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Abstract

In this thesis, we are interested in using the Padé approximants and asymptotic series
to approximate the density functions of the stable distributions. The paper specifically
discusses the selection of the optimal degree and central point of Padé approximants as well
as how to connect the Padé approximants and asymptotic series as a piecewise function.
Based on such approximation, a computational algorithm is developed to estimate the
maximum likelihood estimator with confidence interval of the parameters, using quasi-
Newton method. Simulations are conducted to evaluate the performance of this algorithm,
and comparisons are made to Nolan’s integral method to show that the method introduced
in the thesis is fast and reliable in approximation and estimation.
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Chapter 1

Introduction to stable distributions

Stable distributions are a very attractive tool in modeling non-normal probability distri-
butions in physical, economic and financial systems. For example, financial asset returns,
which are the cumulative outcome of a large number of i.i.d. random variables, can be
modeled by stable distributions rather than normal distributions. In fact, stable distribu-
tions can be considered as generalizations of the normal distributions in the Generalized
Central Limit Theorem. They are a rich class of heavy-tailed probability distributions,
which was first characterized by Paul Lévy [17]. Recent monographs using stable models
in finance and economics are Rachev and Mittnik (2000) [27], McCulloch (1996) [19], and
Embrechts et al. (1997) [10]. Although widely applied in many areas, the lack of closed
form for densities and distribution functions except for three special cases (normal, Cauchy,
and Lévy) is the main difficulty for its users.

1.1 Basic definition and characteristic function

A key property of the stable distributions is that the shape of a stable random variable
is preserved under convolutions. Basically, this property is similar to the convolutions of
normal distributions, and following that, the basic definition of stable distribution can be
provided:

Definition 1.1. Suppose that X, X1, and X2 are non-degenerate independent identically
distributed random variables. The random variable X is said to be stable (or stable in the
broad sense) if for any positive constants a and b, it follows

aX1 + bX2
d
= cX + d (1.1)

for some positive c and some d ∈ R (the symbol
d
= means equality in distribution)
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Specifically, X is called strictly stable (or stable in the narrow sense) if (1.1) holds with
d = 0 for all choices of a and b. And X is symmetric stable if it is stable and symmetrically

distributed around a center δ, e.g. X − δ
d
= −X + δ

As mentioned before, in only three cases [25] discussed in section 1.2 does the density
function of a stable distribution have a closed-form expression. Generally, a stable dis-
tribution can be described by its characteristic function. Based on (1.1), one can easily
generate its characteristic function. Using this, we can give an equivalent definition of
stable distribution [25]:

Definition 1.2. A non-degenerate random variable X is stable if and only if X
d
= γZ + δ,

where Z is a random variable with characteristic function

E(eiuZ) =

{
exp(−|u|α[1− iβtanπα

2
(sign(u))]), α 6= 1

exp(−|u|[1 + iβ 2
π
(sign(u))log|u|]), α = 1

(1.2)

and 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, δ ∈ R. Explicitly, for the case α = 1, 0 · log0 is always
interpreted as 0.

1.2 Parameterization and symmetric stable distribu-

tions

Definition 1.2 has four parameters in describing the characteristic function of general stable
distributions: an index of stability (or exponent) α, which is of most interest in this thesis,
reflecting the scaling law for the distribution when the distribution is convolved with itself.
Then a skewness parameter β, a scale parameter γ, and a location parameter δ, which are
restricted to the range that α ∈ (0, 2], β ∈ [−1, 1], γ > 0 and δ ∈ R. These parameters
completely determine a stable distribution.

However, the most confusing parts in learning stable laws are caused by many differ-
ent parameterizations. This vast number of parameterizations come from the historical
evolution, and for convenience in different applications. For example, numerical calcula-
tion, algebraic properties and analytic properties favor different types of parameterizations.
Eleven parameterizations in total have been developed to meet all sorts of need in research
[25]. Here the one used in this thesis will be introduced.

Definition 1.3. Let S(α, β, γ, δ; 1) denote the class of stable laws with parameter (α, β, γ, δ).
A non-degenerate random variable X is S(α, β, γ, δ; 1) if

X
d
=

{
γZ + δ, α 6= 1

γZ + (δ + β 2
π
γlogγ), α = 1

(1.3)
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where Z = Z(α, β) is defined by (1.2), and X has characteristic function

E(eiuX) =

{
exp(−γα|u|α[1− iβ(tanπα

2
)(sign(u))] + iδu), α 6= 1

exp(−γ|u|[1 + iβ 2
π
(sign(u))log|u|] + iδu), α = 1

(1.4)

Under this parameterization, we will give two special cases: normal and Cauchy distri-
butions as examples.

Example 1.1. normal (or Gaussian) distributions. X ∼ N(µ, σ2) if it has a density

f(x) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
)

It is straightforward for one to verify that a normal distribution is S(2, 0, σ√
2
, µ; 1)

Example 1.2. Cauchy (or Lorentz) distributions. X ∼ Cauchy(γ, δ) if it has a density

f(x) =
1

π

γ

γ2 + (x− δ)2

Similar to normal distribution, one can prove that a Cauchy distribution is S(1, 0, γ, δ; 1)

Notice that both normal distributions and Cauchy distributions are symmetric. Al-
though there are no explicit form for the density functions, the characteristic functions
of symmetric stable distributions have a very simple form, allowing us to do the expan-
sions and approximations (will be discussed in section 3.1.2) on the density functions.
The definition of symmetric stable distributions is given below. This thesis will present a
new numerical method of using Padé approximants and asymptotic series to approximate
the density functions for symmetric stable distributions and correspondingly maximum
likelihood estimation.

Definition 1.4. Let the notation S(α, γ, δ) denote the symmetric stable distribution with
parameters (α, γ, δ). A random variable X is symmetric stable distribution with parameter
(α, γ, δ), i.e. X is S(α, γ, δ), if X has characteristic function

E(eiuX) = exp(−γα|u|α + iδu) (1.5)

And when the distribution is standardized, i.e. scale γ = 1, and location δ = 0, the symbol
S(α) will be used.

Under this definition, normal distributions in example 1.1 can be expressed as S(2, σ√
2
, µ),

and Cauchy distributions in example 1.2 as S(1, γ, δ)

3



Figure 1.1: Density function for S(α, 1, 0) with different α

Figure 1.2: Density function for S(α, 1, 0) in tails

Figure 1.1 displays a plot of density functions for the standardized symmetric stable
distributions with different values of parameter α (the index), and figure 1.2 shows the same
but only on tails. These are calculated using the method of Nolan [23]. The graphs clearly
tell that an important difference between each symmetric distribution is the heaviness in the
tail, which is controlled by the parameter α. As the index α becomes smaller, the density
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function tends to have heavier tails and narrower peak. Unlike the normal distribution,
the significantly heavy tail in most symmetric stable laws cannot be ignored in modeling.
That explains in some sense the importance of stable distributions in researching certain
systems.
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Chapter 2

Introduction to Padé approximants

The class of Padé approximants is a set of rational functions used to approximate given
functions. While power series and asymptotic series are popular in numerical calculations
and approximations, one may note that both of them share a common property that
their partial sums are rational functions. Thus, it is intuitive to use a rational function
as a generalization of power series in approximations. Based on Taylor’s theorem and
Taylor series, the corresponding theory for rational functions leads to the class of Padé
approximants.

2.1 The Padé table

As a generalization of power series, Padé approximants can be developed from a very
fundamental start-point: Maclaurin series. Suppose there exists a power series

∑∞
k=0 ckx

k

(here, assuming it to be a Maclaurin series), representing a given function f(x), such that

f(x) =
∞∑

k=0

ckx
k (2.1)

and two non-negative integers m and n. The Padé approximant of degree (m,n) for f(x)
(approximated around 0) shall mean the rational function

R[m,n](x) =
m∑

j=0

ajx
j/

n∑
i=0

bix
i

= p(x)/q(x)

which satisfies the condition

f(x)− p(x)

q(x)
= o(xm+n) (2.2)
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as x → 0. Using the notation of power series in (2.1), we have

∞∑
k=0

ckx
k −

m∑
j=0

ajx
j/

n∑
i=0

bix
i = o(xm+n)

m∑
j=0

ajx
j − (

∞∑
k=0

ckx
k) · (

n∑
i=0

bix
i) = o(xm+n)

Multiplying the left-side up to order m + n, we find that

m+n∑
j=0

min(j,n)∑
i=0

bicj−i

 xj =
m∑

j=0

ajx
j + o(xm+n) (2.3)

Equating the coefficients on the left with corresponding coefficients on the right for each
value of j, we find that

min(j,n)∑
i=0

bicj−i = aj for 0 ≤ j ≤ m (2.4)

min(j,n)∑
i=0

bicj−i = 0 for m < j ≤ m + n (2.5)

Solving these equations directly gives the unique Padé approximants with degree (m, n).
Because the degree (m, n) can be chosen as any non-negative integers, all the possible Padé
approximants for f(x) can be arranged in a table (so-called Padé table) as follow.

f[0,0](x) f[0,1](x) f[0,2](x) · · ·
f[1,0](x) f[1,1](x) f[1,2](x) · · ·
f[2,0](x) f[2,1](x) f[2,2](x) · · ·

...
...

...
. . .

(2.6)

Notice that above argument oversimplifies some of the regularity assumptions [2] which are
not major concerns in this thesis. Disregarding such assumptions, we can provide a simple
definition of padé approximants, assuming that the function is approximated around 0:

Definition 2.1. Consider a function f(x) and its corresponding Maclaurin series
∑∞

k=0 ckx
k.

The Padé approximant for f(x) of degree (m, n)(m ≥ 0, and n ≥ 0) is given as:

R[m,n](x) =
m∑

j=0

ajx
j/

n∑
i=0

bix
i (2.7)
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satisfying that

f(x)−
m∑

j=0

ajx
j/

n∑
i=0

bix
i = o(xm+n) (2.8)

as x → 0, and the coefficients aj, and bi come from equations (2.4) and (2.5).

If Cramer’s rule is used to solve (2.4) and (2.5), the polynomials for numerator and
denominator can be expressed in a more convenient way:

p(x) =
m∑

j=0

ajx
j =

∣∣∣∣∣∣∣∣∣
cm−n+1 cm−n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n∑m
j=n cj−nx

j
∑m

j=n−1 cj−n+1x
j · · ·

∑m
j=0 cjx

j

∣∣∣∣∣∣∣∣∣

q(x) =
n∑

i=0

bix
i =

∣∣∣∣∣∣∣∣∣
cm−n+1 cm−n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n

xn xn−1 · · · 1

∣∣∣∣∣∣∣∣∣
where cn = 0 for n < 0.

More generally, if one wants to get the Padé approximants centered around point x0,
they can be obtained from the power series expanded about x0.

Definition 2.2. Consider a function f(x) and its Taylor series about x0:
∑∞

k=0 dk(x− x0)
k.

The Padé approximant for f(x) of degree (m, n)(m ≥ 0, and n ≥ 0) about x0 is given as:

R[m,n](x) =
m∑

j=0

aj(x− x0)
j/

n∑
i=0

bi(x− x0)
i

= p(x)/q(x)

where

p(x) =
m∑

j=0

aj(x− x0)
j

=

∣∣∣∣∣∣∣∣∣
dm−n+1 dm−n+2 · · · dm+1

...
...

. . .
...

dm dm+1 · · · dm+n∑m
j=n dj−n(x− x0)

j
∑m

j=n−1 dj−n+1(x− x0)
j · · ·

∑m
j=0 dj(x− x0)

j

∣∣∣∣∣∣∣∣∣
8



q(x) =
n∑

i=0

bi(x− x0)
i =

∣∣∣∣∣∣∣∣∣
dm−n+1 dm−n+2 · · · dm+1

...
...

. . .
...

dm dm+1 · · · dm+n

(x− x0)
n (x− x0)

n−1 · · · 1

∣∣∣∣∣∣∣∣∣
2.2 Comparison with power series

From Padé table (2.6) one may notice that approximants down the left-hand column of
the table are all polynomials, and functions across the diagonal from upper right to lower
left have the error term that with the same order. Thus, theoretically speaking, Padé
approximants will result at least no worse than Taylor polynomials by choosing proper
degree (m, n). However, one may still want to investigate the exact advantages of using
Padé approximants rather than Taylor polynomials.

For simplicity, consider a Maclaurin series and Padé approximants about x = 0. To
approximate some function f(x), error analysis tells us that both polynomial and rational
function fit very well when x is closed to 0. For x in the tail however, the polynomial
will be in trouble for those “unpolynomial-like ”functions, even if the series does converge.
Padé approximants, on the other hand, work appropriately for these kind of functions with
flexible choice of degree (m, n)

The fact can be illustrated by the following example:

Example 2.1. Consider the function f(x) = e−x2
. Figure 2.1 and Figure 2.2 shows plots of

f(x), Taylor polynomial of order 102 and Padé approximant of degree (12, 26) in different
intervals.

Figure 2.1 and 2.2 makes our point clearly. Although the Taylor polynomial does
converge in tail, it may be still unable to offer an acceptable result with a very high order.
In contrast, the Padé approximant fits amazingly well with the order of only m + n = 38.
To sum up, Padé approximants bring both computational and algebraic convenience in
such “unpolynomial-like”functions.

Another attractive fact to speak of is that, although Padé approximants of degree
(m+n) is based on a power series, the terms beyond order m+n do not actually effect the
Padé approximants. This fact implies that if the Padé approximants are generated from a
divergent series, which “act as convergent” for the first several terms, the approximation
may still be well performed.

9



Figure 2.1: Comparison between Taylor polynomial and Padé approximant around 0

Figure 2.2: Comparison between Taylor polynomial and Padé approximant in tail

Unfortunately, Padé approximants, as rational functions, inevitably suffer from an ob-
vious drawback in practice that singularities appear in some cases. The idea how to deal
with this issue will be discussed in Chapter 3.
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Chapter 3

Stable density functions

3.1 A brief review of previous results

3.1.1 Numerical integral methods

To evaluate stable density functions in practice, several numerical methods have been
developed. DuMouchel [7], Holt and Crow [15] provide procedures to approximate the
density functions. Both algorithms are computationally intensive and time consuming.
Now the most popular algorithm to compute the stable densities is given by Nolan [24],
who directly implemented the integral formulas based on Zolotariov’s (M) parameterization
[32]:

f(x, α, β) =
1

π

∫ ∞

0

cos(h(x, t; α, β))exp(−tα)dt

where

h(x, t; α, β) =

{
xt + βtan(πα

2
)(t− tα), α 6= 1

xt + βtan(πα
2

)t + 2αtln(t)
π

, α = 1

The proof of this result is provided in Nolan’s paper [24].

Nolan splits the region of integration into intervals according to the sign of the cosine
term. The endpoints of each interval are available analytically when the stable densities
are symmetric.

Nolan’s formulas are remarkablly faster than the DuMouchel and Holt-Crow algorithms.
However, evaluating integral form in numerical calculation is still not efficient enough where
too many integral forms would slow down the approximation process. Nolan reports in his
paper [23] that when α < 0.4 computations are very slow because the exponent exp(−tα)
decreases slowly and the region of integration must get larger to obtain sufficient accuracy.

11



In this case, there are usually too many subintervals, round-off errors increase quickly and
the desired accuracy cannot be always achieved. Besides, the challenging problems of this
approach lie in the numerical difficulties in computing the term tan(πα

2
)(t− tα) when α is

close to 1. Moreover, when |x| is large, the integrand oscillates very fast for some value of
α. In this thesis, when 0.4 ≤ α < 2, the true values of f(x) are all evaluated in Nolan’s
method to compare with our approximations. For 0.4 < α, we calculate the true values
of density functions by evaluating the inverse Fourier transforms directly, which is slower
than Nolan’s algorithm in computation.

3.1.2 Power series and asymptotic series

As discussed in section 1.2, a symmetric stable distribution has a simple characteris-
tic function, allowing series expansion (first developed independently by Feller [12] and
H.Bergström [4]). For simplicity, we consider the standardized symmetric stable distri-
butions here. The general case can be gained by transforming X = γZ + δ, where Z is
standardized symmetric stable distributed, with characteristic function

E(eiuZ) = exp(−|u|α).

The inverse Fourier transform tells us that if a random variable X has characteristic
function ϕ(u), the probability density function f(x) of X is determined uniquely as

f(x) =
1

2π

∫ ∞

−∞
e−iuxϕ(u)du

In the case of standardized symmetric stable distributions, we can plug in the characteristic
function defined in equation(1.5) (with γ = 1 and δ = 0) to obtain

f(x) =
1

π

∫ ∞

0

exp(−iux− uα)du (3.1)

Unfortunately, the idea to expand the integrand in (3.1) will fail because the resulting
series cannot be integrated term-by-term. However, we can find a method to deal with
this inverse Fourier transform in Small’s book [30] to get the asymptotic series and power
series:

Theorem 3.1. The density function f(x) of a symmetric stable distribution, whose char-
acteristic function is exp(−|u|α), has an asymptotic series for x 6= 0

f(x) ∼
∞∑

k=1

α

π
(−1)k−1sin

(
kπα

2

)
Γ(kα)

(k − 1)!

1

|x|kα+1
(3.2)
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i.e. let An(x) denote the sum of the first n terms of this series, for every n ≥ 0,

lim
x→∞

xnα+1[f(x)− An(x)] = 0

When α < 1, this series is convergent and when 1 < α < 2, it is divergent. The
case α = 1 is the Cauchy density, for which the series converges for |x| > 1 and diverges
elsewhere. The case α = 2 is the normal density, for which the series degenerate to 0.

Proof. Consider the integral in equation (3.1) as a curve integral in the complex plane,
and let the contour C be the positive real axis. Using a stereographic projection of the
complex plane onto the Riemann sphere, where the positive real axis and the negative
imaginary axis are two contours with the same start point and end point. Thus, integral
the integrand along these two contours will the same. i.e.

f(x) =
1

π

∫ ∞

0

exp(−iux− uα)du =
1

π

∫ −i∞

0

exp(−iux− uα)du

let t = ixu, we get

f(x) =
−i

πx

∫ ∞

0

exp(−t)exp(−(−it/x)α)dt

expand the second exponential term into power series, and note the integral of each term
reduces to the gamma function

f(x) =
−i

πx

∫ ∞

0

exp(−t)exp(−(−it/x)α)dt

=
−i

πx

∫ ∞

0

exp(−t)

[
∞∑

k=0

(−1)k (−it/x)kα

k!

]
dt

∼ −i

πx

[
∞∑

k=0

(−1)k

(
−i

x

)kα
Γ(kα + 1)

k!

]

Note that this series must contain only real part. By Euler’s identity, we have:

<
[
(−i)kα+1

]
= <

[
(exp(

−iπ

2
))kα+1

]
= cos

(
−π

2
· (kα + 1)

)
= −sin

(
kπα

2

)

13



Thus, taking the real part of this series, we have:

f(x) ∼ <

[
−i

πx

∞∑
k=0

(−1)k

(
−i

x

)kα
Γ(kα + 1)

k!

]

∼ 1

π

∞∑
k=0

(−1)k−1 · sin
(

kπα

2

)
· Γ(kα + 1)

k!
· 1

xkα+1

∼
∞∑

k=1

α

π
(−1)k−1sin

(
kπα

2

)
Γ(kα)

(k − 1)!

1

xkα+1

Note that this result requires x to be positive because we did the integral along the positive
real axis. Since f(x) is symmetric, we can replace x with |x| to get a more general formula,
i.e. equation (3.2).

Theorem 3.2. The density function f(x) of a symmetric stable distribution, whose char-
acteristic function is exp(−|u|α), has a power series for x 6= 0 that

f(x) =
1

απ

∞∑
k=0

(−1)k Γ[(2k + 1)/α]

(2k)!
x2k (3.3)

When 1 ≤ α ≤ 2, this series is convergent and when α < 1, it is divergent.

Proof. In the integral in equation (3.1), let t = uα, we have

f(x) =
1

πα

∫ ∞

0

exp(−t)exp(−ixt1/α)t(1−α/α)dt

expand the second exponential part into a power series, and reversing the order of integra-
tion and summation. We have

f(x) =
1

πα

∫ ∞

0

exp(−t)t(1−α/α)

[
∞∑

k=0

(−1)k
(
ixt1/α

)k

k!

]
dt

=
1

πα

∞∑
k=0

[
(−ix)k

k!

∫ ∞

0

e−tt(1−α/α)
(
t1/α

)k
dt

]
=

1

πα

∞∑
k=0

(−i)k Γ[(k + 1)/α]

(k)!
xk

Also note that this series must contain only real part so we take the real part and get the
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result:

f(x) = <

[
1

πα

∞∑
k=0

(−i)k Γ[(k + 1)/α]

k!
xk

]

=
1

πα

∞∑
k=0

(−1)k Γ[(2k + 1)/α]

(2k)!
x2k

Two facts should be noted here: First, it is not really important the series (3.2) and
(3.3) are convergent or not while using them for computing the density functions. Take
series (3.2) as example. In practice, even if series (3.2) is divergent for 1 < α < 2, one
would still sum the terms as long as the terms are decreasing in absolute value. This could
lead to a quite satisfactory result when |x| is large, because the error analysis tells that

after summing N terms, the error term o
(

1
|x|Nα+1

)
is negligibly small for large |x|. On the

other hand, when |x| is small, the series works poorly even if it converges because one needs
to sum up a large number of terms before getting the desirable accuracy. In contrast, the
power series (3.3) has the properties mirror those of asymptotic series, with computational
advantages for small |x| and disadvantages for large |x|. Second, the asymptotic series
supplies a more accurate approximation than Padé approximants in the tail, because it
follows the correct power law in the tail. The above facts may suggest that, disregarding
the convergence, we may use the asymptotic series to approximate the density functions
in tails, and Padé approximants otherwise.

3.2 Approximating stable densities using Padé ap-

proximants

In this section, we will present in details how to approximate symmetric stable densities

using Padé approximants and asymptotic series. Consider a random variable X that X
d
=

S(α) (see Definition 1.4), and its probability density function f(x). Using the power series
expansion of section 3.1.2 to obtain the form of Padé approximants of f(x) will not be a
tricky task. However, we still have some important issues. First of all, we should determine
the “best” degree (m, n) of Padé approximants. Following that, it is necessary to explore
the “connecting point” between two approximations, since we are going to use asymptotic
series in the tails and Padé approximants around zero. Last but definitely not least, we
must find out how to deal with the possible singularities.
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3.2.1 Padé approximations for stable densities

Now, let’s start from the form of Padé approximants of f(x). Theorem 3.2 provides a power
series of f(x) (it is in fact the Maclaurin series of f(x)), and we can directly calculate the
corresponding Padé approximants from definition 2.1:

Theorem 3.3. Let f(x) be the probability density function of a stable distribution S(α),
and the Padé approximation to f(x) with degree (m, n) based on the power series (3.3) is
given by:

R[m,n](x) = p(x)/q(x) (3.4)

p(x) =

∣∣∣∣∣∣∣∣∣
am−n+1 am−n+2 · · · am+1

...
...

. . .
...

am am+1 · · · am+n∑m
j=n aj−nx

j
∑m

j=n−1 aj−n+1x
j · · ·

∑m
j=0 ajx

j

∣∣∣∣∣∣∣∣∣ (3.5)

q(x) =

∣∣∣∣∣∣∣∣∣
am−n+1 am−n+2 · · · am+1

...
...

. . .
...

am am+1 · · · am+n

xn xn−1 · · · 1

∣∣∣∣∣∣∣∣∣ (3.6)

where

ak =

{
(−1)

k
2 ·Γ[(k+1)/α]
α·π·(k!)

, k is even

0, k is odd

Having a Padé table for f(x), we want to choose the “best” one from the table, i.e.
to determine the degree (m, n) of Padé approximants. As discussed in the beginning of
section 2.2, the error analysis implies that the Padé approximants R[m,n](x) across the
diagonal of the Padé table from upper right to lower left will fit the given function f(x) to
the same order when x → 0. However, when |x| grows large, these approximants start to
work differently, and one of these functions will fit f(x) better than any others.

In section 3.1.2, we introduced an asymptotic series of f(x) (An(x) stands for the
asymptotic series up to term n). It suggests that the order of f(x) in the tails is O(|x|−(α+1))
since xα+1 · An(x) → sin(πα

2
)Γ(α), as x → ∞. Therefore, the approximants with order

closer to O(|x|−(α+1)) in the tails will fit f(x) globally better. Let’s verify this idea by
following example.
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Example 3.1. Consider a stable distribution S(α) with index α = 1.25, and its density
function f(x). From Theorem 3.1, the order of f(x) in tail is O(|x|−2.25). Let’s apply three
Padé approximants with different degrees to fit f(x): R[8,10](x), R[6,12](x), and R[8,12](x).
Using formula (3.4)-(3.6), we can easily obtain these approximants. Figure 3.1 plots them
separately in the interval [5, 13].

Figure 3.1: Approximate density function with different degrees

As can be seen in Figure 3.1, although the order of R[8,10](x) and R[6,12](x) are the same
(8 + 10 = 6 + 12 = 18), there is a huge difference in the tail. The order of R[8,10](x) in
the tail is O(|x|−2), which is closer to O(|x|−2.25) compared to R[6,12](x), whose order is
O(|x|−6) in the tail. Since O(|x|−6) is much higher than O(|x|−2.25), it is not surprising to
observe that R[6,12](x) goes down too rapidly when |x| becomes large.

Note that for symmetric stable densities, the power series contains only even power
terms. Thus, the degree of Padé approximants (m, n) can be only even integers. It worth
mentioning that using the formula (3.4)-(3.6), one is able to calculate the Padé approxi-
mants with odd powers, such like R[7,10](x) or R[8,11](x). However, we can prove that they
are actually equivalent to the even powers approximants.

Lemma 3.1. Let R[m,n](x) denote the Padé approximant of the stable density function with
degree (m, n), which is calculated from equations (3.4) to (3.6). For a positive integer d,
it follows that

R[2d,2d+2](x) = R[2d+1,2d+2](x) = R[2d,2d+3](x) = R[2d+1,2d+3](x)
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Proof. see Appendices.

Since α ∈ (0, 2], the order of f(x) in the tail is between O(|x|−1) and O(|x|−3). We can
conclude from all above facts that the “best” degree for approximating a symmetric stable
density function f(x) is (2d, 2d + 2) for some positive integer d. Besides, there is another
unexpected advantage for using degree (2d, 2d + 2) to approximate stable densities, which
will be discussed in section 3.2.2. Note that when the value of α is close to 1, the order of
f(x) is closer to O(|x|−2) compared to the cases when α is close to the boundary. Thus, it
is not surprising to see that the Padé approximants offer a better approximation when α
is close to 1 than those when α is close to the boundary.

Another important issue is to find the “connecting point” between Padé approximants
and asymptotic series. The notation xc is used to denote such points. In standardized
cases, the Padé approximants will be used in the interval (−xc, xc) while asymptotic series
in (−∞,−xc) ∪ (xc,∞). To determine xc, let’s consider two different situations according
to the convergence of corresponding power series and asymptotic series.

First, for 1 < α < 2, as discussed in section 3.1.2, the asymptotic series will be divergent.
However, for a relatively large x, if we truncate the asymptotic series at the Nth term
where the terms begin to increase in their absolute values and sum up the first N terms,
the approximation will be still accurate. From another aspect, if we fix N , by solving the
inequality ∣∣∣∣Γ((N − 1)α)

(N − 2)!
· 1

|x|(N−1)α+1

∣∣∣∣ ≥ ∣∣∣∣ Γ(Nα)

(N − 1)!
· 1

|x|Nα+1

∣∣∣∣
we can find a critical point xc =

∣∣∣ Γ(Nα)
(N−1)·Γ((N−1)α)

∣∣∣ 1
α

such that for x > xc, the terms will

decrease in absolute value till nth term. The choice of proper N should not be big according
to two facts. First, the Padé approximants perform not as well as asymptotic series in the
tail. Second, xc is an increasing function of n. Thus, the Padé approximants will be
overused when |x| becomes relatively large if N is too big, and we can expect that the
approximation would not be always satisfactory in this case. For example, for α = 1.8,
choosing N = 30 and the degree of Padé approximants as (20, 22), xc can be calculated as
xc = 8.1. In this case, the fractional error in the interval (6.5, 8.1) will be bigger than 0.01.

In practice, choosing 10 ≤ N ≤ 15 allows the asymptotic series to supply a good
approximation and the Padé approximants as well. For example, to approximate the
density function of S(1.8), we choose N = 12 and calculate xc = 5.33. The fractional
error of the asymptotic series is plotted in Figure 3.2 to show how well this divergent series
works.

At the same time, since the power series is convergent, the Padé approximants with a
high enough degree will fit fairly well until x is very large. In other words, assuming the
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Figure 3.2: Fractional error of the asymptotic series in the interval [5.33, 7]

Padé approximants are suitable within the interval (−xp, xp) in which the fractional error
of the Padé approximants is less than 0.01, then for most of α ∈ (1, 2) we find in practice
that xp > xc (see Figure 3.3 and 3.4). Therefore, it is not difficult in this case to pick a
“connecting point”.

Notice that xc is a increasing function of α for fixed N . Thus, for simplicity, we can
choose a unified xc which is calculated from the largest value of α, i.e. α = 2. Then, for
other α ∈ (1, 2), the asymptotic series will perform a better job. Based on the above facts,
let’s give the approximation formula for the density function f(x) of a symmetric stable
distribution S(α).

Lemma 3.2. For 1 < α < 2, the density function f(x) of a standardized symmetric stable
distribution S(α) can be approximate by following formula:

f(x) ≈ G(x) =

{
R[2d,2d+2](x), |x| < xc

α
π

∑N
k=1 (−1)k−1sin

(
kπα
2

)
Γ(kα)
(k−1)!

1
|x|kα+1 , |x| ≥ xc

(3.7)

where d is a positive integer, and xc =
∣∣∣ Γ(Nα0)
(N−1)·Γ((N−1)α0)

∣∣∣ 1
α0

Theoretically, we should set α0 = 2 to find the unified xc. However, xc calculated from
α0 = 2 is too large for the Padé approximants to perform a good approximation when
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Figure 3.3: Fractional error of Padé approximants and asymptotic series when α = 1.8

Figure 3.4: Fractional error of Padé approximants and asymptotic series when α = 1.1

α is very close to 2, i.e. the Padé approximants will work poorly near the connecting
points (the fractional error of Padé approximants will be bigger than 0.1) in these cases.
As discussed before, the asymptotic series supplies a more accurate approximation than
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Padé approximants in the tail, so we want xc to be a little less for these cases. Thus, in
practice, we will use a relatively large α0 such as 1.9 instead of 2 to calculate xc. Actually,
the approximation will still be good enough (as shown in section 3.2.3).

For 0 < α < 1, we adopt a similar approach. Although the asymptotic series is
convergent for |x| > 0, the Padé approximants are still useful, because when |x| is very
close to zero, the asymptotic series needs too many terms to be close to the limit, and it
is challenging numerically to calculate it accurately. In this case, we have

f(x) =
α

π

∞∑
k=1

(−1)k−1sin

(
kπα

2

)
Γ(kα)

(k − 1)!

1

|x|kα+1

f(x)− An(x) =
α

π

∞∑
k=n+1

(−1)k−1sin

(
kπα

2

)
Γ(kα)

(k − 1)!

1

|x|kα+1

Note that limn→∞
α
π
sin

(
kπα
2

) (−1)k−1Γ(kα)
(k−1)!

1
|x|kα+1 = 0. Thus, if we fix a large N , and set a

error bound err, by solving the following inequality:

err ≥
∣∣∣∣απ · Γ((N + 1)α)

N !
· 1

|x|(N+1)α+1

∣∣∣∣ ≥
∣∣∣∣∣∣απ ·

(−1)Nsin
(

(N+1)πα
2

)
Γ((N + 1)α)

N !
· 1

|x|(N+1)α+1

∣∣∣∣∣∣
we can calculate xc for 0 < α < 1: xc =

∣∣∣α
π
· Γ((N+1)α)

N !
· 1

err

∣∣∣ 1
(N+1)α+1

. Then, we can provide

the approximation formula:

Lemma 3.3. For 0 < α < 1, the symmetric stable density functions can be approximate
by following formula:

f(x) ≈ G(x) =

{
R[2d,2d+2](x), |x| < xc

α
π

∑N
k=1 (−1)k−1sin

(
kπα
2

) Γ(kα)
(k−1)!

1
|x|kα+1 , |x| ≥ xc

(3.8)

where d is a positive integer, and xc =
∣∣∣α

π
· Γ((N+1)α)

N !
· 1

err

∣∣∣ 1
(N+1)α+1

, which is determined by

N , α and err.

In this case, the choice of N should be big because the asymptotic series is convergent
while the Padé approximants work well only in a narrow interval round zero. So we want
to use asymptotic series as much as possible. Since xc is a decreasing function of N in
this case, theoretically, summing up more terms, i.e. choosing bigger value of N , results
in better approximation by asymptotic series. However, since the term 1

|x|nα+1 becomes
smaller when n goes bigger, choosing a extremely big N will not significantly improve the
approximation but slow down the computation.
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For example, consider the density function of S(0.6). The fractional error of the Padé
approximant R[20,22](x) will be bigger than 0.01 when |x| > 0.42, while the fractional error
of the asymptotic series will be bigger than 0.5 when |x| < 0.04 even if we sum up more
than 1000 terms. This example explains the necessity of using Padé approximants and
choosing a relatively big N when 0 < α < 1.

In practice, choosing 50 ≤ N ≤ 60 will be appropriate in approximation. For example,
for α = 0.4, if we set N = 55 and err = 0.0001, xc can be calculated as xc = 0.00775. The
performance of asymptotic series after the connecting point is plotted in the figure below.

Figure 3.5: Asymptotic series in the interval [0.00775, 1]

For the cases when α = 1 and α = 2, S(α) becomes Cauchy and normal distributions
which have closed-form density functions. Thus, they are not problems in approximation.

3.2.2 Singularities and numerical challenges

As a major drawback of Padé approximants, the possible existence of singularities is un-
desirable in approximating smooth functions. However, an interesting phenomenon in
practice is observed: in some special cases while certain degrees are used, the singulari-
ties disappear even when the denominator of the Padé approximant has real roots. For

22



example, when α = 1.25, the Padé approximants with degree (8, 10) is

0.29646866− 0.3647251267x2 − 0.1109846x4 − 0.016916375x6 − 0.000658404x8

1− 0.69675902x2 − 0.96079136x4 − 0.34656557x6 − 0.05432847x8 − 0.00329134x10

solve the roots of the numerator and denominator numerically and we can find that both of
them have two real roots with multiplicity 1: -0.81518073 and 0.81518073. The values of the
Padé approximant at these two points are R[8,10](x)|x=−0.81518073 = R[8,10](x)|x=0.81518073 =
0.1993102, and one can also see from the figures below that the there are no singularities
in this case.

Figure 3.6: Padé approximant with degree [8, 10] for α = 1.25

Recall the “best” degree (2d, 2d+2) we mentioned in last section, and we find in practice
that it is one of these special cases where no singularities appear. When d ≤ 3, it is not
difficult to show that the denominator contains no real roots because the roots can be
found analytically. In other cases, this conclusion of the disappearance of the singularities
is based on the simulation result, and it is difficult to prove. Thus, the following conjecture
is presented.

Conjecture 3.1. Let f(x) be the density function of a symmetric stable distribution. The
Padé approximant for f(x) with degree (2d, 2d+2) has the following property: When d > 3,
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Figure 3.7: The denominator and numerator of R[8,10](x) for α = 1.25

if the denominator q(x) has some real root x0 with multiplicity k, then x0 is also the root
of p(x) with the same multiplicity.

In practice, the singularities do disappear using some math software (for example Mat-
lab), but still happen occasionally in some others (for example Maple). The reason is that
the coefficients of the higher power terms become smaller and smaller in absolute values.
Maple is not as good as Matlab in numerical calculations, so it is difficult to compute the
coefficients very accurately in Maple when they get too small. Thus, if the denominator of
the Padé approximants has a relatively large root x0, for example x0 > 4, the singularity
would not vanish. To deal with it, one can simply check the existence of large root of the
denominator, and choose a different degree if the root exists.

The difficulty of accurate calculation for coefficients leads to another numerical prob-
lem. Theoretically we can improve the approximations by increasing the power of both
denominator and numerator without changing the order in the tail, i.e. increasing the value
of d in Lemma 3.2 and 3.3. However, this may not be true in practice. Since it is harder to
compute the coefficients of the higher power terms very accurately in some software which
is not proficient in numerical calculation, increasing powers would not necessarily improve
the approximation given current degree is high enough. In most math softwares, choosing
6 ≤ d ≤ 12 allows the Padé approximants to provide a satisfactory result, and The choice
of d > 15 would only slow down the computation. Besides, it is better to choose a relatively
big d when α is close to the boundary because the performance of Padé approximants is
getting worse when α gets closer to the boundary as we discussed in section 3.2.1.
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3.2.3 Numerical results

In this section, we will present the result of our approximation to symmetric stable density
functions with comparison to the true value.

Let X be a random variable that follows a symmetric stable distribution with param-
eters (α, γ, δ), and let f(x|α, γ, δ) denote the probability density function of X. Notice
that we can transform f(x|α, γ, δ) into f(x|α), the probability density function of a stan-
dardized stable distribution, by f(x|α, γ, δ) = 1

γ
f(x−δ

γ
|α), and then the approximation of

density functions of the standardized symmetric stable distribution will automatically give
a density approximation in general cases.

For 0 < α < 1, use formula (3.8), choosing d = 10, N = 55, and err = 0.0001:

f(x|α) ≈ G(x|α) =

{
R[20,22](|x|), |x| < xc

α
π

∑55
k=1 (−1)k−1sin

(
kπα
2

) Γ(kα)
(k−1)!

1
x
, |x| ≥ xc

xc =

∣∣∣∣απ · Γ(56α)

55!
· 1

0.0001

∣∣∣∣ 1
56α+1

f(x|α, γ, δ) ≈ 1

γ
G(

x− δ

γ
|α)

In the general cases instead of standard, the connecting points xc1 and xc2 can be
obtained by solving |x−δ

γ
| = xc: xc1 = −γxc + δ and xc2 = γxc + δ. In this formula, the

approximation around the connecting points is the worst comparing to the tails or central
point. Table 3.1 lists the result of approximation calculated from above formula according
to different parameters (α, γ, δ). For each set of parameters, we choose three values of
x respectively from around the central point, around the connecting points, and in the
extreme tail. For each x, we provide the approximate value and fractional error (using
Maple).

For 1 < α < 2, use formula (3.7), choosing d = 10, N = 12. To choose the connecting
points, setting α0 = 1.9, we have xc = 6 for all α ∈ (1, 2). For the values of f(x) and G(x)
list in the tables we only keep four significant digits.

f(x|α) ≈ G(x|α) =

{
R[20,22](|x|), |x| < 6
α
π

∑12
k=1 (−1)k−1sin

(
kπα
2

) Γ(kα)
(k−1)!

1
x
, |x| ≥ 6

f(x|α, γ, δ) ≈ 1

γ
G(

x− δ

γ
|α)
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Table 3.2 picks four different value of x for each set of parameters, and present the
approximate value and fractional error. The connecting points in this case are all (−6, 6).

As can be seen, for most α and x, our approximation is almost as good as evaluating
the integral directly. The only unsatisfactory part is when α < 0.2 and α > 1.95, the
fractional error will be relatively large (> 10−2) for x very close to the connecting points.
However, it takes much shorter time to calculate G(x) than f(x). The time required for
calculating f(x) with parameter 0.4 ≤ α < 2 using Maple is about 1.37 seconds and it is
even longer for α < 0.4, while for G(x) with any possible α it needs less than 0.01 seconds.
Thus, we can conclude that the Padé approximants and asymptotic series provide a fast
and reliable approximation to stable densities, allowing us to do the maximum likelihood
estimation.

(α, γ, δ) xc x f(x) G(x) f(x)−G(x)
f(x)

(0.99,1,0) ±1.1084 0 0.31965 0.31965 < 10−10

1.1084 0.14163477 0.14156 5.315 · 10−4

100 0.00320064 0.00320064 −1.875 · 10−9

(0.8,1,0) ±0.4564 0 0.3606 0.3606 −5.545 · 10−10

0.4564 0.2502 0.2502 −1.199 · 10−9

100 6.997 · 10−5 6.997 · 10−5 < 10−10

(0.6,1,0) ±0.1076 0 0.4789 0.4789 −4.176 · 10−10

0.1076 0.4238 0.4238 1.864 · 10−8

100 1.386 · 10−4 1.386 · 10−4 < 10−10

(0.4,1,0) ±0.007476 0 1.058 1.058 < 10−10

0.007476 1.024 1.024 7.178 · 10−5

100 2.298 · 10−4 2.298 · 10−4 < 10−10

(0.3,1,0) ±6.24 · 10−4 0 2.948 2.948 −3.392 · 10−10

6.24 · 10−4 2.892 2.892 8.851 · 10−10

100 2.606 · 10−4 2.606 · 10−4 < 10−10

(0.2,1,0) ±6.198 · 10−6 0 38.197 38.197 −2.61 · 10−10

6.198 · 10−6 37.22 37.54 −8.456 · 10−3

100 2.495 · 10−4 2.495 · 10−4 < 10−10

(0.1,1,0) ±3.75 · 10−11 0 1.155 · 106 1.155 · 106 < 10−10

3.75 · 10−11 6.924 · 105 6.048 · 105 0.1264
100 1.639 · 10−4 1.639 · 10−4 < 10−10

Table 3.1: Approximating stable densities for 0 < α < 1
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(α, γ, δ) x f(x) G(x) f(x)−G(x)
f(x)

(1.95,1,0) 0.1 0.2815 0.2815 < 10−10

5.5 0.0006594 0.0006645 −7.689 · 10−3

6.5 0.0002826 0.0002814 4.556 · 10−3

100 6.016 · 10−8 6.016 · 10−8 < 10−10

(1.9,1,0) 0.1 0.2817 0.2817 −3.54 · 10−10

5.5 0.001175 0.001171 3.356 · 10−3

6.5 0.0005731 0.0005734 −6.102 · 10−4

100 1.444 · 10−7 1.444 · 10−7 3.462 · 10−9

(1.8,1,0) 0.1 0.2823 0.2823 < 10−10

5.5 0.002219 0.002217 8.998 · 10−4

6.5 0.001198 0.001198 1.330 · 10−4

100 4.150 · 10−7 4.150 · 10−7 −7.229 · 10−10

(1.6,1,0) 0.1 0.2844 0.2844 < 10−10

5.5 0.004340 0.004338 5.530 · 10−4

6.5 0.002605 0.002605 1.069 · 10−6

100 1.692 · 10−6 1.692 · 10−6 < 10−10

(1.4,1,0) 0.1 0.2889 0.2889 6.923 · 10−10

5.5 0.006462 0.006463 −1.355 · 10−4

6.5 0.004175 0.004175 5.897 · 10−10

100 5.088 · 10−6 5.088 · 10−6 < 10−10

(1.3,1,0) 0.1 0.2926 0.2926 3.418 · 10−10

5.5 0.007491 0.007493 4.133 · 10−4

6.5 0.004994 0.004994 8.2099 · 10−9

100 8.342 · 10−6 8.342 · 10−6 3.596 · 10−10

(1.2,1,0) 0.1 0.2977 0.2977 3.3595 · 10−10

5.5 0.008473 0.008480 −9.184 · 10−4

6.5 0.005814 0.005814 −1.204 · 10−9

100 1.332 · 10−5 1.332 · 10−5 −7.506 · 10−10

(1.01,1,0) 0.1 0.291572 0.291572 −1.0289 · 10−9

5.5 0.0101113 0.0101201 0.1264
6.5 0.0072882 0.0072882 < 10−10

100 3.05308 · 10−5 3.05308 · 10−5 8.9745 · 10−8

Table 3.2: Approximating stable densities for 1 < α < 2
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Chapter 4

Maximum likelihood estimation

In this chapter, an overview of previous work on methods of parameter estimation is
presented in section 4.1, with a preference on the quantile estimation in our approach.
Section 4.2 discusses in detail how to perform maximum likelihood estimation (MLE) using
Padé approximants and asymptotic series. Simulations and numerical result are included
in section 4.3.

4.1 Quantile estimator and other estimators

The lack of closed-form density functions makes the parameter estimation for stable dis-
tributions not an easy task. Several methods to estimate the stable index α are developed.
The earliest and simplest way is to plot the empirical distribution function of sample on
a log-log scale. The slope of the linear regression for large values of x yields the esti-
mate of α, according to the asymptotic tail behavior of stable distributions [28]. Similar
methods focusing on the tail behavior was proposed independently by Hill (1975) [14] and
DuMouchel (1983) [9]. However, McCulloch (1997) [20], and Fofack and Nolan (1999) [13]
have pointed out that this method is not reliable in practice because it is not known when
the Pareto tail behavior actually occurs.

Another approach is based on characteristic functions and moments. Press is the first
to try this method. He proposed a simple estimation method in 1972, based on transfor-
mations of the characteristic function [26]. Many modifications have been suggested after
that, Koutrouvelis (1980) [16] presented a regression-type method, and Nikias and Shao
(1995) [22] used fractional and negative moments to estimate parameters for symmetric
stable distributions.

Besides, a Bayesian approach using Monte Carlo Markov chain methods was proposed
by Buckle (1995) [5]. Although there is no closed-form density for X which is stable
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distributed, Buckle managed to find an available density function f(x, y|α) jointly with
some extra random variable Y . Then the posterior density was obtained through Bayes’
theorem by integrating out Y .

Quantile estimation is a simple method based on quantiles of stable distributions. It was
first provided by Fama and Roll in 1971 [11] for symmetric stable distributions. McCulloch
generalized and improved this method in 1986 [18], obtaining consistent estimators in terms
of five population quantiles (the 5th, 25th, 50th, 75th and 95th percentiles) for general
stable distributions with restriction α > 0.6. McCulloch defined two statistics vα and vβ:

vα =
x0.95 − x0.05

x0.75 − x0.25

vβ =
x0.95 + x0.05 − 2x0.5

x0.95 − x0.05

which are both functions of α and β, and independent of γ and δ. xp denotes the p − th
population quantile. Parameters α and β can be calculated through invert function:

α = φ1(vα, vβ)

β = φ2(vα, vβ)

Substituting vα and vβ by their sample values ṽα and ṽβ, and applying linear interpolation
between values found in tables provided by McCulloch yields estimators α̃ and β̃:

α̃ = φ1(ṽα, ṽβ) (4.1)

β̃ = φ2(ṽα, ṽβ) (4.2)

Scale and location parameters γ and δ can be estimated in a similar way. The tables
of the functions φ3(α, β) and φ4(α, β) defined by McCulloch are provided to calculate the
quantile estimators. Searching φ3 and φ4 with the estimators α̃ and β̃ in the tables gives
γ̃ and δ̃:

γ̃ =
x̃0.75 − x̃0.25

φ3(α̃, β̃)
(4.3)

δ̃ = γ̃ · φ4(α̃, β̃) + x̃0.5 (4.4)

Quantile estimates are simple to compute, and reliable for most α when the sample
size is very large. Thus, we will use these estimates as initial values of the iteration in our
algorithms.

Akgiray and Lamoureux (1989) [1] and Kogon and Williams (1997) [21] give simulation-
based comparison of some of the methods mentioned in this section.
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4.2 Maximum likelihood estimation

The maximum likelihood estimate of the parameters of the stable distribution can be
obtained by maximizing the log-likelihood function:

l(α, γ, δ) =
n∑

i=1

log(f(xi|α, γ, δ))

where x1, . . . , xn is an i.i.d. sample from a symmetric stable distribution. Using Padé
approximants and asymptotic series, we can evaluate the log-likelihood function without
difficulties. To maximize this function, a constrained (by parameter space) quasi-Newton
method is used, and the quantile estimate [18] is used as the initial point in iteration.

4.2.1 Approximate score functions

To maximize the log-likelihood function using quasi-Newton method, the first order deriva-
tive (score function) is needed. The score function is difficult to evaluate because of the
lack of closed-form density functions, and in this section we will introduce how to approx-
imate the score function by Padé approximants and asymptotic series. The score function
is:

s(α, γ, δ) = ∇l(α, γ, δ) =

(
∂l

∂α
,
∂l

∂γ
,
∂l

∂δ

)T

Note that we can compute the score functions as:

∂l

∂θ
=

n∑
i=1

∂log(f(xi|θ))
∂θ

=
n∑

i=1

∂f(xi|θ)
∂θ

· 1

f(xi|θ)

That means once we have the derivative of the density function, we can compute the score
functions.

To find the derivative of the density function, we start with the power and asymptotic
series (4.5) and (4.6):

f(x|α, γ, δ) ∼
∞∑

k=1

b∗k

∣∣∣∣x− δ

γ

∣∣∣∣−(kα+1)

(4.5)

f(x|α, γ, δ) =
∞∑

k=1

a∗k

(
x− δ

γ

)k

(4.6)
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where

b∗k =
α

πγ
(−1)k−1sin

(
kπα

2

)
Γ(kα)

(k − 1)!
(4.7)

a∗k =

{
(−1)

k
2 ·Γ[(k+1)/α]
α·π·γ·(k!)

, k is even

0, k is odd
(4.8)

Taking the derivative of (4.5) and (4.6) provides us the power series and asymptotic series
of ∂f/∂γ:

∂

∂γ

[
b∗k

(
x− δ

γ

)−(kα+1)
]

=
α

πγ2

(−1)k−1sin
(

kπα
2

)
Γ(kα)kα

(k − 1)!

∣∣∣∣x− δ

γ

∣∣∣∣−(kα+1)

(4.9)

∂

∂γ

[
a∗k

(
x− δ

γ

)k
]

=

 (−1)
k
2 +1·Γ[(k+1)/α](k+1)·(x−δ

γ )
k

α·π·γ2·(k!)
, k is even

0, k is odd
(4.10)

Now calculate the Padé approximants of ∂f/∂γ based on (4.10):

Rγ
[m,n](x) = pγ(x)/qγ(x) (4.11)

pγ(x) =

∣∣∣∣∣∣∣∣∣∣
c∗m−n+1 c∗m−n+2 · · · c∗m+1

...
...

. . .
...

c∗m c∗m+1 · · · c∗m+n∑m
j=n c∗j−n

(
x−δ
γ

)j ∑m
j=n−1 c∗j−n+1

(
x−δ
γ

)j

· · ·
∑m

j=0 c∗j

(
x−δ
γ

)j

∣∣∣∣∣∣∣∣∣∣
(4.12)

qγ(x) =

∣∣∣∣∣∣∣∣∣∣
c∗m−n+1 c∗m−n+2 · · · c∗m+1

...
...

. . .
...

c∗m c∗m+1 · · · c∗m+n(
x−δ
γ

)n (
x−δ
γ

)n−1

· · · 1

∣∣∣∣∣∣∣∣∣∣
(4.13)

where c∗k is defined as:

c∗k =

{
(−1)

k
2 +1·Γ[(k+1)/α](k+1)

α·π·γ2·(k!)
, k is even

0, k is odd
(4.14)

To combine the Padé approximants and asymptotic series as a piecewise function to
approximate the derivative of the density function, we apply the same idea in chapter 3 to
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choose the degree of the Padé approximants and the connecting points. The degree of the
Padé approximants can be chosen according to the order of ∂f/∂γ in the tails, and the
connecting points by solving the following inequalities.

For 0 < α < 1, the connecting points xγ
c can be calculated from:

err ≥

∣∣∣∣∣ α

γ2π
· Γ((N + 1)α)(N + 1)α

N !
· 1

|x−δ
γ
|(N+1)α+1

∣∣∣∣∣
and for 1 < α < 2 from:∣∣∣∣∣Γ((N − 1)α)(N − 1)

(N − 2)!
· 1

|x−δ
γ
|(N−1)α+1

∣∣∣∣∣ ≥
∣∣∣∣∣Γ(Nα)N

(N − 1)!
· 1

|x−δ
γ
|Nα+1

∣∣∣∣∣
Lemma 4.1. The derivative of density functions with respect to the scale parameter γ can
be approximated by the following function:

∂f(x)

∂γ
≈ gγ(x) =

{
Rγ

[2d,2d+2](x), |x−δ
γ
| < xγ

c

α
πγ2

∑N
k=1

(−1)k−1sin( kπα
2 )Γ(kα)kα

(k−1)!
|x−δ

γ
|−(kα+1), |x−δ

γ
| ≥ xγ

c

(4.15)

where d is a positive integer, and

xγ
c =


∣∣∣ α
πγ2 · Γ((N+1)α)·(N+1)·α

N !
· 1

err

∣∣∣ 1
(N+1)α+1

, 0 < α < 1∣∣∣ Γ(Nα0)
Γ((N−1)α0)·(N−1)

· N
N−1

∣∣∣ 1
α0 , 1 < α < 2

As discussed in 3.2.1, when 0 < α < 1, the connecting point xγ
c is determined by

(α, γ, δ), err and N , and when 1 < α < 2 by (γ, δ), α0 and N . The choice of the value
of N ,d and α0 is similar to what we did in chapter 3 for the same reason. It is better to
choose big N when 0 < α < 1, for example 50 ≤ N ≤ 60, and small N when 1 < α < 2 for
example 10 ≤ N ≤ 15. Choosing 6 ≤ d ≤ 12 and α0 = 1.9 will result in fast and accurate
computation in practice. The same N ,d and α0 applies in Lemma 4.2 and 4.3.

For the derivative with respect to the location parameter δ and stable index parameter
α, we use the same method, starting from the derivative with respect to the location
parameter of the power and asymptotic series (4.5) and (4.6):

∂

∂δ

[
b∗k

(
x− δ

γ

)−(kα+1)
]

=

α

πγ2

(−1)k−1sin
(

kπα
2

)
Γ(kα) · (kα + 1) · sign

(
x−δ
γ

)
(k − 1)!

∣∣∣∣x− δ

γ

∣∣∣∣−(kα+2)

(4.16)
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∂

∂δ

[
a∗k

(
x− δ

γ

)k
]

=

0, k is even

(−1)
k+3
2 ·Γ[(k+2)/α](k+1)·(x−δ

γ )
k

α·π·γ2·(k+1)!
, k is odd

(4.17)

d∗k =

{
0, k is even

(−1)
k+3
2 ·Γ[(k+2)/α](k+1)
α·π·γ2·(k+1)!

, k is odd
(4.18)

Then compute the Padé approximants of ∂f/∂δ based on (4.17):

Rδ
[m,n](x) = pδ(x)/qδ(x) (4.19)

pδ(x) =

∣∣∣∣∣∣∣∣∣∣
d∗m−n+1 d∗m−n+2 · · · d∗m+1

...
...

. . .
...

d∗m d∗m+1 · · · d∗m+n∑m
j=n d∗j−n

(
x−δ
γ

)j ∑m
j=n−1 d∗j−n+1

(
x−δ
γ

)j

· · ·
∑m

j=0 d∗j

(
x−δ
γ

)j

∣∣∣∣∣∣∣∣∣∣
(4.20)

qδ(x) =

∣∣∣∣∣∣∣∣∣∣
d∗m−n+1 d∗m−n+2 · · · d∗m+1

...
...

. . .
...

d∗m d∗m+1 · · · d∗m+n(
x−δ
γ

)n (
x−δ
γ

)n−1

· · · 1

∣∣∣∣∣∣∣∣∣∣
(4.21)

where d∗k is defined as (4.18). Applying the same idea as before allows us to choose the
optimal degree and connecting points.

Lemma 4.2. The derivative of density functions with respect to the location parameter δ
can be approximated by the following function:

∂f(x)

∂δ
≈ gδ(x) =

Rδ
[2d+1,2d+4](x), |x−δ

γ
| < xδ

c

α
πγ2

∑N
k=1

(−1)k−1sin( kπα
2 )Γ(kα)(kα+1)sign(x−δ

γ
)

(k−1)!

∣∣∣x−δ
γ

∣∣∣−(kα+2)

, |x−δ
γ
| ≥ xδ

c

(4.22)
where d is a positive integer, and

xδ
c =


∣∣∣ α
πγ2 · Γ((N+1)α)·((N+1)α+1)

N !
· 1

err

∣∣∣ 1
(N+1)α+2

, 0 < α < 1∣∣∣ Γ(Nα0)
Γ((N−1)α0)·(N−1)

· Nα0+1
(N−1)α0+1

∣∣∣ 1
α0 , 1 < α < 2
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Now for the stable index parameter α:

∂

∂α

[
b∗k

(
x− δ

γ

)−(kα+1)
]

=

(−1)kΓ(kα)

(k − 1)!
·

[
sin(kπα

2
)

γπ

(
1 + αkΨ(kα) + αkln(|x− δ

γ
|)
)

+
αcos(kπα

2
)k

2γ

]
· 1

|x−δ
γ
|kα+1

(4.23)

where Ψ is the digamma function: the logarithmic derivative of the gamma function.

∂

∂α

[
a∗k

(
x− δ

γ

)k
]

=

 (−1)
k+3
2 ·Γ[(k+1)/α][Ψ[(k+1)/α](2k+1)α]·(x−δ

γ )
k

α3·π·γ·k!
, k is even

0, k is odd
(4.24)

e∗k =

{
(−1)

k+3
2 ·Γ[(k+1)/α][Ψ[(k+1)/α](2k+1)α]

α3·π·γ·k!
, k is even

0, k is odd
(4.25)

Then compute the Padé approximants of ∂f/∂α based on (4.24):

Rα
[m,n](x) = pα(x)/qα(x) (4.26)

pα(x) =

∣∣∣∣∣∣∣∣∣∣
e∗m−n+1 e∗m−n+2 · · · e∗m+1

...
...

. . .
...

e∗m e∗m+1 · · · e∗m+n∑m
j=n e∗j−n

(
x−δ
γ

)j ∑m
j=n−1 e∗j−n+1

(
x−δ
γ

)j

· · ·
∑m

j=0 e∗j

(
x−δ
γ

)j

∣∣∣∣∣∣∣∣∣∣
(4.27)

qα(x) =

∣∣∣∣∣∣∣∣∣∣
e∗m−n+1 e∗m−n+2 · · · e∗m+1

...
...

. . .
...

e∗m e∗m+1 · · · e∗m+n(
x−δ
γ

)n (
x−δ
γ

)n−1

· · · 1

∣∣∣∣∣∣∣∣∣∣
(4.28)

where e∗k is defined as (4.25).

The connecting point xα
c in this case can be calculated numerically from the following

inequalities:
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for 0 < α < 1

err ≥

∣∣∣∣∣Γ(Nα) · (1 + αNΨ(Nα)− αNln(|x−δ
γ
|))

π|x−δ
γ
|Nα+1(N − 1)!

+
1

2
· αNΓ(Nα)

|x−δ
γ
|Nα+1(N − 1)!

∣∣∣∣∣ (4.29)

for 1 < α < 2
|A(N − 1, x, α, γ, δ)| ≥ |A(N, x, α, γ, δ)| (4.30)

where

A(N, x, α, γ, δ) =
Γ(Nα)

(k − 1)! · |x−δ
γ
|Nα+1

·
(

1 +
1

2
αNπ + αNΨ(Nα)− αNln(|x− δ

γ
|)
)

(4.31)

Lemma 4.3. The derivative of density functions with respect to the stable index parameter
α can be approximated by the following function:

∂f(x)

∂α
≈ gα(x) =

{
Rα

[2d,2d+2](x), |x−δ
γ
| < xα

c∑N
k=1 hk(x, α, γ, δ), |x−δ

γ
| ≥ xα

c

(4.32)

where d is a positive integer, and

hk(x, α, γ, δ) =

(−1)kΓ(kα)

(k − 1)! · |x−δ
γ
|kα+1

·

[
sin(kπα

2
)

γπ

(
1 + αkΨ(kα) + αkln(|x− δ

γ
|)
)

+
αcos(kπα

2
)k

2γ

]

The connecting points xα
c are determined by (4.29)-(4.31).

With the above functions defined in Lemma 4.1-4.3, we can approximate the score
function as following:

Lemma 4.4. The score function s(α, γ, δ) can be approximated by the following functions:

s(α, γ, δ) =

(
∂l

∂α
,
∂l

∂γ
,
∂l

∂δ

)
∂l

∂γ
≈

n∑
i=1

gγ(xi) ·
1

f(xi|α, γ, δ)
(4.33)

∂l

∂δ
≈

n∑
i=1

gδ(xi) ·
1

f(xi|α, γ, δ)
(4.34)

∂l

∂α
≈

n∑
i=1

gα(xi) ·
1

f(xi|α, γ, δ)
(4.35)

where gγ(xi), gδ(xi), and gα(xi) are defined respectively in (4.15), (4.22), and (4.32).
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Applying the same idea of taking the derivative of the power and asymptotic series
twice theoretically allows one to calculate the second order derivative of the density func-
tions, and approximate the observed information matrix, which makes it possible to utilize
the Newton’s method in optimization. However, approximating the observed information
matrix requires defining six extra functions and makes the algorithm complicated and
slow in calculation. Besides, non-derivative optimization methods such like Nelder-Mead
method was also tried, but it is slower in convergence than quasi-Newton method, requiring
more time in computation. Thus, considering the computational convenience, we will go
with the quasi-Newton method in this thesis. The algorithm for calculating the maximum
likelihood estimates using a quasi-Newton method is introduced in the next part.

4.2.2 Computational algorithm

As stated above, the quasi-Newton method (BFGS) will be used to find the maximum value
of the log-likelihood functions, and quantile estimator will be used as the initial point. We
denote the parameters by ~θ = (α, γ, δ) and the density functions by f(x|~θ). The parameter
space is Θ = (0, 2]× (0,∞)× (−∞,∞).

For a given sample (x1, x2, . . . xn), the maximum likelihood estimator θ̂ = (α̂, γ̂, δ̂) can
be calculated through the following steps:

• Calculate McCulloch’s quantile estimator θ̃ = (α̃, γ̃, δ̃) from the formula (4.1)-(4.4),
and set θ̃ as the initial value θ(0). If α exceeds the available range, i.e. α < 0.6, and
cannot be obtained in the table then randomly choose α(0) ∈ (0, 0.6]

• For each point θ(k), choose the proper degree for Padé approximants and connecting
points, and calculate the density function f(xi|θ(k)) from lemma 3.2 and lemma 3.3,
and the first order derivative gγ(xi), gδ(xi) and gα(xi) from lemma 4.1-4.3.

• Compute the score function s(θ(k)) using Lemma 4.4, and quasi-Newton direction
∆k = −H−1

k s(θ(k)), where Hk is an approximation to the Hessian matrix (−I(θ(k))).

• Set step size t = 1, and compute the updated point θ(k+1) as θ(k+1) = θ(k) + ∆k. If
α exceeds the boundary of the parameter space, set it as the extreme value, i.e. set
α = 2 if α > 2, and α = 0.01 if α < 0.
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• Check and see whether the iteration satisfies the stopping criteria: the number of it-
eration meets the limit, or ‖∆k‖ is less than the preset error bound. Stop the process
if any of the above conditions is satisfied.

• Compute the updated Hk+1:

Hk+1 = Hk +
yk+1y

T
k+1

yT
k+1∆k

− Hk∆k (Hk∆k)
T

∆T
k Hk∆k

(4.36)

where yk+1 = s(θ(k+1))− s(θ(k)), and H0 is chosen as nI, where n is the sample size
and I is the identity matrix.

or directly its inverse H−1
k+1 using the Sherman-Morrison formula [29]:

H−1
k+1 =

(
I −

∆ky
T
k+1

yT
k+1∆k

)
H−1

k

(
I − yk+1∆

T
k

yT
k+1∆k

)
+

∆k∆
T
k

yT
k+1∆k

(4.37)

4.2.3 Observed information and confidence intervals

Let X = (x1, x2, . . . xn) denote an i.i.d. stable sample with sample size n, and θ̂n denote
the maximum likelihood estimator calculated from X. DuMouchel [8] verified the needed
regularity conditions, and stated that the asymptotic behavior of θ̂n satisfies:[

I(θ̂n; X)
]1/2 (

θ̂n − θ0

)
d→ Z ∼ MV N(03, I3)

where I(θ̂n; X) is the observed information matrix and θ0 is the true value of the parameter.

One should notice the fact that when ~θ is near the boundary of the parameter space, the
asymptotic behavior of the estimators from finite sample is not well known. When α = 2,
the asymptotic normal distribution for the estimators becomes a degenerate distribution
[7]. When ~θ is away from the boundary, an approximate 100p% confidence interval for θi

is given by (
θ̂i − zp

√
v̂ii, θ̂i + zp

√
v̂ii

)
(4.38)

where v̂ii is the (i, i) entry of
[
I(θ̂n; X)

]−1

.

To calculate the observed information matrix I(θ̂n; x), one can use −Hk, which is intro-
duced in the algorithm in section 4.2.2, to approximate it. In other words, if the iteration
stops after s times, then we would use hii, the (i, i) entry of matrix −H−1

s , instead of v̂ii

in the formula (4.38) to compute the confidence interval. The advantage of doing this
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is the computational convenience. Once the point estimates are obtained, the confidence
interval can be determined without extra calculation. However, one should note that hii

is an approximation of v̂ii, and the confidence interval calculated from hii will be different
from the true value.

Another approach is to calculate the observed information matrix directly by applying
the idea of taking the second order derivative of the power and asymptotic series, and
defining an approximate function to the

√
v̂ii as we did before. It is more accurate, but

also more time consuming and complicated in computation. In this thesis, we will use −Hk

to obtain the confidence interval, and as can be seen in the next section, the MLE with
this confidence interval performs well in the simulation.

4.3 Simulation

A stable data set can be generated using the algorithm of Chambers, Mallows and Stuck
[6], and the result of simulations in this section are all based on the data generated in this
method.

Generate a stable data set with the parameter α = 1.3, γ = 5, δ = 10, and sample
size n = 1000. The quantile estimators of the parameters are: α̃ = 1.2427, γ̃ = 5.2807,
and δ̃ = 10.4882. The maximum likelihood estimators with 95% confidence intervals are:
α̂ = 1.3037± 0.0850, γ̂ = 5.1110± 0.3437, and γ̂ = 10.1719± 0.3618.

For different values of (α, γ, δ), a single sample with size n = 1000 is generated, and the
algorithm is run to get the parameter estimates. Table 4.1 below lists the point estimation
calculated from quantile estimator and the maximum likelihood estimator. The true value
of the parameters is shown in the first column, the quantile estimator θ̃ in the second, and
the MLE θ̂ in the last. The quantile estimator in the first row cannot be obtained because
this method is only available for α > 0.6 as discussed in section 4.1.

The 95% confidence interval of (α, γ, δ) for the samples above are given in the Table
4.2 below.

As shown in Table 4.1, the quantile estimates as initial values are usually not far from
the true value of the parameters. Thus, the iterative procedure converges to a satisfactory
point within 4 iterates when 0.6 ≤ α ≤ 2. In contrast, for 0 < α < 0.6, it usually takes
more time to get an acceptable estimates by integration. As discussed in section 3.2.3,
evaluating the stable density by Padé approximants and asymptotic series is much faster
than by Nolan’s integral form. Thus, it is not surprising that our method is faster in
parameter estimation compared to Nolan’s algorithm.

The algorithm is also run on the sample with small size, and the result shows that
this method still works. Generating a stable data set with the parameter α = 1.3, γ = 5,
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(α, γ, δ) Quantile estimator MLE
(0.25, 1, 0) (0.2477, 1.1713,−0.0515)
(0.6, 2.5, 0) (0.5764, 2.5529, 0.0273) (0.5872, 2.4789, 0.0360)
(0.8, 5, 0) (0.7654, 5.1516, 0.0444) (0.7843, 4.9387, 0.0214)
(0.95, 1, 5) (0.9174, 0.9742, 5.0403) (0.9667, 1.0246, 4.9632)

(1.05, 2.5, 5) (1.0354, 2.4331, 4.8359) (1.0700, 2.4794, 5.0541)
(1.3, 5, 5) (1.3291, 5.0807, 5.4223) (1.3064, 5.1110, 5.2719)
(1.5, 1, 10) (1.3839, 0.9933, 9.9977) (1.4737, 1.0371, 10.0728)

(1.7, 2.5, 10) (1.8275, 2.5542, 10.0593) (1.7325, 2.5372, 10.0208)
(1.9, 5, 10) (1.9578, 5.2114, 9.9146) (1.8794, 5.0734, 10.1059)

Table 4.1: Parameter estimates for sample size n = 1000

(α, γ, δ) α γ δ
(0.25, 1, 0) 0.2477± 0.0178 1.1713± 0.0725 −0.0515± 0.0214
(0.6, 2.5, 0) 0.5872± 0.0563 2.4789± 0.0942 0.0360± 0.0612
(0.8, 5, 0) 0.7843± 0.0703 4.9387± 0.2617 0.0214± 0.0787
(0.95, 1, 5) 0.9667± 0.0758 1.0246± 0.0963 4.9632± 0.0808

(1.05, 2.5, 5) 1.0700± 0.0816 2.4794± 0.2236 5.0541± 0.1067
(1.3, 5, 5) 1.3064± 0.0865 5.1110± 0.3845 5.2719± 0.9681
(1.5, 1, 10) 1.4737± 0.1037 1.0371± 0.0714 10.0728± 0.1062

(1.7, 2.5, 10) 1.7325± 0.0838 2.5372± 0.1365 10.0208± 0.9936
(1.9, 5, 10) 1.8794± 0.0706 5.0734± 0.2434 10.1059± 0.1096

Table 4.2: Confidence interval for sample size n = 1000

δ = 10 and sample size n = 50. The quantile estimators of the parameters are: α̃ = 1.0612,
γ̃ = 5.2510, and δ̃ = 10.6814. The maximum likelihood estimators with 95% confidence
intervals are: α̂ = 1.2436± 0.3667, γ̂ = 5.2032± 1.6585, and γ̂ = 10.2009± 0.4629.

According to the asymptotic theory, the 100p% confidence interval can be expressed as
(θ̂±zpSE(θ̂)), where θ̂ is the point estimate and SE(θ̂) is the standard error of θ̂. A stable
sample with the parameter α = 1.3, γ = 1, δ = 0, and sample size n = 1000 is generated,
and the parameter estimation is performed based on such data (all three parameters are
estimated). The simulation is run repeatedly 5000 times to evaluate the mean and standard
error of the maximum likelihood estimator α̂: mean(α̂) = 1.2997, and SE(α̂) = 0.0436.
The result is close to what we got in table 4.3, by using approximate observed information
matrix to calculate the confidence interval.
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(α, γ, δ) α γ δ
(1.3, 1, 0) 1.2927± 0.0883 1.0257± 0.0762 0.0365± 0.0845
(1.3, 1, 5) 1.3142± 0.0844 1.0161± 0.0775 5.0433± 0.0872
(1.3, 1, 10) 1.3158± 0.0811 1.0684± 0.0743 9.9787± 0.0817
(1.3, 2.5, 0) 1.3268± 0.0903 2.5484± 0.1947 −0.0307± 0.1038
(1.3, 2.5, 5) 1.2895± 0.0915 2.5899± 0.2071 5.0341± 0.1164
(1.3, 2.5, 10) 1.3188± 0.0850 2.4864± 0.2137 10.0394± 0.0918
(1.3, 5, 0) 1.2888± 0.0877 5.1864± 0.3849 −0.0377± 0.0987
(1.3, 5, 5) 1.3064± 0.0865 5.1110± 0.3845 5.2719± 0.9681
(1.3, 5, 10) 1.3177± 0.0909 5.1622± 0.3719 10.1281± 0.0975

Table 4.3: Performance of γ̂ and δ̂ for fixed α = 1.3

The performance of α̂ varies with different values of α, which is shown in Figure 4.1
respectively when sample size n = 1000 and n = 10000. For each point in the graph, the
algorithm is run 5000 times, and the standard error is calculated as a function of α. In this
simulation and the following two, the data are generated with the parameter θ = (α, 1, 0)
(all three parameters are estimated).

As can be seen in the graph, SE(α̂) tends to be smaller when α gets closer to the
boundary. Our method works quite well for almost all α ∈ (0, 2], except when α is very
close to the boundary (0 < α < 0.2 or 1.95 < α < 2), where the confidence interval will be
too narrow to cover the true value. Besides, when 0 < α < 0.2, one will sometimes observe
a very slow convergence of α̂ if the true value is far from the initial value. For example, in
a single experiment, we generated a stable data set with parameter (0.15, 1, 0) and sample
size n = 1000. The iteration starts at (0.5874, 1.3412, 0.0243) and the estimates we had
after 11 times iteration is: (α̂, γ̂, δ̂) = (0.1078, 1.3712,−0.2852). The example above does
not suggest that the estimates will always be disappointing in these cases, but suggest that
the result is not as good as those when 0.2 ≤ α ≤ 2.

The behaviors of γ̂ and δ̂ are also related to the value of α. Figure 4.2 and 4.3 indicate
the standard error of γ̂ and δ̂ respectively as a function of α.

Comparing to Nolan’s algorithm [3], the maximum likelihood estimators shown above
have smaller standard errors. One should note that Nolan’s result is from the general stable
data (including skewness), and the conclusion of a superior method cannot be made based
on such simulation result. However, the idea of using Padé approximants and asymptotic
series in approximation of density functions, and parameters estimations, is proved to be
reliable in practice.
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Figure 4.1: The standard error of α̂ for different values of α for sample size n = 1000 and
n = 10000
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Figure 4.2: The standard error of γ̂ for different values of α for sample size n = 1000
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Figure 4.3: The standard error of δ̂ for different values of α for sample size n = 1000
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Chapter 5

Conclusion and future work

We have introduced in this thesis a new computational method of using Padé approxi-
mants and asymptotic series to approximate the density functions of the symmetric stable
distributions, which are commonly useful in practice but facing the problem of having no
closed-form. Specifically, we derive the method of choosing the proper degree and central
point of the Padé approximants, and explore the connecting point to combine the Padé
approximants and asymptotic series in order to obtain the optimal approximation. Based
on such approximation, an algorithm using quasi-Newton method is developed to calculate
the maximum likelihood estimator and confidence interval of the parameters. The simula-
tion results indicate that the new method is fast and accurate in density approximation.
In parameter estimation, the algorithm is fast and reliable for 0.2 ≤ α ≤ 1.95. Moreover,
by comparing to results under Nolan’s integral method, which is the most commonly used
in evaluating stable densities in practice, the maximum likelihood estimators calculated
from this method have a smaller standard error.

The main drawback of this method is that it is restricted for the symmetric stable
distributions. Further possible investigation could be carried out to analyse general cases
if the power series and asymptotic series are provided. The approximation of general stable
density functions and estimation of skewness parameter are available by applying a similar
idea.
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Appendix A

A.1 Proof of Lemma 3.1

Let R[m,n](x) denote the Padé approximant of the stable density function with degree
(m,n), which is calculated from equations (3.4) to (3.6). For a positive integer d, it follows
that

R[2d,2d+2](x) = R[2d+1,2d+2](x) = R[2d,2d+3](x) = R[2d+1,2d+3](x)

Proof. We will prove the proposition R[2d,2d+2](x) = R[2d+1,2d+2](x) here. By definition 2.2
and power series (3.3), we have:

R[2d,2d+2](x) = P1(x)/Q1(x)

P1(x) = |P1| =

∣∣∣∣∣∣∣∣∣∣∣

0 a0 0 · · · 0
a0 0 a2 · · · a2d+2
...

...
...

. . .
...

a2d 0 a2d+2 · · · a4d+2

0 0 a0x
2d · · ·

∑d
j=0 a2jx

2j

∣∣∣∣∣∣∣∣∣∣∣

Q1(x) = |Q1| =

∣∣∣∣∣∣∣∣∣∣∣

0 a0 0 · · · 0
a0 0 a2 · · · a2d+2
...

...
...

. . .
...

a2d 0 a2d+2 · · · a4d+2

x2d+2 x2d+1 x2d · · · 1

∣∣∣∣∣∣∣∣∣∣∣
and

R[2d+1,2d+2](x) = P2(x)/Q2(x)
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P2(x) = |P2| =

∣∣∣∣∣∣∣∣∣∣∣

a0 0 a2 · · · a2d+2

0 a2 0 · · · 0
...

...
...

. . .
...

0 a2d+2 0 · · · 0

0 a0x
2d+1 a0x

2d · · ·
∑d

j=0 a2jx
2j

∣∣∣∣∣∣∣∣∣∣∣

Q2(x) = |Q2| =

∣∣∣∣∣∣∣∣∣∣∣

a0 0 a2 · · · a2d+2

0 a2 0 · · · 0
...

...
...

. . .
...

0 a2d+2 0 · · · 0
x2d+2 x2d+1 x2d · · · 1

∣∣∣∣∣∣∣∣∣∣∣
Finding the LU decomposition of P1 and P2: P1 = Lp

1U
p
1 , P2 = Lp

2U
p
2 , where Up

1 = {upij}
and Up

2 =
{
up∗ij

}
are upper triangular matrixes.

P1(x) = |P1| = |U1| =
∏2d+3

i=1 upii and P2(x) =
∏2d+3

i=1 up∗ii.

Note that the xi terms are only contained in the numerator of up2d+3,2d+3 and up∗2d+3,2d+3

so that P1(x) = C1p(x), where p(x) = numer(up2d+3,2d+3) is a polynomial and C1 =∏2d+3
i=1 upii · denom(up2d+3,2d+3) is a constant coefficient. Similarly, P2(x) = C2p

∗(x). Note
that by elementary column operations, the last column of P1 and P2 can be transformed
to be the same, which means p(x) = p∗(x).

At the same time, finding the LU decomposition of Q1 and Q2: Q1 = Lq
1U

q
1 , P2 = Lq

2U
q
2 .

Note that P1 and Q1 are the same except for the last row. Thus, by the same idea before,
Q1(x) = C1q(x), and Q2(x) = C2q(x).

Combine the above argument, we have the fact that

R[2d,2d+2](x) = P1(x)/Q1(x) = p(x)/q(x) = P2(x)/Q2(x) = R[2d+1,2d+2](x)

Similarly, we can prove the rest of Lemma 3.1 by the same argument.

A.2 Generating stable data

The algorithm for constructing a standard stable random variable in representation (1.4)
is given by Weron, R. in 1996 [31]

• generate a random variable V uniformly distributed on
(
−π

2
, π

2

)
and an independent

exponential random variable W with mean 1;
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• for α 6= 1 compute:

X = Sα,β ·
sin {α(V + Bα,β)}
{cos(V )}1/α

·
[
cos {V − α(V + Bα,β)}

W

](1−α)/α

where

Bα,β =
arctan(βtan(πα

2
))

α

Sα,β =
{

1 + β2tan2
(πα

2

)}1/(2α)

• for α = 1 compute:

X =
2

π

{(π

2
+ βV

)
tan(V )− βln

( π
2
Wcos(V )
π
2

+ βV

)}
• A stable random variable for all admissible values of the scale and location parameter

γ and δ can be easily simulated by:

Y =

{
γX + δ, α 6= 1

γX + 2
π
βγln(γ) + δ, α = 1

To generate the symmetric stable random variable used in the thesis, the formula is
simplified to:

Y = γ

{
sin(αV )

{cos(V )}1/α
·
[
cos {V (1− α)}

W

](1−α)/α
}

+ δ

A stable data sample of size n = 4000, with parameter α = 1.3, γ = 5 and δ = 10 is
generated by the above method, and the histogram is plotted as below:
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Figure A.1: Histogram of i.i.d. sample with parameter (1.3, 5, 10) and size n = 4000
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