
Monocular Vision-Based Obstacle

Detection for Unmanned Systems

by

Carlos Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical Engineering

Waterloo, Ontario, Canada, 2011

c© Carlos Wang 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many potential indoor applications exist for autonomous vehicles, such as automated
surveillance, inspection, and document delivery. A key requirement for autonomous oper-
ation is for the vehicles to be able to detect and map obstacles in order to avoid collisions.
This work develops a comprehensive 3D scene reconstruction algorithm based on known
vehicle motion and vision data that is specifically tailored to the indoor environment. Vis-
ible light cameras are one of the many sensors available for capturing information from the
environment, and their key advantages over other sensors are that they are light weight,
power efficient, cost effective, and provide abundant information about the scene. The
emphasis on 3D indoor mapping enables the assumption that a large majority of the area
to be mapped is comprised of planar surfaces such as floors, walls and ceilings, which can
be exploited to simplify the complex task of dense reconstruction of the environment from
monocular vision data.

In this thesis, the Planar Surface Reconstruction (PSR) algorithm is presented. It ex-
tracts surface information from images and combines it with 3D point estimates in order
to generate a reliable and complete environment map. It was designed to be used for
single cameras with the primary assumptions that the objects in the environment are flat,
static and chromatically unique. The algorithm finds and tracks Scale Invariant Feature
Transform (SIFT) features from a sequence of images to calculate 3D point estimates.
The individual surface information is extracted using a combination of the Kuwahara filter
and mean shift segmentation, which is then coupled with the 3D point estimates to fit
these surfaces in the environment map. The resultant map consists of both surfaces and
points that are assumed to represent obstacles in the scene. A ground vehicle platform was
developed for the real-time implementation of the algorithm and experiments were done
to assess the PSR algorithm. Both clean and cluttered scenarios were used to evaluate
the quality of the surfaces generated from the algorithm. The clean scenario satisfies the
primary assumptions underlying the PSR algorithm, and as a result produced accurate
surface details of the scene, while the cluttered scenario generated lower quality, but still
promising, results. The significance behind these findings is that it is shown that incor-
porating object surface recognition into dense 3D reconstruction can significantly improve
the overall quality of the environment map.

iii

Acknowledgements

This thesis would not have been possible without the hard work and dedication of the
researchers and the open source community. I express my deepest appreciation for those
who have worked and are working to improve the quality of life for others. It is always an
inspiration to know that we are always looking forward to new and exciting innovations in
order to benefit humanity as a whole. The motivation, insights, and support I had received
from several people also played a vital role in my research effort, and their contributions
deserve special mention. My sincere gratitude goes to all of them.

I would like to humbly thank my supervisor, Dr. Steven Waslander, for his excel-
lent guidance, advice, trust, encouragement, and patience throughout my entire graduate
experience. Throughout these two years, I had grown personally, professionally and aca-
demically with his careful and precise teachings and I owe him a great deal for making this
experience both very enjoyable and memorable. I am very glad to have had him as my
supervisor and enjoyed working with him.

I would like to thank Dr. Sanjeev Bedi and Mr. Rohan Jayasundera for being great
mentors throughout my undergraduate experience. Their persistence, thoughtfulness, and
valuable wisdom supported me during this time and help shaped me as a person, always
pushing me to excel further in my life. I am very grateful and very indebted to them for
their ongoing support.

I would like to thank Ryan, Peiyi, Yassir, Arun, P.J., Yan, Dr. Daly, and Mike for being
wonderful colleagues. They have been great sources of help and motivation and also made
my experience in the lab very entertaining. I would also like to thank Kandarp, Tarun,
Sam, Rajnish, and Adel for their kind support. Special thanks go to Gerardo, for being
my sidekick during our adventures in India and being an awesome friend who constantly
pushes me to succeed.

I would like to thank my other friends: Ben, Anthony, Kai, Boyd, Kenneth, Simon,
Chris, Uma, Fred, and my high school friends for their emotional support and for being
great friends that I can always rely on.

Lastly, but most importantly, I express my deepest thanks to my family. I can never
repay the support and love that my parents had given me throughout my life. Through
my mother and father I learned that I should always put lots of effort and perseverance
into everything I do. I also would like to express my deepest appreciation for my two older
brothers, Bobby and Peter, for always looking after me and being wonderful role models
and extraordinary friends. They have without a doubt influenced my life in many ways
and helped me change for the better. This thesis would certainly not have existed without
the constant encouragement, financial and moral support from my family.

iv

Dedication

This is dedicated to my family, friends, supervisors, mentors, colleagues, the generous
community of administrators, funders, researchers and programmers, people who helped
shaped me into who I am today and those who worked and are working towards improving
humanity as a whole.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Sensors Used for Environment Perception 2

1.2 Related Work . 3

1.2.1 Reactive Obstacle Detection . 6

1.2.2 Selective Obstacle Detection . 7

1.2.3 General Obstacle Detection . 8

1.3 Research Approach and Contribution . 10

2 Background and Theory 12

2.1 Feature Extraction - Scale Invariant Feature Transform 12

2.1.1 Scale-Space Extrema Detection . 13

2.1.2 Keypoint Localization and Rejection 14

2.1.3 Orientation Assignment . 17

2.1.4 Local Image Descriptor . 18

2.2 Epipolar Geometry . 20

2.2.1 Homogeneous Coordinates . 20

2.2.2 Pinhole Camera Model . 21

2.2.3 Camera Matrix . 22

vi

2.2.4 Projection Matrix . 24

2.2.5 Epipolar Constraint . 25

2.3 Feature Tracking . 28

2.3.1 Keypoint Matching . 28

2.3.2 Epipolar Constraint Criterion . 29

2.4 3D Feature Mapping . 31

2.5 Image Segmentation . 33

2.5.1 Kuwahara Filter . 34

2.5.2 Mean Shift Segmentation . 37

2.6 Surface Fitting . 44

2.6.1 Orthogonal Distance Regression Plane 46

2.6.2 Projection of Image Point to Plane 48

3 Planar Surface Reconstruction Algorithm 50

3.1 Motivation . 50

3.2 Algorithm Definition . 52

3.2.1 Feature Extraction . 53

3.2.2 Feature Tracking . 53

3.2.3 3D Feature Mapping . 56

3.2.4 Surface Fitting . 56

3.2.5 Algorithm Summary . 60

4 Autonomous Vehicle Platform 63

4.1 Mechanical Design . 63

4.2 Electrical Design . 67

4.2.1 Sensors and Instrumentation . 67

4.2.2 Power Distribution . 68

4.2.3 Hardware Architecture . 68

4.3 Software Design . 69

4.3.1 Software Architecture . 69

vii

4.3.2 Low-Level Communication . 71

4.3.3 Control Systems . 71

4.4 Path Planning and Vision Processing . 73

5 Experimental Results and Observations 75

5.1 First Test Case: Clean Environment . 76

5.2 Second Test Case: Cluttered Environment 80

5.3 Algorithm Processing Durations . 85

6 Conclusion 87

References 90

viii

List of Tables

4.1 Mechanical Modifications for the Autonomous Vehicle Chassis 64

4.2 Sensor Network for the Autonomous Vehicle Platform 67

4.3 Battery Power Distribution for the Electrical Systems of the Vehicle Testbed 68

5.1 Parameters used for the Two Experimental Test Cases 76

ix

List of Figures

2.1 DoG Pyramid Generation for SIFT . 15

2.2 Scale-Space Extrema Detection using DoG Images for SIFT 15

2.3 Orientation Assignment of SIFT Keypoints 18

2.4 Descriptor Illustration of SIFT Keypoints 19

2.5 Perspective Projection Illustration of a Point onto a Plane 21

2.6 Pinhole Camera Model . 22

2.7 Object Point to Image Plane Projection using the Pinhole Camera Model . 23

2.8 Image Plane to Image Screen Conversion Diagram 24

2.9 Diagram Illustrating the Projection a 3D Object Point onto an Image Plane 25

2.10 Diagram Illustrating the Epipolar Geometry Definitions 26

2.11 Illustration for the Derivation of the Epipolar Line 28

2.12 Epipolar Constraint Criterion for the SIFT Keypoint Matching Process . . 30

2.13 Perpendicular Distance from a 2D Point to a 2D Line Illustration 31

2.14 Kuwahara Filter Window Illustration . 35

2.15 Illustration of the Mean Shift Clustering Procedure 40

2.16 Mode Clustering Illustration for Mean Shift Segmentation 44

2.17 Illustration of the 3D Point Cloud Labelling Process 45

2.18 Projection from an 2D Region Boundary to a 3D Plane Illustration 48

3.1 Example of Surface Perception using Object Recognition and Distinct Features 51

3.2 Sequential Images of a Box used for Illustrating the PSR Algorithm 52

3.3 SIFT Example in MATLAB using VLFeat 53

x

3.4 Feature Matching Procedure Illustration 55

3.5 Feature Matching Procedure Example . 55

3.6 3D Feature Point Mapping Example . 56

3.7 Example Showing the Segmentation Result of the Box 57

3.8 Effects of using the Kuwahara Filter in the Segmentation Procedure 58

3.9 Effects of Downsampling the Image in the Segmentation Procedure 59

3.10 Example of the Resultant Surface Map using the PSR Algorithm 61

3.11 Diagram Summarizing the PSR Algorithm 62

4.1 CAD Model of the Wheel and Encoder Mount Assembly 65

4.2 CAD Model of the Autonomous Vehicle Platform 65

4.3 Autonomous Vehicle Platform Development Stages 66

4.4 Encoder Mount Assembly for the Autonomous Vehicle Platform 66

4.5 Sensor Network Diagram for the Autonomous Vehicle Platform 67

4.6 Electrical Hardware Architecture for the Autonomous Vehicle Platform . . 69

4.7 Software Architecture for the Autonomous Vehicle Platform 70

4.8 Simulation of the Discrete PI Velocity Controller using MATLAB 72

4.9 Non-Linear Steering Controller Diagram 73

4.10 Path Planning Algorithm for the Autonomous Vehicle Platform 74

4.11 Vision Algorithm Examples for the Autonomous Vehicle Platform 74

5.1 Image Frames used for the First Test Case 77

5.2 Surface Mapping Result for the First Test Case 77

5.3 Segmentation Results for the First Test Case 78

5.4 SIFT Matching Results for the First Test Case 79

5.5 Image Frames used for the Second Test Case 81

5.6 Surface Mapping Result for the Second Test Case 82

5.7 Segmentation Results for the Second Test Case 83

5.8 SIFT Matching Results for the Second Test Case 84

5.9 Illustration of the Relation Between Plane Orientation and Point Projection 85

5.10 Algorithm Processing Durations for the First Test Case 86

5.11 Algorithm Processing Durations for the Second Test Case 86

xi

Chapter 1

Introduction

Unmanned vehicles have continued to gain popularity over the past few decades. Their
practical applications were first seriously explored in the military as combat and spy units,
and later marketed as a toy for general hobbyists. With the proliferation of electronics and
robotic systems, these remote controlled (RC) vehicles have become more common and
less expensive. Efforts to develop a fully autonomous version of these vehicles have grown
as research and intelligent systems improve over time.

RC ground and aerial vehicles are more prevalent in today’s society while autonomous
ground and aerial vehicles (UGVs and UAVs respectively) remain as research platforms for
academia, military, and corporate institutions. Safe autonomous operation of the vehicle is
essential for acceptance in the general populace and it is one of the main focuses of current
research in the field. The vehicle must be able to safely navigate through known and
unknown environments without the risk of damaging itself and its surroundings. Robust
control systems, navigation systems (path planning, trajectory generation, localization,
etc...), environment perception and mapping are all areas that help address this problem.
If this goal is achieved, practical uses for UGVs and UAVs, including search and rescue
missions, surveying dangerous and hazardous environments, inspection of power line faults
or construction progress, and cargo delivery can be explored in the context of civilian
applications. The research done is also applicable for space and underwater explorations,
contributing to navigation technologies used for rovers and autonomous underwater vehicles
(AUVs).

The main objective of this research is to develop an obstacle detection method for
indoor surveillance for UGVs or UAVs. Vehicle limitations are considered as a constraint,
as the available resources to perform obstacle detection are limited by the sensing and
computing equipment of the vehicle. For UGVs, payload, size, power and cost restrictions
can greatly affect sensor selection and computational resources. Dynamic constraints differ
for different vehicles and should be taken into account when assessing time constraints for

1

detecting obstacles. Fast moving vehicles with limited steering (e.g. fixed-wing UAVs)
would generally require faster obstacle detection as opposed to slow moving vehicles with
a wide range of steering motion. Two kinds vehicles are considered for this work: wheeled
motor vehicles and quadrotor helicopters [1] (also referred to as quadrotors), which work on
a similar principle to helicopters and use four rotors to actuate vehicle motion. It is assumed
that these vehicles are already capable of moving at low speeds and have moderate steering
capabilities. Since this work focuses on indoor applications, the vehicles are constrained
to be small and a simplification made for the scene is that it would have very few or no
moving objects.

The diversity of objects found in indoor environments makes the task of defining the
general features of an obstacle difficult. Many objects have different structural and material
characteristics. For example, an indoor setting may contain a wide range of potential
obstacles, including walls, ceilings, tables, trash bins, stairs cases, chairs, cabinets, and
windows which all have different structural and reflective properties. The variety of objects
makes it quite challenging to have an algorithm which encompasses all obstacles indoors.
Object occlusion and clutter in the environment also increases the complexity of algorithms
relying on object recognition.

The work done to address these issues is laid out in this thesis. Common sensing
equipment, discussed in Section 1.1, used to perceive the environment were assessed and
the camera was selected as the sensor to be used for this research. Relevant research is
discussed in Section 1.2 and the research direction taken is explained in Section 1.3. The
remaining chapters outline, in the following order, the background and theory necessary
for the vision-based algorithm, the algorithm definition itself, the vehicle testbed developed
to test the algorithm and finally experimental results and conclusions. It is assumed that
the vehicle has good localization and is in environments with sufficient lighting conditions.

1.1 Sensors Used for Environment Perception

Sensors are the tool used for environmental perception by autonomous robots. A wide
variety of sensors can be used, and can be categorized into two classes: active and passive.
Active sensors emit some form of signal into the environment and measure the return sig-
nature. Examples include SOnic Detection And Ranging (SODAR), LIght Detection And
Ranging (LIDAR), and conventional RAdio Detection And Ranging (RADAR) sensors.
Passive sensors measure naturally occurring signals from the environment. Two common
signals measured from the environment in the context of mobile robotic systems are heat
and visible light signals, which are captured by infrared (IR) sensors and visible light
cameras respectively.

Of the five sensors listed for mobile robotics applications, computer vision relying on

2

visible light cameras will be exclusively investigated in this work. Images of the environ-
ment captured by visible light cameras typically contain abundant information and can
be used for a variety of tasks, such as object recognition and motion tracking, identifying
the type of scene (inside rooms, on the staircase or in the hallways), and locating any
other valuable information which helps identify vehicle threats. In addition, the video
stream from the camera can be assessed for other tasks, such as facial recognition or pack-
age identification. Visible light cameras work in both indoor and outdoor settings with
sufficient lighting conditions. They are also lightweight, energy efficient and inexpensive
[2, 3], and are more robust against shock and noise when compared with laser scanners
[4]. SODAR sensors are light weight, but they are typically sensitive to false echoes caused
by specular reflections which makes these sensors difficult for multiple obstacle detection.
LIDAR sensors and laser rangefinders may give both accurate and precise ranges but are
comparatively more power, weight, and space consuming than passive sensors [5]. They
are also planar or two-dimensional (2D) sensors, which require more time for them to
obtain three-dimensional (3D) range maps [6]. The 3D range maps can also decrease in
quality with increased vehicle motion. RADAR sensors can operate in most weather and
can detect thin obstacles (severe , but their measurements are sparse with low scan rates.
This makes them inappropriate in cluttered environments [7]. IR sensors perceive in the
IR spectrum (i.e. sense heat information) and are at an advantage to visible light cameras
when operating in night environments. However they are highly susceptible to varying de-
grees of temperature changes, therefore radiators, vents, and other heat sources and sinks
can change the thermal information of the objects surrounding them. As a result, the heat
images captured from the same environment can vary over time. Another disadvantage for
IR sensors are that the relative IR emissivity between indoor objects at room temperature
are less distinguishable than their visible light signatures.

Work done on using a combination of sensors (sensor fusion) for obstacle detection
[8, 9, 10] attempts to benefit from the advantages of each individual sensor while reducing
their disadvantages. While sensor fusion improves the accuracy and precision for obstacle
detection comparatively with using individual sensors, the work done here seeks to minimize
sensor payload and power requirements.

1.2 Related Work

Common vision-based methods can be grouped into the following categories: optical flow
and flow field divergence, structure from motion, dense 3D reconstruction, and single-view
and two-view methods. These methods are described in the following paragraphs.

Optical flow is defined as the distribution of apparent motion of brightness patterns
(represented as motion or flow vectors) in an image, which can arise from the relative

3

motion of objects and the observer [11]. The distribution of flow vectors produced from
optical flow can be used to detect obstacles by clustering similar motion vectors and finding
discontinuities along the 2D vector field. The focus of expansion (FOE) is point which the
set of flow vectors intersects and is indicative of the relative vehicle motion direction with
respect to the environment. Analysing the FOE from images can be useful for determining
if the vehicle is on a collision course or for returning a depth map estimate of the scene.
Two popular techniques used for calculating optical flow vectors from two images (assumed
to be captured at consecutive instances) are the Lucas-Kanade [12] and the Horn-Schunck
[11] methods. Optical flow based methods generally face the aperture problem [13, 14, 11],
where there are cases where the apparent motion of the image features or pixel brightness
can not decipher to the actual motion of the object. For example if a diagonally striped
paper is placed on a table and viewed with a circular mask, the stripes are seen as moving
diagonally when the paper is moved horizontally and vertically along the table. Since
optical flow methods rely heavily on the pixel brightness patterns, it means that images
that are affected by motion blur, image noise, and local changes in intensity values from
illumination affect the accuracy of the optical flow field calculated. Flow field divergence
[15] extends from optical flow to combine translation and rotation information from the
vehicle over time to find the presence of potential obstacles.

Structure from motion [16] is a procedure that examines motion details from images to
estimate 3D structures of objects. The motion details are generally obtained from optical
flow based methods or by finding and tracking image features (edges, corners, blobs, etc...)
through other means. Popular edge detection methods include Canny edge detection [17]
and Hough transform [18]. Some corner detection methods include [19, 20, 21], with
the more popular one being the Harris corner detector [22]. Additionally, two widely
used, and more elaborate, feature detection methods include Speeded Up Robust Features
(SURF) [23] and Scale-Invariant Feature Transform (SIFT) [24]. Some of the common
methods used for tracking these features include the Kanade-Lucas-Tomasi (KLT) feature
tracker [25] and David Lowe’s tracker [24] which is specific for SIFT features. Based on
the apparent displacement of the features from one view to the next, calculations can be
done to estimate their 3D locations [26, 27, 28]. Dense 3D reconstruction methods follows
the same methodologies as the structure from motion procedure, with the idea of using
many features to produce a dense 3D point cloud of the environment over time. Surface
reconstruction methods [29, 30, 31, 32] can then be applied to the point cloud to produce
a 3D model of the object or scene. The structure from motion procedure typically relies
on accurate (and preferably large) motion details and camera pose estimates to produce
an accurate 3D structure. Scenes that produce few features or little motion details would
result in a poorly reconstructed 3D structure, since the quality of the 3D model produced
relies on the number of feature points and their motion magnitudes. Also, a drawback
for this procedure is the increased computation time associated with increasing features
to track and use for 3D reconstruction. Tracking features can also be difficult in cluttered

4

or repeatedly textured environments, producing poorly tracked features and therefore an
inaccurate map estimate.

Research is also based on the number of cameras used. Single-view (one camera or
monocular vision) and two-view (two cameras or stereo vision) vision techniques are gen-
erally the main areas of focus when dealing with obstacle detection. The key difference
between monocular and stereo vision is that monocular vision methods typically require
relative motion between the observer and the objects while stereo vision methods do not.
This is because the stereo baseline (separation distance between the two cameras) is made
sufficient for triangulation of object distances. Monocular vision techniques include optical
flow and structure from motion methods for finding obstacles, whereas stereo vision tech-
niques performs stereo correspondence (matching of pixels or features) between two images
from two different perspectives to form a disparity map. The disparity map can then be
used for 3D reconstruction. The idea for stereoscopic analysis is to mimic human binocular
vision to achieve depth perception. Stereo vision faces the correspondence problem [5, 33],
which is the problem of correctly matching pixel or features between the two images, al-
though some research was done to improve upon this problem [7, 33]. Monocular vision
based methods also face this problem if the methods require features to be tracked, and it
faces the problem of estimating its baseline for structure from motion based methods. A
wide baseline is generally preferable in both cases for accurate 3D reconstruction.

It is noted that in static environments (environments with no moving objects), two
perspective views obtained from a single camera can be treated as a stereo vision problem
if the baseline of the two views is known. On the other hand, the two images obtained from
stereo vision can be treated as a single camera moving from one end of the stereo baseline
to the other. This connection is particularly useful for it allows monocular and stereo
vision methods to be used interchangeably in static environments. Therefore many optical
flow and structure from motion techniques can be used for stereopsis, and the stereo vision
correspondence methods can also be used for the single camera case. The main advan-
tage of using two cameras is that the baseline is a known priori for the stereo vision case,
which removes the task of establishing a baseline (necessary for most structure from motion
methods) and reducing the problem of 3D reconstruction to finding accurate correspon-
dences between the images. A fixed and precisely measured baseline is also advantageous
since poorly defined baselines negatively affect the reconstruction process. Therefore, as a
result of a consistent and known baseline, the approximation of the 3D locations tend to
be more accurate for stereo vision methods than their monocular vision counterparts [4].
The notable shortcomings for using stereo vision, however, are the increased weight, size,
and power consumption [34].

Vision-based algorithms work on the images captured by the camera and usually depend
highly on the quality of the images produced. Camera lens distortion can affect the overall
quality of the images captured [28]. In general chromatic and spherical aberration from

5

the camera lens contribute to colour and spatial inaccuracies in the images. Warping and
calibration methods [35, 36] can be used on the image to help reduce these inaccuracies.
Image noise [37] is also a major factor to address, as two camera frames of the same scene
captured at different instances can be subtly different when represented in an image matrix.
Low-end cameras are also prone to issues pertaining to light sensitivity, low resolution and
motion blur [38], which affect algorithms requiring sharp and consistent images.

The approaches used for determining obstacles indoors can be grouped into reactive,
selective, or generalized. The methods used for the reactive approach places emphasis on
whether the vehicle is on a collision course with the obstacles and generally provides in-
dicative measures on a control response to avoid them. For the selective approach the focus
is on finding known objects or using known environments in the scene to classify obstacles,
while the generalized approach assumes there is no prior knowledge of the environment
and or objects found in the environment. The following sections describe these approaches
in detail and present examples of relevant research done. Although some of the research
explained performs obstacle detection for outdoor scenarios, the basic principles behind
these techniques can overlap to indoor situations as well.

1.2.1 Reactive Obstacle Detection

Methods primarily focused on indicating whether the vehicle is on a collision course are
advantageous for vehicles travelling at high speeds (in particular, fixed-wing UAVs), where
the available computation time for detecting potential collisions is very limited. As a result,
the algorithm must be simple and efficient to quickly warn the vehicle of approaching
obstacles so it can quickly react and avoid it. Optical flow based methods are generally
favoured in this approach [4], because calculating the flow vectors are reasonably fast and
can give an indication of an imminent collision with an object.

A combination of the FOE and optical flow vector patterns are used in [39, 40, 14] to
infer the presence of obstacles and avoid potential collisions. Another similar approach in
[41] is biologically inspired [42], where it takes the standard deviation (SD) sub-samples
from a Nyquist image, resulting in a low density image which is less complex and simpler
to process. These images are also mentioned to be independent of spatial and temporal
variations in scene illuminations. Apart from the disadvantages explained for optical flow
based methods, these methods all depend on the characteristics of the FOE flow patterns,
which means that their performance can be affected in the presence of moving objects.

Feature detection and optical flow based tracking was used in [5, 43] to infer approaching
obstacles from their feature expansion rates. In [3], the features (detected using the Harris
corner detector) were clustered using an agglomerative clustering method to determine
dangerous obstacles or areas. Another structure from motion method takes a probabilistic

6

approach by applying probability distributions to find the optical flow vectors on defining
features [44], which reduce the affects of image blurring and noise at the cost of reduced
precision of the flow vectors.

A more elaborate scheme was proposed by Hrabar et al. [45], which uses a pair of
sideways-looking cameras and a front-facing stereo camera to detect and avoid obstacles
while the vehicle navigates through urban canyons. The sideways-looking cameras uses
optical flow to ensure the vehicle is centred, while the stereo camera finds potential ob-
stacles in front for the vehicle to avoid. Other work introduced a new approach called
expansion segmentation [46] to find regions where there is a possibility of vehicle collision
and produced promising results from simulation experiments.

While these methods are designed to be efficient and fast at detecting potential obstacles
or collisions, they usually suffer from decreased robustness and possible false alarms which
can adversely place the vehicle in dangerous situations. The information returned from
these methods are generally not detailed enough to be used for path planning algorithms,
as their purpose is to avoid the most immediate threats (i.e. the very close obstacles in the
way of the vehicle’s current path). This may not be effective depending on the environment
the vehicle is faced with, for example environments with dead ends or scattered obstacles
are environments which requires more careful trajectory planning to guarantee the safety
of the vehicle. The benefits of fast computation can outweigh the loss of precision and
increased possibility of false alarms for certain applications.

1.2.2 Selective Obstacle Detection

In situations where the obstacles (the most abundant or dangerous obstacles) or the en-
vironment are a known priori, it is generally beneficial to develop algorithms that take
advantage of this knowledge. By doing so, the research can be more focused, and produce
algorithms that reliably finds obstacles based on the given information. Some additional
outcomes from this situation are the consistent performance of the algorithm and reliable
training data, on the condition that the operating environment does not change. For sce-
narios where there are several types of known obstacles, a multi-layered approach can be
used to run several methods that detect each obstacle type in parallel. The result is a ro-
bust, fast and consistent algorithm. Some methods are presented here, where they utilize
the properties of the known object or environment in order to find potential obstacles.

Visual cues are examined from images to detect specific obstacles in the scenario where
they are a known priori. For example, detecting power lines or other thin objects, which are
of importance for low-flying UAVs, were successfully detected using probabilistic occupancy
mapping [47] and using edge detection [48]. However the use of 3D occupancy maps are
memory intensive and edge detection does not perform well for highly cluttered images.

7

For detecting trees, one algorithm used a combination of edge detection and stereo ranging
[49] while another used a supervised learning strategy to detect and estimate tree depths
at high speeds [50]. The first algorithm relies on the vertical structure of trees for good
performance while the other is dependent on the available training data. Various other
algorithms for detecting specific types of obstacles were evaluated in [51] and by the Jet
Propulsion Laboratory, which includes water, slopes, low-lying branches, ditches and small
ground objects [49].

Obstacles can also be located or inferred if the environment is known in advance. Since
UAVs and UGVs have different modes of navigation, the environments that they encounter
are also different and are used in the methods to find obstacles. An example for UAVs
uses sky segmentation [52] to differentiate between sky and non-sky regions, with the non-
sky regions being potential obstacles. For low-flying UAVs, a proposed algorithm called
sparse-edge reconstruction uses stereoscopic imaging to detect ground obstacles by piecing
together incomplete pieces from sequentially capture images of the environment [34]. A
high speed stereo camera is important for this algorithm as it requires little change between
sequential images as well as minimal motion blur for proper edge detection. The ground
plane is a useful characteristic of the environment for UGVs. One study uses odometry
data of the vehicle to calculate an optical flow field of the ground plane and then compared
with the image optical flow vectors to determine ground obstacles [53]. Other ground-based
obstacle detection methods include [54], which introduces an approach called Appearance
Based Object Detection, [2], which combines visual features and supervised learning for
floor mapping, and [55], which uses fast RANdom SAmple Consensus (RANSAC) for
ground plane extraction. For these methods to properly function, it is assumed that the
desired feature of the scene (sky, flat ground, etc...) is distinguishable from the obstacles.

Selective approaches are often useful for environments where they are designed to work
in, but would generally not perform well in different environments. This type of approach
is also not preferable if the environment consists of a large range of different kinds of
obstacles, for it would be computationally expensive to identify each of these obstacle
types individually. The scene itself could be subject to change over time, which can be
problematic for algorithms which rely on certain characteristics of the scene. Therefore it
is essential to be aware of all possible scenarios, and whether these scenarios are likely to
change over the operating duration of the vehicle, when considering on using this approach
for certain applications.

1.2.3 General Obstacle Detection

A generalized approach is suitable for the case where the environment and obstacle are
not known in advance and the vehicle is not travelling at high speeds. The time constraint
is more relaxed in this scenario and allows for longer processing times, which results in

8

algorithms which can provide more detailed maps of the environment. Most methods that
fall in this category involve some form of dense 3D reconstruction since these reconstruc-
tion methods can provide detailed 3D maps at the expense of high computational loads.
Dense 3D reconstruction is a well established field in computer vision, with some research
done in applying these methods for unmanned vehicles. It is generally more popular for
ground-based vehicles as they typically have more computational resources available. Vi-
sual Simultaneous Localization And Mapping (VSLAM) algorithms are usually used in
conjunction with the 3D reconstruction to localize the vehicle and globally construct the
map of the entire environment for later use.

Dense 3D reconstruction methods for UAVs were explored in [56] using a MATCH-T
modeller for top-down elevation mapping and in [57] which compared the use of features
obtained from Harris corner detection and tracked with cross correlation with the use of
optical flow in dense 3D reconstruction. For UGVs, [58] used a stereo set of catadioptric
cameras to perform voxel colouring [59] for 3D reconstruction. The result was projected
into a 2D occupancy map of the floor, which is then used to estimate a visibility map of
non-visible and visible voxels by treating the visibility problem as a 2D case, and then
assume that any voxel that is above a non-visible pixel is also non-visible. This is done to
increase the speed of the algorithm at the expense of accuracy. Two state of the art stereo
vision 3D reconstruction techniques are described in [31, 60]. In [31], plane detection was
performed using a GPU-implementation of SIFT extraction and an extended KLT tracker
to find robust 3D points. A GPU-implementation for the sweep stereo algorithm was
implemented to return a depth map of the scene, where depth map fusion and triangular
mesh was performed for surface reconstruction. In [60], the Instant Scene Modeler (iSM)
was introduced for calibrating 3D models. It successfully generates a 3D scene using
stereo correspondence and triangulation to produce 3D point estimates, and a voxel-based
triangular meshing technique to place a surface to the set of points. Its major drawback is
the long computation time to return a 3D scene estimate. Another dense 3D reconstruction
method worth noting is described in [29]. It is a monocular vision based structure from
motion method which builds a continuous surface map over time using optical flow, and
refines it further upon gathering additional information of the scene. While this technique
executes reasonably quickly and returns an accurate map estimate, it was only tested for
small workspace environments.

Like the previous approaches, the use of the general approach is dependent on the
application. Small platforms typically do not have the computational resources to compute
detailed 3D maps of the environment, so they are typically limited to reactive or selective
approaches for obstacle detection. As mentioned in Section 1.2, dense 3D reconstruction
is highly dependent on the accuracy and precision of the ego-motion of the camera, the
baseline, and the correspondences from the image(s). Environments that impose vehicle
vibration (such as rough terrain for UGVs and high turbulence for UAVs) or illumination

9

changes that affects the performance of VSLAM are some examples that could negatively
affect the accuracy of the 3D map estimate. These issues can be addressed with damping
mechanisms and robust feature extraction and tracking methods.

1.3 Research Approach and Contribution

The following criteria are used to assess which approach is the most suitable for the research
presented:

• The algorithm must work indoors.

• The algorithm must be flexible, that is useful for a range of vehicles including ground
rovers and aerial platforms.

• The environment and obstacle types are not known in advance.

• The algorithm returns a rough map of the present obstacles to be used for path
planning.

• The algorithm can execute while the vehicle is moving.

• The payload, power and cost requirement of the vehicle must be as small as possible.

Because the environment and obstacles are not known in advance, it rules out using the
selective approach as it is desirable for the vehicle to be able to monitor any indoor en-
vironment. Quadrotors and four wheel ground robots are allowed to move at slow speeds
so there is more computation time, allowing for the general approach to be considered.
Path planning is also important as it reduces the risk of possible collisions. This criterion
makes the reactive approach less plausible as it produces less accurate scene details when
compared to the general approach, which is undesirable for proper path planning. The
payload, power and cost can be reduced with using one camera instead of two, making the
vehicle more affordable for civilian applications.

Therefore the direction taken for this research is to use a monocular vision-based general
approach. Structure from motion and dense 3D reconstruction techniques from the general
approach allows for a detailed map generation from a single camera. Although the work
done in [31, 60] produced high quality results, their work is tailored for stereo cameras and
platforms with higher payloads and power availability. Also the work done for [56] is useful
for providing elevation maps of the scene which allows for path planning for UAVs, however
the method is not portable for UGVs as the elevation maps require aerial snapshots of the
floor. The dual catadioptric cameras apparatus used in [58] is both large and heavy, and

10

the method used for 3D reconstruction is specific for ground vehicles. [57] makes a trade-off
between decreased computation time and a lower 3D reconstruction performance, but in
this case more computation time is available for more complicated methods to be used to
produce better environment maps. Lastly, [29] is designed specifically for small workspace
environments, so it may not be useful for indoor map generation.

As a result, a new algorithm was developed to meet these criteria. The key contribu-
tion made in this work is the coupling of a generalized object extraction method (image
segmentation) with the 3D point cloud generated from structure from motion techniques
in order to extrapolate additional details of the environment. This is done to improve the
accuracy of the scene map, and to fill in gaps in the 3D point cloud with information ob-
tained from image segmentation. This technique was tested and assessed using real video
data of an indoor environment, and the results proved promising for future investigation.
Another contribution for this work was the development of a ground research platform for
the real-time implementation of this method.

The reconstruction pipeline proposed in Chapter 3, with the necessary background and
theory described in Chapter 2, attempts to facilitate the vehicle and payload constraints
and provide a reliable map of the indoor environment to be used for path planning. The
motivation for this is discussed in more detail in Section 3.1. A testbed, outlined in Chapter
4, was developed to evaluate this novel 3D reconstruction algorithm with the experimental
results and conclusions discussed in Chapters 5 and 6.

11

Chapter 2

Background and Theory

This chapter presents the methods required to understand the proposed algorithm. The
topics covered are laid out in sequence with the flow of the algorithm. Section 2.1 describes
the background theory on Scale Invariant Feature Transform (SIFT), which is required to
find distinct features in an image. Once these features are found, the method used to
track them are described in Section 2.3. From these results the formulae to estimate the
3D locations of the tracked features to form a 3D point cloud is derived in Section 2.4.
Further analysis can be done on the image using some image filtering and segmentation
methods, detailed in Section 2.5, to determine regions that represent surfaces of objects. By
correlating the regions to the tracked features, these surfaces are formed using the methods
described in Section 2.6. Additional topics in epipolar geometry, which are necessary to
understand Sections 2.3.2, 2.4, and 2.6, are discussed in Section 2.2. These techniques are
combined in the next chapter to form the proposed algorithm.

2.1 Feature Extraction - Scale Invariant Feature Trans-

form

Scale Invariant Feature Transform (SIFT) was first described by David Lowe [61]. It is
used to find distinct features on an image that are location, scale, and rotation invariant.
This allows the same features to be identified even if the image is offset (i.e. the locations
of the features change), scaled or rotated from its original form. The features are also
partially invariant to illumination and 3D viewpoint changes. The motivation for finding
these features is that they can be used for object detection and motion tracking, and, for
the purpose of this work, 3D reconstruction. A map of 3D points can be constructed by
finding and tracking these features. A more recent version for the SIFT algorithm is found
in [24], and its contents are summarized in the following sections.

12

The algorithm is divided into four steps: scale-space extrema detection, keypoint lo-
calization and rejection, orientation and keypoint descriptor assignment. The complete
SIFT algorithm uses these four steps, to locate and describe keypoints (points which are
distinct and are identifiable when viewed from different perspectives). The descriptors and
locations for the keypoints found from the SIFT algorithm are stored for feature matching
and tracking.

2.1.1 Scale-Space Extrema Detection

The first part of the algorithm searches for points (referred to as candidate keypoints) that
are scale invariant. One way to achieve this is to work in the scale-space [62, 63], which is
an image that represents a specific scale, to find candidate keypoints that are unique and
insensitive to the effects of scaling.

The scale-space representation L (x, y, σ) of an image is defined by:

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) , (2.1)

where G (x, y, σ) is a variable-scale Gaussian kernel and I(x, y) is the image map. The
two parameters, x ∈ R and y ∈ R are the pixel coordinates, and σ ∈ R

+ is the variance
for the Gaussian filter. Therefore, the scale-space of the image L is the convolution of the
Gaussian kernel function G onto the image I. It is assumed that the pixel values are in
the range [0, 1].

The Gaussian function is defined as:

G (x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.2)

A difference-of-Gaussians (DoG) function is used to detect stable extrema (i.e. detect
local minima or maxima) in the scale-space. Let D (x, y, σ) be the DoG function, which is
the difference of two scale-space images:

D (x, y, σ) = (G (x, y, kσ)−G (x, y, σ)) ∗ I (x, y)
= L (x, y, kσ)− L (x, y, σ) , (2.3)

where k ∈ R
+ is a constant factor used to vary the two scales. It is noted that the DoG

filter can be thought of as an approximation to the scale-normalized Laplacian of Gaussian,
σ2∇2G [24] which is used for scale invariant blob detection. The difference between the
two methods are by a factor (k− 1), but Lowe [24] explained that it has no impact on the
stability of the extrema detection or localization for relatively high values of k.

13

The algorithm first pre-blurs the original image with an initial σ and then convolves
the blurred image incrementally with Gaussian filters such that each scale-space image is
separated in scale by a constant factor k. Each successive convolution results in an increase
in σ, or the amount of blur, in an image. This blurring helps reveal larger scale features
that are not apparent in the original image. Once the scale-space image doubles in σ
(an octave) the image is downsampled by two (i.e. taking every second pixel in each row
and column of the scale-space image to produce a downsampled image) and the process is
repeated on the downsampled image. Resampling the image greatly reduces computation
time without affecting the accuracy of the scale information relative to the start of the
previous octave. A Difference of Gaussians is then applied to adjacent scale-space images
within each octave. This results in a DoG pyramid which will be further analysed to find
local extrema. An interval, s ∈ N1, of DoGs per octave to use for scale extrema detection
can be set by setting k = 21/s. Each octave should have s + 3 scale-space images (one
at the start and two after the scale-space image corresponding to the doubling of σ), so
that during the extrema detection the number of DoGs examined per octave is s. Figure
2.1 shows an illustration of this procedure, producing a Gaussian pyramid along with its
DoG counterpart. To increase the amount of stable extrema, it is suggested that the
original image is initially blurred by σ = 0.5 to prevent aliasing and then upsampled by
two using linear interpolation. This upsampled image will serve as the starting point for
the DoG pyramid construction. The starting σ suggested in [24] is 1.6 for repeatability and
efficiency, as well as s = 2 (producing five scale-space and four DoG images per octave)
and the total number of octaves is four.

The local extrema detection (see Figure 2.2) is done by taking each sample point of
the DoG images from each scale and comparing it to its 8 neighbours as well as the 9
neighbouring points on the scales above and below it. There are a total of 26 neighbours
to check, and if the sample point is larger or smaller than all of its neighbours, it is selected
as a candidate keypoint. This procedure is done for each octave.

An analysis on the effects of changing values for k and s is described in [24].

2.1.2 Keypoint Localization and Rejection

The candidate keypoints that have low contrast, relative to its neighbouring pixels, or lie
on an edgel (pixels describing an edge) are rejected by performing a check on the nearby
data for location, scale and ratio of principal curvatures. Points with low contrast tend to
be sensitive to noise and points that lie on an edge tend to be poorly localized, making
them difficult to track properly on different images taken from different perspectives.

14

...

...

...

...

Gaussian

Difference of

Gaussian (DoG)

Scale

(First Octave)

Scale

(Next Octave)

- - - -

Figure 2.1: In the current octave, the initial image is incrementally convolved with Gaussian
filters (resulting in scale-space images separated by a constant factor k). Once the set of
scale-space images is found for the current octave, the Gaussian image is downsampled by
two and the process is repeated again for the next octave, as shown at the top of the figure.
The Difference of Gaussians is then applied to adjacent scale-space images in each octave,
shown at the bottom of the figure.

Scale

x

Figure 2.2: Diagram of three adjacent scale-spaces of DoG images used for extrema detec-
tion. The sample point (shown by the X) is compared with its 26 neighbours: 3x3 regions
on the scale above and below and 8 in the scale of the sample point (shown by the circles).

15

Keypoints with Low Contrast

To find keypoints that have low contrast, the first step is to use a Taylor Series expansion
(TSE) on the scale-space DoG function D (x, y, σ) to approximate a 3D quadratic function
with the candidate keypoints as the origin. The function is then used to find the location
of the extremum. Let D (x) be the TSE to second order, where x = (x, y, σ)T is the offset
from the origin, with D and its derivatives evaluated at the given candidate keypoint:

D (x) = D +
∂DT

∂x
x +

1

2
xT

∂2D

∂x2
x. (2.4)

Taking the derivative of D (x) with respect to x and setting it to zero yields:

x̂ = −
(
∂2D

∂x2

)
−1
∂D

∂x
, (2.5)

where x̂ is the location of the extremum. The Hessian and derivative of D(x), ∂2D
∂x2 and

∂D
∂x

respectively, are approximated by using the differences of neighbouring sample points.
If x̂ is greater than 0.5 in any dimension, then it means that the extremum is closer to
another sample point. The location of the sample point is changed and the extremum is
recalculated. The final offset x̂ is added to the current sample point in order to estimate
the location of the extremum.

Substituting equation (2.5) into (2.4) simplifies to:

D (x̂) = D +
1

2

∂DT

∂x
x̂, (2.6)

where D (x̂) is the function value at the extremum. If |D (x̂)| < 0.03 [24] then the corre-
sponding keypoint has too low of a response from the DoG function, indicating that it is
a poorly represented extrema, and is therefore discarded as a keypoint with low contrast.

Keypoints Localized on Edges

The DoG function has strong responses to edges, which is undesirable and can lead to
unstable extrema. The keypoints along edges are poorly determined and therefore unstable
to small amounts of noise.

The approach to find the candidate keypoints that lie on edges is to check its principal
curvatures. The idea is that a poorly defined peak (e.g. an edge) in the DoG function will
have a larger principal curvature across the edge than the principal curvature along it. A

16

2x2 Hessian matrix, H, is computed to find the principal curvatures of the DoG function.
The Hessian matrix is defined by:

H =

[
Dxx Dxy

Dxy Dyy

]

, (2.7)

where the second order derivatives (Dxx, Dxy, and Dyy) are found by taking the differences
of neighbouring sample points along the x and y directions, with the center being the
location and scale of the keypoint. The eigenvalues of the Hessian matrix are proportional
to the principal curvatures. It is shown in [24] that finding the eigenvalues is unnecessary
because the ratio between the curvatures can be used instead to check whether or not the
keypoint lies on an edge. Let α ∈ R

+ be the larger eigenvalue of H and β ∈ R
+ be the

smaller one, and r = α/β (i.e. the ratio between the two). The following relation from [24]
is used:

Tr (H)2

Det (H)
=

(r + 1)2

r
, (2.8)

where Tr (H) and Det (H) are the trace and determinant of the Hessian matrix, respec-
tively. When the two eigenvalues are equal, the magnitude (r + 1)2 /r is at a minimum. It
increases as r increases. Therefore the threshold criterion for candidate keypoints that are
not localized to an edge is given by

Tr (H)2

Det (H)
<

(r + 1)2

r
. (2.9)

Any keypoints that do not satisfy Eqn. (2.9) are discarded as being points that lie on edges.
The value r = 10 is used in [24] for the experiments. It is noted that the decrease in value
for r results in an increase in the number of keypoints rejected. This is because decreasing
r means that the ratio between the two principal curvatures decreases, restricting the
criterion from Eqn. (2.9) to cover a smaller range of values.

2.1.3 Orientation Assignment

The orientation of the keypoints is calculated to achieve invariance to image rotation. This
is because the keypoint descriptor (described in Section 2.1.4) is calculated relative to this
orientation and thereby ensures rotation invariance. To also ensure scale invariance, the
computations are performed on the Gaussian smoothed image, L (x, y), with the scale
that is closest to the scale of the keypoint. For each sample point that is at the selected
scale, the gradient magnitude, m (x, y), and orientation, θ (x, y), is precomputed using pixel
differences:

m (x, y) =

√

(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2 (2.10)

17

0°-

44°

45°-

89°

90°-

134°

135°-

179°

180°-

224°

225°-

269°

270°-

314°

315°-

359°

100%

80%

Figure 2.3: Diagram illustrating the orientation assignment method. The region around
the keypoint (marked by the pixel with the grey circle) is shown on the left, the gradient
magnitudes and directions for each pixel is shown in the middle (indicated by the arrow
size and direction), and the resultant eight-bin orientation histogram is shown on the right.
Since there are no peaks within 80% of the highest peak, only one orientation is assigned
for the keypoint.

θ (x, y) = tan−1 ((L (x, y + 1)− L (x, y − 1)) / (L (x+ 1, y)− L (x− 1, y))) . (2.11)

An orientation histogram is formed from the gradient orientations of sample points
within the neighbourhood of the keypoint. The orientation histogram consists of 36 bins,
each with a range of 10 degrees, covering 360 degrees in total. Each sample added to
the histogram is weighted by its gradient magnitude and by a Gaussian-weighted circular
window with a σ that is 1.5 times that of the scale of the keypoint. The highest peak, along
with the peaks that are within 80% of the highest peak are chosen to be the orientation(s)
for the keypoint. A parabola is fitted to the three histogram values that are near each peak
to interpolate the peak position and improve its accuracy. Figure 2.3 shows a diagram
illustrating the orientation assignment using an eight-bin histogram.

2.1.4 Local Image Descriptor

The last part of the algorithm, after finding the keypoints that are invariant to scale and
rotation, is to define a distinct descriptor for each keypoint. The descriptor is designed to
have some invariance to illumination and 3D viewpoint changes.

The descriptor is represented by a 128 element feature vector. To obtain the values
for this vector, the gradient magnitudes and orientations are initially precomputed for
the sample points in a region surrounding the keypoint and at the scale of the keypoint.
The coordinates of the descriptor and gradient orientations are rotated relative to the
keypoint orientation to achieve rotation invariance. To put more emphasis on the gradient
magnitudes closer to the keypoint (i.e. center), a Gaussian weighting function with σ

18

Figure 2.4: Shown on the left is the precomputed gradient magnitudes and orientations
of a sample array (descriptor window). The keypoint is on the center of the descriptor
window (marked with a grey circle). The sample array is divided into subregions. Shown
on the right is are eight-bin orientation histograms formed for each subregion. Each bin are
shown as arrows, with the orientation and magnitude indicated by the arrow’s direction
and size.

equal to one half the width of the descriptor window is used on the magnitudes of the
gradients. The purpose of this function is to avoid sudden changes on the descriptor with
small changes on the descriptor window position.

A region consists of 16x16 samples, with the keypoint in the center. The 16x16 samples
is divided into 4x4 subregions, each subregion having 4x4 sample points. In each subregion,
an 8-bin orientation histogram is formed from the gradient orientation and magnitudes.
Each bin corresponds to a range of 45 degrees and one element in the feature vector. There
are eight bins per subregion and 16 subregions, totalling 128 bins. Figure 2.4 shows an
illustration of the keypoint descriptor regions and their respective bin formations.

The descriptor is made more robust through a series of enhancements. A trilinear
interpolation is used on each gradient sample value, before the binning process, to distribute
it into adjacent histogram bins. Each value added to a bin is weighted by 1 − d in each
dimension, where d is the distance to the bin centers measured in units of histogram spacing.
This allows for additional robustness to differences in the localization and orientation of the
descriptor made from different image views, as it reduces abrupt changes to the descriptor
caused by boundary effects from the samples changing from one bin to another. To reduce
the effects of illumination change, the feature vector is first normalized to unit length and
then thresholded such that all vector values are no greater than 0.2. The normalization
of the vector is effective for affine, and relatively uniform, illumination changes, such as a
change in image contrast (effectively multiplying the image brightness values by a constant)
and brightness changes that have a constant brightness value added to each pixel. The

19

thresholding of values to be no greater than 0.2 is for reducing the effects from non-linear
illumination changes, such as camera saturation or lighting changes due to 3D surfaces
changing orientations.

Further details on the keypoint descriptor testing is discussed in [24].

2.2 Epipolar Geometry

This section serves as a background to the fundamental theories required for the under-
standing of the next sections. The geometry of using two camera views (stereo vision)
is referred to as epipolar geometry, which is covered in depth in many computer vision
textbooks [28, 27]. Only a limited scope that is relevant to the thesis is covered in the
following subsections. Section 2.2.1 gives a brief description of homogeneous coordinates,
which is used for the derivations of projecting a point in 3D Euclidean space (referred to
as the object point) onto a point on the screen or image plane (referred to as the image
point) (see Sections 2.2.2 to 2.2.4). Lastly, Section 2.2.5 extends this theory to address
the problem of matching image points between camera views, by describing a geometric
property known as the epipolar constraint.

The overview of the frame of reference notation used is explained here before proceeding
further. A superscript prefixed to a point refers to the point’s current frame of reference.
For example, given a reference frame B and point P, then BP is the point using B as its
frame of reference. Another notation used is for the transformation matrices involved for
changing reference frames on the point. Given the rotation matrix R and the translation
vector t from one frame to another, the subscript and superscript prefixed to the matrix or
vector variables are used for indicating the source and destination frames respectively. For
example, A

B
R and A

B
t denote the rotation matrix and translation vector used for transform-

ing the point’s frame of reference to be from B to A. All reference frames in this thesis
are assumed to obey the right hand rule and to be a basis in Euclidean space.

2.2.1 Homogeneous Coordinates

A brief description for homogeneous coordinate systems is described in this section. The
homogeneous coordinate system is commonly used in projective geometry and computer
graphics. It is similar to the Euclidean coordinate system with the exception that mul-
tiplying a point by a non-zero scalar in Euclidean coordinates represents the same point
in homogeneous coordinates. In other words, given a point P = (X, Y, Z)T ∈ R

3 and
a non-zero scalar λ ∈ R\ {0}, the point P/λ = (X/λ, Y/λ, Z/λ)T in Euclidean space
represents the same point in homogeneous coordinates. In order to represent a point

20

O x

y

z

Plane P

P
λ

p

Figure 2.5: A perspective projection example of point P being projected onto the plane at
point p. Any point P/λ can be projected onto the same point p on the plane.

in homogeneous coordinates, an additional dimension is appended to the point with the
scalar λ. For example, a 2D point p = (X, Y)T in Euclidean coordinates is converted
to p = (X/λ, Y/λ, 1)T = (X, Y, λ)T in homogeneous coordinates, and similarly P =
(X/λ, Y/λ, Z/λ, 1)T = (X, Y, Z, λ)T is the homogeneous coordinates for a 3D point. Note
that when λ = 1 the points are represented in Euclidean space, or equivalently, the ho-
mogeneous coordinates are normalized. This coordinate system is a useful representation
for perspective projections, as shown in Figure 2.5. Any point P/λ can be projected onto
the same point p on the plane, or in other words if the plane represents an image plane,
any point along the ray traced by P/λ can be seen as the point p on the image plane.
This implies that there is a scale ambiguity on the location of P when only given p on the
plane, since it can lie anywhere along the line traced by P/λ.

2.2.2 Pinhole Camera Model

The pinhole camera model is a model used for describing the geometric relations of light
projected from an object onto the light sensor (image plane) of the camera. Figure 2.6 (a)
shows a physical illustration of the pinhole camera model. The light rays emitted from the
object passes through the pinhole (treated as a point), and projected onto an image plane.
It is assumed that because the rays only pass through a single point. Figure 2.6 (b) shows
a geometrical derivation on the projection of the point b ∈ R (the object) to the point
a ∈ R (the projection of the object). Using similar triangles, the equation for a is derived
to be:

a =
f

z
b, (2.12)

where f ∈ R
+ is defined as the focal length of the camera and z ∈ R

+ is the distance from
the object to the pinhole, along the horizontal axis (referred to as the optical axis). In
actual cameras, the pinhole can be referred to as the optical center or camera center. It

21

Pinhole
Object

Light rays

Projection of

object

Image

plane

b

a

f z

a

f

(a) (b)

Figure 2.6: (a) An illustration of the pinhole camera model. (b) The geometric properties
used to derive the model.

is assumed that the image plane can be in the front or behind the optical center without
much difference other than the projected image being reversed. For this thesis the image
plane is assumed to be in front of the camera for better understandability of the derivations
involving object to camera image projection.

In reality, the pinhole size, camera lens, sensor used to capture the light (e.g. charge-
coupled devices (CCD) vs. active-pixel sensors (APS)), and the light behaviour itself are
not ideal and can affect the outcome described in Eqn. (2.12). Although this is the case,
today’s cameras are designed to minimize these errors, so the pinhole camera model is
assumed to be a sufficient approximation and is widely used in many computer vision
applications.

2.2.3 Camera Matrix

The camera matrix is a matrix used to convert an object point in 3D space to an image point
on the screen. It is assumed that the frame of reference for the object point is the camera
frame, and that the camera matrix is defined using the pinhole camera model described in

Section 2.2.2. Figure 2.7 shows an illustration of point CP =
(
CX,C Y,C Z

)T ∈ R
3 (using

the camera frame C as a reference frame) being projected onto ICp =
(
ICu,IC v

)T ∈ R
2,

where IC is the image frame centered about the intersection of the optical axis and the
image plane. Extending Eqn. (2.12) to the illustration gives:

ICu =
f

CZ
CX (2.13)

ICv =
f

CZ
CY . (2.14)

Although ICp lies on the image plane with each dimension having the same units as
the dimensions of CP, e.g. in meters, in reality the image is given in units of pixels

22

C
X

C
Z

f
Optical axis

Camera

plane

Image plane

IC

I
uC

C

C
Y

C
Z

f IC

I
vC

C

IC

y

x

I
uC

I
vC

Image plane

I
p C

(a) (b)

Figure 2.7: (a) The projection of the object point onto the image plane for both x and y
axes. (b) The front view of the image plane with the projected point.

and the image frame, denoted by I, is situated on the top left corner of the image, as
shown in Figure 2.8. The figure shows the x and y length for the pixel, 1/m ∈ R

+ and
1/n ∈ R

+ respectively, and the pixel offset from the frame I to IC is (u0, v0) ∈ N
2
0. From

this information the transformation from the point ICp to Ip is determined to be:

Ip =

[
m 0
0 n

]
(
ICp
)
+

[
u0
v0

]

, (2.15)

and combining, then simplifying into matrix form, the relationships from Eqn. (2.13), Eqn.
(2.14), and Eqn. (2.15) results in:

Ip =
1

CZ
K
(
CP
)
, (2.16)

where the 3x3 matrix K is the camera matrix, which is defined to be:

K =





α 0 u0
0 β v0
0 0 1



 , (2.17)

where α = mf and β = nf . It should be noted that from Eqn. (2.16), the image point
Ip =

(
Iu ∈ N0,

I v ∈ N0, 1
)T

is in the homogeneous coordinate representation described in
Section 2.2.1. The camera matrix is modified further to account for manufacturing errors

23

IC

I

y

x

y

x

Iu

Iv

u0

v0

1/m

1/n

Pixel

I
uC

I
vC

Ip

Figure 2.8: Diagram of the variables involved in the representation of the point p with
respect to the image frame I.

on the camera as well as other defects [28], as shown below:

K =





α −α cot θ u0
0 β

sin θ
v0

0 0 1



 , (2.18)

where θ ∈ [0, π] is the angle between the two image axes. When θ = π/2 the camera matrix
from Eqn. (2.18) reverts back to the original camera matrix shown in Eqn. (2.17).

2.2.4 Projection Matrix

In Section 2.2.3, the object point P’s frame of reference was assumed to be C. This is
generally not the case, as the frame of reference used can be any arbitrary frame, defined
here as the world frame W. Also, for efficiency purposes, P is assumed to be represented
in homogeneous coordinates, that is, P = (X, Y, Z, 1)T . To convert the point WP to CP,
or to convert the frame of reference for the object point from any arbitrary frame to the
camera frame, the following transformation is used:

CP =
(
C

W
R
) [
I3x3 |

(
C

W
t
)] (

WP
)
, (2.19)

where I3x3 is the 3x3 identity matrix, C

W
t is the 3x1 translation matrix to translate from

the world frame origin to the camera frame origin, and C

W
R is the 3x3 rotation matrix to

24

WP=(WX,WY,WZ,1)T

Ip=(Iu,Iv,1)T

C

I

x

y

z

x

y

z

y

x

W

IC x

y

Image Plane

Camera Center

Object Point

World Frame
f

Figure 2.9: A diagram of the projection of the object point onto the image plane, with the
four essential frames labelled.

rotate from the world frame axis to the camera frame axis. Substituting Eqn. (2.19) to
Eqn. (2.16) results in:

Ip =
1

CZ
K
(
C

W
R
) [
I3x3 |

(
C

W
t
)] (

WP
)

=
1

CZ
M
(
WP

)
, (2.20)

where M = K
(
C

W
R
) [
I3x3 |

(
C

W
t
)]

is a 3x4 matrix called the projection matrix. The pro-
jection from the object point to the image plane is depicted in Figure 2.9, with the four
necessary frames shown.

2.2.5 Epipolar Constraint

It is possible to estimate a point in 3D space given two different camera views of the same
point. The geometrical property that makes this possible is called the epipolar constraint,
which is a geometrical relation between the two image points from the two camera views and
the object point in 3D space. Figure 2.10 shows a diagram of the geometrical components
used to define the epipolar constraint. The epipolar plane is the plane formed by the two
camera centers and the object point, and the baseline is the line connecting the camera
centers. The epipolar line, l, is defined as the line that intersects an image plane with the
epipolar plane, while the epipole, e, is defined as the intersection of the baseline with the
image plane. From the diagram, the following geometric relationship is defined:

25

WP

C1 C2

Epipolar line Epipolar line

Epipole Epipole

Baseline

I p1 I p2

I e2I e1

I
l1 I

l2

Epipolar plane

Figure 2.10: Diagram illustrating the epipolar geometry definitions.

I2p ·
(
I2e× I2p

)
= 0, (2.21)

where I2p is the projected image point on the second camera view, and I2e is the epipole
on the second camera. The two image points can be treated as vectors originating from the
second camera and extending to their respective points on the image plane (as shown in
Figure 2.10). The cross product between the vectors I2p and I2e always produces a vector
that is perpendicular to I2p, and therefore the dot product between this vector and I2p

will always be zero. Note that from Eqn. (2.20), I2e can also be defined as:

I2e = γ2M2

(
WOC1

)
, (2.22)

where WOC1
is origin location of the first camera center with the world frame as its frame

of reference, which is equal to the translation vector W

C1
t = −C1

W
t. The projection matrix

for the second camera is M2 and γ2 ∈ R\ {0} is a scalar that does not affect the relation
defined in Eqn. (2.21). Applying Eqn. (2.20) for I1p and I2p yields:

I1p =
1

C1Z
(M1)

(
WP

)

WP =
(
C1Z

)
(M1)

+ (I1p
)
, (2.23)

and
I2p =

1
C2Z

(M2)
(
WP

)
, (2.24)

where I1p is the image point on the first camera view, (M1)
+ is the pseudoinverse of the

first camera projection matrix M1, and
C1Z and C2Z are the object point Z coordinates

26

described in the first and second camera frame of reference respectively. Since M1 is a 3x4
(non-square) matrix, the pseudoinverse of the matrix is found in Eqn. (2.23) instead of its
inverse, as the inverse of a matrix is only valid for square matrices. Substituting WP from
Eqn. (2.23) to Eqn. (2.24) yields:

I2p = γ1 (M2) (M1)
+ (I1p

)
, (2.25)

where γ1 = C1Z/C2Z is another scalar which does not affect the relation defined in Eqn.
(2.21). Combining Eqn. (2.21), Eqn. (2.22), and Eqn. (2.25) and simplifying results in:

0 = I2p ·
(
γ2M2

(
W

C1
t
)
× γ1 (M2) (M1)

+ (I1p
))

0 = I2pT
[
M2

(
W

C1
t
)]

×
(M2) (M1)

+ (I1p
)

0 = I2pT (E) I1p, (2.26)

where E =
[
M2

(
W

C1
t
)]

×
(M2) (M1)

+ is a 3x3 matrix defined as the essential matrix and
[
M2

(
W

C1
t
)]

×
is the matrix representation of M2

(
W

C1
t
)
to convert the vector cross product

term from Eqn. (2.21) into a matrix multiplication. The relationship between the cross
product and a vector product of two vectors x = (x1, x2, x3)

T and y = (y1, y2, y3)
T is as

follows:

x× y = [x]
×
y, where [x]

×

def
=





0 −x3 x2
x3 0 −x1
−x2 x1 0



 . (2.27)

In other words, [x]
×

is the skew symmetric matrix of x. In addition, the fundamental
matrix is defined analogously to the essential matrix, but without the use of the camera
matrix conversion, i.e. K = I3x3. This means that the fundamental matrix relates the
image points in terms of the units associated with the object point, rather than in pixels.

The main purpose of Eqn. (2.26) is to address the correspondence problem, i.e. finding
which image points from one camera view correspond to which image points from another
camera view. Figure 2.11 shows that given the image point I1p and the two camera frames
C1 and C2, the location of I2p can be anywhere on the epipolar line I2l. This is because
CZ is not known in Eqn. (2.20), so the location of WP can only be defined up to a
scale ambiguity. The epipolar constraint helps reduce the search space for I2p to be one
dimensional (the epipolar line) instead of two dimensional (the entire image), and therefore
reduces the search time and narrows the set of possible choices. The epipolar line I2l can

be found by analysing Eqn. (2.26). Let I2l =
(
I2 l1,

I2l2,
I2l3
)T ∈ R

3, where it is defined to
be:

I2l1 = (E) I1p. (2.28)

From this definition, Eqn. (2.26) can be simplified to:
(
I2p
)T I2l = 0

I2l1
I2u+ I2 l2

I2v + I2 l3 = 0, (2.29)

27

WP

C1 C2

Epipolar line�
p

� �
l

�

Figure 2.11: Diagram showing how the epipolar line on the second view is derived as a
consequence of knowing only the location of the image point on the first camera view and
not knowing the location of the object point.

which is an equation of a line. Therefore I2l = (E) I1p defines the constants for the epipolar
line. It can be used for the correspondence problem in constraining the location of I2p to
the line defined by I2l, which can greatly improve the performance of correspondences
between two image views.

2.3 Feature Tracking

The main purpose for the SIFT features calculated from Section 2.1 are that they can
be repeatedly identified in successive images. The features (keypoints) can be tracked
from one image to the next through a matching procedure described in Section 2.3.1. An
extension improving the matching procedure by utilizing available camera information is
described in Section 2.3.2. Once the keypoints are matched between each successive image,
the matches can be used for the 3D feature mapping described in Section 2.4, which maps
the feature points in 3D Euclidean space, resulting in a 3D point cloud of the environment.

2.3.1 Keypoint Matching

The method suggested in [24] to match SIFT keypoints between two images focuses on
comparing the Euclidean distances of their descriptors. The Euclidean distance metric is

28

defined as:

dE (x1,x2) =

√

(x1 − x2)
T (x1 − x2), (2.30)

where dE (x1,x2) ∈ R
+∪{0} is the distance between the two feature vectors x1 and x2. Let

Xd1 =
{
xd1

i1
|i1 = 1, . . . , n1

}
and Xd2 =

{
xd2

i2
|i2 = 1, . . . , n2

}
be the sets of descriptors

for two images, where xd1

i1
∈ R

128 and xd2

i2
∈ R

128 are the descriptor vectors, i1 and i2 are
the keypoint indices, and n1 and n2 are the total number of descriptors for the first and
second image respectively. The following steps are used to determine the keypoint matches
between the two images:

1. Calculate the Euclidean distances from the first keypoint descriptor (the current
descriptor of interest) from the first image to all of the descriptors from the second
image using Eqn. (2.30), i.e. calculate dE

(
xd1

1 ,xd2

i2

)
, i2 = 1, . . . , n2.

2. Store the smallest and second smallest distance as well as the descriptor index cor-
responding to the smallest distance, i.e. is = argmini2 dE

(
xd1

1 ,xd2

i2

)
.

3. If the ratio between the smallest and second smallest distance is less than a threshold,
εr ∈ R

+, then a match exists between the first keypoint from the first image and the
is

th keypoint from the second image. Otherwise there is no match found for the first
keypoint from the first image to any of the keypoints in the second image.

4. Repeat steps 1 to 3 for the rest of the keypoints (i1 = 2, . . . , n1) from the first image
to find the rest of the matches.

The idea behind comparing the ratio of the smallest and second smallest distance is to
reduce incorrect matches. If the ratio is too large (close to one) then that means that there
are at least two descriptors from the second image that are closely related to the descriptor
of interest from the first image. The smaller the ratio the more distinct (less ambiguous)
the match. It is noted that εr should not be set too small for it would return very few
matches that are highly distinctive, so a balance between the number of matches versus
the distinction of those matches are required. The value for εr suggested by [24] is 0.8.
Additional analysis for this matching procedure is discussed in [24].

2.3.2 Epipolar Constraint Criterion

An extension to the keypoint matching algorithm discussed in Section 2.3.1 is to include
an epipolar constraint (see Section 2.2.5) to limit the number of keypoints from the second
image that are being compared with the keypoint of interest from the first image. The
motivation for this constraint is to improve the speed and the accuracy of the matching
process by utilizing camera information, which is assumed to be available for this research.

29

Epipolar line

I
l2

εc

εc

SIFT features

Figure 2.12: Diagram illustrating the epipolar constraint criterion used to find which key-
points (SIFT features) to include in the matching algorithm. The points that are within
the perpendicular distance εc away from the epipolar line I2l (shown as the shaded area)
is considered for the matching algorithm.

For each keypoint on the first image, the epipolar line I2 l can be calculated for the second
image using Eqn. (2.28). It is assumed that a keypoint from the second image, which
is a potential match with the keypoint from the first image, should be somewhere on the
epipolar line I2l. But due to possible errors in the camera information as well as the
keypoint location estimates, a more flexible approach is introduced where the keypoint can
lie anywhere within a perpendicular distance, εc ∈ R

+, away from I2l. This is illustrated
in Figure 2.12, where the shaded area is the area that contains all possible points which
are εc distance away from the epipolar line I2l. Any keypoint (SIFT feature) from the
second image that is inside the boundary surrounding the shaded area is considered for
the matching algorithm described in Section 2.3.1.

Given an arbitrary image point p0 = (u0, v0, 1)
T and the line l = (l1, l2, l3)

T , the perpen-
dicular distance, dP (p0, l) ∈ R

+ ∪ {0}, from the point to the line can be determined using
scalar projection. Let p = (u, v, 1)T be an image point on the line l, v = (u− u0, v − v0)

T

be a vector from the point p0 to p, and n = (l1, l2)
T be the normal of the line l. The line

equation is given to be of the form:

l1u+ l2v + l3 = 0

−l3 = l1u+ l2v, (2.31)

Figure 2.13 illustrates that the magnitude of dP (p0, l) can be found by a scalar projection
of the vector v onto the line normal n:

30

l1u+l2v+l3=0
p0

n=(l1,l2)
T

n

dP(p0,l)

θ
v

Figure 2.13: Diagram illustrating the derivation of the perpendicular distance from a 2D
point to a 2D line.

dP (p0, l) = ||proj
n
v||

=
||v · n||
||n||

=
||l1u+ l2v − l1u0 − l2v0||

√

l21 + l22

=
||l1u0 + l2v0 + l3||

√

l21 + l22

=
||l · p0||
√

l21 + l22
. (2.32)

From Eqn. (2.32), the criterion for keypoints lying within a distance εc to the line l is
defined to be:

dP (p0, l) ≤ εc. (2.33)

With this criterion the keypoints that are not sufficiently close to the epipolar line can
be excluded from the matching process. The keypoint matching procedure from Section
2.3.1 is modified such that in step 1, instead of finding the Euclidean distance from the
descriptor of interest to all descriptors in the second image, first determine the epipolar line
I2l in the second image based on the keypoint of interest and then only find the distance
to the descriptors who’s corresponding keypoint locations satisfies the criterion in Eqn.
(2.33).

2.4 3D Feature Mapping

This section describes a method to use camera information and the tracked feature points to
locate their position in 3D Euclidean space. The result is a 3D point cloud that can reveal
potential obstacles in the scene, where each feature point on the 3D map can be treated as
a point pertaining to an obstacle. The geometric principles for how a feature point (object

31

point) in 3D space can be projected onto an image is described in Section 2.2. Here, the
reverse is done to take the projected image points and find the location of the object point.
At least two image points in two different views are required for approximating the location
of the object point (see Section 2.2.5). The approximation method described can use more
than two views of the same feature point to obtain a better approximation of where that
feature point is in 3D space.

Let the image axes for each camera be denoted by Ik, k = 1, . . . , mc and Mk be the
camera’s respective projection matrix, where k is the camera index andmc is the number of
cameras. Also let the set of feature points in 3D space and in an image be Pi, i = 1, . . . , np

and pi respectively, where i is the feature point index and np is the number of feature
points. Using these definitions, Ikpi is denoted as the ith feature point on the kth image.
The projection of a 4x1 object point WP to its corresponding 3x1 image point Ip is shown
in Eqn. (2.20), which can be expanded and rewritten as:

Iu =
M1

M3
WP

Iv =
M2

M3
WP, (2.34)

where M1, M2, and M3 denote the three rows of M , and u and v are the image point’s
coordinates. Eqn. (2.34) can be rearranged in matrix form to be:

(
IuM3 −M1

IvM3 −M2

)

WP = 0. (2.35)

Applying Eqn. (2.35) on the kth camera and the ith feature point yields:
(

IkuiM
3
k −M1

k
IkviM

3
k −M2

k

)

WPi = 0. (2.36)

Therefore extending Eqn. (2.36) to focus on the ith feature point and all camera views,
k = 1, . . . , mc, results in:

QWPi = 0, where Q =














I1uiM
3
1 −M1

1
I1viM

3
1 −M2

1
I2uiM

3
2 −M1

2
I2viM

3
2 −M2

2
...

ImcuiM
3
mc

−M1
mc

Imc viM
3
mc

−M2
mc














. (2.37)

Eqn. (2.37) is of the homogeneous form Ax = 0, which can be solved using Singular
Value Decomposition (SVD). Finding the SVD of A returns the eigenvectors as well as the

32

singular values pertaining to the eigenvectors. The eigenvector with the smallest singular
value (i.e. the smallest eigenvalue) is chosen as the solution for x̂ that minimizes Ax. It
is also noted that this solution is for |x| = 1, in other words the solution always returns a
unit vector. Therefore finding the solution of QWPi = 0 using SVD returns WP̂u

i , where∣
∣
∣
WP̂u

i

∣
∣
∣ = 1 and P̂ denotes an estimate to P. Recall from Section 2.2.1 that homogeneous

coordinates can be normalized to be represented in Euclidean space. In other words, the
estimate WP̂i, is found by normalizing WP̂u

i :

WP̂i =
1

λ̂

WP̂u
i =

1

λ̂








λ̂WX̂i

λ̂WŶi
λ̂WẐi

λ̂







=







WX̂i
WŶi
WẐi

1






, (2.38)

where λ̂ is the fourth element of WP̂u
i .

The procedure for estimating the location of the feature points is described in Algorithm
1. It is assumed that the projection matrix (Section 2.2.4) for each camera view is calculated
in advance. The algorithm attempts to find WP̂i such that it minimizes variance of the

Algorithm 1 3D Point Estimation from Multiple Camera Views

for i = 1, . . . , np do

Assign Q with data from Ikpi and Mk, k = 1, . . . , mc (Eqn. (2.37)).
Solve QWPi = 0 using SVD and set WP̂u

i .
WP̂i =

1

λ̂
WP̂u

i .
end for

coordinate distances, i.e. the u and v distances, between the projection of WP̂i and the ith

feature point in all camera views.

2.5 Image Segmentation

Image segmentation refers to the process of segmenting the pixels from an image into
regions. The idea behind this approach is to simplify or represent the image in a way
that reveals relevant information for solving a problem. An image can be segmented into
regions in order to find objects or boundaries of the objects. It can also be segmented
for the purpose of artistically enhancing the image. For example, an image of a road
intersection can be segmented into regions that represent the road and number of vehicles
that are on the road, for surveying purposes. Another example involves modifying the
image by first partitioning and then removing textural information from the image to give

33

it an artistic, water-painted look [64]. Although image segmentation is often used as an
intermediate step in an algorithm, it is a vital tool used to interpret and represent an image
in a way that makes it easier to solve an application.

The basis for using image segmentation in the proposed algorithm is to determine
regions representative of stationary objects. Since the objects in the environment are not
known a priori, some generalizing assumptions are made on the features that define the
majority of the possible objects in the scene. The first assumption is that various objects
tend to have grainy or textural details and the second assumption is that pieces of an object
are uniform, or similar, in colour in the broader sense (e.g. a house built with red bricks
appears red overall). Using these assumptions, the segmentation section for the algorithm
is divided into two steps. The first step is to remove textural information in the image
and the second step is to find regions that are chromatically (colour) and spatially similar.
These two steps are achieved first by applying the Kuwahara filter [65] to the image and
then using mean shift segmentation [66] on the filtered image, which in turn returns a map
of regions that are similar in colour. The regions found are assumed to be representative of
an object or a part of an object. The surfaces for these objects are interpolated in Section
2.6 using the 3D point cloud calculated from Section 2.4, providing a more elaborate and
informative map of the environment. The Kuwahara filter and the mean shift segmentation
technique are described in the following sections.

2.5.1 Kuwahara Filter

The Kuwahara filter [65] is used prior to segmenting the image in order to improve the
segmentation process. It is an edge-preserving, non-linear smoothing image filter. Edge-
preserving image filters are filters which maintain the edgels on an image, while a non-linear
image filter has an output that is not a linear function of its input (i.e. not a filter that
is convolved with the image to produce a filtered image). A smoothing filter is a filter
that is used to blur the image (to blend the colour information of neighbouring pixels in
an image). The filter’s purpose is to first reduce texture details, while maintaining the
edge information, to decrease the likelihood of oversegmentation (i.e. producing too many
segments from an image) from mean shift segmentation (Section 2.5.2).

Some additional mathematical notation for images will be defined first prior to the
overview of the filter. Let I (i, j) =

{
xr
i,j ∈ R

p |i = 1, . . . , m; j = 1, . . . , n
}

be a general
image map, where the index variables i and j are the row and column indices of the image
map respectively. The image row and column size are denoted by m and n. An image
is comprised of m × n pixels, where the variable that stores the value for the pixel in
the ith row and jth column is denoted by xr

i,j. The two-dimensional space spanned by
the pixel coordinates for the image is known as the spatial domain and the pixel value
itself, xr, spans a p-dimensional space known as the range domain. Each dimension of xr

34

{

{
{

{

PR

PR

P

P

1

1

1

1

12

12

2

2 2

2

13 13 24 24

3 3

3 3

34

34

4

4

4

4

X
C

Figure 2.14: Diagram of a 5x5 Kuwahara filter window. The numbers 1, 2, 3 and 4 denote
the regions, where overlapping regions are denoted by multiple numbers in a given pixel.
Region 1 is shaded in grey. xc denotes the sample point and P and PR denotes the kernel
and region widths respectively. The sample point also contains all four regions, though not
depicted in the figure.

constitutes for each distinct component (channel) of the colour space represented by the
image. Therefore, p is dependent on the colour space of the image. For example, the value
of p is one for greyscale images and three for images in the HSV (Hue, Saturation, and
Value) colour space. A superscript following the variable I denotes the colour space of the
image while a subscript denotes the type of image, with the exception that the variable I
without a subscript is assumed to denote the input image. For example, IHSV

f is a filtered
image that is in HSV colour space (the pixel values have three components: H, S, and V)
and Ig denotes an input image that is in greyscale. The Kuwahara filter described here
analyses the image in the RGB and HSV colour spaces to produce the filtered image.

While other versions of the Kuwahara filter exist [67], the traditional Kuwahara filter
is presented here. The filter uses a square kernel (i.e. a square window by which the
filtering takes place, that operates over the entire image) as shown in Figure 2.14. The
kernel is divided into four overlapping regions (1, 2, 3 and 4, denoted by R1, R2, R3 and
R4 respectively) with the center, xc, being the sample point (or the pixel of interest) on
the image. The pixels which the regions overlap are shown as pixels having more than one
number, indicative which regions the pixel contains. Region 1, or R1, is shown in Figure
2.14 shaded in grey. It is noted that xc contains all four regions, which is not depicted
in the figure due to space constraints. There are always four overlapping regions for the
traditional kernel, each covering the four corners of the kernel. The width of the kernel is
denoted by P ∈ N1 while the width of the region is denoted by PR ∈ N1.

35

The width of the kernel and region is given by

P = 4L+ 1 (2.39)

and
PR = 2L+ 1, (2.40)

where L ∈ N1 is a parameter for controlling the kernel size. The area, AR, of each region
is given by AR = (PR)

2.

The Kuwahara filter requires that the RGB component of the mean vector, µRGB
k (Rk) :

R
p+2 → R

p, and the V component of the variance, varVk (Rk) : R
3 → R, be calculated for

each region, where k = 1, . . . , 4 is the region number. The equations for finding µRGB
k and

varVk are

µRGB
k (Rk) =

1

AR

∑

xr,RGB∈Rk

xr,RGB (2.41)

and

varVk (Rk) =
1

AR − 1

∑

xr,V∈Rk

(
xr,V

)2 − 1

A2
R − AR




∑

xr,V∈Rk

xr,V





2

, (2.42)

where xr,RGB and xr,V is the RGB and V component, respectively, of xr.

The Kuwahara filter procedure is described in Algorithm 2. It is assumed that the input
image is in the RGB colour space and can be converted into the HSV colour space.

Algorithm 2 Kuwahara Filter

for i = 1, . . . , m do

for j = 1, . . . , n do

Set xc = IRGB (i, j)
for k = 1, . . . , 4 do

Compute µRGB
k (Rk) from Eqn. (2.41)

Compute varVk (Rk) from Eqn. (2.42)
end for

l = argmink varVk
Set IRGB

f (i, j) = µRGB
l

end for

end for

The procedure looks at each pixel in the input image, and selects the neighbouring
region with the lowest variance in the Value channel as the region that has the least
contrast. This is indicative that the region is least likely to lie on an edge or corner. The

36

pixel value in the filtered image is chosen to be the mean of the selected region in order
to add the smoothing effect. The end result from applying this procedure is a smoothing
effect, while preserving the edge information, of an image.

2.5.2 Mean Shift Segmentation

Mean shift segmentation [66] is a popular image segmentation technique, known for its
robust performance and few tunable parameters. The algorithm is derived from mean
shift clustering [68] and performs the clustering based on both colour and spatial data
from the image. The mean shift clustering technique differs from traditional feature space
based clustering techniques in that it does not impose a general shape for the clusters,
such as an elliptical shape resulting from modelling multivariate normal distributions to
the datasets [69]. A brief outline on the derivation for the algorithm is described in the
following subsections.

Mean Shift Clustering

Mean shift clustering is a nonparametric clustering algorithm (i.e. a method which does not
rely on a particular distribution profile to form groups in a dataset of points) introduced
by Fukunaga et al. [68] and later utilized by Comanicu et al. [66] in the context of image
segmentation. The main idea of the method is to find local maxima, or modes, of densely
populated regions in a given feature space. A feature space is the space spanned by a
feature vector, and a feature vector is a vector whose dimensions are features that describe
a piece of information which is used to solve certain applications. An example of a feature
vector is a vector formed in the RGB (Red, Green, and Blue) colour space of an image,
where the dimensions of the vector denotes the numerical value of the R, G and B channels
from a given pixel.

The density of a point in the feature space is estimated with a probability density esti-
mator function, denoted by f̂(x). A gradient ascent approach (an approach which is used
in optimization problems in which a local maxima is found by recursively shifting the cur-
rent solution in the direction of maximum increase of the cost function until convergence)
is used to find the modes, and any point that is connected to the modes is treated as being
part of the same cluster (group). A brief overview of the algorithm is described below.

Given a set of n features, X =
{
xi ∈ R

d|i = 1, . . . , n
}
, in a d-dimensional feature space,

the kernel density estimator, f̂ (x) : Rd → R, at an arbitrary point x ∈ R
d is:

f̂(x) =
1

nhd

n∑

i=1

K

(
x− xi

h

)

, (2.43)

37

where h ∈ R
+ is the bandwidth parameter and K (x) : Rd → R is the d-variate kernel

(window) centered about x. The purpose for the kernel is to define the neighbourhood
around the point x in which operations are performed on points within that neighbourhood.

A radially symmetric kernel (i.e. a circular window) is defined as a class of functions
of the form:

K(x) = ck,dk
(
||x||2

)
, (2.44)

where ck,d ∈ R
+ is a normalization constant that makes K(x) integrate to one and k (x) is

the profile for the kernel. The normalization constant, ck,d, is dependent on k and d. Note
that for radially symmetric kernels, h can also be defined as the radius of the kernel.

While other kernel profiles can be used for the density estimation, the Epanechnikov
(kE (x) : R+ ∪ {0} → [0, 1]) and normal (kN (x) : R+ ∪ {0} → [0, 1]) profiles are commonly
used [66]. They are defined as:

kE (x) =

{

1− x 0 ≤ x ≤ 1

0 x > 1
(2.45)

kN (x) = exp

(

−1

2
x

)

x ≥ 0 (2.46)

where x ∈ R
+ ∪ {0}.

Rewriting Eqn. (2.43) with the kernel definition from Eqn. (2.44) yields:

f̂K(x) =
ck,d
nhd

n∑

i=1

k

(∣
∣
∣
∣

∣
∣
∣
∣

x− xi

h

∣
∣
∣
∣

∣
∣
∣
∣

2
)

, (2.47)

where f̂K is the density estimator function which adopts the radially symmetric kernel
definition.

Let g(x) = −dk(x)
dx

and G (x) = cg,dg
(
||x||2

)
, where cg,d is the normalization constant

that makes G (x) integrate to one. Therefore the radially symmetric kernel G uses the
negative derivative of k as its profile. The gradient of f̂K(x) can be written as

∇f̂K(x) =
2ck,d
nhd+2

n∑

i=1

(xi − x) g

(∣
∣
∣
∣

∣
∣
∣
∣

x− xi

h

∣
∣
∣
∣

∣
∣
∣
∣

2
)

=
2ck,d
nhd+2

[
n∑

i=1

g

(∣
∣
∣
∣

∣
∣
∣
∣

x− xi

h

∣
∣
∣
∣

∣
∣
∣
∣

2
)]

︸ ︷︷ ︸

Term 1





∑n
i=1 xig

(∣
∣
∣
∣x−xi

h

∣
∣
∣
∣
2
)

∑n
i=1 g

(∣
∣
∣
∣x−xi

h

∣
∣
∣
∣
2
) − x





︸ ︷︷ ︸

Term 2

, (2.48)

38

and replacing the kernel G for K in Eqn. (2.43) results in:

f̂G(x) =
cg,d
nhd

n∑

i=1

g

(∣
∣
∣
∣

∣
∣
∣
∣

x− xi

h

∣
∣
∣
∣

∣
∣
∣
∣

2
)

. (2.49)

Note that f̂G is similar to f̂K , but instead uses the kernel profile g (x) which is the negative
derivative of the profile k (x). It is assumed that there exists a derivative for k (x) for all
x ∈ [0, inf).

The first term of Eqn. (2.48) is proportional to the density estimate at x using the

kernel G, and
∑n

i=1 g
(∣
∣
∣
∣x−xi

h

∣
∣
∣
∣2
)

is assumed to be a positive number. The second term is

the mean shift vector (mG(x) ∈ R
d):

mG(x) =

∑n
i=1 xig

(∣
∣
∣
∣x−xi

h

∣
∣
∣
∣2
)

∑n
i=1 g

(∣
∣
∣
∣x−xi

h

∣
∣
∣
∣2
) − x, (2.50)

which is the difference between the weighted mean (using the kernel G for weights) and x.
Substituting Eqn. (2.49) and Eqn. (2.50) to Eqn. (2.48) and simplifying with respect to
mG(x) gives:

mG(x) =
1

2
h2c

∇f̂K(x)
f̂G(x)

, (2.51)

where c =
cg,d
ck,d

. Therefore from Eqn. (2.51), the mean shift vector always points at the

gradient direction (i.e. direction of maximum increase in density), with f̂G(x) serving to
help normalize the step size [66]. The magnitude of the step size is kept within the size of
the kernel.

The mean shift procedure for a given point x and a dataset X is defined in the following
steps:

1. Compute the mean shift vector mG at the current point x.

2. Translate the point x (or the window center) by the mean shift vector: x = x+mG

3. Repeat steps 1 and 2 until convergence (i.e. ∇f̂h,K(x) = 0)

The mean shift vector always points towards the direction of maximum increase in
density [66]. By constantly shifting the window by the mean shift vector, the window
will eventually converge to a local stationary point. Figure 2.15 illustrates the first three
iterations of the mean shift procedure. The kernel (circular window) shifts towards the

39

.
.

.
. .

.
.
. .

..

.
..

.
.

.
.

.
.

.

..

.
.

.

.
.

. .

. .
.

.
..
.

.
. ..

.

..

. .

.

.
.
.

.

.

..

.
.
+

1

+2

+

3

Figure 2.15: Mean shift procedure illustration for a two-dimensional case. The numbers
denote the iteration number, the arrows are the mean shift vectors. The kernel (circular
window) is shown as the dotted circle with the center point, x, marked with a plus sign.
The kernel shifts towards the densest region on each iteration.

densest region on each iteration. The set of points that converges to the same mode is
called the basin of attraction of that mode.

Steps 1 and 2 from the mean shift procedure can be reduced to one step. Let {xt} , t =
1, 2, . . . be the sequence of successive kernel center locations, with t being the iteration
number. Taking Eqn. (2.50) and adding xt to obtain the next location, xt+1, yields:

xt+1 =

∑n
i=1 xig

(∣
∣
∣
∣xt−xi

h

∣
∣
∣
∣2
)

∑n
i=1 g

(∣
∣
∣
∣xt−xi

h

∣
∣
∣
∣2
) t = 1, 2, . . . (2.52)

Not all stationary points found from the mean shift procedure above point to a definitive
local maxima (mode). A practical procedure for mode detection was detailed in [66] and
briefly described below:

1. Use the mean shift procedure to find all stationary points (∇f̂K(x) = 0).

2. Prune these points by finding the local maxima. This is done by shifting each sta-
tionary point by a random vector with a small magnitude, re-applying the mean shift
procedure to each point again and letting it converge. If the point of convergence

40

remains unchanged (up to a tolerance) then the point is a local maximum, otherwise
repeat the process until all of the points reach a local maximum.

Additional details about sufficient conditions for convergence, smooth trajectory prop-
erty, and bandwidth selection for the procedure are explained in [66].

Mean Shift Filter

An image feature space is divided into two components: the spatial (pixel location) and
range (colour space) domains. The mean shift filter works in the joint spatial-range do-
mains, for both gray scale and colour images. Since the range domain is conceptually
different than the spatial domain, a separate Euclidean metric is used for each domain.
The L*u*v* colour space [70] is used in [66] for the filtering process because it is approxi-
mately uniform with a linear mapping property. Therefore, a Euclidean metric is assumed
when using this colour space.

A multivariate kernel notation is defined to compensate for normalizing both domain
spaces:

Khs,hr
(x) =

C

h2sh
p
r
k

(∣
∣
∣
∣

∣
∣
∣
∣

xs

hs

∣
∣
∣
∣

∣
∣
∣
∣

2
)

k

(∣
∣
∣
∣

∣
∣
∣
∣

xr

hr

∣
∣
∣
∣

∣
∣
∣
∣

2
)

, (2.53)

where hs ∈ R
+ and hr ∈ R

+ are the kernel bandwidths for the spatial and range spaces re-
spectively. The corresponding spatial and range portion in the feature vector x = (xs,xr)T

are xs ∈ R
2 and xr ∈ R

p. The dimension of the range domain is denoted by p. C ∈ R
+

is the normalization constant and k(x) is the common kernel profile used for both spatial
and range spaces.

Let {xi ∈ R
p+2 |i = 1, . . . , n} be the ith input image pixel, and n is the number of pixels.

The point of convergence for xi is denoted by xi,c =
(
xs
i,c,x

r
i,c

)T
, where xs

i,c and xr
i,c are

the spatial and range components for xi,c. Let xi,t be the t
th iteration of pixel xi governed

by Eqn. (2.52), so the symbol c represents the iteration at which the pixel xi converges.
Also, let {zi ∈ R

p+2 |i = 1, . . . , n} be the ith filtered image pixel.

The mean shift filter procedure is described in Algorithm 3.

The filter performs the mean shift procedure on every pixel in the image and assigns
each pixel the colour of its mode. The value for ε should be chosen to be small for sufficient
convergence.

Mean Shift Segmentation

The final step is to determine homogeneous regions based on the filter result. The homoge-
neous regions are defined here as being distinctly outlined (delineated) regions with pixels

41

Algorithm 3 Mean Shift Filter Procedure

for i = 1, . . . , n do

Initialize t = 1, xi,1 = xi, xi ∈ I
repeat

t = t+ 1
Compute xi,t from Eqn. (2.52)

until ||xi,t − xi,t−1|| < ε, ε ∈ R
+

xi,c = xi,t

Assign zi =
(
xs
i ,x

r
i,c

)T
, zi ∈ If

end for

which are similar in colour. The mode xi,c of each pixel xi in the input image I is deter-
mined using the mean shift filter procedure. But instead of assigning the pixel colour with
that of its mode’s, the pixel is assigned a label, Li = {k|xi,c ∈ Ck} , i = 1, . . . , n, where
i is the pixel index and n is the number of pixels. {Ck} is the set of clusters (groups)
determined from the input image, where k = 1, . . . , l is the cluster index and l is the total
number of clusters. The clusters are found by grouping the modes together based on their
distance to one another. If they are within the distance of their bandwidths, then they
are classified as being in the same cluster. This can be done by using the single linkage
clustering method, also known as the nearest neighbour method, which is described in [71].

Let the minimum distance between two clusters, DC (C1,C2), be defined by:

DC (C1,C2) = min
x1∈C1,x2∈C2

dE (x1,x2) , (2.54)

where C1 and C2 are two different clusters, and x1 and x2 are the features in clusters C1

and C2, respectively. The Euclidean distance metric, dE , is from Eqn. (2.30). Extending
from Eqn. (2.54), the minimum spatial and range distance between clusters are defined as

Ds
C
(C1,C2) = min

x1∈C1,x2∈C2

dE (xs
1,x

s
2) (2.55)

and
Dr

C
(C1,C2) = min

x1∈C1,x2∈C2

dE (xr
1,x

r
2) , (2.56)

respectively.

The mean shift segmentation procedure is described in Algorithm 4.

The procedure merges the modes, or merging the basin of attractions, that are ade-
quately close to each other forming l clusters. Figure 2.16 illustrates a clustering example.
Each pixel is labelled with their corresponding cluster index. An additional (optional) step
to the procedure is to eliminate spatial regions containing less than M pixels, removing

42

Algorithm 4 Mean Shift Segmentation Procedure

for i = 1, . . . , n do

Initialize t = 1, xi,1 = xi, xi ∈ I
repeat

t = t+ 1
Compute xi,t from Eqn. (2.52)

until ||xi,t − xi,t−1|| < ε, ε ∈ R
+

xi,c = xi,t

end for

Initialize xi,c ∈ Ci, ∀i
repeat

for each Ci ∈ {C} do

for each Cj ∈ {C} , i 6= j do

Compute ds = Ds
C
(Ci,Cj) from Eqn. (2.55)

Compute dr = Dr
C
(Ci,Cj) from Eqn. (2.56)

if ds ≤ hs and d
r ≤ hr then

Merge Ci and Cj and update {C}
end if

end for

end for

until Ds
C
(Ci,Cj) > hs and D

r
C
(Ci,Cj) > hr, ∀Ci ∈ {C} , ∀Cj ∈ {C} , i 6= j

for i = 1, . . . , n do

Li = {k|xi,c ∈ Ck}
end for

43

y
1

y
2

y
3 y

4
y
5

y
6

C
1

C
2

Figure 2.16: Clustering illustration for the mean shift segmentation procedure. The modes
y1, y2, and y5 are grouped to the cluster C1, while the modes y3, y4, and y6 are grouped
to the cluster C2. The kernel is shown in the illustration as a dotted circle, with the radius
of the circle being h, the bandwidth.

small segments that could be by-products of image noise. The spatial and range band-
widths (hs and hr), as well as the minimum region pixel size (M), are used as parameters
for the segmentation algorithm.

This method is an extension to the mean shift filtering procedure, which merges the
set of modes based on their proximity to each other, forming larger regions that have more
distinct boundaries. In other words, the fusion technique combines regions that are similar
in colour and close to one another. Refer to [66] for further details and experimental results.

2.6 Surface Fitting

The 3D point cloud generated in Section 2.4 may consist of points belonging to several
obstacles. A possible method to identify these obstacles is to use the region information
gathered from image segmentation (see Section 2.5) to label feature points that are asso-
ciated with each region. This method looks at the last segmented image (the last camera
”snapshot”) and determines which tracked feature points from the image lie in which re-
gion. The points in the 3D point cloud that correspond to those feature points are labelled
to their respective regions. The points with the same label are treated as being a complete
surface or part of a surface for an object. Figure 2.17 illustrates this labelling process. In
the proposed algorithm, in order to fit surfaces from these points an assumption is made
that these surfaces are flat in order to simplify the problem and speed up the algorithm.

44

z

y

x

(a) (b)

z

y

x

(c)

Figure 2.17: Illustration of the 3D point cloud labelling process based on the last segmented
image and its corresponding tracked feature points. (a) The 3D point cloud. (b) The last
segmented image with SIFT features (black squares) overlaid. (c) The 3D points associated
with the features are labelled to the region which these features are part of. The faint
visuals of the room and box are added for clarity.

More complicated surfaces can be fitted to the set of points, such as B-Spline or cubic-
spline surfaces, however these surface interpolation methods will be a subject of future
investigation to further improve the algorithm.

This section outlines the two steps of the surface fitting method given a set of points
in 3D space, and its corresponding region in the last segmented image, that represents an
obstacle surface. The first step is to obtain the plane that best fits these points, using
an orthogonal distance regression plane method described in Section 2.6.1, and the second
step is to project the boundary of the region from the image map onto the plane of best
fit, which is discussed in Section 2.6.2. These steps are done for all segments in the last
segmented image that have tracked feature points (at least three feature points are required
for planar fitting) which are matched to them, resulting in a more detailed environment
map of potential obstacles.

45

2.6.1 Orthogonal Distance Regression Plane

The orthogonal distance regression plane is a plane which minimizes the perpendicular
distances from a set of 3D points to that plane. A brief derivation is outlined in this
section. Let X = {xi ∈ R

3 |i = 1, . . . , n} be a set of 3D points and L = (a, b, c, d)T ∈ R
4

be a plane that is fitted to those points, which is defined by the following equation:

axL + byL + czL + d = 0, (2.57)

where the point xL = (xL, yL, zL)
T denotes any point that lies on the plane L. The

objective is to find the parameters of L (a, b, c, and d) such that the summation of the
shortest distances from {X} to the plane L is minimized.

Finding the shortest distance between a 3D point and a plane is derived using vec-
tor manipulation, similar to the 2D point to line distance derivation to obtain Eqn.
(2.32). Let nL = (a, b, c)T be the normal vector of the plane and x0 = (x0, y0, z0)

T

be an arbitrary point in 3D space. The vector from the plane L to x0 is defined as
w = (x0 − xL, y0 − yL, z0 − zL)

T . The shortest distance, dL (x0,L), from the point x0 to
the plane L can be found by a scalar projection of w onto nL and further simplified by the
substitution of Eqn. (2.57):

dL (x0,L) =
∣
∣
∣
∣proj

nL
w
∣
∣
∣
∣

=
||nL ·w||
||nL||

=
||(a, b, c) · (x0 − xL, y0 − yL, z0 − zL)||

||(a, b, c)||

=
||a (x0 − xL) + b (y0 − yL) + c (z0 − zL)||√

a2 + b2 + c2

=
||ax0 + by0 + cz0 − axL − byL − czL||√

a2 + b2 + c2

=
||ax0 + by0 + cz0 + d||√

a2 + b2 + c2
. (2.58)

A minimization of the total squared distance between the set of points, {X}, and the plane
L is used to find the plane that best fits those points. Using the distance formula from
Eqn. (2.58), the summation of the squared distances to a plane is given by the following
equation:

E ({X} ,L) =
n∑

i=1

(
axi + byi + czi + d√

a2 + b2 + c2

)2

, (2.59)

where E ({X} ,L) is defined as the total squared distance error from {X} to L. If
E ({X} ,L) = 0, that means the plane lies perfectly on the set of points (all of the points

46

have a distance of zero to L. Therefore finding the plane of best fit means solving the
following the minimization problem:

min
L

E ({X} ,L) . (2.60)

Taking the partial derivative of E with respect to d, setting it to zero, and then solving
for d yields:

∂E

∂d
=

(
2

a2 + b2 + c2

) n∑

i=1

(axi + byi + czi + d)

= 0

d =

n∑

i=1

(−axi − byi − czi)

n
= − (axµ + byµ + czµ)

= − (n · xµ) (2.61)

where xµ = (xµ, yµ, zµ) ∈ R
3 is the centroid of the dataset, {X}. The substitution of d,

from Eqn. (2.61), into Eqn. (2.59) results in:

E ({X} ,L) =
n∑

i=1

(
a (xi − xµ) + b (yi − yµ) + c (zi − zµ)√

a2 + b2 + c2

)2

. (2.62)

Let

A =








x1 − xµ y1 − yµ z1 − zµ
x2 − xµ y2 − yµ z2 − zµ

...
...

...
xn − xµ yn − yµ zn − zµ







. (2.63)

Rewriting Eqn. (2.62) into matrix notation results in:

E ({X} ,L) = (nL)
T (A)T AnL

(nL)
T
nL

. (2.64)

Eqn. (2.64) is in the form known as the Rayleigh Quotient or Rayleigh-Ritz ratio [72]. It
can be minimized by finding the eigenvector of A with the minimum eigenvalue, which can
be determined through Singular Value Decomposition (SVD). The solution is assigned to
nL and d can be determined by substituting the values of nL into Eqn. (2.61).

47

C
x

y

z
z

y

x

W

Region

Image

Plane

Projected Region

Figure 2.18: Illustration of a region boundary (defined by the points surrounding the
region) in an image being projected onto a plane in 3D space. The camera and world
frames are denoted by C and W.

2.6.2 Projection of Image Point to Plane

Using the plane L that is fitted to the set of points, described in Section 2.6.1, and the region
associated with the set of points, a reverse projection is done to project the boundary of
that region to the plane of best fit (see Figure 2.18). The boundary of a region is defined by
a set of image points surrounding the region, and can be found using the Moore-Neighbor
tracing algorithm modified by Jacob’s stopping criteria [73]. From Eqn. (2.20) it is noted
thatM

(
WP

)
is a ray originating from the camera center pointing towards the object point

WP. In the case of a reverse projection of an image point Ip to a 3D point on the plane
L, a modified version of Eqn. (2.20) is introduced:

Ip =
1

λP
K
(
C

W
R
) [
I3x3 |

(
C

W
t
)] (

WP
)





WX
WY
WZ



 = λP
(
C

W
R
)T

(K)−1 (Ip
)
−C

W
t, (2.65)

where WX , WY and WZ are the coordinates of WP, and λP is a scalar value which scales
the ray M

(
WP

)
. Therefore the value of λP is found such that the ray touches the plane’s

surface. This introduces another constraint, which is that the point WP must lie on the

48

plane L, or in other words:

LT
(
WP

)
= 0

(nL)
T





WX
WY
WZ



+ d = 0, (2.66)

where nL is the normal vector of the plane L. Solving for λP with the constraint in Eqn.
(2.66) yields:

λP =
−d+ (nL)

T (C
W
t
)

(nL)
T (C

W
R)

T
(K)−1 (Ip)

. (2.67)

The solution for λP is substituted back into Eqn. (2.65) to find the projected point WP

that lies on the plane L. This method is repeated for all of the image points defining the
boundary of the region.

49

Chapter 3

Planar Surface Reconstruction

Algorithm

3.1 Motivation

The motivation for the proposed algorithm, called the Planar Surface Reconstruction (PSR)
algorithm, is to take advantage of the abundant information that is inherent in an image.
It does so by identifying and tracking individual persistent features, but also by using
colour segmentation to define contiguous regions. As outlined in the introduction, the
main drawback for pure feature tracking algorithms is that they require the detection of
many features to return a meaningful 3D environment map estimate. Some surface fitting
techniques have been used on the estimated feature locations to enhance the map visually,
however it is still reliant on the number of features tracked in the images. Images where few
features are found result in a less detailed and reliable map reconstruction. Humans, on
the other hand, generally look for more than just distinct features (i.e. corners and edges)
when determining distances and surface structures of the environment. Research was done
on the process of how humans perceive and organize visual elements into groups, where
objects (also object surfaces) can be perceived from these groups [74]. Once they perceive
these objects, they can infer the objects’ surface structures and sizes before determining
the objects’ distances based on their distinct features. Therefore the surface structure, and
size, for an object and its perceived depth are interlinked.

Meaningful surfaces can be extrapolated even when given few distinct features and
the surface structure linked to those features. Although this is the case, distinct features
still must be identified to estimate the depth and scale information of the surface. For
example, it is difficult to perceive the distance and size of a smooth wall if the four corners
(distinct features) are not detectable, as shown in Figure 3.1. Similarly, only detecting and

50

(a) (b)

Figure 3.1: Example showing the link between object recognition and distinct features for
surface and depth perception. (a) A wall (surface recognition) without any of its corners
(distinct features) revealed. (b) The entire wall with the four corners.

tracking the corners of the wall says nothing about the wall itself. It is up to the human
to make the connection that the four corners are linked to the wall, and extrapolate the
visual information to generate a surface and range for the wall. Extending this idea to
the problem of surface fitting to a 3D point cloud, additional information can be extracted
from the image and correlated to the feature points. Once this link is established, various
gaps between feature points can be filled more accurately and confidently, resulting in a
more informative map of object surfaces rather than object points.

While determining object surfaces based on visual information is a complicated task, a
simplification made in this work is to only assess the chromatic (colour) properties of the
image and assume that object surfaces are similar in colour. A large majority of the area
to be mapped for indoor environments is comprised of planar surfaces such as floors, walls,
and ceilings, so another simplification made are that most of the surfaces are assumed
to be flat. The feature points that correspond to these object surfaces are determined,
and the surface fitting technique combines the feature points and object surfaces to place
flat surfaces in a 3D map. A description of the PSR algorithm is defined in the following
section.

51

Figure 3.2: Three consecutive images of a box (captured at a horizontal displacement from
one another) used for the illustration of the steps in the PSR algorithm.

3.2 Algorithm Definition

The reconstruction pipeline is divided into four main steps: feature extraction, feature
tracking, 3D mapping and surface fitting. The feature extraction step (Section 3.2.1) finds
distinct and identifiable features from an image and the feature tracking step (Section
3.2.2) matches these features from several images, producing a list of tracked features.
The tracked features are then used, in conjunction with camera information (i.e. position,
orientation, and calibration parameters), to determine where they lie in a 3D map (Section
3.2.3), which is known as the 3D mapping step. The last step (Section 3.2.4) attempts to
identify parts of objects based on colour information and then fit surfaces to these parts
using the 3D points estimated from the previous step. The last section (Section 3.2.5) is
summary of the algorithm with all of the steps integrated. The algorithm requires at least
two consecutive images to work. Three example images of a box (Figure 3.2), captured
a horizontal distance apart from one another, are used to illustrate the concepts for each
step of the algorithm. The box from the figure used has approximate dimensions of 34cm
x 43cm x 54cm.

It is assumed that the camera information is known in advance for each image. The
scene is also assumed to be static (no moving objects). This assumption allows multiple
view geometry techniques to be incorporated into the algorithm in order to estimate the
3D location of the feature points.

The algorithm can also be executed for video data, where a number of sequential frames,
denoted by nframe ∈ N ≥ 2, with their corresponding camera information are fed to the
algorithm to return a surface map. This is done repeatedly for the following frames, and
the new map information returned is added to the same map. Each frame can also be
separated with the next by a constant nfsep ∈ N to improve the quality of the baseline and
to reduce processing loads. The fusion process of the surfaces is not evaluated in this work,
although it is an area of future work.

52

Figure 3.3: SIFT implementation example in MATLAB using VLFeat and the third image
from Figure 3.2.

3.2.1 Feature Extraction

The first step for the algorithm is to extract SIFT features (see Section 2.1) from the
images (converted to greyscale). It is assumed that the features found in each image are
indexed and stored for future use. Figure 3.3 shows an example of SIFT features extracted
from an image (a small number of those features are shown in the figure) in MATLAB
using an open source library called VLFeat [75]. The centers of the yellow circles indicate
the feature locations and the yellow lines connecting the circles to their centers indicate
the feature orientations. The green grid with arrows is a visualization of the descriptors of
those features.

3.2.2 Feature Tracking

The SIFT features extracted from the images (see Section 3.2.1) are tracked using David
Lowe’s keypoint matching method described in Section 2.3.1 bounded by the epipolar
constraint criterion (Section 2.3.2). The tunable parameters are the thresholds εr and dP .
εr is the maximum value allowed for the ratio between the smallest and the second smallest
distance of two SIFT feature descriptors for a match to occur. dP is the largest distance

53

value allowed between a keypoint in the second image and the epipolar line corresponding
to the keypoint of interest in the first image. If the distance is less than dP then the
keypoint in the second image is included in the matching procedure with the keypoint of
interest. The following matching procedure is used for the case of three or more images
where features are to be tracked from.

1. Features are tracked between the first two images using the keypoint matching
method and the epipolar constraint criterion, using the parameters εr and dP . The
tracked features’ corresponding indices and links (i.e., a way of binding a feature
from the first image to the same feature in the second image) are stored in a list.

2. The tracked features from the second image are then compared with the features
in the third image (using the same procedures from step 1). The results are up-
dated in the list and the unmatched features in the second image along with their
corresponding matched features to the previous images are removed from the list.

3. Step 2 is repeated for successive images until all images are covered, or if there are no
matches found in the latest image. If there are no matches found, then the algorithm
stops at the last image where matches occurred.

The end result of this procedure is a list of distinct features that are matched in all
images, with their indices and links stored. The procedure can also be reversed (optional),
i.e. starting from the last image where matches occurred and matching towards the first
image. The results from the reverse case are combined with the results from the forward
case to produce more correspondences. Figure 3.4 shows an illustration of the procedure,
illustrating both the forward and reverse case. The row of numbers are the feature indices
corresponding to the image the features reside in. The dashed box encloses two rows
(images) which the matching algorithm is applied to. The rows are updated with the
matched feature indices, where each link is indicated by the thick line connecting the
matched indices. The top of the figure shows the procedure being run starting from the first
image to the last image, and the bottom of the figure is the reverse case. The results from
both cases are then combined (with the duplicates removed) to produce the final result.
For example, the feature index 7, 5, and 2 from image 1, 2, and 3 all correspond to the
same (matched) feature, as shown in the combined results of Figure 3.4. Figure 3.5 shows
an example of the matching procedure applied to three images with SIFT features. The
yellow markers show the matched feature locations on the images, and the blue dashed lines
show the links between the features on the images. The links are all relatively horizontal,
since the three images are captured at positions offset horizontally from one another.

54

1

1

1

2 3 4 5 6 7

2 3 4 5

2 3 4 5 6

Image 1

Image 2

Image 3

3

4

1

5 7

1 5

2 3 4 5 6

3

4

6

7

5

2

Match Features

1

1

1

2 3 4 5 6 7

2 3 4 5

2 3 4 5 6

Image 1

Image 2

Image 3 2 4 5

7

5

2

2

1

4

1

5

2 3 4 5 6 7

1 3

7

5

2

2

1

4

3

4

6

Feature Indices

Combined Results

Results

(Reverse Direction)

Results

Figure 3.4: Illustration of the feature matching procedure. The top portion shows the
matching done in the forward sequence and the bottom portion shows the matching done
in the reverse sequence. The combined result is shown at the right of the figure.

Figure 3.5: Feature matching procedure example for the three consecutive images from
Figure 3.2.

55

−1
−0.5

0
0.5

1
1.5 2

2.5

1
1.5

2
2.5

3
3.54

−0.2

0

0.2

0.4

0.6

x (m)y (m)

z
(m

)

Figure 3.6: 3D feature point mapping example using the feature correspondences from
Figure 3.5.

3.2.3 3D Feature Mapping

A 3D point cloud is computed using the feature correspondences (from the first image to
the image where correspondences occurred) and the 3D point estimation from multiple
views method (Section 2.4, Algorithm 1). Figure 3.6 shows a 3D point cloud (each point
shown as blue markers) generated from the matched features for the images shown in
Figure 3.5. The results are stored for later use.

3.2.4 Surface Fitting

The most recent image with feature correspondences (in this case, the third image) is used
for surface fitting. In order to do so, the image is first segmented (see Section 2.5) into
the regions which represent object surfaces. The procedure for segmenting the image is as
follows:

1. Downsample (shrink) the image by a factor rd ∈ (0, 1] (multiply rd with the image
size to obtain the downsampled image size).

2. Apply the Kuwahara filter (Section 2.5.1, Algorithm 2) on the down sampled image
nd ∈ N1 times to produce a filtered image.

3. Apply the mean shift segmentation procedure (Section 2.5.2, Algorithm 4) on the
filtered image to produce a segmented image.

4. Upsample (grow) the segmented image by a factor of 1
rd

to return it to its original
size.

56

(a) (b)

Figure 3.7: Example of segmentation procedure applied to the third image from Figure
3.5. (a) The segmented result from mean shift segmentation. (b) The labelled regions.

The parameters rd and nd, the size of the Kuwahara filter kernel (L), and the spatial (hs)
and range (hr) bandwidths, as well as the minimum region pixel size (M) for mean shift
segmentation are all tunable parameters. Figure 3.7 shows this procedure being applied to
the third image, from Figure 3.5. The mean shift segmentation is applied using a MATLAB
wrapper [76] for the Edge Detection and Image SegmentatiON (EDISON) system [69].

As mentioned in Section 2.5, the main purpose of applying the Kuwahara filter the
image before the segmentation process is to reduce textural information, which reduces
the number of segments that are by-products of surface textures. Figure 3.8 shows an
example of this. Figure 3.8 (a) is the original image and Figure 3.8 (b) is the segmented
image with only the mean shift segmentation applied to it. Figure 3.8 (c) and Figure
3.8 (d) shows one and two Kuwahara filter iterations, respectively, applied to the image
before the segmentation process. The coloured regions in a segmented image correspond
to a segment. Some specific examples of reduced effects of textural information with the
application of the Kuwahara filter include the stop sign and the seat portion of the black
chair on the front left of the image, resulting in less colour segments. The extra segments
due to lighting on the wall on the left side of the image are also reduced because of the
smoothing property of the Kuwahara filter. It can be seen with careful observation that,
although the segmented image from Figure 3.8 (d) has less segments that are caused by
textures, the filter itself is not scale invariant, which means that objects that are seen
far away are filtered differently than objects that are close. As a result, edge-preserving
characteristics of far away objects may be reduced due to the nature of the filter, as can be
seen from the shelf on the far right side of the image. This drawback can be compensated
by capturing the images at a higher resolution.

Downsampling the image prior to the segmentation process is done to reduce its com-
putation time. Figure 3.9 shows results of the segmentation process with the image scaled

57

(a) (b)

(c) (d)

Figure 3.8: Effects of including the Kuwahara filter iterations in the segmentation process.
(a) The original image. (b) The segmented image with only mean shift segmentation
applied to it. (c) One and (d) two Kuwahara filter iterations applied to the image prior to
mean shift segmentation.

58

(a) (b) (c)

(d) (e)

Figure 3.9: The resulting segmented image from setting rd for the segmentation procedure.
(a) rd = 1 (no downsampling). (b) rd = 0.8. (c) rd = 0.6. (d) rd = 0.4. (e) rd = 0.2.

down to different sizes. From Figure 3.9 (a) to Figure 3.9 (e) the image sizes before seg-
mentation are: 100% (of the original size), 80%, 60%, 40%, and 20% respectively. It is
empirically observed from these figures that a decreased image size leads to poorer segmen-
tation quality and reduced number of segments. This is reasonable because by shrinking
the image, some pixel and edge information is lost. Shrinking the image is also effectively
scaling down the scene, which reduces the filter performance since the Kuwahara filter
is not scale invariant. This in turn leads to a reduction in the segments found from the
segmentation process. Therefore, a balance should be assessed between computation time
and the quality and quantity of segments when tuning the parameter rd.

The matched feature points in the third image are labelled using the segmented image,
with each label corresponding to an object region (refer to Figure 2.17). An approximate
planar surface is fitted to each set of labelled points by fitting an orthogonal distance
regression plane (solving Eqn. 2.64 to the points and projecting the respective segment
boundary onto the plane (solving Eqn. 2.65 for each point on the boundary). Surface
reconstruction will only be applied to regions with at least npts ∈ N ≥ 3 points associated
with it. Infeasible surfaces are surfaces that are too far away or close (in 3D space) to any
camera view are rejected. This is achieved by checking each projected point that makes
the boundary to the surface and determine if that point is greater than dpmax ∈ R

+ ∪ {0}
or less than dpmin ∈ R

+∪{0} from any camera view (along the optical axis). The following
procedure is used to reject infeasible surfaces:

59

1. For each projected point on the boundary of the first generated surface, transform
the point from the world frame to the frame of the first camera view using Eqn. 2.19.

2. If z < dpmin or z > dpmax, where the z value of the transformed point is the position
along the optical-axis of the first camera, then the surface represented by the point
is removed from the map.

3. Repeat steps 1 and 2 for each camera view until all camera views are checked or until
the surface is removed from the map.

4. Repeat steps 1 to 3 for each generated surface in the map.

Figure 3.10 shows an example of the final map produced by the algorithm. The colour
represents a different region (object surface). The coloured circles show the estimated
feature points in 3D space and the surface boundaries are shown as the coloured outlines.
The figure shows four different views of the map for better inspection.

3.2.5 Algorithm Summary

The summary of the PSR algorithm is illustrated in Figure 3.11. The algorithm uses the
processes explained from Sections 3.2.1 to 3.2.4. Its input is a set of sequential images with
their corresponding camera data and the output is a surface map in 3D space, with respect
to a global reference frame. For video data, nframe frames separated by nfsep intermediate
frames are the input parameters for the method. This is done repeatedly for the following
frames, also separated by nfsep number of frames, with the resultant map being appended
to the current environment map. The following steps summarize the PSR algorithm.

1. Extract SIFT features (Section 2.1) from each input image and store the feature
locations and descriptors in a list.

2. Apply the SIFT tracking method (Section 3.2.2) for each consecutive image, using
the thresholds εr and dP , until all images have correspondences or until there are no
matches. The SIFT feature lists are updated to include the correspondence informa-
tion.

3. Apply the multi-view 3D point estimation method for each matched feature using
Algorithm 1 from Section 2.4, and store the resultant 3D point cloud information.

4. Shrink the most recent image with correspondences by a factor rd and apply the
Kuwahara filter (Section 2.5.1, Algorithm 2) to the image for nd iterations. The size
of the filter kernel is adjusted with L.

60

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

x (m)

z
(m

)

−1 −0.5 0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

x (m)

y
(m

)

(a) (b)

11.522.533.54
−0.2

0

0.2

0.4

0.6

0.8

y (m)

z
(m

)

−1
−0.5

0
0.5

1
1.5 2

2.5

1
1.5

2
2.5

3
3.54

−0.2

0

0.2

0.4

0.6

x (m)y (m)

z
(m

)

(c) (d)

Figure 3.10: Example of the surface map produced by the PSR algorithm using the images
in Figure 3.2. The surfaces are shown as the coloured outlines and the feature points are
shown as the coloured circles, each where each region is of a different colour. (a) Front
view. (b) Top view. (c) Side view. (d) Angled view.

61

Sequence

of Camera

Frames

3D Mapping

Surface Fitting

Camera Information

3D Environment Map

Tracked Features

3D Point Cloud

Colour-Based Surface Identification

Feature Extraction

Feature Tracking

Image Features
SIFT Extractor

Keypoint Matching

Epipolar Constraint Criteria

Multi-View

3D Point

Estimation

Kuwahara Filter

Mean Shift Segmentation

Orthogonal Distance Regression Plane Fitting

Surface Boundary Projection

Figure 3.11: Diagram summarizing the main components of the PSR algorithm.

5. Apply the mean shift segmentation procedure (Section 2.5.2, Algorithm 4) to the
filtered image using the parameters hs, hr, M . Grow the segmented image by a
factor of rd to return it to its original size.

6. Each matched feature point from the most recent image with correspondences is
labelled to the region from the segmented image which it resides in.

7. For each set of labelled points, if there are at least npts points then a plane is fit to the
set of points using the orthogonal distance regression plane method (Eqn. 2.64). A
3D surface is generated by projecting the pixel boundary of the segment (associated
to the set of points) onto the plane of fit (Eqn. 2.65). Surfaces that are not between
z < dpmin and z > dpmax away from any camera optical axis are removed.

The output is a map of 3D points and surfaces. This can be used for path planning or
object assessment algorithms depending on the application. Chapter 5 presents the results
and observations of applying the PSR algorithm to video stream data recorded from a
ground vehicle test platform.

62

Chapter 4

Autonomous Vehicle Platform

An autonomous vehicle platform was developed at the University of Waterloo (UW) as a
testbed for various path planning, controls, and vision algorithms. Its initial purpose was
to enter the International Autonomous Robot Racing Challenge (IARRC), though it was
decided that after the competition it will be used for research and other related activities.
In the context of this research, the testbed is used to validate the PSR algorithm. The
first iteration of the platform underwent an irreparable collision and currently the second
iteration is being built for the real-time implementation of the algorithm.

Details on the physical and software aspects of the vehicle are described in this chapter.
Arun Das, Gerardo Salas Bolanos, Prasenjit Mukherjee were also part of the group work-
ing on the platform, under the team name University of Waterloo Autonomous Racing
(UWAR).

4.1 Mechanical Design

The Traxxas E-MAXX chassis was selected as the base vehicle for retrofitting electrical and
control systems in order to make it autonomous. The chassis itself was chosen for some key
features: wide wheel track, four wheel drive, and customizability. The wide wheel track
increases stability for steering since it can accommodate for higher horizontal shifts in the
center of gravity when performing aggressive turns. The four wheel drive increases vehicle
traction and reduces slippage in off-road conditions. The build of the chassis was modified
in numerous ways as listed in Table 4.1 and electrical and control systems components
were added.

The springs and gearbox were purchased from other sources and installed. The wheel
mounts for the encoders (as shown in Figure 4.1) were designed using Computer Aided

63

Table 4.1: Mechanical modifications for the autonomous vehicle chassis.
Modification Purpose

Stiffer Suspension Account for increased weight of sensors, elec-
trical and control components.

Addition of two-speed gearbox Low gearing for better speed control at low
speeds while high gearing to achieve greater
speeds.

Wheel-mounts for encoders Measurement of position on both wheels can
better estimate speeds on turns.

Aluminium frame mount with steel casing For mounting and partial protection of lap-
top, sensors, and electronics.

Carbon-fibre body for chassis Helps prevent damages to the vehicle from
minor collisions.

Design (CAD) and built to be attached to the wheel axles inside the rear wheels. The
mount assembly has a spring mechanism which pushes two rubber O-rings against the
inside of the wheel. The O-rings rotate as the wheel rotates, which in turn causes the
encoder shaft to rotate.

An aluminium frame with supports was designed and manufactured for the electronics
(i.e. controllers, breakout boards, power management modules, and motor drivers), sensors
and laptop. A steel cage was made to guard the Hokuyo UTM-30LX Light Detection And
Ranging (LIDAR) sensor against collision damage. The battery harnesses allow for quick-
swap capabilities.

The carbon fibre body was designed to encompass the entire vehicle, only exposing the
bottom area and the necessary sensors. This ensures proper operation and provides some
protection from rain and debris that can potentially damage the electronics or interfere with
the mechanical joints. The mould for the body was created using CAD and machined using
tool path planning algorithms and Computer Numerical Control (CNC) methodologies
[77]. The carbon fibre was reinforced with a steel wire mesh to increase its rigidity and
robustness to collisions.

The entire vehicle assembly, including both designed and stock parts, was modelled
using Solidworks 2009. The full rendered model is shown in Figure 4.2.

Two emergency stops (e-stops) were fitted to the vehicle to ensure safe operation. When
triggered, the motor controller brake command is activated and the vehicle motor is locked
from rotating (analogous to an engine brake) until the e-stop is reset. The first e-stop can
be mechanically triggered (i.e. a button) and mounted on the back of the vehicle. The
second e-stop can be triggered remotely through a wireless controller, with its operational
range being a 200 meter radius.

64

Encoder Mount

Assembly

Encoder

Figure 4.1: Rendered image of the CAD model of the wheel with the mount assembly and
encoder attached.

Figure 4.2: Rendered image of the CAD model of the autonomous vehicle platform.

65

(a) (b)

Figure 4.3: (a) The earlier stages and (b) completed version of the autonomous vehicle
platform.

The platform construction results are shown in Figures 4.3 and 4.4. Figure 4.3 (a) shows
the vehicle in its earlier stages of development, before the fabrication of the camera mounts
and carbon fibre body, and Figure 4.3 (b) shows the completed model of the testbed with
the carbon fibre body mounted. The resultant robot has a maximum forward speed of
about 50km/hr and a steering angle (δ from Figure 4.9) of about ±26 degrees. Figure 4.4
shows the encoder mount assembly attached to one of the rear wheel axles of the vehicle.

Encoder mount

Encoder

Figure 4.4: Encoder mount assembly for the autonomous vehicle platform.

66

Figure 4.5: Sensor network for the autonomous vehicle platform. Each sensor is labelled
with a number and is cross-referred in Table 4.2, which describes the sensors in more detail.

Table 4.2: Sensor network for the autonomous vehicle platform.
Sensor Type Function
1 Novatel OEM-V3G GPS

Receiver and Antenna
GPS Global localization

2 Logitech WebCam Pro 9000 Camera Computer vision
3 USD-E4P-OEM Optical encoder Position, speed estimation and lo-

calization
4 IMU MCU INS Acceleration, orientation, head-

ing estimation and localization
5 Hokuyo UTM-30LX LIDAR Obstacle range sensing and local-

ization

4.2 Electrical Design

4.2.1 Sensors and Instrumentation

The sensor network outline for the system is shown in Figure 4.5 with the functions briefly
described in Table 4.2.

The Novatel OEM-V3G Global Position System (GPS), Inertial Measurement Unit
(IMU) MicroController Unit (MCU) Inertial Navigation System (INS), and wheel-mounted
USD-E4P-OEM optical encoders are used for pose estimation, localization, and global
localization for the vehicle. The Hokuyo UTM-30LX LIDAR is a planar laser range finder
that returns frontal-planar distances of objects ranging up to 30 meters. It also has the
capability of outdoor operations. There are two Logitech WebCam Pro 9000 cameras

67

Table 4.3: Battery power distribution for the electrical systems of the vehicle testbed.
Battery Electrical systems to power
2 x 5000mAH LiPo in series (16.8V) The Neu-Castle 2200KV electric motor
1 x 2100mAH LiPo (7.4V) IMU MCU
2 x 3300mAH NiMH in series (14.4V) MCU board, LIDAR, and GPS receiver
Laptop battery Webcams (through usb ports) and laptop

mounted on each side of the platform, which can be used for monocular or stereo computer
vision techniques. The cameras were chosen as they are the most cost-effective solution
and are commonly used in computer vision research.

4.2.2 Power Distribution

Two 5000mAH Lithium Polymer (LiPo) batteries are responsible for powering the 2200KV
electric motor used to drive the vehicle. The brushless motor has a maximum current rating
of 120A peak while the batteries are capable of providing 175A of current at a 35C discharge
rate, which is sufficient for when the motor is undergoing heavy load from high torque and
acceleration demands.

The IMU MCU has its own power management on-board and is powered by a 2100mAH
LiPo battery. The two 3300mAH Nickel-Metal Hydride (NiMH) batteries power a custom
power management module, which uses switching power regulators to supply 5V and 12V
power. The 5V supply powers the MCU board and GPS receiver while the 12V supply
powers the LIDAR. The two Logitech webcams are powered through a usb hub connected
to the laptop.

Based on various tests made on the operational life for the vehicle, the whole system is
expected to run for 30 to 60 minutes using fully charged batteries.

Table 4.3 summarizes the batteries used to power the various electric systems.

4.2.3 Hardware Architecture

The processing is distributed amongst two microcontroller units (MCU), the primary and
the IMU MCU, and the main processor (i.e. a Samsung SENS Q45 laptop, running with
a 2.1GHz dual core processor). Figure 4.6 shows a simplified version of the system. The
primary MCU is responsible for quadrature decoding and the actuation of the steering
and throttle for the platform. The quadrature decoding is offloaded to LS7166 24 bit
chips, while the steering and throttle commands for the vehicle are initiated using an
LPC2148 microcontroller that features an ARM7 core. These chips are integrated into the

68

IMU MCU

Primary MCU

Microcontroller

Quadrature Decoders

Main Processor

(Laptop)
Servos

Cameras

GPS

LIDAR

Encoders

Motor Driver Motor

Figure 4.6: Simplified illustration of the electrical hardware architecture. The arrows
indicate the general direction of data flow. Only the main processor and microcontroller
in the primary mcu have bidirectional data transfer.

primary MCU. Heading and inertial measurements are offloaded to the IMU MCU, and
then fed back to the primary processor. The main processor performs all of the higher-level
processing, such as object detection, state estimation, localization and trajectory planning
and control. It also receives GPS, camera, and LIDAR sensor data as well as sending
commands and receiving feedback from the primary MCU.

4.3 Software Design

4.3.1 Software Architecture

The system architecture described in [78] is used as a base model for the platform’s software
architecture. The model is divided into low-level and high-level nodes. The low-level nodes
are responsible for obtaining sensor data and interfacing with the microcontroller while the
high-level nodes are responsible for the higher level object detection, state estimation and
path planning. Message passing between the two groups is done through a message broker
using a publish-subscribe paradigm. Additional information that the high-level nodes needs
are stored in a blackboard mechanism [78]. The architecture is shown in Figure 4.7.

The general flow outline of the system architecture is as follows:

1. Odometry and environment information is retrieved from the sensors and microcon-
troller using the low-level nodes and then is published to the message broker.

2. The message broker passes the information to the subscribing high-level nodes.

69

Figure 4.7: Software architecture for the autonomous vehicle platform.

3. The high-level nodes use the subscribed information while interacting with the black-
board to perform state estimation, localization, mapping, path and trajectory plan-
ning.

4. The navigation node uses the trajectory to publish commands to the low-level node
which then sends the command to the microcontroller to control the platform.

The main advantages for using a publish-subscribe paradigm are that the nodes are en-
capsulated and will send and receive data when it is available. A disadvantage is that the
message passing is asynchronous and can affect performance of the high-level nodes. For
example, the state estimation node update rate will only be as high as the rate of the
slowest sensor that it subscribed to, whereas it can be more beneficial to update the state
at a faster rate using a sufficient amount of sensor data and continue using old data until
it is updated in the next iteration. It is reasoned that the blackboard mechanism is useful
for the high-level nodes since it can be used to provide data to the processes when queried
rather than waiting for the next update to be published. This ensures a synchronous execu-
tion of high-level nodes and increased overall update rate, therefore providing a smoother
execution and data flow. The downside are the additional errors caused by using previous
data, though the errors are small due to the high update rates of the nodes and sensors.

Robot Operating System(ROS) [79] is used to implement the system architecture. ROS
is a meta-operating system designed specifically for robotics applications and thus is a
useful base tool for programming the vehicle platform. In the context of the architecture,
ROS provides abstraction for the message creation and passing, service queries and updates,
node construction and linking, and sensor communication. This allows the primary focus
for the software implementation to be on the higher-level processes.

70

4.3.2 Low-Level Communication

Communication between the laptop and the primary MCU is done via serial UART. A
custom 7 byte protocol was designed for sending commands to the MCU and receiving
data. The first byte is the command byte, for identifying which command is being sent or
received, while the next four bytes contain the data corresponding to the command. The
last two bytes contain a 16 bit CRC checksum to improve the robustness of data transfer.
The data transfer is done in little-endian byte order.

4.3.3 Control Systems

The primary MCU is also responsible for the closed-loop velocity controller. Velocity
feedback is provided from two optical encoders mounted to the hubs of the two rear wheels.
Each encoder is connected to a LS7166 24 bit quadrature decoder, which is interfaced via
an 8-bit parallel bus to the MCU. The quadrature decoding was offloaded to the LS7166
chips to allow for high speed operation, and to free up computational resources in the
MCU.

The low-level systems use robust and computationally inexpensive algorithms to fuse
some of the available data and provide effective control over the throttle of the vehicle.
The steering actuators of the platform are directly controlled by the high level trajectory
systems.

Velocity Controller

A proportional and integral (PI) controller is implemented for the robot for controlling
velocity. Velocity control is necessary for maintaining the proper velocity in changing
terrain or vehicle conditions (e.g. hills, grass, ice, turns, etc...), therefore increasing vehicle
performance in trajectory tracking. Derivative control can be included to the controller,
but it was determined that the PI controller is sufficient. The proportional control is
necessary for response time and integral control is necessary for zero steady state error.

The Laplace transform of a PI controller is as follows:

U (s)

E (s)
= kp +

ki
s
, (4.1)

where s ∈ R, U (s) ∈ R is the velocity input, E (s) ∈ R is the velocity error, kp ∈ R

and ki ∈ R are the proportional and integral gains. Applying a z-transform (Tustin

71

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Timestep (0.01s)

V
el

oc
ity

 (
cm

/s
)

Digital Controller Design Output

Reference Input

Output of Digital Controller (Added Sensor Noise)

Output of Idealized Discrete Controller

Figure 4.8: Simulation of the discrete PI velocity controller using MATLAB.

transformation) to the Eqn. (4.1) yields:

U (z) = E (z)

(

kp + ki
Ts
2

z + 1

z − 1

)

U (z) (2z − 2) = E (z) (2zkp − 2kp + Tszki + Tski)

U (z)
(
2− 2z−1

)
= E (z)

(
2kp − 2z−1kp + Tski + Tsz

−1ki
)
, (4.2)

where Ts is the sample time of the system. Converting Eqn. (4.2) into a difference equation
results in:

u [k] = u [k − 1] +
e [k] (Tski + 2kp) + e [k − 1] (Tski − 2kp)

2
, (4.3)

where k is the discrete time.

Figure 4.8 shows a simulation for the discrete PI controller, using Eqn. (4.3) for its im-
plementation. The simulation shows the response of the controller for a unit step reference
input, with and without simulated sensor noise.

Steering Controller

The steering controller considered is non-linear and was first applied by the Stanford Uni-
versity entry into the DARPA Grand Challenge [80]. The control law is given as:

δ(t) = ψ(t) + tan−1

(
kcx(t)

v(t)

)

, (4.4)

where δ(t) ∈ R is the control steering angle, ψ(t) ∈ R is the heading error, x(t) ∈ R is the
cross track error, v(t) ∈ R is the robot velocity, and kc ∈ R is the controller gain. Figure
4.9 illustrates the parameters of the steering control system.

72

ψ
δ

x

u

Figure 4.9: Non-linear steering controller diagram.

The first term of Eqn. (4.4) is used for correcting the heading error while the second
term corrects for cross track error. The second term ensures that the vehicle’s trajectory
converges with the desired trajectory, at an exponential convergence rate [80]. An addi-
tional damping gain for the heading error is implemented in the control system to account
for smoothing noisy heading errors, thereby improving the performance of the steering
control. The resultant controls equation is as follows:

δ(t) =
ψ(t)

khv(t)
+ tan−1

(
kcx(t)

v(t)

)

, (4.5)

where kh ∈ R is the damping gain for heading error. The control law from Eqn. (4.5) was
implemented for the vehicle platform.

4.4 Path Planning and Vision Processing

The platform was tested with various path planning and vision algorithms for the IARRC
entry as soon as it became fully operational. While many path planning algorithms were
considered, Figure 4.10 shows the preferred online path planning algorithm successfully
generating trajectories (shown as the yellow line) for the robot to traverse through a test
circuit enveloped by pylons. Figure 4.11 (a) and Figure 4.11 (b) shows the results of the
vision methods implemented for one of the platform’s cameras, where it successfully detects
a stop sign and a customised traffic light.

The platform was shown to successfully execute vision-based algorithms and therefore
can be used to validate the real-time performance of the PSR algorithm. The first version
of the platform underwent an irreparable collision and the second version is currently being
built. Experiments were done to test the algorithm offline using video data captured from
an alternate vehicle platform, with the results and observations discussed in Chapter 5.

73

(a) (b)

Figure 4.10: (a) The markers (white for filtered LIDAR points, red for pylons and green
for path points) used in the path planning algorithm to form a trajectory (yellow line) for
the vehicle. (b) The vehicle’s current environment at which the path from (a) is planned
from.

(a) (b)

Figure 4.11: Vision algorithms tested using a camera on the autonomous vehicle platform.
(a) Custom traffic light detection. (b) Stop sign detection.

74

Chapter 5

Experimental Results and

Observations

Experiments were performed using an alternate vehicle platform known as the Chameleon
R100 from Clearpath Robotics. The Chameleon R100 is an educational mobile robot
platform capable of achieving speeds of up to 1.5 m/s and is designed for Ackermann
steering. Its dimensions are 42.6cm x 31.6cm x 18.6cm and weigh about 10kg with a
maximum payload of about 5kg. It has an operating time of about 2 hours and uses two
12V, 4.6 Ah NiCd batteries. The platform also comes with an Acer netbook, Garmin GPS,
Hokuyo LIDAR, Logitech Quickcam webcam, and three IR and SODAR range finders.

Video and odometry data were collected and the used as inputs for the MATLAB 2008b
implementation of the PSR algorithm for offline evaluation. The video data was captured
at 640x480 pixel resolution and the odometry of the vehicle testbed was estimated using an
OptiTrack positioning system in the lab. Two test cases were evaluated by the algorithm.
The first test case (Section 5.1) involves the robot driving along a clean environment with
a box placed on the relatively planar scene. The second case (Section 5.2) is the evaluation
of the algorithm for cluttered indoor environments. It involves the vehicle moving across
the lab space and reconstructing a side of the room full of clutter. Table 5.1 lists the
parameters used for the two cases. The following sections analyse the results from two
test cases, showing the frames used, map generated, segmentation and feature matching
results. Section 5.3 assesses the computational performance (processing times) of the main
algorithm procedures for the two cases.

75

Table 5.1: Parameters used for the two experimental test cases.
Test Case 1 2
Number of sequential frames per iteration (nframe) 3 4
Frame separation constant (nfsep) 5 10
SIFT matching ratio threshold (εr) 4 4
Epipolar constraint criterion distance (dP) 50px 50px
Reverse matching for matching procedure Yes Yes
Segmentation image scale factor (rd) 1 0.75
Kuwahara filter kernel bandwidth modifier (L) 1 1
Kuwahara filter iteration number (nd) 2 2
Mean shift segmentation spatial kernel bandwidth (hs) 7 7
Mean shift segmentation range kernel bandwidth (hr) 6.5 6.5
Mean shift segmentation minimum region area (M) 1500px2 2000px2

Minimum number of points for planar fitting (npts) 8 10
Surface feasibility minimum camera distance (dpmin) 0m 0m
Surface feasibility maximum camera distance (dpmax) 8m 8m

5.1 First Test Case: Clean Environment

The first test evaluates a clean environment to examine the validity of the assumptions
made for the design of the algorithm. These assumptions include the environment con-
sisting of rigid, non-moving planar surfaces, with each surface having an overall similar
colour (when ignoring texture information). In this scenario the vehicle moves along a flat
surface with a white background, and a box (with dimensions of 55.5cm length, 43.5cm
width (purple side), and 34.2cm height) can be seen on the ground. Figure 5.1 shows the
frames used from the video stream. Since there are eight frames and three frames per
iteration used (nframe = 3), the total number of iterations applied to the PSR algorithm is
six (the first iteration uses frames 1-3, the second iteration uses frames 2-4, etc.). Figure
5.2 shows the resultant surface map of the combined surface generation results of the six
iterations. It can be seen that there is an overlap of many surfaces because there is cur-
rently no surface fusion method implemented in the algorithm. It can also be seen from
the surface map that the two sides of the box, as well as the portion of the ground plane
has been reconstructed with relatively good accuracy. This implies that the box location
with respect to the vehicle is also accurate as the distance from the box to the vehicle is
proportional to the generated size of the box (both factors are scalar dependent).

The segmented image and SIFT matching results for each iteration are shown in Figure
5.3 and Figure 5.4, respectively. Although the segmentation process did remove some
textural information to produce chromatically similar segments, the segmented results of

76

1 2 3 4

5 6 7 8

Figure 5.1: Image frames used for the first test case. The number below each frame
corresponds to the frame’s index in the sequence.

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

x (m)

z
(m

)

−1.5 −1 −0.5 0 0.5 1
1

1.5

2

2.5

x (m)

y
(m

)

(a) (b)

11.522.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

y (m)

z
(m

)

−1.5
−1

−0.5
0

0.5
1

1
1.5

2
2.5

−0.2

0

0.2

0.4

x (m)y (m)

z
(m

)

(c) (d)

Figure 5.2: Surface mapping result for the first test case. The surfaces are shown as the
coloured outlines. (a) Front view. (b) Top view. (c) Side view. (d) Angled view.

77

1 2 3

4 5 6

Figure 5.3: Segmentation results for the first test case. The number below each segmented
image represents the number of iterations of the PSR algorithm.

each iteration is inconsistent due to lighting affects, camera view changes, and image noise.
The segmentation process is also heavily reliant on the input parameters. Parameters
selected to favour few and large segments do not work well when viewing objects that
are far away or small, as they typically get clumped together with neighbouring objects
into a larger segment and is treated as a single surface as opposed to many surfaces. The
parameters favouring many small segments produces little or no surfaces because there are
not be enough feature matches to be coupled with the segments for surface fitting. Since
the accuracy of the planar estimation is reliant on the accuracy of the feature matches, εr
and dP are chosen to be more focused on finding good feature matches at the expense of a
decreased number of matches. This makes it difficult to reconstruct the entire scene if the
scene does not have enough distinguishable features on each object surface.

Overall the algorithm proves to work reasonably well when the environment fits the
assumptions made. It also shows that distinct surfaces are able to be detected and recon-
structed if the object surfaces are chromatically similar and have enough distinguishing
features. Extending this notion, two boxes placed side by side should be able to be iden-
tified and reconstructed as separate entities. More tests of different scenarios are required
to determine which parameter values work well for most cases.

78

1

2

3

4

5

6

Figure 5.4: SIFT matching results for the first test case. The number to the left of each
image represents the number of iterations of the PSR algorithm.

79

5.2 Second Test Case: Cluttered Environment

The second test case evaluates the algorithm in a cluttered indoor environment. The
vehicle is travelling across the lab space and attempts to reconstruct a portion of the lab.
Figure 5.5 shows the frames used in the video data, and since nframe = 4, the total number
of iterations for the algorithm is 11 (the first iteration uses frames 1-4, the second iteration
uses frames 2-5, etc.). Figure 5.6 shows the resultant surface map. Because the assumptions
made for the algorithm are not valid in this case, the quality of the environment map is
also directly impacted as a result. The quality of some surfaces produced are relatively
poor but the overall structure defined by the set of surfaces is indicative of the obstacles
ahead. The height of the table is 90cm, and the surfaces defined by the algorithm also
have an overall height of 90cm. The clutter of objects on the left and right side of the
white drawers section in the middle also affects the quality of the surfaces produced based
on the segmentation and feature matched results of those objects.

Figure 5.7 and Figure 5.8 shows the segmented image and feature matches for each
iteration. It can be seen that the white drawers section is relatively flat overall and was
segmented properly, so therefore properly reconstructed in Figure 5.6. The far away objects
on the right and left sides of the drawers produced few segments due to the scale invariant
nature of the segmentation process (many smaller objects are clumped together to form a
larger segment). This, coupled with the matched features pertaining to objects of various
distances (resulting in biased planar estimates), produced the skewed surfaces on the right
and left sides of the drawers. The surface projection is sensitive to the plane estimates,
as illustrated in Figure 5.9. It can be seen that a plane that is parallel to the optical axis
(Figure 5.9(a)) has projected points which are unevenly distanced apart. Extrapolating
the results shows that the projected points from 4 and onward become farther and farther
away, meaning that any pixel error from the segmentation process can significantly increase
the surface size away from the camera. Comparatively, a plane that is perpendicular to the
optical axis results in projected points which are evenly spaced, and errors in the segment
sizes are only significant for plane estimates which are far away from the camera, as the
farther the plane is away the larger the spacing.

Overall the quality of the map produced from the algorithm is moderate because the
conditions for the algorithm to perform well were invalid in this scenario. The algorithm
also showed high sensitivity to the chosen parameters, where changing the parameters can
significantly change the resultant surface map. The white drawers in the middle of the
frames was reconstructed properly because it fulfilled the necessary assumptions.

80

1 2 3 4

5 6 7 8

9 10 11 12

13 14

Figure 5.5: Image frames used for the second test case. The number below each frame
corresponds to the frame’s index in the sequence.

81

−3−2.5−2−1.5−1−0.500.511.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (m)

z
(m

)

−3−2.5−2−1.5−1−0.500.511.5

−4.5

−4

−3.5

−3

−2.5

−2

x (m)

y
(m

)

(a) (b)

−4.5 −4 −3.5 −3 −2.5 −2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y (m)

z
(m

)

−3
−2

−1
0

1

−4.5 −4 −3.5 −3 −2.5 −2

0

0.5

1

x (m)
y (m)

z
(m

)

(c) (d)

Figure 5.6: Surface mapping result for the second test case. The surfaces are shown as the
coloured outlines, where each region is of a different colour. (a) Front view. (b) Top view.
(c) Side view. (d) Angled view.

82

1 2 3 4

5 6 7 8

9 10 11

Figure 5.7: Segmentation results for the second test case. The number below each seg-
mented image represents the number of iterations of the PSR algorithm.

83

1

2

3

4

5

6

7

8

9

10

11

Figure 5.8: SIFT matching results for the second test case. The number to the left of each
image represents the number of iterations of the PSR algorithm.

84

Optical Axis

Plane

Projected Points

Camera

Center

Image Plane

1 2 3

Projected Rays

Plane

1

2

3

Projected Points

(a) (b)

Figure 5.9: Illustration of the affects that the orientation of the plane of best fit have on
the projection result. (a) A plane which is parallel and (b) a plane which is perpendicular
to the optical axis of the camera.

5.3 Algorithm Processing Durations

The processing times of the main procedures used in the algorithm are shown in Figures
5.10 and 5.11, for the clean and cluttered scenarios, respectively. As shown in the two
figures, the main bottlenecks are the SIFT feature extraction and mean shift segmentation.
Both of these procedures can be sped up through parallelization and GPU implementation.
The GPU implementation of SIFT extraction and mean shift segmentation would allow for
processing speeds of about 10 fps to 20 fps or 0.05s to 0.1s sample rates. It is also noted
that the Kuwahara filter, feature matching, planar fitting and surface projection can all be
implemented in parallel to further increase the speed of the algorithm. The segmentation
step can be a separate process altogether (as it is independent of the 3D mapping), which
can result in further improvements in execution speeds. Therefore it is possible to speed
up the algorithm significantly for it to be practical to be implemented in real-time mobile
robotics applications.

85

1 2 3 4 5 6
0

1

2

3

4

5

6
Processing Duration vs. Iteration

Iteration

P
ro

ce
ss

in
g

du
ra

tio
n

(s
)

SIFT Extraction
Feature Matching
3D Mapping
Kuwahara Filter
Mean Shift Segmentation
Planar Estimation and Projection

Figure 5.10: Processing durations of the main methods in the PSR algorithm for the first
test case.

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Processing Duration vs. Iteration

Iteration

P
ro

ce
ss

in
g

du
ra

tio
n

(s
)

SIFT Extraction
Feature Matching
3D Mapping
Kuwahara Filter
Mean Shift Segmentation
Planar Estimation and Projection

Figure 5.11: Processing durations of the main methods in the PSR algorithm for the second
test case.

86

Chapter 6

Conclusion

Environment perception is both an essential and complicated task for autonomous vehicles.
It is necessary for the vehicle to be able to perceive the obstacles in the environment in order
for it to navigate around them and avoid possible collisions. This allows for the possibility of
many practical applications that involves navigation through environments where there are
potentially dangerous objects. Indoor environment perception for surveillance applications
was chosen as the primary focus for this thesis with the vehicles considered being wheeled
motor vehicles and quadrotor helicopters. Vehicle limitations include payload, size, power
and cost restrictions, which are all important factors for determining the feasibility of the
possible techniques to be used for obstacle detection. The dynamics of the vehicles were
also taken into account. It is assumed that the environment has no moving objects with
sufficient lighting conditions during the vehicle’s surveillance routine. It was also assumed
that the vehicle has accurate and reliable pose estimation.

Indoor environments consist of many kinds of objects with different structural and
material characteristics. The placement of the objects can also produce cluttered scenes
and occlusions. These make the task of developing a generalized method for identifying
all objects a challenge. There are many different kinds of sensors that can be used to
determine obstacles in the scene, with the camera selected because it minimizes payload
and power requirements and captures abundant information from the scene. This thesis
introduced a monocular vision-based obstacle detection algorithm that is designed to work
for unknown indoor environments and slow moving vehicles. What had not been explored
by previous works was the coupling of a generalized object surface detection method with
a 3D point map to produce more informative and additional surface details of the scene.
This notion was evaluated here, through the development of the PSR algorithm, as the
main contribution to the field.

The PSR algorithm was divided into four main steps: feature extraction, feature track-
ing, 3D mapping, and surface fitting. The key assumptions made for simplifying the

87

algorithm were that the indoor scene consists mainly of flat and chromatically unique sur-
faces. The feature extraction step extracts SIFT features from each image in the sequence
and then tracked in the feature tracking step. The 3D mapping step takes these features
to form a 3D point cloud of the scene. Segmentation using a combination of the Kuwahara
filter and mean shift segmentation was used to find segments that are assumed to represent
flat object surfaces, and then coupled with the 3D point cloud to project these surfaces
into the environment map. The resultant map consists of both surfaces and points that
are assumed to represent obstacles in the scene.

An autonomous vehicle platform was developed to assess the algorithm. The testbed
is a four wheeled ground vehicle, based off a RC chassis and retrofitted to contain control
hardware. Because of irreparable collision, an alternate vehicle platform known as the
Chameleon from Clearpath Robotics was used to perform the experiments offline, while
the second version of the testbed is being developed for the real-time implementation of
the algorithm. The Chameleon obtained video data using a Logitech Quickcam Pro 9000
camera and odometry data using the OptiTrack system integrated in the lab space. Two
scenarios were assessed for this thesis. The first scenario is a clean scenario where the
key assumptions made (planar surfaces where each surface consists colours that do not
vary much) are valid, which involves the vehicle driving and capturing video data of a box
placed on the floor. The second scenario tests robustness of the algorithm in a cluttered
environment. Surfaces generated from the first scenario were fairly accurate, proving that
the algorithm is able to reconstruct surfaces when the key assumptions are valid. For
the second scenario, however the resultant surface map produced less satisfactory results
mainly because the scene does not hold true to the key assumptions.

The PSR algorithm works reasonably well under the assumptions it was developed for,
but is less effective in other environments. The 3D mapping produced reasonable results
but the segmentation process was susceptible to view changes, scale changes, light affects,
noise and clutter. This led to some differences in the segments pertaining to the same
object surface on separate iterations, which adversely affected the quality of the surfaces
produced. The surface projection was also more sensitive to fitted planes that were parallel
to the camera’s optical axis, which led to many sharp surfaces generated due to errors in
the segmentation process. Currently the algorithm’s processing bottlenecks are the SIFT
extraction and the mean shift segmentation. Overall the experimental results prove that
the coupling of object surface detection with 3D point estimates can produce a more
informative and detailed surface map.

It is recommended that the algorithm be tested in a quadrotor testbed in future re-
search. The speed of the algorithm can be improved significantly through parallelization
and GPU implementation of the SIFT extraction, mean shift segmentation, Kuwahara fil-
ter, feature matching, planar fitting and surface projection. Another recommendation is
to reduce the complexity of the algorithm by reducing the number of parameters used for

88

its input, as the algorithm is heavily reliant on the tuning of the parameters. This can be
done by performing additional experiments to determine reliable values of specific parame-
ters. Future investigation can be done to include additional methods or change the current
methods of the PSR algorithm. Surface fusion techniques can be included in a future
version of the algorithm to reduce the number of redundant surfaces. The linking of each
surface can be done by tracking a subset of the features associated to a surface between
frames. In addition, a generalized technique for detecting object surfaces can be devel-
oped to replace the current one, where it encompasses the detection of non-planar surfaces
and surfaces that consists of various different scales and colours. More complex surface
fitting techniques, such as cubic-spline and B-spline interpolations, can be implemented to
account for smooth surfaces.

In conclusion, vision-based obstacle detection remains a challenge for autonomous ve-
hicles. The contributions for this thesis include the development of an autonomous ground
vehicle testbed and the introduction, development and evaluation of the PSR algorithm,
which incorporates object surface recognition into dense 3D reconstruction to improve the
quality of the generated surface map. It is hoped that in the near future the goal of de-
tecting and avoiding obstacles is achieved, which will bring humanity one step closer to
the realization of a fully autonomous vehicle.

89

References

[1] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tom-
lin. The Stanford testbed of autonomous rotorcraft for multi-agent control (STAR-
MAC). In Proc. IEEE 23rd Conference on Digital Avionics Systems, Salt Lake City,
UT, USA, November 2004.

[2] C. Plagemann, F. Endres, J. Hess, C. Stachniss, and W. Burgard. Monocular range
sensing: A non-parametric learning approach. In Proc. IEEE International Conference
on Robotics and Automation, pages 929–934, Pasadena, CA, USA, May 2008.

[3] B. Call, R. Beard, C. Taylor, and B. Barber. Obstacle avoidance for unmanned
air vehicles using image feature tracking. In Proc. AIAA Conference on Guidance,
Navigation, and Control, Keystone, CO, USA, August 2006.

[4] S. Hrabar. 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs.
In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
807–814, Nice, France, September 2008.

[5] D. J. Lee, R. W. Beard, P. C. Merrell, and P. Zhan. See and avoidance behaviors
for autonomous navigation. In Proc. SPIE Volume 5609: Mobile Robots XVII, pages
23–34, Philadelphia, PA, USA, October 2004.

[6] S. Yoon, S. Roh, and Y. Shim. Vision-based obstacle detection and avoidance: Appli-
cation to robust indoor navigation of mobile robots. Advanced Robotics, 22(4):477–492,
2008. VSP, an imprint of Brill.

[7] J. Byrne, M. Cosgrove, and R. Mehra. Stereo based obstacle detection for an un-
manned air vehicle. In Proc. IEEE International Conference on Robotics and Au-
tomation, pages 2830–2835, Orlando, FL, USA, May 2006.

[8] C. Stiller, J. Hipp, C. Rössig, and A. Ewald. Multisensor obstacle detection and
tracking. Image and Vision Computing, 18(5):389–396.

90

[9] H. Baltzakis, A. Argyros, and P. Trahanias. Fusion of laser and visual data for robot
motion planning and collision avoidance. Machine Vision and Applications, 15(2):92–
100, 2003. Springer-Verlag.

[10] G. Fasano, D. Accardo, A. Moccia, and L. Paparone. Airborne multisensor tracking
for autonomous collision avoidance. In Proc. IEEE 9th International Conference on
Information Fusion, pages 1–7, Florence, Italy, July 2006.

[11] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,
17(1-3):185–203, 1981. Elsevier.

[12] B. D. Lucas and T. Kanade. An iterative image registration technique with an appli-
cation to stereo vision. In Proc. IJCAI International Joint Conference on Artificial
Intelligence, volume 2, pages 674–679, Vancouver, B.C., Canada, August 1981.

[13] A. Verri and T. Poggio. Against qualitative optical flow. In Proc. IEEE 1st Interna-
tional Conference on Computer Vision, pages 171–180, London, UK, June 1987.

[14] J. C. Zufferey and D. Floreano. Toward 30-gram autonomous indoor aircraft: Vision-
based obstacle avoidance and altitude control. In Proc. IEEE International Conference
on Robotics and Automation, pages 2594–2599, Barcelona, Spain, April 2005.

[15] R. C. Nelson and J. Aloimonos. Obstacle avoidance using flow field divergence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(10):1102–1106, Octo-
ber 1989. IEEE Computer Society.

[16] J. J. Koenderink and A. J. van Doorn. Affine structure from motion. Journal of
the Optical Society of America A: Optics, Image Science, and Vision, 8(2):377–385,
February 1991. OSA.

[17] J. Canny. A computational approach to edge detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. IEEE Computer
Society.

[18] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972. ACM Press.

[19] S. M. Smith and J. M. Brady. SUSAN A new approach to low Level image processing.
International Journal of Computer Vision, 23(1):45–78, 1997. Springer-Verlag.

[20] H. Wang and M. Brady. Real-time corner detection algorithm for motion estimation.
Image and Vision Computing, 13(9):695–703, 1995. Elsevier.

91

[21] M. Trajkovi and M. Hedley. Fast corner detection. Image and Vision Computing,
16(2):75–87, 1998. Elsevier.

[22] C. Harris and M. Stephens. A bombined corner and edge detection. In Proc. 4th Alvey
Vision Conference, volume 15, pages 147–151, Manchester, Greater Manchester, UK,
August 1988.

[23] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. Computer
Vision ECCV 2006, 3951:404–417, 2006. Springer-Verlag.

[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004. Springer-Verlag.

[25] J. Shi and C. Tomasi. Good features to track. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 593–600, Seattle, WA, USA, June 1994.

[26] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment A
Modern Synthesis. Vision Algorithms: Theory and Practice, 1883:153–177, 2000.
Springer-Verlag.

[27] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2nd edition, 2003.

[28] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,
2003.

[29] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a single moving
camera. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 1498–1505, San Francisco, CA, USA, June 2010.

[30] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang, D. Nister,
and M. Pollefeys. Real-time visibility-based fusion of depth maps. In Proc. IEEE
11th International Conference on Computer Vision, pages 1–8, Rio de Janeiro, Brazil,
October 2007.

[31] M. Pollefeys, D. Nistr, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, S.-J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang,
H. Stewnius, R. Yang, G. Welch, and H. Towles. Detailed real-time urban 3D recon-
struction from video. International Journal of Computer Vision, 78(2):143–167, 2008.
Springer-Verlag.

[32] S. M. Seitz, B. Curless, J. Diebel, D.Scharstein, and R. Szeliski. A comparison and
evaluation of multi-view stereo reconstruction algorithms. In Proc. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, volume 1, pages
519–528, New York, NY, USA, June 2006.

92

[33] P. Premaratne and F. Safaei. Stereo correspondence using moment invariants. 15:447–
454, 2008. Springer-Verlag.

[34] E. Hanna, P. Straznicky, and R. Goubran. Obstacle detection for low flying unmanned
aerial vehicles using stereoscopic imaging. In Proc. IEEE Conference on Instrumenta-
tion and Measurement Technology, pages 113–118, Victoria, BC, Canada, May 2008.

[35] T. E. Boult and G. Wolberg. Correcting chromatic aberrations using image warp-
ing. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 684–687, Champaign, IL, USA, June 1992.

[36] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, November 2000. IEEE
Computer Society.

[37] G. A. Mastin. Adaptive filters for digital image noise smoothing: An evaluation.
Computer Vision, Graphics, and Image Processing, 31(1):103–121, July 1985. Elsevier.

[38] B. Bascle, A. Blake, and A. Zisserman. Motion deblurring and super-resolution from
an image sequence. Computer Vision ECCV ’96, 1065:571–582, 1996. Springer-
Verlag.

[39] L. Muratet, S. Doncieux, Y. Briere, and J. A. Meyer. A contribution to vision-
based autonomous helicopter flight in urban environments. Robotics and Autonomous
Systems, 50(4):195–209, 2005. Elsevier.

[40] K. Souhila and A. Karim. Optical flow based robot obstacle avoidance. Interna-
tional Journal of Advanced Robotic Systems, 4(1):13–16, 2007. Vienna University of
Technology.

[41] J. Merchant and F. Pope. Micro UAV collision avoidance. In Proc. SPIE Volume 6561:
Unmanned Systems Technology IX, page 65610K, Orlando, FL, USA, April 2007.

[42] S. J. Galvin, R. P. O’Shea, A. M. Squire, and D. G. Govan. Sharpness overconstancy
in peripheral vision. Vision Research, 37(15):2035–2039, 1997. Elsevier.

[43] T. Gandhi, M. T. Yang, R. Kasturi, O. Camps, L. Coraor, and J. McCandless. De-
tection of obstacles in the flight path of an aircraft. IEEE Transactions on Aerospace
and Electronic Systems, 39(1):176–191, January 2003. IEEE Computer Society.

[44] P. C. Merrell, D. J. Lee, and R. W. Beard. Obstacle avoidance for unmanned air
vehicles using optical flow probability distributions. In Proc. SPIE Volume 5609:
Mobile Robots XVII, pages 13–22, Philadelphia, PA, USA, October 2004.

93

[45] S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts. Combined optic-flow
and stereo-based navigation of urban canyons for a UAV. In Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada.

[46] J. Byrne and C. J. Taylor. Expansion segmentation for visual collision detection and
estimation. In Proc. IEEE International Conference on Robotics and Automation,
pages 875–882, Kobe, Japan, May 2009.

[47] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proc. IEEE
International Conference on Robotics and Automation, pages 116–121, St. Louis, MO,
USA, March 1985.

[48] J. Candamo, R. Kasturi, D. Goldgof, and S. Sarkar. Vision-based on-board collision
avoidance system for aircraft navigation. In Proc. SPIE Volume 6230: Unmanned
Systems Technology VIII, page 62300X, Orlando, FL, USA, April 2006.

[49] A. Rankin, A. Huertas, and L. Matthies. Evaluation of stereo vision obstacle detection
algorithms for off-road autonomous navigation. In Proc. AUVSI 32nd Unmanned
Systems Symposium, Baltimore, MD, USA, June 2005.

[50] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monocular
vision and reinforcement learning. In Proc. ACM 22nd international Conference on
Machine Learning, pages 593–600, Bonn, Germany, August 2005.

[51] M. Tomono. 3D object mapping by integrating stereo SLAM and object segmentation
using edge points. Advances in Visual Computing, 5875:690–699, 2009. Springer-
Verlag.

[52] T. G. McGee, R. Sengupta, and K. Hedrick. Obstacle detection for small autonomous
aircraft using sky segmentation. In Proc. IEEE International Conference on Robotics
and Automation, pages 4679–4684, Barcelona, Spain, April 2005.

[53] C. Braillon, C. Pradalier, J. L. Crowley, and C. Laugier. Real-time moving obstacle
detection using optical flow models. In Proc. IEEE Intelligent Vehicle Symposium,
pages 466–471, Tokyo, Japan, June 2006.

[54] J. K. Anderson, K. M. Iftekharuddin, E. Threlkeld, and B. Montgomery. Single
camera-based object detection and tracking for mobile robots. In Proc. SPIE Volume
7072: Optics and Photonics for Information Processing II, page 70720T, San Diego,
CA, USA, August 2008.

[55] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and B. Gerkey. Outdoor
mapping and navigation using stereo vision. Experimental Robotics, 39:179–190, 2008.
Springer-Verlag.

94

[56] R. Steffen and W. Förstner. On visual real time mapping for unmanned aerial vehicles.
In Proc. 21st Congress of the International Society for Photogrammetry and Remote
Sensing, pages 57–62 Part B3a, Beijing, China, 2008.

[57] J. Dornauer, G. Kotsis, C. Bernthaler, and M. Naderhirn. A comparison of differ-
ent computer vision methods for real time 3D reconstruction for the use in mobile
robots. In Proc. ACM SIGMM 6th International Conference on Advances in Mobile
Computing and Multimedia, pages 136–141, Linz, Austria, November 2008.

[58] R. Rossi, X. Savatier, J. Y. Ertaud, and B. Mazari. Real-time 3D reconstruction for
mobile robot using catadioptric cameras. In Proc. IEEE International Workshop on
Robotic and Sensors Environments, pages 104–109, Lecco, Italy, November 2009.

[59] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel coloring. In
Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 1067–1073, San Juan, Puerto Rico, June 1997.

[60] S. Se and P. Jasiobedzki. Stereo-vision based 3D modeling and localization for un-
manned vehicles. International Journal of Intelligent Control and Systems, 13(1):47–
58, March 2008. Westing Publishing Co.

[61] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. IEEE
7th International Conference on Computer Vision, volume 2, pages 1150–1157, Corfu,
Greece, September 1999.

[62] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the Gaussian
Kernel for Scale-Space Filtering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-8(1):26–33, January 1986. IEEE Computer Society.

[63] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers,
1993.

[64] J. E. Kyprianidis, H. Kang, and J. Döllner. Image and video abstraction by anisotropic
Kuwahara filtering. Computer Graphics Forum, 28(7):1955–1963, October 2009.
Wiley-Blackwell.

[65] M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita. Digital processing of biomed-
ical images. pages 187–203, 1976. Plenum Press.

[66] D. Comanicu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–
619, May 2002. IEEE Computer Society.

95

[67] P. Bakker, L. J. van Vliet, and P. W. Verbeek. Edge preserving orientation adaptive
filtering. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, page 1535, Fort Collins, Colorado, USA, June 1999.

[68] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Transactions on Information Theory,
21(1):32–40, January 1975. IEEE Computer Society.

[69] C. M. Christoudias, B. Georgescu, and P. Meer. Synergism in low level vision. In
Proc. IEEE 16th International Conference on Pattern Recognition, volume 4, pages
150–155, Quebec, Canada, August 2002.

[70] W. K. Pratt. Digital Image Processing. Wiley-Interscience, New York, 2nd edition,
1991.

[71] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage clus-
ter analysis. Journal of the Royal Statistical Society. Series C (Applied Statistics),
18(1):54–64, 1969. JSTOR.

[72] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1986.

[73] R. Pradhan, R. Agarwal, S. Kumar, M. P. Pradhan, and M. K. Ghose. Contour
line tracing algorithm for digital topographic maps. International Journal of Image
Processing (IJIP), 4(2):156–163, 2010. CSC Journals.

[74] E. S. Spelke. Principles of object perception. Cognitive Science, 14(1):29–56, 1990.
Elsevier.

[75] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer
vision algorithms. http://www.vlfeat.org/, 2008.

[76] S. Bagon. Matlab interface for EDISON. http://www.wisdom.weizmann.ac.il/
˜bagon/matlab.html, 2011.

[77] Gerardo Salas. Optimization of 3-Axis Vertical Milling of Sculptured Surfaces. Mas-
ter’s thesis, University of Waterloo, Canada, 2010.

[78] S. Limsoonthrakul, M. N. Dailey, M. Srisupundit, S. Tongphu, and M. Parnichkun. A
modular system architecture for autonomous robots based on blackboard and publish-
subscribe mechanisms. In Proc. IEEE International Conference on Robotics and
Biomimetics, pages 633–638, Bangkok, Thailand, February 2009.

96

[79] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. ROS: an open-source Robot Operating System. In Proc. IEEE Interna-
tional Conference on Robotics and Automation: Workshop on Open Source Software,
Kobe, Japan, May 2009.

[80] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The robot that won the DARPA
Grand Challenge. The 2005 DARPA Grand Challenge, 36:1–43, 2007. Springer-Verlag.

97

