
An Enhanced Goal-Oriented
Decision-Making Model for

Self-Adaptive Systems

by

Manbeen Kohli

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Manbeen Kohli 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The realization of decision-making models in self-adaptive systems is still a challenge. Cur-
rent state-of-the-art self-adaptive systems contain decision-making processes that leverage
policy-based, goal-based or architecture-based adaptation models. Policy-based models are
well suited to represent mandatory/rigid adaptation requirements. However, they cannot
efficiently represent complex or flexible adaptation requirements. Moreover, conflict detec-
tion and resolution in these models is non-trivial and extremely error prone. Goal-based
models utilize game theory techniques for conflict resolution; choosing a winner require-
ment from several conflicting requirements using state-of-the-art voting algorithms. This
technique only serves systems containing flexible adaptation requirements. Architecture-
based models rely predominantly on built-in analytical models, which are not generic. This
implies that they cannot be incorporated into other existing or new systems. Furthermore,
these models cannot cope with run-time changes that were not accounted for in their
formulation, which limits their usage to very specific systems.

In this dissertation, we have engineered a generic, configurable and enhanced goal-
oriented decision-making model that addresses the above-mentioned shortcomings in policy-
based, goal-based and architecture-based decision-making models. The model provides
the ability to represent both mandatory/rigid and flexible requirements. Additionally, the
model provides the ability to represent related flexible adaptation requirements as clusters,
and allows for the representation of multiple clusters. These clusters enable the execution
of multiple corrective actions simultaneously, thus allowing a self-adaptive system to sat-
isfy mandatory/rigid and flexible requirements concurrently. None of the above-mentioned
decision-making models have the ability to do so. Additionally, the model has been de-
signed to include feedback control loops as first class entities in the adaptation process.
This enables assessing the impact of a previously executed decision, so that better decisions
can be made in the future, thus allowing the model to cope with run-time changes. Fur-
thermore, the model provides the ability to detect and resolve conflicts amongst dependant
adaptation requirements.

The realization of the decision-making model is extremely generic, flexible and extensi-
ble. It allows different voting algorithms to be specified for choosing a winner requirement
for clusters of flexible adaptation requirements. Moreover, the implementation also allows
for the specification of a wide variety of reinforcement learning algorithms to assess the
impact of a previously executed decision. The implementation has been developed as a
plug-in for a generic Java-based adaptation framework. It was tested using two case stud-
ies namely a news web application and an IP telephony system. Based on the obtained
results, it was concluded that the model does improve the overall customer satisfaction
level compared to a non-adaptive system. Moreover, it was also concluded that incorpo-
rating feedback control loops as first class entities yields better results as compared to a
decision-making model based solely on policies or goals.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Ladan Tahvildari for
all her guidance and support over these years. I am also extremely grateful to Dr. Mazeiar
Salehie from the STAR research group (Dr. Tahvildari’s reasearch team) for his guidance
and valuable feedback throughout my research. Their advice and mentorship has made
this thesis possible.

Moreover, I would like to thank my dissertation committee members: Dr. Kostas
Kontogiannis and Dr. Otman Basir, for having accepted to take the time out of their busy
schedules to read my thesis and provide me with comments and inspiring remarks.

Additionally, I would like to thank all the present and past members of the STAR
research group at the university, especially Sen Li for his help with the case studies used
in this thesis.

Furthermore, I would like to thank my family for their unconditional support, and
my friend Deepti for her encouragement. Last but not the least, I would like to thank my
friends and co-workers at Sybase (an SAP Company) for their support and encouragement.

iv

Dedication

This thesis is dedicated to my son Sajeev. Thanks kiddo for making my life complete!

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Problem Description . 3

1.2 Thesis Contribution . 5

1.3 Thesis Organization . 6

2 Related Work 8

2.1 Categorization of Decision-Making Models 8

2.2 Policy-based Decision-Making Models . 12

2.2.1 Action Policies . 12

2.2.2 Utility Function Policies . 13

2.3 Goal-based Decision-Making Models . 14

2.4 Architecture-based Decision-Making Models 16

2.5 Control Loops and Self-Adaptive Systems 19

2.6 Machine Learning . 20

2.6.1 Reinforcement Learning . 21

2.7 Applications of Machine Learning in Self-Adaptive Systems 24

2.8 Research Gaps . 27

2.9 Summary . 28

vi

3 Proposed Decision Making Model 29

3.1 Requirements and Constituent Components 29

3.2 GAAM - A Goal-Oriented Decision-Making Model 31

3.3 Decision-Making Model Requirements . 34

3.4 Proposed Decision-Making Model Architecture 36

3.4.1 Attribute Space . 36

3.4.2 Action Space . 39

3.4.3 Goal-Attribute Space . 40

3.4.4 Goal-Action Space . 41

3.4.5 Goal Space . 43

3.5 Adaptation Process Flow using Proposed Decision-Making Model 47

3.5.1 Incorporation of Control Loops in the Decision-Making Process . . 48

3.5.2 Action Selection Process used by Goal Clusters 51

3.5.3 Conflict Detection and Resolution 53

3.6 Summary . 54

4 Developing Self-Adaptive Applications 55

4.1 StarMX - A Java-based Adaptation Framework 55

4.2 Building an Adaptation Manager . 58

4.2.1 Configuration . 59

4.2.2 Run-time Behavior . 65

4.2.3 Deployment Options . 65

4.3 Building Self-Adaptive Applications . 66

4.4 Summary . 69

5 Experimental Studies 70

5.1 Case Study 1: News Web Application . 70

5.1.1 Motivation . 71

5.1.2 Original Application Architecture 71

5.1.3 Self-Adaptive Application Architecture 73

vii

5.1.4 Experiment Design . 78

5.1.5 Obtained Results . 78

5.2 Case Study 2: IP Telephony System . 81

5.2.1 Motivation . 82

5.2.2 Original Application Architecture 82

5.2.3 Self-Adaptive Application Architecture 83

5.2.4 Experiment Design . 85

5.2.5 Obtained Results . 86

5.3 Lessons Learned . 92

5.4 Summary . 93

6 Conclusions and Future Direction 94

6.1 Contributions . 94

6.2 Future Research Directions . 95

6.3 Conclusion . 96

APPENDICES 98

A Sample Configuration File for the News Web Application 99

References 109

viii

List of Tables

2.1 Selected Self-Adaptive Software Projects 10

2.2 Comparison of Decision-Making Model (DMM) Categories 18

2.3 Applications of Machine Learning in Self-Adaptive Systems 26

3.1 Configurable Entities of the Proposed Decision-Making Model 38

4.1 DMM Configuration - Attributes and Actions 60

4.2 DMM Configuration - Goal Attributes and Goal Actions 61

4.3 DMM Configuration - Goal Action Properties and Preconditions 62

4.4 DMM Configuration - Mandatory Goals, Negotiable Goal Clusters and Goals 63

4.5 DMM Configuration - Adaptive Negotiable Goal Clusters and Goals 64

ix

List of Figures

1.1 A Self-Adaptive Software System . 2

3.1 Adaptation Conceptual Model . 30

3.2 GAAM Graph . 32

3.3 GAAM Action Selection Process . 33

3.4 Proposed Decision-Making Model Architecture 37

3.5 Adaptation Process Flow using Proposed Decision-Making Model 46

3.6 Using Control Loops to Update Goal Action Preference Values 50

3.7 Action Selection Process used by Goal Clusters 52

4.1 StarMX High-level Architecture . 56

4.2 StarMX Execution Chain Architecture . 57

4.3 Steps to Develop Self-Adaptive Software 67

5.1 News Web Application System Architecture 72

5.2 Self-Adaptive News Web Application Architecture 77

5.3 News Web Application: Response Time . 79

5.4 News Web Application: Throughput . 80

5.5 CC2 Application System Architecture . 83

5.6 Self-Adaptive CC2 Application Architecture 85

5.7 CC2: Regular Call Response Time . 87

5.8 CC2: Percentage of Successful Regular Calls 88

5.9 CC2: Call Forward Response Time . 89

x

5.10 CC2: Percentage of Succesful Call Forwards 90

5.11 CC2: Voice Mail Response Time . 91

xi

Chapter 1

Introduction

The simultaneous explosion of information, the integration of technology, and the con-
tinuous evolution from software-intensive systems require new and innovative approaches
for building, running, and managing software systems. A consequence of this continuous
evolution is that software systems must become more versatile, flexible, resilient, depend-
able, robust, energy-efficient, recoverable, customizable, configurable, and self-optimizing
by adapting to changing operational contexts, environments or system characteristics[10].
In 2001, IBM introduced the concept of Autonomic Computing as a solution to address
this issue.

According to[25], autonomic computing refers to a computing environment that is capa-
ble of managing itself, and can dynamically adapt to changes in accordance with business
policies and objectives. An autonomic system refers to a system with a control loop,
which monitors itself and its environment, analyzes the situation, and takes actions to
change either the environment or its behavior. Therefore, the system exhibits two basic
characteristics: self-awareness, which means that the system is aware of its state and be-
havior, and context-awareness, which means that the system is aware of its operational
environment[23].

IBM defines four features of these systems often referred to as the self-* properties,
which display different characteristics of self-management[25]:

• Self-Configuring: A self-configuring system can adapt to changing conditions and
adjust itself automatically. It also supports dynamic addition/removal of components
to/from the system.

• Self-Optimizing: A self-optimizing system is capable of monitoring and measuring
performance related parameters in varying conditions and optimizing its behavior in
order to meet performance objectives.

1

• Self-Healing: A self-healing system posses the ability to detect, diagnose, and repair
problems. This property may also enable the system to be proactive in detecting
future failures and thus prevent their occurrence. It also improves software reliability
and availability.

• Self-Protecting: A self-protecting system has the ability to detect malicious attacks
and to defend itself against them.

Autonomic computing is a broad research area, which includes systems from different
domains like hardware, robotics, networks, grid computing, and software. In the context of
this research, we focus only on self-adaptive software systems, also known as self-adaptive
systems in this thesis.

Figure 1.1: A Self-Adaptive Software System

Figure 1.1 shows the architecture of a typical self-adaptive software system. It consists
of two major components namely the adaptable software and the adaptation manager.

• Adaptable Software: The application logic is implemented in adaptable software.
The adaptable software exposes the required sensors and effectors for adaptation[27].
The sensors provide access to the current system attributes and the effectors can be
utilized to modify the sytem attributes.

• Adaptation Manager: The adaptation manager realizes the monitoring, detecting,
deciding and acting sub-processes to control the behavior of adaptable software.

2

Engineering of an adaptation manager involves designing and developing two critical
components namely the adaptation framework and the decision-making model.

• Adaptation Framework: The adaptation framework provides the ability to peri-
odically monitor the adaptable software, provides access to the data produced by the
sensors, and facilitates the execution of an effector action that attempts to restore
the system to normal.

• Decision-Making Model (DMM): The decision making model interprets the data
produced by the sensors to determine if the system is operating within its designated
limits. If the system needs adaptation, the adaptation manager utilizes the decision
making model to determine the action that must be performed by the effectors to
bring the system back to normal.

The adaptation manager can either co-exist with the adaptable software or can be de-
veloped as an external process. A large number of existing solutions realize the adaptation
process in an external adaptation engine[12]. Utilizing an external adaptation engine ex-
emplifies the software design principle of separation of concerns wherein the the adaptable
software processes the application logic and the adaptation manager controls the adapta-
tion logic. Furthermore, it is the best technique available for adding self-* capabilities to
existing legacy systems, due to its non-invasive nature.

1.1 Problem Description

Realization of the decision-making model in self-adaptive systems is still a challenge, as
noted by Salehie et al[44] and McKinley et al[39]. The deciding process essentially needs to
know about the adaptation requirements, business goals, articulated references provided
by the system stakeholders. Additionally, the deciding process also needs complete infor-
mation pertaining to the adaptable software to make decisions that maximize the business
objectives and goals.

The adaptation requirements of a system can be divided into three categories namely
mandatory, negotiable and related negotiable requirements. Mandatory requirements are
those that must be satisfied by a system under all circumstances. On the other hand,
negotiable requirements allow room for analyzing trade-offs during the decision-making
process. Related negotiable requirements are the adaptation requirements that are simi-
lar; and can be analyzed as a group/cluster. A robust and comprehensive decision making
model must provide an accurate and well-defined representation of all categories of adap-
tation requirements. Furthermore, the model must incorporate the business goals and
stakeholder preferences.

3

Current state-of-the-art self-adaptive systems contain decision-making processes that
leverage policy-based, goal-based or application-specific architecture-based adaptation tech-
niques.

• Policy-based Decision-Making Models: Policy-based decision making models
are well suited to represent systems with simple mandatory requirements. Rep-
resenting negotiable or complex adaptation requirements with policies is extremely
difficult and error prone. Moreover, detecting and resolving conflicts in these systems
is an additional non-trivial challenge.

• Goal-based Decision-Making Models: Goal-based models utilize game theory
techniques for conflict resolution; choosing a winner requirement amongst several
conflicting requirements using state-of-the-art voting algorithms. Consequently these
models are well suited to represent systems that contain only negotiable requirements.
However, if all the requirements of a system are being dissatisfied at any given point in
time, these models can only perform one corrective action at a time. This shortcoming
limits the utilization of these systems in mission critical applications where several
requirements may need to be satisfied concurrently.

• Architecture-based Decision-Making Models: Architecture-based models rely
heavily on built-in application-specific analytical models. Since these models are
application-specific, they cannot be incorporated into other existing legacy systems
and/or new systems without a major re-engineering effort. Furthermore, these models
cannot cope with the run-time changes that were not accounted for in their formula-
tion. This implies that these models do not make sound decisions under uncertainity,
which is an inherent nature of software systems.

The engineering of decision-making processes in self-adaptive software systems is a
major challenge, especially if predictability and cost-effectiveness are desired. However, in
other areas of engineering and nature there is a well-known, pervasive notion that could be
potentially applied to software systems as well: the notion of feedback. Even though control
engineering as well as feedback found in nature are not targeting software systems, mining
the rich experiences of these fields and applying principles and findings to software-intensive
adaptive systems is a most worthwhile and promising avenue of research for self-adaptive
systems. To manage uncertainty in self-adaptive systems and their environments, we need
to introduce feedback control loops as first-class entities in the decision-making model.
The authors of [10] have observed that feedback control loops are often hidden, abstracted,
or internalized when presenting the architecture of self-adaptive systems. However, the
feedback behaviour of a self-adaptive system, which is realized with its control loops,
is a crucial feature and hence should be elevated to a first-class entity in its modeling,
design and implementation. Despite recent attention to self-adaptive systems (e.g. several

4

ICSE workshops), development and analysis methods for such systems do not yet provide
sufficient explicit focus on the feedback control loops and their associated properties that
almost inevitably control self-adaptation[10].

In this dissertation, we have engineered a generic, configurable and enhanced goal-
oriented decision-making model that addresses the aforementioned shortcomings in policy-
based, goal-based and architecture-based decision-making models. The model provides
the ability to represent both mandatory/rigid and flexible requirements. Additionally,
the model provides the ability to represent related flexible adaptation requirements as
clusters, and allows for the representation of multiple clusters. These clusters enable the
execution of multiple corrective actions simultaneously, thus allowing a self-adaptive system
to satisfy multiple mandatory/rigid and flexible requirements concurrently. None of the
aforementioned decision-making models have the ability to do so. Moreover, the model
has been designed to include feedback control loops as first class entities in the adaptation
process. This enables assessing the impact of a previously executed decision, so that
better decisions can be made in the future, thus allowing the model to cope with run-
time changes. Furthermore, the model provides the ability to detect and resolve conflicts
amongst dependant adaptation requirements.

The realization of the decision-model is extremely generic, flexible and extensible. It
allows different voting algorithms to be specified for choosing a winner requirement for
clusters of flexible adaptation requirements. Moreover, the implementation also allows for
the specification of a wide variety of reinforcement learning algorithms to assess the impact
of a previously executed decision. The implementation has been developed as a plug-in for
a generic Java-based adaptation framework.

1.2 Thesis Contribution

The major contributions of the enhanced goal oriented decision-making model developed
in this thesis are as follows:

• Comprehensive Representation of Adaptation Requirements: The decision-
making model has been engineered such that it can be used to represent different
categories of adaptation requirements ranging from mandatory to negotiable require-
ments.

• Concurrent Satisfaction of Multiple Unrelated Adaptation Requirements:
The decision-making model has been designed to enable representation of related
flexible adaptation requirements as clusters. It also provides support for the repre-
senting multiple clusters. Consequently the model provides ability to concurrently

5

execute multiple corrective actions and thus satisfy mutiple unrelated adaptation
requirements simultaneously.

• Incorporation of Feedback Control Loops as First Class Entities: The
decision-making model enables the incorporation of feedback control loops as first
class entities in the decision-making process of a self-adaptive system. This enables
assessing the impact of a previously executed decision, so that better decisions can
be made in the future, thus allowing the model to cope with run-time changes.

• Conflict Detection and Resolution: The decision-making model provides a mech-
anism to detect and resolve conflicts between dependent adaptation requirements.

• Ultimate Flexibility in Specification of Voting Algorithm: The decision-
making model has been engineered to be extremely flexible. It provides the ability
to specify any voting algorithm to choose a winner amongst competing flexible re-
quirements. The realization of the model contains some built-in voting algorithms.
However, a user is free to develop any voting algorithm that implements a specified
interface.

• Ultimate Flexibility in Specification of Reinforcement Learning Algorithm:
The decision-making model has been engineered to be extremely flexible. It provides
the ability to specify any reinforcement learning algorithm to asses the impact of a
previously executed decision, so that better decisions can be made in the future. The
realization of the model contains some built-in reinforcement learning algorithms.
However, a user is free to develop any reinforcement learning algorithm that imple-
ments a specified interface.

The next section describes the organization of this dissertation.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents a literature review of
research related to this work. It outlines the different methodologies employed by decision-
making models in self-adaptive systems and discusses the merits and drawbacks of each
approach. In doing so we also highlight some of the research gaps in this area.

Chapter 3 provides an overview of the proposed enhanced decision-making model and
its conceptual architecture. It first describes the components of a generic decision-making
model, followed by the functional requirements of a well-designed and comprehensive
decision-making model. Subsequently it describes the architecture of the decision-making

6

model developed in this thesis. Lastly, it describes how a decision-making process can uti-
lize the proposed decision-making model to ensure that the adaptation requirements are
being satisfied by the system.

Chapter 4 describes the procedure for building an adaptation manager for self-adaptive
systems consisting of the decision-making model developed in this thesis and StarMX - an
adaptation framework developed for Java-based self-adaptive systems. It then describes
the configuration information for the adaptation manager, the run-time behavior of the
adaptation manager and the deployment options that can be used by the adaptation man-
ager. Finally, we describe a six-step process for developing a self-managing system using
the proposed decision-making model and a Java-based self-adaptive application framework.

Chapter 5 reports the conducted experimental studies that evaluate the effectiveness
of our model. In the first and second sections, we describe our case studies, which are
a news web application and a voice-over-IP system. We define the research objectives of
the experiments and how they are analyzed. The last section provides a discussion on the
results of the experiments and reports framework performance analysis results.

Finally, Chapter 6 finishes the thesis by drawing conclusions from the presented re-
search. It discusses future directions for the research, and outlines some concluding re-
marks.

7

Chapter 2

Related Work

Over the past decade, researchers and practitioners have developed a variety of method-
ologies, frameworks, and technologies intended to support the construction of self-adaptive
systems. Engineering the adaptation logic poses the greatest challenge in these systems
and a significant amount of research is being conducted in this area. This chapter describes
some of the pivotal research work done in this area.

We begin this chapter by categorizing the realization techniques for decision-making
models used by self-adaptive systems. Next, we present an overview of each category and
outline the pros and cons of each approach. Subsequently, we explore a new and upcoming
research area namely the incorporation of feedback control loops as first-class entities in
decision-making models of self-adaptive systems and present the challenges associated with
doing so. We conclude this section by identifying the existing research gaps in the area of
decision-making models.

2.1 Categorization of Decision-Making Models

Realization of the decision-making model in self-adaptive systems is still a challenge, as
noted by Salehie et al[44] and McKinley et al[39]. The deciding process needs complete
information pertaining to the adaptable software to make decisions that maximize the
business objectives and goals. Additionally, the deciding process also needs to know about
the articulated references provided by the system stakeholders and the adaptation require-
ments of the system. A robust and comprehensive decision making model must provide an
accurate and well-defined representation of the business goals, stakeholder preferences and
the adaptation requirements. In order to design and engineer an effective decision-making
model, we execute the following steps:

8

• Survey and Categorize: We first survey existing projects in the area of self-
adaptive software. We do this to enable categorization of the adaptation requirements
of the system and their realization i.e. the decision-making model.

• Analyze and Compare: Next, we analyze the pros and cons of each category of
decision-making models.

• Identify Research Gaps: Subsequently, we identify the research gaps in this area
and design a decision-making model that addresses these gaps.

The projects in this section are selected from different academic and industrial sectors to
capture main research trends in the broad area of self-adaptive software. The information
is collected from many academic and industrial research projects. However, a few of them
are selected to represent the major research ideas in this field. Space limitations, the
diversity of ideas, and their impact on the field, are the concerns taken into account for
the selection. Table 2.1 lists these projects.

Self-adaptive systems view the adaptation requirements of a system as objectives or
goals that must be satisfied by the system. The adaptation requirements of a system
essentially fall into three categories namely:

• Mandatory Requirements: Mandatory requirements are the rigid requirements
that the adaptable system must absolutely satisfy under any circumstances. In a
sense, they are similar to the hardgoals described by van Lamsweerde in [30].“If the
load on a sytem goes above critical limits, then the system must gracefully shutdown
to prvent any data loss that may occur due to a crash” is an example of a mandatory
requirement.

• Negotiable Requirements: Negotiable requirements are similar to softgoals [30]
and are flexible in a sense since they allow the evaluation of trade-offs during de-
cision making. According to the Non-Functional Requirements (NFR) approach of
software requirement engineering mentioned in [40], goal satisficing derives from the
notion that goals are never totally achieved or not achieved. Thus, “softgoals are
satisficed when there is sufficient positive and little negative evidence for this claim,
and that they are unsatisficeable when there is sufficient negative evidence and little
positive support for their satisficeability.” A system may not be able to satisfy all the
negotiable requirements at any given point in time and may have to compare the con-
stituent requirements (using a voting algorithm) to choose a “winner” requirement.
To facilitate choosing a “winner” requirement, priorities may need to be assigned to
the negotiable requirements. An example of a system with negotiable requirements
is as follows: Consider a news website with two requirements namely providing users
with a quick response time and providing users with the best visuable experience i.e.

9

Table 2.1: Selected Self-Adaptive Software Projects

Project
Name

Description

Rainbow[11] Proposing an architecture-based adaptation framework consist-
ing of an adaptation infrastructure and system-specific adaptation
knowledge specified through policies.

KX[12] A generic framework for collecting and interpreting application-
specific behavioral data at run-time through sensors (probes) and
gauges.

Accord[14] Providing a programming framework for defining application con-
text, autonomic elements, rules for the dynamic composition of
elements, and an agent infrastructureto support rule enforcement.

TRAP[20] A tool for using aspects and reflective technique for dynamic adap-
tation in Java,TRAP/J, and .Net framework, TRAP/.Net.

CASA[9] Contract-based Adaptive Software Architecture (CASA) supports
both application-level and and low-level (e.g. middleware) adaption
actions through an external adaptation engine.

GAAM[44] A goal-oriented decision-making model for self-adaptive systems us-
ing a weighted voting mechanism for the action selection process.

J3[15] Providing a model-driven framework for application-level adapta-
tion based on three modules J2EEML, JAdapt, and JFense respec-
tively for modeling, interpreting and run-time management of self-
adaptive J2EE applications.

[19] A framework for adaptive policy-driven autonomic management us-
ing reinforcement learning methodologies.

FUSION[6] A decision-making framework for self-adaptive systems that com-
bines feature-orientation, supervised learning, and dynamic opti-
mization.

10

the highest quality of text, videos and images. If a large number of users connect
to the website concurrently, then satisfying both requirements may not be possible.
This is because in order to provide a quick response time under heavy load, the server
can display images of a lower quality, or may be even display a text only version of
a web page to a user, but this would conflict with the requirement of providing the
best visual experience. In this situation, the adaptation manager will need a choose
a “winner” requiement to ensure healthy system operation.

• Related Negotiable Requirements: Related negotiable requirements are the
adaptation requirements that are similar; and can be analyzed as a group or clus-
ter. All of the requirements belonging to a particular group are related; and the
requirements belonging to different groups are othrogonal. For example, consider a
self-adaptive database systems that contain adaptation requirements related to its
CPU utilization, and adapdation requirements related to its disk usage. Additionally,
consider that these requirements are flexible, and that multiple requirements are not
being satisfied at some given point in time. Since these requirements are orthogo-
nal, the adaptation manager can easily choose one “winner” requirement from both
categories, and thus satisfy multiple adaptation requirements concurrently.

Projects like Rainbow[11] or Accord[14] view the adaptation requirements as manda-
tory objectives which need to be satisfied under all circumstances. Other projects like
GAAM[44] view the adaptation requirements as flexible goals or softgoals where trade-off
analysis is incorporated in the decision-making process. This implies that the adapta-
tion requirements are never completely satisfied or dissatisfied; the adaptation require-
ments are satisficed. The decision-making models employed by projects like Rainbow[11],
CASA[9] and J3[15] use architecture-based adaptation and rely on analytical models for
making adaptation decision. Based on this discussion, the decision-making models of a
self-adaptive system can be categorized as follows:

• Policy-based Decision-Making Models: Policy-based decision making models
levarage rules or policies for realization of the adaptation requirements.

• Goal-based Decision-Making Models: Goal-based models represent the adapta-
tion requirements as goals. These models utilize game theory techniques for conflict
resolution; choosing a winner requirement amongst several conflicting requirements
using state-of-the-art voting algorithms.

• Architecture-based Decision-Making Models: Architecture-based decision-making
models rely on analytical models for making adaptation decisions.

11

It should be noted that the above mentioned categories are not orthogonal. The
decision-making model in the Rainbow framework[11] for instance leverages both policy-
based and architecture-based adaptation techniques. The next sections describe the above
mentioned categories in further details.

2.2 Policy-based Decision-Making Models

Policies can be considered as directives to an adaptation manager to use in order to meet
adaptation requirements. Utilizing policy-based management as a means of describing
the adaptation logic has received significant interest in recent years. Within self-adaptive
systems, policies can be considered to fall into two main categories[24]:

• Action Policies: Action policies take the form of IF (Condition)THEN(Action),where
the policy specifies possible actions that could be taken whenever certain conditions
occur; that is, the policy is violated. Action policies can be correlated to the decision-
making model employed by action-based rational agents.

• Utility Function Policies: Utility function policies define an objective function
that aims to model the behavior of the system at each possible state. They are more
flexible than action policies and can be correlated to the decision-making model
utilized by utility-based rational agents.

The next sections provide additional details about the aforementioned policy categories.

2.2.1 Action Policies

A significant number of researchers have used policy-based management employing action
policies in the domain of self-adaptive systems. Action policies are mostly implemented
using rule-based mechanisms and are used in a wide variety of commerical and academic
projects. Microsoft SQL Server and IBM’s DB2 Universal Database systems use action
policies for self-tuning purposes.

The Accord framework is an academic project[14] which utilizes application context,
definition of autonomic elements, dynamic composition rules/mechanisms, and an infras-
tructure for rule enforcement. The authors of[11] have developed a framework called Rain-
bow for architecture based adaptation which proposes an adaptation language to capture
managers choices and their utility information. However, both these projects use determin-
istic rule-based mechanisms for deciding, and hence cannot address deliberative decision
making and deciding under uncertainty.

12

Several languages have been developed by academia, industry, and standards bodies
for implementing action policies for the security and access control, system management,
and network administration domains. A few examples of action policy based languages
are XACML (eXtensible Access Control Markup Language) from OASIS, Ponder from
Imperial College, PDL (Policy Description Language) from Bell Labs, ACPL (Autonomic
Computing Policy Language) from IBM[4].

The main advantage of using a policy-based decision-making model based exclusively on
action policies is its simplicity. Action policies can be used as a simple technique to create a
closed control loop such that appropriate actions are executed when special conditions are
met. Policy-based configuration management using action policies has been used to reduce
configuration errors leading to improved availability, performance, and system security in
systems utilizing a few fundamental (but simple) non-conflicting policies.

However, there are certain drawbacks associated with using a policy-based decision-
making model based exclusively on action policies. Generally, such a system will have
at least as many policies defined as the number of attributes that are being monitored
for the adaptation process. This implies that the action policy space must be at least as
large as the attribute space. This increases the memory requirements of such systems by a
significant amount, and thus may prevent action policies from being used as the exclusive
decision making approach in resource constrained self-adaptive systems.

Furthermore, action policies are implemented to constrain the external environment,
and the intent is for the policies to be individually implemented regardless of the other
policies. Although in practice action policies may interact with each other and may con-
flict with each other, this is not the main intent of a policy-based system based on action
policies[4]. In an environment where multiple sets of action policies may exist, and where at
run-time multiple policies may be violated, policy selection is often based on statically con-
figured policy priorities which an administrative user may have to explicitly specify. This
exacerbates the complexities associated with the management, maintenance and evolution
of such systems.

2.2.2 Utility Function Policies

The effective use of policies in the management of self-adaptive systems requires that the
policies be captured and translated into actions within the system. Most previous research
on the use of policies for implementation of the adaptation process has mainly focused on
the specification and use “as is” within systems and where changes to policies are only
possible through manual intervention[19].

The complex and stochastic nature of today’s computing environments often make it
impractical to obtain information that is both accurate and representative of all possible

13

situations a system may encounter while interacting with its environment. As systems
become more complex, relying on humans to encode rational behavior onto policies is
definitely not the best way forward. It is imperative, therefore, that self-adaptive systems
have mechanisms for adapting the use of policies in order to deal with not only the inherent
human error, but also the changes in the configuration of the managed environment and
the complexities due to unpredictability in workload characteristics.

In the context of where utility function policies are used to drive self-management, this
requires having a system monitor its own use of policies to learn which policy actions are
most effective in encountered situations. This information is then used to enable the system
to learn from past experience, predict future actions and make appropriate trade-offs when
selecting policy actions.

The authors of [19] have developed a framework for adaptive policy-driven autonomic
management using reinforcement learning methodologies. To capture systems dynamics
in the use of policies, a state-transition graph is used. The vertices of the graph are the
states that a system can be in at any given point in time which is deduced based on the
monitored attribtues of the system. The transitions of the graph are the actions performed
by the system that transform the system from one state to another. Each action has a
utility function value associated with it. The decision-making model uses these values for
action selection, and updates the utility values of a previously executed action based on
the current system state. The value is incremented for favorable states and decremented
for unfavorable states.

One of the major advantages of decision-making models based on utility function poli-
cies is that the model of the environment is “learned” on-line and used, at each timestep,
to improve the policy guiding the agents interaction with the environment. Moreover, the
strategy for adapting the use of policies make use of a learning signal that is based only on
the structure of the policies. This implies that the metholody is generic and can be used
in other existing/new software systems with minimal to no re-engineering effort.

A drawback of this approach is that model-based reinforcement learning mechanisms
are often computationally demanding. Researchers are currently investigating the use of
policies to guide the learning process and its use of computational resources. This ranges
from the selection of the type of algorithm to be used, to the adjustment of algorithms
parameters to meet the resource constraints imposed by the environment.

2.3 Goal-based Decision-Making Models

Goal-oriented requirements engineering is one of the common ways to model system require-
ments and to analyze the impact of variant design decisions on them. Goals and agents

14

have been proposed as the best suited intentional concepts to capture the properties of
complex, dynamic and adaptive systems in software requirements elicitation and analysis.
It should be noted that the self-* properties used to describe self-adaptive systems align
well with the non-functional requirements of a system. Therefore, as in goal-driven re-
quirements models (e.g. SIG[31]), these properties can be mapped to quality goals, which
in turn can be decomposed into smaller sub-goals. Agent-oriented software engineering
(AOSE) methodologies[22], such as MaSE, Prometheus and Tropos, use goal models to
capture stakeholders objectives the system under consideration should achieve[30].

Several researchers subscribe to the view that it is essential to explicitly represent sys-
tem goals, and to incorporate these goals in the adaptation processes. The belief is that
goal-based adaptation could not only be effective, but also be traceable and trustable.
In [5], the authors identify a goal-oriented approach for engineering adaptivity require-
ments including monitoring, decision, and adaptation functionalities. In this four levels
framework, each level corresponds to the objectives of a different stakeholder.

• Level 1: Level 1 comprises traditional requirements engineering, fulfilled by the
system developer in order to elicit customers and users objectives.

• Level 2: Level 2 considers requirements engineering, fulfilled by the system itself at
run-time in order to determine if and how to adapt.

• Level 3: Level 3 includes requirements engineering to determinate the system adap-
tation architecture.

• Level 4: Level 4 spans research on adaptation.

A significant amount of research on goal-based decision-making models has been fo-
cussed on the design and architecture i.e. on level 1 and level 3. On level 1,[21] proposes
goal-oriented modelling of every possible system configuration in a distinct goal model (us-
ing KAOS). The KAOS methodology has been used for several industrial systems. Specifi-
cally, van Lamsweerde et al.[2] used the KAOS methodology to elaborate the requirements
of a meeting scheduler and introduced refinement patterns in the context of KAOS[40].
These patterns were intended to capture commonly occurring situations when modeling
software.

The work presented by the authors of [34] covers level 1 of this categorization and aims
at defining the foundation necessary to address the implementation of level 2. Also [1] can
be categorized at level 1. It enriches i* models to obtain a design-level view, aiming at a
specification of autonomic systems. Annotations such as sequence, priority, and conditions
are introduced for decompositions, while, expressions can define variable contribution to
softgoals. The obtained models are a first step towards the goal model approach to get a
more detailed system design.

15

Based on the literature review, some research efforts utilize a goal-based model in the
decision-making process at run-time. For example, Kramer et al. discuss an architecture
based adaptation approach, which utilizes a goal management layer[28]. This layer gener-
ates a reactive plan to satisfy the goals. Salehie et al. also work on an adaptation approach
based on quality goals, in order to trace and satisfy these goals at run-time[43]. In another
work Salehie et al. employed a weighted voting scheme for goal-based decision-making[44].

Goal-based decision-making models have several advantages over a decision-making
model based exclusively on policies. Goals give a self-adaptive system the flexibility to
choose the best actions under the current conditions. Goals are also easy to understand
and relate to the overall system purpose. Moreover, the goal space in most cases is smaller
than the attribute space, since multiple attributes can be associated with a single goal. This
implies that each attribute definition does not necessarily require a separate goal definition
since goals and attributes can share a many-to-one relationship. Furthermore, the goal-
based management approach also simplifies the ability to detect and resolve conflicts.

A shortcoming exhibited by goal-based decision-making systems is that goals are rel-
atively more complex to define, setup and process as compared to policies. Some goals
are dependent upon system models and planning algorithms. When not all goals can be
realized, the goals alone provide no guidance. In particular, it is unclear what the best way
is to handle failure during adaptation execution, or whether it needs to be dealt with at
all if one assumed a continuous adaptation cycle of monitor and control. Clearly, a proper
treatment of failure must ensure that the adaptation process can recognize what failure
state it is in and recover from that failure.

Another drawback of self-adaptive systems using goal-based decision-making models
is the underlying assumption that all the adaptation requirements are flexible and can
be represented as softgoals [40]. The adaptation requirements of a system may contain
both mandatory and flexible requirements. Moreover, the flexible requirements may be
related, i.e. a system may contain a cluster of related adaptation requirements, where
the requirements belonging to a cluster may be treated as softgoals, and allow trade-off
analysis for their satisfication[40]. Furthermore, a system may contain several such clusters
of adaptation requirements. Currently neither a goal-based decision-making model nor a
policy-based decision-making model can be used to realize the adaptation requirements of
such a system.

2.4 Architecture-based Decision-Making Models

Architecture-based self-adaptive software focuses on using software architecture models as
the central abstraction for decision-making and change enactment. The focus on explicit
architectural models addresses the challenges and complications imposed by the multiple

16

artifacts and levels of abstraction through which autonomous behavior can be expressed.
A variety of research efforts have adopted this architecture-centric approach including
contributions based on dynamic software architecture description languages (ADLs) as
well as work based on dynamic distributed systems managed using explicit architectural
models.

Oreizy et al. have pioneered the architecture-based approach to run-time adaptation
and evolution management in their seminal work[38]. Garlan et al. have developed the
Rainbow framework[11], a stylebased approach for developing reusable self-adaptive sys-
tems. Rainbow monitors a running system for violation of the invariant imposed by the
architectural model, and applies the appropriate adaptation strategy to resolve such viola-
tions. The authors of [9] have developed an adaptation framework called Contract-based
Adaptive Software Architecture (CASA) which supports both application-level and and
low-level (e.g. middleware) adaption actions through an external adaptation engine. The
aforementioned approaches and many others share three traits:

• Use analytical models for making adaptation decisions.

• Rely on architectural models for the analysis.

• Effect a new solution through architecture-based adaptation.

Existing self-adaptive frameworks require a software engineer to construct and utilize
complex analytical models. This is because it is difficult foresee all of the changes in the en-
vironment, requirements, and systems operational profile at design-time[6]. Unfortunately,
the majority of widely used analytical models have to painstakingly be customized to the
unique characteristics of an application domain. Moreover, for any application-specific ob-
jective, an appropriate analytical model would have to be developed from scratch; a task
that is often very difficult, when one considers the complexity of todays software systems,
and the fact that most software engineers are not savvy mathematicians[6].

Additionally, using application based analytical models for self-adaptation is not with-
out its set of challenges. These models when given the monitoring data obtained at run-time
assess the systems ability to satisfy its objectives. The results produced by these mod-
els thus serve as indicators for making the adaptation decisions. Analytical models make
simplifying assumptions or presume certain properties of the running system that may not
bear out in practice. Furthermore, these models are specified at design-time and cannot
cope with the run-time changes that were not accounted for in their formulation. These
assumptions could make the analysis and hence the adaptation decisions inaccurate.

Table 2.2 summarizes the pros and cons of the different categories of decision-making
models discussed in the previous sections. The next section describes a relatively new and
upcoming research area with regards to decision-making models in self-adaptive systems.

17

T
ab

le
2.

2:
C

om
p
ar

is
on

of
D

ec
is

io
n
-M

ak
in

g
M

o
d
el

(D
M

M
)

C
at

eg
or

ie
s

C
a
te

g
o
ry

E
x
a
m

p
le

s
A

d
v
a
n
ta

g
e
s

D
is

a
d
v
a
n
ta

g
e
s

A
ct

io
n

P
ol

ic
y
-

b
as

ed
D

M
M

R
ai

n
b

ow
[1

1]
A

cc
or

d
[1

4]
•

E
as

y
to

u
n
d
er

st
an

d
an

d
im

p
le

-
m

en
t.

•
U

se
d

in
a

la
rg

e
n
u
m

b
er

of
sy

s-
te

m
s

w
it

h
si

m
p
le

m
an

d
at

or
y

ad
ap

ta
ti

on
re

q
u
ir

em
en

ts
.

•
R

eq
u
ir

e
la

rg
e

am
ou

n
t

of
m

em
-

or
y

si
n
ce

p
ol

ic
y

sp
ac

e
gr

ea
te

r
th

an
at

tr
ib

u
te

sp
ac

e.

•
C

an
n
ot

b
e

u
se

d
to

re
p
re

-
se

n
t

co
m

p
le

x
/fl

ex
ib

le
re

q
u
ir

e-
m

en
ts

.

•
U

n
su

it
ab

le
fo

r
co

n
fl
ic

t
d
et

ec
-

ti
on

/r
es

ol
u
ti

on
.

U
ti

li
ty

F
u
n
ct

io
n

P
ol

ic
y
-

b
as

ed
D

M
M

F
U

S
IO

N
[6

]
[1

9]
•

M
o
d
el

of
en

v
ir

on
m

en
t

le
ar

n
ed

“o
n
-t

h
e-

fl
y
”.

C
an

im
p
ro

ve
on

p
re

v
io

u
sl

y
m

ad
e

d
ec

is
io

n
s.

•
P

ol
ic

ie
s

in
d
ep

en
d
en

t
of

ad
ap

t-
ab

le
so

ft
w

ar
e.

•
M

o
d
el

-b
as

ed
re

in
fo

rc
em

en
t

le
ar

n
in

g
m

ec
h
an

is
m

s
ca

n
p

o-
te

n
ti

al
ly

b
e

co
m

p
u
ta

ti
on

al
ly

ex
p

en
si

ve
.

G
oa

l-
b
as

ed
D

M
M

G
A

A
M

[4
4]

•
R

eq
u
ir

e
le

ss
m

em
or

y
th

an
ac

-
ti

on
p

ol
ic

ie
s

si
n
ce

go
al

sp
ac

e
sm

al
le

r
th

an
at

tr
ib

u
te

sp
ac

e.

•
B

et
te

r
su

it
ed

to
co

n
fl
ic

t
d
et

ec
-

ti
on

/r
es

ol
u
ti

on
co

m
p
ar

ed
to

p
ol

ic
ie

s.

•
C

an
n
ot

b
e

u
se

d
to

re
p
re

se
n
t

m
an

d
at

or
y

re
q
u
ir

em
en

ts
.

•
C

an
n
ot

b
e

u
se

d
to

sa
ti

sf
y

m
u
lt

ip
le

re
q
u
ir

em
en

ts
co

n
cu

r-
re

n
tl

y.

A
rc

h
it

ec
tu

re
-

b
as

ed
D

M
M

R
ai

n
b

ow
[1

1]
C

A
S
A

[9
]

T
R

A
P

[2
0]

J
3[

15
]

•
G

en
er

ic
fr

am
ew

or
k
s

ca
n

b
e

ap
-

p
li
ed

to
le

ga
cy

sy
st

em
s.

•
A

n
al

y
ti

ca
l

m
o
d
el

s
sp

ec
ifi

ed
at

d
es

ig
n

ti
m

e
ca

n
n
ot

co
p

e
w

it
h

u
n
ac

co
u
n
te

d
ru

n
-t

im
e

ch
an

ge
s.

18

2.5 Control Loops and Self-Adaptive Systems

Feedback control loops have been recognized as important factors in software process man-
agement and improvement or software evolution. Lehmans work on software evolution
showed that “the software process constitutes a multilevel, multiloop feedback system and
must be treated as such if major progress in its planning, control, and improvement is to be
achieved.” Therefore, any attempt to make parts of this “multiloop feedback system” self-
adaptive necessarily also has to consider feedback control loops. To manage uncertainty in
computing systems and their environments, we need to introduce feedback control loops
to control the uncertainty. Feedback control loops provide the generic mechanism for self-
adaptation. Positive feedback occurs when an initial change in a system is reinforced,
which leads toward an amplification of the change. In contrast, negative feedback triggers
a response that counteracts a perturbation.

The authors of [48] argue that to reason about uncertainty effectively, feedback control
loops need to be made visible and first class entities. If the feedback control loops are
invisible, we will not be able to identify which feedback control loops may have major
impact on the overall system behavior and apply techniques to predict their possible severe
effects. More seriously, we will neglect the proof obligations associated with the feedback,
such as validating that the estimate of data derived from the sensors is sufficiently good,
that the control strategy is appropriate to the problem, that all necessary corrections can
be achieved with the available effector, that corrections will preserve global properties such
as stability, and that time constraints will be satisfied[48]. Therefore, if feedback control
loops are not visible we will not only fail to understand these systems but also fail to
build them in such a manner that crucial properties for the adaptation behavior can be
guaranteed.

The authors of [48] also mention the challenges associated with making feedback control
loops first class entities in self-adaptive systems. Some of these challenges have been
described below:

• Modeling: There should be modeling support to make the feedback control loops
explicit and to expose self-adaptive properties so that the designer can reason about
the system. The models have to capture what can be observed and what can be
influenced.

• Verification and Validation: Development of self-adaptive systems requires tech-
niques to validate the effects of feedback control loops.

• Reengineering: Today, most engineering issues for self-adaptive systems are ap-
proached from the perspective of greenfield development. However, many legacy ap-
plications can benefit from self-adaptive features. Reengineering of existing systems

19

with the goal of making them more self-adaptive in a cost-effective and principled
manner poses an important challenge.

One of the realization methods for incorporating feedback control loops as visible first-
class entities in the decision-making models of self-adaptive systems is through machine
learning, specifically reinforcement learning techniques.

2.6 Machine Learning

Machine learning, a branch of artificial intelligence, is a scientific discipline concerned with
the design and development of algorithms that allow systems to evolve behaviors based on
empirical data. A major focus of machine learning research is to automatically learn to
recognize complex patterns and make intelligent decisions based on data. However, this is
non-trivial and the difficulty lies in the fact that the set of all possible behaviors given all
possible inputs is too large to be covered by the set of observed examples. Consequently,
a learner must generalize from the given examples, so as to be able to produce a useful
output in new cases.

Applications for machine learning include machine perception, computer vision, natu-
ral language processing, syntactic pattern recognition, search engines, medical diagnosis,
bioinformatics, brain-machine interfaces and cheminformatics, detecting credit card fraud,
stock market analysis, classifying DNA sequences, speech and handwriting recognition, ob-
ject recognition in computer vision, game playing, software engineering, adaptive websites,
robot locomotion, and structural health monitoring.

Machine learning algorithms are organized into a taxonomy, based on the desired out-
come of the algorithm.

• Supervised learning generates a function that maps inputs to desired outputs. For
example, in a classification problem, the learner approximates a function mapping a
vector into classes by looking at input-output examples of the function.

• Unsupervised learning models a set of inputs, like clustering.

• Semi-supervised learning combines both labeled and unlabeled examples to gen-
erate an appropriate function or classifier.

• Reinforcement learning learns how to act given an observation of the world. Every
action has some impact in the environment, and the environment provides feedback
in the form of rewards that guides the learning algorithm.

20

• Transduction tries to predict new outputs based on training inputs, training out-
puts, and test inputs.

• Learning to learn learns its own inductive bias based on previous experience.

The next section describes the salient features of reinforcement learning.

2.6.1 Reinforcement Learning

Reinforcement learning is a sub-area of machine learning concerned with how an agent
ought to take actions in an environment with the objective of maximizing some notion
of a long-term reward. Reinforcement learning algorithms attempt to find a policy that
maps states of the world to the actions the agent ought to take in those states. As in most
forms of machine learning, the agent must discover which actions yield the most reward
by trying them. In the most interesting and challenging cases, actions may affect not
only the immediate reward but also the next situation and, through that, all subsequent
rewards. These two characteristics trial-and-error search and delayed reward are the two
most important distinguishing features of reinforcement learning[45].

One of the differentiating challenges characteristic to reinforcement learning is the
trade-off between exploration and exploitation. To maximize its reward, an agent must
prefer effective actions tried in the past. However, to discover such actions, it has to exper-
iment with untested actions. The agent has to exploit what it already knows in order to
obtain a reward, but it also has to explore to make better action selections in the future.

In the reinforcement learning framework, the agent makes its decisions as a function
of a signal from the environment called the environment’s state. An environment is said
to have the Markov property if its one-step dynamics enable predicting the next state and
expected next reward given the current state and action[45]. A reinforcement learning
task that satisfies the Markov property is called a Markov decision process or MDP. In
reinforcement learning, the environment is typically formulated as a finite-state Markov
decision process. Formally, the basic reinforcement learning model, as applied to MDPs,
consists of:

• A set of environment states S

• A set of actions A and

• A set of scalar “rewards” in R

At each time t, the agent perceives its state st ∈ S and the set of possible actions A(st).
It chooses an action a ∈ A(st) and receives a new state st+1 and a reward rt from the

21

environment. Based on these interactions, the agent must develop a policy π : S x T → A
(where T is the set of possible time indexes) which maximizes the quantity R = r0 + r1 +
· · · + rn for MDPs which have a terminal state, or the quantity R =

∑∞
t=0 γ

trt for MDPs
without terminal states (where 0 ≤ γ ≤ 1 is a future reward discounting factor)[8].

Almost all reinforcement learning algorithms are based on estimating value functions
i.e. functions of states (or of state-action pairs) that estimate how good it is for the agent to
be in a given state (or how good it is to perform a given action in a given state)[45]. Value
function approaches attempt to find a policy that maximizes the return by maintaining a set
of estimates of expected returns for one policy π (usually either the current or the optimal
one). In such approaches, the goal is to estimate either the expected return starting from
state s and following π thereafter, V (s) = E[R|s, π] or the expected return when taking
action a in state s and following π thereafter, Q(s, a) = E[R|s, π, a].

According to [45], there are three fundamental classes of methods for solving the re-
inforcement learning problem namely dynamic programming, Monte Carlo methods, and
temporal difference learning. Dynamic programming methods are well developed math-
ematically, but require a complete and accurate model of the environment, which is re-
alistically almost impossible to obtain for any software system. Monte Carlo methods
don’t require a model and are conceptually simple, but are not suited for step-by-step
incremental computation, rendering these methods unsuitable for self-adaptation as well.
Temporal-difference methods require no model and are fully incremental, but are more
complex to analyze, rendering these methods to be the most promising exploratory option
for self-adaptive systems.

The next sections cover two popular off-policy and on-policy temporal difference algo-
rithms namely Q-Learning and SARSA.

Q-Learning

Q-learning is a reinforcement learning technique that works by learning an action-value
function that gives the expected utility of taking a given action in a given state and
following a fixed policy thereafter. One of the strengths of Q-learning is that it is able
to compare the expected utility of the available actions without requiring a model of the
environment[7]. The problem model consists of an agent, states S and a number of actions
per state A. By performing an action a, where a ∈ A, the agent can move from state to
state. Each state provides the agent a reward or punishment. The goal of the agent is to
maximize its total reward.

The algorithm therefore has a function which calculates the quality of a state-action
combination:

Q : S x A→ R (2.1)

22

Before learning has started, Q returns a fixed initial value chosen by the implementer.
Thereafter, each time the agent is given a reward, new values are calculated for each
combination of a state s from S, and action a from A[7]. The core of the algorithm is a
value iteration update. It assumes the old value and makes a correction based on the new
information.

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ αt(st, at)︸ ︷︷ ︸
learning rate

x [

expected discounted reward︷ ︸︸ ︷
rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

max
a
Q(st+1, a)︸ ︷︷ ︸

max future value

−
old value︷ ︸︸ ︷
Q(st, at)] (2.2)

where

• rt+1 is the reward given at time t+ 1

• αt(s, a) is the learning rate such that 0 ≤ αt(s, a) ≤ 1. The learning rate determines
to what extent the newly acquired information will override the old information. A
factor of 0 will make the agent not learn anything, while a factor of 1 would make
the agent consider only the most recent information.

• γ is the discount factor such that 0 ≤ γ ≤ 1 The discount factor determines the
importance of future rewards. A factor of 0 will make the agent “opportunistic” by
only considering current rewards, while a factor approaching 1 will make it strive for
a long-term high reward. If the discount factor meets or exceeds 1, the Q values will
diverge.

The above formula is equivalent to:

Q(st, at)← Q(st, at)(1− αt(st, at)) + αt(st, at)[rt+1 + γmax
a
Q(st+1, a)] (2.3)

The greatest advantage of the Q-Learning approach is its simplicity. It is easy to
implement and demonstrates good results in applicable systems. However, the use of the
Q-Learning algorithm is constrained. This is because the number of possible states of the
environment and actions the agent can take must be finite. With increasing number of
states and actions, storing the Q-value of each action morphs into a non-trivial task and
has an adverse impact on overall performance and throughput. Additionally, problems
with continuous state or action spaces cannot be solved by Q-Learning without using
other techniques like the mapping of continuous spaces to a finite set of states or actions.
Furthermore, if the agent always selects the action with the highest Q-Value for a given
state, it will probably end up in a local maximum of its policy. This problem can be
alleviated by an exploration strategy, which randomly makes the agent try actions it has
not performed before.

23

SARSA

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm for learning a Markov
decision process policy, used in reinforcement learning. This name simply reflects the fact
that the main function for updating the Q value depends on the current state of the agent
st, the action the agent chooses at, the reward R the agent gets for choosing this action,
the state st+1 that the agent will now be in after taking that action, and finally the next
action at+1 the agent will choose in its new state. Taking every letter in the quintuple
(st, at, rt+1, st+1, at+1) yields the word SARSA.

Before learning has started, Q returns a fixed initial value chosen by the implementer.
Thereafter, each time the agent is given a reward, new values are calculated for each
combination of a state s from S, and action a from A[7]. The core of the algorithm is a
value iteration update. It assumes the old value and makes a correction based on the new
information.

Q(st, at)← Q(st, at) + αt(st, at)[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.4)

where

• rt+1 is the reward given at time t+ 1

• αt(s, a) is the learning rate such that 0 ≤ αt(s, a) ≤ 1. The learning rate determines
to what extent the newly acquired information will override the old information. A
factor of 0 will make the agent not learn anything, while a factor of 1 would make
the agent consider only the most recent information.

• γ is the discount factor such that 0 ≤ γ ≤ 1 The discount factor determines the
importance of future rewards. A factor of 0 will make the agent “opportunistic” by
only considering current rewards, while a factor approaching 1 will make it strive for
a long-term high reward. If the discount factor meets or exceeds 1, the Q values will
diverge.

In the next section we describe applications of machine learning in self-adaptive systems.

2.7 Applications of Machine Learning in Self-Adaptive

Systems

Several approaches based on machine learning have been proposed for managing systems
performance in dynamic environments. The work in [13] proposes the use of reinforce-
ment learning for influencing server allocation decisions in a multi-application data center

24

environment. By observing the applications state, number of servers allocated to the ap-
plication, and the reward specified by the service level agreement, a learning agent is then
used to approximate Qπ(s, a). To address poor scalability in large state spaces, the authors
of [46] have proposed an approximation of the applications state by discretizing the mean
arrival rate of page requests.

Recently, there have been proposals on how to adapt the use of policies to accommodate
the reconfiguration of the managed environment. The authors of [16] and [17] propose an
adaptive policy-based framework that supports dynamic policy configuration in response to
changes within the managed environment. In their approach, policy adaptation describes
the ability to modify network behavior by dynamically changing the policy parameters as
well as selecting, enabling, or disabling policies at run-time. Reconfiguration events are
used to trigger high-level control policies, which then determines which lower-level policies
must be adapted to reconfigure the managed system.

The authors of [47] propose a framework which make use of reinforcement learning
methodologies to perform adaptive reconfiguration of a distributed system based on tuning
the coefficients of fuzzy rules. The focus is on the problem of dynamic resource allocation
among multiple entities sharing a common set of resources. The paper demonstrates how
utility functions for making dynamic resource allocation decisions, in stochastic dynamic
environments with large state spaces, could be learned. The aim is to maximize the average
utility per time step of the computing facility through the reassignment of resources (i.e.
CPUs, memory, bandwidth, etc.) shared among several projects.

The research conducted in [18] proposes the use of reinforcement learning techniques in
middlewares to improve and adapt the QoS management policy. In particular, a Dynamic
Control of Behavior based on Learning (DCBL) Middleware is used to learn a policy that
best fits the execution context. This is based on the estimation of the benefit of taking an
action given a particular state, where the action, in this case, is a selection of a QoS level.
It is assumed that, each managed application offer several operating modes from which to
select, depending on the availability of resources.

The authors of [19] examine the effectiveness of reinforcement learning methodologies in
determining how to use a set of active policies to meet different performance objectives. In
order to do so, the model of the environment is learned on-line and used, at each timestep,
to influence the policy guiding the agents interaction with the environment. To model
systems dynamics from the use of an active set of policies, the authors use a mapping
between the active policies and the managed systems states whose structure is derived
from the metrics associated with the active policy conditions.

The authors of [6] have developed a decision-making framework (FUSION) for self-
adaptive systems that combines feature-orientation, learning, and dynamic optimization.
FUSION learns the impact of feature selection and feature interactions on the systems

25

Table 2.3: Applications of Machine Learning in Self-Adaptive Systems

Project Name Description
[19] A framework for adaptive policy-driven autonomic management us-

ing reinforcement learning methodologies.
FUSION[6] A decision-making framework for self-adaptive systems that com-

bines feature-orientation, supervised learning, and dynamic opti-
mization.

[13] Proposing the use of reinforcement learning for influencing server
allocation decisions in a multi-application data center environment.

DCBL[18] Proposing the use of reinforcement learning techniques in middle-
wares to improve and adapt the QoS management policy.

[16] and [17] Proposing an adaptive policy-based framework that supports dy-
namic policy configuration in response to changes within the man-
aged environment.

[47] Proposing a framework that utilizes reinforcement learning method-
ologies to perform adaptive reconfiguration of a distributed system
based on tuning the coefficients of fuzzy rules.

goals. It then uses this knowledge to efficiently adapt the system to satisfy as many user-
defined goals as possible. FUSION uses a learning cycle to learn the impact of adaptation
decisions in terms of feature selection on the systems goals. The authors have used the
M5 model tree algorithm in their implementation. M5 is a supervised machine learning
technique with the ability to eliminate insignificant features, it offers fast training and
convergence, and efficient interaction detection. Using a prototype implementation of the
system and a travel reservation system the authors have validated the approach and its
properties and obtained promising results.

Table 2.3 summarizes the applications of machine learning in self-adaptive systems.
The results obtained by all of the aforementioned research projects demonstrate that in-
corporating feedback control loops as first-class entities in the decision-making models of
self-adaptive systems has significant potential. However, all of the aforementioned research
has mostly been performed on systems with policy-based decision-making models, and thus
cannot be used in systems with negotiable adaptation requirements. Moreover the feed-
back control loop realization mechanisms have been hard coded into the system and are
not configurable. Furthermore, the systems can only satisfy one requirement at any given
point in time, even if multiple requirements are being unsatisfied.

The next section summarizes the research gaps in the area of decision-making models

26

in self-adaptive systems.

2.8 Research Gaps

The previous sections have highlighted different approaches used for realization of decision-
making models in self-adaptive systems. In this section we summarize the existing research
gaps in this area, which can be divided into the following categories:

• Adaptation Requirements: As mentioned before, the adaptation requirements of
a system can be categorized as mandtory, negotiable and related negotiable require-
ments. To the best of our knowledge, none of the existing decision-making models
have the ability to provide a comprehensive representation of all categories of adap-
tation requirements, particularly the related negotiable requirements. Consequently,
none of the existing decision-making models can concurrently satisfy multiple adap-
tation requirements at any given point in time.

• Conflict Detection and Resolution: Conflicts can either exist in the adaptation
requirements themselves or can exist in the actions required to satisfy multiple adap-
tation requirements. There is very limited support for detecting and resolving both
types of conflicts in existing decision-making models.

• Incorporation of Control Loops: Since run-time uncertainity has become an
inherent nature of software systems, it has been suggested that feedback control
loops be incorporated as first-class entities in the decision-making model, so that
the model can analyze and learn from the outcome of a previously executed decision.
However, there are several challenges associated with this pertaining to the domain of
modelling, verification and validation and software reengineering. Machine learning
has been suggested as a realization mechanism for acheiving this. However, most
of the projects have focussed on incorporating feedback control loops into policy-
based decision-making models. To the best of our knowledge, very little work has
been done on incorporating feedback control loops into goal-based decision-making
models. Furthermore, all of the existing realization mechanisms have hard coded the
leveraged machine learning technique, and thus have not exposed the control loop
properties or made them configurable.

• Provision for Specification of Configurable Algorithms: Current state-of-the-
art goal-oriented decision-making models have little or no support for specifying a
configurable voting algorithm for choosing a winner requirement, if multiple require-
ments are unsatisfied at any given point in time. Moreover, none of the existing
decision-making models that have incorporated feedback control loops as first-class

27

entities have provided the ability to specify a configurable machine learning algorithm
to analyze the effects of a previously executed action.

2.9 Summary

In this chapter research relevant to adpatation techniques employed by self-adaptive sys-
tems has been elaborated. We began the chapter by categorizing the different realization
techniques used for decision-making models in self-adaptive systems. We then presented
the advantages and disadvantages of each approach. Next, we explored a new and up-
coming area of research in decision-making models namely the incorporation of feedback
control loops as first-class entities in the model. We highligted the advantages of doing so,
and also outlined some of the challenges associated with accomplishing this task. Next we
explored the applications of machine learning in self-adaptive systems. In doing so, this
chapter aimed to highlight some of the existing research gaps in each approach. In the
next chapter we present the decision-making model developed in this dissertation which
aims to provide a solution to some of the shortcomings that have been highlighted in this
chapter.

28

Chapter 3

Proposed Decision Making Model

This chapter presents an overview of the decision making model developed in this thesis.
The model aims to address the challenges of decision making in self-managing system devel-
opment. We begin this chapter by describing the components of a decision-making model,
followed by the requirements of a comprehensive and well-designed decision-making model.
Next, we describe a goal-oriented decision-making model that can be used by self-managing
systems and outline the advantages and disadvantages of this model. Subsequently, we de-
scribe the architecture of the decision-making model developed in this dissertation. We
conclude this chapter by describing how a decision-making process can enforce the adap-
tation requirements by utilizing the proposed decision-making model.

3.1 Requirements and Constituent Components

In the self-adaptive software research community, there are discussions on the suitability
of numerous models for adaptation requirements and domain information. These include
architectural, configuration, performance and reliability models; to name a few[42]. The
similarity in all these models is the common problem space concepts these models try to
represent namely:

• Goal Space: Quality goals are commonly used to represent adaptation requirements.
The role of quality goals in the adaptation manager is as important as their role in
software engineering. Adaptation goals in the goal space are prescriptive statements
that should be a mapping/translation of the adaptation requirements specified by
the stakeholders. These goals capture different quality requirements for adaptable
software. The satisfaction of these goals must be the primary focus of the adaptation
manager.

29

• Attribute Space: For the monitoring and detecting processes, and in order to
essentially trace adaptation goals, domain attributes should be captured and tracked.
Attributes represent measurable and quantifiable properties of adaptable software.
Attributes are system variables which may be controllable or non-controllable and
are generated by the monitoring process from raw data collected from sensors.

• Action Space: Adaptation is based on changeability, and the adaptation manager
needs effectors to apply changes to adaptable software. The ways an adaptation
manager can apply changes are defined in the action space. Adaptation changes or
actions basically aim to satisfy goals. Actions are the tasks that are performed by
the system effectors. These actions can directly change self attributes. However, it
is possible to impact context variables indirectly by some actions as well.

Figure 3.1: Adaptation Conceptual Model

These three concept spaces are the main tenets of the problem space. Figure 3.1
depicts the conceptual model combining these spaces. A fourth optional space can be
also added to complement the model. This space may be required because some solutions
need structural or behavioral information from the adaptable software system. The links
between the main three spaces are shown by dotted lines, indicating that different patterns
may bind the constituent entities of each space together, and all links do not exist in all
solutions [42]. The initial step in defining the adaptation model is capturing entities in
each concept space. These entities can be linked in each space together to build models
(i.e. intraspace links).

In order to build a goal-oriented decision-making model, we need to first establish a
mechanism to define and represent the goals, actions, attributes and their relationship in
a goal-action-attribute-model. Additionally, we need to design a decision-making mecha-
nism based on this model. The deciding processes will esstentially analyze this model to
determine if any of the adaptation requirements are not being satisfied by the executing

30

system i.e. if any of the system goals have been activated. If active goals exist in the
system, the deciding processes will traverse this model to determine the actions that must
be performed to restore normalcy to the sytem.

In the following section, we describe a goal-oriented decision making model that can
be used by a self-managing system. We outline the pros and cons of this model and also
leverage some of the pivotal features of this model in the development of our decision-
making model.

3.2 GAAM - A Goal-Oriented Decision-Making Model

The Goal Action Attribute Model (GAAM) is a goal-oriented decision-making model de-
veloped by Salehie et al[44] that can be used in domain of self-adaptive systems. It defines
a mechanism whereby the adaptation requirements are represented as goals, the data from
the sensors belonging to the monitoring processes are represented as attributes, and the
tasks that are performed by the effectors are represented as actions. GAAM represents and
relates the adaptation goals, self/context attributes and adaptable actions in a well-defined
structure which is used by the decision-making algorithm to select the best adaptable action
to attain the adaptation requirements/system goals specified by the stakeholders.

Each entity in GAAM has several properties. Attributes represent measurable/quantifiable
properties of adaptable software. Attributes can have different types like integer, time, etc.
Moreover, each attribute belongs to a specific entity (e.g., method or component) or a level
(e.g., system or subsystem).

Goals are represented using a hierarchy (high-level to low-level goals). Stakeholders
often start to articulate high-level goals by specifying the desired behaviors of the system
(e.g. performance and security). These goals are decomposed into low-level goals, which
are more likely to be related directly to measurable attributes. Goals are stimulated by
attributes, and the activation level determines whether a particular goal is activated or
not. Activated goals are eligible to participate in the action selection mechanism. Goals
also have priorities associated with them. The priority of a goal determines the weight of
the goal in the GAAM model, and impacts its influence in the action selection mechanism.
Priorities come from stakeholders opinions.

Adaptation actions are changes applicable to adaptable software entities using the pro-
vided effectors. These actions usually include some preconditions. Before considering an
action eligible to be selected, its preconditions should be satisfied.

The approach employed by GAAM is summarized as follows:

Given a set of goals GL = {gli, i = 1 . . .m}, a set of actions AC = {aci, i = 1 . . . n}
and an attribute set AT = {ati, i = 1 . . . p}, GAAM solves the action selection problem

31

Figure 3.2: GAAM Graph

of choosing the most appropriate adaptation action aci to satisfy goals in different condi-
tions of attributes. In order to do so, GAAM defines additional parameters to be associ-
ated with goals and actions. An activation level vector ACL = {acli, i = 1 . . .m} contains
threshold values or a rules specifying how goals will be activated. A preference vector
PV = {pvi, i = 1 . . .m} contains preference values associated with goals as specified by
the stakeholders. A precondition vector PC = {pci, i = 1 . . . n} contains the preconditions
associated with adaptation actions. GAAM also defines matrices relating goals, actions
and attributes. An impact matrix IM = {imij, i = 1 . . .m, j = 1 . . . p} relates m goals to
p actions. An activation matrix AM = {amij, i = 1 . . .m, j = 1 . . . n} relates m goals to n
attributes. An aspiration level matrix ASL = {aslij, i = 1 . . .m, j = 1 . . . n} specifies the
aspiration level of each goal in terms of n attributes. GAAM creates a graph G = {V,E}
in which the vertices are V = {GL

⋃
AT

⋃
AC} and edges are E = {IM

⋃
AM

⋃
PV }.

Figure 3.2 illustrates the graph developed and used by GAAM.

GAAM employs a goal-ensemble adaptation mechanism. The deciding process models
a cooperative game based on the weighted voting of activated goals (i.e. the unsatisfied
adaptation requirements). Here, it is assumed that the GAAM is continuously being
traversed from attributes to actions for a specific adaptation period. Before making a
decision, it is essential to determine which goals have been activated and which actions are
feasible. The activated goals are voters, and feasible actions are eligible candidates.

Figure 3.3 illustrates the flow of the decision-making process employed by GAAM. The
algorithm employed by the decision-making process is as follows. In the first step, all of the
attributes are sensed and updated. In the next step, for each goal, the obtained attribute
values are examined to determine if the values are outside their designated threshold limits.
The next step then determines the goals that have been activated. In the next step, feasible
actions are identified by checking the list of preconditions. In the next step, activated goals
generate their preferred lists of actions (votes). The last step involves aggregating the votes,
which is the actual voting mechanism. The action that receives the maximum votes i.e.

32

the “winner” action is the outcome of the analysis/traversal of the GAAM matrix, which
must be executed by the system effectors in an attempt to restore normalcy to the system.

Figure 3.3: GAAM Action Selection Process

The ideas outlined in GAAM have been evaluated with a simulated MATLAB model
of a news web site and the results obtained are promising. To the best of our knowledge,
there is no known implementation of GAAM.

GAAM provides a goal-based model and decision-making mechanism to address action
selection in self-adaptive software systems. It provides a mechanism whereby the the
adaptation requirements are represented as first class entities in the self-adaptive system.
Rule-based methods based on action policies implicitly utilize the goals to adapt the system.
Compared to the aforementioned approach, the goal-based methods proposed in GAAM
explicitly represent the goals, trace them at runtime, and include them in the deciding
process. This characteristic leads to better traceability for administrators, and to more
trust for stakeholders.

Moreover, GAAM facilitates multiple objective decision-making . The goal-based ap-
proach outlined in GAAM intrinsically supports multiple goals. Handling these goals in a
rule-based method is not an easy task. This can result in a large set of rules with precisely
adjusted priorities to address all the desired goals, while in GAAM, each goal is defined
with its own utility for the systems adaptation actions. These goals are later coordinated
in the action selection mechanism.

Furthermore, GAAM is a flexible decision-making model. Modifying rules at run-time
is not always safe, and the systems behavior is not predictable. In the goal-based approach,
the coordinator can handle the changes better. Goals, actions, and attributes can be added
or removed from GAAM, although the authors have not made the claim that the system
behavior is immune from any kind of change. The authors claim that the easiest way of
changing GAAM is altering goal preferences.

33

However, GAAM does not provide a comprehensive mechanism to represent all the
different types of adaptation requirements. GAAM views all adaptation requirements as
negotiable requirements, and this may not be a viable solution for every self-adaptive
system. Systems may have mandatory adaptation requirements that need to be satisfied
under all circumstances. Hence a possible improvement to GAAM would be the ability to
represent both mandatory and negotiable adaptation requirements.

Addtionally, the adaptation requirements of a system may be related, which implies
that related requirements be grouped together and analyzed in a similar manner by the
decision-making process. At present GAAM provides the ability to represent all the goals,
actions and attributes in a single graph which is analyzed by the decision-making process.
The concept of related goals, necessitates the concept of several graphs that are analyzed
concurrently. Hence, an enhancement to GAAM would be the ability to represent similar
negotiable requirements to form a negotiable requirements cluster and to support several
such clusters of negotiable requirements. This allows the adaptation manager of an ex-
ecuting system to select mutilple unrelated goals, one from each cluster and thus satisfy
multiple unrelated adaptation goals concurrently.

Furthermore, GAAM can be exended to support negotiable requirements augmented
with a feedback control mechanism. This enables the adaptation manager to perform an
evaluation on the effectiveness of a previously executed action, so that better decisions can
be made in the future. This also provides a mechanism of modifying rules at run-time
and evaluating the impact of the modification on the system’s behaviour. The adaptation
manger can utilize various on-policy reinforcement learning algorithms to evaluate the
effectiveness of an executed action. The negotiable adaptive requirements that support
this functionality can be referred to as adaptive negotiable requirements.

The next section outlines the functional requirements of the decision-making model
developed in this dissertation that leverages the fundamentals of GAAM and extends it to
support the aforementioned features.

3.3 Decision-Making Model Requirements

Based on the aforementioned discussion, a well-designed and comprehensive goal-oriented
decision-making model must satisfy the following requirements:

• FR1: Representation of system attributes The decision-making model must
provide a comprehensive representation of the attributes of the adaptable software
and its execution context i.e. it must provide the ability to represent data produced
by the sensors.

34

• FR2: Representation of adaptation actions The decision-making model must
provide a means to represent the actions that can be performed on the adaptable
software by the effectors.

• FR3: Representation of adaptation requirements as goals The decision-
making model must provide a representation of all the adaptation requirements i.e.
the stakeholders’ expectations of the system as goals.

• FR4: Distinguishable representation of mandatory and negotiable goals
The decision-making model must provide a clearly distinguishable representation of
mandatory and negotiable adaptation requirements.

• FR5: Support for negotiable goal clusters The decision-making model must
provide the ability to represent similar negotiable adaptation requirements as a clus-
ter, so that they can be analyzed by the adaptation manager as a single entity to
produce a “winner” requirement. It must also provide the ability to support several
such negotiable clusters.

• FR6: Support for pluggable voting algorithms for negotiable goal clusters
The decsion-making model must provide the adaptation manager with the ability to
use a variety of voting algorithms while choosing a winner goal from the negotiable
goal cluster.

• FR7: Support for adaptive negotiable goal clusters The decision-making
model must support the ability to provide negotiable clusters with optional feed-
back control loops. This facilitates evaluation of the effectiveness of a previously
executed effector action by the adaptation manager.

• FR8: Support for pluggable reinforcement learning algorithms for adap-
tive negotiable goal clusters The decision-making model must provide the adap-
tation manager with the ability to use a variety of on-policy reinforecement learning
algorithms to evaluate the effectiveness of a previously executed effector action for
adaptive negotiable goal clusters.

• FR9: Representation of goal-attribute relationship The decision-making model
must provide a representation of the relationship between an adaptation requirement
and the relevant data produced by the sensors. Note that this can be a many-to-many
relationship.

• FR10: Representation of goal-action relationship The decision-making model
must provide a representation of the relationship between an adaptation requirement
and the relevant actions that can be performed by the effectors. Note that this can
also be a many-to-many relationship.

35

The next section outlines the architecture of the decision-making model developed in
this dissertation.

3.4 Proposed Decision-Making Model Architecture

Figure 3.4 shows the architecture of the decision-making model. Table 3.1 provides a
summary of all the configurable entities of the decision-making model and the functional
requirement satisfied by each entity. The problem space of the proposed decision-making
model is composed of the following:

• Attribute Space: For the monitoring and detecting processes, and in order to es-
sentially trace adaptation goals, the measurable properties of the adaptable software
and its context should be captured and tracked. The attribute space is the superset
of all such properties.

• Action Space: Adaptation changes basically aim to satisfy goals. The ways an
adaptation manager can apply changes are defined in the action space.

• Goal Space: The goal space contains prescriptive statements that should be a
mapping/translation of the adaptation requirements specified by the stakeholders.

Each of the aforementioned spaces is composed of several entities and sub-entities.
Additionally, there are certain entities that belong to both the goal space and the action
space; and some that belong to both the goal space and the attribute space. Subsequent
sections will provides additional details about each of these entities and their comprising
sub-entities.

3.4.1 Attribute Space

For the monitoring and detecting processes, and in order to essentially trace adaptation
goals, the measurable properties of the adaptable software and its context should be cap-
tured and tracked. The attribute space is the superset of all such properties. The attribute
space is composed of one or more attribute(s).

Attribute

Attributes represent measurable and quantifiable properties of adaptable software. At-
tributes are system variables which may be controllable or non-controllable and are gener-
ated by the monitoring process from raw data collected from sensors. In order to adequately
model a self or context attribute, the following information must be provided:

36

Figure 3.4: Proposed Decision-Making Model Architecture

37

Table 3.1: Configurable Entities of the Proposed Decision-Making Model

Entity Description Functional
Requirement

Attribute Attributes represent measurable and quantifiable prop-
erties of adaptable software.

FR1

Atomic Action Atomic actions involve executing any setter method by
the effectors.

FR2

Invoker Action Invoker actions involve executing a method exposed by
the adaptable software, which is accessible to the effec-
tors.

FR2

Composite
Action

Composite actions are composed of a series of invoker,
atomic actions and composite actions; and involve se-
quential execution of each action.

FR2

Mandatory Goal Mandatory goals represent the mandatory adaptation
requirements that must be satisfied by the system under
all circumstances.

FR3, FR4

Negotiable Goal
Cluster

Negotiable goal clusters represent groups of flexible
adaptation requirements.

FR3, FR4, FR5,
FR6

Negotiable Goal Negotiable goals are contained within negotiable goal
clusters and are not top-level entities of the model.

FR3, FR4

Adaptive Nego-
tiable Goal Clus-
ter

Adaptive negotiable goal clusters represent negotiable
adaptation requirements that have been modeled with a
control loop to facilitate evaluation of the effectiveness
of a previously executed action.

FR3, FR7, FR8

Adaptive Nego-
tiable Goal

Adaptive negotiable goals are contained within adaptive
negotiable goal clusters and are not top-level entities of
the model.

FR3, FR7

Goal Attribute Goal attributes represent the relationship between an
attribute and a goal.

FR9

Goal Action Goal actions represent the relationship between goals
and actions.

FR10

Goal Action
Property

Goal action properties represent the additional proper-
ties that must be specified while invoking a particular
action.

FR10

Goal Action
Precondition

Goal action preconditions represent the preconditions
that must be satisfied before an action can be invoked.

FR10

38

• Attribute Id: An identifier by which the attribute can be uniquely identified in the
model.

• Attribute Type: The data type of the attribute. The data type can be one of the
primitive data types or a complex data type.

• Sensor Info: The information about the sensor which produces the data for this
attribute. e.g. If the sensors of Java-based system are implemented as MBeans, the
sensor information includes the specifying MBean connection information and the
name of the MBean getter method that must be invoked to obtain the data for this
attribute.

3.4.2 Action Space

Adaptation is based on changeability, and the adaptation manager needs effectors to apply
changes to adaptable software. The ways an adaptation manager can apply changes are
defined in the action space. Adaptation changes or actions basically aim to satisfy goals.
Actions are the tasks that are performed by the system effectors. These actions can directly
change self attributes. However, it is possible to impact context variables indirectly by some
actions as well. Actions can be further classified as invoker, atomic and composite actions.
Each action category has certain properties that must be specified while modeling the
action type.

Invoker Action

Invoker actions involve executing a method exposed by the adaptable sofware which is
accessible to the effectors to restore normalcy to the system. In order to adatequately
model invoker actions, the following information must be provided:

• Action Id: An identifier by which the action can be uniquely identified in the model.

• Effector Info: The information about the effector which invokes the method for
this action. e.g. If the sensors of Java-based system are implemented as MBeans, the
effector information includes the specifying MBean connection information.

• Invoker Method Info: Complete information about the method that the effector
must invoke. e.g. In the case of MBeans, this information includes specifying the
method name and the complete method signature.

39

Since specifying the complete method signature involves a deep understanding of a pro-
gramming languages like Java, and more often than not, actions involve invoking setter
methods exposed by the adaptable software, our model provides an optimized version of
invoker actions called atomic actions.

Atomic Action

Atomic actions involve executing any one setter method by the effectors to restore normalcy
to the system. In order to adatequately model atomic actions, the following information
must be provided:

• Action Id: An identifier by which the action can be uniquely identified in the model.

• Effector Info: The information about the effector which invokes the setter method
for this action.

• Attrib Type Info: The information about the data type of the attribute that is
passed as a parameter into the setter method that the effector must invoke.

Composite Action

In certain cases, a system may require the sequential execution of several tasks in order
to restore normalcy to the system. In order to support this functionality, our model
includes an entity called a composite action. Composite actions are composed of a series
of invoker,atomic or composite actions and involve sequential execution of each action. In
order to adequately model composite actions, the following information must be provided:

• Action Id: An identifier by which the action can be uniquely identified in the model.

• Sub-action Id: Identifier(s) by which the comprising actions can be uniquely iden-
tified in the model. This list cannot include the identifier of the composing composite
action.

3.4.3 Goal-Attribute Space

Although the goal-attribute space has not been explicitly listed in figure 3.4, it is a concep-
tual space that contains entities belonging to both the goal space and the attribute space.
It is composed of one or more goal attribute(s).

40

Goal Attribute

Since an attribute can be associated with multiple goals, and each association may have
unique characteristics, the model has been equipped with an entity called a goal attribute.
Goal attributes represent the relationship between an attribute and a goal. Goal attributes
can only exist as sub-entities within a goal. In order to adequately model goal attributes,
the following information must be provided:

• Attribute Info: The identifier of the attribute.

• Threshold Info: The threshold that the attribute value must stay within. If the
attribute value falls outside the designated threshold, then the containing goal may be
activated. The threshold value specification can vary from specifying a minimum and
maximum value, a particular value, a null value or some other complex representation;
and the model must provide the ability to represent this. Hence support for specifying
a minimum and/or maximum value, a particular value and a null value has been built
into the model. For complex threshold value specification, the model leverages the
adapter design pattern and provides the ability to specify a custom Java class that
must implement a pre-defined interface.

• Weight: The influence of this attribute on the goal. The sum of the weights of all
goal attributes defined in a cluster must equal 1 or a multiple of 10. This property
is primarily used if this goal attribute belongs to a goal belonging to an adaptive
negotiable cluster. For further details, please refer to section 3.5.1.

3.4.4 Goal-Action Space

Although the goal-action space has not been explicitly listed in figure 3.4, it is a conceptual
space that contains entities belonging to both the goal space and the action space. It is
composed of one or more goal action(s).

Goal Action

Goal actions represent the relationship between goals and actions. Since an action can be
associated with multiple goals, and each association may have unique characteristics, the
model has been equipped with an entity called a goal action. In order to adequately model
goal actions, the following information must be provided:

• Action Info: The identifier of the action.

41

• Preference Value: The preference value of the action i.e. the amount by which the
composing goal, prefers this action over another action associated with the goal.

Goal actions are further comprised of goal action precondition(s) and goal action prop-
erty(ies).

Goal Action Precondition

Goal action preconditions represent the preconditions that must be saitsfied before an
action can be invoked. Since an action can be associated with multiple goals, it may
require different preconditions for each goal. Hence, the preconditions are associated with
goal actions as opposed to the action definition itself. In order to adequately model a goal
action precondition, the following information must be provided:

• Reliant Attrib Info: In order to evaluate the precondition of an action, access may
be required to the values of some attributes defined in the system. This property
contains the information about the identfiiers and values of the attributes that must
be provided to determine if the precondition of the goal action has been satisfied.

• Reliant Attrib Rel: In addition to specifying information about the attributes,
the precondition evaluator also needs information about the relationship that must
exist within the attributes. The relationship can range from simple relationship
(i.e. determining if two values are equal, greater than, less than, not equal etc. to
each other) or a complex relationship; and the model must provide the ability to
represent this. Hence support for specifying a simple relationship has been built
into the model. For complex relationships, the model leverages the adapter design
pattern and provides the ability to specify a custom Java class that must implement
a pre-defined interface.

Goal Action Property

Goal action properties represent the additional properties that must be specified while
invoking a particular action. In order to adequately model goal action properties, the
following information must be provided:

• Attribute Info: Information about the attribute value that must be set by the
atomic action invoking a setter method, or the invoker action invoking any method.
For complex attribute values, the model leverages the adapter design pattern and
provides the ability to specify a custom Java class that must implement a pre-defined
interface. For composite actions, the properties for each constituent action must be
provided in sequence.

42

3.4.5 Goal Space

Adaptation goals in the goal space are prescriptive statements that should be a map-
ping/translation of the adaptation requirements specified by the stakeholders. These goals
capture different quality requirements for adaptable software. As a result, the goal space
is a superset of all the categories of adaptation requirements and hence is composed of
mandatory goal(s), negotiable goal cluster(s) and adaptive negotiable goal cluster(s).

Mandatory Goals

Mandatory goals represent the mandatory adaptation requirements that must be satisfied
by the system under all circumstances. These goals contain goal attributes and goal actions
as sub-entities. Since mandatory goals can be viewed as a representation of action policies,
only one goal action can be associated with it. In order to adequately model mandatory
goals, the following information must be provided:

• Goal Id: An identifier by which a goal can be uniquely identified in the model.

• Activation Fn Info: When the adaptation requirements of a system are not satis-
fied, the goal representing the requirement is said to be triggered. This occurs when
the attributes associated with the goal fall outside their designated threshold limits
and are activated. Activation functions represent the relationship that the activated
goal attributes must satisfy in order to trigger this goal. The relationship between the
attributes can range from a simple boolean relationship to a complex mathematical
relationship and the model must provide the ability to accommodate this. Hence, the
common boolean relationships have been directly built into the model. For complex
relationships, the model leverages the adapter design pattern and provides the ability
to specify a custom Java class that must implement a pre-defined interface.

• Priority: The priority associated with this goal. This is used for conflict detection
and resolution. For further details, please refer to section 3.5.3.

Negotiable Goal Clusters

Negotiable goal clusters represent groups of related negotiable adaptation requirements
that allow trade-off analysis in the decision-making process. These clusters contain one or
more negotiable goal(s). If a cluster contains more than one active goal at any given point
in time, only one winner goal is selected from the cluster. Moreover, only one of the goal
actions associated with the winner goal will be invoked on the adaptable software. In order
to adequately model negotiable goal clusters, the following information must be provided:

43

• Cluster Id: An identifier by which the goal cluster can be uniquely identified in the
model.

• Voter Info: The information about the voting algorithm used to determine a winner
goal. The voting algorithm can range from a simple algorithm (e.g. borda count,
winner takes all) to a complex algorithm; and the model must provide the ability to
support this. Hence, the simple voting algorithms have been built into the model.
For complex algorithms, the model leverages the adapter design pattern and provides
the ability to specify a custom Java class that must implement a pre-defined interface.

• Priority: The priority associated with this cluster. This is used for conflict detection
and resolution. For further details, please refer to section 3.5.3.

Negotiable Goal

Negotiable goals are contained as sub-entities within negotiable goal clusters. Ne-
gotiable goals contain goal attributes and goal actions as sub-entities. However, unlike
mandatory goals, several goal actions can be associated with one negotiable goal. Ne-
gotiable goals assign preference values for each goal action. The action selection process
determines the goal action to be executed for an activated negotiable goal. In order to
adequately model negotiable goals, the following information must be provided:

• Goal Id: An identifier by which a goal can be uniquely identified in the model.

• Activation Fn Info: When the adaptation requirements of a system are not satis-
fied, the goal representing the requirement is said to be triggered. This occurs when
the attributes associated with the goal fall outside their designated threshold limits
and are activated. Activation functions represent the relationship that the activated
goal attributes must satisfy in order to trigger this goal. The relationship between
the goal attributes must either be a boolean and or a boolean textitor relationship.

• Priority: The priority associated with this goal. This is used in the action selection
process whereby a winner goal action is selected for the cluster. For further details,
please refer to section 3.5.2.

Adaptive Negotiable Goal Clusters

Adaptive negotiable goal clusters incorporate feedback control loops as first-class entities
in the decision-making process. The realization methodology used for feedback control
loops is reinforcement learning. The incorporation of feedback control loops facilitates the
evaluation of the effectiveness of a previously executed action, so that better and more

44

informed decisions can be made in the future. These clusters contain one or more adaptive
neg goal(s). In order to adequately model adaptive negotiable goal clusters, the following
information must be provided:

• Cluster Id: An identifier by which the goal cluster can be uniquely identified in the
model.

• Voter Info: The information about the voting algorithm used to determine a winner
goal.

• Priority: The priority associated with this cluster. This is used for conflict detection
and resolution. For further details, please refer to section 3.5.3.

• RL Algo Info: The reinforcement learning algorithm used to evaluate the effective-
ness of an executed action. The reinforcement learning algorithm can range from
Q-Learning and SARSA to a customizable reinforcement learning algorithm. To en-
able specification of a custom reinforcement learning algorithm, the model leverages
the adapter design pattern. It provides the ability to specify a custom Java class that
must implement a pre-defined interface.

Adaptive Neg Goal

Adaptive negotiable goals are contained as sub-entities within adaptive negotiable goal
clusters. In order to adequately model adaptive negotiable goals, the following information
must be provided:

• Goal Id: An identifier by which a goal can be uniquely identified in the model.

• Activation Fn Info: Activation functions represent the relationship that the acti-
vated goal attributes must satisfy in order to trigger this goal.

• Priority: The priority associated with this goal. This is used in the action selection
process whereby a winner goal action is selected for the cluster. For further details,
please refer to section 3.5.2.

The next section describes how the decision-making model is used to ensure compliance
of the adaptation requirements.

45

Figure 3.5: Adaptation Process Flow using Proposed Decision-Making Model

46

3.5 Adaptation Process Flow using Proposed Decision-

Making Model

Figure 3.5 describes the procedure employed by the decision-making process to ensure that
the adaptation requirements are being satisfied by the system. It constis of the following
steps:

• Step 1: Obtain and Update Goal Attribute Values: In this step, the values
of all attributes defined in the decision-making model are obtained from the sensors
via the adaptation framework. Subsequently, the values of the goal attributes that
refer to these attributes are updated.

• Step 2: Determine Activated Goal Attributes: In this step, the thresholds of
all the goal attributes are evaluated to determine if the system is operating within
its designated limits. If the goal attribute value is outside its threshold limits, the
goal attribute is deemed to be activated.

• Step 3: Determine Activated Goals: In this step, the activation functions asso-
ciated with all the goals with activated goal attributes are evaluated to determine if
the goal is currently being satisfied by the system. If the evaluation of the activation
function determines that the goal is not being satisfied, then the goal is considered
to be activated.

• Step 4: Determine Feasible Goal Actions: In this step, the preconditions of all
the goal actions belonging to the activated goals are evaluated to obtain the list of
feasible goal actions.

• Step 5: Select and Collect Executable Goal Actions: In this step, the list
of feasible goal actions is evaluated by the goals/goal clusters to obtain the list of
executable goal actions. The evaluation procedure employed depends on the type of
entity.

– Step 5A: Mandatory Goals: Since mandatory goals represent adaptation
requirements that must be satisfied under all cirumstances, the goal actions
belonging to mandatory goals need no further processing and are directly added
to the list of executable goal actions.

– Step 5B: Negotiable Goal Clusters: Negotiable goal clusters execute an
action selection process on the list of feasible goal actions per goal cluster, to
obtain a “winner” goal action. Details about the action selection process are
provided in section 3.5.2. One winner action is selected per goal cluster and is
added to the list of executable goal actions.

47

– Step 5C: Adaptive Negotiable Goal Clusters: Adaptive negotiable goal
clusters utilize the feedback control loop to update the preference value of each
feasible goal actions. For further details on how this is accomplished, please refer
to section 3.5.1. After updating the goal action preference values, the feasible
goals undergo an action selection process to select a “winner” goal action per
goal cluster. Details about the action selection process are provided in section
3.5.2. The winner goal action is then added to the list of executable goal actions.

• Step 7: Conflict Detection and Resolution: As mentioned before, two categories
of conflicts can exist in a decision-making model. Conflicts pertaining to the adap-
tation requirements i.e. the goal definitions and conflicts pertaining to the actions
to be executed for active goals. The proposed decision-making model is equipped to
process the latter category of conflicts. In this step, the list of executable goal actions
is scanned to determine if the goal actions to be executed are in conflict. If conflicts
are detected, the conflicts are resolved to obtain the list of final goal actions. Details
about the employed conflict detection and resolution mechanism can be obtained in
section 3.5.3.

• Step 8: Execute Selected Goal Actions: In this step, all of the goal actions
belonging to the list of final goal actions are executed concurrently by invoking the
appropriate effector methods via the adaptation framework.

The next section describes how feedback control loops have been incorporated as first-
class entities in the decision-making process.

3.5.1 Incorporation of Control Loops in the Decision-Making
Process

In order to leverage reinforcement learning as a realization mechanism for control loops in
adaptive negotiable clusters, we need to build a model of the adaptable software. A model,
in reinforcement learning, describes any feedback that guides the interaction between the
learning agent and its environment. This interaction is driven by the choices of actions
and the behavior of the system as a consequence of taking those actions. i.e. a model
in a sense can be viewed as a state-transition graph composed of states and transitions.
The outcome of the actions executed by a learning agent may transition a system from an
unfavorable state (i.e. when the adaptation requirements are not being satisfied) to a more
favorable state (i.e. when the adaptation requirements are being fully/partially satisfied)
and vice-versa. The agent obtains a postive reward upon encountering a favorable state
and receives a negative reward upon an encounter with an unfavorable state. The agent
learns by maximizing its positive reward count.

48

Each adaptive negotiable cluster needs to build a model of the adaptable software and its
context. Consider an adaptive negotiable cluster with a set ofm goalsGL = {gli, i = 1 . . .m},
a set n of goal actions AC = {aci, i = 1 . . . n} representing the goal actions associated with
all the goals and a set of p unique goal attributes AT = {ati, i = 1 . . . p} representing the
unique goal attributes all the goals in the cluster. Since the acitvated goal attributes affect
the triggering of a goal, the unique goal attributes can be used to represent the states of the
adaptable software model. Each unique goal attribute ati, i = 1 . . . p can be represented
by the binary values {1, 0} where 1 represents an activated goal attribute and 0 represents
an unactivated goal attribute. Thus the p goal attributes in the cluster can be represented
by a bitmap of size 2p − 1, where each bitmap entry represents a state in the model. We
subtract 1 from 2p since it is guaranteed that at least one of the states encountered will be
a favorable state, and the decision-making model can be optimized to only keep track of
the unfavorable states.

In order to evaluate the preference value of an executed goal action aci, i = 1 . . . n, we
need to keep track of the system state encountered, the goal action executed, the outcome
of the action (which can be obtained in the next monitoring iteration) and then update the
preference value of the goal action associated with this state based on a positive/negative
outcome. This implies that each goal action may be associated with a bitmap of size 2p − 1.
Since these maps are stored in memory, using this approach may become impractical for
systems which are constrained by memory usage. Consequently, we do not allocate all of
this memory at startup and build the model of the system dynamically as each state is
encountered and a particular goal action is selected for execution. Our belief is that all
states will not be encountered by every goal action in the system, and not all 2p − 1 states
will be unfavorable states.

Figure 3.5.1 describes the procedure followed by a decision-making process utilizing
the proposed decision-making model to update the goal action preference values. The
procedure can be outlined as follows:

• Step 1: Determine System State: In this step, the goal attribute values are used
to determine the system state. The system state is represented by a bitmap of size
2p (if it contains p unique goal attributes). If a goal attribute is activate, the relevant
bit is set to 1, otherwise it is set to 0.

• Step 2: Propagate Variables to Custom RL Algorithm: In this step, the
bitmap representing the current system state, the previous system state, information
about the previous winner goal action, previous activated goals and feasible goal ac-
tions and current feasible goal actions is propagated to the configurable reinforcement
learning algorithm.

• Step 3: Custom RL Algorithm Processing: In this step, the configurable rein-
forcement learning algorithm analyzes the current and previous system state and uses

49

Figure 3.6: Using Control Loops to Update Goal Action Preference Values

50

this information to update the preference values of the goal actions. The processing
is algorithm specific. However, the general premise is as follows:

– If the system had no active goals in the previous state, and has active goals in
the current state, then the preference value of the previous winner goal action
is decremented by 1.

– If the system had active goals in the previous state, and does not contain any
active goals in the current state, then the preference value of the previous winner
goal action is incremented by 1.

– If the previous state had less active goals than the current state, the preference
value of the previous winner goal action is decremented by an amount that
equals the sum of all the goal attributes that are active in the current state, and
were not active in the previous state.

– If the previous state had more active goals than the current state, the preference
value of the previous winner goal action is incremented by an amount that equals
the sum of all the goal attributes that were active in the previous state, and are
not active in the current state.

As mentioned before, the model has two built-in reinforcement learning algorithms
namely Q-Learning and SARSA, but an end-user can use any reinforcement learning
algorithm provided it implements a specified interface.

• Step 4: Save Current System State: In this step, the current system state,
current active goals and current feasible goal actions are saved to be used as “previous
values” in the next iteration.

• Step 5: Propagate Updated Preference Values: In this step, the updated
preference values are propagated to the action selection process and the conflict
detection and resolution stages. The output of the conflict detection and resolution
stage, i.e. the final goal actions are propagated back to the control loop to be used
as “previous values” in the next iteration.

The next section describes the action selection process employed by negotiable and
adaptive negotiable goal clusters to select a winner goal action.

3.5.2 Action Selection Process used by Goal Clusters

Figure 3.5.2 describes the procedure followed by the action selection process utilized by
the goal clusters to select a winner action if a cluster contains multiple feasible actions.
This procdedure is employed by both negotiable and adaptive negotiable goal clusters. As

51

Figure 3.7: Action Selection Process used by Goal Clusters

mentioned before, each goal has a priority and each goal action has a preference value
assigned to it. These priorities and preference values are set by the stakeholders, and play
a major role in the action selection process. The goal priorities are always static. The
goal action preference values are static for negotiable goal clusters and are modified by the
control loop for adaptive negotiable goal clusters. Using another control loop to modify
the priorities of the goals in adaptive negotiable goal clusters is outside the scope of this
thesis, and can be viewed as a potential future research topic. The action selection process
can be outlined as follows:

• Step 1: Propagate Information to Appropriate Voting Algorithm: In this
step, the activated goals, goal prirorities, feasible actions and feasible action prefer-
ence values are transformed into a matrix-like format and propagated to a config-
urable voting algorithm for further processing.

• Step 2: Voting Algorithm: In this step, the voting algorithm evaluates its input to
select a winner action. The processing is algorithm specific. However, if borda-count
is used, the processing will be as follows: Consider 4 active goals, G1, G2, G3, G4

with priorties of 3, 2, 2, 1 respectively. Each goal has 4 feasible goal actions namely
ac1, ac2, ac3, ac4 with preference values as shown in figure 3.5.2 where the preference

52

values are 4, 3, 2, 1 for goal G1 and so on. Borda-count evaluates the weight of each
action as the sum of the product of the goal priority and is preference value for each
goal, and selects action ac1 as the winner goal action.

• Step 3: Add Winner Goal Action to Executable List: In this step, the winner
goal actions are added to the list of executable goal actions.

The next section describes the conflict detection and resolution mechanism employed
by a decision-making process using the prposed decision-making model.

3.5.3 Conflict Detection and Resolution

Two categories of conflicts can exist in a decision-making model. Conflicts pertaining to
the adaptation requirements i.e. the goal definitions and conflicts pertaining to the actions
to be executed for active goals. The proposed decision-making model is equipped to process
the latter category of conflicts. In this step, the list of executable goal actions is scanned
to determine if the goal actions to be executed are in conflict. If multiple goals and/or goal
clusters select the same goal action, with different execution properties, the goal actions
are deemed to be in conflict.

As mentioned before, the decision-making model has provided the ability to specify
priorities for mandatory goals and goal clusters which are hard coded and set by the stake
holders. These priorities are used to resolve conflicts between goal actions as outlined
below:

• Mandatory Goals take Precendence: Conflicts between goal actions belonging
to mandatory goals and goal clusters are resolved based on the fact that mandatory
goals take precedence regardless of priority. This is because these goals represent
adaptation requirements that must be satisfied by a system under all circumstances.

• Priority Values take Precendence: Conflicts beween multiple mandatory goals
or multiple goal clusters are resolved based on prioritiy values assigned by the stake
holders.

Incorporating more advanced and state-of-the-art conflict detection and resolution
mechanisms is outside the scope of this thesis and can be viewed as a potential future
research topic.

53

3.6 Summary

This chapter provided an overview of the proposed decision making model. We began this
chapter by describing the components of a decision-making model. Next, we highlighted
the salient features of GAAM model and outlined the advantages and drawbacks of this
model, and presented certain enhancements that can be applied to it. We then discussed the
requirements of a comprehensive and well-designed decision-making model. Subsequently
we presented the architecture of our decision-making model and described how a decision-
making process could use this model to acheive adaptation. The next chapter describes
how the proposed decision-making model can be used to build a self-adaptive application.

54

Chapter 4

Developing Self-Adaptive
Applications

Developing an application with self-managing capabilities, or converting a legacy system to
an autonomic system is challenging and should be carried out according to a well-defined
process. Various approaches and models have been proposed by researchers to address
self-* properties in self-adaptive systems. This chapter describes how a self-managing
application can be developed and configured to use the proposed decision-making model.
We begin this chapter by describing StarMX a Java-based adaptation framework developed
for self-adaptation systems. Next, we describe the process of integrating StarMX with the
proposed decision-making model to build an adaptation manaer. Subsequently we explain
the adaptation manager configuration properties and then describe the deployment options
available for the adaptation manager. We conclude this chapter by describing the steps
required to build a self-adaptive application using the developed adaptation manager.

4.1 StarMX - A Java-based Adaptation Framework

In[3], Asadollahi et al. have presented a framework called StarMX for developing self-
managing Java-based systems. StarMX is a generic and configurable framework that facil-
itates the creation of self-adaptive software applications. It incorporates Java Management
Extensions (JMX) technology and is capable of integrating with various policy and rule
engines. Although originally designed for Java EE systems, the incorporation of JMX in
Java SE (after J2SE 5.0), has enabled the framework to be used for all Java-based systems.
The StarMX framework does not enforce any specific approach or algorithm, and it aims
to provide sufficient flexibility for the developer to apply different composition patterns
and adaptation mechanisms[3].

55

Figure 4.1 shows the high-level view of the StarMX architecture. The architecture
consists of two main elements namely the execution engine and a set of services. The
Execution Engine module realizes the adaptation processes. It executes the adaptation
logic defined by the application developer to adapt the system based on its current situation
utilizing services provided in the service layer.

Figure 4.1: StarMX High-level Architecture

The two key components of the execution engine are process and execution chain. Fig-
ure 4.2 shows the architecture of this part of the framework and its interaction with the
adaptable software. Processes comprise the building blocks of an adaptation manager.
Each process may represent a single function or a group of consecutive modules of adap-
tation mechanism. The processes are chained together to form execution chains. The
execution chains act as an adaptation manager and are associated with an individual ac-
tivation mechanism. When activated, the processes in the chain execute sequentially. As
shown in figure 4.2, each process needs a collection of objects, called anchor objects, to
perform its task. Either service-providing helper objects or sensors/effectors of the under-
lying adaptable resource can function as anchor objects. A framework configuration file
called starmx.xml facilitates the definition of the required set of anchor objects for each
process and their lookup information. At execution time, the execution engine creates and
inserts the anchor objects into the execution process.

In order to support standard forms of access to the anchor objects, StarMX offers the
ability to define MBeans or JavaBeans. There are two approaches for defining a process
namely using a policy language and using Java code by implementing an available interface.
In the first case, the user defines the slef-adaptive system requirements in the form of action
policies. StarMX employs the Adapter design pattern to interact with external policy

56

Figure 4.2: StarMX Execution Chain Architecture

engines. StarMX also allows for the implementation of a process using the Java language
to allow ultimate flexibility in rule specification. The composition of processes in execution
chains to build adaptation managers can be either static or dynamic. In static mode, the
chain of processes is pre-configured, while in dynamic mode, several execution chains may
form an adaptation manager on-the-fly. The execution chain architecture provides a high
degree of flexibility in the design of adaptation manager. It allows the definition of all
adaptation mechanism modules in a single process, or the design of an arbitrary number
of chained processes for this purpose.

The run-time behavior of the framework consists of the following phases:

• Start up: At startup, StarMX prepares the environment for the optimized operation
of the execution chains. All services are initialized, and processes and execution
chains are deployed based on the specified properties.

• Operation: Once the framework has successfully started, it moves to the operation
phase where the execution chains are activated. Upon activation, the processes in the

57

chain are executed in order, providing each process with the required set of anchor
objects. The process invokes the anchor objects’ methods to obtain data from or
to send commands to the application. If a policy language is used, the relevant
policy engine is invoked through its adapter for policy execution. If custom Java
code has been written to invoke a custom adaptater, the custom Java code is invoked
to initialize the custom adapter. The process can also use memory scopes to keep or
share data with other processes.

• Shutdown: Finally, during the shutdown phase, the framework undeploys the exe-
cution chains and processes, and ceases to work.

The next section describes the mechanism used to interface the proposed decision-
making model with StarMX.

4.2 Building an Adaptation Manager

An adaptation manager is composed of an adaptation framework and a decision-making
model. The adaptation framework provides the ability to periodically monitor the adapt-
able software, provides access to the data produced by the sensors, and facilitates the
execution of an effector action that attempts to restore the system to normal. The deci-
sion making model interprets the data produced by the sensors to determine if the system
is operating within its designated limits. If the system needs adaptation, the adaptation
manager utilizes the decision making model to determine the action that must be performed
by the effectors to bring the system back to normal.

In the previous chapter we presented a generic, enhanced goal-oriented decision-making
model. However, to use this model in an adaptation manager, we need an adaptation frame-
work. In order to interface the proposed decision-making model with StarMX, periodically
executing processes must be defined within StarMX. As mentioned in section 4.1, StarMX
provides the ability to interface custom Java-based policy adapters, and this is the mecha-
nism that we have employed to interface the proposed decision-making model with StarMX.
We have implemented a Java-based adapter that functions as a bridge between StarMX
and our decision-making model. It should be noted however, that the implementation of
the decision-making model is generic enough to be used with any adaptation framework
and is not dependant on the workings of StarMX.

The next section describes the configuration information required for the adaptation
manager consisting of StarMX and the proposed decision-making model.

58

4.2.1 Configuration

In order to configure an adaptation manager that leverages StarMX as the underlying
adaptation framework along with the proposed decision-making model, we need to provide
configuration information for both components.

StarMX Configuration

StarMX contains information about the manageability endpoints of the adaptable software.
MBeans representing the application instrumentation interfaces along with their connection
information are defined in the StarMX framework configuration file starmx.xml. This is
an XML-based configuration file and contains information about the StarMX processes,
execution chains, MBeans etc. The MBeans contain accessor and mutator methods for
obtaining and changing the exposed properties of the adaptable software.

In addition to the MBean information, a process using a custom Java-based policy
adapter must be specified, along with the name of the file containing the configuration
information for the proposed decision-making model. We have modified the StarMX source
code such that setting the policy-type of the process tag to “gaam” will invoke the relevant
custom Java-based policy adapter. Furthermore, an execution chain consisting of the
aforementioned process should also be defined in the file. A snippet of a sample process
and execution chain configuration has been provided below:

<process id="rule1" policy-type="gaam" policy-file="gaam.xml">

</process>

<execute>

<timer-info interval="15" unit="second"/>

<processref refid="rule1" />

</execute>

Decision-Making Model Configuration

The decision-making model (DMM) configuration information is defined in an XML-based
configuration file whose name is specified in starmx.xml. This configuration file contains
the language for defining the information of attributes, actions, goals and goal clusters via
XML tags. A summary of the key configuration items is presented in tables 4.1, 4.2 4.3,
4.4 and 4.5. A complete example of this file is also available in Appendix A.

The next section describes the run-time behavior of the adaptation manager consisting
of StarMX and the proposed decision-making model.

59

T
ab

le
4.

1:
D

M
M

C
on

fi
gu

ra
ti

on
-

A
tt

ri
b
u
te

s
an

d
A

ct
io

n
s

D
M

M
E

n
ti

ty
X

M
L

E
n
ti

ty
X

M
L

A
tt

ri
b
u
te

s
A

tt
ri

b
u
te

at
tr

ib
u

te

•
at

tr
ib

u
te

-i
d

:
A

tt
ri

b
u
te

id
en

ti
fi
er

•
m

be
an

-i
d

:
M

B
ea

n
id

en
ti

fi
er

as
d
efi

n
ed

in
st

ar
m

x.
xm

l

•
m

be
an

-a
tt

ri
bu

te
-n

am
e
:

M
B

ea
n

at
tr

ib
u
te

n
am

e

•
m

be
an

-a
tt

ri
bu

te
-t

yp
e
:

M
B

ea
n

at
tr

ib
u
te

d
at

a
ty

p
e.

V
al

id
va

lu
es

ar
e

In
te

ge
r,

D
ou

bl
e,

F
lo

at
,B

oo
le

an
,S

tr
in

g,
O

bj
ec

t

A
ct

io
n

ac
ti

on

•
ac

ti
on

-i
d

:
A

ct
io

n
id

en
ti

fi
er

.

•
ac

ti
on

-t
yp

e
:

C
on

ta
in

s
th

e
ac

ti
on

ty
p

e,
si

n
ce

th
e

sa
m

e
X

M
L

en
ti

ty
is

u
se

d
to

re
p
re

se
n
t

in
vo

ke
r,

at
om

ic
an

d
co

m
p

os
it

e
ac

ti
on

s.
V

al
id

va
lu

es
ar

e
in

vo
ke

r,
at

om
ic

,c
om

po
si

te
.

•
m

be
an

-i
d

:
M

B
ea

n
id

en
ti

fi
er

as
d
efi

n
ed

in
st

ar
m

x.
xm

l

•
m

be
an

-a
tt

ri
bu

te
-n

am
e
:

M
B

ea
n

at
tr

ib
u
te

n
am

e

•
m

be
an

-a
tt

ri
bu

te
-t

yp
e
:

M
B

ea
n

at
tr

ib
u
te

d
at

a
ty

p
e.

V
al

id
va

lu
es

ar
e

In
te

ge
r,

D
ou

bl
e,

F
lo

at
,B

oo
le

an
,S

tr
in

g,
O

bj
ec

t.
T

h
is

p
ro

p
er

ty
is

on
ly

sp
ec

ifi
ed

fo
r

at
om

ic
ac

ti
on

s.

•
m

be
an

-m
et

ho
d-

n
am

e
:

M
B

ea
n

m
et

h
o
d

n
am

e.
T

h
is

p
ro

p
er

ty
is

on
ly

sp
ec

ifi
ed

fo
r

in
vo

ke
r

ac
ti

on
s.

•
m

be
an

-m
et

ho
d-

si
gn

at
u

re
:

M
B

ea
n

m
et

h
o
d

si
gn

at
u
re

.
T

h
is

p
ro

p
er

ty
is

on
ly

sp
ec

ifi
ed

fo
r

in
vo

ke
r

ac
ti

on
s.

•
su

b-
ac

ti
on

-i
d

:
C

om
m

a
d
el

im
it

ed
li
st

of
su

b
-a

ct
io

n
id

en
ti

fi
er

s
fo

r
co

m
p

os
it

e
ac

ti
on

s.

60

T
ab

le
4.

2:
D

M
M

C
on

fi
gu

ra
ti

on
-

G
oa

l
A

tt
ri

b
u
te

s
an

d
G

oa
l

A
ct

io
n
s

D
M

M
E

n
ti

ty
X

M
L

E
n
ti

ty
X

M
L

A
tt

ri
b
u
te

s
G

oa
l

A
tt

ri
b
u
te

go
al

-a
tt

ri
bu

te

•
at

tr
ib

u
te

-i
d

:
A

tt
ri

b
u
te

id
en

ti
fi
er

•
th

re
sh

ol
d-

m
in

:
M

in
im

u
m

th
re

sh
ol

d
va

lu
e

fo
r

at
tr

ib
u
te

.

•
th

re
sh

ol
d-

m
ax

:
M

ax
im

u
m

th
re

sh
ol

d
va

lu
e

fo
r

at
tr

ib
u
te

.

•
th

re
sh

ol
d-

va
l:

E
x
ac

t
th

re
sh

ol
d

va
lu

e
fo

r
at

tr
ib

u
te

.

•
th

re
sh

ol
d-

va
l-

is
n

u
ll

:
T

h
e

go
al

at
tr

ib
u
te

is
ac

ti
ve

if
th

e
at

tr
ib

u
te

va
lu

e
is

n
u
ll
.

V
al

id
va

lu
es

ar
e

tr
u

e,
fa

ls
e

•
cu

st
om

-t
hr

es
ho

ld
-e

va
lu

at
or

:
C

on
ta

in
s

th
e

n
am

e
of

th
e

cu
st

om
J
av

a-
cl

as
s

u
se

d
to

ev
al

u
at

e
th

e
th

re
sh

ol
d

va
lu

e.

•
re

al
ia

n
t-

at
tr

ib
-i

ds
:

C
on

ta
in

s
th

e
id

en
ti

fi
er

s
of

th
e

at
tr

ib
u
te

s
w

h
ic

h
sh

ou
ld

b
e

p
as

se
d

as
a

p
ar

am
et

er
to

th
e

cu
st

om
J
av

a-
b
as

ed
th

re
sh

ol
d

ev
al

u
at

or
cl

as
s.

G
oa

l
A

ct
io

n
go

al
-a

ct
io

n

•
ac

ti
on

-i
d

:
A

ct
io

n
id

en
ti

fi
er

.

•
pr

ef
er

en
ce

:
C

on
ta

in
s

th
e

p
re

fe
re

n
ce

va
lu

e.

61

T
ab

le
4.

3:
D

M
M

C
on

fi
gu

ra
ti

on
-

G
oa

l
A

ct
io

n
P

ro
p

er
ti

es
an

d
P

re
co

n
d
it

io
n
s

D
M

M
E

n
ti

ty
X

M
L

E
n
ti

ty
X

M
L

A
tt

ri
b
u
te

s
G

oa
l

A
ct

io
n

P
ro

p
er

ty
go

al
-a

ct
io

n
-

pr
op

er
ty

•
m

be
an

-a
tt

ri
bu

te
-v

al
u

e
:

C
on

ta
in

s
th

e
va

lu
e

to
b

e
p
as

se
d

as
a

p
ar

am
-

et
er

to
th

e
eff

ec
to

r
m

et
h
o
d
.

•
m

be
an

-a
tt

ri
bu

te
-v

al
u

e-
is

n
u

ll
:

In
d
ic

at
es

th
at

a
n
u
ll

va
lu

e
m

u
st

b
e

se
t

b
y

th
e

eff
ec

to
r

ac
ti

on
.

V
al

id
va

lu
es

ar
e

tr
u

e,
fa

ls
e

•
cu

st
om

-m
be

an
-a

tt
ri

bu
te

-v
al

u
e-

bu
il

de
r
:

C
on

ta
in

s
th

e
n
am

e
of

th
e

cu
st

om
J
av

a-
cl

as
s

u
se

d
to

b
u
il
d

th
e

va
lu

e
to

b
e

p
as

se
d

as
a

p
ar

am
-

et
er

to
th

e
eff

ec
to

r
m

et
h
o
d
.

G
oa

l
A

ct
io

n
P

re
co

n
d
it

io
n

go
al

-a
ct

io
n

-
pr

ec
on

di
ti

on
•

re
li

an
t-

at
tr

ib
-i

ds
:

C
on

ta
in

s
a

co
m

m
a

d
el

im
it

ed
li
st

of
th

e
at

tr
ib

u
te

id
en

ti
fi
er

s
th

at
th

e
p
re

co
n
d
it

io
n

d
ep

en
d
s

u
p

on
.

•
re

li
an

t-
at

tr
ib

-v
al

s:
C

on
ta

in
s

a
co

m
m

a
d
el

im
it

ed
li
st

of
th

e
va

lu
es

of
th

e
at

tr
ib

u
te

s
th

at
th

e
p
re

co
n
d
it

io
n

d
ep

en
d
s

u
p

on
.

•
re

li
an

t-
at

tr
ib

-v
al

-r
el

at
io

n
:

C
on

ta
in

s
th

e
re

la
ti

on
sh

ip
th

at
m

u
st

ex
-

is
t

b
et

w
ee

n
th

e
at

tr
ib

u
te

s
th

at
th

e
p
re

co
n
d
it

io
n

d
ep

en
d
s

u
p

on
.

V
al

id
va

lu
es

ar
e

eq
,n

eq
,g

t,
gt

e,
lt

,l
te

fo
r

eq
u
al

s,
n
ot

eq
u
al

s,
gr

ea
te

r
th

an
,

gr
ea

te
r

th
an

or
eq

u
al

s,
le

ss
th

an
,

le
ss

th
an

or
eq

u
al

s.

•
cu

st
om

-p
re

co
n

di
ti

on
-e

va
lu

at
or

:
C

on
ta

in
s

th
e

n
am

e
of

th
e

cu
st

om
J
av

a-
cl

as
s

u
se

d
to

ev
al

u
at

e
th

e
p
re

co
n
d
it

io
n

fo
r

th
is

go
al

ac
ti

on
.

62

T
ab

le
4.

4:
D

M
M

C
on

fi
gu

ra
ti

on
-

M
an

d
at

or
y

G
oa

ls
,

N
eg

ot
ia

b
le

G
oa

l
C

lu
st

er
s

an
d

G
oa

ls
D

M
M

E
n
ti

ty
X

M
L

E
n
ti

ty
X

M
L

A
tt

ri
b
u
te

s
M

an
d
at

or
y

G
oa

l
m

an
da

to
ry

-g
oa

l

•
go

al
-i

d
:

C
on

ta
in

s
th

e
go

al
id

en
ti

fi
er

.

•
pr

io
ri

ty
:

C
on

ta
in

s
th

e
go

al
p
ri

or
it

y
u
se

d
fo

r
co

n
fl
ic

t
d
et

ec
ti

on
an

d
re

so
lu

ti
on

.

•
ac

ti
va

ti
on

-f
u

n
ct

io
n

-o
pe

ra
ti

on
-t

yp
e

C
on

ta
in

s
th

e
ac

ti
va

ti
on

fu
n
ct

io
n

op
er

at
io

n
ty

p
e.

V
al

id
va

lu
es

ar
e

an
d,

or
.

N
eg

ot
ia

b
le

G
oa

l
C

lu
st

er
n

eg
ot

ia
bl

e-
go

al
-

cl
u

st
er

•
cl

u
st

er
-i

d
:

C
on

ta
in

s
th

e
cl

u
st

er
id

en
ti

fi
er

.

•
pr

io
ri

ty
:

C
on

ta
in

s
th

e
cl

u
st

er
l

p
ri

or
it

y
u
se

d
fo

r
co

n
fl
ic

t
d
et

ec
ti

on
an

d
re

so
lu

ti
on

.

•
vo

te
r-

ty
pe

C
on

ta
in

s
th

e
ty

p
e

of
vo

ti
n
g

al
go

ri
th

m
.

V
al

id
va

lu
es

ar
e

bo
rd

a-
co

u
n

t,
w

in
n

er
-t

ak
es

-a
ll

,c
u

st
om

.

•
cu

st
om

-v
ot

er
:

C
on

ta
in

s
th

e
n
am

e
of

th
e

J
av

a-
cl

as
s

co
n
ta

in
in

g
th

e
cu

st
om

iz
ab

le
vo

ti
n
g

al
go

ri
th

m
.

N
eg

ot
ia

b
le

G
oa

l
n

eg
ot

ia
bl

e-
go

al

•
go

al
-i

d
:

C
on

ta
in

s
th

e
go

al
id

en
ti

fi
er

.

•
go

al
-p

ri
or

it
y

:
C

on
ta

in
s

th
e

go
al

p
ri

or
it

y
u
se

d
b
y

th
e

ac
ti

on
se

le
ct

io
n

p
ro

ce
ss

.

•
ac

ti
va

ti
on

-f
u

n
ct

io
n

-o
pe

ra
ti

on
-t

yp
e

C
on

ta
in

s
th

e
ac

ti
va

ti
on

fu
n
ct

io
n

op
er

at
io

n
ty

p
e.

V
al

id
va

lu
es

ar
e

an
d,

or
.

63

T
ab

le
4.

5:
D

M
M

C
on

fi
gu

ra
ti

on
-

A
d
ap

ti
ve

N
eg

ot
ia

b
le

G
oa

l
C

lu
st

er
s

an
d

G
oa

ls
D

M
M

E
n
ti

ty
X

M
L

E
n
ti

ty
X

M
L

A
tt

ri
b
u
te

s
A

d
ap

ti
ve

N
eg

o-
ti

ab
le

G
oa

l
C

lu
s-

te
r

ad
ap

ti
ve

-
n

eg
ot

ia
bl

e-
go

al
-c

lu
st

er
•

cl
u

st
er

-i
d

:
C

on
ta

in
s

th
e

cl
u
st

er
id

en
ti

fi
er

.

•
pr

io
ri

ty
:

C
on

ta
in

s
th

e
cl

u
st

er
l

p
ri

or
it

y
u
se

d
fo

r
co

n
fl
ic

t
d
et

ec
ti

on
an

d
re

so
lu

ti
on

.

•
vo

te
r-

ty
pe

C
on

ta
in

s
th

e
ty

p
e

of
vo

ti
n
g

al
go

ri
th

m
.

V
al

id
va

lu
es

ar
e

bo
rd

a-
co

u
n

t,
w

in
n

er
-t

ak
es

-a
ll

,c
u

st
om

.

•
cu

st
om

-v
ot

er
:

C
on

ta
in

s
th

e
n
am

e
of

th
e

J
av

a-
cl

as
s

co
n
ta

in
in

g
th

e
cu

st
om

iz
ab

le
vo

ti
n
g

al
go

ri
th

m
.

•
rl

-a
ge

n
t-

ty
pe

C
on

ta
in

s
th

e
ty

p
e

of
re

in
fo

rc
em

en
t

le
ar

n
in

g
al

go
-

ri
th

m
.

V
al

id
va

lu
es

ar
e

q-
le

ar
n

in
g,

sa
rs

a,
cu

st
om

.

•
cu

st
om

-r
l-

ag
en

t:
C

on
ta

in
s

th
e

n
am

e
of

th
e

J
av

a-
cl

as
s

co
n
ta

in
in

g
th

e
cu

st
om

iz
ab

le
re

in
fo

rc
em

en
t

le
ar

n
in

g
al

go
ri

th
m

.

A
d
ap

ti
ve

N
eg

o-
ti

ab
le

G
oa

l
ad

ap
ti

ve
-

n
eg

ot
ia

bl
e-

go
al

•
go

al
-i

d
:

C
on

ta
in

s
th

e
go

al
id

en
ti

fi
er

.

•
go

al
-p

ri
or

it
y

:
C

on
ta

in
s

th
e

go
al

p
ri

or
it

y
u
se

d
b
y

th
e

ac
ti

on
se

le
ct

io
n

p
ro

ce
ss

.

•
ac

ti
va

ti
on

-f
u

n
ct

io
n

-o
pe

ra
ti

on
-t

yp
e

C
on

ta
in

s
th

e
ac

ti
va

ti
on

fu
n
ct

io
n

op
er

at
io

n
ty

p
e.

V
al

id
va

lu
es

ar
e

an
d,

or
.

64

4.2.2 Run-time Behavior

The run-time behavior of the developed adaptation manager consisting of StarMX and the
proposed decision-making model is composed of the following phases:

• Start up: When StarMX initializes, it initiliazes the custom Java-based policy
adapter among other components. Upon initialization of the custom policy adapter,
the adapter loads and parses an XML based configuration file (see section 4.2.1 for
details) containing information about the constituent components of the decision-
making model to build objects representing these components i.e. the attributes,
actions, mandatory goals, goal clusters etc. and stores the information about these
objects in its execution context.

• Operation: Once the system has been initialized, the StarMX processes begin their
periodic execution. During each process execution phase the custom adapter ob-
tains the list of all attributes defined in the system and invokes the sensor methods
associated with the attributes to obtain the value of each attribute. The values of
the attributes are then pushed to the decision-making model. The decision-making
model analyzes the attributes and determines the appropriate effector actions to be
invoked using the mechanism outlined in section 3.5. The effector actions are then
executed via StarMX in an attempt to restore normalcy to the system. This cycle is
repeated for each periodic process execution phase.

• Shutdown: During shutdown, StarMX invokes shutdown operations on the custom
Java-based policy adapter among other components.

The next section describes the deployment options available for the adaptation manager.

4.2.3 Deployment Options

An adaptation manager consisting of StarMX as the adaptation framework and the pro-
posed decision-making model can support two deployment options: local and remote. In
local deployment, that adaptation manager is deployed on the same server and the same
JVM that the adaptable software executes on. In remote deployment, the adaptation man-
ager is deployed on a different server and started as a separate application that manages
the target system. Selecting the appropriate deployment option in a real environment is
a trade-off among the performance overhead of each approach, ease of deployment, and
other domain-specific concerns[3].

For example, in local mode, the adaptation manager consumes resources (e.g. CPU and
memory) on the system where the adptable software is deployed. In remote mode, only

65

the sensing and effecting operations use the system resources accessed by the adaptable
software. On the other hand, in remote mode the speed of the adaptation process may
be less than the local node if network latency comes into play, which may render remote
deployment as a non-option for mission critical applications.

The next section outlines the steps required to build a self-adaptive application lever-
aging the aforementioned adaptation manager.

4.3 Building Self-Adaptive Applications

Creating self-managing software systems, regardless of the techniques or models that are
used for dynamic problem detection and resolution, requires a systematic approach that
helps the developer to proceed incrementally to achieve the final result. In an abstract
comparison, it is similar to a software development methodology or process, which starts
from the requirement specification and ends at deployment. Based on our experience in
enabling systems with adaptation behavior, we defined a six-step process to build self-
managing systems using the StarMX framework and the proposed decision making model.
Figure 4.3 demonstrates these steps and their input and output artifacts.

• Step 1: Specifying self-managing requirements - Self-managing solutions mostly
focus on non-functional and QoS (Quality of Service) requirements. Therefore, these
solutions deal with performance, security, reliability or other quality factors. These
requirements are also referred to as self-* properties. The goal of this step is to
clearly specify or model these requirements and the expected objectives for the tar-
get system.

– Inputs : Service Level Agreement (SLA), which is decomposed into Service Level
Objectives (SLO). Other non-functional requirements can also be considered as
the input to this phase.

– Outputs : Self-managing requirement specification.

The way that these requirements should be specified or modeled is an open research
area and is not within the scope of this work.

• Step 2: Transforming requirements into decision-making model compo-
nents - After the self-adaptation requirements are specified, they need to be trans-
formed such that they can be represented by the proposed decision making model.
The goal of this step is to convert the requirements into goals and then determine the
attributes and actions for each goal. In order to determine the actions and attributes,
a thorough feasiblity analysis must be done on the existing application (in the case

66

Figure 4.3: Steps to Develop Self-Adaptive Software

of legacy applications) or functional and design specifications of the application (in
the case of new applications) to determine if the required attributes and/or actions
can be obtained or performed by the system.

– Inputs : Self-managing requirement specification.

– Outputs : Decision making model core components i.e. goal clusters, goals,
attributes and actions.

Based on feedback from this step, the self-managing requirements may need to be
modfied. This may happen if the feasibility analysis determines that certain at-
tributes or actions required by the goals cannot be obtained or performed. Since a
goal represents a self managing requirement, if its dependencies cannot be satisfied,
it implies that the requirement may not be achievable.

67

• Step 3: Providing manageability endpoints - Manageability endpoints (sensors
and effectors) are the gateways for interfacing with a resource for management pur-
poses. Based on the attributes and actions required by all the goals in the decision-
making model, the required set of sensors and effectors are identified. These objects
should be designed and instrumented into the target application in this phase.

– Inputs : Attributes and actions for all goals in the decision-making model.

– Outputs : Sensors and effectors.

As mentioned earlier, we use StarMX as the underlying adaptation framework and it
will be used for providing access to the sensors and effectors. Since StarMX supports
both JMX MBeans or simple Java objects, the sensors and affectors can be developed
by either methodology.

• Step 4: Developing management logic - This is the core part of the process for
building a self-managing system. The management logic needs to be specified from
the perspective of StarMX in addition to the proposed decision-making model. The
StarMX management logic is developed as a set of Java-based processes, policies,
and anchor objects that form control loops. The management logic for the proposed
decision-making model is developed by identifying the attribute thresholds, action
preferences, goal and goal cluster priorities, voting and reinforcement learning al-
gorithms etc., and developing any required Java-based classes for the management
logic pertaining to the core components (e.g. custom classes for determining if the
threshold of attributes have been exceeded, etc.).

– Inputs : Decision making model core components and sensors and effectors.

– Outputs : Developed management logic (for StarMX and the proposed decision-
making model).

• Step 5: Configuring the software - The next step is to define configuration files
for StarMX and our decison-making model. StarMX uses an XML configuration
file containing information of the anchor objects, processes, and execution chains,
MBeans and MBean servers called starmx.xml. The information about the goal
clusters, goals, actions and attributes can be specified in a configuration file whose
name must be provided in the starmx.xml file.

– Inputs : Developed management logic (for StarMX and the proposed decision-
making model).

– Outputs : Valid configuration files (for StarMX and the proposed decision-making
model).

68

• Step 6: Deployment - The last step is to integrate the framework with the target
system, deploy it, and test whether the created self-managing system performs as
expected.

– Inputs : Target system and dependant libraries, framework; libraries for StarMX
and the proposed decision-making model; valid configuration files (for StarMX
and the proposed decision-making model), etc.

– Outputs : The self-adaptive system.

4.4 Summary

In this chapter we have outlined the entire process of building self-adaptive software using
the proposed decision-making model. We began the chapter by describing StarMX - an
adaptation framework for Java-based self-adaptive systems. We then described the process
of building an adaptation manager consisting of StarMX and the proposed decision-making
model. We concluded the capter by defining a systematic step-by-step approach for building
self-adaptive software. The next chapter describes the experimental studies that have been
performed by us to evaluate the effectiveness of the decision making model developed in
this dissertation.

69

Chapter 5

Experimental Studies

This chapter aims to provide an evaluation of the decision-making model developed in this
thesis. In this experimental evaluation, the following research questions are taken into
account:

• RQ1: What is the impact of the adaptation technique on the systems goals? Does
it improve the goal satisfaction level comparing with the non-adaptive case?

• RQ2: What is the impact of making control loops a first class entity in a decision-
making model? Does a decision-making model based on mandatory and adaptive
negotiable goals outperform a decision-making model based execlusively on manda-
tory goals or negotiable goals?

A news web application and an IP telephony system are used as case studies to evaluate
and analyze the decision-making model through a set of experiments that focus on the
research questions. We begin this chapter by presenting a brief description of the two
case studies. We then describe the steps involved in conversion of the applications into
self-adaptive applications. Subsequently we describe the experiments conducted on the
self-adaptive applications with different types of decision-making model consisting exclu-
sively of mandatory goals, negotiable goals or a combination of mandatory, negotiable
and adaptive negotiable goals. Lastly we present the results of our experiments and the
conclusions deduced from the experiment results.

5.1 Case Study 1: News Web Application

Consider a legacy news web application which provides a number of services like view-
ing news, weather conditions, stock information and searching. The web application con-
tains components with multiple implementations, each optimized for a particular workload.

70

Components of a higher quality require more resources than their lower quality counter-
parts. However the task of switching between these components based on the workload is
currently a manual one. The challenge at hand is to make this system adaptable so that
it can effectively process varying workloads in an automated fashion.

5.1.1 Motivation

The motivation for choosing a news web application was the problems encountered by
news web sites in the US after 9/11. The news web sites usage skyrocketed on that day,
and continued throughout the week. A Los Angeles Times report offers a few numbers:
“MSNBC saw a tenfold increase in traffic, with as many as 400,000 hits at any point.
CNN.com surged to 162.4 million page views in 24 hours from a 14 million average.” In
order to deal with this situation, the technical staff redesigned the site in an effort to remove
all of the extraneous information, and concentrating on the bare facts. The CNN web site,
which normally includes pages with various links and graphics, was reduced to one breaking
news web page. While the changes were made to the application by the administrators,
we are interested in adding an adaptation manager to accomplish this task. This scenario
is appropriate to show how effective the adaptation mechanism would be for satisfying the
goals of end-users and administrators.

In fact, during the 9/11 event, administrators and network managers tried to manage
the system by tuning the parameters and by applying server and network-level actions.
But application-level actions were missing, which were applied manually in the CNN case.
Therefore, the interesting question for us is how adaptation actions at the application level
would impact the system behavior. Although, other actions are applicable to this case, we
focus only on the application-level adaptation actions.

5.1.2 Original Application Architecture

The news web application was developed by us and is Java-based. It is deployed on the
JBoss web application server. It uses MySQL as its backend database. Figure 5.1 shows the
original high level architecture of the system. The architecture is divided into three tiers
namely the presentation tier which displays the information to the user, the business logic
tier which obtains the information from and writes the information to the database tier, and
the database tier which stores the information. The information pertaining to news, stocks
and weather is stored in the database. The News Items EJB, Stocks EJB and Weather
EJB obtain information related to news, stocks and weather from the database. The EJBs
use the Java Persistence API (JPA) to communicate with the underlying database. The
web pages are implemented using JSPs.

71

Figure 5.1: News Web Application System Architecture

At a high level, the workings of the system are summarized as follows:

1. When a user accesses the news website, it causes the client web pages to send a
request to the servlet.

2. The servlet processes this request and communicates with the EJBs to obtain infor-
mation.

3. The EJBs obtain the information from the database and return the information to
the servlet.

4. The servlet returns the information to be displayed on the web pages and the user
can read the contents of the news website.

The next section describes how the news web application can be converted into a self-
adaptive application.

72

5.1.3 Self-Adaptive Application Architecture

The challenge at hand is to make this system adaptable so that it can effectively process
varying workloads in an automated fashion. We use the 6 development steps covered in
section 4.3 to make this application self-adaptive.

• Step 1: Specifying self-managing requirements - In this step we convert the
SLA into adaptation requirements. As per the SLA, when the system is under a
normal workload, it is expected to display high quality components, and when sub-
jected to a higher workload it can begin a gradual degradation of the offered services
and can eventually degrade to a text-only website. However, at no point in time
should the system render itself completely non-responsive except if the application
server on which the application is deployed crashes. Hence, the self-adaptive news
web application has three adaptation requirements namely:

– High Service Availability: this is a mandatory requirement.

– Maximum Throughput: this is a negotiable requirement.

– Reasonable Response Time: this is a negotiable requirement.

• Step 2: Transforming requirements into decision-making model compo-
nents - Based on the specified adaptation requirements, we need to identify the
system goals, goal clusters, attributes and actions. Since the system has a manda-
tory requirement of high service availability, this requirement is transformed into a
mandatory goal indicating that the system must always be up and running, and if
the current load exceeds a maximum threshold, then all the offered services must be
suspended to prevent the system from crashing. Additionally, since the system has
related negotiable requirements of maximum throughput and a reasonable response
time, these requirements can be transformed into a negotiable or adaptive negotiable
goal cluster. The comprising goals of the goal cluster would indicate the quality of
components to be displayed by the EJBs based on the current load and current re-
sponse time of the system. Hence the goals and goal clusters of the decision-making
model can be represented as follows:

– Mandatory Goal MG1: System must always be up and running; so if the load
exceeds a maximum value (e.g. 100 concurrent connections), stop all services.

– (Adaptive) Negotiable Goal Cluster GC1:

∗ (Adaptive)Negotiable Goal G1: If the current load is low, throughput
is high, and response time is less than e.g. 2 seconds, display best quality
components.

73

∗ (Adaptive)Negotiable Goal G2: If the current load and throughput are
medium and response time is less than e.g. 3 seconds, display medium
quality components.

∗ (Adaptive)Negotiable Goal G3: If the current load is high, throughput
is low and response time is less than e.g. 4 seconds, display low quality
components.

∗ (Adaptive)Negotiable Goal G4: If the current load is high, throughput
is low, and response time is greater than e.g. 4 seconds, display a text-only
page.

In order to achieve these goals, we need the ability to determine the overall system
response time i.e. the time taken to service a client request, the ability to determine
the system throughput i.e. number of bytes returned per second and the ability to
determine the type of components being displayed by the system. These form the
attributes of the system that need to be monitored. Hence the attributes of the
decision-making model can be represented as follows:

– Attribute At1: Obtain the current load.

– Attribute At2: Obtain the current response time.

– Attribute At3: Obtain the current NewsEJB type.

– Attribute At4: Obtain the current WeatherEJB type.

– Attribute At5: Obtain the current StocksEJB type.

In order to achieve the goals, we also need the ability to modify the type of compo-
nents being displayed by the system since this affects the response time, throughput
and availability of the system. Additionally, we also need the ability to stop all
services being offered by the system. These form the system actions that can be
performed to attain the aforementioned system goals. All of these actions are atomic
actions. Hence the atomic actions of the decision-making model can be represented
as follows:

– Action Ac1: Modify the current NewsEJB type.

– Action Ac2: Modify the current WeatherEJB type.

– Action Ac3: Modify the current StocksEJB type.

– Action Ac4: Stop all system services.

• Step 3: Providing manageability endpoints - After identifying the goals, actions
and attributes, we need to instrument the required set of management interfaces
(sensors and effectors). As discussed earlier, the services in the web application are

74

provided by four components. Hence, we need a set of sensors and effectors to control
the EJBs and the servlet. Since Java allows management of any component through
MBeans, four MBeans (one for each component) are designed to provide information
about the average response time, throughput and component quality as described
below:

– ServletMBean: Manages the servlet and provides the following capabilities:

∗ Contains a getter method for obtaining the system response time.

∗ Contains a getter method for obtaining the system throughput.

∗ Contains a setter method for stopping all services offered by the system.

– NewsMBean: Manages the NewsEJB and provides the following capabilities:

∗ Contains a getter method for obtaining the component type.

∗ Contains a setter method for modifying the component type.

– WeatherMBean: Manages the WeatherEJB and provides the following capa-
bilities:

∗ Contains a getter method for obtaining the component type.

∗ Contains a setter method for modifying the component type.

– StocksMBean: Manages the StocksEJB and provides the following capabili-
ties:

∗ Contains a getter method for obtaining the component type.

∗ Contains a setter method for modifying the component type.

• Step 4: Developing management logic - As mentioned before, this is the core
part of the process for building a self-managing system. We specify the management
logic from the perspective of StarMX in addition to the proposed decision-making
model. The aforementioned MBeans are registered as anchor objects within an in-
stance of the StarMX. Processes are defined and configured to use the ABLE policy
engine or the decision-making model developed in this thesis to realize the adapta-
tion process. Execution chains are defined to periodically invoke the processes and
thus execute the complete Monitor, Anakyze, Plan and Execute (MAPE) loop. We
use ABLE in order to facilitate a comparative study of the proposed decision-making
model against a well-established adaptation engine.

• Step 5: Configuring the software - In this step, XML-based descriptions of the
elements defined in the above two steps were added to the configuration files.

– An example XML configuration for attribute At1 is as follows:

75

<attribute attrib-id="at_1"

mbean-id="MainServletMBean"

mbean-attribute-name="CurrentLoad"

mbean-attribute-type="Integer" />

– An example XML configuration for action Ac4 is as follows:

<action action-id="ac_4"

action-type="atomic"

mbean-id="MainServletMBean"

mbean-attribute-name="StopService"

mbean-attribute-type="Boolean" />

– An example XML configuration for mandatory goal MG1 is as follows:

<mandatory-goal goal-id="MG_1"

<goal-attribute attribute-id="at_1" threshold-max="100" />

<goal-action action-id="ac_4">

<goal-action-prop mbean-attribute-value="true" />

</goal-action>

</mandatory-goal>

Appendix A contains a complete sample XML configuration file for the news web
application.

• Step 6: Deployment - In this case study, the adaptation manager consisting of
StarMX and ABLE/the proposed decision-making model is setup as an independant
executable to allow the flexibility to run the external adaptation engine on a separate
machine if required. This enabled evaluation of the remote deployment option.

Figure 5.2 shows the modified self-adaptive architecture of the system. At a high level,
the workings of the self-adaptive system are summarized as follows:

1. Periodically, information about the application’s run-time dynamics are obtained by
the StarMX application. This information is analyzed by the configured adaptation
process (the ABLE policy engine or the decision making model developed in this
thesisis) and effectors are invoked to select the components that must be displayed
by the web application, when it receives a user request.

2. When a user accesses the news website, it causes the client web pages to send a
request to the servlet.

3. The servlet processes this request and communicates with the EJBs to obtain infor-
mation.

76

Figure 5.2: Self-Adaptive News Web Application Architecture

4. The EJBs invoke methods on their respective MBeans to determine the version of
the component to be displayed, obtain the selected component information from the
database and return the information to the servlet.

5. The servlet returns the information to be displayed on the web pages and the user
can read the contents of the news website.

The next section describes the experiments conducted on this case study to evaluate
the effectiveness of the proposed decision-making model.

77

5.1.4 Experiment Design

In order to evaluate the effectiveness of the decision-making process utilized by the self-
adaptive news web application, we need to be able to examine the application behavior
under varied workloads. A large number of commercial software products are available
for stress testing web applications. However most of these products required expensive
software licenses and hence could not be used our experimental evaluation. We developed
a simple Java-based application called JLoadRunner that simulates user interaction with a
web-site. JLoadRunner can be configured to create a large number of web-crawler threads.
Each thread can be configured to run for a specific number of iterations. In each iteration
the web crawler thread connects to the news web sites, accesses several pages and images
and calculates the response time and throughput of the web site.

We deployed the self-adaptive news application and JLoadRunner on the same ma-
chine. By tuning the configuration parameters of JLoadRunner, the system was subjected
to stress tests involving varying degrees of concurrent loads. We measured the system re-
sponse time and throughput for each stress test iteration. We also changed the adaptation
technique used by the application for each stress test iteration.

The application was first tested with no adapation to get the baseline numbers. Next
the decision making model was configured to use an adaptation technique employing only
mandatory goals specified as action policies processed by the ABLE policy engine. Sub-
sequently the decision making model was configured to use an adaptation technique em-
ploying mandatory goals and negotiable goal clusters. Lastly, the decision making model
was configured to use an adaptation technique based on mandatory goals and adaptive
negotiable goal clusters. Two reinforcement learning algorithms namely Q-Learning and
SARSA were used for the adaptive negotiable goal clusters. We used two different algo-
rithms to examine the impact of using off-policy and on-policy algorithms respectively.

To minimize the experimental errors due to sporadic events, three replications were
conducted for each stress test iteration. The specification of the machine used to conduct
the experiments was: Windows Vista Home Premium, Intel Core 2 Quad CPU T550 @
1.66GHz, 2GB of RAM.

5.1.5 Obtained Results

Figures 5.3 and 5.4 display the obtained response times and throughput of the news web
application when subjected to increasing amounts of concurrent workloads. The obtained
results clearly demonstrate the expected i.e. when the workload experienced by the news
web application increases, the response time increases and the throughput decreases. How-
ever, the response time of a news web application that is not self-adaptive increases by a
significant amount as compared to the self-adaptive counterparts.

78

Figure 5.3: News Web Application: Response Time

79

Figure 5.4: News Web Application: Throughput

80

Moreover the throughput of a news web application that is not self-adaptive is ini-
tially better as compared to the self-adaptive counterparts. This is because the news web
application that is not self-adaptive always displays web content of the highest quality.
This implies that despite the fact that the non self-adaptive news web app may process
a smaller number of worloads/connections as compared to its self-adaptive counterparts,
each connection receives more data as compared to its self-adaptive counterparts, since the
self-adaptive counterparts vary the quality of the news content based on the system load.
However as the workload increases, the throughput of the web application that is not self-
adaptive decreases at a much sharper rate as compared to its self-adaptive counterparts.
The throughput of the self-adaptive versions stabilizes at a constant value since at very
high workloads these versions display only text content to the users, which as we know is
acceptable as per the non-functional specifications/adaptation requirements of the system.

Additionally, the results demonstrate that the overall response time of a decision-
making model configured to use an adaptation technique based on mandatory goals and
adaptive negotiable goals is better than that of a decision making model configured to use
an adaptation technique employing mandatory and negotiable goals which is better than
that of a decision-making model configured to use an adaptation technique employing only
mandatory goals specified as action policies processed by the ABLE policy engine. The re-
sponse times obtained for a decision-making model configured to use an adaptation engine
based on mandatory goals and adaptive negotiable goals using Q-Learning and SARSA are
comparable with Q-Learning only slightly outperforming SARSA.

Furthermore, the results demonstrate that the overall throughput of a decision-making
model configured to use an adaptation technique employing only mandatory goals specified
as action policies processed by the ABLE policy engine is better than must similar to the
overall throughput of the non-self-adaptive version of the news web application, where the
throughput decreases by a sharp amount when the system is subjected to higher workloads.
Based on the results we can also infer that the overall throughput of a decision making
model configured to use an adaptation technique based on mandatory goals and adaptive
negotiable goals is very similar to that of a decision making model configured to use an
adaptation technique employing mandatory and negotiable goals.

The next section describes our second case study used to evaluate the proposed decsion
making model.

5.2 Case Study 2: IP Telephony System

Call Controller 2 (CC2) is a over IP prototype system. It is deployed on the Mobicents
media server and designed based on a service oriented architecture. It basically provides
four main services:

81

• Regular VOIP Calls: This is the most basic service provided by all VoIP software.
A caller can call a callee to establish a conversation.

• Call Forwarding: If a callee is unavailable, CC2 will try to forward the call to the
callee’s backup address, if it has one.

• VoiceMail: A caller can leave a voice message if the callee is unavailable and has
no backup address, but his/her voicemail is enabled.

• Call Blocking: If a caller is in the callee’s blacklist, the call will be blocked.

Mobicents is the first and only open source VOIP Platform certified for JSLEE 1.0.
JSLEE (JAIN Service Logic Execution Environment) is the Java implementation of SLEE.
In the telecommunications industry, a SLEE is a high throughput, low latency event pro-
cessing application environment. The JAIN SLEE specification 3 allows popular protocol
stacks such as SIP 4 to be plugged in as resource adapters. The extensible standard ar-
chitecture naturally accommodates integration points with enterprise applications such as
Web, CRM or SOA end points.

Mobicents is deployed on JBoss and brings to telecom applications a robust component
model and execution environment. It complements J2EE to enable convergence of voice,
video, and data in next generation intelligent applications. One of the main components
of JSLEE are Service Building Blocks (SBB), which are comparable to Enterprise Java
Beans (EJB) in J2EE systems. Mobicents enables the composition of different SBBs such
as call control, billing, user provisioning, administration, and presence sensitive features.
Monitoring and management of Mobicents components comes out of the box via the SLEE
standard, which is based on JMX and SNMP interfaces. In our experiments, we utilize its
JMX-based management facility to manage the CC2 system dynamically.

5.2.1 Motivation

The choice of CC2 as our case study is justified by the following characteristics of CC2:
It is an open source Java system, which allows us to investigate and modify its source
code; It addresses a real business need (VoIP), rather than a hypothetical one; and It is a
large-scale system (with 171K lines of code), which utilizes more features of our proposed
decision making model for adaptation.

5.2.2 Original Application Architecture

Figure 5.5 shows the architecture of the CC2 application. The application consists of three
key SBB components to address its main functionalities:

82

• ForwardingSBB which provides regular VoIP call and call forwarding services

• VoiceMailSBB which is responsible for the voice mail service

• BlockingSBB that enables the call blocking service

Figure 5.5: CC2 Application System Architecture

In order to make the adaptation scenarios more realistic, we modified CC2 to have
users with different privileges, while preserving all other functionalities of the system. In
the modified version, users are categorized into three classes: Gold, Silver, and Bronze,
from highest to lowest priority. The gold users are the most valuable users of the VoIP
system because they produce the most profit for the company. The Bronze users are the
least profitable users, and silver users fall between the other categories. The system owner
has to guarantee the quality of services provided to different classes of users, according to
their contracts; otherwise, the owner is required to pay them a penalty. Moreover, all users
are allowed to access all services provided by the system at all times.

5.2.3 Self-Adaptive Application Architecture

The challenge at hand is to make this system adaptable so that it can effectively process
varying workloads in an automated fashion. We use the 6 development steps covered in
section 4.3 to make this application self-adaptive.

• Step 1: Specifying self-managing requirements - The high level business ob-
jective of the new adaptable CC2 is to maximize the company’s profit at different

83

workload situations. To achieve this objective, the requirement is to maintain ser-
vice availability such that it always results in the maximum benefit for the company.
For this purpose, the system may decide to block access to a service for low-priority
users at certain times (e.g. very high loads), in order to guarantee service quality
for high-priority users. In other words, the service availability and self-optimizing
property are the target objectives.

• Step 2: Transforming requirements into decision-making model compo-
nents - Based on the specified adaptation requirements, we need to identify the
system goals, attributes and actions. In this case there are two system goals namely
high throughput and reasonable response time. In order to achieve these goals, we
need the ability to determine the overall system response time for each call type i.e.
the time taken to service a regular call, voice mail and call forwarding. We also need
the ability to determine the system throughput i.e. number of successful call forward
calls and regular calls. Additionally, we need to determine the category of the user
placing the call in order to provide prioritized services. These form the attributes of
the system that need to be monitored. In order to achieve the goals, we also need
the ability to modify the voice mail level, call forward level and call blocking level.
These form the system actions that can be performed to attain the aforementioned
system goals.

• Step 3: Providing manageability endpoints - After identifying the goals, actions
and attributes, we need to identify and instrument the required set of management
interfaces (sensors and effectors). As discussed earlier, the services in CC2 are pro-
vided by three SBB components. Hence, we need a set of sensors and effectors to
control these SBBs. The Mobicents server allows managing SBBs through MBeans.
Three MBeans (one for each SBB) were designed to provide the average response
time and throughput of each service and to block or unblock the service for each
class of users. Note that each MBean acts as both sensor and effector.

• Step 4: Developing management logic - As mentioned before, this is the core
part of the process for building a self-managing system. We specify the management
logic from the perspective of StarMX in addition to the proposed decision-making
model. The aforementioned MBeans are registered as anchor objects within an in-
stance of the StarMX. Processes are defined and configured to use the ABLE policy
engine or the decision-making model developed in this thesis to realize the adaptation
process. Execution chains are defined to periodically invoke the processes and thus
execute the complete MAPE loop. We use ABLE in order to facilitate a comparative
study of the proposed decision-making model against a well-established adaptation
engine.

84

• Step 5: Configuring the software - In this step, XML-based descriptions of the
elements defined in the above two steps were added to the configuration files.

• Step 6: Deployment - In this case study, the adaptation manager consisting of
StarMX and ABLE/the proposed decision-making model was deployed as a part of
the CC2 application as opposed to being setup as an independant executable. This
enabled evaluation of the local deployment option.

Figure 5.6 shows the modified self-adaptive architecture of the system.

Figure 5.6: Self-Adaptive CC2 Application Architecture

The next section describes the experiments that were performed on this case study.

5.2.4 Experiment Design

In order to determine the impact of our adaptation technique on the system goals and to
determine its overall effectiveness, we designed and implemented the following experiment:

We subjected the self-adaptive CC2 application to a series of stress tests with two
different workloads namely a low load and a high load. The workloads were generated

85

using SIPp 3.1, a free open source load generator for the SIP protocol. The workloads
were defined as follows:

• Low load: this workload produces a specified number of requests on behalf of dif-
ferent classes of users (gold, silver, bronze) with a pre-defined time interval between
requests. It is designed to be less than the capacity of the system for properly han-
dling workloads without crashing.

• High load: this workload is designed to be above the system capacity for han-
dling workloads by producing requests more frequently. The system should utilize
adaptation logic to survive and provide its services to the users.

We measured the system response time and success rate for each stress test iteration.
The application was first tested with no adapation to get the baseline numbers. Next
the decision making model was configured to use an adaptation technique employing only
mandatory goals specified as action policies processed by the ABLE policy engine. Sub-
sequently the decision making model was configured to use an adaptation technique em-
ploying mandatory goals and negotiable goal clusters. Lastly, the decision making model
was configured to use an adaptation technique based on mandatory goals and adaptive
negotiable goal clusters. Two reinforcement learning algorithms namely Q-Learning and
SARSA were used for the adaptive negotiable goal clusters. We used two different algo-
rithms to examine the impact of using off-policy and on-policy algorithms respectively.

To minimize the experimental errors due to sporadic events, three replications were
conducted for each stress test iteration. The specification of the machine used to conduct
the experiments was: Windows Server 2003 Standard x64 Edition SP2, Intel Core 2 Quad
CPU Q6700 @ 2.66GHz, 8GB of RAM.

5.2.5 Obtained Results

Figures 5.7, 5.8, 5.9, 5.10 and 5.11 display the obtained response times and success rates
of the CC2 application when subjected to the two workloads. The obtained results clearly
demonstrate the expected i.e. when the workload experienced by the CC2 application
increases, the response time increases and the success rate decreases.

Moreover both the response time and success rate of the non-self-adaptive version of
the CC2 application increase and decrease by a significant amount compared to its self-
adaptive counterparts. Additionally, the results demonstrate that the overall response time
of a decision-making model configured to use an adaptation technique based on mandatory
goals and adaptive negotiable goals is better than or comparable to that of a decision mak-
ing model configured to use an adaptation technique employing mandatory and negotiable

86

Figure 5.7: CC2: Regular Call Response Time

87

Figure 5.8: CC2: Percentage of Successful Regular Calls

88

Figure 5.9: CC2: Call Forward Response Time

89

Figure 5.10: CC2: Percentage of Succesful Call Forwards

90

Figure 5.11: CC2: Voice Mail Response Time

91

goals or of a decision-making model configured to use an adaptation technique employing
only mandatory goals specified as action policies processed by the ABLE policy engine.

Furthermore, the results obtained from the regular call subsystem demonstrate that
the overall success rate of any self-adatpive version of the CC2 application is similar and is
better than the overall success rate of the non-self adaptive version of the CC2 application.

Lastly, the results obtained from the call forwarding sub-system demonstrate that the
overall success rate of a decision-making model configured to use an adaptation technique
employing only mandatory goals specified as action policies processed by the ABLE policy
engine is better than but similar to the overall success rate of the non-self-adaptive version
of the CC2 application, where the success rate decreases by a sharp amount when the
system is subjected to a higher workload. Based on the results we can also infer that the
overall success rate of a decision making model configured to use an adaptation technique
based on mandatory goals and adaptive negotiable goals is very similar to that of a deci-
sion making model configured to use an adaptation technique employing mandatory and
negotiable goals.

The next section describes the overall comments on the results obtained from all the
experiments conducted on both the case studies.

5.3 Lessons Learned

The objective of this chapter was to determine the impact of the adaptation techniques
developed in this thesis on the system goals, and to determine the impact of making the
control loop a first class entity in the decision making model as compared to other adap-
tation techniques. The adaptation requirements of the first case study i.e. the news web
application were high service availability, maximum throughput and a reasonable response
time. The adaptation requirements of the second case study i.e. the CC2 application were
high service availability and a reasonable response time.

The results obtained from the experiments conducted on both case studies clearly
demonstrated that the adapatation requirements were completely satisfied by all self-
adaptive versions of the applications using the decision-making model developed in this
thesis. Moreover these self-adaptive versions not only were in full compliance with these
requirements, but also obtained significantly better results than their non-adaptive coun-
terparts. On this bases, it cam be safely concluded that a self-adaptive system based on
the decision-making model developed in this thesis improves the overall goal satisfaction
level compared to the non-adaptive case.

Furthermore, the results obtained from the tests performed on both case studies show
that a decision-making model based on mandatory goals and adaptive negotiable goals i.e.

92

a model where a control loop is treated as a first class entiity in a decision-making model
can outperform a decision making model based solely on mandatory goals implemented as
action policies or a model based on mandatory and negotiable goals. In cases where the
model does not outperform the other models, it performs as well as the other models and
thus does not lead to performance degradation.

Hence, we conclude that the decision-making model developed in this thesis shows
promise and can certainly be used as a solution to overcome a large number of research gaps
pertaining todecision-making models, that have been outlined in the previous chapters.

5.4 Summary

In this chapter we have presented an evaluation of the decision-making model developed
in this thesis. The model has been evaluated using two case studies namely a news web
application and an IP telephony system. Since both of the case studies were non-adaptive,
we first converted the applications into self-adative applications using the guidelines men-
tioned in the previous chapters. We then evaluated the applications by subjecting them to
a series of different workloads and observing the system attributes under those conditions.
Both the non-adaptive and various self-adaptive versions of the applications were subjected
to those tests. The self-adaptive versions used decision making models configured to use
mandatory goals based on action policies executed using ABLE, mandatory and nego-
tiable goal clusters, and mandatory and adaptive negotiable goal clusters. Based on the
obtained results, it was concluded that the proposed decision-making model does improve
the overall goal satisfaction level compared to the non-adaptive case. Moreover it was also
concluded that a decision-making model based on mandatory and adaptive negotiable goal
clusterss can outperform or perform as well as a decision-making model based exclusively
on mandatory goals/action policies or a decision-making model based on mandatory and
negotiable goal clusters.

93

Chapter 6

Conclusions and Future Direction

In this chapter, we summarize the findings of the thesis and outline future directions that
can be pursued from this research. We begin this chapter by presenting the contributions
of the research peformed during this thesis. Next, we outline some potential future work
for extending thisresearch. In the last section we present some concluding remarks.

6.1 Contributions

The major contribution of the proposed research is that we have engineered a generic,
configurable and enhanced goal-oriented decision-making model, that provides a compre-
hensive representation of all categories of adaptation requirements, enables representation
of related flexible requirements as clusters, and also includes a mechanism for incorporating
feedback control loops as first class entities in the decision making process. The princi-
ple contributions of this thesis were described in Chapter 1. We restate these with more
information based on the remainder of the thesis:

• Comprehensive Representation of Adaptation Requirements: The decision-
making model has been engineered such that it can be used to represent different
categories of adaptation requirements ranging from mandatory to negotiable require-
ments.

• Concurrent Satisfaction of Multiple Unrelated Adaptation Requirements:
The decision-making model has been designed to enable representation of related
flexible adaptation requirements as clusters. It also provides support for the repre-
senting multiple clusters. Consequently the model provides ability to concurrently
execute multiple corrective actions and thus satisfy mutiple unrelated adaptation
requirements simultaneously.

94

• Incorporation of Feedback Control Loops as First Class Entities: The
decision-making model enables the incorporation of feedback control loops as first
class entities in the decision-making process of a self-adaptive system. This enables
assessing the impact of a previously executed decision, so that better decisions can
be made in the future, thus allowing the model to cope with run-time changes.

• Conflict Detection and Resolution: The decision-making model provides a mech-
anism to detect and resolve conflicts between dependent adaptation requirements.

• Ultimate Flexibility in Specification of Voting Algorithm: The decision-
making model has been engineered to be extremely flexible. It provides the ability
to specify any voting algorithm to choose a winner amongst competing flexible re-
quirements. The realization of the model contains some built-in voting algorithms.
However, a user is free to develop any voting algorithm that implements a specified
interface.

• Ultimate Flexibility in Specification of Reinforcement Learning Algorithm:
The decision-making model has been engineered to be extremely flexible. It provides
the ability to specify any reinforcement learning algorithm to asses the impact of a
previously executed decision, so that better decisions can be made in the future. The
realization of the model contains some built-in reinforcement learning algorithms.
However, a user is free to develop any reinforcement learning algorithm that imple-
ments a specified interface.

The next section describes the future research that can be conducted to enhance the
proposed decision-making model.

6.2 Future Research Directions

As mentioned before, this work itself is an evolution of the GAAM model developed by
Salehie et. al and there are still numerous ways to extend and improve this work. The
following outline several potential directions in this area:

• Automated Configuration File Generator: Currently, the decision-making model’s
XML-based configuration file needs to be developed manually. This can be a tedious
and error prone process if the system contains a large number of adaptation require-
ments. Hence, a future enhancement for this model would be the development of an
accompanying graphical tool (e.g. an Eclipse-based plugin) that can be used to auto
configure and generate an XML file based on some user input. This tool can also be
leveraged to specify the StarMX configruation information as well.

95

• Graphical Monitoring Tool: Another potential enhancement would be the devel-
opment of a graphical tool that can be used to monitor the top level entities of the
decision-making model and the underlying graph that is traversed by the decision-
making process while determining the action to be executed to restore normalcy to
the system.

• Incorporation of Multi-Level Control Loops: The decision-making model de-
veloped in this thesis does represent feedback loops as top level entities in the self-
adaptative system by providing the ability to specify reinforcement learning algo-
rithms to learn the preference values of the goal actions associated with an adaptive
negotiable goal. However the priority of the goal itself is static for now. Providing the
ability to learn the top level goal priorities leveraging machine learning techniques
can be viewed as another potential research direction for this work.

• Advanced Conflict Detection and Resolution: At present the decision-making
model uses statically assigned priorities to resolve conflicts between goal actions.
Augmenting the model with the ability to include state of the art conflict detection
and resolution algorithms can be viewed as another potential research direction.
Moreover, augmenting the model with the ability to detect conflicts between goal
definitions can also be viewed as a future research topic.

6.3 Conclusion

In this thesis we have engineered a generic, configurable and enhanced goal-oriented decision-
making model, that provides a comprehensive representation of all categories of adaptation
requirements, enables representation of related flexible requirements as clusters, and also
includes a mechanism for incorporating feedback control loops as first class entities in the
decision making process.

We began this thesis by presenting a literature review of research related to the differ-
ent adaptation techniques employed by decision-making models in self-adaptive systems,
discussed the merits and drawbacks of each appraoch and identified the research gaps in
this area. We then presented an overview of the proposed decision-making model and
its conceptual architecture. Then we described a procedure for building an adaptation
manager consisting of the proposed decision-making model and StarMX which is a generic
adaptation framework that can be used by Java-based self-adaptive systems. Next, we
described a six-step process for developing a self-managing system using an adaptation
manager composed of the proposed decision-making model and StarMX. Subsequently, we
provided a description of the experimental studies conducted to evaluate the effectiveness

96

of our model. We used two case studies namely a news web application and an IP telephony
system and then presented an analysis of the obtained results.

Based on the obtained results, it was concluded that the proposed decision-making
model does improve the overall goal satisfaction level compared to the non-adaptive case.
Moreover it was also concluded that a decision-making model based on mandatory goals
and adaptive negotiable goal clusters can outperform or perform as well as a decision-
making model based exclusively on mandatory goals/action policies or a decision-making
model based on mandatory and negotiable goal clusters.

97

APPENDICES

98

Appendix A

Sample Configuration File for the
News Web Application

The following shows a sample configuration file for the news web application:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE gaam PUBLIC "-//STAR Lab//GAAM Configuration DTD//EN" "gaam.dtd">

<gaam>

<!-- attributes -->

<attribute

attribute-id="att_main_servlet_url"

mbean-id="MainServletMBean"

mbean-attribute-name="ServletURL"

mbean-attribute-type="String" />

<attribute

attribute-id="att_main_servlet_hostname_port"

mbean-id="MainServletMBean"

mbean-attribute-name="HostNameAndPort"

mbean-attribute-type="String" />

<attribute

attribute-id="att_main_current_load"

mbean-id="MainServletMBean"

mbean-attribute-name="CurrentLoad"

mbean-attribute-type="Integer" />

<attribute

attribute-id="att_main_resp_time"

mbean-id="MainServletMBean"

99

mbean-attribute-name="AverageResponseTime"

mbean-attribute-type="Integer" />

<attribute

attribute-id="att_main_throughput"

mbean-id="MainServletMBean"

mbean-attribute-name="AverageThroughput"

mbean-attribute-type="Double" />

<attribute

attribute-id="att_news_display"

mbean-id="NewsMBean"

mbean-attribute-name="MediaTypeAttributeValue"

mbean-attribute-type="String" />

<attribute

attribute-id="att_stock_display"

mbean-id="StocksMBean"

mbean-attribute-name="DisplayStocks"

mbean-attribute-type="String"/>

<attribute

attribute-id="att_weather_display"

mbean-id="WeatherMBean"

mbean-attribute-name="DisplayWeather"

mbean-attribute-type="String"/>

<!-- actions -->

<action

action-id="act_news_display"

action-type="atomic"

mbean-id="NewsMBean"

mbean-attribute-name="MediaTypeAttributeValue"

mbean-attribute-type="String"/>

<action

action-id="act_main_servlet_url"

action-type="atomic"

mbean-id="MainServletMBean"

mbean-attribute-name="ServletURL"

mbean-attribute-type="String"/>

100

<action

action-id="act_main_servlet_hostname_port"

action-type="atomic"

mbean-id="MainServletMBean"

mbean-attribute-name="HostNameAndPort"

mbean-attribute-type="String"/>

<action

action-id="act_main_servlet_init"

action-type="composite">

<sub-action action-id="act_main_servlet_url" />

<sub-action action-id="act_main_servlet_hostname_port" />

</action>

<action

action-id="act_main_servlet_stop_service"

action-type="atomic"

mbean-id="MainServletMBean"

mbean-attribute-name="StopService"

mbean-attribute-type="Boolean"/>

<action

action-id="act_stock_display"

action-type="atomic"

mbean-id="StocksMBean"

mbean-attribute-name="DisplayStocks"

mbean-attribute-type="String"/>

<action

action-id="act_weather_display"

action-type="atomic"

mbean-id="WeatherMBean"

mbean-attribute-name="DisplayWeather"

mbean-attribute-type="String"/>

<!-- goals -->

<!--

Initially set the servlet URL and servlet host name and port

to the appropriate value to start the internal monitoring

process within the servlet.

-->

101

<mandatory-goal

goal-id="set_main_servlet_url"

priority="10"

activation-function-operation-type="and" >

<goal-attribute

attribute-id="att_main_servlet_url"

threshold-val-isnull="true"

/>

<goal-attribute

attribute-id="att_main_servlet_hostname_port"

threshold-val-isnull="true"

/>

<goal-action

action-id="act_main_servlet_init">

<goal-action-props mbean-attribute-value=

"http://127.0.0.1:8080/servlet-war/servlet/main" />

<goal-action-props mbean-attribute-value=

"127.0.0.1:8080" />

</goal-action>

</mandatory-goal>

<!--

Goal - The system should always be up and running.

Translation - Control the maximum number of requests

received by the system such that if the requests exceed

a threshold return a 404 page instead of returning a

servlet exception.

-->

<mandatory-goal

goal-id="system_up_and_running"

priority="9">

<goal-attribute

attribute-id="att_main_current_load"

threshold-max="100" />

<goal-action

action-id="act_main_servlet_stop_service">

<goal-action-props mbean-attribute-value="true" />

</goal-action>

</mandatory-goal>

102

<!--

Goal1 - The system should have a minimum response time.

Translation - Control the image quality and display

options to guarantee the designated minimum response

time.

Goal2 - The system should provide maximum throughput.

Translation - Control the image quality and display

options to guarantee the designated maximum throughput.

Goal3 - The sytem should provide the best UI experience

i.e. display the highest quality information.

Transaction - If highest quality information is not being

displayed then try and do so.

-->

<adaptive-negotiable-goal-cluster

cluster-id="c1"

priority="8"

voter-type="borda-count"

rl-agent-type="q-learning" >

<rl-agent-properties>

<rl-agent-property

property-name="Q_LEARNING_ALPHA"

property-value="0.3" />

<rl-agent-property

property-name="Q_LEARNING_GAMMA"

property-value="0.01" />

</rl-agent-properties>

<adaptive-negotiable-goal

goal-id="goal1_1"

priority="40"

activation-function-operation-type="and" >

<goal-attribute

attribute-id="att_main_current_load"

threshold-max="30"

weight="0.5" />

<goal-attribute

attribute-id="att_main_resp_time"

threshold-max="2000"

weight="0.5" />

<goal-action

action-id="act_news_display"

103

preference="3">

<goal-action-props mbean-attribute-value="BETTER" />

</goal-action>

<goal-action

action-id="act_news_display"

preference="2">

<goal-action-props mbean-attribute-value="GOOD" />

</goal-action>

</adaptive-negotiable-goal>

<adaptive-negotiable-goal

goal-id="goal1_2"

priority="50"

activation-function-operation-type="and" >

<goal-attribute

attribute-id="att_main_current_load"

threshold-max="45"

weight="0.01" />

<goal-attribute

attribute-id="att_main_resp_time"

threshold-max="3000"

weight="0.99" />

<goal-action

action-id="act_news_display"

preference="4">

<goal-action-props mbean-attribute-value="GOOD" />

</goal-action>

<goal-action

action-id="act_news_display"

preference="3">

<goal-action-props mbean-attribute-value="NONE" />

</goal-action>

</goal-action>

</adaptive-negotiable-goal>

<adaptive-negotiable-goal

goal-id="goal1_3"

priority="60"

activation-function-operation-type="and" >

<goal-attribute

attribute-id="att_main_current_load"

threshold-max="55"

104

weight="0.05" />

<goal-attribute

attribute-id="att_main_resp_time"

threshold-max="4000"

weight="0.95" />

<goal-action

action-id="act_news_display"

preference="3">

<goal-action-props mbean-attribute-value="NONE" />

</goal-action>

<goal-action

action-id="act_stock_display"

preference="2">

<goal-action-props mbean-attribute-value="false" />

</goal-action>

<goal-action

action-id="act_weather_display"

preference="1">

<goal-action-props mbean-attribute-value="false" />

</goal-action>

</adaptive-negotiable-goal>

</adaptive-negotiable-goal-cluster>

</gaam>

105

References

[1] S. Liaskos A. Lapouchnian, Y. Yu and J. Mylopoulos. Requirements-driven design
of autonomic application software. In Proc. International Conference on Computer
Science and Software Engineering, 2006. 15

[2] R. A. Van Lamsweerde, R. Darimont and P. Massonet. Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learnt. In Proc. of the
Second IEEE International Symposium on Requirements Engineering, 1995. 15

[3] R. Asadollahi. Starmx: A framework for developing self-managing software systems.
Masters Thesis, Univeristy of Waterloo, 2009. 55, 65

[4] J. Lobo D. Agrawal, C. Seraphin K. Lee and D. Verma. Policy technologies for self-
managing systems. IBM Press, 2008. 13

[5] B. H. Cheng D. M. Berry and J. Zhang. The four levels of requirements engineering
for and in dynamic adaptive systems. In Proc. of 11th International Workshop on
Requirements Engineering: Foundation for Software Quality, 2005. 15

[6] A Elkhodary and S. Malek. Fusion: A framework for engineering self-tuning self-
adaptive software systems. In International Symposium on the Foundations of Soft-
ware Engineering (FSE), 2010. 10, 17, 18, 25, 26

[7] Wikipedia: The Free Encyclopedia. Q-learning. Wikimedia Foundation Inc,
http://www.wikipedia.org, 2011. 22, 23, 24

[8] Wikipedia: The Free Encyclopedia. Reinforcement learning. Wikimedia Foundation
Inc, http://www.wikipedia.org, 2011. 22

[9] A. Mukhija et al. Runtime adaptation of applications through dynamic recomposition
of components. In Proc. of Int. Conf. on Architecture of Computing Systems, pages
124–138, 2005. 10, 11, 17, 18

[10] B. H. Cheng et al. Software engineering for self-adaptive systems. In Lecture Notes
in Computer Science, 2009. 1, 4, 5

106

[11] D. Garlan et al. Rainbow: Architecture-based selfadaptation with reusable infrastruc-
ture. In IEEE Computer. 10, 11, 12, 17, 18

[12] G. Kaiser et al. An approach to autonomizing legacy systems. In Workshop on Self-
Healing, Adaptive and Self-MANaged Systems, 2002. 3, 10

[13] G. Tesauro et. al. A hybrid reinforcement learning approach to autonomic resource
allocation. In Proc. of the 2006 IEEE International Conference on Autonomic Com-
puting, 2006. 24, 26

[14] H. Liu et al. A component-based programming model for autonomic applications. In
Proc. of International Conference on Autonomic Computing, pages 10–17, 2004. 10,
11, 12, 18

[15] J. White et al. Simplifying autonomic enterprise java bean applications via model-
driven development: A case study. In Proc. of Int. Conf. on Model Driven Eng.
Languages and Systems, pages 601–615, 2005. 10, 11, 18

[16] L Lymberopoulos et. al. An adaptive policy based framework for network services
management. In Journal of Network and Systems Management, 2003. 25, 26

[17] N. Dulay et al. A policy deployment model for the ponder language. In Proc. of
IEEE/IFIP International Symposium on Integrated Network Management, 2001. 25,
26

[18] P. Vienne et. al. A middleware for autonomic qos management based on learning.
In Proc. of the 5th international workshop on Software engineering and middleware,
2005. 25, 26

[19] R. M. Bahati et al. Modelling reinforcement learning in policy-driven autonomic man-
agement. In IEEE/IARIA International Journal On Advances in Intelligent Systems,
pages 54–79, 2008. 10, 13, 14, 18, 25, 26

[20] S. M. Sadjadi et al. Trap/j:transparent generation of adaptable java programs. In
Lecture Notes in Computer Science, pages 1243–1261, 2004. 10, 18

[21] H. Goldsby and B.H Cheng. Goal-oriented modeling of requirements engineering for
dynamically adaptive system. In Proc. of the 14th IEEE International Requirements
Engineering Conference, 2006. 15

[22] B. Henderson-Sellers and P. Giorgini. Agent-oriented methodologies. Idea Group Inc,
2005. 15

107

[23] M. G. Hinchey and R. Sterritt. Self-managing software. In IEEE Computer, pages
107–109, 2006. 1

[24] IBM. An artificial intelligence perspective on autonomic computing policies. In Proc.
of the Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks, 2004. 12

[25] IBM. An architectural blueprint for autonomic computing. White-paper, http://www-
01.ibm.com/software/tivoli/autonomic/pdfs/AC Blueprint White Paper 4th.pdf,
2006. 1

[26] J. R. Pilgrim W. N. Mills J. P. Bigus, D. A. Schlosnagle and Y. Diao. Able: A toolkit
for building multiagent autonomic systems. pages 350–371. IBM Systems Journal,
2002.

[27] J. O. Kephart and D. M. Chess. The vision of autonomic computing. In IEEE
Computer, pages 41–50, 2003. 2

[28] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In Future
of Software Engineering, 2007. 16

[29] E. Kant L. Brownston, R. Farell and N. Martin. An introduction to rule-based pro-
gramming. Addison-Wesley, 1985.

[30] A. Van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In Proc.
of Fifth IEEE International Symposium on Requirements Engineering. 9, 15

[31] E. Letier and A. Van Lamsweerde. Reasoning about partial goal satisfaction for
requirements and design engineering. In Proc. of ACM SIGSOFT Int. symposium on
Foundations of software eng, pages 53–62, 2004. 15

[32] E. C. Lupu and M. Sloman. Conflict analysis for management policies. In Proc.
of IFIP/IEEE International Symposium on Integrated Network Management, pages
430–443, 1997.

[33] G. Pavlou A. K. Bandara E. C. Lupu A. Russo N. Dulay M. Sloman M. Charalam-
bides, P. Flegkas and J. Rubio-Loyola. Policy conflict analysis for quality of service
management. In Proc. of IEEE International Workshop on Policies and Distributed
Systems and Networks, pages 99–108, 2005.

[34] L. Penserini M. Morandini and A. Perini. Towards goal-oriented development of self-
adaptive systems. In Proc. of the 2008 international workshop on Software engineering
for adaptive and self-managing systems, 2008. 15

108

[35] E. Martins. jain slee example call-controller-2. http://code.google.com/p/mobicents,
2008.

[36] Oracle. Sun java management extensions. http://jcp.org/en/jsr/detail?id=3.

[37] Oracle. Sun jvm tool interface. http://java.sun.com/j2se/1.5.0/docs/guide/jvmti.

[38] R. N. Taylor P. Oreizy, N. Medvidovic. Architecture-based runtime software evolution.
In Proc. of the 20th international conference on Software engineering, 1998. 17

[39] E.P. Kasten P.K. Mc Kinley, M. Sadjadi and B.H.C. Cheng. Composing adaptive
software. In IEEE Computer, pages 56–64, 2004. 3, 8

[40] Robert R. Darimont and A. Van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. In SIGSOFT Software Engineering Notes, 1996. 9,
15, 16

[41] S. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice Hall,
2003.

[42] M. Salehie. A quality-driven approach to enable decision-making in self-adaptive
software. PhD Thesis, Univeristy of Waterloo, 2010. 29, 30

[43] M. Salehie and L. Tahvildari. A quality-driven approach to enable decision-making
in self-adaptive software. In Companion to the proceedings of the 29th International
Conference on Software Engineering, 2007. 16

[44] M. Salehie and L. Tahvildari. A weighted voting mechanism for actionselection prob-
lem in self-adaptive software. In International IEEE Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pages 328–331, 2007. 3, 8, 10, 11, 16, 18, 31

[45] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning. MIT Press,
1998. 21, 22

[46] G. Tesauro. Online resource allocation using decompositional reinforcement learning.
In Proc. of the 20th national conference on Artificial intelligence, 2005. 25

[47] D. Vengerov and N. Iakovlev. A reinforcement learning framework for dynamic re-
source allocation: First results. In Proc. of the Second International Conference on
Automatic Computing, 2005. 25, 26

[48] C. Gacek H. Giese H. Kienle M. Litoiu H. Muller M. Pezzè Y. Brun, S. Marzo and
M. Shaw. Engineering self-adaptive systems through feedback loops. In Lecture Notes
In Computer Science, 2009. 19

109

	List of Tables
	List of Figures
	Introduction
	Problem Description
	Thesis Contribution
	Thesis Organization

	Related Work
	Categorization of Decision-Making Models
	Policy-based Decision-Making Models
	Action Policies
	Utility Function Policies

	Goal-based Decision-Making Models
	Architecture-based Decision-Making Models
	Control Loops and Self-Adaptive Systems
	Machine Learning
	Reinforcement Learning

	Applications of Machine Learning in Self-Adaptive Systems
	Research Gaps
	Summary

	Proposed Decision Making Model
	Requirements and Constituent Components
	GAAM - A Goal-Oriented Decision-Making Model
	Decision-Making Model Requirements
	Proposed Decision-Making Model Architecture
	Attribute Space
	Action Space
	Goal-Attribute Space
	Goal-Action Space
	Goal Space

	Adaptation Process Flow using Proposed Decision-Making Model
	Incorporation of Control Loops in the Decision-Making Process
	Action Selection Process used by Goal Clusters
	Conflict Detection and Resolution

	Summary

	Developing Self-Adaptive Applications
	StarMX - A Java-based Adaptation Framework
	Building an Adaptation Manager
	Configuration
	Run-time Behavior
	Deployment Options

	Building Self-Adaptive Applications
	Summary

	Experimental Studies
	Case Study 1: News Web Application
	Motivation
	Original Application Architecture
	Self-Adaptive Application Architecture
	Experiment Design
	Obtained Results

	Case Study 2: IP Telephony System
	Motivation
	Original Application Architecture
	Self-Adaptive Application Architecture
	Experiment Design
	Obtained Results

	Lessons Learned
	Summary

	Conclusions and Future Direction
	Contributions
	Future Research Directions
	Conclusion

	APPENDICES
	Sample Configuration File for the News Web Application
	References

