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Abstract 

The synthetic aperture radar (SAR) onboard Earth observing satellites has been 

acknowledged as an integral tool for many applications in monitoring the marine 

environment. Some of these applications include regional sea-ice monitoring and detection of 

illegal or accidental oil discharges from ships. Nonetheless, a practicality of the usage of 

SAR images is greatly hindered by the presence of speckle noises. Such noise must be 

eliminated or reduced to be utilized in real-world applications to ensure the safety of the 

marine environment. Thus this thesis presents a novel two-phase total variation optimization 

segmentation approach to tackle such a challenging task. In the total variation optimization 

phase, the Rudin-Osher-Fatemi total variation model was modified and implemented 

iteratively to estimate the piecewise smooth state by minimizing the total variation 

constraints. In the finite mixture model classification phase, an expectation-maximization 

method was performed to estimate the final class likelihoods using a Gaussian mixture 

model. Then a maximum likelihood classification technique was utilized to obtain the final 

segmented result. For its evaluation, a synthetic image was used to test its effectiveness. 

Then it was further applied to two distinct real SAR images, X-band COSMO-SkyMed 

imagery containing verified oil-spills and C-band RADARSAT-2 imagery mainly containing 

two different sea-ice types to confirm its robustness. Furthermore, other well-established 

methods were compared with the proposed method to ensure its performance. With the 

advantage of a short processing time, the visual inspection and quantitative analysis 

including kappa coefficients and F1 scores of segmentation results confirm the superiority of 

the proposed method over other existing methods. 
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Chapter 1 
Introduction 

 

This introduction addresses environmental issues of Canadian coastal waters. Section 1.1 

presents two oceanographic case studies that emphasize the importance of oil-spill and sea-

ice monitoring. In Section 1.2, the fundamental principle of synthetic aperture radar (SAR) 

imaging is described. The feasibility of using SAR to monitor coastal waters from Earth 

observing satellites as a proactive measure to prevent environmental damage is investigated 

in Section 1.3. In Section 1.4, the objectives and scope of the thesis are stated. Finally, the 

structure of the thesis is presented in Section 1.5. 

 

1.1 Environmental Issues of Canadian Coastal Waters 

 

Canada's coastal waters face many environmental threats, which in turn can have a 

serious impact on our health and well-being. Two of the key marine environmental issues, 

namely oil-spills as well as sea-ice changes in Canadian coastal waters and the Arctic, are 

discussed in-depth in Subsections 1.1.1 and 1.1.2 respectively. 
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1.1.1 Oil-spills in Canadian Coastal Waters 

 

One of the most significant factors contributing to the degradation of the quality of the 

marine environment is either accidental or deliberate oil-spill (Topouzelis, 2008). Only about 

10 % of oil-spills come from natural sources such as leakage from the bottom of the ocean 

(Kubat et al., 1998). Further, many oil-spills are deliberate, motivated by the desire to reduce 

dumping and filtering costs (Brekke & Solberg, 2005). Taking only the oil released by ships, 

it is estimated that 75% of oil spillage in the oceans comes from routine operations, including 

the transfer of oil, while only 25% derives from accidental spills (Grau & Groves, 1997; 

Indregard et al., 2005).  

Oil-spills can have serious effects on the marine environment, and cause permanent 

ecological damage. Tiny species like plankton that lives in the upper layers of the ocean, are 

particularly at risk because they are very much exposed to floating oil-spills (Gin et al., 

2001). However the consequences can be much worse. Because planktons that are at the 

bottom of the food chain will be eaten by various other small sea animals and species of fish, 

which then will accumulate oil and associated chemicals in their bodies. They themselves 

will eventually be eaten by bigger animals such as sea birds, seals and people. Consumption 

of polluted seafood and animals can consequently bring human health risks. Oil-spills can 

have large negative economic consequences on both the personal and national levels as well. 

The livelihood of people residing near coastal areas, particularly those who are solely depend 

on fishing and tourism can be heavily affected by oil-spills (NOAA, 2007).  
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The recent catastrophe that occurred on April 20, 2010 in the Gulf of Mexico is a severe 

example of the kinds of negative impacts, ranging from environmental to economic, that an 

oil-spill can cause. This catastrophic event was largely deemed as the worst environmental 

disaster in American history, with many casualties, excessive ecological damage and 

profound economic consequences. Reportedly the losses attributable by this incident cost 

approximately 22.6 billion USD, and this does not include environmental and economic 

losses that may yet be sustained over the long term. Nearly 7,000 animals including birds, 

turtles, dolphins and other mammals were killed (Park et al., 2010). Further, large numbers of 

fishermen lost their source of income, and their lives are now at risk. The tourism industry 

has also been heavily affected, with collateral damage even to neighbouring areas, where 

many tourists are now hesitant to travel even though they have yet to see a direct 

environmental impact. 

Canada is very much exposed to the threat of oil-spills. Strikingly enough, about a dozen 

oil-spills occur on a daily basis in Canadian waters, and every year more than 300,000 

seabirds are killed by oil in just the Atlantic waters alone (de Abreu et al., 2006). The greatest 

potential threat is to the East Coast of Canada where the volume of oil carried is staggering. 

In 2006, just in Placentia Bay Newfoundland, more than 1,000 vessels transported 

approximately 50 billion litres of crude oil (Suzuki, 2011). The west coast of Canada also 

faces the threat of oil-spills. British Columbia’s coast is internationally known for its 

luxuriant forests, abundant marine life and rich cultural heritage. Oil-spills in this region can 

potentially damage Canada’s global reputation as a world leader in environmentalism. 

Nonetheless, accidental oil-spill occur much too frequently in Canadian waters. In August 
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2006, the vessel M/V Westwood Anette suffered a fuel tank puncture and spilled 

approximately 29,000 litres of oil at Squamish terminal just north of Vancouver (see Figure 

1.1). It cost $1 million to clean up heavily contaminated areas such as estuary marshes, and 

many Canada Geese were coated with oil (Ministry of Environment, 2006). Another incident 

occurred shortly after in July 2007 when a 24-inch crude oil pipeline was punctured, 

resulting in the spillage of approximately 234,000 litres of crude oil near the Barnett 

Highway in Vancouver (Ministry of Environment, 2007). Fifty residential properties were 

affected by this incident and a section of the Barnett highway was closed for several days, 

which caused expensive traffic delays. In addition, a 1,200 m long shoreline was affected. 

Due to the extent of the contamination, the cleanup work took nearly eleven months and 

officially ended in June 2008 (Ministry of Environment, 2007).  

In light of the frequency of these accidental oil-spills, and in order to minimize the 

environmental and economic impacts, a continuous, effective and responsive strategy for 

monitoring the oceans is essential (Reed et al., 1999; Etkin, 2005). 

    
Figure 1.1 Oil leaking from M/V Westwood Anette at Squamish Terminal (left) and cleanup crews 

on scene (right). (Ministry of Environment, 2006). 



 

 5 

1.1.2 Sea-ice Changes in Canadian Coastal Waters 

 

Sea-ice changes in Canadian coastal waters have been a major concern, hence regarded 

as highly important to study its potential environmental impact. Not only can the study of 

sea-ice changes be used for predicting future climate changes, but also for providing essential 

information on marine transportation. The extent of sea-ice in both the northern Arctic and 

the southern Antarctica are enormous that sea-ice in those regions plays a vital role in 

regulating the overall climate changes of the Earth (National Snow and Ice Data Center, 

2011). Having acknowledged the importance of the study of sea-ice changes to foresee the 

potential consequences that may be incurred in near or far future, the need for monitoring 

such changes has been regarded as high priority.  

Canada is largely affected by ice. In winter, there is over 4 million km2 of Canadian 

waters that are covered by ice and more surprisingly, the amount of ice melted in this area 

during a period starting from November to end of August is sufficient to cover 60% of 

Canada’s land (Environment Canada, 2011). Various forms of ice including sea-ice, lake ice, 

river ice and icebergs are affecting different aspects of Canadian’s life in many ways 

including marine transportation, commercial fishing, tourism and recreation, local weather 

patterns and long-term climate (Environment Canada, 2011).  

Recently, there has been an increased concern about global warming that has drawn 

Canadians’ attention. The current trend of rising temperatures has been constantly warming 

the Arctic and directly affecting the enormous amount of ice present in Canadian waters 
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(Stirling & Parkinson, 2006). This trend will eventually lead to a bigger problem that can 

cause severe consequences to human life and Earth’s natural environment. Global climate 

models (GCMs) indicated that the temperature over the Canadian Arctic would continue to 

increase, resulting in melting the sea-ice to a significant extent of causing a huge implication 

in many areas (Ford et al., 2008). In addition, the Fourth Assessment Report (AR4) of the 

United Nations Intergovernmental Panel on Climate Change (IPCC) indicated that the 

average Arctic temperatures have been increased by 0.74 oC in global average temperature in 

the past 100 years with sea level rise at a rate of 1.8 mm/year and 3.1 mm/year during the 

years 1961-2003 and 1993-2003, respectively (IPCC, 2007). Dramatic changes in 

temperature and sea level are shown in Figure 1.2. 

 
Figure 1.2 Changes in temperature and sea level (adapted from IPCC,  2007). 
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Thus, a continuous and proper sea-ice monitoring are emphasized in order to better 

understand the trend of rising temperature of the globe and plan for its potential impact. 

A study of trend in climate change is not the sole reason for sea-ice monitoring since it 

could also be used as a primary source of information for determining optimal ship routes. 

The maritime activity in the ice concentrated regions, such as the eastern and northern waters 

of Canada, is greatly dependent on sea-ice as it controls the available navigable routes for 

safety reasons. In addition, routes through these regions can reduce the transportation costs 

(Natural Resources Canada, 2011). Figure 1.3 illustrates a vessel sailing over the Canadian 

Arctic ice-covered waters (Transport Canada, 2011).  Stewart et al. (2007) showed that there 

had been an increased number of cruise ships visiting the Canadian Artic, and from 1984 to 

2006 the number of ships visiting this region doubled to 22 ships (Buhasz, 2006). These facts 

indicate that the ocean environment has great potential in the world’s tourism markets as it 

has been growing rapidly in the past years. Evidence that the Canadian Arctic will continue 

to observe increases in ship traffic is well supported by many sources in literature  (Huebert, 

2001; ACIA, 2004; Brigham & Ellis, 2004).  

Thus, without a proper monitoring tool that detects the variability and condition of sea-

ice, it will be almost impossible to come up with optimal ship routes that are safe, fast and 

cost-effective. 
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Figure 1.3 A vessel crossing over the Canadian Artic ice-covered waters (Transport Canada, 2011). 

 

1.2 Fundamental Principle of SAR Imaging 

 

SAR is a sidelooking radar system known to provide high spatial resolution (e.g. up to 

1m in Spotlight mode of RADARSAT-2) covering a wide range of a target area (e.g. up to 

500km2 in ScanSAR Wide mode of RADARSAT-2). Furthermore, it is an active sensor that 

has the capability of recording objects at any time of the day under any weather condition 

(Aloisio & Cafaro, 2003). SAR onboard aircrafts or satellites emit electromagnetic radiation 

pulses that travel to the target area and get scattered off. The SAR antenna then records some 

of these backscattered pulses as amplitudes and phases, which then get preprocessed by the 

SAR-processor, producing an image (Cheny, 2002). A notable distinction between SAR and 

a typical radar system is the use of a synthetic antenna. A diagram is attached to better 

illustrate the basic principles of SAR in Figure 1.4. The notations, LSA, R, V, λ, and ΘA in 
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Figure 1.4 represent a synthetic aperture length (phased array), range, velocity, wavelength of 

emitted pulses, and aperture azimuth beamwidth, respectively and their relationships can be 

expressed as follows, 

                (1.1) 

Actual size of the along-track antenna is expressed in a single dot (denoted as DAT) that sums 

to form the synthetic aperture length. Range is determined by precisely measuring the total 

time took from the transmission to the receipt of the pulses by the antenna. Velocity is the 

speed of the platform carrying the SAR sensor. Also, the along track or alternatively called 

azimuth is another dimension that is perpendicular to range.  

 

Figure 1.4 Basic Principles of Synthetic Aperture Radar (adapted from McCandless & Jackson, 
2004). 

LSA =!AR =
!R
DAT
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A fundamental principle behind SAR is realized through utilization of an extremely large 

antenna or aperture, electronically. This means that SAR’s physical antenna (represented as a 

small dot in the diagram) continuously records backscattered signals while traveling in the 

azimuth direction from t1 (initial recording point) to t2 (last recording point). The SAR-

processor stores and processes all of these returned signals and reconstructs them as if they 

were recorded by the synthetic antenna whose length is equivalent to LSA. In other words, as 

the platform moves along its trajectory, a synthetic aperture is generated by signal 

processing, which then creates the effect of elongating the actual SAR’s small physical 

antenna (Wolff, 2011). By utilizing this unique technique, a higher resolution with a large 

swath width that maximizes the visibility and clarity of the subject target can be obtained.  

 

1.3 Radar Imaging Satellites for Coastal Monitoring 

 

As emphasized earlier, proper systems for monitoring marine environments to prevent 

the spreading of marine pollution caused by oil-spills, to determine the fastest and safest 

navigable ship routes, and to study and plan the global climate change are of high 

importance. Hence the key question now lies with choosing the optimal monitoring tool that 

is cost-effective and efficient.  

There are many different tools for ocean and coastal monitoring including vessels, 

airplanes and satellites. Vessels may not be suitable for ocean and coastal monitoring since 

they cover limited area, however, they could be of good use when oil sampling is required 
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(Topouzelis, 2008). Alternatively, airplanes could be a good option since they cover a 

relatively large area although they are limited by the high costs. Thus, satellite surveillance 

has been favorably chosen over the other options due to its advantage of covering greater 

area at a relatively inexpensive cost. In the case of oil-spill monitoring, airborne surveillance 

may be of good help to identify the polluter, the extent and the types of oil-spills once the oil-

spill is confirmed by the satellite sensors (Brekke & Solberg, 2005). Many claim that satellite 

surveillance, especially SAR, should be utilized as a first warning for the detection of oil-

spills in the ocean and coastal waters as it could reduce the potential damage and response 

time of cleanup operations (Solberg et al., 1999; del Frate et al., 2000; Marghany, 2001). 

Even for sea-ice monitoring, a spaceborne remote sensing system is considered as the best 

candidate with similar underlying reasons given for oil-spill monitoring (Johannessen et al., 

1997). Recent research that studied the feasibility of the application of radar in the marine 

environment states that the satellite surveillance, particularly the SAR, has become an 

integral tool for monitoring the overall coastal waters for pollution management and 

environmental protection (Helzel et al., 2010).  

SAR is an active remote sensing system that operates in the microwave regions of the 

electromagnetic spectrum (EMS) and measures the return energy that has been either 

reflected or scattered back from the target surface. These reflected or scattered pulses are 

then captured by the receiving antenna and recorded to produce a two-dimensional (2-D) 

image. In coastal water monitoring, SAR is preferred over many other satellite sensors, 

including optical sensor, due to the following reasons:  
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(1) SAR is an active sensor that can provide its own source of illumination and 

therefore it can operate at any time of the day. 

(2) SAR uses microwave electromagnetic radiation that can penetrate through rain, 

clouds and other atmospheric substances providing good monitoring capabilities. 

(3) A SAR sensor is capable of monitoring a wide range of area (including 

inaccessible areas) at a very competitive cost compared to other ocean monitoring 

tools such as airborne ocean surveillance. 

 

For more than three decades, satellite SAR data has been widely used for ocean and 

coastal environment monitoring. The various SAR sensors that are most suitable for ocean 

monitoring range from the Seasat launched in 1978 to the most recent Canadian 

RADARSAT-2, launched in 2007 are summarized in Table 1-1.  

 

Table 1-1 Summary of Satellite SAR Sensors Suitable for Marine Environmental Monitoring. 

(extended from Gens, 2008) 

Satellite Agency Operation Frequency 

Band 

Polarization Swath width 

(km) 

Repeat 

Cycle (days) 

Best spatial 

resolution (m) 

SEASAT NASA 1978 L HH 100 17 25 

SIR-A NASA 1981 L HH 50 - 40 

SIR-B NASA 1984 L HH 30 - 25 

ERS-1 ESA 1991 to 

2000 

C VV 100 3, 35, 336 30 
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JERS-1 JAXA 1992 to 

1998 

L HH 75 44 18 

SIR-C/X-SAR NASA/DLR 1994 to 

1994 

C, L, X Quad-pol 10-200 43 30 

ERS-2 ESA 1995 to 

present 

C VV 100 35 30 

RADARSAT-1 CSA 1995 to 

present 

C HH 50 - 500 24 8 

SRTM NASA/DLR 2000 C/X Dual-pol 50-225 - 30 

ENVISAT 

ASAR 

ESA 2002 to 

present 

C Dual-pol 100 - 400 35 30 

ALOS Palsar JAXA 2006 to 

present 

L Quad-pol 70 46 10 

TerraSAR-X DLR 2007 to 

present 

X Dual-pol 10-100 11 1 

COSMO-

SkyMed 

ASI 2007 to 

present 

X Quad-pol 10-200 16 1 

RADARSAT-2 CSA/MDA 2007 to 

present 

C Quad-pol 25-500 24 1 

 

NASA launched the first civilian satellite SAR sensor known as Seasat in 1978. This 

satellite was equipped with a L-band SAR operated at a single polarization mode (HH). Not 

too long after its first launch, NASA launched the Shuttle Imaging Radar, SIR-A in 1981 and 

SIR-B in 1984 whose data were extensively used to validate the wave-imaging model in the 
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marine environment (Hasselmann et al., 1985). Then in 1991, the European Space Agency 

(ESA) launched the ERS-1 in 1991 and ERS-2 in 1995 specifically targeted for ocean 

monitoring. Many studies have been conducted based on the ERS-2 data, specifically in oil-

spill and/or sea-ice monitoring and their feasibilities have been proven to be suitable (Gade & 

Alpers, 1999; Laxon et al., 2003; Brekke & Solberg, 2005). In the same year when ERS-2 

was launched, the Canadian Space Agency (CSA) successfully launched RADARSAT-1, the 

first SAR sensor capable of providing various types of information at multiple beam modes 

with varying resolution. This was marked as one of a kind since it provides the compromise 

between resolution and wide coverage. The ScanSAR beam mode of RADARSAT-1 

provides a good spatial resolution of 50-100 m with 300 – 500 km ground swath which is an 

ideal combination for monitoring a large ocean region. RADARSAT-1 was specifically 

designed to increase the monitoring capabilities in Canadian coastal waters and has been 

extensively used in various studies (Monaldo et al., 2001; de Miranda et al., 2004). In 2002, 

ESA launched the ENVISAT carrying 10 sophisticated optical and radar instruments on 

board to provide continuous monitoring of the Earth. Particularly, the ASAR (Advanced 

Synthetic Aperture Radar) onboard ENVISAT provides a data product at high spatial 

resolution up to 30 m covering a ground area of 110 km2. In its wide swath and global 

monitoring mode, they both cover more than 400 km2 at the resolution of 150 m and 1,000 m, 

respectively. With its enhanced monitoring advantages, it has been used specifically for oil-

spill monitoring (Solberg et al., 2007; Zatyagalova et al., 2007; Brekke & Solberg, 2008). In 

2007, the first X-band SAR satellites, German TerraSAR-X and Italian COSMO-SkyMed 

were flown into space ensuring the continuous observations of the Earth with enhanced 
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capabilities. Usability of their data has been widely adopted for oil-spill monitoring (Trivero 

et al., 2007; Ciappa et al., 2009; Kim et al., 2010; Velotto et al., 2010). In the same year, 

CSA launched RADARSAT-2, a follow-on to RADARSAT-1. RADARSAT-2 was designed 

in a way that could provide powerful monitoring advancements including 1 m high spatial 

resolution in its Spotlight mode, flexibility in choosing different polarization modes for more 

precise observations. Its usability to real world applications has been emphasized in a wide 

range of areas such as environmental monitoring, ice mapping, disaster management and 

marine surveillance. Particularly, its application in marine surveillance accounting for oil-

spill and sea-ice monitoring has been studied extensively (Flett et al., 2008; Wong et al., 

2009; Bannerman et al., 2009; Tian et al., 2010; Eriksson et al., 2010).  

Canada, as a leading country with possession of advanced RADARSAT-1 and -2 has 

begun a new mission development called the RADARSAT Constellation Mission (RCM) in 

2005 and plans to launch three RCM satellites in 2014 and 2015. As shown in Figure 1.5, this 

program uses the three-satellite configuration that provides complete coverage of Canada’s 

land and waters on a daily basis, and provides daily access to 95% of the world (Canadian 

Space Agency, 2011). Moreover, this program will deliver the enhanced monitoring 

capabilities such as maritime surveillance, disaster management and ecosystem monitoring.  
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Figure 1.5 The RADARSAT Constellation Mission (Canadian Space Agency, 2011). 
 

1.4 Thesis Objectives and Scope 

 

Developing a fast, robust, and reliable segmentation method using SAR imagery for 

ocean monitoring applications is challenging. Moreover, developing a detection algorithm, 

which detects both oil-spill and sea-ice, is an even more intricate task. Thus, the main 

objective of this thesis is to develop a full and comprehensive automated feature detection 

algorithm that can be utilized not only in the aforementioned applications but also in other 

various applications involving SAR imagery. In this thesis, such challenges are reviewed and 

tackled thoroughly by incorporating the novel automated segmentation method called total 

variation optimization segmentation approach (TVOS) to better reflect the task of SAR 

intensity image segmentation. Due to the limited time given for data collections and 

associated testing, this thesis investigates the feasibility of the proposed method on dark-spot 
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detection for oil-spill monitoring, and on two types of sea-ice and seawater detection for sea-

ice monitoring. This method was tested using both synthetic and real-world SAR images 

whose information was recorded using single frequency and single polarization mode from 

COSMO-SkyMed (used for detecting dark-spots) and RADARSAT-2 (used for detecting 

sea-ice types). The objectives of the thesis are further explained by the following: 

(1) Studying and understanding the complexity of the feature detection method using 

SAR intensity imagery. 

(2) Developing and constructing a comprehensive segmentation framework that can be 

implemented in two different applications: (a) dark-spot detection for oil-spill 

monitoring, and (b) multiple sea-ice detection. 

(3) Performing a quantitative analysis to confirm the superiority of the developed 

framework compared to other conventional approaches. 

 

1.5 Thesis Structures 

 

The rest of this thesis is organized as follows: 

 

Chapter 2 introduces the feature detection in coastal waters, particularly focusing on the 

automated oil-spill detection and sea-ice detection using SAR imagery. This chapter also 

details the proposed total variation optimization segmentation approach using SAR intensity 

image. 
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Chapter 3 contains the first manuscript submitted to ISPRS Journal of Photogrammetry 

and Remote Sensing, entitled “Detecting Dark-spots in SAR Oil-Spill Imagery using a Total 

Variation Optimization Segmentation Approach”.  

 

Chapter 4 includes the second manuscript submitted to IEEE Transactions on 

Geoscience and Remote Sensing, entitled “ETVOS: An Enhanced Total Variation 

Optimization Segmentation Approach for SAR Sea-ice Image Segmentation”. 

 
Chapter 5 gives the conclusions including the summary of the findings of two submitted 

manuscripts, and investigates the recommended future work. 
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Chapter 2 
Methodology for Detecting Features in SAR Imagery of Coastal 

Waters 

 

Having acknowledged the importance of monitoring the coastal environment, the key 

question now arises of how to detect desired features in the seawaters using SAR intensity 

imagery.  

In this chapter, the background of the feature recognition with regards to oil-spill 

detection and sea-ice detection with an emphasis on implementation of automated technique 

is delivered in Sections 2.1 and 2.2, respectively. In Section 2.3, a common problem that 

exists in a typical SAR image is further discussed. Section 2.4 details the proposed total 

variation optimization segmentation approach. 

 

2.1  Automated Detection of Oil-spills in SAR Imagery 

 

The mechanism built for detecting oil-spills in SAR imagery is based on the fact that oil 

films floating on the ocean reduce the amount of backscattering of the sea surface resulting in 

the formation of dark regions on SAR intensity imagery (Alpers & Huhnerfuss, 1989). The 

sea surface roughness plays a significant role since ocean phenomena, including oil-spills, 

can never be detected without varying sea surface roughness that is created by wind-

generated short gravity-capillary waves. This indicates that the visibility of ocean phenomena 
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is greatly affected by the speed of wind. It is commonly understood that the wind speed 

ranging from 3-10 m/s produces the best visibility of oil-spills (Brekke & Solberg, 2005). 

Having acknowledged this backscattering property, challenges arise that other man-made or 

natural phenomena, so called look-alikes, could possibly cause reduction in the 

backscattering signal similar to that caused by oil-spills on SAR intensity imagery thus 

making it very difficult to discriminate between oil-spills and look-alikes. Examples of look-

alikes causing this include low wind areas, organic films, rain cells, current shear zones, 

grease ice, and eddies (Topouzelis, 2008).   

There has been an increasing amount of SAR images received at analysis centres around 

the world for manual analyzing to verify if there are oil-spills in the received images (Brekke 

& Solberg, 2005). This implies a growing workload given to the operators who have to 

undertake extensive training to adapt manual oil-spills detection techniques. Decisions made 

by these operators can often be subjective (Indgregard et al., 2004). It is also very time 

consuming to analyze each dataset individually, thus, the importance of an automated oil-

spills detection method that provides fast and reliable results is of high demand (Nirchio et 

al., 2005; Karathanassi et al., 2006; Solberg et al., 2007; Karantzalos & Argialas, 2008). A 

framework of detection algorithm of oil-spills using SAR imagery can be accomplished 

through three distinct steps as shown in Figure 2.1. 
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Figure 2.1 A common framework for detecting oil-spill (adapted from Brekke & Solberg, 2005). 

 

The SAR image is input in the first step called region selection/dark-spot detection step. 

In this step, only dark-spots that contain actual oil-spills and other natural phenomena known 

as look-alikes are extracted while others are disregarded. Detected dark-spots are then 

processed in the second step where various features are extracted by analyzing the geometry 

and shape of the detected dark-spots. In addition, the differences in the physical 

characteristics of the backscattered signals of the dark-spot and neighbouring areas are 

further investigated (Brekke & Solberg, 2005). With the aid of the extracted features, oil-

spills and look-alikes are classified in the final step to determine the presence of potential oil-

spills and decide whether to send the aircraft to verify and/or to take relevant action. 

SAR Imagery 

Region selection/ 
Dark-spot detection 

Feature extraction 

Oil-spill and look-
alike classification 

Warnings on suspicious 
slicks 
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The preliminary task, which is to detect dark-spots, has been regarded as the most 

critical and fundamental step since if no dark-spots are detected, then the real oil-spills can 

never be found in the later steps. Another important aspect of dark-spot detection is that a 

low degree of accuracy of detected dark-spots can negatively affect the feature extraction as 

well as the classification phase where an accurate discrimination between oil-spills and look-

alikes are greatly hindered. Since manual detection is laborious and time consuming, a 

primary goal is to develop a fast, reliable, and robust automated dark-spot detection 

algorithm that can accurately extract dark-spots from the background so that the adverse 

effect in a later stage can be minimized and the likelihood of discriminating the actual oil-

spills can be maximized. 

 

2.2  Automated Detection of Sea-ice in SAR Imagery 

 

Sea-ice detection using SAR imagery can be complicated as there are almost 30 different 

terms used to distinguish individual ice types and their conditions. Nonetheless, SAR has 

been regarded as the most important remote sensing instrument due to the advanced 

characteristics of SAR sensors as emphasized earlier. The mechanism of how SAR sensors 

collect backscattering response, specifically targeting in detection of sea-ice, varies as a 

function of various factors including frequency, polarization mode, angle of incidence, and 

the scattering characteristics of the target area. Moreover, season is another factor that plays a 

critical role in determining the ice types and conditions. Figures 2.2 and 2.3 illustrate how the 

aforementioned factors affect the strength of backscatter return signals. 
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Figure 2.2 Radar backscatter cross sections at different frequency levels during summer (adapted 
from Onstott, 1992). 

 

                       
Figure 2.3 Radar backscatter cross sections at different frequency levels during winter (adapted from 
Onstott, 1992). 
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Two key surface parameters that affect the characteristics of the backscattering of sea-ice 

are surface roughness and the dielectric constant of sea-ice or open water (Onstott & 

Shuchman, 2004). The degree of surface roughness governs the amount of the reflected 

backscattering energy. This implies that the amount of backscattering energy return changes 

with respect to the surface roughness and thus, by analyzing the luminosity of returned 

energy, it can be determined whether first-year ice, multiyear ice, or open water is present. 

Figure 2.4 shows the backscatter interactions for three distinct features in the ocean. 

 

Figure 2.4 Backscatter interactions for multiyear ice, first year ice and smooth open water (adapted 
from Onstott, 1992).  

 

The dielectric constant of sea-ice decreases as the degree of salinity decreases. The 

dielectric constant plays a critical role in determination of different types of sea-ice and other 

features in SAR intensity imagery. The dielectric constant is calculated by determining how 

much electromagnetic field is absorbed, dissipated, or reflected by natural substances or 

materials. The relationships between the dielectric constant and the strength of backscattering 

signals was determined by Deng & Clausi (2005) who stated that a material having a low 
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dielectric constant (low salinity) reflects a high portion of SAR signals and would 

subsequently create a bright region in SAR intensity images. Multiyear ice having a lower 

salinity enables microwave electromagnetic pulses emitted by SAR to penetrate deeper, hence 

the gas bubbles and voids within the ice trigger a severe volume scattering that contributes to 

the large amount of backscattering recorded by SAR antennas (Onstott & Shuchman, 2004). 

Since the salinity of very thick sea-ice is near zero, it can be inferred that thicker sea-ice will 

tend to be brighter in colour (Deng & Clausi, 2005). On the contrary, new or fresh sea-ice 

tends to be darker in the image since they have a higher dielectric constant, as a result the 

amount of backscattering is low.  As for the smooth open water, the backscattering will be 

near zero because of its surface smoothness and high salinity constant (Onstott & Shuchman, 

2004). Thus, knowing how various sea-ice types appear in SAR imagery, different sea-ice 

types can be distinguished from each other. 

Currently, an abundant amount of SAR sea-ice images are received and processed by 

trained sea-ice analysts at the Canadian Ice Service (CIS) on a daily basis. With these 

analyzed sea-ice images, maps are produced for sea-ice concentrated region monitoring. 

Unfortunately, all of the ice maps are still being generated by a manual digitization technique 

since the computer-assisted or automated segmentation method is not sufficiently robust and 

effective to ease the manual workloads at the CIS (Deng & Clausi, 2005). Therefore, the 

need for an automated segmentation technique using SAR imagery is of high importance as it 

will significantly reduce the cost and minimize the adverse effects caused by subjective/ 

biased interpretations made by sea-ice analysts (Clausi, 2001). 



 

 26 

2.3 Common Challenge of Feature Detection from SAR Imagery 

 

A common problem, yet the most fundamental and challenging task when using SAR 

imagery, is to eliminate speckle noise. Every SAR image contains vast amounts of 

multiplicative noise known as speckle. Speckle is caused mainly by constructive and 

destructive interference of reflective energy from a target surface as shown in Figure 2.5 

(Richards & Jia, 2006). Because the transmitted and received SAR signals will not always be 

in-phase even in the homogenous target surface, the speckles may appear as slightly brighter 

or darker than the mean value.  

Having speckle noise is a huge problem that limits visibility of features and leads to 

misinterpretation when analyzing SAR imagery. Having recognized the importance of 

eliminating speckle noise, many efforts have been put forth to develop a robust algorithm to 

effectively suppress speckle noise without changing the detailed feature characteristics within 

the image (Lee, 1980; Frost et al., 1982; Kuan et al., 1987; Yu & Acton, 2002; Achim et al., 

2003; Marques et al., 2004). Among those, Lee, Frost and Kuan’s adaptive filters are 

commonly used to despeckle SAR imagery prior to performing feature classification. Lee’s 

adaptive filter, for instance, takes both spatial and intensity differences of pixels into account 

and can be effective in eliminating noise. However, because it calculates the average 

intensity rather than the individual intensity differences correlated to each pixel value within 

the local processing window, it may not be very robust when dealing with highly speckled 

images. Since SAR images always carry speckle noise, it remains a challenging task to 

develop a robust and efficient despeckling method to obtain desirable segmentation results. 
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Figure 2.5 Description of speckle noises (adapted from Natural Resources Canada, 2005). 

 

2.4  The Proposed Methodology 

 

The proposed method is called total variation optimization segmentation (TVOS) and is 

motivated by the aforementioned challenging criteria that arises when dealing with SAR 

imagery to better handle the task of SAR image segmentation. The proposed TVOS 

algorithm is developed in a way that can satisfy a typical SAR image containing high speckle 

noise. To tackle this challenging task more efficiently, a two-phase algorithm is 

implemented.  The overall flowchart of this method is provided in Figure 2.6.  

The first phase uses a modified total variation optimization scheme, as described in 

Subsection 2.4.1, while the second phase utilizes a finite mixture model classification 

scheme, as described in Subsection 2.4.2. 
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Figure 2.6 Flowchart of the proposed TVOS method. 

 

 

2.4.1 Phase I: Total Variation Optimization  

 

The presence of multiplicative speckle noise and many other artifacts in SAR imagery 

greatly hinders the process of obtaining a desirable segmentation result. An example of a 
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typical SAR image, which will be used as a test image, is illustrated in Figure 2.7 and a 

graphical representation of speckle noise is illustrated in Figure 2.8. Note that this test image 

has been extracted from RADARSAT-1 oil-spill imagery covering the East Coast of Canada 

taken on July 10, 2007. 

 
Figure 2.7 Test Image: A test SAR image containing a dark-spot in the centre with image size of 250 
x 250 pixels. 

 

        
                        (a)      (b)                                       (c) 

Figure 2.8 Graphical representation of speckle noise of the test image in (a) 2-D, (b) 3-D, and (c) 

histogram generated using the test image. 

 

As can be seen from Figure 2.8(a), coherent speckles negatively affect the quality of the 

original SAR image such that the dark-spot can hardly be recognized by visual inspection. 
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The 3D pictorial representation, as shown in Figure 2.8(b), also illustrates the adversely 

affected SAR image due to speckle noise and other imaging conditions. It can be observed 

that the image intensity values fluctuate in a wide range from near 0 to 1 without posing any 

recognizable pattern for a subject target being dark-spot located at the centre of the test 

image. In addition, the histogram generated using the test image as shown in Figure 2.8(c) 

shows the unimodal pixel distribution indicating that two classes, the dark-spot and the 

background, are not properly recognized due to the presence of the speckle noise. With this 

highly speckled SAR image, good segmentation results are almost impossible to achieve. 

In its simplest term, speckle noise can be treated by taking either spatial or intensity 

differences into account. When only considering the spatial differences between the 

neighbouring pixels and the centre pixel in that neighbourhood, it is assumed that pixel 

values in the images change slowly over time, and therefore it becomes appropriate to 

average them together. It is believed that taking the spatial characteristics would effectively 

eliminate the noise since they are less correlated than the actual signal values and hence it 

eliminates the noise while preserving the actual signal. However, the assumption that the 

pixel values vary slowly over time fails when the edge of an object in the image is reached. It 

is evident to state that the pixel values would be largely different around the edge so that 

making such an assumption is very dangerous. The question then arises of how to prevent the 

averaging across the edges while continuing to average in a smooth region where pixel 

values do slowly change over time. To overcome such challenges, the intensity difference is 

incorporated. The assumption made previously is ignored and the averaging of pixel values 

that have similar intensity values is enforced. Therefore pixels that have similar intensity 
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values will be averaged. Previous research indicates that taking a gradient difference of 

pixels will also improve its edge preservation ability since pixels with large gradient 

differences are less likely to belong to the same region. As such, the first phase of the 

proposed TVOS method was inspired by the observations made when combining three 

difference terms, spatial, intensity, and gradient differences into account so that noise can be 

reduced in a highly speckled image while effectively preserving edges by incorporating a 

nonlinear combination of neighbouring pixel values.  

Having acknowledged the importance of the aforementioned three difference terms, an 

optimization problem can be formulated to efficiently handle a SAR segmentation task. Let g 

be the observed SAR imagery, f be the piecewise smooth state of the observed g, and u be the 

residual state containing random noise. Their relationships can be expressed as follows, 

     (2.1) 

One approach to solve this inverse problem can be realized by utilizing the Rudin-Osher-

Fatemi Total Variation (ROFTV) model. Given the additive relationship in equation (2.1), 

the problem of image segmentation can be formulated into the minimization problem based 

on the existing ROFTV model (Rudin et al., 1992) shown by 
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where Ω is an open set representing the image domain, and ∇f  represents the finite intensity 

difference between neighboring pixels. The first term of equation (2.2) is the data fidelity 

term, while the second term is the total variation term that penalizes pixel intensity 

g = f +u
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differences within regions to enforce piece-wise smoothness in f. In the ROFTV model, the 

goal is to progressively evolve a noisy SAR imagery, g, whose imaging condition is in non-

piecewise smooth state containing non-separable classes into a piecewise smooth state, f. In 

the process of the evolution to achieve f, the total variation is minimized and the classes 

become well delineated. 

As discussed earlier, incorporation of the intensity difference penalty term alone may not 

be sufficient, especially when the image is highly contaminated with speckle noises. As such, 

the existing ROFTV model has been modified by adding two additional total variation 

penalty terms; the spatial difference term, ∇x, and the gradient difference term, ∇k, to 

effectively and efficiently handle the SAR segmentation task. These additional total variation 

constraints will work simultaneously to enforce a piecewise smooth state of the image, in 

which the edges or boundaries of subject targets are preserved by the intensity and gradient 

difference terms while noise is treated by the spatial difference term. By observing the data 

histogram it was found that the statistical distribution of pixels in the SAR imagery generally 

followed a Gaussian distribution. Therefore, the proposed total variation penalty terms will 

be modeled with Gaussian functions. The first incorporated penalty term that enforces spatial 

difference between pixels can be expressed as follows (Tomasi & Manduchi, 1998), 
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is the Euclidean distance between the centre pixel ψ, and the neighbouring pixel, ξ. x(ξ,ψ) 

measures the spatial closeness between pixels so that homogeneity of surrounding pixels is 

enforced. σx is the standard deviation for pixel difference and as its value gets larger, images 

will get smoother, in other words, it will blur more. This also implies that when a larger σx is 

used, pixels that are located further away from the centre pixel, ψ, are combined. This is 

mainly due to the fact that spatially nearby pixels are forced to merge together unless there is 

a pixel that has a large intensity difference when compared to the surrounding pixels.  

The second penalty term that enforces the intensity difference between pixels can be 

expressed as follows (Tomasi & Manduchi, 1998), 

    (2.5) 

where 

                                              (2.6) 

is a measure of the distance between two intensity values φ at the neighbouring pixel ξ, and s 

at the centre pixel ψ. When computing the intensity difference between pixels, a smaller 

intensity difference will cause pixels to be merged together whereas pixels with large 

intensity differences will stay unchanged depending on the weight given by σf. Thus, pixels 

with the value of σf being closer to each other than σf are averaged, while pixels that are 

further from each other than the value σf are disregarded.  
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The last penalty term that enforces the gradient difference between pixels can be 

expressed as follows, 
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where 

! ", s( )= ! " ! s( ) = ! ! s     (2.8) 

is a measure of the distance between two gradient difference values, ω, at the neighbouring 

pixel ξ, and s at the centre pixel, ψ. σk denotes the standard deviation of the gradient 

difference between pixels. Similar to the mechanism built for computing an intensity 

difference, the gradient difference is enforced between pixels since large gradient differences 

will have a small likelihood of belonging to the same class.  

With these total variation constraints, the final formulation of the segmentation problem 

based on the modified ROFTV model can be rewritten as, 
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As can be seen in equation (2.9), the additional total variation constraints, ∇x enforcing the 

spatial difference and ∇k enforcing the gradient difference, have been incorporated to extend 

the ROFTV model to better estimate the piecewise smooth state. To solve this problem in an 

efficient manner, an iterative weighted optimization strategy is utilized to approximate f, 

where the updated estimate, ft at iteration t can be expressed by 
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ft
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where Z is a normalization term to ensure that the values do not go beyond the allowed 

range, and β is the regularization constant that helps to quickly reach the piecewise smooth 

state of the original noisy image.  

To better explain what the first phase of the TVOS actually does, 2-D and 3-D graphical 

representations of the first phase treated test image at one iteration are given in Figure 2.9.  

 
(a) (b) 

Figure 2.9 Graphical representation of (a) 2-D, and (b) 3-D of the test image after being processed 

with total optimization phase at the 1st iteration. 

 

As can be observed in Figure 2.9, the subject target in the original SAR image is now 

clearly recognizable (see Figure 2.9(a)). Also the 3-D graphical representation of the first-

phase treated image shows two downward peaks, reflecting the original image correctly. This 

observation indicates that the coherent imaging noise has been significantly reduced when 
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compared to the original test image and its untreated statistical distribution shown in Figure 

2.8. 

Another experiment was conducted where two iterations of total variation optimization 

phase were implemented as shown in Figure 2.10. It can be seen that speckle noise has been 

reduced again when compared to the results shown in Figure 2.9 and the number of extreme 

peaks have been significantly reduced (see Figure 2.10(b)). This clearly indicates that the 

image has come one step closer to a piecewise smooth state. 

 
   (a)            (b) 
Figure 2.10 Graphical representation of (a) 2-D, and (b) 3-D of Figure 2.5 after being processed with 

total optimization phase at the 2nd iteration. 

 

From a theoretical perspective, running the total variation optimization phase iteratively 

would slowly evolve to a convergence in which the complete piecewise smooth state is 

realized. However, achieving such a steady state can be very expensive when considering the 

computational time (e.g. more than one hour), thus it is not well suited for practical purposes. 

Through the course of numerous tests, it was discovered that even running the optimization 
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strategy for a limited number of iterations (one or two) produces a good approximation of the 

piecewise smooth state of the original noisy image where classes are easily separable, as 

clearly illustrated in Figures 2.9 and 2.10. Motivated by this observation, a faster finite 

mixture model classification strategy is utilized in the second phase of the proposed TVOS 

algorithm to approximate the final segmented result by efficiently enforcing the complete 

piecewise smoothness of the observed SAR intensity imagery. 

 

2.4.2 Phase II: Finite Mixture Model Classification 

 

In the second phase of the proposed TVOS method, a finite mixture model classification 

strategy was employed on what was achieved in the first phase to obtain the final 

segmentation result. First, a Gaussian mixture model (GMM) was utilized to estimate the 

unknown parameters in an effort to obtain a promising segmentation result using SAR 

intensity imagery.  

Let n be the number of components within a Gaussian mixture model and let l be a class 

label where l ∈ {1, ..., n}. Furthermore, the set of unknown parameters to be estimated using 

a Gaussian mixture model is denoted as Θ, 

  != µ1,...,µn,!1,...,! n,P f =1( ),...P f = n( ){ }           (2.11) 

where µ, σ, and P(f) denote the mean at the centre of each Gaussian distributed parabola, 

standard deviation, and prior probability of an observed sub-class component within the 
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mixture model, respectively.  The goal is to precisely model the underlying distribution. With 

such a model, the probability of observing, ! can be expressed by 
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The next step is to compute the maximum likelihood estimates of the unknown parameters 

that maximize the probability of obtaining the observed data, !. However, determination of 

unknown parameters is often intractable to solve analytically.  

In order to solve this problem in more efficient manner, an expectation maximization 

(EM) technique is utilized. EM is a very popular method for finding the maximum likelihood 

estimates (MLE) of the unknown parameters and is used in various applications involving 

SAR imagery (Wang et al., 2005; Khan et al., 2007).  EM consists of two steps that run in an 

iterative fashion until changes in the estimated parameters become marginal. The first step is 

called expectation (E) step where the log-likelihood function to predict the associated 

parameters in the mixture model is calculated as shown in the following equation (Piater, 

2002). 
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where each new data point ! is generated by component i at the current estimates of Θi and 

P(i). After the associated parameters in Θ are estimated, a subsequent step called 

maximization (M) is entered. In this step, it attempts to find estimated parameters that 

maximize the expected log-likelihood function by updating the associated parameters that 
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were initially determined in the previous E step. This is achieved by utilizing the following 

equation, 

M = log p
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The log-likelihood function is used since the logarithm is a function that increases 

monotonically, hence when the logarithm of a function reaches its highest or maximum 

value, the function itself reaches the same maximum point (McLachlan & Krishnan, 1997). 

Furthermore, since calculating the maximum of a function typically involves the computation 

of a derivative, it is much easier to deal with the maximized function as a log-likelihood 

function. Thus, the combined expectation-maximization scheme to estimate a set of unknown 

parameters, Θ at an updated value at t can be realized by (Dempster et al., 1977), 
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Finally, once unknown parameters are determined using EM, the maximum likelihood (ML) 

estimate of the final class lf (target area or non-target area) at pixel x can be obtained by 

calculating the following, 
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The final segmentation result achieved in the finite mixture model classification phase 

followed by the total variation optimization phase is illustrated in Figure 2.11. Dark-spots 

have been outlined in white contour lines to increase the visibility of results where only dark-

spots have been detected. It is important to emphasize that such a result was obtained using 

the 1st iterated product from the first total variation optimization phase.  

As observed in Figure 2.11(a), the segmentation result clearly shows the subject target 

being detected in the test image. Also 3-D graphical representation as shown in Figure 

2.11(b) describes the complete piecewise smoothness indicating that other imaging noises 

and artifacts have been completely removed, and only the subject target has been remained. 

Another notable achievement is a very short processing time that the segmentation result was 

obtained in approximately 5 seconds. Thus, it can be concluded that the proposed 

comprehensive segmentation approach is fast, robust, and effective in handling the 

complicated SAR segmentation task. 

 
  (a)                  (b) 

Figure 2.11 (a) Final segmentation result of the test image achieved in a finite mixture model 

classification phase, and (b) 3-D representation of the segmentation result.  
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Chapter 3 
Detecting Dark-spots in SAR Oil-spills Imagery using a Total 

Variation Optimization Segmentation Approach 

Overview 

The use of synthetic aperture radar (SAR) has been a vital part of dark-spot detection, a 

fundamental step leading ultimately to oil-spill monitoring and detection to protect our 

marine environment. However, it is often regarded as challenging, since there are numerous 

underlying imaging conditions such as inherent speckle noise that hinders a pleasing 

segmentation result. Thus, this paper presents a novel approach called total variation 

optimization segmentation (TVOS) to effectively extract dark-spots (possible oil slicks) in a 

timely manner. In the first part of this two-phase approach, a modified Rudin-Osher-Fatemi 

total variation model was employed iteratively to optimize and estimate the piecewise 

smooth state of the original noisy image by minimizing the total variation constraints. In the 

second phase, an expectation maximization approach was utilized to estimate the final class 

likelihoods by incorporating the Gaussian mixture model. Then, the final class containing 

possible oil slicks was obtained using the maximum likelihood classification method. The 

proposed method was examined on an artificial image at multiple noise levels and 46 subsets 

of the Italian COSMO-SkyMed X-band SAR imagery containing verified oil slicks. 

Moreover, the segmentation results were compared with other well-established methods to 

provide more effective comparisons. The visual and the quantitative kappa analysis 

demonstrated that the proposed method is fast, efficient, and robust in dark-spot detection. 
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3.1 Introduction 

 

There are many different types of marine pollutants and one of the most significant 

threats contributing to the degradation of our marine environment and costal ecosystem is 

deliberate or accidental oil-spills discharged from transporting ships (Topouzelis, 2008). 

Reports have shown that a great portion of oil pollution also originates from routine ship 

activities such as tank washing and discharges from engine effluent that flow directly to the 

ocean (Lean & Hinrichen, 1999).  Not only can oil pollution in coastal waters bring adverse 

effects on overall marine life and permanent environmental damage, but it can also result in 

environmental resources being wasted that will consequently lead to severe economic 

repercussions. In addition, the number of reported seabirds that have mistakenly landed on 

the oil-coated surface of the ocean annually and died is countless. Moreover, the livelihoods 

of many residents living near coastal areas are negatively affected as the majority of them 

wholly depend on fishing and tourism for their living (Jha et al., 2008). Recently in 2010, a 

catastrophic event involving an oil rig explosion in the Gulf of Mexico well illustrates the 

huge environmental and economical impact of oil-spills. The losses attributed by this 

incident are approximately 22.6 billion USD, not including the potential losses that will 

likely arise in the future. In addition, nearly 7,000 ocean animals including turtles, seals, and 

other mammals became victims of this disaster. Furthermore, many fishermen completely 

lost their source of income and the tourism industry has also been severely affected as people 

became hesitant to travel to the neighboring contaminated areas. Thus, the use of state-of-

the-art technology such as synthetic aperture radar (SAR) has been recognized by many 
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researchers for its potential in aiding oil-spills monitoring and detection due to its profound 

abilities of acquiring data covering large areas. In addition, SAR is effective since it can be 

used at any time of the day without being interrupted by rain, clouds, and other atmospheric 

substances (Nirchio et al., 2005; de Abreu et al., 2006; Keramitsoglou et al., 2006;).  

Detection of oil-spills in SAR imagery is based on the fact that oil films in the ocean 

have a dampening effect on the short gravity-capillary waves, which reduce the 

backscattering being recorded by the SAR antenna. As a result, a dark region is formed 

having a high contrast difference compared to other surroundings (Migliaccio et al., 2005; 

Topouzelis, 2008). Since the quality of data greatly depends on the aforementioned waves, it 

is commonly said that the wind speed ranging from 3-10 m/s produces the best luminosity of 

oil-spills (Brekke & Solberg, 2005). Having mentioned the backscattering characteristics, 

one of the main challenges is to discriminate oil-spills from other man-made or natural 

phenomena such as algae, grease ice, rain cells, upwelling zones, current shear zones, low 

wind speed areas, and internal waves known as look-alikes (Girard-Ardlhuin et al., 2005; 

Topouzelis et al., 2007). 

There have been many different approaches, ranging from manual to fully automated 

segmentation methods, developed so far to locate oil slicks in the ocean. As for manual oil-

spill detection, there is a highly successful framework implemented by the Canadian Ice 

Service (CIS) called Integrated Satellite Tracking of Pollution (ISTOP) in operation since 

November 2006. This program primarily uses Canadian RADARSAT-1 C-band ScanSAR 

narrow beam mode images to extract the oil slicks. This system has minimized the workload 

of oil-spill analysts by providing them a geospatial workplace. In this workplace, they can 
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review and overlay SAR images and other environmental information such as wind speed on 

the outputs derived from the Ocean Monitoring Workstation (OMW) developed by Satlantic 

Ltd (de Abreu et al., 2006). The OMW was developed for maritime surveillance, specifically 

targeting oil-spill monitoring and vessel detection using SAR images whose results are 

promising (Vachon et al., 2000). However, the judgment of analysts of whether the 

suspicious features are oil or non-oil regions can be very subjective and give varying 

confidence levels (Indregard et al., 2005). Moreover in ISTOP, the processing of nearly 

5,000 SAR images that need to be verified by human analysts each year is very laborious and 

time consuming. Thus, the development of an efficient and effective computer detection 

algorithm that can help prioritize ocean pollution warnings is essential. 

Generally speaking, oil-spill detection using SAR imagery can be accomplished through 

three distinct steps; (1) dark-spot detection which identifies all dark-spots presented in a SAR 

image as candidates of potential oil sills, 2) feature extraction from the dark-spot candidates, 

and (3) classification of dark-spots to distinguish between oil-spills and look-alikes (Brekke 

& Solberg, 2005). In this paper, we are primarily targeting the dark-spot detection step. This 

step is the most critical and fundamental step of all because if no potential dark-spots 

containing actual oil-spills are found in this step, they can never be discovered in a later 

stage. One of the major challenging tasks to tackle in the dark-spot detection step is to reduce 

or eliminate the inherent multiplicative noise, called speckle, caused by constructive and 

destructive interferences of the reflective energy from the target surface (Richards & Jia, 

2006). Also, there is likely a contrast variation between dark regions and the seawater 

background depending on environmental characteristics such as local sea state, oil-spill 
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types, or physical characteristics of the SAR sensor such as resolution and incident angle 

(Karathanassi et al., 2006). This difficulty is illustrated in Figure 3.1 in which the statistical 

distribution of pixel values forms a unimodal shaped curve indicating that there is no 

intensity difference between the dark region and background. This is not true as there is a 

clear visual distinction. This phenomenon occurs mainly due to the presence of speckle 

noises. Thus, an effective and efficient method to eliminate speckle noise without changing 

the original structure of the SAR image for an optimal classification result is essential. 

  
(a) (b) 

Figure 3.1 (a) A subset from a typical SAR imagery, and (b) its corresponding histogram. 

 

Automated segmentation approaches for SAR oil-spill and dark-spot detection can be 

categorized into two groups: (1) global segmentation schemes, and (2) local segmentation 

schemes.  

There are numerous global segmentation schemes developed so far such as K-means 

clustering (Shi et al., 2007), global histogram thresholding (Otsu, 1979), and Gaussian 

mixture model (Alf et al., 2008). These global methods use the statistical distribution of pixel 
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values from the entire image to segment the image into various regions. Thus, they do not 

perform particularly well with highly speckled SAR images since they are likely to ignore 

spatial relationships of neighbouring pixels. Due to underlying characteristics of these global 

methods they tend to be less prone to under- or over-segmentation issues, leading to a better 

capability of splitting dark regions and the background when speckles are properly treated. 

Several efforts have been made in the past to reduce or eliminate speckle noise presented in 

SAR images using adaptive filters such as Lee (Lee, 1980), Frost (Frost et al., 1982), and 

Kuan (Kuan et al., 1987). These SAR denoising filters are typically treated in the 

preprocessing step prior to the implementation of global segmentation methods to optimize 

the results.  

Local segmentation methods such as region-growing (Lira & Frulla, 1998), level-set 

segmentation (Chan & Vese, 2001), Markov Random Field (Pelizzari et al., 2007), neural 

network (Topouzelis et al., 2008), marked point process (Li & Li, 2010), and spatial density 

thresholding (Shu et al., 2010) are based on the spatial and tonal relationships between pixels 

and are more robust in the presence of speckle noise. This is very critical as SAR images 

typically carry vast amounts of speckle. On the other hand, because local segmentation 

methods extract spatial and tonal characteristics locally, they are more prone to under- and 

over-segmentation problems. In the case of classical region-growing methods, results are not 

always promising as this method heavily depends on the initial selection of seed points from 

which it examines the neighbouring pixels as to whether to add to the region label or not. 

Similarly, a level-set segmentation method that detects edges by solving a partial differential 

equation is not robust to boundary gaps, and usually takes a great number of iterations to 
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arrive at a satisfactory result. Equally important to note is that these local segmentation 

methods are generally rich in computation. For instance, the marked point process approach 

takes approximately 30 minutes to detect dark-spots on a 512 x 512 image using a PC-

MATLAB platform indicating it is not well suited for practical use (Li & Li, 2010).  

The main contribution of this paper is to combine the advantages of both global and 

local segmentation methods to minimize the effect of speckle noise and to better identify the 

dark-spot targets from the background. This can be realized by implementing the proposed 

novel approach of total variation optimization segmentation (TVOS) that first enforces two 

penalty terms to estimate the piecewise smooth state of the image and subsequently classifies 

it in a desired fashion. This paper is organized as follows: The underlying principle of the 

proposed method is described in Subsection 3.2. Subsection 3.3 presents and discuses the 

experimental results including data description, application of the proposed method on both 

synthetic image and operational COSMO-SkyMed image, and quantitative analysis and 

comparison with other well-established methods via kappa coefficient values. Finally, 

conclusions are addressed in Subsection 3.4. 

 

3.2 TVOS Algorithm 

 

The proposed TVOS approach can be divided into two main phases: (1) the total 

variation optimization phase, which is to provide a rough estimate of the piecewise smooth 

state. This is, “a clean state” based on two sets of constraint penalties; and (2) the finite 

mixture model classification phase, which is consequently applied to classify various 
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features. In our case, either dark-spots being potential oil-spills or background being seawater 

are classified based on the result obtained in the first phase. As such, this two-phase 

algorithm can become a complete segmentation scheme to well reflect the task of dark-spot 

detection using SAR imagery. 

 

3.2.1 Total Variation Optimization Phase 

 

As is true with typical SAR imagery, the observed SAR image consists of many non-

piecewise smooth regions whose classes are very difficult to separate due to many artifacts, 

inherent signal noise, and other image characteristics including the environmental conditions 

at the time of acquisition that in whole lead to a unimodal shaped curve indicating that there 

appears to be only one class as shown in Figure 3.1(b). Thus, the main objective of the total 

variation optimization phase is to obtain an initial estimate of the segmented image (denoted 

as f), given the observed SAR image (denoted as g,) by optimizing the energy function E. 

This inverse problem can be solved in many ways and one approach is to utilize the Rudin-

Osher-Fatemi Total Variation (ROFTV) model and this can be expressed as follows; 

   .                   (3.1) 

where u represents the residual state of the observed image. Based on this ROFTV model, the 

segmented image f will be forced to have multiple sets of piecewise smooth regions as total 

variation of f is minimized so that the classes in the image can be separated in a more 

efficient fashion. It is important to emphasize that while estimating the piecewise smooth 

g = f +u
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state of f, the total variation minimization helps maintain the sharpness of the boundaries of 

the subject areas to preserve the original structure of the image by allowing for 

discontinuities (Evans & Gariepy, 1992). With the aid of the total variation minimization, we 

can theoretically achieve the segmented image where classes are well distinguished. With the 

additive relationship observed in equation (3.1), the problem of image segmentation can be 

formulated into the following minimization problem according to the ROFTV model (Rudin 

et al., 1992): 

      f
^
= argmin f ! f ! g 2 dx +" "f d x

#

$
#

$
%

&
'

(

)
*                            (3.2) 

 

where Ω is an open set representing the image domain and ∇! represents the finite intensity 

difference between neighboring pixels. This is particularly important since it helps to avoid 

degradation of the edges and maintain sharp boundaries by investigating the intensity 

difference from surrounding pixels. The first term of equation (3.2) is the data fidelity term 

while the second term is the total variation term to enforce piece-wise smoothness in f. 

It is well understood that by penalizing the intensity difference term, boundaries and 

edges are likely to be preserved since their intensity values are significantly different from 

the surroundings (Tomasi & Manduchi, 1998). However, the challenging task when dealing 

with SAR imagery is the handling of speckle noise in an effective manner. To tackle this 

challenging task one can use the spatial characteristics of pixels to help alleviate speckle 

noise since they are less correlated than the actual signal values, making it very robust to the 

presence of noise. Based on the aforementioned characteristics of taking both intensity and 
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spatial characteristics of pixels that will ideally give an optimal segmentation result, the 

existing ROFTV model has been modified by adding another total variation penalty term 

called the spatial difference term to enforce the spatial closeness between surrounding pixels 

so that inherent image noise can be efficiently removed to a great extent. With the aid of the 

pre-existing intensity difference term and the additional spatial difference term, ∇x, to be 

included in the modified ROFTV model, the boundaries of the subject targets will be better 

preserved. In addition, the target will be minimally interrupted by the presence of speckle 

noise by enforcing spatial closeness of pixels as spatially distant pixels have less likelihood 

of belonging to the same dark regions. Hence, the dark-spot detection segmentation problem 

can be reformulated based on the proposed ROFTV model and it can be described as follows, 

              f
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Notice the additional spatial difference term has been included to better deal with speckle 

noise embedded in the SAR image and to force the piecewise smoothness of f. With this 

additional penalty term along with the existing intensity difference term, our modified 

ROFTV model will be able to efficiently and effectively handle the noise while preserving 

most of the details that were hidden in the image. In order to solve the above equation (3.3) 

and to obtain the segmented result, f, in a more efficient manner, we have utilized an iterative 

weighted optimization strategy that can be expressed by 

              ft
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where Z is a normalization term and β is the regularization constant, β = −1/σ. This constant 

value was determined to provide the best result based on experimental testing both with 

synthetic and actual SAR images. In the course of this iterative weighted optimization 

strategy, the segmented result, f, gets iterated by taking both spatial closeness, ∇x, and the 

intensity difference, ∇f, among neighbouring pixels to better estimate the piecewise smooth 

state whose updated f is represented as !! at iteration t. However, achieving the convergence 

of the optimization details of the piecewise smooth state can be very expensive from a 

computational perspective. To remedy this, experiments on the number of iterations of the 

optimization phase were conducted and it was consequently found that just one or two 

iterations were sufficient for achieving a satisfactory degree of piecewise smoothness of the 

image. Once such a state is achieved, the image should have well-separable statistical 

distributions by forming a multimodal shape of curve in its histogram as shown in Figure 3.2. 

 
Figure 3.2 Bimodal statistical distribution of the approximated piecewise state drawn from Figure 
3.1(a). 
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As illustrated in Figure 3.2, the statistical distribution of the original image containing a 

unimodal curve as shown in Figure 3.1(b) has changed to a bimodal curve indicating that the 

image noise has been significantly removed and the structure of the original image has been 

reconstructed such that classes are now easily separable. Note that the size of a processing 

window used for the testing was set to 9 x 9 when considering the original image size of 

1,200 x 1,200 pixels. A processing window size is selected through the course of many 

experiments that for the image size between 1,000 x 1,000 pixels and 1,500 x 1,500 pixels, 

processing window of 9 x 9 was found to be sufficient. If the smaller image is used, then it 

should be tuned down to 7 x 7 or 5 x 5 for an optimal result. Motivated by the observation 

shown in Figure 3.2, a faster global finite mixture model classification scheme has been 

incorporated in the second phase to obtain the final segmentation result based on the product 

of the first phase of the proposed TVOS algorithm. 

 

3.2.2 Finite Mixture Model Classification Phase 

 

In the second phase of the proposed approach, a finite mixture model classification 

strategy was integrated to efficiently determine the final segmentation result. By 

investigating the overall statistical characteristics of the test datasets, the pixel pattern was 

observed to follow a Gaussian distribution. Inspired by this observation, a Gaussian mixture 

model was employed to find the number of classes existing in the subject image as well as 

their associated parameters through the course of the approximation of the piece-wise smooth 



 

 53 

state !. This set of parameters to be estimated using the Gaussian mixture model is denoted 

by Θ, 

!= µ1,...,µn,!1,...,! n,!1,...,! n{ }                        (3.5)     

where µ, σ, and π represent the mean, standard deviation, and probability of a component 

within the mixture model, respectively. Let n be the number of components within the 

mixture model, and l be a class label where l ∈ {1, ..., n}. Then the probability of observing 

the estimated ! can be expressed by the following equation, 
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Due to the nature of Θ often being intractable to solve, we perform an expectation 

maximization (Dempster et al., 1977) strategy to estimate the parameters that are essential 

prior to arriving at the final step to classify subject targets in a desired fashion. For this, an 

iterative expectation maximization approach is performed to estimate Θ as expressed by 
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Such a task can be accomplished by iteratively processing two steps: an expectation (E) 

step to calculate the log likelihood function to predict the associated parameters, and a 

maximization (M) step to find such parameters that maximize the expected log-likelihood 

function determined in the previous E step. Once associated parameters are calculated via 

EM for the Gaussian mixture model, the maximum likelihood classification technique can be 

implemented to assign the final class, being either dark-spots or background at pixel x by 

solving the following, 
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Once the product of the first phase undergoes the processing in the second phase of the 

TVOS algorithm, the possible dark-spots should theoretically be found while leaving others 

(non dark-spots) in the background. 

 

3.3 Results and Discussion 

 

3.3.1 Description of Data and Comparison Methods 

 

The scene was captured by Italian X-band SAR imaging satellite, COSMO-SkyMed. 

Unlike some other SAR sensors that have low spatial and temporal resolution, COSMO-

SkyMed has a frequent revisiting time and high spatial resolution. The image used in this 

paper is a stripmap product whose spatial resolution is 3 m with a swath width of 40 km. It 

operates in X-band at 9.6 GHz with VV polarization mode. Date and time of acquisition are 

10:46:03 am on the 9th September 2009 and the size of the image is 20,748 x 21,276 pixels. 

SAR images recorded by COSMO-SkyMed can be an ideal option for oil-spill monitoring as 

many studies have proved the effectiveness of using SAR sensors equipped with shorter 

wavelength, such as X-band, for such applications (Trivero et al., 2007; Kim et al., 2010). 

This image was taken in the ocean nearby the City of Qingdao, Shandong province, China 

and it contained verified oil-spills as can be confirmed by the airphoto taken on the scene 

(see Figure 3.3). 
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(a)             (b) 

Figure 3.3 (a) A scene of oil-spills captured by COSMO-SkyMed, and (b) verified by an airphoto. 

 

As shown in Figure 3.3, verified oil-spills appear as dark regions due to the dampening 

effects which cause less backscattering to be recorded by the SAR antenna. Overall, this 

image is a good candidate to conduct research with since it is preset to an optimal setting 

including SAR sensor settings and verified oil-spills for testing the proposed method used for 

oil-spill detection. 

In this study we have performed two different tests: (1) Test I using synthetic data under 

varying noise, and (2) Test II using real COSMO-SkyMed SAR imagery containing verified 

oil-spills. To show the robustness and effectiveness of the proposed method we have also 

included comparison studies with other widely used methods, particularly for SAR image 

segmentation. Lee & Jurkevich (1989) investigated the feasibility of a SAR segmentation 

scheme when they implemented Lee’s adaptive filter to remove the speckles in an image and 

employed global histogram thresholding, known as Otsu, to split the target from the 
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background. The results drawn from utilizing such an algorithm indicates its robustness. 

Another SAR segmentation framework developed by Marques et al. (2004), similar to Lee 

and Jurkevich’s, combined the aforementioned denoising filters, such as Kuan with the K-

mean clustering method, and the results were found to be very promising. Two very similar 

segmentation frameworks were tested and the results were found to be very similar as 

expected when considering two-class segmentation in which both K-means and Otsu would 

normally produce similar results. Thus, only the results obtained by using Kuan + K-means 

were included as this method is newer and has been widely used until now. Another method 

used to compare with the proposed method is based on the level-set segmentation method 

proposed by Chan & Vese (2001) and was chosen since its performance has proven to be 

outstanding for SAR images (Lu et al., 2009). Lastly, the original ROFTV model, which 

contains only the intensity difference term, followed by the 2nd phase of the proposed method 

(hereinafter referred to as ROFTV method) was included to see how much improvement the 

proposed TVOS method could make in comparison with the original ROFTV method. 

 

3.3.2 Experiment using Synthetic Imagery under Noise 

 

The performance of the proposed TVOS method was investigated using an artificially 

created image. This image was created with two classes, dark regions being possible oil-

spills and backgrounds being seawater as shown in Figure 3.4.  
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Figure 3.4 Synthetic Dark-spot Image. 

 

To make the data similar to a typical SAR data, 15 different levels of multiplicative 

noise, σ2, have been added ranging from 0.01 to 0.70 whose values increase at an increment 

of 0.05. Due to the lack of space, only the test images containing artificial multiplicative 

noise with a variance of 0.01 being low, 0.25 being mid-low, 0.45 being mid-high, and 0.70 

being high have been displayed in this paper. Figure 3.5 illustrates the comparison of 

segmentation results via three other methods and the proposed TVOS as mentioned earlier. 

To optimize the visibility, the segmentation results are outlined in black contours. 

As can be seen from Figure 3.5, the proposed TVOS method outperformed the other 

three methods as shown by comparison of segmentation results. Although local segmentation 

methods, such as the level-set method, are known for their robustness in the presence of 

speckle noise, this synthetic testing proved that they were still fragile in their denoising 

capability when dealing with highly speckled images leading to poor segmentation results. 
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   Synthetic Image              Level-set           Kuan + K-means     ROFTV                      TVOS 

 

Low σ2 = 0.01 

 

Mid-Low σ2 = 0.25 

 

Mid-High σ2 = 0.45 

 
High σ2 = 0.70 

Figure 3.5 Comparison of segmentation results via level-set, Kuan + K-means, ROFTV, and TVOS 

at four different levels of multiplicative noises. 
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Segmentation results drawn from the global K-means clustering method combined with 

local Kuan’s adaptive filter produced relatively better results than that of level-set’s. 

Theoretically, this combined method should perform better as it accounts for advantages 

from both global and local based methods, with its strength in denoising capability and being 

less prone to under- or over-segmentation issues. However, as the severity of speckle noise 

increased, the combined method failed to achieve a satisfactory result. In addition, the 

segmentation results drawn from use of the ROFTV method indicated its poor segmentation 

performance. It is important to emphasize that homogeneity within a region was not enforced 

and speckles were not sufficiently treated due to the absence of the spatial difference penalty 

term. On the other hand, the proposed TVOS method constantly well segmented the two 

distinct classes in a wide range of varying speckle noise in a desired manner. Such 

satisfactory results were obtained due to two penalty terms that were incorporated into the 

existing ROFTV model. The spatial difference penalty term removed the speckle noise to a 

great extent and the intensity difference penalty term preserved the boundaries of the subject 

areas. Hence, the segmentation results using an artificially created synthetic image under 

different noise levels display the effectiveness and robustness of the proposed TVOS method. 

 

3.3.2.1 Quantitative Data Analysis on Synthetic Image 

 

Cohen’s kappa coefficient analysis is well known, particularly in remote sensing 

communities, for providing a robust measure of segmentation results. It is believed to be a 

more effective measure than a simple percentage measurement since it takes the random 
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agreement by chance into account. The equation for Cohen’s kappa coefficient, κ is as 

follows (Cohen, 1960); 

          (3.9) 

where Po is the proportion of observed percentage agreement and Pc is the proportion of 

overall probability of random agreement. The coefficient, κ, ranges from 0 being a totally 

incomplete agreement and 1 being a complete agreement. Thus, better segmentation results 

will yield to a kappa coefficient close to 1. Figure 3.6 summarizes the kappa coefficients 

obtained from three different methods of segmentation results in a graphical representation. 

 

 
Figure 3.6 Kappa coefficients from four segmentation methods under different noise levels. 

 

Figure 3.6 illustrates the outstanding segmentation performance of the proposed TVOS 

method since the kappa values constantly reach near 1. This indicates the segmentation 

! =
po ! pc
1! pc

,
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results are very well matched with the original synthetic test image. In contrary, kappa values 

for segmentation scheme based on the level-set method are very poor as was expected 

through the visual inspection as discussed in the previous section. It produced a comparably 

good result at the low speckle, σ2 = 0.01, however, starting from σ2 = 0.15 it quickly loses 

its robustness and the ability of segmentation gets uncompromisingly worse at higher 

noise levels. Kappa coefficients for the Kuan + K-means method show relatively better 

results with some stability up to mid-low range levels. As the weight of speckle noise 

increases, Kuan’s adaptive filter became insufficiently strong in removing the speckle 

noise resulting in a poor segmentation output. The results of the ROFTV method did not 

produce a satisfactory outcome, which was evident when investigating the kappa 

coefficient values that formed a constant decreasing pattern. On the other hand, the 

proposed method produced a robust segmentation performance throughout all different 

noise levels with its two total variation constraints taken into account. This is a good 

example showing how much difference the absence of spatial difference could bring in 

terms of its overall segmentation performance. An additional experiment was conducted 

to further investigate the robustness of the proposed method by applying higher noise 

values until the proposed method began to fail the separation of two classes. As a result, 

the kappa coefficient values were found to drop below 0.9, 0.8, and 0.7 starting at σ2  = 

3.5, 4.3, and 4.8, respectively.  

Thus, a quantitative measure of kappa coefficients has once again confirmed the 

superiority of the proposed TVOS algorithm for its solid segmentation ability under 

wide ranges of different noise levels. 
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3.3.3 Results using COSMO-SkyMed Imagery 

 

In this section, segmentation results obtained by three comparison methods (level-set, 

Kuan + K-means, and the ROFTV method) and the proposed TVOS method on a real 

COSMO-SkyMed image are presented and discussed. Due to its large size, the original 

image was subsetted into 46 smaller test images with different sizes to make the tests more 

efficient. Of those 46 tested images, only the results derived from five subsets are included in 

this paper due to a limited space. It is important to note that all of these tested datasets 

contained verified oil-spills. Figure 3.7 shows the original subsetted COSMO-SkyMed 

images and the segmentation results drawn from the above-mentioned four methods. 

The segmentation results obtained using the proposed TVOS algorithm clearly stand out 

when compared to the results of the three comparison methods. Such astounding results were 

obtained mainly due to the combination of both local- and global-based segmentation 

schemes. Local-based schemes built in the TVOS algorithm use two penalty terms to enforce 

a piecewise smooth state of the image by eliminating speckle noise effectively without 

removing the fine details in the original observed SAR imagery, including boundaries of the 

target area. A global-based segmentation scheme in TVOS correctly extracts the subject 

target (dark-spots) from the background (seawaters). On the other hand, results from the 

level-set segmentation method failed to produce satisfactory results. In addition, with the 

experimental results obtained from the previous section using a synthetic image we can 

conclude its ineffectiveness in a highly speckled environment. Kuan + K-means managed to 

produce a relatively better segmentation result than that of level-set’s, although the results 
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still contained many wrongly classified pixels. The ROFTV method produced poor 

segmentation results due to the absence of the spatial difference term that the speckles were 

insufficiently treated and the homogeneity within a region was not adequately enforced.  

For any segmentation method to go beyond the prototype stage and be used in real world 

applications, the processing time is considered very important. In this aspect, the TVOS 

algorithm managed to complete the task in a timely manner while level-set segmentation 

method produced unsatisfactory results after a long processing time. For example of the test 

image 1 on a PC-based MATLAB platform, the proposed TVOS algorithm took 32 seconds 

while the ROFTV method and level-set took 35 seconds and 14 minutes, respectively to 

complete the same segmentation task. Although a fewer number of constraints were added 

into the ROFTV method in comparison with the proposed TVOS method, the ROFTV 

method still took 3 seconds longer because the 2nd phase of the ROFTV method needed 

additional time to estimate the final class likelihoods using poorly distributed pixels. Kuan + 

K-means took the shortest processing time of all, however the segmentation results were 

compromised at the expense of a quick processing time. The processor of the computer used 

for experiments was an Intel dual core CPUs at 2.4 GHz with 3GB of RAM. Although the 

TVOS algorithm is designed to evolve iteratively until the desired results are achieved, 

considering the relative simplicity of two-class segmentation, only one iteration of total 

variation optimization phase was sufficient to achieve a “clean” result. In comparison, level-

set took 63 iterations to get its final product. As such, the overall superior qualities of the 

proposed TVOS algorithm well demonstrate the effectiveness and robustness in producing a 

promising and accurate segmentation result in a timely fashion. 
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   SAR Test Image             Level-set           Kuan + K-means   ROFTV                      TVOS 

 
Test 1: Image size [600 x 600] 

 

Test 2: Image size [700 x 700] 

Test 3 Image size [800 x 800] 

Test 4 Image size [900 x 900] 

Test 5 Image size [1100 x 1100] 

Figure 3.7 Subsetted original SAR oil-spill images and the segmentation results by four methods. 

 



 

 65 

3.4 Conclusions 

 

The work presented in this paper focused on the critical step in oil-spill monitoring, 

which is to detect all the possible dark-spots present in an image. Thus, a novel dark-spot 

detection approach is proposed, namely the total variation optimization segmentation 

(TVOS). The TVOS algorithm first applies the spatial and the intensity difference penalty 

terms to minimize the total variation of the image and to obtain the rough estimate of the 

piecewise smooth state of the original noisy image. Once the classes in the image have 

become well separable, a purely global classification scheme is subsequently utilized to 

extract only the dark-spots from the background. To fulfill this task, an expectation 

maximization technique is implemented iteratively to estimate the parameters using the 

Gaussian mixture model. Then the maximum likelihood classifier is employed to estimate the 

final class containing only the dark-spots. The experiments both on a synthetic and real SAR 

oil-spill images showed that the proposed TVOS algorithm surpasses the performance of the 

rest of comparison methods. In addition, kappa coefficients of the segmented TVOS 

algorithm results using the synthetic testing images under noise were found to be near 1, 

indicating that its segmentation result mostly matches with its reference data whereas other 

methods do not. In addition, the processing time was relatively fast when compared to other 

conventional methods. Overall, the visual inspection as well as the quantitative analysis 

confirmed the proposed TVOS algorithm is fast, effective, and robust in detecting dark-spots 

in a highly speckled SAR imagery. Further research can be undertaken to improve the 

proposed method by adding other penalty terms, such as gradient or texture difference to 
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better handle the segmentation task. Study on the utilization of dual or quad polarimetirc 

SAR imagery would be beneficial to help identify a dark-spot from the background as well. 
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Chapter 4 
ETVOS: An Enhanced Total Variation Optimization Segmentation 

Approach for SAR Sea-ice Image Segmentation 

 

Overview 

This paper presents a novel enhanced total variation optimization segmentation  (ETVOS) 

approach consisting of two phases to segmentation of various sea-ice types.  In the total 

variation optimization phase, the Rudin-Osher-Fatemi total variation model was modified 

and implemented iteratively to estimate the piecewise smooth state from a non-piecewise 

smooth state (the original noisy imagery) by minimizing the total variation constrains. In the 

finite mixture model classification phase, based on the pixel distribution, an expectation 

maximization method was performed to estimate the final class likelihoods using a Gaussian 

mixture model. Then a maximum likelihood classification technique was utilized to estimate 

the final class of each pixel that appeared in the product of the total variation optimization 

phase. The proposed method was tested on a synthetic image and various subsets of 

RADARSAT-2 imagery and the results were compared with other well-established 

approaches. With the advantage of a short processing time, the visual inspection and 

quantitative analysis of segmentation results confirm the superiority of the proposed ETVOS 

method over other existing methods. 

 



 

 68 

4.1 Introduction 

 

Sea-ice condition monitoring in Polar Regions is very important for various applications, 

including scientific research, especially in the context of global climate changes. Sea-ice has 

a high albedo due to its color and the fact that most of the sunlight that interacts with the sea-

ice surface is reflected back into the atmosphere resulting in cold climates in Polar Regions. 

The temperature in Polar Regions has been constantly increasing due to loss of sea-ice that 

has reduced the amount of sun rays reflected, causing sea-ice to melt and become weakened. 

This trend consequently leads to a bigger problem of global climate change that will cause 

severe consequences to human life and Earth’s natural environment. Having acknowledged 

the importance of sea-ice monitoring, the amount of SAR sea-ice images acquired by 

Canada’s RADARSAT-1 and -2 that are received daily at the Canadian Ice Service (CIS) and 

processed by trained sea-ice analysts is overwhelming. Hence there is a great need for an 

automatic sea-ice monitoring system. 

One of the key advantages of using SAR for sea-ice monitoring is that it uses microwave 

rays in the electromagnetic spectrum (EMS), which can penetrate rain, clouds and other 

atmospheric substances, resulting in good monitoring capabilities during the day and night. 

Moreover SAR has proven to be the most important tool for the detection of sea-ice (Deng & 

Clausi, 2005). However the segmentation of SAR sea-ice images is a very difficult task due 

to the presence of a multiplicative noise known as speckle. Not only does speckle noise 

degrade the quality of SAR images, but also makes it a very challenging task to extract tonal 

and texture information from images. A good example of a SAR sea-ice image adversely 



 

 69 

affected by speckle noise is shown in Figure 4.1. Although there is a clear visible distinction 

between the two different classes, there seems to be no difference in statistical distribution of 

pixel values as shown in the unimodal shaped histogram. 

If the statistical distribution of pixel values forms a unimodal shape, then accurate 

segmentation is not possible since a computer would recognize this image as containing only 

one class with similar intensity values. However, this is not true as there is an apparent 

difference observed from Figure 4.1(a). This behavior is believed to occur mainly due to the 

presence of speckle noise, which is the most influential contributing factor. Existing 

approaches available for automatic segmentation of SAR sea-ice images include K-means 

clustering (Redmund et al., 1998), dynamic local thresholding (Havercamp et al., 1993), 

Gamma mixture models (Samadani, 1995), Gaussian mixture model (Alf et al., 2008) , neural 

networks (Karvonen, 2004), and a global histogram thresholding (Otsu, 1979). These 

methods were developed based on the investigation of global tonal characteristics from the 

entire image and have drawbacks and weaknesses. Mechanisms built based on global tonal 

characteristics tend to ignore spatial relationships between pixels, making them very difficult 

to implement in a highly noise-contaminated image such as SAR sea-ice images. A local-

based method, such as IRGS, utilizes edge penalties and region growing techniques to better 

preserve edges while efficiently separating different sea-ice types. This method tends to be 

more robust in dealing with speckle noise, but the fast processing speed can only be achieved 

at the expense of accuracy (Yu & Clausi, 2008). In addition, it is sometimes difficult to 

obtain a desirable classification result by employing the region-growing method since this 

classification method depends greatly on the selection of an initial seeding location. 
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Conventional yet robust denoising filters such as Lee adaptive filter (Lee, 1980), Kuan filter 

(Kuan et al., 1987), Frost filter (Frost et al., 1982) and speckle reducing anisotropic diffusion 

method (Yu & Acton, 2002) are widely used to denoise images prior to the application of a 

segmentation scheme and many of these filters are currently available in commercial image 

processing software packages. However, these methods do not perform well when dealing 

particularly with images that contain significant speckle noise. 

 
(a) (b) 

Figure 4.1 (a) A subset of RADARSAT-2 sea-ice image, and (b) its corresponding histogram. 

 

Apart from deriving a segmentation result by exploiting spatial and tonal relationships 

between pixels, other approaches to analyze texture characteristics have been studied as well 

(Barber & LeDrew, 1991; Clausi, 2002).  Moreover, some of the texture-based approaches 

developed so far include gray-level co-occurrence probabilities (Chellappa & Chatterjee, 

1985; Shokr, 1991; Nystuen, 1992) and Gaussian Markov random fields (Yu & Clausi, 

2007). These texture-based segmentation schemes have the weakness that pixels located near 

texture boundaries are likely to be misclassified. More importantly, some of these methods 

can be computationally intensive resulting in longer processing times and therefore are not 
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well suited for practical use. Thus, the main contribution of this paper is to use a novel 

enhanced total variation optimization segmentation (ETVOS) approach to first reconstruct 

the piecewise smooth state to be able to better separate the existing classes and to classify 

distinct features in a timely fashion.  

The paper is organized as follows. The underlying methodology behind ETVOS is 

presented in Subsection 4.2. In Subsection 4.3, experimental results including data 

description and analysis, testing on a synthetic image, results and discussion of the proposed 

method, and comparison with other methods are addressed. Lastly, Subsection 4.4 provides a 

summary of the work done and recommendations for future work. 

 

4.2 Methodology 

 

The ETVOS method consists of two main phases: Phase I - extended total variation 

optimization, and Phase II - finite mixture model classification. In Phase I, a total variation 

optimization approach based on a set of constraint penalties is used to provide a rough 

estimate of the piecewise smooth state separating the classes in the original image.  In Phase 

II, a finite mixture model classification strategy is employed on the results from Phase I to 

classify distinct features including land, seawater and various sea-ice types that appear in 

SAR sea-ice imagery. Thus the combination of the two phases together, a full and 

comprehensive segmentation algorithm, ETVOS can be realized. 
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4.2.1 Phase I – Extended Total Variation Optimization 

 

SAR sea-ice segmentation can be formulated as an optimization problem, where the goal 

is to estimate the segmented image denoted as f given the observed SAR image denoted as g 

by optimizing the energy function E. One approach for solving this inverse problem is 

through the utilization of the Rudin-Osher-Fatemi Total Variation (ROFTV) model. Based on 

the ROFTV model, the observed SAR image g can be represented as a combination of the 

piece-wise smooth state f and residual state u, as given by 

          (4.1) 

In other words, by utilizing the ROFTV model, the goal is to progressively evolve a non-

piecewise smooth state g in which classes are nonseparable due to noise, artifacts, and other 

image details, into a piecewise smooth state f where the total variation of the image is 

minimized and the classes are well delineated. In the process of estimating such state, the 

total variation minimizers in the space of function of bounded variation help preserve edges 

or boundaries of the objects in the image by allowing for discontinuities (Darbon & Sigelle, 

2005). Therefore, we are able to theoretically arrive at a clean state with sharp boundaries 

between different classes. Given the additive relationship in equation (4.1), the problem of 

image segmentation can be formulated into the following minimization problem based on the 

ROFTV model (Rudin et al., 1992), 

        f
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g = f +u



 

 73 

where Ω is an open set representing the image domain, and ∇! represents the finite intensity 

difference between neighboring pixels. The first term of equation (4.2) is the data fidelity 

term, while the second term is the total variation term that penalizes pixel intensity 

differences within regions to enforce piece-wise smoothness in f.  

It is well understood that by penalizing pixel intensity differences with its immediate 

neighbors, the edges or boundaries of the objects are better preserved but is limited in 

handling high noise levels. To remedy this limitation, one can take spatial closeness of pixel 

values into account via extending the spatial neighborhood being considered to improve 

statistical resilience to noise, as well as incorporating of a spatial penalty term that enforces 

spatial closeness between pixels in a variable manner. Furthermore, to further improve 

boundary preservation while maintaining efficiency, an additional penalty term that penalizes 

gradient differences can be incorporated into the ROFTV model, as large gradient differences 

are indicative of boundary crossings between two classes or regions. 

Based on the aforementioned motivations, in the proposed ETVOS approach, we extend 

upon the existing ROFTV model with two additional total variation penalty terms: i) a 

penalty term that enforces spatial closeness, and ii) a penalty term that penalizes gradient 

differences. These additional penalty terms are incorporated to better reflect the task of 

SAR sea-ice image segmentation, where we wish to preserve the boundaries between 

different sea-ice types under the presence of high speckle noise. The first total variation 

penalty term introduced into to the extended model is the spatial difference term denoted by 

|∇x|, which enforces spatial closeness since spatially distant pixels are less likely to belong to 

the same sea-ice region. The second penalty term introduced into the extended model is the 
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gradient difference term denoted by |∇k|, which enforces low gradient differences since 

pixels with large gradient differences are less likely to belong to the same region. Therefore, 

with these additional constraints, the final formulation of the segmentation problem based on 

the proposed extended ROFTV model can be written as 

     f
^
= argmin f ! f ! g 2 dx +" "f + "x + "k( )dx

#

$
#

$
%

&
'

(

)
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As can be seen in equation (4.3) the spatial and gradient penalty difference terms have 

been incorporated to extend the ROFTV model to better estimate the piecewise smooth state 

where classes can be easily separable. To solve this problem in an efficient manner, an 

iterative weighted optimization strategy is employed to approximate f, where the updated 

estimate !! at iteration t can be expressed by 

      ft
^
= Z exp

!

" ! #f + #x + #k( )$% &' f
^

t(1 dx               (4.4) 

where Z is a normalization term and β is the regularization constant. Based on testing, it was 

found that β  = −1/σ provided strong results across different sets of data. 

Theoretically, running the optimization detailed in equation (4.4) to convergence would 

provide us with the piecewise smooth state that represents the segmented image f. However, 

from a practical perspective, running this strategy to convergence to achieve steady state can 

be computationally expensive. However, throughout the course of numerous tests, it has been 

found that even running a limited number of iterations can provide good approximations of 

the piece-wise smooth state. Furthermore, from Figure 4.2, one can see from the statistical 

distribution of pixel values in the approximation of the piece-wise smooth state for the scene 
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(shown in Figure 4.1(a)) that this approximation of the piece-wise smooth state has a 

multimodal shape, meaning that a faster alternative global classification strategy can now be 

employed on the results from Phase I to determine the final segmented results. Motivated by 

this observation, the proposed method utilizes a finite mixture model classification strategy 

in the second phase to determine the final segmented results based on the results from Phase 

I. 

 
Figure 4.2 Histogram generated from the approximation of the piece-wise smooth state for the scene 
shown in Figure 4.1(a). 

 

4.2.2 Phase II – Finite Mixture Model Classification 

 

In Phase II, a Gaussian mixture model (GMM) is employed to find how many different 

classes there are and their associated parameters in the approximation of the piece-wise 

smooth state !. Let n be the number of components within the mixture model. Furthermore, 
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let l be a class label where l ∈ {1, ..., n},  and Θ be the set of parameters to be estimated for 

the mixture model, 

         != µ1,...,µn,!1,...,! n,!1,...,! n{ }    (4.5)     

where µ, σ, and π denote the mean, standard deviation, and probability of a component within 

the mixture model, respectively. Given such a model, the probability of observing ! can be 

expressed by 
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To estimate Θ, expectation maximization (EM) (Dempster et al., 1977) is performed as 

follows, 
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Finally once the parameters of the mixture model are formed by utilizing EM, the 

maximum likelihood estimate of the final class l at pixel x can be determined as 

          l
^
x( ) = argmaxl p f

^
x( ) l
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&       (4.8) 

 

4.3 Experimental Results 

 

A RADARSAT-2 image covering the ocean nearby the Island of Newfoundland in 

Canada was used in this study since it contained various sea-ice types that have been verified 

by trained sea-ice analysts at CIS. The image was acquired in the HH polarization mode 
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using ScanSAR Wide beam at 22:29:36 on March 16, 2009 and its spatial resolution had 

been degraded to 100 m for the enhancement of sea-ice, which is ideal for sea-ice detection. 

Due to a large size of the original image (4239 by 4221 pixels), a smaller subset of this image 

was used to enable a relatively shorter processing time. To have a better understanding of the 

dataset, a Google map was referenced to help distinguish land, ocean and sea-ice, which have 

been labeled accordingly as shown in Figure 4.3. 

  
Figure 4.3 RADARSAT-2 Sea-ice image containing three main features. 

 

To validate the proposed algorithm in detecting various sea-ice types in a more 

convincing fashion, analytical data that confirms sea-ice types was necessary. The CIS 

website has an archive in which weekly regional ice charts are available. Fortunately the 

regional ice chart covering the subject dataset was available. The regional ice chart also 

provides the series of egg-codes in a simple oval form, which details the sea-ice 

concentrations, stages of development, and form of the ice for each segment of sea-ice 

covered regions as shown in Figure 4.4 (Environment Canada, 2011). By carefully analyzing 



 

 78 

the egg-codes for each segment of the study area, it was found that there were mainly two 

different types of sea-ice presented; (1) “Egg-Code 4” representing grey ice with a thickness 

of 10-15 cm, and (2) “Egg-Code 1.” representing medium first-year ice with a thickness of 

70-120 cm (Environment Canada, 2011). 

 
    Figure 4.4 Daily Sea-ice Chart with Egg-Codes (Environment Canada, 2011). 

 

However, the egg-code does not give more detailed information such as where exactly the 

grey ice and the first-year medium ice are located within each segment. Thus, different sea-

ice types present in the dataset in a smaller scale (within each segment) were analyzed from 

the theoretical aspect as an alternative approach.  
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SAR backscatter in sea-ice imagery depends on the surface roughness and the dielectric 

constant of sea-ice or open seawater (Deng & Clausi, 2005). The dielectric constant of sea-

ice decreases as the degree of salinity decreases. If there is a lower dielectric constant, then 

the amount of backscattering is high. This implies that the thicker sea-ice will tend to be 

brighter in color because its salinity is near zero. On the other hand, new or fresh sea-ice 

tends to be darker in the image since it has a higher dielectric constant, as a result, the 

amount of backscattering is low. Knowing how various sea-ice types appear in the SAR 

imagery and with additional knowledge obtained from investigating the egg-codes, the 

number of different sea-ice types can be carefully determined. Figure 4.5 shows a subset 

taken from a concentrated sea-ice region.  

 

 
Figure 4.5 Subset taken from the sea-ice region. 

 

As shown in Figure 4.5, three main classes can be extracted from the subset of the 

image: the circles indicate the relatively thicker ice, possibly being medium first-year ice 

with a thickness of 70-120 cm (observed higher backscatter return); the triangles indicate 
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the fresh/thin ice, possibly being grey ice with a thickness of 10-15 cm (observed lower 

backscatter return); and the rectangles identify the seawater (observed very low or no 

backscatter return). It is important to emphasize that three distinctive classes have been 

categorized by means of visual inspection with the aid of prior knowledge including 

varying surface feature characteristics to SAR signals and analysis of egg-codes as 

discussed previously to help make the right decision. However, the authors want to point 

out that such analysis can be different from reality. For example, the regions in 

rectangles could possibly be covered with very thin ice that appears to be equally dark as 

the seawater. In order to determine whether the detected feature is purely seawater or a 

very thin ice-covered region, sample intensity values of the seawater were collected from 

the other part of the same image and compared with the intensity values extracted from 

the regions in rectangles, where their intensity values were found to be similar, hence it 

was concluded that the detected feature was seawater. Unless there is additional data 

revealing what regions were actually present at the time of the image acquisition, 

analysis has to be done using both the underlying signal difference characteristics of 

various sea-ice types and seawater, and prior knowledge from examining the ice chart 

containing egg-codes. To support this method, even trained sea-ice experts at CIS relies 

on visual inspection and backscattered values as was done in this project. Thus making 

reliable assumptions based on visual inspection and other conceptual based knowledge is 

regarded as very important in sea-ice analysis. 
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4.3.1 Experiment I using Synthetic Data under Noise 

 

In this study, the performance of ETVOS under various noise levels was investigated 

using synthetic data. A synthetic sea-ice image was created for this experiment, 

consisting of two different gray levels representing seawater and sea-ice, as shown in 

Figure 4.6. 

 
Figure 4.6 Synthetic sea-ice image. 

 

To validate the effectiveness and the robustness of the proposed algorithm under 

noise, multiplicative speckle noise at 11 different noise levels have been applied, ranging 

between σ2 = 0.01 and σ2 = 0.50 (increase at an increment of 0.05). The methods used to 

compare with the proposed ETVOS include the widely used global segmentation 

methods that are based on the K-means clustering (Redmund et al., 1998) and Gaussian 

mixture model (Alf et al., 2008). In addition to these two methods, we also applied one 

additional segmentation scheme. According to (Marques et al., 2004) the segmentation 
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performance can be improved significantly when applying a speckle filter such as Lee, 

Kuan and Frost filters followed by K-means clustering. These speckle filters have been 

well recognized for their effectiveness and robustness, as a result they are currently 

available in many remote sensing software packages. As such, the Frost’s adaptive filter 

was utilized to first eliminate speckle noise and then K-means clustering was used to 

segment each class in SAR sea-ice imagery. In addition, to show how much 

improvement the extended ROFTV model containing three penalty terms could make in 

comparison with the original ROFTV model containing only one penalty term, we 

included another method. This method replaced the total variation optimization phase of 

the proposed ETVOS method with the unmodified original ROFTV model and performed 

the finite mixture classification phase as suggested in the proposed method. This method, 

using the original ROFTV model followed by the application of 2nd phase of the 

proposed ETVOS method, is named ROFTV method in this paper. 

 The test images carried artificial speckles with variances of 0.01, 0.25 and 0.50 at 

low, mid and high noise levels, respectively as shown in Figure 4.7.  

 

 
                  σ2  = 0.01                                       σ2  = 0.25                             σ2  = 0.5 

Figure 4.7 Synthetic images used for testing at three different noise levels. 
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          σ2  = 0.01          σ2  = 0.25                      σ2  = 0.5 

 
GMM 

 
K-means 

 
Frost + K-means 

 
ROFTV 

 
ETVOS 

Figure 4.8 Segmentation results on a synthetic image at different speckle noise levels using four 

methods. 
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Figure 4.8 illustrates the comparisons of segmentation results using four methods 

including K-means, GMM, Frost + K-means, and ROFTV with the proposed ETVOS 

method and shows how each method performs under different speckle noise levels.  

As shown in Figure 4.8, the proposed ETVOS method outperforms the rest of four other 

methods. As the severity of speckle noise embedded in the synthetic image increases, it is 

well observed that the rest of methods fails to segment two distinct classes. Also note that 

GMM and K-means segmentation methods fail to an extreme extent. This is mainly due to 

their segmentation schemes that only take a global tonal characteristic into account making 

them very weak in removing speckle noises. In addition, the original ROFTV method 

produced poor segmentation results, leaving many wrongly classified pixels. On the other 

hand, the segmentation results derived from our proposed method well differentiates two 

classes. Such satisfactory results are obtained due to the three penalty terms that were 

incorporated into the extended ROFTV model, with the spatial difference penalty term 

helping to deal with speckle noise, while the intensity and gradient difference penalty terms 

help to well preserve boundaries. Hence, the segmentation results using a synthetic test 

image under different noise levels showed the effectiveness and the robustness of the 

proposed ETVOS method. 

To see these results illustrated in Figure 4.8 in a quantitative fashion, we have performed 

the F1 score test, which is widely used to validate the accuracy of a test data. It also provides 

a good measure of how each test method performs under different environments (in our case, 

different test methods and noise levels). The general formula for F1 score derived based on 

van Rijsbergen’s effectiveness measure (Van Rijsbergen, 1979) can be expressed by 
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                    (4.8)  

where and TP , FP and FN denote true positive, false positive, and false negative, 

respectively. By implementing F1 score test, we can observe how accurately the 

segmentation results are matched with the ground truth image (the original synthetic image) 

whose F1 score value varies between 0 being absolutely no match and 1 being a perfect 

match. Figure 4.9 summarizes the F1 scores of five different methods at varying speckle 

noise levels. 

 
Figure 4.9 F1 score for comparison of five methods at varying noise levels. 

 

It can be observed that the F1 score analysis illustrates the improved segmentation 

accuracy of the ETVOS method in a quantitative fashion over the other tested segmentation 

methods. Notice that F1 score of the proposed ETVOS method shows the relatively 

F1 =
2TP

2TP +FN +FP
,
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consistent pattern as shown in flat line whereas F1 score derived from other methods 

decrease as the amount of embedded noise σ2 increase. This drop is particularly noticeable 

for K-means and GMM, as both experienced a dramatic fall between the σ2 value of 0.01 and 

0.05. The Frost + K-means and the ROFTV segmentation method show a relatively better 

performance than other two since their F1 values did not drop quickly. However, their 

relatively better segmentation performances grew poorer as the noise levels increased. 

Through the quantitative validation with respect to its original synthetic image, the proposed 

ETVOS approach has demonstrated to provide strong segmentation accuracy under high 

speckle noise. 

 

4.3.2 Experiment II using Real SAR Sea-Ice Imagery 

 

In this section, experimental results from the use of the proposed ETVOS method and 

four other methods (GMM, K-means, Frost + K-means, and ROFTV) on real SAR sea-ice 

imagery are presented. Discussion of these methods is followed to indicate which methods 

produce more promising results. Testing of the proposed method and other methods listed 

were performed on four test subsets of RADARSAT-2 sea-ice imagery, which are shown in 

Figure 4.10. The size and the number of classes that were seen from the four test subsets are 

described in Table 4.1.  It is important to note that the number of classes has been determined 

strictly by visual inspection with underlying knowledge of sea-ice characteristics and egg-

code analysis as described earlier. 
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Table 4-1 Summary of Tested SAR Sea-ice Images 

 Size of image (pixels) Observed number of classes 

Test 1 277 x 259 2 (sea-ice and seawater) 

Test 2 349 x 340 2 (sea-ice and seawater) 

Test 3 384 x 348 3 (grey ice, medium first-year ice, and seawater) 

Test 4 505 x 525 3 (grey ice, medium first-year ice, and seawater) 

 
 

 
   Test 1      Test 2      Test 3     Test 4 

Figure 4.10 Subsets of Real RADARSAT-2 SAR sea-ice imagery used for testing. 

 

Figure 4.11 illustrates the segmentation results of the proposed method, ETVOS, and 

four aforementioned segmentation methods using four test images. The segmentation results 

produced by GMM, K-means, Frost + K-means, and ROFTV show that while the boundaries 

of sea-ice areas and seawater are visible, they appear very noisy. The results are particularly 

noisy for the K-means clustering and GMM segmentation approaches, and is due to the fact 

that these global segmentation methods only consider global tonal characteristics making 

them very sensitive to speckle noise while ignoring local spatial relationships. On the other 

hand, the segmentation results produced by the proposed ETVOS method well preserved the 

boundaries of seawater and sea-ice. Notice that all of the test images in Figure 4.11 have 

classified three distinct classes accurately in the results produced using ETVOS. The 

segmentation results that are derived from the combination of the well-known Frost 
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denoising filter with K-means has proved its effectiveness by Marques et al. who showed that 

it brings a noticeable improvement when compared to using K-means by itself. However, 

there still appears to be a large amount of noise in their final products.  

 

    GMM                 K-means     Frost + K-means     ROFTV                     ETVOS 

 
Test 1 

 
Test 2 

 
Test 3 

 
Test 4 

Figure 4.11 Segmentation results on four test sets of real SAR sea-ice imagery using five different 

methods. 
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The ROFTV method, which contains only the intensity total variation constraint, produced 

a relatively better segmentation performance in the real SAR image testing when compared 

to the others. Such results were obtained due to the data being less noisy, so the utilization of 

the intensity constraint alone could eliminate noise to a certain extent. However, there still 

appears to be vast amounts of noise present in the segmented images.   

Another notable achievement of the proposed method is that all the results of the ETVOS 

method form a homogeneity region within each class, whereas other methods produced 

constant noises within each class. Also, the proposed ETVOS method well supports its 

possibility to be applied for operational use, as the processing time was short; approximately 

8, 12, 16 and 31seconds for test subsets 1, 2, 3 and 4, respectively. The computer used for the 

testing is equipped with Intel dual core CPUs at 2.4GHz and 3GB of RAM. Therefore it was 

shown that the proposed ETVOS approach produces superior results compared to other 

methods. 

 

4.4 Conclusions 

 

This paper introduced a novel SAR sea-ice image segmentation algorithm called 

enhanced total variation optimization segmentation  (ETVOS). This approach first uses an 

extended total variation optimization phase to construct the piecewise smooth state via three 

total variation constraints. After the classes in the rough piecewise smooth state has become 

vividly separable, an expectation maximization approach is then utilized to learn a Gaussian 

mixture model (GMM). Finally a maximum likelihood classification is performed to assign 
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each pixel into a final class. Based on our experimental results, the proposed method 

produces a very satisfactory result when compared to other well-established methods. 

Although a longer processing time is required when incorporating the texture information of 

sea-ice to the proposed ETVOS method, it can be beneficial in helping to better analyze 

images with multiple sea-ice types. Thus the study of efficient implementation algorithm 

combining texture characteristics with the proposed method is highly recommended for 

future work. 
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Chapter 5 
Conclusions and Recommendations 

 
The research that was undertaken in this thesis was motivated by the essential need to 

automate the SAR segmentation task and to investigate its feasibility in addressing the 

environmental issues of Canadian coastal waters. In this last chapter, conclusions that include 

a summary of the work done and the major achievements are presented in Section 5.1. In 

Section 5.2, the recommendations for future research are given. 

 

5.1 Conclusions 

 

Canada’s marine environment is greatly threatened by deliberate and accidental oil-spills 

as well as the rapid loss of sea-ice. These phenomena will negatively affect the well-being of 

humans and threaten the life of many living sea creatures in the Canadian ocean and the 

Artic. Hence, an effective and efficient way to monitor Canada’s coastal waters is essential in 

order to help minimize the spread of oil-spill pollution, confirm navigable ship routes to 

ensure safety, and investigate global climate change. The synthetic aperture radar (SAR) 

onboard Earth observing satellites have been popularly recognized for their profound 

capability in acquiring data at anytime of the day with a large area coverage. As a result, 

SAR has become an ideal tool for monitoring the marine environment. However, it is often 
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very laborious, and time-consuming to manually examine thousands of SAR images that are 

received annually at analysis centres. 

Motivated by such challenges, this thesis presents a novel two–phase automated 

segmentation approach that can accurately detect the desired target being either dark-spots 

containing possible oil-spills or various different types of sea-ice in a timely manner. Dark-

spot detection step in the oil-spill detection process is particularly important as it is 

considered the most critical step that is required to further proceed to the final classification 

step where the oil slicks are extracted from look-alikes. The proposed method is named the 

total variation optimization segmentation (TVOS) approach as it uses multiple constraints to 

minimize the total variations of the original SAR imagery containing coherent speckle 

imaging noise, which pose a great difficulty in automatizing the segmentation task. 

In the first phase, which is called the total variation optimization phase, two or three total 

variation penalty terms, depending on the severity of the segmentation task, have been 

implemented to enforce piecewise smoothness of the original SAR imagery. Total variation 

minimizers used in this phase include spatial, intensity, and gradient differences to 

effectively remove the speckles while preserving the boundaries of objects. 

In the second phase, which is called the finite mixture classification phase, a purely 

global classification scheme was utilized. This scheme was implemented since the first-phase 

processed SAR imagery should contain easily separable classes of dark-spots or non dark-

spots, and different types of sea-ice and seawaters. The unknown parameters of the Gaussian 

mixture model are approximated using an expectation-maximization scheme. When the final 
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class likelihoods are estimated, a maximum likelihood classification technique is utilized to 

predict the final class of all pixels. 

Therefore, the combination of the two aforementioned phases result in a comprehensive 

segmentation algorithm to efficiently cope with the SAR image segmentation task. In this 

thesis, an artificially created imagery, which has a similar imaging condition in comparison 

to real SAR images, was used to test the proposed algorithm. In addition, two real-world 

SAR images were used to further test the robustness of the proposed algorithm. Segmentation 

results drawn from other well-established methods were compared to those of the proposed 

method. The visual inspection of the segmentation results obtained by utilizing the proposed 

method was observed to provide superior segmentation performance compared to other 

conventional yet well-established methods. 

For synthetic testing, different levels of multiplicative noise, ranging from σ2
 = 0.01 to 

0.70, were applied to an artificially created test imagery whose imaging conditions are very 

much similar to that of real SAR imagery. In this experiment, the proposed method showed 

robust segmentation performance even at the highest level of noise, while other methods 

demonstrated poor segmentation performance. Quantitative data analysis using Cohen’s 

kappa measure (used for dark-spot detection) and the F1 score test (used for sea-ice 

detection) were employed to validate the segmentation results with the reference data. These 

two distinct methods provide a good overview of the segmentation result by providing a 

numerical number, ranging from 1 being a perfect match to 0 being a no-match with respect 

to the reference data. Kappa and F1 values computed for the proposed method consistently 

reached near 1 throughout the all noise levels, indicating good matches with the reference 
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data. In contrast, results drawn from other conventional methods showed unpromising 

segmentation performance since the quantitative measures continually dropped beginning at 

low to mid noise levels, indicating poor matches with the reference data. 

The proposed method was observed to be robust and provided exceptional segmentation 

performance in the testing of 46 subsets of real COSMO-SkyMed SAR imagery containing 

verified oil-spills. To perform the dark-spot detection task, only two total variation 

constraints, including the spatial and the intensity difference terms, were employed 

considering the relatively less-complex task where only two classes need to be delineated. A 

visual inspection indicated that the proposed method produced consistent and outstanding 

results in accurately extracting dark-spots from the background whereas other comparison 

methods produced unsatisfactory results leaving many wrongly classified pixels. Also the 

processing time to carry out the segmentation task for the proposed TVOS method was short.  

For instance, it took only 31 seconds to complete the task using the image with size of 505 x 

525 pixels by the proposed method while it took up to 30 minutes to complete a similar task 

using the mark point process segmentation scheme (Li & Li, 2010). 

The proposed method was also tested on various subsets of RADARSAT-2 imagery 

containing multiple sea-ice types and seawaters. Due to the absence of validation data, the 

regional ice-chart and egg-codes were used to confirm that the image contained different 

types of sea-ices. By analyzing the egg-codes of the study area, it was found that it mainly 

consisted of two ice types; (1) Grey ice with the thickness of 10-15 cm, and (2) Medium first 

year ice with the thickness of 70 -120 cm. Furthermore, the underlying sea-ice characteristics 

and their response to SAR signals were examined to provide additional knowledge to 
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correctly identify different sea-ice types and seawaters. Due to the nature of this task being 

more complex (as there are more classes to identify), three total variation constraints were 

applied to better handle the segmentation task. The results indicated that the proposed 

method well delineated the two different types of sea-ice and the seawater in comparison to 

other tested methods.  

In summary, the main contributions of this thesis include: 1) acknowledging the two 

main on-going issues of oil-spill and sea-ice changes in the Canadian marine environment, 2) 

studying and understanding the complexity of the feature detection algorithm using a SAR 

intensity imagery, 3) designing and developing a comprehensive segmentation framework for 

SAR intensity images, and 4) confirming the superiority of the proposed segmentation 

framework by visual inspection (for real SAR image testing) and quantitative assessment (for 

synthetic image testing). As a result, the proposed method was found to be fast, effective, and 

robust in delivering a satisfactory final segmented result in comparison with other well-

established methods. 

 

5.2 Recommendations for Future Research 

 

5.2.1 Incorporation of Additional Total Variation Constraint 

 

The way that the proposed TVOS method was designed makes it easy to adapt another 

penalty term as an additional constraint to help minimize the total variation of the SAR 
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imagery. Motivated by this, the texture difference term is recommended as an additional 

constraint to be added to the proposed total variation optimization phase to enhance its ability 

to further discriminate dark-spots (potential oil-spill) from the background as well as multiple 

sea-ice types in a more precise fashion. Texture information is considered an important 

component since SAR imagery contains different characteristics of spatially dependent 

classes. Different features that appear in images are more likely to have differentiable texture 

information (Tuceryan & Jain, 1993), thus incorporation of additional texture information 

will likely enhance the segmentation performance. 

 

5.2.2 Application of PolSAR Imagery 

 

The two real SAR data used in this thesis were acquired in a single polarization mode 

(VV for oil-spill imagery and HH for sea-ice imagery). With the advent of advanced SAR 

satellites such as Canadian RADARSAT-2, it has become possible not only to support the 

selective single polarimetric mode (HH, VV, HV, or VH) but also dual polarimetric mode 

(HH and HV or VV and VH), and quad polarimetric mode (HH, VV, HV, VH).  

In oil-spill detection, the application of dual-polarimetry SAR data is particularly 

beneficial as it provides three unique physical parameters known as entropy (H), mean 

scattering angle (α), and anisotropy (A). With these distinctive physical parameters, it 

becomes much easier to distinguish between look-alikes and actual oil-spills, and moreover it 

is possible to further analyze the different oil types (Migliaccio et al., 2007). 
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As for the sea-ice detection, the utilization of the dual-polarimetric data with the 

combination of different intensity channels will provide the additional information necessary 

to achieve more accurate estimation of the ice concentrations including the ice thickness 

(Dierking et al., 2003). Different ice types will have more separations/differences in their 

backscattered responses, making it easier to define various sea-ice types compared to 

utilization of single polarimetric data (Dierking et al., 2003).  

 

5.2.3 Utilization of Multi-scale Analysis Technique 

 

SAR images often display very complex patterns and consist of many different local 

scales that co-exist in the same image, which often form multiple heterogeneous areas. This 

characteristic has been regarded as a challenge because a single global scale is insufficiently 

robust in exploiting the information that is essential to correctly interpret the SAR images 

(Dell’Acqua et al, 2005). Through the course of many experimental tests, it was speculated 

that the adaptation of a multi-scale processing window used to extract the local pixel 

information in the first phase of the proposed method would be beneficial to improve the 

preservation of the detailed feature characteristics. Since the proposed method uses a fixed-

size local processing window, it is sometimes hard to process images containing features 

whose physical sizes are significantly different from each other. Thus, detailed information 

of relatively small features with respect to the actual size of the image can be preserved by 

utilizing a processing window of varying scale. However, the challenge of the presence of 
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speckle noise still exists, since images with high speckle noise may not be sufficiently treated 

when a small local window is used. Thus, it is recommended that the future research should 

focus on determining the solution to properly incorporate the multi-scale processing window 

to better preserve the fine details of images and to effectively reduce speckle noise. 
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