
Energy transport

in saturated porous media

by

Volodymyr Gerasik

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2011

c© Volodymyr Gerasik 2011



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The energy analysis of wave motion in Lamb’s problem for a poroelastic half-space in the
framework of Biot’s theory is presented. The results for the energy velocity and quality
factor of poroelastic waves are revisited.

In the case of no dissipation the approach originally established for perfectly elastic
media by Miller & Pursey is generalized herein to include poroelastic waves. Special
cases of the resonant excitation of the Rayleigh wave and the absence of the Rayleigh
wave beyond the cut-off frequency are discussed in detail. Directional diagrams for the
volumetric waves are presented. A quantitative picture of the energy partition among
the traveling waves is provided for several driving configurations. In the general case
of dissipative media the analysis is based on the semi-analytic solution of the Lamb’s
problem. In the near field, the surface load generates three wavetrains corresponding to
the bulk modes. These wavetrains consist of waves which are longer and exhibit greater
viscous attenuation than the corresponding volumetric modes, so that, P1, P2 and S modes
emerge from the corresponding wavetrains at a certain distance from the source. For the far
field, asymptotic expressions have been obtained and clearly indicate that it is only in the
far field that the wave motion represents the superposition of the P1, P2, S and Rayleigh
waves characterized by their corresponding wavelengths and attenuations. Moreover, these
waves also exhibit geometric attenuation x−3/2 (similar to the waves in a perfectly elastic
half-space). To analyze the energy partition the total input power supplied by the source is
decomposed into the contributions associated with the wavetrains and the Rayleigh wave.
These results provide the means for controlling the excitation of the various wave modes
via changes to the driving configuration.

Biot’s theory is a particular example of a non-conservative Lagrangian system with a
Rayleigh dissipation function. The group velocities of poroelastic waves are complex and
do not provide any information about the velocity of the energy transport. Moreover, in
general the precise physical meaning of the complex group velocity is unclear. The analysis
based on the detailed study of the coupled system of the damped Klein-Gordon equations
(Biot’s theory yields such a formalism in the low frequency limit) suggests that both
precise and approximate physical interpretations of the complex group velocity are possible.
Moreover, these considerations further allow the derivation of exact closed form expressions
for the energy velocity and Q factor for both longitudinal and shear poroelastic waves from
energy principles. Most notably, the analysis of the resulting expressions reveals that the
energy velocity of both longitudinal and shear waves equals (exceeds) the corresponding
phase velocity in the case of the low (full) frequency range Biot’s theory. The exact
expression for the Q factor contains an additive correction due to viscoelastic interphase
interaction in the higher frequency range.
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Chapter 1

Introduction

Wave propagation in porous materials has many applications in geophysics, acoustics, the
energy industry including petrophysics and mining engineering, and medical ultrasound
technology. For example, while seismic waves have long been used to map geological for-
mations, the concept of seismicity has been associated with the purely elastic wave propa-
gation and jointed rock masses with interfacial friction. The hydrodynamics of the fluid in
the pores was typically ignored. With the development of multiphase continuum theories
the focus on the mechanical interaction of solid and fluid has not only refined the science,
but also allowed new applications such as the real-time monitoring of oil and gas recovery,
geothermal reservoir operations, CO2 sequestration, and secure deposition of chemical and
nuclear wastes. Depending on the major practical application involved, frequency bands
may vary greatly. For example, while low-frequency seismic prospecting focuses on frequen-
cies of approximately 50 Hz, medical applications allow for frequencies up to approximately
3 MHz while testing of nanomaterials requires frequencies of approximately 100 MHz.

The early works on porous media are attributed to Fillunger (1913) [48] and Terzhagi
(1923) [113]. These two basic works form the foundation for the two approaches used
to date [18]. Fillunger was the first to examine a solid-liquid model with the concept of
volume fractions combined with surface porosity coefficients, while Terzaghi developed a
one-dimensional soil consolidation theory, the descriptive mathematical model of the de-
formation of the fluid saturated soil under stress. In [113] Terzaghi introduced the effective
stress concept (effective in moving soil or causing displacements, it represents the average
stress carried by the soil skeleton) and applied Darcy’s law to describe the behavior of
the saturating fluid. The three-dimensional generalization of the consolidation theory was
developed by Biot [10] in 1941, where constitutive relations for the two-phase continuum
were proposed. Later, in 1944, Frenkel [51] first considered acoustic wave propagation in a
two-phase continuum while studying the seismoelectric effect, and predicted the existence
of the longitudinal wave of the second kind, further known as Biot’s slow wave, or P2-wave.
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Quasi-static consolidation theory for a two-phase continuum was established by Biot in
1941 [10]. Biot’s theory of the dynamics of a fluid-saturated solid was formulated in 1956
[11, 12] summarizing all necessary physical concepts related to the acoustic wave propa-
gation. Thereafter Biot developed the theory to include the cases of anisotropic [15] and
viscoelastic [14] skeletons. Biot’s theory [11, 12] yields the correspondence principle, which
states that the equations governing the mechanics of porous media are formally the same
for an elastic or viscoelastic system, provided that the elastic coefficients are replaced by
the corresponding operators [15]. Nowadays, Biot’s theory remains the fundamental theory
of acoustical wave propagation in porous media. It is important to stress that Biot’s theory
not only predicts the existence of three wave types in porous media, two longitudinal waves
(fast and slow Biot wave), and one shear wave, but also provides adequate quantitative
estimations for the phase velocities, amplitudes and attenuations measured in both natural
and synthetic porous materials e.g. [43, 99, 92, 73, 108, 24, 49, 93, 74, 90].

Modern mathematical approaches to acoustic wave propagation in porous media include
the classical Biot model, often reformulated for the particular areas of interest [63]: the
model for sound-absorbing materials [7]; thermodynamics-based theory with a balance
equation for porosity [121]; linearized version of the theory of porous media equations
[37, 100] which follow mixture theory fundamental approaches; the Biot-Stoll model [110]
with applications to marine sediment acoustics, which considers two loss mechanisms,
intergranular friction and viscous friction due to the motion of the frame relative to the
fluid, etc. A comprehensive up to date review of the existent theories can be found in [63].

The experimental verification of the theoretically predicted slow P2-wave was first ob-
tained by Plona (1980) [97] and motivated further interest in Biot’s theory, and especially
in the properties of the P2-wave. Plona’s experiments were conducted with an artificial
material (water saturated sintered glass spheres) for a wide porosity range (8–28%) on
ultrasound frequencies (500 kHz). Johnson’s experiments (1980) [71] on the acoustic wave
propagation in porous 4He superfluid-filled media and the analysis based on Biot’s the-
ory demonstrated that the slow P2-wave is identical to the phenomenon known as fourth
sound in superfluids. Moreover, slow wave propagation in air-filled porous materials and
natural rocks offers a unique acoustical means to study certain material properties, such
as tortuosity and permeability [92]. Because the slow compressional wave is especially sen-
sitive to certain physical properties of the permeable material, the detection of this slow
compressional wave has been one of the major issues in the acoustics of fluid-saturated
permeable solids [92, 73, 122, 86]. On the other hand in situ measurements of the P2-
wave are nearly impossible due to its substantial attenuation [91, 90]. Apart from the
substantial attenuation, difficulties measuring P2-waves are also caused by the problem of
its specific excitation as well as the possibility of the extraction of the P2-wave data from
the general signal (if solely the slow wave was generated, it would be much easier to detect)
[92, 90]. The latter essentially motivates the results presented herein, which include the
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decomposition of the general signal into the contribution due to the particular wave types
as well as the study of the possibility of controlling the excitation of the waves by varying
the properties (e.g. shape, frequency) of the driving mechanism. Whether Biot’s model
may extend the technical possibilities of field measurements remains very much an open
question [122].

Throughout the following, commonly used notation will be used without explanation.
While all of what is used is standard, some of the main points are collected for the reader’s
convenience in the following list.

1. Cartesian Tensor notation will be employed for components of vectors and tensors.

2. Einstein’s summation convention will be employed, and squared vectors will be as-
sumed to be contracted (u2i = uiui).

3. Second order tensors such as the Cauchy strain tensor will be expressed in matrix form
when necessary, and rectangular Cartesian coordinates will be used unless otherwise
indicated.

4. The Dirac delta generalized function, δ(x), will be used as if it were a well-defined
function, since it will generally be integrated during the Fourier transform operation.

5. Only infinitesimal strain and linear constitutive laws will be considered.

6. Cauchy’s theorem will be used to express surface forces (or tractions) in terms of the
stress tensor.

1.1 Biot’s theory

Consider a porous material which consists of an elastic homogeneous matrix with inter-
connected pores. The pore space is filled with viscous compressible fluid. By definition,
porosity φ is the ratio of the pore volume Vp to the total volume V of the porous aggregate,

φ =
Vp
V
. (1.1)

For the unsaturated porous material the volume of the solid frame is Vs = V − Vp and
therefore it suffices to measure two of these three parameters to calculate porosity. An
overview of measurement methods can be found in [23].

The main assumptions of the theory can be summarized as follows [31, 33, 23, 63]:
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−(1− φ)σij

φpδij

Figure 1.1: Schematic force distribution in porous elementary volume

• Deformations of both solid and fluid phase are assumed to be small (e.g strains in
seismic studies are of the order 10−6). Therefore, the Eulerian and Lagrangian de-
scription coincide; constitutive equations and dissipation forces are linear; the strain
energy, kinetic energy and dissipation potential are quadratic forms in the field vari-
ables.

• The principles of continuum mechanics can be applied to measurable macroscopic val-
ues, i.e. volume averages of the corresponding microscopic values of the constituents.

• The diameter of pores is assumed to be small compared to the typical wavelength.
Thus, the local changes of porosity, permeability and densities are neglected along
with the scattering effects.

• Fluid viscosity is only taken into account for the interphase interaction. Otherwise,
the fluid phase stress is hydrostatic.

• Thermomechanical coupling and phase transitions are absent

• The material of the solid frame (grains) is assumed to be isotropic. Anisotropy is
due to the specific orientation of the pores.

Let u and U denote volume average of the displacement of the solid skeleton and
saturating fluid respectively. Assuming small deformations the solid strain tensor is the
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Cauchy strain tensor

eij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

, (1.2)

while the fluid strain is characterized by the dilatation, and hence expressed as a scalar

ε = ∇ ·U. (1.3)

Consider the forces acting on the elementary cubic volume of porous material Figure 1.1.
These forces can be separated into two parts:

1. The contact, or surface forces acting on the solid constituent can be represented by
the stress tensor





σxx σxy σxz
σyx σyy σyz
σzx σzy σzz



 , (1.4)

2. The forces acting on the fluid constituent can be represented by the diagonal tensor





s 0 0
0 s 0
0 0 s



 , (1.5)

where the scalar s is proportional to the fluid pressure p according to

s = −φp. (1.6)

With the above definitions the kinetic energy can be expressed as (summation over
repeated indices is implied here and henceforth)

T =
1

2
ρ11u̇iu̇i + ρ12u̇iU̇i +

1

2
ρ22U̇iU̇i, (1.7)

where the coefficients ρ11 and ρ22 represent the effective densities of the matrix and fluid
respectively, while ρ12 serves to describe the added mass effect. According to Biot’s theory
[11, 12] these are related to the actual solid grain and fluid densities, ρs and ρf , respectively,
by

ρ11 = (1− φ)ρs + φρf (a− 1), (1.8)

ρ12 = φρf (1− a), (1.9)

ρ22 = aφρf , (1.10)

where a is the tortuosity parameter related to the the geometry of the pores [23].
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The possible values of a are greater or equal to unity indicating that the effective masses
always exceed the actual masses. This coefficient takes into account the fact that due to an
arbitrary orientation of the pore structure the pore fluid cannot move only in the direction
of the filtration velocity φ(U̇− u̇), which is also the direction of the macroscopic pressure
gradient ∇p according to Darcy’s law. Formally, tortuosity can be defined as [33],

a =
〈fΩ(x)ρf (x)(V − u̇)2〉

φρf (U̇− u̇)2
≥ 1, (1.11)

whereV is the microscopic velocity of the fluid particle and fΩ is the characteristic function
of the volume Ω

fΩ =

{

1 x ∈ Ω,
0 x /∈ Ω,

(1.12)

and 〈 · 〉 is the volume average operator.

Note that a = 1 if and only if the pore structure is oriented in the direction of the
pressure gradient. The value of a ≈ 1.66 was obtained during experimental measurements
in the low frequency range on an ensemble of spheres. The results for different sandstones
are found in the range 1.5 < a < 5, while for the majority of sands a = 2 [107]. The
frequency dependent character of the tortuosity parameter in the higher frequency range
was studied in [70].

Consider the expression for the potential (elastic stored energy) [11]

V =
1

2
(σijeij + sε) . (1.13)

The differential form of the above equation will represent the deformation work in an
infinitesimal deformation

dV =
∂V

∂eij
deij +

∂V

∂ε
dε. (1.14)

The first term corresponds to the elementary deformation work at fixed fluid content, and
the second to the work associated with the increase of fluid due to a fixed macroscopic
deformation. Hence, the macroscopic stress tensor and pore pressure can be expressed in
the form

σij =
∂V

∂eij
, if i = j; σij =

1

2

∂V

∂eij
, if i 6= j; s =

∂V

∂ε
. (1.15)

In the vicinity of any point the deformations and stresses can be characterized by six
components of the stress tensor, pore pressure, six components of solid strain and fluid
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dilatation. In the very general case the formulation of Hooke’s law represents the relations
between stresses and strains

σxx = f1(exx, eyy, ezz, exy, exz, eyx, ε),

σyy = f2(exx, eyy, ezz, exy, exz, eyx, ε),

σzz = f3(exx, eyy, ezz, exy, exz, eyx, ε),

σxy = f4(exx, eyy, ezz, exy, exz, eyx, ε), (1.16)

σxz = f5(exx, eyy, ezz, exy, exz, eyx, ε),

σyz = f6(exx, eyy, ezz, exy, exz, eyx, ε),

s = f7(exx, eyy, ezz, exy, exz, eyx, ε).

Expanding these functions in a series to first order we find

σxx = c11exx + c12eyy + c13ezz + c14exy + c15exz + c16eyx + c17ε,

σyy = c21exx + c22eyy + c23ezz + c24exy + c25exz + c26eyx + c27ε,

· · · · · · · · · · · · · · · · · · (1.17)

σyz = c61exx + c62eyy + c63ezz + c64exy + c65exz + c66eyx + c67ε,

s = c71exx + c72eyy + c73ezz + c74exy + c75exz + c76eyx + c77ε,

where the zero order terms are not included as the undeformed state is assumed to be stress
free. Moreover, because V is an exact differential, the above linear relations are obviously
symmetric cij = cji, hence, in the general anisotropic case, 28 poroelastic constants are
required to express the constitutive relations.

In the isotropic case, these relations can be simplified further, so that only four inde-
pendent poromechanical parameters are sought. Indeed, since the stress-strain relations
must be independent of a rotation of the coordinate axes, any function of a tensor must
be a function of its invariants only. Thus, in the case of an isotropic material, when the
material behaviour is independent of the orientation of the axes, the strain potential can
be described using the three invariants of the strain tensor only

V = V(eij, ε) = V(I1, I2, I3, ε), (1.18)

where the symmetric tensor eij has the following scalar invariants

I1 = tr(eij) = exx + eyy + ezz = e,

I2 = 2
(

tr(e2ij)− I21
)

= exxeyy + exxezz + eyyezz − e2xy − e2yz − e2xz, (1.19)

I3 = |eij| .

The expansion of V in the case of a linear material can be limited to the quadratic
terms. One may therefore write

V =
1

2
(λ+ 2µ)I21 − 2µI2 +QI1ε+

1

2
Rε2, (1.20)
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where λ, µ, Q andR are four constants which completely describe the stress-strain relations
in the isotropic case.

According to (1.15) and (1.20) it can be inferred that the stress on solid and the stress
on fluid can be expressed by the following constitutive relations

σij = λeδij + 2µeij +Qεδij, (1.21)

s = Qe+Rε. (1.22)

To determine the values of the four independent coefficients λ, µ, Q andR in addition to
the porosity φ, Biot and Willis (1957) [16] introduced the following optimal combination of
measurements: the measurement of shear modulus, jacketed and unjacketed compressibility
of the porous solid, and an unjacketed coefficient of fluid content. The shear modulus µ
of the bulk material can be obtained directly, so that these values measured for the dry
or bulk material are equal under the assumption that fluid viscosity is taken into account
only in the interphase interaction. In the jacketed compressibility test, a specimen of the
material is enclosed in a thin impermeable shell and then subjected to an external fluid
pressure (however, the conventional jacketed test is usually performed on a dry specimen).
Thus the hydrostatic pressure is transmitted to the frame, and therefore the measured
bulk modulus Kb is known as the bulk modulus of the frame, or the drained modulus.
In the unjacketed compressibility test, a sample of the material is immersed in a fluid
under hydrostatic pressure which now acts on both frame and saturating fluid. Since the
solid frame is subjected to the hydrostatic pressure entirely, from inside and outside, the
resulting bulk modulus Ks is regarded as the grain bulk modulus.

The four generalized poroelastic parameters λ, µ, Q, R can be related to the porosity
φ, the bulk modulus of the solid grains Ks, the bulk modulus of the fluid Kf , the bulk
modulus of the porous drained matrix Kb, and the shear modulus µ of the bulk material
via Gedanken experiments (Biot & Willis 1957) [16]:

λ = Kb − 2µ/3 +Kf (1− φ−Kb/Ks)
2 /φeff , (1.23)

Q = φKf (1− φ−Kb/Ks) /φeff , (1.24)

R = φ2Kf/φeff , (1.25)

φeff = φ+Kf (1− φ−Kb/Ks) /Ks. (1.26)

Determination of physical properties of porous materials is also discussed in number of
papers e.g. [53, 110, 52, 81].

8



Table 1.1: Typical permeabilities of the porous materials [33]

Material Permeability, κpr [m
2]

Concrete 10−16–10−21

Clays 10−16–10−20

Bones 10−20

Granites 10−16–10−20

Sandstones 10−11–10−17

Limestone 10−12–10−26

Gravels and sands 10−9–10−12

1.1.1 Darcy’s law

In the low frequency range the laminar flow through porous medium obeys the phenomeno-
logical Darcy’s law [23],

ẇ = −κpr
η

∇p, (1.27)

where η and κpr denote the pore fluid viscosity and permeability of porous media respec-
tively, and w = φ(U̇ − u̇) is the filtration velocity. The fluid discharge is proportional to
the pressure gradient, and thus the permeability parameter is related to the ability of a
material to transmit fluids. Permeability has SI units [m2], while the traditional unit is
the Darcy (D), or millidarcy (mD) (≈ 10−15m2), the latter is better adapted to realistic
permeability measurements in rocks (see Table 1.1).

Darcy’s law is valid only provided the Reynolds number

Re =
|ẇ|l
ν
, (1.28)

does not exceed a certain critical value, where l denotes characteristic length (pore diam-
eter), ν is kinematic viscosity η = ρfν. For instance these critical values for rocks are
between 13–14, for sands 3–10 (large grains) and 0.34–0.23 (small grains, diameter less
than 0.1mm) [63].

In the framework of Biot’s theory fluid viscosity η is taken into account only during
interphase interaction. However, the assumption of Poiseuille flow inside the pores breaks
down when the frequency exceeds a certain value. In the higher frequency range the
boundary layer develops as well as a phase shift between the stress on the wall and the
relative fluid flow. The critical frequency for the Darcy’s flow is [12]

ft =
πη

4d2
, (1.29)
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where d is the diameter of the pores. This corresponds to the value for which a quarter
wavelength of the boundary layer is of the order of the pore diameter d. For instance, in
the case of water at 15◦C ft = 100 Hz for d = 10−2 cm, and ft = 104 Hz for d = 10−3

cm. The extension of the Biot’s theory beyond the critical frequency ft requires special
consideration (complex viscosity, frequency correction factor). In particular, in the higher
frequency range even in the case of zero pressure gradient a fluid discharge can be generated
by inertial forces alone. As will be further discussed this results in additional inertial terms
in (1.27) (Biot–Darcy law).

Finally, it should be mentioned that Johnson, Koplik & Dashen (1987) [70] developed a
theory of dynamic permeability and tortuosity in fluid-saturated porous media, considering
the problem of the response of a Newtonian fluid saturating an isotropic porous medium
subjected to an infinitesimal oscillatory pressure gradient. The results presented include
closed form frequency dependent relations for the tortuosity and permeability valid in the
full frequency range.

1.1.2 Governing equations and boundary conditions

Viscous dissipation in Biot’s theory depends only on the relative motion between the fluid
and solid. It vanishes when there is no relative motion u̇i = U̇i. The dissipation function,
or dissipation pseudo-potential D can be defined as the quadratic form [11, 59, 23]

2D = b(u̇i − U̇i)
2, (1.30)

where the coefficient b = ηφ2/κpr is in agreement with Darcy’s law (1.27) in the low
frequency range.

Consider the Lagrange’s equations [59, 23]

∂

∂t

∂L
∂q̇i

+
∂

∂xj

∂L
∂qi,j

− ∂L
∂qi

+
∂D

∂q̇i
= 0, (1.31)

where six generalized coordinates qi represent solid and fluid displacements ui and Ui. With
the above introduced expressions for the kinetic energy, potential energy and dissipation
function,

2T = ρ11u̇
2
i + 2ρ12u̇iU̇i + ρ22U̇

2
i , (1.32)

2V = σijeij + sε, (1.33)

2D = b(u̇i − U̇i)
2, (1.34)

Lagrange’s equation simplifies to

∂

∂t

∂T

∂q̇i
− ∂

∂xj

∂V

∂qi,j
+
∂D

∂q̇i
= 0. (1.35)
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    Darcy flow Laminar flow

Inertia Viscous effects

ft fc

Figure 1.2: Frequency range in Biot’s theory, critical frequency ft and characteristic fre-
quency fc.

The first term in (1.35) represents the rate of change of momentum, the second term
corresponds to the elastic forces and the final term describes the action of viscous friction.

From (1.35) one can derive

∂2

∂t2
(ρ11ui + ρ12Ui)− σij,j + b

∂

∂t
(ui − Ui) = 0, (1.36)

∂2

∂t2
(ρ12ui + ρ22Ui)− s,i − b

∂

∂t
(ui − Ui) = 0, (1.37)

or alternatively, in terms of solid and fluid displacements

(λ+ µ)∇∇ · u+ µ∇2u+Q∇∇ ·U = ρ11ü+ ρ12Ü+ b
(

u̇− U̇
)

, (1.38)

Q∇∇ · u+R∇∇ ·U = ρ12ü+ ρ22Ü− b
(

u̇− U̇
)

. (1.39)

Two interphase coupling mechanisms are considered in the model, inertial coupling
due to different accelerations of the phases, and the viscous coupling due to interphase
interaction. When the frequency approaches a certain characteristic frequency fc [11]

fc =
b

2π(ρ12 + ρ22)
=

ηφ

2πκprρf
, (1.40)

inertia and viscous forces are of the same order. An alternative definition of the charac-
teristic frequency also commonly used in the literature [70] is

fc =
b

2πa∞(ρ12 + ρ22)
=

ηφ

2πa∞κprρf
, (1.41)

where a∞ is the low frequency tortuosity parameter. The introduction of the character-
istic frequency fc in addition to the critical frequency ft (1.29) allows for the distinction
regarding the character of the flow inside the pores as shown in Figure 1.2.
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Note that the second momentum equation can be rewritten in terms of pressure p and
filtration velocity ẇ

ẇ = −κpr
η

∇p− κprρf
η

[

(1− a)ü+ aÜ
]

, (1.42)

so that in the case of steady flow ü = Ü = 0 classical Darcy’s law (1.27) can be recovered
exactly. Unlike the classical Darcy’s law in the case of zero pressure gradient inertia driven
flow may induce fluid discharge. The governing equations (1.38), (1.39) are only valid in
the low frequency range f < ft, when the flow inside the pores is of Poiseuille type and
yields Darcy’s law.

Consider the limiting cases of unsaturated and totally saturated porous solid. In the
case of unsaturated porous solid φ = 0. Consequently ρ11 = ρs, ρ12 = ρ22 = 0, Q = R = 0,
b = 0, so that (1.39) vanishes, while (1.38) degenerates into the equations for the perfect
solid

(λ+ µ)∇∇ · u+ µ∇2u = ρsü, (1.43)

where λ = Ks − 2µ/3.

In the case of the total saturation φ = 1. Setting a = 1, so that ρ11 = ρ12 = 0, ρ22 = ρf ,
and Kb = µ = 0, so that λ = Q = 0, R = Kf and now (1.38) vanishes while the equation
(1.39) recovers the equation of the perfect fluid

Kf∇∇ ·U = ρfÜ. (1.44)

Boundary conditions

The formulation of the boundary conditions for the set of governing equations (1.38),
(1.39) includes the following main configurations: the contact of two poroelastic solids, the
contact of poroelastic solid and fluid or perfectly elastic solid. External tractions acting on
the porous interface can be prescribed as follows from the scheme in Figure 1.3 in the form
of a liquid stamp, a permeable stamp, and an impermeable stamp. Finally, two different
conditions can be prescribed at the free interface of the poroelastic solid.

In the case of the contact of two porous solids it is necessary to require continuity of
the following quantities [41],

σnn + s, u̇n, σnα, p, ẇn, (1.45)

where σnn, σnα denote normal and shear components of the stress, and u̇n and ẇn denote
normal components of the solid phase velocity and relative fluid velocity. This corresponds
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a) b) c)

Figure 1.3: Scheme of possible types of boundary conditions; a) liquid stamp, b) imper-
meable stamp, c) permeable stamp.

to the situation of open pores, so that the pore fluid is free to move through the interface.
On the other hand, the alignment of the pores can produce an interfacial flow area which is
smaller than that in either medium adjacent to the interface. This effect might be realized
physically by inserting a porous membrane between the two media. Flow through such an
interface would result in a pressure drop across the interface,

p(1) − p(2) = kẇn, (1.46)

where k is a coefficient of resistance. Thus, in the case of the open pores k = 0, in the case
of a partially permeable membrane k has to be determined experimentally. The limiting
case k = ∞ corresponds to the impermeable membrane, so that ẇn = 0 in (1.45). The
contact of the two porous solids has been considered e.g. in [53, 34].

The above general conditions reduce to the special cases of contact between a porous
medium and an impermeable elastic solid or a liquid. In the case of the contact of perfectly
elastic solid and porous media the boundary conditions are

σnn + s = σ′
nn, σnα = σ′

nα, u̇n = u̇′n, u̇α = u̇′α, U̇n − u̇n = 0. (1.47)

where primes denote the characteristics of the perfect solid. These conditions has been
used in e.g. [53, 106]. In the case of the contact of a perfect fluid with a porous medium
the boundary conditions are

σnn + s = −p′, σnα = 0, p = p′, (1− φ)u̇n + φU̇n = U̇ ′
n, (1.48)

where primes denote the characteristics of the fluid. The latter condition implies the
continuity of the fluid flow through the interface and stems from the continuity of u̇n+ ẇn
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along the interface. The corresponding problems have been considered in [38, 46, 66, 102,
111, 123].

In the case of the free porous interface two different boundary conditions can be pre-
scribed, depending on whether open pores (permeable boundary) or closed pores (imper-
meable boundary) are considered.

1) open pores
σnn = 0, σnα = 0, s = 0; (1.49)

2) closed pores
σnn + s = 0, σnα = 0, u̇n − U̇n = 0. (1.50)

A comparative study of wave reflection from free boundaries can be found in [40, 61]. In
the case of the free boundary of a poroelastic half-space it is only the surface Rayleigh
wave that may propagate along the interface (eigen-oscillations).

Finally, in the case of external tractions distributed over a certain area of the porous
interface possible boundary conditions include the following cases [94],

1) liquid stamp
σnn = −(1− φ)p′, σnα = 0, s = −φp′; (1.51)

2) impermeable stamp
σnn + s = 0, σnα = 0, un = Un; (1.52)

3) permeable stamp
σnn = −p′, σnα = 0, s = 0. (1.53)

These are the boundary conditions usually prescribed at the plane boundary of a poroelastic
half-space for the solution of the Lamb’s problem [75], the classical problem of perfect
elasticity theory. This problem is given detailed consideration further in Chapter 3.

Higher frequency range. Viscosity correction factor

In the higher frequency range, beyond the critical frequency ft, the flow inside the pores
is no longer of Poiseuille type. Thin boundary layers develop in the vicinity of the pore
wall where the action of the viscous forces is confined, whereas away from the boundary
layer the flow is assumed to be potential. As a result there is a phase shift between the
relative fluid velocity and the friction force. To elaborate the action of the friction forces
in the higher frequency range Biot introduced the complex frequency dependent correction
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Figure 1.4: Frequency correction factors according to Biot [12] (solid lines) and Johnson
et al. [70] (dashed lines) for the case of circular pores. Real parts (left), imaginary parts
(right).

factor F , so that in the higher frequency range the coefficient b in the governing equations
(1.38), (1.39) must be replaced with bF , where [12]

F(κ) =
1

4

(

κT (κ)

1− 2T (κ)/iκ

)

, T (κ) =
ber′(κ) + ibei′(κ)

ber(κ) + ibei(κ)
, κ = δ

(

f

fc

) 1

2

, (1.54)

δ is the structural factor which is related to the pore geometry and thus to be determined
from experimental data, bei and ber are zero order Kelvin’s functions of the first kind. In
other words, the static viscosity η is replaced with the dynamic value ηF(κ) (complex, or
dynamic viscosity). While the pore structure varies greatly, the consideration of all geo-
metric factors is nearly impossible, in derivation of (1.54) Biot assumed that the character
of the interphase friction force along the fluid / solid interface is analogous to that in the
case of viscous flow in a duct (slit-like pores) and pipe (circular pores) of constant cross-
sectional area. For instance, the value of structural factor δ =

√
8a corresponds to circular

pores. In the low frequency range, the frequency correction factor approaches unity F ≈ 1.

Johnson et al. [70] suggest the following expression for the frequency correction factor

F =

√

1 +
iMjs

2

f

fc
, Mjs =

8a∞κpr
φΛ2

, (1.55)

where fc is given by (1.41), Λ is a parameter related to the pore geometry. Apart from
(1.54) the frequency dependence in the form (1.55) is widely used in the literature, e.g.
[108, 7, 104]. The comparison of the results for the circular pores is provided in Figure 1.4.
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Finally, the governing equations valid for the full frequency range can be summarized
as follows,

(λ+ µ)∇∇ · u+ µ∇2u+Q∇∇ ·U = ρ11ü+ ρ12Ü+ bF
(

u̇− U̇
)

, (1.56)

Q∇∇ · u+R∇∇ ·U = ρ12ü+ ρ22Ü− bF
(

u̇− U̇
)

, (1.57)

so that the low frequency range theory and the higher frequency range theories can be
represented with one set of equations. In his further reformulations of the theory Biot in-
troduced the concept of viscodynamic operator Ȳ , which is a functional of the differential
operator d/dt to incorporate the viscosity correction [14]. In anisotropic media the visco-
dynamic operator Ȳij is a symmetric tensor functional of the second rank with complex
components, functions of frequency.

1.2 Wave propagation

Analysis of the governing equations (1.56), (1.57) obtained for the full-frequency range
allows the study of the wave propagation in a porous solid. Generally speaking, this analysis
for the unbounded media reveals the existence of three wave types, two dilatational modes
and one shear [11, 12]. In the case of the stress-free plane boundary, one can derive the
dispersion relation of the surface Rayleigh wave [39]. The basic properties of the waves
propagating in porous solid are briefly outlined in the following.

The frequency dependent character of the phase velocities and attenuations is illustrated
based on the following parameter set [44],

λ = 0.4026GPa, µ = 0.2493GPa, R = 0.0295GPa, Q = 0.0672GPa,

ρ11 = 1.9259 · 103kg/m3, ρ22 = 0.2151 · 103kg/m3, ρ12 = −0.0019 · 103kg/m3,
(1.58)

appropriate for sediment acoustics, and adopted throughout the section.

1.2.1 Longitudinal waves

Applying the divergence operator to the governing equations (1.56), (1.57) one can obtain
the equations governing the propagation of the dilatational waves

∇2 [(λ+ 2µ) e+Qε] =
∂2

∂t2
(ρ11e+ ρ12ε) + bF (κ)

∂

∂t
(e− ε) , (1.59)

∇2 [Qe+Rε] =
∂2

∂t2
(ρ12e+ ρ22ε)− bF (κ)

∂

∂t
(e− ε) , (1.60)
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where e = ∇ · u, ε = ∇ ·U.

The following nondimensional parameters are introduced

γ11 =
ρ11
ρ
, γ12 =

ρ12
ρ
, γ22 =

ρ22
ρ
,

q11 =
λ+ 2µ

H
, q12 =

Q

H
, q22 =

R

H
,

(1.61)

where ρ = ρ11 + ρ22 + 2ρ12, H = λ+ 2µ+R + 2Q, so that equations (1.59), (1.60) read

c2∇2 (q11e+ q12ε) =
∂2

∂t2
(γ11e+ γ12ε) + F (κ)

b

ρ

∂

∂t
(e− ε) , (1.62)

c2∇2 (q12e+ q22ε) =
∂2

∂t2
(γ12e+ γ22ε)− F (κ)

b

ρ

∂

∂t
(e− ε) , (1.63)

where the reference velocity c is defined as c =
√

H/ρ.

A plane wave solution of the form

e = C1e
i(kx+ωt), ε = C2e

i(kx+ωt), (1.64)

leads to a dispersion relation

(

q11q22 − q212
)

z2 −
(

q11γ22 + q22γ11 − 2q12γ12 −
ibF
ρω

)

z +

(

γ11γ22 − γ212 −
ibF
ρω

)

= 0,

(1.65)

where z = (ck/ω)2. Two complex roots zI, zII of the quadratic equation (1.65) are therefore
related to the slownesses and attenuations of the two dilatational waves,

√
zI =

kIc

ω
= ℜ(√zI) + iℑ(√zI),

√
zII =

kIIc

ω
= ℜ(√zII) + iℑ(√zII). (1.66)

The roots are conventionally distinguished by the values of the phase velocity at zero
frequency as shown in Figure 1.5. Thus, the faster wave, or the wave of the first kind, is
referred to as the P1-wave, while the slower wave, or wave of the second kind, is referred
to as the P2-wave.

The corresponding phase velocities vI and vII can be found as

vI

c
=

1

ℜ(√zI)
,

vII

c
=

1

ℜ(√zII)
, (1.67)

while the attenuation coefficients ℑ(kI) and ℑ(kII) are given by the following expressions

ℑ(kI)L = |ℑ(√zI)|
f

fc
, ℑ(kII)L = |ℑ(√zII)|

f

fc
, (1.68)
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Figure 1.5: Phase velocities of dilatational waves of the first kind (left) and of the second
kind (right). Dashed lines indicate the corresponding result when neglecting frequency
correction.
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Figure 1.6: Attenuation coefficients of longitudinal waves of the first kind (left) and of
the second kind (right). Dashed lines indicate the corresponding result when neglecting
frequency correction.
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Figure 1.7: Attenuation per cycle of dilatational waves of the first kind (left) and of
the second kind (right). Dashed lines indicate the corresponding result when neglecting
frequency correction.

where L = c/2πfc is characteristic length.

In addition, it is convenient to introduce a frequency dependent length scales LI

ω =
c(ℜ√zI)/f and LII

ω = cℜ(√zII)/f related to the corresponding wavelengths, so that kIL
I

ω

and kIIL
II

ω represent nondimensional attenuations per cycle,

ℑ(kI)L
I

ω = 2π

∣

∣

∣

∣

ℑ(√zI)
ℜ(√zI)

∣

∣

∣

∣

, ℑ(kII)L
II

ω = 2π

∣

∣

∣

∣

ℑ(√zII)
ℜ(√zII)

∣

∣

∣

∣

. (1.69)

Note that the attenuation per cycle is closely related to the Q factor of a dissipative
oscillatory system, as discussed in detail further in Chapter 8. The results for the phase
velocity and attenuations of the dilatational waves are provided in Figures 1.5, 1.6, 1.7
respectively.

In the following, the fundamental properties of the dilatational waves are summarized.

• In the case of no dissipation b = 0, P1-wave and P2-wave respectively correspond to
the in phase and out of phase motion of the solid matrix and pore fluid [11];

• In the low frequency range the phase velocity of the P1-wave approaches the char-
acteristic velocity c =

√

H/ρ, while the phase velocity of the P2-wave tends to zero,

vII ∼ c
√

f/fc [63];

• Attenuation of the P2-wave is significantly (several orders of magnitude) greater than
than the attenuation of the P1-wave;
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• In the high frequency limit the phase velocities of dilatational waves approach the
constant values corresponding to the case of no dissipation b = 0 (in which case
dilatational waves are not dispersive);

• Attenuation coefficient increases as ω1/2 and attenuations per cycle decreases as ω−1/2

in the high frequency range [12];

• In the limiting case of weak interphase interaction, so that b≪ 1, γ12 ≪ 1, q12 ≪ 1,
ρ12 ≪ 1, P1 and P2 waves phase velocities approach the longitudinal phase velocities
of the waves in a corresponding homogeneous solid continuum cs =

√

(λ+ 2µ)/ρ11
and a corresponding compressible fluid cf =

√

R/ρ22 [102, 63].

1.2.2 Shear waves

Shear waves can be analyzed in a similar manner where now a starting point is the equations
obtained from the governing equations (1.56), (1.57) by the application of curl operator.

Hence, denoting vectors ~ψ = ∇×u and ~Ψ = ∇×U one can obtain the following equations

µ∇2 ~ψ =
∂2

∂t2

(

ρ11 ~ψ + ρ12~Ψ
)

+ bF(κ)
∂

∂t

(

~ψ − ~Ψ
)

, (1.70)

0 =
∂2

∂t2

(

ρ12 ~ψ + ρ22~Ψ
)

− bF(κ)
∂

∂t

(

~ψ − ~Ψ
)

. (1.71)

Consider a rotational plane wave propagating in the x direction, so that

ψ = C1e
i(kx+ωt), Ψ = C2e

i(kx+ωt). (1.72)

With these definitions (1.70) and (1.71) yields

q2µzC1 = γ11C1 + γ12C2 − Ξ(C1 − C2), (1.73)

0 = γ12C1 + γ22C2 + Ξ(C1 − C2), (1.74)

where Ξ and qµ are defined as

Ξ =
ibF
ρω

, qµ =

√

µ

H
. (1.75)

Note that shear wave amplitudes in the solid and in the fluid are linearly dependent.
Indeed, the second equation (1.74) reads

C2 =
γ12 + Ξ

Ξ− γ22
C1 =MsC1, Ms =

γ12 + Ξ

Ξ− γ22
. (1.76)

20



0 10 20 30 40 50
0

0.04

0.08

0.12

0.16

0.2

0 10 20 30 40 50
1

1.012

1.024

1.036

1.048

1.06

f/fcf/fc

v s
/c
q µ

ℑ(
k

s
)L

ω
s

Figure 1.8: Phase velocity (left) and attenuation per cycle (right) of rotational waves.
Dashed lines indicate the corresponding result when neglecting frequency correction.

Elimination of C1 and C2 in the equations (1.73), (1.74) gives the expression for the shear
waves phase velocity vs

vs
cqµ

=
1

ℜ(√z) , z = γ11 + γ12M3 − Ξ(1−M3), (1.77)

where cqµ =
√

µ/ρ is the reference velocity of the rotational waves. In the high frequency
limit ω → ∞

vs → v∞s =

√

µ

ρ11 − ρ2
12

ρ22

, (1.78)

what corresponds to the phase velocity of the rotational waves in the case of no dissipation
[11].

Introducing the characteristic lengths Ls = cqµ/2πfc and Lωs = cqµℜ(z)/f the at-
tenuation coefficients and attenuations per cycle of rotational waves can be evaluated as
follows

ℑ(ks)Ls =
∣

∣ℑ(
√
z)
∣

∣

f

fc
, ℑ(ks)Lωs = 2π

∣

∣

∣

∣

ℑ(√z)
ℜ(√z)

∣

∣

∣

∣

, (1.79)

The results for the phase velocity and attenuation per cycle are plotted in Figure 1.8. The
fundamental properties of the shear waves can be summarized as follows.

• The phase velocity of the rotational waves is always smaller than the velocity of the
fast compressional wave for a physically meaningful mechanical parameter set;
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• Shear waves in pore fluid exist in both dissipative and non-dissipative media. In
the latter case the vorticity in the inviscid fluid is non-zero due to inertial coupling
as long as in the co-occupied continuum Biot’s theory the velocity field U does not
represent the actual microscopic flow but the average volume flow [11];

• In the low frequency range the phase velocity of the rotational waves approaches the
reference velocity vs → cqµ =

√

µ/ρ, while in the high frequency limit it tends to

vs →
√
µ/
√

(ρ11 − ρ12/ρ22) what corresponds to the case of no dissipation b = 0 (in
which case shear waves are not dispersive) [11];

• The attenuation coefficient increases as ω
1

2 and attenuation per cycle decreases as
ω− 1

2 at the high frequency range [12];

• In the case of weak interphase interaction, dispersion relation (1.77) provides vs =
√

µ/ρ11, the shear wave phase velocity in the corresponding solid continuum.

1.2.3 Surface waves

Surface waves are waves which propagate along the interface between media with different
mechanical properties. In solid mechanics and poromechanics surface waves are the only
possible wave motion with no forcing and a free boundary (i.e. normal modes). Maximum
amplitudes of the surface waves are found at the boundary, and appreciable amplitudes
are only found in the neighborhood of this boundary. Surface waves commonly exhibit
relatively low attenuation when propagating along the interface and exponential decay
away from the interface.

Various problems of surface wave propagation along the interface of porous media have
been considered in a series of papers by Deresiewicz and his coworkers (1960–1967), e.g.
[39, 40, 41]. The effect of the boundary conditions as well as the problem of reflection and
refraction at the plane porous interface has been investigated for a number of configurations
including porous half-space with the free plane boundary (Rayleigh waves), porous layer
(Love waves), two porous media with different properties having a common plane boundary
(Lamb waves), and a liquid layer supported by the porous half-space (Stoneley waves). The
study of Rayleigh waves [4, 6, 39, 40, 61, 69, 88, 102, 112, 123] is mostly motivated by the
problems of quantitative seismology [2], while the study of Stoneley waves [32, 45, 46, 66,
105, 119] is mainly of interest in the fields of borehole acoustics and sediment acoustics
[67].

The existence of the Rayleigh wave propagating along the plane boundary separating
porous media and a vacuum was first reported in the works of Deresiewicz and (indepen-
dently) Johnson [39, 40, 69]. In particular, a numerical analysis of the secular equation
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(pertaining to a kerosene-saturated sandstone) revealed a high frequency cut-off for the sur-
face wave for certain values of the dynamical coefficients [39]. Thus, unlike the Rayleigh
wave in a perfectly elastic solid, in a poroelastic solid saturated with an inviscid fluid the
Rayleigh wave may not exist [39, 88]. It is important to distinguish between the Rayleigh
wave propagating along the impermeable and permeable interface in accordance with the
choice of the boundary conditions (1.49) or (1.50). Thus, while in the case of a permeable
boundary there exists only one surface wave, in the case of an impermeable boundary two
different surface modes can be observed [61]. The first wave propagates with the phase
velocity close to that of the surface wave in the half-space with a permeable boundary, and
exhibits relatively low attenuation. The second wave attenuates more rapidly, with the
phase velocity approaching the velocity of the slow longitudinal wave in the high frequency
limit. The greater part of energy transferred by the first wave is concentrated in the elastic
skeleton. Most of energy of the significantly attenuating wave is concentrated in the liquid.

Using Biot theory in a high-frequency approximation, Feng & Johnson [45] performed
a detailed study of surface waves propagating along the interface between a porous solid
and a fluid. It has been found that, in the high-frequency range, one, two or three surface
modes can propagate, depending on the elastic parameters of the skeleton and fluid and
the conditions on the interface. Feng & Johnson distinguished a true mode, whose velocity
is lower than the velocities of all body waves in both contacting media, and Rayleigh and
Stoneley leaky modes (pseudo interfatial waves). While the true mode propagates along
the interface without attenuation, the leaky modes [2] are substantially attenuated due to
energy radiation into the depth of the porous medium and the fluid (or only the porous
medium). Dispersion characteristics of these waves in the general dissipative formulation
were obtained e.g. in [32, 66]. Recently, it has been demonstrated that the pseudo modes
may have physical significance for the transient problem [119].

Finally, consider a dispersion relation of the Rayleigh wave propagating along the plane
permeable interface between the porous half-space and vacuum (a detailed derivation is
provided in Chapter 3)

(

2p2 − p2s
) [

n1(p
2 −m2)− n2

(

p2 −m1

)]

+ 2p2ξs (n2ξ1 − n1ξ2) = 0, (1.80)

where pi, i = 1, 2, s represent the complex slownesses (per unit characteristic slowness 1/c)

of the P1, P2 and S-waves respectively, ξ1,2 =
(

p2 − p21,2
) 1

2 , ξs = (p2 − p2s)
1

2 , and

m1,2 =
λ+ 2µ+QM1,2

2µ
p21,2, n1,2 =

Q+RM1,2

2µ
p21,2, (1.81)

M1,2 =
q22γ11 − q12γ12 − (q11q22 − q212)z̄1,2 − (q22 + q12)ibF/ωρ

q12γ22 − q22γ12 − (q22 + q12)ibF/ωρ
. (1.82)

The results for the phase velocity vr and attenuation per cycle krLωr are provided in Fig-
ure 1.9. The results for the low and high frequency limits for all four waves is summarized
in Table 1.2.
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Figure 1.9: Phase velocity (left) and attenuation per cycle (right) of the Rayleigh wave.
Dashed line indicates attenuation per cycle of rotational wave for comparison.

The main fundamental properties of the poroelastic Rayleigh wave in the case of a
permeable boundary can be summarized as follows.

• The particle motion in this wave is elliptic (prograde and retrograde) as can be
verified by the analysis of the displacement fields [3];

• Depending on the values of poroelastic parameters the Rayleigh wave either propa-
gate in the whole frequency range, or may have an upper cut-off frequency [39, 87];

• The phase velocity of the Rayleigh wave is slightly non-monotonic in the low fre-
quency range [3, 39]. Attenuation of the Rayleigh wave is higher than attenuation of
the shear wave [39];

• In the high frequency limit the phase velocity approaches the constant value corre-
sponding to the case of no dissipation b = 0 (in which case the Rayleigh wave is not
dispersive);

• Transcendental nature of the dispersion relation prevents qualitative analysis for the
attenuations at high frequency range;

• In the limiting case of an unsaturated medium, such that γ12 = γ22 = 0, q12 = q22 = 0,
φ = 0, b = 0 dispersion relation recovers the dispersion relation of the Rayleigh waves
in perfectly elastic solid [102]

(

2p2 − 1
)2 − 4p2

(

p2 − p21
) 1

2
(

p2 − 1
) 1

2 = 0. (1.83)
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Table 1.2: Low and high frequency limiting values of the phase velocities for parameter set
(1.58).

P1-wave P2-wave S-wave Rayleigh wave
Low frequency limit, [m/s] 705.95 0 341.54 319.20
High frequency limit, [m/s] 706.346 326.77 359.79 326.26

1.3 Summary of the Introductory Chapter

The main subject matter of the thesis is the energy analysis of wave motion in a poroe-
lastic half-space under the action of distributed loads. Despite the large number of topics
covered in the literature on poroelastic wave propagation, the energy partition analysis of
wave motion in porous media has not been considered. Most notably, the qualitative en-
ergy partition analysis presented in the following indicates the possibility of controlling the
excitation of the various wave types through the driving configuration, which in turn may
have broad practical implications (e.g. geophysics, non-destructive testing, acoustoelec-
tronics and medical ultrasound devices). Apart from these main results, energy transport
characteristics of poroelastic waves such as group velocity, energy velocity and quality fac-
tor are investigated. An energetic interpretation of the complex group velocity is obtained.
Fundamental relations for the energy velocity and quality factor are revisited. The content
of the thesis is organized as follows.

Introductory Chapters 2, 3 include the derivation of the energy balance equation and
the formal solution of the Lamb’s problem for a poroelastic half-space (permeable stamp
version), respectively, thus providing the necessary foundation for further analysis. Previ-
ously known energy balance equations, i.e. Carcione (2007) [31] and Dazel et al. (2008)
[36] stem from the complex Poynting theorem (complex power flow) [8] and the theorem
of kinetic energy [33], respectively (the latter implies that for any material subdomain and
for any velocity field whether actual or virtual, the sum of the powers of external, inertia,
and internal forces is zero). The alternative derivation of the energy balance equations
presented herein follows the Poynting theorem methodology as described in [8] and can
be thought of as a generalization of the low frequency energy balance equation derived by
Deresiewicz [41]. In the higher frequency range interphase interaction is viscoelastic, so
that it is characterized by an elastic energy storage as well as viscous dissipation. This
mechanism is reflected by the presence of an additional term in the energy balance equa-
tion which quantitatively represents the rate of change of the elastic stored energy. The
formal solution of the Lamb’s problem provided for the case of open boundary implies two
possibilities for the surface wave. Depending on the choice of mechanical parameters the
Rayleigh wave either exists over the whole frequency range, or may have a high-frequency
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cut-off beyond which the wave vanishes [39, 87].

The energy analysis of poroelastic waves in the case of non-dissipative porous medium
is provided in Chapter 4. The energy budget is quantitatively analyzed in the framework
of the classical Miller & Pursey approach to elastodynamics problems [84, 85, 64]. Gener-
alization of this well-known approach to the case of a multiphase continuum allows for the
decomposition of the total input power entering the poroelastic half-space into the con-
tributions due to particular poroelastic waves. Special cases such as resonant excitation
and possible absence of the surface wave are given detailed consideration from an energetic
point of view.

Chapter 5 is dedicated to the analysis of the structure of the wave field at the sur-
face of a poroelastic half-space subjected to the action of line traction. Using complex
analysis methods it is shown that the contributions of the body waves can be represented
in the form of corresponding branch-cut integrals, while the contribution of the surface
Rayleigh wave can be taken into account in the form of the residual term. The analysis of
the resulting expressions reveals the following: in the near field a line traction generates
three wavetrains corresponding to the body waves which represent the superposition of the
spectrum components characterized by certain velocity and attenuation bands. Asymp-
totic results indicate that P1, P2 and S waves emerge from corresponding wavetrains at a
certain distance from the source, moreover, these body waves propagating along the plane
boundary are subjected to geometric attenuation, which is found quantitavely to be x−3/2,
similar to the classical results in perfect elasticity theory.

The properties of the poroelastic wavetrains are further investigated in Chapter 6. It is
demonstrated that in the case of a distributed source, the waves beneath the contact area
represent the superposition of standing waves. In turn, this allows for decomposition of
the total power supplied by the source into the constituent powers due to particular wave
types. Unlike the case of no dissipation, some of these contributing powers can possibly
be negative as long as the corresponding displacements are essentially in phase with the
external stress (e.g. this is especially vivid in the case of resonant excitation of the Rayleigh
wave). Energy analysis reveals the possibilities of controlling the generation of poroelastic
waves. The special case of the absence of the Rayleigh wave is considered in detail. Power
redistribution between the surface Rayleigh wave and P2-wave, also previously encountered
in the case of no dissipation, is explained by the presence of an additional leaky Raleigh
mode (the root of the dispersion relation situated on the “unphysical” Riemann sheet).

Chapters 7 and 8 represent the second logical part of the thesis. The scope of Chapter
7 is the energy analysis of the complex group velocity, while the Chapter 8 is dedicated
to such fundamental energy transport characteristics of poroelastic waves as energy ve-
locity and Q factor. The considerations provided in Chapter 7 are intended to expound
the complex group velocity from energy principles for a class of hyperbolic, dissipative
dynamical systems. It is demonstrated that the complex group velocity can possibly be
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related to such energetic characteristics of dissipative media as energy flux, energy losses,
and kinetic energy. The remarkable examples of exact interpretations of the complex group
velocity from energy principles are outlined, including electromagnetic waves in partially
conducting media, and waves governed by the Klein-Gordon equation with dissipation.
Approximate energetic interpretations of complex group velocities are obtained for both
longitudinal poroelastic waves. The expressions for the energy velocity and Q factor of
poroelastic longitudinal and shear waves are rigorously derived from energy considerations
in Chapter 8. Most notably, the analysis of the resulting expressions reveals that the energy
velocity of both longitudinal and shear waves equals (exceeds) the corresponding phase ve-
locity in the case of the low (full) frequency range Biot’s theory. The exact expression for
the Q factor contains an additive correction due to viscoelastic interphase interaction in
the higher frequency range. The comparison with previously known results on the topic,
namely these summarized in Carcione 2007 [31], is given detailed consideration.

Several parts of this thesis have appeared in the literature. The results of Chapters 3
and 5 appeared in [55, 54], the results of Chapters 7 in [56], the results of Chapter 8 (also
briefly introduced in Chapter 2) appeared in [58]. The results of Chapter 4 are presently
being revised, [57].

Finally, the general conclusions are summarized in Chapter 9.
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Chapter 2

Poroelastic Poynting theorem

According to Biot’s theory [11] the kinetic energy density T , potential energy density V
(strain energy), and dissipation function D (Rayleigh dissipation pseudopotential), are
respectively,

2T = ρ11u̇
2
i + 2ρ12u̇iU̇i + ρ22U̇

2
i , (2.1)

2V = σijeij + sε, (2.2)

2D = b(u̇i − U̇i)
2, (2.3)

where u and U are the displacements of the solid and fluid phases respectively, ρij is the
mass matrix whose diagonal (off-diagonal) components represent reference phase densities
(added mass effects); b = φ2ηf/K, where φ, ηf and K denote porosity, viscosity and
permeability, respectively. The solid stress σij, and the stress on fluid s, are related to the
solid strain tensor eij, and fluid strain ε,

eij =
1

2
(ui,j + uj,i) , ε = Ui,i, (2.4)

via constitutive equations

σij = λekkδij + 2µeij +Qεδij, (2.5)

s = Qekk +Rε. (2.6)

The generalized poroelastic parameters λ, µ, Q andR are related to porosity, bulk modulus
of the solid, bulk modulus of the fluid, bulk modulus of the porous drained matrix, and
shear modulus of both the matrix and of the composite [16].
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2.1 Low frequency range

Consider the rate of change of the total mechanical energy per unit volume Σ,

d

dt

∫∫∫

Σ

(T + V ) dΣ = (2.7)

=

∫∫∫

Σ

[(

ρ11üi + ρ12Üi

)

u̇i +
(

ρ22Üi + ρ12üi

)

U̇i + σiju̇i,j + sU̇i,i

]

dΣ,

which, with the application of Gauss’ theorem, reads (S = ∂Σ),

d

dt

∫∫∫

Σ

(T + V ) dΣ = −
∫∫

S

(

−σiju̇i − sU̇iδij

)

njdS− (2.8)

−
∫∫∫

Σ

[(

σij,j − ρ11üi − ρ12Üi

)

u̇i +
(

s,i − ρ22Üi − ρ12üi

)

U̇i

]

dΣ.

The coefficients in front of u̇i and U̇i in the volume integral represent the difference between
the rate of change of the linear momentum and surface forces acting on the solid and fluid
phases respectively. According to the low frequency Biot’s theory these are frictional forces,
proportional to the filtration velocity b(u̇i − U̇i). Including possible external volumetric
forces acting on the solid skeleton, F s

i , and on the pore fluid, F f
i , one recovers the governing

equations from energy principles,

ρ11üi + ρ12Üi = σij,j + F s
i − b

(

u̇i − U̇i

)

, (2.9)

ρ22Üi + ρ12üi = s,i + F f
i + b

(

u̇i − U̇i

)

. (2.10)

Consequently, according to (2.8), (2.9) and (2.10) the energy balance equation reads,

Wvol =
d

dt

∫∫∫

Σ

(T + V ) dΣ +

∫∫

S

~P · n̂ dS + 2

∫∫∫

Σ

DdΣ, (2.11)

where Wvol denotes the source power of the volumetric forces,

Wvol =

∫∫∫

Σ

(

F s
i u̇i + F f

i U̇i

)

dΣ, (2.12)

and the poroacoustic Poynting vector is defined as

Pj = −σiju̇i − sU̇iδij, (2.13)
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so that the expression Pjnj can be interpreted as the energy flux per unit area in the
direction of the outward surface normal vector n̂. The terms on the right hand side of
(2.11) represent the rate of change of the total mechanical energy, energy flux and power
dissipation, respectively.

2.1.1 Poroacoustic Poynting vector

In the case of harmonic motion, the value of the period-average flux density is often impor-
tant. For example in the 2D case, for the time dependence eiωt, one derives the following
expressions for the period-averaged components of the Poynting vector

〈Px〉 =
iω

4
(σxxu

∗
x − σ∗

xxux + σxzu
∗
z − σ∗

xzuz + sU∗
x − s∗Ux) , (2.14)

〈Pz〉 =
iω

4
(σzzu

∗
z − σ∗

zzuz + σxzu
∗
x − σ∗

xzux + sU∗
z − s∗Uz) , (2.15)

where a superscript star denotes the complex conjugate (expressions with an opposite sign
correspond to a time dependence of the form e−iωt).

2.2 Full frequency range

In the higher frequency range the derivation of the energy balance equation requires special
care. So far, the damping factor b was assumed to be purely real, as is the case for purely
viscous interphase interaction and hence is restricted to the low frequency range. In the
higher frequency range it is necessary to include viscoelastic effects and thus introduce the
complex viscosity Fηf (by means of the frequency dependent complex correction factor
F) to describe the lag between the filtration velocity and the shear stress exerted on the
pore wall [12]. As a result, in the general form, governing equations (2.9)–(2.10) contain a
complex, frequency dependent coefficient bF = bFR + ibFI, and thus can only be satisfied
exactly with complex form solutions.

Assuming the solutions to be of the form ui = ûi + iũi, Ui = Ûi + iŨi, the real parts of
the governing equations can be written as follows (σ̂ij,j and ŝ,i denote the real parts of the
corresponding quantities)

ρ11 ˆ̈ui + ρ12
ˆ̈Ui = σ̂ij,j + Fsi − bFR

(

ˆ̇ui − ˆ̇Ui

)

+ bFI

(

˜̇ui − ˜̇Ui

)

, (2.16)

ρ22
ˆ̈Ui + ρ12 ˆ̈ui = ŝ,i + Ffi + bFR

(

ˆ̇ui − ˆ̇Ui

)

− bFI

(

˜̇ui − ˜̇Ui

)

. (2.17)
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Multiplying the above equations by ˆ̇ui and
ˆ̇Ui respectively and then adding the two one

obtains the following expression

d

dt

(

1

2
ρ11 ˆ̇u

2
i + ρ12 ˆ̇ui

ˆ̇Ui +
1

2
ρ22

ˆ̇U2
i

)

= (2.18)

= σ̂ij,j ˆ̇ui + ŝ,i
ˆ̇Ui + Fsi ˆ̇ui + Ffi

ˆ̇Ui − bFR

(

ˆ̇ui − ˆ̇Ui

)2

+ bFI

(

˜̇ui − ˜̇Ui

)(

ˆ̇ui − ˆ̇Ui

)

,

which after integration over the volume and application of Gauss theorem can be written
in the form of an energy balance,

Wvol =
d

dt

∫∫∫

Σ

(T + V ) dΣ +

∫∫

S

~P · n̂ dS + 2

∫∫∫

Σ

DdΣ− 2

∫∫∫

Σ

Ω dΣ, (2.19)

where

D =
1

2
bFR

(

ˆ̇ui − ˆ̇Ui

)2

, Ω =
1

2
bFI

(

˜̇ui − ˜̇Ui

)(

ˆ̇ui − ˆ̇Ui

)

. (2.20)

The energy balance equation (2.19) is valid in the full frequency range, and the result
(2.11) can be recovered from (2.19) for the low frequency range by taking F ≈ 1. Unlike
(2.11) the dissipation function D in (2.19) is defined in a more general form, moreover,
(2.19) contains an additional term Ω to account for the rate of change of the total elastic
stored energy.

2.2.1 Elastic energy stored

During the deformation of a viscoelastic body, part of the total work of deformation is
dissipated as heat through viscous losses but the reminder of the deformation energy is
stored as elastic energy. Elastic stored energy is potential energy [115]. In a porous solid
in the higher frequency range the interphase interaction is viscoelastic. Consequently,
similarly to viscoelastic materials the rate of change of the total mechanical energy per
unit volume E = T + V [as it follows from (2.19) in the absence of volumetric forces]
is characterized by the power dissipation 2D and the rate of change of the elastic stored
energy 2Ω,

Ė = −2D + 2Ω. (2.21)

It is frequently of interest to determine the amount of energy dissipated as well as the
amount of energy stored. According to (2.16) the forces acting on the solid phase exerted
by the fluid

−bFR

(

ˆ̇ui − ˆ̇Ui

)

+ bFI

(

˜̇ui − ˜̇Ui

)

. (2.22)
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While the first term represents the component of the force which is out of phase with

the relative solid velocity
(

ˆ̇ui − ˆ̇Ui

)

, and thus corresponds to viscous frictional force, the

second term is π/2 phase-shifted compared to the relative solid velocity and in phase with

the relative solid displacement
(

ûi − Ûi

)

. Therefore, the latter component corresponds to

the elastic deformation.

Consequently, the elastic energy stored can be quantified as follows,

E =
1

2
bFI

(

˜̇ui − ˜̇Ui

)(

ûi − Ûi

)

, (2.23)

so that the following obvious identity holds

dE
dt

= 2Ω. (2.24)

The elastic energy stored E builds to a maximum followed by recovery over each cycle, as
a result the rate of change of the energy stored in one cycle is necessarily zero, 〈Ω〉 = 0.
The time-averaged value of the elastic energy stored per unit volume 〈E〉 can be quantified
in terms of complex solutions ui, Ui as follows,

〈E〉 = 1

4
ωbFI (ui − Ui) (ui − Ui)

∗ =
1

4
ωbFI |ui − Ui|2 , (2.25)

in which case the maximum energy stored is given by 2 〈E〉.

2.3 Average energy balance equations

In the case of harmonic motion of angular frequency ω, averaging (2.19) over one cycle one
finds

〈Wvol〉 =
∫∫

S

〈~P 〉 · n̂ dS + 2

∫∫∫

Σ

〈D〉 dΣ, (2.26)

so that the part of the power supplied by the source is lost due to viscous dissipation while
the remaining part is transported through the boundary. This is the very general form of
the average energy balance equation suitable for both low and full frequency range.

Semi-infinite solid

Consider the particular case of a semi-infinite solid under the action of a surface distributed
source in the absence of volumetric forces. Let the surface traction be applied over the
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finite area S0, S0 ⊂ S,

∫∫

S0

〈~P 〉 · n̂ dS +

∫∫

S/S0

〈~P 〉 · n̂ dS + 2

∫∫∫

Σ

〈D〉 dΣ = 0. (2.27)

While the contribution from the second term in (2.27) vanishes, the power of the surface
traction 〈W 〉 is given by the first term of (2.27),

〈W 〉 = −
∫∫

S0

〈~P 〉 · n̂ dS. (2.28)

Consequently, the average power supplied by the source is dissipated as in the case of
damped harmonic oscillator,

〈W 〉 = −2

∫∫∫

Σ

〈D〉 dΣ. (2.29)

Assuming no dissipation 〈D〉 = 0 the average energy balance equation (2.27) can be
recast as follows

〈W 〉 =
∫∫

S/S0

〈~P 〉 · n̂ dS, (2.30)

in which case the energy supplied by the source is radiated away at infinity as in the case
of a semi-infinite perfect elastic solid.
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Chapter 3

Lamb’s problem. Formal solution

Consider the equations governing the propagation of poroelastic waves (Biot 1956b),

(λ+ µ)∇∇ · u+ µ∇2u+Q∇∇ ·U = ρ11ü+ ρ12Ü+ bF
(

u̇− U̇
)

, (3.1)

Q∇∇ · u+R∇∇ ·U = ρ12ü+ ρ22Ü− bF
(

u̇− U̇
)

, (3.2)

on a two-dimensional poroelastic half-space that occupies the region z > 0 and is subjected
to the action of an external harmonic traction Pf(x)eiωt, so that the forces are applied
normally at the boundary z = 0 and act exclusively on the solid matrix. We recover a line
source if f(x) = δ(x) and distributed source if f(x) ≡ 0, |x| > a and f(x) 6= 0, |x| ≤ a. In
this formulation of the Lamb’s problem the boundary conditions at the surface z = 0 can
be represented in the form

σzz(x, 0, t) = Pf(x)eiωt, σxz(x, 0, t) = s(x, 0, t) = 0. (3.3)

A standard Helmholtz decomposition allows for the expansion of the displacement fields
into irrotational and solenoidal components by means of only three scalar functions Φ1, Φ2

and Ψs as follows,

u = ∇Φ1 +∇× jΨs,U = ∇Φ2 +Ms∇× jΨs, ∇ · jΨs = 0, (3.4)

where Ms is some quantity to be determined hereafter. This leads to the following set of
equations in the frequency domain,

A~∇2~Φ + ω2N~Φ = 0, ∇2Ψs + ω2χΨs = 0, (3.5)

where ~Φ = (Φ1,Φ2),

A =

(

λ+ 2µ Q
Q R

)

, N =

(

ρ11 − ibF/ω ρ12 + ibF/ω
ρ12 + ibF/ω ρ22 − ibF/ω

)

,

χ =
1

µ
[ρ11 +Msρ12 − (1−Ms) ibF/ω] , Ms = −ρ12 + ibF/ω

ρ22 − ibF/ω .
(3.6)
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In terms of nondimensional parameters x̄ = ωx/c, z̄ = ωz/c (henceforth bars over spatial
coordinates are omitted, all spatial variables are implied nondimensional, per unit length
c/ω, unless otherwise specified),

γ11 = ρ11/ρ, q11 = (λ+ 2µ)/H, c =
√

H/ρ,

γ12 = ρ12/ρ, q12 = Q/H, ρ = ρ11 + 2ρ12 + ρ22,

γ22 = ρ22/ρ, q22 = R/H, H = λ+ 2µ+R + 2Q,

(3.7)

(3.5) and (3.6) read respectively,

Ā~∇2~Φ + N̄~Φ = 0, ∇2Ψs + χ̄Ψs = 0, (3.8)

where

Ā =

(

q11 q12
q12 q22

)

, N̄ =

(

γ11 − ibF/ρω γ12 + ibF/ρω
γ12 + ibF/ρω γ22 − ibF/ρω

)

,

χ̄ =
H

µ
[γ11 + γ12Ms − (1−Ms) ibF/ρω] , Ms = −γ12 + ibF/ρω

γ22 − ibF/ρω .
(3.9)

With a similarity transformation Ā−1N̄ = SΛS−1, Λ = diag (z1, z2) the first equation
(3.8) decouples into two wave equations in an eigenvector reference system. Here z1,2
denotes the distinct roots of the characteristic polynomial of the similarity transformation,

(q11q22 − q212)z
2 − (q11γ22 − 2q12γ12 + q22γ11 − ibF/ωρ)z +

+(γ11γ22 − γ212 − ibF/ωρ) = 0, (3.10)

which provides the dispersion relation for the two compressional waves (Biot 1956b). The
connection between the reference systems is given by the eigenvector matrix S, normalized
as follows,

(

Φ1

Φ2

)

= S

(

Φ∗
1

Φ∗
2

)

, S =

(

1 1
M1 M2

)

. (3.11)

Consequently, one arrives at the following set of Helmholtz equations,

∇2Φ∗
1 + z̄1Φ

∗
1 = 0, ∇2Φ∗

2 + z̄2Φ
∗
2 = 0, ∇2Ψs + χ̄Ψs = 0, (3.12)

where

Φ1 = Φ∗
1 + Φ∗

2, Φ2 =M1Φ
∗
1 +M2Φ

∗
2, (3.13)

M1,2 =
q22γ11 − q12γ12 − (q11q22 − q212)z̄1,2 − (q22 + q12)ibF/ωρ

q12γ22 − q22γ12 − (q22 + q12)ibF/ωρ
. (3.14)
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The solutions of the above Helmholtz equations (3.12) in Fourier space (transformed
solutions will be indicated by the arguments),

f(p) =

∫ +∞

−∞

f(x)e−ipxdx, f(x) =
1

2π

∫ +∞

−∞

f(p)eipxdp, (3.15)

can be written as follows,

Φ∗
1,2 = A1,2 exp (−ξ1,2z) , Ψs = As exp (−ξsz) ; (3.16)

ξ1,2 =
(

p2 − p21,2
) 1

2 , ξs =
(

p2 − p2s
) 1

2 , p1,2 =
√
z1,2, ps =

√
χ̄, (3.17)

where A1,2 and As remain to be determined from the boundary conditions. In this notation,
the corresponding phase velocities of the P1-, P2- and S-waves are the expressions ci =
c/pi, i = 1, 2, s respectively, and thus the parameters pi, i = 1, 2, s represent corresponding
nondimensional slownesses.

It now remains to satisfy the boundary conditions. According to (2.5), (2.6) and rep-
resentation (3.4),

σzz = λ∇2Φ1 +Q∇2Φ2 + 2µ

(

d2Φ1

dz2
+
d2Ψs

dxdz

)

,

σxz = µ

(

2
d2Φ1

dxdz
+
d2Ψs

dx2
− d2Ψs

dz2

)

, (3.18)

s = Q∇2Φ1 +R∇2Φ2.

Taking into account the solutions (3.17) and the boundary conditions (3.3), one arrives at
the following algebraic system in slowness–frequency space,



















A1

(

m1 − p2
)

+ A2

(

m2 − p2
)

+ Asipξs = −Pf(p)
2µ

,

2A1ipξ1 + 2A2ipξ2 + As
(

2p2 − p2s
)

= 0,

A1n1 + A2n2 = 0,

(3.19)

where

m1,2 =
λ+ 2µ+QM1,2

2µ
p21,2, n1,2 =

Q+RM1,2

2µ
p21,2. (3.20)

The application of the boundary conditions uniquely determines the values of the unknown
coefficients A1,2, As:

A1 = −Pf(p)n2 (2p
2 − p2s)

2µF (p, ω)
, A2 = Pf(p)

n1 (2p
2 − p2s)

2µF (p, ω)
, (3.21)

As = −Pf(p)2ip (n1ξ2 − n2ξ1)

2µF (p, ω)
, (3.22)

F (p) =
(

2p2 − p2s
) [

n1(p
2 −m2)− n2

(

p2 −m1

)]

+ 2p2ξs (n2ξ1 − n1ξ2) . (3.23)
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The equation F (p) = 0 is the dispersion relation of the surface Rayleigh waves. The root
of this equation, if one exists, is denoted by pr and the corresponding phase velocity is
cr = c/pr.

The results for the displacement fields in nondimensional slowness space can be sum-
marized as follows,









ux
uz
Ux
Uz









=









ip ip ξs
−ξ1 −ξ2 ip
ipM1 ipM2 ξsMs

−ξ1M1 −ξ2M2 ipMs













A1e
−zξ1

A2e
−zξ2

Ase
−zξs



 . (3.24)

Three typical driving configurations

(i) f(x) = δ(x), f(p) = 1;

(ii) f(x) = 1, f(p) =
2a sin(ap)

ap
; (3.25)

(iii) f(x) = cos(p0x), f(p) = a

[

sin a(p+ p0)

a(p+ p0)
+

sin a(p− p0)

a(p− p0)

]

;

a line source (i), and two distributed sources (f(x) ≡ 0, |x| > a), (ii) and (iii), are
considered in the following. Solutions (3.24) and relations (3.25) constitute the foundation
for further analysis.
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Chapter 4

Energy partition and resonant

excitation in the case of no

dissipation

Two-dimensional motion of non-dissipative poroelastic half-space under the action of nor-
mal harmonic driving forces is considered in the context of Biot’s theory of poroelasticity.
The classical approach to the energy analysis of the wave motion in the Lamb’s problem,
originally established for elastic waves by Miller & Pursey (1954, 1955) [84, 85], is applied
to poroelastic non-dissipative waves. The total power radiated by the source is represented
as a superposition of the powers transported by poroelastic waves viz. P1, P2, S and
surface Rayleigh waves. Two possible situations are considered, one in which the Rayleigh
mode does and one in which it does not exist in the poroelastic half-space. The energy
partition results are presented for several driving configurations to investigate the possibil-
ities of controlling the excitation of particular wave types. The results are compared with,
and recover in the limiting case, those known from classical elasticity theory.

The energy partition among longitudinal, shear and surface Rayleigh waves in the
Lamb’s problem [75] has been a subject of intense research in the classical elasticity theory
[64] ever since the pioneering work of Miller & Pursey. In the context of Biot’s theory
[11, 12] the mathematical complexity has prevented any quantitative energy analysis of the
wave motion. Nevertheless, the classical approach originally established by Miller & Pursey
for elastic waves can also be applied to an idealized case of non-dissipative poroelastic
waves. Such idealization implies either the assumption of inviscid interphase interaction,
or the high frequency limit of the dynamical system (since in this limit the dissipation
terms in the governing equations become asymptotically smaller compared to the inertia
terms). In the absence of dissipation the far-field interior solution for a poroelastic half-
space under the action of harmonic surface loads can be obtained by use of the asymptotic
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results suggested by Miller & Pursey [84, 64]. The expression for the poroelastic Poynting
vector [102, 123, 104] takes a more complicated form in a two-phase continuum as it
now contains the information about the energy transported by the two longitudinal waves
(i.e. the P1 and P2-waves) propagating in both the solid and fluid phases, as well as
the shear wave (i.e. the S-wave) in the solid phase. The surface Rayleigh wave in a
porous solid and its relative contribution to the energy budget can be analyzed similarly
to the case of a perfectly elastic solid [64] with evaluation of the corresponding residues.
Moreover, the governing equations of elasticity theory represent an appropriate limiting
case of Biot’s theory [23, 102]. Consequently, the energy partition results known from
elasticity, in particular these obtained for the two-dimensional problem by Meleshko [82],
can be recovered from the solutions obtained herein.

The energy budget considered consists of the energy transported by the P1 and P2-
waves in both fluid and solid phases, and by the S-wave and Rayleigh wave in the solid phase
(the absolute values of these average powers are often referred to as wave intensities). As
will subsequently be discussed, the shear wave in the fluid phase, although excited, does
not carry any energy as long as there is no energy flux associated with this wave; the
contribution of the Rayleigh wave in the fluid phase is minuscule due to the particular
choice of boundary conditions. It is important to stress that unlike the case of perfectly
elastic solid in the fluid saturated porous solid the Rayleigh wave does not always exist
[87]. The comparison of the energy partition results for the two different cases reveals that
when the Rayleigh wave is absent, the P2-wave contribution to the energy budget becomes
notably more significant, and even predominant.

4.1 Far-field interior solution in the absence of dissi-

pation

Neglecting b in the governing equations, consider the idealized case of no dissipation. When
viscous dissipation effects due to interphase interaction are ignored, phase velocities are
purely real and the wave fields are undamped and non-dispersive.

Introducing polar coordinates

x = R sin θ, z = R cos θ, R =
√
x2 + z2, (4.1)

the displacement fields can be expressed as follows,

uR = ux sin θ + uz cos θ, uθ = ux cos θ − uz sin θ; (4.2)

UR = Ux sin θ + Uz cos θ, Uθ = Ux cos θ − Uz sin θ; (4.3)
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in which case the inversion of the Fourier transform in (3.24) provides the solution for the
above displacement fields in terms of 12 integrals of the type

I =

+∞
∫

−∞

χ(p)eRq(p)dp, (4.4)

where q(p) = ip sin θ − (p2 − p2i )
1

2 cos θ, i = 1, 2, s.

Estimation of the above integral does not pose any mathematical difficulty owing to
the classical asymptotic result by Miller & Pursey (1954),

I ∼
√

2πpi
R

χ(−pi sin θ) exp
[

i
(π

4
− piR

)]

cos θ +O(R− 3

2 ), 0 ≤ θ <
π

2
, (4.5)

as R → ∞, see also Graff (1991).

Application of the steepest descent approximation (4.5) to (3.24) in polar coordinates
provides the following expressions in the far-field,

uR(R, θ) =
Pc

2µω

√

1

2πR

[

p
3/2
1 Ap1(θ) exp

(

−ip1R + i
3π

4

)

+

+ p
3/2
2 Ap2(θ) exp

(

−ip2R + i
3π

4

)]

+O(R− 3

2 ),

uθ(R, θ) =
Pc

2µω

√

1

2πR
p5/2s Ash(θ) exp

(

−ipsR + i
π

4

)

+O(R− 3

2 ), (4.6)

UR(R, θ) =
Pc

2µω

√

1

2πR

[

p
3/2
1 M1Ap1(θ) exp

(

−ip1R + i
3π

4

)

+

+ p
3/2
2 M2Ap2(θ) exp

(

−ip2R + i
3π

4

)]

+O(R− 3

2 ),

Uθ(R, θ) =
Pc

2µω

√

1

2πR
p5/2s MsAsh(θ) exp

(

−ipsR + i
π

4

)

+O(R− 3

2 ),

where

Ap1(θ) = f(p1 sin θ)
n2

(

2p21 sin
2 θ − p2s

)

cos θ

F (p1 sin θ)
,

Ap2(θ) = −f(p2 sin θ)
n1

(

2p22 sin
2 θ − p2s

)

cos θ

F (p2 sin θ)
, (4.7)

Ash(θ) = −f(ps sin θ)
n1ξ2(ps sin θ)− n2ξ1(ps sin θ)

F (ps sin θ)
sin(2θ).
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The direct substitution of expressions (4.6) into the constitutive relations in polar
coordinates (see Appendix A) yields

σR = −iP
√

1

2πR

[

m1p
1/2
1 Ap1(θ) exp

(

−ip1R + i
3π

4

)

+

+ m2p
1/2
2 Ap2(θ) exp

(

−ip2R + i
3π

4

)]

+O(R− 3

2 ),

σRθ = − iP
2

√

1

2πR
p7/2s Ash(θ) exp

(

−ipsR + i
π

4

)

+O(R− 3

2 ), (4.8)

s = −iP
√

1

2πR

[

n1p
1/2
1 Ap1(θ) exp

(

−ip1R + i
3π

4

)

+

+ n2p
1/2
2 Ap2(θ) exp

(

−ip2R + i
3π

4

)]

+O(R− 3

2 ).

The asymptotic results (4.6) and (4.8) allow for the separation of P1, P2 and S motions
along a cylindrical surface of sufficiently large radius R, i.e. the expressions uθ, Uθ and σRθ
represent the displacements of, and the stresses on, the solid in the shear wave, while uR,
UR, σR and s represent a superposition of the longitudinal waves,

uR = up1R + up2R , UR = Up1
R + Up2

R ;

σR = σp1R + σp2R , s = sp1 + sp2.
(4.9)

It can be noted that the only difference between the expressions for the solid and fluid
phases is the presence of the amplitude factors M1, M2 and Ms. Thus for example, for
parameter set I, provided in table 4.1, these values are M1 = 1.091, M2 = −8.262, Ms =
−γ12/γ22 = −0.009. Unlike P1 motion, the P2-wave in the fluid exhibits amplitudes
approximately eight times larger compared to those in the solid phase. Moreover, these
two waves are out of phase in accord with predictions in (Biot 1956a). In this example the
amplitude of the shear wave in the fluid phase is approximately two orders of magnitude
smaller compared to that in the solid phase. In general Ms < 0, and thus these two waves
are also out of phase in the far-field.

The absolute values of the functions Ap1(θ), Ap2(θ), Ash(θ) with f(p) ≡ 1 plotted
versus polar angle −π/2 < θ < π/2 are shown in Figure 4.1 (parameter set I, table 4.1).
The radiation pattern of poroelastic P1 and S-waves appears very similar to that of purely
elastic P and S-waves (Miller & Pursey 1954, Graff 1991).

4.2 Energy partition

As was mentioned above, the energy budget consists of the power transported by the P1
and P2-waves in both the fluid and solid phases, and by the S-wave and Rayleigh wave in
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P1-wave P2-wave S-wave

Figure 4.1: Directional diagrams (polar plots) of the far-field displacements −π
2
< θ < π

2
.

the solid phase. The energy spent in generating the Rayleigh wave can be derived from
the expression for the total power radiated by the source. In turn, the power flow through
the cylindrical surface of large radius R can be represented as a superposition of power
contributions due to the longitudinal and transverse waves. Consequently, the total power
is represented in terms of power contributions due to longitudinal, transverse and Rayleigh
waves.

4.2.1 Total power and Rayleigh wave contribution

For driving forces normal to the surface z = 0, the input source power W can be expressed
as follows,

〈Pz〉 =

{

0, |x| > a;
1
2
ωPf(x)Imuz(x, 0), |x| ≤ a;

(4.10)

〈W 〉 =
c

ω

a
∫

−a

〈Pz〉 dx = cP

a
∫

0

f(x)Imuz(x, 0)dx, (4.11)

where a is a nondimensional parameter related to c/ω, and according to (3.24) the expres-
sion for uz(x, 0) is

uz(x, 0) = − cp2sP

4πµω

+∞
∫

−∞

f(p)
n2ξ1(p)− n1ξ2(p)

F (p)
eipxdp. (4.12)

Assuming the existence of the root of the Rayleigh equation, F (pr) = 0, the imaginary
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part of the principal value of the integral (4.12) can be represented as follows

Imuz(x, 0) = − cp2sP

2πµω

max(p2,ps)
∫

0

f(p)Im

[

n2ξ1(p)− n1ξ2(p)

F (p)

]

cos(px)dp+

+
cp2sP

2πµω
f(pr)Im

[

πi
n2ξ1(pr)− n1ξ2(pr)

F ′(pr)

]

cos(prx),

(4.13)

where the latter residual term corresponds to the Rayleigh wave displacement. This allows
the explicit separation of the power spent in the generation of the surface wave 〈W s

r 〉. The
equations (4.11) and (4.13) yield

〈W s
r 〉 =

c2P 2p2s
4πµω

[f(pr)]
2 Im

[

πi
n2ξ1(pr)− n1ξ2(pr)

F ′(pr)

]

. (4.14)

Alternatively, in the absence of the Rayleigh pole, the residual term in (4.13) vanishes and
〈W s

r 〉 = 0.

4.2.2 Longitudinal and shear waves contribution

In order to separate out the power spent in generation longitudinal and shear waves the
total power flow through a cylindrical surface of sufficiently large radius R is considered,

〈Wcyl〉 = 2

π/2
∫

0

〈PR〉Rdθ, (4.15)

〈PR〉 =
iω

4
(σRu

∗
R
− σ∗

R
uR + σRθu

∗
θ − σ∗

Rθu
∗
θ + sU∗

R
− s∗UR) . (4.16)

Taking into account (4.9) the radial component of the Poynting vector reads,

PR = −σRu̇R − σRu̇R − σRθu̇θ − sU̇R =

= −
(

σp1
R

+ σp2
R

) (

u̇p1
R
+ u̇p2

R

)

− σs
Rθu̇

s
θ −

(

sp1 + sp2
)

(

U̇p1
R

+ U̇p2
R

)

= (4.17)

= −σp1
R
u̇p1

R
− σp2

R
u̇p2

R
− σsRθu̇

s
θ − sp1U̇p1

R
− sp2U̇p2

R
,

where the upper index is introduced to denote the type of body wave. Fortunately, the
remaining terms obtained by cross multiplication in (4.17) vanish,

−σp1
R
u̇p2

R
− σp2

R
u̇p1

R
− sp1U̇p2

R
− sp2U̇p1

R
= 0. (4.18)
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The above statement is based on the application of the following identities:

M1 = −m2

n2

, M2 = −m1

n1

, (4.19)

whose proof is more cumbersome than complicated (4.4). In particular, these identities
give rise to the following relations for the longitudinal stresses and displacements in the
far-field:

σp1
R
up2

R
+ sp1Up2

R
= 0, σp2

R
up1

R
+ sp2Up1

R
= 0. (4.20)

According to (4.17), the total average power flow in the interior consists of the power
contributions spent in the generation of P1, P2 and S-waves in the solid phase, and power
contributions spent in the generation of P1 and P2-waves in the fluid phase.

Finally, taking into account the power spent in the generation of the Rayleigh wave
(4.14) one arrives at (upper index denotes either fluid or solid phase)

〈W 〉 = 〈Wcyl〉+ 〈W s
r 〉 = 〈W s

p1〉+ 〈W s
p2〉+ 〈W f

p1〉+ 〈W f
p2〉+ 〈W s

sh〉+ 〈W s
r 〉, (4.21)

where 〈W s
r 〉 is given by (4.14), and as follows from (4.6), (4.8) and (4.15)–(4.17),

〈W s
p1〉 =

c2P 2

4πµω
p21m1

π/2
∫

0

Ap1(p1 sin θ)A∗
p1(p1 sin θ)dθ, (4.22)

〈W f
p1〉 =

c2P 2

4πµω
p21n1M1

π/2
∫

0

Ap1(p1 sin θ)A∗
p1(p1 sin θ)dθ, (4.23)

〈W s
p2〉 =

c2P 2

4πµω
p22m2

π/2
∫

0

Ap2(p2 sin θ)A∗
p2(p2 sin θ)dθ, (4.24)

〈W f
p2〉 =

c2P 2

4πµω
p22n2M2

π/2
∫

0

Ap2(p2 sin θ)A∗
p2(p2 sin θ)dθ, (4.25)

〈W s
sh〉 =

c2P 2

8πµω
p6s

π/2
∫

0

Ash(ps sin θ)A∗
sh(ps sin θ)dθ. (4.26)

In particular, the following identities hold for the average powers transported by longi-
tudinal waves in terms of coefficients M1 and M2,

W s
p1

W f
p1

= −M2

M1

,
W s
p2

W f
p2

= −M1

M2

. (4.27)
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Table 4.1: Poromechanical parameters (GPa), reference phase densities (kgm−3); nondi-
mensional slownesses and velocities (m s−1)

λ µ Q R ρ11 ρ12 ρ22
I 0.2493 0.2493 0.0672 0.0295 1.9259·103 -0.0019·103 0.2151·103
II 0.2493 0.2493 0.0672 0.0295 1.9259·103 -0.1500·103 0.2151·103
III 0.2493 0.2493 0 0 1.9259·103 0 0

p1 p2 ps pr c1 c2 cs cr
I 1 2.074 1.815 2.081 653.358 315.005 359.788 313.918
II 0.975 2.401 1.902 – 721.930 293.156 369.974 –
III 1 – 1.732 1.884 623.168 – 359.786 330.788

Table 4.2: Energy partition results for load (i) (units ωQ2/2πµ and percentage)

〈W s
p1〉 〈W f

p1〉 〈W s
p2〉 〈W f

p2〉 〈W s
sh〉 〈W s

r 〉 〈W 〉
I 0.176 0.023 0.044 0.334 0.341 0.439 1.356

13.0% 1.7% 3.3% 24.6% 25.1% 32.3% 100%
II 0.142 0.034 0.163 0.673 0.339 – 1.351

10.5% 2.5% 12.1% 49.8% 25.1% – 100%
III 0.258 – – – 0.334 0.576 1.169

22.1% – – – 28.6% 49.3% 100%
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Figure 4.2: Energy partition results for load (ii) (percentage) versus distribution radius a;
a) parameter set I; b) parameter set II.
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Figure 4.3: Energy partition results for load (iii) (percentage) versus distribution radius a;
a) parameter set I, load (iii) with p0 = pr; b) parameter set II, load (iii) with p0 = p2.
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Figure 4.4: Specific source powers 〈W 〉/2a (units cp2sP
2/2πµ) versus distribution radius a;

a) parameter set I; b) parameter set II; curves 1 and 2 correspond to loads (ii) and (iii).
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Figure 4.5: Energy partition results in the limiting case of perfectly elastic solid (percent-
age) versus distribution radius a; a) parameter set III, load (ii); b) parameter set III, load
(iii) with p0 = pr.

4.2.3 Numerical examples

The energy partition results are presented for the three different parameter sets provided
in table 4.1 and driving configurations (3.25). The choice of poromechanical parameters
is mainly dictated by theoretical reasoning. This exemplifies the possible absence of the
surface Rayleigh wave and allows the recovery of previously known results for purely elastic
waves (Meleshko 1981) in the limiting case. Thus, parameter sets I and II cover the two
possible situations in which the Rayleigh wave exists (I) or does not exist (II), while
parameter set III corresponds to the limiting case of perfectly elastic media characterized
by Poisson coefficient ν = 0.25. In the latter case the P2 motion is not present and the
energy is transported by means of longitudinal, shear and Rayleigh waves in which case
(4.21) degenerates to

〈W 〉 = 〈Wp〉+ 〈Wsh〉+ 〈Wr〉. (4.28)

The action of the line source (load i) represents the limiting case of a uniform load (load
ii). As a → 0, 2acP/ω → Q, where Q represents the force per unit length. The results
for the energy partition according to (4.22)–(4.26) and (4.14) are summarized in table 4.2.
The results for case I indicate that approximately 43% of the total power is transported
by the longitudinal waves, 15% by the P1-wave and 28% by the P2-wave, 25% by the
shear wave and 32% by the Rayleigh wave. The corresponding results for parameter set II
suggest that approximately 75% of the source power is transported by longitudinal waves,
13% by the P1-wave and 62% by the P2-wave, and 25% by the shear wave. In the absence
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of the Rayleigh wave the most significant fraction of the total energy, approximately 50%,
is transported by the P2-wave in the fluid phase. The results for parameter set III recover
the energy partition results for the perfectly elastic half-space, and these are in agreement
with Meleshko (1981).

The energy partition results for parameter sets I and II in the case of distributed
loads (ii) and (iii) are provided in figures 4.2 and 4.3 respectively. Note that in the case
of load (iii) two different configurations are used, p0 = pr for parameter set I (resonant
excitation), and p0 = p2 for parameter set II. Figure 4.4 contains the corresponding specific
powers, 〈W 〉/2a (dimensional a). Finally, the results for distributed loads in the limit of
a perfectly elastic medium (parameter set III) are provided in Figure 4.5, and again these
are in agreement with Meleshko (1981).

4.3 Chapter Summary

The energy analysis of the wave motion in the two-dimensional Lamb’s problem for non-
dissipative poroelastic half-space is presented. These results obtained for both line and
distributed surface loads cover two possible situations depending on whether the surface
Rayleigh wave exists in the poroelastic half-space or not. The energy budget considered
consists of the average powers transported by the longitudinal P1 and P2-waves in both
fluid and solid phases, and by the S-wave and Rayleigh wave in solid phase. The shear
wave and the Rayleigh wave although excited in the fluid phase do not contribute to the
energy budget. The shear wave in the fluid phase has no corresponding energy flux and
thus does not transfer energy as indicated by the expression for the radial component of
the Poynting vector. The situation when the propagating wave carries no energy may
seem somewhat paradoxical, however, this is only a consequence of the generally accepted
idealization in macroscopic theories: each point in space is assumed to be co-occupied by
both solid and fluid particles. Unlike the case of the shear wave, the Rayleigh wave in the
fluid does transfer energy, however, the corresponding contribution into the energy budget
is negligible. Indeed, since the amplitudes of the Rayleigh waves (in both fluid and solid
phases) reach their maximum values at the surface z = 0 and exhibit exponential decay
with depth, the corresponding energy fluxes through the cylindrical surface of sufficiently
large radius R in the interior z > 0 provide only exponentially small contributions. While a
significant portion of energy is only transfered along the surface, the free-pressure boundary
condition (prescribed herein for simplicity) prevents the Rayleigh wave in the fluid from
contributing to the energy budget.

The solution of the problem is based on the remarkable property of the Poynting vector
that allows for the explicit separation of the energy fluxes due to contributing wave modes
in the far-field. The validity of this result is not limited to the case of no dissipation and
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can be proven to hold in the very general case of full frequency Biot’s theory. Nevertheless,
the approach to the energy partition originally established for elastic waves, and developed
herein for poroelastic non-dissipative waves, can not be directly applied to the general
case of Biot’s theory. When viscoelastic interphase interaction is taken into account the
energy fluxes through the cylindrical surface of large radius are minuscule, in which case
the average energy balance equation merely states the equality between the energy entering
the medium and the energy dissipated in the medium.

Most notably, the results for the energy partition indicate the following. The results
for the line source (table 4.2) suggest that the most significant fraction of the energy is
transported by the Rayleigh wave when it exists, and otherwise by the P2-wave in the fluid
phase. On the other hand, both the relative intensities of the wave modes as well as the
total power delivered by the source (Figure 4.4) change with the dimensions of the driving
area. Thus, in the case of the uniform load (Figure 4.2), it is neither the Rayleigh wave nor
the P2-wave in the fluid phase that is predominant as the radius a increases. As a→ ∞ the
fraction of energy transported by the shear and the Rayleigh waves vanishes as long as this
limiting case recovers the one-dimensional problem, in which case only longitudinal modes
propagate. The distribution of the energy among the P1 and P2-waves is approximately
79% and 21% in case I, and 75% and 25% in case II. In the case of resonant excitation
of the Rayleigh wave (Figure 4.3a) the results are similar to those for the perfectly elastic
solid (Figure 4.5b). As a increases the fraction of energy transported by the Rayleigh wave
tends to unity while the specific power grows unbounded (Figure 4.4a).

In the special case when the Rayleigh wave does not exist and the driving forces are in
the form of a standing wave of P2 wavelength (Figure 4.3b) the P2-wave propagating in
the fluid phase exhibits predominant behaviour, i.e. propagates with the greatest relative
intensity for all possible radii a. Moreover, as the radius a increases, the sum of the frac-
tions of the energy transported by the P2-waves in both fluid and solid phases approaches
unity. At the same time, unlike the case of resonant excitation, the corresponding specific
power has a tendency to decay (Figure 4.4b). This property has been observed with other
numerical examples using different parameter sets.

Finally, the validity of the results has been verified in two different ways. First of all, the
total average power radiated by the source (calculated independently) has been compared
with the average powers transported by the corresponding wave modes, and secondly, the
results have been shown to reproduce corresponding results for a perfectly elastic medium,
in the appropriate asymptotic limit.
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4.4 The proof of identities M1 = −m2/n2 and M2 =

−m1/n1

With the above introduced definitions it is easy to see that each identity is equivalent to

q22M1M2 + q12 (M1 +M2) + q11 = 0. (4.29)

From the dispersion relation (3.10) according to Vieta’s formula

z1 + z2 =
q11γ22 − 2q12γ12 + q22γ11 − ibF/ωρ

q11q22 − q212
, (4.30)

z1z2 =
γ11γ22 − γ212 − ibF/ωρ

q11q22 − q212
, (4.31)

and consequently (also noting q11 + 2q12 + q22 = 1),

M1 +M2 =
1

∆
[q22γ11 − q11γ22 + (q11 − q22)θ] , (4.32)

M1M2 =
1

∆2

{

[q22γ11 − q12γ12 − (q22 + q12)θ]
2 (4.33)

− [q22γ11 − q12γ12 − (q22 + q12)θ] (q11γ22 − 2q12γ12 + q22γ11 − θ)

+(q11q22 − q212)(γ11γ22 − γ212 − θ)
}

,

where
∆ = q12γ22 − q22γ12 − (q22 + q12)θ, θ = ibF/ωρ. (4.34)

Substitution of (4.32) and (4.33) into (4.29) leads to the required relation after a lengthy,
though straightforward, calculation involving the use of identities q11 + 2q12 + q22 = 1 and
γ11 + 2γ12 + γ22 = 1. The resulting relation finally simplifies to the obvious identity

(q11 + 2q12 + q22 − 1) [(q12 + q22)θ + q12γ12] = 0. (4.35)
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Chapter 5

Poroelastic acoustic wavetrains

Realistic physical problems imply the existence of energy sources. Once this initial energy
is supplied, mechanical waves travel through the medium transferring the provided energy
away from the source. These mechanical waves are typically characterized by their wave-
length, phase and group velocities. However, in linear dissipative media this description
may not offer clear physical insight (e.g. complex group velocity commonly encountered
in dissipative media is a quantity with no apparent physical meaning as further discussed
in detail in Chapter 7). The common distinction between the near and the far field zones
is somewhat artificial in the case of exponentially decaying waves since these waves cannot
transfer energy over arbitrarily long distances. As will be discussed further in Chapter 8,
the distance over which the energy transferred by the wave falls off significantly can be
characterized by the energy damping length. Therefore, in dissipative media it is often the
wave processes in the near field that provide physically meaningful information. However,
the wave processes in the near field are not completely understood, due to obvious math-
ematical difficulties in contrast to the far field solutions where asymptotic approximations
can commonly be established (e.g. in the case of perfectly elastic media there is no qualita-
tive description of the waves in the near field, while the far field solutions has been known
for more than a century [75]). In the following the structure of the wave field is analyzed
in detail. Most notably it is demonstrated that poroelastic mechanical waves observed
in the near field cannot be described by their fixed wavelengths and phase velocities but
rather propagate in the form of wavetrains which represent the superposition of spectrum
components within certain wavelength and attenuation bands.

A two-dimensional boundary value problem for a porous half-space with an open bound-
ary in the context of Biot’s theory of poroelasticity is considered. Using complex analysis
techniques, a general solution is represented as a superposition of contributions from the
four different types of motion corresponding to P1, P2, S and Rayleigh waves. Far field
asymptotic solutions for the bulk modes, as well as near field numerical results are investi-
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gated. Most notably, this analysis reveals the following: (i) a line traction generates three
wavetrains corresponding to the bulk modes, so that P1, P2 and S modes emerge from
corresponding wavetrains at a certain distance from the source; (ii) bulk modes propa-
gating along the plane boundary are subjected to geometric attenuation, which is found
quantitavely to be x−3/2, similar to the classical results in perfect elasticity theory; (iii)
the Rayleigh wave is found to be predominant at the surface in both the near (due to the
negation of the P1 and S wavetrains) and the far field (due to geometric attenuation of the
bulk modes); (iv) the recovery of the transition to the classical perfect elasticity asymptotic
results validates the asymptotics established herein.

Boundary value problems for a poroelastic half-space in the framework of Biot’s theory
have been studied extensively. In particular, the poroelastic Lamb’s problem, the coun-
terpart of the Lamb’s problem in perfect elasticity (Lamb 1904 [75]), was considered in
[102, 118, 96, 42, 68, 95, 46, 87, 88]. The solutions for the case of axial symmetry was
discussed in the works of Halpern & Christiano [68], Seimov et al. [102] and Molotkov
[87, 88]. A closed form Cagniard solution [2] was derived for the transient response prob-
lems in the high frequency limit in the work of Paul [95] and, for the case of fluid/porous
solid interface, by Feng & Johnson [46]. Surface, or poroelastic Rayleigh waves were stud-
ied extensively in a series of works by Deresiewicz, e.g. [39]; results for the fluid–porous
interface can be found in the works of Feng & Johnson [46] (high frequency limit) and
Gubaidullin et al. [66] (general case). Purely numerical results can be found, for example,
in the works of Mesgouez et al. [83] (finite element formulation) and Schanz & Struckmeier
[101] (boundary element formulation). Asymptotic results for the contact stresses can be
found in the work of Gomilko et al. [60]. It is important to distinguish between viscous
attenuation due to the viscous interphase interaction and geometric attenuation along a
plane boundary. Physically, waves propagating along the plane boundary of the porous
half-space consist of superimposed bulk modes (P1, P2 and S-waves) and a surface mode,
or poroelastic Rayleigh wave (Deresiewicz & Rice 1962, Seimov et al. 1990). While in
the presence of dissipation all the waves in porous media exhibit viscous attenuation, it is
logical to assume that, similarly to the perfectly elastic case (Lamb 1904 [75]), porous bulk
modes will also exhibit geometric attenuation. Unlike the previous studies, the primary
aim of the present work is to carry out an in-depth analysis of the comparative contribution
of each of the four wave types to general response. Consequently, analysis of the resulting
expressions will allow the characterization of the geometric attenuation of the bulk modes
in a quantitative manner.

In the present work a two-dimensional boundary value problem for a porous half-space,
described by the widely recognized Biot’s equations of poroelasticity is considered. In this
poroelastic version of Lamb’s problem, the surface of a porous half-space is subjected to a
prescribed line traction. A formal analytical solution of the problem is obtained in Chapter
3 by the application of Helmholtz potential decomposition. Analysis of the formal solution
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based on branch cut integration in the complex slowness plane allows the representation of
the response at the surface as a superposition of three wavetrains, each containing P1, P2,
S-wave, and Rayleigh wave. While the Rayleigh wave contribution is found in the closed
form of a residue, the solution for the three bulk wavetrains is given in the form of well
behaved integrals for which far field asymptotic results are obtained. The properties of the
bulk and surface modes propagating along the surface are subsequently discussed in detail.

5.1 Harmonic line traction. Formal solution

Consider a poroelastic half-space with an open boundary occupying the region z > 0 under
the action of the harmonic line source. The boundary conditions can thus be represented
as follows,

σzz(x, 0, t) = −Pδ(x)eiωt, σxz(x, 0, t) = s(x, 0, t) = 0, (5.1)

where P now has dimensions N/m unlike the case of distributed source, where P [N/m2].

In this case Fourier solutions for the displacement fields are provided in Chapter 3, see
(3.24) with f(x) = δ(x). In particular, consider in detail the expressions for the vertical
displacements uz, Uz at the surface z = 0, and the pore pressure pf = −s/φ in the interior
of the domain z > 0,

uz(x, 0, ω) =
P

2πµ

∞
∫

0

p2s
n2ξ1(p)− n1ξ2(p)

F (p, ω)
cos (px)dp, (5.2)

Uz(x, 0, ω) = − P

2πµ

∞
∫

0

1

F (p, ω)
{ n2ξ1(p)

[

2p2(M1 +M3)−M1p
2
s

]

−

−n1ξ2(p)
[

2p2(M2 +M3)−M2p
2
s

]

} cos (px)dp, (5.3)

pf (x, z, ω) = − P

2πφµ

∞
∫

0

2p2 − p2s
F (p, ω)

n1n2

[

e−zξ1(p) − e−zξ2(p)
]

cos (px)dp, (5.4)

where ξi(p) = (p2 − p2i )
1/2

, i = 1, 2, s and F (p, ω) is the Rayleigh equation (3.23). Without
loss of generality, the time dependence factor exp(iωt) is omitted in (5.2)–(5.4) and this
allows the representation of the solutions in the form of a cosine Fourier transform.

The above multivalued integrals represent the formal solution of the problem. The
evaluation must be carried out taking into account far field conditions Re ξ1 > 0, Re ξ2 >
0, Re ξ3 > 0, in order to define the values of the integral unambiguously. The radiation
condition also implies that the line source is the only source of energy in the system. In
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other words these requirements can be satisfied if every wave in set (5.2)–(5.4) is either
inhomogeneous (exponentially decaying with depth), or is a traveling wave propagating
away from the source. Hence, it is inferred that

ξi(p) =
√

p2 − p2i , |ξ| > pi; ξi(p) = i
√

p2i − p2, |ξ| < pi. (5.5)

Moreover, as was pointed out by Lamb [75] for an analogous problem in elasticity theory,
the treatment of the integrals of the type (5.2)–(5.4) in the principal value sense may
appear inconsistent with the physics of the problem. This is because an arbitrary standing
Rayleigh wave satisfying the null-stress boundary conditions can be added to the solution.
These standing waves do not carry energy and therefore must be excluded by the radiation
condition.

While straightforward numerical evaluation of the integral (5.4) does not encounter
any computational difficulty as the integrand decays exponentially for large values of p,
evaluation of the expressions (5.2) and (5.3) requires special care for sufficiently large values
of x, as these results are represented in the form of slowly decaying and highly oscillating,
though convergent integrals when x 6= 0. At the point x = 0, where the traction is
applied, an integrable singularity is present, which disappears, for example, in the case
of the uniformly distributed stripe load. The asymptotic behavior of the integrands in
(5.2), (5.3) is of the form cos (px)/p as p → ∞, and therefore, the convergence of the
above integrals follows from the convergence of the integral cosine function Ci(x) (e.g.
Abramovich & Stegun [1]).

Alternatively, the numerical evaluation of the above integrals can be conducted using
branch cut integration considered further in Section 5.3.1, in which case, the resulting in-
tegrals along the hyperbolic branch cuts pose no computational difficulties. On the other
hand, the results of the numerical integration obtained for moderate values of x (where the
convergence is still satisfactory) may serve as a test for the branch cut integration. Despite
of the above mentioned disadvantages of the numerical approach, including slow conver-
gence and the error introduced while bounding an improper integral, both approaches have
been confirmed to yield matching results for the x values employed herein.

5.2 Numerical example

Numerical results for the vertical solid and fluid displacements according to (5.2)–(5.4) are
presented in Figures 5.1–5.3 for the case of water saturated Berea sandstone (Table 5.1).
The following dimensional frequencies are used in calculations: f = fc, 10fc, 100fc, where
characteristic frequency fc is defined following [12]

fc =
b

2πρ(γ12 + γ22)
. (5.6)
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Table 5.1: Physical properties of the porous material (Berea sandstone) and saturating
fluid (water).

Porosity φ 0.20
Permeability (mD) K 360.00
Tortuosity a 2.40
Structural factor1 δ 2.83
Frame bulk modulus (GPa) Kb 10.37
Shear modulus (GPa) µ 7.02
Grain bulk modulus (GPa) Ks 36.50
Liquid bulk modulus (GPa) Kf 2.25
Solid density (kg/m3) ρs 2644.00
Liquid density (kg/m3) ρf 1000.00
Liquid viscosity (mPa·s) ηf 1.00
P1-wave phase velocity (m/s) V ∞

p1 3268.37
P2-wave phase velocity (m/s) V ∞

p2 793.10
S-wave phase velocity (m/s) V ∞

s 1772.27
Characteristic frequency (kHz) fc 6.07
Characteristic velocity (m/s) c 3260.40

Biot parameters (GPa) Phase densities (kg/m3)
λ µ Q R ρ11 ρ12 ρ22

8.224 7.020 0.982 0.380 2415.2 -300 500

Table 5.2: Nondimensional slownesses pi, i = 1, 2, s, R at different typical frequencies f
(Rayleigh wave cut-off frequency f ≈ 2450fc).

p1 p2 ps pR

f = fc 0.998–7.444i×10−4 4.449–0.823i 1.847–9.52i×10−3 2.001–0.024i
f = 10fc 0.998–1.861i×10−4 4.241–0.164i 1.842–2.314i×10−3 1.995–0.019i
f = 100fc 0.998–5.521i×10−5 4.152–0.045i 1.840–6.814i×10−4 1.993–0.018i
f = 2449fc 0.998–1.089i×10−5 4.118–8.670i×10−3 1.840–1.340i×10−4 1.993–0.018i
f = 2450fc 0.998–1.089i×10−5 4.118–8.668i×10−3 1.840–1.340i×10−4 –
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Table 5.3: Wavelengths λi, i = 1, 2, s, R at different typical frequencies f .

λ1 [m] λ2 [m] λs [m] λR [m]
f = fc 5.38×10−1 1.21×10−1 2.91×10−1 2.68×10−1

f = 10fc 5.38×10−2 1.27×10−2 2.92×10−2 2.69×10−2

f = 100fc 5.38×10−3 1.29×10−3 2.92×10−3 2.70×10−3

f = 2449fc 2.20×10−4 5.33×10−5 1.19×10−4 1.10×10−4

f = 2450fc 2.20×10−4 5.32×10−5 1.19×10−4 –
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Figure 5.1: Normalized fluid and solid displacements at the surface and pressure contour
plots in the interior. Source frequency f = fc.
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Figure 5.2: Normalized fluid and solid displacements at the surface and pore pressure
contour plots in the interior. Source frequency f = 10fc.
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Figure 5.3: Normalized fluid and solid displacements at the surface and pressure contour
plots in the interior. Source frequency f = 100fc.

57



Further decrease or increase of the source frequency gives results similar to Figure 5.1 and
Figure 5.3 respectively.

Numerical results shown in Figures 5.1–5.3 illustrate the influence of the source fre-
quency on the character of the spatial oscillations in both displacements and pore pressure.
For relatively low frequencies displacements are observed to be almost in phase, with ap-
proximately the same amplitudes (see Figure 5.1), while an increase of the source frequency
leads to a weakening of the viscous coupling effect and, as a consequence, solid and fluid
displacements can be of different amplitude and phase (Figures 5.1 and 5.3), or in fact
nearly out of phase in the high frequency range for certain materials. Indeed, as follows
from the governing equations, in the case when the characteristic frequency lies near unity,
the inertia and viscous terms are approximately of the same order [12], so that an increase
of the source frequency makes inertia terms dominant over viscous terms.

These numerical results results are only the first step and included to illustrate the
response at different frequencies. A more intriguing task is to decompose the obtained
general solution into components related to the four different waves types. This can be
achieved by means of contour integration in the upper complex slowness half-plane, in which
case the numerical results obtained for moderate values of x and presented in Figures 5.1–
5.3 serve as a benchmark solution.

5.3 Wavetrains excited by harmonic tractions

5.3.1 Branch cut integration

The integrands in (5.2), (5.3), (5.4) contain six branch points located at p = ±β1, ±β2, ±β3,
such that Im(βi) 6= 0, when ω 6= 0; and two poles at p = ±pR, Re(pR) > 0, satisfying
F (pR, ω) = 0, which correspond to the Rayleigh wave contribution. The necessary hy-
perbolic branch cuts (see figure 5.4) in the complex p-plane (p = ζ + iη) can be selected
according to

ζ2 − η2 − α2
i + λ2i ≤ 0, ζη + αiλi = 0, i = 1, 2, s, (5.7)

where αi = Re(βi), λi = −Im(βi) > 0 (discussion of hyperbolic branch cuts can be found
e.g. in [64, 65]).

Consider in detail, for example, the integral expression for the solid phase vertical
displacement component uz (5.2),

uz(x, 0, t, ω) =
Pceiωt

4πµω
p2s

+∞
∫

−∞

n2ξ1(p)− n1ξ2(p)

F (p, ω)
eipxdp (5.8)
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Figure 5.4: Hyperbolic branch cuts, branch points p = ±pi (i = 1, 2, s), Rayleigh pole
p = −pR in the complex p-plane (upper half-plane closure for x > 0)

Conducting contour integration according to the scheme shown in figure 5.4 we note
that for x > 0 the contour is closed in the upper half-plane, while for x < 0 one should con-
sider the lower half-plane. Because the contribution of the integral along the semicircle of
infinite radius vanishes according to Jordan’s lemma, the above integral can be represented
symbolically as follows,

+∞
∫

−∞

= 2πiRes−
∮

γ+
1

−
∮

γ−
1

−
∮

γ+
2

−
∮

γ−
2

−
∮

γ+
3

−
∮

γ−
3

, (5.9)

where the Rayleigh pole, p = −pR, always has a positive imaginary part when ω 6= 0, and
the values of the radicals along γ±1 , γ

±
2 , γ

±
3 are prescribed uniquely according to the far

field conditions as follows: ξi(p) =
√

p2 − β2
i along γ+i and ξi(p) = −

√

p2 − β2
i along γ−i .

Introducing the parameterization

p1(τ) = τ − iα1λ1/τ,

p2(τ) = τ − iα2λ2/τ, (5.10)

ps(τ) = τ − iαsλs/τ

one arrives at (γi = γ−i + γ+i )

+∞
∫

−∞

= 2πiRes−
∮

γ1

−
∮

γ2

−
∮

γs

, (5.11)
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where the residue and three contour integrals can be found as

Res =
n2ξ1(pR)− n1ξ2(pR)

F ′(pR, ω)
e−ipRx, (5.12)

∮

γ1

=

−α1
∫

0

[

n2ξ1(p1)− n1ξ2(p1)

F (p1, ω)
+
n2ξ1(p1) + n1ξ2(p1)

F1(p1, ω)

]

dp1
dτ

eip1xdτ, (5.13)

∮

γ2

=

−α2
∫

0

[

n2ξ1(p2)− n1ξ2(p2)

F (p2, ω)
− n2ξ1(p2) + n1ξ2(p2)

F2(p2, ω)

]

dp2
dτ

eip2xdτ, (5.14)

∮

γs

=

−αs
∫

0

[

n2ξ1(ps)− n1ξ2(ps)

F (ps, ω)
− n2ξ1(p1)− n1ξ2(p3)

Fs(ps, ω)

]

dp3
dτ

eip3xdτ, (5.15)

where

F1(p, ω) =
(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

− 2p2ξs (n1ξ2 + n2ξ1) ,

F2(p, ω) =
(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

+ 2p2ξs (n1ξ2 + n2ξ1) , (5.16)

Fs(p, ω) =
(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

+ 2p2ξs (n1ξ2 − n2ξ1) .

Now the solution for uz (5.2) is represented in the form of a sum of contributions of
three wavetrains (5.13)–(5.15), and the contribution of the Rayleigh wave (5.12). The
location of the pole (pR) should be first found numerically to evaluate an expression for
the residue. Summarizing the results obtained with the branch cut integration one can
write the following decomposition for the displacement field:

+∞
∫

−∞

f(p)
n2ξ1(p)− n1ξ2(p)

F (p, ω)
eipxdp = Λ1 + Λ2 + Λs + 2πiRes, (5.17)

where Λ1, Λ2 and Λs are the expressions of the type (5.13)–(5.15) taken with opposite sign,
and the residual term 2πiRes corresponds to the contribution of the Rayleigh wave (5.12).

Similarly, representations in the form (5.17) can be derived for the rest of the compo-
nents (though these cumbersome expressions are not provided explicitly, the results for the
fluid phase Uz will be used further for numerical evaluation). Integrals of the type (5.13)–
(5.15) pose no computational difficulties for numerical evaluation as their integrands do
not contain any singularities, the integration path is limited, and the integrands take zero
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Figure 5.5: Contributions from different wave types. Solid phase displacement decomposi-
tion (upper panel), fluid phase displacement decomposition (lower panel). Source frequency
f = 100fc deliberately high to emphasize P2-wave contribution.
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values at the endpoints. Numerical results illustrating the above introduced decomposition
are presented in Figure 5.5 for dimensional frequency f = 100fc.

Each wavetrain (5.13)–(5.15) represents the waves propagating with the phase slow-
nesses and attenuations in the range [−αi, 0], [λi,∞), respectively. Thus, each wavetrain
contains P1, P2 and S-waves as well as the waves which propagate faster and attenuate
at a faster rate than corresponding modes. Consequently, at a certain distance from the
source one can expect solely P1, P2 and S modes along with the Rayleigh wave.

While detailed discussion of the above results will follow in Section 5.4, we will next
pursue the asymptotic analysis of integrals of the type (5.13)–(5.15). The evolution of
the wavetrains in the far field, and the emergence of the P1, P2 and S-waves will be
subsequently discussed in the following section, where asymptotic results for each wavetrain
are sought.

5.3.2 Asymptotic solutions

Integrals of the type (5.13)–(5.15)

Λi = −
−αi
∫

0

F (τ) eipixdτ = −
−αi
∫

0

F (τ) eiτxeαiλix/τdτ, (5.18)

with an appropriate change of variable τ̂ = −λi − αiλi/τ , can be approximated by the
following model integral for sufficiently large x:

Λi ≈ αiλie
−iαixe−λix

∞
∫

0

F̂ (τ̂)

(τ̂ + λi)
2 e

i
αi
λi
xτ̂
e−xτ̂dτ̂ , (5.19)

where the oscillatory term in (5.19) is approximated by the first two terms in the expansion
of the expression αiλi/(τ̂ + αi) ≈ αi − αiτ̂ /λi +O(τ̂ 2) around τ̂ = 0.

The integral in the expression (5.19) is an oscillating Laplace-type integral of the form
(5.33), discussed in detail further in Section 5.5 [equation (5.35)], and satisfies the condi-
tions of Watson’s lemma reformulated for this particular type of integral. An expression
for the leading order term follows the general asymptotic expansion (5.35) for sufficiently
large x,

Ii(x) ∼ a0,i
Γ(γ + 1)

xγ+1
exp

[

i(γ + 1) arctan

(

αi
λi

)](

1 +
α2
i

λ2i

)− γ+1

2

, (5.20)

where in order to determine the unknowns γ and a0 it is necessary to investigate the
asymptotic behavior of the function F̂ (τ̂) as τ̂ → 0+, or in other words, the behavior of
the integrands (5.13)–(5.15) as τ → −αi.
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It is easy to see that simple manipulations with the integrands allow the factoring out
of the terms ξi(pi) which completely determine the asymptotic behaviour as τ → −αi. For
example, in (5.13), the expression in the square brackets equals

2n2ξ1(p1) (2p
2
1 − β2

3) [n1 (p
2
1 −m2)− n2(p

2
1 −m1)]

F (p1, ω)F1(p1, ω)
. (5.21)

The factor ξi(pi) in some vicinity of τ = −αi can be approximated by

ξi(pi) =
i

|τ |

√

(αi − τ)(λ2i + τ 2)
√
τ + αi

≈ i

√

2αi

(

1 +
λ2i
α2
i

)√
τ + αi, (5.22)

or in terms of τ̂ as

ξi(pi) ≈ i

√

2αi

(

1 +
λ2i
α2
i

)
√

αiτ̂

λi
. (5.23)

Taking into account the above considerations according to (5.19) and (5.20) the asymp-
totic results for all three integrals (5.13)–(5.15) can be summarized as follows,

Λi ∼ iAi

√
2αi

(

α2
i

α2
i + λ2i

)
1

4 Γ (3/2)

x3/2
exp [ipi(−αi)x] exp

[

3i

2
arctan

(

α2
i

λ2i

)](

1 + i
λi
αi

)

.

(5.24)

It is convenient to introduce an upper index to denote the phase, while lower index
corresponds to the wave type. Thus AF

i and AS
i will denote the value of coefficient Ai for

the fluid and solid phase, respectively. For example, these coefficients for the solid phase
displacements are

AS
1 =

2n2L(p1)
F (p1, ω)F1(p1, ω)

, (5.25)

AS
2 = − 2n1L(p2)

F (p2, ω)F2(p2, ω)
, (5.26)

AS
s = −

4p2s

(

n1

√

p2s − β2
2 − n2

√

p2s − p21

)2

F (ps, ω)F3(ps, ω)
, (5.27)

where
L(p) = p23

(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

. (5.28)

Figure 5.6 shows the comparison of the exact and asymptotic solutions for the P1 and
S wavetrains for the vertical solid phase displacement, ΛSP1

and ΛSS, respectively. The
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asymptotic solution appears to be quantitatively accurate. The figure also provides a
vivid illustration of the process of emergence of a particular wave from its corresponding
wavetrain and allows an estimate of the distance over which this occurs.

Benchmark solution

It should be mentioned that the far field solution of the form (5.17), (5.24) in the appropri-
ate limiting case, exactly recovers classical asymptotic results, first derived by Lamb [75],
for the analogous elasticity problem.

Indeed, the transition to perfect elasticity (see e.g. Bourbie et al. 1987) follows from
the vanishing of the poroelastic parameters: Q → 0, R → 0, φ → 0, so that ρ11 → ρs,
ρ12 → 0, ρ22 → 0, n1,2 → 0, m1,2 → 1/2, p1 = p2, ps = 1, λi → 0.

The solution for the far field bulk modes for the vertical component of the solid phase
displacement uz, in dimensional form in accordance with (5.17), (5.24) is given by (tildes
are reintroduced to indicate nondimensional quantities)

uz =
P

4πµ

(

ΛSP1
+ ΛSP2

+ ΛSS
)

eiωt. (5.29)

Using Γ(3/2) =
√
π/2 and the values of the coefficients AS

i provided in (5.25)–(5.28) one
gets

Λi → −AS
i

√
π

2

√

2β̃i
iei(−β̃ix̃−π/4)

x̃3/2
, as λi → 0,

where β̃1,2 = cs/cp, and cp, cs are longitudinal and transverse phase velocities, respectively.
Introducing h = ω/cp and k = ω/cs, so that β̃1,2 = h/k, x̃ = kx, one arrives at the following
expression:

uz = − P

8µ

√

2

π

[

(

AS
P1

+AS
P2

)

√

h

k

iei(ωt−hx−π/4)

(kx)3/2
+AS

S

iei(ωt−kx−π/4)

(kx)3/2

]

. (5.30)

The values of the coefficients AS
i in the limiting case can be found to be

AS
P1

+AS
P2

→ − 4

(2h2/k2 − 1)2
, AS

S → −16
(

1− h2/k2
)

, (5.31)

so that finally, using Lamb’s original notation one arrives at the classical result [75]

uz =
P

2µ

√

2

π

h2k2

(2h2 − k2)2
iei(ωt−hx−π/4)

(hx)3/2
+

2P

µ

√

2

π

(

1− h2

k2

)

iei(ωt−kx−π/4)

(kx)3/2
. (5.32)
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5.4 Chapter Summary

The present chapter is dedicated to the detailed investigation of the wave processes at the
boundary of a porous half-space subjected to a harmonic line traction in the framework of
Biot’s theory. Formal analytical and closed form far field asymptotic solutions have been
established herein, and these allow analysis of the response at different source frequen-
cies, as well as an investigation of the fundamental properties of the four wave types, the
combination of which makes up a disturbance traveling along the plane boundary.

Examples of numerical results have been shown (Figures 5.1–5.3) and these illustrate
the influence of the source frequency on the character of the spatial oscillations in both
displacements and pore pressure. These may be summarized as showing a weakening of the
viscous coupling between phases as frequency is increased, with higher frequency regimes
leading to oscillations that are of differing amplitude and phase in the fluid and solid. As
has been pointed out by Biot [12], this follows from the governing equations. Indeed, in
the case when the characteristic frequency lies near unity, the inertia and viscous terms are
approximately of the same order, so that a further increase of the source frequency makes
inertial terms dominant over viscous terms.

An oscillating line source generates three bulk wavetrains, containing P1, P2 and S-
waves, respectively, and a surface poroelastic Rayleigh wave. Decomposition of the formal
general solution into contributions of the four wave types reveals the following: bulk modes
propagating along the surface exhibit x−3/2 attenuation in addition to attenuation due to
viscous interphase interactions (terms of the form e−λix in expression (5.24)). Results for
the spatial attenuation are found to be similar to those known from the classical elastic
wave theory (Lamb 1904). Moreover, the classical elastic wave theory asymptotic results
can be exactly recovered in the appropriate limiting case from the asymptotic solution
obtained herein for the poroelastic waves. Analysis of the formal solution shows that
the wavetrains consist of waves which propagate faster and also exhibit greater viscous
attenuation than the corresponding bulk modes. Thus, at a certain distance from the
source one can observe solely P1, P2 and S modes, or, in other words, the emergence of
these modes from the corresponding wavetrains (Figure 5.6).

It is known that the P2 effect is difficult to measure at low frequencies (Nagy 1999).
Indeed, due to the rapid viscous attenuation of the slow P2 wave, high frequency oscillations
are necessary to capture this effect. In the present work, relatively high dimensional
frequency f = 100fc was used to emphasize the P2 wave contribution. In this particular
case, the P2 effect is only observed in the vicinity of the source, and is found to be more
pronounced in the fluid phase (Figure 5.5).

Poroelastic Rayleigh waves are found to be predominant at the surface in both the
near field, due to the negation of the P1 and S wavetrains, and in the far field, due to
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the geometric attenuation of the bulk modes. Thus, the frequency dependent character
of spatial oscillations and relative vertical fluid/solid motion, or flux, at the surface will
mostly be determined by the properties of the poroelastic Rayleigh waves in both the solid
and fluid phases.

5.5 Watson’s lemma for oscillatory Laplace-type inte-

grals

Consider the following oscillatory Laplace-type integral:

I(x) =

∞
∫

0

f(t)eiηxte−xtdt, Im(η) = 0, (5.33)

where f(t) is continuous on [0,∞) and has the asymptotic expansion as t→ 0+

f(t) ∼ tγ
∞
∑

n=0

ant
βn. (5.34)

Assume that the integral is convergent, so that γ > −1, β > 0 and f(t) = o(ect) for some
c as t→ ∞. Then, as x→ ∞,

I(x) ∼
∞
∑

n=0

an
Γ(νn)

xνn

(

ei arctan(η)
√

1 + η2

)νn

, νn = γ + βn+ 1. (5.35)

� Replacing I(x) with I(x; ǫ),

I(x; ǫ) =

ǫ
∫

0

f(t)eiηxte−xtdt, (5.36)

introduces exponentially small errors for any ǫ > 0. To show this rigorously, integration
by parts can be applied.

Assume ǫ > 0 is small enough so that the first N terms in the asymptotic series for
f(t) are a good approximation to f(t), i.e.

∣

∣

∣

∣

∣

f(t)− tγ
N
∑

n=0

ant
βn

∣

∣

∣

∣

∣

≤ Ktγ+β(N+1), (5.37)
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for 0 ≤ t ≤ ǫ and some constant K > 0.

Thus, the following estimate holds:

∣

∣

∣

∣

∣

∣

I(x; ǫ)−
N
∑

n=0

an

ǫ
∫

0

tγ+βneiηxte−xtdt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ǫ
∫

0

(

f(t)− tγ
N
∑

n=0

ant
βn

)

eiηxte−xtdt

∣

∣

∣

∣

∣

∣

≤
ǫ
∫

0

∣

∣

∣

∣

∣

f(t)− tγ
N
∑

n=0

ant
βn

∣

∣

∣

∣

∣

e−xtdt ≤ K

ǫ
∫

0

tγ+β(N+1)e−xtdt (5.38)

≤ K

∞
∫

0

tγ+β(N+1)e−xtdt = K
Γ(γ + β(N + 1) + 1)

xγ+β(N+1)+1
.

Extending the range of integration in the above established inequality (5.38) to [0,∞),
and using (5.40), one gets

I(x) =
N
∑

n=0

an

∞
∫

0

tγ+βneiηxte−xtdt+ o

(

1

xγ+βN+1

)

=
N
∑

n=0

an
Γ(γ + βn+ 1)

xγ+βn+1

(

ei arctan(η)
√

1 + η2

)γ+βn+1

+ o

(

1

xγ+βN+1

)

, (5.39)

as x→ ∞. Since this is true for every N , (5.35) is proved and thus the Lemma follows. �

The proof of the above proposition, in general, repeats the proof of the classical Wat-
son’s lemma (e.g. Bender & Orszag 1978), where the following model integral (Prudnikov
et al. 1986) must be applied instead of a Gamma function integral:

∞
∫

0

xν−1e−(p+iq)tdt = Γ(ν)
(

p2 + q2
)− ν

2 e−iν arctan (
q

p), (5.40)

where p > 0, Re(ν) > 0 or p = 0, 0 < Re(ν) < 1. Setting η = 0 one can recover the
classical Watson’s lemma results.
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Chapter 6

Energy partition and resonant

excitation in the general case

Energy partition of poroelastic waves in the idealized case of no dissipation has been con-
sidered in detail in Chapter 4. In the general case it is necessary to take into account
viscous (low frequency range) or viscoelastic (high frequency range) interphase interaction,
so that all wave fields are characterized with exponential spatial decay. The method estab-
lished by Miller & Pursey and developed herein for poroelastic waves in Chapter 4 cannot
be adopted in the general case. The fixed proportion of the energy fraction transfered by
the propagating waves in the far field is only relevant for non-dissipative media. Although
analogous far field solutions can be obtained in the general case (e.g. following the method
outlined in Section 5.3.2), these results cannot be used in a practical analysis of the energy
partition. The energy analysis in Lamb’s problem in the more general dissipative case must
be conducted in a different manner. In order to obtain qualitative results for the energy
partition, the problem can be reformulated as follows: what fraction of the total energy
supplied by the source is directed into particular wavetrains corresponding to certain wave
types. Another important question is whether and to what extent one can control the
excitation of particular wave types by means of driving technique.

As was discussed above in Section 2.3, unlike the case of no dissipation (2.30) in the
general dissipative case the total energy supplied by the source located at the surface is
absorbed by viscous dissipation (2.29), so that

〈W 〉 = 2

∫∫∫

Σ

〈D〉 dΣ, (6.1)

or in other words, the input power equals power dissipation.
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Assuming distributed normal driving forces σzz(x, 0, t) = Pf(x)eiωt, |x| < a, the ex-
pression for the total power supplied by the source W [following current notation (4.10),
(4.11)] is

〈W 〉 = c

ω

a
∫

−a

〈Pz〉 dx = cP

a
∫

0

f(x)Imuz(x, 0)dx, (6.2)

where f(x) describes the driving configuration (3.25). According to (6.2) the source power
can be decomposed into the contributions due to particular wavetrains provided the wave-
train solution of the type (5.17) for the surface vertical displacement Imuz(x, 0) is obtained.
Consequently, it is possible to analyze the relative power distribution among the wavetrains,
as well as to investigate whether the relative energy partition can be controlled by changing
the configuration of the driving forces (e.g. resonant excitation).

6.1 Distributed source. Wavetrain solution

Consider the very general expression for the vertical component of solid displacement at
the surface (3.24),

uz(x, 0, ω) = − Pc

4πµω
p2s

+∞
∫

−∞

f(p)
n2ξ1(p)− n1ξ2(p)

F (p, ω)
eipxdp, (6.3)

where f(p) represents the driving configuration in Fourier space (3.25). It can be noted
that the distributed source (3.25, ii) represents a limiting case of the distributed source
(3.25, iii) as p0 → 0, and in turn, the line source (3.25, i) can be recovered in the limiting
case of the distributed source (3.25, ii) as a→ 0 and lim

a→0
f(x)/2a = δ(x).

The wavetrain solution for (6.3) can be recovered in a similar manner as described in
Chapter 5 for the line source. However, it is important to take into account some additional
difficulties when conducting branch cut integration related to distributed sources. In the
latter case the function f(p) can be represented in the form

f(p) = g1(p)e
ipa + g2(p)e

−ipa, (6.4)

and therefore in the calculation of uz(x, 0) the contour must be closed in the upper part
of the complex p-plane for the first term in (6.4), and in the lower plane for the second
term, to satisfy the conditions of Jordan’s lemma (Figure 6.1). For instance, in the case of
distributed source (3.25, iii)

f(x) = cos(p0x), |x| < a; f(p) = a

[

sin a(p+ p0)

a(p+ p0)
+

sin a(p− p0)

a(p− p0)

]

, (6.5)
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p = ±pR, additional poles p = ±p0 in the complex p-plane (upper half-plane closure for
x+ a > 0, lower half-plane closure for x+ a < 0).

functions g1(p) and g2(p) are

g1(p) =
1

2ia

(

eiap0

p+ p0
+
e−iap0

p− p0

)

, g2(p) = − 1

2ia

(

e−iap0

p+ p0
+

eiap0

p− p0

)

. (6.6)

Introducing parameterization (5.10) the wavetrain decomposition for the integral in
(6.3) according to Figure 6.1 can be schematically summarized in the form

+∞
∫

−∞

f(p)
n2ξ1(p)− n1ξ2(p)

F (p, ω)
eipxdp = Λ1 + Λ2 + Λs + Res1 + Res2, (6.7)

where the integral components Λi represent the integral expressions along the corresponding
branch cuts in both the upper and lower half-space, while the residual terms Res1 and Res2
contain the contributions of the residues at Rayleigh poles p = ±pR and the poles p = ±p0
respectively. Omitting the cumbersome details, one arrives at the following final result for
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the integral and residual components in (6.7) [sgn(x) denotes the sign function]

Λ1 =

−α1
∫

0

{

g1(p1)e
ip1(x+a) + g2[sgn(x− a)p1]e

ip1|x−a|
}

×

[

n2ξ1(p1)− n1ξ2(p1)

F (p1, ω)
+
n2ξ1(p1) + n1ξ2(p1)

F1(p1, ω)

]

dp1
dτ

dτ, (6.8)

Λ2 =

−α2
∫

0

{

g1(p1)e
ip2(x+a) + g2[sgn(x− a)p2]e

ip2|x−a|
}

×

[

n2ξ1(p2)− n1ξ2(p2)

F (p2, ω)
− n2ξ1(p2) + n1ξ2(p2)

F2(p2, ω)

]

dp2
dτ

dτ, (6.9)

Λs =

−αs
∫

0

{

g1(ps)e
ips(x+a) + g2[sgn(x− a)ps]e

ips|x−a|
}

×

[

n2ξ1(ps)− n1ξ2(ps)

F (ps, ω)
− n2ξ1(p1)− n1ξ2(ps)

Fs(ps, ω)

]

dps
dτ

dτ, (6.10)

where the expressions for F1, F2, Fs are provided in (5.16), and the two residual terms are
[H(x) denotes the Heaviside function]

Res1 =
{

g1(pR)e
ipR(x+a) + g2[sgn(x− a)pR]e

ipR|x−a|
} n2ξ1(pR)− n1ξ2(pR)

F ′(pR)
, (6.11)

Res2 =
H(a− |x|)

ia

n2ξ1(p0)− n1ξ2(p0)

F (p0)
cos(p0x), (6.12)

The main properties of the above wavetrain solution for the distributed source can be
summarized as follows. The different character of the solution under the source |x| < a
and the solution away from the source |x| > a can be clearly noted. Consider the factors
in the expressions (6.8)–(6.10) and (6.11), where i = 1, 2, s, R,

g1(pi)e
ipi(x+a) + g2[sgn(x− a)pi]e

ipi|x−a| =

{

2g1(pi)e
ipa cos(pix) if |x| < a

f(p)eipx if |x| > a
(6.13)

Therefore, the inner solution (under the source) represents superposition of the standing
waves while the outer solution (away from the source) consists of traveling waves. Secondly,
it can be noted that this solution is in agreement with the previously obtained wavetrain
solution for the line traction (5.11)–(5.16). Indeed, in the limiting case p0 = 0 and a→ 0,

g1(pi)e
ipi(x+a) + g2[sgn(x− a)pi]e

ipi|x−a| = f(p)eipx → 2a exp(ipix), i = 1, 2, s, R (6.14)
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Figure 6.2: General solution for the vertical solid displacement (left) and wavetrain de-
composition (right): uniform distributed source (ii); p0 = 0, a = 10, f = fc. P1-wavetrain
(red), P2-wavetrain (blue), S-wavetrain (green), Rayleigh wave (black), standing wave
(brown).
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Figure 6.3: General solution for the vertical solid displacement (left) and wavetrain de-
composition (right): distributed source (iii); p0 = 5, a = 10, f = fc. P1-wavetrain (red),
P2-wavetrain (blue), S-wavetrain (green), Rayleigh wave (black), standing wave (brown).
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and the second residual term (6.12) vanishes in the limiting case of the line source.

Finally, compared to the line source solution one should account for an additional
residual term (6.11) apart from that due to the Rayleigh wave contribution (6.12). The
additional residual term describes the standing wave which is only apparent under the
area |x| < a which is directly driven by the source. The standing wave has a flat profile
in the case of uniform load (ii) p0 = 0, and a harmonic profile when p0 6= 0, as in the
case of distributed load (iii). From an energetic point of view, in analogy with the driven
damped harmonic oscillator, this standing wave corresponds to the fractional power supply
from the source into the half-space which is constantly absorbed by viscous dissipation.
Thus, the corresponding power is further referred to as power absorption. The wavetrain
decomposition is illustrated with a numerical example in Figures 6.2, 6.3.

In conclusion, a certain part of the energy supplied by the distributed harmonic source
is constantly absorbed due to the intrinsic dissipation in the medium, while the remain-
ing part is transferred away from the source by means of the corresponding P1, P2, S-
wavetrains and the Rayleigh wave. The total energy supplied by the source and the relative
energy partition among the wavetrains and the Rayleigh wave is discussed in the following.

6.2 Total power radiated by distributed source

According to (6.2) the total average power 〈W 〉 supplied by the source is given by the
following expression

〈W 〉 = cP

a
∫

0

f(x)Imuz(x, 0)dx, (6.15)

where the factor eiωt is omitted in the expression (6.3), a and x are nondimensional quan-
tities. The wavetrain solution for Imuz(x, 0) (6.7)–(6.12) can be used to decompose the
expression for the total power (6.15) as follows,

〈W 〉 = 〈Wp1〉+ 〈Wp2〉+ 〈Wsh〉+ 〈WR〉+ 〈Wa〉 , (6.16)

where 〈Wp1〉, 〈Wp2〉, 〈Wsh〉, 〈WR〉 quantify the fractional powers transported by the wave-
trains and the Rayleigh wave, respectively, and 〈Wa〉 is the power absorption.

According to (6.15), (6.7)–(6.12), with the use of the following integrals,

a
∫

0

cos(pix) cos(p0x)dx =







1
2
a
[

sin a(pi+p0)
a(pi+p0)

+ sin a(pi−p0)
a(pi−p0)

]

= 1
2
f(pi) if pi 6= p0

1
2
a
(

1 + sin 2ap0
2ap0

)

if pi = p0
(6.17)
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Figure 6.4: Total input power (left) and power decomposition (right) uniform distributed
source (ii); p0 = 0, f = fc. P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green),
Rayleigh wave (black), standing wave (brown).
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Figure 6.5: Total input power (left) and power decomposition (right): distributed source
(iii); p0 = Re(p1), f = fc. P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green),
Rayleigh wave (black), standing wave (brown).
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Figure 6.6: Total input power (left) and power decomposition (right): distributed source
(iii); p0 = Re(p2), f = fc. P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green),
Rayleigh wave (black), standing wave (brown).
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Figure 6.7: Total input power (left) and power decomposition (right): distributed source
(iii); p0 = Re(pR), f = fc. P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green),
Rayleigh wave (black), standing wave (brown).

76



the components in the decomposition (6.16) can be evaluated as follows,

〈Wp1〉 = − P 2c2

4πµω
Im

{

p2s

−α1
∫

0

ag1(p1)f(p1)e
ip1a × (6.18)

[

n2ξ1(p1)− n1ξ2(p1)

F (p1, ω)
+
n2ξ1(p1) + n1ξ2(p1)

F1(p1, ω)

]

dp1
dτ

dτ

}

, (6.19)

〈Wp2〉 = − P 2c2

4πµω
Im

{

p2s

−α2
∫

0

ag1(p2)f(p2)e
ip2a ×

[

n2ξ1(p2)− n1ξ2(p2)

F (p2, ω)
− n2ξ1(p2) + n1ξ2(p2)

F2(p2, ω)

]

dp2
dτ

dτ

}

, (6.20)

〈Wsh〉 = − P 2c2

4πµω
Im

{

p2s

−αs
∫

0

ag1(ps)f(ps)e
ipsa ×

[

n2ξ1(ps)− n1ξ2(ps)

F (ps, ω)
− n2ξ1(p1)− n1ξ2(ps)

Fs(ps, ω)

]

dps
dτ

dτ

}

, (6.21)

〈WR〉 = − P 2c2

4πµω
Im

{

2πiap2sg1(pR)f(pR)e
ipRa

n2ξ1(pR)− n1ξ2(pR)

F ′(pR)

}

, (6.22)

〈Wa〉 = − P 2c2

4πµω
Im

{

πp2s

(

1 +
sin 2ap0
2ap0

)

n2ξ1(p0)− n1ξ2(p0)

F (p0)

}

. (6.23)

While the total power 〈W 〉 and power absorption 〈Wa〉 are always positive quantities,
the remaining contributing powers (6.18)–(6.23) can possibly be negative for certain a
values. Indeed, due to the phase shift between the source and velocities of the standing
waves these negative values, when they occur, imply that negative values of the Poynting
vector associated with the corresponding standing wave prevail in the area beneath the
source. In this particular situation, the corresponding standing waves do work against the
source. This could not occur for the case of a line source.

The results for the power decomposition (units P 2c2/4πµω) according to (6.16), (6.18)–
(6.23) are illustrated in Figures 6.4–6.7 for various configurations of the source. Porome-
chanical parameters used in calculations are provided in Table 5.1. The main properties of
the solution (6.16) can be summarized as follows. The numerical results indicate that the
total input power is inversely proportional to frequency ω, so that the results presented
for nondimensional total power in Figures 6.4–6.7 do not depend on ω, unlike those for the
constituent powers. It can also be noted that the results for the total power under different
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loads closely resemble the results for the total specific power in the case of no dissipation
in all cases shown. As expected, the total power in all cases tends to some constant values
as a → ∞ due to the intrinsic dissipation in the media, whereas in the non-dissipative
media the total power grows unbounded. This includes the case of resonant excitation of
the Rayleigh oscillations (Figure 6.7).

6.3 Energy partition

As was mentioned above, the approach to the problem of energy partition in the general
dissipative case is different from that in the case of no dissipation. While in the case of
no dissipation all of the energy supplied by the source is radiated away to infinity (2.30),
in the general dissipative case all of the source energy is dissipated (2.29), hence the en-
ergy can only be transferred over certain distance away from the source. The input power
decomposition (6.16) may serve as the foundation for the energy analysis in which case
the problem can be formulated as follows: which fraction of the total energy is trans-
ferred (and is dissipated) in the particular wavetrain, associated with P1, P2, S-modes
and the Rayleigh wave. The results for the power decomposition may seem somewhat
artificial provided the presence of the negative power constituents. These negative power
constituents (caused mainly by the geometry of the problem) introduce complications to
the energy analysis. However, this difficulty can be overcame by considering sufficiently
short wavelengths generated by the source. Numerical results suggest that indeed as the
value of the parameter p0 increases the source generates shorter waves and one may observe
predominantly positive power constituents associated with the wavetrains, e.g. the results
for sufficiently short wavelength p0 = Re(p2) in Figure 6.6 (further increase of p0 provides
similar results). The data for the power decomposition is found to be in agreement with
the actual power distribution among the wavetrains as illustrated by the following case
study.

Consider the distributed source which generates a standing wave with the profile cos(p0x),
|x| < a, where p0 = Re(p2), so that the value of the parameter p0 is chosen to be large
enough to obtain positive power constituents (Figure 6.6). The total power and the power
spent in generation of the wavetrains as well as the relative power contributions (mea-
sured in percentage of the power spent in generation of the wavetrains) due to three
wavetrains and the Rayleigh wave is presented in Figure 6.8. It can be noted that the
P2-wavetrain power exhibits peaks at a = 2π/p0, 4π/p0, 6π/p0..., and consecutive mini-
mums at a = 5π/2p0, 9π/2p0, 13π/2p0.... The corresponding wavetrain solution presented
in Figure 6.9 is obtained for the two different distribution radii a = 2π/p0 and a = 5π/2p0
which correspond to the peak and local minimum respectively. These values of a are also
notable in the total power curve in Figure 6.7 (left), where they correspond to the local
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Figure 6.8: Total power and the power spent in generation of the wavetrains (left); relative
(per unit total power) power decomposition (right). Distributed source (iii); p0 = Re(p2),
f = 100fc. P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green), Rayleigh wave
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Figure 6.9: Wavetrain solution for x > a: distributed source (iii); p0 = Re(p2), f = 100fc,
a = 2π/p0 ≈ 1.513 (left), a = 5π/2p0 ≈ 1.892 (right). P1-wavetrain (red), P2-wavetrain
(blue), S-wavetrain (green), Rayleigh wave (black).
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minimum and maximum. As predicted by the result for the relative power decomposition
(Figure 6.8) the P2-wavetrain is indeed more pronounced when the radius corresponds to
the peak value, whereas the total power radiated by the source diminishes.

6.3.1 Energy redistribution between the Rayleigh and P2-wave

The Rayleigh wave corresponds to the free oscillations of the elastic and porous half-space.
Unlike the case of a perfectly elastic solid, the Rayleigh wave mode is not always present
for a non-dissipative porous half-space [39, 87]. As was discussed in Section 4 for the
case of no dissipation, in the absence of the Rayleigh wave, the power spent in generation
of the P2-wave significantly increases to compensate for the “missing” energy. In the
general dissipative case the situation when the Rayleigh wave mode is not present also
occurs. An upper cut-off frequency for the Rayleigh wave can be found for many realistic
parameter sets. For instance, for the set of parameters provided in Table 5.1 the upper cut-
off frequency can be found numerically to equal approximately 2449.5fc (see Table 5.2).
Beyond this critical value of frequency the Rayleigh wave mode does not exist. At the
same time the transition through the cut-off frequency does not introduce any significant
changes to the results for the total power supply. It is thus instructive to investigate this
situation from an energetic point of view.

The results for the general case in the absence of the Rayleigh wave demonstrate the
energy redistribution pattern between the Rayleigh and P2-wave similar to that in the
case of no dissipation. This implies that in the absence of the Rayleigh wave the energy
spent in generating the P2-wave notably increases. Moreover, as the result of this energy
redistribution, the displacements associated with the P2-wave often dominate in the near
field.

Consider as an example the action of the uniform load at two different frequencies
fc = 2440 and fc = 2450, so that the Rayleigh wave is excited at fc = 2440 and unexcited
at fc = 2450. The result for the total power supply in nondimensional form is presented
above in Figure 6.4 and applies to both cases. The results for the power decomposition
(Figure 6.10) and corresponding wavetrain solutions (Figure 6.11) illustrate the remarkable
property of the energy redistribution: the results for the Rayleigh wave and P2-wavetrain
are almost identical in the near field. Such energy redistribution takes place in all cases
including the case of resonant excitation of the Rayleigh wave, as shown in Figures 6.12,
6.13. Although the Rayleigh wave is unexcited beyond the cut-off frequency, again one may
observe the increase of amplitude in the P2-wavetrain so that it essentially reproduces the
pattern due to the absent Rayleigh wave.

From mathematical point of view this can be explained as follows. Consider the de-
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Figure 6.10: Uniform distributed load (ii): power decomposition f = 2440fc (left), f =
2450fc (right). P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green), Rayleigh
wave (black).
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Figure 6.11: Uniform distributed load (ii): wavetrain solutions a = 4, f = 2440fc (left);
a = 4, f = 2450fc (right). P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green),
Rayleigh wave (black)
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Figure 6.12: Uniform distributed load (ii): power decomposition f = 2440fc (left), f =
2450fc (right). P1-wavetrain (red), P2-wavetrain (blue), S-wavetrain (green), Rayleigh
wave (black).
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Figure 6.13: Distributed load (iii) with p0 = Re(pR) (corresponds to f = 2440fc): wavetrain
solutions a = 4, f = 2440fc (left); a = 4, f = 2450fc (right). P1-wavetrain (red), P2-
wavetrain (blue), S-wavetrain (green), Rayleigh wave (black)
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nominators in the expression for the integral representation for the P2-wavetrain (6.9),

F (p, ω) =
(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

+ 2p2ξs (n2ξ1 − n1ξ2) , (6.24)

F2(p, ω) =
(

2p2 − p2s
) [

n1

(

p2 −m2

)

− n2(p
2 −m1)

]

+ 2p2ξs (n2ξ1 + n1ξ2) , (6.25)

where the first expression represents the dispersion relation of the Rayleigh waves (3.23),
while the second expression represents the same equation evaluated along the correspond-
ing hyperbolic branch cut (Figure 6.1). The investigation of the roots of the above equation
suggests that beyond the cut-off frequency the second equation has a root which is approxi-
mately equal to the root of the Rayleigh equation before the cut-off frequency. The location
of this root does not change significantly with further increase of frequency, whereas the
location of the P2 branch cut on the complex p-plane approaches this location. As a result
the value of the integral rapidly increases.

6.4 Chapter Summary

The main results obtained in this chapter can be summarized as follows. The wavetrain
solution is obtained in a more general form so that it includes the action of a distributed
source. The character of the solution reveals that the inner solution (under the source)
represents the superposition of the standing waves while the outer solution (away from the
source) consists of traveling waves. The total power supplied by the distributed source is
found to be inversely proportional to frequency.

The analysis of the energy partition is complicated due the presence of possible negative
power constituents caused by the geometry of the driving configuration. However, even
in the presence of negative constituents the results for the power decomposition can be
informative, for instance, in the case of a uniform load (Figure 6.4) the power spent in
generation of the Rayleigh wave can be maximized / minimized accordingly by changing
the values of the source radius, a. Moreover, the consideration of the shorter driving
wavelength yields positive power constituents, in which case the energy partition can be
analyzed. Indeed, in this case the results for the energy partition agree with the actual solid
displacement amplitude. In particular, these results suggest that changes in distribution
radii may cause significant changes in amplitudes of the displacements.

The energy redistribution between the Rayleigh wave and P2-wavetrain has been in-
vestigated for materials which may not allow for the propagation of the Rayleigh wave
beyond a certain cut-off frequency. In the absence of the Rayleigh wave, its virtual energy
is compensated for by an increase in the energy of the P2 oscillations. The mechanism of
such redistribution is explained by the presence of the leaky Rayleigh mode situated on
the “unphysical” Riemann sheet. As long as this leaky mode is located in the vicinity of
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the P2 branch cut it radiates its energy to the P2-wavetrain causing significant increase of
amplitude.
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Chapter 7

Complex group velocity and energy

transport in absorbing media

Complex group velocity is common in absorbing and active media, yet its precise physical
meaning is unclear. While in the case of a non-dissipative medium the group velocity of
propagating waves Cg = dω/dk is exactly equal to the observable energy velocity (defined
as the ratio between the energy flux and the total energy density) Cg = F̄ /Ē, in a dissi-
pative medium Cg = dω/dk is in general a complex quantity which can not be associated
with the velocity of energy transport. Nevertheless, we find that the complex group veloc-
ity may contain information about the energy transport as well as the energy dissipated
in the medium. The presented analysis is intended to expound the connection between
the complex group velocity and energy transport characteristics for a class of hyperbolic,
dissipative dynamical systems. Dissipation mechanisms considered herein include viscous
and viscoelastic types of damping. Both cases of spatial and temporal decay are discussed.
The presented approach stems from the Lagrangian formulation, and is illustrated with
identities that relate the complex group velocity and energy transport characteristics for
the damped Klein-Gordon equation; Maxwell’s equations, governing electromagnetic waves
in partially conducting media; and Biot’s theory, governing acoustic wave propagation in
porous solids.

The equivalence of the group velocity and the velocity of energy transport is known to
be a classical result in the case of conservative dispersive media [25, 26, 13, 120, 76]. In this
case, the group velocity Cg equals the energy velocity Ce, and thus, can be defined both
kinematically, Cg = ∂ω/∂k, and from energy principles, as the ratio between the average
energy flux F̄ and the average mechanical energy Ē. According to Whitham’s average
variational principle [120] and Lighthill’s theorem [76], the relation

Cg = Ce =
F̄

Ē
, (7.1)
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is valid in the very general case of dispersive, uniform, lossless media. In the case of
nonuniform and anisotropic media, with some restrictions of a geometric nature, the prin-
ciple of eigenvalue perturbations, suggested by Biot [13], proves the identity. The latter
heuristic approach does not prove (7.1) in general, but rather establishes the validity of
the procedure in a wide variety of cases.

In the case of absorbing media, the energy velocity is defined similarly to conservative
systems as the ratio between the average energy flux and average total mechanical energy
[25, 26, 78, 20, 117, 35], however, the kinematically defined group velocity is in general
complex and obviously can no longer be associated with the velocity of energy transport,

Cg 6= Ce =
F̄

Ē
. (7.2)

Unlike conservative systems, the interpretation of the complex group velocity from energy
principles is not established. The physical meaning of the complex group velocity thus
remains obscure, so that it is sometimes referred to as a quantity with only an abstract
mathematical meaning [109, 35].

On the other hand, from a kinematic point of view, the real and imaginary parts of
the complex group velocity Cg = ∂ω/∂k play an important role in the description of
the behavior of a spatially localized Gaussian wave packet traveling in absorbing media
[89, 109]. According to the saddle point approximation, the central wavenumber kc is
in general not conserved, but experiences a drift which is directly proportional to the
imaginary part of the group velocity [89],

xM = Re

(

dω

dk

∣

∣

∣

∣

kM

)

t, (7.3)

kM = kc +∆2Im

(

dω

dk

∣

∣

∣

∣

kM

)

t, (7.4)

where ∆ corresponds to the width of the Gaussian. If a medium is dissipation free, then
Im(dω/dk) = 0, and the spatial maximum of the wave packet moves with the group velocity
evaluated at the central wavenumber kc, xM = Cg(kc)t [120, 89]. As will be discussed in
the following, examples of dissipative media with purely real group velocities are possible,
in which case the central wavenumber kc is conserved, and the location of the spatial
maximum xM can be found similarly to conservative systems.

The present analysis is intended to investigate the possibility of extrapolation of the
energetic definition (7.1) of the complex group velocity to the case of absorbing media, and
examples of dynamical systems whose group velocities allow energetic interpretations are
presented.
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The general analysis is limited to coupled hyperbolic nonconservative Lagrangian dy-
namical systems with viscous type dissipation. The Lagrangian densities are described
by corresponding quadratic forms and the dissipation is included by the corresponding
Rayleigh pseudopotential. The resulting governing equations represent a system of cou-
pled linear Klein-Gordon equations with damping (KGD), and yield the conservation form

∂E

∂t
+
∂F

∂x
+ 2D = 0, (7.5)

where D denotes viscous dissipation function.

In general, equipartition of energy does not hold in absorbing media. The modewise
energy balance equations are derived to establish the connection between the kinetic energy,
potential energy and energy losses. These relations replace the equipartition of energy
principle and provide the foundation for further analysis.

The development, which to some extent follows Biot’s approach for conservative systems
[13], allows one to interpret complex group velocities of spatially damped waves in terms of
the following average quantities: energy flux F̄ , kinetic energy T̄ and energy losses Ē . In the
case of temporally damped waves, group velocities are directly related to the velocities of
energy transport. For example, in the case of single one-dimensional KGD equation group
velocities of the spatially and temporally damped waves admit the following energetic
interpretations, respectively,

Cg =
F̄ + icφĒ
2T̄ + iĒ , Cg =

|ω|2
ω2

R

Ce. (7.6)

where cφ = ω/kR denotes the phase velocity. It is important to stress that in the limiting
case of no dissipation both resulting expressions (7.6) recover the energetic definition (7.1)
for conservative systems. In the very general case of coupled KGD equations energetic
representations (7.6) only hold approximately (modewise). The validity of approximations
is subsequently discussed and illustrated.

Section 7.1 provides the necessary preliminaries and establishes the relations necessary
for further development. In Section 7.2 modewise energy balance equations are derived to
characterize the partition between the kinetic energy, potential energy and energy losses.
Section 7.3 is dedicated to the interpretation of the complex group velocity from energy
principles. The results are presented for both spatially and temporally damped waves.
The following sections contain case studies. The identities are established for the three-
dimensional version of the Klein-Gordon equation with damping in Section 7.4, and for
electromagnetic waves in a partially conducting medium in Section 7.5. The results for
a multiphase poroelastic continuum in the framework of Biot’s theory, including the high
frequency range theory, are given detailed consideration in Section 7.6. The conclusions
are summarized in Section 7.7.
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7.1 Wave motion and Lagrangian formalism

Consider the one-dimensional Lagrange equation [59],

∂

∂t

∂L
∂q̇k

+
∂

∂x

∂L
∂qk,x

− ∂L
∂qk

+
∂D

∂q̇k
= 0, (7.7)

where L = L(q, q̇k, qk,x, x, t) is the volumetric Lagrangian density, D is the Rayleigh dissi-
pation pseudopotential. Let the dynamical system with N degrees of freedom be governed
by the following positive definite quadratic forms with corresponding symmetric matrices,
so that kinetic and potential energies, T and V , dissipation pseudopotential D (possibly
positive-semidefinite), are given by,

2T = ρij q̇iq̇j, (7.8)

2V = αijqi,xqj,x + βijqiqj, (7.9)

2D = bij q̇iq̇j. (7.10)

Here and henceforth the summation over repeated indices is implied, unless otherwise
specified. With these definitions the Lagrange equation reads,

∂

∂t

∂T

∂q̇k
− ∂

∂x

∂V

∂qk,x
+
∂V

∂qk
+
∂D

∂q̇k
= 0, (k = 1..N) (7.11)

and, for instance, in terms of continuum theories, provides a single governing equation for
single phase media, N = 1; two equations in the case of two-phase media, N = 2; three
equations for three-phase media, N = 3 etc.

According to (7.8)–(7.11) the governing equations represent the following hyperbolic
system of partial differential equations,

ρij q̈j − αijqj,xx + βijqj + bij q̇j = 0, (i = 1..N) (7.12)

with corresponding energy conservation form (7.5),

∂

∂t

(

1

2
ρij q̇iq̇j +

1

2
αijqi,xqj,x +

1

2
βijqiqj

)

+

+
∂

∂x
(−αij q̇iqj,x) + bij q̇iq̇j = 0. (7.13)

which provides the expression for the energy flux F in terms of generalized coordinates,

F = −αij q̇iqj,x. (7.14)
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In the case of harmonic wave motion

qj ∼ A exp [i(kx± ωt)] , (j = 1..N)

the Lagrange equation (7.11) can be recast in the form analogous to [13],

−ω2∂T
′

∂qk
+
∂V ′

∂qk
± iω

∂D′

∂qk
= 0, (k = 1..N) (7.15)

where 2T ′ = ρijqiqj, 2V
′ = (αijk

2 + βij)qiqj, 2D
′ = bijqiqj, and provides the governing

equations (7.12) in frequency-wavenumber space

[

−ω2ρij + aij(k)± iωbij
]

qj = 0, (i = 1..N) (7.16)

where aij(k) = αijk
2 + βij .

Dissipation leads to complex dispersion relations restricting further analysis either to
the case of spatially damped waves so that real circular frequencies are mapped into the
complex space of wavenumbers ω → kR + ikI, or temporally damped waves, in which case
real wavenumbers are mapped into complex frequency space k → ωR + iωI. Thus, in the
case of spatially (temporally) damped waves, for a given real ω (real k) the system (7.16)
represents one-parameter quadratic eigenvalue problem [114] for, in general, 2N complex
eigenvalues kn (eigenvalues ωn) and up to 2N eigenvectors.

Multiplying the ith equation (7.16) by q∗i /4 one finds that in the case of spatially damped
waves each of the eigenvalues kn yields the following relation

−1

4
ρijω

2qni q
n∗
j +

1

4
aij(kn)q

n
i q

n∗
j ± i

1

4
bijωq

n
i q

n∗
j = 0, (7.17)

where qni represents ith component of the eigenmode associated with the nth eigenvalue kn,

qni = Ani (ω) exp [i(knx± ωt)]. (7.18)

In the case of the temporally damped waves all eigenvalues ωn yield similar relations

−1

4
ρijω

2
nq

n
i q

n∗
j +

1

4
aij(k)q

n
i q

n∗
j ± i

1

4
bijωnq

n
i q

n∗
j = 0, (7.19)

where qni represents ith component of the eigenmode associated with the nth eigenvalue ωn,

qni = Ani (k) exp [i(kx± ωnt)]. (7.20)

Equations (7.17) and (7.19) constitute the foundation for further analysis.
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7.2 Modewise energy balance and energy partition

In the case of conservative systems (bij = 0) both eigenvalues and eigenvectors are real,
the above considerations lead to

−1

4
ρijω

2
nq

n
i q

n
j +

1

4
aij(k)q

n
i q

n
j = 0, (7.21)

and equipartition of energy follows immediately for each mode [13],

T̄n = V̄n. (7.22)

For nonconservative dynamical systems under consideration equipartition of energy does
not hold for spatially attenuated modes, however, it is found to be the case for temporally
damped modes.

7.2.1 Spatially damped waves

Consider the case of spatially damped waves in detail. The values of the period-average
kinetic energy T̄n, potential energy V̄n and viscous power dissipation 2D̄n associated with
the nth mode are provided in Appendix B.1. The expression for the modewise energy losses
in one period is thus

2D̄n ×
2π

ω
= πωbijq

n
i q

n∗
j . (7.23)

The following quantity, Ēn, is introduced for further convenience to denote 1/4π fraction
of viscous energy loss in one period,

Ēn = D̄n/ω =
1

4
ωbijq

n
i q

n∗
j . (7.24)

According to the results of Appendix B.1 and (7.24) the expression (7.17) can be rewrit-
ten in the form of the modewise energy balance (no summation over repeated n’s),

−T̄n +∆nV̄n ± iĒn = 0, (7.25)

where the following complex, frequency dependent coefficient is introduced

∆n =
(αijk

2
n + βij) q

n
i q

n∗
j

(αij|kn|2 + βij) qni q
n∗
j

. (7.26)
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The above relationship (7.25) replaces the energy equipartition principle for harmonic
waves in conservative systems, T̄ = V̄ , which can be recovered from (7.25) in the limiting
case of no dissipation (Ēn → 0, ∆n → 1).

The modewise energy balance equation (7.25) can be applied to quantify the partition
between the kinetic and potential energies. Taking the real and imaginary part of (7.25)
one finds

{

T̄n − Re(∆n)V̄n = 0,

Im(∆n)V̄n ± Ēn = 0.
(7.27)

Thus, the physical meaning of ∆n is clear: Re(∆n) represents the coefficient of energy
partition between the kinetic and potential energies, while Im(∆n) quantifies the proportion
between viscous energy losses and the potential energy for the n’th mode, i.e.

∆n =
T̄n
V̄n

∓ i
Ēn
V̄n
. (7.28)

In some particular cases, explicit expressions for ∆n that do not involve the eigenvectors
can be obtained. When βij vanishes,

∆n =
k2n
|kn|2

=
kn
k∗n
, (7.29)

and in the case of single degree of freedom

∆ =
αk2 + β

α|k|2 + β
. (7.30)

Thus, in certain cases, the information about the energy partition in nonconservative sys-
tems can be extracted directly from the dispersion relation. This includes the cases when
the values of coefficients ∆n are provided by either (7.29) or (7.30). In general, the eigen-
vectors are necessary to evaluate ∆n according to definition (7.26).

Finally, it can be noted that for the dynamical systems under consideration, Re(∆n) is
always less than unity, which indicates that in the case of spatially damped waves

T̄n < V̄n. (7.31)

7.2.2 Temporally damped waves

The results for temporally damped waves can be recovered in a similar manner. According
to (B.8) the expression for the energy losses in one wavelength is

2D̄n ×
2π

ωnR

= π
|ωn|2
ωnR

bijq
n
i q

n∗
j , (7.32)
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and again the following quantity, Ēn, is introduced to denote 1/4π fraction of viscous energy
loss in one wavelength,

Ēn = D̄n/ωnR =
1

4

|ωn|2
ωnR

bijq
n
i q

n∗
j . (7.33)

According to the results for the wavelength-averaged quantities provided in Appendix B.2,
(7.33) and (7.19) one may find (no summation over repeated n’s)

−ω2
nT̄n + |ωn|2 V̄n ± iωnωnRĒn = 0, (7.34)

what represents the modewise energy balance in the case of temporally damped waves.

The real and imaginary parts of (7.34) are respectively,

{

−(ω2
nR

− ω2
nI
)T̄n + |ωn|2 V̄n ∓ ωnRωnI Ēn = 0,

−2ωnIT̄n ± ωnRĒn = 0,
(7.35)

and equipartition of energy obviously follows from the above relations,

T̄n = V̄n. (7.36)

7.3 Complex group velocity

This section investigates the possibility of extrapolation of the energetic definition (7.1)
of the group velocity to the case of absorbing media. Both cases of spatial and temporal
attenuation are examined.

7.3.1 Adiabatic approximation

In the following, the approximate expressions for the complex group velocities are sought
based on the assumption that the corresponding eigenvectors Ani are sufficiently slowly
varying functions of frequency (wavenumber) in the case of spatial (temporal) attenuation.
The validity of the assumption is subsequently discussed.

In the case of spatially damped waves analysis stems from the equation (7.17) which
can also be recast in the form,

[

−ω2ρij + αijk
2
n + βij ± iωbij

]

Ani (ω)A
n∗
j (ω) = 0, (7.37)

involving normalized eigenvectors Ani (ω).
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Differentiating the equation (7.37) with respect to ω and neglecting the terms involving
derivatives of eigenvectors one arrives at the following expression (no summation over
repeated n’s),

[

−2ωρij + 2αijkn
dkn
dω

± ibij

]

Ani (ω)A
n∗
j (ω) ≈ 0, (7.38)

which further allows the derivation of the approximate expression for the complex group
velocity,

Cn
g ≈

[2αijknR + 2iαijknI]A
n
i (ω)A

n∗
j (ω)

[2ωρij ∓ ibij]Ani (ω)A
n∗
j (ω)

. (7.39)

The identity obtained from the imaginary part of (7.37),

[

2aijknI ±
ω

knR

bij

]

Ani (ω)A
n∗
j (ω) = 0. (7.40)

allows (7.39) to be rewritten as

Cn
g ≈

[2αijknR ∓ iωbij/knR]A
n
i (ω)A

n∗
j (ω)

[2ωρij ∓ ibij]Ani (ω)A
n∗
j (ω)

. (7.41)

The energetic interpretation of the above expression is now straightforward. To proceed,
we invoke the expressions for the period-average kinetic energy (B.1), energy flux (B.3) and
power dissipation (B.4), so that it remains to multiply the numerator and denominator in
(7.39) by ω exp(−2kIx)/4 to derive,

Cn
g ≈

F̄n ± icnφĒn
2T̄n ± iĒn

, (7.42)

where cnφ denotes the phase velocity and the plus (minus) sign is selected for the waves
traveling in positive (negative) x direction.

The analysis for the temporally damped modes is completely analogous and follows
from the equation (7.19),

[

−ω2
nρij + αijk

2 + βij ± iωnbij
]

Ani (k)A
n∗
j (k) = 0. (7.43)

Under the assumption of slowly varying eigenvectors, differentiation of the equation
(7.43) with respect to k provides

[

−2ρijωn
dωn
dk

+ 2αijk ± ibij
dωn
dk

]

Ani (k)A
n∗
j (k) ≈ 0, (7.44)
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and consequently, the expression for the group velocity is

Cn
g ≈

2αijkA
n
i (k)A

n∗
j (k)

[2ωnρij ∓ ibij]Ani (k)A
n∗
j (k)

. (7.45)

With the use of the identity obtained by evaluation of the imaginary part of (7.43) this
further simplifies to

Cn
g ≈

αijkA
n
i (k)A

n∗
j (k)

ωnRρijAni (k)A
n∗
j (k)

. (7.46)

The energetic interpretation of (7.46) requires the expressions for the wavelength-
averaged kinetic energy (B.5) and energy flux (B.7). For traveling modes (ωnR 6= 0),
the following approximate relation can be obtained,

Cn
g ≈ |ωn|2

ω2
nR

F̄n
2T̄n

, (7.47)

or alternatively, taking into account the equipartition of energy for temporally attenuated
modes (7.36),

Cn
g ≈ |ωn|2

ω2
nR

Cn
e , (7.48)

where Cn
e denotes the energy velocity. Note, that the factor |ωn|2/ω2

nR
in (7.48) may be

neglected in the case of traveling waves with e-folding time greater than a period, however,
should be preserved in the case of rapidly damped waves.

First of all, it is important to stress that the eigenvectors in (7.37) and (7.43), provided
bij 6= 0, are parameter independent only in the case of weak coupling, so that the cross-
coupling entries in (7.8)–(7.10) can be eliminated. Moreover, this appears to be the only
case when (7.42) and (7.48) are in fact the exact energetic interpretations of the group
velocities, i.e.

Cn
g =

F̄n ± icnφĒn
2T̄n ± iĒn

, Cn
g =

|ωn|2
ω2
nR

Cn
e . (7.49)

Thus, approximations (7.42) and (7.48) neglect coupling effect, and therefore, can be re-
garded as adiabatic approximations, in analogy with those known from quantum mechanics
and acoustics. As a consequence, group velocities in the case of single degree of freedom
dynamical system (7.8)–(7.10) (Klein-Gordon equation with damping, considered further
in Section 7.4) yield,

Cg =
F̄ ± icφĒ
2T̄ ± iĒ , Cg =

|ω|2
ω2

R

Ce. (7.50)

Secondly, adiabatic approximations may be accurate even with significant coupling,
as for instance in the case of longitudinal modes in Biot’s theory (considered further in
Section 7.6).
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Finally, it should be mentioned that the energetic interpretations (7.49) and (7.50)
recover the energetic definition of the group velocity (7.1) in the limiting case of no dissi-
pation.

7.3.2 Dissipation outflux

The adiabatic approximation in the case of spatially attenuated waves (7.42) can alterna-
tively be written as

Cg ≈
F̄ ± iF̄E

2T̄ ± iĒ (7.51)

where F̄E = cφĒ . The term F̄E , the energy flux density on dimensional grounds is the
product of the energy dissipated Ē and the phase velocity cφ = ω/kR. It is important to
stress that F̄E does not represent the energy flux in its usual sense as long as the energy
generated by the viscous friction is immediately extracted from the system and does not
propagate in a wave-like manner through the medium. This is generally true by virtue of
idealization (e.g. in viscous fluid dynamics heat waves are neglected). Thus, in analogy
with the mechanical energy flux F̄ , F̄E can be regarded as the energy dissipation outflux
characterized by some energy dissipation velocity cφ.

An analogous term is absent in the case of temporal damping (7.42). A more detailed
discussion of dissipation outflux is provided in Section 8.5.

7.4 Klein-Gordon equation with damping

To illustrate the preceding considerations we consider the example of the damped Klein-
Gordon equation (KGD) with constant coefficients [79],

φtt − α2∇2φ+ β2φ+ bφt = 0, (7.52)

where φ = φ(~x, t), and extend the energetic interpretations (7.50) to more than one-
dimension.

The energy conservation form (7.5) for the KGD equation reads,

∂

∂t

(

1

2
φ2
t +

1

2
α2φ2

xi
+

1

2
β2φ2

)

+
∂

∂xi

(

−α2φtφxi
)

+ bφ2
t = 0, (7.53)

while the dispersion relation and the expression for the complex group velocity are, respec-
tively,

−ω2 + α2~k2 + β2 − ibω = 0, (7.54)

~Cg =
2α2~k

2ω + ib
. (7.55)
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We first restrict our attention to the case of rightward propagating, spatially damped
waves (ωI = 0, ~kR 6= 0, ~kI 6= 0) and consider a traveling damped wave solution of the form

φ ∼ Ae−
~kI~x cos

(

~kR~x− ωt+ η
)

= Ae−ψ(~x) cos [θ(~x, t) + η] , (7.56)

where θ denotes the phase, ψ corresponds to spatial attenuation and η is the phase shift,

~kR =
∂θ

∂~x
, ~kI =

∂ψ

∂~x
, ω = −∂θ

∂t
. (7.57)

The period-averaged kinetic energy is given by

T̄ =
1

2
A2ω2e−2ψ sin2(θ + η) =

1

4
A2ω2e−2ψ. (7.58)

while the average power dissipation can be found as

2D̄ = A2bω2e−2ψ sin2(θ + η) =
1

2
A2bω2e−2ψ, (7.59)

so that the expression for the average energy loss is

Ē = D̄/ω =
1

4
A2bωe−2ψ. (7.60)

According to (7.53) the expression for the average energy flux is now a vector quantity,

~F = −A2α2e−2ψω sin(θ + η)×
[

~kI cos(θ + η)− ~kR sin(θ + η)
]

=
1

2
A2α2ω~kRe

−2ψ. (7.61)

To establish the connection between the complex group velocity and energy transport
characteristics we rearrange (7.55) as follows

~Cg =
2α2~kR + 2iα2~kI

2ω + ib
=

2α2~kRω + 2iα2~kIω

2ω2 + ibω
, (7.62)

and consider the imaginary part of the KGD dispersion relation (7.54),

2α2~kR · ~kI − bω = 0, (7.63)

or alternatively,

2α2~kR · ~kI − bω
~kR · ~kR

|~kR|2
= 0, (7.64)

96



so that,

2α2~kI = b
ω~kR

|~kR|2
= b~cφ. (7.65)

Finally, we rewrite (7.62) in the form,

~Cg =
2α2~kRω + i~cφbω

2ω2 + ibω
, (7.66)

and multiply the numerator and denominator by A2e−2ψ/4 to obtain

~Cg =
~F + i~cφĒ
2T̄ + iĒ =

~F + i ~FE

2T̄ + iĒ , (7.67)

which demonstrates the validity of the energetic interpretation (7.50) in more than one
dimension.

Now consider the energetic interpretation of the group velocity in the case of temporally
damped waves (ωI 6= 0, ~kR 6= 0, ~kI = 0). In this case the traveling damped wave solution
is of the form (with ωI < 0 in the case of absorbing media)

φ ∼ AeωI t cos
(

~k~x− ωRt+ η
)

, (7.68)

and one may recover the following expressions for the averaged over a wavelength kinetic
energy and energy flux,

T̄ =
1

4
A2|ω|2e2ωI t, (7.69)

~F =
1

2
α2A2ωR

~ke2ωI t. (7.70)

The expression for the group velocity (7.54) now simplifies to (with the use of the identity
obtained by evaluation of the imaginary part of the dispersion relation (7.54))

~Cg =
2α2~k

2ωR + i(2ωI + b)
=
α2~k

ωR

. (7.71)

It now suffices to compare (7.69), (7.70) and (7.71) to establish an exact representation,

~Cg =
|ω|2
ω2

R

~F

2T̄
, (7.72)

and furthermore, taking into account the equipartition of energy, T̄ = V̄ (which can be

easily verified in the 3D case with the use of the identity |ω|2 = α2~k2 + β2, derived from
the dispersion relation (7.54)),

~Cg =
|ω|2
ω2

R

~Ce. (7.73)
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Again, excluding rapidly damped waves in (7.73), the group velocity accurately approxi-

mates the energy velocity, ~Cg ≈ ~Ce.

The result for temporally attenuated waves can be related to the behavior of a Gaussian
wave packet. The one-dimensional version of (7.73), (7.3) and (7.4) suggests that the
central wavenumber kc is conserved, even though the position of the spatial maximum
xM = Cg(kc)t is always ahead of the location predicted by the energy velocity, Cet.

7.5 Electromagnetic waves in a partially conducting

medium. Maxwell’s equations.

The physical interpretations of the group velocity in absorbing media developed in Sec-
tion 7.3 were established for a special class of mechanical systems (7.8)–(7.10). Maxwell’s
equations for a partially conducting medium do not fit into this formalism. Nevertheless,
completely analogous relations can be obtained.

Consider Maxwell’s equations for a homogeneous, isotropic, linear, partially conducting
medium in one dimension [77],

∂2Ex
∂z2

= µǫ
∂2Ex
∂t2

+ µσ
∂Ex
∂t

, (7.74)

∂2Hy

∂z2
= µǫ

∂2Hy

∂t2
+ µσ

∂Hy

∂t
, (7.75)

where µ, ǫ and σ denote permeability, permittivity and conductivity, respectively.

Assuming solutions in the form of traveling, spatially damped waves,

Ex = E0e
i(kz−ωt), Hy = H0e

i(kz−ωt), (7.76)

where k = kR + ikI, we note that from the equation

∇× E = −µ∂H
∂t

(7.77)

it follows that ikE0 = iωµH0.

The dispersion relation can be written down as

−k2 + µǫω2 + iµσω = 0, (7.78)

or, in alternative form,
{

−k2
R
+ k2

I
+ µǫω2 = 0,

2kRkI − µσω = 0,
(7.79)
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and provides the following expression for the complex group velocity,

Cg =
2k

2µǫω + iµσ
. (7.80)

The expressions for the average electric and magnetic energy densities are, respectively,

W̄e =
1

2
ǫEE∗ =

1

2
ǫExE

∗
x =

1

2
ǫ|E0|2e−2kIz, (7.81)

W̄m =
1

2
µHH∗ =

1

2
µHyH

∗
y =

1

2

|k|2
ω2µ

|E0|2e−2kIz. (7.82)

The average power flow per unit area equals the real part of the complex Poynting vector,

S̄ = Re (E×H∗) = Re
(

ExH
∗
y

)

ẑ, (7.83)

S̄z =
kR

ωµ
|E0|2e−2kIz. (7.84)

The expression for the average dissipation power density can be found as

P̄d =
1

2
E · J∗

c =
1

2
σExE

∗
x =

1

2
σ|E0|2e−2kIz, (7.85)

and again we define 1/4π fraction of the energy loss in one cycle Ē , so that

Ē = P̄d/ω =
σ

2ω
|E0|2e−2kIz. (7.86)

Using the second equation (7.79) we can rearrange (7.80) as follows,

Cg =
kR/µω + icφσ/2ω

ǫ+ iσ/2ω
, (7.87)

where cφ = ω/kR is the phase velocity, so that finally,

Cg =
S̄z + icφĒ
2W̄e + iĒ =

S̄z + iF̄E

2W̄e + iĒ , (7.88)

where the quantity F̄E = cφĒ , in analogy with previous considerations, is recognized as the
Joule dissipation outflux.

It can be easily verified that the energy partition coefficient ∆ is given by

∆ =
k2

|k|2 =
W̄e

W̄m

+ i
Ē
W̄m

, (7.89)
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so that Re(∆) provides the ratio between the electric and magnetic energy densities, while
Im(∆) quantifies the proportion between the energy loss in one period and magnetic den-
sity. In conducting media the magnetic energy density is known to be always larger than
the electric energy density in the case of spatial attenuation [77] which also follows from
equation (7.89).

One may also obtain the identity for the temporally damped waves. In this case the
expression for the group velocity is

Cg =
k

µǫωR

. (7.90)

The expressions for the energy densities and power flow averaged over a wavelength are

W̄e =
1

2
ǫ|E0|2e2ωIz, (7.91)

W̄m =
1

2

k2

|ω|2µ |E0|2e2ωIz, (7.92)

S̄z =
kωR

µ|ω|2 |E0|2e2ωIz. (7.93)

The equipartition of electric and magnetic energy densities, W̄e = W̄m, can be confirmed
with the use of dispersion relation (7.78).

Consequently, one arrives at

Cg =
|ω|2
ω2

R

S̄z
2W̄e

=
|ω|2
ω2

R

Ce. (7.94)

7.6 Longitudinal waves in a multiphase continuum.

Biot’s theory.

The approach to the complex group velocity developed above applies to a multiphase con-
tinuum, in particular, to Biot’s theory of wave propagation in an isotropic, homogeneous,
porous solid [11, 12]. Biot’s theory implies purely viscous solid-fluid interphase interac-
tions in the low frequency range and viscoelastic interphase interactions in the higher
frequency range. The governing equations in the low frequency range can be shown to
satisfy the formalism (7.8)–(7.10) and approximate physical interpretations of the complex
group velocities (7.42), (7.48) apply directly to both longitudinal modes. In the general,
full frequency range theory it is necessary to include viscoelastic effects which introduce
certain modifications to the earlier obtained result (7.42). Analysis is provided for the case
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of spatially damped waves propagating in the negative x direction to maintain consistency
with Biot’s original work [11, 12].

According to low frequency Biot’s theory

2T = ρ11u̇
2
i + 2ρ12u̇iU̇i + ρ22U̇

2
i , (7.95)

2V = σijeij + sε, (7.96)

2D = b(u̇i − U̇i)
2, (7.97)

where u and U are the displacements of the solid and fluid phases respectively, ρij is the
mass matrix whose diagonal (off-diagonal) components represent reference phase densities
(added mass effects); b = φ2ηf/K, where φ, ηf and K denote porosity, viscosity and
permeability, respectively.

The solid and fluid strains are defined as follows

eij =
1

2
(ui,j + uj,i) , ε = Ui,i (7.98)

and the constitutive equations thus read

σij = λekkδij + 2µeij +Qεδij , (7.99)

s = Qekk +Rε. (7.100)

Further analysis is provided for the 1D case and thus restricted to longitudinal waves.
In this case we find the following expressions for the potential energy (7.96) in terms of
generalized coordinates,

2V = (λ+ 2µ)u2x + 2QuxUx +RU2
x , (7.101)

which, along with (7.95) and (7.97), represent a particular case of the formalism (7.8)–
(7.10). The poroacoustic Poynting vector

Pi = −σiju̇j − sU̇i, (7.102)

reduces to a scalar expression for the energy flux [consistent with the general expression
(7.14)],

F = −σu̇− sU̇ = −(λ+ 2µ)uxu̇− 2Q(uxU̇ + Uxu̇)−RUxU̇ . (7.103)

To illustrate the steps in the approach for coupled systems we consider the quadratic
forms

2T ′ = ρ11u
2 + 2ρ12uU + ρ22U

2, (7.104)

2V ′ = k2
[

(λ+ 2µ)u2 + 2QuU +RU2
]

, (7.105)

2D′ = b
(

u2 − 2uU + U2
)

, (7.106)
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and derive the governing equations in frequency-wavenumber space according to (7.15),

−ω2(ρ11u+ ρ12U) + k2 [(λ+ 2µ)u+QU ] + iωbF(u− U) = 0, (7.107)

−ω2(ρ12u+ ρ22U) + k2(Qu+RU)− iωbF(u− U) = 0, (7.108)

An ad hoc frequency dependent correction factor F [12] is introduced here in (7.107)–
(7.107). Introduction of the complex viscosity Fηf includes viscoelastic effects and phys-
ically describes the lag between the filtration velocity and the shear stress exerted on the
pore wall [12]. While the real part of the complex viscosity corresponds to the viscous
interaction, the imaginary part takes into account the purely elastic response. By taking
the viscoelastic interaction into account one can investigate a more general acoustic porous
media model that is valid for both low and high frequency regimes. The more general re-
sults for the full frequency range problem must recover the results derived above for the
low frequency theory in the limiting case F → 1.

The eigenvalue problem (7.107)–(7.108) for k2, can be classified as a standard eigenvalue
problem (or degenerate quadratic eigenvalue problem for k) and admits a simple analytic
solution [12] (unlike the corresponding problem for ω, which is strongly nonlinear; this
case of temporal attenuation is beyond the scope of the present analysis). Two possible
longitudinal modes exist in Biot’s theory, the so-called P1 and P2 waves, which we take to
correspond to the eigenvalues k1, k2 and eigenvectors (u1, U1) and (u2, U2), respectively.

In this notation, the modewise, averaged over a period values of the kinetic energy,
potential energy, energy flux and Dn are (n = 1, 2),

T̄n =
1

4
ω2 [ρ11unu

∗
n + ρ12(u

∗
nUn + unU

∗
n) + ρ22UnU

∗
n] , (7.109)

V̄n =
1

4
|kn|2 [(λ+ 2µ)unu

∗
n +Q(u∗nUn + unU

∗
n) +RUnU

∗
n] , (7.110)

F̄n =
1

2
ωRe(kn) [(λ+ 2µ)unu

∗
n +Q(u∗nUn + unU

∗
n) +RUnU

∗
n] , (7.111)

2D̄n =
1

2
ω2bF(unu

∗
n − u∗nUn − unU

∗
n + UnU

∗
n). (7.112)

Viscoelastic interaction implies elastic energy storage during each cycle as well as vis-
cous energy losses [115]. Upon introduction of the frequency correction factor in (C.4) the
average quantity 2D̄n becomes complex. It is now the real part of 2D̄n that corresponds
to the viscous power dissipation, while the imaginary part of 2D̄n serves to quantify the
elastic energy stored (see Chapter 8 for detailed explanation).

7.6.1 Complex group velocity

The approximate energetic interpretations of the complex group velocities for the longitu-
dinal waves are sought in the following, and these now include an additional term due to
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Figure 7.1: Group velocities and corresponding adiabatic approximations (real parts) ver-
sus frequency (curves labeled 1 and 2, respectively). Energy velocities versus frequency
(dotted line). Horizontal lines indicate limiting wavefront velocities V ∞

p1 and V ∞
p2 (Ta-

ble 5.1). P1-wave results (left), P2-wave results (right).

elastic energy stored.

As was mentioned above, Biot’s theory admits two possible longitudinal modes. Each
characteristic solution (n = 1, 2) must satisfy (7.17), which is now obtained by multiplica-
tion of (7.107) and (7.108) by u∗ and U∗, respectively, and adding the two equations,

−ω2 [ρ11unu
∗
n + ρ12(u

∗
nUn + unU

∗
n) + ρ22UnU

∗
n] +

+k2n [(λ+ 2µ)unu
∗
n +Q(u∗nUn + unU

∗
n) +RUnU

∗
n] + (7.113)

+iωbF(unu
∗
n − u∗nUn − unU

∗
n + UnU

∗
n) = 0.

In the form of the modewise energy balance (7.25) this reads

−T̄n +∆nV̄n + iĒ ′
n − Ē ′′

n = 0, ∆n = k2n/|kn|2 (7.114)

where Ē ′
n, Ē ′′

n ,
(Ē ′

n

Ē ′′
n

)

=
1

4
ωb

(FR

FI

)

(unu
∗
n − u∗nUn − unU

∗
n + UnU

∗
n), (7.115)

are, respectively, 1/4π fraction of the energy loss due to the viscous dissipation and half the
maximum elastic energy stored in one cycle modewise. In particular, according to (7.114)
and (7.115), the energy partition between the kinetic and potential energy, and the energy
losses and potential energy can be quantified as follows,

T̄n
V̄n

= Re(∆n) +
FI

FR

Im(∆n),
Ē ′
n

V̄n
= −Im(∆n). (7.116)
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Figure 7.2: Group velocities and corresponding adiabatic approximations (imaginary parts)
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wave results (upper curves).

With the above remarks the derivation for the group velocity interpretation can be
recovered in the same manner as in Section 7.3. In this case, for leftward propagating
waves, we obtain the following adiabatic approximations

Cn
g ≈

F̄n − icnφĒ ′
n

2T̄n +Ψ′′Ē ′′
n − iΨ′Ē ′

n

,

Ψ′ = 1 +
ω

FR

dFR

dω
, Ψ′′ = 1 +

ω

FI

dFI

dω
.

(7.117)

The physical interpretation of the above statement is clear. The term F̄En = cnφĒ ′
n

represents the dissipation outflux due to the viscous interphase interactions as before,
while Ē ′

n and Ē ′′
n denote viscous energy losses and half of the maximum of the elastic energy

stored (see Chapter 8 for detailed explanation), respectively. Ψ′′ and Ψ′ are nondimensional
coefficients expressed in terms of the frequency correction factor. The results for the low
frequency Biot’s theory (7.42) can be recovered from (7.117) in the limiting case F → 1.

Moreover, in this particular case the adiabatic approximation (7.117) is also a leading
order approximation for both the real and imaginary parts of the complex group velocity.
In the high frequency range the small parameter in the eigenvalue problem (7.107), (7.108)

is F/ω. As long as ReF = O(ω
1

2 ) and ImF = O(ω
1

2 ) [12], the perturbation is of order

O(ω− 1

2 ) + iO(ω− 1

2 ). Thus, kn and Cn
g can be expanded in powers ω

1

2 ,

kn/ω = λn0 + iλn1/ω
1

2 + λn2/ω
1

2 + iλn3/ω + . . . ,

Cn
g = Cn0

g + Cn1
g /ω

1

2 + iCn2
g /ω

1

2 + Cn3
g /ω + . . . . (7.118)

104



Further considerations suggest that

Cn
g =

F̄n − icnφĒ ′
n

2T̄n +Ψ′′Ē ′′
n − iΨ′Ē ′

n

+O

(

1

ω

)

+ iO

(

1

ω

)

, (7.119)

where the first summand contains leading O(1), O(ω− 1

2 ) and iO(ω− 1

2 ) terms.

The validity of the adiabatic approximation (7.119) is discussed further in Section 7.6.2
and illustrated with sample parameters for water saturated Berea sandstone.

7.6.2 Numerical results

Numerical results are obtained for water saturated Berea sandstone with the physical
properties provided in Table 5.1. Generalized poroelastic parameters λ, Q, and R are
related to the porosity, the solid and fluid bulk moduli, the bulk modulus of the porous
drained matrix and the shear modulus via Gedanken experiments [16]; reference phase
densities ρij are related to porosity, tortuosity, grain and saturating fluid densities [11] (see
Appendix D).

The dispersion relation for the longitudinal modes has the form [12]

(q11q22 − q212)z
2 − (q22γ11 + q11γ22 − 2q12γ12)z + (γ11γ22 − γ212) +

ib

2πρf
F(κ)(z − 1) = 0,(7.120)

where qij and γij are normalized Biot’s parameters and normalized reference densities,
respectively, ρ = ρ11 + 2ρ12 + ρ22, z = (ckn/ω)

2, n = 1, 2 (c is the characteristic velocity),
κ = δ(f/fc)

1/2 with characteristic frequency fc defined as

fc =
b

2πρ(γ12 + γ22)
. (7.121)

The expression for the frequency correction factor in terms of Bessel-Kelvin zero order
functions is [12]

F(κ) =
1

4

(

κT (κ)

1− 2
iκ
T (κ)

)

, T (κ) =
ber′(κ) + ibei′(κ)

ber(κ) + ibei(κ)
. (7.122)

Figures 7.1, 7.2 contain the results for the complex group velocities (real and imaginary
parts respectively) calculated both exactly, with the direct use of the dispersion relation
(7.120), and approximately, according to the adiabatic (also the leading order) approxi-
mation (7.119). The results for the energy velocity are also included in Figure 7.1. As
was mentioned above, the validity of the group velocity approximation strongly depends
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on certain properties of the eigenvectors. The solution of the eigenvalue problem (8.23),
(8.24) indicates that eigenvectors indeed exhibit the desired property, not only in the high
frequency range. Results for real and imaginary parts of the complex group velocities
illustrate the relative error introduced by the truncation of the coupling terms. The ap-
proximation is much more accurate in the case of the P2 wave, so that the exact and
approximate results are indistinguishable. This indicates that interphase coupling does
not significantly affects the propagation of the highly damped P2 wave. In the case of
the P1 wave the effect of interphase coupling is more pronounced, especially in the low
frequency range. The approximation is more accurate in the higher frequency range, as
was predicted theoretically. The energy velocity is found to be slower (faster) than the
group velocity in the low (high) frequency range, however, never exceeds the values of the
wavefront velocities, C1

e < V ∞
p1 , C

2
e < V ∞

p2 , in accord with the causality principle.

Figure 7.3 contains the results for the modewise kinetic energy and energy losses in
one period, due to viscous dissipation, T̄n and Ē ′

n, measured in percentage of the potential
energies V̄n in accordance with (7.116). For the P1 wave, equipartition of energy, T̄1 ≈ V̄1,
holds nearly exactly (with accuracy greater than 0.05%) at all frequencies. For the P2
wave similar results, T̄2 ≈ V̄2, are only valid in the high frequency range. Significant energy
losses are observed in the low frequency range, especially for the P2 wave, as expected.
These results reconfirm, from an energetic point of view, the role of the P2 wave as the
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main dissipation mechanism in porous solids. Moreover, this serves a vivid example of
the application of the modewise energy balance equation, since the results for the energy
partition were extracted directly from the dispersion relation (7.120).

7.7 Chapter Summary

In the case of conservative dynamical systems group velocity can be defined both kine-
matically and from energy principles. In the case of nonconservative systems, a general
energetic definition, similar to that for conservative systems, does not exist. Nevertheless,
in some exceptional cases, identities relating the complex group velocity and energy trans-
port characteristics can be established for both the case of spatial and the case of temporal
attenuation. The exact energetic interpretations have been presented for the KGD equa-
tion (7.67), (7.73) and Maxwell’s equations (7.88), (7.94). In the latter case the complete
analogy with mechanical systems is remarkable, since Maxwell’s equations do not satisfy
the formalism (7.8)–(7.10).

In the case of Biot’s theory the results can be summarized as follows. The energetic
interpretation in the form of the adiabatic approximation established for the complex group
velocity (7.119) is a leading order approximation for both real and imaginary parts of the
group velocity. Numerical results suggest a minuscule coupling effect on the propagation
of the highly damped slow P2 mode.

All energetic interpretations of the complex group velocity in the case of spatial atten-
uation contain the dissipation outflux term representing the product of the phase velocity
and energy dissipated. This quantity, although an energy flux on dimensional grounds,
is not the energy flux in its usual sense as long as the energy generated by the internal
friction is instantaneously extracted from the medium and does not propagate after it is
generated. In all the cases considered, including low and higher frequency Biot’s theory,
the dissipation energy velocity is found to equal the phase velocity, as can be expected for
cases in which dissipation is caused by friction. We believe this can be understood in terms
of the following thought experiment. Imagine a chain of masses in a frictionless medium.
The first mass begins to move with a constant velocity, hits the second mass, and transfers
energy to this mass. The second mass, in turn, moves with a fixed velocity and hits the
third mass, setting it in motion, and so on. Assume that the energy is only dissipated
during inelastic collisions, which occur instantaneously, and each collision removes only a
small fraction of the initial energy. In this simple example of a spatially damped longitudi-
nal wave, heat waves are generated and extracted from the medium during collisions only,
and hence, energy is dissipated with the velocity of the individual masses, or the phase
velocity. An analogous thought experiment in the case of temporal attenuation assumes
intrinsic friction of the medium and purely elastic collisions. In the latter case the energy
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is extracted permanently, immediately after the first mass is set in motion. There is no
characteristic velocity to be associated with the energy dissipated, therefore, the quan-
tity cφĒ is physically meaningless, and the corresponding term is absent in the energetic
interpretation of the group velocity.

Finally, it is important to stress that the analysis and the main conclusions presented
herein apply to dynamical systems of a special type, namely those governed by second
order hyperbolic partial differential equations with particular dissipation models (viscous
and viscoelastic). Although this covers a variety of realistic physical systems, the question
of whether or not the interpretation of the complex group velocity from energy principles
can be established in general, or at least for a wider class of problems, remains open.
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Chapter 8

Energy velocity and Q factor of

poroelastic waves

The energy velocity and Q factor of poroelastic acoustic waves in the context of classi-
cal isotropic Biot’s theory are revisited. Special attention is paid to the high frequency
regime when interphase interaction is viscoelastic. The analogy with viscoelastic behavior
is emphasized in derivation of the energy balance equations which relate kinetic energy,
potential energy, viscous power dissipation and elastic energy stored associated with each
wave. These lead to exact closed form expressions for the energy velocity and Q factor for
both longitudinal and shear waves from energy principles. Most notably, the analysis of the
resulting expressions reveals that the energy velocity of both longitudinal and shear waves
equals (exceeds) the corresponding phase velocity in the case of the low (full) frequency
range theory, and that the exact expression for the Q factor contains an additive correction
due to viscoelastic interphase interaction.

In dissipative media the group velocity Cg = dω/dk ceases to provide a clear physical
meaning, whereas the energy velocity Ce can be defined similarly to conservative systems
as the ratio between the average energy flux and average mechanical energy[25, 26],

Cg 6= Ce =
F̄

Ē
. (8.1)

In the case of homogeneous plane waves the equality between the velocity of energy
transport and the phase velocity Ce = cφ is commonly observed in dissipative media
what includes both electromagnetic [117, 78, 79, 35, 77] and mechanical wave propagation
[22, 20, 78, 31]. However, in general this equality does not hold [79, 80].

As in regards the waves propagating in porous media the energy velocity has been dis-
cussed in [29, 30, 31, 104], where the results were established for the very general anisotropic
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formulation. In anisotropic media the energy velocity vector does not necessarily coincide
with the wave vector [8], nevertheless, the relation between the energy velocity and the
phase velocity can also be established. The equality between the projection of the energy
velocity vector onto the propagation direction and the magnitude of the phase velocity

~Ce ·
~k

|~k|
=

ω

|~k|
, (8.2)

has been verified for the waves propagating in anisotropic elastic media[8], anisotropic
viscoelastic media [28, 31], anisotropic poro-viscoelastic media in the low frequency range
[30], and anisotropic poro-viscoelastic media in the full frequency range [31]. Numerical
studies of the energy velocity for the waves in anisotropic porous and poro-viscoelastic
media can be found in [29, 104].

In the framework of Biot’s isotropic full frequency range formulation [12] the expression
for the energy velocity derived herein for the waves traveling in the negative x direction
can be represented as follows,

Cn
e =

ωFR

Re(kn)FR + Im(kn)FI

, n = 1, 2, s, (8.3)

where kn = kn(ω) denote complex wavenumbers of P1, P2 and S-waves respectively, and
F = FR + iFI is the frequency correction factor [12]. According to (8.3) the energy
velocity equals the phase velocity when interphase interaction is purely viscous (F ≡ 1),
and exceeds the phase velocity when interphase interaction is viscoelastic (FI 6= 0). On
the other hand, the very general result for poro-viscoelastic waves in anisotropic media
[31] indicates the equality between the energy velocity and the phase velocity for the plane
homogeneous waves propagating in isotropic poroelastic continuum as must be recovered
in the appropriate limiting case. The disagreement between the two results outlined above
is subsequently addressed.

Apart from the energy velocity an important energy transport characteristic of ab-
sorbing media is the Q factor (quality factor) which serves to estimate the number of
cycles required for the mechanical energy to fall off significantly. In the case of dissipative
mechanical systems it can be formally defined as [2, 50]

Q−1 = −∆Ē

2πĒ
, (8.4)

where Ē is the average mechanical energy in the volume while −∆Ē is the average energy
loss in one cycle. It is important to stress that a variety of other definitions are currently
in use, e.g. [20, 30, 31, 104].
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The general definition (8.4) is rarely of direct use and it is common to use simple
approximate expressions instead. Assuming weak dissipation Q ≫ 1, so that successive
peaks have almost the same energy one arrives at the following approximation [50]

Q ≈ − Re(k)

2Im(k)
. (8.5)

The kinematic, or high Q approximation (8.5) is widely used in the theory of viscoelastic
media [22, 20] as well as in acoustics of porous media [53, 5, 124, 116, 103]. In the low
frequency range Biot’s theory [11] the interphase interaction is of purely viscous nature and
it can be easily verified that the result (8.5) holds exactly. For instance, such an equality
also known for homogeneous plane waves in the case of isotropic viscoelastic media [22, 31].

In the higher frequency range Biot’s theory [12] when interphase interaction is vis-
coelastic the result Q = −kR/2kI is no longer valid exactly. As derived in the following,
the general exact result in accord with the definition (8.4) valid in the full frequency range
reads as follows,

Qn = − Re(kn)

2Im(kn)
− FI

2FR

, n = 1, 2, s (8.6)

and now contains the additive correction due to high frequency viscoelastic effects.

The derivation of the expressions for the energy velocity follows the modewise energy
balance equation, originally presented in [56] for the longitudinal waves and developed
herein for the shear wave. Using this approach the energy balance equation relates kinetic
energy, potential energy, viscous power dissipation and elastic energy stored in one cycle
associated with each wave.

The chapter is organized as follows. Section 8.1 contains the necessary preliminaries
including the energy conservation forms related to the propagation of both longitudinal
and shear waves. Special attention is paid to the direct analogy with viscoelastic behavior
(summarily discussed above in Chapters 2, 7). These results are further used in the deriva-
tion of a modewise energy balance equation [56] which relates the average over one cycle
kinetic energy, potential energy, viscous energy losses and elastic energy stored. These
equations provide the necessary foundation for the derivation of the expressions for the
energy velocity in Section 8.2, and for the Q factor in Section 8.3. Numerical results for
the energy velocity and Q factor are presented for the set of parameters for water saturated
Berea sandstone in Section 7.6.2. The conclusions are summarized in Section 8.5.
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8.1 Viscoelastic behavior analogy and energy conser-

vation forms

In the governing equations [12]

(λ+ µ)∇∇ · u+ µ~∇2u+Q∇∇ ·U = ρ11ü+ ρ12Ü+ bF
(

u̇− U̇
)

, (8.7)

Q∇∇ · u+R∇∇ ·U = ρ12ü+ ρ22Ü− bF
(

u̇− U̇
)

(8.8)

the frequency dependent correction factor F is included to take into account the deviation
of the pore fluid motion from the Poiseuille flow in the higher frequency range. The com-
plex viscosity Fηf introduced via frequency correction factor [12] (and via viscodynamic
operator in subsequent formulation [14]) results from the analysis of the shear stress and
shear stain rate at the pore wall.

Complex viscosity η∗ = η′ − iη′′ defined as the ratio between the shear stress and shear
strain rate, i.e. σ = η∗ǫ̇, is commonly used to describe viscoelastic liquids [17, 47]. The real
(imaginary) components of complex viscosity are associated with the components of shear
stress which are in phase (out of phase) with the strain rate. The stress-strain relation
σ = η∗ǫ̇ is equivalent to a Kelvin-Voigt model σ = Eǫ + ηǫ̇ characterized by the elastic
energy storage E = 1

2
Eǫ2 and dissipation rate 2D = ηǫ̇2 [17]. In terms of complex viscosity

these quantities can be expressed as E = 1/2η′′ωǫ2 and 2D = η′ǫ̇2 accordingly.

A direct analogy with the complex viscosity encountered in Biot’s theory can be pointed
out. Similarly to the case of a viscoelastic material the real and imaginary parts of the
complex viscosity quantify viscous dissipation and elastic energy storage during interphase
interaction, respectively. The energy conservation form established for the low frequency
range theory [in which case F is set to equal unity in (8.7), (8.8)] reads [39]

Ė +∇ · F = −2D, (8.9)

where E denotes the total mechanical energy density E = T +V , and Fi = −σiju̇j−sU̇jδij
is the Poynting vector. As it is subsequently demonstrated, in the higher frequency range
[provided Im(F) > 1, Im(F) > 0] the energy conservation form contains an additional
term 2Ω in the right hand side due to the elastic energy stored,

Ė +∇ · F = −2D + 2Ω, (8.10)

so that the result for the low frequency theory (8.9) can be recovered from (8.10) in the
limiting case F → 1.
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8.1.1 Longitudinal waves

Consider the one dimensional version of Eqs.(8.7),(8.8). Assuming u = (u(x), 0, 0) and
U = (U(x), 0, 0) one arrives at the equations governing the propagation of longitudinal
waves (P1 and P2-waves),

(λ+ 2µ) uxx +QUxx = ρ11ü+ ρ12Ü + bF
(

u̇− U̇
)

,

Quxx +RUxx = ρ12ü+ ρ22Ü − bF
(

u̇− U̇
)

.
(8.11)

Due to the presence of the complex coefficient these equations can only be satisfied
with complex form solutions u = uR + iuI, U = UR + iUI. Consequently, Eqs. (8.11) can
be recast in the form

(λ+ 2µ) uRxx +QURxx = ρ11üR + ρ12ÜR + bFR

(

u̇R − U̇R

)

− bFI

(

u̇I − U̇I

)

, (8.12)

QuRxx +RURxx = ρ12üR + ρ22ÜR − bFR

(

u̇R − U̇R

)

+ bFI

(

u̇I − U̇I

)

. (8.13)

The characteristic feature of the above representation is the explicit separation of the forces
acting on solid by fluid (and similarly on fluid by solid) into the contribution of the viscous
force which is out of phase with relative solid velocity (u̇R − U̇R), and the contribution of
the elastic shear force which is in phase with the relative solid displacement (uR − UR).
Indeed, noting an obvious identity u̇I = ωuR, these are recognized in the last two terms of
the momentum equation (8.12) respectively,

−bFR

(

u̇R − U̇R

)

+ bωFI (uR − UR) . (8.14)

Multiplying Eqs. (8.12) and (8.13) by u̇R and U̇R respectively, and adding them together
one arrives at one-dimensional version of the conservation form (8.10) with

2T = ρ11u̇
2
R
+ 2ρ12u̇RU̇R + ρ22U̇

2
R
, (8.15)

2V = (λ+ 2µ)u2
Rx + 2QuRxURx +RU2

Rx, (8.16)

F = −(λ+ 2µ)uRxu̇R −Q(uRxU̇R + URxu̇R)−RURxU̇R, (8.17)

2D = bFR(u̇R − U̇R)
2, (8.18)

2Ω = bωFI(uR − UR)(u̇R − U̇R). (8.19)

Here F denotes the energy flux (as in agreement with the general expression for poroa-
coustic Poynting vector Pi = −σiju̇j − sU̇i), while the terms 2D, 2Ω represent power
dissipation per unit volume, and the rate of change of the elastic stored energy per unit
volume, respectively.
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As was discussed above, viscoelastic interphase interaction implies elastic energy storage
during each cycle in addition to the viscous energy losses as reflected by the presence of the
two different terms in the right hand side of Eq. (8.10), 2Ω and 2D, respectively. Averaging
over a period one finds that Ω̄ = 0, while in general D̄ > 0.

Viscous power dissipation −2D̄ (8.18) is given by the product of the viscous force [first
summand in (8.14)] and the relative solid velocity. Alternatively, viscous dissipation can
also be characterized by the following average quantity 2D̄ ·2π/ω, which represents viscous
energy losses in one cycle.

The elastic stored energy E can be expressed as half the product the elastic shear force
component [second summand in (8.14)] times relative solid displacement,

E =
1

2
bωFI (uR − UR)

2 , (8.20)

in direct analogy with the elastic potential energy in mechanical systems. Consequently,
the average elastic energy stored in one cycle can be represented as follows,

Ē =
1

4
ωbFI(uu

∗ − u∗U − uU∗ + UU∗), (8.21)

and therefore 2Ē provides the maximum elastic energy stored over one cycle. Finally, in
the case of harmonic motion

dE
dt

= 2Ω, (8.22)

so that 2Ω provides the rate of change of the elastic stored energy. As long as the elastic
energy stored E builds to a maximum followed by recovery over each cycle, the average
quantity 2Ω̄ is necessarily zero.

The governing equations (8.11) in frequency-wavenumber space can be written as fol-
lows,

−ω2(ρ11u+ ρ12U) + k2 [(λ+ 2µ)u+QU ] + iωbF(u− U) = 0, (8.23)

−ω2(ρ12u+ ρ22U) + k2(Qu+RU)− iωbF(u− U) = 0. (8.24)

For a given set of parameters ω Eqs. (8.23), (8.24) represents a standard eigenvalue problem
for k2 (or degenerate quadratic eigenvalue problem for k) which admits a simple analytic
solution [12]. Two possible longitudinal modes exist in Biot’s theory, the so-called P1 and
P2-waves, which we take to correspond to the eigenvalues k1, k2 and eigenvectors (u1, U1)
and (u2, U2), respectively.

Each characteristic solution (n = 1, 2) must satisfy the following relations (obtained by
multiplication of Eqs. (8.23) and (8.24) by u∗ and U∗, respectively, and adding the two
equations),
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−ω2 [ρ11unu
∗
n + ρ12(u

∗
nUn + unU

∗
n) + ρ22UnU

∗
n] +

+k2n [(λ+ 2µ)unu
∗
n +Q(u∗nUn + unU

∗
n) +RUnU

∗
n] + (8.25)

+iωbF(unu
∗
n − u∗nUn − unU

∗
n + UnU

∗
n) = 0.

In the form of the modewise energy balance this reads (see Appendix C.1)

−T̄n +∆nV̄n + iD̄n/ω − Ēn = 0, ∆n = k2n/|kn|2, (8.26)

where T̄n, V̄n are average kinetic and potential energies associated with longitudinal modes,
D̄n/ω can be interpreted as the 1/4π fraction of the energy loss due to the viscous dissipa-
tion, and Ēn is one half the maximum elastic energy stored in one cycle. Equipartition of
energy T̄n = V̄n can be recovered from the Eq. (8.26) in the limiting case of no dissipation.

8.1.2 Shear wave

Assuming u = (0, u(x), 0) and U = (0, U(x), 0) in Eqs. (8.7), (8.8) one arrives at the
equations governing the propagation of the shear wave (S-wave),

µuxx = ρ11ü+ ρ12Ü + bF
(

u̇− U̇
)

,

0 = ρ12ü+ ρ22Ü − bF
(

u̇− U̇
)

.
(8.27)

In analogy with Eqs. (8.12), (8.13) one arrives at

µuRxx = ρ11üR + ρ12ÜR + bFR

(

u̇R − U̇R

)

− bFI

(

u̇I − U̇I

)

, (8.28)

0 = ρ12üR + ρ22ÜR − bFR

(

u̇R − U̇R

)

+ bFI

(

u̇I − U̇I

)

. (8.29)

The corresponding energy conservation form (8.10) is now satisfied with

2T = ρ11u̇
2
R
+ 2ρ12u̇RU̇R + ρ22U̇

2
R
, (8.30)

2V = µu2
Rx, (8.31)

F = −µuRxu̇R, (8.32)

2D = bFR(u̇R − U̇R)
2, (8.33)

2Ω = bωFI(uR − UR)(u̇R − U̇R), (8.34)

so that the expressions for T , D and Ω are completely analogous to those in the case of
longitudinal waves.
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In the case of the shear wave the governing equations (8.27) in the frequency-wavenumber
space read as follows

−ω2(ρ11u+ ρ12U) + k2µu+ iωbF(u− U) = 0, (8.35)

−ω2(ρ12u+ ρ22U)− iωbF(u− U) = 0. (8.36)

Unlike the case of longitudinal waves for a given ω (8.35) and (8.36) are uncoupled equations
for u and U . The dispersion relation for the shear wave ks = ks(ω) can thus be easily
derived. For a given ω (8.35) and (8.36) can be satisfied with a corresponding value of ks
and arbitrary amplitudes us and Us related via Eq. (8.36).

Multiplying (8.35), (8.36) by u∗ and U∗, respectively, and adding the two equations one
arrives at

−ω2 [ρ11usu
∗
s + ρ12(u

∗
sUs + usU

∗
s ) + ρ22UsU

∗
s ] +

+µk2susu
∗
s + iωbF(usu

∗
s − u∗sUs − usU

∗
s + UsU

∗
s ) = 0. (8.37)

In the form of the modewise energy balance this reads (see Appendix C.2)

−T̄s +∆sV̄s + iD̄s/ω − Ēs = 0, ∆s = k2s/|ks|2, (8.38)

and admits the same physical interpretation as in the above-mentioned longitudinal waves
case.

The modewise energy balance equations (8.26) and (8.38) provide a necessary founda-
tion for further analysis.

8.2 Energy velocity

The expression for the energy velocities of both longitudinal modes in the full frequency
Biot’s theory can be derived with the use of the modewise energy balance equations (8.26)
and (8.38). As long as the form of the modewise energy balance equations for longitudinal
waves and shear wave is identical, the general analysis can include both cases. Derivations,
results and conclusions in this and the following section thus apply to both longitudinal
waves, as well as the shear wave.

Without loss of generality consider the energy balance equation,

−T̄n +∆nV̄n + iD̄n/ω − Ēn = 0, ∆n = k2n/|kn|2 (8.39)

where n = 1, 2, s in the cases of P1, P2 and S-wave respectively. Taking the real and
imaginary part of (8.39) one finds

{

−T̄n + Re(∆n)V̄n − Ēn = 0,

Im(∆n)V̄n + D̄n/ω = 0.
(8.40)
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As follows from (7.16) and the obvious identity D̄n/Ēn = ωFR/FI, the modewise energy
partition between the kinetic and potential energy can be quantified as follows

T̄n
V̄n

= Re(∆n) +
FI

FR

Im(∆n), n = 1, 2, s. (8.41)

Moreover, according to (C.2), (C.3), (C.6) and (C.7) the following identity holds for all
three waves

F̄n
V̄n

=
2ωRe(kn)

|kn|2
, n = 1, 2, s. (8.42)

Note that the right hand sides of Eqs. (8.41) and (8.42) only require the solution of the
corresponding dispersion relations kn = kn(ω), n = 1, 2, s.

Following the definition of the energy velocity (8.1), and taking into account the iden-
tities (8.41) and (8.42) we derive for the energy velocities (Ēn = T̄n + V̄n),

Cn
e =

F̄n
Ēn

=
2ωRe(kn)

|kn|2 [1 + Re(∆n) + Im(∆n)FI/FR]
,

which finally simplifies to

Cn
e =

ωFR

Re(kn)FR + Im(kn)FI

. (8.43)

In the low frequency range theory [11] the frequency correction factor can be neglected
(F ≡ 1), and consequently, for both longitudinal and shear waves

Cn
e = cnφ, (8.44)

so that the velocities of energy transport equal the corresponding phase velocities. This
result is in agreement with the more general result reported for anisotropic poro-viscoelastic
media reported in [30].

In contrast, in a full frequency range theory [12], when the frequency correction factor
F is included, we find that the energy velocity always exceeds the corresponding phase
velocity. From the expression (8.43) with Im(kn) < 0 for the waves traveling in negative x
direction it follows that

Cn
e > cnφ. (8.45)

Therefore, in a full frequency range, the energy velocity of poroelastic acoustic waves
exceeds the corresponding phase velocity of the waves. The latter is at odds with the
result for the energy velocity in anisotropic poro-viscoelastic media (8.2) reported in [31],
which implies the equality between the two for homogeneous waves in the full frequency
range (see Section 8.5 for discussion).
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Finally, we note that the energy velocity (8.43) must never exceed the corresponding
high frequency limiting values of the phase velocity V ∞

n (Table 5.1),

cnφ < Cn
e < V ∞

n , (8.46)

in accord with the causality principle.

8.3 Q factor and energy damping length

The expression for the Q factor can be derived with the use of the identities (8.41) and

D̄n

V̄n
= −ωIm(∆n), (8.47)

which both follow the modewise energy balance (8.39). According to (8.4), (8.41) and
(8.47),

Qn =
ωĒn
2D̄n

= − [1 + Re(∆n) + Im(∆n)FI/FR]

2Im(∆n)
= − Re(kn)

2Im(kn)
− FI

2FR

. (8.48)

In the low frequency range the correction term vanishes, and the above expression takes
the familiar form [53, 20]

Qn = − Re(kn)

2Im(kn)
. (8.49)

As long as both the Q factor and the distance traveled by the wave in one period vary
with frequency it is also convenient to introduce the energy damping length in order to
estimate the distance over which a significant portion of the wave energy dissipates. The
energy damping lengthDδ can be defined as the product of the Q factor and the wavelength
λ,

Dδ = Qλ =
2πQ

kR

= −πkRFR + kIFI

kRkIFR

. (8.50)

Unlike the Q factor the energy damping length decreases with frequency in the high
frequency range. As ω → ∞ the small parameter in the eigenvalue problem (8.23), (8.24)
and in the system (8.35), (8.36) is F/ω = O(ω−1/2), since FR = O(ω1/2), FI = O(ω1/2)
[12]. Thus, kn (n = 1, 2, s) can be expanded in inverse powers of ω1/2 as follows,

kn/ω = λn0 + iλn1ω
− 1

2 + λn2ω
− 1

2 + iλn3/ω
−1 + . . . ,

and consequently as ω → ∞, according to (8.50) Dn
δ = O(ω−1/2), while according to (8.48)

Qn = O(ω1/2) .

These considerations are illustrated with an example in the following section.
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8.4 Numerical results

Numerical results are obtained for water saturated Berea sandstone with the physical
properties provided in Table 5.1. Generalized poroelastic parameters λ, Q, and R are
related to the porosity, the solid and fluid bulk moduli, the bulk modulus of the porous
drained matrix and the shear modulus via Gedanken experiments [16]; reference phase
densities ρij are related to porosity, tortuosity, grain and saturating fluid densities [16] (see
Appendix D).

The dispersion relation for the longitudinal modes has the form [12]

(q11q22 − q212)z
2 − (q22γ11 + q11γ22 − 2q12γ12)z + (γ11γ22 − γ212) +

ibF(κ)

ρω
(z − 1) = 0, (8.51)

where z1,2 = (ck1,2/ω)
2, c and ρ are characteristic density and velocity, qij and γij are

normalized Biot’s parameters and normalized reference densities, κ = δ(f/fc)
1/2 and char-

acteristic frequency fc defined as [12]

fc =
b

2πρ(γ12 + γ22)
. (8.52)

In the case of the shear wave the dispersion relation is

z2s =
H

µ

[

γ11 + γ12Ms −
ibF(κ)

ρω
(1−Ms)

]

, Ms = −γ12 + ibF(κ)/ρω

γ22 − ibF(κ)/ρω
, (8.53)

where zs = (cks/ω)
2. The frequency correction factor used in the calculations is represented

in terms of the Bessel-Kelvin zero order functions [12]

F(κ) =
1

4

(

κT (κ)

1− 2
iκ
T (κ)

)

, T (κ) =
ber′(κ) + ibei′(κ)

ber(κ) + ibei(κ)
.

Figures 8.1 and 8.2 represent the results for the energy velocity in accordance with
(8.43). The results for the group and phase velocities are also included. The energy
velocities are found to be slower (faster) than the group velocity in the low (high) frequency
range, however, they never exceed the values of the wavefront velocities (C1

e < V ∞
p1 , C

2
e <

V ∞
p2 , C

s
e < V ∞

s ) in accord with the causality principle. The results of Figures 8.1 and 8.2
thus verify the theoretical predictions (8.44) and (8.45).

In particular, it can also be noted that group velocities are always greater than the
corresponding phase velocities, Cn

g > cnφ (n = 1, 2, s), which implies anomalous dispersion
[80]. In analogy with electromagnetic waves one can think of

√
zn = ckn/ω (n = 1, 2, s) as
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the complex refractive index. Taking the real part Re
√
zn = cknR/ω, and differentiating

this relation with respect to ω one finds

d

dω
(Re

√
zn) =

c

ω

(

1

Cn
g

− 1

cnφ

)

. (8.54)

The nondimensional slowness Re
√
zn is a decreasing function of ω [as long as the corre-

sponding phase velocities increase with ω, e.g. [12]], and it thus follows from Eq. (8.54) that
indeed Cn

g > cnφ (n = 1, 2, s) for waves in a medium with physically meaningful mechanical
parameters.

Figure 8.3 provides the results for the Q factors according to the expression (8.48),
as well as for the energy damping lengths (8.50) versus frequency. The results for the Q
factor suggest that in practice, the correction term FI/2FR in expression (8.48) can be
neglected. While this correction is definitely negligible in the case of the weakly damped
P1-wave and S-wave as long as Q ≫ 1, while 0 ≤ FI/FR < 1, we find this correction to
be insignificant even in the case of the P2-wave, with comparatively low values of the Q
factor. Indeed, in the low frequency range the P2-wave is overdamped, Q ≈ 1/2 and the
correction term is negligible as long as FI ≪ 1. As frequency increases, the wave is no
longer overdamped, the Q factor exceeds unity and increases as Q ∼ ω

1

2 , while the value of
the correction term always remains less than 1/2. These considerations justify the use of the
approximation (8.5) as an accurate approximation valid in the full frequency Biot’s theory.
Note that Q2 ≈ 1/2 in the low frequency range in accordance with theoretical predictions
[53], however, as frequency increases, Q2 exceeds unity indicating the possibility of resonant
excitation.

The numerical results indicate that the energy damping length decreases with frequency
in accordance with the theoretical prediction. In particular, the maximum energy damping
length Q2λ2 for the P2-wave achieved at low, seismic frequencies is on the order of one
meter. This result theoretically reconfirms the near impossibility of detecting the P2-wave
during field measurements [91] (on geophysical scales).

Figure 8.4 serves an illustration of the predictive power of the damping length estimated
by Eq.(8.50). Mechanical energies (per unit reference mass) associated with P1, P2 and
S-wave, and their corresponding average values are plotted versus x coordinate. These
results for longitudinal waves require the solution of the eigenvalue problem (8.23), (8.24),
while in the case of the shear wave the amplitudes are chosen arbitrarily to yield (8.36).

Finally, we note that in the case of longitudinal waves the results for the energy velocity
(8.43) and Q factor (8.48), which depend only on the wavenumber, can be verified by com-
paring with values yielded by the definitions (7.2), (8.4), which require directly computed
eigenvalues and eigenvectors of the eigenvalue problem (8.23), (8.24). Similar benchmark
solutions can be established for the shear wave.
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8.5 Chapter Summary

The main results can be summarized as follows. Exact closed form expressions which
quantify the energy velocity (8.43) and Q factor (8.48) are derived following the very general
definitions (7.2) and (8.4), and these only require the solutions of the dispersion relations.
The main attention is paid to the full frequency range theory and as a consequence, to the
treatise of the frequency correction factor. Strictly speaking, in the higher frequency range
the reference phase densities ρij are no longer constants, these become frequency dependent
due to the corresponding changes in the added mass [15, 14]. This additional refinement
is left beyond the scope of the present derivation as long as it would neither affect the
derivation and resulting expressions obtained herein nor change the main conclusions.

The relationship obtained for the energy velocity indicates that in the low frequency
regime the energy velocity of P1, P2 and S-waves exactly equals (exceeds) the corresponding
phase velocity in the case of low (full) frequency range Biot’s theory. In other words, in
both low and high frequency limits the equality between the energy velocity and the phase
velocity is observed, whereas in the intermediate frequency range the energy velocity is
found to exceed the corresponding phase velocity. In practice, the difference between the
two is quantitatively subtle.

The inconsistency of the above conclusions with the result earlier obtained for a more
general anisotropic formulation [31] can be explained as follows. The interpretation of the
kinetic energy provided in [31] follows the mathematical derivation of the energy balance
equation and leads to different expressions for the kinetic energy, one for the low frequency
range [30], which is consistent with Biot’s formulation for anisotropic media [15], and
one for the high frequency range [31] which accounts for an additional term (containing
viscosity) in the expression for the kinetic energy. Moreover, the elastic stored energy in the
higher frequency range is not quantified explicitly, therefore it must be absorbed by other
terms. Conversely, unlike the previous results for the energy balance equation [31, 36, 104],
the derivation provided herein does not require any changes in the expression for the
kinetic energy depending on whether purely viscous or viscoelastic interphase interaction
is considered; the viscoelastic effects are reflected by an additional term in the energy
balance equation which takes into account the elastic energy stored.

The exact expression for the Q factor valid in the full frequency range contains a
correction term due to viscoelastic effects. In the low frequency range this correction
vanishes in which case the kinematic approximation provides the exact values of the Q
factor as in the case of isotropic viscoelastic media. In the higher frequency range this
correction has to be included to obtain the exact value of the Q factor. However, in
practice, we find this correction to be insignificant, what reconfirms the validity of the
kinematic approximation Q ≈ −kR/2kI for poroelastic waves in the higher frequency range
from energetic considerations.
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Chapter 9

Conclusions

The main conclusions can be divided into two parts. While the first logical part of the thesis
is dedicated to the quantitative analysis of energy partition among poroelastic waves, the
second part investigates fundamental characteristics of the energy transport in absorbing
media, namely, the velocity of energy transport and quality factor.

First of all, it is important to make several remarks on the energy balance equation
(considered in detail in Chapter 2). In mathematical physics derivation of the energy
balance equations is often a routine procedure. Thus, for example the energy balance
equation for Biot’s theory was derived by Deresiewicz [41] shortly after the fundamental
theory had appeared, however, this result only applies to the low frequency range theory. In
the higher frequency range one should include complex viscosity in the governing equations.
The presence of the complex viscosity factor not only introduces additional difficulties in
the derivation (since in this case the governing equations can be satisfied exactly only with
complex solutions), but also requires a more general physical interpretation of the energy
balance equation to account for viscoelastic interphase interaction. Recently, the energy
balance equation in the form of a complex Poynting theorem for the very general case of
anisotropic poro-viscoelastic media was obtained by Carcione (2007) [31], and these results
include the treatise of the frequency correction factor. However, the presented approach can
be disputed since the expression for the kinetic energy [formula (7.486) p.311 in Carcione
(2007)] upon the introduction of the complex viscosity is at odds with the definition of
the kinetic energy as it is provided in the fundamental paper by Biot (1962) [15], namely
[formula (8.16) in Biot (1962)]. The definition of the kinetic energy introduced in Carcione
(2007) [31] depends on both viscosity and permeability in the higher frequency range, and
this is disputable from a physical point of view. Indeed, the kinetic energy is the energy
of motion and can only be defined as a positive-definite quadratic form in the solid and
fluid velocities and the reference phase masses, irregardless of the kind of dissipation (or
no dissipation) being considered. Consequently, in the energy balance equation presented
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herein, the expression for the kinetic energy is in accord with the classical definition of
Biot, so that its form is independent on the type of interphase interaction. Moreover, the
resulting energy balance equation contains an additional term which quantifies the elastic
energy storage during viscoelastic interphase interaction in the higher frequency range.
Thus, the rate of change of the mechanical energy equals to the viscous power dissipation
and the rate of change of the elastic energy stored (the time average of the latter quantity
is obviously zero).

Secondly, the structure of the wave field in Lamb’s problem is investigated. In absorbing
media waves exhibit exponential attenuation, therefore a clear interpretation of the wave
processes in the near field is important. The study based on complex analysis methods
leads to the wavetrain decomposition of the wave field. Each wavetrain represents the
superposition of the spectrum components over a certain wavenumber range, so that it
consists of the waves which travel faster and exhibit higher attenuation with respect to the
corresponding bulk modes (P1, P2 and S). Thus, it is only at a certain distance from the
source that one may observe the wavelengths and attenuations predicted by the dispersion
relations for longitudinal and shear waves. The asymptotic solution established for these
wavetrains traveling along the plane boundary reveals an additional geometric attenuation
x−3/2, quantitatively equivalent to that encountered in the case of perfectly elastic media.
The wavetrain decomposition is subsequently applied to the energy partition analysis.

The results for energy partition are obtained for two separate cases. In the case of
inviscid pore fluid dissipation can be ignored, consequently, the waves propagate without
dispersion. In the general case of viscous pore fluid the interphase interaction is viscous
(viscoelastic) in the low (high) frequency range, the waves are dispersive and attenuated
which introduces certain complications into the analysis.

In the case of non-dissipative porous media the energy analysis stems from the clas-
sical approach by Miller & Pursey [84, 85] primarily established for waves in a perfectly
elastic medium, and is generalized herein for waves in a non-dissipative, saturated porous
medium. Two possible situations, in which the Rayleigh wave is excited or unexcited in
non-dissipative porous media are considered. A refined phasewise distinction between the
powers transported by the particular wave species is obtained. The quantitative analysis
of the energy budget indicates strong dependence of the relative power contributions on
the driving configuration. Thus for example, the surface Rayleigh wave (when excited) can
be either energetically predominant, as in the case of resonant excitation, or conversely,
virtually unexcited depending on the parameters of the source. In particular, as follows
from the analysis of the energy flux through the cylindrical surface the traveling shear wave
in the fluid phase does not transfer energy. This somewhat paradoxical situation is caused
by the absence of shear stresses in the pore fluid, so that the corresponding energy flux
component vanishes. In the special case of complete absence of the Rayleigh wave, a signifi-
cant increase of the power transfered by the P2-wave compared to the underdamped case is
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observed. Moreover, in this case the P2-wave exhibits resonant-like behavior. The reasons
for the energy redistribution between the P2-wave and the Rayleigh wave are subsequently
explained.

In the general case of porous media saturated with viscous fluid the energy transported
by the waves is dissipated. The analysis therefore follows the interface wavetrain solution
of the Lamb’s problem. In the case of a distributed source the character of the solution
under the applied load and away from the source is different. It is shown that the interface
displacements within the contact area (away from the source) represent a superposition
of the standing (traveling) waves. The obtained solution allows the decomposition of the
total power supplied by the source into constituents related to particular wave types. These
decomposition results are verified to agree with the actual displacement fields. Again, as
in the case of no dissipation relative power contributions vary significantly depending on
the driving configuration. Special attention is paid to the upper cut-off frequency of the
Rayleigh wave. It is demonstrated that beyond the cut-off frequency when the Rayleigh
wave is no longer excited its virtual energy is instantly redistributed into the P2 motion.
Such energy redistribution is caused by the influence of the leaky Rayleigh mode. An
additional root of the Rayleigh dispersion equation is found situated on the “unphysical”
Riemann sheet. When passing through the cut-off frequency the true Rayleigh mode
disappears while the leaky mode root abruptly changes its location, moving towards the
vicinity of the P2 branch cut. In turn, the corresponding P2-wavetrain exhibits an abrupt
increase of amplitude, and consequently, one observes the remarkable predominance of the
P2 displacements.

The remaining results are dedicated to the investigation of the complex group velocity,
energy velocity and Q factor of poroelastic waves. The precise physical meaning of the
complex group velocity often encountered in absorbing media, and in particular in the
case of a saturated porous solid, is still unclear. However, it is demonstrated that in some
special cases of non-conservative dynamical systems the exact physical interpretations of
the complex group velocity can be established in terms of kinetic energy, energy flux and
energy losses. This includes the mechanical waves governed by the damped Klein-Gordon
equation and electromagnetic waves in partially conducting media. The general analysis is
based on the application of the Lagrangian formalism to the coupled system of the Klein-
Gordon equations. Under a certain approximation Biot’s theory fits this formal description,
and indeed the derived adiabatic approximation for the complex group velocities applies
to both longitudinal poroelastic waves. Moreover, the actual complex group velocity of the
P2-wave and its adiabatic approximation are found to be virtually indistinguishable.

Finally, the energy velocity and Q factor of poroelastic acoustic waves in the context
of classical isotropic Biot theory are revisited. The modewise energy balance equations
derived herein relate kinetic energy, potential energy, viscous power dissipation and elastic
energy stored in one cycle associated with each wave. These allow the derivation of exact
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closed form expressions for the energy velocity and Q factor for both longitudinal and
shear waves from energy principles. Most notably, the analysis of the resulting expressions
reveals the following. The energy velocity of both longitudinal and shear waves equals
(exceeds) the corresponding phase velocity in the case of the low (full) frequency range
theory. The exact expression for the Q factor contains an additive correction due to
viscoelastic interphase interaction.
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Appendix A

Stresses in polar coordinates
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Leading order terms in the far-field (R >> 1)

σR ∼ (λ+ 2µ)
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Appendix B

Averaged quantities

B.1 Spatially damped waves
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B.2 Temporally damped waves
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Appendix C

Averaged quantities

C.1 Longitudinal waves
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C.2 Shear wave
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Appendix D

Poroelastic mechanical parameters

Reference phase densities,

ρ11 = (1− φ)ρs + φρf (a− 1),

ρ12 = φρf (1− a),

ρ22 = aφρf .

(D.1)

Generalized poroelastic mechanical parameters,

λ = Kb − 2µ/3 +Kf (1− φ−Kb/Ks)
2 /φeff ,

Q = φKf (1− φ−Kb/Ks) /φeff ,

R = φ2Kf/φeff ,

φeff = φ+Kf (1− φ−Kb/Ks) /Ks.

(D.2)

Characteristic quantities,

ρ = ρ11 + 2ρ12 + ρ22,

H = λ+ 2µ+R + 2Q,

c =
√

H/ρ.

(D.3)

Nondimensional parameters,

γ11 = ρ11/ρ, γ12 = ρ12/ρ, γ22 = ρ22/ρ,

q11 = (λ+ 2µ)/H, q12 = Q/H, q22 = R/H.
(D.4)
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