Q←  

4:      If  1ik =  then  Q Q P← +          4:      If  1ik =  then  Q Q P← +          

5: Return Q  5:      If  1ik = −  then  Q Q P← −  

  6: Return Q  

 

Note that Algorithm 2.7 presents left-to-right versions of the methods discussed above. There 

are also right-to-left variants which can be advantageous when protection against side-channel 

analysis (SCA) attacks is required. The same observation applies to other methods such as the 

Montgomery Ladder [Mon87].   

In the remainder of this work, for a scalar multiplication kP, we assume that ( )pP E∈ F  is of 

order r and ( )pE F  is of order # ( )pE h r= ⋅F , where r is prime and h << r. Since it is known 

that # ( )pE p≈F  following Hasse’s theorem (see Theorem 3.7 in [HMV04]), we have that 

.r p≈  Then, if k is a scalar randomly chosen in the range [1, 1]r − , the average length of k in 

binary representation is 2logn p=  and the corresponding operation will be referred as n-bit 

scalar multiplication. In this case, double-and-add and double-and-(add-or-subtract) algorithms 

will require in average ( 1)n −  main loop iterations. We refer as nonzero density or Hamming 

weight to the number of nonzero digits in a given scalar representation. In particular, for scalar 

multiplication, the nonzero density of the representation of k directly translates to the number of 

required point additions to compute kP.     

Non-Adjacent Form (NAF) and Width-w Non-Adjacent Form (wNAF) 

Among different signed radix-2 representations using digits from the set {0, 1}D = ± , NAF is a 

canonical representation with the fewest number of nonzero digits for any scalar k [Rei60]. The 

NAF representation of k contains at most one nonzero digit among any two successive digits. The 

expected nonzero density of this representation is NAF 1/ 3δ = . Hence, the average cost of an n-
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bit scalar multiplication using NAF is approximately ( 1)DBL ( /3)ADDn n− + , where DBL and 

ADD represent the cost of doubling and addition, respectively. 

If there is memory available, one can exploit the use of precomputations by means of a 

method known as wNAF [Sol00], which uses precomputed values to “insert” windows of width 

w. The latter permits the consecutive execution of several doublings to reduce the density of the 

expansion. The wNAF representation of k contains at most one nonzero digit among any w 

successive digits, and uses the digit set 
1{0, 1, 3, 5, , (2 1)}wD −= ± ± ± ± −… , where 2w

+> ∈Z . The 

average density of nonzero digits for a window of width w is NAF 1/( 1)w wδ = + , and the number 

of required precomputed points is 
2(2 1)w− −  (hereafter we refer as precomputed points to non-

trivial points not including { , }PO ). Hence, the cost using this method is approximately 

( 1)DBL ( /( 1))ADDn n w− + +  plus the cost of the precomputation stage.                     

Fractional Width-w NAF (Frac-wNAF) 

The wNAF representation requires the precomputation of 
2(2 1)w− −  non-trivial points, i.e., 1, 3, 

7, 15 points, and so on. However, a specific implementation could have memory restrictions that 

do not adjust to these values. Moreover, because the applicable scenario involves an initial point 

P not known in advance, the precomputed table must be built every time a scalar multiplication is 

performed. Hence, it is often the case that a table with a number of points different to that fixed 

by standard windows achieves the minimal cost.  

Möller [Möl03] proposed to solve this problem by recoding the binary representation of an 

integer with windows of flexible size using a digit set of the form {0, 1, 3, 5, , }D m= ± ± ± ±… , 

where 1m ≥  is an odd integer. In this way, one can flexibly choose any number of precomputed 

points. This method is denoted by Frac-wNAF and its expected nonzero density is given by 

( )2
1

log
Frac- NAF 2log ( 1) /(2 ) 1

m
w m mδ

−
  = + + +    [Möl05].  

Note that if 1m = , Frac-wNAF is actually reduced to the NAF method with a nonzero density 

of about 1/3. Similarly, Frac- NAFwδ  attains the same values as NAFwδ  for the standard window 

values of wNAF. For instance, Frac-wNAF with 7m =  reduces to wNAF with w = 4 (in this case, 

0.2δ = ).   

2.2.5. Special Curve Forms 

During the last few years, there has been a growing interest in studying curve forms different to 

the standardized Weierstrass form (2.4). These special curves have gained increasing attention 

because in some cases they offer higher resilience against side-channel analysis attacks and/or 

enable faster implementations. In this work, we focus on two special curve forms that have been 

shown to achieve very high performance: extended Jacobi quartics and Twisted Edwards curves.  

Next, we briefly describe both curve shapes in their most generalized form.  
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Extended Jacobi Quartic Curve  

It is defined by the non-singular curve equation: 

                                                        
2 4 2

: 2 1JQE y dx ax= + + ,                                               (2.11) 

where , pa d ∈F  and 
2( ) 0d a d− ≠ . Results by Billet and Joye [BJ03b] show that every elliptic 

curve of even order can be written in extended Jacobi quartic form. The projective curve in 

weighted projective coordinates is given by 2 4 2 2 42Y dX aX Z Z= + + , where a projective point 

( : : )X Y Z  corresponds to the affine point 
2( / , / )X Z Y Z . In this case, the negative of a point 

( : : )P X Y Z=  is represented by ( : : )P X Y Z− = −  and the identity element is given by (0 :1:1) . 

The most efficient formulae for this case have been developed by Hisil et al. [HWC+07, 

HWC+08b] using an extended coordinate system of the form 
2 2( : : : : )X Y Z X Z  that will be 

referred in the remainder of this work as e
JQ .   

Note that, recently, Hisil et al. [HWC+09]  proposed the use of a mixed system that 

efficiently combines homogeneous coordinates with an extended homogeneous coordinate 

system with the form ( : : : )X Y Z T , where 2 /T X Z= . However, formulas for composite 

operations known to date are faster in weighted projective coordinates e
JQ . 

In Table 2.3, we summarize the costs of formulas using extended Jacobi quartic coordinates 

[HWC+07, HWC+08b]. Note that it is also possible to trade multiplications for squarings in some 

cases (labeled as “Using S-M tradings”). And similarly to the case of operations with stored values 

Table 2.3. Costs of point operations for an extended Jacobi quartic curve with d = 1 using 

extended Jacobi quartic ( e
JQ ) coordinates.  

Point operation Coord. 
Cost 

“Traditional” Using S-M tradings 

 DBL 2( )e e→JQ JQ  3M + 4S + 1D 2M + 5S + 1D 

 mDBL 2( ) e→A JQ  1M + 6S + 1D                          7S + 1D                          

 TPL 3( )e e→JQ JQ  8M + 4S + 1D 8M + 4S + 1D 

 mTPL 3( ) e→A JQ  5M + 6S + 2D 5M + 6S + 2D 

 QPL 5( )e e→JQ JQ  14M + 4S + 1D 14M + 4S + 1D 

 mQPL 5( ) e→A JQ  11M + 6S + 2D 11M + 6S + 2D 

 mADD e e+ →JQ A JQ  7M + 2S + 1D 6M + 3S + 1D 

 mmADD e+ →A A JQ  4M + 3S + 1D 4M + 3S + 1D 

 ADD   e e e+ →JQ JQ JQ  8M + 3S + 1D 7M + 4S + 1D 

[0,1]ADD  e e e+ →JQ JQ JQ  8M + 2S + 1D 7M + 3S + 1D 
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using Jacobian coord. (see Section 2.2.4.2), the original cost of addition can be reduced further. 

For instance, the addition with cost of 7M + 4S can be reduced to 7M + 3S by noting that 

2( )i iX Z+  can be precomputed for each precomputed point (see [HWC+07] for complete 

details).  

Given the relatively “well-balanced” performance among all point operations listed in Table 

2.3, we use these costs (specifically, the costs labeled as “Using S-M tradings”, assuming that 

1 0D M≈ ) for evaluating the multibase methods in Chapter 4. We also use this system for 

illustrating the use of the LG precomputation scheme in Chapter 3. 

Twisted Edwards Curve 

This form is a generalization of Edwards curves [Edw07] and is defined by the non-singular 

curve equation: 

                                                     
2 2 2 2: 1TEE ax y dx y+ = + ,                                                (2.12) 

where , pa d ∈F  and ( ) 0ad a d− ≠ . An efficient projective system for performing arithmetic on 

these curves is known as inverted Edwards coordinates (referred to as IE coordinates for the 

reminder) [BL07b]. In this system, the equation takes the form 
2 2 2 2 2 4( )X Y Z X Y dZ+ = + , 

assuming that 1a = , where 0X Y Z ≠ , each projective point ( : : )X Y Z  corresponds to ( / ,Z X  

/ )Z Y  in affine and the negative of a point ( : : )P X Y Z=  is given by ( : : )P X Y Z− = − . 

Recently, there have been remarkable improvements in the case of Twisted Edwards curves 

using homogeneous coordinates (denoted by E). For this case, the curve acquires the projective 

form 2 2 2 2 2 2 4
aX Z Y Z dX Y Z+ = +  

for which each triplet ( : : )X Y Z  corresponds to the affine 

point ( / , / )X Z Y Z , 0Z ≠ . Hisil et al. [HWC+08] introduced extended homogeneous coordinates 

(denoted by 
e
E ), where each point ( : : : )X Y Z T  corresponds to ( / , / )X Z Y Z

 
in affine and 

/T XY Z= . The negative of ( : : : )X Y Z T
 
is given by ( : : : )X Y Z T− − , and ( : : : )X Y Z T =  

*
{( , , , ) : }pX Y Z Tλ λ λ λ λ ∈ F . In [HWC+08], Hisil et al. also suggest the map ( , ) ( / , )x y x a y−�  

to convert the Twisted Edwards curve to 
2 2 2 21x y d x y′− + = + , where /d d a′ = − , allowing 

further reductions in the cost of point operations. For the point multiplication, they ultimately 

propose to compute a doubling followed by an addition as 2
e→E E  and e e+ →E E E  or 

e + →E A E  (which can be unified into a doubling-addition operation with the form 

(2 )e e+ →E E E
 
or (2 )e + →E A E ) and to compute the remaining doublings as 2 →E E . This 

combined system is called mixed homogeneous/extended homogeneous coordinates and is 

denoted by /
e

E E . 

In Table 2.4, we summarize the costs of formulas using IE [BL07b] and /
e

E E  [HWC+08] 

coordinates. Again, it is possible to trade multiplications for squarings in some cases (labeled as 

“Using S-M tradings”). 
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Table 2.4. Costs of point operations for a Twisted Edwards curve using inverted Edwards (IE) 

and mixed homogeneous/extended homogeneous ( /
e

E E ) coordinates.  

Point operation 

IE  (a = 1) /
e

E E  (a = −1) 

Coord. “Traditional” 
Using S-M 

tradings 
Coord. “Traditional” 

Using S-M 

tradings 

 DBL 2( )→IE IE  4M + 3S + 1D 3M + 4S + 1D 2( ) →E E  4M + 3S 3M + 4S 

 mDBL 2( )→A IE  4M + 2S 3M + 3S 2( ) →A E  - - 

 TPL 3( )→IE IE  9M + 4S + 1D 9M + 4S + 1D 3( ) →E E  - - 

 mTPL 3( )→A IE  7M + 3S 7M + 3S 3( ) →A E  - - 

 mADD + →IE A IE  8M + 1S + 1D 8M + 1S + 1D e e+ →E A E  7M 7M 

 mmADD + →A A IE  7M 7M  e+ →A A E  - - 

 ADD  + →IE IE IE  9M + 1S + 1D 9M + 1S + 1D e e e+ →E E E  8M 8M 

 mDBLADD 
 
2( ) + →IE A IE  - - (2 )e + →E A E  11M + 3S 10M + 4S 

 DBLADD 2( ) + →IE IE IE  - - (2 )e e+ →E E E

 

12M + 3S 11M + 4S 

 

Given the availability of a tripling formula of relatively good performance in IE coordinates, 

we use this system (costs labeled as “Using S-M tradings”, assuming that 1 0D M≈ ) for 

evaluating the multibase methods discussed in Chapter 4. We also use IE coordinates for 

illustrating the use of the LG precomputation scheme in Chapter 3. On the other hand, /
e

E E  

coordinates currently offer the highest performance for scalar multiplication using traditional 

radix-2 methods, even surpassing the performance of mixed Jacobi quartic homogeneous/ 

extended homogeneous coordinates (see [HWC+09]). Hence, our high-speed implementations of 

scalar multiplication in Chapter 5 are based on Twisted Edwards curves using this system. In this 

case, given the relatively high cost of additions and other “small” operations on x86-64 

processors, we make use of “traditional” operations without exploiting S-M tradings. 

2.2.6. The Galbraith-Lin-Scott (GLS) Method 

Recently, Galbraith et al. [GLS09] proposed to perform ECC computations on the quadratic twist 

E ′  of an elliptic curve E over 2p
F  with an efficiently computable homomorphism ( , )x yψ →  

( , )x yα β  such that ( )P Pψ λ=  and 2 1 0(mod )rλ + ≡ , where 2( )[ ]
p

P E r′∈ F . Then, following 

[GLV01], kP  can be computed as a multiple point multiplication with form 0 1( )k P k Pλ+ , 

where 0k  and 1k  have approximately half the bitlength of k. Integers 0k  and 1k  can be calculated 

by solving a closest vector in a lattice or (in the case of a random scalar k) by simply choosing 

the integers directly [GLS09].  
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It has also been observed that the GLS method can be adapted to different curve forms. In 

Chapter 5, we evaluate various techniques and optimizations in combination with this method to 

realize high-speed elliptic curve implementations on software. For this purpose, we choose 

curves in Weierstrass and Twisted Edwards form. The details of these curve forms using the GLS 

method, mainly taken from the literature, are summarized next. For complete details, please refer 

to [GLS09, GLS08]. 

The Case with Weierstrass Form     

Corollary 2.1. Let curve WE
 
over pF  be defined by (2.4) with # ( ) 1W pE p t= + −F  points, 

where t is called the trace of /W pE F , 2t p≤ , and µ  be a quadratic non-residue in 2
p
F . If 

0ab ≠ , WE
 
is isomorphic to the curve:  

                                                       2
2 3/ :W p

E y x a x b′ ′ ′= + +F ,                                             (2.13) 

with 
2a aµ′ =  and 2

3

p
b bµ′ = ∈ F , and  2

2 2
# ( ) ( 1)W p

E p t′ = − +F . Curve WE ′  is the quadratic 

twist of WE
 

over 2
p
F . The twisting isomorphism is given by : W WE Eφ ′→ , ( , )x yφ =

3
( , )ux u y , which is defined over 4pF . The group homomorphism is given by: 

                                                   3 3( , ) ( , / )p

p
x y x y

µ
ψ µ µ

µ
= ⋅ ⋅ ,                                         (2.14) 

where x  and y  denote the Galois conjugates of x and y, respectively.   

The Case with Twisted Edwards Form 

Corollary 2.2. Let curve TEE
 
over pF  be defined by (2.12) with # ( ) 1TE pE p t= + −F  points 

4 | ( 1 )p t+ − , 2t p≤ , and µ  be a quadratic non-residue in 2p
F .Then TEE

 
is isomorphic to the 

curve:  

                                                  2
2 2 2 2/ : 1TE p

E a x y d x y′ ′ ′+ = +F ,                                          (2.15) 

with a aµ′ =  and 2p
d dµ′ = ∈ F , and  2

2 2
# ( ) ( 1)TE p

E p t′ = − +F . Curve TEE′  is the quadratic 

twist of TEE
 

over 2p
F . The twisting isomorphism is given by : TE TEE Eφ ′→ , ( , )x yφ =

( , )x u y , and the group homomorphism is: 

                                                        ( , ) ( / , )px y x yψ µ µ= ⋅  .                                              (2.16) 

Following [GLS09], for our implementations on Weierstrass and Twisted Edwards curves in 

Chapter 5 we fix 1272 1 3(mod 4)p = − ≡
 
and 22 piµ = + ∈F  where 1 pi = − ∈ F . The chosen 

prime is assumed to provide approximately 128 bits of security. 
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2.2.6.1. Arithmetic over Quadratic Extension Fields 

Since for our case 2 ( )pp i=F F  with 1 pi = − ∈F , elements in 2p
F  can be represented by 

x a bi= + , where , pa b ∈F . The conjugate of x is given by x a bi= − .  

Then, field arithmetic consists of usual polynomial addition and multiplication in i with 

coefficients reduced modulo p.  Moreover, as suggested in [GLS09], 2p
F  multiplication can be 

sped up by using Karatsuba method [Kar95] such that ( ) ( ) ( ) ( )a bi c di ac bd bc ad i+ ⋅ + = − + +  is 

computed as ( ) (( )( ) )ac bd a b c d ac bd i− + + + − − , which requires 3 pF  multiplications and 5 

pF  additions/subtractions instead of 4 pF  multiplications and 2 pF  additions/subtractions. 

Similarly, a squaring with the form 2( )a bi+  can be computed as ( )( ) 2a b a b abi+ − +  with 2 

pF  multiplications and 3 pF  additions/subtractions, which is more efficient than computing 
2 2 2( ) ( ) 2a bi a b abi+ = − +  always that 2S M A> +  or 2 2 2 2 2 2( ) ( ) [( ) ]a bi a b a b a b i+ = − + + − −  

always that 3 2S A M+ > . 

2.2.6.2. Security of the GLS Method 

An attack by Gaudry [Gau09] has been shown to solve the ECDLP on general abelian varieties of 

small dimension. Specifically, this attack can solve the ECDLP in ( )mq
E F  in 

2 2 /( )m
O q

−� , which 

is faster than Pollard’s rho algorithm if 2m > . Hence, it does not have any implications on the 

practical implementations in 2( )
q

E F  discussed in this work. 

Definition 2.5. Let E be an elliptic curve defined in qF , a point ( )qP E∈ F  of order r, a point 

xP P∈  for a random integer [0, 1]x r∈ −  and a reusable point aP P∈  for an integer 

[0, 1]a r∈ − . The Static Diffie-Hellman Problem (denoted by Static DHP) is defined as the 

problem of determining axP .  

Recently, Granger [Gra10] introduced a new attack that was shown to solve the Static DHP in 

heuristic time 
1 1/( 1)( )m

O q
− +�  for any elliptic curve in ( )mq

E F  if an attacker has access to a Static 

DHP oracle. Hence, this result is immediately more efficient than Gaudry’s attack and, most 

importantly, faster than Pollard’s rho attack if 2m = . Accordingly, it is suggested to avoid the 

use of the GLS method in settings where the Static DHP applies (e.g., when the same Diffie-

Hellman secret is reused for various Diffie-Hellman key agreements). Alternatively, one may 

increase the key size accordingly to make this attack and Pollard’s rho algorithm roughly 

equivalent for solving the ECDLP in 2( )
q

E F . 

We remark that it is known that the Static DHP can be solved for any arbitrary curve in 

( )qE F  with 
1/3( )O q  Static DHP oracle queries and 

1/3( )O q  group operations [BG04], which is 

faster than the best generic attack achieving complexity 
1/ 2( )O q , namely Pollard’s rho.  
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2.3. Introduction to Pairings 

An admissible bilinear pairing is an efficiently computable function 1 2 T: G G Ge × → , where 

1G  and 2G  are cyclic subgroups of elliptic curve groups, TG  is a cyclic subgroup of the 

multiplicative group of a finite field, 1G , 2G  and TG  have order r, and the following conditions 

hold: 

• Bilinearity: for all 1, GP Q ∈  and all 2, GR S ∈ , ( , ) ( , ) ( , )e P Q R e P R e Q R+ = ⋅  and 

( , ) ( , ) ( , )e P R S e P R e P S+ = ⋅ .  

• Non-degeneracy: ( , ) 1e P R ≠  for some 1GP ∈  and 2GR ∈ . Or, equivalently, 

( , ) 1e P R =  for all 2GR ∈  if and only if P = O ; and ( , ) 1e P R =  for all 1GP ∈  if and 

only if R = O . 

Also, it immediately follows that ( , ) ( , ) ( , )ab
e aP bR e P R e bP aR= =  for any two integers a 

and b.  

Bilinear pairings provide elegant solutions to some longstanding problems in cryptography 

such as Identity-Based Encryption (IBE) [BF01, SOK00], three-party one-round Diffie-Hellman 

key exchange [Jou00], short signatures [BLS04], among others, and has been the focus of intense 

research since its introduction by Boneh, Franklin and others at the beginning of the new 

millennium. For illustration purposes we show in Algorithm 2.8 the three-party one-round key 

agreement by Joux using a bilinear pairing on 1 T(G ,G ) . The reader is referred to [Men09] for a 

discussion of other fundamental pairing-based protocols.  

 

Algorithm 2.8.  Pairing-based tree-party one-round key exchange  

Input:  domain parameters 1 T(G ,G , , , , )E p P r  

Output:  shared secret key ( , )abcK e P P=  

                        Alice side:                        Bob side: 

1: Select a random integer [1, 1]a r∈ −  1: Select a random integer [1, 1]b r∈ −  

2: Send aQ aP=  to Bob and Charlie       2: Send bQ bP=  to Alice and Charlie       

3: Upon reception of bQ  and cQ , compute  3: Upon reception of aQ  and cQ , compute  

 ( , )aK e bP cP=   ( , )bK e aP cP=  

                    Charlie side: 

1: Select a random integer [1, 1]c r∈ −  

2: Send cQ cP=  to Alice and Bob       

3: Upon reception of aQ  and bQ , compute  

 ( , )cK e aP bP=  
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The security of Algorithm 2.8 relies on the impossibility of computing ( , )abc
e P P  given P, 

aP, bP and cP by an eavesdropper. This is an instance of the so-called Bilinear Diffie-Hellman 

Problem, whose intractability is the security basis of many pairing-based protocols. As will be 

evident later, the hardness of this problem implies the hardness of the Diffie-Hellman Problem. 

Definition 2.6. The Bilinear Diffie-Hellman Problem (denoted by BDHP) is the problem of 

computing ( , )xy
e P R given P, xP, yP and R. 

Definition 2.7. The (Computational) Diffie-Hellman Problem (denoted by DHP) is the problem 

of computing xyP  given P, xP, yP. 

Note that if the DHP can be solved in 1G , the value xyP  is available and ( , )xy
e P R  can be 

easily computed as ( , )e xyP R . A similar conclusion is achieved for TG . Since the DHP can be 

easily solved if the DLP can be solved ( assumption P assumptionDLP DHP≥ , that is, DHP is not harder 

than the DLP), it can be concluded that assumption P assumption P assumptionDLP DHP BDHP≥ ≥ . Since 

nothing else is known about the difficulty of solving the BDHP, it is assumed to be as difficult as 

the DHP and that the security of pairing-based cryptographic schemes ultimately relies on the 

hardness of the DLP in 1G , 2G  and TG .     

Miller introduced in [Mil86b] an algorithm to evaluate rational functions on algebraic curves, 

enabling the efficient computation of pairings at linear complexity with respect to the input size 

(see also [Mil04]). Since then many optimizations have been proposed to improve the so called 

Miller’s algorithm by, for instance, reducing the loop length [HSV06, LLP09, Ver10] or 

constructing pairing-friendly elliptic curves [BN05, BW05, SB06]. 

When 1 2G G=  the pairing is called symmetric and is defined over supersingular curves. In 

this case, Tη  pairing is arguably the most efficient algorithm [BGO+07]. If, otherwise, 1 2G G≠ , 

the pairing is called asymmetric and is defined over ordinary elliptic curves. In this case, the 

optimized variants of the Tate pairing [BKL+02] (e.g., ate [HSV06], R-ate [LLP09], optimal ate 

[Ver10] pairing) achieve the highest performance.  

In this work, we focus on the efficient implementation of asymmetric pairings with ordinary 

curves (see Chapter 6). Accordingly, we will assume the following groups for the construction of 

pairings: 1G , 2G = cyclic subgroups of ( )pE F ; TG = cyclic subgroup of 
*

k
p
F .  

For the case of ordinary curves, Barreto and Naehrig [BN05] proposed a large and easy-to-

generate family of elliptic curves (called BN curves) with embedding degree 12k = , which is 

optimal for implementing pairings at the 128-bit security level. For our analysis and tests we 

choose the optimal ate pairing algorithm [Ver10]. We stress, however, that according to our tests 

other variants of the Tate pairing achieve similar performance on the targeted platforms (i.e., 

x86-64-based processors). 
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2.3.1.   Optimal Ate Pairing on BN Curves 

A Barreto-Naehrig (BN) curve has the form: 

                                                               
2 3:BNE y x b= + ,                                                    (2.17) 

defined over  with 0b ≠  and embedding degree k = 12, where
4 3 236 36 24 6 1p u u u u= + + + + , 

prime order  and u∈Z .  

Let the map :p BN BNE Eπ →  be the p-power endomorphism ( , ) ( , )
p p

p x y x yπ = , [ ]BNE n  the 

n-torsion subgroup of BNE , BNE′  the sextic twist 2
2 3

/ :BN p
E y x b ξ′ = +F   with ξ  neither a 

cube nor a square in 2p
F , 1G [ ] Ker( [1]) ( )[ ]BN p BN pE n E nπ= ∩ − = F , 2G  the preimage 

2( )[ ]BN p
E n′ F  of 12[ ] Ker( [ ]) ( )[ ]BN p BN p

E n p E nπ∩ − ⊆ F  and 12
*

TG n p
µ= ⊂F  the group of n-th 

roots of unity. The optimal ate pairing on equation (2.17) is defined as [NNS10]:   

                     2 1 T: G G Gopta × →  

                                ( )
12

2

1

, [ ] , ( ) [ ] ( ), ( )
( , ) ( ) ( ) ( )

p p p

p

n
r Q r Q Q r Q Q Q

Q P f P l P l Pπ π π

−

+ −
→ ⋅ ⋅ ,                 (2.18) 

where 6 2r u= + ∈Z , , ( )r Qf P  is a normalized function with divisor ,( ) ( ) ([ ] )r Qf r Q r Q= − −

( 1)( )r − O  and 
1 2,Q Ql  is the line arising in the addition of points 1Q  and 2Q  evaluated at point P. 

Precisely, Miller’s algorithm computes the function ,r Qf  using a double-and-add approach that 

involves the computation of point doublings, point additions and line evaluations. In Algorithm 

2.9, the so-called Miller loop corresponds to lines 2-4. The pairing computation is completed by the  

    

Algorithm 2.9.  Optimal ate pairing on BN curves (including the case )    

Input:  
2log

1 2 0
G , G , 6 2 2

r i
ii

P Q r u r
=

∈ ∈ = + =∑   

Output:   

  1: , 1T Q f← ←  

  2: For 2log 1i r= −    downto  0  do                                                          

  3:          

  4:          

  5:  

  6:  If 0u <  then 1,T T f f −← − ←                                                         

  7: 
1, 1( ),T Qf f l P T T Q← ⋅ ← +  

  8: 
2, 2( ),T Qf f l P T T Q−← ⋅ ← −  

  9:                                                           

10: Return  f  
 

pF

4 3 2
36 36 18 6 1n u u u u= + + + +

0u <

( , )opta Q P

2
, ( ), 2T Tf f l P T T← ⋅ ←

,if 1 then ( ),i T Qr f f l P T T Q= ← ⋅ ← +

2
1 2( ), ( )p pQ P Q Qπ π← ←

6 2 4 2( 1)( 1)( 1) /p p p p nf f − + − +←
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final exponentiation, which corresponds to line 9 in the same algorithm. Note that the power 

 is factored in the exponents ,  and . 

 

12( 1) /p n− 6( 1)p − 2( 1)p + 4 2( 1) /p p n− +
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3 Chapter 3 

New Precomputation Schemes 

This chapter revisits the problem of calculating precomputations efficiently when the base 

point(s) is not known in advance. There are two standard table forms used by most elliptic curve 

scalar multiplication methods in the literature: id P
 
and i ic P d Q+ , where {, 0, 1,i ic d D∈ = ±

 
}3, 5,..., m± ± ±  with m odd. In the first case, it is required the on-line calculation of the non-trivial 

points id P , where { }\ {0,1} 3,5,...,id D m+∈ =
 
with m odd. In the second case, it is required (in 

the extreme case) the on-line calculation of the non-trivial points ,i ic P d Q±  where 

{ }, 0,1,3,5,...,i ic d D m+∈ = , 1ic >  if 0id = , 1id >  if 0ic = , and m odd. The negative of these 

points can be computed on-the-fly at negligible cost. In the remainder, we will refer to these 

tables built with non-trivial points as simply id P  and ,i ic P d Q± respectively. Well-known 

methods to compute scalar multiplication using the former table are wNAF and Frac-wNAF in 

the case of single scalar multiplication, and the interleaving NAF method in the case of multiple 

scalar multiplication [HMV04]. Methods that employ a table with the form i ic P d Q±
 

are 

commonly intended for multiple scalar multiplication, such as the Joint Sparse Form (JSF) 

[Sol01] and its variants [KZZ04, OKN10]. 

In this chapter, we propose two novel methods for precomputing points and carry out an 

exhaustive analysis at different memory and security requirement levels: 

• The first scheme, referred to as Longa-Miri (LM) Scheme, is based on the special 

addition with identical Z coordinate [Mel07] and is intended for tables with the form 
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id P  using Jacobian coordinates on standard curves.  

• The second scheme, referred to as Longa-Gebotys (LG) Scheme, is based on the concept 

of conjugate addition in projective coordinates and offers superior flexibility since it can 

be applied to any curve form  and adapted to tables with forms id P
 
and i ic P d Q± .  

The different schemes are adapted and analyzed (whenever relevant) in three possible 

scenarios (see Section 3.1.1): case 1, without using inversions; case 2, using only one inversion; 

and case 3, using multiple inversions. The analysis of the proposed schemes includes three 

curves of interest: Weiertrass curves using Jacobian coordinates J, extended Jacobi quartics 

using extended Jacobi quartic coordinates e
JQ , and Twisted Edwards curves using inverted 

Edwards coordinates IE . 

This chapter is organized as follows. §3.1 discusses the most relevant previous work. §3.2 

introduces the LM precomputation scheme for standard curves using Jacobian coordinates, 

targeting the single scalar multiplication case. §3.3 introduces the LG precomputation scheme 

and discusses its applicability to different curves forms for both single and multiple scalar 

multiplication. §3.4 presents the performance analysis of the proposed schemes, including 

detailed comparisons with previous methods. §3.5 discusses other applications for conjugate 

additions. And, finally, some conclusions are drawn in §3.6.  

3.1. Previous Work 

In this section we summarize most relevant efforts in the literature to reduce the time complexity 

of the precomputation stage of scalar multiplication. We also recall the special addition by 

Meloni [Mel07], which is used here to build a novel precomputation scheme. We remark that, in 

the present work, we focus on methods that are efficient when the initial point P in the 

computation kP is not known in advance. 

3.1.1. Precomputation for Single Scalar Multiplication 

The most commonly used precomputation table has the form id P , where \{0,1}id D
+∈ =

{ }3,5,...,m , for some odd integer m. This table form can be found in most algorithms to compute 

scalar multiplication such as the wNAF and Frac-wNAF methods (see Section 2.2.4.3). 

The traditional approach is to compute the points by following the sequence P → 3P → 5P 

→ … → mP with the application of an addition with 2P at each step. Depending on the 

coordinate system(s) applied for the calculation, we can distinguish three different cases: 

• Case 1: points are precomputed and left in some projective system. This scenario has the 
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potential advantage of having very low cost because no additional coordinate system 

conversion is required. However, because points are left in certain projective system, 

additions during the evaluation stage have general form and one cannot make use of 

efficient mixed addition or mixed doubling-addition operations. 

• Case 2: points are computed in some projective system and then converted to affine 

coordinates. The latter step is usually performed with the Montgomery’ simultaneous 

inversion method in order to reduce the number of inversions (see Alg. 2.26 of 

[HMV04]). In this scenario, precomputation cost is higher because of the conversion to 

affine step. However, the use of mixed additions (or mixed doubling-additions) allows 

reducing costs during the evaluation stage. 

• Case 3: points are computed and left in affine coordinates. This case is probably the most 

expensive approach of all three cases in terms of speed, mainly because inversion is 

especially expensive over prime fields. One potential advantage of this approach is that 

memory requirement is kept to a minimal.  

Cases 1 and 2 were studied by Cohen et al. [CMO98] when proposed the use of mixed 

coordinates to implement scalar multiplication on Weiertrass curves. In particular, Cohen et al. 

proposed two alternatives using different coordinate systems: 
1 2 3( , , ) ( , , )m

C C C = J J C  and 
1 2 3( , , ) ( , , )m

C C C = J J A , where 1
C  represents the system to perform doublings, 2

C  represents 

the system for every doubling before an addition, and 3
C  represents the system to perform 

additions (in the evaluation and precomputation stages). In particular, the first approach, which 

computes precomputations in C coordinates (corresponding to case 1), was shown to be more 

efficient than the second approach using A coordinates combined with the Montgomery’ 

simultaneous inversion method (corresponding to case 2) always that 1I > 30M approximately.  

Nevertheless, the conclusions drawn in [CMO98] are somewhat outdated because mJ  

coordinates (proposed for the evaluation stage in both cases) do not provide any advantage if 

3a = − , as discussed in Section 2.2.4.2. Also, Cohen et al.’s approach to case 2 involves the use 

of Montgomery’s method over groups of points. However, a more popular alternative in recent 

years has been to apply the method to all points in the table so that the number of inversions is 

limited to only one. In this scenario, possible approaches are to compute precomputed points in 

J, C or H coordinates and then use Montgomery’s method over all the partial points.  

Very recently, Dahmen et al. [DOS07] proposed a highly efficient method (called the DOS 

method) and showed that it is more cost-effective than all other previous schemes using one 

inversion (case 2). Also, when compared to the approach using only A coordinates (case 3), the 

DOS method exhibits superior performance for a wide range of I/M ratios. The DOS method’s 

cost is 1 (10 1) (4 4)I L M L S+ − + + , where ( 1) / 2L m= −  is the number of non-trivial points in 

the table, and it has a memory requirement of (2 4)L +  registers (in this thesis, we assume that 
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each “register” can store a field element). One disadvantage of the DOS method is that there is no 

straightforward version to compute points as in case 1.  

3.1.2. Special Addition with Identical Z Coordinate 

The following formula was proposed by Meloni in [Mel07]. Let 1 1( : : )P X Y Z=  and 

2 2( : : )Q X Y Z=  be two points with the same Z coordinate in J on an elliptic curve WE  defined 

over pF . The addition 3 3 3( : : )P Q X Y Z+ =  can be obtained as follows: 

( ) ( ) ( )2 3 2
3 2 1 2 1 1 2 12X Y Y X X X X X= − − − − − , 

( ) ( ) ( )2 3

3 2 1 1 2 1 3 1 2 1Y Y Y X X X X Y X X = − − − − −  , 

( )3 2 1Z Z X X= − .                                                                                         (3.1) 

Remarkably, Meloni also noticed that one can extract from (3.1) a new representative of 

1 1( : : )P X Y Z=  given by ( ) ( ) ( )( )2 3
,1 2 1 1 2 1 2 1,X X X Y X X Z X X− − − , which has identical Z 

coordinate to 3 3 3( : : )P Q X Y Z+ = . So one can continue applying the same formula recursively. 

The new addition only costs 5M + 2S, which represents a significant reduction in comparison 

with 8M + 3S (or 7M + 4S), corresponding to the mixed Jacobian-affine addition (see Table 2.2). 

Unfortunately, it is not possible to directly replace traditional additions with this special 

operation since, obviously, it is expected that additions are computed over operands with 

different Z coordinates during standard scalar multiplication. Hence, Meloni [Mel07] applied his 

formula to the context of scalar multiplication with star addition chains, where the particular 

sequence of operations allows the replacement of each traditional addition by formula (3.1) 

(referred to as Co-ADD Z  for the remainder, borrowing notation from [GMJ10]).  

Nevertheless, the author noticed in [Lon07] that the new addition can in fact be useful to 

devise new formulas for composite operations such as doubling-addition that are applicable to 

traditional scalar multiplication methods (see [Lon07] and also [LM08b]).  

In Section 3.2, we again exploit the Co-ADD Z  operation to build low-cost precomputation 

tables. The new approach is called LM Scheme, offers very low cost and can be easily adapted to 

cases 1 and 2, exhibiting higher performance and flexibility than the DOS method.  

3.1.3. Precomputation for Special Curves and Multiple Scalar 

Multiplication 

To the best of our knowledge, most research in the literature has only explored the efficiency of 

precomputation schemes on standard curves of Weierstrass form (2.4). Although the traditional 
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sequence P → 3P → 5P → … → mP can be easily adapted to special curves, it is still lacking a 

thorough performance analysis. In this work, we derive for first time the costs involved in 

computing the precomputed table on certain special curves using the traditional sequence and 

applying the most efficient point operations at our disposal. Moreover, we propose a new scheme 

based on the concept of “conjugate” additions (see Section 3.3). The new method is called LG 

Scheme and is shown to achieve the lowest costs on extended Jacobi quartics using eJQ  

coordinates and Twisted Edwards curves using IE  coordinates.  

For the case of multiple scalar multiplication, JSF-based methods need the calculation of a 

table of the form i ic P d Q± , where { }, 0,1,3,5,...,i ic d m∈  for some odd integer value m [KZZ04]. 

In [OTV05], Okeya et al. observed that an inversion can be saved when computing P Q±  in 

affine coordinates (which can be seen as an addition/conjugate addition in A). However, the 

derived scheme was basically intended for implementations using the affine representation only 

and, hence, inefficient when compared to cases using some projective system over prime fields. 

Recently, Järvinen et al. [JFS07] extended Okeya et al.’s idea of exploiting redundancies in affine 

formulae to precompute points. To get rid of the multiple inversions, they took advantage of 

Montgomery’ simultaneous inversion method and derived an efficient scheme for a table with the 

form dP lQ kR± ± , where , , {0,1}d l k ∈ . Hence, in its actual format their methodology only 

applies to that specific table form and is expected to be efficient on standard curves only since it 

is still based on affine formulae.     

Because the concept of “conjugate” addition, as discussed in this work, takes advantage of 

redundancies in the computation of P Q±  in projective coordinates, it naturally applies to 

precomputation tables that appear in multiple scalar multiplication algorithms and enables 

efficient computation over prime fields. In Section 3.3.3, we analyze the savings achieved with 

this approach and show its advantages in terms of computing cost. Moreover, we analyze for first 

time the performance of precomputation methods on certain special curves in this setting. 

Specifically, we study the case with Jacobi quartics using eJQ  coordinates and Twisted 

Edwards curves using IE  coordinates.   

 

NOTE: Okeya et al.’s idea is similar to the proposed concept of “conjugate” addition. However, 

their observation was restricted to affine coordinates whereas we discovered the idea of saving 

operations in the computation P Q±  when observing redundancies in projective coordinate 

formulae. In general, projective coordinates are largely preferred over prime fields (especially on 

special curves), so savings in these settings are more valuable.     

 

For the remainder of this chapter, we assume that curve parameters for the curves under 

analysis can be chosen such that the cost of multiplying a curve constant can be considered 

negligible in comparison with a regular multiplication. Also, in most cases additions and 
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subtractions are neglected in our cost analysis. These assumptions greatly simplify our analysis 

without affecting the conclusions.        

3.2. Precomputation Scheme Based on the Addition with 
Identical Z Coordinate: LM Scheme 

The proposed scheme, computes the precomputed table as follows: 

                                                     2 2 2id P P P P P= + + + +… ,                                                (3.2) 

performing additions from right to left. We will show that all the additions in (3.2) can be 

computed with the Co-ADD Z  operation proposed by Meloni [Mel07], reducing costs in 

comparison with previous approaches.  

The direct scheme applying (3.2) and calculating the points in J coordinates is referred to as 

LM Scheme, case 1. Furthermore, although the author proposed in [Lon07, Section 3.4.1] a 

version of the method using only one inversion (case 2), in this work we observe that some 

values computed during the aforementioned additions can be efficiently exploited to minimize 

costs during conversion to A coordinates. In this regard, we present two new and optimized 

schemes which are referred to as LM Scheme, cases 2a and 2b.   

3.2.1. Method Description 

Our method can be summarized in the following two steps.  

Step 1: Computation of precomputed points in Jacobian coordinates 

Point P is assumed to be initially in A coordinates. By applying the mixed coordinates approach 

proposed in [CMO98], we can compute the point 2P required in (3.2) in J  as follows: 

2
2 2X α β= − ,  ( ) 4

2 2 1Y X yα β= − − ,  2 1Z y=  ,                                                                      (3.3) 

where 
2
1(3 ) 2x aα = + , 2 2 2 4

1 1 1 1( ) 2x y x yβ  = + − −  , and the input and result are 1 1( , )P x y=  

and 2 2 22 ( : : ) ( )pP X Y Z E= ∈ F , respectively. Formula (3.3) can be easily derived from the 

doubling formula (5.2), Section 5.4, by setting 1 1Z = , and has a cost of only 1 5 12M S A+ + . 

Note that, if 1 1 4M S A− < , then computing  β  as 
2

1 1x y⋅  is more efficient with a total cost of 

2 4 8M S A+ + .   

Then, by fixing 1yλ =  in (2.10) we can set a point 
(1)

P  equivalent to P given by: 

( ) ( )(1) (1) (1)(1) 2 4
1 1 1 11 1 1 1 1, , , , ( , ,1)P X Y Z x y y y P x y= = ≡ = ,      
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whose computation does not involve additional costs since its coordinates have already been 

computed in (3.3). Following additions to compute points id P  are performed using the special 

addition Co-ADD Z  as follows:  

1
st
   Compute ( ) ( ) ( )(1) (1) (1)(1)

2 2 2 3 3 31 1 13 2 , , , , , ,P P P X Y Z X Y Z X Y Z= + = + =  : 

( ) ( ) ( )
2 3 2

(1) (1) (1)
3 2 2 2 21 1 12X Y Y X X X X X= − − − − − , 

( ) ( ) ( )
2 3

(1) (1) (1)
3 2 2 2 3 2 21 1 1Y Y Y X X X X Y X X

 
= − − − − − 

 
, 

( )(1)
3 2 21Z Z X X= − . 

 

2
nd 

Fix ( ) ( ) ( ) ( ) ( )
2 3

(1) (1) (1) (1) (1) (1)(1)
2 2 2 2 2 2 2 2 22 2 2 1 1 12 , , , , , ,P X Y Z X X X Y X X Z X X X Y Z

 
= = − − − ≡ 

 
, 

and compute ( ) ( ) ( )(1) (1) (1)(1)
3 3 3 4 4 42 2 25 2 3 , , , , , ,P P P X Y Z X Y Z X Y Z= + = + =  :    

( ) ( ) ( )
2 3 2

(1) (1) (1) (1)
4 3 3 32 2 2 22X Y Y X X X X X= − − − − − , 

( ) ( ) ( )
2 3

(1) (1) (1) (1) (1)
4 3 3 4 32 2 2 2 2Y Y Y X X X X Y X X

 
= − − − − − 

 
, 

( )(1) (1)
4 32 2Z Z X X= −  ,  ( )(1)

4 3 2A X X= − ,  ( )
2

(1)
4 3 2B X X= − ,  ( )

3
(1)

4 3 2C X X= − . 

�  
th

1

2

m− 
 
   Fix ( ) ( )( 2

(( 3) / 2) (( 3) / 2) (( 3) / 2) (( 5) / 2) (( 5) / 2)(( 3) / 2)
( 1) / 22 2 2 2 22 , ,

m m m m mm
mP X Y Z X X X

− − − − −−
−= = − ,

( ) ( ))
3

(( 5) / 2) (( 5) / 2) (( 5) / 2) (( 5) / 2)
( 1) / 2 ( 1) / 22 2 2 2,

m m m m
m mY X X Z X X

− − − −
− −− −

 
≡  ( (( 5) / 2) (( 5) / 2)

2 2, ,
m m

X Y
− −

)(( 5) / 2)
2

m
Z

−
, and compute ( )(( 3) / 2) (( 3) / 2) (( 3) / 2)(( 3) / 2)

2 2 22 ( 2) , ,
m m mm

mP P m P X Y Z
− − −−= + − = +

( ) ( )( 1) / 2 ( 1) / 2 ( 1) / 2 ( 3) / 2 ( 3) / 2 ( 3) / 2, , , ,m m m m m mX Y Z X Y Z+ + + + + +=  : 

( ) ( ) ( )
2 3 2

(( 3) / 2) (( 3) / 2) (( 3) / 2) (( 3) / 2)
( 3) / 2 ( 1) / 2 ( 1) / 2 ( 1) / 22 2 2 22m m m m
m m m mX Y Y X X X X X

− − − −
+ + + += − − − − − , 

( ) ( )
2

(( 3) / 2) (( 3) / 2) (( 3) / 2)
( 3) / 2 ( 1) / 2 ( 1) / 2 ( 3) / 22 2 2

m m m
m m m mY Y Y X X X X

− − −
+ + + +

 
= − − − − 

 
…  

                ( )
3

(( 3) / 2) (( 3) / 2)
( 1) / 22 2

m m
mY X X

− −
+ −… ,  

( )(( 3) / 2) (( 3) / 2)
( 3) / 2 ( 1) / 22 2

m m
m mZ Z X X

− −
+ += − ,   ( )(( 3) / 2)

( 3) / 2 ( 1) / 2 2
m

m mA X X
−

+ += − , 

( )
2

(( 3) / 2)
( 3) / 2 ( 1) / 2 2

m
m mB X X

−
+ += − ,   ( )

3
(( 3) / 2)

( 3) / 2 ( 1) / 2 2
m

m mC X X
−

+ += − . 

Intermediate values iA  and ( , )i iB C , for i = 4 to ( 3) / 2m + , are stored for LM Scheme, 

cases 2a and 2b, respectively, and used in Step 2 to save some computations when converting 

points to A coordinates. Note that the LM Scheme, case 1, does not require neither storing values 
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( , , )i i iA B C  nor executing Step 2. 

Step 2: Conversion to affine coordinates (cases 2a and 2b only) 

This step involves the conversion from J to A of points ( ): :i i iX Y Z  computed in Step 1, for i = 

3 to ( 3) / 2m + , 3m > , enabling the use of the efficient mixed addition operation during the 

evaluation stage of scalar multiplication. 

Conversion from J to A is achieved by applying 
2 3( / , / , 1)i i i iX Z Y Z  (see Section 2.2.4.2). 

Then, to avoid the computation of several expensive inversions we use a modified version of the 

Montgomery’s method of simultaneous inversion to limit the requirement to only one inversion 

for all the points in the precomputed table id P . 

In LM Scheme, case 2a, we first compute the inverse 1
( 3) / 2mr Z
−

+= , and then recover every 

point using 
2 3( / , / , 1)i i i iX Z Y Z  as follows: 

mP :  2
( 3) / 2 ( 3) / 2m mx r X+ += ⋅ ,  3

( 3) / 2 ( 3) / 2m my r Y+ += ⋅ , 

(m−2)P : ( 3) / 2mr r A += ⋅ ,  2
( 1) / 2 ( 1) / 2m mx r X+ += ⋅ ,  3

( 1) / 2 ( 1) / 2m my r Y+ += ⋅ , 

�                         �  

3P :        4r r A= ⋅ ,  2
3 3x r X= ⋅ ,  3

3 3y r Y= ⋅ . 

It is important to observe that 3 4
j

j iiZ Z A== × ∏ , for j = 4 to ( 3) / 2m + , according to Step 1 

and, hence, for ( 2), ( 4), ,3i m m= − − … , the value 1
( 3) / 2iZ
−

+  for each point iP is recovered at 

every multiplication ( 5) / 2ir A +⋅ .   

For LM Scheme, case 2b, we first compute ( )
2

1
1 ( 3) / 2mr Z

−
+=  and ( )

3
1

2 ( 3) / 2mr Z
−

+= , and then 

recover every point using 
2 3( / , / , 1)i i i iX Z Y Z  as follows: 

mP :  ( 3) / 2 1 ( 3) / 2m mx r X+ += ⋅ ,  ( 3) / 2 2 ( 3) / 2m my r Y+ += ⋅ , 

(m−2)P : 1 1 ( 3) / 2mr r B += ⋅ , 2 2 ( 3) / 2mr r C += ⋅ , ( 1) / 2 1 ( 1) / 2m mx r X+ += ⋅ , ( 1) / 2 2 ( 1) / 2m my r Y+ += ⋅ , 

�                         �  

3P :  1 1 4r r B= ⋅ ,  2 2 4r r C= ⋅ ,  3 1 3x r X= ⋅ ,  3 2 3y r Y= ⋅ . 

In this case: 2 2
3 4

j
j iiZ Z B== ×∏  and  3 3

3 4
j

j iiZ Z C== ×∏ , for  j = 4  to  ( 3) / 2m + , according to 

Step 1 and, hence, for ( 2), ( 4), ,3i m m= − − … , the pair 2 3
( 3) / 2 ( 3) / 2( , )i iZ Z
− −

+ +  for each point iP is 

recovered with 1 ( 5) / 2ir B +⋅  and 2 ( 5) / 2ir C +⋅ .  

The reader is referred to Appendix A1 for the detailed pseudocode of the LM Scheme. 
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3.2.2. Cost Analysis 

The cost of the LM Scheme, case 1, is given by: 

                                            LM Scheme, case 1Cost (6 1) (3 5)L M L S= + + + ,                                 (3.4) 

where ( 1)/2L m= −  is the number of non-trivial points in the table id P . The cost (3.4) assumes 

the use of the addition (or doubling-addition) with stored values during the evaluation stage that 

requires precalculating values 
2
iZ  and 

3
iZ  (see Table 2.2). Otherwise, the cost can be reduced to 

only (5 1) (2 5)L M L S+ + + . In terms of memory usage (for temporary calculations and point 

storage), LM Scheme, case 1, requires (5 6)L +  registers if using the addition or doubling-

addition with stored values or
 
(3 6)L +  registers if using operations without stored values.  

The LM Scheme, case 2a, has the following cost: 

                                          LM Scheme, case 2aCost 1 (9 ) (3 5)I L M L S= + + + ,                               (3.5) 

In terms of memory usage, LM Scheme, case 2a, requires (3 3)L +  registers overall. In the 

case of LM Scheme, case 2b, the cost is as follows: 

                                          LM Scheme, case 2bCost 1 (9 ) (2 6)I L M L S= + + + ,                               (3.6) 

For this scheme, we require (4 1)L +  registers when L > 1. For L = 1, the requirement is fixed 

at 6 registers. It will be shown later that memory requirements of cases 2a and 2b do not exceed 

the memory allocated for scalar multiplication for small or intermediate values of L, whereas case 

1 does not exceed memory constraints in any case. For the detailed estimation of costs and 

memory requirements of the LM Scheme, cases 1, 2a and 2b, please refer to Appendix A2.  

For the record, the original scheme in [Lon07] has a cost of 1 (11 2) (3 5)I L M L S+ + + + . As 

can be seen in (3.5) and (3.6), the new LM Scheme variants represent an important improvement 

in terms of computing cost. In particular, case 2b achieves the lowest cost in scenarios using one 

inversion at the expense of some extra memory.  

Next, we analyze the memory requirements for scalar multiplication and determine if our 

method adjusts to such constraints.  

In the case of using general (doubling-additions) additions or general (doubling-additions) 

additions with stored values for the evaluation stage (i.e., case 1), scalar multiplication requires in 

total (3L+R) or (5L+R) registers, respectively, where R is the number of registers needed by the 

most memory-consuming point operation in a given implementation. In scalar multiplications 

using solely radix 2, addition and doubling-addition are usually such operations. Depending on 

the implementation details, these operations can require up to 8 registers [Lon08]. Consequently, 

the LM Scheme, case 1, adjusts to the above requirements as it always holds that 3 6 3L L R+ ≤ +  
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and 5 6 5L L R+ ≤ +  for the two aforementioned cases.   

In the case of using mixed additions (or mixed doubling-addition) during evaluation (i.e., 

case 2), the total requirement of scalar multiplication is given by (2L+R) registers. Thus, LM 

Scheme, case 2b, adjusts to the previous requirements for small precomputed tables. If mixed 

addition or doubling-addition is the most memory-consuming operation then 4 1 2 7L L+ ≤ +  for 

3L ≤ . A similar analysis for case 2a allows us to verify that this scheme adjusts to memory 

constraints for 4L ≤ , which demonstrates that it is efficient for practical implementations based 

on fractional windows if n = 160 bits. Although cases 2a and 2b require more memory resources 

for higher values of L necessary in 256- and 512-bit scalar multiplications, we show in Section 

3.4.1 that these schemes still achieve the lowest costs for most scenarios for equivalent memory 

constraints.     

In Section 3.4, we analyze in great detail the performance of the proposed method in 

comparison with the best previous efforts on standard curves.  

3.3. Precomputation Scheme based on Conjugate Additions: 
LG Scheme 

The proposed scheme is based on the following simple observation: if P Q+  has been computed 

for two distinct points P, Q, the subtraction of those points only requires a few additional field 

operations. In the remainder, we will refer to this operation, namely ( ( ))P Q P Q− = + − , as 

“conjugate” addition and denote it by ADD′ . It will turn out that this operation allows the 

efficient computation of precomputed tables.  

Next, we describe the strategy of the conjugate addition in projective coordinates, and then 

discuss its application to computing tables of the form id P  and i ic P d Q± . 

3.3.1. The Strategy: Conjugate Addition using Projective Coordinates 

First, ( )P Q P Q− = + − . As the negative of a point only involves the change of at most one of the 

coordinate values in the projective representation (see Sections 2.2.4.2 and 2.2.5), it is then 

expected than computing P Q+  and P Q−  share most of the intermediate computations.  

Let us illustrate the latter with the point addition formula using J coordinates. Let 

1 1 1( : : )P X Y Z=  and 2 2 2( : : )Q X Y Z=  be two points on an elliptic curve /W pE F . If the 

addition 3 3 3( : : )P Q X Y Z+ =  is performed using the optimized addition formula: 

2 3 2 2
3 2 12X Z Xα β β= − − ,  2 2 3 3

3 2 1 3 2 1( )Y Z X X Z Yα β β= − − ,  3Z θβ= ,                                  (3.7) 

where 
3 3
1 2 2 1Z Y Z Yα = − , 

2 2
1 2 2 1Z X Z Xβ = −  and 

2 2 2
1 2 1 2[( ) ] 2Z Z Z Zθ = + − − , then P Q−  can be 



 
 

 

Chapter 3: New Precomputation Schemes                                                                                      

 

47 

 

computed as 1 1 1 2 2 2 4 4 4( ) ( : : ) ( : : ) ( : : )P Q X Y Z X Y Z X Y Z+ − = + − =  reusing the partial values 
3 2 2

2 1( 2 )Z Xβ β+ , 2 2
2 1Z X β , 3 3

2 1Z Y β , 3Z , 3
1 2Z Y  and 3

2 1Z Y . Thus, the conjugate addition can be 

computed with the following: 

 

2 3 2 2
4 2 12X Z Xγ β β= − − ,  2 2 3 3

4 4 2 1 2 1( )Y X Z X Z Yγ β β= − − ,  4 3Z Z= ,                                   (3.8) 

where 3 3
1 2 2 1Z Y Z Yγ = + . Note that (3.8) only involves the extra cost of 1 1M S+ , which is 

significantly less than the cost of a general addition (3.7) (i.e., 11 5M S+ ). If we also consider 

other usually neglected operations, the cost drops from 11 5 9 1( 2) 1( 2)M S A+ + + × + ÷  to only 

1 1 4M S A+ + . In total, the addition/conjugate addition pair costs 12 6 13 1( 2) 1( 2)M S A+ + + × + ÷ . 

It may seem that performing this conjugate operation would involve several extra registers to 

store partial values temporarily. However, memory requirements can be minimized by 

performing P Q+  and P Q−  concurrently. For instance, a possible execution sequence for 

computing P Q±  using formulas (3.7) and (3.8) would be as the one shown in Table 3.1. 

The execution of the addition/conjugate addition pair detailed in Table 3.1 requires 8 registers 

only (including temporary registers and registers storing input/output coordinates), which is the 

same memory requirement of the addition formula alone. Thus, executing the conjugate addition 

does not increase the memory consumption in this case. Similar results are expected for other 

coordinate systems. 

Table 3.1. Pseudocode of an “interlaced” execution of an addition/conjugate addition pair in J.  

INPUT:  1 1 1( : : )P X Y Z=
 
and  2 2 2( : : )Q X Y Z= ; 1 1T X← , 2 1T Y← , 3 1T Z← , 4 2T X← , 5 2T Y← , 6 2T Z←

 

OUTPUT:  3 3 3 1 2 3( : : ) ( : : )P Q X Y Z T T T+ = =
 
and 4 4 4 4 5 3( : : ) ( : : )P Q X Y Z T T T− = =  

  1.  2
7 3T T=              2

1{ }Z  12.  8 1 8T T T= ×       2
2 1{ }Z X  23.  2

1 6T T=                   2{ }α  

  2.  4 4 7T T T= ×        2
1 2{ }Z X  13.  7 4 8T T T= −

 
    { }β  24.  1 1 4T T T= −             3{ }X  

  3.  8 3 7T T T= ×        3
1{ }Z  14.  3 3 / 2T T=

 
       { }θ  25.  7 2 7T T T= ×            3 3

2 1{ }Z Y β  

  4.  5 5 8T T T= ×        3
1 2{ }Z Y  15.  3 3 7T T T= ×

 
     3 4{ }Z Z=  26.  2 8 1T T T= −

   
2 2
2 1 3{ }Z X Xβ −  

  5.  2
8 6T T=              2

2{ }Z  16.  2
6 7T T=            2{ }β  27.  2 2 6T T T= ×

  
2 2
2 1 3{ ( )}Z X Xα β −  

  6.  7 7 8T T T= +        2 2
1 2{ }Z Z+  17.  7 6 7T T T= ×      3{ }β  28.  2 2 7T T T= −            3{ }Y  

  7.  3 3 6T T T= +        1 2{ }Z Z+  18.  8 6 8T T T= ×      2 2
2 1{ }Z X β  29.  2

6 5T T=                   2{ }γ  

  8.  2
3 3T T=              2

1 2{ ( ) }Z Zω = +  19.  4 82T T=          2 2
2 1{2 }Z X β  30.  4 6 4T T T= −            4{ }X  

  9.  3 3 7T T T= −        2 2
1 2{ }Z Zω = −  20.  4 4 7T T T= +

    
3 2 2

2 1{ 2 }Z Xβ β+  31.  8 4 8T T T= −
   

2 2
4 2 1{ }X Z X β−  

10.  6 6 8T T T= ×        3
2{ }Z  21.  6 5 2T T T= −

     
{ }α  32.  8 5 8T T T= ×

   
2 2

4 2 1{ ( )}X Z Xγ β−  

11.  2 2 6T T T= ×        3
2 1{ }Z Y  22.  5 5 2T T T= +

     
{ }γ  33.  5 8 7T T T= −             4{ }Y  
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We have derived conjugate addition formulas in projective coordinates (J, eJQ  and IE 

coordinates) and in affine for the three curves under analysis. The costs of the different variants 

of addition/conjugate addition pairs are summarized in Table 3.2. Note that, in some cases, the 

traditional operations have been slightly modified so that the cost of the overall formula is 

minimized. Refer to Appendix A3 for complete details. 

Table 3.2. Costs of addition/conjugate addition formulas using projective (J, IE and eJQ ) and 

affine coordinates. 

Point Operation 

Cost 

Standard curve  

(a = −3), J 

Twisted Edwards 

(a = 1), IE 

Ext. Jacobi quartic 

(d = 1), e
JQ  

 ADD-ADD′ , ± →P P P  12M + 6S 14M + 1S 9M + 5S 

 [ , ]ADD-ADD M S
′ , ± →P P P  11M + 5S  - 9M + 4S 

 [2,2]ADD-ADD′ , ± →P P P  10M + 4S - - 

 mADD-mADD′ , ± →P A P  8M + 5S 13M + 1S 8M + 4S 

 mmADD-mmADD′ , ± →A A P  5M + 3S 11M 6M + 4S 

 ADD-ADD′ , ± →A A A      1I + 4M + 2S (1) 1I + 13M + 1S 1I + 10M + 4S 

      (1) Formula in affine coordinates from [OTV05]. P: projective coordinates (J, e
JQ  or IE). 

In the following section, we introduce novel precomputation schemes for tables with the 

forms id P  and i ic P d Q±  that take advantage of the new conjugate formulas. We again consider 

all three precomputation scenarios, i.e., cases 1, 2 and 3. 

3.3.2. Precomputation Scheme for Table of the Form diP 

We propose a recursive scheme that first reaches a “strategic” point and then applies efficiently 

the conjugate addition technique described in the previous section. In the following, we define as 

“strategic” to those points that can be efficiently computed and from which it is possible to 

calculate the maximum possible number of precomputed points at the lowest cost. The steps of 

our scheme are detailed in the following.  

Step 1: Computation of precomputed points 

The main body of our scheme is detailed in Algorithm 3.1. In this step, points can be computed in 

projective coordinates using operations from Tables 2.2, 2.3 or 2.4 (case 1), or directly in A 

coordinates (case 3). If projective points are to be converted to A (case 2) then Step 2 should be 
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executed right after. 

Basically, Algorithm 3.1 first reaches certain “strategic” point and then computes all the 

points that are close to it by efficiently computing additions and conjugate additions. The 

“strategic” points S proposed in our scheme have the form 1 2i iP P+ = , for 0i ∈ ≥Z  and 0 3P P=
 

(that is, max{6 ,12 ,24 , , , , }P P P rP r P= … …S ), which are computed using a combination of one 

tripling (performed at the beginning; step 2 of Algorithm 3.1) and a sequence of doublings (step 

11). Note that there is a minimum number of close points that makes the computation of a 

“strategic” point worthwhile. If that minimum is not fulfilled (evaluation in step 5) then the 

algorithm calculates the remaining points from the previous “strategic” point (loop in steps 6-8). 

The value of such a minimum depends on the particular costs of point operations. For J, eJQ  

and IE coordinates, we have determined that the lowest cost is achieved if the next “strategic” 

point is computed always that the value m is greater or equal to such a “strategic” point (i.e., if 

2m r≥ ), in which case steps 10-19 are executed. 

Let us illustrate the proposed scheme with the following example. 

Example 3.1. If m = 13, Algorithm 3.1 computes the first points as 3 6P P P→ → , where 6P is 

the first “strategic” point. From this, 5P and 7P (close points) are calculated by adding 

6 ( )P P+ −  and 6P P+ . Note that the latter operations can be calculated with a low cost 

addition/conjugate addition pair. Then, Algorithm 3.1 calculates the following “strategic” point 

(since m > 12) by doubling max6 12P P r P→ = , and finally computes close points 9P, 11P and 

13P by performing 12 ( 3 )P P+ − , 12 ( )P P+ −  and 12P P+ , respectively. Again the last two 

operations can also be computed with an addition/conjugate addition pair. 

In Appendix A4, we have sketched the derivation of points for tables with different values m. 

Note that the described method does not include the case m = 5. For a table with m = 5, eJQ  and 

J coordinates, it is more efficient to compute points by performing 2 4P P P→ → , and then 

obtaining 3P and 5P with an addition/conjugate addition pair (i.e., 4 ( )P P+ −  and 4P P+ ). For 

the case IE, we suggest to compute the table following the sequence 2 3 5P P P P→ → → .  

Step 2: Conversion to affine coordinates (case 2 only) 

If mixed addition (or mixed DBLADD) is significantly more efficient than general addition (or 

general DBLADD) in a given setting, then it could be convenient to express the precomputed 

table in A coordinates. 

It is known that conversion to A can be achieved by calculating 2 3( / , / )i i i iX Z Y Z , 
2( / , / )i i i iX Z Y Z  and ( / , / )i i i iZ X Z Y  for points in J, eJQ  and IE coordinates, respectively. For 

each setting, calculation of denominators (denoted by iu ) can be efficiently carried out by using 
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Algorithm 3.1.  Computation of precomputed points using the LG Scheme 

Input: a point P in affine coordinates, and 

           an odd value 5m ≠  to build a table of the form id P , where {3,5,7, , }id m∈ …  

Output: the precomputed table 1 ( 1) / 2{ 3 , , }mT T P T mP−= = =…  in P or A coordinates 

  1:  r = 3,  l = 1,  i = 2,  n = v = 0  

  2: 0T P= ,  1T rP=  

  3: 1R T=  

  4: While  n < (m – 3)/2              

  5:         If 2m r<  

  6:                 While n < (m – 3)/2 

  7:                         s lT R T= +  

  8:                          n = n + 1,  1l l= + ,  1s s= +  

  9:         Else 

10:                 t = 2
v
 

11:                 R = 2R,  v = v + 1,  r = 2r,   j = t −1,   first = 1 

12:                 While 0j ≥  do 

13:                          Ti = R – Tj ,  n  = n + 1 

14:                          If  first = 1, then 1l j= + , s r i= − ,  first = 0 

15:                          1i i= +  

16:                          If 2 1m r j≥ + + , then 

17:                                  T(r + 2j) / 2 = R + Tj ,  n  = n + 1 

18:                                  If  Tj = T0  then  1i i= +  

19:                          1j j= −  

20: Return 1 ( 1) / 2{ , , }mT T T −= …  

 

the Montgomery’s method of simultaneous inversion. In this way, the number of expensive 

inversions can be limited to only one. 

 First, we compute the inverse 
1

1 2( )tU u u u
−= … , where iu  are all distinct denominators of 

the conversion expressions above (without considering exponents) from all the non-trivial points 

in the table {3P, 5P, …, mP}. For J and eJQ , the number of such denominators reduces to only 

( 1) / 2t m c= − − , where c is the number of points computed via conjugate addition, since points 

computed with addition/conjugate addition pairs share the same Z coordinate (see Appendix A3). 

For IE, 1t m= −  as each point has two distinct denominators, namely iX  and iY .  

Then, individual denominators iu  are recovered from U and scaled with the corresponding 

exponent (if any), and the results are finally multiplied to their corresponding numerator 

following the conversion expressions. 
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Thus, the use of conjugate additions reduces the cost of the Montgomery’s method for J and 
eJQ . Following the details above, it can be verified that one saves (4 1 )M S+  and (3 1 )M S+  

per point computed with a conjugate addition using J and eJQ  coordinates, respectively.   

3.3.2.1. Cost Analysis  

The “generic” costs of the proposed scheme, cases 1-3 and case 2, are given by: 

LG Scheme, cases 1/3Cost 1TPL ( 2)DBL + (2 1)ADD + ( 1)ADD-ADDL Lω ε ε ′= + − − + − − ,         (3.9) 

LG Scheme, case 2Cost 1TPL ( 2)DBL + (2 1)ADD + ( 1)ADD-ADD CostL Lω ε ε →′= + − − + − − + P A ,                      

                                                                                                                                                  (3.10) 

respectively, where 5m > , ( 1) / 2L m= − , 
2

max 3 2r
ω−= ×  is the value of the highest “strategic” 

point, ( )max max max max(6 2 3) /(6 3) 1 2 /3 ( / 3) 1L r r L r rε = + − − + − + −    is the total number of 

regular additions and Cost →P A  denotes the cost of converting points from projective to affine 

coordinates and is defined by the following formulas for J, eJQ  and IE coordinates: 

                                         Cost 1 (6 4 3) ( )I L c M L c S→ = + − − + −J A ,                                    (3.11)           

                                       Cost 1 (5 3 3) (2 )e I L c M L c S
→

= + − − + −
JQ A

,                               (3.12)         

                                         Cost 1 (6 ( 2) / 1)I L L L M→ = + + − −  IE A ,                                    (3.13) 

respectively, where 1c L ε= − −  represents the number of conjugate additions. Formulas (3.9) 

and (3.10) can be refined further for cases 1 and 2 with the use of mixed coordinates (case 2 

additionally includes the cost of conversion to affine, i.e., Cost →P A ):  

LG Scheme, case 1(2)Cost 1mTPL ( 2)DBL + ( 2)mADD-mADD +ω ω ′= + − − …                                                                   

                                    ( )1 ADD-ADD (2 1)ADD ( Cost )L Lε ω ε →′− − + + − + +… P A .         (3.14) 

Please, refer to Appendix A5 for the proof. We remark that cost formula (3.14) is generalized 

to any projective system. Hence, depending on the curve form selected, some additional speed-

ups are available. Let us discuss some of these optimizations in the context of J coordinates. 

First, when performing additions with a “strategic” point Q, the values 2
QZ  and 3

QZ  are calculated 

in the first mixed addition, say ( : : ) ( , )Q Q Q P PQ P X Y Z x y+ = + . Then, following general 

additions of the form ( : : ) ( : : )Q Q Q R R RQ R X Y Z X Y Z+ = +   can be executed using [1,1]ADD  in 

case 1 and save (1 1 )M S+
 
per operation. This can be optimized further by using [2,2]ADD  

instead and save (2 2 )M S+  per general addition if one assumes that the evaluation stage 
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employs additions with stored values and all values 
2
iZ  and 

3
iZ  need to be precomputed in case 

2. Also, one squaring can be saved every time a doubling 2 jP  is performed to get a “strategic” 

point since the value 2
jZ  can be obtained from the initial tripling or the mixed addition preceding 

this doubling. Moreover, as observed before addition and conjugate addition formulas share the 

same Z coordinate. Hence, in case 2 we only require (1 1 )M S+  to get 
2
iZ  and 

3
iZ  for two points 

computed with an addition/conjugate addition pair. Similar savings apply to conversion to affine 

for case 1, where one saves (4 1 )M S+  per conjugate addition as discussed in the previous 

section. By applying these optimizations to (3.14) with (3.11), we obtain the following cost 

formulas for the LG Scheme, cases 1 and 2, using Jacobian coordinates:  

LG Scheme, , case 1Cost (9 2) + (3 5 4)L M L Sε ω ε ω= + + + + + −J ,                                              (3.15) 

LG Scheme, , case 2Cost 1 (13 3 5) + (4 4 1)I L M L Sε ε ω= + + + + + −J .                                          (3.16) 

Note that it is still possible to optimize further cost (3.16) for case 2 if every addition with 3P 

is computed with [1,1]ADD  by reusing values 
2
3PZ  and 

3
3PZ  computed in the tripling operation. 

This saves an extra (1 1 )M S+
 
per addition with 3P. 

The following optimizations to cost formula (3.14) using eJQ  coordinates are analogous to 

the ones described for J coordinates. First, one squaring can be saved every time a doubling 2 jP  

is performed to get a “strategic” point by noting that 
2

( )j jX Z+  can be obtained from the initial 

tripling or the mixed addition preceding this doubling. Also, when performing additions with a 

“strategic” point Q, the value 
2

( )Q QX Z+  is calculated in the first mixed addition. Then, each 

extra addition with the same point Q can be executed using [0,1]ADD  in case 1 and save 1S  
per 

operation. This can be optimized further by using [0,2]ADD  instead and save 2S  per general 

addition if one assumes that the evaluation stage employs additions with stored values and all 

values 
2( )i iX Z+  need to be precomputed in case 2. Thus, the optimized costs of the LG 

Scheme, case 1 and case 2, using extended Jacobi quartic coordinates are given by:  

LG Scheme, , case 1
Cost (5 2 1) + ( 2 5 5)e L M L Sε ω ε ω= + + + + + −

JQ
,                                           (3.17) 

LG Scheme, , case 2
Cost 1 (8 4 1) + (3 2 4 1)e I L M L Sε ω ε ω= + + + + + + −

JQ
.                                 (3.18) 

Again, it is still possible to optimize further cost (3.18) for case 2 if every addition with 3P is 

computed with [0,1]ADD  by reusing the value 
2

3 3( )P PX Z+  computed in the tripling operation. 

This saves an extra squaring
 
per addition with 3P. 

In Table 3.3 we list the cost of the LG Scheme for various values L using the derived 

formulas (3.15), (3.16), (3.17), (3.18). Costs for IE coordinates can be obtained by simply 

applying operations from Tables 2.4 and 3.2 to cost formulas (3.14) and (3.13). As operations in 
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affine are relatively expensive in extended Jacobi quartic and Twisted Edwards curves (see Table 

3.2), we only show the performance of case 3 in the setting of standard curves estimated with 

formula (3.9). In Sections 3.4.1 and 3.4.2, we carry out an exhaustive evaluation of this method’s 

performance. 

Table 3.3. Costs of the LG precomputation scheme: case 1 in projective coordinates using J, 
eJQ and IE; case 2 using one inversion; and case 3 in A. 

 

L 
Case 1 Case 2 Case 3 

J e
JQ  IE J e

JQ  IE Standard curve 

3 17M + 17S 15M + 17S 22M + 8S 1I + 27M + 18S 1I + 24M + 20S 1I + 40M + 8S 3I + 13M + 8S 

7 40M + 32S 34M + 32S 51M + 14S 1I + 64M + 33S 1I + 57M + 37S 1I + 93M + 14S 6I + 23M + 14S 

15 85M + 57S 71M + 57S 108M + 22S 1I + 139M + 60S 1I + 122M + 68S 1I + 198M + 22S 11I + 41M + 24S 

 

3.3.3. Precomputation Scheme for Table of the Form ciP±diQ 

This scenario mainly applies to methods for computing multiple scalar multiplication such as 

those based on JSF [Sol01, OKN10, SEI10]. In this case, the application of our strategy of 

conjugate additions is straightforward since precomputed points have the form i ic P d Q±  and 

each point pair i ic P d Q+  and i ic P d Q−
 
with , 0i ic d ≠  can be computed with an addition/ 

conjugate addition pair. Points ic P
 
and id Q  are computed using the chain P → P+2P = 3P → 

3P+2P = 5P → … → (m−2)P+2P = mP. Interestingly enough, we note that, for the case of 

Jacobian coordinates with 5m ≥ , this chain can be performed using the LM Scheme and, thus, 

reduce the costs further.   

In the following, we analyze the cost involved when precomputing points for the window-

based JSF [OKN10, SEI10]. Extension of the method to similar table forms easily follows.  

3.3.3.1. Cost Analysis  

First, a precomputed table i ic P d Q± , where { }, 0,1,3,5,...,i ic d D m+∈ = , 1ic >  if 0id = , 1id >  

if 0ic =  and m odd, consists of 2( 4 1) / 2L m m= + −  non-trivial points. For example, assuming 

that both P and Q are unknown before execution, if m = 3 one needs to precompute ten points: 

3P , 3Q , P Q± , 3P Q± , 3P Q±  and 3 3P Q± . Recall that the negative of these points can be 

computed on-the-fly at negligible cost and, hence, are not included in the table. 

Then, the “generic” cost of the LG Scheme for this table form, cases 1, 2 and 3, is given by: 
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2

LG Scheme, cases 1/3(2)

( 1) 1
Cost ( 1)ADD (ADD ADD ) 2 DBL  (+Cost )

4

m m
m

m
→

+ − 
′= − + − +   

P A ,           

                                                                                                                                                  (3.19) 

where 2( 4 1) / 2 1L m m= + − >  
and again Cost →P A  (that only applies to case 2) denotes the cost 

of converting points from projective to affine coordinates and is defined by cost formulas (3.11), 

(3.12) and (3.13) for J, eJQ  and IE, respectively. For these formulas, 2( 1) / 4c m= + . Cost 

(3.19) assumes that points i ic P d Q±
 
for which ic  or 0id =  are computed using the chain P → 

P+2P = 3P → 3P+2P = 5P → … → (m−2)P+2P = mP. As mentioned before, one can apply the 

LM Scheme to this computation when using J coordinates. The cost of this combined LG/LM 

Scheme is given by ( 5)m ≥ : 

2

LG Scheme, ,cases 1(2) Co

( 1)
Cost 2DBL + ( 1)ADD (ADD ADD )  (+Cost2 ),

4
-Z

m
m →

+
′= − + −J J A (3.20) 

where 2Cost2 [2 ( 4) 1] [( 1) / 4 2]m m M m S→ = + − + + +J A  applies to case 2 only and represents 

the cost of converting points from Jacobian to affine coordinates using a modified Montgomery’ 

simultaneous inversion method that has been adapted to case 2b of LM Scheme and the use of 

conjugate additions. Please, refer to Appendix A6 for the proof and extended details. 

We remark that further optimizations are possible, such as the use of mixed coordinates or 

efficient tripling formulas. Similarly, certain coordinate systems such as J and eJQ  allow again 

the use of efficient addition formulas with stored values, following the same optimizations 

described in Section 3.3.2.1. 

In Table 3.4, we show the cost performance of the proposed scheme for the curve forms 

under analysis and considering the discussed optimizations. As operations in affine are relatively 

expensive in eJQ  and IE coordinates, we only show the performance of case 3 in the setting of 

standard curves. We carry out the evaluation of this method’s performance in Section 3.4.3. 

Table 3.4. Cost of the LG precomputation scheme for tables of the form i ic P d Q± : case 1 in 

projective coordinates; case 2 using one inversion; and case 3 in affine coordinates. 

 

L 
Case 1 Case 2 Case 3 

J e
JQ  IE J e

JQ  IE Standard curve 

2 6M + 4S 6M + 8S 11M  1I + 10M + 4S 1I + 10M + 7S 1I + 22M 1I + 4M + 2S 

10 42M + 32S 41M + 35S 65M + 9S 1I + 80M + 35S 1I + 76M + 43S 1I + 125M + 9S 6I + 30M + 16S 

22 107M + 65S 100M + 74S 159M + 18S 1I + 175M + 68S 1I + 180M + 91S 1I + 291M + 18S 15I + 48M + 26S 
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3.4. Performance Comparison 

3.4.1. Evaluation of LM and LG Schemes on Standard Curves 

There are different schemes to compute precomputed points on standard curves in the literature 

(see Section 3.1.1). The simplest approaches suggest performing computations in A or C 

coordinates using the chain P → 3P → 5P → … → mP. The latter requires one doubling and 

( 1)/2L m= −  additions, which can be expressed as follows in terms of field operations:  

                                         Cost ( 1) (2 2) ( 2)L I L M L S= + + + + +A ,                                      (3.21) 

                                                Cost (10 1) (4 5)L M L S= − + +C .                                             (3.22)  

Note that (3.22) shows a better performance than the estimated cost given by [DOS07] since 

we are considering that the initial doubling 2P is computed as 2A → C with a cost of 2M + 5S, 

the first addition P + 2P computed with a mixed addition as A + C → C (7 4 )M S+ , and the 

following ( 1)L −  additions as C + C → C (10 4 )M S+ . The new operation costs are obtained by 

applying the technique of replacing multiplications by squarings [LM08]. The memory 

requirements of the A- and C-based methods are (2 )L R+  and (5 )L R+  registers, respectively, 

where R is again the memory requirement of the most memory-demanding point operation used 

for scalar multiplication.  

Let us first compare the performance of the proposed methods with approaches using several 

inversions (case 3). In this case, we show in Table 3.5 the performance comparison of the LG 

Scheme, case 3, with the traditional A-based approach whose cost is given by (3.21). Also, the 

I/M ratios for which the traditional, LG and LM methods achieve the lowest cost are shown at the  

Table 3.5. Costs of different schemes using multiple inversions (case 3) and I/M ranges for 

which each scheme achieves the lowest cost on a standard curve form (1M = 0.8S). 

# Points (L) 2 3 (w = 4) 6 7 (w = 5) 14 15 (w = 6) 

LG Scheme (case 3) 3I + 12.8M 3I + 19.4M 6I + 31.4M 6I + 34.2M 11I + 57.4M 11I + 60.2M 

Traditional (3.21) 3I + 9.2M 4I + 12M 7I + 20.4M 8I + 23.2M 15I + 42.8M 16I + 45.6M 

I/M range (LM, case 2b) I > 8.4M I > 8.6M I > 8M I > 9M I > 9.6M I > 10.4M 

I/M range (LG, case 3) - 7.4M < I < 8.6M - 5.5M < I < 9M 3.7M < I < 9.6M 2.9M < I < 10.4M 

I/M range (traditional) I < 8.4M I < 7.4M I < 8M I < 5.5M I < 3.7M I < 2.9M 
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bottom of the table. Note that we are including in the comparison LM Scheme, case 2b, to 

determine the efficiency gained by using an approach based on only one inversion (case 2). 

An important result from Table 3.5 is that the LM Scheme, case 2b, outperforms approaches 

using several inversions for a wide range of I/M ratios. In general, this method is superior always 

that inversion is more than 8-10 times the cost of multiplication, which holds on the majority of 

implementations over prime fields. On the other hand, the LG Scheme, case 3, is only suitable for 

low/intermediate values I/M. 

Now, let us evaluate methods for case 1, and consider the C-based approach, whose cost is 

given by (3.22), for our comparisons. In this case, we should also consider the cost of scalar 

multiplication as the evaluation stage in C coordinates has a cost different to our methods. 

When precomputations are in C, Cohen et al. [CMO98] proposed the use of J + C → mJ  to 

perform additions (10M + 6S), 2 m →J J  (2M + 5S) to every doubling preceding an addition, 

and 2 m m→J J  (3M + 5S) to the rest of doublings. Again, we have reduced the cost of these 

operations by applying the technique discussed in [LM08] to trade multiplications for squarings. 

Using this scheme the scalar multiplication cost including precomputations (3.22) is as follows: 

( ) ( )( ) ( ) ( )Frac- NAF Frac- NAF12 11 1 3 5 10 1 4 5w wn M S n M S L M L Sδ δ ⋅ + + − + +  − + +    .       (3.23) 

In the case of LG and LM Schemes, case 1, we consider the use of addition with stored 

values. Thus, the approximated cost of scalar multiplication is given by: 

Frac- NAF Frac- NAF
[1,1] scheme, case 1

( 1) ( 1)
DBL mADD ADD Cost

( 1) ( 1)

w wn L n
n

L L

δ δ    − −
⋅ + + +    

+ +    
,    (3.24) 

where 1DBL 3 5M S= + , 1mADD 7 4M S= + , [1,1]1ADD 10 4M S= +  (as in Table 2.2) and 

scheme, case 1Cost  is given by (3.4) or (3.15) for LM and LG Schemes, respectively.  

Tables 3.6, 3.7 and 3.8 show the costs of performing an n-bit scalar multiplication using the 

different methods above (case 1) for n = 160, 256 and 512 bits, respectively. We show results for  

Table 3.6. Performance comparison of LG and LM Schemes with the C-based method (case 1) in 

160-bit scalar multiplication on a standard curve form (1M = 0.8S). 

# Points (L) 2 3 (w = 4) 4 5 6  7 (w = 5) 

 LM Scheme, case 1 1573M 1546M 1540M 1534M 1529M 1524M 

 LG Scheme, case 1 1577M 1547M 1545M 1544M 1537M 1526M 

 C-based [CMO98] 1640M 1604M 1596M 1591M 1586M 1583M 
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Table 3.7. Performance comparison of LG and LM Schemes with the C-based method (case 1) in 

256-bit scalar multiplication on a standard curve form (1M = 0.8S). 

# Points (L) 2 3 (w = 4) 4 5 6 7 (w = 5) 8 

 LM Scheme, case 1 2505M 2457M 2443M 2428M 2414M 2401M 2400M 

 LG Scheme, case 1 2509M 2458M 2448M 2438M 2422M 2403M 2407M 

 C-based [CMO98] 2607M 2541M 2521M 2503M 2489M 2476M 2477M 

 

# Points (L) 9 10  11  15 (w = 6) 

 LM Scheme, case 1 2399M 2398M 2397M 2397M 

 LG Scheme, case 1 2410M 2414M 2418M 2397M 

 C-based [CMO98] 2479M 2481M 2484M 2498M 

Table 3.8. Performance comparison of LG and LM Schemes with the C-based method (case 1) in 

512-bit scalar multiplication on a standard curve form (1M = 0.8S). 

# Points (L) 2 3 (w = 4) 4 5 6 7 (w = 5) 8 

 LM Scheme, case 1 4991M 4887M 4849M 4811M 4774M 4740M 4730M 

 LG Scheme, case 1 4995M 4887M 4854M 4821M 4783M 4742M 4736M 

 C-based [CMO98] 5184M 5040M 4986M 4938M 4895M 4857M 4846M 

 

# Points (L) 9 10 11 12 13 14  15 (w = 6) 

 LM Scheme, case 1 4719M 4709M 4700M 4690M 4681M 4673M 4665M 

 LG Scheme, case 1 4731M 4725M 4721M 4710M 4694M 4679M 4665M 

 C-based [CMO98] 4836M 4827M 4819M 4812M 4805M 4800M 4794M 

 

all the possible and practical values L. Also, note that all the methods considered exhibit the same 

memory requirement, namely, 5L + R.  

As we can see above, the LM method, case 1, achieves the highest performance in all the 

cases for any number of precomputed points, surpassing the C-based approach by up to 4.1%. 
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Also, it is important to note that LG Scheme’s performance is comparable (or equivalent) to that 

of LM Scheme in several cases. The latter especially holds for standard window values w (L = 3, 

7, 15).  

Let us now compare methods using one inversion only (case 2). Previous methods in this 

scenario perform computations in H, J or C coordinates and then convert the points to A by 

using Montgomery’ simultaneous inversion method to limit the number of inversions to one. 

Costs of these methods are extracted from [DOS07] (assuming that 1S = 0.8M): 

Cost 1 (16 3) (3 5) 1 (18.4 1)I L M L S I L M→ = + − + + = + +H A ,                                            (3.25) 

Cost 1 (16 5) (5 5) 1 (20 1)I L M L S I L M→ = + − + + = + −J A ,                                              (3.26) 

Cost 1 (16 4) (5 5) 1 (20 )I L M L S I L M→ = + − + − = +C A .                                                    (3.27) 

Recently, Dahmen et al. [DOS07] proposed a new scheme, known as DOS, whose 

computations are efficiently performed using formulae in affine solely. This scheme has a low 

memory requirement given by (2 4)L +  registers and computing cost: 

DOSCost 1 (10 1) (4 4) 1 (13.2 2.2)I L M L S I L M= + − + + = + + ,                                           (3.28) 

that shows its superiority when compared to methods (3.25), (3.26), (3.27) requiring only one 

inversion. However, the proposed LM Scheme achieves even lower computing costs given by 

LM, case 2aCost 1 (11.4 4)I L M= + +  and LM, case 2bCost 1 (10.6 4.8)I L M= + +
 
(assuming that 1S 

= 0.8M in formulas (3.5) and (3.6)). Therefore, LM Scheme (specifically, case 2b) achieves the 

lowest cost in the literature when the number of inversions is limited to one. LM Scheme, case 

2a, also achieves high performance with the advantage of requiring less memory. 

The previous comparison applies to scenarios where memory is not limited. For applications 

with strict memory constraints, it would be more realistic to compare methods for a certain 

number of available registers. In Table 3.9, the cost of each method is restricted by the maximum 

number of registers available for the evaluation stage. For each method, we show the total cost of 

performing a 160-bit scalar multiplication and the optimal number of precomputed points L when 

considering that a maximum of (2 )ESL R+  registers are available for the evaluation stage (i.e., 

ESL L≤ ). For our analysis, we set R = 7. Also, to compare the performance of schemes using no 

inversions (case 1) with methods using one inversion (case 2), we include costs of the most 

efficient scheme found for case 1 (i.e., LM Scheme, case 1; see Tables 3.6, 3.7 and 3.8) and show 

at the bottom of each table the I/M range for which LM Scheme, case 1, would achieve the 

lowest cost. For comparisons for n = 256, 512, please refer to Appendix A7. 
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Table 3.9. Performance comparison of LG and LM Schemes with the DOS method in 160-bit 

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S). 

# Registers ( )
ES

L  11 (2) 13 (3) 15 (4) 17 (5) 19 (6) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 2 1I + 1506M 3 1I + 1481M 3 1I + 1481M 4 1I + 1476M 4 1I + 1476M 

LM, case 2a 2 1I + 1507M 3 1I + 1483M 4 1I + 1479M 4 1I + 1479M 5 1I + 1476M 

LG, case 2 2 1I + 1511M 3 1I + 1486M 4 1I + 1489M 5 1I + 1494M 6 1I + 1489M 

DOS [DOS07] 2 1I + 1509M 3 1I + 1486M 4 1I + 1484M 5 1I + 1483M 5 1I + 1483M 

LM, case 1 1 1596M 1 1596M 1 1596M 2 1573M 2 1573M 

I/M range (LM, case1) I > 90M I > 115M I > 117M I > 97M I > 97M 

 

# Registers ( )
ES

L  23 (8) 27 (10) 29 (11) 39 (16) ≥ 41 (17) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 5 1I + 1473M 6 1I + 1470M 7 1I + 1469M 7 1I + 1469M 7 1I + 1469M 

LM, case 2a 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M 6 1I + 1474M 

LG, case 2 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M 7 1I + 1481M 

DOS [DOS07] 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M 5 1I + 1483M 

LM, case 1 3 1546M 4 1540M 4 1540M 6 1529M 7 1524M 

I/M range (LM, case1) I > 73M I > 70M I > 71M I > 60M I > 55M 

 

From results in Tables 3.9, A.1, and A.2 that target case 2, it can be seen that LM Scheme 

achieves the lowest cost for most cases for different security levels (lowest cost per register 

allowance is shown in bold). For n = 160 bits, the LM Scheme, case 2b, offers the lowest costs 

excepting for 4ESL = , in which case LM Scheme, case 2a, is slightly cheaper. For n = 256 bits, 

LM Scheme, cases 2a and 2b, again achieves the lowest cost for all cases, excepting for 5ESL = , 

for which the DOS method offers a slight advantage. In the case of n = 512 bits, the DOS method 

finds its best performance by achieving the lowest cost for 5,ESL =  6 and 8. Also, the LG 

Scheme, case 2, results more advantageous for 7ESL =  and 8. Nevertheless, for most cases the 

LM Scheme still achieves the highest performance. Also, in settings where memory is not 

constrained the highest speed-up is achieved with LM Scheme, case 2b, for any value n. 

Finally, when comparing methods for case 1 and case 2, it can be observed that LM Scheme, 

case 1, can be advantageous for n = 160 bits if the ratio I/M is at least 50-60 and there are a high 

number of registers available. For n = 256 bits, that margin reduces to ratios greater than 90-100. 

And for n = 512 bits, the LM Scheme, case 1, would be the most efficient method for extremely 
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high ratios, which seem unrealistic in practical scenarios. 

3.4.2. Evaluation of LG Scheme for Extended Jacobi Quartic and 

Inverted Edwards Coordinates 

In this section, we analyze and compare the performance of the proposed LG Scheme (Section 

3.3) with extended Jacobi quartics and inverted Edwards coordinates. As we could not find any 

literature related to precomputation schemes on these settings, we have derived the cost formulas 

of precomputing points using the traditional chain P → 3P → 5P → … → mP. For the case 

without inversions (case 1), the cost of precomputation is given by (1 0.8 )S M= :   

, case 1Cost (9 2) (1 3) (9.8 4.4)L M L S L M= + + + = +IE ,                                                         (3.29) 

, case 1
Cost (7 1) (3 8) (9.4 5.4)e L M L S L M= − + + = +

JQ
,                                                       (3.30)   

for IE and eJQ  coordinates, respectively. These costs have been derived by adding the costs of 

performing one mixed doubling, one mixed addition and ( 1)L −  general additions. For eJQ  we 

consider the use of [0,1]ADD  to reduce costs during the evaluation stage. For case 2, the costs are 

given by (1 0.8 )S M= :  

, case 2Cost 1 (15.8 ( 2) / 3.4)I L L L M= + + − +  IE ,                                                                   (3.31) 

, case 2
Cost 1 (12 4) (5 7) 1 (16 1.6)e I L M L S I L M= + − + + = + +

JQ
,                                        (3.32)   

which have been derived by adding the cost of eq. (3.13) and (3.12) with c = 0 (for Montgomery’ 

simultaneous inversion method) to eq. (3.29) and (3.30), respectively. 

In Table 3.10, we compare the costs of these schemes with the LG Scheme for different 

standard windows w. Costs for LG Scheme are calculated with formulas (3.14), (3.17), (3.18). As 

can be seen, the LG Scheme outperforms the methods using traditional chains in all covered 

cases for both IE and eJQ  coordinates. Note also that the advantage increases with the window 

size. For instance, if 1I = 30M, w = 6, eJQ , the cost reduction is as high as 20% and 24% in 

cases 1 and 2, respectively.  

Let us now compare the performance of cases 1 and 2 of LG Scheme with the objective of 

determining the best method for each possible scenario. In this analysis we should also consider 

the scalar multiplication cost since different point operation costs apply to different cases. We 

consider the fractional width-w NAF method for our analysis. For case 1, the approximated cost of 
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Table 3.10. Performance comparison of LG Scheme with methods using a traditional chain for 

cases 1 and 2 on eJQ  and IE coordinates (1M = 0.8S). 

Case Method 
Curve 

form 

L = 1  

(w = 3)  

L = 3  

(w = 4) 

L = 7  

(w = 5) 

L = 15  

(w = 6) 

Case 1 

 LG Scheme 
e

JQ  10.6M 28.6M 59.6M 116.6M 

 Scheme (3.30) e
JQ  14.8 M 33.6M 71.2M 146.4M 

 LG Scheme IE 9.4M 28.4M 62.2M 125.6M 

 Scheme (3.29) IE 14.2 M 33.8M 73.0M 151.4M 

Case 2 

 LG Scheme 
e

JQ  - 1I + 40.0M 1I + 86.6M 1I + 176.4M 

 Scheme (3.32) e
JQ  - 1I + 49.6M 1I + 113.6M 1I + 241.6M 

 LG Scheme IE - 1I + 46.4M 1I + 104.2M 1I + 215.6M 

 Scheme (3.31) IE - 1I + 51.8M 1I + 115.0M 1I + 241.4M 

 

scalar multiplication is given by eq. (3.24), and for case 2, the cost is given by:  

[ ]Frac- NAF scheme, case 2DBL ( 1) mADD Costwn nδ⋅ + − ⋅ + ,                                                          (3.33)  

Tables 3.11 and 3.12 show the performance of scalar multiplication including the costs of the 

LG Scheme, cases 1 and 2. At the bottom of the table, we display the I/M range for which case 1 

is the most efficient approach. 

As can be observed from Tables 3.11 and 3.12, on IE and eJQ  coordinates LG Scheme, 

case 1, achieves the best performance for most common I/M ratios if n = 160 bits. This result 

differs from that for standard curves where the use of one inversion during precomputation is 

only efficient for high I/M ratios (see Table 3.9). For higher security levels (n = 512 bits), the 

difference between case 1 and case 2 reduces. Ultimately, the most effective approach would be 

determined by the particular I/M ratio of a given implementation. However, as the window size 

grows, case 1 would be again largely preferred. Therefore, for applications where memory is not 

scarce, LG Scheme, case 1, achieves the lowest cost in both eJQ  and IE coordinates. 

3.4.3. Evaluation of LG Scheme for a Table of the Form ciP±diQ 

In this section, we analyze and compare the performance of LG Scheme when targeting multiple 

scalar multiplication methods such as JSF (Section 3.3.3). In particular, we first compare our 

approach with the computation using traditional additions and then we evaluate performance of 

cases 1 and 2 for the window-based JSF. 
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Table 3.11. Cost of 160-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1 

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ  and IE (1M = 0.8S).  

Method Curve 
# of Points (L) 

2 3 (w = 4) 6 ≥ 7 (w = 5) 

 LG Scheme, case 1  

e
JQ  

1305M 1280M 1272M 1265M 

 LG Scheme, case 2 1I + 1286M 1I + 1267M 1I + 1273M 1I + 1269M 

 I/M range (case 1) I > 19M  I > 13M I > 0M I > 0M 

 LG Scheme, case 1  

IE 

1351M 1324M 1316M 1311M 

 LG Scheme, case 2 1I + 1338M 1I + 1318M 1I + 1329M 1I + 1329M 

 I/M range (case 1) I > 13M  I > 6M I > 0M I > 0M 

 

Table 3.12. Cost of 512-bit scalar multiplication using Frac-wNAF and the LG Scheme (cases 1 

and 2); and I/M range for which case 1 achieves the lowest cost on eJQ  and IE (1M = 0.8S).  

Method Curve 
# of Points (L) 

2 3 (w = 4) 6 7 (w = 5) 

 LG Scheme, case 1  

e
JQ  

4126M 4036M 3951M 3922M 

 LG Scheme, case 2 1I + 4055M 1I + 3970M 1I + 3900M 1I + 3874M 

 I/M range (case 1) I > 71M  I > 66M I > 51M I > 48M 

 LG Scheme, case 1  

IE 

4273M 4179M 4090M 4061M 

 LG Scheme, case 2 1I + 4209M 1I + 4120M 1I + 4050M 1I + 4028M 

 I/M range (case 1) I > 64M  I > 59M I > 40M I > 33M 

 

Method Curve 
# of Points (L)  

14  ≥ 15 (w = 6)  

 LG Scheme, case 1  

e
JQ  

3879M 3870M  

 LG Scheme, case 2 1I + 3867M 1I + 3862M  

 I/M range (case 1) I > 12M  I > 8M  

 LG Scheme, case 1  

IE 

4018M 4011M  

 LG Scheme, case 2 1I + 4033M 1I + 4032M  

 I/M range (case 1) I > 0M  I > 0M  
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The “generic” cost of precomputation using ordinary additions is given by: 

scheme, cases 1(2)

( 4) 1 1
Cost ADD 2 DBL  (+Cost )

2

m m m

m
→

+ − −   
= +      

P A ,                              (3.34) 

where Cost →P A  applies to case 2 only and represents the cost of conversion from projective to 

affine coordinates given by eq. (3.11), (3.12), (3.13) with c = 0 for J, eJQ , IE coordinates, resp. 

For J and eJQ , cost (3.34) can again be optimized further by using mixed coordinates, tripling 

formulas and additions with stored values. In Table 3.13, we compare the performance of this 

scheme with the LG Scheme. The costs for the latter method are taken from Table 3.4.   

Table 3.13. Performance comparison of LG Scheme and a scheme using traditional additions for 

computing tables of the form i ic P d Q± , cases 1 and 2 (1M = 0.8S).  

Method Curve 
# of Points (L) 

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5) 

 LG Scheme, case 1  

J 

9M 68M 159M 

 Scheme (3.34), case 1 11M 102M 225M 

 LG Scheme, case 2 1I + 13M 1I + 108M 1I + 229M 

 Scheme (3.34), case 2 1I + 22M 1I + 154M 1I + 373M 

 LG Scheme, case 1  

e
JQ  

12M 69M 159M 

 Scheme (3.34), case 1 16M 88M 204M 

 LG Scheme, case 2 1I + 16M 1I + 110M 1I + 253M 

 Scheme (3.34), case 2 1I + 25M 1I + 145M 1I + 331M 

 LG Scheme, case 1  

IE 

11M 72M 173M 

 Scheme (3.34), case 1 14M 88M 212M 

 LG Scheme, case 2 1I + 22M 1I + 88M 1I + 305M 

 Scheme (3.34), case 2 1I + 25M 1I + 147M 1I + 343M 

 

As can be seen, the LG Scheme outperforms the method using traditional additions in all 

cases covered. For instance, if 1I = 30M, L = 22, eJQ , the cost reduction is as high as 22% for 

both case 1 and 2. Remarkably, the higher improvements are obtained with J coordinates due to 

the combined use of LG and LM Schemes (see Section 3.3.3), especially in case 2, where larger 

savings are obtained through both methods when converting points to affine coordinates. For 

instance, if 1I = 30M, L = 22, J, the cost reduction is as high as 38% in case 2. 

Assuming that points P and Q are unknown before execution and given in affine, a multiple 

scalar multiplication with the form kP lQ+  using windowed JSF costs approx. [ DBLn⋅ +  
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JSF JSF scheme, case 1( /( 2))( 1)ADD (2/( 2))( 1)mADD] CostL L n L nδ δ+ − + + − +  and [ DBLn ⋅ +  

( )JSF scheme, case 21 mADD] Costnδ − +  for cases 1 and 2, respectively, where JSF 0.5δ =  if m = 1, 

JSF 0.3575δ =  if m = 3, JSF 0.31δ =  if m = 5 [SEI10], and scheme, case Cost x  represents the cost of 

precomputation given by formula (3.19). For J and eJQ , we use again [ , ]ADD M S  instead of 

ADD . The estimates using these cost formulas are displayed in Tables 3.14 and 3.15. 

Table 3.14. Cost of 160-bit multiple scalar multiplication using window-based JSF and LG 

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S. 

Method Curve 
# of Points (L) 

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5) 

 LG Scheme, case 1  

J 

2059M 1909M 1917M 

 LG Scheme, case 2 1I + 1944M 1I + 1808M 1I + 1851M 

 I/M range (case 1) I > 115M  I > 101M I > 66M 

 LG Scheme, case 1 

e
JQ  

1680M 1554M 1578M 

 LG Scheme, case 2 1I + 1643M 1I + 1548M 1I + 1627M 

 I/M range (case 1) I > 37M  I > 6M I > 0M 

 LG Scheme, case 1 

IE 

1742M 1612M 1644M 

 LG Scheme, case 2 1I + 1714M 1I + 1624M 1I + 1731M 

 I/M range (case 1) I > 28M  I > 0M I > 0M 

Table 3.15. Cost of 512-bit multiple scalar multiplication using window-based JSF and LG 

Scheme (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost; 1M = 0.8S. 

Method Curve 
# of Points (L) 

L = 2 (m = 1) L = 10 (m = 3) L = 22 (m = 5) 

 LG Scheme, case 1 

J 

6583M 5972M 5794M 

 LG Scheme, case 2 1I + 6203M 1I + 5555M 1I + 5428M 

 I/M range (case 1) I > 380M  I > 417M I > 366M  

 LG Scheme, case 1 

e
JQ  

5358M 4828M 4707M 

 LG Scheme, case 2 1I + 5234M 1I + 4717M 1I + 4655M 

 I/M range (case 1) I > 124M  I > 111M I > 52M  

 LG Scheme, case 1 

IE 

5562M 5006M 4887M 

 LG Scheme, case 2 1I + 5445M 1I + 4914M 1I + 4874M 

 I/M range (case 1) I > 117M  I > 92M I > 13M  
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Similarly to the case of single scalar multiplication (see Table 3.11), case 1 achieves the best 

performance for most common I/M ratios for n = 160 bits with eJQ  and IE coordinates. 

However, if n = 512 bits, the range of I/M ratios for which case 2 is more efficient increases 

significantly. Also, note that case 2 appears to be the best choice for J coordinates for a wide 

range of I/M ratios, especially for high levels of security, i.e., n = 512. 

3.5. Other Applications of Conjugate Additions 

We have discussed in detail the application of the conjugate addition strategy in the design of 

efficient precomputation tables with the forms id P  and i ic P d Q± . However, this technique can 

be easily applied to other table forms such as the one required by the generalized JSF [Pro03], 

which involves the precomputation of (3 1) / 2k
k− −  non-trivial points. For instance, for k = 3 

scalars, the previous algorithm requires the precomputation of P Q± , P R± ,Q R± , P Q R+ ± ,

P Q R− ± , which costs about 10 general additions (case 1). By using conjugate additions, the 

latter is reduced to only 5 addition/conjugate addition pairs. Note that the advantage grows 

exponentially with the number of scalars. As mentioned in Section 3.1.3, Järvinen et al. [JFS07] 

also proposed a method to precompute points with the form dP lQ kR± ± . However, their 

approach makes use of Okeya’s conjugate addition in affine coordinates in combination with 

Montgomery’ simultaneous inversion method. Therefore, it is limited to the Weierstrass form and 

always requires one inversion (i.e., it only applies to case 2). Moreover, in its current format their 

scheme only applies to tables dP lQ kR± ±  where , , {0,1}d l k ∈ .  

Other obvious application is the extension of our strategy to other settings such as binary 

fields. Let us illustrate the latter with the addition formula due to [LD99] and later refined by 

[HT00]. The cost of adding two points P Q+  with the formula by [HT00] takes 13M + 4S. Then, 

if the value P Q−  is required right after, one can store most partial results from the original 

addition and obtain the previous value with a cost of only 5M by noticing that Q− =

2 2 2 2 2( , , )X X Z Y Z+   in Lopez-Dahab (LD) coordinates. Note that the partial term 2
2 1Y Z  from the 

original formula is replaced by 2 2 2 2
2 1 2 2 2 1 2 2 1 2 1( )Y Z X Z Y Z X Z Z Y Z− = + = + , which only cost one 

extra multiplication.  

We have also analyzed other relevant settings such as Twisted Edwards using /
e

E E . 

Unfortunately, conjugate additions in this case are relatively expensive. Accordingly, we use a 

traditional sequence to calculate precomputations on this system in the corresponding 

implementations of single scalar multiplication in Chapter 5 (see §5.6.1 and §5.6.2).  

In summary, generalizations of this technique and the derived precomputation schemes may 

be applied to other scalar multiplication methods, coordinate systems and/or elliptic curve forms, 

provided the corresponding conjugate formulas are efficient. For instance, Goundar, Joye and 

Miyaji [GMJ10] recently proposed improved formulas combining the concept of conjugate 
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addition with the Co-ADD Z  operation in order to improve side-channel-protected scalar 

multiplication methods. 

A note on related work:  

After developing the LG Scheme, we became aware of other (virtually simultaneous) efforts 

based on similar ideas. Avanzi, Heuberger and Prodinger [AHP08] also noticed the savings 

introduced by computations with the form P Q±  when precomputing points in projective 

coordinates. They, however, analyzed the applicability of this idea in the context of Koblitz 

curves with τ–adic representations using LD coordinates. In a talk in ECC2008 [Sco08], Scott 

described an approach similar to the LG Scheme for the case of single scalar multiplication. He 

also proposed to exploit similarities between P + Q and P – Q during precomputation but using a 

slightly different sequence to compute points. After an analysis on the settings discussed in this 

chapter, we conclude that our calculation sequence achieves better performance.  

3.6. Conclusions 

This chapter introduced new schemes for precomputing points, a basic ingredient to accelerate 

the fastest variable-scalar-variable-point scalar multiplication methods which are based on 

window-based strategies.  

After presenting most relevant previous work in §3.1, we introduced in §3.2 the LM Scheme, 

which is intended for standard curves using Jacobian coordinates, and adapted it to two typical 

scenarios for precomputation: case 1, without using inversions; and case 2, using one inversion. 

For the latter, we presented two variants that have slightly different speeds and memory 

requirements. The theoretical costs for each case were derived (with the corresponding proofs in 

the appendix), exploiting state-of-the-art formulas and techniques for maximal performance. In 

particular, for a number L of non-trivial points, case 1 has a cost of (5 1) (2 5)L M L S+ + +  (or 

(6 1) (3 5)L M L S+ + +  when using operations with stored values) and case 2b has a cost of 

1 (9 ) (2 6)I L M L S+ + + , which are the lowest in the literature for tables id P . 

In §3.3, we introduced the highly-flexible LG Scheme, which is based on the concept of 

conjugate addition and that can be adapted to any curve form or type of scalar multiplication (i.e., 

single and multiple scalar versions). We also discussed its applicability to cases 1, 2 and 3, and 

analyzed its efficiency on three curve settings: standard curves using Jacobian coordinates, 

extended Jacobi quartics using extended Jacobi quartics coordinates and Twisted Edwards curves 

using inverted Edwards coordinates. Moreover, for the case of multiple scalar multiplication 

using Jacobian coordinates, we proposed a novel scheme combining the LG and LM approaches. 

The theoretical costs for each case were derived (with the corresponding proofs in the appendix), 
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exploiting state-of-the-art formulas and techniques for maximal performance.  

In §3.4, we carried out an extensive analysis of the proposed methods, presenting detailed 

comparisons with previously most efficient methods in terms of speed and memory consumption 

and for different security levels. We showed that for most cases the LM Scheme remains as the 

most efficient method on standard curves using Jacobian coordinates for the case of a table with 

the form id P  (implementers may consult Tables 3.9, A.1, and A.2 for the best scheme given the 

number of registers and precomputed points, I/M ratio and security level). This result is 

especially relevant for implementations following NIST recommendations. On the other hand, 

the LG Scheme was shown to achieve the lowest costs on the special curves under study for both 

table forms, id P  and i ic P d Q± . Also, the combined LG/LM approach for tables i ic P d Q±  using 

Jacobian coordinates was shown to provide substantial cost reductions with advantage growing 

with the number of precomputations. Implementers may consult Tables 3.11 and 3.12 (Tables 

3.14 and 3.15) for the best variant of the LG Scheme for a table id P  (for a table ,i ic P d Q± ) 

given the curve form, number of precomputations, I/M ratio and security level. Extensions of this 

work would enable the use of the LG Scheme on other curve forms and coordinate systems. This 

is left for future work.  

Finally, in §3.5 we discussed more possibilities for the use of conjugate addition. We detailed 

potential applications that could be fully explored in future work and discussed recent research 

that has already taken advantage of this idea.     
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4 Chapter 4 

Scalar Multiplication using 

Multibase Chains 

In this chapter, we describe efficient methods based on multibase representations and analyze 

their performance to compute elliptic curve scalar multiplication at the evaluation stage. Our 

contributions can be summarized as follows:  

• We include a thorough discussion and analysis of the most relevant methods based on 

double- and multi-base representations in the literature. We categorize the different 

approaches and highlight their advantages and disadvantages.  

• We provide an improved and more thorough exposition of the original multibase NAF 

(mbNAF) method and its variants, which were introduced by the author in [Lon07]. In 

particular, we include the analysis of the average density of these methods when using 

bases {2,3} and {2,3,5} that was deferred in [Lon07].  

• We apply the concept of “fractional” windows to improve the flexibility of the windowed 

variant of mbNAF so that implementers can freely choose the optimal number of 

precomputations in a given application.  

• We apply the concept of operation cost per bit to the derivation of efficient multibase 

algorithms able to find cheaper multibase chains for scalar multiplication. We argue that 

this approach, assuming unrestricted resources, leads to optimal multibase chains for any 
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given scalar. For practical scenarios, we present very compact algorithms that yield 

(conjecturally, close to optimal) multibase chains. 

• Finally, we perform an exhaustive performance evaluation of the various methods for 

different security levels and for three different curve forms: standard curves using 

Jacobian coordinates (J ), extended Jacobi quartics using extended Jacobi quartic 

coordinates ( e
JQ ) and Twisted Edwards curves using inverted Edwards coordinates 

(IE). These results allow us to assess the state of affairs of the use of double bases and 

multibases in practice.    

For the remainder of this chapter, we assume that curve parameters can be chosen such that 

the cost of multiplying a curve constant can be considered negligible in comparison with a 

regular multiplication. Also, additions and subtractions are neglected when performing cost 

analysis. These assumptions greatly simplify our analysis without affecting the conclusions. 

This chapter is organized as follows. §4.1 discusses the most relevant previous work and 

categorizes the different approaches based on double- and multi-base representations. §4.2 

discusses the mbNAF method and its variants, and provides the zero and nonzero density 

formulas obtained with the use of Markov chains. §4.3 details the application of “fractional” 

windows to mbNAF. §4.4 presents the methodology based on the operation cost per bit to derive 

more efficient multibase chains. §4.5 evaluates the performance of the different methods in 

comparison with other works in the literature for different security levels and memory 

constraints. §4.6 discusses potential variants of the proposed methods and their application to 

other settings. This section also discusses the challenges still faced by methods using double- and 

multi-base representations. Finally, some conclusions are drawn in §4.7. 

4.1. Previous Work 

As discussed in Section 2.2.4.3, in the last few years there have appeared a plethora of works 

proposing efficient methods to compute scalar multiplication. In the case under study, namely, 

when the initial point P is not known in advance, well-known methods to efficiently execute kP 

are non-adjacent form (NAF) [Rei60] and width-w NAF (wNAF) [Sol00], which use short signed 

radix 2-based representations of the scalar to minimize the number of point operations, namely 

doubling of a point (2P) and addition of points (P+Q). In particular, wNAF offers very high 

performance at the cost of a few precomputations. 

Later, Möller [Möl03] generalized wNAF to any number of precomputations using 

“fractional” windows. The new recoding, called fractional width-w NAF (denoted by Frac-

wNAF; see Section 2.2.4.3), allows a better coupling between the scalar multiplication 

computation and the memory resources available in a given implementation.   
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4.1.1. Double- and Multi-Base Number Representations 

Recently, there have been proposed new methods for scalar multiplication using number 

representations based on double- and multi-base number systems, which basically mix different 

bases to decrease the number of terms required in the representation of integers. Based on 

previous work by Dimitrov and Cooklev [DC95], the use of the so-called Double Base Number 

System (DBNS) for cryptographic applications was first proposed by Dimitrov et al. in [DJM98]. 

In this number system an integer k is represented as follows: 

                                                                 
1

2 3i i

K
b c

i

i

k s
=

= ⋅∑ ,                                                        (4.1)    

where { 1,1}is ∈ − .  

To enable the use of DBNS in the setting of ECC, Dimitrov et al. [DIM05] were the first to 

introduce the concept of double-base chains where ib  and ic  must decrease as i increases. This 

was later generalized to multi-base chains (i.e., using two or more bases) by the author in 

[Lon07] and Mishra and Dimitrov in [MD07]. Of particular interest are the facts that multibase 

chains are redundant and that some representations are highly sparse, which, as consequence, 

allow a reduction in the Hamming weight of the scalar expansion (that is, a reduction in the 

number of additions in the point multiplication). Let us illustrate the latter with the following 

example. 

Example 4.1. The representation of 9750k =  using NAF is given by 13 11 9
9750 2 2 2= + − +  

5 32 2 2− − , which requires 13DBL + 5ADD using Horner’s scheme for scalar multiplication 

(i.e., the computation uses the expansion 2 2 4 2 29750 2(2 (2 (2 (2 (2 ) ) ) ) )P P P P P P P= + − + − − ). 

If one, otherwise, uses the double-base chain 10 2 6 49750 2 3 2 3 2 3 2 3= × + × − × + × , the scalar 

multiplication takes the form 3 2 49750 2 3 (2 (2 3(2 ) ) )P P P P P= × × + − +  and costs 10DBL + 

2TPL + 3ADD, which reduces the nonzero density in comparison with the NAF representation. 

Multibase chains using {2 3 }-i ib c
terms or {2 3 5 }-i i ib c d

terms are particularly attractive for 

ECC because operations associated with these bases (namely, point doubling, tripling and 

quintupling) are the cheapest-per-bit point operations available for some elliptic curves. 

Nevertheless, multibase chains are not unique and this poses the conjecturally hard problem 

of determining (in a reasonable amount of time and utilization of resources) the optimal 

multibase chain for a given integer. Hereinafter, we use the term optimal to define a multibase 

chain for a given scalar k that achieves the lowest cost when applied to the computation of the 

point multiplication kP. In contrast to radix 2-based representations, the complexity of this 

analysis is significantly higher as the point operations involved (e.g., doubling, tripling, 

quintupling and addition) have different costs per bit that even vary with the type of elliptic 
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curve. Hence, it does not necessarily hold that representations with the lowest nonzero density 

achieve the lowest cost. Note that this complexity increases with the number of bases in the 

representation. 

Although it remains an open problem to find the optimal double- or multi-base chains, there 

have appeared in the literature several efforts trying to find “efficient” multibase chains and using 

them advantageously in the computation of elliptic curve scalar multiplication. In general, there 

are two main approaches to find a double-base or multi-base representation for a given integer in 

the setting of elliptic curves: using a “Greedy” algorithm [DIM05, DI06] and using division 

chains [CJL+06, Lon07] (borrowing the term from [Wal98]). 

4.1.1.1. Multibase Methods based on a “Greedy” Algorithm 

The “Greedy”-based approach, first proposed in [DIM05], works as follows. To find a 

representation with the form (4.1) first establish “efficient” maximum bounds bmax and cmax for 

the powers of 2 and 3, respectively. Then search for the closest {2 3 }-termi ib c

 to the scalar k, 

subtract it from k and search again for the closest {2 3 }-termi ib c

 to the updated value. Repeat the 

procedure until k = 0. It can be easily deduced that ib  and ic  will form decreasing sequences 

max 1 2 0Kb b b b≥ ≥ ≥ ≥ ≥…  and max 1 2 0Kc c c c≥ ≥ ≥ ≥ ≥… , respectively. Later, Doche and 

Imbert [DI06] extended the “Greedy” algorithm to applications that can afford precomputations 

by allowing the precomputation of a table with the form 1 22 2{2,2 , ,2 ,3,3 , ,3 }w w
P… … , where 1w  

and 2w  represent the maximum exponents expanding the search range in the “Greedy” 

algorithm, or a table with the form id P , where id  are odd digits coprime to 3 (for instance, 

{1,5,7,11, }id D∈ = … ). This approach was later optimized by [BBL+07] with the use of 

precomputed tables using the digit sets {1,2,3,5,7, , }m… , with m odd. Finally, Mishra and 

Dimitrov [MD07] extended the “Greedy”-based approach to chains using bases {2,3,5}.  

The use of a “Greedy” algorithm has several drawbacks. First, from a theoretical point of 

view, double-base chains found with a “Greedy” algorithm cannot (until today) be defined 

adequately. Hence, the expected number of zero and nonzero terms for an n-bit scalar is 

estimated empirically. Also, looking for closest {2 3 }-termsi ib c
 implies having a table storing 

many powers of 2, 3 and combinations of these. This is directly impractical in constrained 

environments. One can trade memory for speed and store only part of the required table. 

However, this leads to higher conversion times (to double-base representation), lower 

performance and/or very expensive precomputation stages [BPP07]. This issue obviously 

worsens with expanded digit sets and more bases.    

4.1.1.2. Multibase Methods based on Division Chains 

This approach consists in the derivation of scalar representations by consecutive division with 

integers from a suitably chosen set of bases. When the partial result is not divisible by at least one 
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base then a particular rule defines how to approximate the value to a close number that is again 

divisible by one or more bases. Note that methods using division chains are apparently easier to 

analyze by using, for instance, Markov chains. Moreover, they do not rely on pre-stored tables 

for conversion, immediately enabling their use in memory-constrained applications. In the 90’s 

several algorithms with different division rules were proposed for reducing the cost of 

exponentiation [DC95, CCY96, Wal98] (the term “division chain” was coined by Walter in 

[Wal98]). Walter [Wal02] also exploited these ideas to develop an exponentiation method with 

random selection of bases to protect against certain SCA attacks. Nevertheless, it seems that the 

binary/ternary algorithm by Ciet et al. [CJL+06] was the first method using division chains that 

was intended for ECC applications. In this case, a partial result obtained after dividing by bases 2 

and 3 is approximated to the closest term that is congruent to 0(mod6) . Since this approximation 

gives roughly equivalent “weight” to bases 2 and 3, the method has some efficiency limitations 

especially in most common ECC settings where doubling is much faster than tripling and 

addition. In fact, if one does not take into account the memory/conversion overhead, it can be the 

case that “Greedy”-based approaches achieve better performance (see, for example, Table 2 in 

[DH08]). In [Lon07] (see also [LM08c]), the author  introduced  new algorithms able to find 

generalized multi-base chains, solving efficiently for first time the problem of memory penalty 

and difficulty to analyze the zero and nonzero density of a multibase expansion. Remarkably, it 

also achieves better cost performance than the “Greedy” approach. The new method finds 

multibase chains by creating a “window” with a fixed width with one of the bases (referred to as 

“main base”) and then approximates the partial scalar value to it. The latter guarantees the 

execution of a minimum number of operations with the “main base” before the following 

addition happens, similar to the way NAF of a scalar is generated with base 2. Moreover, the 

nonzero density is further reduced because, once an addition is performed, not only doublings but 

also triplings, quintuplings, and so on, can be used. This new approach is called multibase NAF 

(denoted by mbNAF). Its window-based version using an extended digit set appears as a natural 

extension and is referred to as width-w multibase NAF (wmbNAF).  

NOTE: one does not need to restrict the “window” in mbNAF to only one base. In fact, in 

[Lon07] (see also [LM08c, Section 5.3]), the author proposed an extended wmbNAF method that 

generalizes the use of windows, such that the approximation after the divisibility tests is 

performed to the generic value 1 2
1 2

Jww w
Ja a a a= ⋅ ⋅ ⋅…  for a set of bases 1 2{ , , , }Ja a a… , where 

0jw ≥  are integers. For instance, the use of 1 22 3
w w

a = ⋅
 
was shown to be especially efficient on 

the elliptic curves with degree 3 isogenies proposed in [DIK06] and known as DIK curves (see 

Table 8 in [LM08c]). Note that this method was recently rediscovered by Adikari, Dimitrov and 

Imbert in [ADI10, Section 3.1] and [Adi10, Chapter 5] for the case of bases {2,3}. Also, note that 

the binary/ternary algorithm by [CJL+06] is a special case of extended wmbNAF when 2 3a = ⋅ .  
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More recently, Doche et al. [DH08] introduced a new method that also finds double-base 

chains using division chains, although using a somewhat more complex tree-based approach in 

comparison with multibase NAF. Their method basically divides by 2 and 3 values ( 1)ik +  and 

( 1)ik −  for B distinct values ik  that are coprime to 6, and keeps the B division sequences that 

reach the lowest values. This procedure is repeated with the new values until reaching 1. 

Initialization proceeds as above although in this case the algorithm keeps all the possible 

sequences until B distinct values ik  are obtained. As will be evident later, the disadvantage of 

this method is that the division sequences that are chosen at each iteration are the ones whose 

final values are the lowest ones. However, a long sequence of divisions alone does not guarantee 

optimal cost. This drawback is somewhat minimized by keeping up to B values at each iteration 

(and then the probability that a long sequence is also among the cheapest ones increases). 

However, it is evident that one may avoid storing unnecessary sequences by applying an 

operation cost analysis instead.   

In Section 4.4, we introduce a methodology to derive algorithms able to find more efficient 

multibase chains. Our technique is based on the careful analysis of the operation cost per bit, 

which helps to choose the most efficient division sequence per iteration. We argue that the 

inclusion of this analysis in the design of any multibase algorithm potentially enables the 

derivation of the fastest multibase chains.  

4.2. Multibase NAF (mbNAF) and Width-w Multibase NAF 
(wmbNAF) 

Determining and finding the optimal multibase chain in the setting of ECC seems to be a hard 

problem, mainly due to the fact that an optimal multibase chain is not necessarily the shortest one 

(with the minimal number of additions), but the one that requires the "right" balance in the 

number of additions and all other point operations (which depends on the chosen elliptic curve 

form). Although finding such optimal multibase chains remains an open problem, the author 

[Lon07] proposed a representation that adjusts more efficiently to most ECC settings, in which 

one of the point operations is usually significantly more efficient than the others. Such a generic 

multibase representation, known as mbNAF, has the form: 

                                                               
( )

1 1

JK c ji
i j

i j

k s a
= =

= ∑ ∏                                                          (4.2) 

where:  1 Ja a≠ ≠…  are prime integers from a set of bases 1{ , , }Ja a= …A  ( 1:a main base),   

             K is the length of the expansion, 

             is are signed digits from a given set \ {0}D , i.e., 1 and \{0}i is s D≥ ∈ , 

             ( )ic j  are decreasing exponents, s.t. 1 2( ) ( ) ( ) 0Kc j c j c j≥ ≥ ≥ ≥…  for 2 j J≤ ≤ , and 
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             (1)ic  are decreasing exponents for the main base 1a (i.e., j = 1), s.t. 1(1) (1) 2 2i ic c +≥ + ≥    

             for 1 1i K≤ ≤ − . 

Note that the last two conditions above guarantee that an expansion of the form (4.2) is 

efficiently executed by a scalar multiplication using Horner’s method as follows: 

( )1 1( ) ( ) ( ) ( )
1 2 1

1 1 1 1 1

i K K
J J J JK

c j d j d j d j
i j j j j K K

i j j j j

kP s a P a a a s P s P s P s P−
−

= = = = =

     
= = + + + +∑  ∏ ∏ ∏ ∏           

… …         (4.3) 

where (1) 0Kd ≥ , and (1) 2id ≥  for 1 1i K≤ ≤ − . The latter is equivalent to the last condition in 

(4.2) and incorporates the non-adjacency property in the multibase representation. Basically, it 

fixes the minimal number of consecutive operations with the “main base” (i.e., 1a ) between any 

two additions to two. Note that an operation with the main base refers to doubling if 1 2a =  or 

tripling if 1 3a = , and so on.     

On the other hand, if we relax the previous condition and allow larger window sizes (i.e., 

allowing 3, 4, or more, consecutive operations with the main base between any two additions) we 

can reduce further the average number of nonzero terms in the scalar representation at the 

expense of a larger digit set D and, consequently, a larger precomputed table. The previous 

technique is known as wmbNAF.  

The mbNAF and wmbNAF representations require the following digit set [Lon07]: 

1
1 1

1 1 1

1 1
0, 1, 2, , \ 1 , 2 , ,

2 2

w wa a
D a a a

−      − −   
= ± ± ± ± ± ±      

          
… …                                                 (4.4) 

where 2w
+≥ ∈Z  ( 2w =  for mbNAF). Without considering { , }PO , the digit set (4.4) implies 

that a scalar multiplication would require precomputing id P , where \{0,1}id D
+∈  (note that 

only positive values id P  need to be stored in the table as the negative of points can be computed 

on-the-fly at negligible cost). Thus, the precomputation table consists of 1
1 1( 2) / 2w wa a −− −  

points. Note that if 2w =  (mbNAF case), the requirement of precomputations is minimal. For 

instance, in the case 1 2a =  we do not need to store any points besides { , }PO . 

It can be easily seen that selecting the main base according to the relative efficiency of its 

corresponding operation will guarantee that more of these operations are used in average, which 

potentially could decrease the computational cost of scalar multiplication. In the remainder (and 

following what is observed in most common ECC settings over prime fields), we will assume 

that doubling is the most efficient point operation available, and hence, 1 2a = .  

It is important to remark that, obviously, eq. (4.2) does not involve unique representations. 

For instance, both expressions 10 2 6 2 4
2 3 2 3 2 3 2 3× + × − × + ×  and 9 3 7 3 5 3

2 3 2 3 2 3× − × − × +
3 3 2 2

2 3 2 3 3 3× + × + +  enable two different mbNAF representations for the integer 9750 
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following (4.2). In [Lon07], the author provided algorithms based on division chains that 

efficiently find an (w)mbNAF chain of the form (4.2) and, given a window width and set of bases, 

is unique for each integer. Note that we have integrated algorithms for finding mbNAFs and 

wmbNAFs in Algorithm 4.1. 

 

Algorithm 4.1.  Computing an mbNAF (wmbNAF) of a positive integer  

Input:  scalar k, bases 1 2{ , , , }Ja a a= …A , where +
ja ∈Z  are primes for 1 j J≤ ≤ , 

            window 2w =  for mbNAF, and window 2w >  for wmbNAF, where +
w∈Z  

Output:  2 1( ) ( )
1 2 2 1( , ,..., )NAF ( ) = (..., , )

b b
J wa a a k k k , where ib ∈A  

    1:  i = 1  

    2: While k > 0 do 

    3:         If 1mod 0k a =  or 2mod 0k a =  or … or mod 0Jk a = , then 0ik =  

    4:         Else              

    5:                 1mods w
ik k a=  

    6:                 ik k k= −  

    7:         If 1mod 0k a = , then ( ) ( )1
1/ , ib a

i ik k a k k= =  

    8:         Elseif 2mod 0k a = , then ( ) ( )2
2/ , ib a

i ik k a k k= =  

    �           �  

J+6:         Elseif mod 0Jk a = , then ( ) ( )
/ , i Jb a

J i ik k a k k= =  

J+7:         i = i + 1    

J+8: Return 2 1( ) ( )
2 1(..., , )
b b

k k  

 
( )ib
ik in Algorithm 4.1 represent the digits in the multibase NAF representation, where 

,ik D∈  see (4.4); and the superscript ( )ib  represents the base ib ∈A  associated to the digit in 

position i. The function mods represents the following computation: 

( )1 1 1 1

1

If  mod / 2, then mod

Else,  mod   

w w w w
i

w
i

k a a k k a a

k k a

 ≥ = −


=  

Let us illustrate the method using Algorithm 4.1 with the following example. 

Example 4.2. The mbNAF representation of 9750 obtained with Algorithm 4.1 using the division 

sequence 9750 4875 1624 204 51 16
1625 1 203 1 17 1 1

2 3 8 4 3 16
→ → − → → + → → → − → →  is (2) (2)

2(2,3)NAF (9750) 1 0=   
(2) (2) (2) (3) (2) (2) (2) (2) (2) (3) (2)0 0 1 0 0 1 0 0 1 0 0− , which allows us to compute the corresponding scalar 

multiplication 9750P as 
3 2 42 3 (2 (2 3(2 ) ) )P P P P× × + − + , using Horner’s method. The latter 

involves 1mDBL + 9DBL + 2TPL + 3mADD. For instance, using Table 2.4 ( e
JQ ,1 0.8S M= ), 
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9750P costs 107.2M. Compare this to the cost using NAF: NAF(9750) 1010 10= −

0010 10 10− − , given by 1mDBL + 12DBL + 5mADD = 119.6M. 

For brevity (and whenever understood in the context), we will refer as the multibase NAF of 

an integer k to the unique representation found through Algorithm 4.1.  

4.2.1. Zero and Nonzero Density of Multibase NAF Methods  

One of the attractive properties of multibase NAF representations found with Algorithm 4.1 is 

that the average number of operations can be precisely determined by using Markov chains. The 

following theorems are presented on this regard. With a slight abuse of notation, density refers to 

the number of certain point operation relative to the total number of zero and nonzero digits in a 

given representation.  

Theorem 4.1.  The average densities of additions, doublings and triplings for the (w)mbNAF 

using bases ={2,3}A  are approximately: 

    1 2

2

3(2 ) 2 ( 1)

w

w w
s w

δ
−

=
− + +

,  2 2

2 ( 1)

3(2 ) 2 ( 1)

w

w wx

w

s w
δ

−

+
=

− + +
,  3

2

2

3(2 )

3(2 ) 2 ( 1)

w

w wx

s

s w
δ

−

−

−
=

− + +
, 

respectively, where 
2

(2 1) / 3
w

s
− = +   

and 2w
+≥ ∈Z  ( 2w =  for mbNAF).  

Proof. The method can be modeled as a Markov chain with three states in the case of bases 

{2,3}: (2)"0 ",  
(3)

"0 " and 
(2) (2) (2)

-1

"0 0 "i

w

k…��	�
 , with the following probability matrix: 

 

 

                 

2 2 2 2

(2)

(3)

2 2 2 2

(2) (2) (2)

-1

2 (2 1) /3 2 (2 1) / 3
"0 " : 1/2

2 2

"0 " : 0 1/ 3 2 / 3

2 (2 1) / 3 2 (2 1) /3
"0 0 " : 1/2

2 2

w w w w

w w

w w w w

i w w
w

k

− − − −

− − − −

    − + + +    
 
 
 
 

   − + + +    
  
 

…��	�


 

 

 

This Markov chain is irreducible and aperiodic, and hence, it has stationary distribution, 

which is given by:  

   
( ) ( )

( )
( )

2

(2) (2) (2) (2) (3)

1 2 1 2 1 2
-1

3 22 2
"0 0 ","0 ","0 " :

2 3 2 2 3 2 2 3 2

w
w w

i w w w w w w
w

s
k

s s s

−

+ − + − + −

 −
 
 + − + − + −
 

…��	�
 . 

Therefore, nonzero digits ik  appear 2w  out of ( )2 22 2 3 2 (2 1) /3w w w ww − − ⋅ + + − +   digits, 



 
 

 

Chapter 4: Scalar Multiplication using Multibase Chains                                                             

 

78 

 

which proves the assertion about the nonzero density. Doublings and triplings (i.e., number of 

zero and nonzero digits with bases 2 and 3, respectively) appear 2 2
w w

w⋅ +  and 

( )2 23 2 (2 1) /3w w− − − +   out of ( )2 22 2 3 2 (2 1) /3w w w ww − − ⋅ + + − +   digits, respectively. This 

proves assertion about the average density of doublings and triplings.                                           □ 

Theorem 4.2.  The average densities of additions, doublings, triplings and quintuplings for the 

(w)mbNAF using bases = {2,3,5}A  are approximately:

  

     
3

1 1 3

2

17 2 5 24 5 2 ( 1)

w

w w
r s t w

δ
+

− +
=

⋅ − − − + +
 ,   2

3

1 3

2 ( 1)

17 2 5 24 5 2 ( 1)x

w

w w

w

r s t w
δ

+

− +

+
=

⋅ − − − + +
 , 

  3

2

1 3

24(2 )

17 2 5 24 5 2 ( 1)x

w

w w

s

r s t w
δ

−

− +

−
=

⋅ − − − + +
  and  5

1

1 3

5(2 )

17 2 5 24 5 2 ( 1)x

w

w w

r t

r s t w
δ

−

− +

− −
=

⋅ − − − + +
,  

respectively, where 2(2 2) /5w
r

− = +  , 2(2 1) / 3w
s

− = +   and 2(2 7) /15w
t

− = +  . 

Proof. For the case of bases {2,3,5}=A , this method can be modeled with four states: (2)
"0 " , 

(3)
"0 " , (5)

"0 "  and (2) (2) (2)

-1

"0 0 "i

w

k…��	�
 . The probability matrix in this case is as follows: 

  

 

                

2 2 2
(2)

2 2

(3)

(5)

2 2 2
(2) (2) (2)

2 2
-1

2 2 3 2 3
"0 " : 1/2

2 2 2

"0 " : 0 1/ 3 1/ 6 1/ 2

"0 " : 0 0 1/ 5 4/ 5

2 2 3 2 3
"0 0 " : 1/2

2 2 2

w w w

w w w

w w w

i w w w
w

s r s t r s t

s r s t r s t
k

− − −

+ +

− − −

+ +

 − − + − ⋅ + + +
 
 
 
 
 
 
 − − + − ⋅ + + +
  
 

…��	�


 

 

 

This Markov chain is irreducible and aperiodic with stationary distribution: 

             

( ) ( )2 1
3 3

(2) (2) (2) (2) (3) (5)

-1

24 2 5 22 2
"0 0 ","0 ","0 ","0 " :

w w
w w

i

w

s r t
k

ω ω ω ω

− −+ + − − −
 
 



…��	�
 , 

where 1
49 2 5 24 5

w
r s tω −= ⋅ − − − . Therefore, nonzero digits ik  appear 32w+  out of 3

2
w

w
+ ⋅ +  

( ) ( )3 2 12 24 2 5 2w w w
s r t

+ − −+ − + − −  digits, which proves our assertion about the nonzero density. 

Doublings, triplings and quintuplings (i.e., number of zero and nonzero digits with bases 2, 3 and 

5, respectively) appear 3 3
2 2

w w
w

+ +⋅ + , ( )224 2w
s

− −  and ( )15 2w
r t

− − −  out of 3 3
2 2

w w
w

+ +⋅ + +

( ) ( )2 124 2 5 2w ws r t− −− + − −  digits, respectively. This proves our assertion about the average 

density for the aforementioned operations.                                                                                      □ 

Let us determine the average number of operations for the multibase NAF method with the 
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help of the presented theorems. First, it is known that the expected number of doublings, triplings 

and additions is given by 2#DBL
x

digitsδ= ⋅ , 3#TPL
x

digitsδ= ⋅  and 1#ADD digitsδ= ⋅ , where 

digits represents the total number of (zero and nonzero) digits in the expansion (note that a 

nonzero digit involves one doubling and one addition). Then, we can assume that 
#DBL #TPL 1

2 3 2
n−⋅ ≈ , where n represents the average bitlength of the scalar k. Thus, 

#DBL log2 #TPL log3 ( 1)log2n⋅ + ⋅ ≈ − , and replacing #DBL and #TPL, we can estimate digits 

with the following: 

                                                     
2 3

( 1)log2

log2 log3
x x

n
digits

δ δ

−
≈

⋅ + ⋅
,                                               (4.5) 

which allow us to determine #DBL, #TPL and #ADD using the expressions above and Theorem 

4.1. For instance, in the case of mbNAF, bases ={2,3}A  and w = 2, the average densities for 

doublings, triplings and additions derived from Theorem 4.1 are 4/5, 1/5 and 4/15. If n = 160 bits, 

we determine that digits = 142.35 using (4.5). Then, the average cost of a scalar multiplication 

using Table 2.4 ( e
JQ , 1 0.8S M= ) is approximately 113.88DBL + 28.47TPL + 37.96mADD = 

1321M. Similarly, if we use bases = {2,3,5}A , the average cost can be estimated as 

approximately 97.06DBL + 24.27TPL + 10.11QPL + 32.35mADD = 1299.82M. Compare the 

previous costs to that one offered by NAF: 159DBL + 53mADD = 1399.2M (in this case, 

NAF 1/3δ = ). Hence, theoretically, it is determined that (2,3)NAF and (2,3,5)NAF surpasses NAF 

(case with no precomputations, e
JQ ) by about 5.6% and 7.1%, respectively.  

It is still possible to find more efficient multibase chains at the expense of some increment in 

the complexity of the original multibase NAF. The improved algorithms will be discussed in 

Section 4.4. Following, we optimize the basic multibase NAF methods using a recoding based on 

fractional windows. 

4.3. The Fractional Width-w Multibase Non-Adjacent Form 

(Frac-wmbNAF) 

One disadvantage of wmbNAF is that it restricts the allowed number of non-trivial precomputed 

points to 
2(2 1)w− −  for > 2w

+∈Z , following the same restriction of its analogous counterpart in 

the radix-2 domain, namely wNAF. In some settings, it is possible that the optimal performance 

is achieved by precomputing a number of points that do not follow such a standard window size. 

Also, some applications could have memory constraints different to the ones dictated by the 

standard windows. In this section, we apply the concept of “fractional” windows due to Möller 

[Möl03] to the multibase NAF method to allow a flexible number of points in the precomputed 

table. The new representation is called fractional wmbNAF (denoted by Frac-wmbNAF).  
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For the remainder, we will assume that the main base 1a  is 2. First, let us establish our ideal 

table with unrestricted number of non-trivial points id P , where { }\{0,1} 3, 5, ,id D m
+∈ = …  and 

3m
+≥ ∈Z  is an odd integer. If we define m in terms of the standard windows w, it would be 

expressed as: 

                                                                 2
2

w
m h

−= + ,                                                            (4.6)                                                                  

where 2 1
2 2

w w
m

− −< <  and 1h
+≥ ∈Z  is odd.  

We define the rules of the recoding scheme for bases 2{2, , , }Ja a= …A  in Algorithm 4.2. 

 

Algorithm 4.2.  Recoding rules for “fractional” windows ( mod2wr k= ) 

1: If ( mod 2 0k =  or 2mod 0k a =  or … or mod 0Jk a = ), then 0ik =  

2: Elseif 0 < r m≤ , then ik r=  

3: Elseif  < (3 4 )m r m h< − , then 
12w

ik r −= −  

4: Elseif (3 4 )  2wm h r− ≤ < , then 2w
ik r= −  

5: ik k k= −  

 

Basically, the proposed recoding first detects if k is divisible by one of the bases. Else, it 

establishes a window w and checks if k can be approximated to the closest extreme of the 

window using any of the digits id  available. It can be verified that the latter will be accomplished 

if steps 2 or 4 are satisfied. Otherwise, the established window is too large and, hence, it is 

“reduced” to the immediately preceding window size to which k can be approximated (condition 

in step 3).  

An algorithm to convert any integer to Frac-wmbNAF representation can be easily derived by 

replacing steps 3-6 in Algorithm 4.1 by steps 1-5 of Algorithm 4.2. In this case, we will denote 

the Frac-wmbNAF of an integer k by 2 1( ) ( )
2 2 1(2, ,..., )NAF ( ) = (..., , )

b b
J w,La a k k k , where w is the 

standard window width according to (4.6) and L represents the number of precomputed points, 

that is, ( 1)/ 2L m= − . 

Let us illustrate the new recoding with the following example.  

Example 4.3.  If 9750k =  and 5m = , then \{0,1} {3,5}id D +∈ = , and 4w =  and 1h =  by means 

of eq. (4.6). Then, the Frac-wmbNAF of 9750 is (2) (2) (2) (2) (2) (2)
4,2(2,3)NAF (9750) 1 0 0 0 3 0= −

(2) (2) (2) (2) (2) (2) (3) (2)0 0 5 0 0 1 0 0− , and the conversion process can be visualized as the division 

chain 9750 4875 1624 208 16
1625 1 203 5 13 3 1

2 3 8 16 16
→ → − → → + → → + → → . 

Observe that, when 1625 is obtained, it requires an addition with 7 to approximate the value 

to 1632 (which is the closest number 40 (mod2 )≡ , as required by a standard window 4w = ). 

However, 7 is not part of the precomputed table, so the window width is reduced accordingly to 
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3w =  and the value 1625 is approximated to the closest value in the new window (i.e., 1624) 

using an addition with −1.  

We now present the following theorem regarding the average density of this method for the 

case {2,3}=A . 

Theorem 4.3.  The average densities of nonzero terms, doublings and triplings of the Frac-

wmbNAF using bases {2,3}=A , window size w and L available points (represented by

,(2,3)NAFw L ) are approximately: 

           1 2

2

8( 1) 3( ) 2 (4 1)

w

w
L u v w

δ
−

=
+ − + + −

,  2 2

8( 1) 2 ( 1)

8( 1) 3( ) 2 (4 1)x

w

w

L w

L u v w
δ

−

+ + −
=

+ − + + −
  and 

                                            3

2

2

3(2 ( ))

8( 1) 3( ) 2 (4 1)x

w

w

u v

L u v w
δ

−

−

− +
=

+ − + + −
, 

respectively, where ( 2) / 3u L= +    and 2(2 ) / 3w
v L

− = −  . 

Proof. Let us consider the following states to model this fractional window method using Markov 

chains: (2)
"0 " , (3)

"0 " , 
(2) (2) (2)

-2

"0 0 "i

w

k…��	�

 

and 
(2) (2) (2)

-1

"0 0 "i

w

k…��	�
 . Then, the probability matrix is as 

follows: 

 

 

            

( )( )2

(2)

2
(3)

3 3

2 2 2 2

(2) (2) (2)

2 1
-2

(2) (2)

2 ( 1) / 3( 1) / 3 ( 1) / 3
"0 " : 1/2

4 2 2

2
"0 " : 0 1/3

3 2 3 2

(2 ) (2 1) / 3 (2 ) (2 1) /3
"0 0 " : 0 1

2(2 ) 2

"0 0

w

w w

w

w w

w w w w

i w w
w

t t tt t t t

t t

t t

t t t t
k

t
α β α β

−

−

− −

− − − −

− −

− + + − + + +       

−

⋅ ⋅

   − − − + − + − +   = = − −
−

…��	�


…
( )( )2

(2)

-1

2 ( 1) /3( 1) /3 ( 1) /3
" : 1/2

4 2 2

w

i w w
w

t t tt t t t
k

t t

−

 
 
 
 
 
 
 
 
 
 
 
 − + + − + + +        
 
 
��	�


 

 

 

 

This Markov chain is irreducible and aperiodic with the stationary distribution:  

    

2 2
(2) (3) (2) (2) (2) (2) (2) (2)

-2 -1

16 12(2 ( )) 16(2 ) 16
"0 ","0 ","0 0 ","0 0 " :

w w

i i

w w

t u v t t
k k

µ µ µ µ

− − − + −
  
 

… …��	�
 ��	�
 , 

where 16 12( ) 7 2wt u vµ = − + + ⋅  and 1t L= + . Therefore, the nonzero digits ik  appear 2w  out of 

( ) ( )28 3 2 4 1wt u v w−− + + −  digits, proving the assertion about the nonzero density. Doublings 

and triplings (i.e., the number of zero and nonzero digits with bases 2 and 3, respect.) appear 

( )8 2 1wt w+ −  and ( )( )23 2w
u v

− − +  out of ( ) ( )28 3 2 4 1wt u v w−− + + −  digits, respectively. This 

proves the assertion about the average density of doublings and triplings.                                     □ 
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With Theorem 4.3, it is possible to theoretically estimate the expected number of doublings, 

triplings and additions using this method. For instance, following the procedure detailed in 

Section 4.2.1, we can estimate the cost of scalar multiplication (without including 

precomputation cost) for 160n =  bits using L = 2 points (w = 4) as 132.7DBL + 16.6TPL + 

29.5mADD = 1229.9M ( e
JQ , 1 0.8S M= ). Compare to the cost achieved by Frac-wNAF, 

namely 159DBL + 35.3mADD = 1250.5M ( Frac- NAF 1/ 4.5wδ =  when using m = 5; see Section 

2.2.4.3). Further cost reductions are observed for the case of {2,3,5}=A . 

4.4. A Methodology to Find Faster Multibase Chains 

The multibase NAF method and its variants are simple and straightforward to implement and 

analyze theoretically. However, if we increase the complexity of the derivation algorithms it is 

still possible to find more efficient multibase chains. In this section, we propose a new 

methodology based on the operation cost per bit for deriving multibase algorithms. The method 

is illustrated in detail for the case of bases {2,3}. 

Definition 4.1. The operation cost per bit of an elliptic curve point operation is given by 

ς(operation) = cost(operation)/bitlength(operation). 

Following a common practice in the literature, we express operation costs in terms of field 

multiplications and squarings, assuming the approximation 1S = 0.8M. For instance, a point 

doubling in Jacobian coordinates costs 2(DBL) DBL / log 2 7ς = =  field multiplications per bit, 

where DBL = 3M + 5S (see Table 2.2). 

Note that the definition above can be readily extended to division sequences. In this case, one 

should take into account the cost of all the operations involved and their corresponding 

bitlengths. 

Corollary 4.1. From all possible chains using a given set of bases A , the optimal chains for a 

given integer k are the ones with the lowest cost per bit. 

If, for instance {2,3}=A , Corollary 4.1 implies that the optimal chains for a given integer k 

have ( )chainς = # DBL DBL #TPL TPL+ #ADD ADD

# DBL (DBL) #TPL (TPL) # ADD (ADD)bitlength bitlength bitlength

× + × ×

× + × + ×
 minimal, where OP 

and #OP denote the cost of certain operation and the number of times this operation is used, 

respectively. With a slight abuse of notation, bitlength(ADD) represents the number of bits added 

or subtracted from the total bitlength after addition with a digit from a given digit set.  

Obviously, an exhaustive search evaluating costs per bit of all possible division sequences 

from k would yield the optimal chains for this scalar. Nevertheless, for cryptographic purposes, 

one should constrain the search to “smaller” ranges. For instance, it seems natural to limit the 
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cost-per-bit evaluation to sequences between additions.  

The following proposition slightly relaxes the definition of an optimal chain while simplifies 

significantly the cost analysis.     

Proposition 4.1. Let a digit set \{0} { 1, 3, 5, , }D m= ± ± ± ±… , where m k<<  for a scalar 

multiplication kP. Then, the “bitlength” of an addition with any digit \ {0}id D∈  (i.e., the bit 

reduction or increase due to the addition operation) is negligible in comparison with the total 

bitlength and approximates to zero in average.  

Following Proposition 4.1, we can eliminate bitlength(ADD) from the denominator of 

( )chainς  without losing too much precision in our cost approximations. For the remainder, we 

focus our analysis on “measuring” costs between additions. As stated, nothing really deters from 

extending the cost analysis to wider ranges of division sequences, in which case cheaper 

multibase chains could be found at the expense of a more complex “searching” algorithm.   

Proposition 4.2. Let 1 2{ , , , }Ja a a= …A  be a set of bases where ja ∈A  are all primes and 

1
1 | ( )Jww

iJa a k k⋅ ⋅ −…  for an integer k, a digit {0, 1, 3, 5, , }ik D m∈ = ± ± ± ±…  and integers 0jw ≥ . 

Then, for given values , ( )i pkP k P E∈ F , the cost per bit of computing 1
1 ( )Jww

iJa a kP k P⋅ ⋅ ⋅ −… , 

which is denoted by ( )ik kς − , can be estimated as follows:  

                                1 1 2 2

1 2 1 2 2 2 2

( ) ( ) ( ) ADD
( )

log log log

J J
i

J J

w a P w a P w a P v
k k

w a w a w a
ς

+ + + + ⋅
− =

+ + +

…

…
,                           (4.7) 

where ja P  represents the cost of the point operation corresponding to base ja  (for instance, 

DBLja P =  if 2ja = ) and v represents the number of additions such that 2v =  if 0ik ≠  and 

1v =  if 0ik = .   

Equation (4.7) employs the function cost( )/bitlength( )operations operations  to determine the 

cost per bit and can be used to compare the practical efficiency of various possible sequences 

1
1

Jww
Ja a⋅ ⋅…  between an addition with a digit ik  and the next addition. 

There are different ways of exploiting this tool for finding efficient multibase chains. For 

instance, the costs per bit of the possible sequences can be calculated and compared on-the-fly. 

Another approach would involve the use of on-line congruency tests with pre-determined 

combinations of bases for which the costs per bit are known [LG09]. In this case, the evaluated 

congruencies are fixed off-line according to the chosen curve, window size w and set of bases .A  

In this thesis, we choose to implement the second approach based on on-line congruency 

evaluations. A detailed description of the method follows. 
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4.4.1. Refined Multibase Chains 

 In this section we propose a new algorithm that has been derived by rewriting the original 

multibase NAF and adding a few conditional statements. The refined multibase algorithm is 

shown as Algorithm 4.3. In the remainder, we will refer to chains obtained from this algorithm as 

refined multibase chains. 

 

Algorithm 4.3.  Computing “refined” multibase chains of a positive integer  

Input:  scalar k, bases 1 2{ , , , }Ja a a= …A , where +
ja ∈Z  are primes for 1 j J≤ ≤ , 

            window 2w ≥ , where +
w∈Z  

Output:  a multibase chain 2 1( ) ( )
2 1(..., , )
b b

k k , where ib ∈A  

1:             i = 1   

  2: While k > 0 do 

   3:         If 1 1mod 0, 0,i ik a k b a= = =  

   4:         Elseif 2mod 0k a =  

4.1:                 If CONDITION2.1 = true, 1,i i ik d b a= =  

4.2:                 Else 20,i ik b a= =  

        �                       �  

J+2:         Elseif mod 0Jk a =                

(J+2).1:                 If CONDITION2.(J−1) = true, 1,i i ik d b a= =  

(J+2).2:                 Else 0,i i Jk b a= =  

J+3:         Else 

J+4:                 1 1, mods w
i ib a k k a= =  

J+5:                 If CONDITION1 = true,  i ik d=  

J+6:         ( )/i ik k k b= −  

J+7:         i = i + 1    

J+8: Return 2 1( ) ( )
2 1(..., , )
b b

k k  

 

We remark that Algorithm 4.3 is a straightforward generalization of the Refined mbNAF 

algorithm introduced by the author and Gebotys in PKC2009 [LG09] to a generic set of bases 

1 2{ , , , }Ja a a= …A . Moreover, statements have been reordered and modified to improve 

readability. To add the capability of using fractional windows, one should simply replace 

1mods w
ik k a=  in step (J+4) of Algorithm 4.3 by steps 2-4 of Algorithm 4.2. 

Similar to multibase NAF, Algorithm 4.3 evaluates congruency with a pre-ordered set of 

bases 1 2{ , , , }Ja a a= …A , which again is chosen according to the targeted setting and fixes 1a  as 

the main base. The main difference is the insertion of conditional statements that are intended for 
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evaluating division sequences according to the cost per bit function (4.7). 

Now, let k be a partial value of the scalar during execution of Algorithm 4.3, , 0j jw w′ ≥  be 

integers, 1
, {0, 1, 3, 5, , (2 1)}w

i id k D −∈ = ± ± ± ± −… , 0id ≠ , with a standard window width w, e be 

a parameter > 0 and ,φ µ  be odd integers such that 1 2{ , , , } | ,Ja a a φ µ/… . The conditional 

statements to be inserted in Algorithm 4.3 follow the next criteria: 

• CONDITION1: given an approximation 2
1 2

Jwww
i Jk k a a a φ− = ⋅ ⋅ ⋅ ⋅…  using a standard 

window w, if there exists some value id  such that 1 2
1 2

Jww w
i Jk d a a a µ

′′ ′
− = ⋅ ⋅ ⋅ ⋅… , i id k≠ , 

and its associated cost per bit ( )ik dς −  is lower than the cost per bit ( )ik kς −  associated 

to the sequence guaranteed by the standard window w, that is, if ( ) ( )i ik d e k kς ς− + < − , 

the approximation ik d−  replaces ik k− .   

• CONDITION2.j, for 1 1j J≤ ≤ − : given the partial scalar value 2
2

Jww
Jk a a φ= ⋅ ⋅ ⋅… , if 

there is a nonzero digit \{0}id D∈  such that 1 2
1 2

Jww w
i Jk d a a a µ

′′ ′
− = ⋅ ⋅ ⋅ ⋅…  and its 

associated cost per bit ( )ik dς −  is lower than the cost per bit ( )kς , that is, if 

( ) ( )ik d e kς ς− + < , the approximation ik d−  replaces the zero digit 0ik = . 

CONDITION1 aims at reducing the length of the expansion by using more expensive point 

operations (i.e., operations with bases ja , where 1j > ) that yield cheaper-per-bit chains than the 

usual sequence of operations with base 1a , after each nonzero term. Similarly, CONDITION2 

determines if there is a chain involving an addition that is cheaper-per-bit than the sequence 

directly dividing by the bases.   

Note that if one assumes that values after executing a given sequence followed by an addition 

are approximately uniformly distributed over odd numbers, then choosing the cheapest-per-bit 

sequence for a partial value k would ultimately yield a multibase chain for the full point 

multiplication that is cheaper in average. However, Algorithm 4.3 does not necessarily execute 

the full sequence that was chosen. It instead re-evaluates and analyzes the costs of new sequences 

after each doubling, tripling or quintupling. Hence, CONDITION1 and 2 above include a security 

parameter, namely e, to guarantee that the chosen sequence is significantly better than the usual 

one.    

Although the number of divisibility tests with different combinations of bases A  that can be 

evaluated in CONDITION1 and 2 of Algorithm 4.3 is potentially high, we show in the following 

that only a few tests are necessary to achieve performance (conjecturally) close to optimal.       

Next, we illustrate the design of efficient CONDITION1 and 2 for the case {2,3}=A . Since 

extension to other cases easily follows, we simply sketch the design for the case {2,3,5}=A  (see 

Section 4.4.1.2). As before, we fix the main base 1a  to 2. 
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4.4.1.1. Refined Multibase Chains with Bases {2,3} 

We discuss next the design of CONDITION1 and 2 for the case {2,3}=A . 

CONDITION1: 

Following the criteria discussed previously and given a partial scalar k, standard window width w 

and set of bases 1 2{ , } {2,3}a a= =A , where +
ja ∈Z , we propose the following format for 

CONDITION1 in Algorithm 4.3:  

 

 

                      

1,1 2,1

1,2 2,2

1, 2,

1
,1

2
,2

,

1 : if (( )mod 2 3 0 and ( )mod 2 0) or

2 : (( )mod 2 3 0 and ( )mod 2 0) or

: (( )mod 2 3 0 and ( )mod 2 0)C C

w w w
i i

w w w
i i

w w w C
i C i

k d k k

k d k k

C k d k k

′ ′ +

′ ′ +

′ ′ +

− ⋅ = − ≠

− ⋅ = − ≠

− ⋅ = − ≠

…

…

�
              (4.8) 

 

 

where , 0j cw′ ≥
 
are integers, mods2w

ik k= , c is the condition number such that 1 c C≤ ≤  and 
1

, \ {0} { 1, 3, 5, , (2 1)}w
i cd D

−∈ = ± ± ± ± −… . In order to guarantee a cheaper-per-bit sequence at 

each evaluation of CONDITION1 it is required that ,( ) ( )i c c ik d e k kς ς− + < − , which compares 

the sequence costs up to the next addition using positive values ce  for 1 c C≤ ≤ . Using function 

(4.7), this is roughly equivalent to the following comparison: 

                           
1, 2,

1, 2, 2

DBL TPL 2ADD ( 1) DBL 2ADD

log 3 1

c c

c

c c

w w w c
e

w w w c

′ ′⋅ + ⋅ + + − ⋅ +
+ <

′ ′+ + −
.                   (4.9)                                       

We next illustrate the procedure for selecting values ,j cw′  and ce  for format (4.8) using eq. 

(4.9) when 2w = . The procedure can be easily extended to other window sizes. 

First, we build two tables: one with the costs per bit corresponding to sequences containing 

exactly d doublings (for congruency of ( )ik k− ) and another with the costs per bit corresponding 

to sequences divisible by 1, 2,2 3c cw w′ ′
⋅  (for congruency of ,( )i ck d− ). Note that since 2w =  it 

always holds that 1, 1cw′ = . We show in Table 4.1 the results for Jacobian coordinates using costs 

from Table 2.2 (assuming that 1 0.8 )S M= . Since 2w =  calculations are performed with mixed 

additions (the cost of one mixed addition is obtained as ADD DBLADD DBLm m= − ). 

Using Table 4.1, it is easy to see  that ( ) mod 4, ( ) mod8i ik k k k− ≡ − ≡  yields a sequence 

that is more expensive per bit than, at least, ,( ) mod3i ck d− ≡ ; ( ) mod8, ( ) mod16i ik k k k− ≡ − ≡  

yields a sequence that is more expensive per bit than, at least, ,( ) mod9i ck d− ≡ ; 

( ) mod16, ( ) mod32i ik k k k− ≡ − ≡  yields a sequence that is more expensive per bit than, at 

least, ,( ) mod27i ck d− ≡ ; and so on. This analysis gives a close idea about the statements that 

should be defined in (4.8) for CONDITION1. In fact, if we plug the congruency evaluations above 
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Table 4.1. Cost-per-bit for statements in CONDITION1, bases {2,3}, w = 2, J coordinates. 

Congruency of  ( )
i

k k−  d  
Cost per 

bit 

Congruency of 

,
( )

i c
k d−  

,
1, 2,

( )
c c

w w′ ′
Cost per 

bit 

mod 4, mod 8≡ ≡  2 16.6 mod3≡  (1, 1) 15.0 

mod 8, mod16≡ ≡  3 13.4 mod9≡  (1, 2) 12.3 

mod16, mod 32≡ ≡  4 11.8 mod27≡  (1, 3) 11.1 

mod 32, mod 64≡ ≡  5 10.8 mod81≡  (1, 4) 10.4 

mod 64, mod128≡ ≡  6 10.2 mod243≡  (1, 5) 10.0 

mod128, mod 256≡ ≡  7 9.7 mod729≡  (1, 6) 9.7 

mod 256, mod 512≡ ≡  8 9.4    

 

to (4.8) for conditions c = 1, 2, 3, and so on (in that order), the multibase chains obtained are 

expected to be cheaper in average than those produced by the case without conditions (i.e., 

mbNAF, given by Algorithm 4.1). Nevertheless, choosing the minimal condition for which 

congruency with ( )ik k−  is more expensive is not necessarily optimal. In other words, it is still 

possible to do better by choosing the optimal parameter ce  for each case.     

For the latter, it is necessary to perform an analysis of costs of the possible combinations. For 

instance, consider the evaluation “ ,1if (( )mod 3 0 and ( ) mod8 0)t
i ik d k k− = − ≠ ” with 2w = , 

1t ≥ ∈Z  and 1C c= =  in (4.8) to implement CONDITION1. The cost per bit in this case is 

approximately given by: 
 

2 2

1 2DBL 1TPL 2ADD 1 3DBL 2ADD 3DBL 1TPL 2ADD

4 2 log 3 4 3 3 log 3
α
   + + + + +

+ + +   
+ +   

,                   (4.10) 

 

where 
( 1) ( 1)

2

1 1 2DBL 2ADD 1 3DBL 2ADD 1 1DBL TPL 2ADD
1

2 2 2 3 1 log 33 3
t t

t

t
α

− −

+ + + ⋅ +
= − × + × +

+ ⋅

   
    
    

. 

 

It can be seen from (4.10) that optimality is achieved with min( )α . For example, for J, e
JQ

 and IE coordinates (using operation costs from Tables 2.2, 2.3 and 2.4 and assuming 

1 0.8 )S M= , min( )α  is obtained with 2t = . Notice that analysis in α  can go deeper and include 

a higher number of consecutive doublings and triplings. However, the occurrence decreases 

rapidly with the number of consecutive operations and so their impact in the cost. A similar 

analysis can be carried out to determine optimal values for following conditions c in (4.8).   

Additionally, it is necessary to determine the influence of C in the cost performance. A 

probability analysis similar to the one performed above can be carried out to determine the 

optimal C. However, the analysis increases in complexity very rapidly. Instead, we ran several 
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tests to evaluate the cost performance of full 160-bit scalar multiplications. The results are 

discussed in the subsection “Analysis of Multiple Conditions”, pp. 90. 

CONDITION2: 

Following the criteria discussed previously and given a partial scalar k, standard window width w 

and set of bases 1 2{ , } {2,3}a a= =A , where +
ja ∈Z , we propose the following format for 

CONDITION2 in Algorithm 4.3:  

 

 

                                

1,1

1,2

1,

2
,1

3
,2

1
,

1 : if (( )mod 2 0 and mod3 0) or

2 : (( )mod 2 0 and mod3 0) or

: (( )mod 2 0 and mod3 0)C

w

i

w

i

w C
i C

k d k

k d k

C k d k

′

′

′ +

− = ≠

− = ≠

− = ≠

…

…

�
                         (4.11) 

 

 

where again , 0j cw′ ≥  are integers, c is the condition number s.t. 1 c C≤ ≤ , and , \ {0}i cd D∈ =  
1{ 1, 3, 5, , (2 1)}w−± ± ± ± −… . To guarantee a cheaper-per-bit sequence at each evaluation of 

CONDITION2 it is required that ,( ) ( )i c ck d e kς ς− + < , which compares the sequence costs up to 

the next addition using positive values ce  for 1 c C≤ ≤ . Using function (4.7), this is roughly 

equivalent to the following comparison: 

               1, 1,

1, 1, 2

DBL 2ADD ( 1) DBL 2ADD1 ( 1)TPL+1ADD

2 1 ( 1) log 3

c c
c

c c

w w c
e

w w c

′ ′ ⋅ + + ⋅ + +
+ + <  ′ ′ + + ⋅ 

.        (4.12)                                       

Let us now illustrate the procedure for selecting values ,j cw′  and ce  for format (4.11) using 

eq. (4.12) when 2w = .  

Similarly to the case with CONDITION1, we first build two tables: one with the costs per bit 

corresponding to sequences divisible by 1,2 cw′
 (for congruency of ,( )i ck d− ) and another with the 

costs per bit corresponding to sequences with exactly t triplings (for congruency of k). In Table 

4.2, we show the results for Jacobian coordinates using costs from Table 2.2 (assuming that 

1 0.8 )S M= . Again, we assume that 2w = , calculations are performed with mixed additions and 

the cost of one mixed addition is obtained as ADD DBLADD DBLm m= − .   

Using Table 4.2, we can see that mod3, mod9k k≡ ≡  yields a sequence that is more 

expensive per bit than, at least, ,( ) mod8i ck d− ≡ ; mod9, mod 27k k≡ ≡  yields a sequence that 

is more expensive per bit than, at least, ,( ) mod32i ck d− ≡ ; mod27, mod81k k≡ ≡  yields a 

sequence that is more expensive per bit than, at least, ,( ) mod128i ck d− ≡ ; and so on. If these 

congruency evaluations are directly plugged into (4.11) for conditions c = 1, 2, 3, and so on (in 

that order), the multibase chains obtained are expected to be cheaper in average than those produced 
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Table 4.2. Cost-per-bit for statements in CONDITION2, bases {2,3}, w = 2, J coordinates. 

Congruency of  k  t  
Cost per 

bit 

Congruency of 

,
( )

i c
k d−  1,c

w′  
Cost per 

bit 

mod 3, mod 9≡ ≡  1 14.0 mod 4≡  2 15.0 

mod 9, mod 27≡ ≡  2 11.0 mod8≡  3 12.6 

mod 27, mod 81≡ ≡  3 10.0 mod16≡  4 11.3 

mod81, mod 243≡ ≡  4 9.5 mod32≡  5 10.5 

mod 243, mod 729≡ ≡  5 9.2 mod64≡  6 10.0 

mod 729, mod 2187≡ ≡  6 9.0 mod128≡  7 9.6 

   mod256≡  8 9.3 

 

by the case without conditions (i.e., mbNAF; Algorithm 4.1). However, choosing the minimal 

condition for which congruency with k is more expensive is not necessarily optimal. In this case, 

it is necessary to perform a more in detail analysis of costs of the possible combinations. For 

instance, consider the evaluation “ ,1if (( )mod 2 0 and mod 9 0)d
ik d k− = ≠ ” with 2w = , 

1d > ∈Z  and 1C c= =  in (4.11) to implement CONDITION2 in Algorithm 4.1. The cost per bit 

in this case is approximately given by: 

                                                         
2

2 1 2TPL 1ADD

3 3 2log 3
β

 +
+  

 
,                                                (4.13) 

where 
2 2

2 2

1 2 1TPL 1ADD 1 2TPL 1ADD 1 1 DBL 2ADD 1 ( 1) DBL 2ADD
1

3 log 3 3 2 log 3 2 2 12 2d d

d d

d d
β

− −

 + + ⋅ + + ⋅ +   
= − × + × + × + ×    

+    
. 

By analyzing (4.13), it can be seen that optimality is achieved with min( )β . For instance, for 

J, e
JQ  and IE coordinates (using operation costs from Tables 2.2, 2.3 and 2.4 and assuming 

1 0.8 )S M= , min( )β  is obtained with 4d = . Although analysis in β  can go deeper and include 

higher numbers of consecutive doublings and triplings, the occurrence decreases rapidly with the 

number of consecutive operations and so the impact in the cost. A similar analysis can be carried 

out to determine optimal values for following conditions c in (4.11).   

 

In the following example, we illustrate the derivation of a multibase chain using Algorithm 

4.3 with an efficient selection of parameters for CONDITION1 (4.8) and CONDITION2 (4.11), as 

discussed in this section. In the remainder, conditions from (4.8) and (4.11) are denoted by 

pairing values 1, 2,2 3c cw w′ ′
⋅  and 2w c+ , and values 1,2 cw′

 and 1
3

c+ , respectively, as follows: 

      1,1 2,1 1,2 2,2 1, 2, 1,1 1,2 1,1 2 2 3 1(2 3 - 2 ,2 3 - 2 , ,2 3 - 2 | 2 - 3 ,2 - 3 , ,2 - 3 )C C Cw w w w w w w w ww w w C C′ ′ ′ ′ ′ ′ ′ ′ ′+ + + +⋅ ⋅ ⋅… … , 
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where paired values for CONDITION1 and 2 are separated by “|”. For instance, in Example 4.4 

conditions denoted by (9-8|32-9) mean that Algorithm 4.3 includes the evaluation                         

“ ,1if (( )mod9 0 and ( )mod8 0)i ik d k k− = − ≠ ” as CONDITION1 and the evaluation                    

“ ,1if (( )mod32 0 and mod9 0)ik d k− = ≠ ” as CONDITION2.  

Example 4.4.  Using Algorithm 4.3, we find the following refined multibase chain for computing 

8821P by using bases {2,3}, w = 2 and conditions (9-8|32-9): (3) (2) (2) (2) (2) (2)8821 1 0 0 0 1 0= −  
(2) (2) (2) (2) (3) (2) (2)

0 0 0 1 0 0 1− , which has been derived using the division sequence 8820
8821 1

2
− → →

4410 2205 736 368 184 92 46 24 12 6 3
735 1 23 1 1

2 2 2 2 2 2 2 2 2 33
→ → + → → → → → → + → → → → → .                                                                                       

Notice that, for instance, the partial value 735 is conveniently approximated to 736, by means 

of CONDITION1, instead of dividing it by 3, allowing the efficient insertion of several 

consecutive doublings that ultimately reduce the nonzero density of the expansion. If we compare 

the performance of this multibase chain when computing 8821P against the basic multibase NAF 

approach using the same window size, we can observe that the cost reduces from 8DBL + 3TPL 

+ 4mADD = 115.2M to only 10DBL + 2TPL + 3mADD = 107.6M ( e
JQ , 1S = 0.8M). 

Finally, a probability analysis can be carried out to determine the optimal C for 

CONDITION1 and 2. As stated before, this analysis increases in complexity very rapidly, so 

instead we have run many tests to evaluate the cost performance of full 160-bit scalar 

multiplications. The results are discussed in the following subsection. 

Analysis of Multiple Conditions 

The use of multiple conditions in CONDITION1 (4.8) and CONDITION2 (4.11) enable a wider 

search for cheaper multibase chains. However, as the number of conditions C increases the 

impact on the cost decreases. We have run several tests with 160-bit point multiplications to 

explore empirically the behavior of Algorithm 4.3 when increasing C. The results are displayed 

in Fig. 4.1-4.2. 

In our tests, we average the cost of 1000 point multiplications using 160-bit random scalars. 

To determine the conditional statements in each case, we performed the analysis described in the 

previous section. We also carried out multiple tests to confirm our parameter selection and when 

analysis got excessively complex.  

In Figures 4.1 and 4.2, x and y in (x|y) denote the number of conditions C for CONDITION1 

and 2, respectively. 

As can be seen, selection (1|1) achieves the higher relative speed up. As C increases the gain 

also decreases. In general, for 2C ≥  the costs do not vary significantly. On the negative side, this 

implies that even deeper searching for efficient sequences will only provide smaller speed ups. 

On the positive side, this feature enables the possibility of very compact algorithms that achieve, 
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Figure 4.1. Cost of 160-bit point multiplication without precomputations using refined multibase chains. Conditional 

statements: nc = no conditions, (1|1) = (9-8|32-9), (2|2) = (9-8,27-16|32-9,64-27), (3|3) = (9-8,27-16,81-32|32-9,64-

27,128-81) ,(4|4) = (9-8,27-16,81-32,243-64|32-9,64-27,128-81,256-243). 

Figure 4.2. Cost of 160-bit point multiplication with w = 5 using refined multibase chains. Conditional statements: nc 

= no conditions, (1|1) = (144-64|64-9), (2|2) = (144-64,324-128|64-9,512-27), (3|3) = (144-64,324-128,648-256|64-

9,512-27,1024-81), (4|4) = (144-64,324-128,648-256,972-512|64-9,512-27,1024-81,2048-243). 
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conjecturally, close to optimal performance. 

Highly Compact Multibase Algorithms, Bases {2,3} 

The generalized formats for conditions (4.8) and (4.11) allow one to perform a relatively simple 

and scalable analysis of Algorithm 4.3. However, following observations by Walter [Wal11] it is 

obvious that much more compact algorithms can be easily derived once the design parameters 

(i.e., conditional statements, window width and bases) are fixed. The following examples 

illustrate how the original algorithm for finding refined multibase chains can be rearranged to 

obtain very compact algorithms with fixed parameters. 

Example 4.5. If we select conditions (9-8|32-9), window size w = 2 and bases {2,3}, then it is 

straightforward to transform Algorithm 4.3 and replace lines 3 to J+5 with the following:  

 

[ ]

mods 4, 2

if mod 2 0, 0

elseif mod3 0 and ~ ( )mod32 0 and mod9 0 , 0, 3

elseif ( )mod9 0 and ( )mod8 0,

i i

i

i i i

i i i i

k k b

k k

k k k k k b

k k k k k k

= =


= =


= − = ≠ = =
 + = − ≠ = −

 

 

Example 4.6. If we select conditions (144-64|64-9), window size w = 5 and bases {2,3}, then 

lines 3 to J+5 of Algorithm 4.3 can be replaced with the following:  

 

[ ]

mods 32, 2

if mod 2 0, 0

elseif mod3 0 and ~ ( )mod64 0 and mod9 0 , 0, 3

elseif ( mods16) 0mod9 and ( )mod 64 0, mods16

i i

i

i i i

i i

k k b

k k

k k k k k b

k k k k k k

= =


= =


= − = ≠ = =
 − = − ≠ =

 

 

 

Modified algorithms above are obtained by removing redundancy in the evaluations and 

rearranging conditional statements once design parameters are fixed. We remark that these 

algorithms are equivalent to Algorithm 4.3 and yield the same output for a given scalar when 

using the same design parameters. As consequence, we observe that the refined multibase 

methodology described in this section can achieve (conjecturally) close to optimal performance 

with highly compact algorithms.   

4.4.1.2. Refined Multibase Chains with Bases {2,3,5} 

A methodology similar to the one described in §4.4.1.1 can be applied to the case {2,3,5}=A . 
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Suggested formats for CONDITION1 and 2 in this case are provided below. 

CONDITION1: 

Given a partial scalar k, standard window width w and set of bases 1 2 3{ , , } {2,3,5}a a a= =A , 

where +
ja ∈Z , we propose the following format for CONDITION1 in Algorithm 4.3:  

 

 

                  

1,1 2,1 3,1

1,2 2,2 3,2

1, 2, 3,

1
,1

2
,2

,

1 : if (( )mod 2 3 5 0 and ( )mod 2 0) or

2 : (( )mod 2 3 5 0 and ( )mod 2 0) or

: (( )mod 2 3 5 0 and ( )mod 2 0)C C C

w w w w
i i

w w w w
i i

w w w w C
i C i

k d k k

k d k k

C k d k k

′ ′ ′ +

′ ′ ′ +

′ ′ ′ +

− ⋅ ⋅ = − ≠

− ⋅ ⋅ = − ≠

− ⋅ ⋅ = − ≠

…

…

�
       (4.14) 

 

 

where , 0j cw′ ≥
 
are integers, mods2w

ik k= , c is the condition number such that 1 c C≤ ≤  and 
1

, \ {0} { 1, 3, 5, , (2 1)}w
i cd D

−∈ = ± ± ± ± −… .  

CONDITION2: 

Given a partial scalar k, standard window width w and set of bases 1 2 3{ , , } {2,3,5}a a a= =A , 

where +
ja ∈Z , we propose the following format for CONDITION2.1 in Algorithm 4.3:  

 

 

 

 

                            

1,1

1,

1,1

1,

2
,1

1
,

,1

,

1 : if ( mod5 0) and

1.1 : [if (( )mod 2 0 and mod3 0) or

1. : (( )mod 2 0 and mod3 0)] or

2 : if ( mod5 0) and

2.1 : [if (( )mod 2 0 and mod3 5 0) or

2. : (( )mod 2 0 and mod3 5

B

C

w

i

w B
i B

w

i

w u v
i C

k

k d k

B k d k

k

k d k

C k d k

′

′ +

′′

′′

≠

− = ≠

− = ≠

=

− = ⋅ ≠

− = ⋅ ≠

…

�

…

…

�

0)]

                    (4.15) 

 

 

 

 

where , ,, , , 0j b j cw w u v′ ′′ ≥  are integers, b and c are the condition numbers such that 1 b B≤ ≤ , 

1 c C≤ ≤ , and 1
, ,, \ {0} { 1, 3, 5, , (2 1)}w

i b i cd d D
−∈ = ± ± ± ± −… . Note that the upper section of 

(4.15) evaluates conditions when sequences are not divisible by 5, whereas the lower section 

evaluates conditions when sequences are divisible by both 3 and 5.  

For CONDITION2.2, we propose the following format:  
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1,1

1,2

1,

2
,1

3
,2

1
,

1 : if (( )mod 2 0 and mod5 0) or

2 : (( )mod 2 0 and mod5 0) or

: (( )mod 2 0 and mod5 0)C

w

i

w

i

w C
i C

k d k

k d k

C k d k

′

′

′ +

− = ≠

− = ≠

− = ≠

…

…

�
                         (4.16) 

 

 

where again , 0j cw′ ≥  are integers, c is the condition number s.t. 1 c C≤ ≤ , and , \{0}i cd D∈ =  
1{ 1, 3, 5, , (2 1)}w−± ± ± ± −… .  

4.5. Performance Comparison 

We have carried out extensive tests to evaluate the performance of the multibase algorithms 

discussed in this chapter when applied on standard, extended Jacobi quartic and Twisted Edwards 

curves using Jacobian (J ), extended Jacobi quartic ( e
JQ ) and inverted Edwards (IE) 

coordinates, respectively. We implemented the traditional wNAF, wmbNAF (Algorithm 4.1) and 

the refined multibase method (Algorithm 4.3) in Matlab, and ran the algorithms with different 

window sizes for 1000 160- and 256-bit scalars chosen randomly. In the case of multibase 

algorithms, we evaluated the methods when using the sets of bases {2,3} and {2,3,5}.  

We distinguish two cases: scenarios with minimal storage (without precomputations) and 

scenarios with no memory constraints (with optimal number of precomputations). 

To estimate costs for each method, we first counted the required number of point operations 

per scalar, averaged the results and then calculated the cost using Tables 2.2, 2.3 and 2.4 (costs 

labeled as “Using S-M tradings”), ignoring costs of additions and multiplications by curve 

parameters for simplification purposes. Also, for scenarios with no memory constraints we 

included in the overall cost the cost of calculating the precomputed points. For computing these 

points, we consider two cases (see Chapter 3): points are left in projective coordinates (case 1), 

and points are converted to affine using one inversion (case 2). As observed in Section 3.4.1 

(Table 3.9, 17ESL = ; and Table A.1, 27ESL = ), n = 160 and 256 bits, case 2 is advantageous 

using Jacobian coordinates for low and intermediate I/M ratios, whereas case 1 is more efficient 

for high I/M values. Thus, the particular I/M ratio of an implementation will decide which case is 

more effective on a standard curve. In the case of e
JQ  and IE  coordinates, we only consider 

case 1 as this scheme should be largely preferred because of the minimal difference of costs 

between general and mixed additions (see Section 3.4.2, Table 3.11, 5w = ; and Table 3.12, 

6w = ). Following the analysis in Section 3.4, for Jacobian coordinates, we use the LM Scheme, 

case 1 and case 2b, whose costs are given by formulas (3.4) and (3.6), respectively, and for e
JQ  

and IE  coordinates we apply the LG Scheme, whose costs are displayed in Table 3.3. 
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The costs using the different methods are summarized in Tables 4.3 and 4.4 for n = 160 and 

256 bits, respectively. We have sped up further the proposed multibase methods by saving some 

initial computations. This technique is similar to that proposed in [Elm06, Section 4.2.2] plus 

some additional savings gained with the use of composite operations (i.e., tripling, quintupling). 

Note that for Jacobian coordinates we use the efficient doubling-addition (DBLADD) 

operation instead of traditional addition for all the proposed methods. This operation has also 

been used to improve the performance of the tree-based approach by Doche et al. [DH08].    

As can be seen, in the scenario without precomputations, the new refined multibase chains 

obtained from Algorithm 4.3 achieve the lowest costs for all curves under analysis and security 

levels. For instance, our results reduce costs in 3% and 10% in comparison with the tree-based 

method and NAF, respectively, on both e
JQ  and J coordinates with 160n =  bits. On the other 

hand, the basic multibase NAF using bases {2,3} and {2,3,5} achieves better performance than 

the original double-base method based on the “Greedy” algorithm [DIM05]. That is in addition to 

the attractive features of mbNAF such as simplicity, memory efficiency and easiness to be 

analyzed theoretically. The tree-based method achieves slightly lower costs than mbNAF for 

bases {2,3} when using IE coordinates. However, mbNAF with bases {2,3,5} surpasses the 

performance of this method in all the remaining cases. We remark that the tree-based method 

also finds double-base chains using division chains, although using a search-based approach that 

consumes more memory than the basic multibase NAF.  

Remarkably, in some scenarios using J , refined multibase chains with bases {2,3,5} and no 

precomputations surpasses the performance of the fastest NAF-based method using an optimal 

number of precomputed points. For instance, if n = 160 bits the multibase method is superior 

always when 1I > 19M. 

For comparison in the scenario with optimal number of precomputations, we include results 

by Bernstein et al. [BBL+07]. This work uses a double-base method based on the “Greedy” 

algorithm that has been optimized for the use of precomputations. We can see that both the basic 

wmbNAF and the refined multibase chains offer lower computing costs for all the cases under 

analysis. Note that in this case the performance gap is due to a combination of superior multibase 

chains and precomputation schemes, faster point operations (e.g., we use the doubling-addition 

operation in Jacobian coordinates) and the inclusion of the technique to save initial computations. 

A more serious competition is brought by the recent work by Meloni and Hasan [MH09], 

which proposes the use of DBNS representations in combination with Yao’s algorithm. This 

method, denoted by Yao-DBNS, is not based on division chains and has been shown to be 

efficient when using DBNS representations obtained with the “Greedy” algorithm. Therefore, it 

is intended for platforms where memory is not scarce.  

If there are no memory restrictions, the refined multibase chains using bases {2,3,5} and Yao- 
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Table 4.3. Comparison of double-base and triple-base scalar multiplication methods (n = 160 bits; 1S = 0.8M). 

Method  # pts 

ExtJQuartic ( e
JQ ) 

# pts 

InvEdw (IE) 

# pts 

Jacobian (J ) 

Precomp Total Precomp Total Precomp Total 

 Refined multibase  (this work)  0 0      1261M  
(2) 0 0     1351M  

(1) 0 0     1451M  
(2) 

 mbNAF  (this work)  0 0      1292M  
(2) 0 0     1380M  

(1) 0 0     1485M  
(2) 

 Tree-based double-base, Doche et al. [DH08]  0 0 1303M 0 0 1377M 0 0 1493M 

 Double-base (Greedy), Dimitrov et al. [DIM05]  0 0 1328M 0 0 1403M 0 0     1545M  † 

 NAF  0 0 1394M 0 0 1448M 0 0 1616M 

 Refined multibase  (this work)  7 59.6M      1214M  
(2)

 7 62.2M     1267M  
(1)

 
6 55.4M     1427M  

(2) 

6 1I+68.4M     1I + 1388M  
(2) 

 (Frac-)wmbNAF  (this work)  7 59.6M      1222M  
(2) 7 62.2M      1274M  

(1) 
6 55.4M    1432M  

(2) 

6 1I+68.4M     1I + 1397M  
(2) 

 Yao-DBNS (Greedy), Meloni et al. [MH09]  N/A N/A 1211M N/A N/A 1259M N/A N/A 1475M 

 Double-base (Greedy), Bernstein et al. [BBL+07]   7 N/A 1311M 7 N/A 1290M 7 N/A    1504M  † 

 (Fractional) wNAF  7 59.6M 1246M 7 62.2M 1291M 
6 55.4M 1476M 

6 1I+68.4M 1I + 1432M 

† Without using doubling-addition operation [LM08b].  

(1) Bases {2,3}. 

(2) Bases {2,3,5}. 
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Table 4.4. Comparison of double-base and triple-base scalar multiplication methods (n = 256 bits; 1S = 0.8M). 

Method  # pts 

ExtJQuartic ( e
JQ ) 

# pts 

InvEdw (IE) 

# pts 

Jacobian (J ) 

Precomp Total Precomp Total Precomp Total 

 Refined multibase  (this work)  0 0     2026M  
(2) 0 0      2174M  

(1) 0 0     2330M  
(2) 

 mbNAF  (this work)  0 0     2077M  
(2) 0 0      2218M  

(1) 0 0     2387M  
(2) 

 Tree-based double-base, Doche et al. [DH08]  0 0 2084M 0 0 2202M 0 0 2388M 

 Double-base (Greedy), Dimitrov et al. [DIM05]  0 0 2125M 0 0 2244M 0 0    2472M  † 

 NAF  0 0 2244M 0 0 2329M 0 0 2601M 

 Refined multibase  (this work)  8 69M     1925M  
(2)

 8 72M       2013M  
(1)

 
8 72.2M    2277M  

(2) 

8 1I+89.6M   1I + 2204M  
(2) 

 (Frac-)wmbNAF  (this work)  8 69M     1940M  
(2) 8 72M      2025M  

(1) 
8 72.2M   2291M  

(2) 

8 1I+89.6M   1I + 2219M  
(2) 

 Yao-DBNS (Greedy), Meloni et al. [MH09]  N/A N/A 1911M N/A N/A 1993M N/A N/A 2316M 

 Double-base (Greedy), Bernstein et al. [BBL+07]   8 N/A 2071M 8 N/A 2041M 7 N/A    2379M  † 

 (Fractional) wNAF  8 69M 1954M 8 72M 2023M 
8 72.2M 2326M 

8 1I+89.6M 1I + 2235M 

† Without using doubling-addition operation [LM08b]. 

(1) Bases {2,3}. 

(2) Bases {2,3,5}. 
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DBNS achieve very close performance for all cases and security levels under analysis. The gap 

when using e
JQ  and IE  coordinates is between ~0%-1% in favor of Yao-DBNS. Given the 

small theoretical gap and because factors such as cache performance and operation cost 

variations influence computing time in practice, both methods are expected to achieve equivalent 

performance for all practical purposes. When using J coordinates the refined multibase chains 

remain faster than Yao-DBNS with an advantage between 2%-3%. 

Comparison with High-Speed Curves using Radix-2 Methods 

Recently, new special curve forms with very efficient group arithmetic have been proposed. 

These curves achieve high performance in part because they have very efficient doubling and 

addition formulas. Among them, Twisted Edwards curves (2.12) with parameter 1a = −  using 

mixed /
e

EE  coordinates seem to currently offer the best operation count over prime fields 

[HWC+09]. Unfortunately, there are no known efficient formulas for tripling and quintupling 

and, hence, these curves cannot benefit from multibase methods.  

A performance comparison with the best results from this chapter is relevant. Table 4.5 

shows the results using NAF and wNAF for Twisted Edwards with mixed /
e

EE  coordinates, 

refined multibase chains with bases {2,3} for Twisted Edwards using IE coordinates and refined 

multibase chains with bases {2,3,5} for extended Jacobi quartics using e
JQ  coordinates. Since 

curve settings using e
JQ  and IE  involve formulas with multiplications by curve parameters 

and /
e

EE  coordinates do not, in this case we consider three scenarios: 1 0.1D M= , 1 0.5D M=  

and 1 1D M= . Operation costs are taken from Tables 2.3 and 2.4 and cost of precomputation is 

not included for simplification purposes.  

It can be seen that the fastest curve using refined multibase chains (ExtJQuartic, e
JQ ) with 

no precomputations outperforms the best performer using radix-2 methods (TEdwards, /
e

EE ) if 

curve parameters do not introduce a significant overhead. For other cases, /
e

EE  using (w)NAF is  

Table 4.5. Comparison of lowest costs using multibase and radix-2 methods for scalar 

multiplication, n = 160 bits (cost of precomputation is not included). 

Curve Method 
Cost (0 pts) Cost (7 pts) 

1 0.1D M= 1 0.5D M= 1 1D M=  1 0.1D M= 1 0.5D M= 1 1D M=  

ExtJQuartic, d = 1, eJQ   refined (2,3,5) 1281M 1346M 1428M 1186M 1254M 1339M 

TEdwards, a = 1, IE refined (2,3) 1372M 1444M 1534M 1233M 1303M 1390M 

TEdwards, a = −1, /
e

EE  (w)NAF 1353M 1353M 1353M 1181M 1181M 1181M 
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the clear winner given the significant overhead introduced by extra multiplications by constants 

and/or the reduced gain margin obtained with the use of multibases.  

In conclusion, if curve parameters are suitably chosen then curves using multibase methods 

(which otherwise would be slower) may become competitive and even faster than the fastest 

known curves using radix-2 in memory-constrained devices. For other applications with no 

memory constraints, it is suggested the use of the fastest curves using (Frac-)wNAF. 

4.6. Other Applications, Variants and Challenges 

In this chapter, we have argued that an analysis based on the operation cost per bit should allow 

one to find the optimal multibase chain(s) for a given scalar. We showed that constraining that 

analysis to a “portion” of the chain at a time still enables efficient performance. Nevertheless, 

there are many unexplored possibilities that arise from this new approach. In particular, we have 

used Algorithm 4.3 for evaluating the different sequences using the operation cost per bit. 

However, the same methodology can be applied to different variants of this algorithm that could 

achieve better performance in settings with different relative operation costs.  

As stated before, provided formats for CONDITION1 and 2 evaluate sequences up to the next 

addition only. However, expanding the “range” of testing could improve performance further. 

The study of the potential improvement is left as future work. 

Also, as discussed in Section 4.4, Algorithm 4.3 employs an on-line congruency testing 

approach to select the division sequences. An alternative approach would involve on-the-fly 

calculation and comparison of the costs per bit of the possible sequences. This on-the-fly 

approach would lead to alternative algorithms different to the ones proposed here.  

Remarkably, other methods in the literature can take advantage of the proposed method. For 

instance, the tree-based approach by [DH08] can be optimized by employing the operation cost 

per bit to select division sequences instead of simply selecting the sequences that reach the lowest 

values. This could potentially allow one to select only one node (and to avoid keeping B nodes 

each time, saving memory). In this case, the method would take the form of the on-the-fly 

approach described above. Similar ideas apply to the case of multiple scalar multiplication 

[DKS09]. 

In the proposed algorithms, the congruency testing is performed after every performed 

(doubling, tripling, quintupling) operation (see Algorithm 4.3). In this case the number of 

iterations for conversion is determined by the total number of doublings, triplings and 

quintuplings. A simplified variant with faster conversion to multibase would involve the full 

execution of the chosen sequence until another addition is required, which reduces dramatically 
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the number of iterations required to the number of additions. The impact in the cost of scalar 

multiplication is left as future work. 

Closely following developments for single scalar multiplication, there have appeared recent 

efforts for speeding up multiple scalar multiplication with the form kP lQ+  using double-base 

chains. See for instance [DKS09] that presents the analogous of the original tree-based approach 

[DH08], or [ADI10]. All these works employ division chains and can be improved by exploiting 

the methodology based on the operation cost per bit exposed in this chapter. The different 

variants discussed in this subsection could also be adapted to this case. 

A note on recent work in the literature:  

Very recently and working on top of our techniques published in PKC2009 [LG09], Walter 

[Wal11] also proposed the use of the cost per bit to derive multibase algorithms based on division 

chains. Although his methodology is based on a slightly more elaborated cost function, results 

are expected to be similar to the ones obtained with the methodology in Section 4.4.1.1. 

Algorithms in [Wal11] are similar (with some variations) to the ones proposed in PKC2009 and 

revisited here. Although [Wal11] presented slightly better results, we implemented and tested the 

modified algorithms under the same conditions in which all our algorithms were tested and they 

achieved equivalent or slightly lower performance than our results. Walter proposed to simplify 

algorithms to obtain much more compact versions. Following these suggestions, we derived 

compact versions for our algorithms in the subsection “Highly Compact Multibase Algorithms, 

Bases {2,3}”, pp. 92.     

4.6.1. Open Challenges 

It has been shown in this chapter that the use of double- and multi-base representations enables 

faster scalar multiplication in terms of field multiplications and squarings. However, the 

conversion step in double-base and multi-base methods is more time consuming than using 

methods based on radix 2. This may or may not be a limiting factor depending on the 

characteristics of a particular implementation and the chosen platform.  

If scalar conversion to multibase representation is expensive, then it must be performed off-

line, limiting the applicability of these methods to scenarios in which the same scalar k is reused 

several times or the conversion can be carried out during an idle time (e.g., between the first and 

second phases of the ECDH scheme during data transmission). To overcome this restriction, 

more research is necessary for developing efficient conversion mechanisms for popular 
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platforms, accompanied by stringent benchmarking strategies (an inefficient implementation with 

an “optimized” binary-to-multibase conversion function would obviously lead to misleading 

conclusions).  

Another challenge relates to the efficiency gain that these methods provide. Following results 

from Section 4.5, theoretical estimates indicate that cost reductions for constrained and non-

constrained devices are in the ranges 7%-10% and 1%-3% in comparison with (w)NAF, 

respectively. The gain margin is expected to reduce further on certain platforms or even vanish in 

the case of non-constrained devices when considerations such as cache performance are taken 

into account; see illustrative test results on x86-64 processors in Section 5.6.4, subsection 

“Timings using Multibase Methods”. These observations are confirmed by recent results in the 

literature that achieve very close theoretical performance at the cost of highly expensive 

conversion steps [SEI11]. Moreover, for non-constrained devices there are curves that offer 

higher performance using classical radix 2 methods (see Table 4.5). In conclusion, implementers 

would probably prefer the adoption of multibase strategies when conversion (if expensive) can be 

performed off-line and the platform is a memory-constrained device, for which the cost 

reductions are non-negligible in comparison with radix-2 methods. 

A more somber horizon is envisioned for multiple scalar multiplication methods using double 

bases in the literature. A popular application of the operation uP vQ+  is signature verification 

(as needed for ECDSA; see §2.2.3). However, in this case integers u and v are calculated on-line 

as part of the verification process and, hence, conversion time from binary to double-base must 

be included in the computing cost. This reduces drastically (or completely eliminates) the 

possible gain obtained with these methods in multiple scalar multiplication.    

4.7. Conclusions 

This chapter discussed the efficient design of scalar multiplication algorithms based on double 

and multibase chains.   

In §4.1, we categorized and analyzed the most relevant methods using double-base and multi-

base representations in the literature, highlighting advantages and disadvantages. Then in §4.2 we 

formally described the original (width-w) multibase NAF method, presenting the theoretical 

analysis of the different variants using Markov chains. In §4.3, we applied the fractional window 

recoding to multibase NAF. The revised method allows any number of precomputations, 

enabling lower costs and/or better coupling to memory-constrained environments.  

In §4.4, we introduced a novel methodology based on the analysis of point operation cost per 

bit to design flexible algorithms able to find more efficient multibase chains. This approach was 



 
 

 

Chapter 4: Scalar Multiplication using Multibase Chains                                                             

 

 

102 

 

implicitly used in Longa and Gebotys [LG09] to derive refined mbNAF chains, although an 

explicit description of the algorithm derivation was missing. We have filled the gap in this 

chapter. Intuitively, given unlimited resources this approach is expected to lead to optimal 

multibase chains. We demonstrated that very compact algorithms are still able to achieve high 

performance. We derived algorithms for the case of bases {2,3} and {2,3,5}, and analyzed the 

performance gain with the increase in the complexity of the multibase evaluation. For illustration 

purposes, we focused the analysis on three scenarios: standard curves using Jacobian coordinates, 

extended Jacobi quartics using extended Jacobi quartics coordinates and Twisted Edwards curves 

using inverted Edwards coordinates.  

In §4.5 we carried out a detailed comparison of the studied methods with the best approaches 

in the literature. For further cost improvement, we applied the best precomputation method 

developed in Chapter 3 for each scenario. After extensive comparisons with the most efficient 

methods in the literature, we concluded that the refined multibase chains achieve the highest 

performance on all scenarios with no precomputations, introducing cost reductions in the range 

7%-10% in comparison with NAF. For the case of optimal use of precomputations, we show that 

the proposed algorithms are among the fastest ones, achieving practically equivalent performance 

to recent methods such as Yao-DBNS [MH09]. In this case, the theoretical cost reductions are in 

the range 1%-3% in comparison with (Frac)-wNAF.     

Finally, in §4.6 we discussed many potential possibilities for the multibase approach based on 

the analysis of the operation cost per bit. We detailed how this tool could potentially lead to 

different variants of the proposed multibase algorithms and how it could even improve existent 

methods in the literature. Other possible applications such as multiple scalar multiplications were 

also covered, as well as a discussion of open problems that challenge the practicality of double-

base and multi-base methods in real applications. In conclusion, we suggested the use of 

multibases for memory-constrained devices when the conversion step (if expensive) can be 

performed off-line. When precomputations are allowed, the gain may be negligible and faster 

curves without exploiting multibases are available.  
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5 Chapter 5 

Efficient Techniques for 

Implementing Elliptic Curves in 

Software 

In this chapter, we analyze and present experimental data evaluating the efficiency of several 

techniques for speeding up the computation of elliptic curve point multiplication on emerging 

x86-64 processor architectures. Our approach is based on a careful optimization of elliptic curve 

operations at all arithmetic layers in combination with techniques from computer architecture. 

Our contributions can be summarized as follows: 

• We analyze the efficient combination of two well-known techniques: elimination of 

conditional branches and incomplete reduction (IR), to achieve high-speed field 

arithmetic over pF . Specifically, we apply these techniques to the optimization of field 

arithmetic modulo a pseudo-Mersenne prime. 

• We study the impact of true data dependencies on elliptic curve operations. Moreover, to 

reduce the number of pipeline stalls, memory reads/writes and function calls in the 

execution of field and point arithmetic operations, we propose three generic techniques: 

field arithmetic scheduling, merging of point operations and merging of field operations.  

• The cost of explicit formulas is reduced further by minimizing the number of additions/ 
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subtractions and small constants and maximizing the use of operations exploiting IR. 

• We study the extension of all the previous techniques to field arithmetic over 2p
F , which 

has several applications in cryptography including its use as underlying field by the 

recently proposed Galbraith-Lin-Scott (GLS) method.  

• We explicitly state the improved explicit formulas using IR, with minimal number of 

operations and reduced number of data dependencies between contiguous field 

operations for two relevant cases: standard curves using J coordinates and Twisted 

Edwards curves using mixed homogeneous/extended homogeneous ( /
e

E E ) coordinates.   

• Finally, to illustrate the significant savings obtained by combining all the previous 

techniques with state-of-the-art ECC algorithms we present high-speed implementations 

of point multiplication that are up to 34% faster than the best previous results on x86-64 

processors. Our software takes into account results from Chapter 3 and includes the best 

precomputation scheme corresponding to each setting. 

Analysis and tests presented in this chapter are carried out and applied on emerging x86-64 

processors, which are getting widespread use in notebooks, desktops, workstations and servers. 

The reader should note, however, that some techniques and analysis are generic and can be 

extended to other computing devices based on 32-, 16- or 8-bit architectures. Whenever relevant, 

we briefly discuss the applicability of the techniques under analysis to other architectures.  

This chapter is organized as follows. After discussing some relevant previous work and 

background related to x86-64 processors in §5.1, we describe the techniques for optimizing 

modular reduction using a pseudo-Mersenne prime, namely incomplete reduction and elimination 

of conditional branches, in §5.2. Then, in §5.3 we study data dependencies between field 

operations and analyze some efficient countermeasures when their effect is potentially negative 

to performance. In §5.4, we describe our optimizations to explicit formulas that enable a 

reduction in the number of additions and other “small” operations. The extension of the 

techniques above to quadratic extension fields is presented in §5.5. Our high-speed 

implementations with and without exploiting the GLS method that illustrate the performance gain 

obtained with the techniques under analysis are presented in §5.6. Some conclusions are drawn in 

§5.7.    

5.1. Previous Work and the x86-64 Processor Family 

Since the 80’s and 90’s there have appeared an increasing number of studies focused on the 

optimization of the arithmetic of elliptic curves with application to cryptography. For example, 

some works have proposed methods using efficient arithmetic representations for scalars [Mor90, 

Sol00, DIM05, Lon07] and efficiently computable endomorphisms [GLV01, GLS08] to reduce 
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the number of point operations required for computing scalar multiplication. Other approaches 

have focused on constructing curve forms with fast group arithmetic and/or improved resilience 

against certain side-channel analysis (SCA) attacks [Sma01, BJ03b, Edw07], complemented by 

research studying efficient projective systems and optimized explicit formulas for point 

operations [CC86, CMO98, HWC+08, LM08b, HWC+09]. Yet another important aspect refers to 

the efficient implementation of long integer modular arithmetic [Kar95, Mon85, Com90, 

YSK02]. Given the myriad of possibilities, it is a very difficult task to determine which methods, 

once combined for the computation of scalar multiplication, are the most efficient ones for a 

specific platform. Notorious efforts in this direction are the efficient implementations on 

constrained 8-bit microcontrollers by [GPW+04, UWL+07], on 32-bit embedded devices by 

[XB01, GAS+05], on Graphical Processing Units (GPUs) by [SG08], on processors based on the 

Cell Broadband Engine Architecture (CBEA) by [CS09], on 32-bit processors by [BHL+01, 

Ber06], among others. In this work, we try to cover this analysis for the increasingly popular x86-

64-based processors.  

Elliptic Curve Scalar Multiplication on x86-64 Processors  

Modern CPUs from the notebook, desktop and server classes are decisively adopting the 64-bit 

x86 instruction set (a.k.a. x86-64) developed by [AMD]. The most relevant features of this new 

instruction set are the expansion of the general-purpose registers (GPRs) from 32 to 64 bits, the 

execution of arithmetic and logical operations on 64-bit integers and an increment in the number 

of GPRs, among other enhancements. In addition, these processors usually exhibit a highly 

pipelined architecture, improved branch predictors and complex execution stages that offer 

parallelism at the instruction level. Thus, this increasingly high complexity brings new paradigms 

to the software and compiler developer.      

It seems that the move to 64 bits, with the inclusion of a powerful 64-bit integer multiplier, 

favors prime fields. Although the analysis becomes complex and processor dependent, our tests 

on the targeted processors suggest that SSE2 and its extensions [Intel] are apparently not 

advantageous by themselves for the prime field arithmetic. This is probably due to the lack of 

carry handling and the fact that SSE2 multipliers can perform vector-multiplication with 

operands up to 32 bits only [HMS08]. However, this outcome could change in the near future 

with improved SIMD extensions, such as the upcoming Advanced Vector Extensions (AVX) that 

supports 256-bit SIMD vector registers.  

As consequence, it is still expected that a traditional approach for computing multiplication 

such as the “schoolbook” method performs better in this case. Methods such as Karatsuba 

multiplication theoretically reduce the number of integer multiplications but increase the number 

of other (usually cheaper) operations. Given the high performance of the multiplier on these 
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platforms, the cost of addition and other similar operations becomes non-negligible. Another 

aspect from this observation is that it now becomes relevant for the targeted 64-bit platforms the 

optimization of these usually neglected “small” operations.  

Another important feature is the highly pipelined architectures of these processors. For 

instance, experiments by [Fog2] suggest that Intel Atom, Intel Core 2 Duo and AMD 

architectures have pipelines with 16, 15 and 12 stages, respectively. Although sophisticated 

branch prediction techniques exist, it is expected that the “random” nature of cryptographic 

computations, specifically of modular reduction, causes expensive mispredictions that force the 

pipeline to flush.  

In this work, we analyze the performance of combining incomplete reduction (IR) and the 

elimination of conditional branches to obtain high-speed field arithmetic for performing 

operations such as addition, subtraction and multiplication/division by small constants using a 

very efficient pseudo-Mersenne prime. This effort puts together in an optimal way techniques by 

[YSK02], which only provided IR algorithms targeting primes of general form, with branchless 

field arithmetic recently adopted by some cryptographic libraries [mpFq, MIR]. In the process, 

we present experimental data quantifying the performance improvement obtained by eliminating 

branches in the field arithmetic. 

We also analyze the influence of deeply pipelined architectures in the ECC point 

multiplication execution. In particular, the increased number of pipeline stages makes (true) data 

dependencies between instructions in contiguous field operations expensive because these can 

potentially stall the execution for several clock cycles. These dependencies, also known as read-

after-write (RAW), are typically found between several field operations when the result of an 

operation is required as input by a following operation. In this work, we demonstrate the 

potentially high cost incurred by these dependencies, which is hardly avoided by compilers and 

dynamic schedulers in processors, and propose three techniques to reduce its effect: field 

arithmetic scheduling, merging of field operations and merging of point operations.  

The techniques above are first applied to modular operations using a prime p, which are used 

for performing the pF  arithmetic in ECC over prime fields. However, some of these techniques 

are generic and can also be extended to different scenarios using other underlying fields. For 

instance, Galbraith et al. [GLS09] recently proposed a faster way to do ECC that exploits an 

efficiently computable endomorphism to accelerate the execution of point multiplication over a 

quadratic extension field (a.k.a. GLS method); see Section 2.2.6. Accordingly, we extend our 

analysis to 2
p
F  arithmetic and show that the proposed techniques also lead to significant gains in 

performance in this case.  

Our extensive tests assessing the techniques under analysis cover at least one representative 

x86-64-based CPU from each processor class: 1.66GHz Intel Atom N450 from the notebook/ 
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netbook class, 2.66GHz Intel Core 2 Duo E6750 from the desktop class, and 2.6GHz AMD 

Opteron 252 and 3.0GHz AMD Phenom II X4 940 from the server/workstation class. 

Finally, to assess their effectiveness for a full point multiplication, the proposed techniques 

are applied to state-of-the-art implementations using Jacobian (J ) and mixed Twisted Edwards 

homogeneous/extended homogeneous ( /
e

E E ) coordinates on the targeted processors. Our 

measurements show that the proposed optimizations (in combination with state-of-the-art point 

formulas/coordinate systems, precomputation schemes and exponentiation methods) significantly 

speed up the execution time of point multiplication, surpassing by considerable margins best 

previous results. For instance, we show that a point multiplication at the 128-bit security level 

can be computed in only 181000 cycles (in about 60µsec.) on an AMD Phenom II X4 when 

combining  with GLS. This represents a cost reduction of about 29% over the closest 

previous result; see Section 5.6.4 for complete details. 

5.2. Optimizing Modular Reduction using a Pseudo-
Mersenne Prime 

In this section, we evaluate the performance gain of two techniques, namely incomplete reduction 

and elimination of conditional branches, and combine them to devise highly efficient field 

arithmetic with very fast modular reduction for operations such as addition, subtraction and 

division/multiplication by constants. We also show that incomplete reduction is not exclusive to 

addition/subtraction and can be easily extended to other operations, and that subtraction does not 

necessarily benefit from incomplete reduction when p is a suitably chosen pseudo-Mersenne 

prime. All tests described in this section were performed on our assembly language module 

implementing the field arithmetic over pF  and compiled with GCC version 4.4.3.  

5.2.1. Incomplete Reduction (IR)  

This technique was introduced by Yanik et al. [YSK02] for the case of primes of general form. 

Given two numbers in the range [0, 1]p − , it consists of allowing the result of an operation to 

stay in the range [0,2 1]s −  instead of executing a complete reduction, where 2 2 1sp p< < − , 

s n w= ⋅ , w is the basic wordlength (typically, 8,16,32,64w = ) and n is the number of words. If 

the modulus is a pseudo-Mersenne prime of the form 2m c−  such that m s=  and 2wc < , then 

the method gets even more advantageous. In the case of addition, for example, the result can be 

reduced by first discarding the carry bit in the most significant word and then adding the 

correction value c, which fits in a single w-bit register. Also note that this last addition does not 

produce an overflow because 2 (2 1) (2 ) 2m m mc c× − − − − < . The procedure is illustrated for the 

case of modular addition in Algorithm 5.1(b), for which the reduction step described above is 

/ eE E
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performed in steps 4-8. In contrast, it can be seen in Algorithm 5.1(a) that a complete reduction 

requires additionally the execution of steps 9-14 that perform a subtraction r p−  in case 

2mp r≤ < , where r is the partial result from step 3.  

Yanik et al. [YSK02] also shows that subtraction can benefit from IR when using a prime p 

of arbitrary form. However, we show in the following that for primes of special form, such as 

pseudo-Mersenne primes, that is not necessarily the case.  

 

Algorithm 5.1.  Modular addition with a pseudo-Mersenne prime 

Input:  integers , [0, 1]a b p∈ − , 2m
p c= − , m n w= ⋅ , where +, ,n w c ∈ Z  and 2

w
c <    

  Output: (a) (mod )r a b p= + ; (b) [0,2 1]m
r a b= + ∈ −  

           (a) With complete reduction           (b) With incomplete reduction  

  1:   carry = 0 1:   carry = 0 

  2:   For  i  from  0  to 1n −  do 2:   For  i  from  0  to 1n −  do 

  3:       ( , [ ]) [ ] [ ]carry r i a i b i carry← + +  3:       ( , [ ]) [ ] [ ]carry r i a i b i carry← + +  

  4:   If 1carry =  4:   If 1carry =  

  5:        carry = 0 5:        carry = 0 

  6:       ( , [0]) [0]carry r r c← +  6:       ( , [0]) [0]carry r r c← +  

  7:        For  i  from  1  to 1n −  do            7:        For  i  from  1  to 1n −  do            

  8:             ( , [ ]) [ ]carry r i r i carry← +  8:             ( , [ ]) [ ]carry r i r i carry← +  

  9:   Else 9:   Return r 

10:        borrow = 0   

11:        For  i  from  1  to 1n −  do   

12:             ( , [ ]) [ ] [ ]borrow R i r i p i borrow← − −    

13:        If  borrow = 0     

14:              r R←    

15:   Return r   

 

Modular Subtraction:  

Let us consider Algorithm 5.2. After step 3 we obtain the completely reduced value r a b= −  if 

0borrow = . If, otherwise, 1borrow =  then this bit is discarded and the partial result is given by 

2
m

r a b= − + , where b a> . This value is incorrect, because it has the extra addition with 2m . 

Step 6 performs the computation r p+  
= ( 2 ) (2 )m ma b c− + + −  = 12ma b c +− − + , where 

1 12 2 2m m ma b c + +< − − + <  since 2 0m c a b− + < − < . Then, by simply discarding the final carry 

from this result (i.e., by subtracting 2m ) we obtain the correct, completely reduced result 

, where 0 a b p p< − + < . Since Algorithm 5.2 gives the 12 2m ma b c a b p+− − + − = − +
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correct result without evaluating both values of borrow after step 3 (similarly to the case of carry 

in Algorithm 5.1(b)), there is no need for incomplete reduction in this case. 

 

Algorithm 5.2.  Modular subtraction with a pseudo-Mersenne prime and complete reduction  

Input:  integers , [0, 1]a b p∈ − , 2mp c= − , m n w= ⋅ , where +, ,n w c ∈ Z  and 2
w

c <  

Output:  (mod )r a b p= −  

1:   borrow = 0 

2:   For  i  from  0  to 1n −  do 

3:       ( , [ ]) [ ] [ ]borrow r i a i b i borrow← − −  

4:   If 1borrow =  

5:        carry = 0 

6:        For  i  from  1  to 1n −  do            

7:             ( , [ ]) [ ]carry r i r i carry← +  

8:   Return r 
 
 

Nevertheless, there are other types of “small” operations that may benefit from the use of IR. 

Next we analyze the cases that are useful to the setting of ECC over prime fields.  

Modular Addition with IR, [0,2 1]ma b+ ∈ −+ ∈ −+ ∈ −+ ∈ − , where [0, 1]a p∈ −∈ −∈ −∈ −  and [0,2 1]mb ∈ −∈ −∈ −∈ − :  

In this case, after addition we get 10 2 2ma b c+≤ + ≤ − − , where 1 12 2 2 2m m mc+ +< − − <  for 

practical values of m. Thus, if there is no final carry the result r is incompletely reduced such that 

[0, 2 1]mr ∈ − , as wanted. Otherwise, for the case 12 2 2m ma b c+≤ + ≤ − −  we discard the carry 

and add the correction value c such that 0 2 2 2 2m m mc a b c< ≤ + − + ≤ − <  to obtain an 

incompletely reduced result [0, 2 1]mr ∈ − . Consequently, Algorithm 5.1(b) also allows adding 

two terms where one of them can be in incompletely reduced form.  

Modular Multiplication by 3 with IR, 3 [0,2 1]ma ∈ −∈ −∈ −∈ −  , where [0, 1]a p∈ −∈ −∈ −∈ − :  

If this operation is performed by executing a a a+ + , internally, the first addition r a a= +
 
can 

be left incompletely reduced using Algorithm 5.1(b). Then, following the previous subsection, 

we can again use Algorithm 5.1(b) to perform the addition of the incompletely reduced value r 

with the completely reduced operand a to obtain the final result [0, 2 1]mr a+ ∈ − .  

Modular Division by 2 with IR, /2 [0,2 1]ma ∈ −∈ −∈ −∈ − , where [0,2 1]ma ∈ −∈ −∈ −∈ − :  

This operation is illustrated when using IR by Algorithm 5.3(b). If the value a is even, then a 

division by 2 can be directly applied through steps 5-7, where ( , [ ]) ( , [ ]) / 2carry r i carry r i←  

represents the concurrent assignments ( 1).[ ] ( 2 [ ]) / 2i wr i carry r i+ ← ⋅ +   and [ ](mod 2)carry r i← . 
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In this case, if [0,2 2]ma ∈ −  then the result 1[0,2 1]mr −∈ −  is completely reduced since 
12 1 2m m c− − << −  for practical values of m, such that 2wc <  and 1w m< − . If, otherwise, the 

operand a is odd, we first add p to a in steps 3-4 to obtain an equivalent from the residue class 

that is even. Then, 12 1 2 1m mc p a c+− + < + < − − , where the partial result has 1m +  bits 

maximum and is stored in ( , )carry r . The operation is then completed by dividing by 2 through 

steps 5-7, where the final result 12 ( 1) / 2 ( ) / 2 2 ( 1) / 2m mc p a c− − − < + < − + . Hence, the result is 

incompletely reduced because 2 2 ( 1) / 2 2 1m m mc c− ≤ − + ≤ − . If the result needs to be 

completely reduced then, for the case that ( ) / 2 [ ,2 ( 1) / 2 ]mp a p c+ ∈ − +   , one needs to 

additionally compute a subtraction with p such that 0 ( ) / 2 ( 1) / 2 2mp a p c c≤ + − < − < − , as 

performed in steps 9-12 of Algorithm 5.3(a).  

It is also interesting to note that in the case that input a is in completely reduced form, i.e., if 

, after steps 6-7 in Algorithm 5.3(b) we get 12 ( 1) / 2 ( ) / 2 2m mc p a c− − + < + < − , 

which is in completely reduced form. 

 

Algorithm 5.3.  Modular division by 2 with a pseudo-Mersenne prime 

Input:  integer [0,2 1]m
a ∈ − , 2m

p c= − , m n w= ⋅ , where +, ,n w c ∈ Z  and 2
w

c <    

  Output: (a) / 2(mod )r a p= ; (b) / 2 [0,2 1]m
r a= ∈ −  

           (a) With complete reduction           (b) With incomplete reduction  

  1:   carry = 0 1:   carry = 0 

  2:   If  a  is odd 2:   If  a  is odd 

  3:        For  i  from  0  to 1n −  do            3:        For  i  from  0  to 1n −  do            

  4:            ( , [ ]) [ ] [ ]carry r i a i p i carry← + +  4:            ( , [ ]) [ ] [ ]carry r i a i p i carry← + +  

  5:  ( , [ 1]) ( , [ 1]) / 2carry r n carry r n− ← −  5:  ( , [ 1]) ( , [ 1]) / 2carry r n carry r n− ← −  

  6:   For  i  from 2n −  to  0  do            6:   For  i  from 2n −  to  0  do            

  7:        ( , [ ]) ( , [ ]) / 2carry r i carry r i←  7:        ( , [ ]) ( , [ ]) / 2carry r i carry r i←  

  8:   borrow = 0 8:   Return r 

  9:   For  i  from  0  to 1n −  do   

10:        ( , [ ]) [ ] [ ]borrow R i r i p i borrow← − −    

11:   If  borrow = 0     

12:              r R←    

13:   Return r   

 

To evaluate in practice the advantage of using incomplete reduction, we implemented in 

assembly language both versions with and without IR of each operation discussed in this section. 

In Table 5.1, we summarize our results on the targeted Intel and AMD processors. 

[0, 1]a p∈ −
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Table 5.1. Cost (in cycles) of modular operations when using incomplete reduction (IR) and 

complete reduction (CR); 2562 189p = − . 

Modular Operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

IR CR 
Cost 

reduction (%) 
IR CR 

Cost 

reduction (%) 
IR CR 

Cost reduction 

(%) 

 Addition 31 45 31% 20 25 20% 13 20 35% 

 Multiplication by 2 27 40 33% 19 24 21% 10 17 41% 

 Multiplication by 3 43 69 38% 28 43 35% 15 23 35% 

 Division by 2 57 61 7% 20 25 20% 11 18 39% 

 

As can be seen, in our experiments using the pseudo-Mersenne prime 2562 189p = −  we 

obtain significant reductions in cost ranging from 7% to up to 41% when using IR.    

It is important to note that, because multiplication and squaring may accept inputs in the 

range [0, 2 1]m − , an operation using IR can precede any of these two operations. Thus, the 

reduction process (which is left “incomplete” by the operation using IR) is fully completed by 

these multiplications or squarings without any additional cost. If care is taken when 

implementing point operations, virtually all additions and multiplications/divisions by small 

constants can be implemented with IR because most of them have results that are later required 

by multiplications or squarings only. See Appendix B1 for details about the scheduling of field 

operations pF  suggested for point formulas using J and /
e

E E  coordinates. 

5.2.2. Elimination of Conditional Branches  

Conditional branches may be expensive in several modern processors with deep pipelines if the 

prediction strategy fails in most instances in a particular implementation. Recovering from a 

mispredicted branch requires the pipeline to flush, wasting several clock cycles that may increase 

the overall cost significantly. In particular, the reduction portion of modular addition, subtraction 

and other similar operations is traditionally expressed with a conditional branch. For example, let 

us consider the evaluation in step 4 of Algorithm 5.1(b) for performing a modular addition with 

IR. Because , [0, 1]a b p∈ −  and 2m p c− =  (again considering 2mp c= −  and m s= ), where c 

is a relatively small number such that 2m p≈  for practical estimates, the possible values for 

carry after computing a b+  in steps 2-3, where ( ) [0,2 2]a b p+ ∈ − , are (approximately) equally 

distributed and describe a “random” sequence for all practical purposes. In this scenario, only an 

average of 50% of the predictions can be correct in the best case. Similar results are expected for 

conditional branches in other operations (see Algorithms 5.1, 5.2, 5.3). 

To avoid the latter effect, it is possible to eliminate conditional branches by using techniques 
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such as look-up tables or branch predication. In Figure 5.1, we illustrate the replacement of the 

conditional branch in step 4 of Algorithm 5.1(b) by a predicated move instruction (Figure 5.1(a)) 

and by a look-up table with indexed indirect addressing (Figure 5.1(b)). In both cases, the 

strategy is to perform an addition with 0 if there is no carry-out (i.e., the reduction step is not 

required) or an addition with 189c = , where 2562 189p = − , if there is carry-out and the 

computation 256( 2 ) 189a b+ − +  is necessary. On the targeted CPUs, our tests reveal that branch 

predication performs slightly better in most cases. This conclusion is platform-dependent and, in 

the case of the targeted processors, may be due to the faster execution of cmov in comparison to 

the memory access required by the look-up table approach. 

 

(a) (b) 

 >  �  >  � 

 > cmovnc %rax,%rcx  > adcq $0,%rax 

 > addq %rcx,%r8  > addq (%rcx,%rax,8),%r8

 > movq %r8,8(%rdx)   > movq %r8,8(%rdx)  

 > adcq $0,%r9  > adcq $0,%r9 

 > movq %r9,16(%rdx)   > movq %r9,16(%rdx)  

 > adcq $0,%r10  > adcq $0,%r10 

 > movq %r10,24(%rdx)   > movq %r10,24(%rdx)  

 > adcq $0,%r11  > adcq $0,%r11 

 > movq %r11,32(%rdx)   > movq %r11,32(%rdx)  

 > ret  > ret 

Figure 5.1. Steps 4-9 of Alg. 5.1(b) for executing modular addition using IR, where 
256

2 189p = − . The conditional 

branch is replaced by (a) cmov instruction (initial values %rax=0, %rcx=189) and (b) look-up table using indexed 

indirect addressing mode (preset values %rax=0, (%rcx)=0, 8(%rcx)=189). Partial addition a b+  from step 3 is 

stored in registers %r8-r11 and final result is stored in x(%rdx). x86-64 assembly code uses AT&T syntax. 

To quantify in practice the difference in performance obtained by implementing modular 

arithmetic with and without conditional branches, we tested both schemes on the targeted Intel 

and AMD processors. The results are summarized in Table 5.2. For addition, subtraction and 

division by 2, we use Algorithms 5.1(a), 5.2 and 5.3(a), respectively. In the case of addition and 

division by 2 using IR, we use Algorithms 5.1(b) and 5.3(b), respectively. Multiplication by 2 is a 

variation of the addition operation for which 2a  is computed as (mod )a a p+ .  

In Table 5.2, the cost reductions obtained by eliminating CBs can be as high as 50%. 

Remarkably, the greatest performance gains are obtained in the cases of operations exploiting IR. 

For instance, on Core 2 Duo, an addition using IR reduces its cost in 46% when CBs have been 

eliminated in comparison to only the 36% reduction obtained by an addition with complete 

reduction. Thus, elimination of CBs favors more strongly modular arithmetic using IR. This is 
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Table 5.2. Cost (in cycles) of modular operations without conditional branches (w/o CB) against 

operations using conditional branches (with CB); 2562 189p = − . 

Modular Operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

w/o 

CB 

With 

CB 

Cost 

reduction (%) 

w/o 

CB 

With 

CB 

Cost 

reduction (%) 

w/o 

CB 

With 

CB 

Cost reduction 

(%) 

  Subtraction 34 37 8% 21 37 43% 16 23 30% 

  Addition with IR 31 35 11% 20 37 46% 13 21 38% 

  Addition 45 43 −4.4% 25 39 36% 20 23 13% 

  Mult. by 2 with IR 27 34 21% 19 38 50% 10 19 47% 

  Mult. by 2 40 42 5% 24 38 37% 17 20 15% 

  Div. by 2 with IR 57 66 14% 20 36 44% 11 18 39% 

  Div. by 2 61 70 13% 25 39 36% 18 27 33% 

 

due to the fact that modular operations exploiting IR allow very compact implementations that 

are even easier to schedule efficiently when branches are removed. It is also interesting to note 

that, when comparing Core 2 Duo’s and Opteron’s performances, gains are higher for the former 

processor, which has more stages in its pipeline. Roughly speaking, the gain obtained by 

eliminating (poorly predictable) CBs on these architectures grows proportionally with the number 

of stages in the pipeline. In contrast, the gains on Intel Atom are significantly smaller since the 

pipeline execution and Instruction-Level Parallelism (ILP) on this in-order processor are much 

less efficient and, hence, the relative cost of misprediction penalty reduces.  

Following the conclusions above, we have implemented ECC point formulas such that the 

gain obtained by combining IR and the elimination of CBs is maximal. The reader is referred to 

Appendix B1 for details about the cost of point formulas in terms of field operations when using 

J  and /
e

E E  coordinates.  

Next, we evaluate the cost of point doubling and doubling-addition (using Jacobian 

coordinates) when their “small” field operations are implemented with complete or incomplete 

reduction and with or without conditional branches. For the analysis, we use the revised doubling 

formula (5.2), Section 5.4, and the doubling-addition formula introduced in [Lon07, formula 

(3.5), Section 3.2]. The results are shown in Table 5.3. 

As can be seen, the computing costs of point doubling and doubling-addition on the AMD 

processor reduce in 12% and 9%, respectively, by combining the elimination of conditional 

branches with the use of incomplete reduction. Without taking into account precomputation and 

the final inversion to convert to affine, these reductions represent about 11% of the computing 

cost of point multiplication. A similar figure is observed for Intel Core 2 Duo in which doubling 
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Table 5.3. Cost (in cycles) of point operations with Jacobian coordinates when using incomplete 

reduction (IR) or complete reduction (CR) and with or without conditional branches (CB); 
2562 189p = − .  

Point operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

CR and 

CBs 

CR and 

no CBs 

IR and  

no CBs 

CR and 

CBs 

CR and 

no CBs 

IR and  

no CBs 

CR and 

CBs 

CR and 

no CBs 

IR and no  

CBs 

Doubling (DBL)  3480 3430 3381 1184 1094 1051 910 824 803 

Relative reduction (%) - 1% 3% - 8% 11% - 9% 12% 

Doubling-addition 8828 8697 8663 2656 2468 2443 2037 1851 1849 

Relative reduction (%) - 1% 2% - 7% 8% - 9% 9% 

Estimated relative 

reduction for 256-bit 

point multiplication (%) 

- 1% 3% - 8% 10% - 9% 11% 

 

and doubling-addition are reduced by approx. 11% and 8%, respectively. These savings represent 

a reduction of about 10% in the cost of point multiplication (again, without considering 

precomputation and the final inversion). In contrast, following previous observations (see Table 

5.2) the techniques are less effective on architectures such as Intel Atom, where the ILP is less 

powerful and branch misprediction penalty is relatively less expensive. In this case, the cost 

reduction of point multiplication is only about 3%.     

We remark that the algorithms discussed in this section combining completely and 

incompletely reduced numbers are generic and can be applied to different platforms. Also, the 

gain obtained by eliminating conditional branches is strongly tied to the pipeline length. So in 

general it is expected to provide a performance improvement on any architecture with high 

number of pipeline stages such as most AMD and Intel processors.  

5.3. Minimizing the Effect of Data Dependencies 

In this section, we analyze (true) data dependencies between “close” field operations and propose 

three techniques to minimize their effect in the point multiplication performance.  

Definition 5.1. Let i and j be the computer orders of instructions iI  and jI  in a given program 

flow. We say that instruction jI  depends on instruction iI  if: 

                           [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]i j i j i jW I R I R I W I W I W I∩ ∪ ∩ ∪ ∩ ≠ ∅ ,                          (5.1) 
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where ( )xR I  is the set of memory locations or registers that are read by xI  and ( )xW I  is the set 

of memory locations or registers written by xI .  

Modern out-of-order processors and compilers deal relatively well with anti-dependencies 

( ( ) ( )i jR I W I∩ , i.e., if iI  reads a location later updated by jI ) and output dependencies 

( ( ) ( )i jW I W I∩ , i.e., if both iI  and jI  write on the same location) through register renaming. 

However, true or RAW dependencies ( ( ) ( )i jW I R I∩ , i.e., if jI  reads something written by iI ) 

cannot be removed in the strict sense of the term and are more dangerous to the performance of 

architectures exploiting ILP.  

Corollary 5.1. Let iI  and jI  be write and read instructions, respectively, holding true data 

dependence, i.e., ( ) ( )i jW I R I∩ ≠ ∅ , where i j<  and iI  and jI  are scheduled to be executed at 

the thi  and thj  cycle, respectively, in a non-superscalar pipelined architecture. Then, if 

writej iρ δ= − <  the pipeline is to be stalled for at least ( )writeδ ρ−  cycles, where writeδ  specifies 

the number of cycles required by the write instruction iI  to complete its pipeline latency after 

instruction fetching.  

Although Corollary 5.1 considers an ideal non-superscalar pipeline, it allows us to simplify 

the analysis on more complex processors. In particular, the value writeδ , which strongly depends 

on the particular characteristics of a given architecture, can be considered for practical purposes 

roughly equal to the pipeline size. There are two approaches to minimize the appearance of 

pipeline stalls due to RAW dependencies: by instruction scheduling and using data forwarding. 

Although modern compilers and out-of-order schedulers of processors have powerful 

capabilities, in our targeted application these still have great limitations to calculate addresses so 

that rescheduling of instructions between neighboring field operations is possible. On the other 

hand, hardware techniques such as data forwarding allow a significant reduction in the value 

writeδ  by sending back the result of an operation into the decode stage so that this result is 

immediately available to a coming instruction before the current instruction commit/store the 

output. Unfortunately, in our application most field operations are not able to efficiently exploit 

forwarding in case the result is required by the following operation because several consecutive 

writings to memory are involved in the process.  

The problems above are illustrated by the execution of two consecutive field additions in 

Figure 5.2. For the remainder, given a field operation “ ∗ ”, the computation ← ∗res op1 op2  is 

denoted by operation(op1,op2,res). 
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      � 

  > addq %rcx,%r8 

  > movq %r8,8(%rdx)  

  > adcq $0,%r9 

  > movq %r9,16(%rdx)  

  > adcq $0,%r10 

  > movq %r10,24(%rdx)  

          �  > adcq $0,%r11 

 > Add(op1,op2,res1)  > movq %r11,32(%rdx)  

 > Add(res1,op3,res2)  > xorq %rax,%rax 

          �  > movq $0xBD,%rcx 

  > movq 8(%rdi),%r8 

  > addq 8(%rsi),%r8 

  > movq 16(%rdi),%r9 

  > adcq 16(%rsi),%r9 

  > movq 24(%rdi),%r10 

  > adcq 24(%rsi),%r10 

  > movq 32(%rdi),%r11 

  > adcq 32(%rsi),%r11 

      � 

Figure 5.2. Field additions with RAW dependencies on an x86-64 CPU (
256

2 189p = − ). High-level field operations 

are in the left column and low-level assembly instructions corresponding to each field operation are to the right. 

Destination x(%rdx) of first field addition = source x(%rdi) of second field addition. RAW dependencies are 

indicated by arrows. 

As can be seen in Figure 5.2, results stored in memory in the last stage of the first addition 

are read in the beginning of the second addition. First, if a compiler or out-of-order scheduler is 

unable of identifying the common addresses then it will not be able of exploiting rescheduling to 

prevent pipeline stalls due to inter-field operation dependencies. Moreover, four consecutive 

writings to memory and then four consecutive readings need to be performed because operands 

are 256-bit long distributed over four 64-bit registers. This obviously complicates the extraction 

of any benefit from data forwarding. If write xδ ρ>  for at least one of the dependences x indicated 

by arrows then the pipeline is expected to stall for at least ( )write xδ ρ−  cycles. Thus, for the 

writing/reading sequence in Figure 5.2, the pipeline is roughly stalled by  for 

0 4x≤ < .   

Definition 5.2. Two field operations ( , , )i m n pOP op op res  and ( , , )j r s tOP op op res  are said to be 

data dependent at the field arithmetic level if i j<  and p rres op=  or p sres op= , where iOP  

and jOP  denote the field operations performed at positions thi  and thj  during a program 

execution, and op  and res  are registers holding the inputs and result, respectively. Then, this is 

called a contiguous data dependence in the field arithmetic if 1j i− = , i.e., iOP  and jOP  are 

consecutive in the execution sequence. When understood in the context we refer to these 

max( )write xδ ρ−
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dependencies happening at the field arithmetic level as simply contiguous data dependencies for 

brevity. 

For the applications targeted in this work all field operations follow a similar writing/reading 

pattern to that one shown in Figure 5.2, and hence, two contiguous, data dependent field 

operations hold several data dependencies x between their internal write/read instructions. 

Following Definition 5.2 and Corollary 5.1, contiguous data dependencies pose a problem when 

write xδ ρ>  in a given program execution, in which case the pipeline is stalled by roughly 

max( )write xδ ρ−  cycles for all dependencies x. Note that at fewer dependent write/read 

instruction pairs (i.e., at smaller field sizes) the expression max( )write xδ ρ−
 
grows as well as the 

number of potential stalled cycles. Similarly, at larger computer wordlengths w the value

max( )write xδ ρ−  is expected to increase, worsening the effect of contiguous data dependencies. 

For instance, neglecting other architectural factors and assuming a fixed pipeline length, these 

dependencies are expected to affect performance more dramatically in 64-bit architectures in 

comparison with 32-bit architectures.  

Closely following the analysis above, we propose three techniques that help to reduce the 

number of contiguous data dependencies and study several practical scenarios in which this 

would allow us to improve the execution performance of point multiplication. As a side effect 

our techniques also reduce the number of function calls and memory accesses. The reader should 

note that these additional benefits are processor-independent.  

5.3.1. Field Arithmetic Scheduling 

A straightforward solution to eliminate contiguous data dependencies is to perform a careful 

scheduling of field operations inside point formulas in such a way that data-dependent field 

operations are not contiguous. For all practical purposes, we can consider that any field operation 

has an executing latency insδ  that is longer than the latency of a write instruction, i.e., 

ins writeδ δ> . Hence, by inserting any “independent” field operation between two consecutive 

operations holding contiguous data dependence we guarantee that the new relative positions 

,new xρ  of the data-dependent instructions accomplishes ,new x x ins writeρ ρ δ δ= + >  for all data 

dependencies x, where xρ  denotes the original relative positions between data-dependent 

write/read instructions. 

We have tested several field operation “arrangements” to observe the latter behavior on 

different processors. We detail here a few of our experiments with field multiplication on an Intel 

Core 2 Duo. For example, let us consider the field multiplication sequences given in Table 5.4. 

As can be seen, Sequence 1 involves a series of “ideal” data-independent field multiplications, 

where the output of a given operation is not an input to the immediately following operation. In 
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this case, the execution reaches its maximal performance with an average of 110 cycles per 

multiplication because for any pair of data-dependent multiplications we have x writeρ δ>> . In 

contrast, Sequence 2 is highly dependent because each output is required as input in the 

following operation. In this case, write xδ ρ>  for at least one dependence x. This is the worst-case 

scenario with an average of 128 cycles per multiplication, which is about 14% less efficient than 

the “ideal” case. We have also studied other possible arrangements such as Sequence 3, in which 

operands of Sequence 2 have been reordered. This slightly amortizes the impact of contiguous 

data dependencies because xρ  is increased, improving the performance to 125 cycles/mult.  

Table 5.4. Various sequences of field operations with different levels of contiguous data 

dependence. 

  Sequence 1   Sequence 2    Sequence 3 

> Mult(op1,op2,res1)  > Mult(op1,op2,res1)  > Mult(op2,op1,res1)  

> Mult(op3,op4,res2)   > Mult(res1,op3,res2)   > Mult(op3,res1,res2)  

 > Mult(res1,op5,res3)   > Mult(res2,op4,res3)   > Mult(op4,res2,res3)  

 > Mult(res2,op6,res4)   > Mult(res3,op5,res4)   > Mult(op5,res3,res4)  

 

Similarly, we have also tested the effect of contiguous data dependencies on other field 

operations. In Table 5.5, we summarize the most representative field operation “arrangements” 

and their costs. As can be seen, the reductions in cost obtained by switching from an execution 

with strong contiguous data dependence (worst-case scenario with Sequence 2) to an execution  

Table 5.5. Average cost (in cycles) of modular operations using best-case (no contiguous data 

dependencies, Sequence 1) and worst-case (strong contiguous data dependence, Sequence 2) 

“arrangements” ( 2562 189p = − , on a 2.66GHz Intel Core 2 Duo E6750).  

Modular Operation 

Core 2 Duo E6750 

Sequence 1 Sequence 2 
Cost 

reduction (%) 

  Subtraction  21 23 9% 

  Addition with IR 20 24 17% 

  Multiplication by 2 with IR 19 23 17% 

  Multiplication by 3 with IR 28 34 18% 

  Division by 2 with IR 20 30 33% 

  Squaring 101 113 11% 

  Multiplication 110 128 14% 



 
 

 

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software                              

 

 

119 

 

with no contiguous data dependencies (best-case scenario with Sequence 1) range from 

approximately 9% to up to 33% on an Intel Core 2 Duo. Similar results were observed for the 

targeted AMD Opteron and Phenom II processors, where the high performance of their 

architectures significantly reduce relative positions xρ  between their data-dependent write/read 

instructions, increasing the value max( )write xδ ρ− . Thus, minimizing contiguous data 

dependencies is expected to improve the execution of point multiplication on all these processors. 

In contrast, Sequence 1 and Sequence 2 perform similarly on processors such as Intel Atom, in 

which the much less powerful architecture tends to increase values xρ  such that write xδ ρ<  for 

all dependencies x. 

5.3.2. Merging Point Operations 

This technique complements and increases the gain obtained by scheduling field operations. As 

expected, in some cases it is not possible to eliminate all contiguous data dependencies in a point 

formula. A clever way to increase the chances of eliminating more of these dependencies is by 

“merging” successive point operations into unified functions.  

For example, let us consider the following sequence of field operations for computing a point 

doubling using Jacobian coordinates, 1 1 1 1 1 12( : : ) ( : : )X Y Z X Y Z→
 
(DblSub(b,c,a) represents 

the operation 2 (mod )a b c p← − ; see Section 5.3.3):
 

 
   > Sqr(Z1,t3)   > Mult(X1,t2,t4)   > Sqr(t1,t2) 

   > Sqr(Y1,t2)  > Mult(t1,t0,t3)   > DblSub(t2,t4,X1)  •  

   > Add(X1,t3,t1)        > Sqr(t2,t0)  > Sub(t4,X1,t2)     •  

   > Sub(X1,t3,t3)    > Div2(t3,t1) > Mult(t1,t2,t4)    •   

 > Mult3(t3,t0)   •        > Mult(Y1,Z1,Z1) > Sub(t4,t0,Y1)     •  

 

In total, there are five contiguous data dependencies between field operations (denoted by 

" ")•  in the sequence above. Note that the last stage accounts for most dependencies, which are 

very difficult to eliminate. However, if another point doubling follows, one could merge both 

successive operations and be able to reduce the number of contiguous data-dependent operations. 

Consider, for example, the following arrangement of two consecutive doublings: 

 
 > Sqr(Z1,t3)   > Mult(t1,t0,t3)   > DblSub(t2,t4,X1)  > Mult3(t3,t1)  

 > Sqr(Y1,t2)  > Sqr(t2,t0)   > Sub(t4,X1,t2) •   > Sqr(Y1,t2) 

 > Add(X1,t3,t1)   > Div2(t3,t1)  > Add(X1,t3,t5)  > Mult(t1,t5,t3)  

 > Sub(X1,t3,t3)   > Mult(Y1,Z1,Z1)  > Mult(t1,t2,t4)  > Mult(t2,X1,t4)  

 > Mult3(t3,t0)  •          > Sqr(t1,t2)   > Sub(X1,t3,t3)  > Div2(t3,t1)  

 > Mult(X1,t2,t4)   > Sqr(Z1,t3)   > Sub(t4,t0,Y1)   > … 
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As can be seen, the sequence above (instructions from the second doubling are in bold) 

allows us to further reduce the number of dependencies from five to only two.  

In ECC implementations, it appears natural to merge successive doubling operations or a 

doubling and an addition. Efficient elliptic curve point multiplications kP  use NAF in 

combination with some windowing strategy to recode the scalar k (see Section 2.2.4.3). For 

instance, wNAF guarantees at least w  successive doublings between point additions. Also, one 

could exploit the efficient doubling-addition operation by [Lon07] for Jacobian coordinates or the 

combined (dedicated) doubling-(dedicated) addition by [HWC+08] for mixed Twisted Edwards 

homogeneous/extended homogeneous coordinates (see Table 2.4). Hence, an efficient solution 

for these systems is to merge ( 1)w −  consecutive doublings (for an optimal choice of w) in a 

separate function and merge each addition with the precedent doubling in another function. On 

the other hand, if an efficient doubling-addition formula is not available for certain setting, then it 

is suggested to merge w  consecutive doublings in one function and have the addition in a 

separate function. Note that for different coordinate systems/curve forms/point multiplication 

methods the optimal merging strategy may vary or include different operations.  

Remarkably, a side-effect of this technique is that the number of function calls to point 

formulas is also reduced.  

5.3.3. Merging Field Operations 

This technique consists in merging various field operations with common operands to implement 

them in a joint function. There are two scenarios where this approach becomes attractive: 

• The result of a field operation is required as input by a following operation: merging 

reduces the number of memory reads/writes and eliminates directly potential contiguous 

data dependencies. 

 

• Operands are required by more than one field operation: merging reduces the number of 

memory reads/writes. 

We remark that the feasibility of merging certain field operations strictly depends on the 

chosen platform and the number of general purpose registers available to the programmer/ 

compiler. Also, before deciding on a merging option implementers should analyze and test the 

increase in the code size and how this affects the performance of the cache for example. 

Accordingly, in the setting of ECC over prime fields, multiplication and squaring are not 

recommended to be merged with other operations if multiple functions containing these 

operations are necessary. The code increase could potentially affect the cache performance.  
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Example 5.1. Taking into account the considerations above, the following merged field 

operations can be advantageous on x86-64-based processors using J and /
e

E E  coordinates: 

2 (mod )a b p− , (mod )a a a p+ + , and the merging of (mod )a b p−  and ( ) 2 (mod )a b c p− − .  

We remark that the list in the example above is not exhaustive. Different platforms with more 

registers may enable a much wider range of merging options. Also, other possibilities for 

merging could be available for different coordinate systems and/or underlying fields (for 

instance, see Section 5.5.2 for the merging options suggested for ECC implementations over 

quadratic extension fields).  

To illustrate the impact of scheduling field operations, merging point operations and merging 

field operations, we show in Table 5.6  the cost of point doubling using Jacobian coordinates 

when using these techniques in comparison with a naïve implementation with a high number of 

dependencies. As can be seen, by reducing the number of dependencies from ten to about one per 

doubling, minimizing function calls and reducing the number of memory reads/writes, we are 

able to reduce the cost of a doubling by 12% and 8% on Intel Core 2 Duo and AMD Opteron 

processors, respectively. It is also important to note that on a processor such as AMD Opteron, 

which has a smaller pipeline and consequently less lost due to contiguous data dependencies 

(smaller writeδ  with roughly the same values xρ  as Intel Core 2 Duo), the estimated gain 

obtained with these techniques in the point multiplication is lower (5%) in comparison with the 

Intel processor (9%). Finally, following our analysis in previous sections, Intel Atom only 

obtains a very small improvement in this case because contiguous data dependencies do not affect 

the execution performance significantly (see Section 5.3.1).  

 

Table 5.6. Cost (in cycles) of point doubling using Jacobian coordinates with different number of 

contiguous data dependencies and the corresponding reduction in the cost of point multiplication. 

“Unscheduled” refers to implementations with a high number of dependencies (here, 10 

dependencies per doubling). “Scheduled and merged” refers to implementations optimized 

through the scheduling of field operations, merging of point operations and merging of field 

operations (here, 1.25 dependencies per doubling); 2562 189p = − . 

Point Operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

 Unscheduled 
Scheduled 

and merged 
Unscheduled 

Scheduled 

and merged 
Unscheduled 

  Scheduled 

and merged 

Doubling 3390 3332 1115 979 786  726 

Relative reduction (%) - 2% - 12% - 8% 

Estimated reduction for 

256-bit point mult. (%) 
- 1% - 9% - 5% 
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 Mul = multiplication, Sqr = squaring, Add = addition, Sub = subtraction, Mulx = multiplication 

by x, Divx = division by x. 
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The reader is referred to Appendix B1 for the explicit formulas optimized by scheduling or 

merging field operations and merging point operations for the case of J  and /
e

E E . 

5.4. Minimizing the Cost of Point Operations 

Several explicit formulas in the literature can be further optimized with the insertion of divisions 

by 2 by means of the equivalence relation (2.9) of projective coordinates. This trick helps to 

eliminate constants or reduce their value, which minimizes the need of multiple additions.  

Let us illustrate this technique with point doubling. Consider, for example, the doubling 

formula using Jacobian coordinates in pp. 90-91 of [HMV04] that has a cost of 4Mul 4Sqr ++

1Add + 4Sub + 2Mul2 +1Mul3 +1Div2
 

1
. If we fix 1 *2 pλ −= ∈F  in the projective equivalence 

relation (2.10) that formula can be modified as follows: 

2
2 2X α β= − ,  ( ) 4

2 2 1Y X Yα β= − − ,  2 1 1Z Y Z= ,         (5.2)               

where 2 2
1 1 1 13( )( ) 2X Z X Zα = + −  and 2

1 1X Yβ = . With formula (5.2), the operation count is 

reduced to 4Mul 4Sqr +1Add + 5Sub +1Mul3 +1Div2+ , replacing two multiplications by 2 with 

one subtraction. Moreover, because constants are minimized, there are greater chances that 

more “small” operations are executed using incomplete reduction. In Algorithm 5.4, we show an 

efficient implementation of point doubling (5.2) with optimal use of incomplete reduction (every 

addition and multiplication/division by constant precedes a multiplication or squaring), 

minimized number of contiguous data dependencies between field operations and exploiting the 

use of merged field operations. This execution costs IR4Mul 4Sqr +1Add + 3Sub +1DblSub ++

IR IR1Mul3 +1Div2   (where operationIR represents an operation using incomplete reduction) and 

has 5 contiguous data dependencies. In Algorithm 5.4, operators ⊕, ⊗ and � represent addition, 

multiplication by constant and division by constant using incomplete reduction, respectively. 

These operations are computed with Algorithm 5.1(b) for addition and multiplication by 3, and 

with Algorithm 5.3(b) for division by 2 (see Section 5.2.1 for details). 

In certain formulas, another optimization is possible. If 1Mul 1Sqr 4Add− >  and the values 
2

a  and 2
b  are available, one can compute a b⋅  as . See for example 

addition and doubling-addition formulas, option 1, of the online database EPAF [Lon08].  

We remark that the optimizations above are not limited to 64-bit architectures and that are in 

general advantageous on any platform whenever division by 2 is approximately as efficient as 

field addition. 

Finally, we observe that in some settings field subtraction is more efficient than addition with 

complete reduction (see for example Table 5.2, when using a pseudo-Mersenne prime). Thus,  

2 2 2( ) 2a b a b + − − 
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Algorithm 5.4.  Point doubling using Jacobian coordinates    

Input:  point 1 1 1( : : ) ( )pP X Y Z E= ∈ F   

  Output:  2 ( : : ) ( )out out out pP X Y Z E= ∈ F  

  1: 
  

2 2
4 31 1,t Z t Y← ←   

  2: 
  1 1t X← ⊕ 4t                                                                                         (use Algorithm 5.1(b)) 

  3: 
  4 1 4t X t← −  

  4: 
  0 3t ← ⊗ 4t                                                                                           (use Algorithm 5.1(b))                                                                                         

  5: 
  5 1 3t X t← ×                                                                                                       

  6: 
  4 0 1t t t← ×                                                                                                       

  7: 
  

2
0 3t t←                                                                                                       

  8: 
  1 4t t← � 2                                                                                          (use Algorithm 5.3(b))                                                                

  9: 
  

2
3 1 11 , outt t Z Y Z← ← ×                                                                                                       

10: 
  3 52outX t t← − ×                                                                                                       

11: 
  3 5 outt t X← −                                                                                                       

12: 
  5 1 3t t t← ×                                                                                                       

13: 
  5 0outY t t← −                                                                                                       

14:     Return 2 ( : : )out out outP X Y Z=  

 

whenever possible, one can convert those additions that cannot exploit IR to subtractions. For this 

case, one applies 
*

1 pλ = − ∈F  to the corresponding formula.  

5.5. Optimizations for the Quadratic Extension Field 
Arithmetic 

The techniques and optimizations described so far are not exclusive to the popular 
pF  

field 

arithmetic. In fact, the scheduling/merging of field operations and merging of point operations 

are generic and can be extended to different finite fields with similar benefits and results. In this 

section, we analyze how the aforementioned techniques can be applied to the arithmetic over a 

quadratic extension field 2
p
F . This application has gained sudden importance thanks to the 

recently proposed GLS method [GLS09], which exploits an efficiently computable 

homomorphism to speed up the execution of point multiplication over 2
p
F . 

For our study, we consider the highly-optimized assembly module of the field arithmetic over 

2
p
F  written by M. Scott [MIR]. This module exploits the “nice” Mersenne prime 1272 1p = − , 

which allows a very simple reduction step with no conditional branches. Although IR can also be 

applied to this scenario, in practice we observe that the gain is negligible on the platforms under 

study. Future work may consider the analysis of this technique on different platforms.    
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5.5.1. Scheduling of Field Operations 

As described in Section 2.2.6.1, each 2
p
F  operation consists of a few field operations over . 

Thus, the analysis of data dependencies and scheduling of operations should be performed taking 

into account this underlying layer. For instance, let us consider the execution of a 2
p
F  

multiplication followed by a subtraction shown in Figure 5.3. Note that multiplication is 

implemented using Karatsuba with 3 pF  multiplications and 5  additions/subtractions. 

As can be seen in Figure 5.3, the scheduling of the internal  operations of the 2
p
F  

multiplication has been performed in such a way that contiguous data dependencies are minimal 

between 
pF  operations (there is only one dependency between DblSub and Sub in the last stage 

of multiplication). A similar analysis can be performed between contiguous higher-layer 2
p
F

operations. In Figure 5.3, the last 
pF  

operation of the multiplication and the first 
 
operation of 

the subtraction hold contiguous data dependence. There are different solutions to eliminate this 

problem. For example, it can be eliminated by rescheduling the  subtraction and addition, as 

shown in Figure 5.4(a). Note that addition does not hold any dependence with the multiplication 

or subtraction, as required. Alternatively, if internal pF  field operations of the subtraction in 

 are rescheduled, as shown in Figure 5.4(b), the contiguous data dependence is also 

eliminated.  

These strategies can be applied to point formulas to minimize the appearance of such 

dependencies. The reader is referred to Appendix B2 for details about the scheduling of  

operations suggested for point formulas using J  and /
e

E E  coordinates. 

5.5.2. Merging of Point and Field Operations 

In the case of the GLS method, merging of point doublings is not as advantageous as in the 

traditional scenario of ECC over  because most contiguous data dependencies can be 

eliminated by simply rescheduling field operations inside point formulas using the techniques 

from the previous subsection (see Appendix B2). Moreover, GLS employs point multiplication 

techniques such as interleaving, which do not guarantee a long series of consecutive doublings 

between additions. Nevertheless, it is still advantageous the use of the merged doubling-addition 

operation (when applicable), which is a recurrent operation in interleaving.  

On the other hand, merging field operations is more advantageous in this scenario than over 

There are two reasons for this to happen. First, arithmetic over  works on top of the arith- 

metic over , which opens new possibilities to merge more  operations. Second, operations 

are on fields of half size, which means that fewer registers are required for representing field 

elements and more registers are available for holding intermediate operands. 
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          � 

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > Mult(op1[2],op2[1],res1[1]) 

    �   > DblSub(res1[2],res1[1],t3) 

 > Mult(op1,op2,res1)        > Sub(res1[1],t3,res1[1]) 

 > Sub(res1,op3,res2)  > Sub(res1[1],op3[1],res2[1]) 

 > Add(op4,op5,res3)  > Sub(res1[2],op3[2],res2[2]) 

    �        � 

Figure 5.3. 2p
F  operations with contiguous data dependencies. High-level 2p

F  operations are in the left column and 

their corresponding low-level pF  operations are in the right column. 2p
F

 
elements ( )a bi+  are represented as 

(op[1],op[2]). Dependencies are indicated by arrows. 

 

(a) 

         � 

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > 

    �   > DblSub(res1[2],res1[1],t3) 

 > Mult(op1,op2,res1)        > Sub(res1[1],t3,res1[1]) 

 > Add(op4,op5,res3)  ... 

 > Sub(res1,op3,res2)  > Sub(res1[1],op3[1],res2[1]) 

    �  > Sub(res1[2],op3[2],res2[2]) 

               � 

(b) 

     � 

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > Mult(op1[2],op2[1],res1[1]) 

    �   > DblSub(res1[2],res1[1],t3) 

 > Mult(op1,op2,res1)        > Sub(res1[1],t3,res1[1]) 

 > Sub(res1,op3,res2)  > Sub(res1[2],op3[2],res2[2]) 

 > Add(op4,op5,res3)  > Sub(res1[1],op3[1],res2[1]) 

  �     � 

Figure 5.4. (a) Contiguous data dependencies eliminated by scheduling 2p
F  field operations; (b) Contiguous data 

dependencies eliminated by scheduling pF  field operations.  
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Example 5.2. The following merged field operations can be advantageous on x86-64-based 

processors using J and  coordinates over quadratic extension fields: , 

, , the merging of  and , the merging 

of  and , and the merging of  and (mod )a a a p+ + .  

Again, we remark that the list above is not intended to be exhaustive and different merging 

options could be more advantageous or be available on different platforms with different 

coordinate systems or underlying fields. The reader is referred to Appendix B2 for the explicit 

formulas optimized with the proposed techniques for the case of J and  coordinates using 

the GLS method.       

5.6. Performance Evaluation 

In this section, we combine and demonstrate the efficiency of the techniques described in this 

chapter to accelerate the computation of a full point multiplication. For our implementations, we 

use the well-known MIRACL library by M. Scott [MIR], which contains an extensive set of 

cryptographic functions that simplified the development and optimization process of our 

cryptographic routines. Comparisons focus on implementations of variable-scalar-variable-point 

elliptic curve point multiplication with approximately 128 bits of security.  

5.6.1. Details of the “Traditional” Implementations 

Field Arithmetic 

As previously described, the field arithmetic over  using the pseudo-Mersenne prime 

 was written using x86-64 compatible assembly language and optimized by 

exploiting incomplete reduction and elimination of conditional branches for modular addition, 

subtraction and multiplication/division by constants (see Section 5.2). For the case of squaring 

and multiplication, there are two methods that are commonly preferred in the literature for 

implementation on general purpose processors: schoolbook (or operand scanning method) and 

Comba [Com90] (or product scanning method) (see Section 5.3 of [EYK09] or Section 2.2.2 of 

[HMV04]). Both methods require 2n  w-bit multiplications when multiplying two n-digit 

numbers. However, we choose to implement Comba’s method since it requires approx. 23n  w-bit 

additions, whereas schoolbook requires 2
4 .n  Modular reduction for both operations was 

performed exploiting the fact that 256
2 189≡  so 256( % 2 ) 189( 256)r r r≡ + >> , where r is the 

result of integer multiplication or squaring. Our code was aggressively optimized by carefully 

scheduling instructions to exploit the instruction-level parallelism.  

/
e

E E 2 (mod )a b p−

( )/ 2 (mod )a a a p+ + (mod )a b c p+ − (mod )a b p+ (mod )a b p−

(mod )a b p− (mod )c d p− (mod )a a p+

/ eE E

pF

2562 189p = −
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Point Arithmetic 

For our implementations, we chose J  and / eE E  coordinates and used the execution patterns 

based on doublings and doubling-additions proposed by [Lon07] and [HWC+08] for J  and 

/ eE E , respectively. The costs in terms of multiplications and squarings can be found in Tables 

2.2 and 2.4. Note that we use general additions (or general doubling-additions) because inversion 

is relatively expensive and its inclusion during precomputation cancels any gain using addition 

with mixed coordinates during the evaluation stage.  

This arithmetic layer was optimized through the use of the techniques described in Sections 

5.3 and 5.4, namely field arithmetic scheduling, merging of field and point operations and 

minimization of field operations. Because the maximal performance was found with a window of 

size 5 for the scalar recoding using wNAF (see next subsection), we merged four consecutive 

doublings into a joint function and every addition with the precedent doubling into another 

function. Please refer to Appendix B1 for complete details about the employed formulas 

exhibiting minimal number of field operations, different merged field operations and reduced 

number of contiguous data dependencies.    

Point Multiplication and Precomputation   

For scalar recoding we use wNAF, which offers minimal nonzero density among signed binary 

representations for a given window width (i.e., for certain number of precomputed points) 

[Ava05]. In particular, we use Alg. 3.35 of [HMV04] for conversion from integer to wNAF 

representation. Although left-to-right conversion algorithms exist [Ava05], which save memory 

and allow on-the-fly computation of point multiplication, they are not advantageous on the 

targeted CPUs. In fact, our tests show that converting the scalar to wNAF and then executing the 

point multiplication achieves higher performance than interleaving conversion and point 

multiplication. That is because the latter approach “interrupts” the otherwise smooth flow of 

point multiplication by calling the conversion function at every iteration of the double-and-add 

algorithm. Our choice is also justified because there are no stringent constraints in terms of 

memory in the targeted platforms.   

For precomputation on J coordinates, we choose the variant of the LM scheme that does not 

require inversions, whose cost is given by formula (3.4) (Section 3.2.2). This method achieves 

the lowest cost for precomputing points, given by (6 2) (3 4)L M L S+ + + , where L represents the 

number of non-trivial points (note that we avoid here the S-M trading in the first doubling). On 

/ eE E , we precompute points in the traditional way using the sequence 2 2 2P P P P+ + + +… , 

adding 2P with general additions. Because precomputed points are left in projective form no 

inversion is required and the cost is given by (8 4) 2L M S+ + . This involves computing 2P as 

2 e→A E , which costs 5 2M S+  (one squaring is saved because 1PZ = ; one extra multiplication 
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is required to compute T coordinate of 2P), one mixed addition to compute 2P P+  as 
e e+ →A E E  that costs 7M and ( 1)L −  general additions e e e+ →E E E  that cost 8M each. For 

both coordinate systems, we chose a window width w = 5 (i.e., precomputing {3 ,5 , ,15 }P P P… , 

L = 7), which is optimal and slightly better than fractional windows using L = 6 or 8.  

5.6.2. Details of the GLS-based Implementations 

For this case we make use of the optimized assembly module of the field arithmetic over 2
p
F  

written by M. Scott [MIR], which exploits the Mersenne prime 1272 1p = −  allowing the use of a 

very simple reduction step with no conditional branches.  

For the point arithmetic, we slightly modify formulas for the “traditional” implementations 

since in this case these require a few extra multiplications with the twisted curve parameter µ  (see 

Section 2.2.6). For example, the (dedicated) addition using extended Twisted Edwards 

coordinates with cost 8M (pp. 332 of [HWC+08]) cannot be used in this case and has to be 

replaced by a formula that costs 9M (also discussed in pp. 332 of [HWC+08] as “9M+1D”), 

which is one multiplication more expensive (“1D” is avoided because parameter a is still set to 

−1). Accordingly (and also following our discussions in Sections 5.3.1 and 5.5.1), the scheduling 

of the field arithmetic slightly differs. Moreover, different merging options for the field and point 

arithmetic are exploited (see Section 5.5.2). The reader is referred to Appendix B2 for complete 

details about the revised formulas exhibiting minimal number of field operations, different 

merged operations and reduced number of contiguous data dependencies.    

For point multiplication, each of the two scalars 0k  and 1k  in the multiple point multiplication 

0 1( )k P k Pλ+  is converted using fractional wNAF [Möl05], and then the evaluation stage is 

executed using interleaving (see Alg. 3.51 of [HMV04]). Similarly to our experiments with the 

“traditional” implementations, we remark that the separation of the conversion and evaluation 

stages yields better performance in the targeted platforms.  

For precomputation on J, we use the LM scheme that has minimal cost among methods 

using only one inversion. The cost in this case is given by eq. (3.6). We avoid here the S-M 

trading in the first doubling, so the precomputing cost is 1 (9 1) (2 5)I L M L S+ + + + , where L 

represents the number of non-trivial points. A fractional window with L = 6 achieves the optimal 

performance in our case. 

Again, on / eE E  coordinates we precompute points using general additions in the sequence 

2 2P P P+ + +… . Precomputed points are better left in projective coordinates, in which case the 

cost is given by (9 4) 2L M S+ + . This cost involves the computation of 2P as 2 e→A E , which 

costs 5 2M S+  (one squaring is saved because 1PZ = ; one extra multiplication is required to 

compute T coordinate of 2P), one mixed addition to compute 2P P+  as e e+ →A E E  that costs 

8M and ( 1)L −  general additions e e e+ →E E E  that cost 9M each. In this case, an integral 
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window of size w = 5 (i.e., L = 7) achieves optimal performance. As pointed out by [GLS09], 

precomputing { ,[3] ( ),[5] ( ), ,[2 1] ( )}P P P L Pψ ψ ψ+…  can be done on-the-fly at low cost.  

5.6.3. The Curves  

Next, we detailed the curves used for our implementations. These curves provide approximately 

128 bits of security and were found with a modified version of the Schoof’s algorithm provided 

with MIRACL.  

• For the implementation on short Weierstrass form over  using J, we chose the curve 
2 3: 3WE y x x B= − + , where 2562 189p = − , 0 fd63c3319814da55e88e9328e962B = ×  

73c483dca6cc84df53ec8d91b1b3e0237064  and # ( ) 10W pE r=F  where r is the 253-bit 

prime: 

      11579208923731619542357098500868790785394551372836712768287417232790500318517 .  

The implementation corresponding to this curve is referred to as jac256189 in the 

remainder. 

 

• For Twisted Edwards over  using / eE E  coordinates, we chose the curve :TEE

2 2x y− + = 2 21 358 x y+ , where 2562 189p = −  and # ( ) 4TE pE r=F  where r is the 255-

bit prime:    

28948022309329048855892746252171976963381653644566793329716531190136815607949 . 

The implementation corresponding to this curve is referred to as ted256189 in the 

remainder. 

 

• Let 2 3: 3 44W GLSE y x x− = − +  be defined over pF , where 1272 1p = − . For the case of 

Weierstrass form using GLS, we use the quadratic twist 2 3: 3 44W GLSE y x xµ µ−′ = − +  of  

2/W GLS p
E − F , where 22

p
iµ = + ∈F  is non-square. 2# ( )W GLS p

E −′ F  is the 254-bit prime: 

28948022309329048855892746252171976962649922236103390147584109517874592467701 .  

The same curve is also used in [GLS09]. Our implementation corresponding to this curve 

is referred to as jac1271gls in the remainder. 

 

• Let 2 2 2 2: 1 109TE GLSE x y x y− − + = +  be defined over , where 1272 1p = − . For the 

case of Twisted Edwards using the GLS method, we use the quadratic twist 
2 2 2 2: 1 109TE GLSE x y x yµ µ−′ − + = +  of 2/TE GLS p

E − F , where 22
p

iµ = + ∈F  is non-

square. In this case, 2# ( ) 4TE GLS p
E r−′ =F  where r is the 252-bit prime:  

7237005577332262213973186563042994240709941236554960197665975021634500559269 . 

The implementation corresponding to this curve is referred to as ted1271gls in the 

remainder. 

pF

pF

pF
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5.6.4. Timings 

Here we summarize the timings obtained by the “traditional” implementations labeled as 

ted256189 and jac256189 and the implementations using GLS labeled as ted1271gls and 

jac1271gls, when running them on a single core of Intel and AMD processors based on the x86-

64 ISA. For verification of each implementation, the results of 10
4
 point multiplications with 

“random” scalars were all validated using MIRACL. Several “random” point multiplications 

were also verified with Magma. 

All the tested programs were compiled with GCC v4.3.4 on the AMD Opteron 252 and with 

GCC v4.4.3 on the AMD Phenom II X4, Intel Core 2 Duo E6750 and Intel Atom N450 

processors. For measuring computing time, we follow [GT07b] and use a method based on cycle 

counts. To obtain our timings, we ran each implementation 10
5
 times with randomly generated 

scalars, averaged and approximated the results to the nearest 1000 cycles. Table 5.7 summarizes 

our results, labeled as ted1271gls, jac1271gls, ted256189 and jac256189. All costs include scalar 

conversion, the point multiplication computation (precomputation and evaluation stages) and the 

final normalization step to affine. For comparison purposes, Table 5.7 also includes the cycle 

counts that we obtained when running the implementations by M. Scott (displayed as gls1271-

ref4 and gls1271-ref3 [MIR]) on exactly the same platforms. Finally, the last 5 rows of the table 

detail cycle counts of several state-of-the-art implementations as reported in the literature. 

However, these referenced results are used only to provide an approximate comparison since the 

processor platforms are not identical (though they use very similar processors). 

As can be seen, our fastest implementation on the targeted platforms is ted1271gls, using 

/ eE E  with the GLS method. This implementation is about 28% faster than the previous record 

set by gls1271-ref4 [GLS08] on a slightly different processor (1.66GHz Intel Core 2 Duo). A 

more precise comparison, however, would be between measurements on identical processor 

platforms. In this case, ted1271gls is approx. 20%, 29%, 28% and 29% faster than gls1271-ref4 

[MIR] on Atom N450, Core 2 Duo E6750, Opteron 252 and Phenom II X4 940, respectively. 

Although [MIR] uses inverted Twisted Edwards coordinates ( IE ), the improvement with the 

change of coordinates only explains a small fraction of the speed-up. Similarly, in the case of J 

combined with GLS, jac1271gls is about 30% faster than the record set by gls1271-ref3 [GLS09] 

on a 1.66GHZ Intel Core 2 Duo. When comparing cycle counts on identical processor platforms, 

jac1271gls is 23%, 31%, 30% and 34% faster than gls1271-ref3 [MIR] on Atom N450, Core 2 

Duo E6750, Opteron 252 and Phenom II X4 940, respect. Our implementations are also 

significantly faster than the implementation of Bernstein's curve25519 by Gaudry and Thomé 

[GT07b]. For instance, ted1271gls is 46% faster than curve25519 [GT07b] on a 2.66GHz Intel 

Core 2 Duo. 

If the GLS method is not considered, the fastest implementations using / eE E  and J 
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coordinates are ted256189 and jac256189, respectively. In this case, ted256189 and jac256189 

are 22% and 28% faster than the previously best cycle counts due to Hisil et al. [HWC+09] using 

also / eE E  and J coordinates, respectively, on a 2.66GHz Intel Core 2 Duo.  

It is also interesting to note that the performance boost given by the GLS method strongly 

depends on the characteristics of a given platform. For instance, ted1271gls and jac1271gls are 

about 40% and 45% faster than their “counterparts” over 
pF , namely ted256189 and jac256189, 

respectively, on an Intel Atom N450. On an Intel Core 2 Duo E6750, the differences reduce to 

25% and 32% (respect.). And on an AMD Opteron processor, the differences reduce even further 

to only 9% and 13% (respect.). Thus, it seems that there exists certain correlation between an 

architecture’s “aggressiveness” for scheduling operations/exploiting ILP and the gap between the 

costs of 
 
and 

 
operations on x86-64 based processors. In general, the greater such 

“aggressiveness” the smaller the 
 
gap. And since working on the quadratic extension 

involves a considerable increase in the number of multiplications and additions, GLS loses its 

attractiveness if such gap is not large enough on certain platform. For the record, ted1271gls 

achieves the best cycle counts on an AMD Opteron, with an advantage of about 31% over the 

best previous result in the literature by [GT07b], and on an AMD Phenom II X4, with an 

advantage of about 29% over the closest result obtained by gls1271-ref4 [MIR]. 

For extended benchmark results and comparisons with other previous works on different 64-

bit processors, the reader is referred to our online database [Lon10]. 

Table 5.7. Cost (in cycles) of point multiplication on 64-bit architectures.  

Implementation Coordinates 
Field 

Arithmetic 
Atom N450 

Core 2 Duo 

E6750 
Opteron 252 

Phenom II 

X4 940 

 ted1271gls / eE E  2pF , 127-bit 588000 210000 211000 181000 

 jac1271gls J 2pF , 127-bit 644000 228000 238000 188000 

 ted256189 / eE E  pF , 256-bit 982000 281000 232000 213000 

 jac256189  J pF , 256-bit 1168000 335000 274000 252000 

 gls1271-ref4 [MIR]  IE  2pF , 127-bit 732000 295000 295000 255000 

 gls1271-ref3 [MIR] J 2pF , 127-bit 832000 332000 341000 287000 

 gls1271-ref4 [GLS08] IE  2pF , 127-bit -      293000  (1) - - 

 gls1271-ref3 [GLS09] J 2pF , 127-bit -      326000  (1) - - 

 curve25519 [GT07b] Montgomery pF , 255-bit -      386000  (2)     307000  (4) - 

 Hisil et al. [HWC+09] / eE E  pF , 256-bit -      362000  (3) - - 

 Hisil et al. [HWC+09] J pF , 256-bit -      468000  (3) - - 

(1) On a 1.66GHz Intel Core 2 Duo.  (2) On a 2.66GHz Intel Core 2 Duo E6700.   
(3) On a 2.66GHz Intel Core 2 Duo E6550.  (4) On a 2.4GHz AMD Opteron 250. 

pF 2p
F

2p p
−F F
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Timings using Multibase Methods 

We also implemented the refined multibase algorithm using bases {2,3} and {2,3,5} proposed in 

Chapter 4 to assess its effectiveness on x86-64 processors. With an optimal number of 

precomputations (L = 7 points) and using J coordinates, a 256-bit scalar multiplication runs in 

approximately 252000 cycles using refined {2,3,5} multibase chains or wNAF on a Phenom II 

X4, without including the conversion cost. Thus, the small theoretical advantage of the multibase 

method (see §4.5) vanishes in this case because the inclusion of tripling and quintupling 

functions that are not used too frequently seems to degrade the cache performance and because 

radix-2 methods are able to exploit more advantageously additional techniques such as the 

merging of point operations (see §5.3.2).    

For illustrative purposes, in the same implementation above we eliminated the use of 

precomputations. In this case, the refined {2,3,5} multibase chains and NAF allowed the 

computation in 261000 and 277000 cycles, respectively, on a Phenom II X4 processor. Thus, on 

this processor the use of multibases introduces a cost reduction of about 6%. 

In all cases above, when conversion to multibase was included in the measurements the total 

cost of scalar multiplication became more expensive than the cases using (w)NAF. 

These results confirm our analysis and recommendations in Section 4.6.1, and justify the use 

of radix-2 methods in the x86-64-based implementations presented in this chapter.  

5.7. Conclusions 

In this chapter we have proposed and evaluated different techniques and optimizations to speed 

up elliptic curve scalar multiplication over prime fields on the increasingly popular x86-64-based 

processors. We have carefully studied the architecture of these processors and optimized the 

arithmetic of elliptic curves at the different computational levels accordingly. Extensive tests 

have been carried out on at least one x86-64 processor representative from the notebook/netbook, 

desktop and server/workstation processor classes. Whenever relevant, we have also discussed the 

extension of the analysis and optimizations to other microarchitectures. 

After detailing in §5.1 some previous work and the general features of x86-64 processors that 

are most relevant to this work, we studied the performance boost obtained when combining 

incomplete reduction and elimination of conditional branches with the use of a highly-efficient 

pseudo-Mersenne prime in §5.2. We provided explicit algorithms for performing different 

variants of modular addition, subtraction, multiplication by constant and division by constant 

with incompletely and completely reduced numbers. Our tests on the targeted platforms reveal 

cost reductions as high as 9% and 12% in the computation of point doubling and doubling-

addition, respectively, when combining the techniques above. Overall, the cost reduction in a 



 
 

 

Chapter 5: Efficient Techniques for Implementing Elliptic Curves in Software                              

 

 

133 

 

256-bit scalar multiplication was estimated to be up to 11%. 

In §5.3, we analyzed the effect of RAW dependencies between contiguous field operations in 

the performance of scalar multiplication. We demonstrated that by rescheduling or merging field 

operations and merging point operations the cost of point doubling may be reduced in up to 12% 

in the targeted processors. This gain is obtained by the compound effect of reducing the number 

of pipeline stalls, memory reads/writes and function calls. Overall, the cost reduction in a 256-bit 

scalar multiplication was estimated in up to 9%, demonstrating that some modern compilers and 

dynamic out-of-order schedulers inside processors are unable to fully eliminate these contiguous 

dependencies. 

In §5.4, some optimizations exploiting the projective equivalence were proposed for point 

operations. Revised formulas carefully optimized with the techniques described in this chapter 

are explicitly stated in Appendix B1 for the case of Jacobian (J ) and mixed Twisted Edwards 

homogeneous/extended homogeneous ( ) coordinates. 

The application of the rescheduling/merging of field operations and merging of point 

operations over quadratic extension fields was studied in §5.5. Revised formulas carefully 

optimized with these techniques (and techniques exploiting the projective equivalence; §5.4) are 

explicitly stated in Appendix B2 for the case of J and  coordinates when using the GLS 

method over 2
p
F .      

In §5.6, we illustrated the significant performance improvement obtained with the techniques 

under analysis with high-speed implementations of variable-scalar-variable-point scalar 

multiplication at the 128-bit security level. Our software was extensively code-optimized and 

incorporates state-of-the-art ECC algorithms, including the best precomputation scheme for each 

setting following results from Chapter 3. We presented four variants using either  or J 

coordinates and with or without exploiting the GLS method. Remarkably, we showed that a point 

multiplication can be computed in only 181000 cycles (~60µsec.) on an AMD Phenom II X4 

when combining  with GLS. This represents a cost reduction of about 29% over the closest 

competitor. In the case of Jacobian coordinates with GLS, we reported a computation in only 

188000 cycles (~60µsec.) in the same platform, which represents an improvement of about 34%. 

For the traditional case without using GLS, our implementations using  and J coordinates 

are 22% and 28% faster than the previously best published results using the same coordinate 

systems. In summary, our implementations compute scalar multiplication up to 34% faster than 

the best previous results on x86-64 processors. We also reported that the use of GLS enables cost 

reductions as high as 45% on an Intel Atom and as high as 13% on an AMD Opteron.  

Similar results are expected when exploiting the proposed optimizations with other curve 

forms and coordinate systems or with other scenarios involving, for instance, multiple scalar 

multiplication and fixed-point scalar multiplication, among others. 

/ eE E

/ eE E

/ eE E

/ eE E

/ eE E
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6 Chapter 6 

Efficient Techniques for 

Implementing Pairings in Software 

In this chapter, we propose efficient methods and optimized explicit formulas that speed up 

significantly the computation of pairings on ordinary curves over prime fields. Our contributions 

can be summarized as follows:  

• We generalize the well-known technique of lazy reduction, previously applied to 

quadratic extension fields only [Sco07], to the whole pairing arithmetic including 

towering and curve arithmetic. We show that this approach leads to the elimination of at 

least 32% of the total number of reductions in a state-of-the-art implementation of the 

optimal ate pairing over a Barreto-Naehrig (BN) curve at the 128-bit security level.    

• For dealing with more costly higher-precision additions required by lazy reduction, we 

develop a flexible methodology that keeps intermediate values under Montgomery 

reduction boundaries and maximizes the use of operations without carry checks.  

• Following the approach detailed in Section 5.4, formulas for point doubling and addition 

in Jacobian and homogeneous coordinates are carefully optimized by eliminating several 

commonly neglected operations that are not inexpensive on modern 64-bit platforms. 

• Finally, we illustrate the significant savings obtained by the new techniques with a high-

speed implementation of the optimal ate pairing over a BN curve at the 128-bit security 
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level. By combining our methods with other state-of-the-art techniques, we obtain an 

implementation that improves the best available timings in the literature by 28%-34% on 

several x86-64-based processors.     

This chapter is organized as follows. After discussing relevant previous work in §6.1, we 

describe the generalization of lazy reduction to pairing-friendly tower fields in §6.2. In the same 

section, we discuss how to optimize the implementation of tower field arithmetic when dealing 

with both single- and double-precision operations, and illustrate the flexible methodology with 

the popular tower 2 6 12p p p p
→ → →F F F F . In §6.3, we present our optimizations to the curve 

arithmetic in the Miller loop, including the application of lazy reduction. Then, in §6.4 we 

describe our high-speed implementation of an optimal ate pairing on BN curves, carry out a 

detailed operation count and compare our results with the previously best results in the literature. 

We end this chapter with some conclusions in §6.5.  

6.1. Previous Work 

In recent years there has been a growing interest in pairing-based cryptography with numerous 

efforts focused on improving the efficiency of the pairing computation. Some works have 

proposed optimizations inside the Miller loop [BLS03, BLS04b] including the denominator 

elimination technique [BKL+02], while other works have focused on minimizing the length of 

the Miller’s algorithm [HSV06, BGO+07, ZZH08, Ver10], constructing pairing-friendly elliptic 

curves [BLS03b, BW05, SB06, Fre06] and devising tower extensions of finite fields k
p
F  

[KM05, BS10]. An important research effort involves the development and optimization of 

explicit formulas for the curve arithmetic; see for example [CHB+09, CLN10]. Yet another 

crucial study involves the efficient implementation of the tower field k
p
F

 
and base field 

arithmetic in pF  [FVV09, NNS10, BGM+10]. In this chapter we focus on the latter two issues 

and propose efficient methods for speeding up computations in the towering and curve 

arithmetic.  

In the case of efficient implementation of the towering and base field arithmetic, some 

research warns of the potential danger of employing a prime p with low Hamming weight (e.g., 

Mersenne primes), in which case a modified NFS could reduce the security level [Sch10]. 

Therefore, the chosen prime should ideally have a general form, in which case Montgomery 

reduction is the most efficient method available [Mon85]; see Section 2.2.4.1. This ultimately 

makes modular reduction one of the most expensive operations in the underlying field arithmetic 

of pairings. Some efforts focus on improving the interaction between field multiplication and 

reduction to minimize costs [FVV09, NNS10]. A different approach involves instead the 

elimination of reductions by using the so-called lazy reduction [Sco07]. This technique goes back 
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to at least Crypto’98 [WD98], and has been advantageously exploited by many works in different 

scenarios [LH00, Ava04, Sco07]. According to [LH00], multiplication in k
p
F  can be performed 

with k reductions modulo p when k
p
F  is seen as a direct extension over pF  via an irreducible 

binomial. This improves the traditional method that requires 2
k  reductions (or ( 1) / 2k k +  

reductions when using Karatsuba multiplication). Lazy reduction was first employed in the 

context of pairing computation by [Sco07] to eliminate reductions in 2
p
F  multiplication. 

Essentially, when using Karatsuba method for multiplication in 2
p
F , lazy reduction allows us to 

lower the number of reductions from 3 to only 2. Note that these savings are at the cost of 

somewhat more expensive additions. If, for instance, one considers the tower  

2 6 12p p p p
→ → →F F F F , then this approach requires 3 6 3 54⋅ ⋅ =  integer multiplications with 

2 6 3 36⋅ ⋅ =  reductions modulo p for performing one multiplication in 12
p
F ; see [Sco07, HMS08, 

BGM+10]. 

In this work we go a step further and generalize lazy reduction to the whole pairing 

computation, including the tower extension and curve arithmetic. For instance, these 

optimizations allow us to eliminate about 32% of reductions in a state-of-the-art implementation 

of the optimal ate pairing using a BN curve with 128 bits of security; see Section 6.4.2 for 

complete details. 

Recently, many authors have targeted the efficient software implementation of bilinear 

pairings at the 128-bit security level. Most remarkable results include the computation of the R-

ate pairing in 10,000,000 cycles on one core of an Intel Core 2 Duo processor by Hankerson et al. 

[HMS08], and the computation of the optimal ate pairing in 4,380,000 cycles on one core of an 

Intel Core 2 Quad Q9550 by Naehrig et al. [NNS10] and in 2,950,000 cycles on one core of an 

Intel Core 2 Duo T7100 by Beuchat et al. [BGM+10]. Beuchat et al. also reports an optimal ate 

pairing computation in 2,330,000 cycles on one core of an Intel Core i7 860 processor. 

In this work, to demonstrate the effectiveness of our optimizations, we realize a high-speed 

implementation of an optimal ate pairing at the 128-bit security level that additionally 

incorporates the latest advancements in the area, including software techniques by Beuchat et al. 

[BGM+10] to optimize carry handling and eliminate function call overheads in the 2
p
F  

arithmetic, and the use of efficient compressed squarings and decompression in cyclotomic 

subgroups to speed up computations in the final exponentiation by Karabina (see [Kar10] and 

also [AKL+10, Section 5.2]). We report a pairing computation in 2,194,000 cycles on one core of 

an Intel Core 2 Duo E6750 and in 1,688,000 cycles on an Intel Core i5 540M. Moreover, we also 

report a pairing computation in only 1,562,000 cycles (~0.5msec.) on an AMD Phenom II X4 

940 processor. Taking into account timings in identical platforms, our results introduce 

improvements between 28% and 34% in comparison with the best previous results.   
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6.2. Lazy Reduction for Tower Fields 

In this section, we generalize the lazy reduction technique to towering-friendly fields k
p
F , with 

2 3
i j

k = , 1i ≥ , 0j ≥ , as defined by [BS10], which are conveniently built with irreducible 

binomials. We show that multiplication (and squaring) in a tower extension k
p
F  only requires k 

reductions and still benefits from different arithmetic optimizations available in the literature to 

reduce the number of subfield multiplications/squarings. For instance, with our approach one 

now requires  integer multiplications and 2 3 2 12⋅ ⋅ =  reductions modulo p using the 

tower 2 6 12p p p p
→ → →F F F F  to compute one multiplication in 12

p
F  (eliminating 24 reductions 

in comparison with the traditional approach); or 36 integer multiplications and 12 reductions 

modulo p to compute one squaring in 12
p
F  (eliminating 18 reductions in comparison with the 

traditional approach). Although wider in generality, these techniques are analyzed in detail in the 

context of Montgomery multiplication and Montgomery reduction [Mon85], which are 

commonly used in the context of pairings over ordinary curves. We explicitly state our formulas 

for the towering construction 2 6 12p p p p
→ → →F F F F  in Section 6.2.2. In the remainder, the 

term modular reduction modulo p always refers to modular reductions of double-precision 

integers. 

Lemma 6.1. A sum of products with the form modi ia b p± ⋅∑ , where ,i ia b  are elements in 

Montgomery representation, can be reduced with only one Montgomery reduction modulo p by 

accumulating inner products as double-precision integers always that 2N
i ia b p± ⋅ < ⋅∑ , where 

N n w= ⋅ , n is the exact number of words required to represent p, i.e., 2logn p w =     , and w 

is the computer word-size. 

Lemma 6.1 defines the basic lazy reduction technique in the context of Montgomery 

reduction. Readers should note that internal additions and subtractions with partial results r 

“slightly” outside the Montgomery reduction range [0,2 ]N p⋅ , i.e., 12 2N Np r p+⋅ ≤ < ⋅ , can be 

easily corrected at negligible cost by performing a subtraction with 2N p⋅ .  

Next, we present our main result applying lazy reduction to towering-friendly fields. 

Theorem 6.1. In a towering-friendly field k
p
F , multiplications and squarings can be computed 

with k reductions. 

Proof. We will proof this theorem in a wider context for generic tower extensions built with 

irreducible binomials. Let k
p
F  be a direct extension of , where 

1

t

ii
k n

=
=∏ , and an element 

k
p

a ∈F  be represented in polynomial basis as 1
0 1 1( ) k

ka X a a X a X −
−= + + +… . Then one can 

use the following tower construction 
0 1 1 2 1 2

 n n n n n n n ktp pp pp p
⋅ ⋅ ⋅ ⋅= → → → → =……F F F F F F  to 

represent the extension field k
p
F  s.t. 

1np
=F 1[ ] ( )

n
p u u β−F , 2

1 2 1
[ ] ( )n n n

n

p p
v v ξ⋅ = −F F ,…,

3 6 3 54⋅ ⋅ =

pF
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1 2 1
[ ] ( )t

k n n nt

n

p p
w w γ⋅ ⋅ ⋅ −

= −…F F . Assuming that an element 
1np

c ∈F  is represented as 

1

1

1
0 1 1( )

n
nc u c c u c u

−
−= + + +… , where i pc ∈F , polynomial multiplication of two elements 

1
, n

p
a b∈F  can be expressed as: 

1 1

1

1 1

0 0

( ) ( ) ( ) mod( )

n n
ni i

i i

i i

c u a u b u a u b u u β
− −

= =

= ⋅ = ⋅ −∑ ∑  

        
1 1

1

1 1

0 0 1

mod mod

n nm
m

j m j j m j n

m j j m

a b p a b p uβ
− −

− − +

= = = +

 
 = +
 
 

∑ ∑ ∑  

        ( )
1 1 1

1

1 1 1

0 0 1 0

mod mod ,

n n nm
m m

j m j j m j n m

m j j m m

a b a b p u c p uβ
− − −

− − +
= = = + =

  
  = + =
  
  

∑ ∑ ∑ ∑                          (6.1) 

where only 1n  reductions are necessary by applying Lemma 6.1.  

Similarly, assuming that an element 
1 2n n

p
f ⋅∈F  is represented as 0 1( )f v f f v= + + +…  

2

2

1
1

n
nf v

−
− , where 

1ni p
f ∈F , polynomial multiplication of two elements 

1 2
, n n

p
d e ⋅∈F  can be 

expressed by: 

2 2

2

1 1

0 0

( ) ( ) ( ) mod( )

n n
ni i

i i

i i

f v d v e v d v e v v ξ
− −

= =

= ⋅ = ⋅ −∑ ∑  

        
2 2

2

1 1

0 0 1

n nl
l

j l j j l j n

l j j l

d e d e vξ
− −

− − +

= = = +

 
 = +
 
 

∑ ∑ ∑ .                                                                              (6.2) 

Then, by using (6.1) to perform 
1np

F  multiplications x yd e⋅  from (6.2) and applying Lemma 

6.1 again, we obtain the following expression for multiplication in 
1 2n n

p
⋅F :  

( ) ( )
2 1 2 1

2

1 1 1 1

, , , ,

0 0 0 1 0

( ) mod mod

n n n nl
m m l

m j l j m j l j n

l j m j l m

f v c p u c p u vξ
− − − −

− − +

= = = = + =

 
 = +
 
 

∑ ∑∑ ∑ ∑  

        
2 1 2

2

1 1 1

, , , ,

0 0 0 1

mod

n n nl
m l

m j l j m j l j n

l m j j l

c c p u vξ
− − −

− − +
= = = = +

   
   = +

   
   

∑ ∑ ∑ ∑  

        ( )
2 11 1

,

0 0

mod

n n
m l

l m

l m

f p u v

− −

= =

 
=  

 
 

∑ ∑ ,                                                                                         (6.3) 

where , ,m x yc  correspond to coefficients mc  in (6.1) for each multiplication x yd e⋅  from (6.2). 

Note that again reductions have been shifted and only 1 2n n⋅  reductions are required in each 

1 2n n
p

⋅F multiplication. If one continues applying this procedure recursively it can be easily seen 

that a multiplication in 
1 2k n n ntp p

⋅ ⋅ ⋅= …F F  requires 1 2 tk n n n= ⋅ ⋅ ⋅…  reductions.                               □  

It is important to note that there is no restriction in the selection of parameters for the 
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irreducible binomials (e.g., β  and ξ  in the proof above). However, for efficiency purposes one 

should select parameters with small values such that multiplications with them can be converted 

to a few additions and subtractions (see for example the chosen parameters in the illustrative 

tower in Section 6.2.2).  

The next theorem extends our result to towering-friendly fields exploiting Karatsuba 

multiplication. 

Theorem 6.2. Multiplications in a towering-friendly field k
p
F  built with irreducible binomials, 

where 2 3
d e

k = , 1d ≥ , 0e ≥ , can be computed with k reductions and 3 6
d e  multiplications.  

Proof. Let the tower 
0 1 1 2 1 2 1 2

 k k n k n n k n n nt tp p p p pp p p
⋅ ⋅ ⋅ ⋅= → = → = → → = ……F F F F F F F F  represent 

ktp
F  s.t. 

1
[ ] ( )i

k ki i i

n
kp p

x x β
−

= −F F   with {2,3}in ∈ , 0i >  integer, and assume 
ikβ  are chosen 

such that multiplication by these values can be computed with a few additions or subtractions. 

Then, multiplication c a b= ⋅  of two elements 0 1 0 1( ), ( ) kip
a a a x b b b x= + = + ∈F  with 2in =  

(second degree irred. binomial) and 
1

, kii i p
a b −∈F

 
can be computed using Karatsuba method as 

follows: 

                                 [ ]0 0 1 1 0 1 0 1 0 0 1 1( ) ( )( )
ikc a b a b a a b b a b a b xβ= + + + + − − ,                            (6.4) 

which requires 3 integer multiplications in 
1kip −F . Similarly, multiplication c a b= ⋅  of two 

elements 2
0 1 2( )a a a x a x= + +  and 2

0 1 2( ) kip
b b b x b x= + + ∈F  with 3in =  (third degree irred. 

binomial) and 
1

, kii i p
a b −∈F

 
can be computed using Karatsuba method as follows: 

                                              0 0 0 1 1 1 2 2 2, ,v a b v a b v a b= ⋅ = ⋅ = ⋅ , 

              [ ]0 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2( )( ) , ( )( ) ,
i ik kc v a a b b v v c a a b b v v vβ β= + + + − − = + + − − +  

                                 2
1 0 2 0 2 0 1 2 0 1 1( )( ) ,c a a b b v v v c c c x c x= + + − + − = + + ,                            (6.5) 

which requires 6 integer multiplications in 
1kip −F . Therefore, a tower consisting of d second 

degree extensions (i.e., 2in = ) and e third degree extensions (i.e., 3in = ) can be executed with 

3 6
d e  multiplications. Following Theorem 6.1, we only require k reductions in total since terms in 

both expressions (6.4) and (6.5) are simply sums of products as required.                                     □ 

Theorem 6.2 shows that lazy reduction can be combined with Karatsuba multiplication for 

efficient computation in tower extension fields. In fact, it is straightforward to generalize lazy 

reduction to any formula that also involves only sums (or subtractions) of products of the form 

i ia b± ⋅∑ , with , kli i p
a b ∈F , such as complex squaring or the asymmetric squaring formulas 

devised by Chung and Hasan [CH07]. 

For efficiency purposes, we suggest a different treatment for the highest layer in the tower 
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arithmetic. Proof of Theorem 6.1 implies that reductions can be completely delayed to the end of 

the last layer by applying lazy reduction, but in some cases (when the optimal k is already 

reached and no reductions can be saved) it will be more efficient to perform reductions right after 

multiplications or squarings. This will be illustrated later with the computation of squaring in 

12
p
F  in Section 6.2.2. 

In summary, the generalized lazy reduction can be applied to every computation involving 

operations in tower extension fields in the Miller loop and final exponentiation, including the 

recently proposed compressed squarings by [Kar10] (see Appendix C1).  

Remarkably, in the Miller Loop reductions can also be delayed from the underlying 2
p
F  field 

during multiplication and squaring to the arithmetic layer immediately above, i.e., the point 

arithmetic and line evaluation. Similarly to the tower extension, reductions on this upper layer 

should only be delayed in the cases where this technique leads to fewer reductions. For details, 

see Section 6.3. 

There are some penalties when delaying reductions. In particular, single-precision operations 

(with operands occupying 2logn p w =      words, where w is the computer word-size) are 

replaced by double-precision operations (with operands occupying 2n words). However, this 

disadvantage can be minimized in terms of speed by selecting a field size smaller than the word-

size boundary because this technique can be exploited more extensively for optimizing double-

precision arithmetic. 

6.2.1. Selecting a Field Size Smaller than the Word-Size Boundary 

If the modulus p is selected such that 2logl p N= <   , where again N n w= ⋅ , n l w=     and w 

is the computer word-size, then several consecutive additions without carry-out in the most 

significant word (MSW) can be performed before a multiplication with the form c a b= ⋅ , where 

, [0,2 1]Na b∈ −  s.t. 2
2

N
c < . In the case of Montgomery reduction, the restriction is given by the 

upper bound 2Nc p< ⋅ . Similarly, when delaying reductions the result of a multiplication without 

reduction has maximum value 2 2( 1) 2 Np − <  (assuming that , [0, ]a b p∈ ) and several 

consecutive double-precision additions without carry-outs in the MSW (and, in some cases, 

subtractions without borrow-outs in the MSW) can be performed before reduction. When using 

Montgomery reduction up to ∼ 2
N

p 
   additions can be performed without carry checks. 

Furthermore, cheaper single- and double-precision operations exploiting this “extra room” 

can be combined for maximal performance. The challenge is to optimally balance their use in the 

tower arithmetic since both may interfere with each other. For instance, if intermediate values are 

allowed to grow up to 2p before multiplication (instead of p) then the maximum result would be 
24 p . This strategy makes use of cheaper single-precision additions without carry checks but 

limits the number of double-precision additions that can be executed without carry checks after 
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multiplication with delayed reduction. As it will be evident later, to maximize the gain obtained 

with the proposed methodology one should take into account relative costs of operations and 

maximum bounds.  

In the case of double-precision arithmetic, different optimizing alternatives are available. Let 

us analyze them in the context of Montgomery arithmetic. First, as pointed out by [BGM+10], if 

2Nc p> ⋅ , where c is the result of a double-precision addition, then c can be restored with a 

cheaper single-precision subtraction by 2N p⋅  (note that the first half of this value consists of 

zeroes only). Second, different options are available to convert negative numbers to positive after 

double-precision subtraction. In particular, let us consider the computation c a l b= + ⋅ , where 
2, [0, ]a b mp∈ , m

+∈Z  and , which is a recurrent operation (for instance, when l β=
 

from Section 6.2.2). For this operation, we have explored the alternatives listed in Table 6.1, 

which can be integrated in the tower arithmetic with different advantages.  

Table 6.1. Different options to convert negative results to positive after a subtraction with the 

form c a l b= + ⋅ , where 2, [0, ]a b mp∈ , m
+∈Z  and  s.t. 2Nlmp < . 

Option 1:  (2 / 2 )N hr c p= + ⋅ , 2[0, 2 / 2 ]N hr mp p∈ + ⋅ , where h is a small integer s.t. 

                    2 2| | 2 / 2 2N h Nlmp p p mp< ⋅ < ⋅ − . 

Option 2:  if c < 0 then 2Nr c p= + ⋅ , [0, 2 ]Nr p∈ ⋅ .    

Option 3:  2r c lmp= − , 2[0, (| | 1) ]r l mp∈ + , s.t. (| | 1) 2Nl mp+ < .   

Option 4:  if c < 0 then 2r c lmp= − , 2[0, | |]r lmp∈ .   

 

In particular, Options 2 and 4 in Table 6.1 require conditional checks that make the 

corresponding operations more expensive. Nevertheless, these options may be valuable when 

negative values cannot be corrected with other options without violating the upper bound. Also 

note that Option 2 can make use of a cheaper single-precision subtraction for converting negative 

results to positive. Options 1 and 3 are particularly efficient because no conditional checks are 

required. Moreover, if l is small enough (and h maximized for Option 1) several following 

operations can avoid carry checks. Between both, Option 1 is generally more efficient because 

adding 2 / 2N hp⋅  requires less than double-precision if h w≤ , where w is the computer word-

size.  

Next, we demonstrate how the different design options discussed in this section can be 

exploited with a clever selection of parameters and applied to different operations combining 

single- and double-precision arithmetic to speed up the extension field arithmetic. 

0l < ∈Z

0l < ∈Z



 
 

 

Chapter 6: Efficient Techniques for Implementing Pairings in Software                                     

 

143 

 

6.2.2. Practical Application of the Generalized Lazy Reduction 

For our illustrative analysis, we use the tower 2 6 12p p p p
→ → →F F F F  constructed as follows 

[PSN+10]: 

• 2
2

[ ]/( ), where 1pp
i i β β= − = −F F . 

• 6 2
3

[ ]/( ), where 1
p p

v v iξ ξ= − = +F F . 

• 12 6
2

[ ] /( )
p p

w w v= −F F . 

We use a similar tower construction for our illustrative implementation of the optimal ate 

pairing on a BN curve (see Section 6.4.1 for complete details). 

When targeting the 128-bit security level, single- and double-precision operations are defined 

by operands with sizes N = 256 and 2N = 512, respectively. For our selected prime, 

2log 254p =    and 22 6.8N p p⋅ ≈ . We use the following notation [AKL+10]:  

 

(i) , ,+ − ×  are operators not involving carry handling or modular reduction for boundary 

keeping;  

(ii) ⊕, �, ⊗ are operators producing reduced results through carry handling or modular 

reduction;  

(iii) a superscript in an operator is used to denote the extension degree involved in the 

operation;  

(iv) notation ,i ja  is used to address j-th subfield element inside extension field element ia ;  

(v) variables with lower case t and upper case T represent single- and double-precision 

integers or extension field elements composed of single and double-precision integers, 

respectively.  

 

The following notation is used for the cost of operations:  

 

(i) M, S, A denote the cost of multiplication, squaring, addition in , respectively;  

(ii) m, s, a, i denote the cost of multiplication, squaring, addition and inversion in 2
p
F , 

respectively; 

(iii) , ,u uM S R  denote the cost of unreduced multiplication and squaring producing double-

precision results, and modular reduction of double-precision elements in , respect.;  

(iv) , ,u um s r  denote the cost of unreduced multiplication and squaring, and modular 

reduction of double-precision elements in 2
p
F , respectively.  

 

For the remainder of the chapter, we assume that (except when explicitly stated) double-

pF

pF
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precision addition has the cost of 2A and 2a in  and 2
p
F , respectively, which approximately 

follows what we observe in practice. 

Note that, as stated before, if  after adding  in double-precision we correct 

the result by computing . Similar to subtraction (see Table 6.1), we refer to the latter as 

“Option 2”. Remaining references to “Option x” are taken from Table 6.1. 

We will now illustrate a selection of operations for efficient multiplication in 12
p
F , beginning 

with multiplication in 2
p
F . Let 2, ,

p
a b c∈F  such that 0 1a a a i= + , 0 1b b b i= + , 0 1c a b c c i= ⋅ = +

. The required operations for computing 2
p
F  multiplication are detailed in Algorithm 6.1. As 

explained in Beuchat et al. [BGM+10, Section 5.2], when using the Karatsuba method and 

,i i pa b ∈F , 2
1 0 1 0 1 0 0 1 1 0 1 1 0( )( ) 2 2Nc a a b b a b a b a b a b p p= + + − − = + < < ⋅ , additions are single-

precision, reduction after multiplication can be delayed and hence subtractions are double-

precision (steps 1-3 in Algorithm 6.1). Obviously, these operations do not require carry checks. 

For 0 0 0 1 1c a b a b= − , 0c  is in interval 2 2
[ , ]p p−  and a negative result can be converted to positive 

using Option 1 with 2h =  or Option 2, for which the final 0c  is in the range 
2[0, (2 / 4) ] [0,2 ]N Np p p⋅ + ⊂ ⋅  or [0,2 ]N p⋅ , respectively (step 4 in Algorithm 6.1). Following 

Theorem 6.1, all reductions can be completely delayed to the next arithmetic layer (higher 

extension or curve arithmetic). 

 

Algorithm 6.1.  Multiplication in 2pF  without reduction (
2× , cost of 3 8u um M A= + )    

Input:  0 1( )a a a i= +  and 20 1( ) pb b b i= + ∈F  

  Output:  20 1( ) pc a b c c i= ⋅ = + ∈F  

1: 0 0 0 1 1 1 0 0 1 1 0 1, , ,T a b T a b t a a t b b← × ← × ← + ← +   

2: 2 0 1 3 0 1,T t t T T T← × ← +  

3: 3 2 3T T T← −  

4: 4 0T T← � 1T                                                                                                        (Option 1 or 2) 

5: Return 4 3( )c T T i= +  

 

Let us now define multiplication in 6
p
F . Let 6, ,

p
a b c∈F  such that 2

0 1 2( )a a a v a v= + + , 
2

0 1 2( )b b b v b v= + + , 2
0 1 2( )c a b c c v c v= ⋅ = + + . The required operations for computing 6

p
F

 
multiplication are detailed in Algorithm 6.2. In this case, 0 0 1 2 1 2 1 2[( )( ) ]c v a a b b v vξ= + + + − − , 

1 0 1 0 1 0 1 2( )( )c a a b b v v vξ= + + − − +  and 2 0 2 0 2 0 2 1( )( )c a a b b v v v= + + − − + , where 0 0 0v a b= , 

1 1 1v a b=  and 2 2 2v a b= . First, note that the pattern ( )( )x i j i j i js a a b b v v= + + − −  repeats for each 

xc , 0 2x≤ ≤ . After multiplications using Algorithm 6.1 with Option 1 (h = 2), we have 
2

,0 ,0, [0,(2 /4) ]
N

i jv v p p∈ ⋅ +  and 
2

,1 ,1, [0,2 ]i jv v p∈  (step 1 of Alg. 6.2). Outputs of single-precision 

additions of the forms ( )i ja a+  and ( )i jb b+  are in the range [0, 2p] and hence do not produce 

carries (steps 2, 9 and 17 of Alg. 6.2). Corresponding  multiplications ( )( )x i j i jr a a b b= + +   

pF

2Nc p> ⋅ c a b= +

2Nc p− ⋅

2
p
F
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Algorithm 6.2.  Multiplication in 6pF  without reduction (
6× , cost of 6 28um a+ )    

Input:  2
0 1 2( )a a a v a v= + +  and 6

2
0 1 2( ) pb b b v b v= + + ∈F  

  Output:  6
2

0 1 2( )
p

c a b c c v c v= ⋅ = + + ∈F  

  1: 2 2 2
0 0 0 1 1 1 2 2 2, ,T a b T a b T a b← × ← × ← ×                                               (Option 1, h = 2) 

  2: 2 2
0 1 2 1 1 2,t a a t b b← + ← +  

  3: 2
3 0 1T t t← ×                                                                                                            (Option 2) 

  4: 2
4 1 2T T T← +                                                                                                                 

  5: 3,0 3,0T T← � 4,0T                                                                                                     (Option 2)    

  6: 3,1 3,1 4,1T T T← −                                                                                                

  7: 4,0 3,0T T← � 3,1 4,1 3,0,T T T← ⊕ 3,1 4 3( )T T Tξ≡ ← ⋅                                                  (Option 2)                                      

  8: 5 4T T← ⊕
2

0T                                                                                                          (Option 2)                                      

  9: 2 2
0 0 1 1 0 1,t a a t b b← + ← +  

10: 2
3 0 1T t t← ×                                                                                                            (Option 2) 

11: 2
4 0 1T T T← +                                                                                                                 

12: 3,0 3,0T T← � 4,0T                                                                                                     (Option 2)    

13: 3,1 3,1 4,1T T T← −                                                                                                

14: 4,0 2,0T T← � 2,1T                                                                                          (Option 1, h = 1)                                      

15: 4,1 2,0 2,1 4 2(steps14-15 )T T T T Tξ← + ≡ ← ⋅                                                                                        

16: 6 3T T← ⊕
2

4T                                                                                                          (Option 2)                                      

17: 2 2
0 0 2 1 0 2,t a a t b b← + ← +  

18: 2
3 0 1T t t← ×                                                                                                            (Option 2) 

19: 2
4 0 2T T T← +                                                                                                                 

20: 3,0 3,0T T← � 4,0T                                                                                                     (Option 2)    

21: 3,1 3,1 4,1T T T← −                                                                                                

22: 7,0 3,0T T← ⊕ 1,0T                                                                                                     (Option 2)    

23: 7,1 3,1 1,1T T T← +                                                                                                

24: Return 2
5 6 7( )c T T v T v= + +  

 

using Algorithm 6.1 with Option 2 give results in the ranges  and  

(steps 3, 10 and 18). Although , note that  and 

 since . Hence, for , 

double-precision subtractions for computing  using Karatsuba do not require carry checks 

(steps 4 and 6, 11 and 13, 19 and 21). For computing ,0 ,0 ,0 ,0( )x x i js r v v= − +
 
addition does not 

require carry check (output range 2[0, 2(2 / 4 )] [0,2 ]N Np p p⋅ + ⊂ ⋅ ) and subtraction gives result 

in the range [0,2 ]N p⋅  when using Option 2 (steps 5, 12 and 20). For computing 0c , 

multiplication by ξ , i.e., 0 0S sξ=  involves the operations 0,0 0,0 0,1S s s= −  and 0,1 0,0 0,1S s s= + , 

,0 [0, 2 ]N
xr p∈ ⋅ 2

,1 [0,8 ]xr p∈
2

,1max( ) 8 2
N

xr p p= > ⋅ 2 28 2 Np <
2

,1 ,0 ,1 ,1 ,0 ,0 ,1 ,1 ,0 [0,4 ]x i j i j j i j is a b a b a b a b p= + + + ∈ x i j j is a b a b= + 0 2x≤ ≤

,1xs
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which are computed in double-precision using Option 2 to get the output range [0,2 ]N p⋅  (step 

7). Similarly, final additions with 0v  require Option 2 to get again the output range [0,2 ]N p⋅  

(step 8). For computing 1c , 1 2S vξ=  is computed as 1,0 2,0 2,1S v v= −  and 1,1 2,0 2,1S v v= + , where 

the former requires a double-precision subtraction using Option 1 (h = 1) to get a result in the 

range 2[0,2 / 2 2 / 4 )] [0,2 ]N N N
p p p p⋅ + ⋅ + ⊂ ⋅  (step 14) and the latter requires a double-precision 

addition with no carry check to get a result in the range 2[0, (2 / 4) 3 ] [0,2 ]N Np p p⋅ + ⊂ ⋅  (step 

15). Then, 1,0 1,0 1,0c s S= +  and 1,1 1,1 1,1c s S= +  involve double-precision additions using Option 2 

to obtain results in the range [0,2 ]N p⋅  (step 16). Results 2,0 2,0 1,0c s v= +  and 2,1 2,1 1,1c s v= +  

require a double-precision addition using Option 2 (final output range [0,2 ]N p⋅ , step 22) and a 

double-precision addition without carry check (final output range 2[0,6 ] [0,2 ]Np p⊂ ⋅ , step 23), 

respectively. Modular reductions have been delayed again to the last layer 12
p
F . 

Finally, let 12, ,
p

a b c∈F  such that 0 1a a a w= + , 0 1b b b w= + , 0 1c a b c c w= ⋅ = + . Algorithm 

6.3 details the required operations for computing multiplication in 12
p
F . In this case, 1c =  

0 1 0 1 0 0 1 1( )( )a a b b a b a b+ + − − . At step 1, 6
p
F  multiplications 0 0a b  and 1 1a b  give outputs in range 

[0, 2 ]
N

p⊂ ⋅  using Algorithm 6.2. Additions 0 1a a+  and 0 1b b+  are single-precision reduced 

modulo p so that multiplication 0 1 0 1( )( )a a b b+ +  in step 2 gives output in range [0, 2 ]
N

p⊂ ⋅  using 

Algorithm 6.2. Then, subtractions by  and  use double-precision operations with Option 

2 to have an output range  so that we can apply Montgomery reduction at step 5 to 

obtain the result modulo p. For , multiplication by v, i.e., , where 

, involves the double-precision operations , ,  and 

, all performed with Option 2 to obtain the output range  (steps 6-7). Final addi- 

 

Algorithm 6.3.  Multiplication in 12pF  ( 12× , cost of 18 6 110um r a+ + )    

Input:  0 1( )a a a w= +  and 120 1( ) pb b b w= + ∈ F  

  Output:  120 1( ) pc a b c c w= ⋅ = + ∈F  

  1: 6 6
0 0 0 1 1 1 0 0, ,T a b T a b t a← × ← × ← ⊕

6
1 1 0,a t b← ⊕

6
1b  

  2: 6
2 0 1T t t← ×  

  3: 3 0T T← ⊕
6

1T                                                                                                          (Option 2) 

  4: 2 2T T← �
6

3T                                                                                                          (Option 2) 

  5: 6
1 2 modc T p←                                                                                                           

  6: 2,2,0 1,2,0T T← � 1,2,1 2,0,1 1,2,0,T T T← ⊕ 1,2,1T                                                              (Option 2)                                      

  7: 2,1 1,0 2,2 1,1 2 1, (steps 6-7 )T T T T T v T← ← ≡ ← ⋅                                                                                        

  8: 2 0T T← ⊕
6

2T                                                                                                          (Option 2)                                      

  9: 6
0 2 modc T p←                                                                                                           

10: Return 0 1( )c c c w= +  

 

1 1a b 0 0a b

[0,2 ]N
p⋅

0 0 0 1 1c a b va b= + 1T v v= ⋅

i i iv a b= 0,0 2,0 2,1T v v= − 0,1 2,0 2,1T v v= + 1 0T v=

2 1T v= [0,2 ]N p⋅
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tion with  uses double-precision with Option 2 again so that we can apply Montgomery 

reduction at step 9 to obtain the result modulo p. We remark that, by applying the lazy reduction 

technique using the operation sequence above, we have reduced the number of reductions in 

 from 3 to only 2, or the number of total modular reductions in  from 54 (or 36 if lazy 

reduction is employed in 2pF ) to only k = 12.  

As previously stated, there are situations when it is more efficient to perform reductions right 

after multiplications and squarings in the last arithmetic layer of the tower construction. We 

illustrate the latter with squaring in 12
p
F . As shown in Algorithm 6.4, a total of 2 reductions in 

6
p
F  are required when performing 6

p
F  multiplications in step 4. If lazy reduction was applied, 

the number of reductions would stay at 2, and worse, the total cost would be increased because 

some operations would require double-precision. The reader should note that the approach 

suggested by [PSN+10], where the formulas in [CH07] are employed for computing squarings in 

internal cubic extensions of 12
p
F , saves 1m in comparison with Algorithm 6.4. However, we 

experimented such approach with several combinations of formulas and towering, and it 

remained consistently slower than Algorithm 6.4 due to an increase in the number of additions. 

 

Algorithm 6.4.  Squaring in 12pF  (cost of 12 6 73um r a+ + )    

Input:  120 1( ) pa a a w= + ∈F  

  Output:  12
2

0 1( ) pc a c c w= = + ∈F  

1: 0 0t a← ⊕
6

1 1,0,0 1,2,0,a t a← � 1,2,1 1,0,1 1,2,0,a t a← ⊕ 1,2,1a  

2: 1,1 1,0 1,2 1,1 1 1, (steps 2-3 )t a t a t v a← ← ≡ ← ⋅  

3: 1 0t a← ⊕
6

1t                                                                                                                

4: 6 6 6 6
1 0 1 0 0 1( ) mod , ( )modc a a p t t t p← × ← ×  

5: 1,0,0 1,2,0t c← � 1,2,1 1,0,1 1,2,0,c t c← ⊕ 1,2,1c                                                             

6: 1,1 1,0 1,2 1,1 1 1, (steps 6-7 )t c t c t v c← ← ≡ ← ⋅                                                                                           

7: 1 1t t← ⊕
6

1c                                                                                                     

8: 0 0c t← �
6

1 1 1,t c c← ⊕
6

1c                                                                                                    

9: Return 0 1( )c c c w= +  

6.3. Optimizing Curve Arithmetic in Miller Loop 

In this section, we present our optimizations to the curve arithmetic. Remarkably, we show that 

the technique proposed in Section 6.2 for delaying reductions can also be applied to the point 

arithmetic over a quadratic extension field. Reductions can be delayed to the end of each 2
p
F  

multiplication/squaring and then delayed further for those sums of products that allow reducing 

the number of reductions. Although not plentiful (given the nature of most curve arithmetic 

0 0a b

6
p
F pF
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formulas which have consecutive and redundant multiplications/squarings), there are a few 

places where this technique can be applied. To be consistent with other results in the literature, 

we only assume that double-precision addition has the cost of 2A and 2a in pF  and 2
p
F

 
when 

applying the lazy reduction technique. When this technique is not applied, we do not distinguish 

between single- and double-precision additions. 

6.3.1. Jacobian Coordinates 

The curve arithmetic in the Miller loop is traditionally performed using Jacobian coordinates 

[HMS08, BGM+10]. Let the point 21 1 1( , , ) ( )
p

T X Y Z E ′= ∈ F  be in Jacobian coordinates. The 

point doubling computation 3 3 32 ( , , )T X Y Z=  and evaluation of the arising line function l at 

point ( , ) ( )P P pP x y E= ∈ F  are traditionally performed with the following formulae [HMS08, 

Section 2]:  

                          4 2
3 1 1 19 8X X X Y= − ,  2 2 4

3 1 1 1 3 13 (4 ) 8Y X X Y X Y= − − ,  3 1 12Z Y Z= ,  

                                                2 2 2 3 2
3 1 1 1 1 13 (3 2 )P Pl Z Z y X Z x X Y= − + − .                                      (6.6) 

An operation count of (6.6) reveals that this formula can be performed with 

6 5 11 4m s a M+ + + . We present the following revised formula that requires fewer 2
p
F  additions: 

                           
4

21
3 1 1

9
2

4

X
X X Y= − ,  

2
2 41

3 1 1 3 1

3
( )

2

X
Y X Y X Y= − − ,  3 1 1Z Y Z= , 

                                              
2 2 3

2 21 1 1
3 1 1

3 3
( ) ( )

2 2

P
P

X Z x X
l Z Z y Y= − + − .                                     (6.7) 

This doubling formula only requires 6 5 8 4m s a M+ + +  if computed as follows ( P Px x= −  is 

precomputed): 

                                          2 2 2
1 1 1 13 2, , , 2 ,A X B Y C X Y D C= = = ⋅ =  

                         2 2 2
3 3 3 3 1 1 1, , , , ,X A D E C X Y A E B Z Y Z F Z= − = − = ⋅ − = ⋅ =  

                                     0,0 3 1,0 1,1 1, , .P Pl Z F y l A F x l A X B= ⋅ ⋅ = ⋅ ⋅ = ⋅ −  

Applying Lazy Reduction:  

Let the point 21 1 1( , , ) ( )
p

T X Y Z E′= ∈ F  be in Jacobian coordinates. Formula (6.7) combined with 

the lazy reduction technique to compute 3 3 32 ( , , )T X Y Z=  and the tangent line evaluated at point 
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( , ) ( )P P pP x y E= ∈ F  has a total cost of 6 5 10 10 4u um s r a M+ + + +  if computed as detailed in 

Algorithm 6.5. 

 

Algorithm 6.5.  Point doubling in Jacobian coordinates (cost of 6 5 10 10 4u um s r a M+ + + + )    

Input:  21 1 1( , , ) ( ), ( , ) ( ) andP P p P PpT X Y Z E P x y E x x′= ∈ = ∈ = −F F  

  Output:  23 3 32 ( , , ) ( )pT X Y Z E′= ∈ F  and the tangent line 12pl ∈F  

  1: 0 1t X← ⊗
2

1 2 1,X t Z← ⊗
2

1Z  

  2: 1 0t t← ⊕
2

0 3 1,t Z Y← ⊗
2

1Z  

  3: 0 0t t← ⊕
2

1 3 1,t t Y← ⊗
2

1Y                                                                                                             

  4: 2
0 0 / 2t t←  

  5: 1 0t t← ⊗
2

2 4 0,t t t← ⊗
2

1X                                                             

  6: 1,0,0 1,0l t← ⊗ 1,0,1 1,1,Px l t← ⊗ 1,1 4,Px l t← �
2

3 2 3,t t Z← ⊗
2

2t                                                                                         

  7: 1 3t t← ⊗
2

1X                                                             

  8: 0,0,0 2,0l t← ⊗ 0,0,1 2,1,Py l t← ⊗ 1 1,Py Y t← ⊕
2

1 1 0,t X t← ⊗
2

0t                                                                                         

  9: 3 1X X← �
2

1Y                                                             

10: 1 1t t← �
2

3X                                                             

11: 2 2
0 3 3 1 0 1,T t t T t t← × ← ×                                                                          (Option 1, h = 2) 

12: 1 1T T← �
2

0T                                                                                                          (Option 2)                 

13: 2
3 1 modY T p←                                                                     

14: Return 3 3 32 ( , , )T X Y Z=  and 0 1( , )l l l=  

 

Let the points 1 1 1( , , )T X Y Z=  and 22 2 2( , , ) ( )
p

R X Y Z E ′= ∈ F  be in Jacobian coordinates. To 

compute 3 3 3( , , )T R X Y Z+ =  and the tangent line l evaluated at point ( , ) ( )P P pP x y E= ∈ F  we 

use the following addition formula: 

                                                     3 2
2 1 1 2 1 1, ,Y Z Y X Z Xθ λ= − = −  

                          2 2 3 2 2 3 3
3 1 3 1 1 3 12 , (3 ) , ,X X Y X Y Z Zθ λ λ θ λ θ λ λ λ= − − = − + − =  

                                                   3 2 2 3( ) ( ),P Pl Z y x X Y Zθ θ= + + −                                             (6.8) 

that costs 10 3 11 10 4u um s r a M+ + + +  when exploiting lazy reduction (see Algorithm 6.6). 

6.3.2. Homogeneous Coordinates    

Costello et al. [CLN10, Section 5] proposed the use of homogeneous coordinates to perform the 

curve arithmetic entirely on the twist. Their point doubling/line evaluation formula costs 2 7m s+ +  
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Algorithm 6.6.  Point addition in Jacobian coordinates (cost of 10 3 11 10 4u um s r a M+ + + + )    

Input:  21 1 1 2 2 2( , , ) and ( , , ) ( ), ( , ) ( ) andP P p P PpT X Y Z R X Y Z E P x y E x x′= = ∈ = ∈ = −F F  

  Output:  23 3 3( , , ) ( )pT R X Y Z E′+ = ∈ F  and the tangent line 12pl ∈F  

  1: 1 1t Z← ⊗
2

1Z  

  2: 3 2t X← ⊗
2

1 1 1,t t t← ⊗
2

1Z  

  3: 3 3t t← �
2

1 4 1,X t t← ⊗
2

2Y                                                                                                             

  4: 3 1Z Z← ⊗
2

3 0 4,t t t← �
2

1 1 3,Y t t← ⊗
2

3t                                                             

  5: 4 1t t← ⊗
2

3 3 0,t X t← ⊗
2

0t                                                             

  6: 1 1t t← ⊗
2

1X                                                             

  7: 3 1t t← ⊕
2

1t                                                             

  8: 3 3X X← �
2

3t                                                                                            

  9: 3 3X X← �
2

4t                                                             

10: 1 1t t← �
2

3X                                                             

11: 2 2
0 0 1 1 4 1,T t t T t Y← × ← ×                                                                          (Option 1, h = 2) 

12: 0 0T T← �
2

1T                                                                                                         (Option 2)                 

13: 2
3 0 1,0,0 0,0mod ,Y T p l t← ← ⊗ 1,0,1 0,1,Px l t← ⊗ Px                                                                    

14: 2 2
0 0 2 1 3 2,T t X T Z Y← × ← ×                                                                     (Option 1, h = 2) 

15: 0 0T T← �
2

1T                                                                                                         (Option 2)                 

16: 2
1,1 0 0,0,0 3,0mod ,l T p l Z← ← ⊗ 0,0,1 3,1,Py l Z← ⊗ Py                                                                    

17: Return 3 3 3( , , )T R X Y Z+ =  and 0 1( , )l l l=  

 

'23 4 1 ba M M+ + . The twisting of point P, given in our case by 

vw), is eliminated by multiplying the whole line evaluation by  and relying on the final 

exponentiation to eliminate this extra factor [CLN10]. Clearly, the main drawback of this formula 

is the high number of additions. We present the following revised formula: 

                    2 21 1
3 1 1( 9 )

2

X Y
X Y b Z′= − ,  2 2 2 4

3 1 1 1

1
( 9 ) 27

2
Y Y b Z b Z

 
′ ′= + −  

,  3
3 1 12Z Y Z= , 

                                      2 2 2 2
1 1 1 1 1( 2 ) (3 ) (3 ).P Pl Y Z y vw X x v b Z Yξ ′= − − + −                                  (6.9) 

This doubling formula gives the cost of 3 6 17 4 1 1bm s a M M Mξ′+ + + + + . Moreover, if the 

parameter b ′  is cleverly selected as in [PSN+10], multiplication by b ′  can be performed with 

minimal number of additions and subtractions. For instance, if one fixes b = 2 then b′ =  

2 /(1 ) 1i i+ = − . Accordingly, the following execution has a cost of 3 6 19 4m s a M+ + +  (note that 

computations for E and 0,0l  are over pF  and P Py y= −  is precomputed): 

                   2 2
1 1 1 1 0 0 1 1 1 02, , , 3 , , ,A X Y B Y C Z D C E D D E D D= ⋅ = = = = + = −  

2 3
( , ) (p px w y w = px

ξ

2
,v py

ξ
ξ
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                            2 2
3 33 , ( ), ( ) / 2, 3 ,F E X A B F G B F Y G E= = ⋅ − = + = −  

                         
2

1 1 3 0,0,0 0 1( ) ( ), , , ,H Y Z B C Z B H I E B l I I= + − + = ⋅ = − = −  

                                         
2

0,0,1 0 1 1,1 0,2 1, , 3 .P Pl I I l H y l X x= + = ⋅ = ⋅                                      (6.10) 

We point out that in practice we have observed that 3m s a− ≈ . Hence, it is more efficient to 

compute 1 1X Y  directly than using 2
1 1( )X Y+ , B  and 2

1X . If this was not the case, the formula 

could be computed with cost 2 7 23 4m s a M+ + + . 

Applying Lazy Reduction:  

Doubling formula (6.9) requires 25  reductions (3 per 2
p
F  multiplication using Karatsuba, 2 

per  squaring and 1 per  multiplication). First, by delaying reductions inside  arith-

metic the number of reductions per multiplication goes down to only 2, with 22 reductions in 

total. Moreover, reductions corresponding to 2G  and 23E  in  (see execution (6.10)) can be 

 

Algorithm 6.7.  Point doubling in homogeneous coordinates (cost of 3 6 8 22 4u um s r a M+ + + + )   

Input:  21 1 1( , , ) ( ), ( , ) ( ) andP P p P PpT X Y Z E P x y E y y′= ∈ = ∈ = −F F  

  Output:  23 3 32 ( , , ) ( )pT X Y Z E′= ∈ F  and the tangent line 12pl ∈F  

  1: 0 1t Z← ⊗
2

1 4 1,Z t X← ⊗
2

1 1 1,Y t Y← ⊗
2

1Y  

  2: 3 0t t← ⊕
2 2

0 4 4 5 0, / 2,t t t t t← ← ⊕
2

1t  

  3: 0 0t t← ⊕
2

3t                                                                                                            

  4: 2,0 0,0t t← ⊕ 0,1 2,1 0,1,t t t← � 0,0 2 2( )t t b t′≡ ← ⋅                                                                                 

  5: 0 1t X← ⊗
2

1 3 2,X t t← ⊕
2

2t                                                             

  6: 3 2t t← ⊕
2 2

3 0,2 0 0,t l t t← +                                                                                         

  7: 3 1X t← �
2 2

3 0,2 0,2 0 3 1, ,t l l t t t← + ← ⊕
2

3t                                                         

  8: 3 4X t← ⊗
2 2

3 3 3, / 2X t t←                                                                                       

  9: 2 2
0 3 3 1 2 2,T t t T t t← × ← ×                                                                          (Option 1, h = 2) 

10: 2
2 1 1 3 1,T T T t Y← + ← ⊕

2
1Z                                                             

11: 2
2 1 2 3 3,T T T t t← + ← ⊗

2
3t                                                                     

12: 3 3t t← �
2

5t                                                                                                                     

13: 0 0T T← �
2

2T                                                                                                        (Option 2)                       

14: 2
3 0 3 1mod ,Y T p Z t← ← ⊗

2
3 2 2,t t t← �

2
1t                                                                     

15: 0,0,0 2,0l t← � 2,1 0,0,1 2,0,t l t← ⊕ 2,1 0,0 2( )t l tξ≡ ← ⋅                                                                                 

16: 0,2,0 0,2,0l l← ⊗ 0,2,1 0,2,1,Px l l← ⊗ Px                                                             

17: 1,1,0 3,0l t← ⊗ 1,1,1 3,1,Py l t← ⊗ Py                                                             

18: Return 3 3 32 ( , , )T X Y Z=  and 0 1( , )l l l=  
 

pF

2
p
F pF 2

p
F

3Y
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further delayed and merged, eliminating the need of two reductions. Thus, the number of 

reductions is now 20 and the total cost of formula (6.9) is . The 

details are shown in Algorithm 6.7.  

Let  and  be points in homogeneous coordinates. 

To compute  and the tangent line l evaluated at point ( , )P P pP x y= ∈F  we 

use the following addition formula: 

                                                      

                   

                                              2
2 2( ) ( ) ,P Pl y x v X Y vwλ θ ξ θ λ= − + −                                        (6.11) 

that costs  when employing lazy reduction (see Alg. 6.8 below). 

 

Algorithm 6.8.  Point addition in homogeneous coordinates (cost of 11 2 11 12 4u um s r a M+ + + + )   

Input:  21 1 1 2 2 2( , , ) and ( , , ) ( ), ( , ) ( ) andP P p P PpT X Y Z R X Y Z E P x y E y y′= = ∈ = ∈ = −F F  

  Output:  23 3 3( , , ) ( )pT R X Y Z E′+ = ∈ F  and the tangent line 12pl ∈F  

  1: 1 1t Z← ⊗
2

2 2 1,X t Z← ⊗
2

2Y  

  2: 1 1t X← �
2

1 2 1,t t Y← �
2

2t  

  3: 3 1t t← ⊗
2

1t                                                                                                            

  4: 3 3X t← ⊗
2

1 4 2,X t t← ⊗
2

2t                                                             

  5: 3 1t t← ⊗
2

3 4 4,t t t← ⊗
2

1Z                                                             

  6: 4 3t t← ⊕
2

4t                                                                                         

  7: 4 4t t← �
2

3X                                                         

  8: 4 4t t← �
2

3X                                                         

  9: 3 3X X← �
2

4t                                                         

10: 2 2
1 2 3 2 3 1,T t X T t Y← × ← ×                                                                        (Option 1, h = 2) 

11: 2 1T T← �
2

2T                                                                                                        (Option 2)                       

12: 2
3 2 3 1mod ,Y T p X t← ← ⊗

2
4 3 3,t Z t← ⊗

2
1Z                                                                     

13: 0,2,0 2,0l t← ⊗ 0,2,1 2,1,Px l t← ⊗ Px                                                             

14: 2
0,2 0,2l l← −                                                                                                 

15: 2 2
1 2 2 2 1 2,T t X T t Y← × ← ×                                                                        (Option 1, h = 2) 

16: 2 1T T← �
2

2T                                                                                                        (Option 2)                       

17: 2
2 1 modt T p←                                                                    

18: 0,0,0 2,0l t← � 2,1 0,0,1 2,0,t l t← ⊕ 2,1 0,0 2( )t l tξ≡ ← ⋅                                                                                 

19: 1,1,0 1,0l t← ⊗ 1,1,1 1,1,Py l t← ⊗ Py                                                             

18: Return 3 3 3( , , )T R X Y Z+ =  and 0 1( , )l l l=  
 

3 6 8 22 4u um s r a M+ + + +

1 1 1( , , )T X Y Z= 22 2 2( , , ) ( )
p

R X Y Z E′= ∈ F

3 3 3( , , )T R X Y Z+ =

1 2 1 1 2 1, ,Y Y Z X X Zθ λ= − = −

3 2 2 2 3 2 3 3
3 1 1 3 1 1 1 3 1( 2 ), (3 ) , ,X Z X Y X Z Y Z Zλ λ θ λ θ λ λ θ λ λ= + − = − − − =

11 2 11 12 4u um s r a M+ + + +
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6.4. High-Speed Pairing Implementation    

In this section, we evaluate theoretically and empirically the performance gain obtained by 

exploiting the lazy reduction technique and improved explicit formulas. As a side effect, we 

demonstrate that a careful selection of curve and parameters, efficient coding and the use of other 

additional optimizations allow us to realize a high-speed software implementation that surpasses 

the best results in the literature by significant margins.   

6.4.1. Optimal Ate Pairing on BN Curves 

For our analysis and tests, we use the Barreto-Naehrig (BN) curve: 

                                                                                                                    (6.12) 

defined over , where , embedding degree k = 12, 

prime order 4 3 2
36 36 18 6 1n u u u u= + + + +  and 62 55(2 2 1) 0u = − + + < ∈Z .  

To implement the arithmetic over extension fields efficiently, we follow the 

recommendations in [IEEE08] to represent k
p
F  with a tower of extensions using irreducible 

binomials. Accordingly, we represent 12
p
F  using the flexible towering scheme used in [DSD07, 

HMS08, BGM+10, PSN+10] combined with the parameters suggested by [PSN+10]: 

• 2
2

[ ]/( ), where 1pp
i i β β= − = −F F . 

• 4 2
2

[ ] /( ), where 1
p p

s s iξ ξ= − = +F F . 

• 6 2
3

[ ]/( ), where 1
p p

v v iξ ξ= − = +F F . 

• 12 4 6
3 2

[ ]/( ) or [ ]/( )
p p p

t t s w w v= − −F F F . 

As can be seen in Algorithm 6.1, the selection of 1β = − , enabled by the fact that 

3(mod 4)p ≡ , accelerates 2
p
F  arithmetic since multiplications by β  can be computed as simple 

subtractions [PSN+10]. 

Although several variants of the Tate pairing are available (e.g., R-ate, optimal ate, X-ate), 

our experiments reveal that they achieve very similar performance. For testing purposes, we 

choose to implement the optimal ate pairing given by: 

                    2 1 T: G G Gopta × →  

                               ( )
12

2

1

, [ ] , ( ) [ ] ( ), ( )
( , ) ( ) ( ) ( )

p p p

p

n
r Q r Q Q r Q Q Q

Q P f P l P l Pπ π π

−

+ −
→ ⋅ ⋅ ,                   (6.13) 

2 3: 2BNE y x= +

pF
4 3 236 36 24 6 1 3(mod 4)p u u u u= + + + + ≡
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where 6 2 0r u= + <  since 0u < . To accommodate the negative r, Arahna et al. [AKL+10] 

modifies Algorithm 2.9 with the replacement of an expensive inversion by a simple conjugation. 

The details are shown in Algorithm 6.9. For complete details, the reader is referred to [AKL+10, 

Section 5.1]. 

Curve arithmetic and line evaluation in Algorithm 6.9 (lines 1, 2, 5, 6, 9) were implemented 

with the optimized formulas in homogeneous coordinates discussed in Section 6.3.2 (Algorithm 

6.7 and Algorithm 6.8). Towering arithmetic (lines 3, 5, 6, 9, 10) was optimized with the lazy 

reduction technique as described in Section 6.2. Following [AKL+10], for accumulating line 

evaluations into the Miller variable,  is represented using the towering 2p p
→ →F F

4 12
p p

→F F  and a special (dense× sparse)-multiplication (called sparse multiplication) costing 

13 6 61um r a+ +  is used (steps 5 and 6 of Algorithm 6.9). Aranha et al. also points that, during 

the first iteration of the loop, a squaring in 12
p
F  can be eliminated since the Miller variable is 

initialized as 1 (step 1 in Algorithm 2.9) and a special (sparse× sparse) multiplication (called 

sparser multiplication) costing 7 5 30um r a+ +  is used to multiply the first two line evaluations 

(step 3 of Algorithm 6.9). This sparser multiplication is also used for multiplying the two final 

line evaluations in step 9 of the algorithm. Final exponentiation in step 10 was implemented with 

the method by Scott et al. [SBC+09], in which the power  is factored in the exponents 

,  and . Among them, the most expensive part is the computation 

with the exponent . In this case, the execution can be performed in the cyclotomic 

subgroup , which requires, among other operations, 3 exponentiations by . In order 

to speed up these exponentiations, we use the faster compressed squarings by Karabina [Kar10]. 

 

Algorithm 6.9.  Modified optimal ate pairing on BN curves (generalized for 0u < )    

Input:  
2log

1 2 0
G , G , 6 2 2

r i
ii

P Q r u r
=

∈ ∈ = + =∑  

  Output:  ( , )opta Q P  

  1: , ( ), 2 , 1Q Qd l P T Q e← ← ←  

  2:  2log 1 ,if 1 then ( ),r T Qr e l P T T Q− = ← ← +  

  3: f d e← ⋅                                                                                                         

  4: 2for log 2 downto 0 doi r= −                                                             

  5:        
2

, ( ), 2T Tf f l P T T← ⋅ ←  

  6:         ,if 1 then ( ),i T Qr f f l P T T Q= ← ⋅ ← +  

  7: 2
1 2( ), ( )p pQ P Q Qπ π← ←  

  8: 
6

if 0 then , pu T T f f< ← − ←                                                         

  9: 
1 2, 1 , 2( ), , ( ), , ( )T Q T Qd l P T T Q e l P T T Q f f d e−← ← + ← ← − ← ⋅ ⋅  

10: 
6 2 4 2( 1)( 1)( 1) /p p p p nf f − + − +←                                                           

11: Return  f  
 

12
p
F

12( 1) /p n−
6

( 1)p − 2( 1)p + 4 2( 1) /p p n− +
4 2( 1) /p p n− +

2
6
( )

pφG F u
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Remarkably, we note that these compressed squarings can be sped up by applying the generalized 

lazy reduction again. In total, about 8% of reductions can be eliminated per exponentiation by 

. The reader is referred to Appendix C1 for complete details.  

6.4.2. Operation Count 

We now consider all the described improvements and state-of-the-art techniques to carry out a 

detailed operation count of an optimal ate pairing over BN curves using Algorithm 6.9. We aim 

to determine the performance gain obtained with the use of the generalized lazy reduction 

technique introduced in Section 6.2.  

Operation counts for arithmetic performed by the Miller’s algorithm when using the 

generalized lazy reduction are detailed in Table 6.2. For reference, we also include costs when 

using lazy reduction for 2pF  arithmetic only (referred to as basic lazy reduction).  

First, using the parameter selection detailed in Section 6.4.1 the Miller loop in Algorithm 6.9 

requires 1 negation in pF
 
to precompute the coordinate Py− ; 64 point doublings with line 

evaluations, 6 point additions with line evaluations, 2 negations, 1 p-power Frobenius and 1 p
2
-

power Frobenius in 2( )
p

E F ; and 1 conjugation, 66 sparse multiplications, 63 squarings, 2 

sparser multiplications and 1 multiplication in 12
p
F . Thus, the cost of the Miller loop when using 

the generalized lazy reduction technique ( )GLML  is given by: 

1 64(3 6 8 22 4 ) 6(11 2 11 12 4 ) 5 (2 2 2 )GL u u u u uML A m s r a M m s r a M a m r A= + + + + + + + + + + + + + +                

          (1 2 ) 66(13 6 61 ) 63(12 6 73 ) 2(7 5 30 ) (18 6 110 )u u u ua M m r a m r a m r a m r a+ + + + + + + + + + + + + +  

1906 396 1370 10281 282 3GL u uML m s r a M A= + + + + + .                                                         (6.14) 

And the total cost of the Miller loop when using basic lazy reduction ( )BLML  is given by: 

1 64(3 6 19 4 ) 6(11 2 10 4 ) 5 (2 2 ) (1 2 )BLML A m s a M m s a M a m A a M= + + + + + + + + + + + + +             

           66(13 36 ) 63(12 51 ) 2(7 18 ) (18 67 )m a m a m a m a+ + + + + + + +  

1906 396 6974 282 3BLML m s a M A= + + + + .                                                                           (6.15) 

The final exponentiation in Algorithm 6.9 requires 1 inversion, 4 conjugations, 15 

multiplications, 3 u-th powers, 4 cyclotomic squarings, 5 p-power Frobenius and 3 p
2
-power 

Frobenius in . Thus, the cost of the final exponentiation when using the generalized lazy 

reduction technique  is given by: 

u

12
p
F

( )GLFE
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Table 6.2. Operation counts for arithmetic required by Miller’s algorithm when using: (i) 

generalized lazy reduction technique; (ii) basic lazy reduction applied to 2
p
F

 
arithmetic only. 

Curve Arithmetic 
Operation count  

(generalized lazy reduction) 

Operation count 

(basic lazy reduction) 

Point doubling/line evaluation 3 6 8 22 4u um s r a M+ + + +  3 6 8 19 4m s r a M+ + + +  

Point addition/line evaluation 11 2 11 12 4u um s r a M+ + + +  11 2 11 10 4m s r a M+ + + +  

p-power Frobenius 2 2 2um r A+ +  2 2m A+  

p2-power Frobenius 1 2a M+   

Negation 1a   

2pF Arithmetic Operation count Operation count 

Add/Sub 1 2a A=   

Double-precision Add/Sub 2a   

Multiplication by ξ  2A   

Double-precision Mult. by ξ  4A  - 

Conjugation 1A   

Reduction 2r R=   

Multiplication 3 2 8u um m r M R A= + = + +  3 2 8u um m r M R A= + = + +  

Squaring 2 2 3u us s r M R A= + = + +  2 2 3u us s r M R A= + = + +  

Inversion 1 2 2 2i I M S A= + + +   

12pF Arithmetic Operation count Operation count 

Add/Sub 6 12a A=   

Conjugation 3a   

Multiplication 18 6 110um r a+ +  18 67m a+  

Sparse Multiplication 13 6 61um r a+ +  13 36m a+  

Sparser Multiplication 7 5 30um r a+ +  7 18m a+  

Squaring 12 6 73um r a+ +  12 51m a+  

Cyclotomic Squaring 9 6 46us r a+ +  6 61m a+  

Compressed Squaring 6 4 31us r a+ +  4 27m a+  

p-power Frobenius 5 6m A+  5 6m A+  

p2-power Frobenius 10 2M a+  10 2M a+  

Inversion 1 25 9 24 112u ui m s r a+ + + +  1 25 9 82i m s a+ + +  

 

1 2a M+

1a

1 2a A=

2a

2A

1A

2r R=

1 2 2 2i I M S A= + + +

6 12a A=

3a
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.                               (6.16) 

 

And the total cost of the final exponentiation when using basic lazy reduction  is 

given by: 

           

.                                                                     (6.17) 

After adding (6.14) with (6.16) and adding (6.15) with (6.17), we obtain: 

 

                       .                                                                (6.18) 

.                                                                 (6.19) 

Therefore, in the case of a state-of-the-art optimal ate pairing the generalized lazy reduction 

technique allows us to eliminate about 32% of reductions. For instance, if we assume that 

 and  (neglecting the cost of field inversions for simplification purposes) 

the expected cost reduction for the whole pairing computation is approximately 9%. Obviously, 

this estimate is expected to grow with the ratios R/A (reduction/addition) and  (reduction/ 

integer multiplication). 

6.4.3. Implementation Results 

A software implementation was developed in collaboration with Diego F. Aranha to evaluate the 

performance boost obtained with the introduced techniques and improved explicit formulas. To 

optimize carry handling and eliminate function call overheads, we followed suggestions by 

[BGM+10] and implemented the 2
p
F  arithmetic purely in Assembly. Higher-level algorithms 

were implemented using the C language and compiled with GCC. To obtain our cycle counts, we 

ran our implementations 10
4
 times, averaged and approximated the results to the nearest 1000 

(1 25 9 24 112 ) 4(3 ) 15(18 6 110 ) 3(1 36 372 9 6GL u u u u uFE i m s r a a m r a i m s m s= + + + + + + + + + + + + +

260 2164 ) 4(9 6 46 ) 5(5 6 ) 3(10 2 )ur a s r a m A M a+ + + + + + + + +

4 394 61 1158 21 906 8456 30 30GL u uFE i m m s s r a M A= + + + + + + + +

( )BLFE

(1 25 9 82 ) 4(3 ) 15(18 67 ) 3(1 293 6 1830 ) 4(6 61 )BLFE i m s a a m a i m s a m a= + + + + + + + + + + + +

5(5 6 ) 3(10 2 )m A M a+ + + +

4 1223 27 6839 30 30BLFE i m s a M A= + + + + +

4 2361 1575 2358 18737 30 30GL GL u uML FE i m s r a M A+ = + + + + + +

4 10561 5044 61128uI M R A= + + +

4 3129 423 13813 312 33BL BLML FE i m s a M A+ = + + + + +

4 10561 7432 53968uBL BL I MF AM RL E+ = + + +

1 0.65uM R= 1 0.1A R=

/ uR M
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cycles. Table 6.3 compares the timings of our Basic and Optimized implementations: the former 

employs lazy reduction below 2
p
F  only, whereas the latter is fully optimized with the lazy 

reduction technique applied to the whole pairing computation. Both implementations exploit 

faster compressed squarings and our optimized explicit formulas using homogeneous 

coordinates. Therefore, Table 6.3 directly illustrates the benefits of using the generalized lazy 

reduction technique discussed in Section 6.2. As can be seen, this technique enables in practice 

cost reductions between 12% and 18% on x86-64-based processors. 

Table 6.3. Performance comparison of our implementations on several x86-64-based processors: 

(i) Basic implementation using lazy reduction below 2
p
F  arithmetic; (ii) Fully optimized 

implementation using generalized lazy reduction for the whole pairing computation. Timings are 

in millions of clock cycles.  

Implementation Phenom II 
Cost  

reduct. 
Core i5 

Cost  

reduct. 
Opteron 

Cost  

reduct. 
Core 2 

Cost  

reduct. 

Basic 1.777 - 2.020 - 2.005 - 2.677 - 

Optimized 1.562 12% 1.688 16% 1.710 15% 2.194 18% 

 

Table 6.4 compares our implementation results with Beuchat et al. [BGM+10], which 

presented the previously fastest implementation at the 128-bit security level in the literature. We 

remark that the tested Core i5 exhibits a microarchitecture that is equivalent to the Core i7 

processor employed by [BGM+10]. To confirm this assumption, we benchmarked software by 

Beuchat et al. and compared the results with the ones reported in [BGM+10]. We also note that 

Phenom II was not considered in [BGM+10] and that we could not find a Core 2 Duo machine 

producing the same timings as in [BGM+10]. Hence, timings for these two architectures were 

measured independently by the authors using the available software. 

First, observe that the basic implementation in Table 6.3 consistently outperforms Beuchat et 

al.’s results. This is due to our careful implementation using an optimal choice of parameters 

combined with optimized curve arithmetic in homogeneous coordinates and faster cyclotomic 

formulas. When lazy reduction is enabled (optimized implementation), pairing computation 

becomes faster than the best previous result by 28%-34%. 

For extended benchmark results and comparisons with other previous works on different 64-

bit processors, the reader is referred to our online database [Lon10b]. 
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Table 6.4. Performance comparison of state-of-the-art pairing implementations on several x86-

64-based processors. Timings are in clock cycles.  

Operation 
Beuchat et al. [BGM+10] 

    Phenom II (1)    Core i7 (2)    Opteron (3)   Core 2 Duo (4)  

Multiplication in  440 435 443 590 

Squaring in  353 342 355 479 

Miller Loop 1,338,000 1,330,000 1,360,000 1,781,000 

Final Exponentiation 1,020,000 1,000,000 1,040,000 1,370,000 

Optimal Ate Pairing 2,358,000 2,330,000 2,400,000 3,151,000 

Operation 
This work 

    Phenom II (1)     Core i5 (5)    Opteron (6)   Core 2 Duo (4) 

Multiplication in  368 412 390 560 

Squaring in  288 328 295 451 

Miller Loop 898,000 990,000 988,000 1,275,000 

Final Exponentiation 664,000 713,000 722,000 919,000 

Optimal Ate Pairing 1,562,000 1,688,000 1,710,000 2,194,000 

Improvement 34% 28% 29% 30% 

   (1) On a 3.0GHz AMD Phenom II X4 940.   
   (2) On a 2.8GHz Intel Core i7 860.   
   (3) On a 2.3GHz AMD Opteron 2376.  
   (4) On a 2.66GHz Intel Core 2 Duo E6750.  
   (5) On a 2.53GHz Intel Core i5 M540.   
   (6) On a 2.2GHz AMD Opteron 275.  

6.5. Conclusions 

In this chapter, we have proposed efficient methods and improved explicit formulas that speed up 

significantly the computation of pairings on ordinary curves over prime fields. Most remarkably, 

the introduced generalized lazy reduction technique is shown to apply to every computation 

involving tower field operations found in the Miller loop and final exponentiation, including the 

recently proposed compressed squarings by [Kar10] (see Appendix C1).  

After discussing relevant previous work in §6.1, we introduced the generalized lazy reduction 

technique in the context of tower extension fields in §6.2. We described a methodology that relies 

on the careful selection of the field size to keep intermediate results under Montgomery 

boundaries with the objective of reducing costs of additions/subtractions and maximizing the use 

of operations without carry checks. Moreover, we illustrated the efficient realization of these 

techniques with the popular tower 2 6 12p p p p
→ → →F F F F , detailing the improved explicit 

2p
F

2p
F

2p
F

2p
F
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formulas for multiplication and squaring in 2
p
F , 6

p
F  and 12

p
F . 

In §6.3, we presented our optimizations to doubling/line evaluation and addition/line 

evaluation formulas using Jacobian and homogeneous coordinates. The revised formulas require 

fewer additions and “small” operations, which are not negligible in certain platforms. 

Furthermore, we also applied the generalized lazy reduction technique to the curve arithmetic and 

explicitly stated the new formulas with minimal number of reductions. 

In §6.4, we evaluated the new techniques and explicit formulas on a state-of-the-art 

implementation of the optimal ate pairing on BN curves at the 128-bit security level. We carried 

out a detailed operation count and determined that the generalized reduction technique allows us 

to eliminate about 32% of reductions, which represents (under certain assumptions) an estimated 

cost reduction of about 9% for the whole pairing computation. This improvement strongly relies 

on the typically large gap between reduction and addition costs, so the cost reduction is expected 

to grow with the R/A ratio. This analysis was confirmed in practice with a high-speed software 

implementation that was intensively code optimized and includes state-of-the-art techniques such 

as the fast compressed squaring formulas and efficient decompression by [Kar10]. We reported 

improvements between 12% and 18% on different 64-bit platforms when using our method. 

These results surpass the expected theoretical estimate since they include our methodology to 

optimize carry handling and maximize the number of operations without carry checks (see 

Section 6.2.1). As a side effect, we reported the fastest pairing implementation on x86-64-based 

processors with improvements ranging between 28% and 34% in comparison with the previously 

best results due to Beuchat et al. [BGM+10]. In particular, we reported a pairing computation in 

~0.5msec. on a 3.0GHz AMD Phenom II X4 processor.  
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7 Chapter 7 

Conclusions 

In the last few years, intense research has been focused on the efficient computation of elliptic 

curve and pairing primitives to enable their realization in the plethora of potential applications 

and emerging platforms of the new millennium. This thesis has focused on devising efficient 

methods and formulas for enabling high-speed elliptic curve and pairing-based cryptography 

over fields of large prime characteristic. These results have a practical impact in the performance 

of cryptographic protocols and schemes based on elliptic curves and pairings. Most remarkably, a 

careful selection of state-of-the-art algorithms has led to the realization of record-breaking 

implementations in software. For instance, these results may directly increase the number of 

secure transaction requests per second that can be processed by a Web server in an Internet-based 

application such as e-banking or e-commerce. This could potentially lead to savings in hardware 

costs for corporations, to more Web-based content being protected and to reduced waiting times 

during online transactions for consumers, among other benefits.     

A more detailed description of the contributions of this thesis follow in §7.1. Possible future 

research directions are described in §7.2.    

7.1. Summary of Contributions 

In Chapter 2 a summary of fundamental concepts of ECC and Pairing-based Cryptography was 

provided. Also, some advanced research topics regarding special curves and the GLS method 
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were described.   

Chapter 3 introduced two new schemes for precomputing points. The LM Scheme, which is 

intended for tables of form id P  on standard curves using Jacobian coordinates, was adapted to 

the case using only one inversion (case 2) and to the case without inversions (case 1). For case 2, 

two variants were proposed with slightly different memory requirements and speeds, case 2a and 

case 2b. It was shown that the new method achieves the lowest costs in the literature when using 

an optimal number of precomputations. For instance, LM Scheme, case 2b, has a cost of 

1 (9 ) (2 6)I L M L S+ + +  with L non-trivial points, which is the lowest in the literature among 

methods using one inversion only. The cost formulas for the different variants were derived (see 

proofs in Appendices A1 and A2). On the other hand, the LG Scheme, which is based on the 

proposed idea of conjugate additions in projective coordinates, was shown to apply to different 

curve forms and types of scalar multiplication. Conjugate addition formulas were derived for J, 
e

JQ  and IE  coordinates (see Appendix A3). Moreover, an efficient method combining the LM 

and LG Schemes was proposed for the case of multiple scalar multiplication on standard curves 

using J. The generic cost formulas for single and multiple scalar multiplications were derived 

(see proofs in Appendices A5 and A6), as well as the cost formulas of the optimized schemes for 

J, e
JQ  and IE  coordinates. Finally, an extensive comparative analysis of different pre-

computations methods for different scenarios, memory requirements and security levels was 

carried out to determine the most efficient scheme for each case when using J, e
JQ  and IE  

coordinates. In general, it was shown that for the great majority of cases the proposed schemes 

achieve the best performance. Refer to §3.4 for complete details. Finally, potential applications 

for the use of conjugate additions were described (see §3.5). The outcomes of this chapter were 

exploited for speeding up further scalar multiplication in Chapters 4 and 5.   

Chapter 4 was about efficient multibase representations for scalar multiplication and how 

efficient these methods are in different scenarios. First, a taxonomy and comparative analysis of 

the various double- and multi-base methods for scalar multiplication were discussed. Then, the 

theoretical analysis of the multibase NAF (mbNAF) method and its windowed variant, wmbNAF, 

were developed. Our methods were modeled using Markov chains and formulas for estimating 

the average zero and nonzero densities for cases with bases {2,3} and {2,3,5} were derived. 

Then, the “fractional” windows recoding was applied to the setting of wmbNAF to solve the 

problem of restricted number of precomputations imposed by standard windows. The new 

method, denoted by Frac-wmbNAF, allows a flexible number of precomputations in the 

execution of scalar multiplication, which makes it ideal for applications with restricted memory. 

The method was also analyzed theoretically using Markov chains for the case with bases {2,3}. 

Furthermore, a new methodology based on the operation cost per bit to derive efficient multibase 

algorithms was introduced. The optimized algorithms were implemented in Matlab to perform an 

extensive comparison for computing scalar multiplication when using J, e
JQ  and IE  
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coordinates. The cases with bases {2,3} and {2,3,5} using (Frac-w)mbNAF and the refined 

multibase chains were compared with the performance of standard NAF-based methods and the 

most efficient double-base methods in the literature. For proposed and standard NAF methods, 

the best precomputation scheme available for each case was applied (using results from Chapter 

3). The conclusion was that, currently, the proposed refined multibase chains achieve the lowest 

costs found in the literature among methods without precomputations, for all curve forms under 

analysis. For instance, using bases {2,3,5} and {2,3} for n = 160 bits we can perform a scalar 

multiplication with costs of only 1451M (field multiplications) and 1351M in Jacobian and 

inverted Edwards coordinates, respectively. With e
JQ , that cost can be as low as 1261M using 

bases {2,3,5}. These results provide cost reductions between 7%-10% in comparison with NAF. 

Similar results were attained by the refined multibase chains using an optimal number of 

precomputations, although in this case the gain was only 1%-3% in comparison with (Frac)-

wNAF (see §4.5 for complete details). A relevant comparison with the fastest curves using 

standard radix-2 methods followed. In conclusion, “slower” curves that can advantageously 

exploit multibase chains may become competitive with the “fastest” curves using radix-2 

methods when curve parameters are suitably chosen and no precomputations are allowed. 

Finally, a discussion of potential applications and variants of the proposed methods was included, 

as well as a critical look at the practical implications of double- and multi-base number systems 

in the computation of scalar multiplication (see §4.6). In conclusion, the use of multibases was 

recommended for memory-constrained devices and when the conversion step (if expensive) can 

be performed off-line. For non-constrained devices, it was shown that the gain may be negligible 

and that faster curves without exploiting multibases are available. These conclusions were 

confirmed by tests on real x86-64-based implementations in §5.6.4, subsection “Timings using 

Multibase Methods”. 

Chapter 5 studied and brought together most efficient algorithms for the field, point and 

scalar arithmetic levels with the objective of achieving high-speed implementations of ECC on 

x86-64 processors. Optimizations at different levels were carefully tuned for the targeted 

architectures. First, incomplete reduction and branchless arithmetic were optimally combined for 

suitably chosen pseudo-Mersenne primes for achieving efficient arithmetic in pF . Dependencies 

between consecutive field operations were found to degrade the performance on the targeted 

processors by stalling the pipeline. The rescheduling and merging of field operations and the 

merging of point operations were proposed to minimize this problem. These techniques also 

reduce the number of function calls and memory accesses. Explicit point formulas for the 

relevant cases of J and /
e

E E  over pF  and 2
p
F  were optimized by reducing the number of 

“small” operations and by applying the techniques aforementioned (see Appendices B1 and B2). 

By combining all optimized formulas with state-of-the-art algorithms, including the use of the 

LM precomputation scheme (see §5.6.1 and §5.6.2 for further details), we presented two 
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traditional and two GLS-based implementations using J or /
e

E E  coordinates at the 128-bit 

security level. The various tests throughout the chapter as well as the benchmark results for full 

point multiplication were discussed for at least one x86-64 processor representative from the 

notebook, desktop and server computing classes. Presented implementations set new speed 

records and were shown to achieve up to 34% of cost reduction in comparison with best 

previous results. For instance, we reported a point multiplication computation in about 60µsec. 

on a 3.0GHz AMD Phenom II X4 processor. 

Finally, Chapter 6 studied and brought together most efficient algorithms for computing 

pairings with the objective of enabling high-speed implementations on x86-64 processors. First, 

the well-known technique of lazy reduction was generalized to the whole pairing arithmetic 

including towering and curve arithmetic. By carrying out a detailed operation count, this 

technique was shown to eliminate at least 32% of the total number of reductions in a state-of-the-

art implementation of the optimal ate pairing over a BN curve at the 128-bit security level. 

Furthermore, for dealing with more costly higher-precision additions required by lazy reduction, 

a flexible methodology that keeps intermediate values under Montgomery reduction boundaries 

maximizing the use of operations without carry checks was developed. Optimized formulas were 

derived for the case using the tower  and for the new compressed 

squarings by [Kar10] (see §6.2.2 and Appendix C1). Following the approach detailed in Section 

5.4, formulas for point doubling and addition in Jacobian and homogeneous coordinates were 

carefully optimized by eliminating several commonly neglected operations that are not 

inexpensive on modern 64-bit platforms (see §6.3). Finally, the significant savings obtained by 

the new techniques were illustrated with a high-speed implementation of the optimal ate pairing 

over a BN curve at the 128-bit security level. By combining our techniques with other state-of-

the-art methods, the presented implementation set new speed records and was shown to achieve 

up to 34% of cost reduction on x86-64 processors in comparison with the best results in the 

literature. For instance, we reported a pairing computation in about half a millisecond on a 

3.0GHz AMD Phenom II X4 processor. 

7.2. Future Work 

New potential research directions have arisen from the outcomes of this dissertation. We 

summarize them below: 

Precomputations for other special curves and settings. In particular, for the efficient Twisted 

Edwards curve using /
e

E E  or extended Jacobi quartics using homogeneous/extended 

homogeneous coordinates it is still unknown if other precomputation schemes with higher 

efficiency than the traditional scheme using 3 5P P P mP→ → → →…  exist. Further 

2 6 12p p p p
→ → →F F F F
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research could focus on the development of improved schemes for these systems. Also, in §3.5 it 

was observed that conjugate additions can be derived for formulas over 
2

mF . The application of 

LG-like precomputation schemes to this setting requires further analysis.   

More composite formulas and efficient conversion to multibase. In §4.6.1, it was argued that 

the main obstacle that opposes to the use of multiple bases in a wide range of applications is the 

computing cost of conversion from binary to multibase. Further research is needed to improve the 

implementation of conversion algorithms on different platforms. This effort can be 

complemented by the development of efficient tripling and quintupling formulas for other 

coordinate systems such as /
e

E E  where radix-2 methods are still more efficient.  

Implementation on constrained devices. Following the results and analysis in §4.5 and §4.6.1, 

the use of multibase methods is more promising for devices with constrained memory resources 

in which the gain is maximal in terms of speed. However, these devices are usually limited in 

terms of power. Further investigation supported with implementations is required for assessing 

the practical impact of using multibase methods in these platforms with such a constraint. 

Analysis on other platforms; improving ECC over binary fields, HECC. Several software 

techniques and optimizations were proposed for elliptic curve point multiplication over pF  and 

2
p
F  in Chapter 5. The analysis and implementations targeted x86-64 processors. In many cases, 

the proposed techniques and optimized formulas are generic and further study could be devoted 

to test them on different platforms, e.g., embedded devices with 32-bit and 8-bit 

microarchitectures. Moreover, further research can be focused on applying similar methods to the 

case over 
2mF . For instance, it would be interesting to analyze whether data dependencies 

degrade performance of field operations and if similar countermeasures also apply. In fact, 

further study could analyze the application of these methods to other settings such as 

Hyperelliptic Curve Cryptosystems. 

Generalized lazy reduction on other platforms. This technique was shown to reduce 

significantly the computing cost of pairings on various x86-64-based processors. Practical 

implementation of the technique in Field Programmable Gate Arrays (FPGAs), 32-bit embedded 

devices or microcontrollers with 8-bit architectures would be highly valuable. In certain cases, 

the gain is expected to grow even further as the ratio multiplication/addition is usually larger on 

smaller devices in which embedded multipliers are much less powerful.  
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A Appendix A 

A1 Pseudocode of the LM Precomputation Scheme 

In this section, we present the pseudocode of the LM Scheme described in Section 3.2.  
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Lemma A.1. Algorithm A.1, that computes the initial doubling (3.3) of Step 1 (see Section 

3.2.1), costs 1M + 5S and requires 6 temporary registers.  

 

Algorithm A.1.  Point doubling  2A → J,  2 3:E y x ax b= + +   

Input:  point 1 1( , )P x y=  in ( )pE F ,  1 1T x← ,  3 1T y← , curve parameter a 

Output:  point 2 2 22 ( : : )P X Y Z=  and 
(1) (1) (1)(1)

1 11 1 1( , , ) ( , ,1)P X Y Z x y= ≡  

  1: 2
2 3T T=                      

  2: 4 1 2T T T= +                

  3: 
2

4 4T T=                      

  4: 2
5 2T T=                     (1) 4

11{ }Y y=  

  5: 
2

1 1T T=                       

  6: 4 4 1T T T= −                

  7: 6 4 2T T T= −              2 2 2 4
1 1 1 1{2 ( ) }x y x yβ = + − −  

  8: 4 6 / 2T T=                   
 

(1) 2
1 11{ }X x yβ= =  

  9: 1 13T T=                     

10: 2 1T T a= +                

11: 2 2 / 2T T=                   
 

2
1{ (3 ) / 2}x aα = +  

12: 2
1 2T T=                     2

{ }α  

13: 1 1 6T T T= −              2
2{ 2 }X α β= −  

14: 6 4 1T T T= −
             2{ }Xβ −  

15: 2 2 6T T T= ×              2{ ( )}Xα β −  

16: 2 2 5T T T= −             4
2 2 1{ ( ) }Y X yα β= − −  

17: Return 
(1) (1)

1 2 3 4 5 2 2 2 1 1( , , , , ) ( , , , , )T T T T T X Y Z X Y=  

 

Lemma A.2. Algorithm A.2, that computes the first addition 2P P+  in sequence (3.2) using 

CoADD Z− , costs 5M + 2S and requires 6 temporary registers if the precomputed table contains 

only one point. Otherwise, Algorithm A.2 requires 6 temporary registers for calculations plus 2 

extra registers to store the ( , )X Y  coordinates of 3P. To adapt Algorithm A.2 to case 1, it should 

also store the Z coordinate of 3P in register 3Z .   

 

 

 

2
1{ }y

2
1 1{ }x y+

2 2
1 1{( ) }x y+

2
1{ }x

2 2 2
1 1 1{( ) }x y x+ −

2
1{3 }x
2
1{3 }x a+
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Algorithm A.2.  Special addition with identical Z coordinate J + J → J,  2 3:E y x ax b= + +  

Input:  points 2 2 22 ( : : )P X Y Z=  and 
(1) (1) (1)(1)
1 1 1( , , )P X Y Z=  in ( )pE F ,   

            T1 ← X2,  T2 ← Y2,  T3 ← Z2,  
(1)

4 1T X← ,  
(1)

5 1T Y←  

Output:  point (1)
3 3 313 2 ( : : )P P P X Y Z= + =  

  1: 6 4 1T T T= −              
(1)

21{ }X X−  

  2: 3 3 6T T T= ×              
(1)

3 2 21{ ( )}Z Z X X= −  

  3: 
2

4 6T T=                   
(1) 2

21{( ) }X X−  

  4: 6 4 6T T T= ×              
(1) 3

21{( ) }X X−  

  5: 4 1 4T T T= ×              
(1) (1) 2

2 22 1{ ( ) }X X X X= −  

  6: 1 42T T=                   
(1) 2

2 21{2 ( ) }X X X−  

  7: 1 1 6T T T= +              
(1) (1)3 2

2 2 21 1{( ) 2 ( ) }X X X X X− + −  

  8: 6 2 6T T T= ×              
(1) (1) 3

2 22 1{ ( ) }Y Y X X= −  

  9: 2 5 2T T T= −              
(1)

21{ }Y Y−  

10: 
2

5 2T T=                    
(1) 2

21{( ) }Y Y−  

11: 1 5 1T T T= −              
(1) (1) (1)2 3 2

3 2 2 2 21 1 1{ ( ) ( ) 2 ( ) }X Y Y X X X X X= − − − − −  

12: 5 4 1T T T= −              
(1) 2

2 2 31{ ( ) }X X X X− −  

13: 5 2 5T T T= ×              
(1) (1) 2

2 2 2 31 1{( )[ ( ) ]}Y Y X X X X− − −  

14: 2 5 6T T T= −              
(1) (1) (1)2 3

3 2 2 2 3 2 21 1 1{ ( )[ ( ) ] ( ) }Y Y Y X X X X Y X X= − − − − −  

15: 5 6T T=                    
(1)

2{ }Y  

16:  If m > 3 then: 

17:         3 1X T=    

18:         3 2Y T=    

19: Return 
(1) (1)

1 2 3 4 5 3 3 3 3 3 3 32 2( , , , , , , ) ( , , , , , , )T T T T T X Y X Y Z X Y X Y=  

 

Lemma A.3. Algorithm A.3, that computes following additions in sequence (3.2) using 

CoADD Z−  operations, costs 5M + 2S per extra point, requires 6 temporary registers for 

calculations and 3 (4) extra registers per each point for case 2a (case 2b) to store the values 

, ,X Y A  ( , , , )X Y B C . In the last iteration the memory requirement is reduced by storing values 

,X Y  ( , , )X Y B  in temporary registers. To adapt Algorithm A.3 to case 1, one should execute the 

steps that correspond to case 2a except that, instead of values , one should store Z 

coordinates of points iP.  

( 3) / 2iA +



 
 

 

Appendix A1: Pseudocode of the LM Precomputation Scheme                                                   

 

170 

 

Algorithm A.3.  Special addition with identical Z coordinate J + J → J,   

Input:   and 3 3 33 ( : : )P X Y Z= ,    

            , , , 
(1)

4 2T X← , 
(1)

5 2T Y←  

Output:  points , for , i odd 

                  LM Scheme, case 2a:                    LM Scheme, case 2b: 

  1: For  i = 5  to  m  do  (i odd) For  i = 5  to  m  do  (i odd) 

  2:                If  i ≠ m  then: 

  3:                                                

  4:                                                        

  5:                                                        

  6:                             

  7:                                       

  8:                                                               

  9:                                             

10:                                                      

11:                                                    

12:                                                           

13:                                                     

14:                                                            

15:                                                      

16:        If  i ≠ m  then:                        

17:                        

18:                        

19: Return     Else: 

20:                          

21:                                     

22:                               

23:       
      

 

24:                         

25:                             

26:                         

27:                              

28:                                 

29:                      

30:                                  

31:                           

32:                           

33:                                     

34:                        

35:  Return  

2 3:E y x ax b= + +

(1) (1) (1)(1)
2 2 22 ( , , )P X Y Z=

1 3T X← 2 3T Y← (1)
3 2T Z←

(( 3) / 2)
( 3) / 2 ( 3) / 2 ( 3) / 22 ( 2) ( , , )i
i i iiP P i P X Y Z

−
+ + += + − = 5 toi m=

( 3) / 2 1 4iA T T+ = − (( 3) / 2)
( 3) / 2 ( 1) / 2 2{ }i
i iA X X

−
+ += −

3 ( 3) / 2 3iT A T+= × ( 3) / 2{ }iZ + 1 1 4T T T= − (( 3) / 2)
( 1) / 2 2{ }i
iX X

−
+ −

2
1 ( 3) / 2iT A += 2

( 3) / 2{ }iA + 3 1 3T T T= × ( 3) / 2{ }iZ +

4 1 4T T T= × (( 1) / 2) (( 3) / 2) 2
( 3) / 22 2{ }i i
iX X A− −
+= 2

( 3) / 2 1iB T+ = (( 3) / 2) 2
( 3) / 2 ( 1) / 2 2{ ( ) }i
i iB X X −
+ += −

1 1 ( 3) / 2iT T A += × 3
( 3)/ 2{ }iA + ( 3) / 2 1 ( 3) / 2i iC T B+ += × (( 3) / 2) 3

( 3) / 2 ( 1) / 2 2{ ( ) }i
i iC X X −
+ += −

2 2 5T T T= − (( 3) / 2)
( 1) / 2 2{ }i
iY Y −
+ − 4 4 ( 3) / 2iT T B += × (( 1) / 2) (( 3) / 2)

( 3) / 22 2{ }i i
iX X B− −
+=

5 1 5T T T= × (( 1) / 2) (( 3) / 2) 3
( 3) / 22 2{ }i i
iY Y A− −
+= 1 42T T= (( 3) / 2)

( 3) / 22{2 }i
iX B−
+

6 42T T= (( 3) / 2) 2
( 3) / 22{2 }i
iX A−
+ 1 1 ( 3) / 2iT T C += + (( 3) / 2)

( 3) / 2 ( 3) / 22{ 2 }i
i iC X B

−
+ ++

1 1 6T T T= + 3 (( 3) / 2) 2
( 3) / 2 ( 3) / 22{ 2 }i
i iA X A

−
+ ++ 2 2 5T T T= − (( 3) / 2)

( 1) / 2 2{ }i
iY Y

−
+ −

2
6 2T T= (( 3) / 2) 2

( 1) / 2 2{( ) }i
iY Y

−
+ − 5 5 ( 3) / 2iT T C += × (( 1) / 2) (( 3) / 2)

( 3) / 22 2{ }i i
iY Y C

− −
+=

1 6 1T T T= − ( 3) / 2{ }iX +
2

6 2T T= (( 3) / 2) 2
( 1) / 2 2{( ) }

i
iY Y

−
+ −

6 4 1T T T= − (( 3) / 2) 2
( 3) / 2 ( 3) / 22{ }

i
i is X A X

−
+ += − 1 6 1T T T= − ( 3) / 2{ }iX +

2 2 6T T T= × (( 3) / 2)
( 1) / 2 2{ ( )}

i
is Y Y

−
+⋅ − 6 4 1T T T= − (( 3) / 2)

( 3) / 2 ( 3) / 22{ }
i

i is X B X
−

+ += −

2 2 5T T T= − ( 3) / 2{ }iY + 2 2 6T T T= × (( 3) / 2)
( 1) / 2 2{ ( )}

i
is Y Y

−
+⋅ −

2 2 5T T T= − ( 3) / 2{ }iY +

( 3) / 2 1iX T+ = ( 3) / 2 1iX T+ =

( 3) / 2 2iY T+ = ( 3) / 2 2iY T+ =

1 2 3 ( 3) / 2 ( 3) / 2 ( 3) / 2( , , , , , )i i iT T T A X Y+ + +

1 1 4T T T= − (( 3) / 2)
( 1) / 2 2{ }

i
iX X

−
+ −

3 1 3T T T= × ( 3) / 2{ }iZ +

2
6 1T T= (( 3) / 2) 2

( 3) / 2 ( 1) / 2 2{ ( ) }
i

i iB X X
−

+ += −

( 3) / 2 1 6iC T T+ = × (( 3) / 2) 3
( 3) / 2 ( 1) / 2 2{ ( ) }

i
i iC X X

−
+ += −

2 2 5T T T= − (( 3) / 2)
( 1) / 2 2{ }

i
iY Y

−
+ −

5 5 ( 3) / 2iT T C += × (( 3) / 2)
( 3) / 22{ }

i
iY C

−
+

4 4 6T T T= × (( 3) / 2)
( 3) / 22{ }

i
iX B

−
+

4 42T T= (( 3) / 2)
( 3) / 22{2 }

i
iX B

−
+

2
1 2T T= (( 3) / 2) 2

( 1) / 2 2{( ) }
i

iY Y
−

+ −

1 1 ( 3) / 2iT T C += − (( 3) / 2) 2
( 1) / 2 ( 3) / 22{( ) }

i
i iY Y C

−
+ +− −

1 1 4T T T= − ( 3) / 2{ }iX +

4 4 / 2T T= (( 3) / 2)
( 3) / 22{ }

i
iX B

−
+

4 4 1T T T= − (( 3) / 2)
( 3) / 2 ( 3) / 22{ }

i
i is X B X

−
+ += −

2 2 4T T T= × (( 3) / 2)
( 1) / 2 2{ ( )}

i
is Y Y

−
+⋅ −

2 2 5T T T= − ( 3) / 2{ }iY +

1 2 3 6 ( 3) / 2 ( 3) / 2 ( 3) / 2 ( 3) / 2( , , , , , , , )i i i iT T T T B C X Y+ + + +
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Lemma A.4. Algorithm A.4, that computes the modified Montgomery’s method corresponding 

to Step 2 (see Section 3.2.1), costs 1I + (3M + 1S) + (4M + 1S)(L − 1) and 1I + (3M + 1S) + 4(L 

− 1)M for cases 2a and 2b, respectively, and requires 4 temporary registers for calculations and 

storage for the affine coordinates (x, y) of (L − 1) precomputed points. In addition, case 2a 

requires (L − 1) registers for values jA , and case 2b requires 2(L − 1) registers for values 

( , )j jB C . This step is not executed in case 1. 

 

Algorithm A.4.  Modified Montgomery’ simultaneous inversion method,  2 3:E y x ax b= + +  

Input:  1 2 3 6 ( 3) / 2 ( 3) / 2 ( 3) / 2 ( 3) / 2, , , , , ,m j j jT T T T B A B C+ + + += , for 5 toj m= , j odd 

            ( 3) / 2 ( 3) / 2,i iX Y+ + , for 3 toi m= , i odd 

Output:  points ( 3) / 2 ( 3) / 2( , )i iiP x y+ +=  for 3 toi m= , i odd 

                 LM Scheme, case 2a:                    LM Scheme, case 2b: 

  1:    
1

3 3T T
−=                                1

( 3)/ 2{ }mZ
−

+     ( 3) / 2 6mB T+ =  

  2:    
2

4 3T T=                                 2
( 3)/ 2{ }mZ
−

+     
1

3 3T T
−=                                 1

( 3)/ 2{ }mZ
−

+  

  3:    ( 3) / 2 1 4mX T T+ = ×                   ( 3) / 2{ }mx +     
2

4 3T T=                                  2
( 3)/ 2{ }mZ
−

+  

  4:    4 3 4T T T= ×                           3
( 3)/ 2{ }mZ
−

+     ( 3) / 2 1 4mX T T+ = ×
  

               ( 3) / 2{ }mx +  

  5:    ( 3) / 2 2 4mY T T+ = ×
 
                ( 3) / 2{ }my +     3 3 4T T T= ×                             3

( 3)/ 2{ }mZ
−

+  

  6:    For ( 2) downto 3i m= −  do (i odd)    ( 3) / 2 2 3mY T T+ = ×
 
                 ( 3) / 2{ }my +  

  7:          3 3 ( 5) / 2iT T A += ×             1
( 3)/ 2{ }iZ
−
+           For ( 2) downto 3i m= −  do (i odd)  

  8:          
2

4 3T T=                           2
( 3)/ 2{ }iZ
−
+                 4 4 ( 5) / 2iT T B += ×              2

( 3)/ 2{ }iZ
−
+        

  9:          ( 3) / 2 ( 3) / 2 4i iX X T+ += ×   ( 3) / 2{ }ix +           3 3 ( 5) / 2iT T C += ×              3
( 3)/ 2{ }iZ
−
+        

10:          4 3 4T T T= ×                      3
( 3)/ 2{ }iZ
−
+                 ( 3) / 2 ( 3) / 2 4i iX X T+ += ×    ( 3) / 2{ }ix +  

11:          ( 3) / 2 ( 3) / 2 4i iY Y T+ += ×        ( 3) / 2{ }iy +           ( 3) / 2 ( 3) / 2 3i iY Y T+ += ×         ( 3) / 2{ }iy +  

12:   Return ( 3) / 2 ( 3) / 2( , )i iX Y+ +     Return ( 3) / 2 ( 3) / 2( , )i iX Y+ +  
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A2 Cost Analysis of the LM Precomputation Scheme  

Theorem A.1. The LM Scheme, case 1, has the following cost: 

                                          LM Scheme, case 1Cost (6 1) (3 5)L M L S= + + + , 

and requires (3L + 6) registers, where L is the number of non-trivial points in the precomputed 

table id P . The requirement increases to (5L + 6) if values 
2
iZ  and 

3
iZ  are also stored in order to 

use the addition (or doubling-addition) with stored values during evaluation. 

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 cost 1 5M S+ , 5 2M S+  and 

(5 2 )( 1)M S L+ − , respectively. Also, precomputing values 2
iZ , 3

iZ  (to enable the use of ADD or 

DBLADD with store values during the evaluation stage) costs (1 1 )M S L+ . By adding these 

values we obtain the cost of the LM Scheme, case 1, above. In terms of memory, this method 

only requires 6 temporary registers during the execution of Algorithms A.1, A.2 and A.3 plus 3 

registers to store the ( : : )X Y Z  coordinates of each precomputed point. That makes a total 

requirement of 3L + 6 registers. If the pair 2 3/i iZ Z  is also stored per point, the total requirement 

increases to 5L + 6.                                                                                                                          □ 

Theorem A.2. The LM Scheme, case 2a, has the following cost: 

                                       LM Scheme, case 2aCost 1 (9 ) (3 5)I L M L S= + + + , 

and requires (3L + 3) registers. 

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 cost 1M + 5S, 5M + 2S and 

(5M + 2S)(L − 1), respectively. According to Lemma A.4, Algorithm A.4 costs 1I + (3M + 1S) + 

(4M + 1S)(L − 1). By adding these values, we obtain the cost of the LM Scheme, case 2a, above. 

Regarding memory requirements, Algorithm A.1 needs 6 temporary registers 1 6, ,T T… . The same 

registers can be reused by Algorithm A.2 for calculations. Additionally, it needs 2 extra registers 

to store ( , )X Y  coordinates corresponding to 3P, making a total of 6 + 2 = 8 registers (see 

Lemma A.2). Algorithm A.3 also reuses temporary registers 1 6, ,T T… , and requires 3 registers 

per point, excepting the last one, to store (X, Y, A) values. For the last iteration, we only require 

registers 1 6, ,T T…  and 1 extra register to store A since the last  coordinates are stored in 1T  

and 2T
 
(see Lemma A.3). That makes an accumulated requirement of 6 + 2 + 3(L − 2) + 1 = 3L + 

3 at the end of Algorithm A.3, for L ≥ 2. If L = 1, we do not compute Algorithm A.3, and the 

requirement is fixed by Algorithm A.2 at only 6 registers (note that in this case (X, Y) coordinates 

( , )X Y
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are stored in 1T  and 2T ). Algorithm A.4 requires 4 temporary registers for calculations (where  

and  can store the (x, y) coordinates of the last point mP), 2(L − 1) − 2 registers for (x, y) 

coordinates of the remaining (L − 1) points (assuming that 3T  and 4T  can store the (x, y) 

coordinates of 3P) and (L – 1) registers for values jA  for 4 ( 3) / 2j m≤ ≤ + , 3m >  odd, making 

a total requirement of 3L – 1. In conclusion, LM Scheme, case 2a, requires 3L + 3 registers.       □ 

Theorem A.3. The LM Scheme, case 2b, has the following cost: 

                                        LM Scheme, case 2bCost 1 (9 ) (2 6)I L M L S= + + + , 

and requires (4L + 1) registers. 

Proof: Following Lemmas A.1-A.3, Algorithms A.1, A.2 and A.3 have the same costs as cases 1 

and 2a, and Algorithm A.4 costs 1I + (3M + 1S)  + (4M)(L − 1). Adding these costs we obtain the 

value indicated for the LM Scheme, case 2b. Regarding memory requirements, Algorithm A.1 

needs 6 registers 1 6, ,T T… , which can be reused by Algorithm A.2 for temporary calculations. 

Additionally, Algorithm A.2 needs 2 extra registers to store ( , )X Y  coordinates corresponding to 

3P, making a total of 6 + 2 = 8 registers (see Lemma A.2). Algorithm A.3 also reuses registers 

1 6, ,T T… , and requires 4 registers per point, excepting the last one, to store (X, Y, B, C) values. 

For the last iteration, we only require registers 1 6, ,T T…  and 1 extra register to store C since the 

last ( , )X Y  coordinates are stored in 1T  and 2T , and 6T  stores B (see Lemma A.3). That makes an 

accumulated requirement of 6 + 2 + 4(L − 2) + 1 = 4L + 1 at the end of Algorithm A.3, for L ≥ 2. 

If L = 1, we do not compute Algorithm A.3, and the requirement is fixed by Algorithm A.2 at 

only 6 registers as pointed out in the analysis for case 2a. Algorithm A.4 requires 4 registers for 

calculations (where  and  can store the (x, y) coordinates of the last point mP), 2(L − 1) − 2 

registers for (x, y) coordinates of the remaining (L − 1) points (assuming that 3T  and 4T  can store 

the (x, y) coordinates of 3P) and 2(L – 1) registers for values ,j jB C  for 4 ( 3) / 2j m≤ ≤ + , 3m >  

odd, making a total requirement of 4L – 2 registers. In conclusion, case 2b requires 4L + 1 

registers.                                                                                                                                           □  

1T

2T

1T 2T
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A3 Conjugate Addition Formulas  

Conjugate (Mixed) Addition in Jacobian Coordinates 

Let 1 1 1( : : )P X Y Z=  and 2 2 2( : : )Q X Y Z=  be two points in Jacobian coordinates on an elliptic 

curve WE  over pF . If the general addition P Q+  is performed using [LM08, formula (15)] and 

the partial values 3 2 2
12(4 8 )Z Xβ β+ , 2 2

12Z X β , 3 3
12Z Y β− , 3Z , 3

21Z Y  and 3
12Z Y  are temporarily 

stored, the conjugate addition 1 1 1 2 2 2 4 4 4( ) ( : : ) ( : : ) ( : : )P Q P Q X Y Z X Y Z X Y Z− = + − = + − =  can 

be performed with the following: 

2 3 2 2
4 12(4 8 )X Z Xγ β β= − + ,  2 2 3 3

4 1 4 12 2( )Y Z X X Z Yγ β β= − − ,  4 3Z Z= ,                             (A.1) 

where  3 3
2 11 22( )Z Y Z Yγ = − + . This formula only requires 1M + 1S + 4A + 1 ( 2)× . 

In the case of mixed addition, let 1 1 1( : : )P X Y Z=  and 2 2( , )Q x y=  be two points on an 

elliptic curve WE  over pF . If the mixed addition P Q+  is performed using [LM08, formula 

(16)] and the partial values 3 2
1(4 8 )Xβ β+ , 2

14X β , 3
18Y β− , 3Z  and 3

21Z y  are temporarily 

stored, the conjugate mixed addition 1 1 1 2 2 4 4 4( ) ( : : ) ( : ) ( : : )P Q P Q X Y Z x y X Y Z− = + − = + − =  

can be performed as follows: 

2 3 2
4 1(4 8 )X Xγ β β= − + ,  2 3

4 1 4 1(4 ) 8Y X X Yγ β β= − − ,  4 3Z Z= ,                                      (A.2) 

where 3
1 2 12( )Z y Yγ = − + . This formula only costs 1M + 1S + 4A + 1 ( 2)× .  

To obtain the costs of the different addition/conjugate addition variants from Table 3.2, one 

needs to add the costs from Table 2.2 to costs of formulas (A.1) or (A.2). For instance, an 

addition/conjugate addition pair using [2,2]ADD  has a cost of  (10M + 2S) + (1M + 1S) = 11M + 

3S, or (9M + 3S) + (1M + 1S) = 10M + 4S if applying one S-M trading. 

Conjugate (Mixed) Addition in eJQ  Coordinates  

Let 2 2
1 1 1 1 1( : : : : )P X Y Z X Z=  and 2 2

2 2 2 2 2( : : : : )Q X Y Z X Z=
 
be two points in eJQ  coordinates 

on an extended Jacobi quartic curve /JQ pE F  with 1d =  in (2.11). If the addition P Q+  is 

performed using the following formula due to [HWC+07, HWC+08b]:  

3 1 2 1 2( 2 )( 2 ) 4X Y Y Y Yα β αβ= + + − − ,  2 2 2 2
3 1 2 1 24 4Z Z Z X X= − ,  2 2

33 ( )X X= ,  2 2
33 ( )Z Z= ,     

2 2 2 2 2 2 2 2 2 2
3 1 21 2 1 2 1 1 2 2 3 3(4 4 2 )[4( )( ) 4 ] 16( )Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + + + + + + − + ,           (A.3)       

where 2 2 2
1 1 1 1( ) ( )X Z X Zα = + − + , 2 2 2

2 2 2 2( ) ( )X Z X Zβ = + − + , and the partial values β , 
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1( 2 )Yα + , 22Y , α β , 1 24Y Y− , 2 2 2 2
1 2 1 2(4 4 )X X Z Z+ , 2αβ , 2 2 2 2

1 21 1 2 24( )( ) 4X Z X Z Y Y+ + + , aαβ , 

3Z  and 2
3Z  are temporarily stored, then the conjugate addition ( )P Q P Q− = + − =  
2 2 2 2

1 1 1 2 2 2 4 4 41 1 2 2( , , , , ) ( , , , , ) ( , , )X Y Z X Z X Y Z X Z X Y Z+ − =  can be performed with only 2M + 1S + 

7A + 1 ( 16)×  as follows: 

4 1 2 1 2( 2 )( 2 ) 4X Y Y Y Yα β αβ= + − + + − ,  2 2 2 2
4 31 2 1 24 4Z Z Z X X Z= − = ,  2 2

44 ( )X X= ,  2 2
4 3Z Z= ,  

2 2 2 2 2 2 2 2 2 2
4 1 2 1 2 1 1 2 2 1 2 4 4(4 4 2 )[4( )( ) 4 ] 16( )Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + − + + − + − + ,           (A.4)   

Thus, the cost of an addition/conjugate addition pair is of (7M + 4S) + (2M + 1S) = 9M + 5S 

if using an ADD operation or (7M + 3S) + (2M + 1S) = 9M + 4S, if using an [0,1]ADD  operation. 

See Tables 2.4 and 3.2. 

In the case of mixed addition, let 2 2
1 1 1 1 1( : : : : )P X Y Z X Z=  and 2

2 2 2( , , )Q x y x=  be two points 

in eJQ  and A coordinates, respectively, on an extended Jacobi quartic curve /JQ pE F  with 

1d =  in (2.11). If the mixed addition P Q+  is performed using the following formula due to 

[HWC+07, HWC+08b]:  

3 1 2 2 2 1 2( 2 )( ) 2X Y x y x Y yα α= + + − − ,  
2 2 2

3 1 1 22( )Z Z X x= − ,  
2 2
3 3( )X X= ,  

2 2
3 3( )Z Z= ,    

2 2 2 2 2 2 2 2
3 1 2 1 2 1 1 2 2 1 2 3 32(( )[2( )( 1) 2 ] 2( ))Y X x Z x X Z x a x Y y X Zα α= + + + + + + − + ,                      (A.5) 

where 2 2 2
1 1 1 1( ) ( )X Z X Zα = + − + , and the partial values 1( 2 )Yα + , 2xα , 1 22Y y− , 2 2 2

1 2 1( )X x Z+ , 
2 2 2
1 1 2 1 2[2( )( 1) 2 ]X Z x Y y+ + + , 2a xα , 3Z  and 2

3Z  are temporarily stored, then the conjugate 

mixed addition 2 2 2 2 2
1 1 1 1 1 2 2 2 4 4 4 4 4( ) ( : : : : ) ( , , ) ( : : : : )P Q P Q X Y Z X Z x y x X Y Z X Z− = + − = + − =  

can be performed with 2M + 1S + 7A + 2 ( 2)×  as follows: 

4 1 2 2 2 1 2( 2 )( ) 2X Y x y x Y yα α= + − + + − ,  
2 2 2

4 1 1 2 32( )Z Z X x Z= − = ,  
2 2
4 4( )X X= ,  

2 2
4 3Z Z= ,                                                        

2 2 2 2 2 2 2 2
4 1 2 1 2 1 1 2 2 1 2 4 42(( )[2( )( 1) 2 ] 2( ))Y X x Z x X Z x a x Y y X Zα α= + − + + − + − + .                      (A.6) 

Thus, the cost of a mixed addition/conjugate mixed addition pair is of (6M + 3S) + (2M + 1S) 

= 8M + 4S. See Tables 2.4 and 3.2. 

Conjugate (Mixed) Addition in IE Coordinates  

Let 1 1 1( : : )P X Y Z=  and 2 2 2( : : )Q X Y Z=  be two points in IE coordinates on a Twisted 

Edwards curve /TE pE F  with 1a =  in (2.12). If the general addition P Q+  is performed using 

the following formula due to [BL07b] (note that some terms have been rearranged to save a few 
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field additions): 

2
3 1 2 1 2 1 2 1 2 1 2[ ( ) ]( )X X X Y Y d Z Z X X Y Y= + − ,  2

3 1 2 1 2 1 2 1 2 2 1[ ( ) ]( )Y X X Y Y d Z Z X Y X Y= − + , 

3 1 2 1 2 1 2 1 2 2 1( )( )Z Z Z X X Y Y X Y X Y= − + ,                                                                                    (A.7)          

and the partial values 2
1 2 1 2 1 2[ ( ) ]X X Y Y d Z Z+ , 1 2X X , 1 2Y Y , 2

1 2 1 2 1 2[ ( ) ]X X Y Y d Z Z− , 1 2X Y , 

2 1X Y  and 1 2Z Z  are temporarily stored, then the conjugate addition ( )P Q P Q− = + − =

1 1 1 2 2 2 4 4 4( : : ) ( : : ) ( : : )X Y Z X Y Z X Y Z+ − =  can be performed with the following (with a cost of 

only 4M + 2A): 

2
4 1 2 1 2 1 2 1 2 1 2[ ( ) ]( )X X X Y Y d Z Z X X Y Y= − + ,  2

4 1 2 1 2 1 2 1 2 2 1[ ( ) ]( )Y X X Y Y d Z Z X Y X Y= − + − , 

4 1 2 1 2 1 2 1 2 2 1( )( )Z Z Z X X Y Y X Y X Y= − + − ,                                                                                  (A.8)          

Thus, the cost of an addition/conjugate addition pair is of (10M + 1S) + 4M  = 14M + 1S.  

The formula for mixed addition can be obtained by setting 2 1Z =  in formula (A.7) and has a 

cost of 9M + 1S + 4A. Then, if the partial values 2
1 2 1 2 1( )X x Y y dZ+ , 2

1 2 1 2 1( )X x Y y dZ− , 1 2X x , 

1 2Y y , 1 2X y  and 2 1x Y  are temporarily cached, the conjugate mixed addition ( )P Q P Q− = + − =  

1 1 1 2 2 4 4 4( : : ) ( : ) ( : : )X Y Z x y X Y Z+ − =  can be performed by: 

2
4 1 2 1 2 1 2 1 21[ ]( )X X x Y y dZ X x Y y= − + ,  2

4 1 2 1 2 1 2 2 11[ ]( )Y X x Y y dZ X y x Y= − + − , 

4 1 1 2 1 2 1 2 2 1( )( )Z Z X x Y y X y x Y= − + − ,                                                                                       (A.9)          

which only costs 4M + 2A. Therefore, the cost of a mixed addition/conjugate mixed addition pair 

is of (9M + 1S) + 4M  = 13M + 1S. 
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A4 Calculation of Precomputed Points for the LG Scheme   

The following table shows the proposed sequences for computing a table with the form  id P , 

where { }\ {0,1} 3,5,...,id D m
+∈ =

 
with m odd. For m = 5, the first sequence corresponds to J 

and , and the second one to IE coordinates. Tied arrows denote an addition/conjugate 

addition pair (or mixed addition/conjugate mixed addition pair if addition is performed with 

affine point P).  

 

 

m Precomputation Scheme m Precomputation Scheme 

3 
 

15 

 

5 

  

17 

 

7 

 

19 

 

9 

 

27 

 

11 

 

29 

 

13 

 

31 

 

eJQ
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A5 Cost Analysis of the LG Scheme, Table diP 

Theorem A.4. Given an elliptic curve E of arbitrary form, the cost of using the LG Scheme for 

computing a precomputed table with the form , where 
 
with m 

odd and the base point , is given by: 

, 

where , ,  is the value of the highest “strategic” point, 

 and  denotes the cost of 

converting points from projective to affine coordinates in case 2. 

Proof: first, note that . If  is defined as the value of the highest “strategic” point, then 

it holds that  for some integer 2ω ≥  since “strategic” points have the form 

, for integers  with . It easily follows that calculating all “strategic” points 

up to 
 
requires one tripling and  doublings. Then, additions are 

required to compute each point in the table except , which is already calculated. Since there 

are L non-trivial points in the table, we require  additions in total. Let us now estimate the 

number of regular additions required for computing points below maxr P , and then above maxr P . 

First, up to  there are  odd points, from which  are computed with a 

conjugate addition. If P and 3P are discarded we require  

regular additions up to . Above maxr P  there is a range for which points are computed with 

conjugate additions. Then we need to establish the value  s.t. points kP , ( 2)k P+ , 

… , mP  are calculated with regular additions. Following Appendix A4, it is straightforward to 

note that  if ,  if ,  if , and so on. Thus, k =

max(4 3) /3r +  and, hence, max(4 3) / 3

2

m r− +
max1 1 2 / 3L r+ = + −   regular additions are required above 

maxr P . However, an exception happens when , for which case the number of additions 

above maxr P  should be zero. The latter can be accomplished by simply multiplying 

 with max1 2 / 3L r+ − . 

Therefore, the total number of regular additions is given by the expression 

. Since it was established that 

there are  additions in total, then  are addition/conjugate addition pairs and 

 are individual additions. By definition, case 2 requires the addition of 

the cost of converting projective points to affine.                                                                            □        

id P \{0,1}id D+∈ = { }3,5,...,m

( )pP E∈ F

case1/3 (2)Cost 1TPL ( 2)DBL + (2 1)ADD + ( 1)ADD-ADD ( Cost )L Lω ε ε →′= + − − + − − + P A

3m ≥ ( 1) / 2L m= − 2
max 3 2r ω−= × ε =

( )max max max max(6 2 3) /(6 3) 1 2 / 3 ( / 3) 1L r r L r r+ − − + − + −   Cost →P A

3m ≥ maxr
2

max 3 2r ω−= ×

1 2i iP P+ = 0i ≥ 0 3P P=
2

max (3 2 )r P Pω−= × ( 2)ω −

3P

( 1)L −

maxr P max / 2r max( / 6) 1r −

max max max( / 2) ( / 6) 1 2 ( /3) 1r r r− + − = −

maxr P

maxr k m< <

9k = max 6r = 17k = max 12r = 33k = max 24r =

m k<

max max max max max(2 1 (4 3) / 3) (2 1) (6 2 3) /(6 3)r m r r L r r− + − + − = + − −      

( )max max max max(6 2 3) /(6 3) 1 2 / 3 ( / 3) 1L r r L r rε = + − − + − + −  
( 1)L − ( 1 )L ε− −

( 1 ) 2 1L Lε ε ε− − − = − +
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Corollary A.1. In the setting of Theorem A.4, the cost of the LG Scheme when using mixed 

coordinates is given by: 

                                                                 

                    . 

Proof: assuming that the base point P is given in affine coordinates, then  can be 

computed using a mixed tripling with the form 3 →A P . Since  doublings are required, 

there are also 
 
“strategic” points. By definition, , so for each “strategic” point  

there is always a pair of points with the form . Then, there are  points that can be 

calculated with an addition/conjugate addition pair using mixed Projective-affine coordinates, 

that is, computing ± →P A P . According to Theorem A.4, there are  addition/ 

conjugate addition pairs in total. Hence,  are addition/ 

conjugate addition pairs using Jacobian coordinates, that is, computing ± →P P P .                  □ 

( )case 1(2)Cost 1mTPL ( 2)DBL + ( 2)mADD-mADD + 1 ADD-ADD +Lω ω ε ω′ ′= + − − − − + …

(2 1)ADD ( Cost )Lε →− + +… P A

0 3P P=

( 2)ω −

( 2)ω − maxm r> jP

jP P± ( 2)ω −

( 1)L ε− −

( 1) ( 2) 1L Lε ω ε ω− − − + = − − +
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A6 Cost Analysis of the LG Scheme, Table ciP ± diQ  

Theorem A.5. Given an elliptic curve E of arbitrary form, the cost of using the LG Scheme for 

computing a precomputed table with the form i ic P d Q± , where { }, 0,1,3,5,...,i ic d D m
+∈ = , 

1ic >  if 0id = , 1id >  if 0ic = , m odd and P, Q are points in ( )pE F , is given by: 

2

cases 1/3(2)

( 1) 1
Cost ( 1)ADD (ADD ADD ) 2 DBL  (+Cost )

4

m m
m

m
→

+ − ′= − + − +   
P A , 

where 2( 4 1) / 2 1L m m= + − >  is the number of non-trivial points in the table and Cost →P A  

denotes the cost of converting points from projective to affine coordinates in case 2. 

Proof: first, let us establish the value L. There are ( 1)m +  points with the form ic P  or id Q , 

which can be combined in 2( 1) 2m +  ways to get points of the form i ic P d Q±   with 0i ic d ≠ . 

By discarding points P and Q, we obtain the total number of non-trivial points as L =
2( 1)

2

m +
 

( 1) 2m+ + − = ( 4) 1

2

m m + −
. As it always holds that 1m ≥ , then 1L > . The points ic P  or id Q  with 

3ic ≥  and 3id ≥
 
can be computed with two sequences with the form P → P+2P = 3P → 3P+2P 

= 5P → … → (m−2)P+2P = mP. This requires in total two doublings and ( 1)m −  additions. Note 

that when 1m = , there are no calculations required for this part. Hence, for 1m ≥  the number of 

required doublings can be expressed by 2 ( 1) /m m−   . Finally, the computation of the 

2( 1) 2m +  points i ic P d Q±  with 0i ic d ≠  involves 2( 1) 4m +  addition/conjugate addition pairs. 

By definition, case 2 requires in addition the cost of converting points from projective to affine 

coordinates.                                                                                                                            □ 

Theorem A.6. In the setting of Theorem A.5 and assuming that 5m ≥ , the cost of the LG 

Scheme when using Jacobian coordinates is given by: 

2

cases 1(2) Co

( 1)
Cost 2DBL + ( 1)ADD (ADD ADD )  (+Cost2 )

4
-Z

m
m →

+
′= − + − J A , 

where 2Cost2 [2 ( 4) 1] [( 1) / 4 2]m m M m S→ = + − + + +J A  for case 2.                                                                 

Proof: according to Theorem A.1, if 3m ≥  points with the form id P , where \ {0,1}id D+∈ =

{3,5, , }m…  can be computed with the sequence P → P+2P = 3P → 3P+2P = 5P → … → 

(m−2)P+2P = mP using one (mixed) doubling and ( 1) / 2m −  additions with identical Z 

coordinate. Then, points ic P  and id Q  with 3ic ≥  and 3id ≥
 
can be computed with two 

doublings and ( 1)m −  additions with identical Z coordinate. The restriction 5m ≥  is because 

when 3m =  it is more efficient to compute 3P directly with a (mixed) tripling operation. 

Following Theorem A.5, the computation of the 2( 1) 2m +  points i ic P d Q±  with 0i ic d ≠  
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involves 2( 1) 4m +  addition/conjugate addition pairs. Let us now proof Cost2 →J A . Following 

the LM Scheme, case 2b, sequences for ic P  and id Q  using additions with identical Z coordinate 

yield the two Z-coordinates mPZ  and mQZ . Since conjugate additions share the same Z 

coordinate, the 2( 1) 4m +  addition/conjugate addition pairs i ic P d Q±  with 0i ic d ≠  yield 
2( 1) 4t m= +  Z-coordinates. In total, there are ( 2)t +  distinct Z-coordinates. Applying 

Montgomery’s method for simultaneous inversion, the latter first requires one inversion and 

3( 1)t +  multiplications to invert all Z coordinates combined and then recover each of them. 

Second, recovering ( : : )X Y Z  coordinates of the 2t = 2( 1) 2m +  points i ic P d Q±
 
 involves 

(3 1 )M S t+  and (2 )M t  for points obtained by addition and conjugate addition, respectively; and 

recovering ( : : )X Y Z  coordinates of the points ic P  and id Q  by applying LM Scheme, case 2b, 

to coordinates mPZ  and mQZ  costs [ ]2 (2 3) 1m M S− + . In total, the cost of conversion to affine is 

1 3( 1) (3 1 ) (2 ) 2(2 3) 2I t M M S t M t m M S+ + + + + + − + = 1 (8 4 3) ( 2)I t m M t S+ + − + + .             □ 
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A7 Comparison of LG and LM Schemes using Jacobian 

Coordinates 

The tables below compare the performance of LM and LG Schemes with the DOS method for     

n = 256 and 512. For each method, we show the cost of performing an n-bit scalar multiplication 

and the optimal number of precomputed points L when considering that a maximum of 

(2 )ESL R+  registers are available for the evaluation stage (i.e., ESL L≤ ). For our analysis, R = 

7. Also, to compare the performance of schemes for cases 1 and 2, we include costs of the most 

efficient scheme for case 1 (i.e., LM Scheme, case 1) and show at the bottom of each table the 

I/M range for which LM Scheme, case 1, would achieve the lowest cost. 

 

Table A.1. Performance comparison of LG and LM Schemes with the DOS method in 256-bit 

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S). 

# Registers ( )
ES

L  11 (2) 13 (3) 15 (4) 17 (5) 19 (6) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 2 1I + 2396M 3 1I + 2349M 3 1I + 2349M 4 1I + 2335M 4 1I + 2335M 

LM, case 2a 2 1I + 2397M 3 1I + 2350M 4 1I + 2337M 4 1I + 2337M 5 1I + 2326M 

LG, case 2 2 1I + 2401M 3 1I + 2354M 4 1I + 2347M 5 1I + 2345M 6 1I + 2331M 

DOS [DOS07] 2 1I + 2399M 3 1I + 2354M 4 1I + 2342M 5 1I + 2333M 6 1I + 2326M 

LM, case 1 1 2548M 1 2548M 1 2548M 2 2505M 2 2505M 

I/M range (LM, case1) I > 152M I > 199M I > 211M I > 172M I > 179M 

 

# Registers ( )
ES

L  23 (8) 27 (10) 29 (11) 35 (14) ≥ 61 (27) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 5 1I + 2323M 6 1I + 2313M 6 1I + 2305M 7 1I + 2305M 7 1I + 2305M 

LM, case 2a 6 1I + 2317M 7 1I + 2309M 7 1I + 2309M 7 1I + 2309M 7 1I + 2309M 

LG, case 2 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M 7 1I + 2316M 

DOS [DOS07] 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M 7 1I + 2320M 

LM, case 1 3 2457M 4 2443M 4 2443M 5 2414M 6 2397M 

I/M range (LM, case1) I > 141M I > 134M I > 138M I > 109M I > 92M 
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Table A.2. Performance comparison of LG and LM Schemes with the DOS method in 512-bit 

scalar multiplication for different memory constraints on a standard curve (1M = 0.8S). 

# Registers ( )
ES

L  11 (2)  13 (3) 15 (4) 17 (5) 19 (6) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 2 1I + 4768M 3 1I + 4663M 3 1I + 4663M 4 1I + 4624M 4 1I + 4624M 

LM, case 2a 2 1I + 4769M 3 1I + 4665M 4 1I + 4626M 4 1I + 4626M 5 1I + 4593M 

LG, case 2 2 1I + 4773M 3 1I + 4668M 4 1I + 4636M 5 1I + 4611M 6 1I + 4577M 

DOS [DOS07] 2 1I + 4771M 3 1I + 4668M 4 1I + 4632M 5 1I + 4600M 6 1I + 4572M 

LM, case 1 1 5089M 1 5089M 1 5089M 2 4991M 2 4991M 

I/M range (LM, case1) I > 321M I > 426M I > 463M I > 391M I > 419M 

 

# Registers ( )
ES

L  21 (7) 23 (8) 25 (9) 27 (10) 29 (11) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 5 1I + 4589M 5 1I + 4589M 6 1I + 4559M 6 1I + 4559M 7 1I + 4532M 

LM, case 2a 6 1I + 4563M 6 1I + 4563M 7 1I + 4537M 8 1I + 4530M 8 1I + 4530M 

LG, case 2 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M 7 1I + 4543M 

DOS [DOS07] 7 1I + 4547M 8 1I + 4543M 9 1I + 4539M 10 1I + 4536M 11 1I + 4533M 

LM, case 1 3 4887M 3 4887M 3 4887M 4 4849M 4 4849M 

I/M range (LM, case1) I > 344M I > 344M I > 350M I > 319M I > 319M 

 

# Registers ( )
ES

L  31 (12) 33 (13) 35 (14) 37 (15) 39 (16) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 7 1I + 4532M 8 1I + 4525M 8 1I + 4525M 9 1I + 4518M 9 1I + 4518M 

LM, case 2a 9 1I + 4525M 10 1I + 4520M 10 1I + 4520M 11 1I + 4515M 12 1I + 4512M 

LG, case 2 7 1I + 4543M 13 1I + 4536M 14 1I + 4525M 15 1I + 4516M 15 1I + 4516M 

DOS [DOS07] 12 1I + 4531M 13 1I + 4530M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 

LM, case 1 5 4811M 5 4811M 5 4811M 6 4774M 6 4774M 

I/M range (LM, case1) I > 286M I > 291M I > 291M I > 259M I > 262M 
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# Registers ( )
ES

L  41 (17) 43 (18) 47 (20) 51 (22) 55 (24) 

Method L Cost L Cost L Cost L Cost L Cost 

LM, case 2b 10 1I + 4512M 10 1I + 4512M 11 1I + 4507M 12 1I + 4503M 13 1I + 4499M 

LM, case 2a 12 1I + 4512M 13 1I + 4508M 14 1I + 4506M 15 1I + 4504M 15 1I + 4504M 

LG, case 2 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M 

DOS [DOS07] 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M 

LM, case 1 7 4740M 7 4740M 7 4740M 8 4730M 9 4719M 

I/M range (LM, case1) I > 228M I > 232M I > 234M I > 227M I > 220M 

 

# Registers ( )
ES

L  59 (26) 61 (27)  ≥ 81 (37)   

Method L Cost L Cost L Cost     

LM, case 2b 14 1I + 4495M 15 1I + 4492M 15 1I + 4492M     

LM, case 2a 15 1I + 4504M 15 1I + 4504M 15 1I + 4504M     

LG, case 2 15 1I + 4516M 15 1I + 4516M 15 1I + 4516M     

DOS [DOS07] 14 1I + 4529M 14 1I + 4529M 14 1I + 4529M     

LM, case 1 10 4709M 11 4699M 15 4665M     

I/M range (LM, case1) I > 214M I > 207M I > 173M   
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B Appendix B 

The following Maple scripts detail the improved explicit formulas for the case of Jacobian (J ) 

and mixed Twisted Edwards homogeneous/extended homogeneous ( / )
e

E E  coordinates 

exploiting the techniques discussed in Chapter 5, namely incomplete reduction, merging and 

scheduling of field operations and merging of point operations.  

 

 

B1 Explicit Formulas for “Traditional” Implementations 

These formulas have been used for the “traditional” implementations discussed in Section 5.6.1. 

Temporary registers are denoted by it  and Mul = multiplication, Sqr = squaring, Add = addition, 

Sub = subtraction, Mulx = multiplication by x, Divx = division by x, Neg = negation. DblSub 

represents the computation 2 (mod )a b p−  and SubDblSub represents the merging of 

(mod )a b p−  and ( ) 2 (mod ).a b c p− −  Underlined field operations are merged and operationIR 

represents a field operation using incomplete reduction. In practice, input registers are reused to 

store the result of an operation. 
 

Explicit Formulas using Jacobian Coordinates 

# Weierstrass curve (for verification): 

x1:=X1/Z1^2; y1:=Y1/Z1^3; x2:=X2/Z2^2; y2:=Y2/Z2^3; ZZ2:=Z2^2; ZZZ2:=Z2^3; a:=-3; 

x3:=((3*x1^2+a)/(2*y1))^2-2*x1; y3:=((3*x1^2+a)/(2*y1))*(x1-x3)-y1; 

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;  

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4; 
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DBL, 2 →J J : 1 1 12( : : ) ( : : )out out outX Y Z X Y Z→ . Cost = 4Mul+4Sqr+3Sub+1DblSub+ 

1AddIR +1Mul3IR+1Div2IR; 5 contiguous data dependencies 

# In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below. 

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^2; 

t1:=t4/2; t3:=t1^2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0; 

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check 

 

4DBL, 8 →J J : 1 1 18( : : ) ( : : )out out outX Y Z X Y Z→ . Cost = 4*(4Mul+4Sqr+3Sub+1DblSub+ 

1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data dependencies/doubling 

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^2; 

t1:=t4/2; Zout:=Y1*Z1; t3:=t1^2; t4:=Z1^2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4; 

t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; 

t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-Xout; 

t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; 

t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; 

t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; 

t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; 

t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0; 

 

mDBLADD, 2 + →J A J : 1 1 1 2 22( : : ) ( , ) ( : : )out out outX Y Z x y X Y Z+ → . Cost = 13Mul+5Sqr+ 

7Sub+2DblSub+1AddIR+1Mul2IR; 5 contiguous data dependencies 

t5:=Z1^2; t6:=Z1*t5; t4:=x2*t5; t5:=y2*t6; t1:=t4-X1; t2:=t5-Y1; t4:=t2^2; t6:=t1^2; 

t5:=t6*X1; t0:=t1*t6; t3:=t4-2*t5; t4:=Z1*t1; t3:=t3-t5; t6:=t0*Y1; t3:=t3-t0; t1:=2*t6; 

Zout:=t4*t3; t4:=t2*t3; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; t7:=t1^2; t5:=t0*t3; Xout:=t7-

2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check  

 

DBLADD, 2 + →J J J : 
2 3

1 1 1 2 2 2 2 22( : : ) ( : : : : ) ( : : )out out outX Y Z X Y Z Z Z X Y Z+ → . Cost = 16Mul+ 

5Sqr+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data dependencies 

t0:=X1*ZZ2; t5:=Z1^2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6; t6:=t1^2; 

t2:=t5-t7; t4:=t2^2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-t5; t4:=Z2*t6; 

t3:=t3-t0; t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; 

t7:=t1^2; t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; 

Yout:=t4-t0; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check  

Explicit Formulas using E/E e Coordinates 

# Twisted Edwards curve (for verification): 

x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1; 

x3:=(2*x1*y1)/(y1^2+a*x1^2); y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2); 

x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2); 
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DBL, 2 →E E : 1 1 12( : : ) ( : : )out out outX Y Z X Y Z→ . Cost = 4Mul+3Sqr+1SubDblSub+1AddIR+ 

1Mul2IR+1Neg; no contiguous data dependencies 

t1:=2*X1; t2:=X1^2; t4:=Y1^2; t3:=Z1^2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3; t2:=t1*Y1; 

Yout:=-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2; 

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check 

# Iterate this code n times to implement nDBL with cost n(4M+3S+1SubDblSub+1AddIR+ 

1Mul2IR+1Neg) 

 

Merged DBL–ADD, (2 )e e+ →E E E : 1 1 1 2 2 2 2 2 22( : : ) (( ) : ( ) : 2 : 2 )X Y Z X Y X Y Z T+ + − → ( :outX

: )out outY Z . Cost = 12Mul+3Sqr+3Sub+1SubDblSub+4AddIR+1Mul2IR; no contiguous data 

dependencies 

# If Z2=1 (Merged DBL-mADD), t5:=(2*Z2)*t6 is replaced by t5:=2*t6 and the number of 

multiplies reduces to 11M at the expense of one extra Mul2 

t1:=2*X1; t5:=X1^2; t7:=Y1^2; t6:=Z1^2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6; t5:=t1*Y1; 

t8:=t7*Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8; t7:=(2*T2)*t0; 

t5:=(2*Z2)*t6; t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-t7; t7:=t0-t6; 

t0:=t0+t6; Xout:=Xout*t7; Yout:=t1*t0; Zout:=t0*t7; 

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check 





 
 

                                                                                                                                                          

 

193 

 

B2 Explicit Formulas for GLS-Based Implementations 

These formulas have been used for the GLS-based implementations discussed in Section 5.6.2. 

Temporary registers are denoted by it  and Mul = multiplication, Sqr = squaring, Add = addition, 

Sub = subtraction, Mulx = multiplication by x, Divx = division by x, Neg = negation. DblSub 

represents the operation 2 (mod )a b p−  or (mod )a b c p− − , Mul3Div2 represents the operation 

( ) / 2 (mod )a a a p+ + , AddSub represents the merging of (mod )a b p+  and (mod )a b p− , 

AddSub2 represents (mod )a b c p+ − , SubSub represents the merging of (mod )a b p−  and 

(mod )c d p− , and Mul2Mul3 represents the merging of (mod )a a p+  and (mod )a a a p+ + . 

Underlined field operations are merged and operationIR represents a field operation using 

incomplete reduction. In practice, input registers are reused to store the result of an operation. 

Explicit Formulas using Jacobian Coordinates 

# Weierstrass curve (for verification): 

x1:=X1/Z1^2; y1:=Y1/Z1^3; a:=-3; 

x3:=((3*x1^2+u^2*a)/(2*y1))^2-2*x1; y3:=((3*x1^2+u^2*a)/(2*y1))*(x1-x3)-y1; 

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;  

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4; 

 

DBL, 2 →J J : 1 1 12( : : ) ( : : )out out outX Y Z X Y Z→ . Cost = 4Mul+4Sqr+2Sub+1DblSub+ 

1Mul3Div2+1AddSub+1Mulµ ; no contiguous data dependencies 

# In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below. 

t2:=Z1^2; t3:=Y1^2; t1:=u*t2; t2:=X1+t1; t1:=X1-t1; t1:=3*t1/2; t4:=t3*X1; t1:=t2*t1; 

t3:=t3^2; Xout:=t1^2; Zout:=Y1*Z1; Xout:=Xout-2*t4; t2:=t4-Xout; t1:=t1*t2; Yout:=t1-t3; 

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check 

 

mADD, + →J A J : 1 1 1 2 2( : : ) ( , ) ( : : )out out outX Y Z x y X Y Z+ → . Cost = 8Mul+3Sqr+5Sub+ 

1DblSub; no contiguous data dependencies 

t2:=Z1^2; t1:=Z1*t2; t2:=t2*x2; t1:=t1*y2; t2:=t2-X1; t1:=t1-Y1; t3:=t2^2; t4:=t1^2; 

Zout:=Z1*t2; t2:=t2*t3; t3:=t3*X1; Xout:=t4-t2; Xout:=Xout-2*t3; t3:=t3-Xout; t1:=t1*t3; 

Yout:=t2*Y1; Yout:=t1-Yout; 

simplify([x4-Xout/Zout^2]), simplify([y4-Yout/Zout^3]); # Check 

 

mDBLADD, 2 + →J A J : 1 1 1 2 22( : : ) ( , ) ( : : )out out outX Y Z x y X Y Z+ → . Cost = 13Mul+5Sqr+ 

2Sub+2DblSub+1SubSub+1Add+1Mul2+1Mul2Mul3+1Div2; no contiguous data depend. 

t2:=Z1^2; t1:=Z1*t2; t3:=x2*t2; t1:=y2*t1; t2:=t3-X1; t1:=t1-Y1; t3:=t2^2; t5:=t1^2; 

t4:=X1*t3; t3:=t2*t3; Xout:=2*t4; t4:=3*t4; Zout:=Z1*t2; t5:=t5-t3-t4; Yout:=t3*Y1; t1:= 

t1*t5; t2:=2*Yout; t3:=t5^2; t1:=t1+t2; t2:=Xout*t3; Xout:=t1^2; t3:=t5*t3; Xout:=Xout-

t2-t3; t2:=t2/2; Zout:=Zout*t5; Yout:=Yout*t3; t2:=Xout-t2; t1:=t1*t2; Yout:=t1-Yout; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check 



 
 

 

Appendix B1: Explicit Formulas for GLS-Based Implementations                                           

 

194 

 

Explicit Formulas using E/E e Coordinates 

# Twisted Edwards curve (for verification): 

x1:=X1/Z1; y1:=Y1/Z1; a:=-1; 

x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; x5:=X5/Z5; y5:=Y5/Z5; T5:=X5*Y5/Z5; 

x3:=(2*x1*y1)/(y1^2+u*a*x1^2); y3:=(y1^2-u*a*x1^2)/(2-y1^2-u*a*x1^2); 

x4:=(x3*y3+x2*y2)/(y3*y2+u*a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);  

x6:=(x4*y4+x5*y5)/(y4*y5+u*a*x4*x5); y6:=(x4*y4-x5*y5)/(x4*y5-y4*x5); 

 

DBL, 2 →E E : 1 1 12( : : ) ( : : )out out outX Y Z X Y Z→ . Cost = 4Mul+3Sqr+1Sub+1AddSub+2Mul2+ 

1Mulµ ; no contiguous data dependencies 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; t2:= 

Yout-Xout; Yout:=Yout+Xout; Zout:=Zout-t2; Yout:=t2*Yout; Xout:=t1*Zout; Zout:= t2*Zout; 

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check 

 

Merged DBL–ADD, (2 )e e+ →E E E : 1 1 1 2 2 2 22( : : ) ( : : : ) ( : : )out out outX Y Z X Y Z T X Y Z+ → . Cost 

= 13Mul+3Sqr+3Sub+1Add+2AddSub+1AddSub2+2Mul2+2Mulµ ; no contiguous dependencies 

# If Z2=1 (Merged DBL-mADD), T1:=T1*Z2 is not needed and the number of multiplies reduces 

to 12M 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; t2:= 

Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; Xout:=t1*Zout; 

Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; t3:=T1+Zout; Zout:=T1-

Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; Xout:=Xout*Yout; Yout:= 

Zout*t2; t1:=Xout+T1-t1; Zout:=t1*t2; Xout:=t1*t3; 

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check 

 

Merged DBL–ADDADD, (2 )e e e+ + →E E E E : 1 1 1 2 2 2 22( : : ) ( : : : )X Y Z X Y Z T+ + 3 3( : :X Y

3 3: ) ( : : )out out outZ T X Y Z→ . Cost = 22Mul+3Sqr+5Sub+2Add+3AddSub+2AddSub2+2Mul2+ 

3Mulµ ; no contiguous data dependencies 

# If Z2=1, T1:=T1*Z2 is not needed and the number of multiplies reduces in 1M 

# If Z5=1, T1:=T1*Z5 is not needed and the number of multiplies reduces in 1M 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; 

t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; Xout:=t1*Zout; 

Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; t3:=T1+Zout; Zout:=T1-

Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; Xout:=Xout*Yout; Yout:= 

Zout*t2; Xout:=Xout+T1-t1; T1:=Zout*t3; Zout:=Xout*t2; Xout:=Xout*t3; t1:=Xout*X5; T1:= 

T1*Z5; Zout:=Zout*T5; t2:=u*t1; t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y5; Xout:=Xout-Yout; 

Yout:=X5+Y5; t2:=T1-t2; Xout:=Xout*Yout; Yout:=Zout*t2; Xout:=Xout+T1-t1; Zout:=Xout*t2; 

Xout:=Xout*t3; 

simplify([x6-Xout/Zout]), simplify([y6-Yout/Zout]); # Check 
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C Appendix C 

C1 Optimizing Compressed Squarings 

Karabina [Kar10] introduced a new method for computing an exponentiation 
u

g  in cyclotomic 

subgroups 26
( )

pφG F  using efficient compressed squarings.   

Let 26

2

2 2 1
0
( ) ( )

i
i i pi

g g g s t φ+=
= + ∈∑ G F  and 

22
2 2 1

0
( )

i
i i

i
g h h s t+=

= +∑  where 2,i i p
g h ∈F . 

Karabina showed that g and 2g  can be compressed to 2 3 4 5( ) [ , , , ]C g g g g g=  and 
2

2 3 4 5( ) [ , , , ]C g h h h h= , respectively, where: 

                                 2 2 4,52( 3 )h g Bξ= + ,  3 4,5 4,5 33( ( 1) ) 2h A B gξ= − + − , 

                                  4 2,3 2,3 43( ( 1) ) 2h A B gξ= − + − ,  ,                              (C.1) 

with  and . 

The formulae above have a cost of 4 multiplications and 4 reductions in . The following 

improved version was proposed in [AKL+10]:  

                               ,  , 

                                ,  ,                            (C.2) 

with  and . 

It is straightforward to see that the formulae above have a cost of 6 integer squarings and only 

4 reductions in 2pF  by applying lazy reduction.  

5 5 2,32( 3 )h g B= +

, ( )( )i j i j i jA g g g gξ= + + ,i j i jB g g=

2
p
F

2 2 4,5 4 52 3 ( )h g S S Sξ= + − − 3 4 5 33( ) 2h S S gξ= + −

4 2 3 43( ) 2h S S gξ= + − 2 5 2,3 2 32 3( )h g S S S= + − −

2
, ( )i j i jS g g= + 2

i iS g=



 
 

 

Appendix C1: Optimized Compressed Squarings                                                                         

 

196 

 

In total, the computation of an exponentiation  involving compression and decompression 

in the cyclotomic subgroup  requires 62 compressed squarings (C.2) during 

compression,  for decompression and 2  multiplications to obtain the 

final result. Then, the total cost when applying the generalized lazy reduction technique is given 

by (see [AKL+10, Section 5.2] for complete details): 

 

. 

In contrast, the traditional computation would cost (using lazy reduction below 2pF  only): 

 

, 

Hence, our technique reduces the number of reductions in  in about 8% (from 299 to 

275) in one exponentiation  computed with the new compressed squarings.      
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