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Abstract 

It is dear that the activities of an increaingly eitormation-centered wuetal innastrucC 

ture are driving the rapid expansion of digital communications teehnology. The demand 

for services integrating voice, data, and vide0 t r a c  is increasing with the technical sophis- 

tication of the consumer, and has aiready spamed a host of alternatives inciuding ISDN, 

cellular, cable modem, personal communication systems, and Internet technologies. These 

technologies ail represent steps in the evolution towards a global digital communications 

strategy. We wïll examine issues surrounding the implementation of speech semices in a 

secure digit ai communications environment. 

The reasons for the emergence of digital speech communications s y s t m  lie in their 

advantages over the older analog systems. These indude improved signal quality, error re- 

covery capabilities, and the ability to multiplex a signal with other conversations or with an 

entirely digerent form of digital service. Digital service also aliows a significant improvement 

in the abiiity to protect a conversation fkom mwdcome scnitiny. This is fast becoming an 

important issue in the design of information systems. In the information age we have corne 

to recogniae that there is intriiisic d u e  in most forms of communication, and that ensuring 

privacy can be tantamount to protecting material assets. 

The addition of a cryptographie component into a speech communication system adds 

complications that ate not encountered in a conventional system. The characteristics of 

an encryption coder increase the challenge of secure system design. The system designer 

must balance the requirements for high securiw and subjective speech quality *th the 

conflicting desires for a low channel bit rate and limited system complexity. The optimal 

choice of source, encryption, and channe1 coder components to meet these objectives requires 

a thorough understanding of a large set of i n t d a t e d  parameters. 

In this research we WU develop models of objective speech quaiitp, bit rate, secmity, and 

cornplexity that are reIevant to the design of an integrated secure speech communication 



system. W e  wiU present experimentd and theoretical evidence leading to an understanding 

of the interreiationships among the parameters of the secure system. The parameter models 

will then be integrated to de5ne a m u l t i h d o n a l  consttained optimisation problem as a 

general model for the secure speech co~nmunication system. 
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Chapter 1 

Introduction 

It may have surprised Alexander Graham Bell to learn that his curious invention of 1876 

would be foiiowed by over a century of intense interest and devdopment. Verbal com- 

munication has an apped so fundamentai that it seems a device dowing natural speech 

communication over great distances was destined for success. 

R o m  its limited beginnings the global telecommunications infrastructure has developed 

steadily, to the point where it is now possible to reach most of the world by means of the 

analog circuit-switched telephone network. Despite the magnitude of this achievement, an 

increaçingly sophisticated and information-centered society demands more service than the 

analog telephone network can provide. Both the cause and the cure to this problem lie in 

the rapid expansion of digital communications technology. There is an increasing demand 

among consumers for services integrating voice, data, and video t r a c ,  and this has spawned 

a host of alternatives induding ISDN, cellular, cable modem, personal communication sys- 

tems, and Intemet technologies. These technologies all represent steps in the evolution 

toward a global cornmunications strategy. In this thesis n e  WU focus on issues smounding 

the implementation of speech services in a secure digital communications environment. 

The reasons for the emergence of digital co~~l~~lunications technology lie in its advaatages 
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over anaiog transmission. These indude irnproved signal quaiity, -or recovery capabiüties, 

and the ability to multiplex a signal with other conversations or with an entirely different 

fonn of digital service. Digital speech enjoys one other admntage in that it d o w s  a signüi- 

cant improvement in our abiIity to protect a conversation from unwelcome mtiny. This is 

fast becoming an important issue in the design of information systems. In the information 

age we have corne to recognize that there is intrinsic value in most forms of communication, 

and that ensuring prïvacy can be tatamount to protecting material assets. 

In p r o g r d g  forward to a pwely digital domain we must remember to look behind at 

the enormous investment in the existing telecommunications Uastnicture. It is a practical 

consideration that demanch the contemporary communicatioos system be designed with a 

mind to the limitations of the vestigial analog system. 

1.1 The Conventional Communication System 

A conventional digital speech communication system conçists of two components: a source 

coder and a channel coder. The source coder is responsible for transforming the analog 

speech signal to an approximate digital representation that is convenient for transmission. 

To11 quality speech in digital form can require signifiant bandwidth for transmission, often 

a rate in excess of the capacity of the andog telephone network. Digital communication 

systems must thedore cornpress the signai before transmission over analog media. The 

means of performing this compression are variecl, but al1 are based on the potentid to 

reduce the high level of redundancy in the natural speech signal. 

The output of the source coder is processeci by a Channel coder responsible for providing 

diable  transmission on a potentidy noisy medium as shown in figure 1.1. This operation 

expands the coded signal, adding the redundancy necessary to reconstruct the signal in the 

presence of errots, 
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Figure 1.1: The Conventional Speech Communication System 

1.2 The Secure Communication System 

The secure communication system adds an encryption coder intended to protect the message 

fkom unauthorized access. The encryption coder is typically placed between the source and 

channel coders, as shown in figure 1.2, This arrangement sees the encryption coder operate 

on a compressed speech signal, and the channd coder operate on a randomized information 

stream. The resdt is a compressed and error-tolerant signal that is unintelligible to aU but 

the intended recipient. In chapter 4 we wi l l  examine the dec t s  of encryption coding in 

some detail. 

It is most important to understand the goals and capabilities of the attacker. The goal 

of the attacker di typically be to determine the content of the encrypteci message, but 

he may also be motivated to interfixe with the transmission. Our treatment will focus on 

evaiuations of the secrecp of the transmission in the presence of purely passive analysis, 

but we wiU address some of the more active efforts the cryptanalyst may make to gain 

advantage, 

It is &O important to recognize that the attacker has at  his disposal the signiîîcant 

signal processing power of the human auditory system in addition to conventional computing 

resources. Buman petceptual abilities are important in the context of speech encryption 

because of their vast processing power and adaptability. If the encryption mechanism is 

inadequate and exposes even some s m d  part of the speech signd, then it may be possible 

for a human listener to fonn an understanding of the residual intelligible information. 

Traditionally, each coder element in figure 1.2 has been treated independently in d e  
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signing an integrated secure system. This approaeh can Iead to sub-optimal system designs 

when the encryption device manipdates the signai in a mannu not antiapated by the 

conventional model. It wiU be the focus of our research to determine how the addition of 

an encryption device affects the performance of the integrated communication system. An 

integrated model of ail relevant system characteristics wiU d o w  selectioa of more scient 

system solutions- 

Figure 1.2: The Secute Speech Commdcation System 

. 

Some characteristics of the secure communication system are immediately obvious and 

suggest a complex relationship among the systern parameters. For example, the main 

fwiction of the source coder is to remove redundancy and thereby d u c e  the bit rate. 

Source coding can improve the s e a u i t y  of a cryptosystem by removing redundant message 

. 

components that may aid an attacker in deciphering the message. Some encryption systems 

exact a high price for Channel mors, however, signiscantly reducing subjective quality 

evaluations on noisy channels. It is necessary to balance the advantage to s e d t y  and bit 

S m -  Source G n X y p h  clmocl 1 + Q m d - v -  Saua 

rate that may be gained by aggressive source coding with the aààitiod complexity that 

signal 

may be required in the charnel coder to compensate fur the &et of channel errors. 

In general the design of secure speech communication system entails a challenging com- 

bination of objectives. The system designer is concerneci with ptoviding high s e d t y  and 

subjective speech quality while requiriag a low channel bit rate and overall system complex- 
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ity. The optimd choice of source, encryption, and channe1 coder components to meet these 

objectives tequires a thorough understanding of a large set of intmelated parameters. 

1.3 Scope of the Work 

It is our inteaion to develop models of objective speech quality, bit rate, secwity, and 

complexity th& are relevant to the design of an integrated secure speech communication 

system. Tbough experimental and theoretical wotk we plan to develop an understanding 

of the interrelationships among the primaty parameters of the secure system, The param- 

eter models will then be integrated to  define a multidimensional constrained optimization 

problem as a general modei for the secure speech c o ~ u n i c a t i o n  system. 

W e  wiU begin in chapter 2 with the deveiopment of a new technique for the estimation of 

high order conditional entropy. This technique dows  the calculation of conditionai entropy 

rneasures that complexity tenders ideasible to the conventional direct calculation method. 

We developed this technique in order to compute an estimate of the entropy rate of the 

speech process. The entropy rate was found to be an essential measure that was central 

to many of the parameters computed fat the general model. In chapter 3 we wiIl present 

measures of the first to sixth order conditionai entropy and obtaîn an estimate of the entropy 

rate of the speech process by applying a non-linear regression andysis to the experimental 

results. 

The entropy estimation technique developed for chapter 2 wil l  be shown to be more 

widely appiicable to estimation problem involving probabilistic distributions of high model 

order. We will identif9 modeiiing activities where the new technique can be applied to 

obtain more accurate measufes than were previously feasible. 

The m o d e h g  process will begin in chapter 4 where we will present an argument for 

the development of theoretic measures of securïty and propose two unique indices for use 

in the general model of the secure speech system. 



In chapter 5 we will deveiop modeis of objective quality and bit rate as a function of 

parameters under the contrai of a secure system designer. The segmental-SNR performance 

of a class of representative source coders will be examineci under a Oafiety of charinel con- 

ditions, and measures of the informational divergence of the coded speech process will be 

computed to determine an analytic model relating bit rate to the level of redundancy in the 

source coded signal. 

In chapter 6 we wiU p d o r m  experiments to evaluate the proposed theoretic security 

indices for the general model. This work wil l  combine the results of our entropy estimation 

work and redundancy modelling to produce experimental modeIs of cryptographie security. 

We will then define rudimentary models for the complexity of source, encrgption, and 

channel coders to add an essential dimension ta the analysis of secure communications 

systems. 

Fially, in chapter 7 we will combine the models of objective speech quallty, bit rate, 

secuiity, and complexiw to define a general model of the secure communication system. We 

wili outline the sets of objective, intennediate, and controhg parameters in the system 

and indicate the general interrelationships between them. Using these relationships we 

w i l i  formulate an optimization problem for secure system evaluation based on a general 

constrained objective h c t i o n  over the parameters of redundancy, encryption, and bit enor 

rate. 

We shouid note that while the modelling methodology and entropy estimation algo- 

rithms presented in this tesearch are applied specifically to the case of the secure speech 

communication systm, they may also be applied to 0th- data souces that possess high 

ievels of redundancy, such as video and facsimile. 



Chapter 2 

Entropy Estimation 

2.1 Introduction 

An accurate estimate of the information content of a digitieed and band-limited signal is 

important to a broad dass of aetivities induding the development of compression a i g o r i t h ,  

quality of service, and s e d t y  measurements. As we d l  discuss in this chapter, this can 

be a very difiicult meagutement to perform for many classes of typical source processes. 

Many of the activities necessary for the development of a general model of the secure 

speech communication system will require such a measurement to be performed on the con- 

versationd speech process. Our fonts in this chapter will be to develop a general algorithm 

for entropy computation that can be applied to a general souree process. Li chapter 3 we 

wil i  then apply this technique to the s p d c  case necessary to our research. 

Generaiiy, the real sources of interest to designers of practical systems may be described 

as  stochastic processes. To measure the entropy of a stochastic process it is necessary to 

determine an exact probabilistic model of the source process and compute the entropy rate 

directly fiom the model. There are tno main considerations that determine the feasibility 

of an exact entropy calcuiation, 
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1. State-Space Sixe.  The characteristic of memory in a process can lead to a very 

large state space for the complete ptobabiiistic model. 

2. ComputationaI Compldy. The number of operations required for the exact 

calculation is a hction of the extent of memory in the process. mill computation 

can require an infeasible number of operations. 

For a general nth order enttopy caldation, O(IX"1) operations are requïred on a state- 

space of 1 P I  elements, where 1 XI is the cardinality of the signal alphabet. These require- 

ments can become prohibitive for measures beyond a small order. Presented in figure 2.1 

is a graphical representatioa of the size of an exact nth order entropy calcdation on an 

alphabet of size 1x1 = 256. Noted in the figure are the nominal state-space sizes for cdcu- 

lations of order 4,5, and 6. The shaded region hdicates the maximum adciresable memdry 

size of a 32-bit architecture computing platform. Clearly, the state-space requirements of 

higher-order entropy calculations test the limits of curent computational abilities. 64bit 

architecture processors extend the addressable range to aUow a theoretical 8th order state- 

space, but red memary limitations still constitute a significant obstacle. 

In this chapter we wiU present a method of entropy estimation developed to dlow 

high order conditionai entropy measures with modest computing resources- In sections 

2.2,2.3, and 2.4 we will present the mathematical development for the new approach. This 

technique apptoximates an entropy measure by selecting a subset of the complete calculation 

space for a a c t  computation and estimating the d u e s  not contained in the subset. The 

subset of computed measutes can be chosen to adequately reptesent the conditional entropy 

measure by a sequential Monte Carlo point seiection procedure. W h e r  &ciencies can 

be obt ained by adapting the probability distribution of the sampling procedure according 

to the relative magnitude of past measurements. This sequential Monte Carlo sampling 

approach, deveioped in section 2.5, is an &cient method of obtaining estimates of various 

information measwes for a variety of source processes. Finally, in section 2.6 ne wili present 
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Figure 2.1: State-Space for nth Order Entropy Cdcdations 

the mathematical basis for a method to normalize a set of partial conditional entropy 

mesures in anticipation of cornputational difficdties which may arise in the experimentai 

work required for entropy estimation. 

2.2 Entropy Estimation Technique 

In this section we will develop a method to estirnate a high order information measure for 

any source process. The specific measure selected for out development is the kth order 

conditional entropy as defuled below in equation (2.1), but in faet, this approach codd 

be applied to  similar meastues such as the joint entropy of a process with memory. The 

conditional entropy measure was selected because it can be shown that the entropy rate 

of a process with memory is the (k + 1)th order conditional entropy, where k is the maxi- 

mum mode1 order needed to completely spePfy the process. In Appendix A we provide a 

proof that is based on the Shannon-McMiUan-Breiman theorem [l] for stationary ergodic 

processes. 
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2.2.1 Derivation of a Useful Entropy Measure 

W e  define a set of n random variables fiom the source process by Xî = (XI, X2, . . . , X,). 
These variables represent the set of aU outcornes of n consecutive observations of the 

source process. A particular realixation of these random variables will be denoted by 

Z: = {2=, 22 ,  . - . , zn). W e  WU represent the set of possible realiaations of a random variable 

by z E X. In general ne WU write, 2r E P. 

The object of our devebpment, the conditional entropy measure, is d 6 e d  as foUows 

Pl : 

Definition 1 (nth order conditional entropy) 

This caldation requires a large number of iterations and a large state space as indicated in 

section 2.1. Solution of a high order entropy estimation problem requires a technique that 

may be described as foiiows, 

Proposition 1 We can appmzimate an mtropy measune by selecting a subset of the com- 

plete calculation spcsce for exact computatim and estimating the values not cmtained in the 

subset. The subset of compted measuries can be chosen to adequately repwent the condi- 

tional entropy measum 6y a Monte Carlo sekction pmcedure. Further eflciencies c m  be 

obtained by adapting the pmbability distribution of the sampling pmceduw uccoding to the 

rekatiue magnitude of past measurwnents. 

In the following discussion we will develop a measure of the conditional entropy of a 

source process with memory using a sequentiai Monte Carlo sampling procedure [3] for 

selecting a portion of the caldation space for direct memuement. 

DefMtion 2 (Partial conditional entropy measure) W e  de f i e  a partial conditional 
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As noted above, the conditional entropy measure con be too complex for direct high order 

conditional entropy dculation. Ushg the pactiai conditional entropy me-=, i j  (n, z';) , 

we can express the conditional entropy, H(X,~K-'), such that each of the partial entropy 

components is ofsdiciently low compiexi~ to make caldation of that component feaçible. 

We write equation (2.1) in terms of a set of 1 0 (256"-j) PCE measufments, 

The PCE rneasure is usefui tool for entropy estimation because it allows the conditiond 

entropy measw of equation (2.3) to be separated into a set of independent measmes. 

This is the reason for out choice of the description parti42 conditional entropy. 

Note 1 W e  should point out thot the quantity ïj(n, zi) tk not cquivalent to the conditional 

entropy measun, H (~~1~7;' , z!). We note thot, 

Although the f-ulationr are si+, since p(2;) # p(z,lz~-'), it is elew that $(n, 2:) # 
( X  , ) We make th& poànt in o d e r  to darifi our choice of description for the 

meusutr ïj (n, zi), which h a  a particulor significance to arr appmch to entropy estimation. 
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2.2.2 Probability Mode1 Estimation 

Until this point we have assumed an exact knowkdge of the probabiiQ distributions needed 

for entropy calculation, but in fact, we must estimate these distributions fkom observations 

of the process of interest. In perfonnuig a study of the red conversational Engiish speech 

process we found that developing these probabiliQ models was the most important and 

most cMicult aspect of this research. 

To develop a probabiiity model, a data sequence of S consecutive speech samples was 

dassified into (S - n) n-tuples representing the set of random variables of interest, zf = 

{zl, 2 2 ,  - - . , z*). Statistics were compiled for every unique n-tuple occumhg in the data 

sequence. The initial set ofobsemations produced maximum likelihood estimates of the joint 

probability distributions, and post-processing of these distributions produced maximum 

likelihood estimates of the conditional probability distributions- Clearly, these ptobability 

mesures are determineci by the statistics of the source processi they represent . It is &O clear 

that the probabilie estimations are dependent on the amount of data used to derive them. 

We will retain information about the size of the data sequence in our descriptions of these 

two probability measures as it is critical to the development of out entropy estimations. 

We will rder to the maximum likelihood estimation of an nth order joint probabiliw 

measure based on observations of S speech samples as ps(zy), and the related conditional 

measure as ps(z, 147'). 
The conditional entropy measures ob t ained using these maximum likelihood estima- 

tions must also be distinguished by the observed sample size. We will denote the partial 

conditional entropy estimation computed at a sample siae of S by, 

and the resulting estimate of the conditional entropy for an nth order model computed ftom 
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S observations as, 

2.3 Entropy Estimation with the PCE Measure 

We WU non define a set of partial conditiond entropy measures as ( j  + 1) dimensional 

vectors. This set can be viewed as comprising points on a surface in B+ x xi. We wi l i  

take advantage of this interpretation of the PCE memues to illiiminate out approach to 

conditiond entropy estimation, which is to interpolate an estimate of the complete con- 

ditional entropy surface from the features of a set of known conditional entropy vectors. 

This estimate of the complete conditionai entropy surface will then be used to compute an 

estimate of the conditiond entropy of the process it represents. 

W e  d&e a mapping, +, by vector function (I (S, n, z:), 

where Sn = {SI, Sz, . . . , Sm) is the set of ssmple sizes at which PCE measures may be 

computed, Z+ = {1,2,3, . . . ), is the positive integers, and Rf = [O, oo) . 
This mapping dows us to express the r e d t s  of our PCE calculations as a set of (j + 1) 

dimensionai vectors in B+ x xi. Let Tej C be a set of ni j-dimensionai vectors. Let 

Sr E S' be a particdar sample set size in S' for which we will compute partial conditional 

entropy measures on the set T, This irnplïes there can be a m;rucimum of IS'I = rn 

different sets T,, Taking the image of (Sr, n, T, j )  in qb fonns the set of partial conditional 
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entropy vectors computed at sample size Si. We denote this set Rsl,rsijl where, 

The set 'Ws,,r,, contains y PCE measures computed fkom probabiliw distributions 

derived nom sample sets of sïze Sl an the points in T, ,+ W e  wil i  defme a superset, 9&rKj , 
consisting of sets of PCE vectors for all possible sample set sizes Sl E S*. This complete 

set is defined by, 

where T K ~  = rki TGj- 

Our definitions to this point do not require nniqueness among the vectors in 

This allows the elements of TKj to defme multiple PCE vectors in ?&?yKj, each distin- 

guished by a unique sample size. W e  c m  ensure uniqueness among the entropy vectors 

by restricting the components of to those defined by one sample size for each el- 

ement in rKVj- We define to be the unique set of PCE vectors obtained fiom 

the entropy mea~urements pdormed on probability distributions derived fiom the largest 

available sample set for each dement in TKj. We nrite, 

Idealiy, we would simply compute ail conditional entropy measurements nom probabil- 

ity distributions obtained fkom the largest a d a b l e  sample set, but in practice this rnay 

not always be feasible. In performing a study of the real conversational EngliPh speech 
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process, for example, we encountered computationai d.ifEculties that precluded a constant 

sarnpb size. To ailow for the variation in sample set &es in the experimentd work d e  

tailed in chapter 3, sections 3.4 and 3.5 we have derived a generai methodology based on 
A 

the set %,r,+. This set comprises the best available estimate of these components of the 

conditional entropy suface. 

2.4 Interpolating the Entropy Surface 

In this section we WU desaibe the process of interpolating the hown vectors in &vrK,j to 

obtain an approximation of the complete conditional entropy sdace ,  $& j . 
The exact nth order conditional entropy surface is the set of all partial conditional 

entropy vectors computed fiom exact models of the probability distribution of the process. 

This exact conditional entropy sdace ,  Kxj, is defineci by, 

where Sw represents a sample set large enough to field an exact measure of the process 

statistics. 

We approximate this d a c e  by interpolating our best estimate of a subset of the corn- 

plet e surface, %* K i ,  t~ form the set Cx j .  This sudiace consists of the set of all 1 
vectors necessary to compute an approximation of the conditional entropy. 

The process required to interpolate the remaindet of the conditional entropy surface is 

dependent on its dimensionali~ and shape. A variety of techniques are feasible and equdly 

valid. In fact, in the absence of knowledge of the ezact nth order conditional entmpy surface 

we cannot compam the accumcy of one interpulation technique to any other. Iiowever, we 

can define the distance between two d'es derived fiom different interpolation routines, 

say , fi$j, a d  aith a surface distance metric, P(%&jt G), 
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D a t i o n  3 (Sudiace distance metric) The dUtanre bettoeen two surfaces, etxj and 

is defined as 

where II - II is the Euclidean n m .  

For some interpolation function, f ,  we define a mapping fiom the best estimate of K 
JI 

entropy vectors, R,,,r,j, to the set of aIl vectors defining our best approximation of 

the conditional entropy surface, - We d& the mapping, f, by, 

In this way our general interpolation fiuiction maps any set of (j + 1) dimensional PCE 

vectors, $(-), to a set of l ~ j l  (j + 1) dimensional vectors representing an approximation of 

the conditional entropy surface. Hence we may cornpute, f = ?&.,xi. 

The arbitrary mapping desaibed above d o w s  the entropy estimation technique to be 

formulateci in a general manner. In chapter 3, section 3.5 we d l  describe a specific iinear 

prediction algorithm for surfaces where j = 1, and a more complex interpolation routine 

involving a Delaunay triangulation of the set of computd vectors for sutfaces where j = 2. 

2 -4.1 Iuterp olation Efnuency 

The shape of the conditionai entropy sd'e, which is determined by the statistics of the 

source process, affects the accuracy and efficiency of out entropy estimation technique. We 

define a property of smoothness for a conditional entropy surface, 
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Definition 4 (Smoothness ) A condithai  entmpy surface U smooth iffor uector indices 

{z!, d }  E xi, the distance bettoeen adjacent partial conditionai entmpy rneasures is h n d e d  

by smne meusUriel y. rfwe define adjacent vectors as those being sepcrmted by some maximum 

measurie, e, then a mmth conditirnul enhpy surfme is one that satZsfies, 

Obviously, processes demonstrating the propezty of smoothnear in the conditional en- 

tropy surface can be better modeiled than those without this property, since the predicted 

conditional entropy surface wi l l  be closer to the exact entropy s d a c e  for a given number 

of samples, K - 

2.4.2 Computational Efficiency of the Estimation Technique 

To simplifP presentation of the conditional entropy estimate we define one more mapping, 9, 

to separate the scdar conditional entropy measure nom the computed conditional entropy 

vector. Let yb be defined by, 

Our approximation of the conditional entropy meanin, E(X~IX;-'), is simply the 

sum of all the computed and interpolatecl partial conditiond entropy mesures in &,xj- 

Following the definitions leading to the conditionai entropy measure in equation (2.5) ne 
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corn pute, 

to determine an approximation of the conditional entropy based on the interpolated entropy 

surface. This estimate of the nth otder conditional entropy of the process is obtained by 

interpolating our best estimates of a set of K PCE vectors computed over to an estimate 

of the set of all PCE vectors in Xi. The conditional entropy estimate is the sum of ail these 

estimated PCE measures. 

Our approximation to the conditional entropy meastue was computed Etom just K Sam- 

ples of the f d l  conditional entropy sample space. This approadi to entropy estimation 

reduces the computation cost of the caldation by a factor of 6. 
2.5 A Sequential Monte Carlo Procedure for Selecting Sam- 

ple Points in Xi  

In this section we fl o u t h e  an efficient dgorithm for choosing the s-e points T K , ~  C 

This algorithm makes no pnor assumptions about the shape of the entropy surface and 

begïns as an ordinaty Monte Carlo sampling procedure by selecting a sample point with a 

uniform probability distribution over the sample range, xi. We then increase the efficiency 

of the algorithm and the accuracy of out entropy estimation procedure by m o m g  the 

resolution of the sampling algotithm according to the importance of the sampled features to 

the computed entmpy estimate. This is accomplished by weighting the sampling probability 

distribution according to the magnitude of the entropy vectors computed in prior PCE 

calculations. 

This sequentiai Monte Carlo sampling procedure adapts the point selection distribution 

according to the features of the conditional entropy surface. The random nature of the 

algorithm ensures that it wil i  select points fkom the entire range xi. This dlows it to identify 
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the key features of the entropy suface- The adaptive component of the algorithm focuses 

the seIection of PCE measuternents around those regions that have the most signiscant 

impact on the conditionai enttopy measure. Even without a knowledge of the shape 

of the entropy surface, this sequential Monte Carlo seiection algorithm ensures that the 

set of sample points will be concentrated around the m o ~ t  relevant features of the enttopy 

surface. This aigorithm helps to increase the accutacy of the entropy estimation obtained 

fkom a set of K observations. 

We define a sample selection probability distribution as a fimction of the approRmate 

conditional entropy surface computed fkom observations of n 5 K measurements- Let the 

set of n sample points be Te. We represent the intermediate enttopy surface formed 

fkom this set of tc points by 7Pxi = f (+(T% j ) )  and the intermediate conditional entropy 

measure b HK(X,IX;-') = C4 ( P ( @ ~ , X j ) .  Note that we have omitted elements fiom 

the definition of $(-) to simplify this description. Given these intermediate measures we 

can define the pmbability of selecting zi as the (rt + 1) th sample point by p ( ( s  + 1) , z;), 

where g ( y )  is any monotonically nondecreasing function dehed over the range O _< g(y) 5 1 

for the range of inputs O 5 y  5 1. By defining g(y) to have some of the properties of a 

logarithm, for instance, we can ensure good coverage of the range xi, even when the 

conditional entropy surface is highly peaked. 
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2.6 Sarnple S i z e  Normabation 

The best estimate of the conditional entropy d a c e ,  was obtained nom a set of 
h 

vectors, MvTK2, that was defined fkom probabiütp measmes based on a variety of sample 

sizes. This was done in anticipation of computational difRculties arising d k g  the devd- 

opment of the maximum likelibood estimates of the probability distributions used in the 

PCE measures. 

The inclusion of PCE measures h m  sample sets of va,rying sïzes could result in in- 

accuracies in the predicted conditional entropy surface. If a probabüity model, ps(z;) ,  

was computed fiom a sample that was not suf6Ecientiy large to ensure convergence, then 

the associated partial conditional entropy measme, b(S, n, 29, wiIl  not be exact. h-ther- 

more, if the convergence characteristics of the source process depend on the vector z:, then 

for a given sample size some partial conditional entropy measures may be ovetestimated 

whiIe others are underestimated. We must detennine these convergence charactexistics and 

normalize the PCE measutements accordingly. 

Our objective is to determine a scaliug factor for each point b(Sf, n, 2;) E &J,,~, as 
a function of the sample siee, Sf, and the vector, 23,. We wîll then apply this factor to 

predict the PCE measure that would be obtained a t  some maximum feasible sample size, 

Sm. Applying this set of scaliag factors to al l  points in &,TKi WU yield a set of PCE 

vectors normaliaed to a single, maximal, sample size. This set wi l l  be calied &,,,R.rKi. 

It represents a better estimate of the PCE measuces in g,rKJ as it utiliaes the ho- 

convergence characteristics of the process to predict the rneasures that wodd be obtained 

at the largest feasible sample set ske. 

Rom this set we can compute the conditional entropy surface predicted by measures at 

the maximum feasible sample size, 
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and n e  can compute the conditional entropy estirnate accordhg to equation 2.12, 

W e  WU non describe a gmerai algorithm for normalutig the sample set sixes of the 
h 

entropy measures in the set KrKj. FiRt, ne determine the convergence characteristics 

of the source proceas for a set of r sarnple points TF$ E ~ j .  We select these r sample 

points to give a good representation of the features of the entropy surface by applging 

the sequential Monte Carlo point seiection aigorithm discussed in section 2.5. We then 

compute the PCE meanire for each point fiom probability mod& derived for ail sample set 

skes sC = {sF, sF,. . . ,Sm) p Sm. This notation is meant to indicate that the elements 

CS?, S& . . .) do not necessarily correspond to the elements {SI, SI,. . . ,Sm) E S', but 

that the rnrucùnal sample size, Sm, contained in both sets is identical, 

The set of P * lsCl partial conditional entropy rneasures will be represented by the set, 

~Lsc , , , ~ , ,  wh-, 

W e  may fonn a set of approximate conditional entropy d a c e s  representing the con- 

vergence chatacteristics of all points in by interpolating this set of convergence char- 

acteristics These convergence surfaces, as n e  shali refkr to them, are computed with the 

interpolation Eunetion, f , discussed in section 2.4. We write the set of 1 sCl convergence 

surfaces as, 

h 

For each point in 7çr,TKi, we can now compute a normaüzing faetor to project the 

associateci PCE meaPure to the maximal sample size, Sm. Let +(S+, n, z{) E be a 
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vector cornputeci at sample set sige S+ E S* and point zi E YKj-  Let (Su, Sl)  E sC be a 

pair of sample &es bracketùig S+ such that , 

W e  use linear interpolation to predict a convergence surface, Üs+,Rxj for each sample 

set size S+ E S* as follows, 

Findy, we normalize the set of ail PCE vectors by projecting the measure that would 

be obtained at the maximal sample size, Sm. Reverting to the formulation of equation 2.8, 
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We then derive the normaiized conditional entropy surface, 

and compute our best estimate of the nth order conditionai entropy measure of the process, 

This formulation utilizes information obtained fkom real PCE calculatioas and observed 

convergence characteristics to predict the outcome of the entropy caldation as if it were 

computed at S,, the m h a l  sample size. This is a flexible scaling transformation that 

adapts the scaling factor Jepending on the dual factors of sample size and the point of 

interest. In chapter 3, section 3.5 we wi l I  have the opportunity to observe the a e c t  of this 

uormalizing transformation when we apply if to the results of our experimental work on 

the reai speech ptocess. 

In tbis chapter we have defined the mathematicai model for our approach to estimating 

the nth order conditional entropy of a general process. We have presented a formulation 

of this method in a verg general rnanner to d o w  for its application to a variety of source 

processes and entropy measures. The model may be used to describe an entropy estimation 

of any order, n, fiom any number, K, of partial computations of complexity O(I x ~ I ) .  



Chapter 3 

Entropy Rate Estimation of the 

Speech Process 

Euse and speed in  doing a thing do not give the work lasting solidity or exuctness 

of beauty. 

3.1 Introduction 

W e  desire a measure of the entropy rate of the speech process in order to d&e a lower 

bound on the distortion-free compressibiiity of the digital speech signal. This measure can 

serve as a reference, and perhaps a goal, for the designers of distortion-fie and even low- 

distortion speech coders. The entropy rate of the muce process is ais0 tequired to determine 

the statistical redundancy of the digital speech signai. A measure of redundancy is useful 

for determinhg an information-theoretic measure of s d t y  for digitally encrypted source 

processes, as noted by Shannon in [4], and Massey in [5]. W e  wiil require this measure 

for several aspects of the developxnent of a generd mode1 for secure speech communication 
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systems. The technique deveioped in chapter 2 wiU be applied here to determine an entropy 

rate estimate for speech. This measure will subseqyently be used to develop quaiity and 

redundancy modeis in chapter 5, and seCuf ie  modeis in chapters 4 and 6. 

To date, the exact entropy rate of the speech signal remains unknown because no anaiytic 

huietion ha9 been deriveci to exactly characterize the proces. In Appendix J ne summariee 

some of the early studies of analytic models of the speech proceçs. Work in the field of speech 

recognition has produced some representations based on mel-fiequency cepstnim [6] and 

LPC cepstrum [7], and more recent modeis are b d  on human auditory characteristics [a], 
[9]. None of these methods has pet been completely successnù at desaibing the spontaneous 

speech process of interest to the general model [IO]. 

In our prior work [Il], [12], [13] we approached the problem of entropy rate estimation 

by computing the exact conditional entropy of the male speech signai for first, second, 

third, and fourth order modeb of the process. We then fit an exponentid curve of the form 

y = A + ae- to the points using minimum mean squared error as the matching criterion. 

The asymptote of this curve was taken to be out best estimate of the entropy rate- It was 

recognized that the accuracy of this prediction could be greatly increased by the addition 

of higher order measures to our model of the conditional entropy functioa. 

The 64 kbps plaw PCM format process we will define in sections 3.2 and 3.3 to be 

representative of conversational Engbh speech consists of 8 bit samples. This results in a 

signal set cardinality of 1x1 = z8 = 256, which in turn results in a total of 256" states and 

O(256") operations being required to speQfy an nth order probabiity model and process 

an nth order entropy caldation. Given these characteristics, we were previously unabh 

to compute measures higher than fourth order in a reasonable time with the available 

computing resources. 

The technique presented in chapter 2 will allow computation of conditionai entropy 

measures t hat were previously infeasible. We begin the entropy estimation process in section 

3.4 with the development of high order maximum Likelihood estimates for the speech process 
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probability distribution. In section 3.5 we then apply the sequential Monte Carlo entropy 

estimation procedure to determine estimates of the füth and sixth order conditional entropy 

measures of the speech process. In this section we also apply the conventionai direct entropy 

measure to determining the k t ,  second, third, and fourth order conditional entropies of 

the process. 

In section 3.6 we present an extrapolateci measure of the entropy rate and a set of bounds 

on that rate baaed on a non-linear weighted regession of the computed conditional entropy 

estirnates. Our resuits predict an enttopy rate of 22-3 kbps for distortion-fiee transmission 

of speech samples of 64 kbps p-law PCM fidelie. 

The material presented in this chapter is focused on predicting the entropy rate of the 

speech process, but the technique applied to the entropy estimation problem can clearly be 

applied to a wider Patiety ofredundant source mes- In future work, this approach may be 

applied to entropy estimation of a broder class of sources with memory, induding facsirniie 

and video. In addition, it was found that the technique for estimating a measure based on 

a large probabilistic model of a stochastic procesis could be appiied to a wider variety of 

measmement requiremats. In chapter 5, for instance, we found the estimation technique 

to be appropnate to deterrnining a high order Kullback-Leibler information divergence 

measure. In chapter 6 we h d  it necessary to apply the estimation technique to a process 

consisting of compressed and encrypted speech, with significantiy différent resuits. 

3.2 The Speech Process 

The foUowuig is a precise description of the speech data we have used for al1 experimental 

aspects of this research. 

Definition 5 (The speech pmcess) We define the speech process to be the set of al1 

conversathal EngZish speech utterunces collected tmth the fideiity of o telephone banduridth 

channel, quantized into 8 bit p-law PCM sarnples (p = 255) at a sampling rate of 8 -B., 

according to CCITT ~commmdation G. 71 1 [Id]. 
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To derive accurate and relevant modeis of this process we obtained a very large corpora 

of speech data in a database of conversational English speech calleci SWITCHBOARD 

[15]. The details of the recording and data selection procedure for the SWITCHBOARD 

database are disassied in Appendix B. This par t ida r  representation of the speech process 

was chosen because it is the accepted standard for toU qualiv telephone bandwïdth speech 

P61, [ln P811 Bgl- 

The process chosen for this research comists of the most general realization of the speech 

process. It consists of speech samples collected fiom spontaneous conversations in English 

by speakers fiom every major d i k t  region in North America- The speech segments consist 

of male and female speakers of varying dialects and speech patterns having normal telephone 

conversations, complete with interruptions and idiosyncratic speech utterances. 

3.3 Statistical Characteristics of the Speech Process 

The conversational English speech proces defineci above has the following statistical char- 

ac t eristics : 

Imagine if we were to somehow collect the entire history of all telephone conversations 

meeting out definition of the speech process. This collection would have a single mean 

value over the set of aU samples, and similarly would have a constant second, tbird, and 

fourth moment, and so on, if the statistics for these measures were computed over the whole 

of the sample set. These qualities, the reader wiU observe, describe a process exhibithg 

strict-sense stationarity [20]. 

While it is true that the speech process as a whole is strictly stationaty, individual 

segments of the process, for example an individual conversation, can have statistics that 

differ fiom those of the whole process. This is not a contradiction; the stationarity of the 
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speech process is defined in the abstract sense by assuming statistics can be computed at any 

time from an infinite set of process observations, while a short segment of speech yielding 

differiag statistics can be viewed as an infïnitesimally smail portion of the entite process. 

The maximum lîklihood estimation procedure used to derive an estirnate of the statistics 

of the general source process will produce a model that reflets this property ofstationarity- 

It is difüdt to prove the statioaarity of our sample space by an experimental approach, 

however we argue that by observing a large portion of a process known to be stationary, with 

no preconditioning on the type of data collecteci for o u  sample, we caa achieve a subset of 

the speech process that is also effectively stationary. The model obtained fiom this process 

is the worst possible case for effective source coding as it does not recognize any short-term 

tempord characteristics in the source process.. The results of our caldations based on this 

mode1 wil l  therefore form the worst case, or upper bound, on entropy estimation of the 

speech process. 

It is interesthg to consider if we could &eve lower enttopy estimations by adapting 

our modeiling and entropy computation procedures to a set ofspecific features in the speech 

process. For exomple, by subdividing the speech proces into male and female subsets and 

computing the entropy of each n e  cadd achieve more accurate measures of entropy for each 

type of speech. To compute the entropy of the process as a whole, we wodd then compute 

the swn of the two entropies, each weighted according to its relative fiequency in the speech 

process. 

Shannon derived bounds for the entropy of processes consisting of a mix of distinct sub- 

processes in [4]. If we have N distinct sub-processes that comprise the complete process in 

the ratios (pi,pa,. - - ,pN) such that EN,, pi = 1, and each sub-proceas hm an entropp rate 

Hi, then the entropy of the complete process, H, is bounded by, 
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An analogous ciwe would be the use of two types of speech coders, one for male, and 

one for h a l e  speech signals. The data Stream would consist of c o m p r d  data and an 

identifier for the type of ttafEc, male or female. Ektending this analogy, we could obtain 

better and better rates of compression or Iower entropies by subdividing the speech process 

into smaller and smder categories of speech type. In the limit, we would achieve a large 

set of speaker-spdc speech coders or probability modeis and an index of identaers for 

ail possible t r a c  types. This scenario, though iafeasible, represents a best case, or lower 

bound on an estimate of the entropy meammes of the speech process. 

Speech coding algorithms typically take advantage of the varying short-term statistics of 

the speech signal to achieve good rates of compression [2], [21], [la], [22], [23]. In chapter 5 

we will examine a variety of algorithms for inclusion as sampIe points in the general model. 

These algorithms are effective because they adapt to the local characteristics of the speech 

signal, regardless of the expected general averages that may be ttue for the speech process as 

a whole. Theit behaviour is a compromise on the speaker-spdc speech coding suggested 

above. Practical speech coders adapt to the characteristics of the current speaker in order 

to achieve good rates of compression, but do so imped"t1y as they cannot feasibly model 

the exact characteristics of the speaker and so f '  to achieve the true entropy rate of the 

source process. 

We recognize that the entropy estirnates obtained by our research form an upper b o u d  

for the speech process. The reader will note that the predicted entropy rate still compares 

favourably with low-distortion speech coder rates, and is considerably Iowa than the rate 

achieved by distortionlegs coders [24], [25]. It remsiris a topic for further research to deter- 

mine if the tactic of ciassifping by speech types could yield a feasible technique for more 

specific entropy estimation, and to determine if the additional data necessary to index the 

set of speech types would counteract the apparent ad~antage of independent classification. 
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3.3.2 Limited Memory 

Our observations of the speech process hdicate that there is finite rnemoty in the speech 

process. This is a naturd remit of the articulatory mechaniSm that produces the speech 

signal. Signai memory ig most prominent in the production of vowei sounds, for exampIe, but 

even t hese highIy correlateci phenornena are eventudly tetminated by a transition to another 

unit of speech [23], [26], [27]. Merring to the correlation statistics of the conversational 

speech process presentd in figure 3.1 we see that for some index k, random variable Xk+j+i 

is independent of random variable Xj for al1 j > O. These correlation statistics lead to the 

def'inition of the following property in the speech process pmf: 

Ddnition 6 (Speech process pmf) 

3.4 Modelling the Speech Process for Conditional Entropy 

Calculat ions 

In this section we wiiI discuss the detailç of deveioping maximum Likelihood estimates of 

the probability distributions of the speech process required for calcttlation of conditional 

entropy measures. We will identify two Metent types of modelling actiitg, one for an exact 

and direct caldation of a conditional entropy measure, and one fot an indirect caldation 

based on entropy estimation by the Monte Car10 sampüng approach discussed in chapter 

2. For each of these two types of modehg activity we wiii consider the issue of model 

convergence discussed in section 2.2.2. W e  will present data indicating the convergence 

characteristics of the modelling process as a function of the sample set size that will be 

used in section 3.5.5 to normalize the conditional entropy estimates to a constant, maximal, 

sample size. 
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Index 

Figure 3.1: Long Term Correlation Statistics of the Speech Process 

3.4.1 The Effect of Mode1 Order on the Entropy Calcdation 

Our approach to the conditional entropy caldation was determined by complaci~. As 

discussed in section 3.1, our definition of the conversational English speech process resdts 

in a total of 256n states and O(256") operations being required to specify an nth ocder prob- 

ability modei and process an nth order entropy calculation. At this level of computational 

cornplexity and storage requïrements, we found the maximum feasible direct cdculation 

to be of order 4. A typical fourth order conditional entropy calculation required approx- 

Mately 40 hours elapsed time on a SparcStation II computer. A fifth order caldation 

would therefore require approximately 14 months to complete on the same computer. Were 

this feasible, it wodd stiU be necessary to address the problem of the greatly expanded 

state space of 256' elements. 

The fourth order mode1 therefore became the dividing line between caldations that 

could be computed duectly, and those that would require the indirect approach of the 

Monte Carlo method to approximate. 



CHAPTER 3. ENTROPY RATE ESTIMATION OF THE SPEECH PROCESS 32 

3.4.2 Direct vs. Indwct Modehg Approadies 

There were two steps to the procedure for caldating the various entropy measmes required 

for entropy rate prediction. The fVst was to develop the appropriate probabiiistic mode1 for 

the desireci entropy measure, and the second was to  compute a conditional entropy measure 

based upon either the direct formula of equation (2.1) or the indirect Monte Carlo PCE 

formula developed in section 2.2 and summariaed in eqnation (2.17). 

Modelling the ptobability distributions as describeci in section 2.2.2 was found to be a 

chaiienging activity due to the large number of rare events in the process. In the interest 

of efhiency, it was necessary to determine the sampIe size beyond which additional ob- 

servations no longer contributeci significantly to the accuracy of entropy caldation. This 

question amse for both the direct and indirect calculation approaches, but caused the most 

difEculty in the indirect case where convergence was not always achieved with the avadable 

smxlple set sizes. 

3.4.3 Direct Approach Convergence Characteristics 

Models of the probability distributions of the speech process were computed in their entirety 

up to the complexity Limit of fourth order. Presented in figures 3.2,3.3, and 3.4 are views of 

the first, second, and third order probability distributions c o k t e d  for the speech proces. 

The first order probability mass function (pmf) is a complete rendition of the probability 

data, while the second and third order p& in figures 3.3, and 3.4 consist of only a subset 

of the total data defining the probability distributions. These two figures are intendeci to 

present an impression of the shape of the respective p& and not an exhaustive view of the 

complete data structure. It was not possible to present the vast amount of data collected 

for the fourth order probability distribution. 

To determine the convergence of the maximum likelihood estimations of these proba- 

bilistic models, we chose to observe the &ct of increasing sample set size on the resdting 
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Figure 3.2: Fûst Order pmfp(X) 

Figure 3.3: Second Order pmf Excerpts P(x:) 
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Figure 3.4: Third Order pmf Excerpts p(X:) 
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conditional entropy measure. We computed k i t ,  second, third, and fourth order con& 

tionai entropy mezmues for progressively larger samples of speech according to equation 

(2.1). This approach did not measnre the convergence of the probability models directly, 

but rather measured the &ect of the sample set on a meastue derived from the models. 

The tesults of this study, presented in figure 3.5, indicate increasing stabilïty in dl four 

conditional entropy measures with additional sample data. The figure details average condi- 

tional entropy measmes for ail four mode1 orders and the 95% confidence i n t d  computed 

for those means. This data was compiled ftom observations of conditional entropies com- 

puted nom multiple disjoint sample sets. The nwnber of observations available for each 

data point was inversely proportional to the sample set siae except at the maximd sample 

set size where we computed extra conditional entropy measutes in order to obtain good 

confidence interirals. Table 3.1 details the number of observations obtained at each sample 

set size. 

Figure 3.5: Convergence Properties of the Direct Entropy Caldations 

We note that the measures computed for sample sets of l e s  than 400 minutes indicate a 
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Size (minutes) I 

Table 3.1: Observation Count for Confidence Intervals in Figure 3.5 

high Pariance, as would be wpected for small samples, and generally underestimate the real 

conditional entropy. For larger sample sets, the probabiliw of obsemiug rare, but highly 

informative, events is increased and this affects the related conditional entropy measures. 

At a sample size of 2725 minutes of speech data, all four conditionai entropy measures 

indicate a general convergence to a final d u e .  

This simple study pielded valuable information about the speech process- Born figure 

3.5 we determined that we required at least 2725 minutes of conversational speech data 

to dectively represent the speech process for a conditional entropy calnùation. We also 

acquired direct measures of the first, second, third, and fourth order conditional entropy 

measures at  this m h a l  sample size, In section 3.5.1 we will summarize these measure- 

rnents for use in predicting the entropy rate of the speech process. 

3.4.4 Indirect Approach Convergence Characteristics 

It was infeasible to compute H(x,[x;-') for n 2 5 due to the high computational cornplex- 

ity of the caldation. We therefixe employed the indirect Monte Carlo entropy estimation 

approach presented in section 2.2 to estimate the fifth and sixth order conditional entropies. 

No conditional entropy measures wete computed above a sixth order model, but the results 

of our research indicate that these measufes are feasible using the Monte Carlo technique. 

In order to minimize the dimensionality of the r d t i n g  conditional entropy surfaces, 

the PCE measutes, $(S, n, zi), were chosen to have the maximum feasible complexity of 

0(2564). This is the highest complexity meastue that we could compute in a reasonable 
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tirne- We selected tbis maximal feasible measure to minimize the dimensionality of the 

resdting conditionai entropy sutfaces and simplify the interpolation algorithms needed to 

define the apptoximats conditional entropy surfaces. A measute of lower complexity codd 

have been used, but wodd have requUed a greater number of sudace points to be computed 

for each entropy estimate. 

From the defmition in equation (2.9) ne see that an exact nth o t d a  conditional entropy 

surface wiU consist of 256" '̂ vectors. This means that the BRh order conditional entropy 

surface is d&ed by a set of 256 PCE vectors, 

and the sixth order surface is defineci by 256* PCE vectors, 

Our Wth order entropy surface is therefore two dimensional and our sixth order surface is 

three dimensional- 

Were we to extend our estimates to seventh order and higher, we would simply obtain 

higher dimensional sufaces. Conversely, were we able to pedorm computations of com- 

plexity 0(2565)  in reasonable t h e ,  ne could reduce the dimensionality requited for higher 

order estimates and compute the fifth order conditional entropy ditectly. 

The indirect Monte Carlo approach outheci above requires the twin steps of the devd- 

opment of a probabihtic mode1 followed by the calculation of a PCE vector to be repeated 

until there is a sufficient coverage of the vector space to allow accurate interpolation of the 

conditional entropy surface. To measure convergence in the indirect modelling and calcula- 

tion approach we chose to observe the &ect of an increashg sample set size on the results 

obtained by a smali subset of partial conditional entropy measures. 
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FiAh Order Convergence 

To determine the convergence of the mh order entropy approximation we chose a subset of 

ri = 5 points, T, = {48,90, 117, 121,127) E X by the Monte Carlo selection procedure 

detailed in section 2.5. We then computed PCE measures for each at these points at each 

of the sample set sizes in sCt = (540,1081,2162,4324,8648) to obtain a set of convergence 

characteristics 

This set gives 

for the process, 

good coverage of the region contributhg most to the conditional entropy 

estimate and an overview of the convergence characteristics of other measures in that cange. 

The resdts, presented in figure 3.6, show a steady convergence to some final PCE value 

for all measures in 'ïrIVi. However, the convergence was considerably slower than that of 

the direct measurements in figure 3.5 and required a significantly larger sample size. Where 

the direct calculation measures began to converge with 2725 minutes of observeci data, the 

indirect approach required st least 8648 minutes to stabilize the PCE measUres. 

Sixth Order Convergence 

The Monte Carlo selection procedure was also used to determine the convergence charac- 

teristics of the sixth order entropy approximation. A subset of rz = 6 points, TQvz = 

((127,126), (127,120), (lO8,ll8), (76,104), (53,61), (25,26)) E X2 was selected. We then 

computed PCE measures for each of these points at each of the sample set skes in s'= = 

(sC', 17296) to obtaui a set of convergence characteristics for the process, 

The Monte Carlo point selection procedure ensures that these points give an accurate r e p  

resentation of the important features on the conditional entropy surface. When we present 
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Figure 3.6: Convergence of Fifkh Order Partial Conditional Entropy Measurements 

the resulting entropy sutface in section 3.5 we wil i  see that some of these points were taken 

along the spine of a siwcant ridge of entropy contribution while others represent points 

away from this area of concentration, 

The results of these measures, presented in figure 3.7, indicate an even slower conver- 

gence thon the fBh  otder measures and a significant increase in the sample set size reguired 

to obtain convergence. The sixth order measures were found to exhibit an acceptable level 

of stability at a maximum sample size of 17296 minutes of speech data for only a subset of 

the observed points. This convergent subset consists of the measures taken at the points 

{(127,126), (127,120), (108,118), (76,104)). The points observed outside this set do not 

appear to have converged to stable PCE measutes at this sample size. It was not feasible 

to compute PCE measues for sample sizes beyond 17296 minutes in size, so the measures 

obtained at this maximal sample size have had to suffice for out best estimates of the PCE 

measures for points in Tp2,2. 
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Figure 3.7: Convergence of Sixth Order Partial Conditional Enttopy Measurements 

A Note on Rates of Convergence 

The slow convegence of the indirect mesures presented here can be attributed to the 

definition of the PCE rneasure for a sample of size S in equation (2.4). Computing a 

probability meaoure for a PCE caldation consists of filtering a sample set of size S for 

n-tuples prefaced with the pattern of interest, z{ E TG. Since only these tiltered n-tuples 

are admitteci to the probabiüty model, it is necessary to provide greater volumes of speech 

data to the modeilhg procedure in order to capture sutlicient statistics for an accurate 

representation of the process. 

3.4.5 Sample Set S h e  Ranges for Speech Modeis 

The data used for these e x p h e n t s  consisteci of a large corpora supplied on a set of 

CDROMs, each containhg approximateiy 1500 minutes of conversationai speech data. This 

amounted to approxhately 695 MBytes per CDROM, and a total of 7.3 GBytes of data for 

the maximal set used to determine the sixth order convergence characteristics. It was not 
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feasible to store this amount of data on magnetic disk, and as a result, accessing the data 

to build each conditional probabüity mode1 requLed a significant amount of time. As it r a s  

necessary to e a c t  the data nom a set of CDRObdr, each monnted sequentiaiiy, the sixth 

order convergence measures in figure 3-7 required an elapsed time of approximately 16 days 

for ead i  point zf E 'ï-~. The Nth otder measures of figure 3.6 required approximatelg 9 

days for each zl E Ypl J. 

Due to these practical necessities, it was not feasible to use a sample set of the maximai 

size for every rneanue needed to form the conditionai entropy surfaces, 'HS*,~~,, . Smaller 

sample sets were used to calculate PCE vectors for al l  fifth and sixth order measures, except 

for those measures obtained fiom the study of convergence statistics. The sarnple set sizes 

used to generate conditionai eotropy points varieci, depending on extemal conditions such as 

memory utmation, system 104, and system failutes. In dl cases, the sample sets containeci 

an identical core corpora of 2200 minutes of speech and additional data as was necessary to 

obtain accurate entropy measurements. Table 3.2 details the upper and lower sample size 

bounds, S-, and Sm,, for the set of sample sizes S* = {S,, . . . , S-) applied to the 

set of all PCE measurements. As noted above, this does not include sample sizes for points 

computed at maximal sample set sizes in the convergence study. 

Table 3.2: Sample Size Ranges for Indirect Entropy Calcuiations 

Mode1 Order 
FiRh 

3.5 Comput h g  Conditional Entropy Measurements 

In this section we wil l  utilhe the conditional enttopy measures obtained in section 3.4 

to compute conditional entropy estimates of first, second, third, fourth, fifth, and sixth 

order realiaations of the speech proces. We will begin by summarizing the exact and direct 

S- (min.) 
2200 

Sm (min.) 
4500 
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conditional entropy measures obtained in section 3.4.3. We wili then apply the Monte Carlo 

sampling algorithm defiaed in section 2.2 to obtain estimates of the fifth and sixth order 

conditional entropy measmes- To do this we wiIl need to define two interpolation algorithms 

for generating an entropy d a c e  h m  the set of entropy vectors obtained by Monte Carlo 

sampling. The h t  is based on simple hear interpolation in two dimensions, and the 

second, required for surfAces of three dimensions, is derived fiom a Delaunay triangdation 

of the computed vectors. Finaily, in this section we will addtess the issue of normalizing the 

set of PCE measurements to a constant, maximal, sample set she as discussed in section 2.6. 

We will apply the knowledge obt ained about the convergence characteristics of the process 

in section 3-44 to obtain estimates of the conditional entropy d a c e s  that would have 

been obtained a t  the maximum feasible sample size. We wiil use these modifiecl surfaces to 

recompute out best estimate of the fifth and sixth order conditional entropies, 

3.5 -1 Exact Conditional Entropy Cdculations 

In section 3.4.3 we discussed the convergence characteristics of the k t ,  second, third, and 

fourth order conditional entropy meaues as a function of the sample set size. In figure 3.5 

we presented the resdts of that study. We concluded that all four entropy measurernents 

indicated a stdicient level of stability to be considered accurate representations of the 

first four nth order conditional entropy measures. In table 3.3 we present the means and 

confidence intereals of the sets of conditional entropy measues obtained at the maximum 

sample size of 2725 minutes of conversational speech data. 

Table 3.3: Conditional Entropy Means and 95% Contidence Intervals of the Speech Process 
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The interpolation h c t i o n ,  f, was defined in section 2.4 to be an arbitrary mapphg nom a 

set of K PCE vectors to the set of all vectors ddining the conditional entropy surface. 

In this section we will define the specific interpolation techniques used to estimate the 

codïtional entropy surfaces, 7&, and 'fie,xi, nom the best estirnates of the PCE vectors, 
n 

x 5 . ~ ~ I  ,i and & K I Z  , or the sets of best estimates nonnaliaed to a maximal sarnple sise, 

3 1 ~ r n l  v 5 . T ~ ~  ,I and 3Lsw ,6,r~z,Z 
As discussed above, any number of more sophisticated interpolations could be applied 

to the data, but the advaatage of these alternatives can not be quantified without a better 

model of the process under study. We are satisfied with taking the simplest approach to 

predicting the suffixe: a linear interpolation. 

Two Dimensional Interpolation of the Entropy S h c e  

To interpolate the conditional entropy surface when j = 1 requires an interpolation fimction, 

fi, in two dimensions. This function will take the set of computed PCE vectors as input 

and interpolate the set of all surface points, 

The conditional entropy surface is partitioned into the set of regions defined by TK, ,1. 

Let {a, b, c, . . . , y, z }  = T K ~ J  d&e the ordered set of points such that a < b < c < . . . < 
y < z. Then, {A&, Xk, . . . , A&} = X, defines ail points in X between the minimum point, 

a, and the maximum point, z. 

We can interpolate the portion of the conditional entropy d a c e  wîthin any of these 

regions, X, E Xar as follows, 

The interpolation function for the conditional entropy surface between points a and z 
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can then be describecl by the mapping, 

By ensuring that the minimum point is a = O and the maximum point is z = 1x1 we 

can interpolate ail points on the conditional entropy surface. 

Three Dimensional Interpolation of the Entiopg S d c e  

To interpolate the conditional entropy surface when j = 2 requires an interpolation fwiction, 

f3,  in three dimensions. This fiuiction will take as input the set of computed PCE vectors 

for the sixth order sudace and interpolate the set of ail points, 

Interpolating in three dimensions is not as simple as the two dimensional lhear inter- 

polation procedure we applied to the Mth order estimate, We approach the problem by 

defining a set of triangular planes in B+ x X2 to approximate the conditional entropy sur- 

face. If we define the vertices of these planes to be the set of computed PCE vectors, then 

the swface is defined by evaluating the planar equations at all points in x'. 
To form the set of planes in R+ x X2 we begin by triangulating the set of points, TK2 E 

X2 with an unconstrained Delaunay triangulation aigorithm [28], [!BI. This procedure yields 

a unique set of T triangles, 7 in the plane x*. We define the set of triangles 7 in terms of 

their vertices, 

For each triangle A E 7 we may fom a projection in R+ x XZ by talong the image of 
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each vertex in +(O). This operation forms the mapping, 

Note that we have omitted elements nom the dehition of +(-) to simpw this description. 

We define the set of surCace planes by, 

and note that the vertices of the triangular planes in R+ x X2  are completely specified by 

the PCE vectors 4(6, 'ïKsVz). 

We define the three dimensional interpotation procedure as follows: The set T r e p  

resents a unique and disjoint set of triangutar planes in X2 that is generated from the 

Delaunay triangulation of f K,,2. If ne ensure that the corner points of the plane x*, 
{(O, O), (0, IXI),  (IXI, O), ([XI, IXI)), are included in the set TK2,21 then it can be shown that 

aU points in X2 are inside a triangle E T 7301. Hence, the set $(7), which is formed fiom 

the projection of ail triangles in 7 onto R+ x X2 forms a unique surtace that is defined for 

al1 points in X2. An illustration of this process is presented in figure 3.8. 

We define the three dimensional interpolation function, fa, as the projection of all points 

x: E X2 ont0 the surface defined by +(7) . If we represent the projection of a point a: E X* 

ont0 the surface by $(T(z:))  then, 

This procedure conesponds to a lineor interpolation in three dimensions. 
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Figure 3.8: Example of Forrning a Set of Trianguiar Sdace Planes 

3.5.3 Symmetry in the Speech Process 

In developing the probability distributions of the speech process indicated in figures 3.2, 

3.3 and 3.4 we noted strong evidence of symmetry as a h c t i o n  of the vector 2:. This 

same property of spmmetry was found in sets of k t ,  second, third, and fourth order PCE 

vectors. For example, we computed the complete h o  dimensional conditionai entropy 

surfaces, Xi,xi, 7Ca,xis 313,x1, 7 C l t x 1  fiom a 1300 minute sample of the speech process. The 

results, presented in figure 3.9, indicate a strong symmetry in zl and a dose correspondence 

to the first order probability distribution of figure 3.2. This propertg of symmetry r a s  

&O found to be present in the three duneasional conditional entropy surface developed to 

approlamate the sixth order conditional entropy measiue. The three dimensional surface, 

GVx2, was found to rcsemble the second order probability distribution of figure 3.3. 

We may take advantage of this property of the speech process to increase the accuracy 

of our entropy prediction method. We avoid performuig caldations made redundant by 

the property of symmetry by rdecting aIl two and three dimensional PCE vectors across 
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the line of sywnetry. 

For two dimensionai PCE vectors we pdorm the mapping, 

and for thtee dimensional PCE vectors we pdorm the mapping, 

These simple transformations increase the &ciency of our calcuIations by etfectively dou- 

bling the number of PCE vecton a d a b l e  to predict the conditional entropy surface of the 

speech process- 

Figure 3.9: Symmetry in the Conditional Entropy Surfaces 
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3.5.4 Resdts of Entropy Estimation Measmes 

Verification of the Indirect Appmach 

Before presenting the resdts obtained for the Hth and sUth order conditionai entropies, 

we wish to demonstrate the accuracy and efiiuency of the indllect Monte Car10 approach 

by using it to calculate a known entropy value. 

A set of 51 unique third order PCE vectors, was computed fiom a 1500 minute 

sample of the speech process. Due to the symmetry inherent in the source process, we could 

reflect these measutes across the Iine of sgrmmetry to fonn a set of 102 PCE vectors describ- 

h g  the entropy surface, 'Hq,rlo2,, - The PCE vectors were then interpolateci according to the 

interpolation function, fi, describecl in section 3.5.2 to form the approximate conditional 

entropy surface, 

%,xi = fs(W,r,02,, ) 

This surface is presented in figure 3.10. W e  then computed an approximation of the fourth 

order conditionai entropy fiom this surface, 

The result of this calculation was a conditional entropy estimate of 3.405 bits/sample. 

Comparing this approximate meapure to the exact fourth order conditional measure of 

3.751 bits/sample presented in table 3.3 reveals a close correspondence between the direct 

and indirect approaches. Assuming the direct resdt to be accurate, we see that the indirect 

approach incurs an error of 9.22 % at an expense! of only 2 = 19.9% of the work required 

for the direct calculation. 

This cornparison was obtained on the bapis of a sample siae which is shorn in figure 3.5 

to be iess than that required for convergence of the dùect measure. Were we to normake the 

set of PCE vectors, to a manmd sample sioe according to the algorithm described 
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1 O=' 

Figure 3.10: Approximate Fourth Order Partial Conditional Entropy Sudiace 

in section 2.6 we would obtaïn a more accurate approximation of the fourth order measuse. 

We could &O compare the predicted fourth order measure to a measure computed directly 

from a sample set of similar size- An exact fourth order conditional entropy was computed 

to be 3.324 bits/sample for the sample set of 1300 minutes used to develop the results of 

figure 3.9. This sirnilady sized sample set yidds an error estimate of only 2.44 %. We 

conclude that the indirect approach can achieve an accurate xneasure of the conditional 

entropy when a direct calculation is not feasible. 

Raw Fifth Order Conditional Entropy Calculation 

Having verified the feasibility of entropy estimation fiom a Monte Car10 sampling approach 

with the fourth order measure, we applied the same technique to develop a set of PCE 

vectors, ' H p  ,5,T . In total, 41 unique fourth order PCE vectors were computed over a 

range of sample sizes, S*. Due to the symmetry in the source process, this tesulted in a 

total of Kr = 82 PCE vectors to define the sudace. Due to computational difficulties, the 
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elements of 'Ws*,r,rK,,L were computed at varying sample s k s  in S* such that, 

Selecting the set of measurements obtained at the maximum avaiiable sample set size 

for each element in ' ~ K ~ J ,  we f o d  out best estimate of the raw PCE data, 25,rKi,1 as 

described by equation 2.8. 

The fdth otder s d a c e  d&ed by %j,rKL,, had the same dimensionaii~ as the fourth 

order sdace  described above, dowing us to proceed in the same manner to compute the 

fifth order conditionai entropy estimate. The PCE vectors were interpolateci according to 

the interpolation h c t i o n ,  fi, to form the approximate conditional entropy sutface, 

This fifth order conditional surf'kce approximation is presented in figure 3.11. W e  then 

computed an approximation of the î&h order conditional entropy from this surface, 

The result ofthis caldation was a fifth order conditionai entropy estimate of 2.994 bits/sample. 

This estimate was computed fiom the non-ideal set of PCE vectors computed at varying 

sample sizes. In section 3.5.5 we will compute a better estimate by first normaliaing the set 

of PCE vectors to a constant, maximal, sample size. 

Raw Sixth Orde. Conditional Entropy Calculatioo 

To compute an estimate of the sixth order conditional entropy we producecl a set of 101 

unique fourth order PCE vectors from samples sizes in the set S*. AppIying the property 
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Figure 3-11: Approlrimate PiRh Order Partial Conditional Entropy Surface 

of symmetry described for thres dimensional vectors in section 3.5.3 yielded at total of 

Kz = 202 PCE vecton, Xs* ,6 J~,, , sirith which to predict the sixth order conditional 

entropy surface. Like the fifth order PCE vectors, this set of measures was computed at 

varying sample sizes such that, 

Selecting the set of measurements obtained at the maximum available sample set size 
A 

for each element in T K ~ , ~ ,  we formed our best estimate of the tan PCE data, %,r,,, as 

described by equation 2.8. 

The sixth order surface deftied by &,J içi ,2 b three dimensional. W e  t herefixe proceeded 

by interpolating an estimate of the conditional entropy surface with the three dimensional 

interpolation function, f3. We computed the sixth order conditional entropy surface ap- 
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proxhation as, 

%,s = f 3  (cvrK2 ,2 ) 

Presented in figure 3.12 is the Delaunay tnangulation of the points 'ï~,,~ used to interpolate 

the approximate conditional entropy surface- 

Figure 3.12: Delaunay 'Pnangulation of PCE Points in T K ~ , ~  
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The resulting approximate conditional entropy d a c e  is detailed in figures 3-14, and 

3.16. These figures indicate the shape of the surface and indude a set of contours on the 

surface at Ievels loi, i = 2,3, . . .6. Figure 3.16 aiso presents a measnre of the conditional 

entropy volume contained in each of the contours displayed on the entropy surface. We 

computed an approximation of the sixth order conditionai entropy fiom this surface, 

The result of this caldation was a sixth order conditional entropy estimate of 2.864 

bits/sample. Again we note that this estimate was computed trom the non-ideai set of 

PCE vectors computed at vatping sample sizes. In section 3.5.5 we will compute a better 

estimate fiom a set of PCE vectors normalized to a constant, maximal, sample size. 

3.5.5 Normalkation to the Maximal Sample Size 

The results of the direct entropy calculations presented in figure 3.5 were noted to converge 

to the final values noted in table 3.3 at a sample size of 2725 minutes of speech- Conse- 

quently, these results can be applied without modification to our estirnate of the entropy 

rate of the speech process. 

Our observations of the convergence characteristics of the f&h and sixth order calcu- 

lations iodicate that the results obtained by measurements on the sampie sizes outlined in 

table 3.2 are not exact. More accurate measures can be obtained by normaiizing the mea- 

sures in the set 3LS.,RfKd to a constant, m e a l ,  sample set ske foiloning the technique 

outlined in section 2.6. This procedure allows us to predict the entropy rneuure that would 

be obtained if the cdculation had been performed on the maximal sample set. 
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The set of nfth order PCE vectors ')ls=,5,rK1,i, compiled fkom sample sets of sizes over 

the range indicated in table 3.2, was normaüsed to a maximai semple size of S,, = 8648 

minutes - 
This was accomplished by appIying the standard 2 dimensional interpolation tech- 

nique desaibed in section 3.5.2 to the convergence data in figure 3.6 to produce a set 

of convergence surfaces, gsis.,5,x1. A scaiing faetor was then computed for each point 
A 

$(SI 5121) E %P,~ .TK~ to form the set Wsm1 3.r , ,  as described by equation (2.15). 

The interpolation function was then applied to this normalized set to obtain out best 

estimate of the fifth order conditional entropy. The conditional entropy d a c e  pIotted in 

figure 3.13 was obtained firom, 

and the fdth order conditiond entropy estimate of 3.262 bits/sample was computed fiom 

the equation, 

The &ects of the normalization procedure may be observeci by comparing the original 

fiRh order d a c e  in figure 3.11 to the normaiized surface in figure 3.13. We note a slight 

reduction in the peakedness of the surface and a general increase in the magnitude of the 

most significant PCE vectors near the mean of the process, These modifications were due 

to the observed convergence characteristics of the more probable vectors and had the most 

significant impact on the entropy estimate. W e  also note a reduction in the variance of 

some PCE vectors, partidarlg in the regions of lower probability. This smoothing effect is 

an indication of the nomabation process. 
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Figure 3.13: Norrnaliaed Fifth Order Conditional Entropy Surface 

Sixth Order Surface N o r d a t i o a  

Similady, the set of sixth order PCE vecton, ?LS*,~T~K2,1i was normalized to a maximal 

sample size of Sm = 17296 minutes. This was accomplished by applging the standard 3 di- 

mensionai interpolation technique presented in section 3.5.2 to produce a set of convergence 

surfaces, 6rom the convergence measures presentd io figure 3.7. A scdiag faetor 
L- 

was then computed for each point @(SI 6,23 E xs*,6,~K2 to form the set %,,,z,qr,,2 as 

described by equation (2.15). 

The interpolation fuoetion was then appüed to obtain a best esthate of the sixth order 

condit ional entropy. The conditional entropy surface was obtained fiom 

and the sixth order conditional entropy estimate of 3.121 bits/sample was computed fiom 



CHAPTER 3. ENTROPY RATE E S T . T I 0 N  OF THE! SPEECH PROCESS 56 

the equation, 

Figures 3.15, and 3.17, detail the shape of the normahed entropy sudaice- Figure 3.15 

presents a three dimensionai image of the d a c e  with a set of contours at levels loi, i = 

2,3, . . . ,6. Figure 3.17 details the volume of conditional entropy contained within each of 

the contours on the entropy surface. We note a smoother and more continuous form to 

the surface that results fiom scaling the set of PCE measures to a single sample set size. 

Comparing the volumes contained in contours of the unscaied conditional entiopy surface in 

figure 3 -16 to the volumes in the scded conditional entropy suff ixe of figure 3 -17, we see how 

the nomabation routine reshapes the surface, In this case, the central peak of the entropy 

surface has been decreased, whiIe the measrites in the diagonal region surrounding the peak 

have been increased- These changes are consistent with the convergence char acteristics 

observed in figure 3.7. 

S u m m a a y  of Best Conditional Entropy Estimates 
In table 3.4 we surnmarbe the best estimates obtained for conditional entropy measures fiom 

fist to sixth order. This table hdudes observations on the convergence characteristics of 

the entropy measures and a measure of the fiaction of the complete O(256") caldation 

computed to obtain each entropy estimate. 

Table 3.4: Summary of Best Conditional Entropy Estimates 

Order 
H(x) 

K(X21Xl) 
H(X3iX:) 
H ( 4 1 X ; )  
H(X5IX:) 
H(XalX:) 

Measure 
5.885 
4.613 
4.287 
3.751 
3.262 
3.121 

Type 
Direct 
Direct 
Direct 
Direct 

Iaditect 
Indirect 

Computed 
100% 
100% 
100% 
100% 
16.0% 
0.15% 

Convergence 
Good 
Good 
Good 
Good 
Good 
Fair 
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Figure 3.14: Approximate Sixth Otder Conditional Entropy Surface with Contour 
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Figure 3.15: Normalized Sixth Order Conditional Entropy Suditce with Contour 
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Contour volumes (bits) : 

Figure 3.16: Approximate Sixth Order Conditional Entropy Contour 

Contour volumes (bits): 

Figure 3.17: Normalized Sixth Order Conditional Entropy Contour 
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3.6 Entropy Rate Estimation 

We have computed the iirst to fourth order conditional entropy of the speech process exactly, 

and have obtained estimates of the fifth and sixth otder conditionai entropies. A summary 

of our results is presented in table 3.4. In Appendix A we present a proof indicating 

that the entropy rate is equivalent to the (k + 1)th order conditional entropy for processes 

that can be M y  specified with a k dimensional probability distribution. This proof is an 

extension of the general result of the Shannon-MchdiIlan-Breiman theorem [l], that reduces 

the computationai requirement for an entropy rate cdda t ion  to a tinite (k + 1)th order 

conditional entropy caldation. 

To determine the maximum order, k, required to speciff the probabilistic model of 

the speech process, we tefer to the long term correlation statistics of the speech process 

presented in figure 3 .l. Recalling that these statistics were computed for the very broad 

range of English speakers allowed by our definition of the general speech process, we are 

not surprised to observe that the Wl specification of the speech process pmf would require 

a model of at least 40th order. ln Appendix E we have tabulated a consemative estimate 

of the number of operations required for the h t  six conditional entropy measures to be on 

the order of 1.2 x lOI4 integer and 1.8 x 1013 floating point operations. Further conditional 

entropy calculations are infeasible with the available computing tesoumes, and a 40th order 

cdulation is clearly beyond any reasonable expectations. 

To predict the entropy rate of the speech process we will use the set of computed 

conditional entropy measures to estimate a model of the conditional entropy as a function 

of model order. Our data consists of a set of measwements fiom kit  to sixth order in which 

we have varging degrees of confidence. This situation leads to the choice of a model fitting 

method that weights the error residual of each measurement according to its expected 

relative accuracy. We have chosen a weighted regression anaiysis to fit a model to the 

computed conditional entropy measurements. 



CHAPTER 3. ENTROPY RATE ESTlMATION OF TBE SPEECH PROCESS 61 

In the foilowing sections we will propose a model of the conditional entropy function to 

be fitted to the known data points. We wiU then q u a t e  the reiative weights to be assigned 

to the error cesiduab of the data points in tenns of their confidence intervals. Findy, we 

wïl l  use the resuits of the regtession anaipis to define a model of the conditional entropy 

function and a 95% inference region around the model. Ekom this model ne wi l i  predict the 

entropy rate and a set of 95% confidence intervals for the speech process. 

3.6.1 Defining the Conditional Entropy Mode1 

We can apply knowledge of the theoretical behaviour of the conditional entropy measures to 

determine a set of constraints for the function, y(n), used to modei the conditional entropy 

as a finction of model order. We first observe that additional information can only decrease 

the uncertainQ about the source process. It can be shown that the sequence of conditional 

entropy points, {H(X), H(X21Xi), H(Xs[X:),  . . . ) is positive and non-imeasing since, 

We &O note that the correlation fiinction of the speech process plotted in figure 3.1 

indicates generally decreashg correlation as a function of the model order, n. Since the 

dependence of the tandom variables in the speech process demonstrably decreases with 

increasing separation, we can expect an accompanying decrease in the information obtained 

by additional observations. This wi i l  resdt in a grdual reduction in the rate of change of 

the conditionai entropy function with increasing modei order. 

To summarize, we require the followhg three characteristics in the conditiond entropy 
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model, 

These three constraints define the known characteristics of a model for the conditional 

entropy function. In the absence of additional information about the conditional entropy 

function we apply the principle of Occam's razor ' and select the simple& fuaction irhich 

satisfies the constraints and appears to fit the data points. W e  plotted our best estimates 

of the conditional entropy as a funetion of model order in figare 3.18 in order to assess 

the generd shape of the function. These points indicate a pattern similar to  a simple 

exponential decay, suggesting the choice of a %parameter exponential m e  of the form 

y(n) = A + Be-* to model the conditional entropy hinetion. This m e  satisfis the 

constraints of equations (3.6), (3.7), and (3.8) for dl {A, @, a) > O. A curve of this form 

wiU necessitate the use of a non-linear regression procedure to fit the model to the known 

data points. 

3.6.2 Confidence Intervais for Weighted Regression Andysis 

We wiU use the 95% confidence intervals of each conditional entropy measuement to de- 

termine the weight that will be assignecl to each =or residud in the regression analysis. 

Specificdy, we will assign a relative weightiag for the error residual of each data point in 

proportion to the inverse of the confidence interval computed for that model order. 

'Wil~iam of Ockham, ao influentid 14th ceatury philosopher proposed the idea that "plurality should 
aot be as8~med without necessity" in his controversial treatises on papal power and civil sovdgnty. This 
priacipie came to be known as Occam's razor. 



GHAPTER 3- ENTROPY RATE ESTIMATION OF THTE SPEECa PROCESS 

Figure 3.18: Conditional Entropy Estimates and a Simple Exponential Mode1 

Direct Measures 

We computed 95% confidence intervais for the results of the independent direct conditional 

entropy calculations as swnmarized in table 3.3. These measurements were al1 computed 

at the maximum sample size of 2725 minutes, and comprise out best estimates of the four 

direct conditional entropy measures. 

Indirect Measures 

In deriving the estimates of the f&h and sixth order conditionai entropy meixiures we a p  

plied a sampling strategy, and then interpolated the sarnpled points to achieve an entropy 

estimate. Ta compensate for variations in the samp1ed data measures arising fkom compu- 

tational dïfEculties, we applied a normaiization routine to  the estimateci entropy measures. 

The result of this procedure is a pair of measures for which it is very difficult to quanti& an 

error estimate. In this section we wili determine a set of teasonable bounds for the results 

to serve as 95% confidence intervals. 
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W e  note that the interpolation routines for both fiRh and sixth otder surfaces are un- 

biased for large sets of PCE measures: they can be expected to  overestimate the same 

number of surface points that they underestimate. W e  wiiL assume then, that the inter- 

polation process is not the dominant contributor to error in the entropy estimates. It has 

been noted, however, that rnodelling the speech process was difficult and that compromises 

were required which r d t e d  in non-ideal models of varping sample siaes. We beiieve the 

majority of the error in entropy estimation occurred due to the modelling process. 

As a conservative Iowa bound on the fiRh and sixth order conditional entropy estimates, 

we select the measures obtained fiom uaoormalized PCE vectors in sections 3.5.4 and 3.5.4, 

respectively. The models of the speech process used to derive these estimates did not all 

converge to stable measures. The choice of the unnormalized measures as a Iower bound is 

supported by out analpis of the convergence characteristics of the process, which indicates 

that these meosures underestimate the conditional entropy of the speech process. Accuate 

measures Prrill therefore be at least as large as the raw resuits. 

We will assume the upper bound on the fXth and sixth order conditional entropy is aiso 

largely determinecl by modelling errors. To simplify the regession analysis we WU define 

the upper bounds such that we have a symmetric confidence interval around the computed 

conditional entropy measwes. The Wth and sixth order conditional entropy estimates and 

the associated 95% confidence intemals to be used in the regression anaiysis are summarized 

in table 3.5. 

3.6.3 Non-linear Weigbted Regression Analysis 

To fit the exponential model to our experimental data we applied a non-linear weighted re- 

gression analgsis with a least squares error critexion. The tegression analysis was perfomed 

on the set of all conditional enttopy measures computed at the maximum available sample 

sizes, and error residusls were weighted according to the estimated 95% confidence intervals 

on the average of the experimentai measures. 
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Our best estimates of the f i s t  to sixth order conditional entropies, and the associateci 

estimated confidence intervaIs are sumrnarized in table 3.5. We note that the confidence 

intervals on the direct measures are ail appmximately -08 bits, whiIe the the f%h and sixth 

order confidence i n t d  are approximately 0.26 bits. This allows us to  assign an error 

weighting criteria in the ratio 3.25:l to the non-linear weighted regression analysis of the 

results. Using these relative weights we applied a weighted l e s t  squares analysis to the 

data points to estimate the parameters of the non-linear conditional entropy model. The 

reçulting model and its associatecl 95% inference regions ïs presented in figure 3.19. 

The regression analysis yielded the model desaibed by the equation y(n) = 2.79 + 
3 . 0 3 e - ~ - ~ ~ ~ ~  - If O w choice of mode1 is accurate, then the tegression anaiysis has provided a 

means to predict the nth order conditional entropy with some degree of confidence- 

Table 3.5: Si immary  of  Means, 95% Confidence InterPals, Observations, and Relative 

Order 
I 

Weights of Computed Entropy Meastues 

3.6.4 Entropy Rate Predidion Results 

Best Estimate 
5.885 & 0.08 

As discussed in Appendix A, the entropy rate of the speech process can be estimated by 

computing a high order conditionai entropy mesure. Using our model of the conditional 

No. Points 
4 

entropy function, y (n) , we compute 

Rd. WGght 
3.25 

Thus, the f h t  parameter of o u  model represents out best estimate of the entropy rate 
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Figure 3.19: Regressed Non-linear Model and 95% Inference Region 

of the speech process, and an analysis of the inference regions aronnd the model yields 95% 

confidence intemais. These results are summarized in table 3.6. Our analysis predicts an 

entropy rate of 22.3 kbps for conversational English speech of telephone bandwidth and 

64 kbps p-law PCM fidelie. Our inference regions ailow a fairly generous range of f 7 

kbps around this estirnate to account for the sources of error encountered in the modelling 

process. 

We note that these results have been obtained fkom a speech process dehed to be 

stationary. As discussed in section 3.3.1, we wodd expect this entropy rate to represent 

the upper Mt of the entropy rate of the speedi process because our modelling approach 

could not adapt to the short-term temporal statistics of the source. Were we to foilow out 

suggestion of categorizing the speech process by speaker and computing a weighted average 

of speaker-spedic entropy measlues we could obtain a lower limit on the entropy rate. 
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Table 3.6: The Entropy Rate of the Speech Process and Bounds on the 95% Confidence 

Bonnds 
hdeasure (bits) 

3.7 S u f n r n a r y  and Observations on the Entropy Calculations 

We have presented a method of estimating high order entropy meaSUTes for any type of 

source process. This method can duce the high computational expense of an entropy 

calculation to a feasible level by using an interpolation fiinction to estimate portions of 

the full caldation. The method has an additional advantage in that it allows an entropy 

calculation to be partitioned in time and space across multiple processing unïts. Findy, 

it d o w s  successive refinements in the accuracy of the entropy estimate with the addition 

of more sample points, In the limit the method can provide an exact measuzement of the 

source process ent~opy. 

A number of interesthg details were reveaied in applying this techaique to the speech 

process. Fust, we noted that this technique w a  most &ec=tive for processes exhibithg a 

high degree of memory. The entropy surface of these processes is highly peaked and can be 

accurately modelied by the Monte Carlo point selection procedure of equation (2.13). By 

concentrat h g  the point selection ptobability distribution in the peaked region we can obt ain 

a high cesolution sampling of the vectors contributhg most to the conditional entropy of 

the process. 

The entropy surface of the speech process was suitable to efnaent sampling and inter- 

polation by the Monte Carlo selection procedure. We found the surface to be relatively 

smooth and highly peaLed around the mean of the process. Both characteristics contribute 

to a good estimate of the entropy rate fiom a relatively smaii number of PCE measures. 

A limitation of this technique was found in m o d e h g  processes that do not possess 

Lower 
1.91 

Predicted 
2.79 

Upper 
3 -70 
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a smooth entropy surface, as defined in section 2-4.1, To obtain an accurate measure of 

such a process requires a large number of PCE vectors to be computed in order to identifg 

the relevant features of the enttopy surface. Our technique has no particular advantage in 

m o d e h g  processes of this type. 

In general, we found characterizhg the shape of the entropy d a c e  to be a eritical 

step in efficient entropy estimation. If we could predict the general shape of the entropy 

surface of a process, say a facsimile or video source, ne couid design a better a pnori  

sampling distribution and adiieve an aceurate and &&nt entropy estimate. A better 

understanding of these surfaces would aiso result in more accurate interpolation routines 

and consequently, better entropy measures. 

In developiag estimates of the probability distributions of the speech process we encoun- 

tered a variety of diffidties due to the large volume of speech data being processed and 

the long execution times required of o u  experiments. These problems preduded a constant 

and maximal sample size for the speech process under study. The foilowing are a few areas 

in ou. experimental work where we noted the opportunity for improvements that wouid 

enhance the accuracy and confidence interval of the predicted entropy rate, 

1. More accurate rnezsures of the conditional entropy of the speech process codd be 

obtained by computing dl PCE vectors fiom a single large sampk set. A larger 

sampb set would improve the convergence of PCE vectors outside the more probable 

regions, and a constant sarnple set size would eliminate the need to normalize the 

PCE measures with the set of computed convergence surfaces. This procedure would 

require the use of larget, and more relîable, computing facilities than were a d a b l e  

for out initial prediction. 

2. Were this not feasible, we codd s t U  inaease the accwacy of our results by improving 

the resolution of the set of convergence surfaces. This codd be achieved by expanding 

the set of convergence measures to include a larger number of points over the calcula- 
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tion space. This process is feasible with the available computing resontces and simply 

requires the expenditure of a greater amount of time to collect the convergence data. 

3. The accuracy of the entropy measure codd also be improved by including more PCE 

vectors on the entropy dace. A 1arge.r number of PCE vectors would directly im- 

prove accuracy by providing a higher resolution set of measures for interpolating the 

complete entropy surface. 

This entropy estimation technique can be used to develop hîgh order entropy measures 

for a wide varie* of source processes, particularly those with a strong property of memory. 

It is hoped that the techniques presented here can find wider use in entropy rate estimation 

for a broder class of interesthg source processes. 



Chapter 4 

Security Models for Secure Speech 

Systems 

We dance mund in a ring and suppose, 

But the Secret sits in the middle and knouls. 

Robert Fnost - The Semt Sits 

4.1 Introduction to Cryptology 

W e  will begin wïth an introduction to cryptology that d o w s  us to describe the systems 

commonly used to obtain secure communicatioas, and define the relevant parameters for 

models of ctyptographic security. 

The science of crpptology can be divided into two areas of activity: cryptography and 

cryptanaiysis. The cryptographer seeks to design systems capable of ensuring the secrecy or 

authenticity of messages. The cryptanalyst seeks to detemiine the content of the encoded 

messages or to deceive a valid receiver through impersonation or other eaudulent activities. 

The cryptographer always employs a secret key to control the enciphering process. In 
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some cryptographic applications, those known as symmetric key dgorithms, this secret key 

must be exchangeci by a secure channei with the authohed receiver ptior to initiating 

secret communications. In aqmmetric key algorithms, there is no requkement for the 

prior exchange of secret information. The receiver generates a unique pair of keys, one for 

encryption and the other for decryption, and makes the encrypting key generally available 

to anyone who wishes to send him a secret message. 

4.1.1 Symmetric Key Cryptography 

There are two fundamental forms of symmetric key cryptosystems, block ciphers and stream 

ciphers. Both are capable of encrypting data at rates on the order of 100 Mbps or more. In 

North America, cryptographic research and development has concentrateci on block ciphers, 

while in Europe fottune has teaded to faveur the stream cipher. The two cryptosystems 

transform the message into ciphertext in significantly different ways, but can provide equiv- 

dent secufity. It is usudy just a ptefaence for one set of system characteristics that 

determines the choice of cryptosystems. We will describe the two types and discuss their 

ciifferences in the next two sections. 

Block Ciphers 

The fust sophisticated treatment of block ciphers in the open literature was &en by Shan- 

non in [4]. Later work by Feistel in [31] and Feistel, Notz and Smith in [32] helped to 

define the curent form of bbck cipher designs. A block cipher can be desaibed as a set of 

transformations ftom a message space to a cipher space. Each transformation corresponds 

to the use of a p a r t i c h  key. In order for each message ta be retrievable, we must have 

an invertible transform fkom message space to cipher space. If each message block of m 

characters is mapped into a ciphertext block of an identical m characters, we would have 

a total of bm! possible reversible transformations, where b is the size of the key alphabet. 

Most modern ciphers operate in Z2 and hence have a potential key space of 2"!. 
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We can view the block cipher we have d&ed as a deviee for substituting a ciphetfext 

block for each possible block of plaintext input. The choice of output blo& is dictoted 

by the particular key used for that enciphment. If this device were built to handle a 

five-digit binary input, for example, we would be able to encipher an alphabet of 25 = 32 

characters. The number of possible co~ec t ion  patterns between inputs and outputs would 

then be 32!. m e  this may seem a very large number, there wodd still be oniy 32 input- 

output matchings for e d  icey and the üpher would be &=able to a fiequency-analysis 

attack or an exhaustive search. What we requite is to have a message space that îs so 

large it is irnpractical to mount such an attack. Current technology would be incapable 

of an exhaustive search if block &es were on the order of 128 bits. Unfortunately, such a 

substitution device would require 212' inputs and outpub, a technological impossibili~ by 

today's standards, Given this constraint, it is necessary to find a way to use the aoailable 

technology to acbieve at least a signiIicant subset of ali possible transformations. 

Another possibility would be to permute the message bits according to a predetenniaed 

routing scheme. Due to their simplicity, these devices are feasible to build for large sets 

of inputs. Unfortunately, that same simplicity makes these devices highly vuLnerable to 

chosen-plaintext analysis. Any permutation device designed for n inputs can be andysed 

in (n - 1) steps, so clearly these devices will not sufnce for a agptographic algorithm. 

Shannon reco@ed a solution ta the problem in the concept of a müing trarisfonncrtion 

[4]. Such a t rdo rma t ion  can be used to map a relatively high probability region, R, of 

a probability space, Q, into another region in Q. If applied a large number of times the 

transformation will tesult in the initial region, R, becoming udoffnly mixed tbroughout 

the entite space. Stictly speaking, a mixing ttansformation can only occur over a space 

with an infinite number of points, but the general process can be applied in a cryptographie 

application to redistribute a region of high probability messages over the entire cipherspace. 

Good mixing transf'ormations are ones in which a srnail variation in any of the inputs 

results in a large change in the output. 1t happens that a permutation followed by a 
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substitution fonns an effective mixing transformation. Figure 4.1 is an example of a 15 bit 

block cipher with 5 rounds of a substitution-permutation transformation. The application 

of a large number of successive rounds of this ttansformation achieves a verg complicated 

mixing of the data, as is evidenced by the example. A fiuther advantage of this arrangement 

is that it dows the use of small, manageable substitution boxes and protects them fiom 

Çequency andysis within the overail structure of the network. The example in figure 4.1 

has no key and so would not suBice in a practical application, Real systems employ a secret 

key that in some maMer modifies the data or controls the permutation or substitution 

Figure 4.1: Substitution-Permutation Network 

This p a r t i d a r  combination of operations is dective because it applies two principles 

that Shannon found to be important to the encryption of data. Substitution ad& a charac- 

teristic he called confwion to the ciphertext. By replacing each character by an unknown, 

key-dependent character, we have increased the attacker's uncertainty about the pattern 

he is trying to track. The permutation device then adds a second twist to the puzzle by 
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adding what Shannon called d i '  This operation has the characteristic of spreading 

the efFect of each message datacter ove. a wider area of the cipher block, to the desirable 

end of concealing some statistical relationships within the data, 

The characteristics of a mixing traElSformation aiIow us to build strong cryptographie 

systerns with relatively simple and inexpensive devices. By comb'ig  large permutation 

devices with sets of smali substitution boxes, the individual weaknesses of each approach are 

avoided and the resuiting cipherta blocks can achieve a strong inter-symbol dependence 

known as  the strict avdnche criterion. This déct was d&ed by Webster and Tavares in 

[33]. Hïgher order characteristics were examineci by Adams in [34], and by Forré in [35]. 

The avalanche d i t  is a desirable chatacteristic for a block cipher, but it is not without 

its hazards, By making block ciphers highly sensitive to changes in input parameters, the 

designer has introduced a hard limiter into the communications path. The alteration of a 

single bit in an enciphered message will tesult in the complete corruption of the message 

block upon deciphennent. This may be desirable for some reasons of s d t y ,  but it can 

have a significant impact on the qualits of the received signal. The strict avalanche effect 

also imposes a requirement for petfect synchronization between sender and receiver. Both 

must be in agreement over the block alignment or the decryptecl messages will be completely 

garbled. 

Stream Ciphers 

BIock ciphers are essentially substitution devices that rely on extremely large block sizes 

to prevent cryptanalysis by brute force. They are memoryless devices in that a certain 

plaint& block and key combination will always resuit in the same cipherta block output. 

Stream ciphers, in contrast, enciphet each message character individually with a time- 

varping function that is governeci by the intenial state of the device. The system state is 

a memory device and it comprises the principle Werence between the two symmetric key 

encryption approaches. m e r  each character is enciphered, the device's state is advanced 
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according to some d e .  As a result, repeat occurrences of the same plaintext character wi l l  

rarely r e d t  in the same ciphertext output. 

One of the most rematkable of aU ciphers is the one-time-pad, or Vernam cipher [36]. It 

is capable of producing a petfectly secure ciphertext stream by addùig e d  character of the 

plaintext message to a correspondhg character in a random sequence of the same length. By 

perfectly senire we mean that it is theoreticdy (and practicdy) impossible to determine 

the message fkom an analysis of the ciphertext. We wi l l  discuss perfect security when we 

derive a model of cryptographie security in section 4.5. This highly desirable arrangement is 

achieved by introducing a cornpletely random property to the encrpption process. By adding 

a random character to a message character we produce a cipber character fiom which it 

is impossible to infer the message character. Applying this operation to aii characters in 

the message, using an equal number of randomly chosen characters, yields ciphertext Erom 

which the cryptanalyst can gamet no information. The best he can do is make a guess 

based on the a priori probability distribution of the set of aU possible messages of that 

length. 

Why then do we not use one-tirne-pads for ail our enqption needs? The reason lies 

in the expense of distnbuting and protecting the huge amounts of random data, the key, 

that is required for every pair of users wishing to engage in secret communications. The 

only way to reproduce an identical stream of random data at the sender and receiver is 

to pre-record it and distribute copies in a secure mamer to the two intended recipients. 

This is typicaily not feasible and so this method has been iimited p r i m d y  to appiications 

regarding diplornatic exchanges and espionage activities [37]. 

Nonetheless, the process of combining something like a random stream with the message 

stream suggests an attractive encqption method. Stream. ciphers attempt to replace the 

completely random stream with a simpler approximation, one that can be more easily 

exchanged between the communicating parties. This approximation is the output of a 

deterministic device that is shared by both parties. The device utilizes a shared key to 
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produce a much longer sequence of charseters which are then twed to encipha the plaintext. 

This sequence, the running key, must be unpredictable to easute security for the system. 

The di f f i cu i~  of course, is that the devices are deterministic by nature and thedore not 

t d y  able to produce an unpredictable stream. Any tZU1IÙng key quence  would exhibit 

some period of repetition. Given this period, say some number Zn, and a sequeuce of 2n 

running key d u e s ,  the BetlekampMassey algotithm [38] can compute the co~c ients  of 

a linear feedback shift register (LFSR) capable of reproducing the entire iinear sequence. 

The length of the shortest LFSR requind to duplicate a given sequence defines what is 

called the linear complezity of a ninning key. It is generally possible to achieve a higher 

hear complexïty using a non-linear combination of mernory states [39]. It is a considerably 

more diflicult ta& to determine the smallest non-beat device capable of reproducing a 

given sequence, and in general, the sequences produced by non-linear devices have a linear 

complexity that is greater than the actual number of memory states available to the device. 

These characteristics make non-linear feedback shift registers the device of choice for most 

st ream cipher designs. 

A large linear complexity is a necessary but not d u e n t  condition for cryptographie 

security. Simple sequences such as (O, 0,O ... 0,0,1) have a high linear complexity for large 

run lengths, but are ineffective at concealing a message. In order to approximate a randorn 

sequence the ruMing key must have a uniform distribution and the sequence must contain 

an quivalent distribution of single bits, pairs, triples, etc.. A detailed study of complexity 

issues in stream ciphers rnay be found in Rueppel's work [40]. Another general treatment 

of stream ùpher design issues may be found in [41]. 

Stream ciphers rnay be divided into synchronous and self-synchronizing systems. In SV- 

chronous stream ciphers, the next state of the device depends only on the ptevious state and 

not on the input. Self-synchtoniaing ciphers employ past encryptions to define the current 

memory state. As a result, ~~synchroniz ing  ciphers reiy in part on the characteristics of 

the input sequence for ciphertext generation. 
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A block diagram of both types of apher is giren in figure 4.2. The subsystem F is typ- 

i c d y  a nonlinear device that uses the system state, S, to produce an encryption character, 

2;. In its most general form the stream üpher combines the plaintext message character, 

mi, and the key character, Z', in an kvertible function Ea,(mi). The resuiting character, 

c;, is the ciphertext. In practicd applications the strength of the encryption algorithm Lies 

in the unpredictability of Zi and not with Ezi(m;), so thk funetion is often chosen to be 

the exclusive OR operation, c; = m; $2;. 

(a) S ynchronous Stream Cipher (b) Seif-Synchronizing Stream Cipher 

Figure 4.2: Basic Stream Ciphers 

It should be apparent that stream ciphers operate as substitution depices on the char- 

acter level. If the running key subsystem F is well designed, the stream cipher introduces 

Shannon's confusion into the ciphertext. As for the property of diffusion, the synchronous 

cipher offers none at aii. Each message character affiects only one conesponding ciphertext 

character. The self-synchronizing cipher offers some di&sing properties in that previous 

outputs are used to produce the new nuining key character 2'. Unfortunately, the impact 

of this diffusion is limiteci because the device can only transfet information in the f a m d  
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direction and only for a fixed number of states. 

Sgnchronous st  team ciphers requite perféct synchronization between the encryp ting and 

decryp tiug devices. If the running keys of the commUIÙcating parties diffa by as little as one 

bit the r d t i n g  decryption wii l  be completely meaningiess, just as with blodt encryption 

devices. In order to reestablish secure communications, the receiver must search over ali 

possible offkets of the running key or n o t e  the sender that re-synchronization is required. 

This sensitivity ha9 obvious advantages to security in that it is impossible for an attacker 

to insert, delete, or replay ciphertext without being detected. On the 0th- hand, the need 

for strict synchronization places a larges burden on the devices used for channe1 coding. 

Self-spchronous stream ciphers require ody  that the last n ciphertext characters were 

received correctly in order to reproduce the correct 2' character. In the c=e of a charme1 

enor the receiver wii l  re-synchronize automatically d e r  the next n consecutive ciphertext 

characters are received. These ciphers are more tolerant of poor channd conditions than 

the synchronous variety. Udortunateiy, the self-synchronous cipher wiil ais0 te-synchronize 

after an attacker has attempted to insert, delete, or replay ciphertext. By their very nature 

they have an additional weakness in that they transmit the inputs to the encryption device 

F and allow a cornparison to be made of inputs to outputs. 

Rueppel noted in [40] that stream ciphers are genetally more dif16cult to analyse than 

block ciphers because of their interna1 memory, non-hem transformations, and, in the case 

of self-syncbronous ciphers, because of the statistical dependence between the output stream 

and the message stream. He f& that it is perhaps for this reason that there is considerably 

l e s  materid available on the analysis of stream ciphers. It is intetesthg to note then, that 

stream ciphers still make up the majority of practical encryption applications. 

4.1.2 Asymmetric Key Cryptography 

In their famous paper Wew Directions in Cryptography" [42] Difne and Hellman surpnded 

the cryptologic community with the introduction of a method to exchange secret messages 
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without a symmetric key. They postulateci the use of a fiinction which is easy to compute in 

one direction but very difficult to i n v e  without the knowledge of some additional property. 

Their ideas were a catalyst for the development of a numbu of practicai implementations 

of asymmetnc key cryptosystems. Asymmetric key cryptasystems, or public key cryptosgs- 

tems as they are more commonly d e d ,  require a pair of mcryption keys with special 

properties, The asymmetric key pair, e and d, aiiow a cryptographic dgorithm to perfomi 

a transformation of a message into ciphertext with either key, and another transformation 

back to the original message with the other key. This requires a special relatiowhip between 

the two keys, but to ensure security an aspmmetric key cryptosystem must be designed so 

that it is computationally infeasible to determine the decryption key fiom howledge of the 

encryption key, or e n q t i o n  fiinction, 

This asymmetnc key characteristic allows impkmentations of cryptosystems where one 

half of the key pair is made public to anyone who wïshes to send a message. Message 

encryption is performed using the public key, and anyone can perform this encrypting 

operation, but message decrppttion is designed to be feasible O& for the holder of the other 

half of the key pair. 

This characteristic of asymmetric key cryptosystems makes it possible to provide a 

secure Channel to two users who have never met or exchanged anJr prior secrets. This is a 

strong advantage of aspmmetric key over symmetric key systems where it is necessary to 

exchange a secret key in advance of the secure conversation. 

In addition, asymmetric key systems have the advantage of ptoviding strong authentica- 

tion protocols and digital signature impiementations through modification of the aspmmet- 

ric key protocol. Implementations of asymmetric key ayptography include the RSA system 

[431, the El Gama1 system [44] the McEleice system [45] and eLiiptic cuve cryptosystems 

[46]. Digital signatures are discussed in [47], [48]. 

Public key systems are generally too complex to aUow real-time acryption of digitized 

speech signais. They can be very &&ive, however, at providing a medium to exchange a 
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session key between two parties who wish to communicate by voice. The session key would 

then serve in a symmetric key qmtem to encqpt the speech t r a c  for transmission on an 

unsecurecl Channel- 

An asymmetric key system can serve in the place of a secure channel for symmetric 

key exchange. In the asymxnetric key protocol Uidicated in figure 4.3, the initiator of the 

communication session will acquire an encrypting key for bis intended recipient, EDat, fiom 

a trusted public key directory in the public domain. He encodes a request to establish a 

session key, K, for a seîure speech communication session by using ED,t. The receiver will 

then retrieve the sender's public key, Es,,,, fkom the public àirectory and the two will 

negotiate a session key under the protection of the asymmetric key encryption algorithm. 

Both sender and receitler then apply the negotiated session key, K, to en-t and decrypt 

the speech transmission by means of a symmetric key encrgption algorithm. 

In the outlined protocol, the asyxnmetric key system serves as a replacement for the 

secure key exchange Channel. It provides the additional benefit of dowing mers who have 

had no prior contact to exchange secret information. It &O eliminates the need to maintain 

private databases of the n(n - 1) possible key pairs nenssary to ailon any of n users in a 

network to communicate with any other users by a purely symmetnc key protocol. 

We mmust point out that several assumptions have been made about the asymmetric key 

exchange protocol in this simple outline. First, we have assumeci that the attadcer may 

request public keys from the public key directory, but that he may not substitute his own 

public keys in place of valid keys. This is a reasonable aumption that may be ensured 

by a slightly more elaborate protocol for obtauiing public keys from a tnurted public kep 

authority. Second, we have assumed that the sgmmetric key negotiation procedure can 

not be manipulated in any undetectable manner by the attacker. This can also be ensured 

by carefûl implementation of the negotiation protocol. F i n e ,  we have assumed that the 

attacker can not enter the private domains of either the sender or receiver. We note, 

however, that we ailow the attacker to observe all of the encrypted key negotiation session 
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information, the encrypted speech transmission, and the public keys of both sender and 

receiver - 
Under this type of security protocol the system secur i ty  level is detenniaed by the min- 

imum security affotded by eithet the asymxnetric or syxnrnetric key components. Denoting 

the secuxity inder for the éeymmetric and syxnmetric cryptosystems by Sm.& and 

Smelnel respectively, the securie index for the combineci protocol of figure 4.3 is, 

since we can assume the attacker d l  concentrate on whichever aspect of the system is 

easiest to compromise. Typically, breaking the asgmmetric key security system will yield 

the most value to the attacker since once it is broken he might obtain access to al1 session 

keys. Converseiy, breaking a single session key will reveai ody the current conversation and 

not endanger the asymmetric key exchange mechatÙsm. 

In many practical applications we rely on the ability to provide the user with an in- 

corruptible version of a cornmon public key. This public key is generally associated with a 

Certificate Authority (CA). The CA can ascertain the identity of a user and f o m  a verifiable 

certificate of authenticity linlong the user's identity to the user's public key. 
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4.2 Cryptanalytic Capabilities 

A cryptanaiyst wi l l  be assumeci to take adrantage of any idormation he can gain about 

the encryption system to deùpher the message. It is a common assumption, k t  suggested 

by Kerckhoff [49], that the s e c r q  afforded by a cryptosystem must reside entirely in the 

key. Our fùst assumption about securie wil l  be that the attacker knows the encryption 

aigorithm but not the s a e t  key being used. 

The cryptanalyst rnay be able to engage in a range of activities, fiom passive Listening to 

active interference with the communications channel. The purely andytic attacks include 

the following, in order of their value to the cryptanalyst, 

1. Ciphertext-oniy attack. The cryptanalyst can obsetve the ciphertext but has no 

direct knowledge of the message being encrypted. 

2. Known-plaintext attack. The cryptanalyst has complete or partial knowIedge of 

the message being encrypted and can observe the resulting ciphertext. 

3. Chosen-plaintext attack. The cryptanalyst can choose messages to be encrypted 

and observe the resulting ciphertext. Carefully chosen messages rnay help to reveal 

more information about the key- 

The cryptanalyst rnay in some circumstances be capable of more active attacks on the 

cryptosystem. These attacks may be intended for purposes 0th- than deciphering the 

message [SOI. Active attacks indude, 

1. Message repetition. The attacker rnay be able to deceive the receiver by replaying 

a valid ciphertext message. This attack does not require the cipher to be broken, but 

may be beneficial to the attacker if the contents of the cipher are known. 

2. Message insertion or deletion. Simiiar to the message repetition attack, the 

attacker rnay attempt to r n o e  the contents of the received message by adding or 
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deleting ciphertext blocks in transmission. 

3. Denial of Service. The attacker may simply choose to enme that the message cm- 

not be recovered by the receiver by introducing noise to the communications chamel. 

4. CIoak and Dagger attacks. The most ef6cie.t approach available to an attacker 

may be to acquire the message or key by th&, bribery, or defeating a weaker part of 

the cryp tosys t em pro tocol. S o k e  implementations of encryp tion algorithms , for 

example, can be compromised by obtaining access to the memoty space used to hold 

the key or message during encryption. 

In developing models of the secure communication system we wii l  generally assume that 

only the passive forms of attack are available to the cryptanalyst. We can, however, ailow 

for analysis of an active denial of service attack where the attacker is capable of only partial 

interference with the cotll~~lunications channel. The e f k t  of noise on the communications 

channd under cryptographic protection will be studied in detail in chapter 5. 

4.3 Motivation for Security Index Developrnent 

Our bnef introduction to cryptology has attempted to give some indication of the sophis- 

tication applied to the design of cryptographic systems and the resuiting need for similady 

sophisticated methods of crgptanalysis. The development of a new cryptographic algorithm 

is usually based on a thorough understanding of a set of principies considered essential for 

resistance to cryptsnalytic attack. These principies have been developed over tirne as  a 

result of significaillt &ort towards the design and analysis of practical security systems. 

Many of these principles have arisen fiom a complexity-theoretic approach to cryp to- 

graphic design [51]. For example, symmetric key blodt ciphers owe thei. s d t y  to the 

high computational complexify required to invert the operations of a large substitution- 

permutation nehrork, while symmetric Lep stream ciphers rely on ùigh Linear complexity in 
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the running key generator to approximate Veniam apher performance. Similady, the set 

of asymmetric key algorithms owe their security to the supposed complexity of a reiatively 

s m d  nuxnber of ILdifficult" problems, such as taking dïscrete Iogarithms or factoring the 

product of large prime nwabers. 

Masse y refogniaed in [SI the aasettling faet that the securie of these algoritbms often 

rests on a conjecture that the underlying problem is difEcu.it. The design priacipie for 

these dgorithms can best be describecl by the staternent: If this probiem is àüEcult, then 

this secrecy system is secure against that fonn of attack. Cleady, if a t  some point in the 

future the solution to a particular type of "diffidt" problem is found to be feasible, then 

encryption algorithms of that type rnay prove to be insecure. There are two dangers in this 

scenario: h t ,  if a feasible solution technique becomes known, then not only is the system 

compromised for future use, but ail messages previously encrypteci by that system may be 

deciphered by an attacker who has recorded past messages. Second, if there is a feasible 

solution technique, perhaps it is already being used secretiy by an attacker. 

It wodd be valuable to provide some measure of cryptographic security that was inde- 

pendent of assumptions about the cryptanalytic probIern and based purely on an objective 

assessrnent of the performance of the cryptographic algorithm. This measure would con- 

stitute a design and evaluation tool for cryptographic algorithms to be used in conjunction 

with the general principles gaineci so painstakingly by direct analysis of each new class of 

cipher. In this chapter we will propose a set of relevant information-theoretic cryptographic 

security indices to provide such a measure, 

4.3.1 Practical and Theoretical Security 

Practical security refers to the notion that the cryptosystem is secure against attack on the 

basis of its computational complexity. A measure of practical, or computational security 

as it is somethes called, would indicate the order of operations required to invert the 

enciphering operation. 
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Theoretical securie, or unconditional securiw as it is also called, is achieved when the 

cipher is immune to cryptanalysis even when the crpptanaiyst has itnlimited computational 

abiliw- Theotetical security is determinecl by an information-theoretic approach that has 

led to some peasimistic conclusions about the requirernents for cryptographie s e t g  [5], 

[52]- We will show in section 4.5.1, for instance, an information-theoretic proof that perfect 

secrecy can only be attained by a certain costly and inconvenient protocol. We will also 

develop the unicity distance measure in section 4.4, a classic theoretical security index which 

indicates the minimum amount of information that a cryptanalyst would need to intercept 

in order to decipher the message. 

The results of a unicity distance calculation are generaily very low and have led many 

designers to conclude that purely computationally motivated design criteria are sutEcient 

to achieve a good cryptosystem. We wish to demonstrate that theoretic securify in- 

dices can provide relevant measures for evaiuating the quality of an encryption algorithm. 

Information-theoretic design criteria for substitution devices in block ciphers have been 

studied in work by Tavares, Dawson, Zhang, and others [33], [53], [Ml, and [55]. In section 

4.6 we will introduce two information-theoretic security indices t hat c m  distinguish the 

quality and aciency of dinerent cryptographie algorithnus on the basis of the operations 

performed on the ciphertext. 

We make the following proposition on the relation between practical and theoreticai 

seCUITity measures, 

Proposition 2 (Relative theoretic and praetical security measures ) The relative pmc- 

tical security of two cryptosystens can be rejlected in a set of mlutive themtic secun'ty 

meusufes for ctyptosystems bused on these findamental g e n m l  design criteria, 

Diffusion. T'lie cipher shuuld i n t h c e  the quality of clifhion defined in section 4.1. 

This will have the efect of distrtbuting the value of a single ciphertezt digit or a single 

key digit over a broad mnge of adjacent ciphertext chamcters. D i f i i o n  is  essential 
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to a good cipher as it k t p s  to c m d  the stcrtisticd structure of the mappngs from 

plaint& to eiphertert and i n m e  the d i ' d t y  of pdicting the key. 

0 Confusion. The ciplier s h d  be deaigned to intduce the quolity of confusion as 

dejiined in section 4.1. Thu nquires the ctphertezt to k ptoduced from a cornplez 

tnlnsfmation of message and key information. C o n f i o n  is essential to a gooù 

cipher as it uiiolos unpreddcrble key information to be apptied in such a manner as 

to increuse the entmpy of the ciphertezt. 

0 Mixing cr'iransforrmitions. In block ciphers the application of successive rounds of 

substitution and permutation opmtions has ken shoum to inmase the semrity of a 

càpher by matin9 a ciphertezt prodvct that is well d&nTLbuted ouer the cipherspace- 

O Nonliriearity. Nonlinear ttunsfomations of message and key inc~wse security by 

increasing the complezity of the openrtwns required to invert the algorithm. Stream 

ciphers in particular can achieve higher linear cornplexàty by computàng a running key 

by means of a nonlinear opution. 

0 Unifbrmity. In symmetric key q s t e m s  security is  mfianced by ensuring the key 

source prodvces keys with 4 unifonn pbabslity dîstribution ouer the key space. This 

maximizes key entropy. ln asymmetric key systems such us RSA, security is enhanced 

by selecting prinze numkrs for the genmtion of the asymmetric key modulw accordZng 

to a uni fom pdability distribution owr  a mnge of eligible primes [56]. 

0 Complexity. The n u m k  of possible tmnsf'ations of message to ciphertext must 

Le suficientty lave to prievent an exhawtive seumh of the key space. The complexity 

of the cryptognzphic trohpform m u t  aiso k suficiently high to defeot al1 known crypt- 

analytàc techniques for roducing the pmblem. Exanaples of complexity-mducing attacks 

include factonBg and dismete log cornputution techniques and di f lmt ial  cryptanaly- 

sis. 
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It is difûcuit to provide a proof of this proposition because of the variety of possible 

cryp tographic and cryptanalytic methods. We must consider both the transformations 

applied by the encryption algorithm and the sophisticated mathematical and statisticai toois 

a d a b l e  to the cryptaaalyst when we assess practical security. That is why we have limited 

our statement of correspondence between practical and theoretical measures to the class of 

ciphers that have been designeci to be tesistant to the techniques employed by modern 

cryptanalysts. In fact, this list is not exhaustive and only contains those fuadamental 

principles that are k n o m  to improve cryptographie s d t y .  Should other principles of 

good design be discovered, it would be prudent to add them to the list and further reduce 

the set of ciphers for which we can assume correspondence between secufity measures. 

Our rationaie for this proposition has been to indude only those ciphers for which n e  

can be reasonably certain that there is no trivial, hidden, or low-complexity solution to 

the cipher in addition to the intended inverse transfom. For this type of weli designeci 

cipher, the theoretic security measure can be indicative of the relative strength of the 

cryp tographic algorithm. B y excluding ciphers with hidden weaknesses , we have avoided 

the trap of computing high security indices for ciphers that could be decrypted by some 

simple approach. 

As an example of a poor cipher design yieiding a high security index we consider a 

cipher that applies the key in a highîy nondorm fashon, concealing some parts of the 

message while revealing the r a t .  Some theoretic secwitty indices would consider oniy the 

average effect of the key entropy and misrepresent the system security as being higher than 

actudy warranteci. The design eriteria required for the correspondence proposition exclude 

this type of cipher and so avoid this kind of evaluation error. 

Ciphers which do follow the design criteria requLed for the correspondence proposition 

will tend to apply a complex transformation of key and message characters in a man- 

ner which is difficult to  invert without knowledge of the key. In the absence of hidden 

weaknesses, the averaging characteristics of most theoretical security indices can be better 
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justifieci because the cipher characteristics are, by design, more uniformly distributeci- 

4.4 Shannon's Unicity Distance 

Foliowing publication of his landmark work on Information Theory, [57], Shannon published 

the tamework for information-theoretic evaluation and design ofsecrecy systems in [4] '. In 

this section we wiU present Shannon's security index for the general dass of sgmmetric key 

cryptosystems described by the block diagram of figure 4.4. These systems wi l i  be assumed 

ta proces discrete information oniy, in accordance with the vast majority of practical 

encryption applications. 

The operation of symrnetric key systems is centered around the exchange of a key, K = 

{ K I ,  Ka, . - . , KK), by means of a channel assumed to be protectd nom interception by the 

enemy cryptanalyst. The key is assumeci to be generated by some source process, as is the 

message, M = {Ml ,  Ma, . - .), and a random stream of information R = {Ri, Rz, . . . , RR). 
The resulting cryptograms d be denoted by C = {Cl,C2,. . .). The statistics of M 

are determined by the source process, and the statistics of K and R are considered to 

be determined to benefit the cryptographer. We will assume throughout this development 

that the quantities are statisticaily independent, this being the ehoice yielding maximum 

advantage to the cryptographer in fivstrating an attacker. 

Shannon did not consider a randomizer in his mode1 of the secure system but he did 

recognize its purpose, which is to biur the statistics of the source process. This activity 

is commody tefmed to as homophonie coding. The tandomizer allows highly probable 

message elements to be replaceci with elements randomly selected fkom a larger group of 

synonpms for the popular element. Homophonie codiag can fnistrate a ftequency analysis 

of the encrypteci message stream, but is e d y  reversed by the intended teceiver who simply 

'Shannon actuaIly published his work on secrecy systems in 1945, prior to the Information Theory paper, 
but t b  paper was classifieci as Secret by the U.S. governmeat until 1949. 
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Figure 4.4: Mode1 of a Private-key Cryptosgstem 

replaces the decrypted synonyms with the intended message dement. 

We dehe  the encrypting operation as a function pdormed on the message according 

to the parameters K aad R, 

c = EKR(M), 

and the decrypting operation as, 

M = D K ( ~  9 

where again we note that knowledge of the randomizer is not necessary to the receiver to 

decode a unique image of the message. 

Shannon originally considered the case of a ciphertext-ody attack, but we can extend 

his analysis to allow for those cases where the attacker has acces to additional information. 

These approaches may be classed as known-plaint& and chosen-plaintext attacks. If a 

known-plaintext or chosen-plaintext attack is applied to a cryptosystem it may be successful 

at yielding information about the message that is unadable in a ciph&&-only attack. 

We can account for these types of &ta& in our security indices by considering the extra 

information to have the d't of increasing the redwidancy of the message source. W e  will 



CHAPTER 4. SECURITY MODELS FOR SECURE SPEECH SYSTEMS 91 

show how redundaney is a fandamental meaPute in the development of a security index. 

From the available sources of information the attacker coastructs his estimate of the 

transmitted message, M. The goal of the cryptographer is to ensute that *(M = M) = 

p(M). This wouid Mply that the a posterimi probabilities of the various messages, p(M1C) 

are equivalent to their a priori probabilities, p(M) and the attacker ha9 gaineci no infornia- 

tion about the message fiom his observations. Strictly speaking, the attacker has learned 

two things: h t ,  he b o n s  that a message was sent, and second, he has determineci the 

length of that message. The d u e  of this information cm be negated by the apptographer, 

however, if he designs the system to occasionally transmit "nuiln messages that have no 

value and if the systern appends "nulln information to some messages in order to conceai 

theh true length. 

If the attacker is to compromise the secrecy system he wil l  utilize the information gained 

about the key, or the message, from observations of the ciphertext. The uniciw distance, 

No, is defined as  the minimum number of ciphertext characters that the attacker must 

observe before be may deduce a unique key or message correspondhg to the ciphertext. 

This is equivalent to reducing the key or message equivocation to apptotimately zero. 

In Appendix F we define the key and message equivocations and present a detailed 

development of the unicity distance index. The appendix develops a precise definition of 

the general unicity distance index of the form, 

K log LK 
No = 

log Lc - & Log LM ' 

and presents a simplified equation of the form, 

for a cryptosystem 

K No = - 
D' (4-2) 

with alphabet sizes LK = Lc = LM, and where K is the size of the key 
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in bits, and D = 1 - R, is the percentage redimdaxtcy of the source process. 

Also presented in Appendix F is a deveiopment of an expression for the uniüty distance 

in ciphers utibhg a randomizer as defineci in figure 4.4- If the randomiziag stream, R, is 

chosen independently of the message and key, then the key quivocation for the cryptosystern 

can be expressed as, 

where H(R) is the entropy of the randomizhg process. This development reveals that a 

randoniiaer can increase the unicity distance of a cipher. 

4.5 Unicity Distance as a Security Index 

Shannon's derivation of the UILicity distance assumed a partiCuLac form that he calied a 

"random" cipher. The r e d t  of equation (4.1) ha9 been found applicable to ordinary ciphers 

wherever it has been possible to test the correspondence [58]. hirthermore, it was shown by 

Hellman in [52] that Shannon's random cipher mode1 wes unduly pessimistic about security. 

To paraphrase Hellman's results, he found that the unicity distance predicted by equation 

(4.1) was the minimum achievable by ordinary, "non-random" ciphers. 

Let us now examine the use of the unicity distance as a security index. The unicity 

distance of a cipher is determineci by the Lep entropy, H(K) , the tedundancy of the source 

process being encrypteci, D, and in some cases the entropy of the randomizer, H(R) . The 
unicity distance indicates the nurnber of ciphertext characters t hat the attacker must observe 

in order to determine a URique solution to the cipher. If the attacker obseives a number 

of characters lower than the unicity distance he may at best consttuct a residue class of 

messages that could have produced the ciphertext. Beyond the unicity point an attacker 

can always determine a unique solution to the cipher . The capture of additional ciphertext 

serves ta increase his &ciency by providing more data with which to check the consistency 
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of his solution. 

We can explain th& &ect by noting that redundancy in the source process works to 

impose a structure on the cryptogram. This stmctute is comtetactecl by the encryption 

algorithm, which uses the key to add entropy to the ciphertext - Creation of the âphertext 

uses inmemental amounts of the key. As more of the ciphertext is transmitted more of 

the key is used, to the point where d of the entropy affotded by the use of a particular 

randorn key has been appiied to the encrpption routine. Beyond this point the aphertext 

is vulnerable to decryption. 

The unicity distance neatly captures these qualities. The designer may seek to increase 

security by increasüig the amount of key entropy available to the encryption operation, he 

may attempt to d u c e  the redundancy of the source process pnor to encryption, and he 

rnay use a randornizef to provide additional uncertainty for the attacker. 

4.5.1 Secarity by Key Selection 

W e  can describe the sec- of a cipher system formdy by the classifications of perfect, im- 

perfect, and ideal secufity in [51]. In this section we wi l l  consider the e f k t  that controlling 

the key entropy can have on the unicity distance for each of these categories of cipher. 

Perfect Ciphers 

The Vernam cipher described in section 4.1.1 can achieve perfect security. These ciphers 

have practical use when the greatest importance in the system design considerations is 

security, and the cost or inconvenience of the implementation is secondary. 

The definition for pdect  secxecy is that the ciphertext reveals no information about 

the message, 
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For any cryptosystem we have, 

Combining equations (4.4) and (4.5) we find that for perfect seaecy the entropy of the 

key source must be larger than that of the message source, 

so that we will not exhaust the supply of random information that is necessary to counteract 

the redundancy of the message. This result is the reason for the high cost and potential 

inconvenience of a perfect cipher: to encipher an information transmission, an equal amount 

of key information must be exchangeci by means of an alternate secwe channel in advance. 

The security of the alternate channe1 mut  also be perféct in order to ensure a secure 

transmission, so this system typicaliy requires the physical exchange of a large volume of 

key information* 

By equations (4.5) and (4.6) ne can bound the key equivocation of the perteet cipher, 

If the key source generates random information at a rate of RK, then these bounds may be 

expressed as, 

For ( R ,  > O, LM > 1) there is no solution to the unicitp equation (F.9), such that 
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EI(ICIC{) a O. Thus the unicîty distance of s perfkct cipher is infinite. 

Impeifect Ciphers 

The class of imperfect ciphers are those ciphem not meeting the key entropy requirement 

defmed in equation 4.6. Impedixt uphers are vulnerable to analysis because the amount 

of key information available to the encryption algorithm is insufiicient to conceal aU of the 

message information. These systems are described by the equation, 

I(M{;c{) = H ( M . )  for j 2 No, 

which indicates that the information lealcage ftom the ciphertext is sdicient to reveal the 

message beyond the unicity point, No, 

The rnajority of practical ciphers f d  into this category as they are designed to encrypt 

large amounts of information using a convenient1y shed key. The cipher designer cannot 

avoid this weakness, but he can increase the security of the cipher by increasing the entropy 

of the key. It is dear, by equation (4.2), that the uniuty distance increases in direct 

proportion to the key entropy. 

It is interesthg to note that, in thiç regard, the theoretical security index of the unicity 

distance corresponds to the notion of pracfical security: the practical securitty of a system 

is incraased by expanding the key space that wodd need to be searched by an exhaustive 

attack. 

There is a third classification for ciphers that are lMited to a finite key size, but still achieve 

an iafiaite unicity distance. These ideallg secure ciphers are described by the bounds, 

0 < I (@;  c{) < H(M:) for large j. 
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In these systems there remains a residual uncertainty about the plaintext which camot be 

resolved by andysing large volumes of ciphertext, hence the key equivocation is non-zero 

for any amount of intercepted text and the uniaty distance is infinite. 

It is important to note that ideal ciphers do not easare unconditional security as the 

uncertainty rnay be limiteci to only a portion of the message space, or that uncertainty may 

be immaterial to determinhg the content of the message. W e  note that a unique description 

of intercepted ciphertext is not always necessary to compromise a security system. Devel- 

opment of a residue dass of Uely messages can Iead to a distorted, but still meaningful, 

deqption of some types of source process. 

4.5.2 Secusity by Source Coding 

It is dear nom the development of the uniutp.' distance m e m e  of equation (4.2) that 

redundancy plays a key rote in detenninuig the theoreticai securïty of a cipher system. 

Cryptographers have long been aware of the advantages of removing redundancy prior to 

encrypting the message stream, and cryptanalysts have for just as long taken advantage of 

the portions of the message they could predict to compromise the system. Kahn presents 

an entertaùiing histoncal account of the cryptanalysis of many classical ciphers through the 

use of redundant information in [49]. 

If we allow the cr~rptographer the option of incluàing a source coding operation priot to 

the encryption operation we may observe two characteristics that impcove the security of the 

cipher systern. First, source coding increases the unicity distance by declreasing the message 

redundancy, as indicated by equation (4.2). Second, source coding reduces the transmission 

rate required for the message. This improves s e a g  by decreasing the amount of ciphertext 

available to the attacker for anaiysis. 

It is interesthg to note that the unicity distance for an entkely non-redundant message 

is infinite. This implies that through &the source coding done, we may obtain perfect 

secrecy. As an example, consider a non-redundant source process that is encrypted by very 
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simple enayption algorithm, such a9 a Caesar ciphd. In this case, we are dearly not 

providing as much kcy information as there is message infornotion since B(K) 2 H (M) , 
so the system does not meet the definition for perfect seaecy. Despite the weakness in the 

encryption algorithm, the attacker csnnot determine a unique solution to a cipher since any 

message of a given length fiom a non-redundant source is equdy Lüreiy. He may invert the 

Caesar cipher for ail keys in the key space, but d stiU be unable to determine which of 

the set of messages could have produced the ciphertext, since ail are equaily capable. 

It is instmctive to note the &st of a hm-pla in t&,  or chosen-plaintext attack on the 

system describecl above. These attacks wiü mily reveal the key being used by the cipher, 

and so compromise even the non-redundant message. This breach of secuntty is identified 

by the unicity distance mode1 of security if we consider the idormation gained by the at t ack 

to add redundancy to the ciphertext, A redundant ciphertext, encrypted by a low entropy 

key, will have a finite unicity distance. 

It is clear, by equation (4.3), that the unicity distance of a cipher is iinearly proportional to 

B(K) + E(R). Thus, ne  can increase the unicity distance by inmeashg the entropy of the 

randomizer. Through the use of a randomizer, the designer increases secur i ty  by increasing 

the number of possible ciphertexts seen by the attadcer. The tandornizer cannot reduce 

the real redundancy of the message source, however, so its affect on çecurïty is linear in 

proportion to the size of the randomizer stream. We note that randomization effectively 

increases the size of the message space, and consequently the cipherspace may have to be 

increased to transmit the random idonnation. The higher the proportion of random infor- 

mation in the cipher stream, the lower the efficiency of the transmission chamel- Securie 

by randomization is therefore constraiaed by bandwidth and efficiency considerations in the 

overall system design. 

'The Ceesar cipher is a monoalphabetic substihttion aigorithm where the ciphertext is produced by a 
key-dependent cyclic shift of the source alphabet 
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4.6 New Security Indexes for Encryption Devices 

4.6.1 Limitations of the Unicity Distance Index 

We have shown the uniciw distance to be a vaiid h t y  index for private key ciphers 

and bave noted a cornpondence in the parameters of the index to some of the notions of 

practicd security. Notably, we found that both theoreticai and practical securitty depend 

on a high key entropy and low redundancy in the message source. 

It is clear, however, that the unicity distance index is not sdc ient  to define the relative 

security of ail cipher systems. Spdcal ly ,  we note that the UIUcity index can not distinguish 

between different àphers that happen to use the same key space and operate on the same 

source process. It is possible for two ciphers, one providing excellent se-@ and one 

revealing significant portions of the message, to have the same uaicity distance. 

As an example, consider two systems with the same keyspace enciphering the same mes- 

sage source. A system with a complex substitution-permutation network and key inclusion 

s t ra te0  can provide good security. Alternatively, we codd design a poor system, one that 

applies an encryption algorithm in a senue fashion to every nth ctiaracter but leaveç the 

subsequent n - 1 charaeters unchanged. h this extreme case, both encryption algorithms 

will yield the same uniciQ distance measure, but ody  the first one is secure if the source 

process exhibits an appteciable degree of tedundancy. The set of ciphers that meet the 

design criteria of Proposition 2 wi l l  not indude the poor system indicated in the extreme 

example above, but can contain variation in the extent to which the design priaciples are 

implernented- It is expected that in the case of block ciphers, for instance, a greater num- 

ber of substitution-permutation rounds will result in greater seclvity. The unicity distance 

measure is insensitive to these characteristics of cipher design. 
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4.6.2 Encryption Eniciency Index 

W e  have demonstratecl how the security of an encrypteci transmission is partially indicated 

by the WLicity distance index, but have identifieci that additional criteria are necessary to 

define the securie of a ciphes, 

Clearly, the nature of the transformation applied to create the ciphertext must affect 

the secmîty of the system, We expect the encryption aigorithm to apply key and random- 

izer information to message information in such a way as to increase the entropy of the 

ciphertext. If the encryption algorithm is effective, then the ciphertext will have a higber 

entropy than the plaint&, The difference between the two measmes is indicative of an 

increase in secufity, but may be mis1eadi.g in that it does not reveal the amount of key 

and randomizer information that was expendeci to achieve the imptovement. We propose 

to study a securitp index f h t  examineci in [59] and extendeci here to consider randomizers. 

Proposition 3 (E5ciency Index) A generol measure of the eficzëncy of an encryption 

algorithm is given by normalin'ng the inmase in entmpy achieved in tmnsformiBg the rnes- 

sage to ciphertext by the amount of key entmpy and mdomizm entrvpy needed to obtain 

the inmuse. We define an eficïency indez, E, for a apher by, 

Systems employing randomizers will not be considered in out experimental 

may simplify the ef6iciency index to, 

and consider only the effect of key entropy. 

We may apply this index to compare cipher algorithms for encrypting a given message 

source with a given key space. The cipher that adds mote entropy to the ciphertext pet unit 
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of key entropy may be considered to be perfotrnitlg a more ef6cient encryption operation, 

The nomakation operation removes the dependenq of the index on the amount of key 

entropy, so the secuxiw index, E, rnay a b  be spplied to determining the dative efficiency 

of ciphers operating with dinient key spaces, 

The secure algorithms considered in this t e s e a d  may be found to operate in the range 

O < E 5 1, where key information is added ta the ciphertext by the encryption opera- 

tion. The degree of key inclusion is indicated by the size of &. The encryption efficiency 

index constitutes a measure of the relative efEciency of a cipher and allows ciphers to be 

distinguished on tbat basis. 

Note 2 (Refeence to unieity derivation) W e  should point out that the eficiency dis- 

tance defined above diflets from the derivation of the unicity distance in Appendiz F in that 

it does not u s m e  the ciphertezt entmpy, H(c{), c m  achieve the vpper band of j log Lc 

as expected in the unicity distance p m f -  Imtead, for encryption algorithms A and B,  op- 

enztàng on the m e  message and key spaces tue a= accounting fizr the possible variation in 

càphertext entmpy, 

H(CA) # H(CB) 5 log LC c, 

w h m  CA, and Cg represent ciphertezt produced by atgcnithms A and B, mspectively. 

4.6.3 Encryption Qu- Index 

A second theoretic security index was presented in [59] to etraluate encryption systems on 

the basis of th& relative resistance to red~ndancy~ W e  propose to include this index as a 

theoretic s d t y  measure. 

Proposition 4 (Quality Index) A g m e d  measure of the qudity of an enrryption algo- 

rithm is gàuen by normalizing the inmase in entmpy achieved in tmwfonning the message 

to ciphertext by the mount of redundancy in the message process being encrypted. We 
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define a quality indez, Q, for a cipher by, 

where D .is the mdundancy of encrypted source pmcess, M. 

This measure indicates the incrementd increase in ciphertext entropy compared to the 

message redundancy. It expresses how w d  a cipher counteracts the redundancy inherent 

in the message. Ciphers that add a large amount ofentropy reiative to source redundancy 

wi l l  have high quality indices. We note that source processes with a low redundsncy require 

less additional entropy to obtain secufity; ciphers for low redmdancy processes can attain 

high quality indices with the addition of little extra entropy ta the ciphertext . 

4.6.4 Relevance of the New S e c d t y  Indices 

It is interesting to note that the unicity distance may be expressed as a fiinction of the two 

new security indices, E and Q. Combining equations (4.7) and (4.8) we h d ,  

Whereas the unicity index yieids a measure of the absolute s d t y  of a apher, the 

values of the efficiency and quality indices have no direct relation to a quantifiable level of 

security. In fact, there are other possible arrangements of the terms in each index that would 

yield measurements that may be ciassifiecl as efficiency or quality indices. For instance, we 

may compute E' = (H(C)-a(M))2 
WK) ' or Q = .- for the required measmes. 

It should be stressed, therefore, that the &ciencg and quaiity indices may oniy be used 

to evaluate the relative behaviour of ciiffirent encryption coders. 
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4.6.5 Entropy as a Security Measure 

The efficieticy index and the quality index are based in part on a measurement of the amount 

of entropy added to the message by the encryption operation. The unici0 index and the 

diciency index consider a rneasurement of the entropy of the key space of the cipher. 

Even the redundancy measure is based on the entropy rate of the source process. Entropy 

measures quanti@ the uncertainty an observer would face about guessing the outcome of 

a random variable. Using entropy in the context of a thearetical secaxrity measurement 

is thedore appropriate when the securiw index incorporates entropy to express in some 

manner the amount of work the attacker must pdorm to  break the system. 

Shannon employed measUres of entropy and conditional entropy in deriving the unicity 

inda [4]. More recently, Maurer employed entropy as an indicator of security in random 

bit generators [60]. The efauency and quality indices employ entropy to express measures 

that are dependent on the success of the encryptioa aigorithm at adding to the amount of 

analysis required by the attacker. 

4.7 Summary of Proposed Security Models 

We have 3 theoretic indices we could apply to mode1 the cryptographie s e e t y  of speech 

encryption systems. They are, 

1. Unicitp distance. No = RS>. 
H C - H M  2. Effleiency index. & = -. 

3. Quality index. Q = -1. 

The three indices require measures of the key entropy, the ciphertext entropy, message 

entropy, and the associateci measure of message redundancy. We have omitted the use of a 

randomizer. Were all of these processes memoryless these measures couId be obtained quite 
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e d y ,  but the speech proces is highly redundant and this tedundancy will iikely introduce 

some memory into the ciphertext proces as wd. Only the key process can be designeci to 

be memoryless and d o w  an easy ent~opy caldation. 

In chapter 6 we wiU apply the entropy estimation techniques developed in chapter 2 to 

obtain measures of ciphertat entropy for a variety of secure speech system implementations. 

These resdts will be combined with the speech process entropy estimation results ofchapter 

3 to create models of secure speech system security. 



Chapter 5 

Bit Rate and Quality Models for 

Secure Speech Systems 

Corne, give us ta taste of your quality. 

William Shakespeam. Eamlet. Act n, Sc. 2. 

Introduction 

A subjective evaiuation of the quality of an encrypteci speech transmission, and an un- 

derstanding of the bit rate requUed to achieve that quality are two parameters of great 

importance in the design of a secure communication system. We wish to provide an outline 

for such models of performance within the fiamework of a speech encryption system. 

We begin in section 5.2 with an overview of the methods currently useci for coding the 

speech process. We will review the techniques used in a vafiety of waveform and vocoder- 

type speech coders, and summarize the standard performance characteristics. As it is 

ideasible to perform a timely experimental study of aii possible variations of speech coding 

algorithms, we will define a subset of coders that are generally teptesentative of a range of 
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coding techniques and capabilities available to designets of secute speech communication 

systems. 

At the b i t  of optimal coder design, the relationship between quality and rate is clearly 

defined by the rate-distortion curve of the speech process. W e  wiU consider this relationship 

in section 5.3. In practical speech coder implementatio~~s we are Iimited to a maximum 

feasible complexity, and so it is unlikely that we can achieve minimal theoreticd distortion 

at a chosen rate. For the broder clas of speech coders of interest to designers of practicai 

systems, we must thetefore derive operationai rat d i s t  ortion hct ions.  In particular , we 

must consider the &et that an encryption process may have on coding distortions under 

a variety of Channel conditions. 

W e  will consider in section 5.4 the problem of deflning a distortion measure which can 

be easily computed and has good correspondence to the resuits obtauied by a subjective 

evaluation. FoUowing the work of Quackenbush [61] we select a segmental-SNR meanire for 

its simplicity and relative accuracy. 

We will then present in section 5.5 the results of some experimental work using the 

segmental-SNR meôsure to analyse the operational ratedistortion characteristics of the set 

of representative speech coders. These results wiU serve to d&e the general relationship 

between quality and bit rate for the set of speech codets deemed representative of the range 

of coders available to  secure system designers. We will then extend the analysis to consider 

the effect of a variety of channel error types on the perceivecl quaiity of encrypted speech. 

In section 5.6 we will present a model of bit rate as a fiinction of the residual redundancy 

in the coded speech signal. We will describe a set of experiments performed on the repre 

sentative speech coders to determine an information-theoretic measure of the divergence of 

coded speech fiom the original. This study will reveal a characteristic relationship between 

redwidancy and the bit rate achieved by typical speech coders. 
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5.2 Speech Coders 

In an integrated secure communication system, the speech coder is responsible for pro- 

duhg a digital reprawntation of the continuous speech waveform. This coding operation 

det ermines a number of important characteristics for the commdcation session, aotably 

speech quality, bit rate, encoding delay, and error sensitivity. 

In an unsecureci system, the level of sophistication, or comp1&~, in the speech coder 

will largely determine the combination of quality and bit rate achieved by the device. In 

a secure speech communication system, however, the performance of the system is dra- 

maticaîly affected by the ensyption device. The encryption operation introduces a hard 

limiter into the communications path that typicdy exacts a high penalty for any charnel 

or synchronization errors. Higbly compresseci speech is quite sensitive to mors and so the 

combination of encrpption and source coding techniques must be carefirlly balanced. 

The following sections will review six common coding algonthms. These include a 

number of wavdorm coders and also some of the vocoding type. This is by no means an 

exhaustive study, but the methods selected are generaliy representative of the majority of 

speech coding techniques. Detailed coverage of speech coders may be found in [2], [62], [22], 

and [23]. 

5.2.1 Pulse Code Modulation 

Pulse Code Modulation (PCM) is the most basic fom of speech coding. These codenr 

sample the analog speech waveform and encode it into a binary signal. PCM coders are 

instantaneous, meaning that they require a t  most one sample period of del* In PCM, 

each sample is quantized to one of 2R amplitude levels, where R is the numbet of bits used 

to represent each sample. At a sampling rate off,, which must be at least the Nyquist rate 

[63], the PCM coder requùes a bandwidth of R f. bps. 

As most telephone facilities support a bandwidth of less than 4 kHz, the sampling rate 
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for speech is generally chosen to be 8 kHz. Subjective tests have found that to acbieve ton 

quality speech requins somewhere in the range of 12 qttantization bits. Thus the uniform 

PCM coder has a bit rate of 96 kbps [23]. 

Reductions in bit rate with only a minor increase in complexity can be achieved by 

appIyhg a non-linear quantization mie. It has been observecl in many studies of the speech 

wavefonn that srnali signal amplitudes occm much more fiequently than Large signal am- 

plitudes. By designing a quantizer which has more closely spaced levels at the low signal 

amplitudes and more widely spaced levels at large amplitudes we will reduce the average 

quantization error. These non-linear quantizers can greatly improve signal quality and 

hence allow a smaller number of quantization bits to be used. Two popular non-ihear 

quantizers, the A-law and plaw devices, axe based on a logarithmic functian. This form of 

coding, referred to as log-PCM, is capable of providing co~ll~llunications quality voice at 8 

bits/sample for a transmission rate of 64 kbps. 

Log-PCM coding at 64 kbps is often used as a standard against which other coders are 

judged. Due to its sirnplicity, log-PCM often forms the standard input to a trariety of more 

sophisticated coding algorithms. 

5.2.2 Differential Pulse Code Modulation 

Dinerential Pulse Code Modulation (DPCM) takes adwntage of correlation in the speech 

signal to achieve significant gains in signal compression. Instead of quantizing speech sam- 

ples directly, as in PCM, DPCM quantizes the ciifFerence between a current sample and a 

predicted estimate that is calculateci as a weighted average of previous ssmples. Since part 

of the input signal is predictable, only the unpredictable residual signal need be transmit- 

ted. The residual signal is ca lda ted  as the ciifference between the input signal and the 

predicted signal, J(n) = Q[z(n) - i (n)] ,  where Qb] represents the quantizing operation. 

The residual signal has a smaller variance than the input s ipal  and so can be quantized 

more efticiently. 
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The additional compression permitted by this coding method, and the more sophisti- 

cated methods to be disnissed beiow, corne at the expense of an inaeased d t i v i t y  to 

mors in the data stream. Removing redundancy and predicting on the basis of previously 

received samples means that the &ect of an ~ o n e o u s  sample can propagate through sub 

sequent samples. These types of coders may employ some side idotmation to limit error 

propagation and to aUow resynchronization with the transmitter. 

5.2.3 Adaptive Coding Methods 

The short-term statistics of the speech process are non-stationary, which causes static cod- 

ing algorithms like PCM and DPCM to field suboptimal results. An adaptive design can 

improve upon the pdormance of these schemes by adjusting the quantizet step size ac- 

cording ta the magnitude of the previous speech sample. A tgpical arrangement would be 

to adjust according to the relation: A,,+l = - M(n) ,  where M(n) is an appropriate 

multiplicative factor- This form of adaptation is applicable to a variety of code=- When 

applied to a simple PCM system it is cded Adaptive PCM (APCM). 

In differeatial-type applications it is also possible to adapt the predictor coefficients with 

a short-term estimate of the autocorrelation function of speech. By periodically updating 

these coefficients it is possible to achieve a considerably smaiier prediction error and hence 

a better bit rate. Adaptive Dinisential Pulse Code Modulation (ADPCM) employs one 

or both of these adaptations to achieve significant teductions in bandwidth. Toll quality 

ADPCM samples can be quantized in 4 bits, for a bit rate of 32 kbps. The adaptive 

design yields better results for higher orders of prediction than are possible for non-adaptive 

schemes . 

5.2.4 Sub-Band Coding 

Sub-Band Coders (SBC) achieve signal compression by exploithg speech redundancy in the 

fiequency and time domains. Subband coders divide the speech spectnun into a number of 
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sub-bands and code each bandpass signal using some form of time domain based compnssion 

method. Spectral redundancy is reduced by dott ing varying arnounts of acctuacy to the 

speech bands. The low fiequency bands are typicaiiy ailotteci more bits than the high 

fiequency bands due to their greater importance to speech intelligibility. Ln SBC, each 

band is usuaily sdiciently narrow to reduce the dpnamic range of the signal. This meam 

the individual bands con be more dciently coded than in the broad-band waveform coding 

approaches- 

Sub-band coders achieve what is considered to be commUIYcations qualie speech at rates 

around 16 kbps. Toll quality SBC can ba achieved at a rate of 24 kbps. For toll qualie voice 

at lower rates the coder must be able to dpnamicaiiy adapt its fiequency bands to follow 

the three major speech formants- These more sophisticated coders Save bandwidth and 

maintain quality by deleting those bands not currently carrying the high-energy formants. 

Static sub-band c o d a  generally use Adaptive PCM to qusntize the changing amplitude 

levels as the formants move between bands. DPCM and ADPCM are not particuiarly 

effective due to the reduction in spectral redundancy in each of the narrow bands. 

5.2.5 Vector Quantization Techniques (Anaiysis by Synthesis) 

Vector Quantization (VQ) is one of the more sophisticated methods for speech signal com- 

pression. The VQ system petfornui a pattern matchhg operation between a set of some 

relevant input parameters and a codebook of representative vectors. The system achieves 

a considerable compression factor by transmitt ing the vector index to the teceiver instesrd 

of the vector itself, The receiver performs a look-up operation in a matcbing codebook to 

reproduce the vector contents. The system input can be any parameters appropriate to 

represent the speech signd; PCM samples, LPC or pitch prediction coefficients, or even 

cepstral coefficients. 

System performance is generaiiy limited to a tesolution of r = log, N/k bits pet vector 

component, where N is the number of vectors in the codebook and k is the number of 
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speech parameters in the vector. This approach dows fractional bit rates for individual 

components, an dvantage not found in other coding schemes. VQ aiso has the effet of 

reducing the average distortion as compareci to scalar quantization methods. 

The pattern matching operation is the most chdenging aspect of the system. The 

algorithm must search the codebook for a vector best representing the input parameters. 

Evaluation is made on the basis of sorne distortion measure between the input vector x and 

the candidate vector y. Search size is a Iimiting factor in these systems. Practical systems 

typically limit the possible dynamic range of the vector to be quantized. 

The most sophisticated of the vector quantization coders employ a technique known as 

AnaIysis by Synthesis Predictive Coding. These systems transmit LPC parameters and a 

vector index for an approximation of the excitation type- Both sender and receiver contain 

an identical component for synthesising the voice signal îkom the trammitteci parameters. 

The receiver does just that with the parameters, but the sender uses this subsystem to select 

the optimal parameters for transmission. The sender employs a closed loop configuration 

to compare synthesised speech from all possible code vectors to the input vector. The 

code vector yielding the mirùmum distortion mesure is sdected for transmission. These 

coders make the optimal vector choice for the cturertt system state, resulting in a distortion 

measure that is on the order of the system resolution. 

Analysis by Synthesîs systems such as the one described here are refened to as Vector 

Excitation Coders (VXC) of CodeExcited Linear Predictors (CELP) . These systems can 

provide acceptable quality voice at 16 kbps. They are also capable of much lower bit rates 

and are ofien used for secure implementations at  rates of 2.448 kbps. Subjective voie 

quality at these rates is considerably reduced. 

5.2.6 Vocoders 

Vocoders identify and mode1 the primary characteristics of speech. They oEkr a great band- 

width reduction over waveform coders by transmitting only the minimal set a parameters 
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necessary to re-synthesise the s p d  waveform. The disdvantage of vocoders is that they 

are limited to analyshg and reconstructing the speech signal with an a p p r h a t e  model 

of the speech production system. The model can be quite cornplex, and yet still produce 

speech lacking the naturalness of a toll quality signal. 

It is d i f n d t  to compare vocoded speech to wavefom-coded speech since the distortions 

are quite difFerent. Wavef'orm coders d e r  primarily nom additive noise due to quantiza- 

tion. Vocoders rarely have such backgrotand noise but rather, Suna fkom reconstruction 

deficiencies such as whisties, burbies, buzzinesç, harshness, and mufaed quality. Increasing 

the bit rate in vocoded speech does not generdy produce a noticeable improvement, as the 

limitation in these systems is in the vocoder models- To the extent that the two approaches 

have been compared, it was found that a phase vocoder was apptoximately equivalent to 3 

bit log-PCM speech (231. 

Performance improvements can be obtained by the combination of SBC at the more 

crucial Iow fiequacies and phase vocoding at high fiequenues. This hybrid coder can 

achieve high quality speech results at rates of 16 to 20 kbps. 

Currently, the minimum achievable bit tates are obtained by phonetic vocoders. These 

devices recognize and transmit codes for the phonetic content of the input speech. h u m -  

ing approximately 42 phonemes in the English language and a normal speech rate of 10 

phonemes/s, the basic minimum speech rate could be as low as 10 log2 42 = 54 bps. For 

a broder implementation where there are 1560 possible variations on the basic phonemes 

(due to articulation constraints) and at a relatively high speech rate of 40 phonemes/s, the 

rnmcimum rate would be 40 log2(42 x 1560) = 640 b p .  

Extending compression aigonthms beyond the analysis of the physical speech production 

model leads to a somewhat qukotic specification for the identification of the semantic 

content of the spoken word. User response to such an ideal device would likely be mixecl, 

however, as many conversations would too easily be identified as containhg information 

rates approaching zero. In any event, such a device is beyond our m e n t  capabilities. 
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5.2 .? Summary of Coder Characteristics 

Some of the relevant characteristics of the codm discussed above are outlined in table 5-1. 

This table indicates the generd sense that the higher the speech qualie, the bigha the 

corresponding bit rate and that achieving lower bit rates generaliy requires a more sophis- 

ticated algorithm. 

Bit Rate 
WPS) 

96 
64 
58 
32 
16 
16 
4.8 
2.4 
1.2 
0.2 

PCM 
log-PCM 
DPCM 

ADPCM 
ADPCM-VQ 

SBC 
CELP 
LPC 

Formant 
P honetic 

very low 
low 
low 

low-medium 
medium 
medium 

vers bigh 
high 

very high 
very high 

toll 
toll 
toll 
toll 

communications 
communications 
commUIIicatious 

s ynthetic 
synthetic 
synthetic 

Use 

common 
common 

some 
some 

research 
research 
some 

cornmon 
research 
research 

Table 5.1: Properties of Some Speech Coders 

Figure 5.1 summarizes the resdts of table 5.1 in a more quaiitative manner (after [l6]). 

The figure indicates in general terms the performance of known coding methods in a test 

of the subjective voice quaiity c d e d  the Mean Opinion Score (MOS) [64], [65]. 

There is ciearly a teiationship between the parameters of bit rate, complexity, speech 

quality, and error sensitivity in secure speech communication systems. In the foilowing sec- 

tions we will develop modeis of quality and bit rate for the class of speech coders commonly 

used in secure applications. 

5.2.8 Representative Speech Coders 

It would be infeasible to perfotm experimental work on ail possible variations of waveform 

coders and mcoders, particularly when researchers are continudy iatroducing improve- 

mentis to their algorithm. To obtain results that are relewnt to the study of secure speech 
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Figure 5.1: Subjective Quality Versus Bit Rate 

communication systems, and that &O refîect the generd state of practical coding achieve- 

ments we have selected a subset of coders for our expdental  work. 

The set indudes the foUowhg coders, for the foilowing reasons, 

1. CCITT G.711 standard plaw PCM [14]. The jdaw PCM quantization forms the 

standard for toil-guaiity speech communications and is the standard input to 0 t h  

more sophisticated coders. 

2. 32 kbps DPCM [22]. This simple non-adaptive coder represents an intermediate step 

between PCM and more sophisticated waveform coders such as ADPCM. The non- 

adaptive predictive filter reduces temporal redundanq. 

3. CCITT G.721 ADPCM [66], [21]. This dual-adaptive ADPCM coder represents a high 

standard in wavdorm coding that is used in a large number of practical applications. 

In addition, the CCITT G.723 standad has been applied to provide variable rate 

ADPCM coding at 24, 32, and 40 kbps. These additional rates ailon a wide coverage 

of potential bit-rate ranges for speech coders. 
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4. Federal Standard 1016 4.8 kbps CELP coder [67]. This sophisticated design forms an 

accepted reference point for other vocoder desïgns and achieves an attractively Iow 

bit rate. The coder is widely used for Iow bit rate appiicatiom. 

Presented in Appendix G are b r i e fddp t ions  of the software a l g o r i t h  used to imple- 

ment the representative coders. A study of the SNR performance of these coders is provideci 

in Appendix HI 

5.3 Rate-Distortion Measures 

There is a theoretical bais for the relationship between the rate and quality of a transmission 

that is defined for an optimal coding of the process. The ratedistortion b c t i o n ,  R(D) , 
indicates the minimum rate that may be achieved for a given levei of distortion in the 

source coded signal [57]. This relationship can give insight to the behaviour of rate and 

quality parameters in the class of non-optimal practical coders of interest to secure system 

designers - 

5.3.1 Memoryless Sources 

The quantity R(D) is defined by the minimum wlne of mutual information between the 

source coder's input and output that is needed fot signal reconstniction 6 t h  a fidelity of 

D. 

We can derive bounds on R(D) for the dass of stationary memoryless source processes. 

Using a mean squared error distortion measure n e  can derive the MSE generaked Shannon 

lower bound, R'(D) . We define the set of admissible transformations from X to Y as those 
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pairs (z,  y) where the MSE distortion, E[p(z,  y)] is bounded by D. Therefore, 

Ifwe let 4(DY) = H(XIY = y), and 4(D) 

is achieved by, 

where ne utiüee Jensen's inequality for H(XlY), a concave hiaction. We obtain a general 

lower bound by assuming the maximum achievable 4(D).  It can be shown that the con- 

ditional entropy, H(XlY),  is maximized when X has a Gaussian distribution. Hence to  

form our lower bound me choose, r n d + ( D ) )  = 6 log21reD, the entropy of a memoryless 

Gaussian signal with variance D. This gields the the generd lower bound, 

1 
R*(D) 2 H(X) - - log %el) . 

2 

As Berger noted in [68], an upper bound on R(D) can be defineci by the rate-distortion 

curve of the memoryless Gaussian pcocess, which he proved to be the most difficuit source 

with a fixed second moment to reproduce with respect to the squared error criterion. A proof 

of this result is presented in Appendix 1. The rate-distortion h c t i o n  for any memoryless 
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distribution is therdore bounded above and bdow as 

where, 

5.3.2 Sources with Memory 

Sources with memory permit greater data compression than memorgless sources as it is 

often possible to take advantage of the temporal correlation in the signal. For a given level 

of distortion, these sources may be encoded at a lower rate than similar, but unco~dated, 

sources, 

A distortion-rate fiuiction has been derived for the correlated zero-mean Gaussian source 

in the work of Kolmogorov [69] and Berger [68]. Sirnplifying this work yields a distortion-rate 

hct ion for the Gaussian source under the conditions of smaii distortions. This simplified 

distortion-rate function is, 

where y2 is defined below and distortions an bounded by the minimum of the power spectral 

density of the process, 

This simple function, 6om [22], maLes ose of the spectral flatness m e m e  (&) pre- 

sented by Makhoul and Woif in [TOI. The stm is the ratio of the geometric and arithmetic 

means of the power spectral density of a process and has the range O 5 r2 < 1. It is defined 
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where S(wk) is the speech energy within a fiequenq bandwidth of a(k - i ) N ,  centaed 

at wk. The spectral flatness measure is a d tool for describing the shape of a power 

spectral density, and hence the correlation in the source, by a single value. The inverse of 

the & is a measure of the wavefotm predictability, often refmed to as the prediction gain. 

As in the case of memoryless sources, we can bound the rate-distortion fimction of a 

source with memory. For a given levei of memory in the source, as expresseci by the sf in 

rneasure y2, we can upper bound the funetion with the rate distortion function of a Gaussian 

source with the same characteristic of memory. As a Iower bound, we refkr to the derivation 

of the MSE generalized Shannon lower bound in equation (5.3). O u .  general lower bound 

was achieved by assuming the maximum possible value for 4(D) in order to minimise the 

rate-distortion function of equation (5.1). The presence of memory in the source does not 

justify the modification of this assurnption in deriving a Iower bound. 

The rate-distortion 

follows, 

function of a generai source process with memory is bounded as 

where, 

The corresponding distortion-rate bounds are, 
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5.3.3 Qoality-Rate Bounds on the Speech Process 

Accurate distotion-rate boonds can be obtaiaed by evaluating equation (5.7) using mea- 

sures specific to the conversational speech process. We can then derive a normalized mea- 

sure to represent a quality-rate function for the process that will serve as a refisence for the 

expetimental quality m e m e s  presented in section 5.5. 

To determine an upper bound for the process we computed a spectral flatness measute 

of = 0.2 accorduig to equation (5.5) for a large sample the speech process. The power 

spectral density of this process is presented in figure 5.2. Using equation (5.7) we can define 

the upper bound on the distortion-rate function to be a Gaussian process with memory 

characteristic equivalent to y2 = 0.2. 

Figure 5.2: Power Spectral Density of the Speech Process 

The sfin of 0.2 indicates a speech predictability measure for the source process that is 

lower than that usuaily reported for speech. This lower predictability is the product of our 

definition of the source process as includiag al1 conversational English speech at plaw PCM 

fidelity. The database used to compute the spectral flatness measure was verp large, and 
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contained many difFaent speakers with diaerent voice characteristics, making generalized 

prediction of the source difficult. 

A lower bound is defined by the MSE generaiized Shannon lower bound and rqu ire s  an 

accurate estimation of the entropy rate of the s p d  process. Drawing upon the entropy 

rate estimate of H(X) = 2.79 bits/sample computed in chapter 3 n e  can evainate a lower 

bound for the conversational Engikh speech signal according to equation (5.7). 

From these distortion-rate bounds we can derive a pair of quality-rate bounds for the 
3 D R  speech signal. Presented in figure 5.3 is a normaised qualie measure, +., derived 

fiom the upper and h e r  distortion-rate bounds of the speech process. 

This figure indicates the region in which we can expect to bound the optimal petformance 

characteristics for coded conversational 64 kbps plaw PCM speech. The bounds also serve 

to indicate the apparently logarithmic relationship between the rate and quality in an 

optimal source coder. We must recognize however, that this level of optimal performance 

may only be achievable by a coder of infinite, or at l e s t  infeasible, complexity. To fiirther 

our study of secure speech communication systems we must explore the relationsbip between 

qualiw and rate that is achieve by practical compIexitp-limited source coders. 

5.4 Objective Quality Measures for Speech 

In order to derive an operational rate-distortion model for real speech coders we must 

determine an appropriate measure of q u e  with which to quantify distortions of the 

speech process. Typicaily, the best measmes of quality are those derived ftom the subjective 

evaluations of human listeners. This type of evaluation is difEcuIt, time-consirming and 

expensive to perform accurately; we therefore desire an objective quaiity assessrnent which 

can be easily computed and shows a high correlation to the results of human preference 

tests. 

More than ten years ofresearch were petformed at  the Georgia Institute of Technologg in 
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Figure 5.3: Quality-Rate Bounds for the Real Speech Process 

i 
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pursuit of relevant objective speech quality measures. The major contributions of the work 

> - Ewact Shannon bound: H(X)-2-79 b/samp - - Real Gaussian bound, sfm u 0 2  

are summarieed by Quackenbush, Barnwell, and Clements in [61]. This research subjected 

- 

a large database of 17.2 hours of speech to a variety of moderate distortions originating 

fiom transmission, coding, and other sources of corruption. The distorted and original 

- 

speech samples were then evaiuated for subjective quality with the Diagnostic Acceptability 

!E z 
0.75 

O -7 

Measure [71] and a suite of objective quaiity measures. 

- - 

I I * m , I . 

The authors of [61] identifid a large set of speech distortions that occm in the coding 

O 0.5 1 1.5 2 2.5 3 3 -5 4 
Rate R (biwsample) 

and transmission of digital speech. This work was particularly useful for our purposes 

because it included distortions present in PCM, Adaptive PCM, ADPCM, LPC, Subband 

and vocoding systems. In addition, pure t h e  and fiequency domain efFects such as additive 

noise, clipping, echo, and lowpass, highpass and bandpass filtering were considered for their 

effect on subjective quaiity. 

In selecting relevant objective speech measures and typical distortion types, the authors 

referred to a significant body of prior work, induding [72], [73], [74], and [75]. A partial 
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List of the c o d a t i o n  coefiicients they obtained behreen subjective measures and objective 

evaluations are sumniarized in table 5.2. 

Objective Speech Quality Measure 
SNR 
segment al-SNR 
fiequency variant Seg-SNR 
Itakura energy ratio 
Linear spectrai distance 
Inverse linear spectral distance 
Log spectral distance 
Polynomial regession modelling, 

Spectral distance 
Requency variant log spec. distance, 

LPGbased 
Filter bank 

Composite measmes, 
Simple & fieq. var. measures 
Patametric measures 

Table 5.2: Correlation of Objective Measmes to Subjective Measmes 

From the correlation results of table 5.2 it is dear that a single simple objective measure 

of speech quality is not capable of perfect conelation with subjective measures ovei: aU pos- 

sible speech distortions. Some of the objective m e m e s  do, however, indicate a reasonably 

close conespondence to the subjective results. W e  must note that the resdts for the SNR- 

based correlations were compiled exciusively on the basis of distortions of the class that 

could be produced by wavdorm coders. These r d t s  do not include distortions classifieci 

in [6 11 as vocoda-type, sub-band, and fiequency domain distortions. This test riction was 

imposed because signal-to-noise measmes are only appropriate for distortions that produce 

a facsimile that can be time-aligned with the original signal. Many of the non-wavefonn 

type of distortions produce SNR evaluations that are unjustifiably low, despite having a 

reasonable subjective qualiQ level. This is typically due to the difnculty of time-aiigning 

the original and coded signals for compatison. 
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The majority of out representative set consists of waveform coders, with the exception 

of the CELP algorithm. With this in mind, we have identifiecl the segmental-SNR as a 

suitable objective meamre for evaiuating the q u e  of speech coders under the conditions 

of a secure communications channel. Experimental evidence to be presented in the following 

sections will v e e  that the segmentai-SNR restùts obtained for CELP-coded speech are stiU 

reasonably consistent with the results of wavdorm-coded speech. 

The segmental-SNR measure is defineci as, 

where z(n) is the original signal, zd(n) is the distorted signal, N is the segment length and 

M is the number of segments in the signal being analysed. The segmental-SNR measure 

allows an unbiased measure of both high and low amplitude portions of the signal. The 

segmental-SNR cornputes short-term SNRs over a set of consecutive sample segments and 

averages the results. This measurement technique parallels one characteristic of the human 

auditory system in that a short-term noise burst will have only a limited effect on the overd 

assessrnent of quality. This similarity to the natural human response mechanhm helps to 

explain the correlation between the segmental-SNR and subjective listening mezwrements. 

Referring to the correlation tesults of table 5.2 we see that with a measure of 77%, the 

segmental-SNR mesure has good relevance to subjective evaluations. In addition, it is an 

attractive choice for a quality index due to its relative simplicity. 

We note that while the frequency-weighted segmental-SNR achieves an excellent corre- 

lation mecsure, it is significantly more complicated to compute. Simüarly, the composite 

measutes proposed in table 5.2 are relevant to an even broder class of distortions, but 

cannot be easily integrated into our models of speech quality. 
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5.5 Operational Rate-Distortion Results 

Rate-distotion performance evaluation of secure speech communication systems is compii- 

cated by the hard-limiting nature of most encryption devices. W e  will move away from the 

purely theoretical analysis of rate-distotion performance to consider the impact of Channel 

noise on the subjective quality of a secure speech system. Using experimentdy deriveci 

segmental-SNR measures for the representative coders under a varieS. of channel condi- 

tions, we wi i l  present a set of operational rate-distortion mmes .  These c w e s  will serve 

to represent the relative performance of our speech coders under secure communications 

conditions and will allow us to postdate models of quality as a fwiction of redundancy- 

5.5.1 Testing Methodology 

To determine operational ratedistortion curves for the set of representative coders we per- 

formed a set of experiments on a large volume of spee& data. The testing methodology 

is represented in the block diagram of figure 5.4. A database of speech samples was sub- 

jected to a variety of controlled distortions. The distorted signal was then compared ta the 

undistorted original according to an objective quality evaluator. For the reasons discussed 

in section 5.4 we chose the segmental-SNR measure to evaiuate the distortion. 

The testing methodology outlined in figure 5.4 was applied to evaluate the relative qual- 

ity of the various speech coders under noiseiess conditions, and &O under a wide variety of 

non-ideal conditions relevant to encoding in a cryptographically seclled environment. These 

non-ideai channe1 characteristics were controlled by the channel simulator also indicated in 

the figure. 

W e  have noted the difEculty of applying SNR-type measures to signals ôffected by non- 

wavefom-type distortions as defineci by Quackenbnsh, and consequently recognized the 

potential difficultg. of obtaining relevant measures of CELP coder quality. To compensate 

for time alignment difficulties in segmental-SNR measurements of CELP coded speech, 



CHAPTER 5, BIT RATE AND QU'MITY MODELS FOR SECCJRE SPEECH 

SYSTEMS 
- 

Speech 

Objective 

Q M t Y  
Evaiuator 

Figure 5.4: Block Diagram of Segmental-SNR Testing Methodology 

the testing methodology inciuded a provision for automatic re-alignment of the onginal 

and distorted waveforms. The testing algorithms were designed to perform periodic cross- 

correlation meamires of the original and distorted speech waveforms and to re-align the two 

signais within a narrow band of permitted &sets. 

The test system was monitored and compared to subjective Listening resuits in order 

to ver* its accuracy. The band of permitted o&ts na9 intentïonally ümited to ensure a 

fair cornparison of the speech coders, and a report of re-alignments wa9 generated for each 

source file to ensure reasonable results. In generd, CELP coders were found to be stable 

in noisdess envkonments, and to degrade gracefully under noisy conditions. The waveform 

coders were &O eduated using adaptive re-alignment, but were found to be stable under 

aU but the noisiest chamel conditions. 

The objective quality evaluator was implemented as the segmental-SNR measure defined 

in equation (5 3). A segment length of 128 samples was used for all experimental measures. 

This segmental-SNR eraluator assigned a maximum SegSNR measurement of 35 dB to 

noiseless reproductions of the s p d  signal. Measurements of (35 - A) dB indicate a A dB 
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distortion of the onginal signal. 

5.5 -2 Quality Mode1 Source Database 

The source database for these operational quality measurements was a subset of the SWITCH- 

BOARD database, which was defined in section 3.2 to represent the conversational English 

speech process. The subset seiected induded only those files judged by the SWITCH- 

BOARD transaibers to exhibit maximum transmission quality, and the absence of non- 

speech sounds such as Iine noise, background noise, and echo. Examples of the tramcriber 

records are reproduced in Appendix C ,  In addition, the fîles were reviewed to ensure a high 

subjective quaiïty level. This selection procedure ensured that the uncoded source database 

ciosely resembied the pute p-law PCM encoded English speech process defineci to be our 

source process. The difüculty of this selection procedure was justifieci by the need for a 

nearly-uncorrupted source database with which to test the speech coders. The procedure 

was feasible ody due to the reiatively small size of the subset, and codd not be repeated for 

the enormous database useù in chapter 3 to measure the entropy rate of the speech process. 

A total of 45 data files were selected, each containhg speech recorded for two speakers. 

This database provided a total of approximately 450 minutes of conversationai speech data. 

5.5.3 Noiseless Rate-Distortion Results 

The operational rate-distortion performance of our set of representative speech coders was 

determined under noiseless channel conditions. The entire quality mode1 database was 

subjected to encoding, decoding, and segmental-SNR cornparison accordhg to the testing 

methodology outhed in figure 5.4. In this study, as in each of the foilowing studies, quality 

measures were computed for each of the 45 data files independently, and then the means 

of these measures, and associated 95% confidence intervals were computed. The resdts of 

this study are presented in figure 5.5. 

The operational rate-distortion m e s  of figure 5.5 are dearly debed  by an exponential 
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Figure 5.5: SegSNR Measmes for Representative Coders 

relationship between rate and distortion, which results in the linear relationship between 

segmental-SNR and rate observed in the figure. 

A weighted linear regression analysis was performed on the experimental results, fieldhg 

a model of the form, 

1.142 + .528R (dB), O < R < 64. 
SegSNR(R) = (5-9) 

35 (dB), R 2 64, 

for rates of R kbps. This iinear model is &O uiduded in the figure. An upper bound on 

quality of 35 dB was imposed to indicate that plaw PCM signals can always be perfectly 

represented at rates greater than 64 kbps. 

Referring to the theoretic quality-rate bounds of the speech process presented in sec- 

tion 5.3, figure 5.3, and the SNR-rate curves in Appendix H, figure H.1 we note a dose 

correspondence to the operational resdts of figure 5.5. 
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5.5.4 Noisy Channel Condition Results 

It is important to obdserve the behavionr of the representative codets under theV expected 

operational conditions, and this admits the poasibili@ of noise being introduced to the 

ciphertext during transmission. 

Noise Types 

To evaiuate the d e c t  of noise on secured speech transmissions we simulated a variety of 

singlebit noise conditions and applied them to the coded speech signal as indicated in figure 

5.4. In anticipation of a variety of channe1 conditions, we first simdated bit errors with 

probabiiïty distributions modelied by Gaussîan, Uniform, and Exponential functions. For a 

chosen bit error rate, the channel simulator imposed bit errors distributed with the desired 

characteristics. 

To determine the &ect of these different mise types on the coded speech quality we 

perforxned a set of quality measurements on aU of the waveform coders using a s m d  subset 

of the quality database. The resuits of this study are presented in figures 5.6, 5.7, and 5.8. 

Analysis of the results indicates that the probabiliw distribution of the noise process made 

little ciifference to the objective measurements for this subset of noise types. 

Given the results of this study, we selected the exponential noise distribution to generate 

more comprehensive results for all coders in our representative set. Presented in figure 5.9 

are the means and 95% confidence intervals computed for the entire qualie database of 450 

minutes of coded speech subjected to exponential noise conditions. 

Of particdar interest in this figure are the indications that the more cornplex coders 

become prekable to shpler coders under increasingly noisy c h a ~ e l  conditions. There are 

two explanations for this behaviour. Pirst, the more sophisticated coders, particularly the 

CELP coder, implement better models of the speech production process and hence natwally 

tend to synthesize more natural speech saunds in the presence of chamel errors. Second, 
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Figure 5.6: SegSNR Measures Under Gaussian Noise Conditions,  BER 

higher leveis of compression achieved by the more sophisticated c o d a  means that a smdler 

number of bits wiU be subject to channei errors. While the impact of an error is greater 

when redundancy is removed fiom a message, bit rate reduction can compensate to some 

extent. In addition, ali of the more cornplex coders have some error-recovery capability. 

The DPCM and ADPCM coders "forget" bad inputs over a period of t h e ,  and the CELP 

coder includes some fornard error correcting ab*. 

The impact of butst enors was alsù measured and found to have a greater aect on 

objective speech qudity, as might be atpected. Rather than present the results of these 

studies here, we note that a burst error may be viewed dinerently in the context of a secure 

communication session. This le& us to the development of two modeis for errors under 

cryptographie communication requirements. 
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5.5.5 Cryptographie Impacts on Noisy Channeb 

Under a cryptographicaliy secufed communication session, channe1 errors can have a sig- 

nificant impact on the decrypted speech signal. The type of enetyption algorithm wiU 

determine the extent of this impact. We wii l  w u m e  that cryptographie synchronization is 

maintained, and that we do not experience the a e c t s  of deliberate interference caused by 

an active attacker. If this is not the case, measurement of quaüty during the unsynchro- 

nized segment is trivial: weli designed enerpption algorithmg wi l l  produce a signal entirdy 

uncorrelated wïth the intended signal and the quality aill be minimal. Ifsynchronization is 

maintained, there are three possible modes of behaviour in response to a channei bit error: 

1. If the eacryptot is a sgnchronous stream cipher, a channe1 bit error wil l  result in a 

single error in the coded speech signal. 

2. If the enayptor is a sa-syndironizing stream upher, a charnel bit error WU propagste 

to cause n subsequent and sequentid bit errors in the coded speech signal, where n is 

the number of states in the cipher. 
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Figure 5.8: SegSNR Measures Under Exponential Noise Conditions 

3. If the encryptor is a block cipher, then a channel bit error wi l l  result in a spurious 

decryption of the entire cipher block of n characters. This error WU d e c t  all coded 

speech signal bits f&g within the dea-yption block length, even those transrnitted 

before the occurrence of the charme1 error. 
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The cause of these effeets is discussed in detd  in section 4.1. In otder to study the 

&ect of these cryptographie characteristics on the quality of coded speech transmission n e  

identifjr two models of cryptographic impact. The k t  modd appiies to synchronous stream 

ciphers, where channe1 erron correspond directly to mors in the coded speech signal. These 

cryptographic impacts can thetâore be modelied by the bit enor genttators used in section 

5.5.4. The second model can be applied to both self-synchtonizing stream ciphers and block 

ciphers of a given complexity or block size, n. h both cases a single bit error results in an 

error in n coded speech signai bits. Assiiming the noise source to be a stationary process, 

the forward ermr propagation effmt of the self'-synchroaieiag cipher and the block error 

effect of the blodc àpher wiU have the same average impact on quaiiQ. In the second model 
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Figure 5.9: SegSNR Measures and 95% Confidence Intervais Under Exponential Noise Con- 
ditions 

we observe that a channel error will comespond to a fixed-duration burst of noise on the 

Channel. 

The rnodels used to describe the effet of error on cryptographie communication systems 

are summarized in table 5.3. 

Encryption Type 
Synchronous stream ciphers 

The first encryption error mode1 can be adequately represented by the results of figure 

Error Mode1 
Bit error generator 

Self=synchronous stream cipheis (n states) 
Block cipher (n bits) 

5.9, while the second encryption error modd may be computed using simulated block errors 

n-bit block error generator 
n-bit block error generator 

of a fixed duration. A block encryption error simulator was developed using an exponentially 

Table 5.3: Cryptographie Error Simulation Models 

distributed block error modd and a chosen constant block error length. This error simulator 

was applied to the waveform coders at a vafiety of block error rates, for a îmed block error 
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siae of 64 bits. This wodd be a typicd block siae for encryption coders sueh as DES. The 

resdts of this study are presented in figure 5-10. 

0 64K PCM 
.-.-- 32K DPCM 

- 24K AbPCM 

.-.- 32K AOPCM 

- - 40K ADPCM 

. . 

Channel bit Emr Rate 

Figure 5.10: SegSNR Measures for Encrgption Under 64 Bit BIock Emor Conditions 

These results indicate an inversion of the objective quality eduations for our wavefotm 

coders beyond a given channel enor rate. We note that reduction in quality is more rapid 

than that experienced under single chaanel bit error conditions. This is obviously due to 

the much greater signal disruption caused by block mors. It is quite interesting to note, 

however, that belon the threshold of a IO-' bit error rate, coder performance is mostly 

similar to the results of figure 5.9. 

5.6 Bit Rate as a Function of Redundancy 

W e  will conclude this chapter by presenting a modd of source coded bit rate as a function 

of residual signal redundancy. 
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Detinition 7 (h idua l  s îgna l  redundancy) We define the msidd Jignul mdundancy 

as the d i ' i c e  between the minimum 7 d e  mquired to Ènrmit the coded speech signal and 

the adud bit mte achièwed by the source coder- 

This definition corresponds exactly to  the per-letter redundwy measurement used for 

the unicity distance cdcdation in section 4.4. The entropy rate, H, of the speech signai 

represents the limiting bit rate for lossless compression of the speech signal. If we represent 

the entropy rate of the conversational speech process by H bits/sample, and the actual 

source coded bit rate by R bits/sample, then the minimum pet-sample redundancy that 

may be achieved by a source coder operating at rate R is, 

In our experimentai work we d find it more ptactical to scale these measures by the p- 

Iaw PCM sampling rate of 8000 samples/second in order to  present models of bit rate and 

redundancy in units of bits/second. 

The rate-redundancy relationship of equation (5 .IO) represents the minimum redun- 

dancy that may be obtained by a noiseiess source coder. If the source coder is not noiseless, 

then some of the source proceas information is destroyed by the coding operation and the 

rate of red source information transmission is some H f  5 H. 

An upper bound on the rednndancy of a coded speech transmission is defineci by the 

rate of that transmission. In cases where the speech signal information has ben completely 

deçtroyed by the source coding operation, then al1 of the coded signal may be considered 

to be redudaut as it does not convey the desired infonnation. The maximum redundancy 

at a given transmission rate, R, is simply, 
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These simple linear bounds define a region for the ratetedmdanq performance of 

practicai speech coders that is identifieci by the shaded portion of figure 5.11. W e  can 

improve the accuacy of thir rate-reduudancy modei for speech c o d e  by quantimg the 

extent to which the coding operations destroy speech process information. 

30 40 

Rtdunàancy Rate D (kbps) 

Figure 5.11: Linear Bouxtds on Rate-Redundancy Performaace of Speech Coders 



C W T E R  5. BIT RATE AND QUALITY MODELS FOR S E C U .  SPEBCH 

SYSTEMS 135 

5.6.1 Divergence Measures for Coded Speech 

The rate of tme idormation content in the coded speech signal was describecl above as 

H f  < - H. The actual rate of desired speech information in the coded speech signal wil i  

be lower than that of the original in any coder allowing distottion of the signal. When 

information is destroyed in coding the signal for t r u o n  it cannot be recovered upon 

decoding. We would perfonn entropy rate measurements of the coded speech process to 

obtain the desired redundancy results, but it is not possible to distinguish between tme 

speech information and coding distortions in the recovered speech signal. An entropy rate 

measurement of distorted speech could be entirely uncorrelated with the original entropy 

rate as a result of additive noise. 

To determine the amount of distortion added to the speech signal by the coding operation 

we can compute the Kdback-Leibler distance measme [76]. If we have two source processes, 

P, and Q, with probabüity m a s  functions p( z ) ,  and q ( 2 )  respectively, then the Kuilbadc- 

Leibler distance measure between P, and Q is definecl by 

~ ( p l l q )  = c *(r) IO& '4 (bits), 
=EX r(4 

where ne define O log p = O, and p log = a. 

The Kdback-Leibler distance, which is also called the relative entropy, is not a true 

metric in that it is not symmetric, but it does provide a us& measure of the distance 

between two distributions. Consider a coduig operation where we wish to transmit the 

source process P, but use a coding operation designed for process Q: it cam be shown that 

to reconstmt P exactly, we must send additional information at a rate of D@llq) [77]. 

More accurate divergence measures for processes with memory can be obtained by ex- 

tending the Kuilback-Leibler distance measures to higher mode1 orders. For &th order prob- 

ability mags fimctions, p(zf) and q(zt),  ne compute the generalized pet-symbol divergence 
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measure, 

By applping the Kullback-LeibIer distance measure to the ptobability distributions ofthe 

original speech process and a distorted version of that process we can determine the amount 

of speech information destroyed by the coding process- We can thetdore use this measure 

to estimate the extent of the redundancy introduced by each of out representative speech 

coders. The lower bound of equation (5.10) incikates the minimum level of redundancy 

present in any coded speech signal. The Kullback-Leibler distance measure indicrrtes the 

absolute divergence of the transmitted signai fiom the real signal. Hence, if the transmitted 

signal diverges by D'@I l q )  , then the decoded message contains only, 

bits of information. 

5 -6.2 Relevance of the Divergence MeasUres 

The Kullback-Leibler divergence measure will not yield relevant distortion measures for all 

types of coding distortion, To illustrate this problem consider the case of a coda which 

sirnply introduces a time-varying dday to a stationary input process. The input and output 

of such a coder would have identical statistics and so acbieve a zero distortion measure, 

despite the presence of perceptudy relevant and extreme distortions. 

The purpose of al1 practical speech coders is to reproduce a reasonabIe facsimile of the 

original proces, so the Kdback-Leibler measure is appropriate for our model. However, it 

is clearly necessaty to confirm the relevance of the Kullback-Leibler distortion measures if 

they are to be applied in this manner to new source processes or source coders. 
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5.6.3 Divergence Measnres for Representative Speech Coders 

A series of experiments were performed to determine the average distortion introduced to 

the speech signal by the coding operations of our reprarentative coders. The testing method- 

ology used was similar to the methodology useà to compute segmental-SNR measures. A 

database of speech proceas files r a s  mbjected to encoding and decoâing by meam of each of 

the representative source coders. First, second, and third order probability mass functions 

of original and distorted signal5 were computed by maximum likelihood estimation, and 

then Kullback-Leibler distance measures were cornputeci accorduig to equations (5.12) and 

(5 -13). The testhg methodology for information divergence measures is summarized by the 

block diagram in figure 5.12. 

Dôtabase 

i- Divergence 

Evaluator 

Figure 5.12: Block Diagram of Divergence Testing Methodology 

Divergence Mode1 Source Database 

A source database of 127 conversations, totaling 1269 minutes of speech data, was compiled 

Fom the SWITCfFBOARD database. This database containecl the entire SVVITCHBOARD 

subset of 45 files used to compute segmental SNR measurements in section 5.5 and an 



C W T E R  5. BIT RATE AND QUUITY MODE&S FOR SECURE SPEECH 

SYSTEMS 138 

additional 82 conversations. The additional conversations were selected on the bais of the 

subjective evaluations of the SWITCHBOARD transaibers, but were not independently 

evduated for hi& subjective quality. The additionai conversations admitteci to the database 

were those labeled as exhibithg maximum transmission quality and the absence of non- 

speech sounds such as Iùie noise, background noise and echo. The seiection procedure was 

designeci to easure that the maximum likelihood estimations of probability distributions 

computed for the divergence measurements dosely resembIed those of the speech process. 

First Order Divergence Results 

The entire source database of 127 files was distorted by each of the representative source 

coders as indicated in figure 5.12 to prodnce a large set of divergence measues. The means 

and 95% confidence intervals were computed for each of the coders in our representative 

set. The results, presented in figure 5.13, indicate the divergence of the distorted speech 

fiom the original p-law PCM speech in bits/sample. 

0 -9 I 

GELP ADPCM40 

64K PCM 
0 L  I I 

L 1 - - 
O 1 O 20 30 40 50 60 

€ B i t  Rate (kbps) 

Figure 5.13: Ficst Order Divergence Means and 95% Confidence Interoals 
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The resuits plotted in figure 5.13 indicate the relative fust-order divergence of the rep  

resentative coders. The low divergence of the CELP coder is surptising, considering its 

relatively low objective quality as measured by the segmental SNR study presented in sec- 

tion 5 -5. Low first-order divergence is a result of the CELP coder's vocoding algorithm, 

which simulates the vocal excitation process of speech. The output of CELP-synthesised 

speech will thetefore approximate the distribution of speech in low-order measures, even 

when the bigher order characteristics contain significant distortions as a r d t  of the CELP 

coding process. 

As we have discussed in detail in cbapters 2 and 3, the speech process should be described 

by a model of much higher dimefLSionali@. Hence, while the results obtained from a first- 

order approximation gan t  a us& insight to the divergence properties of our various coders, 

we should apply a higher order study to obtain definitive resdts. 

Higher Order Divergence Results 

Additional Kdiback-Leiblet distance measmes were computed for models of order 2 and 3, 

according to equation (5.13). These measmes were computed for aU representative coders 

using the original 45 source conversations. The entire divergence database was not studied 

m d y  due to the high computationd cost. The results of the fîrst, second, and third order 

divergence mesures and th& 95% confidence intervals are presented in figure 5.14. To 

improve the clarity of the figure, data points at a given bit rate were separated slightly 

according to model order, and labelleci by source coder type. The real data consisted of 

points measured at  exactly 4.8, 24, 32, 40, and 64 kbps. 

These results indicate a generally increasing divergence measure with bit rate reduc- 

tion for the waveform coders. The exception to this d e ,  the CELP coder, continues to 

demonstrate low divergence for low order modelIing. As discussed above, the CELP coder 

synthesizes speech with a model of the vocal tract and will generally approximate speech 

at low model orders. The segmental-SNR measurernents presented in section 5.5 clearly 
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Figure 5.14: First to Third Order Divergence Means and 95% Confidence Intervals 

indicate a large objective distortion in CELP speech, but this distortion is not evident in 

the first to third order divergence measures presented here. 

Additionaliy, the compldty of the coding aigorithm has a significant impact on di- 

vergence, as indicated by the difference between 32 kbps ADPCM and 32 kbps DPCM 

performance. 

It would be desirable to obtain fourth, fifth, and sixth order divergence measwes in 

order to verify the lower-order results computed here and more accurately measure the 

divergence of the CELP coder, but as we noted in chapter 3, high order speech modelling 

is a diEcult task. These higher order measmes were not computed here due to computa- 

tional and time constraints, however we would like to point out that the entropy estimation 

technique presented in chapter 2 could be modified to d o w  a low complexity estimation of 

high order divergence measures. The estimation procedure could be modifiecl by partition- 

ing the generaiized Kuliback-Leibler distance measure into independent partial divergence 
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measures , 

t ~ )  1 L C p(zy )  log2 PB for n > j 1 1. 
q+f EX"+ (2 (.Y) 

Selecting the vectors zy+l E A?-i by a Monte Car10 procedure, we can compile a set of 

partial divergence measmes with which to interpolate the complete nth order divergence 

surface. The resdting divergence surfafe codd then be andysed and interpolated as a p  

pro priate to obt ain teasonable nth order divergence estimates, 

5.6.4 A Rate-Redundancy Mode1 from the Divergence Data 

The first, second, and third order divergence measutes do capture a sufEcient amount of 

information to yield a relevant measure of the rate-redundancy performance of typical speech 

coders, We applied the experîmental data of ail thtee Kullback-Leibler model orders to 

estinate a model of divergence as a hc t i on  of coder rate, 

As we have discussed wlier, the Iow order divergence measwes of the CELP coder 

are misleading and the true CELP coder divergence is expecteà to be much larger than 

indicated by our experïmental measures. For this reason the CELP coder measures were 

omitted when we applied a weighted linear regression analysis to the data in figure 5.14. 

The divergence measures of first, second, and third model orders for the waveform 

coders were fitted by a regression andysis that weighted each data point by the inverse of 

its confidence interval. The inclusion of data fkom ail three rnodel orders was bendcial to 

modelling the divergencerate function as each divergence measure contained information 

unique to its model order, 
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The regressed modei of divergence plotted in figure 5.14 is defined by, 

0.967 - 0.015R (bits), O < R < 64. 
Diplld = 

The linear model seems to satisfactorily describe the behaviour of the representative 

waveform coders. We can furthet jus* the use of a linear model by teturning to the 

experimental segment al-SNR results presented in section 5-5- 

We note that the segmental-SNR defined by equation (5.8) is a rneasute of distortion 

that is based upon the time-series of the original and cüstorted signais. The segmental 

SNR is therefore sensitive to  correlation effécts in the signal that could only be captured 

by higher order probability models. The measurements obtained by the segmental-SNR 

are not directly comparable to the Kuiiback-Leibler distance measure, but they do indicate 

distortions that would be captured by a higher-order divergence measute. 

The segmental-SNR results for our representative speech coders in figure 5.5 were mod- 

elied by the Iinear fiuiction of equation (5.9). This linear model matched very weLl with the 

experimental data, and furthermore wa9 supported by a pair of h e u  theoretic quality-rate 

bounds in section 5.3 and a set of hear analytic modetr of SNR performance as indicated 

in Appendix H. It is reasonable, given these prior observations, to propose the linear model 

of divergence described by equation 5.17 

The predicted model of divergence indicates the relative distance between the original p- 

law PCM signal and the decoded signai, which is als~ in p law PCM format. This divergence 

measure therefore compares two signals that would be transmitted at a rate of 64 kbps. In 

order to estimate the dective divergence rate of the coded signal a9 it is transmitted on 

the communications channel ne scale the divergence estimates of equation (5.17) by the 

coder rate. For source coders using + bits/sample for a rate of R kbps we have the scaling 
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relationship, 

r coded bits 8000 samples 
% I U ~ ~ )  = Dh~d(R) 8 p - 1 ~  P m  bits second 

Scaling fields an effective divergence rate model for speech coders described 

0.01525B - 0.000234R2 (bits), O < R < 64. 

O (bits), R 2 64, 

This function expresses the effective rate of divergence inherent in the coded 

L 

produced by a typicd speech coder. Its principal purpose is to describe the rate at which 

speech information is being destroyed by the coding operation. The efktive divergence rate 

function, presented in figure 5.15, yields some interesthg observations. While the absolute 

divergence measure ofequation (5.17) inmeases ünearip with decreasing bit rate, the &action 

of the total coded bit stream consumed by that distortion follows the more complex eurve 

of equation (5.19). It is apparent that the m a t  sophisticated coders s d c e  a relatively 

small amount of scarce bandwidth to distorted speech components. The medium complexity 

waveform c o d a  contain a relatively high proportion of distorted signal, likely as a result 

of their lower complexity, but achieve a lower absolute distortion. Pinally, coders operating 

at high bit rates need introduce little absolute distortion, and so achieve a relativeiy low 

proportion of effective distortion. 

We can combine the r e d t  of equation (5.19) with the theoretical rateredundancy h c -  

tion of equation (5.10) to propose a model of rate-redundancy performance for typical speech 

coders. For ideal distortionles codas, equation (5.10) describes the relationship between 

bit rate and redundancy: above the entropy rate 8, any additional signaüng, R - H, is 

redundant, while below the entropy rate we have not enough bandwidth to communkate 

bs1 

(5.19) 

bit stream 
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Figure 5-15: Effetive and Absolute Divergence Rate Models 

the entire iaformation stream so dl bits R < H are essential. Non-ideal coders introduce 

distortion to the signal that destroys speech iaformation, as indicated by equation (5.14). 

To express the rate of divergence information contained in the coded speech signal we 

developed the mode1 of dect  ive divergence expresseci in equation (5 .M). 

Dedinit ion 8 (Operat ional Rate-Redandamy Fnnction) Cmbining equations (5. IO), 

(5.14) and (5.1 9) yzel& a meoarie of the redundancy of the typtcal coded speech signal. We 

expmss the generul opemtional mte-redundancy findion for speech coders as follows, 

Presented in figure 5.16 is the proposed operational rate-redundancy function of equation 

(5.20), and the theoretical upper and lower bounds for rate-redundancy defined by equations 

(5.10) and (5.11). 
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Figure 5.16: Operational RateRedundancy h c t i o n  and Theoretic Bounds 

In table 5.4 we summarize the third order Kullback-Leibler measures computed for the 

speech coders and used to define the iinear divergence model of equation (5.17). The table 

indudes the set of operationai redundancy measwes predicted by equation (5.20) using 

the linear divergence model. Also presented in the table are the actual redundancy mea- 

sures, Dmd(R), that would be obtained using the actual third order divergence measures, 

D ~ @ I  l q ) ,  rather that the approximate iinear model of equation (5.17). This table confirms 

the close correspondence between the actual and modelled results a t  all points except the 

outlying DPCM and CELP measutes. As we have noted eariier, the CELP divergence mea- 

sures were not found to be indicative of the tme higher order divergence characteristics. 

The high DPCM divergence is expected for a non-adaptive waveform coder. 

The shape of the operational rate-redundancy function is determineci by the efFective 

divergence rate model computed h m  our experimental divergence measures for the rep 

resentative coders, and by the theoreticai lower bound for redundancy. The curve plotted 

in figure 5.16 displays a distinct discontinuity in the slope of the function at the entropy 
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Cod- 
p-law PCM 

DPCM 
24K mPCM 
32K ADPCM 
40K ADPCM 

CELP 

b t e  (kbps) 
64 

Table 5.4: Actual and Modded Operational Redundancy Measures 

rate of the speech process. This is due to the discontinuity in the theoretical redundaacy 

Iower bound at the entropy rate- It may be reasonabIe to  relax the reqgirement for a sharp 

transition between sub-entropy and super-entropy coding characteristics. if we aiiow for a 

continuous m e  to describe the rate-redundancy lower bound near the entropy rate, then 

the operational redundancy fiuiction of figure 5.16 codd be continuous. Such an adjustment 

tu the rate-redundancy lower bound can not be supported by a theoreticai development, 

and would reiy on assumptions about the perf'ormance of near-optimal coders at  the entropy 

rate, For this reason we prefkr to  use the iower bound predicted by theory. 

We have noted how the Kdback-Leibler distance measures used to develop the opera- 

tional rate-redundancy function could not be computed to as high a model order as might 

be desired. As a result, sigaificant ciifferences in the original and distorted waveforms may 

not have been detected by our measures, and the divergence rate meaçures of figure 5.15 

may be quite conservative. We examineci the e@ect of higher divergence measures by corn- 

puting operational rate-redundancy fiinctions for a set of divergence functions characterized 

by Kullback-Leibler distance h c t i o n  y-intercepts of 16, 24, 40, and 64 kbps. This set of 

potential operational rate-redundancy functions is presented in figure 5.17. 

Figure 5.17 serves to validate the form of the operational rate-redundancy function of 

equation (5.20). The proposed model of rate-redundancy perfotmance for typical speech 

coders is evidently sensitive to increases in divergence between coders, and remains within 

the theoretical rate-redundancy bounds under all conditions. The model indicates that 





Chapter 6 

Experimental Measures for 

Security Models 

The true use of speech is not so much to eqmss our wants as to conceal t h m .  

Oliuer Goldsmith. Oct. 20, 1759. 

6.1 Introduction 

In this chapter we WU develop a set of experimentd entropy measurements with which to 

evaluate the 3 theoretic s e a r î t y  indices d&ed in section 4.7. 

These indices r e q h  meautes of the message entropy, Lep entropy, ciphertext entropy, 

and a measure of message redundancy. Most of these measurements have been derivecl, 

computed, and presented in pnor chapters. In chapter 3 we computed an estimate of the 

speech process entropy using the techniques for entropy estimation developed in diapter 

2. Our definition of the speech process has remained constant throughout this tesearch so 

the computed entropy estimate of 2.79 bits/sample constitutes out measure for the message 

entropy in a senue speech commULLication system. This entropy meanire is independent of 
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any source coding or encryption operations subsequently applied to the speech proces. 

As we diSCUS8ed in chapter 4, the entropy of the key is under the control of the cryp- 

tographer. A maximum entropy of H(K) = K log LK can be obtained by selecting keys 

with unifonn pwbability over the entire keyspace. We will assume that the key entropy is 

dways K bits when keys are K bits long. Measures of key entropy are thetefore depeudent 

only on the choice of encryption algorithm and are quivalent to the key length- 

In chapter 5 we developed a relationship between the redundancy of a coded message 

and the coder bit rate for a class of representative source coding dgorithms. We wül tefer 

to the rate-redundancp modd for speech coders developed in section 5.6 and summatized 

by the operational rate-redundancy function of equation (5.20) for measmes of redmdancy. 

The remaining measure required for a security model is the ciphertext entropy, H ( C ) .  

The ciphertext entropy is dependent on both the coded speech statistics and the encrypting 

properties of the chosen cipher, so it must be computed for the ciphertext processes resulting 

fkom each combination of unique source coding and encryption algorithms. In section 6.2 we 

wiU discuss the broad set of encryption dgorithms that may be used for enciphering speech 

data and select a subset of generaily representative encryption methods. This subset of 

representative encryption algorithms is s m d  enough to ailow experimental measutes of 

ciphertext entropy to be computed for speech encoded by out set of representative speech 

coders. 

The testing methodology and the database used for measuring the entropy of source 

coded and encrypted speech wiil be defined in section 6.3. In this section we wiIl aIso 

discuss how the techniques derived to compute conditional entropies of the speech process 

in chapter 2 were modified to suit the unique characteristics of source coded and encrypted 

speech. 

In section 6.4 we will present the experimental measures of conditional entropy that will 

comprise the data for out security models. This section will inciude a detailed study of the 

convergence properties of direct mesures as a hinction of the size of the speech database. 
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Characteristics relevant to the computation of entropy for encrypteci speech were found 

to cliffer significantly fiom those of unencrypteci speech. As a tesuit of a very large state- 

space and slow convergence chatacteristics, we foand it signiscantly more cüfFmdt to corn- 

pute fourth order entropy for enaypted processes than for unencrypted speech. We wil l  

present the results of our attempts to extend our conditional entropy measures for source 

coded and encrypteà speech in section 6.5. 

Finaily, in section 6.6 we wil l  combine the expetimentd ciphertext entropy results de- 

termined in this chapter with the message entropy computed in chapter 3 and the rate- 

redundancy mode1 deyelopeci in chapter 5 to e d u a t e  the securiw indices proposed for the 

secure speech system. 

6.2 Represent ative Encryption Algorit hms 

We must define a set of encryption algorithms that represent the general performance of all 

encryption techniques and yet is s m d  enough to d o w  qerimental rneasures of ciphertext 

entropy to be computed for each representative speech coding algorithm. 

There are mang possible encryption algorithms available to serve as examples of the 

main characteristics of encrypting transformations. Algorithms bas4  on a block cipher 

design indude the foliowing examples, 

a Data Eneryption Standard [78] [Tg]. This 64 bit block cipher has been a worldwide 

standard for 20 years. Deveioped by IBM for the U.S. National Bureau of Standards, 

t his cipher has successfully resist eà concerted efforts at cryptanalysis. 

0 lucirer [80], [al]. Lu& was a precursor of DES, also designed at  IBM. Although 

Lucifet uses a 128 bit block design, it was shown to be weaker than DES when sub- 

jected to digérential cryptandysis by Biham and Shamir [Ml. 

0 IDEA [83]. This 128 bit key block cipher is considerably stronger than DES and has 
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shown itsclf to be resistant to lmorn forms of cryptanaiysis. Lai has suggested it may 

be immune to differentiai cryptanalysis [84]. 

NewDES [85]. Despite the name, thip algorithm is not directly related to DES. It 

uses a 120 bit key on 64 bit message blocks. 

0 FEAL [86]. This DESliLe algorithm was intended to achieve securitg through a 

stronger round h c t i o n  and fewer total rounds. The original and variations on the 

algorithm have all been vulnerable to diffkrential cryptanalysis [87]. 

REDOC H [88]. This 120 bit key, 80 bit block cipher has been cesistant to differential 

nsptanaiysis [82]. 

Skipjack [89]. This 80 bit Lep, 64 bit block siae algorithm has been dassified as 

Secret by the U.S. Government- It was intended for use in the Clipper key-escrow 

system. Due to the Secret classification Little is known about the algorithm, but it is 

purpottedly a strong iterative block apher (901. 

Algorithms based on a stream upher methodology include these examples, 

Verflam Cipher [36]. The ci-cd one-tirne-pad system can attain perfect secrecy 

when imp1ernented with a running key of Iength equal to the message length. There is 

no passive cryptanalytic attack that can compromise a properly Mplemented Vernam 

upher system [51], [58]. 

O A5 [91]. This is the stream cipher used to encrypt Group Special Mobile (GSM) 

tratnc. The algorithm is b d  on 3 linear feedback shift registers (LFSR's) and is 

vulnerable to an exhaustive attack of z4' encryptions [go]. 

RC4 . This variable key size stream cipher was developed by Rivest for RSA Data 

Security Inc. The encryption dgorithm is propnetary, but a compatible dgorithm 

was published on the Internet [go]. 
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It wouid be infeasible to perform experimental entropy measmes on the ciphertext pr* 

duced by all of these algorithms for each of our representative speech coders, so we have 

selected the DES aigorithm as an elemental encryption engine for h i t e  key systems and 

the Vernam stream cipher as an example of the behavionr of a perfect secrecy system. 

As discussed in section 4.1.2, asymmetric cr3ptospstems are not generally appropnate for 

real-time speech encrpption and will not be included in o u .  representative set. 

The DES encryption engine will be applied in four Merent modes to provide encryption 

operations with a variety of interesthg characteristics The four standard modes of DES 

were defined in [92] to provide a range ofencryption operatiom. In Appendk L we provide a 

description of the electronic codebook (ECB) , cipher feedback (CFB), üpher block chaining 

(CBC) , and output feedback (OFB) modes of DES chosen as representative cryptosystems. 

The use of a single encryption engine for our experiments allows a fair cornparison of 

the effect t hat different types of cipher design have on the entropy of the encrypted stream. 

This faimess is particularly evident as all ciphers use the same key space and have vktually 

equitralent complexity. The Data Encryption Standard design has experienced perhaps 

the closest scrutiny of any conventional private key algorithm and has shown itseif to be 

resistant to known fonns of ayptanalysis. The DES cipher satisfies the fundamental design 

criteria for ciphers suggested in section 4.3, Proposition 2, and so is an excellent candidate 

for study by our information-theoretic security measures. 

6.2.2 The Vernam Cipher System 

The Vernam cipher was describecl in chapter 4 as a theoretically perfect stream apher. The 

ciphertm is created by this system by combining each message bit with a Nnning key bit 

frorn an wipredictabIe source. The output of a Vmam cipher was stioorrtl in section 4.5.1 

to be statisticdy random if the key stream is ais0 random. This cipher serves as an upper 
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bound on aehiewble securie and so is an interesthg cipher for inclusion in o u .  security 

models. Stream ciph- do not introduce the diaraderistics of difhsion or use the mixiag 

transformations outlined in Proposition 2, but satisfp aU other requirements- The Vmam 

cipher achieves perfect secrecy by adding a suffiCient amount of contosion to each message 

bit to completeiy obscure the message information. 

6.2.3 Encryption System Implementations 

The four DES encryption algorithms were implemented in software. It w s  not necessary to 

obtain real-the performance and we were not concemeci with the potential security risks 

of performing encryption on a general use multi-user cornputer system. In the CFB and 

OFB Mplementations a block size of k = 64 bits was used to improve performance. 

A perfect Veniam cipher was simulateci in software using the output of a strong pseu- 

dorandom number generator. Due to the known statistical characteristics of this cipher it 

was unnecessary to  read any real speech data when creating simulated ciphertext, dowing 

a significant swings in processing tirne. 

6.3 Testing Met hodology 
To determine a model of secuity we must compute the entropy of ciphertext produced by 

encrypthg the output of each representative speech coder with each of the representative 

encryption algorit hms. 

The general testing methodology outlined in the bbck diagram of figure 6.1 was applied 

to each combination of source and encryption coder to obtain these measures. Conditional 

entropy measures of maximum feasible complexity were computed to obtain the best possible 

secwlty models. 
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Source 

Database 

Figure 6.1: Block Diagram of Ciphertext Entropy Measwement Methodology 

t . - 

6.3.1 Security Mode1 Source Database 

In order to obtain convergent measures of higher order conditional entropies it was nec- 

essary to expand the database used in chapter 5 for Kullback-Leibl- distance measures. 

The speech data used for the security modei eqeriments included the 127 conversations 

compiled for the divergence measmes and an additional 429 conversations selected from 

the SIVITCHBOARD database. The additional conversations were selected according to 

the transcriber's subjective evaluations of qualie to rn-e the similariv to high qual- 

ity plaw PCM speech. Due to the large volume of data, it was oot possible to confinu 

the quality of each conversation by means of an independent subjective quality evaiuation. 

The complete database yielded a t  total of 556 files and approximately 5500 minutes of 

Source 

Coder 

conversational English speech data. 

Encryp tion 
Coder 

& 

6.3.2 Representative Speech Coders 

The same set of representative speech codem defineci in section 5.2.8 and used for the 

deveiopment of quality and redundancy models was applied to this experimental work. 

Experimental measures of âphertext entropy were perfonned on speech eacoded in p-law 

PCM, DPCM, 3,4, and 5-bit ADPCM, and CELP formats. 

Conditionai 
Entropy 

Estimation 
c-) - H(x,, lq-l) 

-t 
~ m f  
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6.3.3 Conditional Entropy Estimation Methods 

Direct Measures 
Conditional entropy measurements were obtained fiom first ta third order, H(X) , H(X2 lxi), 
H ( X 4  X:) , by the direct caiculation of equation (2.1). We f o ~ d  thet encryptecl speech ex- 

hibited some characteristics that were not encountered when we computed fourth order 

conditional entropy measufements in chapter 3. These characteristics made it Uifeasible to 

compute fourth order conditional entropy measures of the encrypteci speech data by the 

direct approach, 

In computing ciphertext entropy we noted a reduction in the rate of convergence for 

encrypteci speech measwes h m  the rates experienced for the unencrypteci speech entropy 

measures of figure 3.5. Effetive encryption aigorithms tend to result in more d f o r m  

probability distributions in the ciphertext than were observed in the original message. As 

our procedure for computing conditional entropy measmes requires a m h u m  likelibood 

estimation of the process pmf, randomization tends to increase the number of observations 

required fot an accurate pmf meastuement. It was necessary to increase the amount of 

speech data processed by the direct entropy caiculation routines fiom the 2725 minutes 

used for unencrypteci speech measurernents in section 3.4 to a sample of approximately 

5500 minutes. 

Another effect of randomization was an enormous inaease in the effective state-space 

required to record higher order pmfs. When we computed fourth order conditional entropy 

me~urements of the original speech process in chapter 3 we employed a dynamic memory 

allocation scheme for the state space, as discussed in Appendix D. This allocation scheme 

could take advantage of the high redundancy of the speech process and mjnimize the number 

of memory locations required for the model, We discovered th& encryption removd such 

significant amounts of temporal correlation in the samples that a fourth order probabüity 

model wodd require a sigaiRcant fraction of its nominal 2564 states. It was not feasible to 

docate a model of this size on our 32 bit architecture Sparc 20 computing platform. 
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Indirect Measures 

Kigher order entropy measmes r e d  more information about a ptocess so it was desirable 

to obtain the highest possible otder of entropy measure for our SeCuCity mdels. The ran- 

dornizing property of acryption increased the state-space required for direct fourth order 

calcdations beyond feasible levels so we applied the the entropy estimation algorithm of 

chapter 2 to obtaining fourth order estimates, 

A fourth order conditionai entropy estirnate, @(x~(x ,~ )  w s  computed from a set of 

PCE measures of third order. Let E X be the set of p points a t  which n e  computed 

PCE measures. W e  define the set of p PCE vectors computed fiom a data set of size S,, 

minutes to bel 

as defined in equation (2.7). 

From this set of vectors we could interpolate the remahder of the fourth order entropy 

surface, gGa=,4,x, and then compte the conditional entropy estimate, H(&IX?) according 

to equation (2.12). 

The operations cost for e d  PCE vector was considerably higher for encrypted speech 

than experïenced for the original unencryptecl p l a w  process. In Appendix E we present 

a detailed study of the operations required for fifth and sixth order conditional entropy 

measures of the speech process. For encrypteci PCE calculations ne would add to this 

e s t h a t e  the significant number of operations required by the source and encryption coding 

stages. 

In computing thkd order PCE vectors for data e n w t e d  by any of out representative 

encryption c o d a  we discovered the variance between the measures to be extremely small, 

implying a aear-uniform fourth order conditional entropy surface. Taking advantage of this 

uniformity, we faund we could reduce our caldation to a single randomly chosen PCE 
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vector, (Q(4, z), x), and compute the fourth order estimate as, 

To c o n h  this observation we computed complete conditional entropy srufoces for a 

feasible modd sige of third order. Theses d a c e s  were computed for plaw PCM speech 

encrypted by DES ECB, CFB, CBC, and OFB modes and are presented in Appmdix M. 

The four third order conditional entropy s d k c e s  presented in figures MIL, M.2, M.3, and 

M.4 were found to be distinctly uniform. As the property of uniformity was found to be so 

strongly evident in the third order d'es we considereà the fourth order data computed 

to be indicative of a simifar trend. 

This simpMcation was prone to e m r  but we found it suflicient to indicate the rate of 

convergence of the fourth order measure. The indirect fourth order measures were pursued 

no further when it was found that we codd not provide a d u e n t  volume of encrypted 

speech data to achieve mode1 convergence for out entropy estimates. 

6.4 Conditional Entropy Measures for Encrypted Speech 

W e  examined the &ixt of encryption on first, second, and third order conditional entropy 

measurements in detail for encrypted p-law speech in order to gain insight into its conver- 

gence characteristics. These results are presented in section 6.4.1. We then pedormed third 

order conditional entropy measurements for eveq combination of the remaining represen- 

tative source coders and encryption coders. These results are presented in section 6.4.2. 

The third order measures comprised the best feasible estimates of ciphertext entropy and 

are summarized for use in the securitty mod& in table 6.1. 



6.4.1 Detded Entropy Resdts for p-1aw Coded Speech 

The entire database of p-law encoded speech was encryptecl by each of the representative 

ciphers, and first to third order conditional entropy measuternents were computed at a 

variety of sample siaes. The results of these mesures are presented in figures 6.2, 6.3, 6.4, 

and 6.5. 

7.9 I I 1 I 1 
O 1 O 0 0  2000 3000 4000 5000 6000 

Sample Sire (minutes) 

Figure 6.2: ECB Conditional Entropy Convergence of p-law PCM 

Observations on the Detaiied ylaw Convergence Results 

The figures indicate that the ECB, CFB, CBC, and OFB ciphers ali achieve good tan- 

dornization of ciphertext for h t ,  second and third order measurements. The rates of 

convergence varied slightly, with the ECB cipher appearing to converge more slowly than 

the other ciphers. In addition, it was found that none of the block ciphers had attained an 

ideal entropy measure of 8 bits/ciphertext byte for the volume of source data applied to 

the experiments. This slow rate of convergence was confirmed with a study of the Vemam 

cipher using a mach larger volume of simulated speech data. This rate of convergence was 
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First Order - - Second Order 

Third Order 

Figure 6.3: CFB Conditional Entropy Cmmrgence of p-hw PCM 

determined ta be a characteristic of the maximum lïkelihood estimation procedure for the 

process p h .  These characteristics wiU be discussed in section 6.4.2 and used to normalize 

all subsequent measures to obtain stable entropy esthates. 

The results of the first and second order entropy dculations were found to be Iatgely 

reflected in the third order measures. As higher order meawes yield the most informa- 

tion about the processes, the remainder of our direct conditional entropy measwes were 

pedormed using the third order measure. 

6.4.2 Third Order Entropy Results for all Coder Combinations 

The remaining DPCM, ADPCM, and CELP coders wen applied according to the testing 

methodology to generate compressed speech for encryption by each of the representative 

encryption algorithms. Third order conditionai entropy measurements were p d o m e d  at 

various intermediate sample sizes to determine the convergence characteristics of each source 

' D e -  
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Figure 6.4: CBC Conditional Entropy Convergence of plaw PCM 

Computational Considerations 

Extending the ciphertext entropy measurements to indude ail combinations of the repre- 

sentative source and encryption coders was computationally expensive. The Ieast cornpu- 

tationaily intensive approach to the task would have been to create DPCM, 3,4, a d  5 bit 

ADPCM and CELP coded versions of the complete source database of 5500 minutes of plan 

speech and then perfarm encrpption on each version with e d  of the representative encryp 

tion algorithms. This minimisation of computational work aas,  dortunateiy,  coupled with 

a requirement for s d i a e n t  disk storage apace for each of the source coded versions of the 

speech data. The original plan data required in excess of 2.6 Gbytes of storage space, and 

the coded versions would require an additionai 5.4 Gbytes in total. These resources were 

not available so it was necessarg to cornpress the entire speech database with each source 

coder for each type of encryption algorithm. The additional computational cost of this 

procedure added considerably to the effort required for our conditional entropy measures. 
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Figure 6.5: OFB Conditional Entropy Convergence of p l aw PCM 

Convergence Characteristics by Encrgption Type 

The ciphertext entropy data can be presented in a variety of formats for insight into the 

relationships between source coders and encryption coders. We found it interesting to 

compare the ciphertext entropy measures for diffetent source encodings under a single mode 

of encryption. Presented in figures 6.6 and 6.7 are convergence measures for the source 

coders under ECB and CFB encryption, respectively. The sample size coordinate in the 

figures was computed for each coder to correspond to the volume of the original plaw 

database processed by the speech coder. 

It is important to note that the volume of coded speech data processed by the encryption 

routines, and hence the volume of data adable  to the MLE pmf modelling routine was a 

fuaction of the source coder rate. This characteristic was found to be a f x t o r  in interpreting 

the ciphertext entropy results. The data in figures 6.6 and 6.7 suggests the unexpected 

result that speech compression resdts in a Lowe entropy measure and a correspondingly 

lower security measure. This conclusion would be inaccurate- The discrepancy is a caused 
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by a reduction in the volume of encrypteci data availabh to the pmf modelling routines as 

a r e d t  of speech compression. 

To quant* this convergence problem we present the aphertext entropy measurements 

for various speech encodings under a Vmam upher encryption in figure 6.8. This figure 

indicates the relativeiy slow convergence expectations for a perfit apher. A perfeet upher 

randomizes the ciphertext statistics so w d  that the pmf modeiiing routines tequire the 

maximum numba of observations to obtain stable entropy measUres. The figure indicates 

how lower coder rates simply inaease the number of observations requùed for convergence. 

Sarnple Size (minutes) 

Figure 6.6: Entropy Measmes of ECB Encrypted Speech for Various Source Codets 

Convergence Characteristics by Source Coder 

The results of comparing difF&ent speech coders under a single mode of encryption in figures 

6.6 and 6.7 and the relative convergence characteristics of the Vernam upher in figure 6.8 

reveal the need to compare the accumdated entropy data on a basis relative to the rate of 

the source coder. 

We found it preferable to present the convergence data for ail encryptions of a source 
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Figure 6-7: Entropy Measures of CFB Encrypteci Speech for Various Source Coders 

coder type in a single figure- In the interest of space, these resdts are presented in Appendix 

N, figures N.1, N.2, N.3, N.4, and N.5. Each figure is a sumniary of the compIete set ofthird 

order conditional entropy calculations for a partidar wavdorm coder under ail encryption 

coder combinat ions. 

The CELP coder r e d t s  are not inchdeci in figures 6.6 and 6.7 because our CELP 

results consist of single measutements at the m&um database sample skie. The CELP 

coder produces data at such a low rate that the entire database, when CELP coded, did not 

produce a large enough volume of ciphertext to trigger an intemediate entropy caldation 

in the automated testing software. 

Observations on the Complete Third Order Entropy Measures 

The conditional entropy data presented in Appendix N d o w s  a fair cornparison of the 

convergence rates for each type of encryption, given the relative convergence rate of a 

perfect Veniam cipher operathg on the same sautce-coded data. The results of t h e  
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Figure 6.8: Entropy Measures of Vernam Encrypteci Speech for Various Source Coders 

figures indicate that the DES based ciphers achieve a performance that is similar to the 

Vernam cipher at this order of entropy computation. 

It is dear the conditional entropy meastues in Appendk N have not converged to their 

ha1 values. To predid the evenhial entropy rate for each coder-encryptor combination 

we propose to scale the measure obtained at the maximum sample size in relation to the 

convergence characteristics of the correspondhg Vernam cipher results. Th& technique for 

scaling conditional entropy measures accorùïng to measutes obtained fiorn larger sample 

sets was desaibed in detail for PCE measures in section 2.6. We propose a auch simplifïed 

scaiing function of the form, 

where ( ~ ~ 1  Xf)coder,v-m represents the entropy measure obtained for the Vernam 

cipher at the maximum sample size of S,, = 5500 minutes. By definition, the pedect 
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Vemam ciphet is known to attain a ciphertext entropy of 8 bits/ciphertext byte. This 

trivid scaling relationship assumes the rate of convergence of the various ciphertext streams 

remains constant relative to the Vemam cipher beyond the maximum sample set size. This 

is a reasonable assumption for strong ciphers such as the DES variants studied here, and it 

is further strengthened by having computed a t  a sample size Sm, that is beyond the knee 

of the convergence curves. 

A close observation of the ciphertext convergence curves indicates that the measures 

based on p-law PCM data in figure N.1, and to a lesser extent, the DPCM results in figure 

N -2 diverge slightly from the ideal Vernam cipher convergence char acteristics under ECB 

mode encrgption. The divergence is slight, but may indicate that the third order statistics 

of ECB mode ciphertext are non-ided. Eigher order entropy measues would conibn the 

presence of some redundancy in ECB enciphered speech data. In section 6.5 we will present 

evidence that a fourth order conditionai entropy measure of p-law speech is distinctly smaller 

than that of the other encryption modes- 

The evidence of figures N.3, N.4, and N.5 indicates that the more sophisticated fonns of 

source coding r d t  in ciphertext convergence cuves that are hast identical to Vkmam 

cipher convergence. We conclude that this result is a measurable d e c t  of the removal of 

redundancy fiom the input process to the encryption device. Despite the known deficien- 

cies of ECB encqption, source coding tesuiteci in a ciphertext process that could not be 

distinguished from an ide& ciphertext process with a thitd order entropy caiculation. 

6.4.3 Entropy Measure Summary for Coder Combinations 

The third order conditional entropy meaures computed at the maximal sample size in 

sections 6.4.1 and 6.4.2 constitute our best estimates. Using the simple scaling relationship 

of equation (6.3) we predicted the thitd order measure that wodd be obtained at a model 

size sufIiciently large to guarantee model convergence. These estimates are summarized for 

all combinations of source and encryption coders in table 6.1. 
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1 Encrgption Mode 
Coders 

p-Law PCM 
DPCM 

40K ADPCM 
32K ADPCM 
24K ADPCM 

CELP 

ECB 
7.99805 
7.99804 
7.99954 
7.99977 
7.99954 
8 .O0000 

CBC 1 7.99919 
7.99934 
7.99954 
7.99988 
7.99995 
8,00000 

OFB 
7,99918 
7.99933 
7.99955 
7.99987 
7,99994 
8.00000 

Table 6.1: Predicted 3rd Order Entropy Measures for Encrypted Speech 

A general pattern in the results is made more evident by the graphic presentation of 

a surface consisting of the ciphertext entropy measurements as a function of source and 

encryption coder combinations in figure 6.9, 

24K AOPCM 
32K A 

Source Coder PCM EC8 
Encryption Coder 

Figure 6.9: Ciphertext Entropy Surface 

6.5 Fourth Order Entropy Calculations 

Vernam 

Attempts to estimate fourth order conditional entropy for encrypted speech Erom a set of 

partial conditionai entropy vectors were thwarted by the randomizing characteristics of the 
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To determine the feaoibüity of fourth order entropy caiculation, the simplifiecl entropy 

mesure of equation (6.2) na9 applied amtding to the test methodology of figure 6.1 for 

the Vernam cipher. A large volume of V'am-encrypteci data was simuiated and the con- 

vergence charaderistics of the fourth order conditiond entropy caldation on this process 

were computed and presented in figure 6.10. 

Sarnple Size (minutes) x 10. 

Figure 6.10: 4th Order PCM Coder Results for AU Enayption Modes 

This figure indicates that the entropy estimation converges to the expected level for 

a perfect cipher of 8 bits/ ciphertext byte, but does so at a very slow rate compared to 

the uneacrypted speech data in figure 3.6. Approximately 40000 minutes of sùaulated 

encrypted p-Law PCM speech data were required for convergence. Speech coders at lower 

data rates will converge proportionately slowet but wiU always yield the same result of 8 

bits/ ciphertext byte since this is a perfect cipher. 

The Vmam cipher achieves the highest possible randomisation of ciphertext data and 

hence WU display the slowest rate of convergence. To determine the rate of convergence for 
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speech encrypteci by the DES cipher we pdormed a foutth order estimation on real p-law 

PCM data under the four DES encryption modes. The convergence characteristics of these 

four measures were computed np to the full database size of 5500 minutes of speech and 

are also presented in figure 6-10 

It was not possible to distinguish the converging entropy measures ofthese representative 

ciphers fkom these experiments due to the limiteci size of the database- We computed these 

rneasures to the maximum sample size that was feasible given finite space and computa- 

tional constraints but were unabie to reasonably predict fourth order conditional entropies. 

The randomizing properties of the representative encryption coders s1owed the rate of con- 

vergence and the addition of source and encryption coding added computational costs that 

were not encountered when the method was applied to the original unmcrypted speech 

process. 

Referring to figure 6-10, we observe that ECB encrypteci speech appears to possess a 

lower foutth order entropy than CFB, CBC, and OFB encrypteci speech up to the maximum 

observable measurement. There is &O evidence in the figure that the CFB, CBC, and 

OFB measmes diverge slightly from the Vernam cipher results at maximum mode1 size. To 

confirm these observations we would have to extend the measures to a much Iarger mode1 

size. The Vernarn cipher convergence curve is neady logarithmic, suggesting that doubling 

the size of the database wiU yield a si-cant improvement in the accuracy of the entropy 

estirnates. 

While we were able to demonstrate that the entropy estimation technique could be used 

for higher order measures, we found it was not feasible to compute for this research. We 

concludeci that third order measures would have to suffice for our security models, 
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6.6 Security 1 ndex Evaluations 

In thk section we will evaluate the three proposed theoretic secwi tp  indices using the 

experimental data derived in chapter 3, chapter 5, and earlier in this chapter. 

6.6.1 UniCity Index 

The unicity index deveioped in chapter 4, No = v, fields an indication of the minimum 

amount of ciphertext an attacket needs to intercept in ordes to break a ciphei. This index 

can provide a simple measure of the rdative strength of a cipher in te- of its key space and 

the redundancy of the message process. As we have aiready discussed in section 4.6.1, the 

unicity index is insensitive to the encryption algori th ,  so we do not require the measures 

of ciphertext entropy summarized in table 6.1 to evaluate it. 

For the set of representative ciphers there are only two d u e s  of H(K). The DES 

variant algorithms have a Lep entropy of 56 bits, and the Vernam eipher ha9 a key Iength 

equd to the message length. For the conversational speech proceds defineci for this research, 

the Vernam key entropy may be considemi to be effktively infinite. The resultùig unicity 

distance for Vernam ciphers is therefore infinite for all  values of redundancy. 

Presented in figure 6.11 is an evaluation of the uniaty index modei over the range of 

ail per-symbol redundancies, O <_ D 5 8 bits/ciphertext byte, and a range of key entropies, 

O 5 H(K) < 60 bits. Also represented in the figure is a h e  Uidicating the range of the 

unicity index for realizatioas of the DES ciphers. 

6.6.2 Efnciency Index 

The encryption &ciency index proposed in chapter 4 was d&ed by the equation E = 

-%$pl. This index faalitates the cornparison of encryption a l g o r i t h  on the basis of 

the amount of ciphertext uncertainty added in proportion to the key cost. 

The efficiency index reqUres the ciphert ext entropy measures for the representative 
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' 8- Key Entropy H(K) (bits) 

Figure 6-11: UniciQ Index Mode1 

source and encryption coders presented in this chapter and summarized in table 6.1- The 

index also depends on the source process entropy estimatecl in chapter 3 as H(M)=2.79 

bits/sample, and the encryption algorithm's key entropy. 

Presented in figure 6.12 is an evalnation of the efliaency index surface as a fruiction of 

source and encryption coder combinations. 

The form of this simple dciency surface is similar to that of the aphertext entropy 

surface in figure 6.9, except in the vicinity of the Vernam cipher measures. The key entropy 

E(K) for each of the DES mode ciphers was a constant 56 bits for these efiiciency measures. 

For the conversationai speech process studied here, the key entropy of the Veniam cipher 

was effectiveiy infinite. This resulted in an &ciency measusement of zero for each of the 

Vernam cipher results. It s h d d  be noted that the Vernam cipher efEciency points are 

not plotted to scale in figure 6.12 in order to aUow a detailed view of the remahder of the 

surface. 

In developing a general modd of the secure speech co~~l~~lunication system we will find it 
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40K ADPCM CSC 

Source Coder PCM EC8 
Encryption Coder 

Figure 6.12: Effiuency Surface as a Function of Source and Enqption Coders 

mefiil to compare each of our system modeh on the bas% of a single independent variable. 

We found the redundancy rate of the source coded message stream to be an ideal indepen- 

dent variable for this cornparison. To present the efûciency surfse of figure 6.12 in terrns 

of the redundancy rate we mapped the set of source codes variables to the correspond- 

ing redtmdancy rates for each coder accordhg to the expeiimental redundancy measures 

performed in chapter 5. 

Using the actual operational redundancy rate measures, Dbd(R), summarized in table 

5.4 we mapped the set of waveform source c o d a  to a corresponding set of redundancy rates 

to produce the efnciency surfaeeo in figure 6.13. An exception was made for the CELP coder 

redundancy measures, where ne  used the predicted mesrure, Dopmtiond(R), rather than 

the experimental measure. As disc;ussed in chapter 5 the CELP coder results were found to 

be unreliable and shown to be better repregented by the model Dop,tiod(R). 

The mapping to reduadancy measutes scales the &ciency measures in a manner more 

suitable to a general model of security. Four views of the surface are presented in the figure 
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to d o w  the ef6ciency surface to be examined in more detail. To reduce ciutter in the figure, 

we simplified the efEaency index sa le  to represent the actud efEaency index measures of 

0.09302 by the 1 s t  digit, 2. Once again, in this figure the Veniam cipher efiiciency measures 

of zero are not shown to scale in order to reveal more detail in the remaining measmes. 

Ver O 

Figure 6.13: Efficiency Surface as a h c t i o n  of Operational Redundancy Experiments 

Presented in figure 6.14 is the same set of &ciency index measures mapped using the 

operational rate redundancy function of equation (5.20). We were interested in comparing 

the &éct that our apptoximate operational rate redundancy hct ion may have on the 

efficiency index. The results presented in the figure indicate litt1e change fiom the fist 

rnodel, except in the vicinity of the DPCM and 32K ADPCM points. These points are 

mapped to the same redundancy level by the operationai rate redundancy fiinction because 

they operate at  the same coder rate, despite the experimental evidence indicating a higher 

redundancy in the DPCM-coded process. This is an unavoidable consequence of using the 

simplified rnodel for redundancycp Fortunately, we can avoid this problem as we have the 

actual redundancy rate measures for these codm, D-(R). We wiU refer to  the redts  
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of figure 6.13 in our future evduations of the efliciency index. 

ve 
Ver 

O 
O 

Figure 6-14: Mciency Surface as a h c t i o n  of Operational Redundancy h c t i o n  

6.6.3 Quality Index 

The encryption quality index proposed in chapter 4, Q = 4 a(C)-H(M , was designed to 

facilitate the cornparison of encryption algorithms on the basis of th& abiliw to mask a 

redundant source process. The index measmes the encryption algorithm's ability to add 

uncertainty to the ciphertext as a proportion of the per-symbol redundanq of the source 

process. The idormation required for tbis measure includes the ciphertext entropy data, 

message entropy, and operational redundancy measutes used above in section 6.6.2. 

Presented in figure 6.15 is an evaluation of the qualits index as a function of the encryp- 

tion coder and operational redundancy parameters. We applied the same set of operational 

redundancy measutes for the q u e  index as were applied to obtaining the efüciency index 

in figure 6.13, using Dwkua(R) for the waveform codns, and DoP-tiod(R) for an accurate 

measure of CELP-coded redundancy. 

The quality index surface is sttongly determined by the redundancy parameter over the 
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experimental data set. The features of this d a c e  are Mdt to observe in this format, so 

we have presented a set of normalized cross-sectional views of the quality surface in figute 

6.16. Eoch line in the figure represents a set of quality index meaSUTes corresponding to a 

source coder operating at the indicated redundancy rate, D (kbps). To d o w  a cornparison 

of the measutes, each quaiïty hction is normalizd by the quaiity index computed for that 

redundancy rate under DES ECB encryption. 

loi 
Vernam 

ECB 40 
Encryption Coder 

Redundancy (kbps) 

Figure 6.15: Qualitq Surface as a b c t i o o  of Operational Redundancy Experirnents 

The cross-sectional functions of figure 6.16 indicate lowest quaiity for DES ECB encryp- 

tion, a higher quality for DES CFB, CBC, and OFB ciphers, and the highest quality for 

Vernam encryption. 

6.7 Observations on the Security Indices 

We can make some general observations on the characteristics of the three security indices 

based on the resuits in figures 6.11, 6.13, 6.15, and 6.16: 
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Figure 6.16: Quality Curves Normalked to ECB Quality Measure 

1. The unicity index mode1 d o w s  compatison of encryption coders on the basis of the 

sbe of the Lep space only. The UlLiaty index confirms the value of p e r f o k g  source 

coding to reduce redundancy prior to encryption. 

2. Redundancy plays a strong role in determining the unicity distance and quaüty indices. 

The effiaency index is responsive to tedmdancy, but is also determineci by other 

factors. 

3. The efficiency index generaily increases with reductions in redundancy, but the source 

coder complePty aiso h a  a significant impact. A compariwn of 32 kbps ADPCM and 

DPCM coders revealed that the iower complexity DPCM coder resdted in a lower 

dciency index, despite a similar redundancy level. 

4. The perfect Vernarn cipher reflected the expected theoretic security indices: an infinite 

unicity distance, maximal qualie for a given levd of redundancy, and a minimal 

&ciency measure of zero due to the large key size. 
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5. The four DES cipher modes studied were found to be marginaliy disfinguishable by the 

qualiv and efüciency indices. The ECB mode cipher was found to exhibit the lowest 

quality and eSaency o v e  the range of operational teciundancies. The CFB, CBC, 

and OFB modes of DES exhibitecl aîmost identical indices over the range studied. 

W e  have evaluated the three ptoposed security indices over a sample space defineci by a 

set of representative source coders and a set oftepresentative encryption coders. Evaluating 

the ciphertext entropy components of the indices was revealed to be a challenging task, due 

to the d e c t s  of encrgption on the ciphertext statistics. Despite a Iknitation in the maximum 

feasible calcuiation order, the security index results are consistent with expectations. The 

observations suxnrnarized above indicate that the securitty indices are capable of representing 

the relative strength, efEciency, and quality of encryptiori coders. Higher order ciphettext 

entropy measures would improve the ability to distinguish between enctyption met hods. 



Chapter 7 

Formulation of a General Mode1 

When we mean to build, 

We Jirst suntey the plot, then d m  the model; 

And when we see the figure of the howe, 

Then must me rate the cost of the erection, 

William Shukespeaie. Kilrg Henry TV, Act L& Sc, 3. 

7.1 Introduction 

In section 7.2 of this chapter we wiU define mdimatafy modeis for the complexity of source, 

encryption, and chamel codas, These models WU provide an essentiai dimension to the 

analysis of secure communication systeni designs. W e  wi l l  then combine the modeIs of 

objective speech quality, bit rate, secdty ,  and complexity to form an optimization problem 

for the integrated secure speech communication system. 

As the general model comprises a multidimensional optimization problem, it is ~ M c d t  

to simply summarise al1 of the characteristics of the integrated secure speech co~~~nunication 

sys tem. S pecific solutions will depend on the objectives and constraints on the secure system 
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design. In section 7.3 we wiIl present an andysis of the interrelationships among the model 

parameters and d e h e  the h c t i o n d  notation for hmîng the optimisation problem. 

In section 7.4 we wiIi formulate the objective function for optimization of the general 

model of the secure speech communication systern- The general model wil i  serve to give 

insight into what we have found to  be a complex problem with rnany interdependent pa- 

ramet ers, 

Finally, section 7.5 wiU preseat the solutions to a vatiety of constrained and uncon- 

strallied optimizations with varying objectives in order to demonstrate the g e n d  behaviour 

of the secure speech colll~llunication system as  represented by out expetiments. W e  wili in- 

clude two examples of practicd system design problems and demonstrate the effkctiveness 

of the general model for developing secure systems. 

7.2 Complexity Models 

In this section we aill define mdimentaty models for the compIexiQr of  source, encqption, 

and channel coders. These models are best coasidered as indicators of generd trends rather 

than as exact measurements. 

The inclusion of complexity models adds a useful dimension t o  the study of secwe 

communications systems. In addition to the objective parameters of quaiity, bit rate, and 

securie, the complexity of a system reaJbation is often a deciding factor in the design of 

an integrated system. ORen a system is constrained by complexity considerations such 

as the maximum execution speed of a digital signal processor, the cost of Mplernenting 

a design in hardware, a Mt on the area avaiiable to the speech procesahg units in a 

integrated &cuit design, or the need for real-the execution of an algorithm in sohare .  

An acceptable solution to the secure system design problem must be sensitive to the issues 

of cost represented by a complexi~ measure. 
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In many instances it is important to develop a precise definition of complexiw befote at- 

tempting to e d u a t e  it for a system implementation. Standard measures of complacity 

indude gate counts in integrated circnit realisations, operation counts such as the order 

of operations estimates for entropy estimation presented in Appendix E, or meaeures of 

the rate of operations requireà during execution such as M I P S  counts (million instructions 

per second). L e s  accurate may be estimates of cornplexit9 based on the time required to 

execute a required function or component counts in a discrete physical impIementation. 

While a precise measurement of complexïty h most desicable, for defining a complexity 

function for the general system mode1 we require only a measure of the relative pdormance. 

W e  wish to develop estimates of relative complexity of the coders in each dass of system 

component. As a result of class-g the source, encryption, and cbannel coder complacities 

separately, the rneasures need not be based on the same definition of compIeXity and we 

are fiee to choose meamires that are appropriate to each dass of system component. This 

simplifies the development of complexity estimates and d o w s  the solution of the general 

secure system mode1 to be performed over three independent modeis of complexity. 

In the fouowing three sections ne wi l l  present simple complexity modeis for the source, 

encryption and channel coder components of the system. 

7.2.2 Source Coder Complexities 

Presented in table 7.1 is an estimate of the relative compiexities of the 6 representative 

source coders. These resuits are very approxiznate, and they are based on an evaluation of 

t hree dinerent types of complaity measures for the set of speech codem. The first type of 

measure, presented in [19] , wao based on the relative number of gates required for hardware 

implementations of the speech coders. The second measure was an estimate of the MiPS 

count for each of the source coders as pteaented in [93]. Neither of the measmes in [19] 
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or [93] containeci a rderence to the simple DPGM coder inciuded in out representative set. 

For this reason, the t b d  measmement type was b d  on o u .  observations of the execution 

times aad shes for the software implementations of the 6 source coders. The thkd memure 

ailowed an estimate of the relative complenty of the DPCM coder. 

It should be stated that the results in [19] and [93] were considered to  be very approà- 

mate, and hence our tabulated complexities must be viewed accordingly. Also included in 

tabIe 7.1 is a measure of the efkt ive operational redundancy rate for each source coder. 

32 kbps DPCM 
24 kbps ADPCM 
32 kbps ADPCM 
40 kbps ADPCM 
4.8 k b ~ s  CELP 

Source Coder 
64 kbps p l a w  PCM 

Table 7.1: Approximate Relative CompIexity of Representative Speech Coders 

7.2 -3 Encryption Coder Complexities 

Relative Complexi~ 
1 

The development of a mode1 for the representative encrpption coder complaities is uncorn- 

plicated because it indudes oalg evaluations of the relative complexity of the Vernam cipher 

and the four modes of the DES cipher. 

The Vernam cipher has minimai complexity, and we will consider its only operation to be 

the execution of an XOR hction for each ciphertext bit produced. The four DES modes 

have almost identical complexity, which is considerably higher than that of the Vernam 

cipher. We can estimate the relative compIexi~ of the ba i c  DES block encryption by 

observllig the operations performed in a single round of the cipher. A single DES round 

consists of 1 32 bit permutation and 1 32 to 48 bit expansion, a 48 bit shift operation for the 

round key, 8 table substitutiom to convert 6 bit inputs to 4 bit outputs, 1 32 bit XOR and 

1 48 bit XOR. If we assume an &&nt hardware implementation of the DES algorithm, 

Redundancg (kbps) 
41.7 
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such as those discussed in [94], [95], [96], [97], and [98], ne can consider the permutation, 

expansion, and bit shiît ing operations to be of minimal complexiQ. We consematively 

estimate each of these opesations to have the same complexity as an XOR operation. The 

table substitutions pose a more cüfEcuIt problem for determining operations equidence as 

we must consider the implementation cost for the tables. We note that each substitution 

box could be replacecl with a combinational logic equivalent mapping 6 inputs to 4 outputs. 

Such a circuit would conta* roughly 6 x 4 = 24 gates, requiring a total of 192 gates to 

implement the set of 8 substitution boxes. Based on these apptolcimations, it is estimated 

that a total of 3 + 192 + 32 + 48 = 275 XOR-equivalent operations are required per round. 

The DES algorithm pedorms 16 rounds of these operations, leading to an estimated total 

complexity of 4400 XOR equivalent operations to produce 64 bits of ciphertext in ECB 

mode. Referring to the block diagrams of the CFB, CBC, and OFB ciphers in figures L.2, 

L.3 and L.4, it can be seen that each of these dgorithms requit= an aâditional64 bit XOR 

operation to produce a ciphertext block. 

Based on these estimates, and allowhg for 64 XOR operations in the Vernam cipher to 

encrypt a block of the same size as the DES modes, we obtained the estimates of relative 

complexity presented in table 7.2. 

( Encryption Coder 1 Relative Complcsity 1 
- - 1 Vemarn Cipher 1 1 

DES ECB 
DES CFB 
DES CBC 
DES OFB 

Table 7.2: Approximate Relative Complexity of Representative Encryption Coders 

In future work, it would be desirable to inciude a measure of the complexity required to 

maintain cryptographic sgnchronization. As discussed in chapter 4 and in Appmdix L, a 

temporary 10% of cryptographie synchronisation causes complete distortion in the decoded 

signal over a tirne period that is determineed by the type of encryption algorithm. For highest 
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secuity, it rnay be intended that there is no recovq in the event of suspecteci interferace. 

More robust implementations may be designed to re-synchronize whenever possib1e. The 

cost of maintaining cryptographie synchronhtion is therefore dependent on the type of 

encryption algorithm and the security objectives of the system designer. 

7.2.4 Channel Coder Complexities 

It is beyond the scope of th5 work to explore the characteristics of Channel coders in de td .  

This rich and complex subject requïres considerable expertise and could not be adequately 

represented by a cursory survey. In order to achieve a model of channe1 coder comp1exity 

we must make many simplifications in our analysis of the relevant factors. 

The rnost significant simplification is to conceive a model of source coder complexity as 

a fiuiction of the bit error rate in the received transmission. We assume that an arbitrary 

source coder operates under given channel conditions to produce a message stream at the 

input to the encryption coder with a partidar bit error rate. It is recognhed that this 

simplification does not consider the ef tkts  that the channel type may have on relative 

channel coder pedonnance. The interference statistics of a channel can determine the 

optimal channe1 coder type, but these important characteristics wil i  not be addressed in 

this research. 

We propose to represent the relative compiexi~ of source coders as a non-increasing 

h c t i o n  of the bit error rate in the message stream reaching the encryption coder. This 

simple model identines the likelibood that a c h a n d  coder operating on a given ehanneI 

must perform more complex operations to achieve reductions in the bit etror rate* 

As we have pdormed no detailed study of ehannel coder complexities, we can not justifg 

the choice of one model type over another, but for simplicity we will represent the channe1 

coder complexity as a linear h c t i o n  of BER. 
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where C,, > 0, and O 5 BER 5 1. 

Despite its la& of quantitative background, this simple model serves its purpose in the 

formulation of a general model by indicating the requirement for an iacrease in complwcity 

with decreasing bit errot tates. More specific data about source codet complexities under 

the expected Channel conditions, and an appropriate choice of weighting in the objective 

function will improve the accutacg of this model. 

Development of the quaiiw, bit rate, security, and complexity models bas suggested a degree 

of interaction between these parmeters that is dependent on the combination of specific 

source, encryption, and channel coder characteristics. It is Our goaI to rehe Our observations 

of interdependence between the parameters to aeate a clear and quantifiable relationship 

that may be controlled to the benefit of the designer of the secure commdcation system. 

W e  must k t  present some common dennitions for describing our terminology: 

Definition 9 (Objective Parameters) The objective pammeters am those system pz- 

rametes of direct interest to  the designer of an integmted secure cornmunicatiun system. 

In th& model of the secure systern the objective pmrneters consist of the quality, bit mte, 

secwity, and compkxity meapures of the system. Measurnent of these parumeters has been 

the pn'mczry objective of our modelling wmk. 

D&tion 10 (Intermediate Parameters) The intermediate pammeters am those quan- 

tities meawred in the developrnent of the objectiue pamneter rnodets that wew found to affect 

the outcome of the objective paremeter measuriements. The Sntennediate pammeters found 

tu have a significant efect in this reseawh t u e  redundancy, ciphertext entropy, keyspace, 

cipher mode, and bit m r  mte. 
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Detinition 11 (Contmbg Parameters) The contmlling parumeters fm our systern have 

been ideulized to the choiee of source, encryption, and channel cuùers. T h m g h  the selec- 

tirnt of a purticdur combination of these thme system components the designer may dimctly 

detemine the system cmplezify, and indilrectly aflect the nemainder of the objectliue papomm- 

eters. 

7.3.2 Intermediate Parameters 

In figure 7.1 we present a diagram iadicating how the controlling parameters determine 

the complexiQ measurements directly by the choice of particuiar source, encryption, and 

Channel coders, and induectly e t  the set of intennediate parameters. 

The dotted arrows in figure 7.1 indicate the data path through the coder components, 

while the solid arrows indicate the set of interrdationships notd among the objective and 

int ermediat e parameters. These interrelationships were discovered in the development of the 

objective parameter rnodels. Here we wiU summarize our observations on the intermediate 

parameters: 

0 Redundancy. The redundancy parameter was defined in equation (5.20) to be de- 

termined by the rate of non-essential information remaining in the souce coded bit 

stream. As we WU show in figure 7.2, this parameter was found to affect nearly all of 

the objective parameters. 

Ciphertext Entropy. The ciphertext statistics are d e t d e d  by bath the source 

and encryption coder characteristics. These statistics detenained the level of cipher- 

text entropy computed in chapter 6. 

Keyspace. The size of the keyspace is determineci enthely by the design of the 

encryption coder, This paramefer was necsary  for evaluating two of the theoretic 

security rnodels. 
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I O Intermediate Parsmeters 

Figure 7.1: Intermediate Parameter Relationships in the Secure System 

0 Blodc/Stream Cipher Mode. The type of encryption coder, whether block or 

strearn cipher design, affects the propagation of errors in the decrypted message pro- 

cess and so affects the effective bit error rate percieved by the source coder. 

Bit Error Rate. Ih our idealized mode1 of channei coders, the bit error rate is 

determimeci by the e m t  correcthg capabilities of the Channel coder. The encryption 

device can transform single bit mors into block errors when in block cipher mode, 

afFecting the effective BER perceived by the source coder. 
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7.3.3 Objective Parameters 

In this section we will formaily define aii of the objective parameters in tems of the a g  

propriate intermediate parameters and the independent controhg parameters. This wil l  

aiion the formulation of an objective fiuiction for solution as an optimisation problem. 

The diagram of figure 7.2 indicates the significant relationships noted between the O& 

jective parameters as a fiuiction of the intermediate parameters. These telatioashïps were 

discovered in developing models of the objective parameters, and were described in detail 

in chapters 4, 5, and 6. It is clear that the intermediate parameter of redundancy has a 

significant impact on the performance of the entire secure communication systern. We note 

that 6 of the 8 objective parameters are in some way determineci by the redundancy pa- 

rameter. Only the encqption and source coder complexities are insensitive to redundancy. 

This figure may be supplemented with the diagram of figure 7.1 for an overview of the 

interdependencies noted in the integrated system. 

In formulating the objective parameter functions we wiU use the intermediate parameter 

of redundancy wherever possible as a replacement for the controiling source coder parameter. 

This wiU make no significant change in our results as we may apply a direct mapping fiiorn 

source coder to redundancy measure according to table 7.1. The substitution of redundancy 

for source coder parameter ailows a slightly simplifieci objective function where the objective 

parameters of quaiity, bit rate, and security have been deveioped as functions of redundanq. 

Similarly, we WU use the intermediate BER parameter instead of a rderence to the channel 

coder as out research has not extendeci so far as to define an apptopriate mapping function. 

Summarized below are our observations on the objective parameters needed to define an 

objective fimction for the general optimization probîem. We WU review the intermediate 

parameters controlling each memue and define the functional notation for each objective 

parameter as a fwiction of the redundancy and BER parameters and the enayption coder 

me- 
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Figure 7 -2: Major Paameter Relationships in the Secure S ystem 

Unicity Mode1 

The unicitp index mode1 of equation (4.2) ip defined in tenns of the redundancy parametet 

and the key entropy. As the key entropy is detenaineci by the choice of encryption coder, 
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we can define the unicity distance modei for the objective riindion as, N,(D, E.C.), where 

D is the redundancy rate in kbps and E.C. detenaines the ennyption coder and the entropy 

of the keyspace. This model has the form indicated in figure 6.11. 

Encrypt ion Efficiency Model 

The efnciency index model of equation (4.7) is defined in terms of the intermediate param- 

eters of ciphertext entropy and key entropy. It also contains a constant term representing 

the source process entropy. The Lep entropy is determined by the choice of encryption 

coder, while the ciphertext entropy is determined by both the enctpption coder and the 

redundancy, as indicated in figures 7-1 and 7.2. This leads to the definition of the efficiency 

index model for the objective ninetion as, E(D, E.C.), where D is the redundancy rate and 

E.C. indicates the encryption coder type. This model is represented by the experimental 

data presented in figure 6.13- 

Enerypt ion Quality Model 

The encryption qua& index model is defined in equation (4.8) in terms of the intermediate 

parameters of ciphertext entropy and redundancy. It &O contains a constant term repre- 

senting the source process entropy. Similar to the efEciency index, we define the quality 

index model for the objective hc t ion  as, Q(D, E.C.), where D is the redundancy rate and 

E.C. indicates the encryption coder type. This model is represented by the experirnental 

data presented in figures 6.15 and 6.16. 

Bit Rate Models 

A model of the bit rate as a fimction of redundancy was derived in chapter 5. The model 

was bas& on a linear model of divergence computed fiom experimental measures, and 

a theoretical bound for redundancy. Reûundancy as a fonction of bit rate h dehed by 

equation (5.20). W e  wil i  d e h e  the bit rate model for the objective funetion as R(D) , where 
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D is the redundancy rate. The conesponding bit rate model is represented in figure 5.16 

as a fiurction of redundancy- 

The data necessary for definhg a quality model for the objective function was summarized 

in figures 5.5, 5.9 and 5.10. These models present objective quality measues as a function 

of the source coder type, encryption coder mode, and bit error rate. We can perform a 

rnapping ikom the source coder *es to redundancy measures using the observed redun- 

dancies summarized in table 7.1- This allows a similat presentation of all security, bit rate 

and qualits models in terms of the intermediate redundancy parameter. 

Figures 7.3 and 7.4 summariae the segmental-SNR measures computed in chapter 5 as 

a fwiction of the source coder and bit =or rate. The additional intermediate parameter of 

encryption mode differentiates the results obsefved under 64 bit block encryption in figure 

7.3 from the results obtained under stream tipher enayption in figure 7.4. 

-1 O 
PCM 

Source Coder 

Figure 7.3: Objective Quality Measmes under 64 Bit Block Encryption 
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Figure 7.4: Objective Quality Measures under Stream Encryption 

In figure 7.5 we present a summarg of the objective quality data as a function of redun- 

dancg and bit error rates under 64 bit bbck enqption. In figure 7.6 we present a similar 

summary under stream cipher encryption conditions. Four different viens of the modeb are 

presented in each figure to ailow a more detailed examination of the surface features. 

Figures 7.5 and 7.6 WU comprise our models of objective speech quality as a fùnction of 

three parameters: redundancy, encryption mode, and bit error rate. We define the quality 

mode1 for the objective hinction as SegSNR(D, E.C., BER), where D is the redundancy 

rate, E.C. indicates the enayption coder type, and BER indicates the bit error rate at the 

input to the encryption coder. 

Source Coder CompIdty 

The source coder complexity fimction can be represented by the approximate relative com- 

plexities for the representative source coders tabulated in table 7.1. We choose to map the 

set of source coders to the appropriate redundancy measures using the redundancy mea- 
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Figure 7.5: Redundancy Dependent Objective Qualit9 Measutes under 64 Bit Block En- 
cryption 

sures also siimniarized in table 7.1. We define the source coder comp1exity for the objective 

fimction as  Css.(D), where D is the redundancy rate. 

Encryption Coder Comp1exity 

The encryption coder complexity was found to be purely dependent on the choice of en- 

cryption coder. Tabulated in table 7.2 are the relative complexities of the reptesentative 

encryption coders used in this research. The encryption coder complexi~ wiU be defined 

for the objective huictioo as CB.c.(E.C.), to indicate the dependence on the controlling 

parameter. 

Channel Coder Complexity 

Our simplified mode1 of ehannel coder complarîty was defined by equation (7.1) to be a 

linear function of the bit error rate experienced at the enciyption coder. This function was 

defined as Cca.(BER), where BER represents the bit error rate. 



Figure 7.6: Redundancy Dependent Objective Qualitg Measwes under Stream Enrryption 

7.4 Optimîzation Problem Formulation 

The functional definitions presented in section 7.3.3 Iead to the devdopment of an ob jeetive 

function for the integrated secure speech communication system. We define the optimization 

problem over the parameters of redundancy, enayption coder, and bit enor rate. We wish 

to perform a maamiaation of the objective function, 1, as foilows, 

s.t. Q(D, E.C., BER) satided, 

where 7; 2 O, i = 1 .. .7. The expression Q(D,E.C.,BER) denotes a set ofconstraints 
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on the system parameters- The unicity index has been omitted ikom the objective bct ioa  

because, as demonstrated in equation (4.9), it may be describeci in terms of the encryp 

tion quality and efüciency indices. We have &osen to describe the opthkation probiem 

using the distinct securïty indices of quality and efnaency, so it wodd not be appropriate 

to include another Secuity h c t i o n  that could be derived fiom these indices. It is felt 

that these two measutes are relevant to describing the security characteristics of a system, 

and have the added advantage of having been derived from experimental measures on the 

represent ative coders. 

The objective function positively weights the s d t y  indices and the segmental-SNR 

quality model and negatively weights the bit rate and complexity models. This hinctional 

description acknowledges the generai design goais for a seme communication system, which 

are to achieve high security and objective quaiity measures at a low cost in ttansmitted bit 

rate and coder complexity- Defining the objective hction in this manna allows all of the 

weighting factors, y;, to be positive. 

The optimal solution to this problem depends on the constraints, 9(D, E.C., BER), 

that may exist on each of the systern parameters, and the secure system designer's choice of 

weighting factors, 7i. The weighting factors indicate the relative importance of each compo- 

nent in the secure system model and &O serve to notmaiïze the magnitude of the underly- 

ing measures so that parameters expresseci in d t s  of large magnitude do not "swamp" the 

features of smailer scale parameters. The generd model has been defined as a linear com- 

bination of objective models. This requires that each parameter behave in a linear fashion 

as a function of the independent parsmeters. For modeis exhibiting non-linear behaviour it 

is necessary to include a linearizing finction ta ensure that normalization wiii be effective. 

The constraints on the system design may consist of factors beyond the designer's con- 

trol or may indicate desited bounds on performance. Examples of constraints on system 

parameters include the following , 
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1. Bit Rate Limit R(D) 5 R-. The secure communication system rnay be designeci 

for a limited bandwidth environment. Given a maximum sustainable bit rate for the 

channel, the designer rnay need to constrain the source coder bit rate to a lower rate. 

One factor not considered in the model is the bit rate expansion caused by the Channel 

coding operations. Allowance for this qansion must be considered in determining a 

maximum coder bit rate. In the fiture, it would be desirable to include a parameter 

describing Channel coder bit rate expansion in the objective fimction. 

2- Objective Quaiity Bounds S- 5 SegSNR(D,E.C.,BER) 5 S-. The 

designer rnay have a requirement for a minimum Ievel of ob jective quality, Say S- dB. 

It rnay also be considered acceptable to provide service below some maximum quaiity 

level so the designer may seek to obtaui more flexibilie in the design by lirniting the 

requirement on objective quaIity to Sm, dB, 

3. Security Requirements E(D, E.C.) 1 e, Q(D, E.C.) 2 q. The designer rnay 

define certain minimum enctpption security requiremeots. An example may be to 

provide at l e s t  the level of eneryption quality afforded by the DES ECB mode cipher 

and a higher level of encryption efficiency. It would be desirable to extend the number 

of representative encryption algonthms to iaclude the ciphers disasseci in section 

6.2. We rnay also wisb to indicate the desireci type of cryptographie sgnchronization 

protocol. These options rem& objectives for future research. 

4. Complexity Limita Cs.c. ( D )  +CE.c. (E.C.) +Ccec.(BER) 5 Cm-. The combina- 

tion of source, encryption, and channel codas rnay be subject to a maximum feasible 

complexity, or individual codas rnay be constrained separately. 

A set of constraints, Q(D, E.C., BER), which muat be sstissed in solving the optimiza- 

t h  probiem WU consist of some subset of these examples, 
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7.5 Optimization Problem Solutions 

In this section we will e d u a t e  the optimïzation problem for a varïety of design constraints 

and objectives. We nül Brst examine the &its that the relative weighting assignd to each 

parameter may have on the unconstrained system. W e  wi l i  then present examples of the 

same effects undet some chosen constraints. FinaUy, we will define two design problems that 

me representative of the sofi faced by secure speech system design- and present solutions 

to the design problems based on the g e n d  model. 

To sohe the opthîzation problem we must convert it to  a simpler single-mode form. 

This may be accomplished by evaluating the objective fiinction, 1, over the space d&ed by 

aU of our representative source, encryption, and channel coders, Specificdy, we compute 

each of the 7 parameters measutes in the objective fiuiction at  spedc  points in the space 

consisting of 6 source coders, 5 encryption coders, and 6 bit error rate channe1 conditions, 

or over a subset of that space as d&ed by the constraint condition @(Dl E.C., BER). 

In devdopment of the objective parameter modeIs we have either compileci experimental 

measurements a t  eacb of the required points, or derived an dgebraic model that may be 

evaluated at the points. In this simplification the optimal system is considerd to be the 

source, encryption, and chanoel coder combination which fields the largest d u e  of I .  

7.5.1 Objective Mode1 Weightings 

In definhg the objective function, 1, of eqnation (7.2) ne desaibed the quantities, yi, as 

factors for nonnalizing the models and for indicating the relative importance of each model 

to the system solution. We can distinguish these two factors by defining, 

where ai is the normalizing factor and tvi is the weightllig factor for the parameter. 

The weighting factors, w;, are determineed by the system designer's objectives, while the 
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aomialising factors are uniqueiy determineci by the average value of the objective parameter 

over the subset of points definecl for the optimisation problem. 

For an objective parameter, Pi(D, E.C., BER), the normaliaing 

where {D', E.C!, BER') represents the subset of points permitteci in the optimhation under 

the constraints indicated by 9(D, E.C., BER). 

We note that the method defùied for parameter normaiization is adaptive, depending 

on the design constraints. Nonnaliaing over a subset rnay r d t  in a greater sensitivity 

to variations in the objective parameters. This is likely to occur for objective parameters 

where some of the points in the unconstrained set are significantly higher or lower than 

the remainder of the set- Normalbation in these unconstrained cases is conect in that the 

average measure in a normabed objective parameter set is comparable to that of the à11 

other parameter sets, but small-scale variations in a set rnay become insignificant to the 

objective function. Normalization in a constrauied case may yïeld significant variations 

in optimal resuits when the constrraits exclude points that wry significaotly fiom the 

remainder of the parametet observations. This is a desirable characteristic for an accurate 

optimization solution. 

Normalization was perforrned according to equation (7.3) for ail optimisations performed 

on the general model. 

7.5.2 Unconstrained General Optimization Problem Solutions 

Due to the multidimensional problem dehition and vaciable weightings that map be applied 

to each parametet in the model, there are an enormous numba of possible solutions to the 

optimization problem. 

To characterize the behaviour of the general model we present here a summary of the 
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solutions obtained in an unconstroined prob1em d a t i o n  when one choice of parameter 

weighting is varieci while the rest remain constant. Presented in table 7.3 is a summary 

indicating the parameter studied, and the optimal probIem solution obtained for various 

ranges of the parameter weighting, w+ Weights were assigned relative to a unit weight for 

the fixeci parameters, 

Objective Parameter 
Objective 
Qualits 

Bit Rate 

Encryption 
Efliaency 

Encryption 
Q u a w  

Source Coder 

The optimal solutions generated by the model consist of a choice of source coder, en- 

tion coder, and channel bit error rate. The existence of a unique mapping fkom redundancy 

to source coder in table 7.1 d o w s  us to interpret the optimal solution for redundancy as 

a unique source coder, These sohtions are consistent with the definition of the objective 

function in equation (7.2) where optimization is performed over the space defined by the 

represent ative source and encryp tion coders and simulateci channel conditions. 

The results of table 7.3 reved many of the expected characteristics for the general 

optimization problem. We can summariae our observations on the efïixt of each objective 

parameter in the general model as follows, 

Complexity 

Encryption Coder 
Complaity 

Chamel Coder 
Complexi@ 

Mative W&ght w; 
[O.OO, O.?l] 
[0.72, 10.01 
[O-OO, 1.561 
[1.57, 4.921 
[4.94, 10.01 
[0.00,0.04] 
[0.04, 10.01 
[O.OO, 1-65] 
[1.67,10.0] 
[O-00, 0.471 

Optimal System - 
{24K ADPCM, ECB, 

{PCM, ECB, O) 
{PCM, ECB, O) 

{24K ADPCM, ECB, IO-') 
{CELP, ECB, O) 

{24K ADPCM, Vernam, IO-') 
{PCbd, ECB, O) 
{PCM, ECB, O) 
{CELP, ECB, O) 
(CELP, ECB, O) 

Table 7.3: Optimal Solutions for Unconstrained Problem Definitions 

[0.49,99.9] 
[O.OO, 0.021 

[0.03,1.90] 
[1.91, 10.0] 

[O-O, 2101 
[211, 5001 

{PCM, ECB, O) 
{Pm, CFB, 0) 
{PCM, ECB, O) 

{24K ADPCM, Vernam, IO-') 
{PCM, ECB, O) 

{24K ADPCM, Vernam, 10-~) 



Objective Quality. There are two modes of operation recomended by the uncon- 

strained model. When quality is considered reiativdy unimportant, the best system 

includes the Iowa quality 24 kbps ADPCM coder and allons a BER of Higher 

relative quslity objectives yidd an optimal system recommendation of highest quality 

64 kbps piaw PCM and no bit mors. 

Bit Rate. The unconstrained model indicated three solutions over a range of weight- 

ings. At a Low relative bit rate weighting, when the cost of bandwidth is not important 

to the designer, the 64 kbps p-iaw PCM coder was recommended. Higher relative 

weightings reduced the system bandnidth, first to the 24 kbps ADPCM coder, and 

finab to 4.8 kbps CELP coding. 

Encryption EfBcïency. These results indicated the effet that the relative impor- 

tance attached to encryption &ciency had on the recommended system. The low 

weight range recommended a 24 kbps ADPCM coder and the perfect, but inef6cient, 

cryptographic protection of the Vernam cipher, Higher weightings quickly discounted 

Vernam ciphers and recommended the more &cient ECB mode DES cipher. 

Encryption Quaiity. When the Lare1 of cryptographic protection requted in the 

system was &portant, the model allowed PCM encoding and an ECB mode ci- 

pher. It is inteiesting to note that higher enayption qualitg weightings resdted in a 

transition in the source coder type, but not in the encryption coder type. In this case 

we can explain the transition by noting that the ciphertext entropy results measured 

for CELP coded speech were equaily good for all encryption coders, and considerably 

better than the tesults for PCM coded speech. There were additional fmtors in the 

general model that contributad to the choice of ECB mode rather than another upher 

Q'F'e- 

Source Coder Cornplex& Optimal solutions included CELP coding when the 



cost of coder irnpIementation was deemed unimportant. A higher cost sensitivity 

causes the transition to the low complexity PChd format. 

Enersption Coder Compldty. The DES CFB mode attains prefmed statu. 

when encryption coder complexity is d a e d  UnMportant by the system designer. 

Higher cost sensitivities result h t  in a recornmendation for the slightly less complex 

ECB mode, and fmaily req- the minimal complexity Vanam cipher. It is int erest ing 

that the transition to Veniam encryption is accompanied with a recommendation to 

use 24 kbps ADPCM source coding instead of PCM. In tbis case, the lower redundancy 

in 24 kbps ADPCM contributes sdEciently to higher evaluations of the bit rate and 

encryption quality models to compensate for the increase in source coder complexity. 

Channel Code Complexity. As may be expected, an inereased weighting on the 

cost function for the channe1 coder results in an ïncrease fkom a recommended zero bit 

error rate to a rate of 10-~ for an optimal system implernentation. Another interesthg 

resdt is revealed by the recommended reduction in bit rate to 24 kbps ADPCM and 

a change to the Vernam stream cipher fiom the 64 bit DES ECB block cipher. This 

transition was motivated by the higher objective quality measmes obtained by stream 

ciphers, compared to block ciphers, under noisy channe1 conditions. 

Cleariy, the dependencies in the mode1 are complex and non-hear and result in optimal 

system solutions that could not be predicted by simple observations. We note that often 

factors other than the primary weighting contributed to the choice of one coder over another 

in table 7.3. 

The solutions to  the unconstrained optimisation problem indude only 3 of the 6 possible 

source coders, 3 of the 5 encryption coders, and 3 of the 6 possible channd coders represented 

by bit =or rates. The r d t s  should not impiy that these are the only solutions to the 

problem. These are simply the most attractive solutions over the unconstrained set of 

coders. In section 7.5.3 we wiU observe the presence of many other coders in the optimal 
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solution when constraints are added to the objective -ion- 

7.5.3 Constrained General Optimbation Problem Solutions 

Under constrained operational conditions we observed coders in the optimal solutions that 

were not selected under unconsttained conditions. T b  was caused by the exclusion of 

some previously attractive systems by the constraint conditions, and the &kct of new 

normalization factors on the m e m e s  remaining in the subset of possible solutions. 

W e  wkh to demonstrate how the addition of constraints affects the set of optimal solu- 

tions presented in table 7.3. W e  dehe a sarnple constraint to bel 

*(D, E.C., BER) = {R(D) 5 40 kbps, E.C. # ECB). 

This immediate &t of this constraint is to &de the plaw PCM source coder and the 

DES ECB mode tipher fiom the solution set. 

To characterize the Eehaviour of the general model under this constraint we computed 

optimal solutions over the same range of relative parameter weightings used for the uncon- 

strained results of table 7.3. These constrained results are presented in table 7.4. 

We note that the addition of consttaints to the problem produced a varie@ of new 

solutions. Adding constraints that excludeci two of the more cornmon optimal solution 

components, PCM and ECB coduig, incteased the number of alternative systems suggested 

by the model. The constrained system recommended CELP, DPCM, 24K, 32K, and 40K 

ADPCM source coders, and each of the CFB, CBC, OFB and Vernam ciphers. 

Given the large number of variables and potential constraint conditions, it is clear that 

any of the source, encryption, and channel codïng solutions may be obtained by solution 

of the appropriate optimization problem. Even the simple DPCM coder, which is clearly 

iderior in quality for a given bit rate, was obtained in an optimal solution. 
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1 Bit Rate 
[1.24, 1-93] {32K ADPCM, CBC, O) - 1 {24K ADPCM, CBC, IO-'> 

Objective Parameter 

Objective 
Qu* 

Relative Weight wi 
[O.OO, 0.731 
[0.74, 0.831 
[0.84, 10.01 
[O-00, 1-23] 

Encryption 
Efficiency 

Encry p tion 
QU*@ 

Source Coder 
Compiexitp 

Encryption Coder 

1 CompIaity 1 [231, 5001 1 {24K ADPCM, V'am, 

Optimal System 
(24K ADPCM, CBC, IO-') 
{32K ADPCM, CBC, O> 

{40K ADPCM, OFB, 10~') 
{40K ADPCM, OFB, 10~') 

Complezity 
Channel Coder 

Table 7.4: Optimal Solutions for Constrained Problem Definitions 

7.5.4 Practical Secve System Design Examples 

[4.01, 10.0] 
[O-00, 0.151 
[0.16, 10.0) 
[O.OO, 1-65] 
[1.67, 10.01 
[O.OO, 0.471 
[0.49, 37.01 
[38.0, 99-91 
[O.OO, 1.851 

We wish to demonstrate the use of the generai mode1 and objective fimetion for designhg 

optimal secure communication systems. We present here two examples where we utilize the 

general mode1 to obtain an optimal solution to a constrained system design prob1em. 

{CELP, CF%, O )  
{24K ADPCM, Vertlam,  IO-^) 

{40K ADPCM, OFB, 1 0 ~ ~ )  
{40K ADPCM, OFB, IO-') 

{CELP, CFB, O) 
{CELP, CFB, O) 

(40K ADPCM, CFB, 10-~) 
{DPCM, CBC, O) 

{40K ADPCM, OFB, IO-') 
[1.87, 10.01 
[O.O, 2301 

A system designer has a requirement to buifd a secure commUILication system in a con- 

strained environment. Specificdy, the designer is concerneci with the complexï~ of the 

integrated system as it must be implemented in a very smdl area as part of a larger IC de- 

sign. The communications Channel adable  to the system is capable of supporting up to a 

maximum of 40 kbps- The designer, being aware of the risks inherent in electronic codebook 

mode enayption, requires an encryption qualiw greater than that offered by ECB mode 

(24K ADPCM, Vernam,  IO-^) 
{40K ADPCM, OFB, 10-~) 
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DES. In addition, key management costs are a consideration in the overall design. The key 

management system can tolerate relatively long keys, but is not suSuent for supplyïng the 

bandwidth required for Vernam ciphers. 

This prob1em statement defines the constraints required for ob jeetive fiinction formula- 

tion, and implies a set of weighting criteria for the objective parameters. The statements 

regarding bit rate, encryption quality and efficiency describe the fouowing constraiats, 

@(Dl E.C., BER) = {R(D) 5 40 kbps, 

Q(D, E-C-) > Q(D, ECB), 

E(D, E.C.) > 0). 

The problem description implies that the complexity parameters are of the greatest 

importance in the design. No mention is made of the level of quality expected in the design, 

so we will assume this is of only medium importance. It &O appears that as long as the 

constraiats are satisfied, the designer will be content with any level of bit rate, encryption 

efficiency and encryption quality. We can assign these remaining parameters relatively low 

weightings. 

Weights were assigned to the objective parameters according to the preferences indicated 

above. Two schemes for the assignment of relative weightings were explored. The weightings 

of the high, medium, and low importance groupings in the two schemes were assigned as 

shown in table 7.5, 

1 I 

I 
- 
High 1 5 1 10 

Relative 
Importance 

1 Medium 1 1 1 1 

Relative Weight 
Scheme 1 1 Scheme 2 

Table 7.5: Altemate Weighting Schemes 

Under both weighting schemes the optimal system recommendation was for a 40 kbps 
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ADPCM source coder, an output feedbadc mode DES cipha, and a Channel coder pielding 

a bit error rate of IO-=. 

The sensitivity of both schemes to variations in the relative parameter weightings was 

examined to c o n .  the choice of system. Under the first weighting scheme, d a t i o n s  in 

the relative weightings of each importance grouping indicated a very stable optimal solution. 

The results, summarbed in table 7.6, indicate no recommended change in optimal system, 

except when the Iow-importance parameters were disregardeci completely. 

Table 7.6: Sençitivity Analysis of Exampk 1 with Scheme 1 Weightings 

Low 

Medium 
High 

The second weighting scheme was found to be almost equaily stable, except for a tran- 

sition to DPCM coders when the weighting on the medium importance parameters was 

[O.OO, 0.001 
[0.01, 1.001 
[0.50, 5-00] 
[1.00, 10.01 

reduced to the level of the low importance parameters. These results are swnmarized in 

{40K ADPCM, CFB, 1Od) 
(40K ADPCM, OFB, 10-~) 
{40K ADPCM, OFB, IO-') 
(40K ADPCM, OFB, IO-') 

table 7.7. 

We conclude that the constraints and weightings defiaed for this problem lead to a 

relatively stable optimal solution. The designer may implement the recommended system 

with confidence that it wi l l  achieve the optimal performance for the stated objectives and 

conditions. 

Importance Group 

Low 

Medium 

High 

Relative WGght w; 

[O-00, 0.001 
[0.01, 1.001 
[O-00, 0.221 
[0.23, 10.01 
[1.00, 20.01 

Optimal System 
(40K ADPCM, CFB, IO-') 
(40K ADPCM, OFB, 10-~) 

{DPCM, CBC, O) 
{40K ADPCM, OFB, 10-~) 
{40K ADPGM, OFB, IO-') 
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The secure system designer's k t  project was so s u c c d  that he was asked to produce 

another integrated system, this tirne as a diserete IC device. Given the entire chip area to 

work with, the complexi~  of the secare system is no longer important to the designer and 

he believes he can support any of the possible coder combinations containeci in the general 

model. The new design is intended to  support communications qualie speech at  a maximum 

rate of 32 kbps, but would be more favourably ceceiveci if it could operate with a lower 

bandwidth. The designer's securiQ objectives and the key management structure remain 

the same as in the first design, so he wîil apply the same constrcrints to the new system 

formulation. AUowing a segmental-SNR measmement of 20 dB to  define the minimum 

acceptable speech quality level, we may describe the set of constraints as foliows, 

*(Dl E-C., BER) = {R(D)  5 32 kbps, 

Q(D, E-C.) > Q(D, ECB), 

£(Dl E.C.) > 0, 

SegSNR(D, E.C., BER) 2 20 dB). 

The designer's objective being to provide high quality speech, we wii i  consider this 

parameter to be of relatively high importance and weight it accordingly. The bit rate 

required for the system is a consideration in this design so we wiil also give the bit rate 

parameter high impottance in our weighting schemes. The large chïp surface amilable to the 

designer suggests that complexîty is not an issue so we wil l  give the complexity parameters 

low relative weightings. The remaining encrpption quality and security parameters are 

coasidered of medium importance. 

Unfortunately for the system designer, there were no solutions to the general model 

under the inàicated constrauits. This definition of the problem yielded no valid solutions 
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to the model for either of the two relative weighting schemes summaiiaed in table 7.5. 

Closer acamination of the problem revealed that the p h a r y  confiict was between the bit 

rate constraint and the xninimum quality constraint. S i e  both of these parameters were 

consideteci of high importance by the designer, the choice of an aitemate relative weighting 

s&eme codd not deviate the confiict. 

This analysis resulted in the designer's decision to re-evaiuate and refine his design goal 

using results nom the general model. The designer found he had two options, the 6mt was 

to reduce the minimum acceptable segmental-SNR leva and the second was to increase 

the dowable bandwidth of the system. The designer found that valid solutions could be 

obtained by reducing the minimum acceptable segmental-SNR level fiom 20 dB to 19.8 da, 

or by inmeashg the bandwïdth of the system to 40 kbps. In consultation with the project 

manager it was decideci that the smaii degadation in signai quality would be preferable to 

the relatively large increase in bandwidth required for the other solution. 

A sensitioitg analysis was performed on the modei under the refined constraïnts for both 

of the relative weighting schemes. The results obtained under weighting scheme 1, presented 

in table 7.8, and the results under scheme 2, presented in table 7.9, reveal a highly stable 

optimal solution consisting of a 32 kbps ADPCM source coder, a cipher block chaining 

mode DES cipher, and a Channel coder capable of providing p d e t  transmission. 

Table 7.8: Sensitivity Analysis of Example 2 with Scheme 1 Weightings 

Importance Group 
Low 

Medium 
c High 

r Im~ortance gr ou^ 1 Relative Weieht w; 1 Ontirnid Svstern 1 

Relative Weight wi 
[O-00, 1.001 
[0.50, 5-00] 
[LOO, 10.01 

Table 7.9: Sensitivity Analysis of Example 2 with Scheme 2 Weightings 

Optimal System 
(32K ADPCM, CBC, O) 
(32K ADPCM, CBC, O) 
{SZK ADPCM, CBC, O) 

(32K ÂDPCM CBC, O) 
(32K ADPCM, CBC, O) 
(32K ADPCM, CBC, O) 

* . 
Low [0.00,1.0O] 

Medium 
ECigh 

[O.OO, 10.01 
[1.00, 20.01 
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This second example demonstrates how the g e n d  model can be a vaiuable tool for 

developing secure colpmunications systems. 1t dows decisions on the refinement of system 

objectives and constraints to be based on the quantifiable results provided by the general 

model. 

7.6 Observations on the General Model 

Most of the parameters comprising the general model were devdoped by means of experi- 

mental measiues perfomed on representative sets of coders- An exception, the complaity 

parameters, were developed using a variety of approximation teduiiques and general obser- 

vations. The accuracy of the general model could be improved by several means- The first 

improvement would be to increase the representative coder sets to include a wider variety 

of coders. This would reduce the granularity of obsemations in the tegions of interest to 

the system designer. 

If, for instance, the designer could obtain quality and redundancy measures for a source 

coder not included in the representative set, these could supplement the quality and bit rate 

models. If the suite of ciphertext entropy measures could not be performed for this coder, 

the designer could still obtain approximate measures by interpolating the securitty rnodels 

at the level of redundancy measured for the new source coder. 

An additional improvement would be to increase the accuracy of each of the parameter 

modeis containecl in the general model. The maflfler in which this could be accomplished is 

dependent on the nature of the individual measufements- The objective quality measures 

may be împroved slightly by additional measurements, but would benefit m a t  from a 

more specific description of the channe1 conditions- As was notecl in chapters 5 and 6, 

the bit rate and security rnodeis could be improved by higher order probability measures 

on the underlying processes. As we have already noted in section 7.2, the complexity 

models, partieulady the channel coder model, would all benefit fiom a more sophisticated 
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developrnent . 
The generai mode1 is an dective tool for exploring the design alternatives in a con- 

strained secure co~ll~unication environment, despite the opportunity for increzsing its ac- 

cuacy by additional experiments. The data contained in the modeis is as accurate as it was 

feasible to compute, and is t d y  indicative of the behaviour of the alternatives subjected to 

study. Our choice of representative coders spanned a broad range of interest, so the results 

contained in the modd wiU represent approximate solutions that are relevant to a variety 

of s p d c  s ystern implementations. 



Chapter 8 

Contribut ions, Conclusions, and 

Future Research 

8.1 Contributions 

In chapter 2 we presented a method for high order conditional entropy estimation. This 

technique ailows the calculation of conditional entropy measures that are infeasibly cornplex 

for the conventionai direct caiculatioa rnethod. The method has the additional advantage 

of being partitionable in time and acroap multiple processing onits. 

In addition ta the estimation algorith, we identifid opportunities for increased efE- 

ciencies in its application to real source processes. An adaptive sequential Monte Carlo 

sampluig algorithm was presented as an efficient method of obtaining estimates of various 

idormation measures for a d e t y  of source processes. 

WWe the description of the entropy estimation algorithm is, in our view, quite straight- 

forward, application of the algorithm to a large entropy estimation problem was found to be 

a challenging task. In chopter 3 we presented the results of our experimental work towards 

an estimate of the entropy rate of the speech process. The resuits of chapter 3 included 



measures of the fùst to sixth otder conditional entropy, studies of the convergence proper- 

ties of these measures, and the demiopment of conditional entropy surfaces for ail model 

orders. AU of the experimental PCE data computed in this study has been retained and 

can be applied in &tue  studies to b a s e  the accuracy and reduce the computationai cost 

of additional conditional entropy rneasurements. 

Applying non-linear regtession analysis to fit an apptopriate model to the fitst to  sixth 

order conditional entropy measurements, we obtained an estimate of the entropy rate of the 

speech process to be 22.3 kbps f 7 kbps with 95% confidence. 

In chapter 4 we presented an argument for the development of theoretic measures of 

the security of enapption systems and proposed h o  unique indices for use in the general 

model of the secure speech system. We &O defined in Proposition 2 a set of design aiteria 

for cryptosy stems to ensure the relevance of the theoretic measures. 

Chapter 5 presented models of objective quality and bit rate as a function of parameters 

under the control of a secure system designer. We examined the segmentd-SNR performance 

of a class of representative source coders under a variety of channel conditions. Of particular 

importance to the general model was the development of measures of the impact of channel 

errors mder cryptographic conditions. 

In developing a modd of bit rate we computed measmes based on the idonnational 

divergence in the coded speech process. These studies resulted in a weil-supported analytic 

model relating bit rate to the level of redundancy in the source coded signal. 

In chapter 6 we defined a smaU set of representative encryption techniques meeting 

Proposition 2 and performed experiments to ewluate the theoretic security indices. This 

work combineci the results of our entropy estimation work and redundancy modelling to 

produce experimentd models of cryptographic securiw. 

In chapter 7 we defined rudimentary models for the complexity of source, encryption, 

and channel coders. These simple models added an essential dimension in the analysis of 

secure communications systerns. 
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Fïnaliy, we combined the models of objective speech quality? bit rate, security, and 

complexity to define a generai model of the secure commUILication system. Chapter 7 

outlined the sets of objective, intermediate, and controlhg parameters in the system and 

indicated the general interrelationships between th-- We then f o r d a t e d  an optimisation 

problem for secure system evaluation based on a general constrained objective function over 

the parameters of redundancy, encryption, and bit m o t  rate. 

Due to its non-linearity and high dimensionaütp, it is di fndt  to  observe aU faeets of 

the resulting model. We performed studies of the sensitivity of the model to changes in the 

design objectives and constraints in order to demonstrate its general characteristics. We 

then demonstrated the use of the model with two ejramples where the model was applied 

to determine an optimal secure communication solution under typicai design constraints. 

8.2 Conclusions 

The entropy estimation work presented in chaptets 2 and 3 revealed some general character- 

istics of the estimation technique. Our experimeatal work found the high order conditional 

entropy surfaces to be relatively smooth and highly peaked around the mean of the process. 

This form of entropy s d a c e  was pactidarly suitable to efficient sampling and interpolation 

by the Monte Carlo seleetion procedure, ailowing a good estimate of the entropy rate to be 

computed fiom a relativdy s m d  number of PCE rnezuiures. 

In general, we found characterizing the shape of the entropy d a e e  to  be a critical step 

in efficient entropy estimation, A dear understanding of the entropy suffisce of a process 

would allow a better a prion sampluig distribution and inaease the accuracy and efficiency 

of the entropy estimate- 

The experimental work performed in chapter 5 revealed a complex and non-linear rda- 

tionship between the objective qualiq measure and the parameters of redundancy, bit error 

rate, and encryption coder type. The experimental xesdts determined under noiseles con- 
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ditions indicated a linear rdationship between bit rate and quality. Under noisy encrypted 

conditions, however, the relative quality obtained by the repmsentative c o d a  was fowid to 

exhibit more complex characteristics that were best represented by the sample observations 

alone. This research clearly indicated the non-trivial nature of secure system design as it 

rdated to the quality measme, 

The model of bit rate as a hct ion  of redundancy, also presented in chapter 5, was found 

to conforni to the theoretic bounds on performance and to  meet our intuitive expectations. 

We noted that the data supporting the operationai rate-redundancy h c t i o n  of equation 

(5.20) could be improved by computing higher order divergence measwes. 

In developing the experimental modeis of cryptographie s,4@ in chapter 6 we discov- 

ered the charactetics of encrypted speech to differ signiscantly from unencrypteci speech. 

Due to the randomizing &et% ofencryption, modeiiing uphertext entropy was found to be 

a difEcult activity. A significant increôse in the required statespace for a ciphertext entropy 

calculation made i t  necessary to employ the entropy estimation technique at a Iower model 

order and to supply much larger volumes of sample data than were required for mencrypted 

speech. We noted that these dïfEcuities could be addtessed with an increase in the tirne 

and storage available for the experiments, 

It was difficult to distinguish the security resuits of the representative encryption coders 

on the basis of third order entropy measmes. Eigha order measures would reveal larger 

variations between the coders and improve the accuracy of the security components in the 

general model. 

Most of the patameters comprising the general model were developed by means ofexper- 

imental meamres performed on reptesentative sets of coders. An exception, 'the complexi~ 

parameters, were deveioped using a variety of approximation techniques and general obser- 

vations. We could improve the accuracy and relevance of the general model by inmeashg 

the representative coder sets to include a wider variety of coders. This would d u c e  the 

granularity of observations in the regions of interest to  the system designer. 
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The general model is an effective tool for exploring the design alternatives in a con- 

strained secure commUfLication environment, despite the oppottunitty for increasing its ac- 

curaq by additionai experiments. The data contained in the models is as accurate as it was 

feasible to cornpute, and is t d y  indicative of the behaviour of the alternatives sub jected to 

study. Our choice of representative coders spamed a broad range of interest, so the results 

contained in the model will represent approximate solutions that are relevant to a variety 

of specific system implementations, 

While the modelling methodology and entropy estimation algorithms were applied in 

this research to the specific case of a secure speech cotnmdcation system, they may also 

be applied to a wider dass of sources possessing high levels of redundancy, including vide0 

and facsiz.de signals. 

8.3 Future Research Topics 

There were a number of topics identifiecl as behg of interest for fkrther research. Some of 

the major topics are noted below, 

In developing estimates of the probability distributions of the speech process we en- 

countered a variety of difüculties due to the large volume of speech data being pr* 

cessed and the long execution times required of our experiments. These problems 

precludd a constant and maximal sample sise for the speech process under study. 

The following are a few areas in our experimentai work where we noted the oppor- 

tunity for improvements that would enhance the acczuacy and confidence interval of 

the predicted entropy rate, 

1. More accuate measures of the conditional entropy of the speech process codd 

be obtained by computing all PCE vectors from a single large sample set. A 

larger sample set would improve the convergence of PCE vectors outside the 
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more probable regionsi, and a constant sampie set sbe wodd eliminate the need 

to normaiize the PCE measures with the set of computed convergence surtac:es. 

Tbis procedure wodd requUe the use of larger, and more reliable, computing 

facilities than were available for our initiai ptediction. 

2. Were this not feasible, we could still increase the accuracy of our results by im- 

proving the tesolution of the set of convergence surfiaces. This could be achieved 

by expanding the set of convergence measures to indude a targer number of 

points over the caiculation space. This process is feasible with the available com- 

puting resources and simply requires the expenditure of a greater amount of tirne 

to c o k t  the convergence data. 

3. The accuracy of the entropy measure could also be improved by induding more 

PCE vectors on the entropy surface. A larger number of PCE vectors would 

directly improve accuracy by ptoviding a higher resolution set of measutes for 

interpolating the complete entropy surface. 

0 We have noted that the Kuilback-Leibler distance measmes used to deveiop the o p  

erationd rate-redundancy function could not be computed to as high a model order 

as might be desired. As a result, significant dinerences in the original and distorted 

waveforms may not have been detected by out measures, and the divergence rate 

measures of figure 5.15 may be quite conservative. 

It would be desirable to obtain fourth, Mth, and sixth order divergence measues in 

order to verifp the lower-order results and more accurately measure the divergence of 

the CELP coder. In future work it should be possible to extead the divergence measure 

to higher modd orders using a modifieci form of the entropy estimation technique 

presented in chapter 2. The estimation procedure could be modXed by partitioning 

the generalized Kdback-Leibler distance measw into independent partial divergence 
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measures, 

Selecting the vectors E A?-i by a Monte Car10 procedure, we can compile a 

set of partial divergence measures with which to interpolate the complete n th  order 

divergence d a c e .  

In the future it would be desirable to extend the order of the conditional entropy 

caldation applied to the security models. Hïgher otder measmes could be obtained 

by applying the entropy estimation technique to a much lorger source coded database. 

There is no theoretical impediment to these calculations, but man? of the ptacticd 

problems of managing this large experimentd effort would have to be addressed. 

In future work, it would be desirable to examine in detail the effects of maintaining 

crpptographic syncbronization on the model parameters. The cryptographie synchro- 

nization protocol may be designed witb a varie@ of security objectives, ranging fiom a 

non-recovering high-securim model to a robust self-synchronizing type. These choices 

affect the paramefers of comp1exity, objective quaiity, bit rate, and Secunty. 

Finally, a more sophisticated treatment of the complexity models, particularly for 

channel coders, would expand the abüities of the general model. Many of the charac- 

teristics related to the channel were ideaiized in oar work. More acçurate models of 

channel error rates and distributions, message expansion, and delay would contribute 

greatly to the generai system model. 



Appendix A 

Theoretic Entropy Rate of the 

Speech Process 

Theorem 1 (Shannon-McMillan-Breb theorem) For stationaq ryodic praeesses, 

1 - logp(Xo, . . . , X,-l) -t iim E[- logp(x , (~- ' ) ]  -+H wltn pmkbility 1. 
n n+co 

Proof: Algoet and Cover demonstrated in [99] a proof of the theorem by sandwichhg the 

non-ergodic sequence p ( ~ i ( x - l )  between the dosely reiated ergodic quantities p ( ~ i l  xi::) 
and p(~.l~iz). These more tract able quantities define two measures of interest, 

an upper bound on the entropy rate and, 

HO" = E[- l~gp(XolX-~, . . .)], 



a lower bound. 

Using Levy's martingele convergence theorem for conditionai probabilities ît wa shom 

that 

iim H' = iim E[- p(zol~_;') l o g p ( = o ( ~ ~ t ) ]  
'+a0 '+O0 

20 EX 

Since l?' -+ Hm = H ,  the sandwich is c l o d  around the secluence of interest and it ir 

proven to be asymptotically equal to the entropy rate. Cl 

We can apply a minor modüication to the Shannon-McMiUan-Breiman theorem ta derive 

the entropy rate of the speech process. 

Theorem 2 (Entropy rate of the speech process) Assuming the speech proeess to be 

ergodic as well as statimary meth limited memoy as defined in eqwtion (3.1), 

Proof: By equation (3.1) we have, 

Thetefore, 
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and, 

So H' -t H~ = HO0 = H. Applying the characteristic of limiteci signal memory, ne 

have shown that the entropy rate of the stationary ergodic speech process is bounded by 

the two tractable quantities and is equivaient to the k + lth order conditional entropy, 

H(XkJXk-i, . . . , Xo)- For ease of use, we c m  apply the principle of stationarity to express 

the jth order conditional entropy in the fom, H(XjlXj-l,. . . ,Xi)- O 



Appendix B 

The SWITCHBOARD Database 

The NIST SWITCHBOARD database [15] was designed to address the need for a large 

multi-speaker database of telephone bandwidth speech. It consists of 2430 spontaneous con- 

versations spoken by 542 dinerent speakers from every major dialect region in the United 

States. The average conversation has a duration of 6 minutes, r d t i n g  in over 480 hours 

of recorded speech. The collection process was automated in order to minimize any effect 

of experirnenter bias and to ensure UXUfonnity throughout a Long testing period. The initi- 

ation protocol was designed to encourage a naturd and spontaneous conversation fiom the 

participants. 

The data was collecteci directly fiom the telephone network's Tl lines and stored in 8 

bit p-law PCM fonnat at  8 kEiz for each of the two speech channeis. This digital collection 

technique avoided anp degradation due to the collection system. The speech quality of these 

recordings was determined solely by the speaker's speech patterns and the local telephone 

equipment. 

We consider a conversation to be the vocal audio signai processeci by a single speech 

coder at the network end-point. A single SVVITCHBOARD file therefore consists of two 

conversations. Ideally we would screen out any conversations exhibithg non-speech sounds 



or post-quantization noise added by the telephone nehvork, but to do so would be infeasible 

for this experiment. The transcriber records included in the database provide subjective 

assessments of noise, echo and clarity, but dortmately the? were h d  to be nnteliable 

because they were based upon an analog recotding of the conversation and not the digital 

data itself. It is inftible to  reassess the database on a casecby-case bais so it wos decided 

to admit all conversations to the model. 

It is teasonable to assume that where these addîtional noises, a, do occur in the process, 

they are uncorrelated with the signal, Their impact on the entropy rate measurement 

wiLl therefore be additive such that oui: estimate wiII include the signal and the noise, 

H(X + cr) = H(X) + H(o) .  It should be stresseci that these artifacts are rare and wi i l  

contribute Little m o t  to out estimate of the entropy rate. In future work it may be possible 

to estimate and bound the magnitude of H(a)  by computing the entropy of the recorded 

database during non-speaking segments. 



Appendix C 

SWITCHBOARD Database 

Transcription Examples 

A wide varie* of subjective responses were recorded for the SWITCHBOARD database 

[15] by the transaibers responsible for producing a tlnealligned transcnpt of each conver- 

sation. The tramcribers recorded subjective eduations induding the intelligibiii~ of the 

conversation, the apparent naturalness of the conversation, echos on either co~nmunication 

diannel, and noise in the form of static or non-speech contributions in the background. The 

degree of each characteristic wzs recorded as an integer measure between 1 and 4, with 1 

being ideal and 4 being the worst performance. The ttanscribers made additional coniments 

as they deerned necessary to describe additional information about each conversation. 

As ne have discussed in Appendir B, the subjective measures provided by the tran- 

scribers were fomd to be unreliable due in part to an inadequate testing methodologp. 

The problem with the subjective eduations arose because the transcnbers were supplied 

with an analog recotding of the conversations, and not the exact plaw data supplied in 

the database. As a result of poor analog reproduction, the subjective evaluations of some 

recordings do not correspond to the actual qualiw levels. The second problem arose fiom 



inconsistenues in subjective evaluations between individuai tramcribers. The resdts were 

not nomaiized in any way, so the condusions reached by the various tramcribers are not 

generally consistent. 

W e  reproduce here several examples of the subjective evaiuations accompanying the 

traascription records of speech samples used in out mode1 of the speech process. 

==> su380S, t x t  <== 
FILENAIE: 3805,1490,1263 
TOPICt: 340 
DATE: 920120 
TRMSCRIBER: glp 
DIFFICULTY: 1 
TOPICALITY: 1 
NATllRbLNESS: 2 
ECHO,FROM,B : 1 
ECHO,FROH,A : 2 
STATIC,ON,A : 1 
STATIC,ON,B : 1 
BACKGROUND,A : 1 
B ACKGROUND-B : 3 
RJWRKS : Speaker A dominated the conversation. Speaker B 
had a TV on in the background. 

==> su3806 .ta <== 
FILENAME : 3806,1477,1462 
TOPIC#: 358 
DATE: 920120 
TRANSCRIBER : GLP 
DIFFICULïY: 2 
TOPICAL ITV:  1 
NATüïüUNESS: 4 
ECPO,FROM,B : 2 
ECHOJROM-A: 1 
STATIC-ON-A : 1 
STATIC,ON,B : 2 



BACKGROUND-A : 4 
BACKGROUND-B : 2 
REMARKS : Speakers (especially A) had a hard t h e  keeping the 
conversation going. Speaker B seemed dïstractedtoward the end of 
the conversation. 

==> su3808. t x t  <== 
FfLENAME: 3808,1372,1023 
TOPIC#: 354 
DATE: 920120 
TRANSCRIBER: glp 
DIFFICOLTY: 2 
TOPICALITY: 1 
NATüRALNESS: 3 
ECHO-FROM,B : î 
ECHO-FROM,A : 2 
STATIC,ON,A : 2 
STATIC,ON,B : 1 
B ACKGROUND-A : 2 
BACKGROUND-B : 2 
REMARKS : Speaker B sounded as if he vas nsing a speater phone. 

==> sw3810.txt <== 
FILENAHE: 3810,1253,1307 
TOPICI: 308 
DATE: 920121 
TRANSCRIBER: glp 
DIFFIcaTV: 1 
TOPICALITY: 1 
NATURALNESS: 2 
ECHO-FROM-0 : 2 
ECHO-FROH-A: 2 
STATIC-ON-A: 1 
STATIC-ON-B : 1 
BACKGR0üND.A : 1 
BACKGROtlND,B : 1 
REMbRKS: None. 
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==> sw38l l  .trt <== 
FftENAHE : 3811,1477,1490 
TOPICI: 323 
DATE: 920121 
TRMiSCRIBER : glp 
DIFFICULTY: 3 
TOPICALITY: 3 
NATüRALNESS: 3 
ECH0,FROH-3 : 2 
ECHO-FROH-A: 1 
STATIC-ON-A : 1 
STATIC,ON,B : 2 
BACKGROUND-A : 4 
BACKGROuND,B : 2 
REMARKS : Speaker A had excessive background noise (i. e. 
dishes, child, doors) 



Appendix D 

Implementat ion Details of the 
Speech Models 

The memory requirements for calculation of the PCE meamrements were much too large for 

the computing resources a t  our disposal. ki fact, fidl spedcation of any 0(2564) caiculation 

exceeds the practicai capacity of a 32 bit address computing architecture. We used a group of 

8 networked Sparc II workstations with real memory spaces ranging fiom 24 to 64 MBytes. 

Sample data was distributed ta the set of modekg  and entropy caldating processes 

on each machine by means of the network. The probabilistic models were maintaineci 

independently in the local memory of each machine and were not distributed across multiple 

processors. This separate modelling activity was made possible by the independent nature 

of PCE measure. 

Computing each O(256') PCE vector required a carefd implementation of the data 

structure for the probabilistic modei. Naturaliy, it was essential to take advantage of any 

redundancies in the source proces to reduce the state-space of the mode1 to a tenable size. 

This was accomplished with a dynarnic storage routine that recordeci data for only those 

4-tupies observed in the processecl data set. 

W e  approached the implementation of the data structure with a dynamicdy linked list 

structure, indexeci by a hash table computed from the stored data vaiues. Orïginaily, the 
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hashing fiuiction was designed to ensure roughly equal length in each of the linked lists. 

This type of balance was expected to minimize the time required to search and update the 

data structure, but was discovered to be very inefEcient for storing the speech model. The 

poor pdormance of the original hashing function was caused by the combination of the 

stochastic nature of the speech process with the dynamic storage allocation scheme. 

W e  f o d  our original approach achieved a highly homogeneous distribution of prob 

ability data throughout virtual system memory. This resulted in poor performance when 

the data s t ~ c t u r e  was large, as it was necessary to pedorm frequent swaps in and out of 

active memory to perform the entrupy caldation, For large models, a signincant fraction 

of execution time could be spent handling page faults. 

These observations led to  an hnproved hshing function. The new function was designed 

to maintain locality among consecutive data values, meaning that Ptuples that difFéred 

ody in the last data value were hashed to the same value. Our intent was to increase the 

probability that when performing the entropy caicuIation, consecutive data values would 

be found in the same page of memory. This design s d c e d  some of the uniformitg among 

list lengths, but resuited in a 25% reduction in the entropy computation time. 

A second improvement was found to increase the entropy computation and modehg 

esciency by an additional 25%. W e  found that despite the improvement in the logical 

locality of the linked List structure, many of the suppOcSecUy adjacent eiements were still 

widely distributed across Putual mernorg. It became char that an improved hashing h c -  

tion done would not compensate hily for the combination of a stochastic input process 

with another essentialiy stochastic dynamic storage routine. The cornputers on which these 

processes were running had multi-user operating systems which support a variety of si- 

multaneous ta& of varying priority. Our jobs, being long-running and computationaily 

intensive, were run at a lower priority and consequently were vulnerable to preemption and 

fiequent swapping out of active memory. As a resdt, while data elements may have been 

logically adjacent in the List structure, if they did not appear in the sample set within the 
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same t h e  period they could be docated to wïdely separateci locations in Wtual memory. 

Such separation would incur the same swapping time penalty that was encountered @or 

to increasing the logical localitp of the iist stnictute. 

Our solution was to periodidy store the entire list structure to disk and then retrieve 

it. By storing the data stmcture in logical order on disk we codd inaease the real memory 

locality of the ht dementa by a sipifkant margin upon retried. Each thne the data 

structure was retrieved it was re-allocated in logical order, perfotming an impiicit sorting 

operation on the list elements. By balancing the time required to perform the store and 

retrieve the list structure with the improvement in data storage and retrieval operations, 

we achievd a 25% improvement in the time required for PCE caldations- 

In total, the improvements in the hashing firnction and logid list order doubled the 

rate of the entropy estimation routines. 



Appendix E 

Work Estimate for Entropy Rate 
Predict ion 

In this section we wili estimate the total nurnber of operations required to produce the set 

of six conditional entropy measmes used to predict the entropy rate. The normalization, 

interpolation, and non-linear regression procedures all contributed to the total work required 

for the calculation, but the dominant cost was represented by the modeiling and entropy 

computation phases as these were repeated for every measmement, 

In table E.1 we summatiae the notation that rill be used to denote the operations 

pedormed in computing the entropy estimates. W e  wiU differentiate our count of the total 

operations p d o d  in computing the entropy estimates according to these operation 

types. Also in this table we indude an estimate of the relative cost of each operation [LOO]. 

These relative weightings allow us to form a comprehensive estimate of the computation cost 

of our measurements. Throughout this section we WU determine very consemative estimates 

of the operational complexity of our algorithms. Our f ia l  summation rrill provide a lower 

bound on the real computational cost of our work in predicting the entropy rate of the 

speech process. 
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Table E-1: Symbols, Opuations, and Relative Operation Costs 

Operation 
Load,Stote word 

E.l  Modelling Cost 

Relative Cost 
1 bt) 

Each entropy caldation, whether the exact measure for first to fourth order, or a single 

O(256') PCE meastue, required the two steps of mode1 estimation followed by entropy 

computation. The modelling process required an amount of work that was linear in relation 

to the length of the data set being analysed. 

E.1.1 Direct Algorit hms 

Storage of the first and second order joint probabiliw models required no more than a 

static array in memory. For each byte of input data we performed one integer addition 

and one load/store operation to update the data structure. The third and fourth order 

models were also implemented in static arrays, utilizing a complete set of 256 second and 

third order PCE modeis, respectively, to obtain exact entropy measUres. For the third 

order measure n e  managecl to compute 64 PCE models simultaneously on a single pans 

thmugh the data set, while the fourth order mode1 required 256 passes through the data. 

For complete PCE modelling, ne performed cornparison operations to  identify the elements 

belonging in the PCE models being computed on a given pass, a single integer addition 

and 2 load/stores for every byte in the input sample set. Sumrnarized in table E.2 are 
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the estirnatecl computation costs for buiIding the probability models required for the &ect 

conditionai entropy measmes. These d u n t  calculations were computed on a range of sample 

set sizes and were repeated on several disjoint sampie sets ta obtain confidence intervals- 

The numbes of these direct caldations is summanPed in the convergence data in figure 

3.5 and the observation counts in table 3.1. The product of the sample set siaes and the 

number of observations at  each size yielded a measme of the total volume of sample data 

that was processed by the direct m o d e h g  routines. 

1 ~ o d e l l  oh. ( oh. 1 NO. 1 Operations I ~ o t a ~  I 

Table E.2: Operations Count for Direct ModeUing 

E. 1.2 Indirect Algorit hms 

The models uped for fiRh and suth order PCE mewues were implemented in dynamically 

allocated linked lists in memorg. This structure required a hash d u e  to be cornputed, a List 

to be traversed and one addition to be pedomed for every input byte. W e  maintained Iists 

with an average length of 10 eiements, so we can assume an average of under 5 traversal 

operations per List search. The hashing fiinction was a permutation of a 3 byte word, reduced 

by the modulus of the hash table size. We can conservativeîy estirnate the hash d u e  

calculation to require 24 bit sbiRing operations, and one modulus operation. Omitting the 

cost of initialising new list elements, and estimating a single cornparison and 4 load/stores 

per traversal operation, we can estimate a total cost of 5 comparisons, 20 load/stores, 24 

bit shifts, one integer addition, and one modulus operation for each access operation to the 

dynamic meniory stmcture. 

To further complicate the work estimate for the dpnamic structure we note that only 
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Summarized in table E.3 is an estimate of the number of operations required to build the 

fifth and sixth otder probabiiiw modeis for the entropy calculationç. Convergence statistics 

were computed for these indirect measuremenfs a t  a varie* of samph set s k s  and sample 

points as  is summarized in figures 3.6 and 3.7. Also included is an estimate of the volume 

of data processed to generate the sets of KI and & PCE vectors. For this calculation 

we used an average data set sïze of 3800 minutes for the 5th order calculation and 10000 

minutes for the 6th order calculation. Summing the number of convergence observations 

with the product of the Ki's and their respective average data set sizes yielded an estimate 

of the total number of bytes processed by the indirect modeiling routines. This allowed a 

conservative estimate of the number of indirect modehg operations. 

Table E.3: Operations Count for Indirect Modelling 

E.2 Entropy Calculation Cost 

Modd 
Order 

5 
6 

The work performed in the entropy coxnputation phase was largely independent of the size 

of the data sample sets and primarily detennined by the order of the entropy calculation 

being performed. There were two algorithms used for the entropy calculations, one for 

direct memures whicb were stored in static arrays of memory, and one for measures that 

had to be stored in a dynamic structure. 

The probabilistic models stored in both types of structure consisted of integer counts 

of all events observed in the sample space. Dividing each comt by the total number of 

observations in the model would yield the probability measure, but it was more efficient 

to perform this operation at the end of the entropy calculation rather than for every de- 

ment. For both types of algorithm, the probabilistic model ww pre-processed in order to 

Total Obs. 
(Bytes) 
1.1 x 1011 
5.7x10L1 

Converg. 
Obs. (min.) 

75950 
185220 

PCE 
Obs. (min.) 

155800 
1010000 

Operations per. 
Byte (b) 

l(=, x ,<<), 
2(=,+,%,L/S) 

Total 
Operations 
1.1 xlOll(b) 
5 . 7 ~  lOl1(b) 
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compute conditional entropy measutes fkom the joint probability distributions developed 

bp the modehg proceas. This mas &cornplished by cornputhg the marginal distributions 

of the model, in terms of integer counts, and dividing each joint probability count by that 

marginal count. 

E.2.1 Direct Aigorithms 

In the pseudocode excerpt of figure E.2 we detail the operations required to compute the 

conditional probability measures and the direct 3rd order conditional entropy measure. We 

note that the static array design of the direct modeilhg approach dowed us to tabulate 

the marginal distributions, P[i]b], without signiticant cost. A very similar algorithm was 

used for aii other direct enfropy measures. Rom this code segment we estimate a total of 2 

load/stores, 1 floatùig point (F.P.) addition, 1 F.P. muitiply, 1 F.P. divide, and 1 logarithm 

operation for each iteratian of the entropy caldation. 

for ( dl,i )( 

for < dl-j )C: 
for ( ail-k )€  

entropy -= P Cil Cj3 CkJ * log ( P Ci3 C jl CkJ / P Cil Cj3 1 ; 
3 

> 
1 
entropy /= ( Total-comt * log(2) ); 

I 

Figure E.2: Direct Entropy Caldation Excerpt 

Using these estimates we have summarized the number of operations reqwred for all 

direct entropy measures in table E.4. We note again that the direct caldations were 

performed on a range of sample set &es and were repeated on several disjoint sample sets 

to obtain confidence intervals, as is summarized in figure 3.5 and table 3.1. 
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Table E.4: Operations Count for Direct Entropy Caldations 

E.2.2 Indirect Algorit hms 

In the pseudocode exeerpt of figure E.3 ne detail the operations requted to compute the 

conditiond probabiiitg measures and a PCE mesure of c o m p l ~ t y  0(2564). We must 

explicitly cdculate the marginal distributions fÏom the observations in the dynamic struc- 

ture, resulting in an increase in the nwnber of caldations pdormed per loop iteration. 

Assiiming the same characteristics for list searches noted in the modehg cost section, we 

estimate the foliowing operations being performed for each iteration of the indirect entropy 

calculation: 6 assignments, 10 compacisons, 42 load/stores, 48 bit shifts, 1 integer addition, 

1 F.P. addition, 1 FP. multiplication, 1 F.P. dioision, and 1 logarithm . 
Using these estimates n e  have summarized the number of operations required for ail 

indirect entropy measures in table E.5. We note again that convergence statistics were 

computed for the indirect caldations at a variety of sample set &es and sample points as 

summarized in figures 3.6 and 3.7. We a b  computed KI = 41 and K2 = 101 PCE vectors 

to form the entropy surfaces. Summing the number of convergence caldations with the 

number of data PCE calculations yielded the total number of entropy calculations. 

Table E.5: Operations Count for Indirect Entrdpy Caiculations 

By combining the dominant components of the modellïng and entropy calculation rou- 

Mode1 
Order 

5 
6 

Converg. 
Points 

25 
36 

Total 
PCE Calcs. 

66 
137 

Operations pet 
Computation (d) 

25~~*(6(=),10(=),42(L/S), 
48(>>)~1(+t++~*,/,log)) 

Total 
Ops. 

66(d) 
. 137(d) . 
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/* Compute C(1) /* 
C(1) = O; 
for( ail-1 < 

data-value = ( i ,  j ,k,l) ; 
data-node = 

SearchNodes (HashTable C:~ornpute~hash(dat~v~ue)J , data-vahd ; 
C (1) +s (*data-node) . count ; 

3 

/* Cornpute Sum,(i,j,k,l) C(i,j,k,l) log  C(i,j,k,l)/C(l) */ 
for( d1-l 1 C 

data-value = (i, j , k , l )  ; 
data-node = 

SearchNodes ( ~ a s h ~ a b l e  [Computeœhash(data-value) 1 , data-value) ; 
PCE -= (*data-node) . count * log( (*data,nodd . connt /~  (1) ) ; 

3 
1 

> 
3 
PCE /= ( Total-count * log(2) ) ; 

Figure E.3: Indirect Entropy Caldation Excerpt 

t ins  we c m  now summarize the total nurnber of operations rquired to predict the entropy 

rate of the speech process. In table E.6 we slllllfnarize the number of operations by mode1 

order and provide a totd measure for aU six calculations. 

Recognizing that some of these operations require more execution t h e  than others, we 

use the set of relative operation costs detailed in table E.1 to weight each operation by its 

approximate cost. This weighted sum &es us a comprehensive lower bound estimate of 

1.2 x 10" integer and 1.8 x IO'= floating point operations for the complete entropy rate 

prediction procedure. As noted bdore, this is a very conservative lower bound based upon 
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Table E.6: Total Modelling and Entropy Operations Counts 

operation counts taken from simplifieci pseadocode excerpts of the real algorithms. It does 

serve to indicate the magnitude of the entropy cdculation and outline the computational 

requirements for repeating this research. 



Appendix F 

Development of the Unicity 
Distance and Related Measures 

F.1 Equivocation 

To define the theoretic securi* of a cryptosystem we make use of the properties of entropy 

and conditional entropy defined in [57]. We may consider a cipher to be compromised by 

the attacker when he is able to determine the secret key, or the message, fiom observations 

of the encrypteci message. 

The natural information-theoretic measure to describe the attacker 's knowledge of the 

key, or message, is defined by the conditionai entropy function. We will denote a series 

of sequential observations of a randorn variable, for instance j ciphertext elements, by c:. 
Shannon termeci the uncertainty about the key given j observations of the ciphertext the 

key equivocation and defined it by, 

Similady, the message equivocaticm is, 
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F .2 Unicity Distance 

If the attacker is to compromise the secrecy system he wil l  utiliae the information gained 

about the key, or the message, fiom obsmmtions of the ciphertext. The unicity distance, 

N,, is defineci as the minimum number of ciphertext charaders that the attacker must 

observe before he may deduce a unique key or message corresponding to the uphertext. 

This is equivalent to reducing the equivocation to apptoximately zero. 

The unicity distance of a cryptogram will be det ermined by the minimum of the key or 

message equivocation, since the attacker will focus on whichever caldation is easier. In 

generai, it is more &cient for an attacker to attempt to recover the key to a cryptosystern 

than a partidar message. This is because a succeidid key attack wiU reveal ail subsequent 

messages, while a message attack WU have to be repeated to d e m t  each subsquent 

message, For this reason a message equivocation solution is generaüy not a meaningful 

measure of cipher secwity. W e  will assume a key attack and use the key equivocation 

measure to derive a security index. 

The key equivocation can be expresseci in terms of quantities under the cryptographer's 

control. Since the key and message are chosen independently, 

and since K and C uniquly detennine Ml 

Combining equations (F.3) and (F.4) ne  obtain, 

W e  can upper bound the term H ( C )  - E(M) by observing that an ideai cipher would 

produce an output d o d y  distributeci over the possible set of eiphertexts. Thus the 
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entropy of j consecutive observations of the ciphertext is upper bounded by, 

nhere Lc is the size of the ciphertext alphabet. The quantity H(M) is defmed precisely 

by the entropy rate of the source process, R, log LM, where LM is the size of the message 

alphabet. Therdore the entropy of j source dements is, 

and the quantity H(C$ - H(*) is opper bounded by the redtmdancy of j observations 

of the source process. Using equations (F.6) and (F.7) ne dehe  the total redundancy of j 

message elements, 

Therefore, using equations (F.5) and (F.8) ne c m  obtain a lower bouad for the key equiv- 

ocation, given that j ciphertext characters have been transmitted, 

The unïcity distance is the minimum number, No, of ciphertext elements that the at- 

tacker needs to intercept in order to teduce the uncertainty about the key to approximately 

zero. Hence, 

Maximum key equivocation is achieved by rn-g H(K). W e  s h d  assume thetefore 
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that the cryptographer designs the key source process to select keys with d o m  probability 

over the key space. This fields a maximal key entropy of, 

f (K) = K log l ;~ ,  

where the K digits in each key are chosen îkom an aiphabet of size LK. 

SoIving for the UDicity distance yields, 

K log LK No = 
Log Lc - Ro log LM ' 

Thus, in a cryptosystem where LK = Lc = LM the unici* distance is simply expressed 

=, 

where D = 1 - R,, is the percentage redundancy of the source process. 

F.3 Unicity Distance with a Randomizer 

Ciphers utilking a randomizer as definecl in figure 4.4 can attain a higher unicity distance 

than those without. If the randomizing stream, R, is chosen independentb of the message 

and key, then the key equivocation for the cryptoaystem can be developed as follows, 

Rearranging the temu fields the key equivocatioa, 

a(KIc) = a(K) - ( H ( C )  - B(M)) + (H(R) - H(RI C, K)) 

= E ( K ) + H ( R ) - ( H ( C ) -  H(M)). (F.13) 
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Knowledge of the key and the tiphertext reveals the true message, so it must implicitly 

reveal the randomizer stream, H(R[C, K) = O. 

This development fields a measure of the unicity distance for cryptosystems employing 

a randomker, 



Appendix G 

Speech Coder Implementat ions 

The following are brief descriptions of the software dgorithms used to simulate the p law 

PCM, DPCM, ADPCM, and CELP coders used in out experiments. 

G.1 PCM Coder 

The basic p l a n  PCM signals required only an elementary preprocessing in order to re- 

move a header and de-interleave plan PCM samples containeci in the SWITCEBOARD 

source files. No additional coding or decoding was requited for the PCM samples. The 

SVVITCHBOARD database is discussed in more detail in Appendix B. 

The remainder of the coders were implemented in the C programming language and w a e  

nui on Sun Sparcstation II and SparcStation 20 computing platforms. There was no need 

for real-time pe*ormance fiom the aigonthms as the input data rate could be controiled 

by file 1/0 operations and the quality evaluation routine was entùely unafFected by delay. 

G.2 DPCM Coder 

The DPCM coder was a simple non-adaptive 10 pole di6erential predictive filter design of 

the type d d b e d  in the block diagram of figure G.I. 

The set of optimal non-adaptive predktor füter parameters, {q), were computed by 
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I I 

Figure G.1: Block Diagram of DPCM Coderpecoder 

solving the set of equations represented by, 

where the mode1 order is M = 10, and the terms pi are the correlation coefiicieats for the 

speech process. These equations are known a normal equations, Yde-Walker prediction 

equations, and Weiner-Hopf equations [22]. 

The correlation coefticients used to determine the filte.  parameters for this speech coder 

were computed fiom a long-term study of the conversational speech process a9 presented 

in figure 3.1. The 16 level quantizer was optimized for a gamma distributed input signal 

according to the resuits of [102], r d t i n g  in a data rate of 32 kbps. The soRnare imple- 

mentation inciuded a module for converthg a 64 kbps p l a n  PCM input to 12 bit iinear 

PCM format accordhg to the CCITT (2.711 defînition [14]. 
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6 . 3  ADPCM Coder 

The ADPCM coder used for this research was implemented in C by Sun Micmsystems Ine. 

as a variable rate coder, providing 3,4, and 5 bit quantbtions of the residual signal. This 

implementation was designeci and tested to satisfjr the CCITT (2.721 standard for 32 kbps 

ADPCM transmission [66], and the G.723 standard for ADPCM transmission at 24 and 40 

kbps. The software implementation included a module for converthg a 64 kbps plaw PCM 

input to 12 bit b a r  PCM format according to the CCITT G.711 d a t i o n  [14]. 

The CCITT ADPCM standard utilizes both predictor and stepsize adaptation proce- 

dures, as discussed in section 5.2. A bloek diagram of the ADPCM coder and decoder is 

provideci in figure G.2. 

G.4 CELP Coder 

The CELP coder used for these experiments consisted of an algorithm satirfyllig the stan- 

dard for the Federal Standard 1016 4.8 kbps CELP voice coder as describeci in [67]. This 

algorithm was implemented in C and distributeci by the U.S. Federal goveniment for public 

use. 

Our experiments were performed using the defadt values for ail potameters of the CELP 

coder, including a Hamming ( l 5 , l l )  etror control code on some of the more sensitive bits 

in the encoded ftames. The error control feature of the coder is specined by the CELP 

standard to protect the most significant bits of the pitch delay and pitch gain portions of 

the data fiame and so was left functional for our experiments- The default parameters 

specified a code book size of 512, and an LPC fdter of 10th order. The remainder of the 

CELP coder parameters are summarized in table (2.1. 
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I Adaptation I I 

Linear PCM Quantizer 

"'(")  in- to 

p law PCM 
d 

Figure 6.2: Block Diagram of ADPCM Coder/Decoder 
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Parameter 
Code book size 
Code word length 
LPC analysis fiame size 
LPC filter order 
Pitch anaiysis fiame size 
Pitch order 
Noise weighting factor 
Input speech scaIing factor 
Output speech scaling factor 
% bit error rate 
modifieci excitation logical switch 
prefilter logical switch 
type of fieactional pitch search 
codebook gain quantbation 
pitch quaatization 

Value 
512 
60 
240 
10 
60 
1 
0 .a 
1 .O 
1 .O 
O .O 
1 
0.0 
hiet 
1% 
max.2 

Table G.1: CELP Coder Parameters 
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SNR Models for Representative 
Speech Coders 

It is possible to derive operational ratedistortion Eunaions for the simpler coders in our 

representative subset in terms of the simple SNR measmement. The models derived beiow 

for Luiear, plan and DPCM coders tend to support the expetunenta1 evidence compiled 

in section 5.5 for the segmental-SNR measurement. In addition, this study WU reveal 

a conespondence between the performance of the representative speech coders and the 

exponential behaviour of the theoretical rate-distottion curves for speech in figure 5.3. 

H.l plaw PCM 

The p-law compression characteristic is 

This characteristic is h e m  for s m d  z values, but for large signals such that plz 1 > > z, 
it is logarithmic. 

The signal to noise ratio for nonünear quantbation is 
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If we assume the input pdf  is approximatdy flat in each of otu non-dorm intervals we 

may express the quantbation enor variance as 

where y, îs the representation level of out input signal x. 

1~)~&, 

As a consequence of our assumption 

of a flat pdf within each intemai ne must have yk = $(zr + x ~ + ~ ) .  This leads to the result 

~ h ~ e  pk = f ~ ( ~ k ) A k -  

Foliowing the remit of Bennett as presented in [IO31 we note that for large L, the slope 

of the cornpressor chatacteristic in each intervai k inversely proportional to the sbe of that 

interval 

- 2 ~ -  d c ( 4  
& LA& - 

Substituting H.2 into H.1 yields 

Setting pk = fx (z)d2 yields a usefui approximation 

0; % 

Computing the SNR 

-2 

dz for large L. 

for this nonlinear quantization yields 
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The North Amaican PCM standard [14] sets p = 255 and so we have an S M  measure 

independent of the signal charactdtics 

H.2 DPCM 

The input to the quantizer in a DPCM coder is the clifference signal, 

where O(n) is a prediction of z(n) . The ratio, 

is the prediction gain indicating reduction in error variance that is achieved by hear pre- 

diction of the signal. 

It is possible to dehe the SNR performance of the DPCM coder in relation to that of the 

PCM coder, subject to some minor constraints on the signal probability distributions. We 

wil l  not conceni ourselves with these details, but tather present an approximate relationship 

as devdoped in [22], 

SNRDpm = SNRbwPCH + 10 log%. 

In generaI, a DPCM system can achieve better SNR petformance than PCM by way 

of attaining a prediction gain G, > 1. It may be shown that the m h u m  prediction 

gain attainable by a linear predictor is equivalent to the teciprocal of the spectral flatness 

measure of equation 5.5, hence, 

max{GP) = 

The SNR performance of an optimal DPCM coder is therefote bounded by 
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which becomes, 

for the real speech signal with a computed spectral flatness measme of y2 = 0.2. 

Hm3 ADPCM 

The combination of adaptive prediction and adaptive quantbation make caldation of gen- 

eral ADPCM SNR pdormance very difEcult. 

Experimental work by Noll [lO4], and Jayant [IO51 demonstrateci that adaptive quantiza- 

tion could achieve a SNR gain of 5-6 dB over plaw PCM performance. A study of adaptive 

and fixed predktion by Noil in [IO61 has indicated an upper bound for adaptive prediction 

to be a gain of about 14 dB over plaw PCM. Fixed prediction was found to achieve at most 

a 10.5 dB gain over p<aw PCM, so an adaptive characteristic in a h e a r  predictor can be 

expected to exhibit a gain of approximately 3.5 dB over non-adaptive systems. 

A correspondhg gain of 10-12 dB over plaw PCM has been observed in studies of 

the CCITT G.721 ADPCM coder [21], which uses both types of adaptation, and simüar 

ADPCM coders operating at bit rates ranging fiom 16 kbps to 40 kbps [106], [107]. 

Hm4 CELP 

As we noted in section 5.4, the SNR measure is generally not a reliable indicator of sub jective 

quolity for non-waveform type coders. The Federal Standard 1016 4.8 kbps CELP coder 

[67] is a non-waveform coder, and as such introduces distortions to the original signal that 

are l e s  noticeable nom a perceptual perspective than they are fiom a purely objective 

measurement. 

A subjective evaluation of our standard CELP coder was provideci in [67]. This study 

found the Diagnostic Acceptability Meastue (DAM) [71] to range between 55 and 67 in a 

varie@ of acoustic environments. For cornparison, the input speech of plaw PCM demon- 
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strated a D M  measmement between 60 and 84 in the same acoustic enviroaments, and a 

32 kbps ADPCM coder rangecl fiom 54 to 68. 

There would be little justification for associating these measutes with SNR measures 

since the SNR has Little devance to perceiveci quaiity for this type of dlstotion. However, 

this is not to say that SNR measures, or in particdar the segmentai-SNR measure seiected 

for our objective quality measure, cannot indicate the relative quality of CELP coded speech 

under a variety of channel conditions. 

H.5 SNR-Rate Performance 

Plotted in figure H.1 are the SNR-rate cuves developed for the representative coders. In 

this figure we have estimatecl the SNR performance of the CELP coder on the basis of 

the subjective performance results discussed above to be similar to an ADPCM coder at 

low bit rates. This figure, plotted on a logarithmk scale in dB, indicates rate-distortion 

performance for real coders that comesponds to the exponential nature of the theoreticd 

rate-distortion developrnents of section 5.3. 
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Figure H.1: SNR-Rate Petformance of Representative Coders 



Appendix 1 

Entropy-maximizing Property of 
the Gaussian Distribution 

The foUowing theorem proves that for a fùed second moment, the zero-rnean Gaussian 

process yields the maximum entropy of any pcocess. 

Theorem 3 (Maximum Entropy of the Gaussian Process) The entmpy of opmess ,  
X, defined to have a jked second moment of a f ,  

is maxirnized when fx(z) = q5x (z), the pdf of the Gaussi~n pmcess. 
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Proofi We compute the difletence between the entropy of any process, E ( X ) ,  and the 

entropy of the Gaugsian process, Ho(X), fot a fixed second moment, 02, 

Hence, H ( X )  5 HG(X) for dl probability distributions, fx (2 ) ,  with equality only when 

fx ( z )  = $x(2). We have shown then, that maximum entropy is obtained by the Gaussian 

distribution when the process has a ftted second moment. Note that the inequality of 

equation 1.1 foîlows the relation, logz < z - 1 V 2: > 0. 
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Analytic Models of the Speech 
Process 

A large number of studies have been pdormed over the years to determine an analytic 

model of the speech signai. Early papers by Sivian [108], Dunn and White [log], Purton 

[llO] , and Richards [lll], Paez and Glisson [IO21 all contributed to the development of first 

order probability models for a signal widely held to be the resuit of a stationary and ergodic 

stochastic process. Ali studies are a@ that the long term distribution of speech amplitude 

is highly p e M  around a zero mean. We refer to  the expecimental work pecformed in [IO21 

for the model of the analog speech signal pdf and proposed andytic hctions for the signal 

presented in figure J.1. 

Here we dl present a few of the models proposed to d d b e  the fitst-order characteris- 

tics of the signal. The short-term probabiLity density h c t i o n  (pdf) of the speech wavefonn 

is oRen characteri9ed by a Gaussian distribution, as reported in [112], and [22]. This short 

term model is useful for some applications, as it serves to simplify caldations for the speech 

signal, but it is not considered to be dequate to express the long-term characteristics of the 

process. Better approximations have been obtaiaed fiom studies of larger speech samples. 

McDonald [Il31 proposed an approximation of the Long term speech waveform pdf to be a 
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-3 -2 - t O L 2 3 '=/6, 

Figure J.l: Normaiized Probability DeLISity of Speech with Analytic Approximations 

special form of the gamma distribution, 

where 6 = F- And a simp1e.r approJcimation with the Laplacian distribution, 

where a = e- Draning on the nork of Wiams [114], he found the gamma distribu- 

tion to yield a better fit to the tme signal. Another model ras  proposed by Davenport in 

[112]. He determineci a more s p e d c  model to fit the r d t s  of speech recorded in an ane- 

choic diamber- Combining the behaviour of the exponential distribution with the Gaussian 

distribution he obtained, 

0.6 & 0.4 -9 
PD@) = - e .i + - e s ,  

a m 1  6 ~ 2  

where ai = 1.23, and a2 = 0,188. 
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We note that these models are equdly relevant to PCM quantiseci speech, subject to the 

ganularity imposed by quantkation into disaete steps. Jaysnt and Noil noted in [22] that 

the residual signal in disciete differential-type speech coders such as DPCM and ADPCM 

were also satisfactody moddeà by gamma and Lapiacïan distributions. 



Appendix K 

Converting Discrete Entropy to 
Different ial Entropy 

Where we have used discrete eatropy instead of diffetential entropy in our development of 

rate-distortion meastues for the real speech process we must justif4r our results with the 

foUowing theorem due to Cover and Thomas [l], 

Theorem 4 If the pmbability density function, f (z), of o continuous rundom wnable, 
X ,  is Reimann integmble, then the entmpt~ of an n-bit quantizatiorr of that variable is 
approximately, 

H(X) = h(X)  + n. 

Proofi The proof of thiç theorem follows fiom dPfining the discrete probability distribution 

corresponding to the continuous distribution in terms of a unif'orm quantbation over the 

range of the random variable, X. 

We define the values of the quantized random variable to be, 

and the discrete probability distribution to be, 
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Eence the dwrete entropy of the process is, 

Therefore, 



Appendix L 

DES Encryption Modes 

Electronic Codebook Mode DES 

The electronic codebook (ECB) mode of DES presented in figure L.1 represents a pure 

block cipher design, Message blocks of 64 bits each are enciphered sequentidly to produce 

a co~~esponding sequence of 64 bit ciphertext blocks. This is the simplest implementation 

of the DES cryptosystem and is also the most VUlIlerable to crpptanalysis as the statistical 

characteristics of the input blocks are reproduced in the corresponding ciphertext bbcks. In 

addition, this cipher design is inherently vuierable to insertion and deletion of ciphertext 

blocks unless an additional synchronizing protocol is used to verify the message sequencing. 

Cipher Feedback Mode DES 

The statistical weaisnesses of ECB mode can be countered by modifving the direction of 

data flow tkough the elementai DES enafption aigorithm. The Cipher F e e d b d  (CFB) 

mode arrangement denoted in figure L.2 achieva a self-synchronizjng encryption implemen- 

tation. The CFB mode cipher of figure L.2 b e g h  with a 64 bit initiabation vector (not 

shown) being inputed to the encryption device. The message is then processecl in blocks of 

k bits, and after each encryption a block of k ciphertext bits is shiRed into the input bufïer 

of the encryption device. This arrangement is self-synchronous as the decrypting device 

can recover fiom any mors occurring on the channel after receiving A correct ciphertext 
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Message 

DES 
Encryption 

I 

Ciphertext el 
DES 

Decryption 

I 

Figure L.1: Electronic Codebook Mode DES 

characters. The statistical characteristics of the message blocks are concealed in this ar- 

rangement by the addition of encrypteci cipherte information with each step. Repeated 

blocks of message wi l l  result in a sequence of uncorreiated ciphertext blocks. 

The self-synchronizing design of the CFB cipher leaves it ninerable to ciphertext being 

inserted or deleted undetectably. 

Cipher Block C m  Mode DES 

Another implementation, the cipher block chaining (CBC) mode denoted in figure L.3, can 

aiso conceal the statistical characteristics of the message blocks. The CBC mode cipher of 

figure L.3 begins by combining a 64 bit block of message data 6 t h  a 64 bit initiabation 

vector and enciphering the product with the elementd ECB mode DES cipher. The cipher- 

text is then combiied with the next message block for ail subsequent blocks to ensure that 

identical message blocks produce non-identical ciphertext blocks. Any enors ocCuiring in 

transmission wiU propagate to at most 2 sequential blocks of 64 bits, 

The CBC mode cipher solves the problem of message insertion and deletion by mak- 
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Figure L.2: Cipher Feedback Mode DES 

h g  the ciphertext blocks dependent on the adjacent blodcs. Any insertion or deletion of 

ciphertext c m  be detected by the enors caused in the subsequent block. 

Output Feedback Mode DES 

The output feedback (OFB) arrangement creates a running key generator [115] for a stream 

cipher based on the ECB DES encryption algorithm. The OFB arrangement uidicated in 

figure L.4 combines blocks of k message bits with blocks of k running key bits created by 

the DES algorithm. The ninning key stream is obtained by feeding k bits of key stream into 

the ECB ûpher rewsively. The result is a peudorandom key stream with a high iinear 

complexi~. Errors occurring in the ciphertext do not propagate in the OFB apher; they 

are limited to the affécted bits ody. 

A purely synchronous stream cipher such as OFB DES is immune to insertion and 

deletion attacks as it requires perfect synchronïzation between sender and receiver. 
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Encryption 0 rT 
Decryption 

Encryption c 
Decryp tion 3 

Encryption 0 
Decryption ii-1 

Figure t.3: Cipher Block Chaining Mode DES 
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Figure L.4: Output Feedbd Mode DES 



Appendix M 

Third Order Entropy Surfaces for 
Encrypted p-law Data 

Third order conditional entropy surfaces were computed at maximum sampIe size S,, = 

5500 minutes for the p-law speech database used for seic=uity measures in chapter 6 under 

four modes of DES encryption. These snrfaees are defined by the equation X3,x as derived 

in section 2.4. The P a  & scale in these figures is highIy magnified to reveal s m d  

variations in the conditional entropy surfaces. Deviations from the mean surface value 

of these figures was found to be a maximum of 0.16 %. The average excursion from the 

mean was approximately 0.08 %. All fou. conditional entropy surfaces can be reasonably 

approximated with uniform distributions. 
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Figure M.2: Third Order Conditional Entropy Surface for CFB Mode 
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Figure M.1: Third Order Conditional Entropy Surface for ECB Mode 
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Figure M.3: Third Order Conditiond Entropy Surface for CBC Mode 
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Figure M.4: Third Order Conditiond Entropy Surface for OFB Mode 
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Ciphertext Entropy Convergence 
by Source Coder 

Presented in figures N-1, N.2, N.3, N.4, and N.5 is a summary of the cornplete set of third 

order conditional entropy caldations for ail waveform speech coders, as tequked in section 

6.4.2. Each graph compares the convergence meaçures obtained for a single type of source 

coding over the range of representative encryptioa coders. 

CELP coder results are not indudeci here because the CELP coder produces data at 

such a low rate that the entue database, when CELP coded, did not trigger an intermediate 

entropy calnilation in the automated testing software. The computed results consist of 

single points at the mailtimwn sample size. 
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Figute N.l: Convergence Rate Comparison for Encryptecl 64 kbps plan speech 
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Figure N.2: Convergence Rate Comparison for Enaypted 32 kbps DPCM speech 
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Figure N.3: Convergence Rate Comparison for Enerppted 24 kbps ADPCM speech 
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Figure N.4: Convergence Rate Comparison for Encrypteci 32 kbps ADPCM speech 
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Figure N.5: Convergence Rate Cornparison for Enuypted 40 kbps ADPCM speech 
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Informat ion Theory Background 

One of the main contributions of Shannon's 1948 paper [57] was the development of a math- 

ematical theory, c d e d  information theoty, for describing the fundament al characteristics 

of co~ll~~~wiications systems. The theory requires a mesure of the event probabilities that 

make up the set of ail possible outcornes. This is simply the probabiüty mas hinctiaa in 

discrete space, or the probability densie huietion in continuous space: px(2). 

Shannon definecl a mesure of the amount of information contained in a set of events 

x1,x2, ..., 2= with the hction,  

where the base of the logarithm corresponds to the base of the message alphabet. This 

formula is commonly abbreviated to: 

in the discrete case, and 

h(X)  = -lOO_Px(4lor3PX(.) & 

in the continuous case. The quanti* H ( X )  is called the entmpy of the funetion. This 

measue gives us some idea of how much "choicen is involved in the seleetion of an event, 



APPENDLn O. INFORMATION THEORY BACKGROUMI 272 

or the uncertcrinty regardhg the outcorne. For ewmple, if we have a set of dl possible 

k-digit binary vectom, d o r m i y  distributeci over the sample space of &le n = 2' then theh 

entropy is: 
n 

1 1 
H(X) = - ~ P x ( a t ~ )  Iogpx(zi) = - - loga ; = k. 

k l  k l  
n 

In this example the measure ofuncertainw telis us that, on average, each vector contains 

k bits of information- Since X is only k bits long, we see that this is an example of a 

distribution that yields maximum entropy- 

Shannon also developed a measnre of the amount of information that is provideci about 

one event given that another event has occurred. He called this a measure of mutual 

information and defineci it, as one would expect, on the basis of a measure of conditional 

probability. The average mutual information that one random variable, Y, provides about 

another random variable, X, is: 

where X and Y are discrete distributions with K elements and J elements, respectively. This 

expression is commoniy simpiified to: 

in the disuete case, and to: 

in the continuous case. 

There is one important distinction between continuous and discrete entropies. In the 

discrete case, the entropy is an absolute xneasure of the randomness of a random variable. 

in the continuons case the measmement of entropy is relative to the coordinate system. If 
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ne change coorcihates fiom zi . . . z, to y1 . . - yni the new entropy would be given bp: 

where J (j) is the Jacobian of the coordinate t r d o m a t i o n .  

One variation on the definition of entropgr is of particular interest to cryptographic 

applications. This is the conditirnul entmpy, or equivoatim of a random variable X when 

the value of another random variable Y is known. The equivocation of X when Y is known 

is: 

= fl 

The preceding definitions allow us to deveiop some interesting relations. For two random 

processes X and Y: 

with equality only when the events are independent. This tells us that the uncertain@ of 

any joint event is less than or qua i  to the sum of the individual uncertainties. We can also 

obtain: 

H(Xy Y) = H(X) f H .  (Y) 

This tells us that knowledge of X can only lessen our uncertainty about Y and that in order 

for X to teveal no information about Y they must be independent. 

Finally, we may obtain another expression for the mutud information between two 

From a cryptographic perspective, it is desirable to M t  the amount of idormation 
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that le& between the plaint&, X, and the ciphertext, Y. Rom above, ne see that if 

X and Y are ststisticaliy independent then Hy(X) = H(X)  and the information l e h g e  

I (X;  Y) is zero. Conversely, if X and Y are completely dependent then Hy(X)  = O and 

the information Lealcage is a maximum, I ( X ; Y )  = H(X) .  
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Glossary 

Chapters 2 and 3 

PCE: Partial Conditional Entropy. 

The sample space of a proces. 

The O(P-i) partial conditional entropy (PCE) measure. 

The O(P-i) partial conditional entropy measure from a sample set of 

size S. 

The mapping kom PCE measure to PCE vector. 

The set of y (j + 1) dimerisional PCE vecton. 

The set of Q PCE vectors computed at sample size Sr. 

The set of K PCE vectors computed at sample sizes in S*. 

The unique set of PCE vectors obtained fiom the largest available sample 

set for each element in ' ï ' ~ ~ .  This gives o u  best estimate of a set of points 

on the nth order conditional entropy surface. 

The set of aU PCE vectors in computed fiom exact models of the 

probability distribution of the process. This set is an exact representation 

of the nth order conditional entropy surface. 



GLOSSARY 

: 

- 
XSC ,,,xi : 

Chapter 4 

No: 

D: 

E: 

Q: 

The approxhate nth otder conditional entropy surface O btained by inter- 

polating the set of known PCE vectors. 

The mapping fiom PCE vector to scalar PCE measure. 

The approximation of the nth order conditional entropy cornputed fiom 

the interpolated conditional entropy sutface. 

The unique set of PCE vectors noranaked to a single, maximal sample 

size, Sm. 

The approximate nth order conditional entropy d a c e  obtained by inter- 

polating the set of normaiized PCE vectors. 

85, (X&'-') : The approximation of the nth order conditional entropy cornputed nom 

the uonnalized conditionai entropy surface. 

%c.~z,T ,: The set of + * lsCl PCE measures representing the convergence character- 

istics of the source process. 

The set of 1 sC 1 surfaces interpolated fkom the convergence characteristics. 

The unicity distance index of a cipher. 

The pet-letter redundancy or the redundancy rate in kbps. 

The encryption efiiciency index of a cipher. 

The encryption quality index of a upher. 



The spectral flatness measure of a source. 

The segmental-SNR, an objective measure of qualiw- 

The kth order Kullback-Leibler distance measure. 

A üneady regressed model of information divergence, 

The effective rate of information divergence in a source coded bit stream. 

The operational rate-redundancy hct ion  for speech coda .  

The complexity model for source coders. 

The complexity model for encryption coders. 

The complexity model for chamel coders. 

O(D, E.C., BER): A set of constraints on the system parameters. 

cq: Model parameter nomabhg factors. 

wi: Modei parameter weighting factors. 




