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Abstract

Resource management in wireless networks is one of the key factors in maximizing the

overall throughput. Contrary to popular belief, dividing the resources in a dense network

does not yield the best results. A method that has been developed recently shares the

spectrum amongst all the users in such a way that each node can potentially utilize about

half of all the available resources. This new technique is often referred to as Interference

Alignment and excels based on the fact that the amount of the network resources assigned

to a user does not go to zero as the number of users in the network increases. Unfortunately

it is still very difficult to implement the interference alignment concepts in practice. This

thesis investigates some of the low-complexity solutions to integrate interference alignment

ideas into the existing wireless networks.

In the third and fourth chapters of this thesis, it is shown that introducing relays to

a quasi-static wireless network can be very beneficial in terms of achieving higher degrees

of freedom. The relays store the signals being communicated in the network and then

send a linear combination of those signals. Using the proposed scheme, it is shown that

although the relays cannot decode the original information, they can transform the equiv-

alent channel in such a way that performing interference alignment becomes much easier.

Investigating the required output power of the relays shows that it can scale either slower

or faster than the output power of the main transmitters. This opens new doors for the

applications that have constraints on the accessible output powers in the network nodes.

The results are valid for both X Channel and Interference Channel network topologies.

In Chapter Five, the similarities between full-duplex transmitters and relays are exam-

ined. The results suggest that the transmitters can play the relay roles for offering easier

interference alignment. Similar to the relay-based alignment, in the presented scheme full-

duplex transmitters listen to the signals from other transmitters and use this information

during the subsequent transmission periods. Studying the functionality of the full-duplex

transmitters from the receivers’ side shows the benefits of having a minimal cooperation

between transmitters without even being able to decode the signals. It is also proved that

the degrees of freedom for the N -user Interference Channel with full-duplex transmitters

can be
√

N
2

. The results offer an easy way to recover a portion of degrees of freedom with

manageable complexity suited for practical systems.
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Chapter 1

Introduction

Wireless networks have been the topic of extensive study in the last few years[8, 29, 48].

Various techniques are designed to achieve rates close to the fundamental limits of these

networks. Equipping transmitters and/or receivers with multiple antennas is amongst the

approaches by which the throughput of a network can be dramatically increased. The

advantages of having more than one antenna are not limited to the rates only. In fact,

back in earlier days of wireless communications, multiple antennas were used frequently

to increase the reliability of the links [6]. Roughly speaking, multiple antennas create

redundant paths between transmitter and receiver. Therefore, if the failure events of those

paths are independent, the probability of all the paths failing simultaneously will be much

smaller than the failure rate for a single link. This technique is often referred to as diversity.

Mathematically, diversity gain is usually defined as the slope of the error probability with

respect to Signal to Noise Ratio (SNR) as below

d , − lim
SNR→∞

logPe (SNR)

log SNR
. (1.1)
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Receive diversity, one of the earliest diversity schemes, uses redundant receive paths to

fight channel fading. Likewise, multiple antennas on the transmitter side can be used for

the same effect which is usually referred to as transmit diversity or beamforming [2]. There

are other types of diversity which are often seen in multi-user communications [63].

Back to the benefits of multiple antennas, the main drive behind their adaptation to

almost all the recent wireless applications is to provide higher rates. Theoretically, a

transmitter with M antennas sending data to a receiver with N antennas can transfer

min (M,N) independent streams of information on each channel use. This number is an

important property of every Multiple-Input Multiple-Output (MIMO) system which is

often referred to as the Degrees of Freedom (DOF) or Multiplexing Gain (MG). Similar to

diversity gain, DOF has a mathematical definition as the slope of the rate (R) with respect

to SNR as the following

r , lim
SNR→∞

R (SNR)

log SNR
. (1.2)

For slowly varying channels, the channel information can be reported back to the trans-

mitter. The channel structure is usually contained in a matrix whose elements correspond

to the the channel coefficients from one of the antennas of the transmitter to one of the an-

tennas of the receiver. Any knowledge about this matrix on the transmitter side has been

proved to be very beneficial from the throughput point of view [61]. If the channels are

not known on the transmitters but can be trained, estimated or tracked from the receiver

side, there are a lot of techniques that can be applied for maximizing the rate [21, 60, 59].

If the channels are not known by the receiver, there are still a lot more complex schemes

that can be applied for achieving the same amount of DOF [66]. Finally, for every point

to point MIMO system the amount of diversity and multiplexing are related to each other

and cannot vary independently [67].
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Moving to more complex topologies, different multi-user scenarios have been inves-

tigated in the literature, such as Broadcast Channels (one transmitter and multiple re-

ceivers) [8, 17] and Multiple Access Channels (multiple transmitters and one receiver) [8].

The communication schemes for both channels are still rather simple, specially if the chan-

nel information is known on the transmitter side. As the wireless systems grow larger

(notably, the cases where the number of transmitters and receivers are both more than

one), the point to point assumptions are no longer valid. In these multi-user networks,

the communication problem is more difficult to handle as the unwanted interference from

different users is the major limiting factor in achieving the desired throughput. In fact, the

traditional treatment of interference as Gaussian noise results in a decrease in the achiev-

able throughput as the number of users increases. Some recent studies have shown that

incorporating multiple antennas increases the dimensionality of the signal space [37, 38],

which in turn allows reducing the effect of the multi-user interference by aligning the in-

terfering signals at the receivers.

Interference management in wireless networks has always been a difficult problem with

no simple answer that fits all the different conditions. During the transition from wired

to wireless, management of the available resources becomes a lot more challenging. A

large portion of this complexity arises from the fact that unlike wired networks, in wireless

systems, the unwanted signals from the other users can be heard in all the nearby nodes.

As a result, a minimal cooperation is inevitable when the number of transmitters and/or

receivers is more than one. There are a lot of techniques that avoid the interference by

splitting the resources between users (TDMA/FDMA), treating the interference as noise

(CDMA is one example) or decoding a strong interference before decoding the intended

signal. Unfortunately, none of them are suitable for managing the resources in a large
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network. Additionally, all of these methods more or less share the idea of dividing the

available resources among the users. In other words, a network of M transmitter-receiver

pairs could only offer 1
M

of the available resources (on average) to each user. While this

line of thinking is suitable in an interference-free wired medium, it is not the best that can

be done in wireless due to its shareable nature.

Recently, it is shown that under certain conditions each user can utilize one half of all

the network resources regardless of the number of users operating in the system [11]. This

result is very interesting since the sum of the used resources for the whole network can

become much larger than what is available. To this end, it is required to fit the unwanted

signals from different users into a small space. In an interesting work in [11], the authors

utilize channel variations to remove the unwanted interference by extending the signals

over multiple time intervals. Using time-extension the authors show that a DOF of M
2

is

possible for an M -user Interference Channel (IC).

The idea of Interference Alignment (IA) in multiple antenna systems is first introduced

by Maddah-Ali et.al. in [38]. They showed that a MIMO X Channel 1 can offer more

DOF than what was previously being speculated. Roughly speaking, the total number of

DOF in a single antenna X Channel was thought to be one. Accepting this to be true, it

was easy to generalize the result for the case where all the transmitters and receivers have

N > 1 antennas and although not theoretically proved, the DOF for N -antenna MIMO X

Channel was anticipated to be N . In [38], the authors changed the popular consensus and

proved that the N -antenna X Channel can offer as much as b4N
3
c DOF using IA. Various

approaches developed after their paper show that the results from MIMO can be extended

for single-antenna X Channels as well and prove that the DOF of the single-antenna

1X Channel is a wireless network consisting of two transmitters and two receivers where each transmitter
has an independent message for each receiver.
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X Channel is actually 4
3

[33]. IA in quasi-static channels is also presented by Motahari

et.al. in [41, 42]. Using a lattice-based approach they showed that IA is not limited to

N -dimensional Euclidean spaces (N ≥ 2) and under certain conditions one dimensional

systems can also be used.

1.1 Thesis Outline

The current chapter has a brief introduction to some of the concepts and terms used

throughout the thesis. It also contains links to a few cornerstone papers whose results are

vital for understanding most of the materials presented here.

The second chapter describes the MIMO equivalent model for two popular groups of

wireless networks, namely X Channel and IC. The chapter also contains a matrix reformu-

lation of the IA conditions which unifies the alignment problems for the X Channel and IC

into one. The maximum achievable DOF is also determined based on the number of free

variables and the number of equations. Based on the results, the M×N -user X Channel

can have a total DOF of MN if the number of antennas for each transmitter and receiver

exceeds
⌈
MN+1

2

⌉
. Similarly, if the number of antennas is more than

⌈
N+1
2

⌉
, the N -user IC

can achieve a total DOF of N .

Chapter Three looks into the single-antenna X channel in a quasi-static environment.

It is shown that with the introduction of a full-duplex relay, it is possible to exploit the total

DOF with a simple linear processing. The relay can be seen as a channel perturbing device

which enables the necessary variations to achieve the total DOF in the static medium. The

relative power scaling range for the relay is also determined to show that for any number

s, the relay output power can vary as P (logP )s and all the predicted DOF is guaranteed.
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The fourth chapter investigates a similar problem of N -user IC. It is shown first that

the approach taken in Chapter Three cannot be applied directly to the single-antenna case

with quasi-static channels. A new scheme is then proposed using a half-duplex MIMO relay

to perfectly align the interference terms. Instead of a randomizing role, the MIMO relay

re-structures the equivalent channel in such a way that perfect alignment is possible. It is

shown that a relay with at least (N−2)(N−1) coefficients can be used for achieving a DOF

of N in N -user IC. The asymptotic power requirements for the delay are also discussed at

the end of this chapter.

Chapter Five considers the N -user IC with the assumption that the transmitters can

listen to the signals from other users. This opens an opportunity for transmitter coopera-

tion during subsequent channel uses. It is shown that with the help of full-duplex nodes,

the transmitters can take a similar role as the one that relays have in the previous chap-

ters. Studying the number of equations as well as the number of independent variables, it

is derived that a DOF of
√

N
2

is possible for the N -user IC.

The last chapter contains a brief summary of the research as well as some future direc-

tions. Appendix A, presents a numerically stabilized iterative algorithm for the alignment

problem in Chapter Two. An algorithm for IA in IC with full-duplex transmitters (Chapter

Five) is described in Appendix B and finally, Appendix C proposes an intuitive method

for forcing K eigenvalues of a matrix to zero. The scheme avoids direct calculation of the

eigenvalues and thus greatly simplifies the involved complexity.
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Chapter 2

MIMO Interference Alignment

Interference alignment (IA) has recently become a hot topic in the area of wireless commu-

nication networks. The concept was first introduced in 2006 by Maddah-Ali et.al. in [37, 38]

where they determined the Multiplexing Gain (MG) of a 2×2-user MIMO X Channel with

different antenna configurations. Applying this idea to the single antenna K-user Interfer-

ence Channel (IC) in [12, 11], Cadambe and Jafar showed that if the channel coefficients

change in every time slot the Degrees of Freedom (DOF) can be as high as K
2

. The same

single-antenna/time-extension approach was then extended to the M×N -user X Channel

in [9, 10, 14] to prove that the DOF is upper bounded by MN
M+N−1 . Despite the fact that

these results are quite interesting, the fast fading requirement and the large number of time

slots needed for transmissions have kept this approach impractical. A rather appealing de-

velopment on IA in MIMO networks was investigated in [25] where the authors considered

a non-centralized algorithm for aligning the interference terms.

Directed towards existing wireless systems with multiple antennas, signal design for

MIMO networks was studied in block fading (quasi-static) environments. A block fading
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channel is a randomly-selected channel that stays unchanged over the whole transmission

period. Since the IA for MIMO often requires global knowledge (knowing the channels

between every transmitter-receiver pair in one central location), block fading assumption

significantly reduces the amount of Channel State Information (CSI) that needs to be

communicated. In [53], the authors adapt IA for usage in cognitive radio and achieve a

non-zero rate on a secondary Point to Point (P2P) MIMO link that uses the same resources

as the main MIMO link. Another paper in [62] demonstrates a solution based on finding

the eigen-values to achieve a DOF of K in the K-user MIMO IC where all the transmitters

and receivers have K − 1 antennas. The method presented in the paper offers a very small

DOF per antenna ( K
K−1 compared with the lower bound of K

2
). Other related works on

this topic that worth mentioning include [56, 23, 31, 65, 54, 64, 57].

As the IA concept has started maturing, the research concentration is shifted towards

practical considerations including efficient algorithms for beamformer design. In [55] the

authors prove that maximizing the number of total DOF for the K-user IC with an ar-

bitrary number of antennas in each transmitter and receiver is NP-hard. They propose

a distributed algorithm to maximize the system throughput based on Minimum Mean

Square Error (MMSE) criteria. A related paper looks at MMSE-based throughput maxi-

mization as a semi-definite program and considers robustness to imperfect CSI as an extra

condition [15]. Further optimization approaches to throughput maximization can be found

in [51, 52]. Finally, in [20] the authors report successfully testing a physical implementation

of IA for 3-user IC using MIMO-OFDM.

This chapter contains a unified approach for IA in MIMO X Channel and MIMO IC.

Assuming a symmetric setup (i.e. all the transmitters and receivers have the same number

of antennas), the minimum number of antennas needed for achieving one DOF per each
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transmitter-receiver pair is determined. Zero-forcing approach is used for deriving the

alignment requirements which are then reformulated into a matrix equation. The matrix

representation of the IA problem proves to be useful for deriving the iterative algorithm

that is used for finding the solutions. The algorithm along with the source codes have been

moved to the Appendix A.

2.1 System Model

The next few sections describe two popular network structures whose performance is usu-

ally limited by the unwanted interference. The MIMO models that are introduced here will

be used in the subsequent chapters as an underlying structure for describing all the signals

inside the network. A lot of aspects such as existence of a solution, its derivation and the

relation between system parameters remain unanswered at this stage and are delayed until

further details are known.

One final note before going into the details of the networks is that the models can

be applied to both real and complex transmissions. In other words, if the transmit and

receive information are assumed to be real, the channel gains, noise and all the parameters

involved for the communication will be real as well. Similarly, complex data transmission

is possible if all the signals in the network are assumed to be complex. It is obvious that

in this case each complex dimension is equivalent to two real dimensions.

2.1.1 Channel Definition

A network of M transmitters and N receivers is considered. It is assumed that all the

transmitters and receivers are equipped with K antennas. Therefore, the communication

9



channel between Transmitter i and Receiver j can be modeled as a K×K matrix called Hij

(i = 1, 2, . . . ,M and j = 1, 2, . . . , N). Unless stated otherwise, the transmission medium is

assumed to be block fading. In other words, all the channel matrices are randomly selected

based on a matrix distribution, but are kept constant over the whole communication period.

This is also called a static environment which is quite popular for modeling the channel

between two points. From practical point of view, the channels do change over time due

to the physical movements of the transmitter or receiver antennas as well as the objects

between them. The rate of such changes is however independent from transmission speed.

Therefore, it is always possible to adjust communication parameters in such a way that

the channel is practically static for the required amount of time. This is an important

property as most communication schemes based on MIMO IA require global knowledge

of the channel matrices. The channel information should be delivered to the users before

data communication starts. As a result, if the channel variations are too fast, the required

frequent updates waste a large portion of the valuable system resources. A slowly varying

channel, on the other hand, can be tracked blindly on the receiver side.

2.1.2 Communication Scheme for the X Channel

In the X Channel setup, every transmitter has a separate and independent data to be sent

to every receiver making a total of MN transmitter-receiver pairs, as depicted in Figure 2.1.

The information from Transmitter i to Receiver j is selected from a Gaussian codebook

and defined as a scalar xij. The one-dimensional data stream, xij, is sent using the multiple

antennas of Transmitter i by scaling a K×1 column vector named Tij. In other words,

the transmit signal from each of the K antennas is equal to one of the elements in Tijxij

vector. In all future references, this method of transmission is shortly noted as sending xij

10
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Figure 2.1: M×N -user X Channel along with its transmit and receive directions

in Tij direction and Tij is referred to as the transmit direction. The final transmit signal for

Transmitter i or Xi is constructed by adding all the partial signals for different receivers

together, yielding to

Xi = Ti1xi1 + Ti2xi2 + · · ·+ TiNxiN . (2.1)

The signal received by the multiple antennas of Receiver j or Yj is a superposition of the

Xi’s, each transformed by their corresponding channel matrix, as below

Yj = H1jX1 +H2jX2 + · · ·+HNjXN + Zj. (2.2)
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The last term in the equation, Zj, is the effect of the Additive White Gaussian Noise

(AWGN) which corrupts the signal on Receiver j.

In order to extract the portion of the Yj that contains the information from Transmitter

i to Receiver j, a linear combination of the Yj elements is computed. The resulting scalar

is named yij which corresponds to the reconstructed version of xij. The weights of the

linear combination are also put in a column vector defined as Rij resulting in the following

equation

yij = RH
ijYj. (2.3)

For easier reference, computing this linear combination is referred to as projection of the

received vector, Yj, in Rij direction. The vector Rij is also called the receive direction.

As the final step, the conditions for being able to estimate xij from yij are considered.

Due to its simpler and more straightforward relations, most of the results in the upcoming

sections are formulated based on zero-forcing approach. Using other methods such as

MMSE can deliver better performance specially in lower Signal to Noise Ratios (SNR),

but as far as the amount of total DOF is concerned both methods are equivalent and

the difference between the two schemes is just a constant shift in the throughput vs SNR

curves. Based on the zero-forcing method all the unwanted interference terms should be

zero as the following (i, i′ = 1, 2, . . . ,M and j, j′ = 1, 2, . . . , N)

RH
i′jHijTij′ = gijδ(i− i′)δ(j − j′), (2.4)

where gij’s are arbitrary non-zero scalars. If (2.4) holds for all the combinations of i, i′, j

and j′ then

yij = gijxij +RH
ijZj, (2.5)
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and the MIMO X Channel is decoupled into MN interference-free single-dimensional par-

allel channels with AWGN.

2.1.3 Communication Scheme for the Interference Channel

The setup for IC is quite similar to the X Channel and can even be considered as a special

case. Since it is a better match to real world applications, IC deserves having its own

model and is treated as a separate network. Very similar to the N×N -user X Channel,

IC setup consists of N transmitters and N receivers all equipped with K antennas. As

shown in Figure 2.2, each transmitter has an independent stream of information to send

to only one of the receivers, and reversely each receiver expects data from exactly one of

the transmitters. For simpler future references, the numbering of the transmitters and

receivers is re-ordered in such a way that Transmitter i sends data to Receiver i only

(i = 1, 2, . . . , N). The scalar data sample that is sent from Transmitter i to Receiver i

is declared as xi and is selected from a Gaussian codebook. Using multiple antennas on

Transmitter i, xi is sent in Ti direction, where Ti is a K×1 column vector. Therefore, the

transmit signal for Transmitter i is characterized as

Xi = Tixi. (2.6)

The received signal at Receiver j is defined as Yj and is determined from (2.2). Moreover,

the received scalar data stream at Receiver j, yj, is decoded by computing the projection

of the received signal, Yj in Rj direction according to

yj = RH
j Yj. (2.7)
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Figure 2.2: N -user Interference Channel, dashed paths carry interference only

Similar to the X Channel, the shared nature of the wireless medium makes the extraction of

data from unwanted interference quite challenging. The conditions that should be satisfied

in order to perform zero-forcing on the received signals are defined as

RH
j HijTi = giδ(i− j), (2.8)

with gi’s being non-zero scalars. Finally, satisfying the conditions for i, j = 1, 2, . . . , N ,

results in

yi = gixi +RH
i Zi. (2.9)

Therefore, the N -user MIMO IC is converted into N independent one-dimensional AWGN

channels that do not impose any interference on each other.
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2.2 Matrix Reformulation of the Interference Align-

ment Conditions

Based on the results from the previous sections, perfect alignment for the X Channel

requires that all the (MN)2 scalar conditions in (2.4) to be satisfied simultaneously. Simi-

larly, on the IC setup, there are N2 one-dimensional equations in (2.8) that should be true

to be able to extract data from all the unwanted interference terms. This section contains

a reformulation of these requirements in the matrix form which provides a more intuitive

view of the same problem.

The first step in re-defining the conditions is to put the channel matrices in a bigger

matrix that corresponds to the transfer function of the whole network. To this end, the

NK×MK-element matrix H is formed as

H =



H11 H21 · · · HM1

H12 H22 · · · HM2

...
...

. . .
...

H1N H2N · · · HMN


. (2.10)

This matrix relates the signals sent by each of the MK antennas of all the transmitters to

the NK antennas of all the receivers. The pre-processing coefficients on the transmitters’

15



side are put in the MK×MN matrix T defined as

TX =



T11 T12 · · · T1N 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 T21 T22 · · · T2N · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · TM1 TM2 · · · TMN


. (2.11)

Using T the signal that is sent over the transmit antennas can be computed from the

MN -dimensional data sent by the transmitters altogether. Finally, the projection of the

received signals which extracts the information from the channel output is constructed by

combining the receive directions into an NK×MN matrix named RX as the following

RX =



R11 R21 · · · RM1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 R12 R22 · · · RM2 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · R1N R2N · · · RMN


.

(2.12)

Based on these definitions, the alignment problem can be restated as

RH
XHTX = GX , (2.13)
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where GX is an MN×MN matrix defined as

GX =



g11 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 g21 0 · · · 0 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · gM1 0 · · · 0

0 g12 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 g22 · · · 0 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 0 gM2 · · · 0

...
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 · · · g1N 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · g2N · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · gMN



. (2.14)

Matrix GX has the property that there is only one non-zero element in every row or column.

In the case of all the non-zero elements of GX being one, the matrix is a special permutation

transform which is often called a Vectorized Transpose Matrix (identified as P
N,M

) that

permutes the column vector of an N×M matrix A (denoted by vec(A)) into the column

vector of its transpose as below

vec(AT ) = P
N,M
· vec(A). (2.15)

Similarly, applying the same approach to the N -user MIMO IC, the NK×N matrices
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TIC and RIC as well as N×N matrix GIC are defined as below

TIC =



T1 0 · · · 0

0 T2 · · · 0

...
...

. . .
...

0 0 · · · TN


, (2.16)

RIC =



R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · RN


, (2.17)

GIC =



g1 0 · · · 0

0 g2 · · · 0

...
...

. . .
...

0 0 · · · gN


. (2.18)

These definitions can be used to state the alignment conditions in a more compact form as

RH
ICHTIC = GIC . (2.19)

Having all the required definitions and relations, the interference alignment problem can

be easily characterized.

Problem Statement. Choose the non-zero portions of TX , RX and GX (or TIC, RIC and

GIC) in such a way that the subset of equations in (2.13) (or (2.19)) that correspond to

the zero elements of GX (or GIC) are satisfied1.

1It is straightforward to see that the equalities that correspond to the non-zero elements of GX are
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2.3 Number of Antennas (K)

As seen in the previous sections, the interference alignment problem for the M×N -user

X Channel can be converted into MN equations that should be satisfied simultaneously.

Investigating the structure of TX and RX reveals that each of them contains KMN non-

zero scalars that can be chosen to satisfy the equations in (2.13). Moreover, it is easy to

see that if (TX ,RX) is a solution to the problem, for any arbitrary diagonal matrix D with

non-zero diagonal entries,
(
TXD−1,RXD

H
π

)
is also another possible solution set for (2.13).

Dπ is a diagonal matrix whose diagonal entries are a permutation of the diagonal entries

of D such that

Dπ·PN,M
= P

N,M
·D. (2.20)

Therefore, to ensure that the solutions are unique, additional requirements should be put

on the columns of TX and RX . One possible choice is to enforce that the norm of the

columns which correspond to the same set of data streams to be equal or in terms of Tij

and Rij

THij Tij = RH
ijRij. (2.21)

As a result, the total number of equations to have a unique solution is (MN)2 + MN .

Comparing the number of equations with the total number of variables that can be changed

to satisfy the equations, yields to the following condition on the number of antennas

2K ≥MN + 1. (2.22)

Unfortunately, since the equations in (2.13) are non-linear, not much can be said regarding

trivially satisfied by scaling the columns of TX or RX . The same concept applies to the IC setup.
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M
2 3 4 5 6

N

2 3/3 4/4 5/5 6/6 7/7
3 4/4 5/5 6/7 7/8 8/10
4 5/5 6/7 7/9 8/11 9/13
5 6/6 7/8 8/11 9/13 10/16
6 7/7 8/10 9/13 10/16 11/19

M +N − 1/

⌈
MN + 1

2

⌉

Table 2.1: Number of antennas, K, in an M×N -user X Channel: Lower bound/Achievable

the existence of a solution for all different choices of H. Numerous recursive algorithms

exist, however, for determining the possible solution(s). Please refer to the Appendix A

to see a MATLAB listing of one of these algorithms which is based on Newton’s Method.

Based on the random tests, it is safe to claim that the set of equations are solvable for

a subset of H matrices (actually all the random matrices tested were solvable), but no

mathematical proof has been given regarding whether the measure of the non-solvable

matrices is zero or not.

Table 2.1 compares the number of antennas based on directly solving the equations

as presented here to the lower bound from [10]. As it can be seen, although the direct

approach has the minimum number of antennas in M×2, 2×N and 3×3 cases, it quickly

diverges from the lower bound as M and N increase. It should be however emphasized

that despite being inefficient, directly solving the equations offers at least one practical

method for interference alignment that can be used in existing MIMO wireless networks.

Similar to the X Channel, the number of antennas for N -user IC can be determined.

There are 2KN free variables in TIC and RIC to be adjusted for solving N2 equations.

20



N
2 3 4 5 6 7 8

K 2/2 2/2 2/3 2/3 2/4 2/4 2/5

2/

⌈
N + 1

2

⌉

Table 2.2: Number of antennas, K, in an N -user IC: Lower bound/Achievable

Moreover, there are N extra conditions on the norms of TIC and RIC columns. Therefore,

the number of antennas, K, should satisfy the following inequality

2K ≥ N + 1. (2.23)

In other words, using the approach presented in this section, the total DOF per antenna

is at most 2N
N+1

. While this value is less than N
2

, it offers a practical solution for quasi-

static MIMO with no need for infinite time-extensions, infinite channel precision or other

complex operations (required by other methods for achieving a DOF of N
2

). Table 2.2 lists

the number of antennas for the existing approach as well as the predicted values for the

lower bound.

2.4 Conclusion

This chapter describes the IA problem in two popular network setups namely X Chan-

nel and IC. Zero-forcing approach is used for determining the alignment equations. The

resulting model is then restructured to a form that is suitable for iterative root finding

algorithms. Additionally, the minimum number of antennas is specified based on the fact
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that the equivalent system of non-linear equations should not become over-determined (to

ensure that a solution exists for all channel instances). Based on this reasoning, the mini-

mum number of antennas to have a total DOF of MN in an M×N -user X Channel or a

total DOF of N in an N -user IC is respectively
⌈
MN+1

2

⌉
and

⌈
N+1
2

⌉
.
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Chapter 3

Relay-aided Interference Alignment

for the X Channel

Performance of the wireless networks with finite resources is limited by the amount of noise

at the receivers as well as the amount of interference from unwanted transmitters [29]. For a

constant noise power, the first limitation can be overcome by increasing the transmit powers

which in turn increases the likelihood of the signals being lost due to strong interfering

transmitters. Interference Alignment (IA) [38] is one of the possible methods to maximize

the performance by trying to achieve both objectives at the same time.

The alignment concept in IA comes from the idea that interference from different trans-

mitters is packed in a small portion of the receive space. Thus, no matter how big the

transmit powers are, each receiver can have a fraction in the receive space that is not occu-

pied with interference. That fraction can be used for interference-free data transmission.

Majority of the early results depend on extremely large number of dimensions for achiev-

ing the theoretical bounds for the total number of Degrees of Freedom (DOF). Increasing
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the number of antennas is one way to add to the dimensions which simplifies the IA in

networks. Gaining benefit from having more antennas has motivated the researchers to

investigate IA over multiple time intervals [33, 11]. It is worth noting that a time-extended

channel can be regarded as a Multiple-Input Multiple-Output (MIMO) channel. In fact,

transmit or receive signals are combined into blocks of K time slots and the equivalent

channel between each transmitter-receiver pair is viewed as a diagonal MIMO system. This

approach is applicable to time-varying single antenna systems where extension over time

results in an equivalent MIMO with non-equal diagonal channel matrices. By using this

technique, Cadambe and Jafar in [11] showed that the total DOF in the Interference Chan-

nel (IC) scales linearly with the number of users, provided that the channel is time-varying

from transmission to transmission.

Results obtained based on the time-extension approach rely on the global knowledge of

all the channel gains. Moreover, the time-extension method requires independent channel

variations to obtain distinct directions for each transmitter-receiver pair. While the fast

fading assumption is not unrealistic by itself, the necessity to know all the channel instances

inside a block at the start of the transmission proves to be impractical1. One way to

avoid the non-causal channel knowledge is suggested in [11] by extending the channel

in the frequency domain instead of the time. Replaced with frequency selectivity, the

requirement for channel variation still remains. Another approach is suggested in [45],

where realizations are paired and signaling is performed over such pairs. This technique

sends each transmit signal in two parts and the transmitter delays sending the second

part until a specific channel realization occurs (which depends on the channel gains during

the first transmission). As a result, depending on the dimensions of the channel and the

1All the transmitters and receivers should know the future channel gains in advance if they want to
align the interference.
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amount of channel variations, the required delay can become very large.

In a static channel, the proposed techniques based on time-extension are not applicable

because all of the channel matrices become a constant multiple of the identity matrix. In

this case, intended signal and interference occupy the same subspace and therefore they

cannot be separated based on the IA. In the recent works by Motahari et.al. in [41, 42],

it is proved that the application of IA is not restricted to MIMO systems and the full

DOF of single antenna networks can be achieved. In other words, contrary to the belief

that N -dimensional Euclidean spaces where N ≥ 2 are required for achieving the full DOF,

[41, 42] shows that one-dimensional systems provide the same foundation for IA, which can

result in achieving the full DOF of the system. Unfortunately, although their results are

valid for a group of channel conditions with measure one, there is a countable realization

of channels, i.e., channels with rational coefficients, to which their approach cannot be

applied directly.

The use of relays in a wireless network has been the addressed by many researchers.

In [22], the authors investigate the scaling laws for the throughput of a random network

with one source, one destination and n − 2 relays and show that the capacity of such a

network can scale with log(n). The benefits of cooperative use of the relays is also discussed

in a number of papers including [36, 34, 48]. On the IA context, using the deterministic

channel model in [40], it has been shown that relays are helpful to increase the number

of achievable DOF for some specific examples. Interesting results are presented in [13]

where the authors have proved that if a network is fully connected, the total DOF does not

depend on the number of relays operating in it. The amount of DOF in such a network

is only determined by the number of transmitters and receivers and how many antennas

each of them possess. In other words, introducing relays to a network might increase the
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sum-rate, but it does not change the total DOF. This statement is important for the results

that are presented in this chapter because it confirms that the achieved total DOF is in

fact optimal.

It is shown here2 that adding a single relay can change a static environment to an

equivalent time-varying one. Moreover, relays can impose wanted variations on the chan-

nel behavior by processing their input signals over time. Unfortunately, the amount of

variations that relays can add to a network is limited. As will be seen in the upcoming

sections, by relying on time extensions and a casual linear processing, relays can convert

the equivalent MIMO channel into a lower triangular with equal diagonal entries. In this

chapter, a novel cooperative scheme is introduced for static channels, which achieves the

available DOF of the X Channel. We also determine the required scaling factor for the

relay’s output power with respect to the power of the main transmitters.

The system model is described in Section 3.1. Section 3.2 presents a closed-form solution

for a group of MIMO X Channels. Section 3.3 is devoted to the characterization of the

total DOF along with asymptotic results. Finally, the chapter is concluded in Section 3.4.

3.1 Relay-Assisted Interference Alignment

In a quasi-static network, the total DOF is achievable for a set of channel realizations

with measure one [42]. However, using the authors’ approach, there are infinitely many

realizations where the total DOF cannot be achieved. In fact, there is no connected set

of channel realizations with achievable total DOF. To overcome this problem, a relay is

added to the network. Time extension together with a linear processing relay are enough

2The results presented in this chapter have been published in [49].
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to convert the quasi-static channel to an equivalent MIMO with a lower triangular channel

matrix. MIMO channels with non-identity channel matrices provide feasible IA by careful

design of the transmit and receive directions. Being the total DOF as the main criterion,

this chapter aims at designing optimum signaling schemes for such networks. To this end,

we consider the M×2-user X Channel.

In this section, we describe the system model and obtain the equivalent MIMO system

for this network. In the following sections, we investigate the performance of the X Channel

in which IA is used as part of the signaling.

3.1.1 Equivalent MIMO Channel

Consider a network of single antenna users operating in a quasi-static environment along

with a full duplex single-antenna relay. The relay listens to the transmit signals over

consecutive time slots and sends their linear combinations in the next slots. In the general

case, we assume that there are M transmitters and N receivers. It is also assumed that

a total of K time slots are used for sending one complex scalar data symbol from each

transmitter to its designated receivers.

For i = 1, 2, . . . ,M , j = 1, 2, . . . , N and k = 1, 2, . . . , K, Xi(k) is the signal that is sent

by Transmitter i during the kth time slot. After passing through the channel, the noisy

signals that are received by the relay and by the Receiver j are named Yr(k) and Yj(k),

respectively. The Additive White Gaussian Noise (AWGN) that corrupts the received

signals Yr(k) and Yj(k) during the kth time slot are denoted by Wr(k) and Wj(k) with

variances ω2
r and ω2

j , respectively.

The physical channel between Transmitter i and Receiver j is characterized by a com-
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plex scalar gain hij. Similarly, the complex scalar channel gains from Transmitter i to the

relay and also from the relay to Receiver j are denoted by hir and hrj, respectively. We also

assume that all of the channel gains remain unchanged over a signal block whose duration

is at least K time intervals. Using the above scheme, we can express the received signals

in terms of the transmit signals and the complex channel scalars as

Yr(k) =
M∑
i=1

hirXi(k) +Wr(k), (3.1)

Yj(k) =
M∑
i=1

hijXi(k) +Wj(k) + hrj

k−1∑
l=1

G(k, l)Yr(l). (3.2)

The complex scalar coefficients G(k, l) are used for scaling the signal that is received in the

time slot l and sent over the kth time slot.

Now if we extend the definition of a symbol to K time slots, the system can be viewed

as a network of K×K MIMO users. To observe this, the signals from each K consecutive

time slots are grouped to make a column vector, as is done for Xi(k) in the following:

Xi =



Xi(1)

Xi(2)

...

Xi(K)


. (3.3)

The vectors Yr, Wr, Yj and Wj are also defined in the same way. It is now easy to determine

Hij, the equivalent channel matrix from Transmitter i to Receiver j. If Hij(k, l) is defined
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as the complex scalar element in Row k and Column l of Hij, then

Hij(k, l) =


0 k < l

hij k = l

hrjG(k, l)hir k > l

, (3.4)

where k, l = 1, 2, . . . , K. Therefore, the equivalent MIMO channel matrix is a lower trian-

gular with equal diagonal entries. It is also noteworthy to emphasize that the relay gains

are integrated into Hij and, as it will be seen in the next sections, this integration plays

an important role in successfully aligning the interference directions. Similarly, using the

same approach, the equivalent noise vector in Receiver j is determined to be

Zj(k) = Wj(k) +
k−1∑
l=1

hrjG(k, l)Wr(l). (3.5)

To finish the characterization of the equivalent MIMO network, we need to write down

the input/output relationships. Using the original model in (3.1) and (3.2) along with

definitions for Hij and Zj (the vectorized form of Zj(k) as in (3.3)), we have

Yj = H1jX1 +H2jX2 + . . .+HMjXM + Zj. (3.6)

Therefore, using a relay with the time-extension scheme for single-antenna networks can

transform the time-domain relations into a pseudo MIMO network (with no relay), where

all the channel matrices have zeros on their upper triangular entries. The next section

describes a specific MIMO X Channel and determines the closed-form solutions for the IA

problem.
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3.2 M×2-User MIMO X Channel

We consider the M×2-user MIMO X Channel in which there are M MIMO transmitters

and 2 MIMO receivers where each transmitter wishes to send an independent stream of

information to each receiver making a total of 2M transmitter-receiver pairs. For i =

1, 2, . . . ,M and j = 1, 2, xij is the complex scalar data stream from Transmitter i to

Receiver j, which is precoded in the Tij direction. Therefore, Xi, the output vector for

Transmitter i that is sent over its multiple antennas, is

Xi = Ti1xi1 + Ti2xi2. (3.7)

The channel matrix between Transmitter i and Receiver j is denoted by Hij. Furthermore,

Receiver j gets a noisy version of data (mixed with interference) in vector Yj. Zj is also

the AWGN at the input of Receiver j. The relation between transmit and receive signals

can now be written as

Yj = H1jX1 +H2jX2 + . . .+HMjXM + Zj. (3.8)

Finally, to extract the specific information that is sent by Transmitter i to Receiver j (xij),

Receiver j computes the projection of its received vector, Yj, in the Rij direction. The

resulting scalar is named yij and corresponds to the reconstructed version of xij yielding

to

yij = RH
ijYj. (3.9)

Moreover, we define Pij as the average power for xij and Pi as the total power in Transmitter

i. The covariance matrix for Zj, the AWGN in Receiver j, is also assumed to be σ2
j I.
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I1

H11 -
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HM1

-
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-

Figure 3.1: Interference Aligned Transmit Directions for M×2-user X Channel

As will be seen in the rest of this section, such a network can be transformed into 2M

parallel interference-free channels (one for each transmitter-receiver pair) if all the users

of this network are equipped with M + 1 antennas. The system in Fig. 3.1 shows this

particular network configuration.

To perform IA, let I1 and I2 be two arbitrary directions assigned for interference in

the first and second receivers. As suggested in [10], the transmit directions to the first

receiver should be adjusted so that the signals are received in one direction (I2) by the

second receiver. The same argument is true regarding the transmit directions designed for

the second receiver and I1. Therefore, the transmit directions for Transmitter i are

Ti1 = H−1i2 I2, (3.10)

Ti2 = H−1i1 I1. (3.11)

The receive directions can also be easily determined by zero-forcing the unwanted signals

in either receiver. To obtain the desired directions, we first define the (M + 1)× (M + 1)
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matrices B1 and B2 as

B1 =

[
H11H

−1
12 I2 H21H

−1
22 I2 . . . HM1H

−1
M2I2 I1

]
, (3.12)

B2 =

[
H12H

−1
11 I1 H22H

−1
21 I1 . . . HM2H

−1
M1I1 I2

]
. (3.13)

Then, the receive direction Rij that can extract the noisy version of xij from Yj is selected

as the ith column of B−Hj . To observe this for the first receiver we have

RH
i1Hk1Tk1 = RH

i1Hk1H
−1
k2 I2 = δ(i− k), (3.14)

RH
i1Hk1Tk2 = RH

i1I1 = 0. (3.15)

Similar results can be obtained for the directions in the second receiver. Therefore, data

from Transmitter i to Receiver j can be extracted as

yij = RH
ijYj

= RH
ij (HijXi + Zj)

= RH
ij (HijTijxij + Zj)

= xij +RH
ijZj. (3.16)

It should be emphasized that in order to get 2M independent paths between all of the

transmitters and the two receivers, we need to arrange B1 and B2 such that they are

both invertible. Such a requirement can be easily satisfied by the appropriate selection

of interference directions I1 and I2. It is also obvious that even a random selection of

the interference directions guarantees the non-singularity condition for matrices in (3.12)
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and (3.13) almost surely. Therefore, using the transmit and receive directions as specified

above, a DOF of 2M for M×2-user X Channel is achieved. The same results exist for

2×M -user X Channel by reciprocity3.

Using the above scheme, we can further analyze the rates from each transmitter to each

receiver. Since

E
{
xijx

∗
ij

}
= Pij, (3.17)

E
{
ZjZ

H
j

}
= σ2

j I, (3.18)

using an independent Gaussian codebook for each transmitter-receiver pair, the link from

Transmitter i to Receiver j can support an average rate of up to Cij which is defined as

below4

Cij = E

{
log

(
1 +

Pij
σ2
j‖Rij‖2

)}
. (3.19)

Also, assuming that data streams from Transmitter i to the two receivers are uncorrelated

(E {xi1x∗i2} = 0), we have

Pi = E
{
XH
i Xi

}
= Pi1‖Ti1‖2 + Pi2‖Ti2‖2. (3.20)

To maximize the sum-rate when Pi is limited, the problem can be converted to the classic

3To select the directions for 2×M -user X Channel, set H ′ij = HH
ji and solve the equivalent M×2-user

X Channel to determine T ′ij and R′ij as described. Then the set of equations Tji = R′ij and Rji = T ′ij will
give the desired directions.

4Since the additive Gaussian noise values on the equivalent parallel channels are not independent, using
separate Gaussian codebooks is not optimal and joint coding schemes are needed. All the discussions about
the rate in this section and future sections use ergodic achievable rate for determining the DOF. Interested
readers can refer to [46, 32, 3] to get more elaborate results in terms of the ergodic capacity of the wireless
networks.
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water-filling form [18] and, for example, if

Pi >
∣∣∣σ2

1‖Ti1‖2‖Ri1‖2 − σ2
2‖Ti2‖2‖Ri2‖2

∣∣∣, (3.21)

then Pij’s can be found from

Pij‖Tij‖2 + σ2
j‖Tij‖2‖Rij‖2 =

1

2

(
Pi + σ2

1‖Ti1‖2‖Ri1‖2 + σ2
2‖Ti2‖2‖Ri2‖2

)
. (3.22)

In the next section, we will apply this model to determine the DOF achievable by an X

Channel under quasi-static conditions.

3.3 M×2-User X Channel with a Relay

In [38], a signalling scheme for the 2×2-user X Channel is proposed in which the interfering

signals at each receiver are perfectly aligned. This result is later generalized in [10], where

it is proved that a single-antenna X Channel consisting of M transmitters and N receivers

can asymptotically achieve maximum DOF of MN
M+N−1 . To this end, the authors extend the

transmit signals over multiple time symbols and treat the block as a single MIMO system.

To realize the expected DOF, the scalar channel gains must be different during consecutive

symbols. But, such a fast changing criteria for physical channels is not an easy requirement

to meet. Therefore, in practical situations, the channel variations might not be enough to

recover all the potentials of such networks.

In the previous section, we have used some of the results from [10] and restated the

signaling for M×2-user MIMO X Channel. In this section, we construct the transmit and

receive directions from the perfectly-aligned M×2-user MIMO X Channel to determine
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Figure 3.2: Interference alignment in M×2-user X Channel with the help of a relay

the conditions that ensure achieving the total DOF in our relay-aided setup. As it will be

seen, this scheme only uses the relay to randomize the static channel. We also investigate

the power requirement of the relay and determine its scaling factor to obtain the maximum

DOF. Our approach is equally applicable to frequency-extension scenarios in which most

of the results are applicable with minor or no changes.

3.3.1 DOF Achievability Conditions

As depicted in Figure 3.2, in this section we use a single-antenna relay to achieve all the

available DOF. In order to conveniently describe the equivalent K×K channel matrix from

Transmitter i to Receiver j, we define a strictly lower triangular square matrix G, which
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represents the relay coefficients and select G(k, l), its entry in Row k and Column l, as

G(k, l) =

 0 k ≤ l

G(k, l) k > l
k, l = 1, 2, . . . , K. (3.23)

In addition, the complex scalar parameter αij that regularly appears in subsequent equa-

tions is defined as

αij = −hirhrj
hij

. (3.24)

It should be noted that αij depends only on the gains of the available paths from Trans-

mitter i to Receiver j. Furthermore, Zj, the equivalent noise vector in Receiver j, which

contains the effects of both Wr and Wj, is

Zj = Wj + hrjGWr. (3.25)

It is evident that the equivalent MIMO noise vector is not uncorrelated anymore and the

covariance matrix is

E
{
ZjZ

H
j

}
= ω2

j I + ω2
r |hrj|2GGH . (3.26)

The equivalent MIMO channel can now be expressed using G, αij and hij as

Hij = hij (I − αijG) . (3.27)

Since the diagonal entries of the lower triangular matrix G are all zeros, it does not contain

any non-zero eigenvalues. Therefore, its characteristic polynomial can be written as f(λ) =

λK and, considering the fact that every matrix satisfies its own characteristic equation, we

can obtain f(G) = GK = 0. Hence, G is a nilpotent matrix and we can easily formulate
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the inverse of the channel matrix as

H−1ij =
1

hij

K−1∑
k=0

αkijG
k. (3.28)

For the remainder of this section, we will limit the discussions to the M×2 case. This

particular network configuration is important because perfect IA can be performed and

closed form relations exist. In the previous section we presented the encoding and decoding

functions for the M×2-user X Channel. We also described how the power assignment for

transmitters should be adjusted to maximize the sum-rate. The results are used in this

section to determine the achievable DOF. Starting from the definitions and the model from

the previous section we set K = M + 1, therefore, the ith column of B1 in (3.12) becomes

Hi1H
−1
i2 I2 =

hi1
hi2

I2 +

(
hi1
hi2
− hr1
hr2

) M∑
k=1

αki2G
kI2. (3.29)

We also define the square matrix Φ2 as

Φ2 =

[
I2 GI2 . . . GMI2

]
. (3.30)

Noticing that the first k rows in Gk are all zeros, it is easy to show that Φ2 is a lower

triangular matrix. We also use (3.29) to decompose B1 into B1 = Φ2Ψ2, where Ψ2 is

Ψ2 =



h11
h12

. . . hM1

hM2(
h11
h12
− hr1

hr2

)
α12 . . .

(
hM1

hM2
− hr1

hr2

)
αM2

...
. . .

...(
h11
h12
− hr1

hr2

)
αM12 . . .

(
hM1

hM2
− hr1

hr2

)
αMM2

Φ−12 I1


. (3.31)
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Similarly, matrices Φ1 and Ψ1 can be defined to have B2 = Φ1Ψ1. As previously stated,

non-singularity of both B1 and B2 is a sufficient condition for getting 2M DOF. Therefore,

it is necessary to arrange all Φ1, Φ2, Ψ1 and Ψ2 matrices such that they are invertible. The

lower triangular matrices Φ1 and Φ2 are independent from the physical channel and are

only a function of the interference directions I1, I2, and the relay coefficients matrix, G.

As a result, it is fairly easy to adjust I1, I2 and G such that both Φ1 and Φ2 have non-zero

diagonal entries to secure their non-singularity prerequisite. It can be easily proved that

as long as all the lower triangular elements of G and all the entries in I1 and I2 are non-

zero, Φ1 and Φ2 are guaranteed to be invertible, although this is not a necessary condition.

The other two matrices, Ψ1 and Ψ2, mainly depend on the random channel gains and are

non-singular almost surely (it should be emphasized that each of these matrices contains

an M×M Vandermonde matrix). Care must be taken, however, in the selection of I1 and

I2 to prevent the last column of Ψ1 and Ψ2 from becoming linearly dependent on the first

M columns.

The preceding discussion sheds light on the critical role of the relay to provide the

additional DOF. Having non-zero elements in the lower triangular section of G results in

Φj matrices becoming non-singular which in turn leads to achieving the DOF predicted by

IA. Moreover, although a random selection of G is sufficient for the validity of the results in

this section, a lot more can be done by optimizing the free parameters of the scheme (G and

Ij) based on the channel coefficients (hij, hir and hrj). Optimization does not offer further

increase in DOF, but can be used to maximize the gains of the equivalent parallel channels.

In practice, however, there should be a trade-off between the lower power requirements and

the extra complexity imposed by searching for the right parameters instead of just randomly

choosing them.
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For the traditional 2×2-user X Channel, we can also use a half duplex relay, thus

making the relay structure much simpler. To this end, we change the behavior of the

relay such that it listens and stores the received signals during the first two time slots

and then sends their linear combination over the third time slot. Equivalently, another

scheme that offers the same results would be a relay that listens to the received signal

in the first time slot and sends different scaled versions of its received signal during the

next two slots. In both schemes, the relay coefficients matrix is all zeros, except for the

last row (or the first column in the latter case). Although both schemes offer the same

performance, the former has only one transmission period (which saves power), while the

latter requires storing only one signal (which saves memory). In any case, all of the results

from the current section are equally applicable to both scenarios. In this part we present

a new method for achieving all of the available DOF for the M×2-user X Channel in a

quasi-static environment. It is interesting to see that the channel variation requirement

for the IA is easily waived by adding a simple randomizing relay. Since global knowledge

about all the channel parameters is presumed, block fading assumption (in contrast to fast

fading) offers a more feasible approach to implement a practical system using IA.

3.3.2 Asymptotic Power Analysis

After demonstrating that the addition of a relay can help in realizing the available DOF,

we also determine how the relay power should scale with respect to the power of the main

transmitters. To this end, we define the relay gain, g, as the ratio of the transmit power

of the relay to the relay’s received power. To find a simple relation between the relay

coefficients matrix and the ratio of powers, we assume that the vector received by the
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relay, Yr, is white Gaussian5. In this case g is obtained from

g2 =
E
{
Y H
r G

HGYr
}

E {Y H
r Yr}

=
1

M + 1
tr
(
GGH

)
=

1

M + 1

K∑
k=1

k−1∑
l=1

|G(k, l)|2. (3.32)

We also define the normalized relay coefficients matrix, Ĝ, as

Ĝ =
1

g
G. (3.33)

Using the above definition, we can rewrite Φ2 from (3.30) as

Φ2 = Φ̂2



1 0 . . . 0

0 g . . . 0

...
...

. . .
...

0 0 . . . gM


, (3.34)

where Φ̂2 is defined similar to Φ2 with G replaced by Ĝ. The same relation exists for Φ1

as well. For future references, we name the diagonal matrix in (3.34) as D(g). Now, it is

possible to observe how directions change as the relay gain, g, goes to zero or to infinity.

5It should be emphasized that the white Gaussian assumption for Yr is not really required. If the
received signal has a different distribution, the relay gain is still defined by (3.32), but it will not be the
ratio of the average powers anymore. In fact, one can choose any other matrix norm that measures the
amount of the relay’s amplification or attenuation, and the results will still be valid.
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Relay-limited Power Scaling

If the power of the transmitters can scale faster than the relay power, it is possible to have

situations where g approaches zero and we need to quantify how the powers should scale in

order to guarantee achieving all the available DOF. This scenario can happen in practical

applications when we want to add a low-cost (for example, solar-powered) relay and need

to know about the amount of fluctuation required to randomize a quasi-static network.

Using the previous results, the norm of the transmit directions for the small values of g

can be written as

lim
g→0
‖Ti1‖2 =

1

|hi2|2
‖I2‖2. (3.35)

Similarly, we have

lim
g→0

gMB−H1 = lim
g→0

gM Φ̂−H2 D

(
1

g

)
Ψ−H2

= Φ̂−H2



0 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 1


Ψ−H2

, R̂1. (3.36)

It is easy to observe that all the entries of R̂1 are non-zero almost certainly. Therefore, if

the ith column of R̂1 is denoted by R̂i1, we have

lim
g→0

gM‖Ri1‖2 = ‖R̂i1‖2 6= 0. (3.37)

41



Also σ2
j , the equivalent noise variance in Receiver j, can be obtained from (3.26) as

lim
g→0

σ2
j = lim

g→0

1

M + 1
tr
(
ω2
j I + g2ω2

r |hrj|2ĜĜH
)

= ω2
j . (3.38)

Substituting (3.35), (3.37) and (3.38) in (3.22), as g goes to zero, the limit of Pij is written

as

lim
g→0

Pij = lim
g→0

aijPi + bijg
−M , (3.39)

where aij and bij are non-zero real constant scalars that are independent from g. Therefore,

using (3.19), the asymptotic rate between Transmitter i and Receiver 1 can be derived as

lim
g→0

Ci1 = lim
g→0
E

{
log

(
1 +

Pi1
σ2
j‖Ri1‖2

)}
a
= E

{
lim
g→0

log

(
1 +

Pi1
σ2
j‖Ri1‖2

)}
b
= E

{
lim
g→0

log
(
1 + a′i1g

MPi + b′i1
)}

c
= lim

g→0
E
{

log
(
1 + 1 + a′i1g

MPi + b′i1
)}

(3.40)

where a′i1 and b′i1 are two constants that do not depend on g. In the derivations, (a) and (c)

are based on Lebesques’s dominated convergence theorem6 and (b) is written using (3.37)

and (3.39). The asymptotic rates from Transmitter i to Receiver 2 can be determined in

a similar way.

Now let us assume P1 = P2 = . . . = PM = P and g = (logP )−s for an arbitrary positive

6Dominated convergence theorem provides sufficient conditions under which the limit and integral
operators can be swapped, please refer to [4] for more information.
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constant s, then

lim
P→∞

Cij

log P
σ2
j

= lim
P→∞

log
(
P (logP )−sM

)
logP

= 1− lim
P→∞

sM log logP

logP

= 1. (3.41)

and the output power of the relay scales as

Pr ∝ g2P =
P

(logP )2s
. (3.42)

We can control the growth rate for the output power of the relay through parameter s and

make it as slow as desired, bearing in mind that as long as s is positive all the available

DOF can be utilized. Figure 3.3 shows the slope of the sum-rate as a function of transmit

power P and the relay gain g for the 2×2-user X Channel. DOF is defined as the value of

the slope when the power tends to infinity.

Transmitter-limited Power Scaling

For the applications in which there are more constraints on the output power of the main

transmitters than the relay’s power, scenarios might arise where the relay gain, g, becomes

very large. A popular example includes a network of battery operated mobile users with

channels that have very slow fluctuations over time. Using a similar approach, we deploy

a fixed relay that can add enough perturbations to the equivalent MIMO channels to

achieve higher DOF. To investigate the behavior of this scheme, we start by determining

the asymptotic limits of the transmit and receive directions for a large g. Starting with
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Figure 3.3: Simulation results for slope of the sum-rate in 2×2-user X Channel in a relay-
limited case

the transmit directions to the first receiver, Ti1, we have

lim
g→∞

g−M‖Ti1‖2 =
|αi2|2M

|hi2|2
‖ĜMI2‖2. (3.43)

Similarly, as the relay gain goes to infinity, B−H1 , the matrix that contains the receive

directions in its columns becomes

lim
g→∞

B−H1 = lim
g→∞

Φ̂−H2 D

(
1

g

)
Ψ−H2

= Φ̂−H2



1 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


Ψ−H2

, Ř1. (3.44)
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Checking the square matrix Ř1 shows that all of the entries in the first row are non-zero

almost surely, therefore

lim
g→∞
‖Ri1‖2 = ‖Ři1‖2 6= 0, (3.45)

where Ři1 is the ith column of Ř1. Moreover, the noise variance in Receiver j can be

demonstrated as

lim
g→∞

g−2σ2
j =

ω2
r |hrj|2

M + 1
tr
(
ĜĜH

)
. (3.46)

And finally, after substituting the results we can determine that

lim
g→∞

Pij = lim
g→∞

cijg
−MPi + dijg

2, (3.47)

for nonzero constants cij and dij that are independent from g. Consequently, the rate from

Transmitter i to Receiver 1 is

lim
g→∞

Ci1 = lim
g→∞
E
{

log
(
1 + c′i1g

−(M+2)Pi + d′i1
)}

, (3.48)

where c′i1 and d′i1 are constants. Therefore, if we set g = (logP )t for t > 0 and use the equal

power assumption for all transmitters, we can write the DOF for the link from Transmitter

i to Receiver j as

lim
P→∞

Cij

log P
σ2
j

= lim
P→∞

log
(
P (logP )−t(M+2)

)
logP

= 1. (3.49)

Hence, if the output power of the relay scales with P (logP )2t, the use of all the available

DOF is ensured.
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3.4 Conclusion

In this chapter we analyzed the benefits of adding a single-antenna relay to a M×2-user X

Channel. We showed that inserting a simple relay into a quasi static environment can help

the network to achieve a higher DOF. We also derived the scaling relation between the

relay output power and the output power of the main transmitters in order to guarantee

achieving all of the available DOF.

An advantage of the results presented in this chapter is that they can be easily applied

to a network of single-antenna mobile users who cannot easily benefit from the IA technique

in a static medium by themselves.
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Chapter 4

Relay-aided Interference Alignment

for Interference Channel

Despite the recent advances in Interference Alignment (IA) [11, 33, 43], it is still far from

being applicable to a practical system as there are difficult conditions on the channels

that must be met. First and foremost, the required number of dimensions (number of

antennas or amount of time/frequency extensions) are very large. Moreover the achievable

Degrees of Freedom (DOF) depends on the precision of the channel parameters. Extremely

precise channel gains are needed in order to get all the available DOF. There is a parallel

line of work directed towards adding extra elements to the network in order to make IA

much easier instead of further increase in DOF. The result is having more DOF than what

traditional approaches can offer, but the inherent complexity of the IA is traded for the cost

of additional nodes in the system. In [49], a relay is added to randomize the quasi-static

M×2-user X Channel which induces the needed time variations by changing the relay

gains over time. In another work the authors combine network coding with IA to provide
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a bidirectional link in M -user Interference Channel (IC) with the help of a relay [24].

This chapter presents a similar idea1. It considers the M -user IC along with a half

duplex MIMO relay. The relay stores the received signal vector during the first phase of

its operation. It then transforms the vector into another one by multiplying it by a matrix

and sends the new signal during the second phase. It is shown that carefully adjusting

the transformation matrix results in a feasible zero-forcing solution in Euclidean space. In

other words, the resulting linear transform changes the channel structure in such a way

that signal and interference are easily separable2. After determining the required relay

gains, the scaling range for relay’s output power is also presented. This range is important

as it describes how fast/slow the relay power should change (with respect to the power of

the main transmitters), in order to guarantee achieving a DOF of M
2

in this network.

The system model along with the relay scheme is described in Section 4.1. The relay’s

transformation matrix that provides zero-forcing solutions for IC is fully characterized in

Section 4.2. Section 4.3 analyzes the asymptotic behavior of the relay gains and finally,

the chapter is concluded in Section 4.4.

4.1 Relay Assisted Time Extension

In this section, we describe a relay with store-transform-forward scheme. Operation of

such a relay in the network of single-antenna users has an overall effect of modifying the

equivalent channel between each transmitter and receiver. By extending the definition of

a symbol to multiple time-slots, it is shown that the channel becomes a lower triangular

1The results presented in this chapter have been published in [50].
2As will be revealed in Section 4.2, using the randomizing relay approach in [49, 50] cannot help IA for

M -user IC. Therefore the relay gains are adjusted instead of being selected randomly.
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matrix. Since the relay gains control some of the elements of the equivalent channel, they

can be adjusted to help aligning the interference directions.

Although the system model described in this section uses an arbitrary full duplex MIMO

relay with K time extensions, in the next section we will show that K = 2 is enough to

achieve M
2

DOF for M -user IC. Therefore the operation of a half duplex relay is sufficient

for our scheme. Moreover, in Section 4.3, we will show that as long as the product of the

number of relay’s transmit antennas by the number of relay’s receive antennas is more than

(M − 1)(M − 2) a DOF of M
2

is guaranteed.

4.1.1 System Model

Consider a network of single antenna users operating in a quasi-static environment along

with a MIMO relay (as depicted in Figure 4.1). The relay listens to the transmit signals

over consecutive time slots and sends their linear combinations during the next slots. In

this chapter, the study is limited to M -user IC. Therefore, there are M transmitter-receiver

pairs and each transmitter wishes to send an independent data stream to its corresponding

receiver. The relay uses U antennas for reception and V antennas for transmission. It is

also assumed that K time slots are used for sending one complex scalar data symbol from

each transmitter to its designated receiver.

For i, j = 1, 2, . . . ,M , u = 1, 2, . . . , U , v = 1, 2, . . . , V and k = 1, 2, . . . , K, Xi(k) is the

signal that is sent by Transmitter i during the kth time slot. After passing through the

channel, the noisy signals that are received by the uth receive antenna of the relay and

Receiver j are named Yru(k) and Yj(k), respectively. The Additive White Gaussian Noise

(AWGN) that corrupts the received signals Yru(k) and Yj(k) during the kth time slot is
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Figure 4.1: Using relays to assist interference alignment in M -user IC

denoted by Wru(k) and Wj(k) with variances ω2
ru and ω2

j , respectively.

The physical channel between Transmitter i and Receiver j is characterized by a com-

plex scalar gain hij. Similarly the complex scalar channel gains from Transmitter i to the

uth receive antenna of the relay and also from the vth transmit antenna of the relay to

Receiver j are denoted by hiru and hrvj, respectively. We also assume that all the channel

gains remain unchanged over a signal block whose duration is at least K time intervals.

Using the above scheme, we can express the received signals in terms of the transmit signals
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and the complex channel scalars as

Yru(k) =
M∑
i=1

hiruXi(k) +Wru(k), (4.1)

Yj(k) =
M∑
i=1

hijXi(k) +Wj(k)+

k−1∑
l=1

V∑
v=1

U∑
u=1

hrvjGuv(k, l)Yru(l). (4.2)

The complex scalar coefficients Guv(k, l) are used for scaling the signal that is received in

the time slot l from the uth receive antenna of the relay and sent by the vth transmit

antenna of the relay over the kth time slot.

Now if we extend the definition of a symbol to K time slots, the system can be viewed

as a network of K×K MIMO users. To observe this, the signals from each K consecutive

time slots are grouped to make a column vector, as is done for Xi(k) in the following

Xi =



Xi(1)

Xi(2)

...

Xi(K)


. (4.3)

The vectors Yru , Wru , Yj and Wj are also defined in the same way. It is now easy to

determine Hij, the equivalent channel matrix from Transmitter i to Receiver j. If Hij(k, l)
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is defined as the complex scalar element in Row k and Column l of Hij then

Hij(k, l) =



0 k < l

hij k = l
V∑
v=1

U∑
u=1

hrvjGuv(k, l)hiru k > l

, (4.4)

where k, l = 1, 2, . . . , K. Therefore, the equivalent MIMO channel matrix is lower triangu-

lar with equal diagonal entries. It is also noteworthy to emphasize that the relay gains are

integrated into Hij, and as it will be seen in the next sections, this involvement plays an

important role in successfully solving the alignment equations. Using a similar approach,

the equivalent noise vector in Receiver j can be determined to be

Zj(k) = Wj(k) +
k−1∑
l=1

V∑
v=1

U∑
u=1

hrvjGuv(k, l)Wru(l). (4.5)

To finish the characterization of the equivalent MIMO network, the input/output relations

along with the encoding/decoding functions should be determined. Using the original

model in (4.1) and (4.2) along with definitions for Hij and Zj (the vectorized form of Zj(k)

as in (4.3)), we have

Yj = H1jX1 +H2jX2 + . . .+HMjXM + Zj. (4.6)

Therefore, the time-extension scheme basically transforms the one-dimensional relations of

the single-antenna network into a pseudo MIMO model. Moreover, the store-transform-

forward relay converts the equivalent channels from purely diagonals into lower-triangular

matrices.
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The encoding-decoding functions are the same as the MIMO interference alignment

schemes. The scalar transmit data stream, xi, is encoded in Ti direction to form the signal

for Transmitter i as below

Xi = Tixi. (4.7)

Similarly, the received scalar data stream, yi, is decoded by computing the projection of

the received signal in Ri direction according to

yi = RH
i Yi. (4.8)

In the next sections, we will apply this model to determine the amount of achievable

DOF for IC under quasi-static conditions.

4.2 Interference Alignment for M-User IC

Following the MIMO system model defined in the previous section, it is straightforward

to determine and solve the interference alignment relations for M -user IC. To this end, we

start from the 3-user IC whose closed-form solution has already been presented by other

authors. The transmit and receive directions should be selected such that the following set

of equations are satisfied

Receiver 1: R1 ⊥ H21T2 ‖ H31T3, (4.9)

Receiver 2: R2 ⊥ H32T3 ‖ H12T1, (4.10)

Receiver 3: R3 ⊥ H13T1 ‖ H23T2. (4.11)
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Assuming that the channel matrices are non-singular, solving the equations simultaneously

results in

T1 ‖ LT1, (4.12)

where the loop gain matrix L is defined as

L , H−113 H23H
−1
21 H31H

−1
32 H12. (4.13)

This means that T1 should be the eigenvector of L. Other directions can be easily deter-

mined from

T2 ‖ H−123 H13T1, (4.14)

T3 ‖ H−132 H12T1, (4.15)

R1 ⊥ H21H
−1
23 H13T1, (4.16)

R2 ⊥ H12T1, (4.17)

R3 ⊥ H13T1. (4.18)

Since all the channel matrices take the same form as in (4.4), L is a lower triangular with

equal diagonal entries. It can be readily verified that choosing T1 as the eigenvector of L

results in all data and interference being in the same direction and thus non-separable3.

This is where the importance of having a relay comes into the picture. Since the relay gains

can change arbitrarily, they can be selected to form the equivalent channel structures in a

3A K×K lower triangular matrix with equal diagonal entries and non-zero elements in the lower triangle
has K equal eigenvalues and only one linearly independent eigenvector. The first K− 1 entries of the only
eigenvector are all zeros. As a result, any data that is sent in the eigenvector direction ends up in the
same one-dimensional space which is not enough for separating the intended data from interference at the
receivers.
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way that aligning the interference directions becomes feasible. To this end, the relay gains

are adjusted such that L becomes a multiple of identity matrix. Using this approach, any

arbitrarily chosen T1 satisfies (4.12). The other directions are computed from T1 as before

and it can be seen that the resulting scheme is able to achieve a DOF of 3
2
.

A good thing about this approach is that it can be easily extended. For example, in a

4-user IC, alignment of the interference directions dictates that

Receiver 1: R1 ⊥ H21T2 ‖ H31T3 ‖ H41T4, (4.19)

Receiver 2: R2 ⊥ H12T1 ‖ H32T3 ‖ H42T4, (4.20)

Receiver 3: R3 ⊥ H13T1 ‖ H23T2 ‖ H43T4, (4.21)

Receiver 4: R4 ⊥ H14T1 ‖ H24T2 ‖ H34T3. (4.22)

If all the channel matrices are invertible, the set of equations for transmit directions

in (4.19) to (4.22) are equivalent to

T1 ‖ H−113 H23T2 ‖ H−112 H32T3 ‖ H−112 H42T4, (4.23)

T2 ‖ H−123 H13H
−1
14 H24T2, (4.24)

T3 ‖ H−132 H12H
−1
14 H34T3 ‖ H−134 H24H

−1
21 H31T3, (4.25)

T4 ‖ H−142 H12H
−1
13 H43T4 ‖ H−143 H23H

−1
21 H41T4. (4.26)

Unlike the three-user IC in the traditional MIMO setting, it is not possible to satisfy

all the equations simultaneously, as the number of equations is more than the available

variables. If a MIMO relay is added to this time-extended scenario, it increases the number

of free parameters needed to solve the equations altogether. To this end, T1 is selected
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randomly and T2, T3 and T4 are determined from the equations in (4.23). Next, the

relay gains are adjusted such that the rest of equations in (4.24) to (4.26) are satisfied by

forcing the involved matrices to become multiples of identity matrix. Finally, when all the

transmit directions satisfying the alignment equations are found, the receive direction in

each receiver can be easily determined by computing the vector that is orthogonal to the

interference direction in that receiver.

This approach can be easily generalized for more users. In M -user IC there are M(M−

2) alignment equations which can be divided into two categories. The first M − 1 equa-

tions determine all the transmit directions based on T1. The rest are M(M − 2)− (M − 1)

equations which need to be satisfied using something other than choosing the transmit di-

rections (for example relays in the existing context). In the next section, we will determine

the amount of required complexity to achieve this.

4.2.1 DOF Achievability Equations

To ensure that there is enough freedom in the selection of the relay gains, we need to have

more flexibility than what one single-antenna relay can provide. To this end, we will use a

MIMO relay with time-extension of two (K = 2). In this scheme, during the first time slot,

the main transmitters send data while the receivers as well as the relays are listening. In

the second time slot, both main transmitters and relays send information to the receivers.

Therefore, using K = 2 assumption results in a half duplex relay which has much less

implementation complexity. Using this approach, the indices k and l can be dropped from

the relay coefficients, Guv(k, l). The equivalent MIMO channel matrix from Transmitter i
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to Receiver j can be easily determined as

Hij = hij (I − εijQ) , (4.27)

where Q is

Q =

 0 0

1 0

 , (4.28)

and εij is defined as below

εij =
−1

hij

V∑
v=1

U∑
u=1

hrvjGuvhiru . (4.29)

Therefore, noticing that Q2 = 0, the loop-gain matrix for the 3-user IC in (4.13) can be

rewritten as

L =
h23h31h12
h13h21h32

(
I + (ε13 − ε23 + ε21 − ε31 + ε32 − ε12)Q

)
. (4.30)

As a result, in order to make L a multiple of identity matrix, it is sufficient to force the

complex scalar factor before Q to become zero as below

ε13 − ε23 + ε21 − ε31 + ε32 − ε12 = 0. (4.31)

Based on (4.29), εij is a linear combination of the relay gains and the condition in (4.31)

can be further simplified into a weighted sum of Guv. The equivalent equation has non-zero

solutions as long as the number of relay gains is more than one. Similarly, in the 4-user IC,

the required conditions in (4.24) to (4.26) can be easily converted into five linear equations

in terms of the relay gains, thus requiring at least six independent variables to ensure

non-zero solutions.
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Using the same approach it can be shown that the number of relay gains required to

satisfy all the aligning relations for M -user IC is

M(M − 2)− (M − 1) + 1 = (M − 1)(M − 2). (4.32)

For a MIMO relay, the number of relay gains would be the product of the number of

antennas for transmit and receive (or UV ). Therefore, as long as UV ≥ (M − 1)(M − 2),

the directions that satisfy all the equations can be found.

Additionally, multiple single-antenna relays can be used for this scheme. In this case,

U = V and Guv is non-zero for u = v only (v = 1, 2, . . . , V ). This means that at least

(M − 1)(M − 2) single antenna relays are needed to provide M DOF in a double time slot

frame.

4.3 Asymptotic Analysis of the Relay Gains in IC

Previous sections showed that the M -user IC can easily provide M
2

DOF as long as a MIMO

relay is added to the network. The relay operates in two phases. During the first phase it

captures the signals from the main transmitters, and during the second phase it sends the

stored information to the receivers. An aspect that might be missed during this process

is the amount of power that is needed by the relay in order to ensure DOF achievability.

To this end, we assume that all the transmit and receive directions are scaled such that

their norm is one. Moreover, it is obvious that if Guv is a solution, any scaled version of

the relay coefficients such as gGuv also satisfies all the relations. As a result, if the latter

solution for the relay coefficients is used, εij in (4.29) is replaced with gεij resulting in the
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new family of channel matrices as below

Ĥij = hij (I − gεijQ) , (4.33)

Therefore, g can be used as the relay gain and is a measure of the ratio between the

relay’s transmit power to the receive power of the relay. The equivalent scalar gain from

Transmitter i to Receiver i can be written as (j and k are two arbitrarily selected numbers

such that j 6= i and k 6= i, j)

RH
i ĤiiTi

a
= RH

i Ĥji

(
Ĥ−1ji ĤiiĤ

−1
ik Ĥjk

)
Tj

= RH
i Ĥji

hiihjk
hjihik

(
I + g (εji − εii + εik − εjk)Q

)
Tj

b
= g

hiihjk
hjihik

(εji − εii + εik − εjk)RH
i ĤjiQTj

c
= g

hiihjk
hik

(εji − εii + εik − εjk)RH
i Tj

, gγi, (4.34)

where (a) is due to the alignment property ĤikTi = ĤjkTj, (b) uses the relation RH
i ĤjiTj =

0 and (c) is because of Q2 = 0. γi is also a constant that does not depend on g. Similarly,

σj, the equivalent noise variance in Receiver j can be written as

σ2
i = E{ZH

i RiR
H
i Zi}

= RH
i

 ω2
i 0

0 ω2
i + g2

V∑
v=1

U∑
u=1

|hrvj|2|Guv|2ω2
ru

Ri

, αi + g2βi, (4.35)
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where αi and βi are positive real constants not depending on g. Finally, using (4.34)

and (4.35) the asymptotic rate between Transmitter i and Receiver i as a function of relay

gain is determined to be

Ri(g) = log

(
1 +

g2|γi|2P
αi + g2βi

)
, (4.36)

where P is the transmit power which is assumed to be equal among all transmitters4. A

necessary condition for this step to be valid is that the rate as a function of g should satisfy

the conditions of the Lebesgue’s dominated convergence theorem. Since we are looking into

the sum-capacity of parallel Gaussian channels with single-antenna nodes it can be verified

that the derivations are valid.

The DOF-achieving relay gains are a group of functions g = f(P ) such that

lim
P→∞

Ri (f(P ))

logP
= 1. (4.37)

Moreover if g = f(P ) = 1
(logP )t

we have

lim
P→∞

Ri (f(P ))

logP
= lim

P→∞

log
(

1 + (logP )−2t|γi|2P
αi+(logP )−2tβi

)
logP

= lim
P→∞

log(αi+(logP )−2tβi+(logP )−2t|γi|2P)−log(αi+(logP )−2tβi)
logP

= 1. (4.38)

As it can be seen the dominant terms for a large P do NOT depend on the parameter t and

therefore setting g = 1
(logP )t

can ensure achieving the DOF for both positive and negative

t’s. This means that the relay gain can go to zero (for t < 0) or infinity (for t > 0) and

4Optimizing the output powers for each transmitter individually can only enhance the sum-rate by a
constant amount and does not offer any benefits from DOF point of view.
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DOF is still achieved. The output power of the relay in this case, can be easily determined

to scale as P
(logP )t

. Therefore, depending on the sign of t, the output power of the relay can

rise at a slower/faster rate than the power of the main transmitters and the DOF of the

system is not affected.

4.4 Conclusion

In this chapter we analyzed the benefits of adding relays to a fully connected M -user IC.

We showed that adding a relay to a network with quasi-static channels can increase the

achievable DOF by providing additional freedom to solve zero-forcing equations. We also

derived the required scaling for relay gains to guarantee achieving the DOF for M -user IC.
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Chapter 5

Interference Alignment for

Full-Duplex Networks

As shown in the previous chapters, Interference Alignment (IA) becomes easier with the

introduction of a few relays to the network. The relays add free dimensions that can be

utilized during the signal design. The results from the last two chapters show that in

order to perfectly align the directions, the number of required single-antenna relays (or the

number of antennas in the MIMO relay) should increase with the number of users in the

system. The additional hardware costs and complexity can limit the performance benefits

offered by the relays. As a result, it is always favorable to minimize the number of elements

in a network.

A question that arises from the study of the relay-aided schemes is whether the trans-

mitters or receivers can act as relays or not. Examining the effects that a relay has when

operating in a network, it is shown that relays can be easily impersonated by a full duplex

transmitter or receiver. According to the transmission schemes of the relay-aided align-
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ments, the relays send a linear combination of what they receive. The relay transmit data

is a weighted sum of all the transmit information which is un-decodable by itself. The

signal that a full-duplex transmitter hears is exactly the same thing. On the relay-aided

schemes, the relay chooses a particular transform that makes the alignment much easier.

The full-duplex transmitters could do the same thing. Finally, the relays add cooperation

to the (otherwise blind) transmitters. The full-duplex transmitters can also support co-

operation to beamform the signals at subsequent transmissions. All of these hints suggest

that the full-duplex property in a network can replace the relay tasks. This chapter will

show that this is in fact true.

The chapter describes a new method for IA which takes advantage of the full-duplex

property of the transmitters. Using the proposed scheme, it is shown that the total De-

grees of Freedom (DOF) can be as high as
√

N
2

for N -user Interference Channel (IC).

This amount is less than the well-known upper limit of N
2

, but it is remarkably easier to

achieve. This chapter is organized as follows. Section 5.1, describes the system model.

The transmission scheme and alignment requirements are presented in Sections 5.2 and 5.3

respectively. Section 5.4, studies two similar network structures that can benefit from the

same ideas. Achievability of the results is discussed in Section 5.5 and finally, the summary

is presented in Section 5.6.

5.1 System Model

A fully connected network of N transmitters along with N receivers is considered. Trans-

mitter i wishes to send an independent data stream to Receiver i for i = 1, 2, . . . , N . It is

also assumed that all the transmitters are full-duplex and have the capability of listening
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to the signals sent by others during their own transmission period. All the transmitters

and receivers are single antenna.

The communication medium between all the nodes is assumed to be quasi-static. The

scalar channel coefficients from Transmitter j to Transmitter i and from Transmitter j

to Receiver i are denoted by gij and hij respectively (i, j = 1, 2, . . . , N). The N×N

transmitter-to-transmitter channel gain matrix, G, is constructed from these scalar coeffi-

cients by putting gij in the ith row of the jth column. The transmission scheme presented

in the subsequent sections does not make any use of the reciprocity property of the chan-

nel. Therefore, the results of this chapter are valid regardless of gij being equal to gji or

not. The N×N transmitter-to-receiver channel gain matrix, H, is also built from hij in a

similar way.

The signal sent by Transmitter j in time slot k is denoted by tk(j) (k = 1, 2, . . . , K).

After going through the channel, the corrupted signal that is received by the Transmitter i

is named qk(i). Similarly, Receiver i collects rk(i) in time slot k. Finally, the corresponding

Additive White Gaussian Noise (AWGN) that is picked up by the ith transmitter as well

as Receiver i are defined as uk(i) and vk(i) respectively. Using these definitions, the signals

received during time slot k by the Transmitter i and ith Receiver can be described as

qk(i) =
N∑
j=1

gijtk(j) + uk(i) (5.1)

rk(i) =
N∑
j=1

hijtk(j) + vk(i). (5.2)

In order to characterize the equivalent channel model in the matrix form, the column vector
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Tk is defined as below

Tk =



tk(1)

tk(2)

...

tk(N)


. (5.3)

Column vectors Qk, Rk, Uk and Vk are also defined accordingly. Using these definitions,

the channel input/output model in vectorized form can be written as

Qk = G·Tk + Uk (5.4)

Rk = H·Tk + Vk. (5.5)

Next section describes the transmission scheme to be used with this model.

5.2 Communication Scheme

The fully connected network of N transmitter-receiver pairs with the input-output channel

model described in (5.4) and (5.5) can be perfectly decoupled into N independent parallel

channels by forcing the unwanted interference terms to zero. As explained in the system

model, there are N independent scalar data streams to be sent from Transmitter i to

Receiver i (one data stream for each transmitter-receiver pair). Data for each user is gen-

erated from an independent Gaussian source and is represented by x(i) for ith transmitter.

Similar to (5.3), the column vector X is defined based on individual data samples from

different transmitters.

The vectorized transmit signal at time slot k is generated as a linear combination of X
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(for simplicity of representation Q0 , X), and all the received signals from previous time

slots as below

Tk =
k−1∑
m=0

Dk,m·Qm, (5.6)

where Dk,m represents a diagonal matrix whose ith diagonal entry is the coefficient that

the ith transmitter uses for scaling the received signal from time slot m for transmission

at kth time slot. It should be emphasized that the diagonal property of Dk,m is enforced

by the fact that Transmitter i can only have access to its own data (x(i)) and previous

received signals (qm(i) for m = 1, 2, . . . , k− 1). Therefore the scaling coefficients for qm(i′)

(i′ 6= i) have to be zero.

After K uses of the channel, the receivers have collected K signals as defined in (5.5).

The original transmit signal, X, will be decoded in the receivers by computing a linear

combination of the Rk’s as below

X̂ =
K∑
m=1

DK+1,m·Rm. (5.7)

Similar to (5.6), the involved matrices, DK+1,m, are diagonal (m = 1, 2, . . ., K). The ith

diagonal entry in DK+1,m determines how the signal from time slot m on the Receiver i

should be scaled in the linear combination for decoding the original transmit information

or x(i).

The following lemma shows that the decoded signal, X̂, is actually a noisy linear trans-

formation of X. This result can be used for removing the unwanted interference terms.

The linear transformation depends on the scaling coefficients, Dk,m. Therefore a suitable

set of these coefficients should be selected in order to recover the original transmit infor-

mation contained in X. In other words, the recursive use of the equations in (5.4), (5.5)
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and (5.6) along with (5.7) for the last stage could yield to a structure that helps removing

the unwanted interference terms.

Lemma. The term Tk in the following set of equations

Q0 = X

T1 = D1,0·Q0

Q1 = G·T1 + U1

T2 = D2,0·Q0 +D2,1·Q1

Q2 = G·T2 + U2

T3 = D3,0·Q0 +D3,1·Q1 +D3,2·Q2

...

Qk−1 = G·Tk−1 + Uk−1

Tk = Dk,0·Q0 +Dk,1·Q1 + . . .+Dk,k−1·Qk−1,

can always be expressed as

Tk = Pk·X +Wk, (5.8)

regardless of the values of X, G and Dk,m. Additionally, Pk and Wk can be recursively

determined from the following

Pk = Dk,0 +
k−1∑
m=1

Dk,m·G·Pm

Wk =
k−1∑
m=1

Dk,m·
(
G·Wm + Um

)
.

(5.9)

Finally, after K uses of the channel, the decoded sequence, X̂, as defined in (5.7) is related
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to X through the following equation

X̂ = P·X +W, (5.10)

where P and W are characterized by

P =
K∑
m=1

DK+1,m·H·Pm

W =
K∑
m=1

DK+1,m·
(
H·Wm + Vm

)
.

(5.11)

Proof. The proof is easily done by induction. For k = 1, T1 can be written as

T1 = D1,0·Q0

= P1·X +W1.

Moreover, assuming that the lemma holds for all the values up to k− 1 (inclusive), Tk can

be expressed as

Tk =
k−1∑
m=0

Dk,m·Qm

= Dk,0·X +
k−1∑
m=1

Dk,m·
(
G·Tm + Um

)
= Dk,0·X +

k−1∑
m=1

Dk,m·

(
G·
(
Pm·X +Wm

)
+ Um

)

=

(
Dk,0 +

k−1∑
m=1

Dk,m·G·Pm

)
·X +

(
k−1∑
m=1

Dk,m·
(
G·Wm + Um

))

= Pk·X +Wk.
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The second part of this lemma which determines the relation between X̂ and X follows

directly from the definitions in (5.5) and (5.7) applied to (5.8) and (5.9).

According to the lemma, the described scheme relates X̂ to X through the matrix P .

If the Signal to Noise Ratio (SNR) is high, the effect of W , the additive Gaussian noise

part of X̂, can be neglected and it is possible to use the zero-forcing method. To this

end, Dk,m diagonal matrices are chosen such that all the entries in P that correspond to

interference terms are zero. As a result, estimating X from X̂ is possible by forcing P

to become a diagonal matrix. If this condition can be met, the reconstructed signal in

Receiver i solely depends on the original data send by Transmitter i. Since this is true

for all the transmitter-receiver pairs, N independent units of information are transmitted

simultaneously in K time slots, yielding to a total DOF of N
K

.

Next section looks into the requirements on Dk,m that ensure being able to make P a

diagonal matrix.

5.3 Alignment Coefficients

The set of equations to diagonalize P depend on the diagonal entries of Dk,m matrices.

It is, however, not clear how many coefficients can be chosen independently and yield a

different solution (i.e. a solution which is not obtainable by scaling of another one). To

this end, the next three lemmas can be used for determining the requirements on selection

of the coefficients.

Lemma. If a set of Dk,m coefficients correspond to P through the equations in (5.9)
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and (5.11) then for any arbitrary matrix such as A,

D′k,m =

 Dk,m·A k = 1, 2, . . . , K and m = 0

Dk,m otherwise

correspond to P ′k = Pk·A and P ′ = P·A.

Proof. Similar to the previous lemma, proof is done by induction. Lemma holds for P ′1 as

P ′1 = D′1,0

= D1,0·A

= P1·A.

Also if the lemma statement is true for all the values up to k − 1 then

P ′k = D′k,0 +
k−1∑
m=1

D′k,m·G·P ′m

= Dk,0·A+
k−1∑
m=1

Dk,m·G·Pm·A

=

(
Dk,0 +

k−1∑
m=1

Dk,m·G·Pm

)
·A

= Pk·A.

Proving the relation for P follows directly from the definition in (5.11).

Lemma. If Pk matrices are generated by Dk,m coefficients, then for any arbitrary matrix
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B, the new coefficients D′′k,m defined as

D′′k,m =

 B·Dk,m k = K + 1 and m = 1, 2, . . . , K

Dk,m otherwise

can be used to generate P ′′ = B·P.

Proof. It directly follows from the definition of matrix P in (5.11).

Lemma. If Dk,m coefficients construct Pk matrices, then for any arbitrary scalar c and

any integer index l = 2, 3, . . . , K

D′′′k,m =


cDk,m k = l and m = 0, 1, . . . , l − 1

1
c
Dk,m m = l and k = l+1, l+2, . . . , K+1

Dk,m otherwise

can construct P ′′′k and P ′′′ matrices such that

P ′′′k =

 cPk k = l

Pk otherwise

P ′′′ = P
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Proof. It is obvious that for k = 1, 2, . . . , l − 1, P ′′′k = Pk. Also

P ′′′l = D′′′l,0 +
l−1∑
m=1

D′′′l,m·G·P ′′′m

= cDl,0 +
l−1∑
m=1

cDl,m·G·Pm

= cPl

and for k = l + 1, l + 2, . . . , K,

P ′′′k = D′′′k,0 +
k−1∑
m=1

D′′′k,m·G·P ′′′m

= Dk,0 +
k−1∑
m=1
m 6=l

Dk,m·G·Pm + cDk,l·G·
1

c
Pl

= Pk

The proof for P is done in the same way.

According to the lemmas, if A = D−11,0 and B = D−1K+1,K , a set of coefficients that corre-

spond to a diagonal P can be converted into another set, D∗k,m, where D∗1,0 = D∗K+1,K = I

and P∗ = B·P·A which is also diagonal (considering the fact that A and B are both

diagonal matrices).

Therefore, without any loss in generality, it is assumed that three out of all the Dk,m

coefficients (k = 1, 2, . . . , K + 1 and m = 0, 1, . . . , k − 1) are preset matrices whose values

can not be changed (D1,0 and DK+1,K are Identity matrices and DK+1,0 that is never

used in the equations is an all-zero matrix). The rest of the coefficients (i.e. a total of

(K+1)(K+2)
2

− 3 diagonal matrices) can be selected (almost) freely to satisfy the alignment
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conditions.

The last lemma shows that there is one more internal dependency between the coeffi-

cients that should be taken out. Defining the scalars cl =
√

N
Trace(Dl,0·DH

l,0)
for l = 2, 3, . . . , K,

and applying the last lemma repeatedly results in a new set of coefficients named D†k,m

that correspond to the same P but are forced to have the following additional relations

Trace(D†l,0·D
†H
l,0 ) = N . (5.12)

Having all the missing pieces together, it is now possible to characterize the total DOF

with respect to N , the number of users. In order to make P diagonal, N2 −N equations

need to be satisfied. There are also K − 1 additional conditions in (5.12) which make the

coefficients unique. Considering the fact that each diagonal coefficient matrix, Dk,m, has N

independent scalar variables that can be independently modified to satisfy the equations,

a necessary condition to have a feasible solution is

N2 −N +K − 1 < N

(
(K + 1)(K + 2)

2
− 3

)
. (5.13)

Reordering the terms yields to

(
K +

3

2
− 1

N

)2

> 2N +
17

4
− 5

N
+

1

N2
. (5.14)

Therefore, N
K

, the number of total DOF achievable by this scheme, can be upper bounded

by

N

K
<
N
√

N
2

+ 17
16
− 5

4N
+ 1

4N2 + 3N
4
− 1

2

N + 1− 1
N

. (5.15)
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Reiterating this result, any N -user IC, can transfer N independent data streams (one for

each transmitter-receiver pair) in K time slots as long as N and K satisfy the inequality

in (5.15). The limit on the total achievable DOF scales with
√

N
2

for large number of users.

The theoretical limit on the total DOF is N
2

and although a few methods have already been

proposed to achieve that limit, they are still too complex and require a large number of

dimensions to be close enough to N
2

. The scheme presented here has a smaller upper limit

but is much more efficient for getting close to that bound. Table 5.1 contains a comparison

between the proposed scheme and two of these methods.

5.4 Other Network Topologies

The benefits offered by the full-duplex property of the nodes are not limited to the exact

structure to which the proposed scheme has been applied. The next two sections show

that the same communication scheme can be utilized in other networks.

5.4.1 N-User IC with Full-Duplex Transmitters and Receivers

If the receivers are able to send and listen simultaneously, they can play the same role

as the full-duplex transmitters and help to achieve even a higher DOF. In this case the

network is treated as having 2N nodes (N transmitters and N receivers). The 2N×2N

matrix G is defined from the scalar channel coefficients between every two nodes. The 2N

dimensional column vector Tk is defined as the transmit signal during the kth time slot.

The first N elements of Tk correspond to the signals sent by the N transmitters and last N

elements correspond to that of the N receivers. The same definition applies to Qk which

contains the received signals from 2N nodes at time slot k. The N independent scalar
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information that should be sent are also put in the first N elements of the 2N dimensional

column vector X and finally, the last N elements of X are set to zero. Based on these

definitions, the channel input-output model can be described as in (5.4).

Similar to (5.6), on each time slot, all the 2N nodes send a weighted sum of the signals

received in the previous time slots. Since the receiver nodes do not have the original

information, their corresponding scales (the last N elements on the main diagonal of Dk0)

should be zero. After K time slots, X̂ , TK+1 and X are related through (5.8) with PK+1

characterized by (5.9). Therefore, in order to recover the original information, the N×N

sub-matrix in the bottom left corner of PK+1 has to be diagonal.

Working through the number of variables as well as the number of equations the fol-

lowing inequality can be written as

N2 −N +K − 1 < 2N
K(K − 1)

2
+ 2N(K − 1). (5.16)

After simplification, the N
K

which is the total achieved DOF for this scheme is upper

bounded by

N

K
<
N
√
N + 5

4
− 3

2N
+ 1

4N2 + N
2
− 1

2

N + 1− 1
N

, (5.17)

which states that the bound on the DOF scales with
√
N for large number of users (an

improvement by a factor of
√

2 with respect to the original scheme).

5.4.2 N-User Wireless Ring with Full-Duplex Nodes

The wireless ring is a fully connected network with N numbered nodes. It is in fact a special

IC where transmitters and receivers are actually the same nodes and the indexes of the
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intended receivers are a derangement1 of the indexes for their corresponding transmitters.

It is always possible to re-label the nodes in such a way that for i = 1, 2, . . . , N − 1, User

i shares a piece of information with user i + 1 and User N sends its data to the first

indexed user. Throughout this section, the latter description for the data flow is used for

determining the alignment requirements.

Investigating the equations for the IC with full-duplex transmitters reveals the sim-

ilarities between the two models. The channel input-output relation for wireless ring is

represented by (5.4). Additionally, the same equation in (5.6) is used for describing the

transmission scheme. Finally, after K time slots, all the nodes have a linear combination of

their original transmit signals characterized by PK+1 in (5.8) and (5.9). In order to make

the information from the transmitters decodable at their intended receivers, (PK+1)ij, the

element at Row i and Column j of PK+1 should satisfy the following conditions

(PK+1)ij =


Any Value j = i

6= 0 j = i− 1 mod N

0 otherwise

. (5.18)

As a result, the inequality that makes the underlying system of equations under-determined

can be written as

N2 − 2N +K − 1 < N

(
(K + 1)(K + 2)

2
− 3

)
, (5.19)

which is very similar to (5.13) and yields to the following upper bound for the achievable

1A derangement is a permutation in which none of the objects appear in their ’natural’ (i.e., ordered)
place. For example, the only derangements of (1, 2, 3) are (2, 3, 1) and (3, 1, 2).
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DOF

N

K
<
N
√

N
2

+ 9
16
− 5

4N
+ 1

4N2 + 3N
4
− 1

2

N − 1
N

. (5.20)

5.5 Solution Availability

The previous sections described the equations relating the transmit coefficients to the

alignment requirements. A necessary condition in (5.13) was also presented which was

then used to find an upper bound for the DOF using the proposed scheme. Proving that

the upper bound is in fact achievable is tied to establishing whether the underlying system

of equations is solvable or not. Each of the equations is a multivariate polynomial whose

degree is at most K − 1. As a result if K > 2, the set of equations becomes non-linear and

the proof for existence of a solution is not straightforward. In [65], the authors use results

from Algebraic Geometry to prove that a similar set of non-linear equations are solvable

almost surely. In their proof, every equation is treated as an Algebraic Curve and therefore

determining a solution for the set of equations leads to finding the intersection of all the

corresponding curves. Finally, Bézout theorem and its extensions [30, 19] are applied to

prove that there are a minimum number of points that lie on all the curves.

It is believed that a mathematical proof similar to that of [65] is possible for the

set of equations developed in this chapter. It should also be noted that the condition

in (5.13) actually makes the underlying system of equations under-determined (the number

of unknowns is more than the number of equations) and an under-determined system has

infinite number of solutions most of the time. Assuming that a solution actually exists,

there are a number of methods (mostly iterative) to find an approximate set of coefficients

that is close to the solution with respect to any given resolution. Since all the equations are
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polynomials, the Jacobian Matrix is well-defined for all values. Therefore, both Newton

and Secant methods [5] can be used for finding the coefficients. Appendix B describes

a reformulation of the recursive equations in (5.9) and (5.11) which is better suited for

iterative algorithms. A MATLAB source code is also included that solves the system of

equations using Newton approach.

5.6 Conclusion

This chapter studies the benefits offered by the use of full-duplex nodes in the context of

IA. If the transmitters can listen to what others are sending, they can use that information

cooperatively for interference removal. Using the zero-forcing method, it is shown that the

total DOF for N -user IC can scale with
√

N
2

.
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Chapter 6

Summary and Future Work

In the last few chapters the benefits of introducing a relay to a wireless network has been

studied. It is shown that a simple relay that just records what it receives and then sends

a linear combination of those signals can be very helpful for achieving a higher Degrees

of Freedom (DOF) with a much easier scheme. What makes the scheme even more useful

is the fact that the output power of the relay can be adjusted based on the applications.

In other words, it is possible to setup a wireless network with battery operated mobile

users and add one or more fixed relays that are permanently plugged into power sources to

induce the changes needed in the system in order to easily perform Interference Alignment

(IA). Reversely, a network of fixed base stations in a quasi-static medium can benefit from

a simple battery-operating relay that enables the network to offer more DOF. In all of

these examples the linear coefficients in the relays become a part of the equivalent channel

structure and thus can be adjusted such that easier and more efficient IA becomes possible.

Using the insight from the first few chapters, it was shown in Chapter Five that full-

duplex transmitters can act as relays. Full-duplex transmission actually provides coop-
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eration between transmitters which is then used for suppressing the interference terms.

Although not proved explicitly, the same cooperation is possible if receivers are assumed

to have the full-duplex transmission capability. The communication scheme for the full-

duplex nodes is very similar to that of the relays. They should listen to what is being

communicated and then send linear combinations of the stored signals (along with the

original signals) over the future transmissions. The positive side of the proposed method

is the amount of total DOF that can be achieved (
√

N
2

for N -user IC), which is more than

the other methods based on MIMO zero-forcing. Unfortunately the underlying non-linear

system of equations that should be solved does not have a closed-form solution and thus

numerical methods must be used.

6.1 Future Research Directions

All the results in this thesis have been developed under infinite Signal to Noise Ratio (SNR)

assumption. Large SNR values simplify the throughput equations greatly and along with

zero-forcing method provide simple closed-form answers for the DOF. In reality however,

existing wireless systems do not operate with infinite SNR. Depending on the application,

the operational range of the SNR can be quite low. Under these conditions, assigning equal

power to different transmitters will not be optimal anymore and further optimization is

necessary for maximizing the sum-rate. Additionally, in the low SNR region, using zero-

forcing approach results in amplifying the noise power which in turn shuts down some of

the links. In these cases, it is much better to optimize the total throughput based on the

Minimum Mean Square Error (MMSE) approach.

Most of the schemes presented here assume that all the channel coefficients are known
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in one central location. A number of conditions must be met in order to satisfy this

requirement. Firstly, the receivers should be able to determine high-resolution estimates of

the channel coefficients. This is not true most of the time, as the receivers can only have

noisy versions of the transmit signals and even if the original transmit vectors are known,

the reliability of the channel coefficients still depends on the noise power. Secondly, since

the receivers should report back the channel coefficients, the available estimates used for

IA suffer from channel aging due to channel variations over time. Therefore there is always

residual interference terms due to imperfect alignment which add to the noise power on the

receivers. An efficient channel estimation and tracking algorithm is needed to minimize

these two effects in a distributed manner. It might be even possible to integrate alignment

with tracking and thus waive the requirement for a central processing/alignment engine.

Perfect relays have been used in some of the schemes presented in the thesis. In reality,

it is very hard to synchronize the time between all the nodes. Additionally, the signal

sent by a relay is received in different times by the receivers due to the difference in the

distance. Therefore, there will be timing mismatches between the signals originating from

different transmitters and/or relays. The effect of such timing errors can be modeled as a

phase shift which if known in advance can be integrated in the alignment phase. In the

case of moving nodes, the impact of timing errors is much more severe and its dependence

on the throughput should be studied. In the mobile environments, alignment algorithms

can be adapted based on the space-time schemes that are resistant to such issues.

Interference alignment is still in its early stages of development. The current alignment

schemes are either pure theoretical or lacking important details for practical implementa-

tion. It is still a far-fetched goal to achieve the theoretical bounds in larger networks. A

longer term research topic could be looking into this problem from simplicity standpoint.
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Appendix A

An Iterative Algorithm for MIMO

Interference Alignment

This appendix describes the implementation of an algorithm that can be used for finding

the solutions to the equation sets in (2.13) and (2.19). A few definitions are needed before

describing the algorithm. The matrix-valued function F is defined as

F (T ,R) = RHHT − G. (A.1)

The algorithm starts from a randomly selected initial point and on each step computes the

incremental changes to the transmit and receive matrices defined as ∆T and ∆R in such

a way that the new matrix output of the function F becomes closer to the all zero matrix

(thus solving the equation F (T + ∆T ,R+ ∆R) = 0). To this end the incremental steps

should satisfy the following equation

F (T ,R) +RHH∆T + ∆RHHT = 0. (A.2)
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Moreover, the following condition should also be satisfied in order to ensure that the norms

of the corresponding columns of T and R are equal1

diag
(
RHR+ 2∆RHR

)
= P

N,M
· diag

(
T HT + 2T H∆T

)
, (A.3)

where, the function diag(A) returns the diagonal entries of the square matrix A as a column

vector and P
N,M

is the Vectorization Transpose Matrix as defined in (2.15) which converts

the column vector of a matrix into the column vector of its transpose (please refer to the

codes for more information).

The equations in (A.2) and (A.3) are linear in terms of ∆T and ∆RH and thus can be

solved through matrix inversion. The resulting incremental updates are then applied to T

and R and the algorithm is repeated until a sufficiently close solution is found or is failed

due to non-convergence,

The following codes are written in MATLAB scripting language and can be used for

solving the alignment problems for IC as well as the X channel. The codes heavily utilize

the properties of Kronecker products and column vector operators which can be found in

classical matrix calculus textbooks. The first code (mimo ic solver.m) is for the N -User

IC and the second code (mimo x solver.m) is for the M×N -User X channel.

Source codes are moved to here. Alternatively, they can be obtained by

sending an email to behzad@nourani.net.

1This is a sufficient condition, conveniently modified from the original definition of the norm to make
sure that the relations are kept linear for both real and complex coefficients.
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Appendix B

An Iterative Algorithm for

Full-Duplex Interference Alignment

Checking the the recursive equations in (5.9) and (5.11) reveals that it is very complex

to compute the gradients of Pk and P matrices with respect to Dk,m coefficients. An

alternative matrix decomposition for the P is presented in this appendix which can greatly

simplify the gradient computation. A new kN dimensional column vector Ak is defined as

Ak =



T1

T2
...

Tk


, (B.1)

where Tk’s are the transmit vectors as defined in (5.6). Limiting the study to the cases

were D1,0 = I1, the matrix Bk that generates Ak from Ak−1 can be easily determined from

1This assumption bears no loss in generality, please refer to the lemmas in Chapter Five
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below

Ak =



I 0 · · · 0

0 I · · · 0

...
...

. . .
...

0 0 · · · I

Dk,0 +Dk,1G Dk,2G · · · Dk,k−1G


Ak−1

, BkAk−1.

(B.2)

Similarly, the equation in (5.7) is used to describe the recovered information as a function

of AK

X̂ =

[
DK+1,1H DK+1,2H · · · DK+1,KH

]
AK

, CK+1AK .

(B.3)

Finally, using the fact that A1 = T1 = X and combining the last two relations together

results in

X̂ = CK+1BKBK−1· · ·B2X

= PX.

(B.4)

This matrix decomposition of P is very helpful because each of the Dk,m coefficients appears

in one of the partial matrices only. This property greatly simplifies describing the gradient

of P with respect to each of the coefficient matrices. The following code uses MATLAB

scripting language to find a set of coefficients that diagonalize P for K = 3.

Source codes are moved to here. Alternatively, they can be obtained by

sending an email to behzad@nourani.net.
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Appendix C

Eigenvalue Placement Algorithm

A lot of matrix-based interference alignment problems end up in adjusting the elements of

an N×N matrix A(x) in such a way that an N×K vector V (x) (K < N) can be found to

satisfy

A(x)·V (x) = 0, (C.1)

where 0 is an all zero matrix. Matrices A(x) and V (x) are both declared as functions

of the vector x to emphasize their dependence on a set of scalars. The dimension of

x is often needed to be as small as possible and is determined from N and K. In the

alignment context, matrix A(x) is usually the equivalent transfer function from one of the

transmitters to a receiver which depends on the channel gains as well as a few free variables

such as relay coefficients, pre-coding scales or the linear factors operating on the received

signals. Regardless of their exact definition or role, the main purpose of these free variables

which are defined as x is to provide the required freedom to satisfy the conditions needed

for (C.1). The transmitter-receiver pair whose equivalent transfer function, A(x), satisfies

these conditions can use the subspace generated by the column vectors of V (x) for sending
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data to other receivers without posing any unwanted interference on the intended receiver.

Assuming that the column vectors of V (x) are linearly independent, the rank of this

matrix should be K. Therefore, solving the problem in (C.1), is equivalent to finding the

vector x such that A(x) has K zero eigenvalues. In this case, the columns of V (x) are the

eigenvectors that correspond to the zero eigenvalues. To this end, Newton’s Method as well

as Quasi-Newton (Secant) Methods can be used in order to solve for vector x. This family

of iterative algorithms are based on the function gradients and require approximating

Jacobian or Hessian matrices. Derivatives of eigenvalues with respect to matrix elements

have been addressed extensively in the literature [47, 39, 44, 1]. But unfortunately, the

derivatives become too complex as soon as the matrix has equal eigenvalues. Besides

complexity issues, the use of this approach to solve the problem in (C.1) quickly results in

a numerically unstable algorithm, as it is hard to label various eigenvalues that are very

close to each other (refer to [1] for more information).

The approach presented here is quite efficient, as it tries to push all the K eigenvalues

towards zero at the same time. To this end, using an intuitive indirect method, the

algorithm avoids all the complexities that are inherent to finding solutions of eigensystems.

Before describing the algorithm, a very useful set of equations is defined as below.

C.1 Newton’s Identities

Newton’s Identities also known as the Newton-Girard formulae relate two types of sym-

metric functions. Using these identities, one can determine the power sum series from the

elementary symmetric polynomials and vice versa. As a result, the sum of kth power of

all roots of a polynomial can be expressed in terms of the polynomial coefficients without
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directly finding those roots.

Let x1, x2, . . . , xN be an arbitrary set of variables, the kth power sum for this set is

defined as (k ≥ 1)

pk(x1, x2, . . . , xN) = xk1 + xk2 + . . .+ xkN . (C.2)

Moreover for the same set of variables, the elementary symmetric polynomial (the sum of

all distinct products of k distinct variables) is expressed as

e0(x1, x2, . . . , xN) = 1

e1(x1, x2, . . . , xN) = x1 + x2 + . . .+ xN

e2(x1, x2, . . . , xN) =
N∑

i,j=1
i<j

xixj

...

eN(x1, x2, . . . , xN) = x1x2. . .xN

ek(x1, x2, . . . , xN) = 0 for k > N .

Using these definitions, the Newton’s Identities can be stated as (for k ≥ 1)

kek(x1, x2, . . . , xN) =
k∑
i=1

(−1)i−1ek−i(x1, x2, . . . , xN)·pi(x1, x2, . . . , xN). (C.3)

C.2 Application to the Eigenvalues of a Matrix

Recalling from linear algebra, c(λ), the characteristic polynomial of the square matrix A,

is a polynomial whose roots are eigenvalues of that matrix. If the eigenvalues of A are
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defined as λi

c(λ) = λN + c1λ
N−1 + . . .+ cN−1λ+ cN (C.4)

= (λ− λ1)(λ− λ2) . . . (λ− λN) (C.5)

=
N∑
i=0

(−1)iei(λ1, λ2, . . . , λN)λi. (C.6)

Therefore, the coefficients of the characteristic polynomial can be expressed by the elemen-

tary symmetric polynomials. Moreover, using the basic properties of the trace operator

on A

trace(Ak) = λk1 + λk2 + . . .+ λkN (C.7)

= pk(λ1, λ2, . . . , λN). (C.8)

and the trace of a matrix power is equal to the power sum over the matrix eigenvalues.

Finally, the Newton’s Identities provide the following relation between the traces of Ak and

the coefficients of the characteristics polynomial

kck +
k∑
i=1

trace(Ai)·ck−i = 0, (C.9)

where c0 = 1 and k = 1, 2, . . . , N .

C.3 Gradient-based Eigenvalue Alignment

Assuming that (A)ij is the element at row i and column j of the matrix A, the gradient of

a scalar function x(A) with respect to the N×N matrix A is another N×N matrix which
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is usually referred to as ∇
A
x and defined as

(∇
A
x)ij =

∂x

∂ (A)ji
. (C.10)

Using this definition for the gradient, the value of the function after a small change in A

can be approximated as

x(A+ δA) ≈ x(A) +
∑
i,j

∂x

∂ (A)ij
(δA)ij (C.11)

≈ x(A) + trace (∇
A
x · δA) . (C.12)

Evaluating the relation in (C.9) for A+δA and noting the fact that it holds for every small

δA, the following recursive matrix equation can be written

k∇
A
ck +

k∑
i=1

(
trace(Ai) · ∇

A
ck−i + iAi−1·ck−i

)
= 0, (C.13)

where ∇
A
c0 = 0 and k = 1, 2, . . . , N . Using the relation in (C.13), ∇

A
ck the derivative of

kth coefficient of the characteristic polynomial can be recursively determined.

Back to the problem of putting the eigenvalues on origin, if a matrix has K zero eigen-

values, the last K coefficients of the characteristic polynomial (cN−K+1, cN−K+2, . . . , cN)

should be zero. Therefore, the algorithm has to adjust the free variables in the matrix in

such a way that over the iterations, those coefficients are moved towards zero. To this end,

δA is selected to satisfy the following set of linear equations (i = 0, 1, . . . , K − 1)

cN−i(A+ δA) ≈ cN−i(A) + trace (∇
A
cN−i · δA) = 0. (C.14)
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A closed form solution for δA is possible with the help of vec operator. The operator,

vec(A), creates a column vector from its matrix parameter, A, by stacking the column

vectors of A below one another. Using this definition δA can be computed from

vec(δA) = −



vecT
(

(∇
A
cN−K+1)

T
)

vecT
(

(∇
A
cN−K+2)

T
)

...

vecT
(

(∇
A
cN)T

)



−1 

cN−K+1

cN−K+2

...

cN


. (C.15)

Finally the eigenvalue placement algorithm is actually the Newton method (equivalent

to the Steepest Descent but in multi-dimensions) that uses the computed gradient for

determining the best direction towards the solution. The steps of this algorithm are detailed

below (µ is a positive real scalar).

1. Select a random starting point for A

2. Compute ck using (C.9)

3. Compute ∇
A
ck using (C.13)

4. Compute δA using (C.15)

5. Update A using A(new) = A(old) + µ · δA

6. Check ck’s, if the last K are close enough to zero stop

7. Goto step 2

The following example uses MATLAB scripting language to adjust the first three elements

on the main diagonal entries of a matrix such that the resulting matrix has three zero

eigenvalues.

Source codes are moved to here. Alternatively, they can be obtained by

sending an email to behzad@nourani.net.
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