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Abstract

The understanding of the deformation mechanics within porous structures is an impor-

tant field of study as these materials exist in nature as well as can be manufactured

industrially influencing our lives daily. The motivation of the research contained within

this manuscript was inspired by the desire to understand the mechanics of an elastomeric

closed–cell porous material. This type of porous material is often used in load–bearing

applications such as sport helmet liners and packing material which can be subjected to

large deformations at high rates. Additionally, short term transient effects were explored/

In order to investigate the deformation mechanics of a closed cell elastomeric foam, a

polychloroprene (neoprene) material was chosen as it was available in both rubber form

and a foam with relatively consistent cell size. Compression tests were conducted on the

polychloroprene rubber at strain rates ranging from 0.001/s to 2700/s which identified

that it had a hyper–viscoelastic behaviour with a significant strain rate dependence. A

newly developed constitutive model was created to capture the response of the polychlo-

roprene rubber.

A coupled finite element model of the polychloroprene foam was created and compared

to experimental tests for validation. The model slightly over predicted the stress level

response of the experimental tests. The model was used to identify momentum dissipa-

tion mechanisms that contributed to the low wave speed measurement of approximately

70 m/s determined from the model. The investigation of wave transit times through use

of the model was key to interpreting experimental data. Of the morphological factors

investigated, it was determined that wall thickness had the most significant impact on

the stress response of the foam. The pore–scale model was useful for visualizing wave

propagation effects and deformation mechanics which was not feasible experimentally.
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ė Engineering strain rate

ϵ Logarithmic strain

Γ Viscoelastic constitutive model modifier

γ Viscoelastic constitutive model constant

λi Principle stretches, also eigenvalues

µ Hyperelastic constitutive model constants

ρ Density

σ Cauchy stress

e Elastic portion

xvi



T Sum of the elastic and viscoelastic portions

v Viscoelastic portion

C0 Initial wave speed

e Engineering strain

G Relaxation function, kernel function in convolution integral

H History variable

I1 First invariant

I2 Second invariant

I3 Third invariant

P Pressure

p Arbitrary pressure

U0 Velocity of quiescent gas

UP Particle velocity

US Wave velocity

V Volume

W Strain energy

xvii



Chapter 1

Introduction

Porous materials are classified based on whether they are comprised of open or closed

cells. Open cell materials generally have an interconnected lattice type structure such as

that shown in figure 1.1a) where the pores (also called cells) of the material are open to

each other. A closed cell porous material has pores which are approximately spherical

in nature and is separated by walls as in figure 1.1b). In industrial applications, porous

materials such as an aluminium foam, are increasingly being used to create light weight

but strong structures. Other foams, such as those created from polymers, are used in a

wide variety of applications ranging from seat cushions to protective equipment liners as

seen on the inside of helmets [1].

In nature, materials ranging from bone and lungs to the wood found in trees all have

a porous structure [3]. Bones, which are relatively stiff compared to most biological ma-

terial, have a porous structure which reduces their inherent density, and thus mass, while

still providing the required strength to support the body’s structure. In contrast, lungs,

which are hyperelastic in nature, contain pores called alveoli which facilitated the transfer

of oxygen to the blood stream (and carbon dioxide out of the blood stream). The human

lung is comprised of approximately three million alveoli which contain approximately
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a) Open cell metal foam. b) Closed cell metal foam.

Figure 1.1: Example of open cell a) and closed cell b) foams in metal. [2]

three litres of air when fully inflated [4]. Figure 1.2 is a scanning electron micrograph of

an alveolar duct (AD in the figure) and alveoli (A in the figure) of a human taken at 240

times magnification. As identified in the figure, the lung structure is not a fully closed

cell structure.

Figure 1.2: Human alveoli (A) and alveolar duct (AD) (240X magnification) from [4].

The motivation of the research contained within this manuscript was inspired by the

desire to understand the mechanics of an elastomeric (loosely described here as a ma-

terial which recovers its original shape after deformation) porous material. Industrial
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manufactured porous materials are often used in load–bearing applications such as sport

helmet liners and packing material which can be subjected to large deformations at high

rates [5][6][7]. Several researchers have identified unique properties in porous materi-

als such as a reduced wave speed [8][9][10]. For example, experimental tests conducted

identified that the speed at which a wave propagates through the lung structure was

approximately 30–40 m/s [11][12][13][14] which is below that of its constituent mate-

rials [15]. Additionally, researchers have identified that porous materials significantly

attenuate pressure waves as they propagate [16][17][18][19]. As such, an in–depth under-

standing of how elastomeric porous materials deform and the factors which contribute to

the mechanical response was desired.

Historically, deformation mechanics in porous media have been viewed from the con-

tinuum scale where the characteristics of individual pores are ignored such as in the field

of poroelasticity [20][21][22][23]. Although these types of models are generally thought to

adequately describe the mechanical properties of porous materials on a macro–scale level,

they don’t describe the behaviour of the material on the micro–scale level which is im-

portant when trying to identify the various factors upon which the material depends [6].

As such, the purpose of this work was to conduct a fundamental study to determine the

effect of the presence of closed cells on the deformation response of elastomeric porous

materials.

The objectives of the present research were: to construct and validate a numerical

model of an elastomeric closed–cell porous material and to identify factors which affect

the response of the elastomeric closed–cell porous material. The morphological factors

investigated were: cell size, cell wall thickness and anisotropy. Additionally, loading rate

and the effect the enclosed air had on the response were investigated.

In order to create a numerical model of a porous material which had realistic con-
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stituent properties, an investigation was undertaken at the onset of the study to iden-

tify a porous material whose constituent material properties could be measured at the

macroscale level separately. Id est, it is extremely difficult to measure the properties of

the cell walls at the pore scale and so a porous material whose cellular material properties

could be measure was desired. Fortuitously, a polychloroprene (also know as neoprene)

foam (trade name G207) fabricated by Rubatex International LLC was an ideal candidate

for this study. Initial tests of the polychloroprene foam indicated that it was elastomeric

and was comprised of closed cells relatively equal in size. Rubatex International LLC was

also able to provide sheets of solid polychloroprene rubber from the same manufacturing

run prior to the foaming process. Additionally, the foaming process used had the added

benefit that it was done through a nitrogen injection process, outlined subsequently, and

not done chemically as with many polymeric foams which may alter the cellular material

properties.

Figure 1.3 shows the general fabrication process for the foamed polychloroprene. Poly-

chloroprene chips are put in to a mixer where they were heated. Following this, the ma-

terial was then extruded into sheets where they then undergo a vulcanization process to

cure the material. This is accomplished using a zinc oxide formulation. After the curing

stage, the sheet material is subjected N2 gas at a pressure of 34.5 MPa (5000 psi) for 1.5

hours which created the closed cell structure of the foam. Sheets of solid polychloroprene

prior to the foaming process were extracted from the production line to facilitate testing

on the foam’s constituent material as indicated in the figure.
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Figure 1.3: A schematic of the foaming process.

The research methodology used in this manuscript is shown in figure 1.4. In the figure,

the blue boxes indicated the material which was examined, the black boxes indicate

experimental tasks, the red boxes indicate modeling tasks and the green boxes represent

outcomes of the model.

The process to create the numerical model of the elastomeric foam material involved

three major components. The first task was to characterize the rubber polychloroprene at

a range of strain rates as detailed in chapter 3 (material testing box figure 1.4). The sec-

ond major component was to determine the physical structure of the foam (microscopic

analysis box figure 1.4) and represent it geometrically (cellular geometric representation

box figure 1.4). This was accomplished through microscopic analysis as detailed in chap-

ter 3 and its corresponding geometric representation in chapter 5. The third major task
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Figure 1.4: Schematic of research methodology.

was to use this data to determine constants for a constitutive material model which was

implemented into a finite element program which is discussed in chapter 4 (constitu-

tive model box figure 1.4). Validation of the numerical model (model validation box

figure 1.4) was done through comparison of the results of experimental tests performed

at multiple strain rates to the numerical values as outlined in chapter 5. The experi-

ments performed on the polychloroprene foam were similar to those performed on the

polychloroprene rubber, however, it was not the intent of this study to characterize the

foam at a macroscale level but instead to identify if the foamed polychloroprene mate-

rial had a dependence on strain rate and to provide a set of experimental data against

which the numerical models developed could be validated. The factors which affect the

response of the polychloroprene foam are discussed in chapter 5(model permutations box

figure 1.4). Chapter 2 contains background aspects of wave propagation in materials,
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modelling methodologies, experimental techniques used, and a discussion of the prelimi-

naries of constitutive models. Chapter 6 contains conclusions and recommendations from

the study.
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Chapter 2

Background

This chapter is composed of five sections. Section 2.1 details how stress waves develop,

propagate and interact within materials. Section 2.2 discusses methods used to model

fluid–structure interaction. Section 2.3 discusses models available in the literature which

have been used to understand the deformation of foams at the pore level. Section 2.4

details the background for the dynamics experiments conducted. Section 2.5 discusses

the preliminaries of constitutive modelling of visco–elastic material.

2.1 Waves Mechanics

2.1.1 General Wave Propagation

One can imagine that a material is composed of a series of particles as identified in

figure 2.1. The figure shows a sequence of times during which a wave, which is generated

by FA applied to one face, propagates through the material. At t = 0, the force is initially

applied to the left face and at that moment all particles within the material are at rest.

At some time later, t = ∆t, the force applied to the left face has caused the particles on
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the left to move to the right where they contact their neighbours. At time t = 2∆t more

of the particles are moving to the right and contacting with their neighbours. At time

t = 3∆t, the propagation of the collisions between the particles has reached the right side

where the force, FM , is measured. Prior to t = 3∆t, FM is zero. The rate at which the

momentum transferred from one particle to another is called the wave speed. As will be

discussed later, the speed at which the wave propagates is dependent on factors such as

the stiffness and density of the material. Since there is a finite speed of propagation, the

force measured lags the force applied by a function of the wave speed and the distance

between the two ends.

The timescale of the force being applied in comparison to the wave speed in the

material was important. For instance, consider a “quasi-static” compression test of an

aluminum cylinder, 100 mm in length, being compressed at a rate of 0.01 mm/s. Assum-

ing the cylinder remains elastic, and considering wave propagation in one dimension only,

the wave speed in aluminum for this case is approximately 6000 m/s [24]. Therefore, the

lag in time between the force being applied and that measured at the opposite end is

approximately 1.67 ×10−5 s or 16.7 µs. In comparison, the length of time it would take

the sample to compress 1 mm (1 % of its overall length) would be approximately 100 s

or almost 6 million times slower than it took for the wave to propagate to the end of the

cylinder. To an observer, the delay between the applied force and that measured at the

end would be insignificant. However, if the cylinder was loaded at a much faster rate,

say 10 m/s, the length of time for the cylinder to compress 1 mm would be 100 µs or

only 6 times slower. In this case, the delay between the time the force was applied and

the time the force was measured becomes significant.

In reality, the particles shown in figure 2.1 are atoms which oscillate about an equi-

librium position. The atoms are joined, in essence, through interatomic forces. Wave
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Figure 2.1: Example of wave propagating through media composed of small particles.

propagation is then caused by the transfer of momentum from one atom to its neighbour.

A more detail discussion of wave propagation at the atom level is given in reference [24].

2.1.2 Formation of a Finite Wave

The formation of a finite wave can be understood by visualizing a piston, of unit area,

moving in a cylinder which contain stationary gas as shown in figure 2.2. In this model,

the piston moves into an area of undisturbed gas. The thick line (1/UP ) of figure 2.3

shows that the piston is gradually accelerated to a constant velocity. UP is referred to

as the particle velocity. This diagram is called a “x–t” diagram and is used to show the

propagation of waves as a function of time and position. Note that time is plotted on

the ordinal axis meaning that the slope of a line is the inverse of velocity. As the piston

begins to move, a region of compressed gas is formed in front of the piston, figure 2.2,

which propagates at cH representing the head of the compressed region in figure 2.3. At

a small instant of time later, the piston has moved slightly farther and a second wave,

which propagates at u+c, the particle speed plus the wave propagation speed, is created.
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Since this wave is propagating through a region which has already been compressed, the

current speed at which it propagates, c, is greater than that of the head, cH . This is

represented by a line of reduced slope as shown in figure 2.3. This process continues

until the piston begins to move at a constant velocity at time ta. The last wave which

propagates from the piston into the compression region is moving at UP + cT , where

cT is the speed of the tail of the wave. In reality, this is a continuous process and the

1/(UP + cT ) and the 1/cH lines bound the compression region. As shown in figure 2.3,

the waves in the compression region coalesce (since UP +cT > cH) into a steep wave front

(called a shock) at tb as shown in figures 2.2 and 2.3. This wave propagates at US which

is greater than UP as shown at time tc in figures 2.2 and 2.3.

If the piston had stopped moving after a very short time period (for illustration

purposes, say the first characteristic line in figure 2.3), the wave created would correspond

to an infinitesimal wave or sound wave. Across this wave front, the change in state

variables (pressure, temperature, density) are very small in comparison to a finite wave.

The equations which describe the motion of these waves are similar to those detailed

in the subsequent section, however since the change in state variables are small, the

equations are often simplified ignoring the higher order terms. Similar to the discussion

in the previous section, time scales for the creation of the finite wave are important.

This process can be further illustrated by examining figure 2.4 which shows pressure

as a function of propagation distance as outlined by Hayes [25]. The initial disturbance

centred about point A, propagates to the right. Since different parts of the wave move

at different velocities the wave changes shape as shown about B. Given that the wave at

point two propagates faster than that a point one, c2 + u2 > c1 + u1, the wave steepen

until a nearly discontinuous front is formed as shown about point C. The equations which

govern the motion of these waves are detailed in the subsequent section. Although the

11



Figure 2.2: Model of a piston moving in a cylinder of stationary gas.
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Figure 2.3: x–t diagram showing finite wave formation.

Figure 2.4: Illustration of the transition from a wave with a gradual increase in pressure
to the formation of a shock wave.
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subsequent sections focus on shock waves, the governing equations of mass, momentum

and energy encompasses the range of finite waves. The reader is referred to the work by

Anderson[26] or Yahya [27] for further explanation of the development of finite waves as

they transition from infinitesimal waves to shock waves.

2.1.3 Governing Equations

In 1870 Rankine [28] presented the governing equations for mass, momentum and energy

conservation across a shock. Hugoniot [29] independently formulated the same equations

in 1887. Consequently, equations that describe the change in properties across a shock

wave are often called the Rankine–Hugoniot relations. This section outlines the gov-

erning equations across shock waves. Appendix A contains further discussion regarding

equations which describe particle motion.

For the purposes of the development of these equations, the shock wave is considered

to be of negligible thickness. The development of the conservation equations follows from

the analysis of the flow from the viewpoint of the shock as illustrated in figure 2.5. The

variables shown in the figure and used in the development of the conservation equations

are given in the subsequent list.

• ρ0, p0, e0 and U0 are the density, pressure and energy of the material into which

the shock wave is propagating.

• ρ, p, e and UP are the density, pressure, energy and particle velocity behind the

shock wave.

• US is the velocity of the shock wave.

• C0 is the speed of sound in the undisturbed material.
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• V is the relative volume given as 1/ρ.

Figure 2.5: Illustration of a shock wave across which properties vary.

If the shock wave is used as a frame of reference (moving frame of reference) then

the material on the stationary side would appear to move towards the observer at US

(assuming that the material is initially stationary i.e. U0=0) and away at US − UP .

Conservation of Mass In the absence of mass to energy conversion, the flow of mass

into the shock front must be equal to the flow of mass out of the shock front thereby

conserving mass. If the area of the shock front in figure 2.5 is A, then the conservation

of mass for can be expressed mathematically as

Aρ0 (US − U0) dt︸ ︷︷ ︸
Mass In

= Aρ (US − UP ) dt︸ ︷︷ ︸
Mass Out

(2.1)

which reduces to

ρ0US = ρ (US − UP ) (2.2)

for a stationary material.

Conservation of Momentum In essence, the conservation of momentum principal

states that the change in momentum (the product of mass and velocity) of a body over

time is balanced by the net force acting on the body. Forces are usually split into the

15



two categories of body forces and surface forces. Body forces are forces which act upon

a body from afar such as gravity, and surface forces are forces which develop from direct

contact such as pressure. Across a shock wave, body forces and shear surface forces

are usually neglected and so the change in momentum is equal to the applied impulse

(Newton’s second law). The applied impulse at a shock interface can be expressed as

Impulse = Force • dt

= (PA− P0A) dt. (2.3)

The change in momentum can be expressed as

d (Mass • V elocity) = ρA (US − UP ) dt︸ ︷︷ ︸
mass

UP︸︷︷︸
velocity

− ρ0A (US − U0) dt︸ ︷︷ ︸
mass

U0︸︷︷︸
velocity

. (2.4)

Equating equations 2.3 and 2.4 results in

ρA (US − UP )dtUP − ρ0A (US − U0)dtU0 = (PA− P0A) dt (2.5)

which simplifies to

ρ (US − UP )UP − ρ0 (US − U0)U0 = (P − P0) . (2.6)

Rearranging equation 2.2 for ρ and substituting into equation 2.5 gives

ρ0US

(US − UP )
(US − UP )UP − ρ0 (US − U0)U0 = (P − P0) (2.7)
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which simplifies to

ρ0USUP − ρ0 (US − U0)U0 = (P − P0) . (2.8)

If U0 = 0 this further reduces to

(P − P0) = ρ0USUP . (2.9)

Conservation of Energy The basis of the conservation of energy is that energy can

only change form but cannot be created or destroyed. Thus the change in energy, ∆E,

is the sum of the work applied to the material, and the heat addition, Q. The change in

work is given as

∆Work = PA︸︷︷︸
Force

UPdt︸ ︷︷ ︸
Distance

− P0A︸︷︷︸
Force

U0dt︸︷︷︸
Distance

(2.10)

The change in total energy, ignoring body forces, is a function of the kinetic energy, K

and the internal energy, E. Mathematically, these can be expressed as

∆K =
1

2
[Aρ (US − UP ) dt]U

2
P − 1

2
[Aρ0 (US − U0) dt]U

2
0 (2.11)

∆E = ρeA (US − UP ) dt− ρ0e0A (US − U0) dt (2.12)

where e is the internal energy per unit mass. Equating equation 2.10 with the sum of

equations 2.11 and 2.12 with U0 = 0 gives

PUP =
1

2
ρ (US − UP )U

2
P + ρe (US − UP )− ρ0e0US. (2.13)
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As before, using the conservation of mass equation and substituting in for ρ results in

PUP =
1

2

ρ0US

(US − UP )
(US − UP )U

2
P (2.14)

+
ρ0US

(US − UP )
e (US − UP )− ρ0e0US (2.15)

rearranging becomes

PUP =
1

2
ρ0USU

2
P + ρ0US (e− e0) (2.16)

which rearranged becomes

e− e0 =
PUP

ρ0US

− 1

2

ρ0USU
2
P

ρ0US

. (2.17)

Often equation 2.17 is modified further to obtain a different form. If the conservation

of momentum equation, equation 2.9, is rearranged for UP and substituted into equa-

tion 2.17, the result is

e− e0 = P
P − P0

(ρ0US)
2 − 1

2

(P − P0)
2

(ρ0US)
2 . (2.18)

Equation 2.2 can be rearranged to give

(ρ0 − ρ)US = −ρUP (2.19)

which can be combined with the conservation of momentum equation to give

(ρ0 − ρ)US = −ρ
(P − P0)

ρ0US

(2.20)
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rearranging

ρ0U
2
S = −ρ

(P − P0)

(ρ0 − ρ)
(2.21)

which multiplying both sides by ρ0 gives

(ρ0US)
2 = −ρρ0

(P − P0)

(ρ0 − ρ)
. (2.22)

If instead of the densities (ρ and ρ0) the relative volumes (V and V0) are used, equa-

tion 2.22 becomes

(ρ0US)
2 =

(P − P0)

(V0 − V )
. (2.23)

Substituting (ρ0US)
2 into equation 2.18 gives

e− e0 = P
(P − P0) (V0 − V )

(P − P0)
− 1

2

(P − P0)
2 (V0 − V )

(P − P0)
(2.24)

which simplifies to

e− e0 =
1

2
(P + P0) (V0 − V ) . (2.25)

Equation 2.25 is referred to as the Hugoniot equation.

Equation of State The equation of state is a relation for e, P and V used to define

all equilibrium states that can exist for a material [25]. Thus, if the material behind a

shock is in equilibrium, there exists a point where both the equation of state and energy

equation are solved simultaneously. In this manner, one can then generate a series of

P–V states behind the shock wave for a particular material. This relationship between P
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and V is called the Hugoniot. There are several methods for experimentally determining

the equation of state as described by Meyers [24]. As indicated by McQueen et al. [30]

many materials can be reasonably represented by a linear relationship between US and

UP given as

US = C0 + sUP (2.26)

where s is an experimentally fit parameter usually around 1.5 [25] and C0 is the mini-

mum speed at which the wave propagates (sometimes called the sonic speed). Nonlinear

terms can be added as discussed in Meyers [24]. Factors such as porosity, large elastic

waves or phase changes can cause the US–UP relationship to become non-linear. Given

the equation of state given by equation 2.26 which relates US to UP , equation 2.25, in

combination with equation 2.17, can be rewritten as

P =
C2

0 (V0 − V1)

[V0 − s (V0 − V1)]
2 (2.27)

resulting in a relation for P–V .

An ideal Hugoniot is shown in figure 2.6 as a solid line with a gentle concave upward

profile. In reality, most materials do not have such an ideal profile for a variety of reasons

such as a material can respond elastically up to a yield point, undergo a phase change, be

composed of multiple heterogeneous materials or have irreversible crushing [25]. Shown in

the figure are the initial, P0, V0, and end states P, V for a shock on the ideal Hugoniot. The

line which connects the two points is called the Rayleigh line and its slope is proportional

to the square of the shock wave velocity US through equation 2.22. An elastic-plastic

material is represented by a dashed line in the figure. The point at which the material

yields is called the Hugoniot Elastic Limit (HEL) and represents the transition from

elastic behaviour to plastic. A similar line to the ideal Hugoniot can be created for
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isentropic compression for waves where a steep shock front does not exist.

Consider the three shocked states represented by points A, B and C on the graph

for the elastic-plastic material. A separate Rayleigh line exists for each of these three

points all with different slopes. Figure 2.7 shows the propagation of the shock wave in an

elastic–plastic material with this type of behaviour for the three different shocked states

(at offset distances for clarity). At shock state A, only a single shock wave is formed as

shown. However, at shock state B, two shocks waves are formed. The first shock wave

propagates at a velocity higher than that of the second as can be seen from the difference

in the two Rayleigh lines (the one formed at A and then at B, figure 2.6). At point C, two

waves are formed again but the second wave travels faster than the first rapidly creating

a single wave as shown in figure 2.7.

Figure 2.6: Hugoniots for ideal and elastic–plastic material.
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Figure 2.7: Propagation of a shock wave in an elastic–plastic material.

2.1.4 Release or Expansion Waves

The opposite of waves coalescing to create a shock wave is a release or expansion (some-

times also called rarefaction) wave which does not propagate as a discontinuity. An

example of this is when a balloon breaks as shown in figure 2.8. The instant after the

balloon membrane bursts, a wave propagates outwards while a release wave propagates

inwards to lower the pressure at the centre of the region of high pressure. This wave has

a head and a tail similar to the discussion in section 2.1.2. This can be illustrated by

examining portion to the left of the piston cylinder arrangement as shown in figure 2.9.

This time the piston is being pulled to the right at a velocity UP (note that a shock wave

would form to the right of the piston as before). As the piston begins to move, the head

and tail of an expansion wave is created as shown at t = ta in figure 2.9. As before,

the head and tail of the expansion wave move at different velocities but in this case the
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tail moves slower than the head causing the wave to expand. This expansion is further

shown in x–t diagram in figure 2.10. The head of the expansion wave has the highest

velocity and propagates at the sonic speed in the high pressure region. Although the

wave is propagating to the left, the motion of the material is propagating to the right

lowering the pressure in this region. The decrease in pressure causes a decrease in the

speed which causes the tail to move slower than the head. Comparing the length of the

wave at time ta to time tb, it is evident that the expansion wave is increasing in size.

Figure 2.8: Model of a release wave created by the bursting of a balloon membrane.

2.1.5 Wave Interactions

As a wave propagates through a material it can encounter different types of boundaries or

waves that will cause different behaviours to occur. Often impedance matching techniques

are used to determine how a wave reacts to a boundary that it encounters. The impedance

of a material, usually denoted by Z, is approximated as the product between the initial

density, ρ0, and the initial sonic wave velocity, C0. In this manner, materials with
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Figure 2.9: Model of a piston in a cylinder showing the formation of an expansion wave.

Figure 2.10: x–t diagram showing expansion wave formation.
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low densities and low sonic velocities (and hence strength) such as rubber have a lower

impedance than that of higher density and strength materials such as aluminum. At

the interface of the two materials, while they remain in contact, it is assumed that

equal particle velocity and pressure exist at the boundary. Several different cases will be

described to illustrate the different aspects of wave interaction. Although the following

discussion uses shock Hugoniots, a similar analysis can be performed for finite waves up

to the shocked state. This is further detailed in Meyers [24].

Transition from a Low Impedance to a High Impedance Material In figure 2.11

two materials, A and B, are in contact. Consider a wave propagating towards the bound-

ary between the two materials when ZA < ZB. The x–t diagram shown in figure 2.12

shows the state of each material before and after the arrival of the wave at the interface

as A1, A2 and B1, B2. At the interface, part of the wave is transmitted into material B

and part is reflected in material A. The states of the materials before and after the wave

propagates to the interface are shown on the P–UP diagram shown in figure 2.13.

Figure 2.11: Stress wave propagating from material A into material B.

The instant the wave arrives at the boundary, Material A is at the state shown as

A1 with a velocity UP (A1) and pressure PA1 (dash–dot line). All of material B is at

the a stationary state (PB1 = UP (B1) = 0). During the interaction of the wave at the

material interface, the pressures and velocities will be equal. This can only occur if a
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Figure 2.12: x–t diagram showing the transmission of the wave from material A to
material B be when ZA < ZB.

Figure 2.13: P–UP diagram showing the different states in material A and B when
ZA < ZB.

26



wave propagating back into material A is created. This is illustrated by the reflection

of A about UP (A1) (dotted line). The intersection of the reflected curve for A and the

curve for B dictates the particle velocity and developed pressure at the interface. i.e.

UP (B2) = UP (A2) and PA2 = PB2. This is further illustrated by the P–x diagram for a

square wave shown in figure 2.14. This figure illustrates that as the wave encounters the

boundary, the pressure increases in material A to maintain continuity.

Figure 2.14: P–x diagram showing the different states in material A and B when ZA < ZB.

Transition from a High Impedance to Low Impedance Material If ZA > ZB

the reverse situation occurs as illustrated by the x–t diagram in figure 2.15 and the P–UP

diagram in figure 2.16. As illustrated in the x–t diagram, as the wave encounters the

boundary a release wave propagates in A and a wave is transmitted into B. In this case

the pressure in A in lowered as shown in figure 2.17

A bounding case of this interaction occurs when ZB = 0 (a free surface). The P–UP

diagram, figure 2.18, shows that in this case material B is represented by a vertical line.
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Figure 2.15: x–t diagram showing the different states in material A and B when ZA > ZB.

Figure 2.16: P–UP diagram showing the different states in material A and B when
ZA > ZB.
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Figure 2.17: P–x diagram showing the different states in material A and B when ZA > ZB.

The curve for A is then reflected at this point as before. However, for this case the

pressure at the interface is zero (zero force since there is nothing to react against) and

the particle velocity is 2UP .

Interaction of Two Waves in One Material Using the same procedure outlined

in the preceding discussion, the interaction of two waves within one material can be

analysed. Consider two waves propagating towards each other and interacting as shown

in figure 2.19 at four different times. The waves, initially at two different pressures and

wave velocities (A and B in the figure) at t1 begin to interact at t2. As this interaction

occurs, another state, AB, is created as shown at t3 by creating a right going wave and

left going wave of equal magnitude. The left and right going waves continue to propagate

in their new state as shown at t4. The new state, AB, can be determined through the

use of the P–UP curves as shown in figure 2.20. The material behind the front of wave
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Figure 2.18: P–UP diagram showing the different states in material A and B when
ZA > ZB = 0.

A is at PA with particle velocity UP (A) and behind wave front B is at PB with particle

velocity UP (B). Note that the curves are of the same shape (B is a reflection of A about

0) and that the negative particle velocity in B represents the left going wave. The new

state is found by reflecting curves A and B about their state prior to the interaction and

determining their intersection as shown in the figure. The new state is shown as the

UA(AB), PAB point.

Finite Wave Attenuation Consider a square wave propagating into a material that

is generated by the application of a constant pressure to the boundary. If the applied

pressure condition is suddenly removed a release wave is created. Assuming an ideal

Hugoniot, a wave similar to that shown in figure 2.21 at t2 is created. The release

portion of the wave propagates faster than the head of the wave and will eventually

catch up to the wave front. At time t3, the head of the release, URH wave catches the
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Figure 2.19: P–x diagram showing the interaction of two waves at different times.
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Figure 2.20: P–UP diagram showing the different states in the material before and after
the two waves interact.
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wave front and begins to reduce the amplitude of the wave and its velocity. This process

continues until the wave is fully attenuated as illustrated in the x–t diagram, figure 2.22

(exaggerated in the figure).

Figure 2.21: P–x diagram showing the attenuation of a wave as it propagates in a mate-
rial.

Figure 2.22: x–t diagram showing the interaction of the release portion of the wave with
the wave and how it attenuates.
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2.1.6 Impact

The impact of two finite bodies can be analysed using a combination of the interactions

discussed in section 2.1.5. Consider a plate of finite thickness moving initially at velocity

V , plate A, impacting another stationary plate that is significantly thicker, plate B. In

this case ZA < ZB. Figure 2.23 shows the x–t diagram for this scenario. As the impact

occurs (at t = 0), a stress wave is created in both in plate A and plate B. At t = t1, the

wave in A interacts with the free surface at the back of A. At this point, the pressure

drops to zero and a release wave is created. The sequence is illustrated by the P–UP

diagrams in figure 2.24. Figure 2.24(a) shows the Hugoniots of the two materials A and

B. At t = 0, impact occurs and the pressures and velocities at the interface must be

equal. As such, the Hugoniot for A is reflected and given a zero pressure at Up = V

as shown in figure 2.24(b). The pressure and velocity at the interface is then given as

PAB and UP (AB). At time t = t1, the pressure in A drops to zero at the free surface

(back of the plate) creating a release wave. As shown in figure 2.24(c), the corresponding

UP point for a zero pressure in A indicates that the material is moving with a negative

magnitude. In this case the material is moving to the left (bouncing off) as shown in the

x–t diagram.

At time t = t2, the release wave encounters the interface between the materials and

attempts to create a tensile interface between them. Assuming that the material can

freely come apart, Material A moves away from B creating a gap. This causes the pressure

applied to B to drop to zero. This interaction is shown in figure 2.24(d)which illustrates

that A and B are in different states (moving at different velocities) since the materials

are no longer in contact. This reduction of the pressure to zero creates a rarefaction wave

to develop in B. As before, the rarefaction fan spreads out and eventually interacts with

the stress wave at t3 which causes the square stress wave to change shape and attenuate
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as shown in figure 2.23(exaggerated in the figure).

Figure 2.23: x–t diagram showing the impact of a thin plate (A) on a thick plate (B)
when ZA < ZB.
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2.2 Fluid Structure Interaction

As fluids interact with structures, several aspects of the flow change. A discussion of the

interaction of fluids with rigid and deformable structures, identifying the relevant aspects

to the current study, follows.

2.2.1 Rigid Non-deforming Body

When waves encounter a rigid non-deforming body, the flow can be reflected and/or

refracted depending on the shape of the body. If a wave encounters a planar wall, the

flow would be reflected causing an increase in pressure above the incident wave pressure

due to the superposition of the incident and reflected waves. The level to which the

pressure increases is dependent upon the incident pressure profile. Various geometries,

such as a corner, will cause a focusing of the wave which can increase the pressure even

above that seen with a planar wall.

If a wave encounters a non-planar body, such as a falling angle, the flow will undergo

an isentropic expansion such as the release wave described previously. In contrast to

a shock wave, the pressure, temperature and density decrease while the Mach number

increases [26]. When a wave encounters a more realistic obstruction, such as a body, a

combination of the above effects occur. Since, by its very nature, transient waves are

unsteady and the flow field is constantly changing, numerical solutions are required for

all but the simplest of cases.

2.2.2 Deformable Body

The flow field that is established around a deformable body follows the same principles

as a non-deformable body described previously. However, as a wave impinges upon a
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deformable body, the shape of the body may change which in turn influences the flow

field. This indicates that both the structural response of the body and the flow field must

be considered in a coupled manner to accurately model the situation. The response of

the structure is dependent on the material properties, geometry, duration and magnitude

of the wave.

This coupled effect may be significant in terms of the overall response of the structure.

Upon first contact, a wave imparts a stress wave in the structure which, particularly in

the biological case, can cause severe damage. Measurements of the flow around the

structure and the stress waves within a structure are critical in terms of determining

the structural response. However, instrumentation to measure internal pressure waves

in all but axisymmetric structures is difficult to implement and evaluate since internal

reflected stress waves superimpose on each other making interpretation of recorded data

challenging.

2.2.3 Modeling Methods

An approximation of the structural response can be ascertained by modeling the structure

as a spring-mass-damper system with an applied forced loading using unsteady pressure

boundary conditions [31][32]. However, the complexity of most realistic loading situations

and associated structural response led to several studies which use an uncoupled method

wherein the blast load was determined analytically or empirically [33][34][35][36], and

then applied separately to the structure in a finite element code [37][38]. Jacinto [39][40]

performed analysis using a similar method and then compared the numerical results with

experimental tests. Similarly, others [41][42] have used CFD codes to predict the loading

conditions on a rigid structure and then applied the loading history to the deformable

structure using a different numerical code, achieving one-way coupling between the fluid
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and structure. Although these methods work well for simple cases, they begin to fail when

more complex loading cases are considered. Fully coupled models capable of predicting

fluid structure interaction have been implemented with success [43][44][45][46]. In general,

the previous studies conducted focused on more rigid structural materials such as metals

and concrete.

Typically, dynamic impact problems for structures may be accurately modeled using

an explicit Lagrangian based finite element code whereas, an Eulerian approach is better

suited to address fluid modeling, with correspondingly large deformations and material

flow [24]. The fluid structure interaction (FSI) capabilities in LS-DYNA [47], outlined in

appendix C, which uses an Arbitrary Lagrangian Eulerian (ALE) formulation to model

the compressible flow was selected for this study. The ALE algorithm adequately captures

the wave mechanics discussed previously as outlined in [48]. This study determined

that reduction of the mesh density beyond a characteristic length of 0.005 had only

minimal effects on the ability of the algorithm to resolve discontinuous shocks. This

mesh resolution was also necessary to resolve flow when at 45◦ to the face of the element.

The fluid structure interaction in LS-DYNA is achieved through a penalty coupling

algorithm [46][49][50] (discussed further in appendix C). Use of this coupling method is

facilitated by the Lagrangian time step used in the ALE algorithm. The algorithm first

calculates the movement of the fluid as if the Lagrangian part did not exist. The distance

that the fluid “penetrated” the surface of Lagrangian part is then used to calculate a

coupling force based on the material properties. This force is then distributed to the

nodes of the Lagrangian part near the coupling point. The calculation of the Lagrangian

material response then continues with the updated external force
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2.3 Deformation Mechanics in Porous Materials

Recently, researchers have investigated the deformation of porous materials on the micro–

scale level in order to describe the effect of pore size, geometry and other mechanical

variables [51][52][53][54][55]. The majority of these studies focus on the response of

foams. This section is separated into two parts. The first part describes the morphology

of a closed cell foam and how was it modeled geometrically. The second part discusses

how numerical modeling techniques have been used in the literature to better understand

the behaviour of closed cell foams at the pore level.

2.3.1 Closed Cell Foam Morphology

Several studies regarding the structure of foams have been conducted. In 1887 Lord

Kelvin published a manuscript which outlined the problem of how to model space filling

foams using geometrical shapes [56] of equal volume with the least surface area. Hence-

forth this became know as the Kelvin problem. Kelvin proposed that the tetrakaideca-

hedron with slightly curved edges solved this problem. More recently, Weaire and Phe-

lan [57] found a structure which solved the Kelvin problem more efficiently. Their struc-

ture used two types of shapes which are equal in volume. In addition to the tetrakaidec-

ahedron, they used an irregular dodecahedron. Weaire and Phelan continued their in-

vestigation into foam structures through which they describe a dry foam as a foam with

a nearly infinitesimal volume fraction of liquid. In contrast, a wet foam was described

as a foam for which there was enough liquid to render the bubbles almost spherical [58].

Although these descriptions are based on liquid foams (such as that created by blowing

bubbles into soapy water) much of practical application of this knowledge occurs in solid

porous type structures such as the work performed by Fung [59] where he correlated

the shape of a tetrakaidecahedron to morphological data of an alveolar structure in the
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lung. In this case the “foam” structure would be a wet type as the alveolar walls have

a finite thickness. An example of a model of an alveolar duct structure is shown in

figure 2.25. Similarly, research performed on polymeric closed cell foams also use the

tetrakaidecahedron as the base unit shape for modeling [60][61][6][62].

Figure 2.25: Two order–2 polyhedra combined to form alveolar duct with one additional
face removed (dark edges) to ventilate alveoli. Several polyhedra have been removed to
show duct. [59]

2.3.2 Numerical Models of Foams

Several researchers have used numerical modelling techniques to analyse the response of

open cell foams. In general, the research can be split up into polymeric and metallic

foams as discussed subsequently.

Metallic Foam Modelling Gibson and Ashby [5] developed a microscale model of

a foam for open cell based on a lattice structure. This model described the mechanics

of the foam based on the properties of the parent material but ignored the effects of

air. They ignored the effects of air by assuming that the process was sufficiently slow

to allow the air to evacuate from the foam unobstructed. Vesenjak et al. investigated
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the deformation mechanics of open and closed cell aluminum foams [63][64]. They used

Smooth Particle Hydrodynamics (SPH) to model different materials (including air using a

modified numerical technique) which filled the pores. Their structure used was composed

of spherical shaped pores and they accounted for strain rate effects using a Cowper–

Symonds constitutive relation [65]. The foams that they modeled had very thick walls

that were between a third and half the pore diameter. They concluded that the gas inside

the pores influences the macroscopic behaviour of the structure. They also concluded

that the filler influence increases with increasing relative density, size of the cellular

structure and the number of cells. Similarly, finite element models of aluminum foams

at the structure level have been conducted as outlined in references [66][67]. Vehyl et. al

created a geometric representation of both an open and closed cell aluminum foam using

tetrahedral elements [68]. Their models showed the same general shape as experiments

conducted. Michailidis et. al examined an open celled aluminum foam at the microscale

level using finite element methods. Through this study the researchers were able to

visualize the stress fields developed in the Al foam [69]. Michailidis further extended

the study to model Ni open cell foams tested at rates ranging from 0.005 to 50/s [70].

This study showed that there the numerical model was able to accurately predict the

mechanical response of the material. Tasdemirci et. al modeled as repeating structure

of stainless steel hollow spheres which deformed at high rates [71]. As in the current

manuscript the authors used LS-Dyna to model the deformation of the spheres. Their

model exhibited a similar response to that of the experimental tests performed.

The models discussed in the preceding literature focused on metallic foams. The

material of the cellular structure is significantly stronger than than of polymeric foams.

Additionally, although the modelling techniques had application to elastomeric foams,

these materials deform plastically.
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Polymeric Foam Modelling Lakes modeled the buckling of the struts which formed

an open cell structure for an elastomeric foam [72]. Wismans et. al used 2D sections to

model a closed cell polymeric foam [73]. They did not know mechanical properties and

so a material model was assumed. Zhu et al. [74] developed a model of an open cell

material using tetrakaidecahedrons. The model was to determine the elastic modulus

and Poisson’s ratio for a foam. The material was assumed to be linear elastic and

the elastic constants were found analytically. The effect of air was ignored. A similar

study by Zhu et al. [75] investigated the high strain compression of polyurethane foams.

This study looked at the effect of buckling of the cell edges and compared predicted

deformations to experiments. A plateau in the compressive stress–strain behaviour was

not predicted by their model which was seen in the experiments. This model was further

extended by Zhu et al. [76] to capture creep behaviour using viscoelastic theory. Mills [77]

created a finite element model to predict the viscoelastic effects in the compression of

polyurethane open cell foam during impact. Two models were investigated. The lattice

structure model developed by Gibson and Ashby [5] and a “Wet” Kelvin model. Mills

used a visco–elastic material model to simulate the polyurethane foam. Through use of

this model Mills suggests that the majority of the energy absorption can be attributed

to the viscosity in the polymer. In 2007 Mills [61] further investigated the response of an

open cell polyurethane foam to predict the elastic modulus of the material as it changed

during compression (densification of the foam).

The models discussed previously suffer from several limitations. The majority of the

models are confined to open–cell foams without the consideration of the effect of air.

Additionally, none of the previous studies address wave effects such as reduced wave

speed or the importance morphological factors.

Mills et al. [6] modeled closed cell polyethylene and polystyrene foams at a microscopic
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scale. In this study, the cells were modeled with an outer structure composed of shell

elements of approximately 30 µm in size, while the fluid was modeled with a special

fluid cavity which acted on the outer shell. The author indicated in this manuscript

that he was unable to model the edges of the foam structure using solid elements. The

study used 2, 4 and 6 cells. A model of a rigid striker was given an initial velocity and

the was used to apply the loading to the cell structure. Mills used a bilinear curve to

model the polyethylene and polystyrene materials. The stresses were then increased by

20% to account for the increased stress levels exhibited by polyethylene and polystyrene

materials. Through this study Mills found that the increase in compressive stresses in the

strain range of 10 to 60% was a function of the compression of air with the contribution

by the polymer being almost constant. Above strains of 60% cell faces contacted each

other further contributing to the increase in stress. His models showed that the cells

compressed uniformly (even at strain rates of 500/s). Although an important study,

Mills’ model suffers from several limitations. Although Mills [6] incorporates air cavities

into his model wave propagation effects are not discussed. This could be a limitation

of the air cavity model that was used. Additionally, although they indicated that the

polymer material that he used are strain rate sensitive, he uses a simple bilinear curve

that was then scaled by 20% to approximate a response when subjected to a strain rate

of 50/s. The 50/s strain rate was an overall rate for the macroscale deformation of the

sample. The morphology that Mills used in his study was also limited in that he modeled

only quarter section of entire cells without consideration of domain size.

The research contained within this manuscript sought to address the limitations of

the models described previously. A predictive constitutive model for the properties of

the cellular material was created and validated as discussed in the subsequent chapters.

The morphology of the polychloroprene foam was determined using similar methods as
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that discussed in section 2.3.1. Importantly, once the finite element model of the foam

was created, it was verified using experimental techniques which loaded an axisymetric

sample thereby reducing complex stress states which occur at the boundaries of previous

validation studies. Additionally, the model developed in the current manuscript identified

the contribution of the enclosed air which had not been identified in the previous studies.

The relative sensitivity of the mechanical response of the foam to morphology factors was

also addressed, as outlined in the subsequent chapters, which had not been investigated

previously.

2.4 Dynamic Experiments

A compressive split Hopkinson pressure bar was used to test the materials in compression

at high rates. The following is brief overview of Hopkinson bar theory. A detailed

description of the apparatus used and the governing theory can be found in reference [78]

and [79][80] A more general overview of Hopkinson bar theory and high rate material

testing is given in reference [24].

A schematic of the compressive Hopkinson bar apparatus is shown in figure 2.26.

In the compression test, the striker bar is propelled via a pneumatic gun and impacts

the incident bar. A compressive stress wave propagates down the incident bar where

it encounters the sample. At this point, a portion of the wave is transmitted through

the sample into the transmitter bar as a compressive stress wave while the balance is

reflected as a tensile wave. The proportion of the wave that is transmitted and reflected

is dependent on the impedance and geometric difference between the bar and the sample.

Strain gauges on each bar are used to record the strain time history of the passing waves.

The material behaviour can be determined from these waves using the analysis outlined

subsequently.

45



Striker

Incident 
Bar

Transmitter Bar
Strain 
Gauge 
Station

V1

V2
F1

F2

LoSample Vstriker

Ab Eb

εincident
εreflectedεtransmitted

Figure 2.26: Schematic of Hopkinson Bar apparatus.

2.4.1 Hopkinson Bar Theory

In the compressive split Hopkinson bar, the material behaviour is determined from the

difference in velocities of the bar ends (V1, V2) and forces (F1, F2) acting on the ends of

the sample. As the stress wave interacts with the bar end, it begins to move reaching V1.

The engineering strain rate of the sample, ės can be calculated as

ės (t) =
V1 (t)− V2 (t)

Lo

. (2.28)

where V1 and V2 are the velocities of the bar ends. The measurement of the velocity at the

end of each bar is difficult. Therefore, a different approach using wave propagation in the

incident and transmitter bars is often adopted. The velocity at which wave propagates

in a rod is given as

Co =

√
E

ρ
. (2.29)

where Co is the velocity of the propagating wave, E is Young’s Modulus and ρ is the

density of the rod material.
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In order to determine the stress, strain and strain rate history of the sample, the

incident strain, εI , the reflected strain, εR, and the transmitted strain, εT , histories in

the bar can be used. The velocities at the interface can then be related to the strain by

V1 (t) = CoεI (t) at (t = 0) (2.30)

V2 (t) = CoεT (t) (2.31)

where t = 0 refers to the arrival time of the incident wave at the bar end.

At t > 0 the incident and reflected waves are superimposed so that the velocity is

reduced and V1 becomes

V1 (t) = Co (εI (t)− εR (t)) . (2.32)

Combining equations 2.31, 2.32 and 2.28 the strain rate can then be written in terms

of the strain histories as

ε̇s (t) =
Co

Lo

(εI (t)− εR (t)− εT (t)) (2.33)

assuming that the bars are made from the same material.

The engineering stress in the sample, (conventionally represented as σ) is based on

the average force acting on the sample which is expressed as

σs (t) =
1

2

F1 (t)− F2 (t)

As

(2.34)

where F1 and F2 are the forces applied at the specimen ends by the bars and As is the
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area of the sample. The forces in the bar can be related to the strains in the bar as

F1 (t) = AbEb (εI (t) + εR (t)) (2.35)

F1 (t) = AbEb (εT (t)) (2.36)

where Ab and Eb are respectively the area and Young’s Modulus of the bar. The stress

in the sample is then is then

σs (t) =
AbEb

2As

(εI (t) + εR (t) + εT (t)) . (2.37)

For equilibrium to exist (F1 (t) = F2 (t)) and from conservation of momentum principles,

εT (t) = εI (t) + εR (t) .

Equations 2.33 and 2.37 simplify to

ės (t) = −2
Co

Lo

εR (t) (2.38)

and

σs (t) =
AbEb

As

(εT (t)) . (2.39)

The total strain in the sample is determined by integrating the strain rate, equation 2.38

as

es (t) = −2
Co

Lo

∫ t

0

εR (t) dt. (2.40)

By applying equilibrium and conservation principles, the stress, strain and strain rate

of the sample can be determined from the known bar properties and recorded strain gauge

signals. From equation 2.40, the maximum strain that can be achieved is a function of
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the reflected strain wave duration and amplitude.

2.4.2 Dynamic Equilibrium Constraints

One of the assumptions made when using a Hopkinson bar for testing requires that

dynamic equilibrium must exist in the sample during the test. In essence this means that

the sample must be in a uniform stress state. One method which is used to determine

if dynamic equilibrium is achieved is to compare the force history in the incident and

transmitted bars. If the forces are approximately equivalent then equilibrium is said to

exist [81]. Optical methods have also been used to identify non–uniform deformation [82]

but the view of the sample is often disrupted by the lubricant.

Kolsky suggested that the specimen length should be small compared to the wave-

length of the shortest operative wave in the Fourier spectrum of the pulse [83]. Davies

and Hunter established that equilibrium is achieved when the loading pulse travels back

and forth inside the specimen more than π times [84]. Dioh et al. conducted tests

through a range of strain rates to determine the strain rate sensitivity due to material

dimensions [85]. They suggested that it was critical to choose appropriate specimen di-

mensions when testing at higher strain rates in order to correctly determine the material’s

behaviour. Dioh et al. further concluded, through numerical simulation, that at high

striker velocities, plastic wave fronts were developed in the sample, increasing the strain

rates and flow stress, which causes inaccuracies in representing the material’s inherent

behaviour [86]. By reducing the specimen length, lower velocities can be used, resulting

in lower stress and strain gradients throughout the specimen. Further research was con-

ducted by Dioh et al. using a different type of numerical simulation which resulted in

similar conclusions [87].
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2.5 Constitutive Modeling – Nonlinear Elasticity and

Viscoelasticity

One of the first steps in finite element modeling is to develop and implement a constitutive

model which is capable of representing the materials behaviour. In general there are

several classes of materials such as foams, rubbers, metals and ceramics which have

unique behaviour and similarly unique constitutive models. Ultimately, the stress inside

a material at any given point can be a function of strain, strain rate, strain history

(path dependent materials), temperature and other variables such as phases in metals.

In simulations involving large deformations it is especially important to characterize the

material over a large range of strains which can be as high as 80–90% in the case of

foams.

This section is composed of three parts. Section 2.5.1 outlines the background and

constitutive modeling for elastic and hyperelastic materials. Section 2.5.2 outlines the

background and constitutive modeling for viscoelastic materials. Section 2.5.3 discusses

methods used for combined hyperelastic and viscoelastic constitutive modeling as well as

some existing constitutive models.

2.5.1 Modeling of Elastic and Hyperelastic Materials

One of the basic idealizations of a simple material is that of a purely elastic solid. A

Neo–Hookean model can be used to model an elastic solid undergoing large deformations.

A simple model of a linear elastic solid is that of a spring as shown in figure 2.27. The

linear spring of figure 2.27a) subject to an applied velocity has a force response that

is directly proportional to the displacement (x). In this case, K is the proportionality

constant. For a nonlinear spring, as shown in figure 2.27b), the force is proportional to
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the displacement but this time K is a function of x such that F = ax+ bx2 + cx3 + ....

Figure 2.27: A linear a) and non-linear b) spring system.

A hyperelastic material is one that possess a strain energy density function which is

an analytical function of strain [88]. This is represented by:

σij =
∂W

∂ϵij
(2.41)

whereW is the strain energy function. As indicated by Rivlin [89], for finite deformations

in an isotropic material, the rigid body rotations of the material are not included in the

strain energy function. For a strain energy function that is indifferent to the coordinate

system it must be a function of the strain invariants. i.e. W (I1, I2, I3) where using the
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right Cauchy–Green deformation tensor C, the invariants are expressed as

I1 = tr (C) = Cii = λ1 + λ2 + λ3 (2.42)

I2 =
1

2

[
(trC)2 − trC2

]
=

1

2

[
CikCki − C2

jj

]
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 (2.43)

I3 = det (C) = λ2
1λ

2
2λ

2
3 (2.44)

where λi are the stretches in the principal directions. Stretch is a quantity used to

measure deformation of a member and is related to engineering strain by

λi = 1 + ei (2.45)

where ei is the principle components of engineering strain (change in length/original

length). Through inspection of equation 2.45, it can be identified that an undeformed

member will have a stretch of one, a member in tension will have a stretch greater than

one and a member in compression will have a stretch less than one. This indicates that

as a member is being compressed the values of stretch will start at one and approach

zero. i.e. a stretch of 0.8 corresponds to an engineering strain of 20% whereas a stretch

of 0.2 corresponds to a engineering strain of 80%. Consequently, for the remainder of the

manuscript, stretches will be quoted as going from one towards zero thereby implying

compression.

52



Rivlin Hyperelastic Constitutive Equations

The strain energy function proposed by Rivlin [90] for an isotropic, incompressible ma-

terial was an infinite series of the form:

∞∑
i=0,j=0,k=0

Aij (I1 − 3)i (I2 − 3)j (I3 − 3)k, A00 = 0 (2.46)

The −3 term comes from the observation that in the unstressed state, the principal

stretch ratios λi are equal to 1 and so the first two invariants are equal to 3. If the

material is isotropic and incompressible the third invariant is approximately equal to 1

from equation 2.44 and not included. Expanding equation 2.46 for two terms gives

W = A00 + A01 (I2 − 3) + A02 (I2 − 3)2 + A10 (I1 − 3) + A20 (I1 − 3)2

+ A11 (I1 − 3) (I2 − 3) + A12 (I1 − 3) (I2 − 3)2

+ A22 (I1 − 3)2 (I2 − 3)2 + A21 (I1 − 3)2 (I2 − 3) (2.47)

where A00 is set to zero to represent zero strain energy in the undeformed state.

The deformation tensor Fij can be written as

F =


λ1 0 0

0 λ2 0

0 0 λ3

 (2.48)

where the off diagonal components are zero since the deformations are uniaxial and inline

with the loading direction. Since rubbers are generally considered to be incompressible,

the Jacobian was approximately unity and so J = 1 = λ1λ2λ3. As well, since the

experimental samples were axisymmetric λ2 = λ3. This lead to λ1λ
2
2 = 1 and so λ2 =
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λ
−1/2
1 = λ3. The deformation tensor is then

F =


λ1 0 0

0 λ
−1/2
1 0

0 0 λ
−1/2
1

 (2.49)

where the principal stretch in the loading direction was determined from the engineering

strain, e strain via

λ1 = (1 + e1) .

In this case the Left and Right Green–Cauchy deformation tensors are equal (C =

FTF = B)and given as

Bij =


λ2 0 0

0 λ−1 0

0 0 λ−1

 (2.50)

which leads to the invariants

I1 = tr (B) = Bii = λ2 + 2λ−1/2 (2.51)

I2 =
1

2

[
(trB)2 − trBB

]
= λ−2 + 2λ (2.52)

where λ is the stretch in the principle direction.

Rivlin [91] showed that for an incompressible, isotropic solid, the Cauchy stress can

be written as

σe
ij = α1B+ α2BB− pI (2.53)

54



where

α1 = 2

(
∂W

∂I1
+ I1

∂W

∂I2

)
(2.54)

α2 = −2
∂W

∂I2
(2.55)

and p is an arbitrary pressure. This pressure is arbitrary due to the incompressibility

assumption. For a stress state under uniaxial loading equation 2.53 becomes

σe
11 = α1B11 + α2B

2
11 − p (2.56)

The pressure p can be determined from the fact that σe
22 = σe

33 = 0 and B22 = B
−1/2
11

resulting in

σe
22 = 0 = α1B

−1/2
22 + α2B

−1/2
22 − p (2.57)

Combining equations 2.57 with 2.56 gives

σe
11 = 2

(
λ2 − λ−1

)(∂W

∂I1
+ λ−1∂W

∂I2

)
(2.58)

which is a general form of a model based on strain energy for uniaxial loading of a hy-

perelastic, incompressible, isotropic material. It should be noted that alone this equation

does not have any time dependency. However, it is often used as the basis for viscoelastic

analysis as outlined in a subsequent section.
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Ogden Constitutive Model

Ogden proposed a strain energy functional which was a function of the principal stretches.

The strain energy functional given by Ogden [92] was

W =

Nk∑
k=1

µk

αk

(λαk
1 + λαk

2 + λαk
3 − 3) (2.59)

where µk and αk are constants fit to the experimental data and λi are the principal

stretches. In LS-Dyna a slight variation of equation 2.59 was given as

W =

Nk∑
k=1

µk

αk

(
λ̃αk
1 + λ̃αk

2 + λ̃αk
3 − 3

)
− p (2.60)

where

λ̃i =
λi

J1/3

and J = λ1λ2λ3. This leads to the principal Kirchhoff stresses being

τ eii = Jσe
ii = λi

∂W

∂λi

=

Nk∑
k=1

µk

(
λ̃αk
i − 1

3
ak

)
+ p (2.61)

where

ak = λ̃αk
1 + λ̃αk

2 + λ̃αk
3 .

In the current work, the superscript e represents the elastic stress and the superscript v

represents viscoelastic stress discussed later. Special cases of the Ogden model exist for

specific selection of the material constants. When k = 1 and α = 2 the Neo–Hookean

model was obtained. When k = 1, 2, α1 = 2 and α2 = −2 the Mooney–Rivlin model was

obtained.

One of the main issues in implementing the Ogden formulation was the requirement
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for the principal stretches. Mathematically, these are the eigenvalues of the left (V) or

right (U) stretch tensor. The deformation gradient can be decomposed into rotation (R)

and stretch components. The difference between the left and right stretch tensors can

determined by which whether or not the rotation is performed first. This is expressed

mathematically as

F = RU = VR. (2.62)

In practice, however, the rotation matrix is not known and so an alternative approach

is taken. The right, C, and left, B, Cauchy–Green deformation tensors are related to the

stretch tensor and deformation gradient by

B = FFT = V2 (2.63)

C = FTF = U2. (2.64)

Methods, such as those proposed by Hoger and Carleson [93][94] exist to find the stretch

tensors from the Cauchy–Green deformation tensors. These methods require repeated

applications of the Cayley–Hamilton theorem and then the solution of a characteristic

polynomial to determine the invariants of U from which U can be determined [95].

However, for the Ogden constitutive model the stretches on a principal basis are required.

The principal stretches can be found through solving the eigenvalue problem stated as

(A− λI)n = 0 (2.65)

where A in this case is a symmetric three by three matrix (such as U, V, C or B), λ is

an eigenvalue and n is the corresponding eigenvector. Since the Cauchy–Green tensors

are symmetric they will have real positive eigenvalues and so the square root of the
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eigenvalue will be positive as well. As such, once the eigenvalues (and vectors) of C

and B are determined, the principal stretches can be found by taking the square root of

the eigenvalue. Normalizing the eigenvector then gives the principal directions. The left

Cauchy–Green tensor can then be written in terms of its eigenvalues and eigenvectors

as [96]

Bij = λ2
ininj (2.66)

where the eigenvalues are squared since we ultimately want to find the values of the

stretch tensor. There are a variety of methods available to solve for the eigenvalues and

eigenvectors. Closed form solutions for the eigenvalues are described in Malvern [97]

and the book by Simo and Huges [98]. Subsequently the dyadic product of the eigen-

vectors can be found using the method in Morman [99]. These methods can lead to

numerical problems though when two eigenvalues are close to each other as described

by Scherzinger [100]. As described previously, this occurs frequently in the uniaxial in-

compressible case. Iterative numerical methods such as those described by Bathe are

employed in numerical codes to solve for the eigenvalues and vectors instead [101] .

Thus, once the principal Kirchhoff stresses have be determined as in equation 2.61,

which is on the principal basis, they are rotated back to the standard basis using the

relationship in equation 2.66 to give

τij = τininj (summation in force). (2.67)

The Cauchy stress, which is used in most finite element codes, is then determined by

σ = τ/J . The left Cauchy–Green deformation tensor was used to determine the principal

directions in the deformed solid. If the right Cauchy–Green deformation tensor was used

instead, the principal directions would have been in terms of the undeformed solid [96].
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2.5.2 Viscoelasticity

Preliminaries

Viscoelastic materials, as the name implies, have not only a dependency on strain but

also time. Following the description by Fung [88], consider the force applied to a bar to be

F (t) and the displacement of the bar end to be u (t). The force at time t is a function of

the history of all of the increments in displacement up to t. If we consider the displacement

to be C1 then over a small increment in time, dϕ, the increment in displacement at time ϕ

is (du/dt) dϕ. The effect of this increment in displacement contributes to the overall force

component as a function of k (t− ϕ) where k is a proportionality constant and ϕ ≤ t.

Mathematically this can be expressed as

dF (t) = k (t− ϕ)
du

dt
(ϕ) dϕ (2.68)

If we integrate the above equation from −∞ to t we get an expression for F (t)

F (t) =

∫ t

−∞
k (t− ϕ)

du

dt
(ϕ) dϕ (2.69)

In essence, integrating from −∞ indicates that the summation is to take place from the

start of motion (as opposed to some arbitrarily defined t = 0). Equation 2.69 is an exam-

ple of a convolution integral which is often used to model time dependent responses [97].

Note that in the literature, τ is often used instead of ϕ however for the present manuscript

τ is reserved for Kirchhoff stress.

Figure 2.28 shows a possible response of a viscoelastic solid subjected to a continuous

increasing displacement (green line) up to unity where it is then held constant. The

blue line shows the loading as would be measured at the end of the bar. The red curves

59



show the contribution that each increment in displacement has on the measured force. In

reality this is a continuous process. The principle of the integral in equation 2.69 is that

each visco increment has a finite time over which it acts according to the proportionality

constant. This is indicated by the decay of each increment illustrated by the thin red

lines in the figure. As time progresses, the contribution of each increment decays, in this

case to zero as only the viscous stress in considered. As indicated in the figure, once the

displacement is held constant the overall measured force decays.

The viscous portion of the force can then be summed with the elastic portion of the

force such that the total stress in the rod is given by

σ = σe [W (I1, I2, I3)] + σv (t, k, u̇) (2.70)

where σ is the total stress, σe is the elastic portion which can be define as a function of

strain energy, and σv is the viscous portion which is a function of time and deformation

rate. In this manner, the total stress as a function of the elastic stress and viscous

component can account for strain rate effects. In essence, the increments in force increase

with increasing deformation rate. A similar analysis can be performed such that the

displacement is solved for in terms of stress.

The Maxwell and Voigt models are often used to further illustrate the response of a

viscoelastic type system subjected to various types of inputs. The reader is referred to

the work by Fung [88] and Doman [102] for an analysis of these systems. Consider the

schematic of the standard linear solid (Maxwell form) which is in essence a combination

of the Maxwell and Voigt models, such as a bar made from a viscoelastic material fixed

at one end with a force applied to the other, as shown in figure 2.29.

In this case, the solid is comprised of a combination of a spring and a dashpot in series

that is in parallel with another spring. If one considers the response of this system to a
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Figure 2.28: Schematic of the response of a viscous solid subjected to a continuous
increase in displacement.

Figure 2.29: Schematic of a standard linear solid.
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step function in deformation (often called a relaxation test) the force response over time

would look like that shown in figure 2.30a). If a step in force is applied (called a creep test)

the deformation would follow that of figure 2.30b). In the relaxation test, the measured

force approaches the elastic force of the material as t → ∞. Thus, the level above the

elastic response is the addition of the viscoelastic component as described previously.

More complex models can be achieved through the combination of Maxwell and Voigt

Figure 2.30: Schematic of the response of a standard linear solid a step input in displace-
ment a) and a step input in force b).

solids in series and parallel. Further explanation of this is given in references [88] and

[102].

General Discretization of the Convolution Integral

Recursive techniques can be used to solve the convolution integral of the type in equa-

tion 2.69 using a numerical time marching approach [103][104]. This can be explained
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through investigation of a generic convolution integral as that given by

B (t) =

∫ t

−∞
G (t− ϕ)

dA (ϕ)

dϕ
dϕ (2.71)

where for this section only B and A can be stress and strain quantities respectively

(written in a one dimensional form here) and G is an independent function of time. It is

usually assumed that the deformation starts at time zero resulting in

B (t) =

∫ t

0

G (t− ϕ)
dA (ϕ)

dϕ
dϕ (2.72)

If a time marching technique is used and we take an increment in time ∆t, equation 2.72

becomes

B (t+∆t) =

∫ t+∆t

0

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ (2.73)

which can be split into the two intervals [0, t] and (t, t+∆t] resulting in

B (t+∆t) =

∫ t

0

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ

+

∫ t+∆t

t

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ (2.74)

The kernel function, G (t+∆t− ϕ), can be approximated by a Prony series,
Nk∑
k=1

γke
−βk(t+∆t−ϕ) where Nk is the number of terms in the Prony series. The second term

in equation 2.74 is then written as

∫ t+∆t

t

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

γk

∫ t+∆t

t

e−βk(t+∆t−ϕ)dA (ϕ)

dϕ
dϕ (2.75)

where γk and βk are constants. Using the exponential property ec(a+b) = ecaecb, equa-

tion 2.75 becomes
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Nk∑
k=1

γk

∫ t+∆t

t

e−βk(t+∆t−ϕ)dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

γk

∫ t+∆t

t

e−βk(t+∆t)eβkϕ
dA (ϕ)

dϕ
dϕ (2.76)

Applying the mean value theorem to equation 2.76 to extract the A term from the

integrand results in

Nk∑
k=1

γk

∫ t+∆t

t

e−βk(t+∆t)eβkϕ
dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

γk
dA (ξ)

dϕ

∫ t+∆t

t

e−βk(t+∆t)eβkϕdϕ (2.77)

where ξ ∈ [t, t+∆t]. The integral can now be evaluated to give

Nk∑
k=1

γk
dA (ξ)

dϕ

∫ t+∆t

t

e−βk(t+∆t)eβkϕdϕ =

Nk∑
k=1

γk
dA (ξ)

dϕ

[
e−βk(t+∆t−ϕ)

βk

]∣∣∣∣∣
t+∆t

t

(2.78)

which simplifies to

=

Nk∑
k=1

γk
βk

dA (ξ)

dϕ

[
1− e−βk∆t

]
. (2.79)

If dϕ is sufficiently small and equal to ∆t, dA/dϕ can be approximated linearly by

dA

dϕ
=

A (t+∆t)− A (t)

∆t
(2.80)

and finally equation 2.78 becomes

∫ t+∆t

t

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

γk
βk

A (t+∆t)− A (t)

∆t

[
1− e−βk∆t

]
(2.81)

which can be implemented into a time marching numerical approach.

Similarly, if we apply the Prony series approximation for the first term of equation 2.74
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we get

∫ t

0

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

∫ t

0

γke
−βk(t+∆t−ϕ)dA (ϕ)

dϕ
dϕ (2.82)

separating the exponential terms results in

=

Nk∑
k=1

∫ t

0

γke
−βk(t−ϕ)e−βk∆tdA (ϕ)

dϕ
dϕ (2.83)

which rearranged becomes

=

Nk∑
k=1

e−βk∆t

∫ t

0

γke
−βk(t−ϕ)dA (ϕ)

dϕ
dϕ (2.84)

If we substitute a Prony series, given by
Nk∑
k=1

γke
−βk(t−ϕ), into equation 2.72 we get

B (t) =

∫ t

0

Nk∑
k=1

γke
−βk(t−ϕ)dA (ϕ)

dϕ
dϕ (2.85)

≡
N∑
k=1

Hk (t) (2.86)

where Hk (t) is defined as a history variable for each k and Hk (0) = 0. Substituting this

result into equation 2.82 results in

∫ t

0

G (t+∆t− ϕ)
dA (ϕ)

dϕ
dϕ =

Nk∑
k=1

e−βk∆tHk (t) . (2.87)
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Substituting equations 2.81 and 2.87 into equation 2.74 gives the recursive formula

B (t+∆t) =

Nk∑
k=1

e−βk∆tHk (t) +
γk
βk

A (t+∆t)− A (t)

∆t

[
1− e−βk∆t

]
. (2.88)

Using a time marching approach, one can then evaluate B (t+∆t) using the values of

A at t and t + ∆t and the history variable Hk at t along with the constants γk and βk

where k = 1 to Nk.

There are different variations of the convolution in the literature which lead to differ-

ent formulations. For instance

σviscoelastic =

∫ t

0

gijkl (t− ϕ)
dϵkl (ϕ)

dϕ
dϕ, (2.89)

relates Cauchy stress to true (logarithmic) strain,

Sviscoelastic =

∫ t

0

Gijkl (t− ϕ)
dE (ϕ)

dϕ
dϕ, (2.90)

relates 2nd Piola–Kirchhoff stress to Green’s strain,

σviscoelastic =

∫ t

0

g (t− ϕ)
dσ [ϵ (ϕ)]

dϕ
dϕ, (2.91)

as implemented in the modified quasi-linear form by Fung. Although Gijkl and gijkl are

4th order tensor quantities, they can be decomposed into scalar functions which act on

the deviatoric and hydrostatic components.
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2.5.3 Hyper–viscoelastic Constitutive Models

Existing Constitutive Models

Common to several finite element programs, such as LS-Dyna [47] and Abaqus [105],

viscoelastic effects are modeled through the superposition of the viscoelastic contribution

on a base hyperelastic model as detailed previously. This linear sum is given as

σij = σe
ij + σv

ij (2.92)

where σe
ij is the hyperelastic contribution and σv

ij is the viscoelastic contribution to the

Cauchy stress. The base hyperelastic curve can take different forms such as the Ogden

model as described previously. The implementation of the convolution integral described

previously is based on equation 2.89 and implemented in LS-Dyna as

σv
ij =

Nk∑
k=1

2γk

∫ t

0

e−βk(t−ϕ)
dεdevij

dϕ
dt. (2.93)

where the deviatoric strain is given by

εdevij = εij −
1

3
εijδij. (2.94)

The numerical implementation is as discussed previously with the usage of the prony

series approximation for the relaxation function, γ. Abaqus implements a similar model

but includes a separate component for modeling viscoelastic effects in terms of volumetric

components.

The issue that arises with these models is the inability to predict the strain rate

sensitivity of rubber–like materials through the convolution integral alone. As discussed,

the idea of the convolution integral is to give the material a “fading memory” [97] which
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acts over a period of time similar to that of a stress relaxation or creep test. The above

formulation results in a constitutive model which is relatively insensitive to different

loading rates over a short period of time even for small time steps.

Yang et. al. [106] developed a model to account for higher loading rates. Their

formulation was based on the summation of a hyperelastic base curve, which is based on

the Mooney-Rivlin model described previously and a modifier on the convolution integral.

The form of the visco–elastic contribution was given as

σv = −pv + F (t) ·
t

Ω
ϕ=−∞

{C (ϕ)}FT (t) (2.95)

where Ω is a functional which describes how the strain history acts upon the stress and

pv is an arbitrary pressure. They assumed this functional to be of the form

t

Ω
ϕ=−∞

{C (ϕ)} =

∫ t

−∞
Φ (I1, I2)m (t− ϕ) Ėdϕ (2.96)

where the strain rate, Ė, is given by

Ė =
1

2

(
ḞT · F+ FT · Ḟ

)
. (2.97)

The function Φ is assumed to be given by

Φ = A4 + A5 (I2 − 3) (2.98)

where I2 is the second invariant of C, A4 and A5 are constants. The function m is a prony

series with one coefficient. Through the combination of the Mooney-Rivlin hyperelastic

model and the viscoelastic addition Yang et. al. were able to obtain reasonable fits to

data at high rates of strain for two similar rubbers.
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Chapter 3

Experimental Material Testing

This chapter outlines the testing methodology used and the mechanical behaviour of the

constituent polychloroprene rubber. The main goal of this aspect of the study was to

determine the strain rate sensitivity of the material. Many metals and especially polymers

show a significant increase in strength as the deformation rate increases. Characterization

of the material at different loading rates is therefore important when developing a model

which predicts the overall material behaviour. The results from the current chapter will

be used in chapter 4 where a constitutive model which describes the material behaviour

was developed and implemented.

3.1 Density Measurement

A primary task in characterizing a material is to determine its density. A relatively simple

method was employed to determine the density of both the foamed polychloroprene and

rubber materials. For each material type, four squares approximately 125 mm by 125 mm

were cut. The relative position of each corner was then determined to give the volume of

the specimen. Each specimen was then weighed and the density determined. Table 3.1

69



Table 3.1: Measured densities of the polychloroprene rubber and foam material.

Material
Average Density 

(kg/m
3
)

Standard

Deviation

Unfoamed

Neoprene
1213.25 8.43

Foamed

Neoprene
335.05 3.46

( g )

shows the average densities and standard deviation for each material.

3.2 Microscopic Analysis

3.2.1 Sample Preparation

In addition to the mechanical tests, samples were prepared so that the structure of

the foam could be investigated. In order to facilitate the microscopic analysis, a foam

specimen with perpendicular faces was created. This was accomplished by first adhering

the piece of foam to an aluminum block. The foam was then cut using a special rotary

blade in a lathe with the aluminum block attached to the compound rest so that a

constant feed rate could be achieved. A picture of this setup is shown in figure 3.1. The

aluminum block was then rotated 90 degrees so that three perpendicular, flat faces were

created. Distilled water was used as a lubricant to reduce friction and prevent tearing

of the material during the cutting process. The resultant specimen was approximately

7 mm square.

3.2.2 Results

An Olympus BX61 microscope fitted with a digital imaging system and overall magni-

fication of approximately 10 times was used to create images of the foam specimen. A

grid of three by three individual images were taken and then combined to give a com-
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Figure 3.1: Preparation of the foamed specimen for micrographic analysis.

posite image which was used for analysis. This procedure was repeated for each face.

Measurements of wall thickness, characteristic length and aspect ratio were determined

using Image Pro Plus software by Media Cybernetics.

Figure 3.2 shows the composite image obtained for the polychloroprene foam. The

Z direction was the foaming direction through the thickness. As indicated in the figure,

the foam had a relatively consistent structure with largely equal sized cells. Through

the foaming direction, as shown in the XZ and YZ planes, the cells exhibited a different

aspect ratio than that seen in the cross-sectional XY plane.

Figure 3.3 shows the typical measurements taken for each of the foams. A minimum

of 100 measurements were taken in each plane to determine the characteristic length,

Lc, and wall thickness of the cells. Additionally, the anisotropic nature of the cells was

determined by taking the ratio of the inside dimensions of the cells along the principle

axes (x and y in the figure).
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Figure 3.2: Structure of polychloroprene foam.
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Figure 3.3: Close–up view of foam micro–structure showing typical measurements.
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Table 3.2 to 3.4 show the measured values for the wall thickness, characteristic length

and aspect ratio respectively. Relatively consistent wall thickness was seen in the XZ and

YZ planes with a slight increase in thickness in the XY plane as indicated in table 3.2.

The overall average of all wall thickness measurements was 11.78 µm with a standard

deviation of 3.46µm.

Table 3.2: Measured values of wall thickness for each plane for polychloroprene foam
(n=100).

Plane Wall Thickness 
(μm)

Standard 
Deviation

XY 13.4 4.8
XZ 11.6 3.0
YZ 11.2 2.8

Plane Characteristic 
Length (μm)

Standard 
Deviation

XY 180.4 56.5
XZ 135.9 49.7
YZ 148.9 42.0

Plane Aspect Ratio Standard 
Deviation

X:Y 1.06 0.20
X:Z 1.79 0.41
Y:Z 1.56 0.28

Similar results were noted for the characteristic length as shown in table 3.3. Overall,

the cells had a characteristic length of 154.77µm with a standard deviation of 52.79 µm.

Table 3.3: Measured values of characteristic length for each plane for polychloroprene
foam (n=100).

Plane Wall Thickness 
(μm)

Standard 
Deviation

XY 13.4 4.8
XZ 11.6 3.0
YZ 11.2 2.8

Plane Characteristic 
Length (μm)

Standard 
Deviation

XY 180.4 56.5
XZ 135.9 49.7
YZ 148.9 42.0

Plane Aspect Ratio Standard 
Deviation

X:Y 1.06 0.20
X:Z 1.79 0.41
Y:Z 1.56 0.28

As identified in figure 3.2, table 3.4 indicates that the cells had a near uniform cell

size in the X:Y plane but showed some anisotropy in the Z (foaming) direction.

Table 3.4: Calculated aspect ratios of cell size for each plane of polychloroprene foam
(n=30).

Plane Wall Thickness 
(μm)

Standard 
Deviation

XY 13.4 4.8
XZ 11.6 3.0
YZ 11.2 2.8

Plane Characteristic 
Length (μm)

Standard 
Deviation

XY 180.4 56.5
XZ 135.9 49.7
YZ 148.9 42.0

Plane Aspect Ratio Standard 
Deviation

X:Y 1.06 0.20
X:Z 1.79 0.41
Y:Z 1.56 0.28
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3.3 Mechanical Testing

3.3.1 Specimen Preparation

Both quasi–static and dynamic experiments were conducted on right circular cylinders

cut from the supplied sheets of material. Due to the flaccid nature of the material, special

cutting techniques were developed to obtain consistent samples.

Initially, a coring tool, shown in figure 3.4, was used to cut cylindrical samples from

the sheet material. A milling machine was used in order to apply a consistent feed rate

of 3.75 mm/s with the tool spinning at 1500 rpm. Distilled water was used a lubricant in

order to reduce friction between the tool and the material which would readily build up

otherwise. This method gave satisfactory results for the polychloroprene rubber material.

However, for the foamed materials, a 6 mm sheet of polyethylene foam was gently held

(with less than 5 N) in contact with the surface of the polychloroprene foam sheets

acting as a binder to prevent the sheet from twisting during cutting. This additional

step resulted in satisfactory specimens with consistent surface quality and dimensions

along its length.

Figure 3.4: Coring tool for cylindrical samples.

The specimens were then cut to the desired length by placing them into a custom

fixture shown in figure 3.5. The hole in the fixture is slightly smaller than that of the

sample allowing a minimal clamping force to be exerted. A sharp utility knife was then

74



used to cut the sample to the appropriate length. Distilled water was used to minimize

friction and generate consistent samples with parallel faces.

Figure 3.5: Holder used to cut specimens to desired length.

From work conducted previously, it was determined that the required length of the

specimens was 4 mm to ensure dynamic equilibrium during the high rate tests as discussed

in section 2.4.2. Additional tests were performed on specimens of different length at a

quasi-static rate to identify length effects (discussed in more detail later). Figure 3.6

shows the dimensions of the specimen used in the testing.

3.3.2 Quasi-Static Tests

The quasi–static experiments utilized a custom–built hydraulic test fixture. A schematic

of the test fixture is shown in figure 3.7 and a picture of it with a specimen in figure 3.8.

The load cell used on this unit has a capacity of 2225N (500 lbf), which results in very
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4mm

Ø10mm

Figure 3.6: Dimensions of sample used for mechanical testing.

good load resolution for soft materials. Specimen displacement was measured using the

displacement of the crosshead using a linear variable differential transformer (LVDT).

This method of displacement measurement was necessary due to the extremely large

displacements (on the order of 80%) for all materials. The specimen was compressed

between two aluminum platens that were lightly lubricated with a lithium based grease.

The time that the specimen was in contact with the grease was minimized to prevent

possible deterioration of the material. The lubrication was necessary to prevent barreling

of the specimen which would result in high internal stresses that are not of a uniaxial

nature. The platens were manufactured in such a way to ensure that they were parallel

to each other in the apparatus. Additionally, they were lapped after machining to ensure

a smooth flat surface.

3.3.3 Dynamic Experiments

As discussed in chapter 2, a compressive split Hopkinson pressure bar was used to test

the materials in compression at high rates.

3.3.4 Experimental Procedure

From previous testing on RTV rubbers [82] and ballistic gelatin [81], it was determined

that a length of 4 mm would be suitable for the characterization of the material. The
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Lower Platten
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Hydraulic 
Actuator

LVDT

Sample

Figure 3.7: Schematic of quasi–static test apparatus.
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LVDT

Plattens

Actuator

Figure 3.8: Photograph of quasi-static compressive test apparatus with sample.

bars were made from polymethyl methacrylate (PMMA or Acrylic) to better match

the impedance of the polychloroprene rubber and foam. Although wave propagation in

PMMA is not linear elastic, as shown in equation 2.29, methods exist to account for

dispersion and attenuation effects of the wave as it propagates.

The ends of the bars were lubricated with a thin layer of high pressure lithium grease

which was necessary to prevent barreling of the sample which would result in a non–

uniaxial test with inappropriate stresses. Tests were conducted within 1 minute of placing

the sample in contact with the lubricant to prevent any degrading effects it might have on

the sample. The sample was aligned with the center of the bars to minimize any off center

loading of the sample. In order to prevent any preloading of the samples, the gap between

the bars was set to the measured gauge length of the sample using precisely machined

slip gauges. This allowed the bars to just contact the sample without preloading it.
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3.4 Experimental Results for the Polychloroprene

Rubber

As discussed in section 2.4.2, a constraint of the Hopkinson Bar testing methodology for

high rate material characterization was that the sample remains in dynamic equilibrium.

As discussed previously, this necessitates a sample with a smaller sample length. To

identify the effect that sample length has on the material response, samples of different

length were tested at the same loading rate. The aspect ratio (length:diameter) for the

samples used for the high rate testing was 0.4. Two other samples with the same diameter

but lengths of 10 mm and 12 mm (aspect ratios of 1 and 1.2) were also tested at the

same rate as the 0.1/s, 4 mm case. Figure 3.9 shows the stress–stretch response for

the samples tested. In the figure, the dashed line shows the results from each sample

tested. The solid thick lines show the average curve for the samples of each length. The

12 mm long sample, blue curve, exhibited a minor increase in stress at stretches ranging

from 0.35 to 0.2 compared to the 10 mm and 4 mm long samples (green and red curves

respectively) which showed similar responses over the loading history. As indicated in

the figure, the results from these tests indicated that the effect of sample length for the

solid polychloroprene rubber is minimal.

As outlined in the discussion given in section 2.4.2, dynamic equilibrium in the sample

can be determined by examining the forces at end of the incident and transmitted bars

for the high rate tests. Figure 3.10 show the typical incident, transmitted and reflected

strain waves. These waves had been propagated to the end of the Hopkinson bars using

the analysis detailed in reference [81]. Subsequently, the force was calculated from these

waveforms and presented in figure 3.11 for a typical case. As indicated in the figure, the

forces at the end of the incident and transmitted bars coincide well during the loading
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Figure 3.9: Stress–stretch response of polychloroprene rubber for different sample lengths.

section of the curve from 0 to 0.0012 s. After this point the unloading phase begins and

the forces do not coincide well especially after 0.0014 s. It should be noted that only

the 0 to 0.0012 s range of data is used. This indicates that the sample was in dynamic

equilibrium during the pertinent section of the test.
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Figure 3.10: Typical incident, transmitted and reflected strain waveforms.
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Figure 3.11: Forces in the incident and transmitted bars.
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For completeness, figures 3.12 to 3.17 show stress–stretch response for polychloroprene

at rates from 0.001/s to 2700/s. In each graph the result from each test is represented

by the blue, red and green lines. The thick black line represents the average of these

curves. Figures 3.12 to 3.15 show that there was good consistency between the results of

the tested specimens. Only minor deviations from the average curve are noted through

this range of strain rates. Slightly more spread between the stress–stretch curves at 7.9/s

is evident in figure 3.16. The tests performed at 2700/s, shown in figure 3.17, show

the largest spread between tests. Between stretches of 1 and 0.4 there is only minor

deviations in the curves. In the 0.4 to 0.2 stretch range, two of the curves exhibit a

similar response with one curve showing a larger stress level. Throughout the range of

strain rates the curves exhibit a hyperelastic material response as detailed in chapter 2.
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Figure 3.12: Stress–stretch response for the polychloroprene rubber at a strain rate of
0.001/s.
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Figure 3.13: Stress–stretch response for the polychloroprene rubber at a strain rate of
0.01/s.
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Figure 3.14: Stress–stretch response for the polychloroprene rubber at a strain rate of
0.1/s.
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Figure 3.15: Stress–stretch response for the polychloroprene rubber at a strain rate of
1/s.
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Figure 3.16: Stress–stretch response for the polychloroprene rubber at a strain rate of
7.9/s.
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Figure 3.17: Stress–stretch response for the polychloroprene rubber at a strain rate of
2700/s.
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The average curves for each strain are shown in figure 3.18. As indicated in the

figure, polychloroprene rubber had a dependence on strain rate over the entire loading

history. This is further highlighted in figure 3.19 which plots the value of stress at

different values of stretch versus strain rate (on a logarithmic scale). As indicated in

figure 3.19, as the strain rate increased from 0.001/s to 2700/s, the resulting stress values

increase from -1.75 MPa to -15.5 MPa at a stretch of 0.4. Similarly, at a stretch of 0.2

the stress increases from -8.75 MPa to -74.25 MPa over the same increase in strain rate.

Additionally, figure 3.19 indicates that the polychloroprene had a non–linear viscoelastic

effect since the values of stress do not increase linearly with strain rate.
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Figure 3.18: Average stress–stretch curves for the polychloroprene rubber over the strain
rates tested.
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Figure 3.19: Stresses at different stretch values over the range of strain rates tested.

3.5 Experimental Results for the Foamed

Polychloroprene

The purpose of performing experimental tests on the polychloroprene foam was not to

characterize the foamed material at a macroscopic scale as was done for the polychlo-

roprene rubber in the previous section, but was instead meant to identify if the foamed

polychloroprene material had a dependence on strain rate and to provide a set of ex-

perimental data against which the numerical models developed in chapter 5 could be

validated. As will be discussed in chapter 5, only the high rate tests were modeled.

For the purpose of this study, the tests performed on the polychloroprene rubber

were repeated on the polychloroprene foam. As before, figures 3.20 to 3.25 show the

stress–stretch response for polychloroprene at rates from 0.001/s to 3000/s. Similar to

the polychloroprene rubber, figures 3.20 to 3.22 show that there was good consistency
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between the results of the tested specimens. Only minor deviations from the average

curve are noted through this range. Slightly more spread between the stress–stretch

curves at 1/s is evident in figure 3.23. The tests performed at 2050/s and 3000/s, shown

in figure 3.24 and figure 3.25, exhibit larger deviations between tested samples. The

specimens tested at the higher rate exhibited oscillations at stretches from 1 to 0.5 after

which they exhibited a hyperelastic response similar to the polychloroprene rubber. The

curves from the samples tested at 2050/s and 3000/s were used for for the validation of

the numerical model of the foam. As such, an interpretation of these curves is given in

chapter 5.
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Figure 3.20: Stress–stretch response for the polychloroprene foam at a strain rate of
0.001/s.
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Figure 3.21: Stress–stretch response for the polychloroprene foam at a strain rate of
0.01/s.

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.2 0.4 0.6 0.8 1

Stretch

E
ng

in
ee

rin
g 

S
tre

ss
 (M

P
a) Average

Test 1
Test 2
Test 3

Figure 3.22: Stress–stretch response for the polychloroprene foam at a strain rate of
0.1/s.
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Figure 3.23: Stress–stretch response for the polychloroprene foam at a strain rate of 1/s.
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Figure 3.24: Stress–stretch response for the polychloroprene foam at a strain rate of
2050/s.
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Figure 3.25: Stress–stretch response for the polychloroprene foam at a strain rate of
3000/s.
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Similar to before, the average curves for each strain rate for the polychloroprene foam

are shown in figure 3.26. As indicated in the figure, polychloroprene foam exhibits a

dependence on strain rate although it is not as significant as the polychloroprene rubber

discussed previously. This is further highlighted in figure 3.27 which plots the value

of stress at different values of stretch versus strain rate. The relatively flat curves at

stretches of 0.8 and 0.6 show only minor increases with strain rate. At 0.4 stretch a

greater increase in stress was seen with strain rate.
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Figure 3.26: Average stress–stretch curves for the polychloroprene foam over the strain
rates tested.
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Figure 3.27: Stresses at different stretch values over the range of strain rates tested.
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3.6 Summary

The mechanical behaviour of polychloroprene rubber was investigated. Tests indicated

that the polychloroprene rubber had a density of approximately 1210 kg/m3. From

the range of compression tests performed at different loading rates, it was evident that

the polychloroprene rubber material had a significant dependence on strain rate. The

polychloroprene rubber showed a rise in stress as the material is compressed characteristic

of a hyperelastic material. Additionally, a non–linear viscoelastic effect was identified for

the polychloroprene rubber.

The polychloroprene foam material had a density of 335 kg/m3. Micrographic exam-

ination of the polychloroprene foam identified a relatively homogeneous structure with

approximately equal sized cells. The cells showed some slight anisotropy through the

foaming (Z) direction. Microscopic measurements of wall thickness, characteristic length

and aspect ratio were taken. The foamed materials exhibited a dependence on strain rate

as rates changed from 0.001/s to 3000/s. However, there is only a minimal change in the

mechanical behaviour of the material as strain rates increase from 2050/s to 3000/s indi-

cating that was sensitive to decade (factors of 10) changes in strain rate. The behaviour

of the foam is discussed further in chapter 5.
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Chapter 4

Constitutive Modelling

This chapter is composed of four sections. Section 4.1 outlines the proposed constitutive

model. Section 4.2 outlines the procedure used to determine the constitutive model pa-

rameters to the experimental data collected in chapter 3. Section 4.3 discusses the results

of the procedure used to determine the constitutive model constants and its correlation

to the experimental results. Section 4.4 discusses the validation of the constitutive model

using single element simulations.

4.1 Proposed Constitutive Model

The inability of the models discussed in section 2.5.3 to capture the materials response

over a variety of strain rates required the development of a new constitutive model. The

model that was developed had several advantages to those discussed in section 2.5 as will

be discussed later. The current approach combines the Ogden hyperelastic constitutive

model and viscoelasticity through the convolution integral combined with a modifier to

account for non–linear effects.

The viscoelastic contribution is based on the convolution integral, as before, but
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modified with a Rivlin type series, equation 2.46, based on the invariants of the stretch

tensor on a principal basis. Rewriting equation 2.71 in terms of the principal viscoelastic

stresses, τ vii, principal stretches, λi, and modifier terms is given as

τ vii (t) =

∫ t

−∞
ΓG (t− ϕ)

dλi (t)

dϕ
dϕ+ pv (no summation) (4.1)

where pv is the viscoelastic contribution to the arbitrary pressure as defined previously

and the modifier, Γ, is given as

Γ ≡
∑

Apqr (I1 − 3)p (I2 − 3)q (I3 − 3)r. (4.2)

Here p, q and r each range from 0 to the number of terms required in the fit to the

material data. As discussed in chapter 2, the third invariant is approximately equal to

1 for an incompressible material and so the last term in equation 4.2 is not included.

Therefore, equation 4.2 can be expressed as

Γ ≡
∑

Apq (I1 − 3)p (I2 − 3)q (4.3)

which when expanded out gives

Γ =
∑

Apq (I1 − 3)p (I2 − 3)q (4.4)

= A00 + A01 (I2 − 3) + A02 (I2 − 3)2 + A10 (I1 − 3) + A11 (I1 − 3) (I2 − 3) + ... (4.5)

Following the evolution of the time marching technique to solve the convolution inte-

gral as discussed previously, the increment in viscoelastic stress, equation 2.81, is given
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as

∫ t+∆t

t

ΓG (t+∆t− ϕ)
dλ (ϕ)

dϕ
dϕ =

Nk∑
k=1

Γ
γk
βk

λ (t+∆t)− λ (t)

∆t

[
1− e−βk∆t

]
. (4.6)

The history variable, equation 2.85, was then given as

Nk∑
k=1

Hk (t) ≡
∫ t

0

Γ
N∑
k=1

γke
−βk(t−ϕ)dλ (ϕ)

dϕ
dϕ. (4.7)

As with equation 2.88, equations 4.6 and 4.7 was combined to give

τ vii (t+∆t) =

Nk∑
k=1

e−βk∆tHk (t) + Γ
γk
βk

λ (t+∆t)− λ (t)

∆t

[
1− e−βk∆t

]
+ pv. (4.8)

The total state of stress was then determined using equation 4.8 with equation 2.61

through the linear sum τ pii = τ eii + τ vii (no summation). The total principal stresses was

then expressed as

τ pii (t+∆t) = τ eii + τ vii (no summation) (4.9)

=

Nd∑
d=1

µd

(
λ̃αd
i − 1

3
ad

)
+ p

+

Nk∑
k=1

e−βk∆tHk (t) + Γ
γk
βk

λ (t+∆t)− λ (t)

∆t

[
1− e−βk∆t

]
+ pv (4.10)
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but p and pv are scalars which can be combined into pT to give

τ pii (t+∆t) =

Nd∑
d=1

µd

(
λ̃αd
i − 1

3
ad

)

+

Nk∑
k=1

e−βk∆tHk (t)

+ Γ
γk
βk

λ (t+∆t)− λ (t)

∆t

[
1− e−βk∆t

]
+ pT (4.11)

The general solution procedure used a time marching technique as follows. At each

increment(n) with time step (dt):

1. Given Fij solve for the principal stretches (eigenvalues) λi = Up
ii and the principal

directions (eigenvectors).

2. Calculate the principal hyperelastic Kirchhoff stresses, τ eii, via equation 2.61 using

λi and material coefficients.

3. Calculate principal invariants of U so that

I1 = tr (U) = λ1 + λ2 + λ3

I2 =
1
2

[
(trU)2 − tr (U2)

]
= (λ1 + λ2 + λ3)

2 − (λ2
1 + λ2

2 + λ2
3).

4. Calculate viscoelastic modifier via equation 4.2 without the last term ((I3 − 3)r).

5. Use recursive techniques to solve convolution integral as follows:

(a) If not in first cycle (otherwise set the history variables to zero, set previous

stretch to one) calculate the stretch rate

λ̇i =
λn
i −λn−1

i

∆t
.

(b) Calculate the increment for each prony series coefficient and each direction via

equation 4.7. These are the new history variables.
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(c) Store the new history variables and new principal stretches for the next time

step.

(d) Calculate the increment in viscoelastic stress for each direction via equation 4.8

by summing the new history variables calculated in step 5b.

6. Sum the principal elastic and principal viscoelastic stresses to obtain the total

principal stresses, i.e. τ pii = τ eii + τ vii (no summation on subscripts).

7. Calculate the dyadic product of the principal direction vectors, ninj.

8. Rotate the stresses back to the standard basis using equation 2.67.

9. Calculate the Cauchy stress via σij = τij/J .

Note that in the above procedure σ ≈ τ since J ≈ 1. The time–marching technique

used to solve the convolution integral as described in the above procedure made it an ideal

formulation to implement into an explicit finite element program. As such, a material

subroutine was written using the above procedure and used in the analysis which follows

in the subsequent sections and chapters.

This formulation offered several advantages. As indicated by Ogden [92], the use

of principal stretches highlights the isotropic nature of the elasticity of the material.

Through the use of invariants in the modifier term, the material maintains its objectivity

and no further rotations, outside of those already required by the Ogden material model,

need to be considered. When implemented into finite element programs, the deformation

gradient, F, is often available whereas Ḟ as required by the implementation in equa-

tion 2.97 requires further calculation [47]. It has been shown that the Ogden model is

capable of capturing material behaviour of rubber up to very large stretches (as high as

0.2 which corresponds to an engineering strain of 80% as discussed in chapter 2) [96].
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Additionally, the use of principal stretches requires the storage of three less variables

than that of the standard implementation in finite element codes which requires the stor-

age of each stress component instead of the three principal components in the current

implementation. As will be seen in the subsequent sections, there was an excellent cor-

respondence between the proposed material model and the experimental data over the

range of stretches and strain rates tested.

4.2 Determination of Constitutive Model Constants

This section contains the procedure used to determine the constitutive material model

constants for the proposed model in section 4.1 and the results from the fitting procedure.

4.2.1 Data Preparation and Fitting Considerations

Prior to determining the constants for the constitutive model, the experimental data was

manipulated into a form that was compatible with the constitutive model. As detailed in

chapter 2 equation 2.49, the deformation tensor Fij for the uniaxial incompressible case

can be written as

Fij =


λ1 0 0

0 λ
−1/2
1 0

0 0 λ
−1/2
1

 (4.12)

Using equations 4.11 and 4.8, and the fact that the stresses τ22, τ33 = 0 since the

tests are uniaxial, the arbitrary pressure, pT , can be calculated as follows. At each time

step the principal stretches, λi, are determined from the deformation gradient as detailed

previously. The material constants µ, α, λ, β are known, and the history variable Hk is

available from the previous time step. Since the total principal stresses τ22, τ33 are equal

to zero, equation 4.11 can be rearranged to give
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pT = −
Nd∑
d=1

µd

(
λ̃αd
i − 1

3
ad

)

−
Nk∑
k=1

e−βk∆tHk (t)− Γ
γk
βk

λ (t+∆t)− λ (t)

∆t

[
1− e−βk∆t

]
. (4.13)

If the arbitrary hyperelastic and viscoelastic pressure components are desired, they can

be solved for individually using a similar analysis.

The data from each experimental test was resampled in such a manner to ensure that

equal spacing between stretch points was achieved as well as equal numbers of points for

each curve. The data was manipulated to this form to prevent biasing of the coefficients

to one of the curves or one area of a particular curve. Id est, if one of the six curves used

had 1000 points instead of 100, when the fitting of the material constants was performed,

the coefficients would be biased towards the curve with 1000 points. Similarly, if one

area of a curve had more points (for example 1000 points between stretches of 1 to 0.8

and 100 points from 0.79 to 0.2) the coefficients would be biased towards that area.

4.2.2 Fitting Methodology

Several difficulties were encountered when attempting to use conventional fitting proce-

dures such as those found in SYSTAT [107]. The difficulty was in the determination of the

convolution integral, which as discussed in the previous section, requires a time marching

approach that does not lend itself to these types of programs and so specialized programs

are required [108]. As such, a program in MATLAB [109] was created to determine the

material parameters using optimization techniques as discussed subsequently.

The procedure for fitting the material constants was based on the desire for the

predicted stresses from the constitutive model to match the experimental stress given
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the loading history (stretch and time). For a single curve this can be written as

σmodel (t, λ) = σexperiment (t, λ) (4.14)

where σ represents the Cauchy uniaxial stress. A measure of how “good” the fit of the

model to the experiments was needed. Based on the classical definition of the R2 value,

the “goodness” of the fit, EG, can be expressed as

EG =

∑
(σi − fi)

2∑
(σi − σ)2

(4.15)

where σi are the experimental values of stress at each stretch point i, fi is the calculated

stress via the constitutive equation and σ is the average of the experimental stresses given

by

σexp =
1

n

n∑
1

σn (4.16)

where n, is the number of samples. As the calculated values approach the experimental

values, EG approaches 0.

Equation 4.15 can be extended out for multiple curves by

EGtotal =
nc∑
1

EGnc (4.17)

where nc is the number of curves. The normalized R2 value is obtain by subtracting

EGtotal from the number of curves and then dividing by the number of curves.

An optimization problem is the motivation to minimize the objective function, such

as equation 4.17, towards zero by varying the input parameters (µ, α, γ, β, Ap,q). Mathe-

matically, this is expressed as
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min
x

(EGtotal (µ, α, γ, β, Ap,q)) (4.18)

subject to the constraints

µ, α, γ, β, Ap,q > 0.

The basic optimization sequence was as follows

1. Determine the stress values given stretch, time and the material constants.

2. Calculate the objective function via equations 4.15 and 4.17.

3. Through analyzing the current and previous values of the objective function, along

with the material constants from previous iterations, a prediction of the new coef-

ficients which further minimize the objective function was performed.

4. Repeat until the change in the objective function was within a specified tolerance.

There are several optimization methods implemented in MATLAB which could have

been used to minimize the objective function. The constrained nonlinear optimization

method “fmincon” was used in combination with the objective function, equation 4.18 to

determine the coefficients for the constitutive model. This optimization method allowed

for a variety of different constraints to be imposed on the determination of variables

which was necessary for this analysis. Specifically, the coefficients in the material model

should be positive. This requirement was necessary since the finite element formulation
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of the constitutive model approximated the shear modulus, G, by

Gelastic =
k∑
1

µkαk (4.19)

Gvisco =

p,q∑
0,0

Ap,q

n∑
1

γn (4.20)

Gtotal = Gelastic +Gvisco (4.21)

Optimization algorithms can be sensitive to initial guesses [102]. As such, a varying

number of parameters in the Ogden and Prony series as well as the viscoelastic modifier

were tested. In general, one wishes to minimize the number of parameters required to

describe material behaviour [106], however this should not be done at the sacrifice of a

better fit to the observed data.

The initial guess for the Ogden parameters was found through a fit of the Ogden

material model given in equation 2.61 to the curve at 0.001/s and at 2700/s. It was

found that an initial guess of µ1 = 100 and α1 = 1 gave reasonable results in both cases.

Since the Prony series and viscoelastic modifier terms were multiplicatively coupled, a

similar process could not be undertaken for the viscoelastic component of the stress.

However, upon inspection of the equation for the viscoelastic stress, it can be seen that γ

has units compatible with stress and as such, the values of γ were initially set to that of

µ. Similarly, the values of β are in inverse time units similar to strain rate. As such, the

values of β were set to increase by decades based on the number of terms to encompass

the strain rates tested. Traditionally strain rates are quoted in terms of 1/s however,

the units in the subsequent finite element analysis are in mm–mg–ms and therefore the

β parameters are in 1/ms (and hence the initial guesses start at 10−6 and not 10−3).

To determine the necessary number of coefficients required to capture the experi-
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mental data, a program was written to cycle through a number of sets of parameters as

outlined subsequently. The number of parameters were limited to three sets for each of

the Ogden constants and ten for the Prony series constants. The number of terms in the

viscoelastic modifier was also limited to four. The general flow of the program written

which exercised the number of variables was as follows:

1. Set the number of Ogden constants

• Initial value of the Ogden Constants µk = 100 and αk = 1.

• Number of Prony Series Constants set to 1.

2. Set the number of initial values (k) of the Prony series constants.

• γ initially set to 100, initial guess of β is 10−7+k where k = 1 to 6.

3. Set the number of modifier terms (initially one).

• Ap,q initially set to 100.

4. Perform the optimization using the initial guesses for the constants.

5. Save the resulting value of the objective function and constants.

6. If the number of modifier terms is less than 4, increase number of terms by one and

go to 3.

7. If the number of Prony series pairs is less than 10, increase by one pair and go to 2.

8. If the number of Ogden series pairs is less than 3, increase by one pair and go to 1.

This sequence resulted in the cases as shown table 4.1.
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Table 4.1: Abbreviated table of parameters tested.

Case 1:  ! 100 "! 1

#! 100 $! 10
-6

A00= 100

Case 2:  ! 100 "! 1

#! 100 $! 10
-6

A00= 100 A10= 100

Case 5:  ! 100 "! 1

#! 100, 100 $! 10
-6

,10
-5

A00= 100

Case …:  ! 100, 100, 100 "! 1, 1, 1

#! 100, 100, 100 $! 10
-6

,10
-5

,10
-4

A00= 100 A10= 100

A11= 100 A01= 100

4.3 Constitutive Fitting Results

Table 4.2 shows the results for the best R2 (the value that closes approaches unity) value

of the cases tested as discussed in the previous section. As indicated in the table, an

excellent R2 value of 0.996 was achieved using the constitutive model. This result was

achieved with one set of Ogden parameters, five sets of Prony Series constants and two

nonlinear modifier terms. Inspection of the Prony series constants indicates that the β

parameters span six decades ranging from 10−7 to 10−1.

Figures 4.1 to 4.6 shows the experimental data and the results from the constitutive

model over the six strain rates that were used in the fitted data. As can be seen from the

figures, in general there was a good correspondence between the constitutive model and

the experimental data over the tested strain rates. At rates between 0.001/s and 0.1/s,

figures 4.1 to 4.3, the data was well modeled with a slight under prediction of the stress

at stretches of 0.2. Similarly, at 1/s, figure 4.4, the stress is slightly over predicted at
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Table 4.2: Constitutive parameters for best fit case.

Best Fit: R
2
= 0.9962

Number of Ogden Coefficient Sets: 1

Number of Prony Series Coefficients Sets: 5

Number of Modifier Terms: 2

 !" 199.7 kPa #!" 1.118 -

$!" 43.61 kPa %!" 5.26E-07 ms
-1

$&" 6.381 kPa %&" 2.38E-04 ms
-1

$'" 88.08 kPa %'" 0.141 ms
-1

$(" 123.3 kPa %(" 0.2478 ms
-1

$)" 147.9 kPa %)" 0.2181 ms
-1

A00= 11.02 -

A01= 94.42 -

large deformations. As show in figure 4.5 for the 7.9/s case, the stress is slightly under

predicted at stretches between 0.65 and 0.2. There was an excellent correspondence at

2700/s with only very minor deviations of the model from the data as shown in figure 4.6.
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Figure 4.1: Results of the constitutive model and experiments for the best R2 case at
0.001/s.
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Figure 4.2: Results of the constitutive model and experiments for the best R2 case at
0.01/s.
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Figure 4.3: Results of the constitutive model and experiments for the best R2 case at
0.1/s.
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Figure 4.4: Results of the constitutive model and experiments for the best R2 case at
1/s.
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Figure 4.5: Results of the constitutive model and experiments for the best R2 caseat
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Figure 4.6: Results of the constitutive model and experiments for the best R2 case at
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As a test of the optimization solver to determined the constants in table 4.2 as a

solution of the optimization problem, the analysis was rerun with the same initial guesses

as recommended in reference [102]. Additionally, the optimization analysis was rerun with

the constants in table 4.2 as the initial guess. In both cases, the same set of parameters

and R2 value was found.

Table 4.3 shows the parameters for the second best R2 value. As indicated in the

table, the R2 value was considerably lower than that of the previous case. Similar to

the previous case, the values of β spanned almost seven decades ranging from 10−5 to

100. Figure 4.7 shows the results of the second best R2 case and the experimental data.

In comparison to the previous case, there was a significant deviation in the constitutive

model from the experimental results. Similar to before, there was a slight over prediction

of the stress at stretches of 0.2 for the 0.001/s and 0.01/s cases. There was a good

correlation between the model and the experiments at 0.1/s and 1/s. However, at 7.9/s

and 2700/s there was at first a significant over prediction followed by a under prediction

of the stress as the stretch goes from unity to 0.2 as the shape of the curves was not

captured. From inspection of the case with the second best R2 value, it was apparent

that visual confirmation to identify the best fit was required. As such, the parameters

from the first case outlined in table 4.2 were used in all subsequent analyses.
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Table 4.3: Constitutive parameters for the second best fit case.

2
nd

 Best Fit: R
2
= 0.934

Number of Ogden Coefficient Sets: 1

Number of Prony Series Coefficients Sets: 6

Number of Modifier Terms: 1

 !" 127.4 kPa #!" 5.41 -

$!" 12.6 kPa %!" 4.90E-05 ms
-1

$&" 145.8 kPa %&" 0.0186 ms
-1

$'" 127.68 kPa %'" 0.2129 ms
-1

$(" 136.63 kPa %(" 0.2094 ms
-1

$)" 132.37 kPa %)" 0.2095 ms
-1

$*" 0.78 kPa %*" 9.5189 ms
-1

A00= 32.02 -
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Figure 4.7: Results of the constitutive model and experiments for the second best R2

case.
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4.4 Numerical Implementation of Constitutive Model

Validation

A user material model subroutine was written to incorporate the equations described

in section 4.1 into the non–linear explicit finite element program LS-Dyna [47]. As

a means of verification of the material model subroutine, single element simulations

were conducted and the output compared to the results of the constitutive model and

experiments.

4.4.1 Simulation Configuration

For the present analysis a single solid element model was created. The element had

uniform, unity dimensions. Displacement constraints were applied to the element as

shown in figure 4.8 where the red arrows indicate that the nodes have a fixed coordinate

and the experimental displacement history was applied to the nodes indicated by the

open black arrows in the x direction. The experimental displacement history was scaled

to account for the unity element dimensions so that the strain rate was maintained.

Time–Scaling Due to the long simulation time and the necessarily small timestep

which was required for numerical stability, the numerical technique of time scaling was

used for the single element calculations at rates from 0.001/s to 7.9/s. The process for

time scaling was as follows:

1. Determine the time scale that you wish to use. In this case, the factor was selected

so that the run times of the simulation would be on the same order as that of the

2700/s case.

2. Scale the applied displacement loading history with the time factor determined.
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Figure 4.8: Schematic of the simulations performed on the single solid element.

3. Scale the material model parameters which are solely a function of time using the

time factor. In this case, it was just the β terms.

4. Leave all other parameters the same.

It is worthwhile to note that if you change all the parameters which involve time, not just

the β parameters, the time step will be scaled accordingly and there will be no reduction

in run time. As well, any temporal results recorded from the simulation have to be scaled

back to the initial time base. This technique can be used in this situation since only one

element was used and so any wave effects are not simulated.

4.4.2 Simulation Results

In total six single element simulations were conducted where the applied displacement

was determined from the experimental tests. The stress and stretch for the unit element

was recorded for each of the simulations. The material model parameters used were those
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determined in section 4.3 for the best R2 case.

Figures 4.9 to 4.14 show the results of the single element calculations in comparison

to the results calculated from the constitutive model for each strain rate tested. As

can be seen in the figures, in general there was excellent correspondence between the

numerical and constitutive model results. There are some slight oscillations in the range

of ±0.1 MPa for the numerical results for the 0.001/s to 1/s cases (figures 4.9 to 4.12)

which were a result of the time scaling approach used and the explicit nature of the

numerical algorithm. As a further check of the accuracy of the numerical models, the R2

value for the numerical results in comparison to the constitutive equation were calculated

via equations 4.15 and 4.17. This resulted in a R2 value of 0.9974 which was very similar

to the value in table 4.2.
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Figure 4.9: Results of the numerical analysis and constitutive model at 0.001/s.
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Figure 4.10: Results of the numerical analysis and constitutive model at 0.01/s.
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Figure 4.11: Results of the numerical analysis and constitutive model at 0.1/s.
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Figure 4.12: Results of the numerical analysis and constitutive model at 1/s.
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Figure 4.13: Results of the numerical analysis and constitutive model at 7.9/s.
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Figure 4.14: Results of the numerical analysis and constitutive model at 2700/s.
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Chapter 5

Numerical Modelling

This chapter is composed of five sections. Section 5.1 outlines the development of the nu-

merical model in terms of how the morphology of the foam was captured, the modelling of

the fluid enclosed in the pores as well as the boundary conditions applied. Section 5.2 de-

tails the deformation of a model at the cellular level. Section 5.3 discusses the simulations

of experiments performed on the foam material. Section 5.4 illustrates the different effects

of the model parameters such as loading rate, wall thickness, pore size and anisotropy.

Section 5.5 discussed the relative effects of the morphological parameters.

5.1 Numerical Model Development

5.1.1 Foam Morphology

As discussed in chapter 2, the tetrakaidecahedron was an ideal candidate to model the

pore structure of the foam. As identified in chapter 3 the cells are relatively equal in

size and so, similar to the assumptions in [59], the pores of the foam were assumed to

be space filling and equal in size. Through successive splitting as shown in figures 5.1a)
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to 5.1d), the tetrakaidecahedron can be broken down into eighths. The blue lines in the

figure show the boundaries of solids (not solid elements) used to create the cell. As can

be seen in the figure, the solids which comprised the cells were created in such a way to

minimize the skewness of any element and to allow each solid to be exclusively meshed

with hexahedral solid elements. Eighth symmetry was used to create the base unit for

the tessellation as shown in figures 5.2a) to 5.2e). Figure 5.2b) shows the translation of

the rear quadrant highlighted by the red area to the front right. Similarly, figures 5.2c)

and d) show the translation of the top right quadrant to the bottom left and the bottom

right to the top left. Figure 5.2e) shows how the solids generated in figure 5.2b) to d)

were rotated about the y axis centered in the tetrakaidecahedron to generate the base

tessellation unit.

The mesh density of the base unit was determined from two parameters. These

parameters were a function of the method by which the base tessellation, as described

previously, was generated. Inspecting the eighth portion of the tetrakaidecahedron as

shown in figure 5.3, the mesh path can be identified as illustrated by the dotted lines.

Along each of the seven dotted lines, equal numbers of elements were required. In order

to have a relatively uniform mesh, each of these paths were meshed with the same number

of elements identified by the parameter Nl in the figure. The second parameter used to

define the mesh is Ntt which defines the number of elements through the half thickness.

i.e. through the thickness of the base tessellation the number of elements was 2Ntt.

Figure 5.4a) shows a mesh of the base tessellation unit where Nl = 3 and Ntt = 1.

The cross-section view in figure 5.4b) shows the inside of the cell (highlighted by the dark

lines). As evident in the figures, the cell walls along the diagonal have at least two cells

through the thickness. These result in the smallest element length of 6.1 µm and a total

wall thickness of approximately 12.2 µm which corresponds with the measurements taken
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a) Full tetrakaidecahedron. b) Half tetrakaidecahedron.

c) Quarter tetrakaidecahedron. d) Eighth tetrakaidecahedron.

Figure 5.1: Decomposition of the tetrakaidecahedron into eights.
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a) Full tetrakaidecahedron. b) First translation.

c) Second translation. d) Third translation.

e) Rotation about y axis resulting 

in the base tessellation unit.

y
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y

x

z

y

x

z

Figure 5.2: Generation of the base unit for the tessellation through successive translations
and rotations.
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Figure 5.3: Identification of the mesh parameters on one eighth slice of the tetrakaidec-
ahedron.

in chapter 3. Similarly, the characteristic length, Lc in figure 5.4b), was chosen to match

that of the measurements taken. The base unit in figure 5.4a) can then be repeated

through successive translations to give a resulting tessellation as shown in figure 5.5 that

had nx by ny by nz repeats in space. In figure 5.5, nx = 2, ny = 3 and nz = 2 which

resulted in a domain size of approximately 1.28 mm by 1.35 mm by 1.28 mm (x, y, z).

This resulted in approximately 48 000 solid elements. When the base unit was tessellated,

the square faces will also be at least two elements thick except on the “y” boundaries.
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a) Base cell unit.

b) Cross-section of base unit.
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Figure 5.4: Mesh of base unit a) and cross-sectional view b).
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Figure 5.5: A 2 by 3 by 2 tessellation of the cellular base unit.
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5.1.2 Eulerian Domain to Model Air

As discussed in chapter 2, the Arbitrary Lagrangian Eulerian (ALE) method was used

to model the movement of the fluid air. The ALE method allows the fluid domain to

contract and expand arbitrarily and independent of the fluid flow. This aspect was

used to help reduce the number of fluid elements required. The movement of the fluid

domain was controlled to ensure that the cells inside the tessellation were encompassed

during the complete simulation time. Figure 5.6a) shows the initial fluid domain size

used in conjunction with the 2 by 3 by 2 tessellation shown previously in figure 5.5.

Figure 5.6b) shows the fluid domain at end of the simulation. Initially, the fluid domain

was comprised of cubic elements measuring 20 µm length, width, and height. By allowing

the fluid domain to contract in the “y” direction and expand in the “x” direction with

the material, the requirement to have a large domain size to account for the deformation

of the cellular walls was reduced as shown in figure 5.6b).

y

x

a) b)

Figure 5.6: a) Initial fluid domain mesh, b) Contracted fluid domain mesh

The fluid domain elements were initialized with a 1 atm (101.4 kPa) pressure with
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a 1 atm pressure applied to the surrounding surfaces to provide the necessary reaction

force to prevent movement of the air without an applied load.

5.1.3 Boundary Conditions

One of the inherent difficulties in modeling cellular materials numerically was the ap-

plication of boundary conditions to the material as described in [6]. The issues arise

from the non–continuous nature of the material as illustrated in figure 5.5. In essence, it

becomes very difficult to apply nodal constraints to the boundaries of the material due

to the oscillating surface. As such, a surface on the boundaries was created as illustrated

in figure 5.7. As seen in the figure, the surfaces were comprised of a layer, which was 2Ntt

elements thick, for a total thickness of 12 µm. As also illustrated in figure 5.7, the square

faces on the boundary shown in figure 5.5 which were only one element thick became

three elements thick. The consequence of applying surfaces to the top and bottom of the

tessellation was that cells near the boundary were half that of the others.

With the boundary surfaces in place, nodal constraints could be applied. Nodes on

the bottom surface of the model were constrained from moving in the y direction as

indicated by the blue cones and nodes on the top surface have an applied loading history

(either displacement or velocity as discuss later) in the y direction as indicated by the

red arrows as shown in figure 5.7. As detailed further in the subsequent sections, the

reaction force at the constrained nodes (blue) was monitored during the simulation.
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Figure 5.7: A 2 by 3 by 2 tessellation of the base unit with top and bottom surfaces and
constraints.
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5.1.4 Numerical Implementation

The following analyses were run on a computer cluster at the University of Waterloo

which was based on the AMD 2352 architecture. Each simulation used the Massively

Parallel Processing (MPP) version 971 release 5 of LS-Dyna which was compiled to in-

tegrate the user material subroutine described in chapter 4. Appendix B outlines the

finite element algorithms used in LS-Dyna. The Open source Message Passing Inter-

face (Open–MPI) protocol was used to invoke the MPP version of the finite element

code. Several initial models were conducted to identify computational efficiencies of the

analysis in comparison with the number of processors used. It was determined that by

utilizing four processors a reduction of computational time of approximately 2.5 times

was achieved when compared to the case run with a single model. Beyond four proces-

sors, there was very little reduction in computational time. As such, all of the models

presented in this chapter were run using four processors. The analysis of the 4 by 10 by 4

tessellation detailed subsequently with the mesh density of Nl = 3 and Ntt = 1 mesh took

approximately 790 hours to complete. The analysis without the fluid structure coupling

algorithm invoked for the same mesh took approximately 51 hours to complete. This

identifies the computational cost of including the fluid–structure interaction component.

130



5.2 Deformation at the Pore Level

A detailed investigation of the deformation of a single pore is given in this section. This

discussion illustrates several of the stress wave propagation and deformation mechanisms

that occur in the subsequent sections. The first subsection details the short term transient

stress wave response while the second subsection identifies the longer term deformation

mechanics at the pore level.

5.2.1 Short Term Transients

As identified in chapters 1, porous materials exhibit low stress wave propagation veloc-

ities on the order of 40 m/s. These velocities are lower than those of the constituent

materials [15]. In the present case, for air, the approximate sonic velocity at room tem-

perature was 330 m/s whereas in polychloroprene, the sonic velocity was approximately

1400 m/s as discussed in [110][111]. To illustrate the reduced wave speed in porous ma-

terial in comparison to the constituent materials, a simulation of solid polychloroprene

rubber and one of air were conducted with domains the same size as the 2 by 3 by 2

tesselation. The solid polychloroprene rubber had a 10 m/s loading history applied to

one surface as was done for the simulations of the polychloroprene foam. The simulation

of the block of air was carried out by creating a block mesh of ALE elements and then

having a plate of rubber elements with an applied velocity of 10 m/s move through it.

Figure 5.8a) shows the wave as it reaches the fixed end for the air compared to the porous

structure of the foam at the same time. Figure 5.8b) shows the stress wave as it reaches

the fixed end of the solid rubber compared to the porous structure at the same time. As

evident in the figures, the stress wave in the porous structure significantly lags that in the

air and solid rubber. From the simulations of the 2 by 3 by 2 tessellation, the apparent

wave speed through the material ranged from 68.3 m/s (using the peak of the effective
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stress measured in an element at the fixed end as the arrival time) to 115.5 m/s (using

the point at which the effective stress starts to change from zero as the arrival time).

Several factors combined to give the porous material an apparent low wave speed.

If one considers the cellular material by itself (without the enclosed air) identified in

figure 5.9, as the structure was loaded the stress wave propagated in multiple directions as

indicated by the red arrows. The cross sectional view illustrates that in comparison to the

overall length of the pore, the stress wave had to propagates over a longer distance. The

ratio of these lengths was a function of the cell size and isotropy. The initial ratio (length

of stress wave path:overall length) of these lengths for the current analysis was 1.21:1

along the path through the square face and 1.26:1 along the mid–plane of the hexagonal

faces. The illustration in figure 5.9 is simplistic in compared to the real situation where

stress waves from multiple pores interact with each other creating multiple complex

states.

Additionally, the multiple interfaces between the air contained within the pore and

the surrounding cellular structure caused multiple reflections and interactions. The x–t

diagram for the center of a pore, shown in figure 5.10, outlines the initial waves propaga-

tion. In figure 5.10b), the black lines indicate the cellular boundaries through the middle

of the cell shown in figure 5.10a). The boundary at the x = 0 mark moves at 10 m/s

as indicated by the steep slope. As the boundary begins to move, a wave propagates

through the air within the pore as indicated by the red line extending from 0,0 point to

the right. As the wave encounters the cellular boundary, which has a greater impedance,

the wave was reflected in order to maintain continuity as indicated by the red line ex-

tending up to the left as discussed in section 2.1.5. The interaction at the boundary also

created a stress wave in the cellular material which propagated through the thickness of

the wall indicated by the green lines in the figure. When this wave encountered the next
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Plate Moving at 10m/s

Wave propagating 
through air

Stress wave in cellular 
material

Wave propagating 
through enclosed air

a)

b)

Wave propagating 
through rubber

Stress wave in cellular 
material

Wave propagating 
through enclosed air

Figure 5.8: Figure showing the wave propagation through a cellular material compared
to air a) and solid rubber b).
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Figure 5.9: Simple representation of wave propagation through the cellular material.

boundary with the adjacent pore, it then reflects (high impedance to a low impedance,

discussed in section 2.1.5) as a tensile wave. This creates a compression wave in the

adjacent pore indicated by the dashed blue lines. When the tensile wave inside the cell

wall encounters the boundary, it creates a release wave in the initial pore also indicated

by the blue lines. These two waves are very small in magnitude and attenuate quickly.

The preceding description is further complicated by waves which propagates through the

cellular structure. Additionally, the waves are not planar and the geometric nature of

the cells cause complex interactions which cannot be shown easily on a x–t diagram.

The preceding mechanisms result in a material which quickly attenuates weak waves.

This is illustrated in the simulation of the 4 by 10 by 4 tessellation discussed in section 5.3.

Figure 5.11 shows the propagation of a wave that was less than 1 kPa above atm. As

indicated in the figure, at t=0.0078 ms to t=0.023 ms the wave propagates but quickly

decreases in magnitude. At t=0.031 ms the initial pulse was almost completely attenuated
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Figure 5.10: a) Cross section through mid plane of a pore (loaded on left side at 10m/s)
and b) x–t schematic showing the interaction of waves with the cellular wall.
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and a small release (darker blue) wave following the initial wave. A secondary wave was

generated as the cellular structure deformed which continued to propagate with a greater

magnitude as shown at t=0.039 ms.

t=0.0078ms      t=0.016ms          t=0.023ms        t=0.031ms   t=0.039ms

Figure 5.11: Attenuation of the initial wave in a 4 by 10 by 4 tessellation of cells.

5.2.2 Long term

This section discusses the longer term deformation mechanisms of a porous material at

the pore level. As loading on the pore occurs, the pore itself collapses in the manner

shown in figure 5.12a)–d). As illustrated in figure 5.12b), the cell walls begin to buckle

in the mid part of the upper half of the cell. The cell begins to bulge slightly and the

top and bottom sides approach each other, figure 5.12c). As deformation continues, the

sides of the cells eventually touch creating a center pocket and ring of compressed gas,

figure 5.12d). This compressed gas, along with the inherent elasticity in the cell wall,

acts as a restoring force on the cell.
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a) b) c) d)

Initial buckling of 
walls

Hinges form Pore walls 
contact

Highly 
compressed air 

region forms

Figure 5.12: Example of the collapse of a pore from the initial configuration a) to complete
collapse d).

5.3 Comparison of Numerical Models to Experimen-

tal Results

The experimental results of the foamed polychloroprene rubber discussed in chapter 4

were used as a method of validation of the modeling techniques described in the previous

section. For the simulations of the experiments the domain size of the tessellation was

4 by 10 by 4 repeats of the base unit in the x, y and z directions. This resulted in a

cellular mesh that was approximately 2.6 mm by 4.5 mm by 2.6 mm in size. Although

the length of the model of the cellular structure was similar to that of the experimental

specimen, the cross–sectional area was significantly different with the area of the simula-

tion being 6.51 mm2 while the area of the experimental sample was 72.0 mm2. The area

of the simulation was necessarily reduced due to computational limitation as discussed

previously. For the simulations of the experiments with the mesh density of Ntt = 1 and

Nl = 3 as described before, approximately 578 000 solid elements were created for the

4 by 10 by 4 tessellation. If an equivalent area was used, 5 800 000 elements would have

been required.
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Figure 5.13 shows the model used to simulate the experiments. The bounds of the

fluid mesh are outlined in orange in the figure. As discussed previously, the surface at the

bottom of the model was constrained from movement in the y direction and the forces

were recorded at each node. The loading history from the experiments was then applied

to the top surface.

Due to the simulation time required, the domain size and the necessity of a small time

step required by explicit finite element programs, only the high rate experiments (those

conducted with the Hopkinson Bar) were simulated. The technique of time–scaling used

in chapter 4 could not be applied in this situation to reduce the simulation time. For

the simulations, stress wave effects were significant and, as such, time–scaling did not

appropriately capture the physics of the problem. For instance, initial models using a

moderate time scale factor showed that significant deformation, in excess of that seen

with the simulations of the high rate experiments without time scaling, occurred near

the loading surface occurred.

The loading history used for the simulation of the 2050/s and 3000/s tests are shown

in figure 5.14. As can be seen from the figure, due to the rise time experienced in the

Hopkinson bar, the loading history had a non–linear portion where the velocity increases

from zero to a relatively steady state (linear increase in displacement). During the rise

time portion, the strain rate was changing as well via equation 2.28. Thus, the strain

rates quoted were those in relation to the linear portion of the loading history from 0.1 ms

to 0.375 ms.

Figure 5.15 shows the results of the numerical model in comparison to the experi-

ments for the 2050/s case. The blue lines represent the results from the experiments

conducted for each test. The red line represents the result from the numerical simula-

tion. The increase in the stress as the material was compressed was well modeled as the
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Figure 5.13: Numerical models used to represent the experimental sample.
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Figure 5.14: Loading history applied to the top surface of the model for the 2050/s and
3000/s case.

stretch decreases from 1 to 0.65 (35% compressive engineering strain). After this point,

the cells begins to collapse significantly with a resulting increase in stress. The model

overpredicted the stress through the 0.6 to 0.4 region and intersects the experimental

results at a stretch of approximately 0.35. Similarly, the numerical prediction of the

results at 3000/s, shown in figure 5.16, indicates that the model overpredicted the exper-

imental stress until a stress of approximately 0.45. After this point the experimental and

numerical results correlate well. Since the deformation for 2050/s and 3000/s cases are

similar with only a minor change in mechanical response as strain rate increased, subse-

quent discussion will investigate the 2050/s case only. From the preceding analysis was

concluded that the polychloroprene foam could be modeled numerically at the cellular

level. For both cases simulated, the timestep reduced significantly as the cells collapse

making it computationally prohibitive to continue and so the simulation was terminated
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at the points indicated in the figures.
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Figure 5.15: Comparison of numerical models and experiments for the 2050/s loading
case.
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Figure 5.16: Comparison of numerical models and experiments for the 3000/s loading
case.
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Figure 5.17 shows the effect that the air coupling had on the response of the material.

The blue line in figure 5.15 represents the and is scaled off the left ordinate axis. The red

line represents a simulation where the fluid structure coupling was ignored and is scaled

off the right ordinate axis. In this simulation, the fluid domain was removed and the

analysis run with the same 2050/s loading history. As is clearly evident from the figure,

the fluid contributes significantly to the response of material. The response of the model

without the fluid structure coupling is an order of magnitude below the experiments

and the coupled simulation. This clearly identifies the requirement for coupled analyses.

Additionally, the effect of the fluid changed the shape of the curve significantly. Both

curves exhibit the steep rise, plateau and densification region as identified by Gibson and

Ashby [5] (note, although in the literature it is common to call this region densification,

the density of porous materials changes throughout the compression history). However,

the coupled simulation had a significantly reduced plateau region as indicated by the brace

in the figure. Following the shortened plateau region, the model exhibits an extended

densification region.

Figure 5.18 illustrates the differences between the coupled and uncoupled simulations

through the mid–plane of the model. Since a displacement was applied to the top surface

and the bottom surface was constrained in the y direction, the change in length for both

simulations were the same. The uncoupled simulation showed a nearly fully compressible

material (a material with little lateral expansion corresponding to a low Poisson’s ratio),

whereas as the coupled simulation exhibited some lateral expansion. The figures at

0.2 ms, 0.3 ms and 0.4 ms show that significantly more non–uniform deformation occurred

in the uncoupled case.
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Figure 5.17: Comparison of numerical model result for the coupled (left axis) and un-
coupled (right axis) case at 2050/s.
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t=0ms         t=0.1ms       t=0.2ms       t=0.3ms        t=0.4ms
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x

Without coupling

With coupling

Figure 5.18: Simulations of the compression of the foam with (top) and without (bottom)
coupling with the enclosed fluid.
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Figure 5.19 shows the initial propagation of the stress wave using effective stress (top)

and the corresponding wave in the air in the enclosed pores (bottom). The head of the

wave in the air (bottom) is identified by the dotted line for clarity. As identified in the

figure, the stress wave in the cellular material takes approximately 0.11 ms to reach the

bottom of the sample which, by that time, the sample had deformed a significant amount

with the length of the sample decreasing by approximately 10%. The corresponding

pressure wave in the air enclosed by the pores lags the stress wave in the cellular material

with it reaching approximately halfway through the sample in the same amount of time.

t=0.0078ms      t=0.028ms          t=0.051ms        t=0.075ms   t=0.11ms

y

x

Figure 5.19: Propagation of stress wave in cellular material (top, effective stress in kPa)
and corresponding wave through air in enclosed pore (bottom, pressure in kPa).

Figure 5.20 shows the propagation of the stress wave through the air enclosed in the

pores highlighted by the dotted line (top). In this figure, the scale of the fringe levels
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was set to highlight the wave interaction with the boundary and as such, the initial

wave magnitude is slightly higher than that discussed in section 5.2.1. A x–t schematic

corresponding to the wave front is shown in figure 5.20 bottom at various times. At point

b, the wave had reached the bottom of the sample (approximately 0.03 ms after the stress

wave in the cellular material) and reflects towards the top of the sample as shown by

point c. Similarly, point d and e show the stress wave before and after it reflects off the

top surface. As indicated in the x–t diagram, the top surface had displaced significantly

by this time. Point f shows the point prior to the second interaction of the pressure wave

with the fixed boundary.
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Figure 5.20: Propagation of stress wave through air in enclosed pores (top, pressure in
kPa). Schematic of x–t wave propagation through air enclosed in pores (bottom).

The preceding analysis highlights the necessary requirement to account for stress wave

propagation in the sample during testing. From these simulations, it is apparent that the

dynamic equilibrium conditions (example three wave reflections) discussed in section 2.4.2

are not met under the tested conditions. Additionally, the analysis indicates that one
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cannot necessarily scale the results from a sample of one length to that of another. Id

est, in order to obtain a true representation of the properties of a material, one must test

a sample of the same length as would be seen in the application.

5.4 Model extension

In order to identify relevant parameters which affect the response of porous materials,

several variants of the numerical model were created and simulated as described sub-

sequently. The effects that were investigated were loading rate and the morphological

factors wall thickness, cell size and anisotropy. In order to reduce the computational

burden, two reduced tessellations were created against which the various models were

compared. The 2 by 3 by 2 mesh, shown in figure 5.7, was chosen as the width (x),

height (y) and depth (z) were nearly equal giving an aspect ratio (x=z:y) of 0.94 for the

overall domain. This tessellation was used to identify mesh density effects, rate effects,

wall thickness effects and the effect of anisotropy. A different tessellation of 2 by 2 by 2

with an overall corresponding aspect ratio (x:y) of 1.4 was used to investigate the cell

size effects. As will be discussed, this tessellation was chosen to ensure that the domain

size remained the same while the number of cells inside the foam was varied.

5.4.1 Mesh Density Effects

As a standard simulation, the 2 by 3 by 2 tessellation was used with an applied velocity

of 10 mm/ms. This was approximately equal to the applied velocity in the experimental

case of 2050/s which was approximately 9.2 mm/ms and was below the 3000/s rate

which corresponds to approximately 13.5 mm/ms. The velocity of the nodes was applied

without a rise time similar to that shown in figure 5.14. Three different mesh densities
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were explored. The coarsest mesh density corresponded to a mesh with Nl = 1 and

Ntt = 1. This represented the coarsest mesh possible with two elements along Lc and

through the thickness resulting in approximately 5600 elements. A medium mesh of

Nl = 3 andNtt = 1, which corresponded to the same mesh used to model the experimental

tests discussed in the previous section, was created resulting in approximately 48 000

elements. A fine mesh with Nl = 6 and Ntt = 2 (corresponding to 12 elements along

Lc and four elements through the wall thickness) was created resulting in approximately

381 000 elements for the 2 by 3 by 2 tessellation. No further refinements beyond this

point (Nl = 12 and Ntt = 4) were conducted as it would have been computationally

prohibitive with over 3 000 000 elements solid elements.

The effect of the varying mesh densities on the force–stretch response is illustrated in

figure 5.21. The coarsest mesh, represented by the green line, shows significant oscillations

as the pores collapse and the material densifies. These oscillations are not seen in the two

refined meshes. The Nl = 3 and Ntt = 1 mesh, as represented by the blue line exhibits

an initial rise, followed by a plateau and then an exponential rise as the pores collapse.

A similar behaviour is seen for the finest mesh represented by the red line. Both the

medium and fine mesh have the same initial rise followed by similar force levels over the

plateau region. The densification region for the medium mesh occurs earlier and had a

slightly different slope than that of the fine mesh. Due to the exponential nature of the

force history during densification, a small difference in the predicted stretch at that point

results in a significant difference between curves. This is evident by looking at the orange

curve, which is the same as the fine mesh with a stretch offset of 0.03, that indicates a

similar rise in force as the pores collapse. The initial section of the curves for both the

medium and fine mesh are offset from a stretch of 1 since they undergo some deformation

prior to the stress wave arriving at the bottom of the sample. This effect is similar to
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that discussed in section 5.2.

Figure 5.22 shows a mid–sectional view through the 2 by 3 by 2 tessellation for the

three mesh densities at 0.0686 ms. Although the distortion of the mesh walls is similar

for all three meshes as indicated in the figure, the coarsest mesh resulted in significant

hinges effects and severely distorted elements. The medium and fine mesh exhibit similar

deformations with a relatively consistent wall thickness being maintained.

The simulation using the coarse mesh took approximately 73 hours to complete, with

the medium mesh it took 135 hours to complete and the finest mesh took 765 hours to

complete using the same procedure described previously. As such, the medium mesh was

chosen to ease the computational requirement for the following analyses.
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Figure 5.21: The effect of mesh density on the force response for three different meshes.

150
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t=0.0686ms

Figure 5.22: The effect of mesh density on the deformation behaviour for three different
meshes.

5.4.2 Loading Rate Effects

Three different loading rates were investigated as shown in figure 5.23. The slowest

loading rate at 1 m/s had a slightly lower stress plateau than the 10 m/s case and a

similar exponential rise as the models compressed as indicated by the red and blue lines.

However, as indicated in the deformation history prior to a stretch of 0.9 in the figure,

the 1 m/s did not experience the same amount of deformation prior to the arrival of

the stress wave at the stationary side. This indicates that the stress wave had sufficient

enough time to propagate to the end of the sample prior to significant deformation at

the loading end. In contrast, the loading rate at 100 m/s shows significant deformation

with a stretch of approximately 0.3 being reached prior to any measurable stress (green

line).

Figure 5.24 shows the force–stretch history for the 10 m/s and 100 m/s cases with the

force measured from both sides (the loading and the stationary side). As evident from

the figure, the initial force response for the 10 m/s case on the loading side, scaled on

the left axis of the graph, is immediate and did not show the same lag as the result from

the stationary side. The two results quickly coincide and show the same response after
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Figure 5.23: The effect of loading rate on the deformation behaviour over three loading
rates.

a stretch of approximately 0.85. The 100 m/s case shows that there was a significant

difference in force measured from the stationary side in comparison to the loading side.

As can be seen in the figure, the force for the 100 m/s case shows an approximate value of

2500 mN, scaled of the right axis, during the majority of the compression of the material

while nearly zero force is measured on the stationary side. The force levels do not coincide

until a very large amount of compression occurs (not shown). The initial oscillations of

the force on the loading side for the 100 m/s case occurs from the acceleration of the

loading surface to the constant velocity. These same oscillations occurred in the 10 m/s

case but to a lesser extent.

The difference between the loading rates is further illustrated by figure 5.25 which

shows the deformation of the material at stretches of 0.9 and 0.25 for both the 10 m/s

and 100 m/s case. As evident from the figure at 0.9 stretch, the stress wave in the
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Figure 5.24: The force history for both the loading and stationary sides for the 10 m/s
(left axis) and 100 m/s (right axis) cases.

100 m/s case is just beyond the deformation region whereas in the 10 m/s case the

stress wave had reached the stationary boundary. Additionally, the pores at the loading

surface had nearly completely collapsed for the 100 m/s case whereas for the 10 m/s case

the deformation was more uniform (albeit more deformation occurs at near the loading

surface). Similarly, for the 0.25 stretch case as shown in the bottom of the figure, the stress

wave had reached the stationary surface for the 100 m/s with significant pore collapse

near the loading surface. As before, the 10 m/s case show relatively equal deformation

across the cells.
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Figure 5.25: Models showing the mid–plane for the 10 m/s and 100 m/s cases at stretches
of 0.9 and 0.25,contours of effective stress.

154



The oscillations shown in figure 5.24 are explored further in figure 5.26 which shows

the force–time history for the 100 m/s case. At the peaks of each oscillation cycle, the

resulting model is shown. As indicated in the figure, the more negative peaks, points a

and c, coincide with the initial interaction of the compressed region with a undeformed

cell as shown by the arrows. The more positive peaks of the oscillations, points b and d,

occur after the cells that have contacted the compressed region begin to buckle.
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Figure 5.26: Oscillations in the force response and the corresponding deformations in the
model mid–plane.

155



From the preceding analysis the deformation mechanisms for different loading rates

are clearly distinct. As described in section 5.3, care must be taken when performing

analyses of situations that involve length scaling. Id est, you cannot using strain rate

scaling for porous materials as you would with homogeneous materials. Exempli gratia,

if the domain length of a piece of foam used in a helmet is 25 mm thick and subjected to

a loading rate of 28 m/s (approximately 100 km/h) resulting in a strain rate of approx-

imately 1100/s, it is inappropriate to perform experimental tests on a sample 9 mm in

length at 10 m/s (corresponding to an approximate strain rate of 1100/s) and expect to

obtain an answer representative of the actual response of the 25 mm thick piece.
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5.4.3 Wall Thickness Effects

Five numerical models which increased the thickness of the wall by a factor of 2a, where a

is an integer and ranging from 0 to 4, were used to investigate the effect of wall thickness.

The initial mesh, 20, corresponds to the actual wall thickness measured as discussed

before while the 24 = 16 case represented the largest mesh, scale by 2a, before the pore

completely disappeared. This progression resulted in wall thicknesses of approximately

12 µm, 24 µm, 48 µm, 96 µm and 192µm. Figure 5.27 shows the resulting models used.

For the 12 µm to 48 µm cases the mesh density was that used before (Nl = 3, Ntt = 1),

for the 96 µm case Ntt was set to two and for the 192 µm case Ntt was set to four.

The mesh density was changed in this manner to prevent severely skewed elements from

occurring.

Figure 5.28 shows the difference in the force–stretch response for the different wall

thicknesses. As is evident from the figure, as the wall thickness increases, the stretch

to densification is reduced. This is caused by the reduced pore size and so the onset of

pore collapse occurs sooner. Additionally, upon inspection of the initial portion of the

loading curve, the stretch, and hence time, before the stress wave reaches the fixed end

is reduced as indicated by the 96 and 192 µm cases.
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Figure 5.27: The five different models used to investigate the wall thickness effects.
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Figure 5.28: The effect of wall thickness on the force response for five different models.
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5.4.4 Cell Size Effects

An investigation into the effect that cell size was conducted. In order to keep the overall

domain size the same, the modification of the cell size was required to be in multiples of 2

of the standard cell size. Therefore, a new base tessellation of 2 by 2 by 2 was created. If

the cell size is halved, then the tessellation required to maintain the domain size was then

4 by 4 by 4. Similarly, if the cell size is doubled, the tessellation required was 1 by 1 by 1.

These three tessellations are shown in figure 5.29 at a time of 0.011 ms. As indicated

in the figure, the stress wave had reached the stationary surface at approximately the

same time for each cell size. This is also evident in the force–stretch history shown in

figure 5.30 as there was an equal offset in stretch with each case (approximately at 0.9).

As the cell size decreased the plateau level of force increased and the stretch at which the

pores collapse is decreased as indicated by the figure. Figure 5.29 does indicate however

that as the cell size decreased, a greater lateral expansion (higher Poisson’s ratio) was

observed. From this analyses it can be concluded that as the number of cells increase, so

too does the stress level for the same amount of stretch. However, this material appears

to be relatively insensitive to cell size with a large change in the cell density required to

have any affect on the response of the material.
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Figure 5.29: The three different models used to investigate cell size effects, contours of
effective stress shown.

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
0 0.2 0.4 0.6 0.8 1Stretch

Fo
rc

e 
(m

N
)

Double Cell Size
Standard Cell Size
Half Cell Size

Figure 5.30: The effect of cell size on the force response for three different models loaded
at 10 m/s.
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5.4.5 Effect of Anisotropy

Two different cell size aspect ratios were modeled to identify the affect anisotropy had

on the deformation behaviour of the model. The aspect ratios (height:width=depth,

y:x=z) chosen were 0.5 and 1.5 and compared to the standard 2 by 3 by 2 case. Note

that the standard cell size had a small inherent aspect ratio with the height (distance

from the square face to square face) being 0.438 mm and the width (as measure from the

vertex of the intersecting hexagon) being 0.464 mm resulting in a height to width ratio

of 1.08:1. Figure 5.31 shows the models used. The models had the same tessellation and

mesh density but due to the anisotropic arrangement of the cells, the domain size was

reduced from 1.38 mm for the standard case to approximately 0.7 mm for the 0.5 case and

increased to 2.05 mm for the 1.5 aspect ratio. Figure 5.32 shows the affect the anisotropy

had on the force–stretch response. As indicated in the figure, the 1.5 aspect ratio and the

standard case exhibit nearly the same response. The 0.5 aspect ratio shows a reduced

stretch prior to the cell collapse region in compared to the standard case. As with the

effect of cell size, significant changes in anisotropy were required to have a measurable

effect on the response of the material. As well, as the aspect ratio reduces the stretch to

cell collapse decreases. One could extrapolate this out to an aspect ratio where the cells

are initially disk like resulting in a negligible plateau region.
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Figure 5.31: The three different models used to investigate effects of anisotropy.
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Figure 5.32: The effect of anisotropy on the force response for three different models.
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5.5 Discussion

Stress wave effects are critically important when investigating the response of porous

materials as identified in the analysis of the transient effects at the pore level, the model

of the experiments and the loading rate simulations. As identified in those models, there

is a finite time that the stress wave takes to propagates through the material which

can have a significant impact on the initial response of the material. This is critically

important when performing characterization experiments on porous materials since the

specimens have large deformations without a corresponding increase in force depending

on where the force is being measured (loading or stationary side). Even with the gradual

rise time of the loading, as shown in the models of the experiments, the significantly

low stress wave speed results in finite deformation before a uniform stress state can be

achieved. If the overall elastic wave speed was measured in the model to be between

68 m/s and 115 m/s, loading rates that are well below the lower bound of these values

would not be as influenced by wave propagation effects. Id est, the loading rate modeled

at 10 m/s was almost 15% of the wave speed which was significant. Lower rates, such

as those tested at approximately 8/s, are below 0.05% of the wave speed and so will be

less influenced by wave effects. Additionally, the models of the experiments without fluid

structure interaction showed that the enclosed air had a significant influence.

The models of cell size, wall thickness and anisotropy allowed morphological factors

to be explored which had not been identified in the literature as discussed in section 2.3.

The stress wave propagation was dependent on the wall thickness as the propagation

through the model was reduced as thickness increased. Additionally, it was shown that

a significant shift to the right of the force–stretch response occurred with increasing

wall thickness. The models of varying cell size showed that as cell size decreases, the

deformation to the pore collapse region reduced, shifting the curve to the right on a
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force–stretch graph. A similar effect was noted for the anisotropic cases with a shift to

the right on the force–stretch curve with decreasing height to width ratio. As shown

in figure 5.33, the relative effect of anisotropy is less than that of wall thickness or cell

size cases. The effect of cell size and wall thickness for the 24 µm case are relatively the

same as indicated by the light blue and red lines. However, when the wall thickness is

increased to 48 µm a significant decrease in the amount of stretch prior to pore collapse

region is seen.
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Figure 5.33: The relative effects of the parameters compared in the models.
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Chapter 6

Conclusions and Future

Considerations

The purpose of the current study was to create and validate a model of a closed cell

hyperelastic porous material so that their deformation mechanisms and the factors that

contribute to the mechanical response could be investigated. This model was used to

investigate phenomena such as stress wave speed, the contribution of the enclosed air to

the response of the material and the deformation mechanisms seen under large amounts

of compression. The first step of this process was to identify the strain rate sensitivity of

the material tested. The material chosen for the study was polychloroprene in both the

solid rubber and foamed states. This material was unique in that the foaming process

was achieved through application of high pressure gas into the polychloroprene to create

the foam not through a chemical process as is done with other foams such as expanded

polystyrene. The assumption was made that by testing the solid rubber, the properties

of the cellular structure of the foam could be determined.
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6.1 Conclusions

An investigation into constitutive models for hyper non–linear viscoelastic materials iden-

tified that there were no available constitutive models that were capable of capturing the

polychloroprene rubber mechanical response. A new constitutive model was proposed

which incorporated nonlinear viscoelastic effects. In addition to being able to capture

the nonlinear viscoelastic effects, this model offered other advantages such as material

objectivity and a reduced memory requirement which was lacking in the available models.

Material parameters were determined and the measured R2 value was 0.9962 indicating

that the constitutive model was capable of capturing the material response over a range

of strain rates and stretches.

Simulations run without the fluid structure coupling algorithm invoked identified

that the enclosed air had a significant contribution to the materials response not only

increasing the reaction force by ten times but by also changing the shape of the curve

reducing the plateau region of the curve. These effects had often been neglected in

finite element models at the microscopic level due to the inherent computational cost.

Through analysis of the numerical model, it was determined that the response of porous

materials had significant transient effects. By investigating the mechanism through which

momentum is transferred, stress path tortousity and impedance coupling effects were

shown to dissipate and attenuate stress waves propagating through porous materials.

During the time the stress wave took to propagate through the cellular material, the

sample deformed significantly illustrating the requirement to account for transient effects

during experimental testing of porous materials. Simulations with varying loading rates

identified that as the loading rate increased, the requirement to account for stress wave

effects when analysing deformation became increasingly necessary. When comparing the

force history of the loading and stationary surfaces it was determined that at loading
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velocities of 1 m/s the forces were approximately equal while at 10 m/s, there was a

significant lag between the time the force was applied to the surface and the time it arrived

at the stationary surface; this was further amplified at 100 m/s. These simulations also

showed that strain rate scaling is not appropriate for this type of material. The pore–

scale model developed in this research allowed visualization of the deformation mechanics

of the foam which cannot be obtained through experimental methods.

Several models were simulated to identify morphological effects on the response of

the foam. Of the morphological factors investigated, it was concluded that wall thickness

had the most dominant effect over cell size and anisotropy.

6.2 Future Considerations

The following recommendations for future work are made.

1. Further investigation into the deformation mechanics of more complex porous struc-

tures comprised of cells of unequal volumes could be considered.

2. A porous material with interconnecting ducts, such as that seen in lung tissue,

could be simulated to identify the influence of the semi–open celled structure.

3. A model which includes surface tension at the air and rubber interface could be

conducted to identify its influence.

4. As computing power increases, larger domain sizes should be studied to identify

further domain size effects on stress wave propagation and deformation mechanisms.

5. Implicit finite element techniques could be modified to include fluid–structure in-

teraction algorithms which could allow lower rate experiments to be simulated.
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Appendix A

Governing Equations

A.1 Preliminaries

As a starting point, the initial domain of the body is defined as Ω0 with boundary Γ0.
The initial domain can also be thought of as a reference configuration to which various
equations refer. The current (deformed) domain of the body is given as Ω with boundary
Γ. In one–dimensional space, Ω refers to a line, in two–dimensional space it refers to a
surface and in three dimensions a volume. Similarly, Γ refers to two end points in one
dimension, a line in two dimensions and a surface in three–dimensional space. These
definitions are outlined graphically in Figure A.1.

X2,x2

º

º

X1,x1

x
X

(X,t)

Figure A.1: Definition of domain in the deformed and reference configuration, modified
from [112].
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A.1.1 Notation

Following are notation of some terms that will be used throughout the text.
Summation Convention

• A dummy index occurs exactly twice in a term and implies summation from 1 to 3
for that term only.

• A free index occurs exactly once in every term.

Examples

• C = a · b = aibj = Cij; a second order tensor.

• C = A ·B = aikbkj = Cij; a second order tensor.

• c = a : b = aibi =
3∑

i=1

aibi; a scalar.

• c = A : B = AijBij =
3∑

j=1

3∑
i=1

AijBij; a scalar.

Define the Kronecker delta as

δij =

{
1 i = j

0 i ̸= j

which equals

δij = I =

 1 0 0
0 1 0
0 0 1


where I is the identity matrix.

Following are two theorems that will be used to aid in the derivation of the con-
servation equations given in Section A.2. Proof of these theorems can be found in
many continuum books such as Fung [113], Malvern [97] and in the review given by
Belytschko [112].

A.1.2 Gauss’ Theorem

Gauss’ theorem intuitive can be though of as a way of relating the total volume of all sinks
and sources in a body to the net flow across the volume’s boundaries. Mathematically,
Gauss’ theorem can be expressed as,∫

Ω

∂f(x)

∂xi

dΩ =

∫
Γ

nif(x)dΓ (A.1.1)
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where f(x) is a piecewise continuously differentiable (C0) function and ni is the outer
normal to the surface. This theorem applies for a tensor of any order. This is often
called the divergence theorem (among many other names) as the first integrand on the
LHS is the divergence of a vector function with respect to the spatial coordinates (i.e.
∂f(x)
∂xi

= div f = ∇ · f). Mathematically this theorem is used to transform a surface
integral to a volume integral and vise versa.

A.1.3 Spatial Description of the Motion of a Continuum A.K.A.
The Material Derivative

The material derivative, denoted by the symbol D/Dt, is the rate of change of some
property in a fixed reference frame. Mathematically, it is expressed as

DA

Dt
=

∂A

∂t
+ vi ·

∂A

∂xi

(A.1.2)

where A is a tensor of any order and vi is the material velocity. Intuitively, equation A.1.2
indicates that the time rate of change of property A as it flows through a continuum is
equal to the change of A with time at a fixed point plus the net flux of A past the fixed
point.

Consider the situations shown in Figure A.2. In the first situation, Figure A.2a), the
flow is steady and uniform. Observing the velocity the fluid from the fixed viewpoints at
A, B and C one would see that

∂vA
∂t

=
∂vB
∂t

=
∂vC
∂t

= 0

where the subscript on v refers to the velocity at the particular location. Since the flow is
steady, its change with respect to time at a fixed point is zero everywhere. Furthermore,
since the flow is uniform,

∂v

∂x
= 0

since the flow velocity is not changing in space. Therefore, the material derivative is zero,
i.e. Dv/Dt = 0.

In the second situation, Figure A.2b), the flow is unsteady but uniform. This indicates
that the velocity of the fluid changes with time, i.e. v = f(t). Therefore at points A, B
and C,

∂v

∂t
̸= 0

but flow is still uniform so ∂v/∂x = 0. Therefore, the material derivative is Dv/Dt =
∂v/∂t.

In the third situation, Figure A.2c), the flow is steady but not uniform. This indicates
that the velocity of the fluid does not changes with time. Therefore at points A, B and
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C,
∂v

∂t
= 0

However, the fluid velocity does change with space. i.e. the fluid velocity at point A differs
from B which differs from C. Therefore the material derivative isDv/Dt = vi(∂v/∂x) ̸= 0.
This gives the change in the velocity the fluid at a fixed point considering the convective
change of the velocity of the fluid as it moves through space.

The fourth situation, Figure A.2d), is a combination of the previous two situations.

Steady 
Uniform flow

BA C

Unsteady 
Uniform flow

BA C

BA C

BA C

Steady 
nonuniform
flow

Unsteady 
nonuniform
flow

b)

a)a)

c)

d)

Figure A.2: Four situations that outline the need for the material derivative

A.1.4 Material Time Derivative of the Volume Integral

The time rate of change of a property over a volume is important for expressing the
conservation equations. If a surface which defines the volume is fixed in space (an three
dimensional Eulerian perspective) then the relatively simple relation

∂

∂t

∫
Ω

AdΩ =

∫
Ω

∂A

∂t
dΩ (A.1.3)
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applies where A is a material property. If however, we wish to determine the time rate
of change of A over a material domain which moves with the material (a Lagrangian
perspective) then the rate of increase of A inside the control surface is equal to the time
rate of change of A inside the control surface minus the net outward flux of A through
the control surface. Mathematically, this is expressed as∫

Ω

∂A

∂t
dΩ =

D

Dt

∫
Ω

AdΩ−
∫
Γ

Av · n̂dΓ (A.1.4)

where A is a continuous function which can be a tensor of any order. Solving Equa-
tion A.1.4 for D/Dt gives,

D

Dt

∫
Ω

AdΩ =

∫
Ω

∂A

∂t
dΩ +

∫
Γ

Av · n̂dΓ (A.1.5)

which is one (of many) forms of the Reynolds transport theorem. The second integral
on the RHS can be converted to a volume integral using Gauss’ theorem to give, in a
rectangular Cartesian coordinate system (v · n̂ = vjnj),

D

Dt

∫
Ω

AdΩ =

∫
Ω

[
∂A

∂t
+

∂(Avj)

∂xj

]
dΩ (A.1.6)

Expanding second integrand on the RHS using the product rule results in

D

Dt

∫
Ω

AdΩ =

∫
Ω

[
∂A

∂t
+ vj

∂A

∂xj

+ A
∂vj
∂xj

]
dΩ (A.1.7)

Recognizing that the first and second integrand on the RHS is just the material derivative
of A, Equation A.1.7 can be written as

D

Dt

∫
Ω

AdΩ =

∫
Ω

[
DA

Dt
+ A

∂vj
∂xj

]
dΩ (A.1.8)

=

∫
Ω

[
DA

Dt
+ A div(v)

]
dΩ

If the function A is a product of density and another function f , then a special form of
Reynold’s transport theorem ensues (sometime referred to as Reynold’s theorem for a
density–weighted integrand).

So if A = ρf then Equation A.1.7 becomes

D

Dt

∫
Ω

(ρf)dΩ =

∫
Ω

[
∂(ρf)

∂t
+ vj

∂(ρf)

∂xj

+ (ρf)
∂vj
∂xj

]
dΩ
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expanding the derivative of ρf using the product rule gives

=

∫
Ω

[
ρ
∂f

∂t
+ f

∂ρ

∂t
+ vjρ

∂f

∂xj

+ vjf
∂ρ

∂xj

+ ρf
∂vj
∂xj

]
dΩ

and regrouping gives

=

∫
Ω

[
ρ

(
∂f

∂t
+ vj

∂f

∂xj

)
+ f

(
∂ρ

∂t
+ vj

∂ρ

∂xj

+ ρ
∂vj
∂xj

)]
dΩ

recognizing that the last two terms is just the product rule of differentiation expanded
gives

=

∫
Ω

[
ρ

(
∂f

∂t
+ vj

∂f

∂xj

)
+ f

(
∂ρ

∂t
+

∂ρvj
∂xj

)]
dΩ

the two terms inside the first parentheses is the product of the material derivative and
density so

=

∫
Ω

[
ρ
Df

Dt
+ f

(
∂ρ

∂t
+

∂ρvj
∂xj

)]
dΩ

It will be shown in Section A.2.1 that the terms in the last parentheses is zero through
the conservation of mass, Equation A.2.10. Therefore, the above results in the relation

D

Dt

∫
Ω

(ρf)dΩ =

∫
Ω

ρ
Df

Dt
dΩ (A.1.9)

A.1.5 Deformation and the Deformation Gradient

A key measure of deformation in finite element analysis is given by the deformation
gradient. To first understand the purpose and meaning of the deformation gradient you
have to understand the reference frames under which deformation is being analysed. In
finite elements, two reference frames, a Lagrangian frame (denoted by X) which moves
with the material, and an Eulerian frame (denote by x) which remains static during
deformation, are commonly used. The coordinates of a particle of the continuum in
the initial, or Lagrangian, coordinate frame can be related to the current, or Eulerian,
reference frame through a mapping function. In general terms, the mapping function is
given by:

x = ϕ{X, t} (A.1.10)

where the mapping function ϕ is a function of X and t.
As outlined by Brannon [114], the deformation gradient is then defined such that an
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infinitesimal line segment dX deforms into a new infinitesimal line segment dx so that

dx = F · dX
= dX · FT (A.1.11)

or,

F =
dx

dX
Fij =

∂xi

∂Xj

(A.1.12)

The Jacobian of the deformation gradient is the ratio of the undeformed to deformed
volume. This is expressed mathematically as,

J ≡ V

V0

= detFij (A.1.13)

For realistic volume changes, both the deformed and undeformed volumes must be posi-
tive indicating that

J > 0 (A.1.14)

Integrals in the current and reference configurations can be related using the Jacobian
determinant by ∫

Ω

fdΩ =

∫
Ω0

fJdΩ0 (A.1.15)

Polar Decomposition Theorem The deformation gradient can be further broken
into a combination of pure rotation, R, and pure stretch. Two stretch tensors exist
in the literature as U for the right stretch tensor and V for the left stretch tensor
corresponding to which is performed first, stretch and then rotation or rotation and then
stretch respectively. Expressed mathematically, the polar decomposition theorem states

F = R ·U = V ·R (A.1.16)

Since the order of stretching and rotating matters, it can be stated that U ̸= V. Some
key polar decomposition formulas are as follows [114]:

U =
(
FT · F

)1/2
V =

(
F · FT

)1/2
= R ·U ·RT

R = F ·U−1 R = V−1 · F
(A.1.17)

Examples

Two examples will be used to illustrate the functionality of the deformation gradient.
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Example 1–Uniaxial and Associated Deformation Consider uniaxial and associ-
ated deformation along a principle direction as shown in Figure A.3.

Lo

bo

ao L

b
a

e1

e2

e3

Figure A.3: Undeform (solid lines) and deformed (dotted lines) of a material under
unaxial tension.

If we define ei to be orthonormal unit vectors in space (in essence lab coordinates)
then the initial location of each particle can be given by:

X = X1e1 +X2e2 +X3e3 (A.1.18)

and in the deformed configuration:

x = x1e1 + x2e2 + x3e3 (A.1.19)

For uniaxial strain, the mapping function is given as,

x1 = f (X1)

x2 = f (X2)

x3 = f (X3)

(A.1.20)

The deformation imposed in the e1 direction could be considered a consequence of an
applied force. The deformation in the other two directions could then be considered a con-
sequence of the material response. The deformation gradient as given by equation A.1.12
is given by,

Fij =
∂xi

∂Xj

=

 λ1 0 0
0 λ2 0
0 0 λ3

 (A.1.21)
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where λi is the “stretch” along each principal direction. If the stretch is constant then

x1 =
L

L0

X1, x2 =
a

a0
X2, x3 =

b

b0
X3 (A.1.22)

The above equation is, in essence, the mapping function between the initial and current
positions. Therefore, the stretches are given by

λ1 =
L

L0

, λ2 =
a

a0
, λ3 =

b

b0
(A.1.23)

Intuitively, from Figure A.3 it is evident that the initial volume is V0 = a0b0L0 and the
deformed volume is V = abL. Mathematically, this is determined through the Jacobian
determinant, Equation A.1.13, as,

J = detF =
abL

a0b0L0

(A.1.24)

which corresponds to the ratio of initial to deformed volumes.
Interestingly, a physical interpretation of the deformation gradient can be found

through examination of the kth column. Each column is related to an edge vector, gk, of
the deformed unit body. This outlined in Figure A.4 below.

e2

e1

g2=1.166 e1-0.166 e2

g1=0.166 e1-1.166 e2

Undeformed Deformed

Figure A.4: Deformed and undeformed units with corresponding edge vectors[114].

The body, initially of unit length, has edge vectors that correspond to the lab space
of ei i = 1, 2, 3. After deformation, the edge vectors can be determined visually. This
indicates that if

g1 =


0.166

−1.166

0

 , g2 =


1.166

−0.166

0

 (A.1.25)
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then

Fij =

 0.166 1.166 0
−1.166 −0.166 0

0 0 1

 (A.1.26)

Example Two–Large Rotation An example of the deformation gradient for large
rotations is given by Brannon [114]. Figure A.5 shows a bar, initially of height H,
bending into a curved shape wedge segment until the top surface is oriented at an angle
θmax. The geometry can be described by using the radius, R, of the centreline and the
stretch of the centreline given by λc. From the definition of stretch the following relation
holds,

Rθmax = λcH (A.1.27)

In this example, the mapping function, deformation gradient, and the polar rotation and
right stretch tensor are desired. Note that in the figure, the˜symbol below any notation
indicates a first order tensor (vector).
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Figure A.5: Large rotation of a bar along a constant radius.[114]

As before, let ei be orthonormal unit vectors in space. The initial location of each
particle can be given by:

X = X1e1 +X2e2 +X3e3 (A.1.28)

and in the deformed configuration:

x = x1e1 + x2e2 + x3e3 (A.1.29)

Each initial vertical line bends into an arc of radius X1 with an arc length of θX1. As

186



the arc angle increases proportionally to X2 the following relation must hold,

θ = αX2 (A.1.30)

The arc length of a point originally at (X1, X2) is given by,

s = αX1X2 (A.1.31)

so along the centreline,
Rθmax = αRH

so

α =
θmax

H
=

λc

R

(A.1.32)

which in combination with A.1.30 results in

θ =
X2

H
θmax (A.1.33)

Now consider a point (X1, X2) that is not necessarily on the centreline. After defor-
mation, the point is located at a distance r = X1 from the origin at a point (x1, x2). This
indicates that

x1 = r cos (θ) = X1 cos

(
X2

H
θmax

)
x2 = r sin (θ) = X1 sin

(
X2

H
θmax

) (A.1.34)

This is the mapping function xi = ϕ (Xi).
The deformation gradient components are then given as

Fij =

[
cos

(
X2

H
θmax

)
−λc X1

R
sin

(
X2

H
θmax

)
sin

(
X2

H
θmax

)
λc X1

R
cos

(
X2

H
θmax

) ]
for i = 1, 2 (A.1.35)

For convenience define,

A ≡ X1θmax

H
≡ λcX1

R

c ≡ cos

(
X2

H
θmax

)
≡ cos

(
X2λ

c

R

)
s ≡ sin

(
X2

H
θmax

)
≡ sin

(
X2λ

c

R

) (A.1.36)
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so the deformation gradient can be written as,

Fij =

[
c −As
s Ac

]
for i = 1, 2 (A.1.37)

The Jacobian is then computed as,

J = det (Fij) = A (A.1.38)

Polar decomposition of the deformation gradient Fij = RikUkj give,

Rik =

[
c −s
s c

]
Ukj =

[
1 0
0 A

] (A.1.39)

This indicates that first a stretch of A in the e2 direction is applied and then a rotation.

A.1.6 Velocity Gradient

Similar to the way in which the deformation gradient was defined as Fij = ∂xi/∂Xj the
velocity gradient is defined as

Lij ≡
∂vi
∂xj

(A.1.40)

The velocity gradient can be decomposed into a symmetric and skew–symmetric parts
through

L =
1

2
(Lij + Lji)︸ ︷︷ ︸
Symmetric

+
1

2
(Lij − Lji)︸ ︷︷ ︸

skew–symmetric

(A.1.41)

so
Lij = vi,j = Dij +Wij (A.1.42)

where

Dij =
1

2
(Lij + Lji) =

1

2

(
L+ LT

)
(A.1.43)

Wij =
1

2
(Lij − Lji) =

1

2

(
L− LT

)
and

Dij = Dji

Wij = −Wji (A.1.44)
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The symmetric part of L, denoted D, is the rate–of–deformation where as the skew–
symmetric part, W, is referred to as the spin tensor. Only in the absence of deformation
does the spin equal angular velocity.

It is useful to find a relation between the velocity and deformation gradients. If

L =
∂v

∂x

expanding using the chain rule

=
∂v

∂X

∂X

∂x
(A.1.45)

If, by definition

Ḟ =
∂v

∂X
(A.1.46)

and expanding ∂xi/∂xj = δij

∂xi

∂Xk

∂Xk

∂xj

= δij

Fik
∂Xk

∂xj

= δij

∂Xk

∂xj

= F−1
kj δij (A.1.47)

Using the above two relations, Equation A.1.45 becomes

L = Ḟ · F−1 (A.1.48)

A.1.7 Strain and Strain Rate

Strain Although several measures of strain exist, only Green strain common will be
presented here. Green strain E, also known as Lagrange Strain, refers the deformation
in regards to the reference coordinates. It is defined so that it results in the change of
the square of the material vector dX length. For rectangular Cartesian coordinates, the
Green strain tensor is

(ds)2 − (dS)2 = 2dX · E · dX (A.1.49)

where ds is the current length and dS is the reference length of an infinitesimal line
segment. Then

(ds)2 = dx · dx
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which from Equation A.1.11

=
(
dX · FT

)
· (F · dX)

= dX ·
(
FT · F

)
· dX (A.1.50)

Similarly,

(dS)2 = dX · dX
= dX · I · dX (A.1.51)

where I is the identity tensor. Using Equations A.1.50 and A.1.51 in Equation A.1.49
gives,

dX ·
(
FT · F

)
· dX− dX · I · dX− 2dX · E · dX = 0

dX ·
(
FT · F− I− 2E

)
· dX = 0 (A.1.52)

which indicates that

E =
1

2

(
FT · F− I

)
(A.1.53)

Relating Equation A.1.53 in terms of displacement gradients gives

Eij ≡
1

2

[
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

]
(A.1.54)

Referring back to Example 1, and using Equation A.1.53, the Green strain can be
solved for as

E11 =
1

2

(
F T
11F11 + F T

12F21 + F T
13F31 − 1

)
=

(
l2

l2o
− 1

)
=

(
l2 − l2o
2l2o

)
Similarly,

E22 =

(
a2 − a2o
2a2o

)
, E33 =

(
b2 − b2o
2b2o

)
Strain Rate The rate of Green strain can be obtained by taking the material derivative
of Equation A.1.53 which gives,

Ė =
1

2

D

Dt

(
FT · F− I

)
=

1

2

(
FT · Ḟ+ ḞT · F

)
(A.1.55)
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From equation Equation A.1.48 and A.1.43, D can be expressed as

D =
1

2

(
Ḟ · F−1 +

(
F−1

)T · ḞT
)

(A.1.56)

Premultiplying and postmultiplying Equation A.1.56 by FT and F respectively gives

FT ·D · F =
1

2

(
FT · Ḟ+ ḞT · FT

)
(A.1.57)

Which, when compared to Equation A.1.55, indicates that

Ė = FT ·D · F (A.1.58)

A.1.8 Stress and Its Definition

Similar to strain, there are several definitions of stress. The stress measure that will be
used most often in for this work is the Cauchy stress which uses the current, deformed,
area instead of the reference area, which nominal and second Piola-Kirchhoff stress mea-
sures use. In essence, Cauchy stress is a measure of the true stress. The definition of
Cauchy stress is illustrated in Figure A.6.

d

df

n

Figure A.6: Definition of stress in current configuration

A surface traction can be defined as the force, df exerted upon an infinitesimal surface
element dΓ. Expressed mathematically, this is,

T =
df

dΓ
(A.1.59)

and so the traction can be thought of as a stress vector with the same direction as df
and of magnitude of df/dΓ. Using the normal n, the traction vector can be broken into
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components through

TdΓ = n · σdΓ = σT · ndΓ
TidΓ = njσjidΓ (A.1.60)

which is often called Cauchy’s law or hypothesis. Conveniently, the trace of Cauchy stress
gives pressure

1

3
tr(σ) =

1

3
σii = −p (A.1.61)

The convention that normal components of Cauchy stress are positive in tension which
results in a positive pressure in compression. The components of the Cauchy stress tensor
are illustrated in Figure A.7. In σij the stress component can be thought of as acting on

x3

x2

x1

11

12

13

21

22

23

31

32

33

Figure A.7: Orientation of positive stress components

the surface normal to i in the jth direction. The Cauchy stress tensor is symmetric. i.e.
σ = σT .
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A.2 Governing Equations

Three conservations equations plus two additional equations are used to solve for non-
linear deformations in finite element codes. This set of governing equations is listed
as:

1. Conservation of mass (continuity).

2. Conservation of energy.

3. Conservation of momentum.

4. A measure of deformation (often called the strain–displacement equation).

5. A constitutive equation based on the material behaviour which relates stress to
deformation.

A.2.1 Conservation of Mass

If the mass of in a material domain is given by m =
∫
Ω
ρ(X, t)dΩ then using a Lagrangian

description, mass conservation, in absence of mass to energy conversion, can be easily
stated as,

Dm

Dt
=

D

Dt

∫
Ω

ρdΩ = 0 (A.2.1)

Integrating over time yields ∫
Ω

ρdΩ =

∫
Ω0

ρdΩ0 (A.2.2)

Through application of Equation A.1.15 the integral on the left hand can be converted
to the reference domain resulting in∫

Ω0

ρJ − ρ0dΩ0 = 0 (A.2.3)

This leads to
ρJ = ρ0 (A.2.4)

Intuitively, the above equations holds if

ρ0V0 = ρcVc (A.2.5)

where the subscript 0 refers to the initial conditions and the subscript c refers to the cur-
rent conditions. Then as the material undergoes deformation, the volume of the element
and the density will change in proportion. The relative volume can then be defined as
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the proportion between the initial and current volume expressed mathematically as:

V =
Vc

V0

(A.2.6)

which from Section A.1.5 is equivalent to the Jacobian determinant of the deformation
tensor restated here as,

J ≡ Vc

V0

= detFij (A.2.7)

The conservation of mass can then be stated as,

ρJ = ρ0 (A.2.8)

which is equivalent to Equation A.2.4.
The continuity equation can be expressed in an Eulerian frame of reference by applying

Reynolds transport theorem, Equation A.1.8, to Equation A.2.1 which gives∫
Ω

[
Dρ

Dt
+ ρ div(v)

]
dΩ = 0

indicating

Dρ

Dt
+ ρ div(v) = 0 (A.2.9)

If the material derivative is expanded out, an alternative form of Equation A.2.9 is
achieved as

Dρ

Dt
+ ρ div(v) =

dρ

dt
+ vi

∂ρ

∂xi

+ ρ
∂vi
∂xi

recognizing that the last two terms a the consequence of the product rule for differenti-
ation

=
dρ

dt
+

∂(ρvi)

∂xi

and so

dρ

dt
+

∂(ρvi)

∂xi

= 0 (A.2.10)
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A.2.2 Conservation of Momentum

Linear Momentum Consider a body of arbitrary domain Ω with boundary Γ sub-
jected to a body force, b per unit mass, and surface tractions, T measured in force per
unit area. Figure A.8 outlines these forces as applied to the domain. The net force

b2

b1

b3

T

T

T

T

T

Figure A.8: An arbitrary body subjected to a body force and surface tractions

applied to the domain is then given by

f =

∫
Ω

ρb(x, t)dΩ︸ ︷︷ ︸
Body Force

+

∫
Γ

T(x, t)dΓ︸ ︷︷ ︸
Traction

(A.2.11)

Linear momentum in the domain is given as the product of the mass of the domain
and its velocity. i.e.

p(t) =

∫
Ω

ρv(x, t)dΩ (A.2.12)

where p is the linear momentum and ρv is the linear momentum per unit volume.
The conservation of linear momentum (Newton’s second law) states that the sum of

the forces on a particle, when not zero, is equal to the rate of change of linear momentum
of the particle. If mass is constant, then the linear momentum is given by the product
of the mass of the particle and its acceleration. Mathematically, this is stated as the
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material time derivative of linear momentum equals the net force which is given by

Dp

Dt
= f (A.2.13)

which, using Equations A.2.11 and A.2.12, becomes

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

ρbdΩ +

∫
Γ

TdΓ (A.2.14)

Ideally, we would like to have a single domain integral to aid in the discretization of
the equation. Applying Reynolds transport theorem, Equation A.1.8, to the LHS of
Equation A.2.14 results in,

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

[
D(ρv)

Dt
+ div v(ρv)

]
dΩ (A.2.15)

which through the derivative of a product becomes

=

∫
Ω

[
ρ
Dv

Dt
+ v

(
Dρ

Dt
+ ρ div v

)]
dΩ

The last term inside the braces can be identified as the continuity equation, Equa-
tion A.2.9, which is zero. Equation A.2.15 then becomes

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

[
ρ
Dv

Dt

]
dΩ (A.2.16)

To convert the surface intergral in Equation A.2.14 to a volume integral first apply
Cauchy’s relation T = n · σ and then Gauss’ theorem giving∫

Γ

TdΓ =

∫
Γ

n · σdΓ =

∫
Ω

∇ · σdΩ =

∫
Ω

∂σij

∂xi

dΩ (A.2.17)

Combining Equations A.2.17 and A.2.16 with A.2.14 results in∫
Ω

[
ρ
Dv

Dt

]
dΩ =

∫
Ω

ρbdΩ +

∫
Ω

∇ · σdΩ (A.2.18)

which after collecting integrands becomes∫
Ω

[
ρ
Dv

Dt
− ρb−∇ · σ

]
dΩ = 0 (A.2.19)
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Since this holds for any arbitrary domain Ω, the following applies

ρ
Dv

Dt
= ∇ · σ + ρb (A.2.20)

or in indicial notation

ρ
Dvi
Dt︸ ︷︷ ︸

Inertial Term

=
∂σij

∂xj︸︷︷︸
Internal Term

+ ρbi︸︷︷︸
Body Term

(A.2.21)

Angular Momentum Angular momentum is simply stated as σij = σji if the Cauchy
stress tensor is used and it is symmetric. This indicates that no additional equations are
generated from the conservation of angular momentum if Cauchy stress is used.

A.2.3 Conservation of Energy

Consider a continuum which contain kinetic energy K, gravitational energy G and inter-
nal energy E. The total energy of the continuum is then given by

energy = K +G+ E (A.2.22)

From the first law of thermodynamics, the change in energy is a consequence of the
absorption of heat Q and the work done on the system W . Mathematically, this is
expressed as

∆energy = Q+W (A.2.23)

Combining Equations A.2.22 and A.2.23 and expressing in rate form results in

D

Dt
(K +G+ E) = Q̇+ Ẇ (A.2.24)

The kinetic energy in a domain is given by

K =

∫
Ω

1

2
ρvividΩ (A.2.25)

where vi are the components of velocity of each particle.
The gravitational energy under uniform gravitation is given by

G =

∫
Ω

ρgzdΩ (A.2.26)

where g is the gravitational acceleration and z is the height from a reference plane to the
body.
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The internal energy is

E =

∫
Ω

ρedΩ (A.2.27)

where E is the total internal energy and e is the internal energy per unit mass.
The heat flow Q̇ is given by

Q̇ =

∫
Ω

ρsdΩ−
∫
Γ

n · qdΓ

=

∫
Ω

ρsdΩ−
∫
Γ

niqidΓ

where, applying Gauss’ theorem to the boundary integral, results in

Q̇ =

∫
Ω

ρs− ∂qi
∂xi

dΩ (A.2.28)

where the heat flux, q, is defined as positive outwards and s is the heat source per unit
mass.

The rate at which work is done on the body from body forces (b per unit mass) and
applied surfaces tractions (Ti) is

Ẇ =

∫
Ω

ρvibidΩ +

∫
Γ

TividΓ (A.2.29)

where, using Cauchy’s law on the last integrand on the RHS gives∫
Γ

TividΓ =

∫
Γ

niσjividΓ

applying Gauss’ theorem to the boundary integral, results in

=

∫
Ω

∂σjivi
∂xj

dΩ

applying product rule of differentiation gives

=

∫
Ω

vi
∂σji

∂xj

+
∂vi
∂xj

σjidΩ

using the decomposition of the velocity gradient, Equation A.1.41, results in

=

∫
Ω

vi
∂σji

∂xj

+Djiσji +WjiσjidΩ
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where

=

∫
Ω

vi
∂σji

∂xj

+DjiσjidΩ

since the product of a symmetric and skew–symmetric tensor is zero. This results in:∫
Γ

TividΓ =

∫
Ω

(∇ · σ) · v +D : σdΩ (A.2.30)

Combining Equations A.2.29 and A.2.30, the rate at which work is done is expressed as

Ẇ =

∫
Ω

ρvibi + vi
∂σji

∂xj

+DjiσjidΩ (A.2.31)

Substituting Equations A.2.25, A.2.26, A.2.27 into Equation A.2.24 gives

D

Dt
(K +G+ E) =

D

Dt

∫
Ω

(
1

2
ρvivi + ρgz + ρe

)
dΩ

applying Reynolds transport theorem for a density weighted integrand, Equation A.1.9,
to the RHS gives

=

∫
Ω

ρ

(
1

2

Dvivi
Dt

+
Dgz

Dt
+

De

Dt

)
dΩ

=

∫
Ω

ρ

(
vi
Dvi
Dt

+
Dgz

Dt
+

De

Dt

)
dΩ (A.2.32)

Substituting Equations A.2.32, A.2.31 and A.2.28 into Equation A.2.24 and bringing
all terms to the LHS results in,∫

Ω

ρvi
Dvi
Dt

+ ρ
Dgz

Dt
+ ρ

De

Dt
− ρvibi − vi

∂σji

∂xj

−Djiσji − ρs+
∂qi
∂xi

dΩ = 0 (A.2.33)

Since this holds for any domain,

ρvi
Dvi
Dt

+ ρ
Dgz

Dt
+ ρ

De

Dt
− ρvibi − vi

∂σji

∂xj

−Djiσji − ρs+
∂qi
∂xi

= 0 (A.2.34)

rearranging gives

ρ
De

Dt
= −ρ

Dgz

Dt
+Djiσji + ρs− ∂qi

∂xi

− vi

(
ρ
Dvi
Dt

− ρbi −
∂σji

∂xj

)
(A.2.35)
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the terms in the parentheses is the conservation of momentum, Equation A.2.20, which
equals zero, and so the above equation becomes

ρ
De

Dt
= Djiσji + ρs− ∂qi

∂xi

− ρ
Dgz

Dt

= D : σ + ρs−∇ · q− ρ
Dgz

Dt
(A.2.36)

Neglecting heat transfer and in the absence of heat sources and gravitational effects
(a process which is then purely mechanical), Equation A.2.36 becomes

ρ
De

Dt
= D : σ = σ : D (A.2.37)

since σ and D are symmetric.
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Appendix B

Finite Element Approximation

B.1 Introduction

A recap of the equations govering equations is given here as the finite element method
will seek to solve these equations. The conservation of mass, momentum and energy is
simply stated as:

ρJ = ρ0 (B.1.1)

∫
Ω

[
ρ
Dv

Dt
− ρb−∇ · σ

]
dΩ = 0 (B.1.2)

ρ
De

Dt
= D : σ + ρs−∇ · q− ρ

Dgz

Dt

which, in a purely mechanical process neglecting gravitational effects becomes,

ρ
De

Dt
= D : σ = σ : D = σijDij (B.1.3)

In the application of the finite element method (FEM) to a domain, a mesh (of ele-
ments) is embedded within the material and the above equations are discretized in space.
The movement of the mesh, since it follows a point in the material, then corresponds
the deformation of the material. Equation B.1.1 is inherently satisfied by the FEM since
there is no mass flux out of the element. The conservation of energy equation, Equa-
tion B.1.3, will be used in the evaluation of the equation of state and as a means of
calculating global energy balances. Therefore, the solution of the conservation of linear
momentum equation, Equation B.1.2, which governs the movement of the material, is
required. It will be seen that two additional governing equations, which relate strain to
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displacement, and a constitutive equation, which relates stress to strain, will be required
to solve the momentum equation.

The momentum equation, as given in Equation B.1.2, is a more complicated form of
Newton’s second law F = ma. In essence, with a mesh superimposed on a material, we
seek to determine the discrete forces at each node subjected boundary conditions.

B.2 Development of the Weak form of the Momen-

tum Equation

As outlined by Malvern [97] consider a body, initially in equilibrium, subjected to ar-
bitrary infinitesimal displacements δui throughout. Assume that the displacements are
such that the derivatives ∂(δui)/∂xj are continuous (C

0) and are zero anywhere an actual
displacement boundary condition, ui, is applied. The displacements δui are termed “vir-
tual displacements” since they aren’t physical displacements as a consequence of applied
loads but displacements as a result of fictitious forces. In terms of variational methods,
the virtual displacement can be thought of a a test function. Mathematically, the space
in which the test function exists can be expressed as

∂ui (X) ∈ U◦ U◦ = δui| ∈ C0 (X) , δui = 0 on Γui
(B.2.1)

Correspondingly, the product of a force applied over the virtual displacement results in
virtual work δW .

Similarly, virtual velocities, δvi, can be used such that

∂vi (X) ∈ V◦ V◦ = δvi| ∈ C0 (X) , δvi = 0 on Γvi (B.2.2)

In this sense, the virtual displacements can be thought of taking place in an infinitesimal
time interval, δt, resulting in a virtual velocity, vi. This subtle difference allows the notion
of “infinitesimal” displacements to be bypassed for an arbitrary finite virtual velocity [97].
Similar to before, the product of a force (which is assumed to be constant for the time
interval) and virtual velocity results in virtual power denoted δP. This is the method
which Belytschko [112] adopts and also shall be used here.

The weak form of the momentum equation is developed taking the product of the
virtual velocities and the momentum equation as∫

Ω

[
δviρv̇i − δviρbi − δvi

∂σji

∂xj

]
dΩ = 0 (B.2.3)

where v̇ ≡ Dv/Dt. The traction boundary and traction continuity conditions which
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apply to the above equation are:

njσji = T̄i on ΓTi
(B.2.4)JnjσjiK = nA

j σ
A
ji + nB

j σ
B
ji = 0 on Γint (B.2.5)

where T̄i is the specified traction and jumps in tractions across domains A and B are
denoted by the double brackets.

The last integrand in Equation B.2.3 can alternatively be expressed using the product
rule ∫

Ω

∂(δviσji)

∂xj

dΩ =

∫
Ω

δvi
∂σji

∂xj

+ σji
∂δvi
∂xj

dΩ

which, rearranging becomes∫
Ω

δvi
∂σji

∂xj

dΩ =

∫
Ω

∂(δviσji)

∂xj

− σji
∂δvi
∂xj

dΩ (B.2.6)

In determining the continuity of the above terms the following arguments are made.
The rate of deformation tensor, Dij is function of the spatial derivative of the velocities,
δvi which, by definition are C0. Therefore, the rate of deformation tensor is C−1 indicat-
ing that it is discontinuous. Since the stress, σij, is a function of the rate of deformation
tensor, Dij, via the constitutive equation, it too is C−1. This assumes that the constitu-
tive equation leads to stress being a “well–behaved” function of the rate of deformation
tensor. The same argument can be made using the Green strain tensor under small
displacement gradients.

Therefore inspection of the above equation leads to the term δviσji being discontin-
uous. It is assumed that these discontinuities are finite and occur on boundaries Γint.
Applying a modified version Gauss’ theorem from Chapter A to the first term on the
RHS leads to ∫

Ω

∂(δviσji)

∂xj

dΩ =

∫
Γ

δvinjσjidΓ +

∫
Γint

δviJnjσjiKdΓ (B.2.7)

where the second integral accounts for the discontinuities in stress which vanish according
to Equation B.2.5. At the boundaries where δvi is zero or T̄i is specified, so Equation B.2.7
becomes, ∫

Ω

∂(δviσji)

∂xj

dΩ =

∫
ΓTi

δviT̄idΓ (B.2.8)

Although i appears to occur three times in the above equation (violating the summation
convention) it is included to reinforce the idea that the traction boundary conditions are
applied only over the boundaries where they occur.
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Substitute Equation B.2.8 into Equation B.2.6 to get∫
Ω

δvi
∂σji

∂xj

dΩ =

∫
ΓTi

δviT̄idΓ−
∫
Ω

σji
∂δvi
∂xj

dΩ (B.2.9)

and so Equation B.2.3 becomes,

δP =

∫
Ω

δviρv̇idΩ−
∫
Ω

δviρbidΩ−
∫
ΓTi

δviT̄idΓ +

∫
Ω

σji
∂δvi
∂xj

dΩ = 0 (B.2.10)

which is called the weak form of virtual power or the principal of virtual power. For
a more intuitive feel for the above equation, the terms can be associated with physical
meanings.

The first integral term represents the virtual inertial or kinetic power δPKinetic, the
second and third terms are a consequence of externally applied loads and is so deemed
virtual external power δPExt. The last term develops from internal forces and is therefore
called virtual internal power denoted δPInternal. A mathematic statement for the virtual
power terms as a consequence of virtual velocities is

δP = δPKinetic − δPExternal + δPInternal = 0 ∀δvi ∈ V◦ (B.2.11)

An alternate version of the internal virtual power can be formulate by recognizing
that

∂δvi
∂xj

= δLij

and so the virtual power becomes

δPInternal =

∫
Ω

σji
∂δvi
∂xj

dΩ

=

∫
Ω

σjiδLijdΩ

=

∫
Ω

σji [δDij + δWij] dΩ

=

∫
Ω

σjiδDij + σjiδWijdΩ

where the second integrand is zero due to the symmetry of σji and antisymmetry of Wij,
leading to

δPInternal =

∫
Ω

σjiδDijdΩ =

∫
Ω

σijδDijdΩ (B.2.12)

which expresses the virtual power in terms of the rate of deformation tensor.
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The external virtual power is comprised of body forces and prescribed tractions as

δPExternal =

∫
Ω

δviρbidΩ +

∫
ΓTi

δviT̄idΓ (B.2.13)

Similarly, the virtual kinetic power is given by

δPKinetic =

∫
Ω

δviρv̇idΩ (B.2.14)

B.3 Semi–Discretization

In order to solve the virtual power approximation, the domain Ω is divided into sub–
domains Ωe where the subscript e represents the domain of the element. Mathematically,
this can be stated as Ω = ∪

e
Ωe. This is termed semi–discretization as discretization

occurs only in space and not in time. The nodes which make up each element have the
current coordinates xαi and reference coordinates Xαi where α refers to the node number
and, as before, i refers to the directional component. It is assumed that any point in the
domain can then be determined through interpolation between nodes. If an interpolation
function between nodes is defined as Nα, then

xi (x, t) = Nα(x)xαi(t) (B.3.1)

Xi (x, t) = Nα(x)Xαi(t) (B.3.2)

where α is summed from 1 to the number of nodes either in the total or element domain.
Nodal displacements are then given by

uαi = Nαxαi −NαXαi

= Nα (xαi −Xαi)

= Nα (xαi −Xαi)

leading to

uαi (x, t) = Nα(x)uαi(t) (B.3.3)

Similarly, the velocities and accelerations are given by

u̇αi(x, t) = Nα(x)u̇αi(t)

= Nα(x)vαi(t) (B.3.4)
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and

üαi(x, t) = Nα(x)üαi(t)

= Nα(x)v̇αi(t)

= Nα(x)aαi(t) (B.3.5)

The virtual velocities can also be interpolated between the nodes as

δvix = Nα(x)δvαi (B.3.6)

The velocity gradient can also be expressed in terms interpolation functions between
the nodes as

Lij =
∂vi
∂xj

=
∂(Nαvαi)

∂xj

= Nα
∂vαi
∂xj

+ vαi
∂Nα

∂xj

but, by definition vαi does not vary with xi since it is a point, resulting in

Lij = vαi
∂Nα

∂xj

= vαiNα,j (B.3.7)

and so the rate of deformation is

Dij =
1

2
(Lij + Lji)

=
1

2
(vαiNα,j + vαjNα,i) (B.3.8)

Equations B.3.1 to B.3.8 constitute the spatial discretization formulas. Substituting
these equations into the weak form of the momentum equation, Equation B.2.10 results
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in

δPInternal =

∫
Ω

σji
∂δvi
∂xj

dΩ

=

∫
Ω

σjiδvαi
∂Nα

∂xj

dΩ (B.3.9)

δPExternal =

∫
Ω

δvαiNαρbidΩ +

∫
ΓTi

δvαiNαT̄idΓ (B.3.10)

δPKinetic =

∫
Ω

δvαiNαρNαv̇αidΩ (B.3.11)

Using the above in combination with Equation B.2.11 and factoring out δvαi from every
term results in

δvαi

[∫
Ω

σji
∂Nα

∂xj

dΩ−
∫
Ω

ρbidΩ−
∫
ΓTi

NαT̄idΓ +

∫
Ω

NαρNαv̇αidΩ

]
= 0 ∀(α, i) /∈ Γvi

(B.3.12)
since δvi is zero on Γvi by definition.

B.4 Nodal Forces

The idea of virtual power is a constant force acting over a virtual displacement for a
given time interval. As such, nodal forces for each virtual power term can be determined.
The internal nodal forces are given by

δPInternal = δvαif
Internal
αi

=

∫
Ω

∂(δvi)

∂xj

σjidΩ

= δvi

∫
Ω

∂Nα

∂xj

σjidΩ

which, since this holds for any arbitrary velocity, leads to

f Internal
αi =

∫
Ω

∂Nα

∂xj

σjidΩ (B.4.1)

It should be noted that the above equation requires the derivative of the interpolation
function with respect to space as well as integration over the current (deformed) config-
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uration. Similarly, the external nodal forces are given by

δPExternal = δvαif
External
αi

=

∫
Ω

δvαiNαρbidΩ +

∫
ΓTi

δvαiNαT̄idΓ

= δvαi

∫
Ω

NαρbidΩ + δvαi

∫
ΓTi

NαT̄idΓ

which, as before, leads to

fExternal
αi =

∫
Ω

NαρbidΩ +

∫
ΓTi

NαT̄idΓ (B.4.2)

The kinetic or inertial forces are given by

δPKinetic = δvαif
Kinetic
αi

=

∫
Ω

δvαiρv̇idΩ

= δvαi

∫
Ω

Nαρv̇idΩ

fKinetic
αi =

∫
Ω

Nαρv̇idΩ (B.4.3)

However, recall that from Equation B.3.5, v̇i(x, t) = v̇αi(t)Nα(x), and so Equation B.4.3
becomes,

fKinetic
αi =

∫
Ω

ρNαv̇βjNβdΩ

=

∫
Ω

ρNαNβdΩv̇βj (B.4.4)

The integrated term is called the consistent mass matrix denoted M c. Often a lumped
mass matrix, denoted M , is used where the mass of each element is distributed over its
nodes resulting in a diagonal matrix reducing the computational cost. The lumped mass
matrix is defined by

Mαiβj = δij

∫
Ω

ρNαNβdΩ (B.4.5)

From the conservation of mass, developed in Chapter A, it can be noted that the mass
matrix is independent of time and therefore only needs to be computed once.

Using the lumped mass matrix, the kinetic force can be written as,

fKinetic
αi = Mαiβj v̇βj (B.4.6)
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Using Equations B.4.1, B.4.2 and B.4.6, Equation B.2.11 becomes

f Internal
αi − fExternal

αi + fKinetic
αi = 0

f Internal
αi +Mαiβj v̇βj = fExternal

αi ∀(α, i) /∈ Γvi (B.4.7)

which is the discrete approximation of the weak form of the momentum equation also
called the equations of motion.

B.5 Element Coordinates

It is convenient to write the interpolation functions in terms of coordinates local to the
element. For the purpose of explanation, an isoparametric quadrilateral formulation will
be used. Figure B.1 shows a quadrilateral in the reference and current states. Additional
to these two configurations is the parent configuration which defines the element coor-
dinates and shape. The domains associated with each configuration are denoted by Ω0,
Ω and � respectively. This particular element has four nodes number counterclockwise.
The coordinates in the parent element are denoted by ξi and are in the range ±1. The
interpolation functions are subject to the following conditions:

1. They must be continuous within the element.

2. Their sum must equal one at any point within the element.

3. The value of Nα at node β is given by δαβ.

1
2

3
4

x2

x1

t=0

Reference 
Configuration, 0

3 (1, 1)

2

Parent Element

1

2

3

4

x2

x1

t=t+ t

Current 
Configuration, 

X( i,0)
x( i,t)

xi= (Xi,t)

2 (1,-1)1 (-1,-1)

4 (-1, 1)

Figure B.1: Parent element and its relation to the current and reference configurations.
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Maps, similar to those developed in Section A.1.5 can be formulate for the current
and reference configurations to the parent element. The reference and current maps are
then expressed as

xi = xi(ξi, t) (B.5.1)

Xi = Xi(ξi, 0) (B.5.2)

(B.5.3)

These maps must be

1. One–to–one (i.e. two points in one domain don’t get mapped to a single point in
another domain).

2. At least C0 in space.

3. The Jacobian determinant must be positive.

An example of a interpolation function for the quadrilateral element is given by

Nα =
1

4
(1 + ξαξ) (1 + ηαη) (B.5.4)

where ξ1 = ξ and ξ2 = η. The coordinates for ξα and ηα are given in Table B.1.

α ξα ηα

1 -1 -1
2 1 -1
3 1 1
4 -1 1

Table B.1: Coordinate for quadrilateral parent element with four nodes.

So the N1 shape function at node 1 is then N1 = 1/4(1 + 1)(1 + 1) = 1 but zero at
nodes 2, 3 and 4 for example.

Similar to Equations B.3.3 to B.3.5 the displacement, velocities and accelerations can
be expressed in terms of shape functions as

ui(ξi, t) = uαi(t)Niξi (B.5.5)

u̇i(ξi, t) = vi(ξi, t) = vαi(t)Niξi (B.5.6)

üi(ξi, t) = v̇i(ξi, t) = v̇αi(t)Niξi (B.5.7)

The internal forces require the spatial gradient of the interpolation functions. By the
chain rule the following holds

∂vi
∂ξj

=
∂vi
∂xk

∂xk

∂ξj
(B.5.8)
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The second term on the RHS can be viewed as the deformation gradient with respect to
the parent element denoted F ξ

ij = ∂xi/∂ξj. Rearranging the above equation for ∂vi/∂xk =
Lik gives

Lij =
∂vi
∂ξk

∂ξk
∂xj

(B.5.9)

=
∂vi
∂ξk

(
F ξ
kj

)−1

Note that the above equation requires the inverse of the of the deformation gradient
between the current and parent configurations.

Similarly in terms of shape functions

Lij =
∂vi
∂xj

= vαi
∂Nα

∂xj

= vαi
∂Nα

∂ξk

∂ξk
∂xj

(B.5.10)

The rate of deformation tensor can be determined from Dij = 1/2(Lij + Lji) as before.
The Jacobian determinant is then given by

j = det
∂xi

∂ξj
(B.5.11)

where a small j is used to distinguish it from the Jacobian determinant of the deformation
gradient with respect the reference configuration.

If integration of an arbitrary function g is required on over the current domain, it can
be related to the reference and parent domain through the following relations∫

Ωe

g(x)dΩ =

∫
Ω0

e

g(x(X))JdΩ0

=

∫
�
g(ξ)jd�

and ∫
Ω0

e

g(X)dΩ0 =

∫
�
g(X(ξ))j0d� (B.5.12)
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B.6 Numerical Integration

Inspection of the equations presented to this point indicate that integration over the
domain must be performed (see Section B.4 for instance). In all but the rarest cases,
analytical forms of integration do not exist. As such, numerical integration methods,
such as Gauss quadrature, are employed. So, in essence we wish to determine∫

Ωe

f(x, y, z)dΩ

where f is a smooth, integrable, function. Performing this integration using the par-
ent domain (called pull back integration [115]), the above integral, in three dimensions,
becomes∫

Ωe

f(x, y, z)dΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f [x (ξ, η, ζ) , y (ξ, η, ζ) , z (ξ, η, ζ)] j (ξ, η, ζ) dξdηdζ

or in general ∫ 1

−1

. . .

∫ 1

−1︸ ︷︷ ︸
nsdintegrals

f(ξ, . . .)︸ ︷︷ ︸
nsdarguments

dξ . . .︸ ︷︷ ︸
nsddifferentials

where nsd is the number of space dimensions. This can be approximated using∫ 1

−1

g(ξ)dξ =

nint∑
l=1

g
(
ξ̃l

)
Wl +R

∼=
nint∑
l=1

g
(
ξ̃l

)
Wl (B.6.1)

where nint is the number of integration points, ξ̃l is the coordinate of the lth integration
point, Wl is the weight of the lth integration point and R is the remainder. In Gauss
quadrature, the locations and weights of the integration points are determined to achieve
the most accurate solution. The constants outlined previous are specific to each element
type. Integration over several dimensions is achieved through repeat application of the
one dimensional equation. For example, Figure B.2 shows a quadrilateral element with
a 2x2 Gaussian rule applied. Integration of a function g(x, y) over the domain is then
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Integration 
Point

Figure B.2: Integration points for a quadrilateral element with 2x2 Gaussian rule applied.

given by ∫
Ωe

g(ξ, η)dΩ =

∫ 1

−1

∫ 1

−1

g (ξ, η) dξdη

=

∫ 1

−1

{ nQ1∑
Q1=1

g
(
ξ̃Q1 , η

)
WQ1

}
dη

=

nQ1∑
Q1=1

nQ2∑
Q2=1

g
(
ξ̃Q1 , η̃Q2

)
WQ1WQ2 (B.6.2)

where, nQ = 2 ·2 = 4 is the number of integration points and from [115], the weights and

integration points are given as

W1 = W2 = W3 = W4 = 1 and,

Q ξ̃Q η̃Q

1 −1√
3

−1√
3

2 1√
3

−1√
3

3 1√
3

1√
3

4 −1√
3

1√
3

which leads to∫
Ωe

g(ξ, η)dΩ =

∫ 1

−1

∫ 1

−1

g (ξ, η) dξdη

= g

(
−1√
3
,
−1√
3

)
+ g

(
1√
3
,
−1√
3

)
+ g

(
1√
3
,
1√
3

)
+ g

(
−1√
3
,
1√
3

)
(B.6.3)

Similar techniques can be used for three dimensional elements.
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B.7 Selective Reduced Integration

In finite element methods, it is advantageous to decompose the stress tensor into the
hydrostatic and deviatoric components. Similarly, the rate of deformation tensor can
be split into dilational and deviatoric components. In this way, a different number of
integration points can be used for different terms. This helps to prevent locking of
elements (which is to say that displacements are small and converge slowly).

The stress can be decomposed as follows,

σij = σdev
ij + σhydδij

where

σhyd = 1/3σkk = −p (B.7.1)

σdev
ij = σij − σhydδij (B.7.2)

where the pressure is denoted as p. Similarly, the rate of deformation is decomposed as

Dij = Ddev
ij +Dvolδij

where

Ddev
ij = Dij −Dvolδij (B.7.3)

Dvol =
1

3
Dkkδij (B.7.4)

Equation B.2.12 can then be written as

PInternal =

∫
Ω

δDijσijdΩ

=

∫
Ω

δDdev
ij σdev

ij dΩ−
∫
Ω

δDiipdΩ (B.7.5)

Discretization of the rate of deformation tensor is given by

δDiip = δvαi
∂Nα

∂xi

δDdev
ij σdev

ji =
1

2
(Nα,jδvαi +Nα,iδvαj)σ

dev
ji

which, since σdev
ji = σdev

ij , gives

δDdev
ij σdev

ji = δvαiNα,jσ
dev
ji (B.7.6)
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If single point quadrature is used for the hydrostatic part and full quadrature is used for
the deviatoric components, the for a quadrilateral Equation B.7.5 becomes,

PInternal = δvαi

{
4∑

Q2=1

4∑
Q1=1

WQ1WQ2jNα,jσ
dev
ji − jNα,ip

}
(B.7.7)

where the deviatoric component is evaluated at the quadrature points and the hydrostatic
portion is evaluated at the centre of the element. The internal nodal forces are equal to
the terms inside the braces as before.

B.8 Temporal Discretization

B.8.1 Central Difference Scheme

A central difference method is adopted to advance the solution through time. The method
is developed from difference formulas for the displacement, velocity and acceleration.
Explicit time integration is used for the current study. As outlined in [116], the central
difference scheme is approximated by the subtraction of two Taylor series expansions as
follows.

The general Taylor series expansion is given by

f (tn+1) = f (tn) + (tn+1 − tn)
df (tn)

dt
+

(xj+1 − xj)
2

2

d2f (tn)

dt2
+ . . . (B.8.1)

which, rearranging and using ∆t = tn+1 − tn, gives

df (tn)

dt
=

f (tn+1)− f (tn)

∆tn
− ∆tn

2

d2f (tn)

dt2
+ . . . (B.8.2)

If two series are constructed as

fn+1 = fn +∆tf ′
n +

(∆t)2

2
f ′′
n +

(∆t)3

6
f ′′′
n + . . . (B.8.3)

fn−1 = fn −∆tf ′
n +

(∆t)2

2
f ′′
n − (∆t)3

6
f ′′′
n + . . . (B.8.4)

(B.8.5)

where the ′ indicates differentiation with respect to time and n is the time step. Subtract
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Equation B.8.4 from B.8.3 leads to

fn+1 − fn−1 = fn − fn +∆tf ′
n +∆tf ′

n +
(∆t)2

2
f ′′
n − (∆t)2

2
f ′′
n +

(∆t)3

6
f ′′′
n +

(∆t)3

6
f ′′′
n + . . .

(B.8.6)

= 2∆tf ′
n + 2

(∆t)3

6
f ′′′
n + . . . (B.8.7)

which, solving for f ′
n gives

f ′
n =

fn+1 − fn−1

2∆t
− (∆t)2

6
f ′′′
n + . . .

=
fn+1 − fn−1

2∆t
+O (∆t)2 (B.8.8)

where ignoring the higher order terms indicates that it is second order accurate in time.
A slightly different approach can be taken for solving for the displacements, velocities
and accelerations to account for variable time step size.

B.8.2 Modified Temporal Discretization

Define the displacement, velocity, acceleration and force vectors as

d =


u1

u2
...
um

 , ḋ =


v1
v2
...
vm

 , d̈ =


a1
a2
...
am

 , f =


f1
f2
...
fm


where m is the number of nodes. If the mass matrix is denoted M, the discrete weak
form of the momentum equation, Equation B.4.7, can be written as

d̈n = M−1
[
(fExternal)n − (f Internal)n

]
(B.8.9)

Define the increments in time as

∆tn+1/2 = tn+1 − tn (B.8.10)

tn+1/2 = 1/2
(
tn+1 + tn

)
(B.8.11)

∆tn = tn+1/2 − tn−1/2 (B.8.12)
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The velocity is then given as

ḋn+1/2 =
dn+1 − dn

tn+1 − tn
=

1

tn+1 − tn
(
dn+1 − dn

)
(B.8.13)

=
dn+1 − dn

tn+1 − tn
=

1

∆tn+1/2

(
dn+1 − dn

)
(B.8.14)

The above formula can rearranged to get an integration formula as

dn+1 = dn +∆tn+1/2ḋn+1/2 (B.8.15)

Correspondingly, the acceleration is given by

d̈n =
ḋn+1/2 − ḋn−1/2

tn+1/2 − tn−1/2

=
ḋn+1/2 − ḋn−1/2

∆tn
(B.8.16)

(B.8.17)

The above equation can be rewritten as

ḋn+1/2 = ∆tnd̈n + ḋn−1/2 (B.8.18)

B.8.3 Stability

The Courant number, C, is required to be less than one so that the mesh motion during
a timestep is less than the dimension of the smallest element.

C ≡ a∆t

∆x
≤ 1

where x is the smallest dimension of an element and a is the speed of sound or dilational
wave speed (a =

√
E/ρ).

B.9 Implementation

It is convenient to use Voigt notation which expresses the rate of deformation tensor and
stress tensor in a column matrix. For two dimensions, this can be expressed as

{D} =

Dx

Dy

Dxy

 and {σ} =

 σx

σy

σxy


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Using the above relations, a matrix B can be defined as the relation between the rate of
deformation and velocities as,

{D} = Bḋ (B.9.1)

Using the above definition and Equation B.2.12, the internal nodal forces are then given
by

{f} =

∫
Ω

BT {σ} dΩ (B.9.2)

The algorithm for explicit time integration is then given by

1. Set initial conditions ,

(a) ḋ0

(b) σ0

(c) d = 0

(d) n=0, t=0

(e) compute M

2. Initialization of force vectors and accelerations

(a) Set global force vector to zero fn = 0

(b) Set global external nodal forces fExternal,n = 0

(c) Set local internal forces to zero f Internal,ne = 0

(d) Loop over each element

i. Loop over quadrature points ξQ

A. Calculate internal nodal forces f Internal,ne = jBσWl

(e) Compute external nodal forces on element fExternal,n
e

(f) Compute the difference between external and internal nodal forces on element
fne = fExternal,n

e − f Internal,ne

(g) Reassemble global force vector fn from fne

(h) Compute accelerations d̈n = M−1fn

(i) Determine ∆t

3. Increment time tn+1 = tn +∆tn+1/2 and tn+1/2 = 1
2
(tn + tn+1)

4. Update nodal velocities ḋn+1/2 = ḋn +
(
tn+1/2 − tn

)
d̈n

5. Apply boundary conditions on Γ
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6. Calculate displacements dn+1 = dn +∆tn+1/2ḋn+1/2

7. Apply constitutive model knowing displacements for each element

(a) Loop over quadrature points ξQ

i. Based on constitutive model, calculate measure of deformation, exD
n−1/2
ij ,

F n
ij or E

n
ij

ii. Determine stresses, σij, at quadrature points via constitutive equation

iii. Calculate internal nodal forces f Internal,ne = jBσWl

(b) Compute external nodal forces on element fExternal,n
e

(c) Compute the difference between external and internal nodal forces on element
fn+1
e = fExternal,n+1

e − f Internal,n+1
e

(d) Reassemble global force vector fn+1 from fn+1
e

(e) Calculate internal energy

8. Determine accelerations d̈n+1

9. Calculate external and kinetic energies. Ensure energy conservation Wkinetic +
Winternal −WExternal ≤ Tolerance O(10−2)

10. Using internal energy, density and the equation of state, update pressures inside
elements.

11. Calculate new time step ∆t.

12. Return to step 3. unless simulation time reached.
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Appendix C

Arbitrary Lagrangian Eulerian
Formulation

C.1 Introduction

In finite element methods materials that undergo large deformations are difficult to sim-
ulate due to severe mesh distortions. A method to combat this problem is the arbitrary
Lagrangian Eulerian (ALE) formulation which uses a remapping step to correct for large
element deformations. In this formulation, simulation of the material movement is car-
ried out as outlined in the previous section. However, before continuing on, the mesh is
mapped from its current state back to either its original state, which in essence is per-
forming a purely Eulerian calculation, or to some arbitrary intermediate state. How the
mesh is remapped is the topic of several types of algorithms as outlined by Benson [117].
In the present work, a complete remapping to the original state is used and so the topic
of remapping algorithms is omitted here.

In addition to the presentation of the governing equations and numerical implemen-
tation of the ALE formulation, a section regarding fluid structure interaction (FSI) is
included. A discussion of the penalty coupling method which is utilized in the present
proposal is given.

C.2 An Introduction to ALE

In the ALE formulation the main concern, as was with the finite element formulation, is
the advection (movement from one element to another) of momentum as well as other
conserved variables (mass and energy). Instead of calculating the momentum at the
element level and then advecting the momentum through the faces of the element, a
staggered mesh is developed so that the momentum at the nodes is advected directly. In
essence, the ALE computation is given by:

1. Perform a Lagrangian time step.
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2. Perform an advection step.

(a) Calculate the transport of the element centered variables such as density, en-
ergy, stress tensor, and plastic strain.

(b) Calculate the momentum transport (nodal centered) and update the velocity.

The element centered variables are advected first since the mass is required to update
the velocities in the new orientation.

C.3 Fluid Structure Interaction

A penalty coupling methodology is used to model the fluid structure interaction within
LS-Dyna [49]. This method tracks the relative displacement between the node of the
solid material (sometimes referred to as the Lagrangian material) and the fluid mate-
rial (sometimes referred to as the Eulerian material). As the fluid material penetrates
the surface of the solid material a proportional force, based on the constitutive proper-
ties of the interacting materials, was distributed to the Eulerian and Lagrangian nodes.
Figure C.1 is a schematic of the penalty coupling algorithm.

Figure C.1: Schematic of the penalty couple implementation [50].
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