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Abstract

It is clear that the activities of an increasingly information-centered societal infrastruc-
ture are driving the rapid expansion of digital communications technology. The demand
for services integrating voice, data, and video traffic is increasing with the technical sophis-
tication of the consumer, and has already spawned a host of alternatives including ISDN,
cellular, cable modem, personal communication systems, and Internet technologies. These
technologies all represent steps in the evolution towards a global digital communications
strategy. We will examine issues surrounding the implementation of speech services in a
secure digital communications environment.

The reasons for the emergence of digital speech communications systems lie in their
advantages over the older analog systems. These include improved signal quality, error re-
covery capabilities, and the ability to multiplex a signal with other conversations or with an
entirely different form of digital service. Digital service also allows a significant improvement
in the ability to protect a conversation from unwéelcome scrutiny. This is fast becoming an
important issue in the design of information systems. In the information age we have come
to recognize that there is intrinsic value in most forms of communication, and that ensuring
privacy can be tantamount to protecting material assets.

The addition of a cryptographic component into a speech communication system adds
complications that are not encountered in a conventional system. The characteristics of
an encryption coder increase the challenge of secure system design. The system designer
must balance the requirements for high security and subjective speech quality with the
conflicting desires for a low channel bit rate and limited system complexity. The optimal
choice of source, encryption, and channel coder components to meet these objectives requires
a thorough understanding of a large set of interrelated parameters.

In this research we will develop models of objective speech quality, bit rate, security, and

complexity that are relevant to the design of an integrated secure speech communication

iv



system. We will present experimental and theoretical evidence leading to an understanding
of the interrelationships among the parameters of the secure system. The parameter models
will then be integrated to define a multidimensional constrained optimization problem as a

general model for the secure speech communication system.



Acknowledgements

I would like to express my appreciation to my supervisor, Dr. Gord Agnew for his advice
and support throughout my graduate studies.

I would like to thank my friends: Claude Bergeron, Michael Cheung, Michael Fare-
brother, B.J. Lee, Robert Lehr, Biswajit Nandy, Loui Polic, Dave Simser, Gord Strachan,
Vincent Wong, and Atsushi Yamada. Each has made a notable contribution to my educa-
tion and the production of this thesis. I would also like to thank all of my ball hockey and
broomball teammates and the UW Aiki Ju Jitsu club for some entertaining diversions.

I owe the greatest thanks to my dear wife Jen, who has made all of this worthwhile.
Her support and encouragement has carried me through. We are now looking forward to

the next challenge.

This thesis is dedicated to the memory of Jim and Diane Ohi.



Contents

1 Imntroduction
1.1 The Conventional CommunicationSystem . . . . . . ... .. ... ... ..
1.2 The Secure Communication System . . . . ... ... .. .. .........

1.3 ScopeoftheWork .. ... ... .. ... ... ... ... ...

2 Entropy Estimation

2.1 Imtroduction . . ... .. . . . ¢ i i i it e e e e e e e e e
2.2 Entropy Estimation Technique . .. ... ... ................
2.2.1 Derivation of a Useful Entropy Measure . . . ... ... .......
2.2.2 Probability Model Estimation . ....................
2.3 Entropy Estimation with the PCE Measure .. ... .............
2.4 Interpolating the Entropy Surface . ... ...................
24.1 Interpolation Efficiency . .. ......................
2.4.2 Computational Efficiency of the Estimation Technique . . . . . . ..

2.5 A Sequential Monte Carlo Procedure for Selecting Sample Points in > <]
2.6 Sample Size Normalization .. .........................

3 Entropy Rate Estimation of the Speech Process
3.1 Introduction . . . . . . . . c . i i i i it it e e e e e
32 TheSpeech Process . ... ... ..... ... ...t

(AN T R L

-3



3.3 Statistical Characteristics of the Speech Process . . . .. ... .......
33.1 Stationmarity . ... ... .. . ... ... e
332 LimitedMemory ................ . ... ... 0....

3.4 Modelling the Speech Process for Conditional Entropy Calculations
341 The Effect of Model Order on the Entropy Calculation . . . . . . ..
3.4.2 Direct vs. Indirect Modelling Approaches . . . . . .. ... .....
3.4.3 Direct Approach Convergence Characteristics . . ... ... .. ..
3.44 Indirect Approach Convergence Characteristics . . . . . ... .. ..
3.4.5 Sample Set Size Ranges for Speech Models . . . . . . ... ... .

3.5 Computing Conditional Entropy Measurements . . ... ... .. ... ..
3.5.1 Exact Conditional Entropy Calculations ... .. ........ ..
3.5.2 Interpolation Algorithms . . . ... ... ... ... ... ......
3.5.3 Symmetry in the Speech Process . . . . ... ... ..........
3.54 Results of Entropy Estimation Measures .. ... ... ..... ..
3.5.5 Normalization to the Maximal Sample Size . . .. ... .... ...

3.6 Entropy RateEstimation . ...........................
3.6.1 Defining the Conditional Entropy Model . . . . . . ... ... ... ..
3.6.2 Confidence Intervals for Weighted Regression Analysis . . . ... ..
3.6.3 Non-linear Weighted Regression Anpalysis . . ... ..........
3.6.4 Entropy Rate PredictionResults . . . . ... ... ....... ...

3.7 Summary and Observations on the Entropy Calculations ... .......

Security Models for Secure Speech Systems

4.1 IntroductiontoCryptology ... ... .. .. ... i,
4.1.1 Symmetric Key Cryptography . . . . . . ... ... ... .......
4.1.2 Asymmetric Key Cryptography . ... ... ... ... ... ...

4.2 CryptanalyticCapabilities . . ... ... ...................



4.3 Motivation for Security Index Development . . . . . .. ... _ .. ..... 84

4.3.1 Practical and Theoretical Security . . . ... ... .......... 85
44 Shannon’s UnicityDistance . . . .. ... ... ... ... ..., 89
4.5 Unicity DistanceasaSecurityIndex . . . . . . .. ... .. ......... 92
4.5.1 Security by Key Selection . . . . . ... ... ... .......... 93
45.2 SecuritybySourceCoding . . . . . ... ... ... ... ... .. 96
4.5.3 Security by Randomization . ... ... ... ............. 97
4.6 New Security Indexes for Encryption Devices . . . . ... ... .. ..... 98
46.1 Limitations of the Unicity DistanceIndex . . ... .. ... ... .. 98
4.6.2 Encryption Efficiency Index . . . . . .. ... .. ... ........ 99
46.3 Encryption QualityIndex . . ... ... ... ... .......... 100
4.6.4 Relevance of the New SecurityIndices . . . . .. ... ... ..... 101
4.6.5 Entropy as a Security Measure . . . .. ... .. ........... 102
4.7 Summary of Proposed Security Models . . . . ... ............. 102
Bit Rate and Quality Models for Secure Speech Systems 104
51 Imtroduction . . . . . . . . . . . . i i ittt e e e e e e e 104
52 SpeechCoders . ... ... ... ...t enennnnn-. 106
5.2.1 Pulse Code Modulation . ........................ 106
5.2.2 Differential Pulse Code Modulation. . . . . . .. ... ........ 107
5.2.3 Adaptive CodingMethods . . . . . .. ... ... ... ........ 108
524 Sub-Band Coding ... ............. ..., 108
5.2.5 Vector Quantization Techniques (Analysis by Synthesis) . . . . . .. 109
5.2.6 Vocoders . . . ... . ot o i ittt it ittt 110
5.2.7 Summary of Coder Characteristics . . . . .. ... .......... 112
5.2.8 Representative Speech Coders . . . .. ... ... .......... 112
5.3 Rate-Distortion Measures . . . . .. .. ... ... ..., 114



53.1 MemorylessSources ... .. ... ... .. ... ... ..., 114

53.2 SourceswithMemory ..... .. ... ... .....¢cco...... 116
5.3.3 Quality-Rate Bounds on the Speech Process . . . . . . ... ... .. 118
5.4 Objective Quality Measures for Speech . . . . ... ... .. ... .. ... 119
5.5 Operational Rate-DistortionResults . . . . .. ... ... .......... 123
55.1 TestingMethodology . . . .. ... ... .. .............. 123
5.5.2 Quality Model Source Database . . . . . . ... ... ......... 125
5.5.3 Noiseless Rate-DistortionResults . . . . ... ... .. ... ... .. 125
5.5.4 Noisy Channel ConditionResults . . . ... ... ... ....... 127
5.5.5 Cryptographic Impacts on Noisy Channels . . . . . . .. ... .... 129
5.6 Bit Rate as a Function of Redundancy . ... ... ............. 132
5.6.1 Divergence Measures for Coded Speech .. . ... .. ... _..... 135
5.6.2 Relevance of the Divergence Measures . . . .............. 136
5.6.3 Divergence Measures for Representative Speech Coders . . . .. . . 137
5.6.4 A Rate-Redundancy Model from the Divergence Data . . . . .. .. 141
Experimental Measures for Security Models 148
6.1 Imtroduction. .. ... .. ... ... .. ... e 148
6.2 Representative Encryption Algorithms . . . . . ... ... ... ....... 150
6.2.1 The DES EncryptionSystem . . ... ................. 152
6.2.2 The Vernam Cipher System . .. ... ................ 152
6.2.3 Encryption System Implementations . . . . . ... ... ... ... .. 153
6.3 Testing Methodology . .. .......... ... . ... ... ... 153
6.3.1 Security Model Source Database . . ... ... ... ......... 154
6.3.2 Representative Speech Coders . . . . ... ... ... ......... 154
6.3.3 Conditional Entropy Estimation Methods . . ... ... ....... 155
6.4 Conditional Entropy Measures for Encrypted Speech .. ... .. ... .. 157



6.4.1 Detailed Entropy Results for u-law Coded Speech .. ... ... .. 158

6.4.2 Third Order Entropy Results for all Coder Combinations . . .. .. 159
6.4.3 Entropy Measure Summary for Coder Combinations . . . . . . . .. 165
6.5 Fourth Order Entropy Calculations ... ... ................ 166
6.6 Security Index Evaluations .. ... ...................... 169
6.6.1 UnicityIndex ... ..... ... ... ... ... ..., 169
66.2 EfficiencyIndex .. .............. .. ... .. ..., 169
663 QualityIndeX . . . ..ottt e 173
6.7 Observations on the SecurityIndices . . . . ... ... ............ 174
Formulation of a General Model 177
7.1 Imtroduction . ... . ... ... .. ...t 177
7.2 ComplexityModels . . .. ... .. ... ... ... ... . ... 178
7.2.1 Definition of Complexity . . . . . . ... ... .. ... ....... 179
7.2.2 Source Coder Complexities . . . . ... ... ............. 179
7.2.3 Encryption Coder Complexities . . . .. ... ............. 180
7.2.4 Channel Coder Complexities ... ... ... ............. 182
7.3 ModelSummary ... ... .. ... . ittt 183
731 Terminology . . . - - . . . . i i i i i et e e e e e 183
7.3.2 Intermediate Parameters. . . . . .. ... .. ............. 184
7.3.3 Objective Parameters . . ... ... ... ... ..... 186
7.4 Optimization Problem Formulation . ..................... 192
7.5 Optimization Problem Solutions . . ... ... ... ............. 195
7.5.1 Objective Model Weightings . . . . . ... ... ............ 195
7.5.2 Unconstrained General Optimization Problem Solutions . . . . . . . 196
7.5.3 Constrained General Optimization Problem Solutions . . . . .. .. 200
7.5.4 Practical Secure System Design Examples . . . . . ... .. ..... 201



= - T

7.6 ObservationsontheGeneral Model ... ... ... .............

Contributions, Conclusions, and Future Research
81 Contributions . . . . . . . . . ... ... e e e e e
82 Conclusions . . . ... .. .. ... i ittt e e e e e

83 FutureResearch Topics . .. ... ... . ... . ... ....c0co.u...
Theoretic Entropy Rate of the Speech Process

The SWITCHBOARD Database

SWITCHBOARD Database Transcription Examples

Implementation Details of the Speech Models

Work Estimate for Entropy Rate Prediction

El Modelling Cost . . . . ... ... it it ittt e e i
E.1.1 Direct Algorithms . . .. .. ... .. ... ... ... .. .......
E.1.2 Indirect Algorithms . .. .. ... ... ... .............

E.2 Entropy CalculationCost . . . . .. ... ... ... ... . .........
E.2.1 Direct Algorithms . . . . .. ... .. ... . ..., .. .......
E.2.2 Indirect Algorithms . . ... ... ... ... .............

Development of the Unicity Distance and Related Measures

F1 Equivocation .. ... ... ... ... .ttt nnennnenn..
F2 UnicityDistance . . . . . . . . . .. it i it i ittt ennonnenn.
F.3 Unicity Distance with a Randomizer . . . . .. ... ... .. ........

Speech Coder Implementations
G.1 PCMCoder . . . ... .0 i it ittt et et it et e et e e eean
G2 DPCMC Coder . . . . . . . . it it i i e e e et e i et et e e e

208
208
210
212

215

218

220

224

227
228
228
229
231
232
233

236
236
237
239



G3 ADPCM Coder . . . . - . . ittt i e e e e e et e e e e e et e
G4 CELP Coder . . . . .. . . . .. it it e et i ee e

H SNR Models for Representative Speech Coders
Hil plaw PCM . . . . . . e e it e e e e e e e e e e e
H2 DPCM. . . . . o i it e e e e e e e e e e e e e e e et e e e e e
H3 ADPCM . . . .. . i i e e e e e e e e e e
Hd CELP . . . ..t i ittt it e e e et e et e e e e e et e eeeens
H.5 SNR-Rate Performance .. ... .. ... ...................

I Entropy-maximizing Property of the Gaussian Distribution

J Analytic Models of the Speech Process

K Converting Discrete Entropy to Differential Entropy

L DES Encryption Modes

M Third Order Entropy Surfaces for Encrypted y-law Data

N Ciphertext Entropy Convergence by Source Coder

O Information Theory Background

Bibliography

Glossary

252

254

257

259

264

267

271

275

287



List of Tables

3.1
3.2
3.3
3.4
3.5

3.6

5.1
5.2
5.3
5.4

6.1

7.1
7.2
7.3
7.4
7.5

Observation Count for Confidence Intervals in Figure 3.5. . . . . . . . . .. 36
Sample Size Ranges for Indirect Entropy Calculations . . ... ... .. .. 41
Conditional Entropy Means and 95% Confidence Intervals of the Speech Process 42
Summary of Best Conditional Entropy Estimates . . . . . . . ... ... .. 56
Summary of Means, 95% Confidence Intervals, Observations, and Relative

Weights of Computed Entropy Measures . . . . ... ... .......... 65
The Entropy Rate of the Speech Process and Bounds on the 95% Confidence

Imterval . . . . . . . . . e e e e e e e e 67
Properties of Some Speech Coders . . . . .. ................. 112
Correlation of Objective Measures to Subjective Measures . . . .. ... .. 121
Cryptographic Error SimulationModels . . . . ... ... .......... 131
Actual and Modelled Operational Redundancy Measures . . . . .. ... .. 146
Predicted 3rd Order Entropy Measures for Encrypted Speech . .. ... .. 166
Approximate Relative Complexity of Representative Speech Coders . . . . . 180
Approximate Relative Complexity of Representative Encryption Coders . . 181
Optimal Solutions for Unconstrained Problem Definitions . . ... ... .. 197
Optimal Solutions for Constrained Problem Definitions . . . . . .. ... .. 201
Alternate Weighting Schemes . . . . . . . . .. ... ... ... .. ..... 202



7.6 Sensitivity Analysis of Example 1 with Scheme 1 Weightings . . . ... .. 203

7.7 Sensitivity Analysis of Example 1 with Scheme 2 Weightings . . . ... .. 203
7.8 Sensitivity Analysis of Example 2 with Scheme 1 Weightings . . ... . .. 205
7.9 Sensitivity Analysis of Example 2 with Scheme 2 Weightings . . . ... .. 205
E.1 Symbols, Operations, and Relative OperationCosts . . . . .. .. ... .. 228
E.2 Operations Count for Direct Modelling . . . . . ... ... ... ....... 229
E.3 Operations Count for Indirect Modelling . . . . . ... ... ......... 231
E.4 Operations Count for Direct Entropy Calculations . . .. ... ....... 233
E.5 Operations Count for Indirect Entropy Calculations ... ... .. ... .. 233
E.6 Total Modelling and Entropy Operations Counts . . . . . . ... ... ... 235
G.1 CELP Coder Parameters. . . . . . . ... .. ..ottt veennnennn. 245



List of Figures

1.1 The Conventional Speech Communication System . . . . . ... .. ... ..

1.2 The Secure Speech Communication System . . . . . ... ..........
2.1 State-Space for nth Order Entropy Calculations . . . . .. ... .. ... ..

3.1 Long Term Correlation Statistics of the Speech Process . . . ... ... ..
32 FirstOrderpmfp(X) . .. ... .. . . .. i
3.3 Second Order pmf Excerpts p(X2) - - -« v ettt ettt
3.4 Third Order pmfExcerpts p(X3) . . ... ... ... ... ... .... ...
3.5 Convergence Properties of the Direct Entropy Calculations .. .. ... ..
3.6 Convergence of Fifth Order Partial Conditional Entropy Measurements

3.7 Convergence of Sixth Order Partial Conditional Entropy Measurements

3.8 Example of Forming a Set of Triangular Surface Planes . .. ... ... ..
3.9 Symmetry in the Conditional Entropy Surfaces . . . . .. ... .. ... ..
3.10 Approximate Fourth Order Partial Conditional Entropy Surface. . . . . . .
3.11 Approximate Fifth Order Partial Conditional Entropy Surface. . . . . . ..
3.12 Delaunay Triangulation of PCE Pointsin Yg,2 . - . . . . ... ... .. ..
3.13 Normalized Fifth Order Conditional Entropy Surface . . . . . . .. ... ..
3.14 Approximate Sixth Order Conditional Entropy Surface with Contour . .
3.15 Normalized Sixth Order Conditional Entropy Surface with Contour . . . . .

31
33
33
34
35
39
40
46
47
49
51
52
55
57



3.16 Approximate Sixth Order Conditional Entropy Contour . ... . ... ... 59

3.17 Normalized Sixth Order Conditional Entropy Contour . . ... ... .. .. 59
3.18 Conditional Entropy Estimates and a Simple Exponential Model . . . . . . 63
3.19 Regressed Non-linear Model and 95% Inference Region . . . . . . . ... .. 66
4.1 Substitution-PermutationNetwork . ... ... ... ... ... ....... 73
4.2 BasicStreamCiphers . ... ... ... ... ... ... oo . 77
4.3 Use of Public Key to Exchange a SessionKey . . . . .. ... ... ..... 82
4.4 Model of a Private-key Cryptosystem . . . . . . .. ... ........... 90
5.1 Subjective Quality VersusBit Rate . . . . . . . .. ... ... . ...... 113
5.2 Power Spectral Density of the Speech Process . . . . . .. ... .. ..... 118
5.3 Quality-Rate Bounds for the Real Speech Process . . . . .. ... ... ... 120
5.4 Block Diagram of Segmental-SNR. Testing Methodology . . .. .. ... .. 124
5.5 SegSNR Measures for Representative Coders . . . . . ... ... ...... 126
5.6 SegSNR Measures Under Gaussian Noise Conditions, 62=BER . ... ... 128
5.7 SegSNR Measures Under Uniform Noise Conditions . . ... ... ... .. 129
5.8 SegSNR Measures Under Exponential Noise Conditions . ... .. ... .. 130
5.9 SegSNR Measures and 95% Confidence Intervals Under Exponential Noise
Conditions. . . . . . . . .. ... i ittt e e e 131
5.10 SegSNR Measures for Encryption Under 64 Bit Block Error Conditions . . 132
5.11 Linear Bounds on Rate-Redundancy Performance of Speech Coders . . . . . 134
5.12 Block Diagram of Divergence Testing Methodology . . . . ... .. ... .. 137
5.13 First Order Divergence Means and 95% Confidence Intervals . . . . .. .. 138
5.14 First to Third Order Divergence Means and 95% Confidence Intervals . . . 140
5.15 Effective and Absolute Divergence Rate Models . . . . .. ... .. ... .. 144
5.16 Operational Rate-Redundancy Function and Theoretic Bounds . . ... .. 145
5.17 Rate-Redundancy Functions for Higher Divergence Models. . . . . . . . .. 147



6.1 Block Diagram of Ciphertext Entropy Measurement Methodology . . . . . . 154
6.2 ECB Conditional Entropy Convergence of g-law PCM . . . . . ... .. .. 158
6.3 CFB Conditional Entropy Convergence of p-lawPCM . . .. ... ... .. 159
6.4 CBC Conditional Entropy Convergence of g-lawPCM . . . . ... ... .. 160
6.5 OFB Conditional Entropy Convergenceof g-lawPCM .. . . ... ... .. 161
6.6 Entropy Measures of ECB Encrypted Speech for Various Source Coders . . 162
6.7 Entropy Measures of CFB Encrypted Speech for Various Source Coders . . 163
6.8 Entropy Measures of Vernam Encrypted Speech for Various Source Coders . 164
6.9 Ciphertext Entropy Surface . . . .. ... _ .. ... ... ... ..., 166
6.10 4th Order PCM Coder Results for All Encryption Modes . . . .. ... .. 167
6.11 UnicityIndexModel . . . . . .. .. ... .. ... ...l 170
6.12 Efficiency Surface as a Function of Source and Encryption Coders . . . . . 171
6.13 Efficiency Surface as a Function of Operational Redundancy Experiments . 172
6.14 Efficiency Surface as a Function of Operational Redundancy Function . . . 173
6.15 Quality Surface as a Function of Operational Redundancy Experiments . . 174
6.16 Quality Curves Normalized to ECB Quality Measure . . . . . . .. ... .. 175
7.1 Intermediate Parameter Relationships in the Secure System ......... 185
7.2 Major Parameter Relationships in the Secure System . . . . . ... ... .. 187
7.3 Objective Quality Measures under 64 Bit Block Encryption . ... ... .. 189
7.4 Objective Quality Measures under Stream Encryption .. ... ... .. .. 190
7.5 Redundancy Dependent Objective Quality Measures under 64 Bit Block En-
CIYPION . . . . . . L L i i e e e et e e e e e e e 191
7.6 Redundancy Dependent Objective Quality Measures under Stream Encryption192
E.1 Pseudocode Excerpt from Rabin-Karp Search Algorithm . . . . .. ... .. 230
E.2 Direct Entropy Calculation Excerpt . . . . .. .. .. ... ......... 232
E.3 Indirect Entropy Calculation Excerpt . . . . . . ... ... ... ....... 234



G.1
G.2

H.1

J.1

L1
L.2
L.3
L4

M1
M.2
M.3
M4

N.1
N.2
N.3
N4
N.5

Block Diagram of DPCM Coder/Decoder . ... .. ... ..........
Block Diagram of ADPCM Coder/Decoder . . ... .............

SNR-Rate Performance of Representative Coders . . . . . . ... ... ...

Normalized Probability Density of Speech with Analytic Approximations

Electronic Codebook Mode DES . . . . . . ... ... ... .........
Cipher Feedback Mode DES . . . . . . . . ... ... ... ... .. ...
Cipher Block Chaining Mode DES . . . . ...................
Output Feedback Mode DES . . .. ... ... .... ... .........

Third Order Conditional Entropy Surface for ECB Mode .. ... .. ...
Third Order Conditional Entropy Surface for CFB Mode. . . . . . . . . ..
Third Order Conditional Entropy Surface for CBCMode . ... ... ...
Third Order Conditional Entropy Surface for OFB Mode . ... ... ...

Convergence Rate Comparison for Encrypted 64 kbps u-law PCM speech

Convergence Rate Comparison for Encrypted 32 kbps DPCM speech . . . .
Convergence Rate Comparison for Encrypted 24 kbps ADPCM speech . . .
Convergence Rate Comparison for Encrypted 32 kbps ADPCM speech . .

Convergence Rate Comparison for Encrypted 40 kbps ADPCM speech . . .

255

260
261
262
263

265
265
266
266

268
268
269
269
270



Chapter 1

Introduction

It may have surprised Alexander Graham Bell to learn that his curious invention of 1876
would be followed by over a century of intense interest and development. Verbal com-
munication has an appeal so fundamental that it seems a device allowing natural speech
communication over great distances was destined for success.

From its limited beginnings the global telecommunications infrastructure has developed
steadily, to the point where it is now possible to reach most of the world by means of the
analog circuit-switched telephone network. Despite the magnitude of this achievement, an
increasingly sophisticated and information-centered society demands more service than the
analog telephone network can provide. Both the cause and the cure to this problem lie in
the rapid expansion of digital communications technology. There is an increasing demand
among consumers for services integrating voice, data, and video traffic, and this has spawned
a host of alternatives including ISDN, cellular, cable modem, personal communication sys-
tems, and Internet technologies. These technologies all represent steps in the evolution
toward a global communications strategy. In this thesis we will focus on issues surrounding
the implementation of speech services in a secure digital communications environment.

The reasons for the emergence of digital communications technology lie in its advantages
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over analog transmission. These include improved signal quality, error recovery capabilities,
and the ability to multiplex a signal with other conversations or with an entirely different
form of digital service. Digital speech enjoys one other advantage in that it allows a signifi-
cant improvement in our ability to protect a conversation from unwelcome scrutiny. This is
fast becoming an important issue in the design of information systems. In the information
age we have come to recognize that there is intrinsic value in most forms of communication,
and that ensuring privacy can be tantamount to protecting material assets.

In progressing forward to a purely digital domain we must remember to look behind at
the enormous investment in the existing telecommunications infrastructure. It is a practical
consideration that demands the contemporary communications system be designed with a

mind to the limitations of the vestigial analog system.

1.1 The Conventional Communication System

A conventional digital speech communication system consists of two components: a source
coder and a channel coder. The source coder is responsible for transforming the analog
speech signal to an approximate digital representation that is convenient for transmission.
Toll quality speech in digital form can require significant bandwidth for transmission, often
a rate in excess of the capacity of the analog telephone network. Digital communication
systems must therefore compress the signal before transmission over analog media. The
means of performing this compression are varied, but all are based on the potential to
reduce the high level of redundancy in the natural speech signal.

The output of the source coder is processed by a channel coder responsible for providing
reliable transmission on a potentially noisy medium as shown in figure 1.1. This operation
expands the coded signal, adding the redundancy necessary to reconstruct the signal in the

presence of errors.
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Noise

Source
Speech Source Channel y Channel Source Speech
signal =™  Coder Coder |[“E—ED~3 “C jer Coder [™™ Signal

Figure 1.1: The Conventional Speech Communication System
1.2 The Secure Communication System

The secure communication system adds an encryption coder intended to protect the message
from unauthorized access. The encryption coder is typically placed between the source and
channel coders, as shown in figure 1.2. This arrangement sees the encryption coder operate
on a compressed speech signal, and the channel coder operate on a randomized information
stream. The result is a compressed and error-tolerant signal that is unintelligible to all but
the intended recipient. In chapter 4 we will examine the effects of encryption coding in
some detail.

It is most important to understand the goals and capabilities of the attacker. The goal
of the attacker will typically be to determine the content of the encrypted message, but
he may also be motivated to interfere with the transmission. Our treatment will focus on
evaluations of the secrecy of the transmission in the presence of purely passive analysis,
but we will address some of the more active efforts the cryptanalyst may make to gain
advantage.

It is also important to recognize that the attacker has at his disposal the significant
signal processing power of the human auditory system in addition to conventional computing
resources. Human perceptual abilities are important in the context of speech encryption
because of their vast processing power and adaptability. If the encryption mechanism is
inadequate and exposes even some small part of the speech signal, then it may be possible
for a human listener to form an understanding of the residual intelligible information.

Traditionally, each coder element in figure 1.2 has been treated independently in de-
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signing an integrated secure system. This approach can lead to sub-optimal system designs
when the encryption device manipulates the signal in a manner not anticipated by the
conventional model. It will be the focus of our research to determine how the addition of
an encryption device affects the performance of the integrated communication system. An
integrated model of all relevant system characteristics will allow selection of more efficient

system solutions.

Speech Source Encryption Chanpei D Channel Encryption Source Speech
Signal ~™  Coder Coder Coder | D ] Codr [™] Coder -

Figure 1.2: The Secure Speech Communication System

Some characteristics of the secure communication system are immediately obvious and
suggest a complex relationship among the system parameters. For example, the main
function of the source coder is to remove redundancy and thereby reduce the bit rate.
Source coding can improve the security of a cryptosystem by removing redundant message
components that may aid an attacker in deciphering the message. Some encryption systems
exact a high price for channel errors, however, significantly reducing subjective quality
evaluations on noisy channels. It is necessary to balance the advantage to security and bit
rate that may be gained by aggressive source coding with the additional complexity that
may be required in the channel coder to compensate for the effect of channel errors.

In general the design of secure speech communication system entails a challenging com-
bination of objectives. The system designer is concerned with providing high security and

subjective speech quality while requiring a low channel bit rate and overall system complex-
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ity. The optimal choice of source, encryption, and channel coder components to meet these

objectives requires a thorough understanding of a large set of interrelated parameters.

1.3 Scope of the Work

It is our intention to develop models of objective speech quality, bit rate, security, and
complexity that are relevant to the design of an integrated secure speech communication
system. Through experimental and theoretical work we plan to develop an understanding
of the interrelationships among the primary parameters of the secure system. The param-
eter models will then be integrated to define a multidimensional constrained optimization
problem as a general model for the secure speech communication system.

We will begin in chapter 2 with the development of a new technique for the estimation of
high order conditional entropy. This technique allows the calculation of conditional entropy
measures that complexity renders infeasible to the conventional direct calculation method.
We developed this technique in order to compute an estimate of the entropy rate of the
speech process. The entropy rate was found to be an essential measure that was central
to many of the parameters computed for the general model. In chapter 3 we will present
measures of the first to sixth order conditional entropy and obtain an estimate of the entropy
rate of the speech process by applying a non-linear regression analysis to the experimental
results.

The entropy estimation technique developed for chapter 2 will be shown to be more
widely applicable to estimation problems involving probabilistic distributions of high model
order. We will identify modelling activities where the new technique can be applied to
obtain more accurate measures than were previously feasible.

The modelling process will begin in chapter 4 where we will present an argument for
the development of theoretic measures of security and propose two unique indices for use

in the general model of the secure speech system.
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In chapter 5 we will develop models of objective quality and bit rate as a function of
parameters under the control of a secure system designer. The segmental-SNR performance
of a class of representative source coders will be examined under a variety of channel con-
ditions, and measures of the informational divergence of the coded speech process will be
computed to determine an analytic model relating bit rate to the level of redundancy in the
source coded signal.

In chapter 6 we will perform experiments to evaluate the proposed theoretic security
indices for the general model. This work will combine the results of our entropy estimation
work and redundancy modelling to produce experimental models of cryptographic security.

We will then define rudimentary models for the complexity of source, encryption, and
channel coders to add an essential dimension to the analysis of secure communications
systems.

Finally, in chapter 7 we will combine the models of objective speech quality, bit rate,
security, and complexity to define a general model of the secure communication system. We
will outline the sets of objective, intermediate, and controlling parameters in the system
and indicate the general interrelationships between them. Using these relationships we
will formulate an optimization problem for secure system evaluation based on a general
constrained objective function over the parameters of redundancy, encryption, and bit error
rate.

We should note that while the modelling methodology and entropy estimation algo-
rithms presented in this research are applied specifically to the case of the secure speech
communication system, they may also be applied to other data sources that possess high

levels of redundancy, such as video and facsimile.



Chapter 2

Entropy Estimation

2.1 Introduction

An accurate estimate of the information content of a digitized and band-limited signal is
important to a broad class of activities including the development of compression algorithms,
quality of service, and security measurements. As we will discuss in this chapter, this can
be a very difficult measurement to perform for many classes of typical source processes.

Many of the activities necessary for the development of a general model of the secure
speech communication system will require such a measurement to be performed on the con-
versational speech process. Our focus in this chapter will be to develop a general algorithm
for entropy computation that can be applied to a general source process. In chapter 3 we
will then apply this technique to the specific case necessary to our research.

Generally, the real sources of interest to designers of practical systems may be described
as stochastic processes. To measure the entropy of a stochastic process it is necessary to
determine an exact probabilistic model of the source process and compute the entropy rate
directly from the model. There are two main considerations that determine the feasibility

of an exact entropy calculation,
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1. State-Space Size. The characteristic of memory in a process can lead to a very

large state space for the complete probabilistic model.

2. Computational Complexity. The number of operations required for the exact
calculation is a function of the extent of memory in the process. Full computation

can require an infeasible number of operations.

For a general nth order entropy calculation, O(]X™|) operations are required on a state-
space of |X™| elements, where |X] is the cardinality of the signal alphabet. These require-
ments can become prohibitive for measures beyond a small order. Presented in figure 2.1
is a graphical representation of the size of an exact nth order entropy calculation on an
alphabet of size [X| = 256. Noted in the figure are the nominal state-space sizes for calcu-
lations of order 4, 5, and 6. The shaded region indicates the maximum addressable memory
size of a 32-bit architecture computing platform. Clearly, the state-space requirements of
higher-order entropy calculations test the limits of current computational abilities. 64-bit
architecture processors extend the addressable range to allow a theoretical 8th order state-
space, but real memory limitations still constitute a significant obstacle.

In this chapter we will present a method of entropy estimation developed to allow
high order conditional entropy measures with modest computing resources. In sections
2.2, 2.3, and 2.4 we will present the mathematical development for the new approach. This
technique approximates an entropy measure by selecting a subset of the complete calculation
space for exact computation and estimating the values not contained in the subset. The
subset of computed measures can be chosen to adequately represent the conditional entropy
measure by a sequential Monte Carlo point selection procedure. Further efficiencies can
be obtained by adapting the probability distribution of the sampling procedure according
to the relative magnitude of past measurements. This sequential Monte Carlo sampling
approach, developed in section 2.5, is an efficient method of obtaining estimates of various

information measures for a variety of source processes. Finally, in section 2.6 we will present
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6th order state-space

Size of State-Space

Sth order state-space

.............................................

32 bit address limit

Feasible Direct Computation Range

4 5 6 Model Order

Figure 2.1: State-Space for nth Order Entropy Calculations

the mathematical basis for a method to normalize a set of partial conditional entropy
measures in anticipation of computational difficulties which may arise in the experimental

work required for entropy estimation.

2.2 Entropy Estimation Technique

In this section we will develop a method to estimate a high order information measure for
any source process. The specific measure selected for our development is the kth order
conditional entropy as defined below in equation (2.1), but in fact, this approach could
be applied to similar measures such as the joint entropy of a process with memory. The
conditional entropy measure was selected because it can be shown that the entropy rate
of a process with memory is the (k + 1)th order conditional entropy, where k is the maxi-
mum model order needed to completely specify the process. In Appendix A we provide a
proof that is based on the Shannon-McMillan-Breiman theorem [1] for stationary ergodic

processes.
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2.2.1 Derivation of a Useful Entropy Measure

We define a set of n random variables from the source process by X7 = {X;, X,...,X,}.
These variables represent the set of all outcomes of n consecutive observations of the
source process. A particular realization of these random variables will be denoted by
z7 = {21, 22,.-. ,2n}. We will represent the set of possible realizations of a random variable
by z € X. In general we will write, 2 € A™.

The object of our development, the conditional entropy measure, is defined as follows

[2]:

Definition 1 (nth order conditional entropy)

HXJXP ™) 2~ ¥ p(al)logp(zale™). 1)

zrEA™
This calculation requires a large number of iterations and a large state space as indicated in
section 2.1. Solution of a high order entropy estimation problem requires a technique that

may be described as follows,

Proposition 1 We can approzimate an entropy measure by selecting a subset of the com-
plete calculation space for exact computation and estimating the values not contained in the
subset. The subset of computed measures can be chosen to adequately represent the condi-
tional entropy measure by a Monte Carlo selection procedure. Further efficiencies can be
obtained by adapting the probability distribution of the sampling procedure according to the

relative magnitude of past measurements.

In the following discussion we will develop a measure of the conditional entropy of a
source process with memory using a sequential Monte Carlo sampling procedure [3] for

selecting a portion of the calculation space for direct measurement.

Definition 2 (Partial conditional entropy measure) We define a partial conditional
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entropy (PCE) measure, f(n,z3), with a complezity of O(256™7) ,

bimz) 2~ 3 p(ef)logp(zalelii 2], for n>ji>1. (22)

0, EXn~i
As noted above, the conditional entropy measure can be too complex for direct high order
conditional entropy calculation. Using the partial conditional entropy measure, h(n, z{),
we can express the conditional entropy, H(X.|X7'™!), such that each of the partial entropy
components is of sufficiently low complexity to make calculation of that component feasible.

We write equation (2.1) in terms of a set of |X?| O(256™7) PCE measurements,

HXAXTY) = ) b(n,2)), (2.3)

Hexs
The PCE measure is useful tool for entropy estimation because it allows the conditional
entropy measure of equation (2.3) to be separated into a set of |X7| independent measures.

This is the reason for our choice of the description partial conditional entropy.

Note 1 We should point out that the quantity h(n, z‘{) 1s not equivalent to the conditional

entropy measure, H (XnIXJ’.‘;ll, z{) We note that,

HX X5 e)=— Y p(zalzi ™) logp(zal2};l, 2d).

2 €

Although the formulations are similar, since p(2}) # p(2,4|27~"), it is clear that h(n, z{) #
H (X,,IX}‘_Q", z‘{) We make this point in order to clarify our choice of description for the

measure f(n, z{), which has a particular significance to our approach to entropy estimation.
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2.2.2 Probability Model Estimation

Until this point we have assumed an exact knowledge of the probability distributions needed
for entropy calculation, but in fact, we must estimate these distributions from observations
of the process of interest. In performing a study of the real conversational English speech
process we found that developing these probability models was the most important and
most difficult aspect of this research.

To develop a probability model, a data sequence of S consecutive speech samples was
classified into (S — n) n-tuples representing the set of random variables of interest, 27 =
{z1,22,...,2,}. Statistics were compiled for every unique n-tuple occurring in the data
sequence. The initial set of observations produced maximum likelthood estimates of the joint
probability distributions, and post-processing of these distributions produced maximum
likelihood estimates of the conditional probability distributions. Clearly, these probability
measures are determined by the statistics of the source process they represent. It is also clear
that the probability estimations are dependent on the amount of data used to derive them.
We will retain information about the size of the data sequence in our descriptions of these
two probability measures as it is critical to the development of our entropy estimations.

We will refer to the maximum likelihood estimation of an nth order joint probability
measure based on observations of S speech samples as ps(z}), and the related conditional
measure as ps(z,|z7 7).

The conditional entropy measures obtained using these maximum likelihood estima-
tions must also be distinguished by the observed sample size. We will denote the partial

conditional entropy estimation computed at a sample size of S by,

B(S,mz)) 2~ 3 ps(z])logps(zale}iy, z]), for n>j>1, (2-4)

=, €~

and the resulting estimate of the conditional entropy for an nth order model computed from
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S observations as,

Hs(Xu X7y = Y 6(S,n,2)), (25)
=jexi

2.3 Entropy Estimation with the PCE Measure

We will now define a set of partial conditional entropy measures as (j 4+ 1) dimensional
vectors. This set can be viewed as comprising points on a surface in R* x X7. We will
take advantage of this interpretation of the PCE measures to illuminate our approach to
conditional entropy estimation, which is to interpolate an estimate of the complete con-
ditional entropy surface from the features of a set of known conditional entropy vectors.
This estimate of the complete conditional entropy surface will then be used to compute an
estimate of the conditional entropy of the process it represents.

We define a mapping, %, by vector function f(S, n, z{),

Yv:5xZtx X s RYx X st.,
Va=(S,n2l)eS xZtxx,
¥(a) = (h(S, n, =), ), (2.6)

where S* = {5},85,,...,Sn} is the set of sample sizes at which PCE measures may be
computed, Z* = {1,2,3,...}, is the positive integers, and R* = [0, c0).

This mapping allows us to express the results of our PCE calculations as a set of (7 +1)
dimensional vectors in R* x X7. Let T, ; C X7 be a set of x; j-dimensional vectors. Let
S1 € S* be a particular sample set size in S* for which we will compute partial conditional
entropy measures on the set T, ;. This implies there can be a maximum of |S*| = m

different sets T, ;. Taking the image of (Si, », T;,;) in ¥ forms the set of partial conditional
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entropy vectors computed at sample size S;. We denote this set Hs, 5,1, ;) Where,
Hsh"’?rx;,j = 'l’(St’ n, T"n’vj)l (2'7)

and note that |7‘(s,,n,‘r,“. il=r

The set Hs, a1, ; contains k; PCE measures computed from probability distributions
derived from sample sets of size S; an the points in Y ;. We will define a superset, H, 1, ;,
consisting of sets of PCE vectors for all possible sample set sizes S; € S*. This complete
set is defined by,

m m
Hﬂ.TKJ = U U HS(,n,T,;‘._,’

i=1l=1

where Tg ; = Un; Ta;ije

Our definitions to this point do not require uniqueness among the vectors in Hn 1 ;.
This allows the elements of Tk ; to define multiple PCE vectors in Hn 1, ;, each distin-
guished by a unique sample size. We can ensure uniqueness among the entropy vectors
by restricting the components of Hn 1, ; to those defined by one sample size for each el-
ement in Tx ;. We define ﬁn,l'x,- to be the unique set of PCE vectors obtained from
the entropy measurements performed on probability distributions derived from the largest

available sample set for each element in Tx ;. We write,

K
'ﬁn,l‘lc,j = U ¢(S+,n, Xi), where (2'8)

=1

Vxi€Tk; St= max Sy,
s.t., ¥(S,n,x:) #0.
Ideally, we would simply compute all conditional entropy measurements from probabil-

ity distributions obtained from the largest available sample set, but in practice this may
not always be feasible. In performing a study of the real conversational English speech
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process, for example, we encountered computational difficulties that precluded a constant
sample size. To allow for the variation in sample set sizes in the experimental work de-
tailed in chapter 3, sections 3.4 and 3.5 we have derived a general methodology based on
the set ﬁ,,'r,{ i This set comprises the best available estimate of these components of the

conditional entropy surface.

2.4 Interpolating the Entropy Surface

In this section we will describe the process of interpolating the known vectors in 'ﬁ,,,-r x; to
obtain an approximation of the complete conditional entropy surface, ‘ft,h Xi-

The exact nth order conditional entropy surface is the set of all partial conditional
entropy vectors computed from exact models of the probability distribution of the process.
This exact conditional entropy surface, H,; y;, is defined by,

Hoxi = P(5%, 0, &%), (2-9)

where S represents a sample set large enough to yield an exact measure of the process
statistics.

We approximate this surface by interpolating our best estimate of a subset of the com-
plete surface, Hy, r, ,» to form the set 3, ;. This surface consists of the set of all | X7
vectors necessary to compute an approximation of the conditional entropy.

The process required to interpolate the remainder of the conditional entropy surface is
dependent on its dimensionality and shape. A variety of techniques are feasible and equally
valid. In fact, in the absence of knowledge of the ezact nth order conditional entropy surface
we cannot compare the accuracy of one interpolation technique to any other. However, we
can define the distance between two surfaces derived from different interpolation routines,

say , ‘ﬁ: xi» and ‘ﬁf xi» With a surface distance metric, p(ﬁ,‘: X ?-tf xi)s
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Definition 3 (Surface distance metric) The distance between two surfaces, 'ft“ xi and

n

HE i, is defined as

p(ﬁixi’ﬁf,xi) = z ”ﬁ:,x: - -f,xi”:
x| exi

where || - || is the Euclidean norm.

For some interpolation function, f, we define a mapping from the best estimate of K
entropy vectors, ﬁn.rx,_.-' to the set of all [X7| vectors defining our best approximation of
the conditional entropy surface, 'ﬁ“ xi- We define the mapping, f, by,

F:R¥x XTI RYx X7 st
FO() = Hoxi- (2.10)

In this way our general interpolation function maps any set of (j + 1) dimensional PCE
vectors, ¥(-), to a set of |[X7| (j + 1) dimensional vectors representing an approximation of
the conditional entropy surface. Hence we may compute, f(ﬁn,r,w) = 7-2,, Xi-

The arbitrary mapping described above allows the entropy estimation technique to be
formulated in a general manner. In chapter 3, section 3.5 we will describe a specific linear
prediction algorithm for surfaces where 7 = 1, and a more complex interpolation routine

involving a Delaunay triangulation of the set of computed vectors for surfaces where j = 2.

2.4.1 Interpolation Efficiency

The shape of the conditional entropy surface, which is determined by the statistics of the
source process, affects the accuracy and efficiency of our entropy estimation technique. We

define a property of smoothness for a conditional entropy surface,
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Definition 4 (Smoothness ) A conditional entropy surface is smooth if for vector indices
{z{ , y{} € X7, the distance between adjacent partial conditional entropy measures is bounded
by some measure, v. If we define adjacent vectors as those being separated by some mazimum

measure, €, then a smooth conditional entropy surface is one that satisfies,

”‘}Zn'z{ - -n‘u{” < ‘Y 3“”
v {z],4i} € &7,

izl -9l <e

Obviously, processes demonstrating the property of smoothness in the conditional en-
tropy surface can be better modelled than those without this property, since the predicted
conditional entropy surface will be closer to the exact entropy surface for a given number

of samples, K.

2.4.2 Computational Efficiency of the Estimation Technique

To simplify presentation of the conditional entropy estimate we define one more mapping, ¢,
to separate the scalar conditional entropy measure from the computed conditional entropy

vector. Let ¢ be defined by,

¢:Rt x X7 —»RY s,
vV a=(H(S,n, z{),z{) eR*t x X7,
¢(a) = §(S,n,z). (2-11)
Our approximation of the conditional entropy measure, H(X,|X7™!), is simply the

sum of all the computed and interpolated partial conditional entropy measures in 12,, Xi-
Following the definitions leading to the conditional entropy measure in equation (2.5) we
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compute,

HX X = 3 oA, ), (2-12)
X

to determine an approximation of the conditional entropy based on the interpolated entropy
surface. This estimate of the nth order conditional entropy of the process is obtained by
interpolating our best estimates of a set of K PCE vectors computed over X7 to an estimate
of the set of all PCE vectors in X7. The conditional entropy estimate is the sum of all these

estimated PCE measures.
Our approximation to the conditional entropy measure was computed from just K sam-
ples of the full conditional entropy sample space. This approach to entropy estimation

reduces the computation cost of the calculation by a factor of 'I%T

2.5 A Sequential Monte Carlo Procedure for Selecting Sam-
ple Points in X7

In this section we will outline an efficient algorithm for choosing the sample points YTx ; C
X7. This algorithm makes no prior assumptions about the shape of the entropy surface and
begins as an ordinary Monte Carlo sampling procedure by selecting a sample point with a
uniform probability distribution over the sample range, X7. We then increase the efficiency
of the algorithm and the accuracy of our entropy estimation procedure by modifying the
resolution of the sampling algorithm according to the importance of the sampled features to
the computed entropy estimate. This is accomplished by weighting the sampling probability
distribution according to the magnitude of the entropy vectors computed in prior PCE
calculations.

This sequential Monte Carlo sampling procedure adapts the point selection distribution
according to the features of the conditional entropy surface. The random nature of the
algorithm ensures that it will select points from the entire range X7. This allows it to identify
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the key features of the entropy surface. The adaptive component of the algorithm focuses
the selection of PCE measurements around those regions that have the most significant
impact on the conditional entropy measure. Even without a prior: knowledge of the shape
of the entropy surface, this sequential Monte Carlo selection algorithm ensures that the
set of sample points will be concentrated around the most relevant features of the entropy
surface. This algorithm helps to increase the accuracy of the entropy estimation obtained
from a set of K observations.

We define a sample selection probability distribution as a function of the approximate
conditional entropy surface computed from observations of x < K measurements. Let the
set of k sample points be T.;. We represent the intermediate entropy surface formed
from this set of < points by ﬁ.:f vi = f(¥(Y.;)) and the intermediate conditional entropy
measure by H*(X,| X 1) =% X ;p(’ﬁ: vi)- Note that we have omitted elements from
the definition of ¥(-) to simplify this description. Given these intermediate measures we
can define the probability of selecting z{ as the (x + 1)th sample point by p((x + 1), z{),

.

I-A.%—I ifx =90,
o(H = ;)
1 nx . 7
p((r+1),2]) = {9 (;I'.(—x'nl—x?r:r;) if £ >0, 2] € T.j (2.13)
L(] ifn>0,z{€'r,m-,

where g(y) is any monotonically nondecreasing function defined over the range 0 < g(y) <1
for the range of inputs 0 < y < 1. By defining g(y) to have some of the properties of a
logarithm, for instance, we can ensure good coverage of the range X7, even when the

conditional entropy surface is highly peaked.
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2.6 Sample Size Normalization

The best estimate of the conditional entropy surface, ’flm xi, was obtained from a set of
vectors, ﬁn'-r .+ that was defined from probability measures based on a variety of sample
sizes. This was done in anticipation of computational difficulties arising during the devel-
opment of the maximum likelihood estimates of the probability distributions used in the
PCE measures.

The inclusion of PCE measures from sample sets of varying sizes could result in in-
accuracies in the predicted conditional entropy surface. If a probability model, ps(z?),
was computed from a sample that was not sufficiently large to ensure convergence, then
the associated partial conditional entropy measure, §(S, n, z{), will not be exact. Further-
more, if the convergence characteristics of the source process depend on the vector z{, then
for a given sample size some partial conditional entropy measures may be overestimated
while others are underestimated. We must determine these convergence characteristics and
normalize the PCE measurements accordingly.

Our objective is to determine a scaling factor for each point §(S+, n, z‘{) € ﬁn.‘f,‘—' j» @s
a function of the sample size, ST, and the vector, z{. We will then apply this factor to
predict the PCE measure that would be obtained at some maximum feasible sample size,
Sm. Applying this set of scaling factors to all points in ﬁn,nq will yield a set of PCE
vectors normalized to a single, maximal, sample size. This set will be called ﬁs,,.,n.r,{ ;e
It represents a better estimate of the PCE measures in ﬁ,.,r x; 3S it utilizes the known
convergence characteristics of the process to predict the measures that would be obtained
at the largest feasible sample set size.

From this set we can compute the conditional entropy surface predicted by measures at

the maximum feasible sample size,

Hsomii = FHSmn i),
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and we can compute the conditional entropy estimate according to equation 2.12,

Hs,(XalXT 1) = 3 o(Hs, nai)-
Fexs

We will now describe a general algorithm for normalizing the sample set sizes of the
entropy measures in the set ﬁn,r,( ;- First, we determine the convergence characteristics
of the source process for a set of r sample points Y, ; € X7. We select these r sample
points to give a good representation of the features of the entropy surface by applying
the sequential Monte Carlo point selection algorithm discussed in section 2.5. We then
compute the PCE measure for each point from probability models derived for all sample set
sizes S€ = {S€,S¢,...,S,.} € S*. This notation is meant to indicate that the elements
{Sf",Szc, ...} do not necessarily correspond to the elements {S;,S,,...,S,} € S*, but
that the maximal sample size, S,,, contained in both sets is identical.

The set of » * | SC| partial conditional entropy measures will be represented by the set,
Hsc a1, Where,

Hscmr,, = |J ¥(SanT.;).
S;eSC

We may form a set of approximate conditional entropy surfaces representing the con-
vergence characteristics of all points in X7 by interpolating this set of convergence char-
acteristics. These convergence surfaces, as we shall refer to them, are computed with the
interpolation function, f, discussed in section 2.4. We write the set of |S®| convergence

surfaces as,

Hsenri= |J F(#(Sun,T.j). (2.14)
S;es¢

For each point in 'ﬁn.r,‘-_,-, we can now compute a normalizing factor to project the

associated PCE measure to the maximal sample size, S,,. Let ¥(S*,n, :c’l) € ﬁn,rk ; bea
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vector computed at sample set size S € S* and point z{ € YTk,j- Let {Sy,S1} € S bea
pair of sample sizes bracketing S* such that,

|Su, S*| < 1S5, 8% s.t., V S;€5%,8, > St

and,

1S;, S*| < |Sk, ST s, ¥V Sp €8°, 5 < ST,

We use linear interpolation to predict a convergence surface, ?-234- .25, for each sample

set size ST € S§* as follows,

ﬁS“' Xl = U (1 - a)ﬁ’(ﬁsu,n,z{) + a‘P(ﬁ.ﬁ ,n,z{)’
Hexi

_s+ = y -
where, a = =5, Su > S* > 8, and, {Hs, nxi, Hsnri} € Hsc nii-

We apply this procedure to form the set of all |S*| convergence surfaces,

Hse pxi = U Hs+ nxi-
SteS*

Finally, we normalize the set of all PCE vectors by projecting the measure that would

be obtained at the maximal sample size, S,;,. Reverting to the formulation of equation 2.8,

K -
ﬁs,..,n,r,(J = U¢(S+, n, X;) - %M, where (2.15)

i=1 S+,n,x;
VxeTk; St= max 5,
s.t., ¢(Sll n, Xi) ié 0: and
{ﬁSm.ﬂxﬂ ﬁs*,n,x;} € ﬁS',n,Xi . (2'16)
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We then derive the normalized conditional entropy surface,

ﬁs...,ﬂ,x" = f(us"l)nvrk,j)’

and compute our best estimate of the nth order conditional entropy measure of the process,

Hs (XX = Y o5, i) (2-17)
= €Xd

This formulation utilizes information obtained from real PCE calculations and observed
convergence characteristics to predict the outcome of the entropy calculation as if it were
computed at S,,, the maximal sample size. This is a flexible scaling transformation that
adapts the scaling factor lepending on the dual factors of sample size and the point of
interest. In chapter 3, section 3.5 we will have the opportunity to observe the effect of this
normalizing transformation when we apply it to the results of our experimental work on
the real speech process.

In this chapter we have defined the mathematical model for our approach to estimating
the nth order conditional entropy of a general process. We have presented a formulation
of this method in a very general manner to allow for its application to a variety of source
processes and entropy measures. The model may be used to describe an entropy estimation

of any order, n, from any number, K, of partial computations of complexity O(|X7]).



Chapter 3

Entropy Rate Estimation of the

Speech Process

Ease and speed in doing a thing do not give the work lasting solidity or eractness
of beauty.

Plutarch. Life of Pericles.

3.1 Imntroduction

We desire a measure of the entropy rate of the speech process in order to define a lower
bound on the distortion-free compressibility of the digital speech signal. This measure can
serve as a reference, and perhaps a goal, for the designers of distortion-free and even low-
distortion speech coders. The entropy rate of the source process is also required to determine
the statistical redundancy of the digital speech signal. A measure of redundancy is useful
for determining an information-theoretic measure of security for digitally encrypted source
processes, as noted by Shannon in [4], and Massey in [5]. We will require this measure

for several aspects of the development of a general model for secure speech communication

24



CHAPTER 3. ENTROPY RATE ESTIMATION OF THE SPEECH PROCESS 25

systems. The technique developed in chapter 2 will be applied here to determine an entropy
rate estimate for speech. This measure will subsequently be used to develop quality and
redundancy models in chapter 5, and security models in chapters 4 and 6.

To date, the exact entropy rate of the speech signal remains unknown because no analytic
function has been derived to exactly characterize the process. In Appendix J we summarize
some of the early studies of analytic models of the speech process. Work in the field of speech
recognition has produced some representations based on mel-frequency cepstrum [6] and
LPC cepstrum [7], and more recent models are based on human auditory characteristics [8],
[9]). None of these methods has yet been completely successful at describing the spontaneous
speech process of interest to the general model [10].

In our prior work [11], [12], [13] we approached the problem of entropy rate estimation
by computing the exact conditional entropy of the male speech signal for first, second,
third, and fourth order models of the process. We then fit an exponential curve of the form
y = A+ ae™ ™ to the points using minimum mean squared error as the matching criterion.
The asymptote of this curve was taken to be our best estimate of the entropy rate. It was
recognized that the accuracy of this prediction could be greatly increased by the addition
of higher order measures to our model of the conditional entropy function.

The 64 kbps u-law PCM format process we will define in sections 3.2 and 3.3 to be
representative of conversational English speech consists of 8 bit samples. This results in a
signal set cardinality of |X| = 2% = 256, which in turn results in a total of 256 states and
0(256™) operations being required to specify an nth order probability model and process
an nth order entropy calculation. Given these characteristics, we were previously unable
to compute measures higher than fourth order in a reasonable time with the available
computing resources.

The technique presented in chapter 2 will allow computation of conditional entropy
measures that were previously infeasible. We begin the entropy estimation process in section

3.4 with the development of high order maximum likelihood estimates for the speech process
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probability distribution. In section 3.5 we then apply the sequential Monte Carlo entropy
estimation procedure to determine estimates of the fifth and sixth order conditional entropy
measures of the speech process. In this section we also apply the conventional direct entropy
measure to determining the first, second, third, and fourth order conditional entropies of
the process.

In section 3.6 we present an extrapolated measure of the entropy rate and a set of bounds
on that rate based on a non-linear weighted regression of the computed conditional entropy
estimates. Our results predict an entropy rate of 22.3 kbps for distortion-free transmission
of speech samples of 64 kbps u-law PCM fidelity.

The material presented in this chapter is focused on predicting the entropy rate of the
speech process, but the technique applied to the entropy estimation problem can clearly be
applied to a wider variety of redundant source types. In future work, this approach may be
applied to entropy estimation of a broader class of sources with memory, including facsimile
and video. In addition, it was found that the technique for estimating a measure based on
a large probabilistic model of a stochastic process could be applied to a wider variety of
measurement requirements. In chapter 5, for instance, we found the estimation technique
to be appropriate to determining a high order Kullback-Leibler information divergence
measure. In chapter 6 we found it necessary to apply the estimation technique to a process
consisting of compressed and encrypted speech, with significantly different results.

3.2 The Speech Process

The following is a precise description of the speech data we have used for all experimental
aspects of this research.

Definition 5 (The speech process) We define the speech process to be the set of all
conversational English speech utterances collected with the fidelity of a telephone bandwidth
channel, quantized into 8 bit p-law PCM samples (p = 255) at a sampling rate of 8 kHz,
according to CCITT recommendation G.711 [14].
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To derive accurate and relevant models of this process we obtained a very large corpora
of speech data in a database of conversational English speech called SWITCHBOARD
(15]. The details of the recording and data selection procedure for the SWITCHBOARD
database are discussed in Appendix B. This particular representation of the speech process
was chosen because it is the accepted standard for toll quality telephone bandwidth speech
(16], [17], [18], [19].

The process chosen for this research consists of the most general realization of the speech
process. It consists of speech samples collected from spontaneous conversations in English
by speakers from every major dialect region in North America. The speech segments consist
of male and female speakers of varying dialects and speech patterns having normal telephone

conversations, complete with interruptions and idiosyncratic speech utterances.

3.3 Statistical Characteristics of the Speech Process

The conversational English speech process defined above has the following statistical char-

acteristics:

3.3.1 Stationarity

Imagine if we were to somehow collect the entire history of all telephone conversations
meeting our definition of the speech process. This collection would have a single mean
value over the set of all samples, and similarly would have a constant second, third, and
fourth moment, and so on, if the statistics for these measures were computed over the whole
of the sample set. These qualities, the reader will observe, describe a process exhibiting
strict-sense stationarity [20].

While it is true that the speech process as a whole is strictly stationary, individual
segments of the process, for example an individual conversation, can have statistics that

differ from those of the whole process. This is not a contradiction; the stationarity of the
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speech process is defined in the abstract sense by assuming statistics can be computed at any
time from an infinite set of process observations, while a short segment of speech yielding
differing statistics can be viewed as an infinitesimally small portion of the entire process.

The maximum likelihood estimation procedure used to derive an estimate of the statistics
of the general source process will produce a model that reflects this property of stationarity.
It is difficult to prove the stationarity of our sample space by an experimental approach,
however we argue that by observing a large portion of a process known to be stationary, with
no preconditioning on the type of data collected for our sample, we can achieve a subset of
the speech process that is also effectively stationary. The model obtained from this process
is the worst possible case for effective source coding as it does not recognize any short-term
temporal characteristics in the source process. The results of our calculations based on this
model will therefore form the worst case, or upper bound, on entropy estimation of the
speech process.

It is interesting to consider if we could achieve lower entropy estimations by adapting
our modelling and entropy computation procedures to a set of specific features in the speech
process. For example, by subdividing the speech process into male and female subsets and
computing the entropy of each we could achieve more accurate measures of entropy for each
type of speech. To compute the entropy of the process as a whole, we would then compute
the sum of the two entropies, each weighted according to its relative frequency in the speech
process.

Shannon derived bounds for the entropy of processes consisting of a mix of distinct sub-
processes in [4]. If we have N distinct sub-processes that comprise the complete process in
the ratios {p1, P2, - - - , PN} such that Zf:x p; = 1, and each sub-process has an entropy rate

H;, then the entropy of the complete process, H, is bounded by,

N N N
YomH:<H<Y pH: - pilogp:.
=1 i=1

=1
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An analogous case would be the use of two types of speech coders, one for male, and
one for female speech signals. The data stream would consist of compressed data and an
identifier for the type of traffic, male or female. Extending this analogy, we could obtain
better and better rates of compression or lower entropies by subdividing the speech process
into smaller and smaller categories of speech type. In the limit, we would achieve a large
set of speaker-specific speech coders or probability models and an index of identifiers for
all possible traffic types. This scenario, though infeasible, represents a best case, or lower
bound on an estimate of the entropy measures of the speech process.

Speech coding algorithms typically take advantage of the varying short-term statistics of
the speech signal to achieve good rates of compression (2], [21], [18], [22], [23]. In chapter 5
we will examine a variety of algorithms for inclusion as sample points in the general model.
These algorithms are effective because they adapt to the local characteristics of the speech
signal, regardless of the expected general averages that may be true for the speech process as
a whole. Their behaviour is a compromise on the speaker-specific speech coding suggested
above. Practical speech coders adapt to the characteristics of the current speaker in order
to achieve good rates of compression, but do so imperfectly as they cannot feasibly model
the exact characteristics of the speaker and so fail to achieve the true entropy rate of the
source process.

We recognize that the entropy estimates obtained by our research form an upper bound
for the speech process. The reader will note that the predicted entropy rate still compares
favourably with low-distortion speech coder rates, and is considerably lower than the rate
achieved by distortionless coders [24], [25]. It remains a topic for further research to deter-
mine if the tactic of classifying by speech types could yield a feasible technique for more
specific entropy estimation, and to determine if the additional data necessary to index the

set of speech types would counteract the apparent advantage of independent classification.
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3.3.2 Limited Memory

Our observations of the speech process indicate that there is finite memory in the speech
process. This is a natural result of the articulatory mechanism that produces the speech
signal. Signal memory is most prominent in the production of vowel sounds, for example, but
even these highly correlated phenomena are eventually terminated by a transition to another
unit of speech [23], [26], [27]. Referring to the correlation statistics of the conversational
speech process presented in figure 3.1 we see that for some index k, random variable X4 ;41
is independent of random variable X; for all j > 0. These correlation statistics lead to the

definition of the following property in the speech process pmf:

Definition 6 (Speech process pmf)

PGAXTY) =p(XXiTE) V i>k, (3.1)

3.4 Modelling the Speech Process for Conditional Entropy
Calculations

In this section we will discuss the details of developing maximum likelihood estimates of
the probability distributions of the speech process required for calculation of conditional
entropy measures. We will identify two different types of modelling activity, one for an exact
and direct calculation of a conditional entropy measure, and one for an indirect calculation
based on entropy estimation by the Monte Carlo sampling approach discussed in chapter
2. For each of these two types of modelling activity we will consider the issue of model
convergence discussed in section 2.2.2. We will present data indicating the convergence
characteristics of the modelling process as a function of the sample set size that will be
used in section 3.5.5 to normalize the conditional entropy estimates to a constant, maximal,

sample size.
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Figure 3.1: Long Term Correlation Statistics of the Speech Process

3.4.1 The Effect of Model Order on the Entropy Calculation

Our approach to the conditional entropy calculation was determined by complexity. As
discussed in section 3.1, our definition of the conversational English speech process results
in a total of 256" states and O(256™) operations being required to specify an nth order prob-
ability model and process an nth order entropy calculation. At this level of computational
complexity and storage requirements, we found the maximum feasible direct calculation
to be of order 4. A typical fourth order conditional entropy calculation required approx-
imately 40 hours elapsed time on a SparcStation II computer. A fifth order calculation
would therefore require approximately 14 months to complete on the same computer. Were
this feasible, it would still be necessary to address the problem of the greatly expanded
state space of 256° elements.

The fourth order model therefore became the dividing line between calculations that
could be computed directly, and those that would require the indirect approach of the

Monte Carlo method to approximate.
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3.4.2 Direct vs. Indirect Modelling Approaches

There were two steps to the procedure for calculating the various entropy measures required
for entropy rate prediction. The first was to develop the appropriate probabilistic model for
the desired entropy measure, and the second was to compute a conditional entropy measure
based upon either the direct formula of equation (2.1) or the indirect Monte Carlo PCE
formula developed in section 2.2 and summarized in equation (2.17).

Modelling the probability distributions as described in section 2.2.2 was found to be a
challenging activity due to the large number of rare events in the process. In the interest
of efficiency, it was necessary to determine the sample size beyond which additional ob-
servations no longer contributed significantly to the accuracy of entropy calculation. This
question arose for both the direct and indirect calculation approaches, but caused the most
difficulty in the indirect case where convergence was not always achieved with the available

sample set sizes.

3.4.3 Direct Approach Convergence Characteristics

Models of the probability distributions of the speech process were computed in their entirety
up to the complexity limit of fourth order. Presented in figures 3.2, 3.3, and 3.4 are views of
the first, second, and third order probability distributions collected for the speech process.
The first order probability mass function (pmf) is a complete rendition of the probability
data, while the second and third order pmfs in figures 3.3, and 3.4 consist of only a subset
of the total data defining the probability distributions. These two figures are intended to
present an impression of the shape of the respective pmfs and not an exhaustive view of the
complete data structure. It was not possible to present the vast amount of data collected
for the fourth order probability distribution.

To determine the convergence of the maximum likelihood estimations of these proba-

bilistic models, we chose to observe the effect of increasing sample set size on the resulting
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Figure 3.2: First Order pmf p(X)
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conditional entropy measure. We computed first, second, third, and fourth order condi-
tional entropy measures for progressively larger samples of speech according to equation
(2.1). This approach did not measure the convergence of the probability models directly,
but rather measured the effect of the sample set on a measure derived from the models.
The results of this study, presented in figure 3.5, indicate increasing stability in all four
conditional entropy measures with additional sample data. The figure details average condi-
tional entropy measures for all four model orders and the 95% confidence interval computed
for those means. This data was compiled from observations of conditional entropies com-
puted from multiple disjoint sample sets. The number of observations available for each
data point was inversely proportional to the sample set size except at the maximal sample
set size where we computed extra conditional entropy measures in order to obtain good

confidence intervals. Table 3.1 details the number of observations obtained at each sample

set size.
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Figure 3.5: Convergence Properties of the Direct Entropy Calculations

We note that the measures computed for sample sets of less than 400 minutes indicate a
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Model Size (minutes)
Order [ 11 | 21 | 42 | 84 | 126 | 167 | 209 { 314 | 982 | 2725
1 101010 | 8 8 4 4 4 2 4
2 101010 8 8 4 4 4 2 4
3 10/10| 10| 8 8 4 4 4 2 3
4 10(10{ 10} 8 8 4 4 4 2 2

Table 3.1: Observation Count for Confidence Intervals in Figure 3.5

high variance, as would be expected for small samples, and generally underestimate the real
conditional entropy. For larger sample sets, the probability of observing rare, but highly
informative, events is increased and this affects the related conditional entropy measures.
At a sample size of 2725 minutes of speech data, all four conditional entropy measures
indicate a general convergence to a final value.

This simple study yielded valuable information about the speech process. ¥rom figure
3.5 we determined that we required at least 2725 minutes of conversational speech data
to effectively represent the speech process for a conditional entropy calculation. We also
acquired direct measures of the first, second, third, and fourth order conditional entropy
measures at this maximal sample size. In section 3.5.1 we will summarize these measure-

ments for use in predicting the entropy rate of the speech process.

3.4.4 Indirect Approach Convergence Characteristics

It was infeasible to compute H(X,|X]™?) for n > 5 due to the high computational complex-
ity of the calculation. We therefore employed the indirect Monte Carlo entropy estimation
approach presented in section 2.2 to estimate the fifth and sixth order conditional entropies.
No conditional entropy measures were computed above a sixth order model, but the results
of our research indicate that these measures are feasible using the Monte Carlo technique.

In order to minimize the dimensionality of the resulting conditional entropy surfaces,
the PCE measures, §(S,n, z{), were chosen to have the maximum feasible complexity of

0O(256%). This is the highest complexity measure that we could compute in a reasonable
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time. We selected this maximal feasible measure to minimize the dimensionality of the
resulting conditional entropy surfaces and simplify the interpolation algorithms needed to
define the approximate conditional entropy surfaces. A measure of lower complexity could
have been used, but would have required a greater number of surface points to be computed
for each entropy estimate.

From the definition in equation (2.9) we see that an exact nth order conditional entropy
surface will consist of 256™* vectors. This means that the fifth order conditional entropy
surface is defined by a set of 256 PCE vectors,

Hsx = | ¥(5,21),

21 EX

and the sixth order surface is defined by 2562 PCE vectors,

Hexr= |J ¥(6.2)).
zfek?
Our fifth order entropy surface is therefore two dimensional and our sixth order surface is
three dimensional.

Were we to extend our estimates to seventh order and higher, we would simply obtain
higher dimensional surfaces. Conversely, were we able to perform computations of com-
plexity O(256°) in reasonable time, we could reduce the dimensionality required for higher
order estimates and compute the fifth order conditional entropy directly.

The indirect Monte Carlo approach outlined above requires the twin steps of the devel-
opment of a probabilistic model followed by the calculation of a PCE vector to be repeated
until there is a sufficient coverage of the vector space to allow accurate interpolation of the
conditional entropy surface. To measure convergence in the indirect modelling and calcula-
tion approach we chose to observe the effect of an increasing sample set size on the results

obtained by a small subset of partial conditional entropy measures.
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Fifth Order Convergence

To determine the convergence of the fifth order entropy approximation we chose a subset of
ry = 5 points, T,, , = {48,90,117,121,127} € X by the Monte Carlo selection procedure
detailed in section 2.5. We then computed PCE measures for each at these points at each
of the sample set sizes in St = {540, 1081, 2162, 4324, 8648} to obtain a set of convergence

characteristics for the process,

Hserson, = U ¥(5:5. 1)
S;es%1
This set gives good coverage of the region contributing most to the conditional entropy
estimate and an overview of the convergence characteristics of other measures in that range.
The results, presented in figure 3.6, show a steady convergence to some final PCE value
for all measures in T,, ;. However, the convergence was considerably slower than that of
the direct measurements in figure 3.5 and required a significantly larger sample size. Where
the direct calculation measures began to converge with 2725 minutes of observed data, the

indirect approach required at least 8648 minutes to stabilize the PCE measures.

Sixth Order Convergence

The Monte Carlo selection procedure was also used to determine the convergence charac-
teristics of the sixth order entropy approximation. A subset of r, = 6 points, T,,, =
{(127, 126), (127,120), (108, 118), (76, 104), (53,61), (25,26)} € X'? was selected. We then
computed PCE measures for each of these points at each of the sample set sizes in S =

{S€:,17296} to obtain a set of convergence characteristics for the process,

Hscr 602 = (J 9(5:6,Tr2)-
S;eS8%2

The Monte Carlo point selection procedure ensures that these points give an accurate rep-

resentation of the important features on the conditional entropy surface. When we present
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Figure 3.6: Convergence of Fifth Order Partial Conditional Entropy Measurements

the resulting entropy surface in section 3.5 we will see that some of these points were taken
along the spine of a significant ridge of entropy contribution while others represent points
away from this area of concentration.

The results of these measures, presented in figure 3.7, indicate an even slower conver-
gence than the fifth order measures and a significant increase in the sample set size required
to obtain convergence. The sixth order measures were found to exhibit an acceptable level
of stability at a maximum sample size of 17296 minutes of speech data for only a subset of
the observed points. This convergent subset consists of the measures taken at the points
{(127,126), (127,120), (108, 118), (76,104)}. The points observed outside this set do not
appear to have converged to stable PCE measures at this sample size. It was not feasible
to compute PCE measures for sample sizes beyond 17296 minutes in size, so the measures
obtained at this maximal sample size have had to suffice for our best estimates of the PCE

measures for points in T,, 5.
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Figure 3.7: Convergence of Sixth Order Partial Conditional Entropy Measurements

A Note on Rates of Convergence

The slow convergence of the indirect measures presented here can be attributed to the
definition of the PCE measure for a sample of size S in equation (2.4). Computing a
probability measure for a PCE calculation consists of filtering a sample set of size S for
n-tuples prefaced with the pattern of interest, z{ € Tk, ;. Since only these filtered n-tuples
are admitted to the probability model, it is necessary to provide greater volumes of speech
data to the modelling procedure in order to capture sufficient statistics for an accurate

representation of the process.

3.4.5 Sample Set Size Ranges for Speech Models

The data used for these experiments consisted of a large corpora supplied on a set of
CDROMs, each containing approximately 1500 minutes of conversational speech data. This
amounted to approximately 695 MBytes per CDROM, and a total of 7.3 GBytes of data for

the maximal set used to determine the sixth order convergence characteristics. It was not
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feasible to store this amount of data on magnetic disk, and as a result, accessing the data
to build each conditional probability model required a significant amount of time. As it was
necessary to extract the data from a set of CDROMs, each mounted sequentially, the sixth
order convergence measures in figure 3.7 required an elapsed time of approximately 16 days
for each point 22 € T,, 2. The fifth order measures of figure 3.6 required approximately 9
days for each z; € T,, ;.

Due to these practical necessities, it was not feasible to use a sample set of the maximal
size for every measure needed to form the conditional entropy surfaces, Hs » 1 ;- Smaller
sample sets were used to calculate PCE vectors for all fifth and sixth order measures, except
for those measures obtained from the study of convergence statistics. The sample set, sizes
used to generate conditional entropy points varied, depending on external conditions such as
memory utilization, system load, and system failures. In all cases, the sample sets contained
an identical core corpora of 2200 minutes of speech and additional data as was necessary to
obtain accurate entropy measurements. Table 3.2 details the upper and lower sample size
bounds, Sy, and Siax, for the set of sample sizes S = {Spp, - - - , Smax} applied to the
set of all PCE measurements. As noted above, this does not include sample sizes for points

computed at maximal sample set sizes in the convergence study.

Model Order | Suin (min.) [ Syax (min.)
Fifth 2200 4500
Sixth 6500 13000

Table 3.2: Sample Size Ranges for Indirect Entropy Calculations

3.5 Computing Conditional Entropy Measurements

In this section we will utilize the conditional entropy measures obtained in section 3.4
to compute conditional entropy estimates of first, second, third, fourth, fifth, and sixth

order realizations of the speech process. We will begin by summarizing the exact and direct
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conditional entropy measures obtained in section 3.4.3. We will then apply the Monte Carlo
sampling algorithm defined in section 2.2 to obtain estimates of the fifth and sixth order
conditional entropy measures. To do this we will need to define two interpolation algorithms
for generating an entropy surface from the set of entropy vectors obtained by Monte Carlo
sampling. The first is based on simple linear interpolation in two dimensions, and the
second, required for surfaces of three dimensions, is derived from a Delaunay triangulation
of the computed vectors. Finally, in this section we will address the issue of normalizing the
set of PCE measurements to a constant, maximal, sample set size as discussed in section 2.6.
We will apply the knowledge obtained about the convergence characteristics of the process
in section 3.4.4 to obtain estimates of the conditional entropy surfaces that would have
been obtained at the maximum feasible sample size. We will use these modified surfaces to

recompute our best estimate of the fifth and sixth order conditional entropies.

3.5.1 Exact Conditional Entropy Calculations

In section 3.4.3 we discussed the convergence characteristics of the first, second, third, and
fourth order conditional entropy measures as a function of the sample set size. In figure 3.5
we presented the results of that study. We concluded that all four entropy measurements
indicated a sufficient level of stability to be considered accurate representations of the
first four nth order conditional entropy measures. In table 3.3 we present the means and
confidence intervals of the sets of conditional entropy measures obtained at the maximum

sample size of 2725 minutes of conversational speech data.

HX) | H(X5lX)) | H(X5(X]) | H(X4lX7)
5.885+ .08 | 4.613+ .09 | 4.287 + .07 | 3.751+.10

Table 3.3: Conditional Entropy Means and 95% Confidence Intervals of the Speech Process
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3.5.2 Interpolation Algorithms

The interpolation function, f, was defined in section 2.4 to be an arbitrary mapping from a
set of K PCE vectors to the set of all X7 vectors defining the conditional entropy surface.
In this section we will define the specific interpolation techniques used to estimate the
conditional entropy surfaces, #s v, and 126 x2, from the best estimates of the PCE vectors,
ﬁs"[ &y 1 d0d ﬁe,-r Kz OF the sets of best estimates normalized to a maximal sample size,
HSpmy 5. Xk, a0d Hs,, 67, 5-

As discussed above, any number of more sophisticated interpolations could be applied
to the data, but the advantage of these alternatives can not be quantified without a better
model of the process under study. We are satisfied with taking the simplest approach to
predicting the surface: a linear interpolation.

Two Dimensional Interpolation of the Entropy Surface

To interpolate the conditional entropy surface when j = 1 requires an interpolation function,
f2, in two dimensions. This function will take the set of computed PCE vectors as input
and interpolate the set of all surface points, #s y1.

The conditional entropy surface is partitioned into the set of regions defined by Tx, ;.
Let {a,b,¢,...,y, 2z} = Tk, 1 define the ordered set of points such that a < b < ¢ < ... <
y < z. Then, {Xap, Xbe, - - - , Xyz} = X, defines all points in X between the minimum point,
@, and the maximum point, 2.

We can interpolate the portion of the conditional entropy surface within any of these

regions, X;; € X, as follows,

SCCDIELUCR N

st = {96,)+ (- 9

The interpolation function for the conditional entropy surface between points a and z
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can then be described by the mapping,

fo:R¥x X2 Rt x X% st., (3.2)
RO= U #Hax

By ensuring that the minimum point is @ = 0 and the maximum point is z = |X| we

can interpolate all points on the conditional entropy surface.

Three Dimensional Interpolation of the Entropy Surface

To interpolate the conditional entropy surface when j = 2 requires an interpolation function,
f3, in three dimensions. This function will take as input the set of computed PCE vectors
for the sixth order surface and interpolate the set of all points, 'f{s, x3-

Interpolating in three dimensions is not as simple as the two dimensional linear inter-
polation procedure we applied to the fifth order estimate. We approach the problem by
defining a set of triangular planes in Rt x X2 to approximate the conditional entropy sur-
face. If we define the vertices of these planes to be the set of computed PCE vectors, then
the surface is defined by evaluating the planar equations at all points in X2,

To form the set of planes in R* x X2 we begin by triangulating the set of points, Tk, 2 €
X? with an unconstrained Delaunay triangulation algorithm [28], [29]. This procedure yields
a unique set of 7 triangles, 7 in the plane X2. We define the set of triangles 7 in terms of

their vertices,
T=T= el 02,0} st (3.3)
ier =g
{vt}! ”:?v ”?} € Tk,,2-

For each triangle T; € T we may form a projection in R* x X'? by taking the image of
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each vertex in ¥(-). This operation forms the mapping,

{(0,v}), (0, v3), (0, v])} — {¥(v}), ¥(v3), ¥(v})} (34)
V i st.,, eT.

Note that we have omitted elements from the definition of (-) to simplify this description.
We define the set of surface planes by,

w1 =,
i€r

and note that the vertices of the triangular planes in Rt x X? are completely specified by
the PCE vectors ¥(6, Tk, 2)-

We define the three dimensional interpolation procedure as follows: The set 7 rep-
resents a unique and disjoint set of triangular planes in X’? that is generated from the
Delaunay triangulation of Tk, .. If we ensure that the corner points of the plane X 2,
{(0,0), (0, |x]), (IX],0), (JX1, X))}, are included in the set Tk, », then it can be shown that
all points in X? are inside a triangle 7; € 7" [30]. Hence, the set (7T, which is formed from
the projection of all triangles in 7" onto R¥ x X2 forms a unique surface that is defined for
all points in X2. An illustration of this process is presented in figure 3.8.

We define the three dimensional interpolation function, f3, as the projection of all points
z2 € X? onto the surface defined by 4(7"). If we represent the projection of a point z € X
onto the surface by ¥(7(22)) then,

f:RTx X2 Rt x X% sit., (3-5)
)= | ¢(7=h).
z3eX?

This procedure corresponds to a linear interpolation in three dimensions.
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Figure 3.8: Example of Forming a Set of Triangular Surface Planes

3.5.3 Symmetry in the Speech Process

In developing the probability distributions of the speech process indicated in figures 3.2,
3.3 and 3.4 we noted strong evidence of symmetry as a function of the vector z{. This
same property of symmetry was found in sets of first, second, third, and fourth order PCE
vectors. For example, we computed the complete two dimensional conditional entropy
surfaces, H; y1, Ha x1, Hz x1, Hy x1 from a 1300 minute sample of the speech process. The
results, presented in figure 3.9, indicate a strong symmetry in z; and a close correspondence
to the first order probability distribution of figure 3.2. This property of symmetry was
also found to be present in the three dimensional conditional entropy surface developed to
approximate the sixth order conditional entropy measure. The three dimensional surface,
7.{3,,:2, was found to resemble the second order probability distribution of figure 3.3.

We may take advantage of this property of the speech process to increase the accuracy
of our entropy prediction method. We avoid performing calculations made redundant by
the property of symmetry by reflecting all two and three dimensional PCE vectors across
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the line of symmetry.
For two dimensional PCE vectors we perform the mapping,

Ehzl < ﬁn,{[l[—m} v T € le
and for three dimensional PCE vectors we perform the mapping,

Ho (o 22} € Hn (¥l b ¥~y ¥ {21,220} € X2

These simple transformations increase the efficiency of our calculations by effectively dou-
bling the number of PCE vectors available to predict the conditional entropy surface of the

speech process.
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Figure 3.9: Symmetry in the Conditional Entropy Surfaces



CHAPTER 3. ENTROPY RATE ESTIMATION OF THE SPEECH PROCESS 48

3.5.4 Results of Entropy Estimation Measures
Verification of the Indirect Approach

Before presenting the results obtained for the fifth and sixth order conditional entropies,
we wish to demonstrate the accuracy and efficiency of the indirect Monte Carlo approach
by using it to calculate a known entropy value.

A set of 51 unique third order PCE vectors, 4,1, , Was computed from a 1500 minute
sample of the speech process. Due to the symmetry inherent in the source process, we could
reflect these measures across the line of symmetry to form a set of 102 PCE vectors describ-
ing the entropy surface, 4 1,,. ,- The PCE vectors were then interpolated according to the
interpolation function, fa, described in section 3.5.2 to form the approximate conditional
entropy surface,

Hoxr = fo(HaTioz,)-

This surface is presented in figure 3.10. We then computed an approximation of the fourth
order conditional entropy from this surface,

H(X,X}) = Z e(He 1)
z €X?

The result of this calculation was a conditional entropy estimate of 3.405 bits/sample.
Comparing this approximate measure to the exact fourth order conditional measure of
3.751 bits/sample presented in table 3.3 reveals a close correspondence between the direct
and indirect approaches. Assuming the direct result to be accurate, we see that the indirect
approach incurs an error of 9.22 % at an expense of only 5L = 19.9% of the work required
for the direct calculation.

This comparison was obtained on the basis of a sample size which is shown in figure 3.5
to be less than that required for convergence of the direct measure. Were we to normalize the

set of PCE vectors, '}'{4, 1, to a maximal sample size according to the algorithm described
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Figure 3.10: Approximate Fourth Order Partial Conditional Entropy Surface

in section 2.6 we would obtain a more accurate approximation of the fourth order measure.
We could also compare the predicted fourth order measure to a measure computed directly
from a sample set of similar size. An exact fourth order conditional entropy was computed
to be 3.324 bits/sample for the sample set of 1300 minutes used to develop the results of
figure 3.9. This similarly sized sample set yields an error estimate of only 2.44 %. We
conclude that the indirect approach can achieve an accurate measure of the conditional

entropy when a direct calculation is not feasible.

Raw Fifth Order Conditional Entropy Calculation

Having verified the feasibility of entropy estimation from a Monte Carlo sampling approach
with the fourth order measure, we applied the same technique to develop a set of PCE
vectors, Hse 51 Kyt In total, 41 unique fourth order PCE vectors were computed over a
range of sample sizes, S*. Due to the symmetry in the source process, this resulted in a

total of K; = 82 PCE vectors to define the surface. Due to computational difficulties, the
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elements of Hgss 5.1 x,1 Were computed at varying sample sizes in §* such that,

Hs 51, = | 9(5:5, Tk.)-
s:es*

Selecting the set of measurements obtained at the maximum available sample set size
for each element in Tk, ;, we formed our best estimate of the raw PCE data, ﬁ&'fxl,x as
described by equation 2.8.

The fifth order surface defined by ﬁs,r,ﬁ.‘ had the same dimensionality as the fourth
order surface described above, allowing us to proceed in the same manner to compute the
fifth order conditional entropy estimate. The PCE vectors were interpolated according to

the interpolation function, f;, to form the approximate conditional entropy surface,
ﬁs,xl = fz(ﬁS,Tk,,n)'

This fifth order conditional surface approximation is presented in figure 3.11. We then

computed an approximation of the fifth order conditional entropy from this surface,

H(XXH) = Y o(Hsan)-
X!

The result of this calculation was a fifth order conditional entropy estimate of 2.994 bits/sample.

This estimate was computed from the non-ideal set of PCE vectors computed at varying
sample sizes. In section 3.5.5 we will compute a better estimate by first normalizing the set

of PCE vectors to a constant, maximal, sample size.

Raw Sixth Order Conditional Entropy Calculation

To compute an estimate of the sixth order conditional entropy we produced a set of 101

unique fourth order PCE vectors from samples sizes in the set S*. Applying the property
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Figure 3.11: Approximate Fifth Order Partial Conditional Entropy Surface

of symmetry described for three dimensional vectors in section 3.5.3 yielded at total of
K, = 202 PCE vectors, Hg- 6.1k 25 with which to predict the sixth order conditional
entropy surface. Like the fifth order PCE vectors, this set of measures was computed at

varying sample sizes such that,

Hse6.Tr,2 = |J ¥(Si,6, Try2)-
S;es*

Selecting the set of measurements obtained at the maximum available sample set size
for each element in Tk, 2, we formed our best estimate of the raw PCE data, ﬁG'TK, , as
described by equation 2.8.

The sixth order surface defined by 'ﬁe,r k.2 1S three dimensional. We therefore proceeded
by interpolating an estimate of the conditional entropy surface with the three dimensional
interpolation function, f3. We computed the sixth order conditional entropy surface ap-
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proximation as,
126,” = fs(ﬁetrKgﬂ)'-

Presented in figure 3.12 is the Delaunay triangulation of the points T, » used to interpolate

the approximate conditional entropy surface.

Figure 3.12: Delaunay Triangulation of PCE Points in Tk, 2
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The resulting approximate conditional entropy surface is detailed in figures 3.14, and
3.16. These figures indicate the shape of the surface and include a set of contours on the
surface at levels 10—, i =2,3,...6. Figure 3.16 also presents a measure of the conditional
entropy volume contained in each of the contours displayed on the entropy surface. We
computed an approximation of the sixth order conditional entropy from this surface,

HXa\X])= Y ¢(Hsnx)-
2eX?
The result of this calculation was a sixth order conditional entropy estimate of 2.864
bits/sample. Again we note that this estimate was computed from the non-ideal set of
PCE vectors computed at varying sample sizes. In section 3.5.5 we will compute a better

estimate from a set of PCE vectors normalized to a constant, maximal, sample size.

3.5.5 Normalization to the Maximal Sample Size

The results of the direct entropy calculations presented in figure 3.5 were noted to converge
to the final values noted in table 3.3 at a sample size of 2725 minutes of speech. Conse-
quently, these results can be applied without modification to our estimate of the entropy
rate of the speech process.

Our observations of the convergence characteristics of the fifth and sixth order calcu-
lations indicate that the results obtained by measurements on the sample sizes outlined in
table 3.2 are not exact. More accurate measures can be obtained by normalizing the mea-
sures in the set Hg- T  toa constant, maximal, sample set size following the technique
outlined in section 2.6. This procedure allows us to predict the entropy measure that would
be obtained if the calculation had been performed on the maximal sample set.
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Fifth Order Surface Normalization

The set of fifth order PCE vectors Hs- 51, ,, compiled from sample sets of sizes over
the range indicated in table 3.2, was normalized to a maximal sample size of S,,, = 8648
minutes.

This was accomplished by applying the standard 2 dimensional interpolation tech-
nique described in section 3.5.2 to the convergence data in figure 3.6 to produce a set
of convergence surfaces, 125.15' x1- A scaling factor was then computed for each point
¥(S,5,21) € Hse 5.1y, , to form the set ﬁs’m, 5Tk, as described by equation (2.15).

The interpolation function was then applied to this normalized set to obtain our best
estimate of the fifth order conditional entropy. The conditional entropy surface plotted in
figure 3.13 was obtained from,

us’"l ,5,X‘ = fz (usml |s,r’(l 1 ) '

and the fifth order conditional entropy estimate of 3.262 bits/sample was computed from

the equation,

Hs, (Xs|X}) = Y e(Hs,, s.41)-
E 2% cxt

The effects of the normalization procedure may be observed by comparing the original
fifth order surface in figure 3.11 to the normalized surface in figure 3.13. We note a slight
reduction in the peakedness of the surface and a general increase in the magnitude of the
most significant PCE vectors near the mean of the process. These modifications were due
to the observed convergence characteristics of the more probable vectors and had the most
significant impact on the entropy estimate. We also note a reduction in the variance of
some PCE vectors, particularly in the regions of lower probability. This smoothing effect is

an indication of the normalization process.



CHAPTER 3. ENTROPY RATE ESTIMATION OF THE SPEECH PROCESS 55

10° - - ~
-7 1
107 Entropy Estimate: E
3 3.262 bits
2 - weaB82 J
1072} E
=
E o |
§ 10 Eg 'i
10 E 3
10~%F 3
1 o-s " — . e A
o so 100 150 200 250

Figure 3.13: Normalized Fifth Order Conditional Entropy Surface

Sixth Order Surface Normalization

Similarly, the set of sixth order PCE vectors, Hse 6Tk, 21 WaS normalized to a maximal
sample size of Sy, = 17296 minutes. This was accomplished by applying the standard 3 di-
mensional interpolation technique presented in section 3.5.2 to produce a set of convergence
surfaces, Hge 6,42, from the convergence measures presented in figure 3.7. A scaling factor
was then computed for each point ¥(S, 6, 23) € Hs+ 6,1y, , to form the set Hs,n, 6.Ti,, 38
described by equation (2.15).

The interpolation function was then applied to obtain a best estimate of the sixth order

conditional entropy. The conditional entropy surface was obtained from

1‘"5",2 ,ﬁ,p = fa(%smz 16r.rlf2.3 )’

and the sixth order conditional entropy estimate of 3.121 bits/sample was computed from
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the equation,

Hs,, (Xs|X3) = Z P('*.f-s.,.,,s,xﬂ)
zfex?

Figures 3.15, and 3.17, detail the shape of the normalized entropy surface. Figure 3.15
presents a three dimensional image of the surface with a set of contours at levels 10~%, i =
2,3,...,6. Figure 3.17 details the volume of conditional entropy contained within each of
the contours on the entropy surface. We note a smoother and more continuous form to
the surface that results from scaling the set of PCE measures to a single sample set size.
Comparing the volumes contained in contours of the unscaled conditional entropy surface in
figure 3.16 to the volumes in the scaled conditional entropy surface of figure 3.17, we see how
the normalization routine reshapes the surface. In this case, the central peak of the entropy
surface has been decreased, while the measures in the diagonal region surrounding the peak
have been increased. These changes are consistent with the convergence characteristics
observed in figure 3.7.

Summary of Best Conditional Entropy Estimates

In table 3.4 we summarize the best estimates obtained for conditional entropy measures from
first to sixth order. This table includes observations on the convergence characteristics of
the entropy measures and a measure of the fraction of the complete O(256™) calculation

computed to obtain each entropy estimate.

Order Measure | Type | Computed | Convergence

H(X) 5.885 Direct 100% Good
H(X,|X;) | 4.613 Direct 100% Good
H(Xs3|X?) | 4.287 | Direct 100% Good
H(X4X3) | 3.751 Direct 100% Good
H(Xs|X}) | 3.262 | Indirect 16.0% Good
H(XelX7)| 3.121 | Indirect | 0.15% Fair

Table 3.4: Summary of Best Conditional Entropy Estimates
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Figure 3.14: Approximate Sixth Order Conditional Entropy Surface with Contour
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Figure 3.17: Normalized Sixth Order Conditional Entropy Contour
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3.6 Entropy Rate Estimation

We have computed the first to fourth order conditional entropy of the speech process exactly,
and have obtained estimates of the fifth and sixth order conditional entropies. A summary
of our results is presented in table 3.4. In Appendix A we present a proof indicating
that the entropy rate is equivalent to the (k + 1)th order conditional entropy for processes
that can be fully specified with a k& dimensional probability distribution. This proof is an
extension of the general result of the Shannon-McMillan-Breiman theorem [1], that reduces
the computational requirement for an entropy rate calculation to a finite (k + 1)th order
conditional entropy calculation.

To determine the maximum order, E, required to specify the probabilistic model of
the speech process, we refer to the long term correlation statistics of the speech process
presented in figure 3.1. Recalling that these statistics were computed for the very broad
range of English speakers allowed by our definition of the general speech process, we are
not surprised to observe that the full specification of the speech process pmf would require
a model of at least 40th order. In Appendix E we have tabulated a conservative estimate
of the number of operations required for the first six conditional entropy measures to be on
the order of 1.2 x 10'* integer and 1.8 x 10!3 floating point operations. Further conditional
entropy calculations are infeasible with the available computing resources, and a 40th order
calculation is clearly beyond any reasonable expectations.

To predict the entropy rate of the speech process we will use the set of computed
conditional entropy measures to estimate a model of the conditional entropy as a function
of model order. Our data consists of a set of measurements from first to sixth order in which
we have varying degrees of confidence. This situation leads to the choice of a model fitting
method that weights the error residual of each measurement according to its expected
relative accuracy. We have chosen a weighted regression analysis to fit a model to the

computed conditional entropy measurements.



CHAPTER 3. ENTROPY RATE ESTIMATION OF THE SPEECH PROCESS 61

In the following sections we will propose a model of the conditional entropy function to
be fitted to the known data points. We will then quantify the relative weights to be assigned
to the error residuals of the data points in terms of their confidence intervals. Finally, we
will use the results of the regression analysis to define a model of the conditional entropy
function and a 95% inference region around the model. From this model we will predict the
entropy rate and a set of 95% confidence intervals for the speech process.

3.6.1 Defining the Conditional Entropy Model

We can apply knowledge of the theoretical behaviour of the conditional entropy measures to
determine a set of constraints for the function, y(n), used to model the conditional entropy
as a function of model order. We first observe that additional information can only decrease
the uncertainty about the source process. It can be shown that the sequence of conditional

entropy points, {H(X), H(X2X,), H(X3|X}2),...} is positive and non-increasing since,
H(XaX7™Y) 2 H(XaalXT) 20 ¥ n2>1.

We also note that the correlation function of the speech process plotted in figure 3.1
indicates generally decreasing correlation as a function of the model order, n. Since the
dependence of the random variables in the speech process demonstrably decreases with
increasing separation, we can expect an accompanying decrease in the information obtained
by additional observations. This will result in a gradual reduction in the rate of change of
the conditional entropy function with increasing model order.

To summarize, we require the following three characteristics in the conditional entropy
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model,
y(n) >0 VY n>0 (3.6)
dy(n)
~n <O (3.7)
d*y(n)

These three constraints define the known characteristics of a model for the conditional
entropy function. In the absence of additional information about the conditional entropy
function we apply the principle of Occam’s razor ! and select the simplest function which
satisfies the constraints and appears to fit the data points. We plotted our best estimates
of the conditional entropy as a function of model order in figure 3.18 in order to assess
the general shape of the function. These points indicate a pattern similar to a simple
exponential decay, suggesting the choice of a 3-parameter exponential curve of the form
y(n) = A + fe™"" to model the conditional entropy function. This curve satisfies the
constraints of equations (3.6), (3.7), and (3.8) for all {4, 8,a} > 0. A curve of this form
will necessitate the use of a non-linear regression procedure to fit the model to the known

data points.

3.6.2 Confidence Intervals for Weighted Regression Analysis

We will use the 95% confidence intervals of each conditional entropy measurement to de-
termine the weight that will be assigned to each error residual in the regression analysis.
Specifically, we will assign a relative weighting for the error residual of each data point in

proportion to the inverse of the confidence interval computed for that model order.

'William of Ockham, an influential 14th century philosopher proposed the idea that “plurality should
not be assumed without necessity” in his controversial treatises on papal power and civil sovereignty. This
principle came to be known as Occam’s razor.
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Figure 3.18: Conditional Entropy Estimates and a Simple Exponential Model
Direct Measures

We computed 95% confidence intervals for the results of the independent direct conditional
entropy calculations as summarized in table 3.3. These measurements were all computed

at the maximum sample size of 2725 minutes, and comprise our best estimates of the four

direct conditional entropy measures.

Indirect Measures

In deriving the estimates of the fifth and sixth order conditional entropy measures we ap-
plied a sampling strategy, and then interpolated the sampled points to achieve an entropy
estimate. To compensate for variations in the sampled data measures arising from compu-
tational difficulties, we applied a normalization routine to the estimated entropy measures.
The result of this procedure is a pair of measures for which it is very difficult to quantify an
error estimate. In this section we will determine a set of reasonable bounds for the results

to serve as 95% confidence intervals.
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We note that the interpolation routines for both fifth and sixth order surfaces are un-
biased for large sets of PCE measures: they can be expected to overestimate the same
number of surface points that they underestimate. We will assume then, that the inter-
polation process is not the dominaut contributor to error in the entropy estimates. It has
been noted, however, that modelling the speech process was difficult and that compromises
were required which resulted in non-ideal models of varying sample sizes. We believe the
majority of the error in entropy estimation occurred due to the modelling process.

As a conservative lower bound on the fifth and sixth order conditional entropy estimates,
we select the measures obtained from unnormalized PCE vectors in sections 3.5.4 and 3.5.4,
respectively. The models of the speech process used to derive these estimates did not all
converge to stable measures. The choice of the unnormalized measures as a lower bound is
supported by our analysis of the convergence characteristics of the process, which indicates
that these measures underestimate the conditional entropy of the speech process. Accurate
measures will therefore be at least as large as the raw results.

We will assume the upper bound on the fifth and sixth order conditional entropy is also
largely determined by modelling errors. To simplify the regression analysis we will define
the upper bounds such that we have a symmetric confidence interval around the computed
conditional entropy measures. The fifth and sixth order conditional entropy estimates and
the associated 95% confidence intervals to be used in the regression analysis are summarized
in table 3.5.

3.6.3 Non-linear Weighted Regression Analysis

To fit the exponential model to our experimental data we applied a non-linear weighted re-
gression analysis with a least squares error criterion. The regression analysis was performed
on the set of all conditional entropy measures computed at the maximum available sample
sizes, and error residuals were weighted according to the estimated 95% confidence intervals

on the average of the experimental measures.
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Our best estimates of the first to sixth order conditional entropies, and the associated
estimated confidence intervals are summarized in table 3.5. We note that the confidence
intervals on the direct measures are all approximately .08 bits, while the the fifth and sixth
order confidence intervals are approximately 0.26 bits. This allows us to assign an error
weighting criteria in the ratio 3.25:1 to the non-linear weighted regression analysis of the
results. Using these relative weights we applied a weighted least squares analysis to the
data points to estimate the parameters of the non-linear conditional entropy model. The
resulting model and its associated 95% inference regions is presented in figure 3.19.

The regression analysis yielded the model described by the equation y(n) = 2.79 +
3.03e~94°7"_ If our choice of model is accurate, then the regression analysis has provided a

means to predict the nth order conditional entropy with some degree of confidence.

Order | Best Estimate | No. Points | Rel. Weight
1 5.885 1 0.08 4 3.25
2 4.613 +0.09 4 3.256
3 4.287 1+ 0.07 3 3.25
4 3.751+0.10 2 3.25
5 3.262 £ 0.268 1 1
6 3.121 £0.257 1 1

Table 3.5: Summary of Means, 95% Confidence Intervals, Observations, and Relative
Weights of Computed Entropy Measures

3.6.4 Entropy Rate Prediction Results

As discussed in Appendix A, the entropy rate of the speech process can be estimated by
computing a high order conditional entropy measure. Using our model of the conditional

entropy function, y(n), we compute
H = lim y(n) = lim 2.79 + 3.03¢~%49"" = 2.79. (3.9)
n—,oo n—o0

Thus, the first parameter of our model represents our best estimate of the entropy rate
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Figure 3.19: Regressed Non-linear Model and 95% Inference Region

of the speech process, and an analysis of the inference regions around the model yields 95%
confidence intervals. These results are summarized in table 3.6. Our analysis predicts an
entropy rate of 22.3 kbps for conversational English speech of telephone bandwidth and
64 kbps p-law PCM fidelity. Our inference regions allow a fairly generous range of & 7
kbps around this estimate to account for the sources of error encountered in the modelling
process.

We note that these results have been obtained from a speech process defined to be
stationary. As discussed in section 3.3.1, we would expect this entropy rate to represent
the upper limit of the entropy rate of the speech process because our modelling approach
could not adapt to the short-term temporal statistics of the source. Were we to follow our
suggestion of categorizing the speech process by speaker and computing a weighted average

of speaker-specific entropy measures we could obtain a lower limit on the entropy rate.
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Bounds Lower | Predicted | Upper
Measure (bits) | 1.91 2.79 3.70

Table 3.6: The Entropy Rate of the Speech Process and Bounds on the 95% Confidence
Interval

3.7 Summary and Observations on the Entropy Calculations

We have presented a method of estimating high order entropy measures for any type of
source process. This method can reduce the high computational expense of an entropy
calculation to a feasible level by using an interpolation function to estimate portions of
the full calculation. The method has an additional advantage in that it allows an entropy
calculation to be partitioned in time and space across multiple processing units. Finaily,
it allows successive refinements in the accuracy of the entropy estimate with the addition
of more sample points. In the limit the method can provide an exact measurement of the
source process entropy.

A number of interesting details were revealed in applying this technique to the speech
process. First, we noted that this technique was most effective for processes exhibiting a
high degree of memory. The entropy surface of these processes is highly peaked and can be
accurately modelled by the Monte Catrlo point selection procedure of equation (2.13). By
concentrating the point selection probability distribution in the peaked region we can obtain
a high resolution sampling of the vectors contributing most to the conditional entropy of
the process.

The entropy surface of the speech process was suitable to efficient sampling and inter-
polation by the Monte Carlo selection procedure. We found the surface to be relatively
smooth and highly peaked around the mean of the process. Both characteristics contribute
to a good estimate of the entropy rate from a relatively small number of PCE measures.

A limitation of this technique was found in modelling processes that do not possess
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a smooth entropy surface, as defined in section 2.4.1. To obtain an accurate measure of
such a process requires a large number of PCE vectors to be computed in order to identify
the relevant features of the entropy surface. Our technique has no particular advantage in
modelling processes of this type.

In general, we found characterizing the shape of the entropy surface to be a critical
step in efficient entropy estimation. If we could predict the general shape of the entropy
surface of a process, say a facsimile or video source, we could design a better a priort
sampling distribution and achieve an accurate and efficient entropy estimate. A better
understanding of these surfaces would also result in more accurate interpolation routines
and consequently, better entropy measures.

In developing estimates of the probability distributions of the speech process we encoun-
tered a variety of difficulties due to the large volume of speech data being processed and
the long execution times required of our experiments. These problems preciuded a constant
and maximal sample size for the speech process under study. The following are a few areas
in our experimental work where we noted the opportunity for improvements that would

enhance the accuracy and confidence interval of the predicted entropy rate,

1. More accurate measures of the conditional entropy of the speech process could be
obtained by computing all PCE vectors from a single large sample set. A larger
sample set would improve the convergence of PCE vectors outside the more probable
regions, and a constant sample set size would eliminate the need to normalize the
PCE measures with the set of computed convergence surfaces. This procedure would
require the use of larger, and more reliable, computing facilities than were available

for our initial prediction.

2. Were this not feasible, we could still increase the accuracy of our results by improving
the resolution of the set of convergence surfaces. This could be achieved by expanding

the set of convergence measures to include a larger number of points over the calcula-
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tion space. This process is feasible with the available computing resources and simply

requires the expenditure of a greater amount of time to collect the convergence data.

3. The accuracy of the entropy measure could also be improved by including more PCE
vectors on the entropy surface. A larger number of PCE vectors would directly im-
prove accuracy by providing a higher resolution set of measures for interpolating the

complete entropy surface.

This entropy estimation technique can be used to develop high order entropy measures
for a wide variety of source processes, particularly those with a strong property of memory.
It is hoped that the techniques presented here can find wider use in entropy rate estimation

for a broader class of interesting source processes.



Chapter 4

Security Models for Secure Speech
Systems

We dance round in a ring and suppose,

But the Secret sits in the middle and knows.

Robert Frost — The Secret Sits

4.1 Introduction to Cryptology

We will begin with an introduction to cryptology that allows us to describe the systems
commonly used to obtain secure communications, and define the relevant parameters for
models of cryptographic security.

The science of cryptology can be divided into two areas of activity: cryptography and
cryptanalysis. The cryptographer seeks to design systems capable of ensuring the secrecy or
authenticity of messages. The cryptanalyst seeks to determine the content of the encoded
messages or to deceive a valid receiver through impersonation or other fraudulent activities.

The cryptographer always employs a secret key to control the enciphering process. In

70
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some cryptographic applications, those known as symmetric key algorithms, this secret key
must be exchanged by a secure channel with the authorized receiver prior to initiating
secret communications. In asymmetric key algorithms, there is no requirement for the
prior exchange of secret information. The receiver generates a unique pair of keys, one for
encryption and the other for decryption, and makes the encrypting key generally available

to anyone who wishes to send him a secret message.

4.1.1 Symmetric Key Cryptography

There are two fundamental forms of symmetric key cryptosystems, block ciphers and stream
ciphers. Both are capable of encrypting data at rates on the order of 100 Mbps or more. In
North America, cryptographic research and development has concentrated on block ciphers,
while in Europe fortune has tended to favour the stream cipher. The two cryptosystems
transform the message into ciphertext in significantly different ways, but can provide equiv-
alent security. It is usually just a preference for one set of system characteristics that
determines the choice of cryptosystems. We will describe the two types and discuss their

differences in the next two sections.

Block Ciphers

The first sophisticated treatment of block ciphers in the open literature was given by Shan-
non in [4]. Later work by Feistel in [31] and Feistel, Notz and Smith in [32] helped to
define the current form of block cipher designs. A block cipher can be described as a set of
transformations from a message space to a cipher space. Each transformation corresponds
to the use of a particular key. In order for each message to be retrievable, we must have
an invertible transform from message space to cipher space. If each message block of m
characters is mapped into a ciphertext block of an identical m characters, we would have
a total of d™! possible reversible transformations, where b is the size of the key alphabet.

Most modern ciphers operate in Z2 and hence have a potential key space of 2™!.



CHAPTER 4. SECURITY MODELS FOR SECURE SPEECH SYSTEMS 72

We can view the block cipher we have defined as a device for substituting a ciphertext
block for each possible block of plaintext input. The choice of output block is dictated
by the particular key used for that encipherment. If this device were built to handle a
five-digit binary input, for example, we would be able to encipher an alphabet of 2° = 32
characters. The number of possible connection patterns between inputs and outputs would
then be 32!. While this may seem a very large number, there would still be only 32 input-
output matchings for each key and the cipher would be vulnerable to a frequency-analysis
attack or an exhaustive search. What we require is to have a message space that is so
large it is impractical to mount such an attack. Current technology would be incapable
of an exhaustive search if block sizes were on the order of 128 bits. Unfortunately, such a
substitution device would require 2!?2 inputs and outputs, a technological impossibility by
today’s standards. Given this constraint, it is necessary to find a way to use the available
technology to achieve at least a significant subset of all possible transformations.

Another possibility would be to permute the message bits according to a predetermined
routing scheme. Due to their simplicity, these devices are feasible to build for large sets
of inputs. Unfortunately, that same simplicity makes these devices highly vulnerable to
chosen-plaintext analysis. Any permutation device designed for n inputs can be analysed
in (n — 1) steps, so clearly these devices will not suffice for a cryptographic algorithm.

Shannon recognized a solution to the problem in the concept of a mizing transformation
[4]. Such a transformation can be used to map a relatively high probability region, R, of
a probability space, 2, into another region in Q. If applied a large number of times the
transformation will result in the initial region, R, becoming uniformly mixed throughout
the entire space. Strictly speaking, a mixing transformation can only occur over a space
with an infinite number of points, but the general process can be applied in a cryptographic
application to redistribute a region of high probability messages over the entire cipherspace.

Good mixing transformations are ones in which a small variation in any of the inputs

results in a large change in the output. It happens that a permutation followed by a
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substitution forms an effective mixing transformation. Figure 4.1 is an example of a 15 bit
block cipher with 5 rounds of a substitution-permutation transformation. The application
of a large number of successive rounds of this transformation achieves a very complicated
mixing of the data, as is evidenced by the example. A further advantage of this arrangement
is that it allows the use of small, manageable substitution boxes and protects them from
frequency analysis within the overall structure of the network. The example in figure 4.1
has no key and so would not suffice in a practical application. Real systems employ a secret

key that in some manner modifies the data or controls the permutation or substitution

components.
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Figure 4.1: Substitution-Permutation Network

This particular combination of operations is effective because it applies two principles
that Shannon found to be important to the encryption of data. Substitution adds a charac-
teristic he called confusion to the ciphertext. By replacing each character by an unknown,
key-dependent character, we have increased the attacker’s uncertainty about the pattern

he is trying to track. The permutation device then adds a second twist to the puzzle by
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adding what Shannon called diffusion. This operation has the characteristic of spreading
the effect of each message character over a wider area of the cipher block, to the desirable
end of concealing some statistical relationships within the data.

The characteristics of a mixing transformation allow us to build strong cryptographic
systems with relatively simple and inexpensive devices. By combining large permutation
devices with sets of small substitution boxes, the individual weaknesses of each approach are
avoided and the resulting ciphertext blocks can achieve a strong inter-symbol dependence
known as the strict avalanche criterion. This effect was defined by Webster and Tavares in
[33]. Higher order characteristics were examined by Adams in [34], and by Forré in [35].

The avalanche effect is a desirable characteristic for a block cipher, but it is not without
its hazards. By making block ciphers highly sensitive to changes in input parameters, the
designer has introduced a hard limiter into the communications path. The alteration of a
single bit in an enciphered message will result in the complete corruption of the message
block upon decipherment. This may be desirable for some reasons of security, but it can
have a significant impact on the quality of the received signal. The strict avalanche effect
also imposes a requirement for perfect synchronization between sender and receiver. Both
must be in agreement over the block alignment or the decrypted messages will be completely
garbled.

Stream Ciphers

Block ciphers are essentially substitution devices that rely on extremely large block sizes
to prevent cryptanalysis by brute force. They are memoryless devices in that a certain
plaintext block and key combination will always result in the same ciphertext block output.
Stream ciphers, in contrast, encipher each message character individually with a time-
varying function that is governed by the internal state of the device. The system state is
a memory device and it comprises the principle difference between the two symmetric key

encryption approaches. After each character is enciphered, the device’s state is advanced
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according to some rule. As a result, repeat occurrences of the same plaintext character will
rarely result in the same ciphertext output.

One of the most remarkable of all ciphers is the one-time-pad, or Vernam cipher [36]. It
is capable of producing a perfectly secure ciphertext stream by adding each character of the
plaintext message to a corresponding character in a random sequence of the same length. By
perfectly secure we mean that it is theoretically (and practically) impossible to determine
the message from an analysis of the ciphertext. We will discuss perfect security when we
derive a model of cryptographic security in section 4.5. This highly desirable arrangement is
achieved by introducing a completely random property to the encryption process. By adding
a random character to a message character we produce a cipher character from which it
is impossible to infer the message character. Applying this operation to all characters in
the message, using an equal number of randomly chosen characters, yields ciphertext from
which the cryptanalyst can garner no information. The best he can do is make a guess
based on the a priori probability distribution of the set of all possible messages of that
length.

Why then do we not use one-time-pads for all our encryption needs? The reason lies
in the expense of distributing and protecting the huge amounts of random data, the key,
that is required for every pair of users wishing to engage in secret communications. The
only way to reproduce an identical stream of random data at the sender and receiver is
to pre-record it and distribute copies in a secure manner to the two intended recipients.
This is typically not feasible and so this method has been limited primarily to applications
regarding diplomatic exchanges and espionage activities [37].

Nonetheless, the process of combining something like a random stream with the message
stream suggests an attractive encryption method. Stream ciphers attempt to replace the
completely random stream with a simpler approximation, one that can be more easily
exchanged between the communicating parties. This approximation is the output of a

deterministic device that is shared by both parties. The device utilizes a shared key to
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produce a much longer sequence of characters which are then used to encipher the plaintext.
This sequence, the running key, must be unpredictable to ensure security for the system.

The difficulty of course, is that the devices are deterministic by nature and therefore not
truly able to produce an unpredictable stream. Any running key sequence would exhibit
some period of repetition. Given this period, say some number 2™, and a sequence of 2n
running key values, the Berlekamp-Massey algorithm {38] can compute the coefficients of
a linear feedback shift register (LFSR) capable of reproducing the entire linear sequence.
The length of the shortest LFSR required to duplicate a given sequence defines what is
called the linear complezity of a running key. It is generally possible to achieve a higher
linear complexity using a non-linear combination of memory states [39]. It is a considerably
more difficult task to determine the smallest non-linear device capable of reproducing a
given sequence, and in general, the sequences produced by non-linear devices have a linear
complexity that is greater than the actual number of memory states available to the device.
These characteristics make non-linear feedback shift registers the device of choice for most
stream cipher designs.

A large linear complexity is a necessary but not sufficient condition for cryptographic
security. Simple sequences such as (0, 0,0...0,0,1) have a high linear complexity for large
run lengths, but are ineffective at concealing a message. In order to approximate a random
sequence the running key must have a uniform distribution and the sequence must contain
an equivalent distribution of single bits, pairs, triples, etc.. A detailed study of complexity
issues in stream ciphers may be found in Rueppel’s work [40]. Another general treatment
of stream cipher design issues may be found in [41].

Stream ciphers may be divided into synchronous and self-synchronizing systems. In syn-
chronous stream ciphers, the next state of the device depends only on the previous state and
not on the input. Self-synchronizing ciphers employ past encryptions to define the current
memory state. As a result, self-synchronizing ciphers rely in part on the characteristics of

the input sequence for ciphertext generation.
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A block diagram of both types of cipher is given in figure 4.2. The subsystem F is typ-
ically a nonlinear device that uses the system state, S, to produce an encryption character,
Z;. In its most general form the stream cipher combines the plaintext message character,
m;, and the key character, Z;, in an invertible function Ez,(m;). The resulting character,
ci, is the ciphertext. In practical applications the strength of the encryption algorithm lies
in the unpredictability of Z; and not with Ez.(m;), so this function is often chosen to be

the exclusive OR operation, ¢; = m; ® Z;.

Z; y Zi
mi—h Ezi(mi) --vci mi_.ﬂ Ezi(mi) S,
(a) Synchronous Stream Cipher (b) Seif-Synchronizing Stream Cipher

Figure 4.2: Basic Stream Ciphers

It should be apparent that stream ciphers operate as substitution devices on the char-
acter level. If the running key subsystem F is well designed, the stream cipher introduces
Shannon’s confusion into the ciphertext. As for the property of diffusion, the synchronous
cipher offers none at all. Each message character affects only one corresponding ciphertext
character. The self-synchronizing cipher offers some diffusing properties in that previous
outputs are used to produce the new running key character Z;. Unfortunately, the impact

of this diffusion is limited because the device can only transfer information in the forward



CHAPTER 4. SECURITY MODELS FOR SECURE SPEECH SYSTEMS 78

direction and only for a fixed number of states.

Synchronous stream ciphers require perfect synchronization between the encrypting and
decrypting devices. If the running keys of the communicating parties differ by as little as one
bit the resulting decryption will be completely meaningless, just as with block encryption
devices. In order to re-establish secure communications, the receiver must search over all
possible offsets of the running key or notify the sender that re-synchronization is required.
This sensitivity has obvious advantages to security in that it is impossible for an attacker
to insert, delete, or replay ciphertext without being detected. On the other hand, the need
for strict synchronization places a larger burden on the devices used for channel coding.

Self-synchronous stream ciphers require only that the last n ciphertext characters were
received correctly in order to reproduce the correct Z; character. In the case of a channel
error the receiver will re-synchronize automatically after the next n consecutive ciphertext
characters are received. These ciphers are more tolerant of poor channel conditions than
the synchronous variety. Unfortunately, the self-synchronous cipher will also re-synchronize
after an attacker has attempted to insert, delete, or replay ciphertext. By their very nature
they have an additional weakness in that they transmit the inputs to the encryption device
F and allow a comparison to be made of inputs to outputs.

Rueppel noted in [40] that stream ciphers are generally more difficult to analyse than
block ciphers because of their internal memory, non-linear transformations, and, in the case
of self-synchronous ciphers, because of the statistical dependence between the output stream
and the message stream. He feels that it is perhaps for this reason that there is considerably
less material available on the analysis of stream ciphers. It is interesting to note then, that

stream ciphers still make up the majority of practical encryption applications.

4.1.2 Asymmetric Key Cryptography

In their famous paper “New Directions in Cryptography” [42] Diffie and Hellman surprised

the cryptologic community with the introduction of a method to exchange secret messages
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without a symmetric key. They postulated the use of a function which is easy to compute in
one direction but very difficult to invert without the knowledge of some additional property.
Their ideas were a catalyst for the development of a number of practical implementations
of asymmetric key cryptosystems. Asymmetric key cryptosystems, or public key cryptosys-
tems as they are more commonly called, require a pair of encryption keys with special
properties. The asymmetric key pair, e and d, allow a cryptographic algorithm to perform
a transformation of a message into ciphertext with either key, and another transformation
back to the original message with the other key. This requires a special relationship between
the two keys, but to ensure security an asymmetric key cryptosystem must be designed so
that it is computationally infeasible to determine the decryption key from knowledge of the
encryption key, or encryption function.

This asymmetric key characteristic allows implementations of cryptosystems where one
half of the key pair is made public to anyone who wishes to send a message. Message
encryption is performed using the public key, and anyone can perform this encrypting
operation, but message decryption is designed to be feasible only for the holder of the other
half of the key pair.

This characteristic of asymmetric key cryptosystems makes it possible to provide a
secure channel to two users who have never met or exchanged any prior secrets. This is a
strong advantage of asymmetric key over symmetric key systems where it is necessary to
exchange a secret key in advance of the secure conversation.

In addition, asymmetric key systems have the advantage of providing strong authentica-
tion protocols and digital signature implementations through modification of the asymmet-
ric key protocol. Implementations of asymmetric key cryptography include the RSA system
[43], the El Gamal system [44] the McEleice system [45] and elliptic curve cryptosystems
[46]. Digital signatures are discussed in [47], [48].

Public key systems are generally too complex to allow real-time encryption of digitized
speech signals. They can be very effective, however, at providing a medium to exchange a
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session key between two parties who wish to communicate by voice. The session key would
then serve in a symmetric key system to encrypt the speech traffic for transmission on an
unsecured channel.

An asymmetric key system can serve in the place of a secure channel for symmetric
key exchange. In the asymmetric key protocol indicated in figure 4.3, the initiator of the
communication session will acquire an encrypting key for his intended recipient, Ep.s, from
a trusted public key directory in the public domain. He encodes a request to establish a
session key, K, for a secure speech communication session by using Ep.. The receiver will
then retrieve the sender’s public key, Egource, from the public directory and the two will
negotiate a session key under the protection of the asymmetric key encryption algorithm.
Both sender and receiver then apply the negotiated session key, K, to encrypt and decrypt
the speech transmission by means of a symmetric key encryption algorithm.

In the outlined protocol, the asymmetric key system serves as a replacement for the
secure key exchange channel. It provides the additional benefit of allowing users who have
had no prior contact to exchange secret information. It also eliminates the need to maintain
private databases of the n(n — 1) possible key pairs necessary to allow any of n users in a
network to communicate with any other users by a purely symmetric key protocol.

We must point out that several assumptions have been made about the asymmetric key
exchange protocol in this simple outline. First, we have assumed that the attacker may
request public keys from the public key directory, but that he may not substitute his own
public keys in place of valid keys. This is a reasonable assumption that may be ensured
by a slightly more elaborate protocol for obtaining public keys from a trusted public key
authority. Second, we have assumed that the symmetric key negotiation procedure can
not be manipulated in any undetectable manner by the attacker. This can also be ensured
by careful implementation of the negotiation protocol. Finally, we have assumed that the
attacker can not enter the private domains of either the sender or receiver. We note,

however, that we allow the attacker to observe all of the encrypted key negotiation session
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information, the encrypted speech transmission, and the public keys of both sender and
receiver.

Under this type of security protocol the system security level is determined by the min-
imum security afforded by either the asymmetric or symmetric key components. Denoting
the security index for the asymmetric and symmetric cryptosystems by Sysymmetric and

Seymmetric; respectively, the security index for the combined protocol of figure 4.3 is,

Ssystem = min (Suymmettic: Ssymmeh'ic)v

since we can assume the attacker will concentrate on whichever aspect of the system is
easiest to compromise. Typically, breaking the asymmetric key security system will yield
the most value to the attacker since once it is broken he might obtain access to all session
keys. Conversely, breaking a single session key will reveal only the current conversation and
not endanger the asymmetric key exchange mechanism.

In many practical applications we rely on the ability to provide the user with an in-
corruptible version of a common public key. This public key is generally associated with a
Certificate Authority (CA). The CA can ascertain the identity of a user and form a verifiable
certificate of authenticity linking the user’s identity to the user’s public key.
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4.2 Cryptanalytic Capabilities

A cryptanalyst will be assumed to take advantage of any information he can gain about
the encryption system to decipher the message. It is a common assumption, first suggested
by Kerckhoff [49], that the secrecy afforded by a cryptosystem must reside entirely in the
key. Our first assumption about security will be that the attacker knows the encryption
algorithm but not the secret key being used.

The cryptanalyst may be able to engage in a range of activities, from passive listening to
active interference with the communications channel. The purely analytic attacks include

the following, in order of their value to the cryptanalyst,

1. Ciphertext-only attack. The cryptanalyst can observe the ciphertext but has no
direct knowledge of the message being encrypted.

2. Known-plaintext attack. The cryptanalyst has complete or partial knowledge of
the message being encrypted and can observe the resulting ciphertext.

3. Chosen-plaintext attack. The cryptanalyst can choose messages to be encrypted
and observe the resulting ciphertext. Carefully chosen messages may help to reveal

more information about the key.

The cryptanalyst may in some circumstances be capable of more active attacks on the
cryptosystem. These attacks may be intended for purposes other than deciphering the
message [50]. Active attacks include,

1. Message repetition. The attacker may be able to deceive the receiver by replaying
a valid ciphertext message. This attack does not require the cipher to be broken, but
may be beneficial to the attacker if the contents of the cipher are known.

2. Message insertion or deletion. Similar to the message repetition attack, the

attacker may attempt to modify the contents of the received message by adding or
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deleting ciphertext blocks in transmission.

3. Denial of Service. The attacker may simply choose to ensure that the message can-

not be recovered by the receiver by introducing noise to the communications channel.

4. Cloak and Dagger attacks. The most efficient approach available to an attacker
may be to acquire the message or key by theft, bribery, or defeating a weaker part of
the cryptosystem protocol. Software implementations of encryption algorithms, for
example, can be compromised by obtaining access to the memory space used to hold

the key or message during encryption.

In developing models of the secure communication system we will generally assume that
only the passive forms of attack are available to the cryptanalyst. We can, however, allow
for analysis of an active denial of service attack where the attacker is capable of only partial
interference with the communications channel. The effect of noise on the communications

channel under cryptographic protection will be studied in detail in chapter 5.

4.3 Motivation for Security Index Development

Our brief introduction to cryptology has attempted to give some indication of the sophis-
tication applied to the design of cryptographic systems and the resulting need for similarly
sophisticated methods of cryptanalysis. The development of a new cryptographic algorithm
is usually based on a thorough understanding of a set of principles considered essential for
resistance to cryptanalytic attack. These principles have been developed over time as a
result of significant effort towards the design and analysis of practical security systems.
Many of these principles have arisen from a complexity-theoretic approach to crypto-
graphic design [51]. For example, symmetric key block ciphets owe their security to the
high computational complexity required to invert the operations of a large substitution-

permutation network, while symmetric key stream ciphers rely on high linear complexity in
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the running key generator to approximate Vernam cipher performance. Similarly, the set
of asymmetric key algorithms owe their security to the supposed complexity of a relatively
small number of “difficult” problems, such as taking discrete logarithms or factoring the
product of large prime numbers.

Massey recognized in [5] the unsettling fact that the security of these algorithms often
rests on a conjecture that the underlying problem is difficult. The design principle for
these algorithms can best be described by the statement: If this problem is difficult, then
this secrecy system is secure against that form of attack. Clearly, if at some point in the
future the solution to a particular type of “difficult” problem is found to be feasible, then
encryption algorithms of that type may prove to be insecure. There are two dangers in this
scenario: first, if a feasible solution technique becomes known, then not only is the system
compromised for future use, but all messages previously encrypted by that system may be
deciphered by an attacker who has recorded past messages. Second, if there is a feasible
solution technique, perhaps it is already being used secretly by an attacker.

It would be valuable to provide some measure of cryptographic security that was inde-
pendent of assumptions about the cryptanalytic problem and based purely on an objective
assessment of the performance of the cryptographic algorithm. This measure would con-
stitute a design and evaluation tool for cryptographic algorithms to be used in conjunction
with the general principles gained so painstakingly by direct analysis of each new class of
cipher. In this chapter we will propose a set of relevant information-theoretic cryptographic

security indices to provide such a measure.

4.3.1 Practical and Theoretical Security

Practical security refers to the notion that the cryptosystem is secure against attack on the
basis of its computational complexity. A measure of practical, or computational security
as it is sometimes called, would indicate the order of operations required to invert the

enciphering operation.
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Theoretical security, or unconditional security as it is also called, is achieved when the
cipher is immune to cryptanalysis even when the cryptanalyst has unlimited computational
ability. Theoretical security is determined by an information-theoretic approach that has
led to some pessimistic conclusions about the requirements for cryptographic security [5],
[52]. We will show in section 4.5.1, for instance, an information-theoretic proof that perfect
secrecy can only be attained by a certain costly and inconvenient protocol. We will also
develop the unicity distance measure in section 4.4, a classic theoretical security index which
indicates the minimum amount of information that a cryptanalyst would need to intercept
in order to decipher the message.

The results of a unicity distance calculation are generally very low and have led many
designers to conclude that purely computationally motivated design criteria are sufficient
to achieve a good cryptosystem. We wish to demonstrate that theoretic security in-
dices can provide relevant measures for evaluating the quality of an encryption algorithm.
Information-theoretic design criteria for substitution devices in block ciphers have been
studied in work by Tavares, Dawson, Zhang, and others [33], [53], [54], and [55]. In section
4.6 we will introduce two information-theoretic security indices that can distinguish the
quality and efficiency of different cryptographic algorithms on the basis of the operations
performed on the ciphertext.

We make the following proposition on the relation between practical and theoretical

security measures,

Proposition 2 (Relative theoretic and practical security measures ) The relative prac-
tical security of two cryptosystems can be reflected in a set of relative theoretic security

measures for cryptosystems based on these fundamental general design criteria,

e Diffusion. The cipher should introduce the quality of diffusion defined in section 4.1.
This will have the effect of distributing the value of a single ciphertezt digit or a single

key digit over a broad range of adjacent ciphertezt characters. Diffusion is essential
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to a good cipher as it helps to conceal the statistical structure of the mappings from
plaintezt to ciphertezt and increase the difficulty of predicting the key.

e Confusion. The cipher should be designed to introduce the quality of confusion as
defined in section {.1. This requires the ciphertezt to be produced from a complez
transformation of message and key information. Confusion is essential to a good
cipher as it allows unpredictable key information to be applied in such a manner as

to increase the entropy of the ciphertezt.

¢ Mixing Transformations. In block ciphers the application of successive rounds of
substitution and permutation operations has been shown to increase the security of a

cipher by creating a ciphertezt product that is well distributed over the cipherspace.

e Nonlinearity. Nonlinear transformations of message and key increase security by
increasing the complezity of the operations required to invert the algorithm. Stream
ciphers in particular can achieve higher linear complezity by computing a running key

by means of a nonlinear operation.

e Uniformity. In symmetric key systems security is enhanced by ensuring the key
source produces keys with a uniform probability distribution over the key space. This
mazimizes key entropy. In asymmetric key systems such as RSA, security is enhanced
by selecting prime numbers for the generation of the asymmetric key modulus according

to a uniform probability distribution over a range of eligible primes [56].

e Complexity. The number of possible transformations of message to ciphertezrt must
be sufficiently large to prevent an ezhaustive search of the key space. The complezity
of the cryptographic transform must also be sufficiently high to defeat all known crypt-
analytic techniques for reducing the problem. Ezamples of complezity-reducing attacks
tnclude factoring and discrete log computation techniques and differential cryptanaly-

sts.
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It is difficult to provide a proof of this proposition because of the variety of possible
cryptographic and cryptanalytic methods. We must consider both the transformations
applied by the encryption algorithm and the sophisticated mathematical and statistical tools
available to the cryptanalyst when we assess practical security. That is why we have limited
our statement of correspondence between practical and theoretical measures to the class of
ciphers that have been designed to be resistant to the techniques employed by modern
cryptanalysts. In fact, this list is not exhaustive and only contains those fundamental
principles that are known to improve cryptographic security. Should other principles of
good design be discovered, it would be prudent to add them to the list and further reduce
the set of ciphers for which we can assume correspondence between security measures.

Our rationale for this proposition has been to include only those ciphers for which we
can be reasonably certain that there is no trivial, hidden, or low-complexity solution to
the cipher in addition to the intended inverse transform. For this type of well designed
cipher, the theoretic security measure can be indicative of the relative strength of the
cryptographic algorithm. By excluding ciphers with hidden weaknesses, we have avoided
the trap of computing high security indices for ciphers that could be decrypted by some
simple approach.

As an example of a poor cipher design yielding a high security index we consider a
cipher that applies the key in a highly nonuniform fashion, concealing some parts of the
message while revealing the rest. Some theoretic security indices would consider only the
average effect of the key entropy and misrepresent the system security as being higher than
actually warranted. The design criteria required for the correspondence proposition exclude
this type of cipher and so avoid this kind of evaluation error.

Ciphers which do follow the design criteria required for the correspondence proposition
will tend to apply a complex transformation of key and message characters in a man-
ner which is difficult to invert without knowledge of the key. In the absence of hidden

weaknesses, the averaging characteristics of most theoretical security indices can be better
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justified because the cipher characteristics are, by design, more uniformly distributed.

4.4 Shannon’s Unicity Distance

Following publication of his landmark work on Information Theory, [57], Shannon published
the framework for information-theoretic evaluation and design of secrecy systemsin [4] *. In
this section we will present Shannon’s security index for the general class of symmetric key
cryptosystems described by the block diagram of figure 4.4. These systems will be assumed
to process discrete information only, in accordance with the vast majority of practical
encryption applications.

The operation of symmetric key systems is centered around the exchange of a key, K =
{K1,Ka, ..., Kk}, by means of a channel assumed to be protected from interception by the
enemy cryptanalyst. The key is assumed to be generated by some source process, as is the
message, M = {M;, M, ...}, and a random stream of information R = {R, R,, ..., Rg}.
The resulting cryptograms will be denoted by C = {C;,C,,...}. The statistics of M
are determined by the source process, and the statistics of K and R are considered to
be determined to benefit the cryptographer. We will assume throughout this development
that the quantities are statistically independent, this being the choice yielding maximum
advantage to the cryptographer in frustrating an attacker.

Shannon did not consider a randomizer in his model of the secure system but he did
recognize its purpose, which is to blur the statistics of the source process. This activity
is commonly referred to as homophonic coding. The randomizer allows highly probable
message elements to be replaced with elements randomly selected from a larger group of
synonyms for the popular element. Homophonic coding can frustrate a frequency analysis

of the encrypted message stream, but is easily reversed by the intended receiver who simply

!Shannon actually published his work on secrecy systems in 1945, prior to the Information Theory paper,
but this paper was classified as Secret by the U.S. government until 1949.
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Figure 4.4: Model of a Private-key Cryptosystem

replaces the decrypted synonyms with the intended message element.
We define the encrypting operation as a function performed on the message according
to the parameters K and R,
C = Exr(M),

and the decrypting operation as,
M = Dk(C),

where again we note that knowledge of the randomizer is not necessary to the receiver to
decode a unique image of the message.

Shannon originally considered the case of a ciphertext-only attack, but we can extend
his analysis to allow for those cases where the attacker has access to additional information.
These approaches may be classed as known-plaintext and chosen-plaintext attacks. If a
known-plaintext or chosen-plaintext attack is applied to a cryptosystem it may be successful
at yielding information about the message that is unavailable in a ciphertext-only attack.
We can account for these types of attack in our security indices by considering the extra

information to have the effect of increasing the redundancy of the message source. We will
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show how redundancy is a fundamental measure in the development of a security index.

From the available sources of information the attacker constructs his estimate of the
transmitted message, M. The goal of the cryptographer is to ensure that p(M=M)=
p(M). This would imply that the a posteriori probabilities of the various messages, p(M|C)
are equivalent to their a priori probabilities, p(M) and the attacker has gained no informa-
tion about the message from his observations. Strictly speaking, the attacker has learned
two things: first, he knows that a message was sent, and second, he has determined the
length of that message. The value of this information can be negated by the cryptographer,
however, if he designs the system to occasionally transmit “null” messages that have no
value and if the system appends “null” information to some messages in order to conceal
their true length.

If the attacker is to compromise the secrecy system he will utilize the information gained
about the key, or the message, from observations of the ciphertext. The unicity distance,
N,, is defined as the minimum number of ciphertext characters that the attacker must
observe before he may deduce a unique key or message corresponding to the ciphertext.
This is equivalent to reducing the key or message equivocation to approximately zero.

In Appendix F we define the key and message equivocations and present a detailed
development of the unicity distance index. The appendix develops a precise definition of

the general unicity distance index of the form,

Klog Ly

No=iogTc - R.logLut’ (4.1)
and presents a simplified equation of the form,
K
No — "D‘-’ (4'2)

for a cryptosystem with alphabet sizes Ly = L¢ = L, and where K is the size of the key
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in bits, and D =1 —~ R, is the percentage redundancy of the source process.

Also presented in Appendix F is a development of an expression for the unicity distance
in ciphers utilizing a randomizer as defined in figure 4.4. If the randomizing stream, R, is
chosen independently of the message and key, then the key equivocation for the cryptosystem
can be expressed as,

_K+H(R)

No D ]

(43)

where H(R) is the entropy of the randomizing process. This development reveals that a

randomizer can increase the unicity distance of a cipher.

4.5 Unicity Distance as a Security Index

Shannon’s derivation of the unicity distance assumed a particular form that he called a
“random” cipher. The resuit of equation (4.1) has been found applicable to ordinary ciphers
wherever it has been possible to test the correspondence [58]. Furthermore, it was shown by
Hellman in [52] that Shannon’s random cipher model was unduly pessimistic about security.
To paraphrase Hellman's results, he found that the unicity distance predicted by equation
(4.1) was the minimum achievable by ordinary, “non-random” ciphers.

Let us now examine the use of the unicity distance as a security index. The unicity
distance of a cipher is determined by the key entropy, H(K), the redundancy of the source
process being encrypted, D, and in some cases the entropy of the randomizer, H(R). The
unicity distance indicates the number of ciphertext characters that the attacker must observe
in order to determine a unique solution to the cipher. If the attacker observes a number
of characters lower than the unicity distance he may at best construct a residue class of
messages that could have produced the ciphertext. Beyond the unicity point an attacker
can always determine a unique solution to the cipher. The capture of additional ciphertext
serves to increase his efficiency by providing more data with which to check the consistency
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of his solution.

We can explain this effect by noting that redundancy in the source process works to
impose a structure on the cryptogram. This structure is counteracted by the encryption
algorithm, which uses the key to add entropy to the ciphertext. Creation of the ciphertext
uses incremental amounts of the key. As more of the ciphertext is transmitted more of
the key is used, to the point where all of the entropy afforded by the use of a particular
random key has been applied to the encryption routine. Beyond this point the ciphertext
is vulnerable to decryption.

The unicity distance neatly captures these qualities. The designer may seek to increase
security by increasing the amount of key entropy available to the encryption operation, he
may attempt to reduce the redundancy of the source process prior to encryption, and he

may use a randomizer to provide additional uncertainty for the attacker.

4.5.1 Security by Key Selection

We can describe the security of a cipher system formally by the classifications of perfect, im-
perfect, and ideal security in [51]. In this section we will consider the effect that controlling

the key entropy can have on the unicity distance for each of these categories of cipher.

Perfect Ciphers

The Vernam cipher described in section 4.1.1 can achieve perfect security. These ciphers
have practical use when the greatest importance in the system design considerations is
security, and the cost or inconvenience of the implementation is secondary.

The definition for perfect secrecy is that the ciphertext reveals no information about

the message,

H(MI|C) = H(M). (4.4)
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For any cryptosystem we have,

HM|C) < H(M,KI[C)
H(K|C) + HM|K, C)

H(K|C)
< H(K). (4.5)

Combining equations (4.4) and (4.5) we find that for petfect secrecy the entropy of the

key source must be larger than that of the message source,
H(K) > H(M), (4.6)

so that we will not exhaust the supply of random information that is necessary to counteract
the redundancy of the message. This result is the reason for the high cost and potential
inconvenience of a perfect cipher: to encipher an information transmission, an equal amount
of key information must be exchanged by means of an alternate secure channel in advance.
The security of the alternate channel must also be perfect in order to ensure a secure
transmission, so this system typically requires the physical exchange of a large volume of
key information.

By equations (4.5) and (4.6) we can bound the key equivocation of the perfect cipher,
H(M) < H(K|C) < H(K).

If the key source generates random information at a rate of Rx, then these bounds may be

expressed as,

R,logLy < -Jl:H(KIC) < Riclog L.

For {R, > 0,Lap > 1} there is no solution to the unicity equation (F.9), such that
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H(K|C?) = 0. Thus the unicity distance of a petfect cipher is infinite.

Imperfect Ciphers

The class of imperfect ciphers are those ciphers not meeting the key entropy requirement
defined in equation 4.6. Imperfect ciphers are vulnerable to analysis because the amount
of key information available to the encryption algorithm is insufficient to conceal all of the

message information. These systems are described by the equation,
I(M;Cf) = H(M]) for j > N,

which indicates that the information leakage from the ciphertext is sufficient to reveal the
message beyond the unicity point, N,.

The majority of practical ciphers fall into this category as they are designed to encrypt
large amounts of information using a conveniently sized key. The cipher designer cannot
avoid this weakness, but he can increase the security of the cipher by increasing the entropy
of the key. It is clear, by equation (4.2), that the unicity distance increases in direct
proportion to the key entropy.

It is interesting to note that, in this regard, the theoretical security index of the unicity
distance corresponds to the notion of practical security: the practical security of a system
is increased by expanding the key space that would need to be searched by an exhaustive
attack.

Ideal Ciphers

There is a third classification for ciphers that are limited to a finite key size, but still achieve
an infinite unicity distance. These ideally secure ciphers are described by the bounds,

0 < I(M?;C?) < H(M}) for large j.
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In these systems there remains a residual uncertainty about the plaintext which cannot be
resolved by analysing large volumes of ciphertext, hence the key equivocation is non-zero
for any amount of intercepted text and the unicity distance is infinite.

It is important to note that ideal ciphers do not ensure unconditional security as the
uncertainty may be limited to only.a. portion of the message space, or that uncertainty may
be immaterial to determining the content of the message. We note that a unique description
of intercepted ciphertext is not always necessary to compromise a security system. Devel-
opment of a residue class of likely messages can lead to a distorted, but still meaningful,

decryption of some types of source process.

4.5.2 Security by Source Coding

It is clear from the development of the unicity distance measure of equation (4.2) that
redundancy plays a key role in determining the theoretical security of a cipher system.
Cryptographers have long been aware of the advantages of removing redundancy prior to
encrypting the message stream, and cryptanalysts have for just as long taken advantage of
the portions of the message they could predict to compromise the system. Kahn presents
an entertaining historical account of the cryptanalysis of many classical ciphers through the
use of redundant information in [49].

If we allow the cryptographer the option of including a source coding operation prior to
the encryption operation we may observe two characteristics that improve the security of the
cipher system. First, source coding increases the unicity distance by decreasing the message
redundancy, as indicated by equation (4.2). Second, source coding reduces the transmission
rate required for the message. This improves secrecy by decreasing the amount of ciphertext
available to the attacker for analysis.

It is interesting to note that the unicity distance for an entirely non-redundant message
is infinite. This implies that through effective source coding alone, we may obtain perfect

secrecy. As an example, consider a non-redundant source process that is encrypted by very



CHAPTER 4. SECURITY MODELS FOR SECURE SPEECH SYSTEMS 97

simple encryption algorithm, such as a Caesar cipher?. In this case, we are clearly not
providing as much key information as there is message information since H(K) 2 H(M),
so the system does not meet the definition for perfect secrecy. Despite the weakness in the
encryption algorithm, the attacker cannot determine a unique solution to a cipher since any
message of a given length from a non-redundant source is equally likely. He may invert the
Caesar cipher for all keys in the key space, but will still be unable to determine which of
the set of messages could have produced the ciphertext, since all are equally capable.

It is instructive to note the effect of a known-plaintext, or chosen-plaintext attack on the
system described above. These attacks will easily reveal the key being used by the cipher,
and so compromise even the non-redundant message. This breach of security is identified
by the unicity distance model of security if we consider the information gained by the attack
to add redundancy to the ciphertext. A redundant ciphertext, encrypted by a low entropy
key, will have a finite unicity distance.

4.5.3 Security by Randomization

It is clear, by equation (4.3), that the unicity distance of a cipher is linearly proportional to
H(K)+ H(R). Thus, we can increase the unicity distance by increasing the entropy of the
randomizer. Through the use of a randomizer, the designer increases security by increasing
the number of possible ciphertexts seen by the attacker. The randomizer cannot reduce
the real redundancy of the message source, however, so its affect on security is linear in
proportion to the size of the randomizer stream. We note that randomization effectively
increases the size of the message space, and consequently the cipherspace may have to be
increased to transmit the random information. The higher the proportion of random infor-
mation in the cipher stream, the lower the efficiency of the transmission channel. Security
by randomization is therefore constrained by bandwidth and efficiency considerations in the

overall system design.

*The Caesar cipher is a monoalphabetic substitution algorithm where the ciphertext is produced by a
key-dependent cyclic shift of the source alphabet
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4.6 New Security Indexes for Encryption Devices

4.6.1 Limitations of the Unicity Distance Index

We have shown the unicity distance to be a valid security index for private key ciphers
and have noted a correspondence in the parameters of the index to some of the notions of
practical security. Notably, we found that both theoretical and practical security depend
on a high key entropy and low redundancy in the message source.

It is clear, however, that the unicity distance index is not sufficient to define the relative
security of all cipher systems. Specifically, we note that the unicity index can not distinguish
between different ciphers that happen to use the same key space and operate on the same
source process. It is possible for two ciphers, one providing excellent security and one
revealing significant portions of the message, to have the same unicity distance.

As an example, consider two systems with the same keyspace enciphering the same mes-
sage source. A system with a complex substitution-permutation network and key inclusion
strategy can provide good security. Alternatively, we could design a poor system, one that
applies an encryption algorithm in a secure fashion to every nth character but leaves the
subsequent n — 1 characters unchanged. In this extreme case, both encryption algorithms
will yield the same unicity distance measure, but only the first one is secure if the source
process exhibits an appreciable degree of redundancy. The set of ciphers that meet the
design criteria of Proposition 2 will not include the poor system indicated in the extreme
example above, but can contain variation in the extent to which the design principles are
implemented. It is expected that in the case of block ciphers, for instance, a greater num-
ber of substitution-permutation rounds will result in greater security. The unicity distance

measure is insensitive to these characteristics of cipher design.
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4.6.2 Encryption Efficiency Index

We have demonstrated how the security of an encrypted transmission is partially indicated
by the unicity distance index, but have identified that additional criteria are necessary to
define the security of a cipher.

Clearly, the nature of the transformation applied to create the ciphertext must affect
the security of the system. We expect the encryption algorithm to apply key and random-
izer information to message information in such a way as to increase the entropy of the
ciphertext. If the encryption algorithm is effective, then the ciphertext will have a higher
entropy than the plaintext. The difference between the two measures is indicative of an
increase in security, but may be misleading in that it does not reveal the amount of key
and randomizer information that was expended to achieve the improvement. We propose

to study a security index first examined in [59] and extended here to consider randomizers.

Proposition 3 (Efficiency Index) A general measure of the efficiency of an encryption
algorithm is given by normalizing the increase in entropy achieved in transforming the mes-
sage to ciphertext by the amount of key entropy and randomizer entropy needed to obtain

the increase. We define an efficiency indez, £, for a cipher by,

¢ H(C) - HOM)
H(K)+ H(R)
Systems employing randomizers will not be considered in our experimental models, so
we may simplify the efficiency index to,

¢ 2 H(C)~ H(M)

oK) (4.7)

and consider only the effect of key entropy.
We may apply this index to compare cipher algorithms for encrypting a given message
source with a given key space. The cipher that adds more entropy to the ciphertext per unit



CHAPTER 4. SECURITY MODELS FOR SECURE SPEECH SYSTEMS 100

of key entropy may be considered to be performing a more efficient encryption operation.
The normalization operation removes the dependency of the index on the amount of key
entropy, so the security index, £, may also be applied to determining the relative efficiency
of ciphers operating with different key spaces.

The secure algorithms considered in this research may be found to operate in the range
0 < £ < 1, where key information is added to the ciphertext by the encryption opera-
tion. The degree of key inclusion is indicated by the size of £. The encryption efficiency
index constitutes a measure of the relative efficiency of a cipher and allows ciphers to be

distinguished on that basis.

Note 2 (Reference to unicity derivation) We should point out that the efficiency dis-
tance defined above differs from the derivation of the unicity distance in Appendiz F in that
it does not assume the ciphertezt entropy, H (C{) , can achieve the upper bound of jlog L¢
as ezpected in the unicity distance proof. Instead, for encryption algorithms A and B, op-
erating on the same message and key spaces we are accounting for the possible variation in
ciphertezt entropy,

H(Ca) # H(CB) < log Lc,

where C4, and Cp represent ciphertext produced by algorithms A and B, respectively.

4.6.3 Encryption Quality Index

A second theoretic security index was presented in [59] to evaluate encryption systems on
the basis of their relative resistance to redundancy. We propose to include this index as a

theoretic security measure.

Proposition 4 {(Quality Index) A general measure of the quality of an encryption algo-
rithm is given by normalizing the increase in entropy achieved in transforming the message

to ciphertezt by the amount of redundancy in the message process being encrypted. We
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define a quality indez, Q, for a cipher by,

s H(C) - H(M)
£x = ,

Q (4.8)

where D is the redundancy of encrypted source process, M.

This measure indicates the incremental increase in ciphertext entropy compared to the
message redundancy. It expresses how well a cipher counteracts the redundancy inherent
in the message. Ciphers that add a large amount of entropy relative to source redundancy
will have high quality indices. We note that source processes with a low redundancy require
less additional entropy to obtain security; ciphers for low redundancy processes can attain

high quality indices with the addition of little extra entropy to the ciphertext.

4.6.4 Relevance of the New Security Indices
It is interesting to note that the unicity distance may be expressed as a function of the two
new security indices, £ and Q. Combining equations (4.7) and (4.8) we find,

_2_HEK)

N"!:‘ D

(4.9)

Whereas the unicity index yields a measure of the absolute security of a cipher, the
values of the efficiency and quality indices have no direct relation to a quantifiable level of
security. In fact, there are other possible arrangements of the terms in each index that would
yield measurements that may be classified as efficiency or quality indices. For instance, we
may compute £’ = Qﬂ%%%%ﬂm, or @' = 3@@ for the required measures.

It should be stressed, therefore, that the efficiency and quality indices may only be used

to evaluate the relative behaviour of different encryption coders.
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4.6.5 Entropy as a Security Measure

The efficiency index and the quality index are based in part on a measurement of the amount
of entropy added to the message by the encryption operation. The unicity index and the
efficiency index consider a measurement of the entropy of the key space of the cipher.
Even the redundancy measure is based on the entropy rate of the source process. Entropy
measures quantify the uncertainty an observer would face about guessing the outcome of
a random variable. Using entropy in the context of a theoretical security measurement
is therefore appropriate when the security index incorporates entropy to express in some
manner the amount of work the attacker must perform to break the system.

Shannon employed measures of entropy and conditional entropy in deriving the unicity
index [4]. More recently, Maurer employed entropy as an indicator of security in random
bit generators [60]. The efficiency and quality indices employ entropy to express measures
that are dependent on the success of the encryption algorithm at adding to the amount of
analysis required by the attacker.

4.7 Summary of Proposed Security Models

We have 3 theoretic indices we could apply to model the cryptographic security of speech

encryption systems. They are,
1. Unicity distance. N, = Z{&.

2. Efficiency index. £ = 212}}1-_%1\_42_

3. Quality index. @ = ﬂQ—BELMl.

The three indices require measures of the key entropy, the ciphertext entropy, message
entropy, and the associated measure of message redundancy. We have omitted the use of a

randomizer. Were all of these processes memoryless these measures could be obtained quite
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easily, but the speech process is highly redundant and this redundancy will likely introduce
some memory into the ciphertext process as well. Only the key process can be designed to
be memoryless and allow an easy entropy calculation.

In chapter 6 we will apply the entropy estimation techniques developed in chapter 2 to
obtain measures of ciphertext entropy for a variety of secure speech system implementations.
These results will be combined with the speech process entropy estimation results of chapter

3 to create models of secure speech system security.



Chapter 5

Bit Rate and Quality Models for

Secure Speech Systems

Come, give us a taste of your quality.

William Shakespeare. Hamlet. Act II, Sc. 2.

5.1 Imntroduction

A subjective evaluation of the quality of an encrypted speech transmission, and an un-
derstanding of the bit rate required to achieve that quality are two parameters of great
importance in the design of a secure communication system. We wish to provide an outline
for such models of performance within the framework of a speech encryption system.

We begin in section 5.2 with an overview of the methods currently used for coding the
speech process. We will review the techniques used in a variety of waveform and vocoder-
type speech coders, and summarize the standard performance characteristics. As it is
infeasible to perform a timely experimental study of all possible variations of speech coding
algorithms, we will define a subset of coders that are generally representative of a range of

104
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coding techniques and capabilities available to designers of secure speech communication
systems.

At the limit of optimal coder design, the relationship between quality and rate is clearly
defined by the rate-distortion curve of the speech process. We will consider this relationship
in section 5.3. In practical speech coder implementations we are limited to a maximum
feasible complexity, and so it is unlikely that we can achieve minimal theoretical distortion
at a chosen rate. For the broader class of speech coders of interest to designers of practical
systems, we must therefore derive operational rate-distortion functions. In particular, we
maust consider the effect that an encryption process may have on coding distortions under
a variety of channel conditions.

We will consider in section 5.4 the problem of defining a distortion measure which can
be easily computed and has good correspondence to the results obtained by a subjective
evaluation. Following the work of Quackenbush [61] we select a segmental-SNR measure for
its simplicity and relative accuracy.

We will then present in section 5.5 the results of some experimental work using the
segmental-SNR measure to analyse the operational rate-distortion characteristics of the set
of representative speech coders. These results will serve to define the general relationship
between quality and bit rate for the set of speech coders deemed representative of the range
of coders available to secure system designers. We will then extend the analysis to consider
the effect of a variety of channel error types on the perceived quality of encrypted speech.

In section 5.6 we will present a model of bit rate as a function of the residual redundancy
in the coded speech signal. We will describe a set of experiments performed on the repre-
sentative speech coders to determine an information-theoretic measure of the divergence of
coded speech from the original. This study will reveal a characteristic relationship between
redundancy and the bit rate achieved by typical speech coders.
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5.2 Speech Coders

In an integrated secure communication system, the speech coder is responsible for pro-
ducing a digital representation of the continuous speech waveform. This coding operation
determines a number of important characteristics for the communication session, notably
speech quality, bit rate, encoding delay, and error sensitivity.

In an unsecured system, the level of sophistication, or complexity, in the speech coder
will largely determine the combination of quality and bit rate achieved by the device. In
a secure speech communication system, however, the performance of the system is dra-
matically affected by the encryption device. The encryption operation introduces a hard
limiter into the communications path that typically exacts a high penalty for any channel
or synchronization errors. Highly compressed speech is quite sensitive to errors and so the
combination of encryption and source coding techniques must be carefully balanced.

The following sections will review six common coding algorithms. These include a
number of waveform coders and also some of the vocoding type. This is by no means an
exhaustive study, but the methods selected are generally representative of the majority of
speech coding techniques. Detailed coverage of speech coders may be found in [2], [62], [22],
and [23].

5.2.1 Pulse Code Modulation

Pulse Code Modulation (PCM) is the most basic form of speech coding. These coders
sample the analog speech waveform and encode it into a binary signal. PCM coders are
instantaneous, meaning that they require at most one sample period of delay. In PCM,
each sample is quantized to one of 2R amplitude levels, where R is the number of bits used
to represent each sample. At a sampling rate of f,, which must be at least the Nyquist rate
[63], the PCM coder requires a bandwidth of Rf, bps.

As most telephone facilities support a bandwidth of less than 4 kHz, the sampling rate
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for speech is generally chosen to be 8 kHz. Subjective tests have found that to achieve toll
quality speech requires somewhere in the range of 12 quantization bits. Thus the uniform
PCM coder has a bit rate of 96 kbps [23].

Reductions in bit rate with only a minor increase in complexity can be achieved by
applying a non-linear quantization rule. It has been observed in many studies of the speech
waveform that small signal amplitudes occur much more frequently than large signal am-
plitudes. By designing a quantizer which has more closely spaced levels at the low signal
amplitudes and more widely spaced levels at large amplitudes we will reduce the average
quantization error. These non-linear quantizers can greatly improve signal quality and
hence allow a smaller number of quantization bits to be used. Two popular non-linear
quantizers, the A-law and u-law devices, are based on a logarithmic function. This form of
coding, referred to as log-PCM, is capable of providing communications quality voice at 8
bits/sample for a transmission rate of 64 kbps.

Log-PCM coding at 64 kbps is often used as a standard against which other coders are
judged. Due to its simplicity, log-PCM often forms the standard input to a variety of more
sophisticated coding algorithms.

5.2.2 Differential Pulse Code Modulation

Differential Pulse Code Modulation (DPCM) takes advantage of correlation in the speech
signal to achieve significant gains in signal compression. Instead of quantizing speech sam-
ples directly, as in PCM, DPCM quantizes the difference between a current sample and a
predicted estimate that is calculated as a weighted average of previous samples. Since part
of the input signal is predictable, only the unpredictable residual signal need be transmit-
ted. The residual signal is calculated as the difference between the input signal and the
predicted signal, d(n) = Q[z(n) — #(n)], where Q[-] represents the quantizing operation.
The residual signal has a smaller variance than the input signal and so can be quantized

more efficiently.
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The additional compression permitted by this coding method, and the more sophisti-
cated methods to be discussed below, come at the expense of an increased sensitivity to
errors in the data stream. Removing redundancy and predicting on the basis of previously
received samples means that the effect of an erroneous sample can propagate through sub-
sequent samples. These types of coders may employ some side information to limit error

propagation and to allow re-synchronization with the transmitter.

5.2.3 Adaptive Coding Methods

The short-term statistics of the speech process are non-stationary, which causes static cod-
ing algorithms like PCM and DPCM to yield suboptimal results. An adaptive design can
improve upon the performance of these schemes by adjusting the quantizer step size ac-
cording to the magnitude of the previous speech sample. A typical arrangement would be
to adjust according to the relation: A,y = A, - M(n), where M(n) is an appropriate
multiplicative factor. This form of adaptation is applicable to a variety of coders. When
applied to a simple PCM system it is called Adaptive PCM (APCM).

In differential-type applications it is also possible to adapt the predictor coefficients with
a short-term estimate of the autocorrelation function of speech. By periodically updating
these coefficients it is possible to achieve a considerably smaller prediction error and hence
a better bit rate. Adaptive Differential Pulse Code Modulation (ADPCM) employs one
or both of these adaptations to achieve significant reductions in bandwidth. Toll quality
ADPCM samples can be quantized in 4 bits, for a bit rate of 32 kbps. The adaptive
design yields better results for higher orders of prediction than are possible for non-adaptive

schemes.

5.2.4 Sub-Band Coding

Sub-Band Coders (SBC) achieve signal compression by exploiting speech redundancy in the

frequency and time domains. Sub-band coders divide the speech spectrum into a number of
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sub-bands and code each bandpass signal using some form of time domain based compression
method. Spectral redundancy is reduced by allotting varying amounts of accuracy to the
speech bands. The low frequency bands are typically allotted more bits than the high
frequency bands due to their greater importance to speech intelligibility. In SBC, each
band is usually sufficiently narrow to reduce the dynamic range of the signal. This means
the individual bands can be more efficiently coded than in the broad-band waveform coding
approaches.

Sub-band coders achieve what is considered to be communications quality speech at rates
around 16 kbps. Toll quality SBC can be achieved at a rate of 24 kbps. For toll quality voice
at lower rates the coder must be able to dynamically adapt its frequency bands to follow
the three major speech formants. These more sophisticated coders save bandwidth and
maintain quality by deleting those bands not currently carrying the high-energy formants.

Static sub-band coders generally use Adaptive PCM to quantize the changing amplitude
levels as the formants move between bands. DPCM and ADPCM are not particularly
effective due to the reduction in spectral redundancy in each of the narrow bands.

5.2.5 Vector Quantization Techniques (Analysis by Synthesis)

Vector Quantization (VQ) is one of the more sophisticated methods for speech signal com-
pression. The VQ system performs a pattern matching operation between a set of some
relevant input parameters and a codebook of representative vectors. The system achieves
a considerable compression factor by transmitting the vector index to the receiver instead
of the vector itself. The receiver performs a look-up operation in a matching codebook to
reproduce the vector contents. The system input can be any parameters appropriate to
represent the speech signal; PCM samples, LPC or pitch prediction coefficients, or even
cepstral coefficients.

System performance is generally limited to a resolution of r = log, N/k bits per vector

component, where N is the number of vectors in the codebook and k is the number of
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speech parameters in the vector. This approach allows fractional bit rates for individual
components, an advantage not found in other coding schemes. VQ also has the effect of
reducing the average distortion as compared to scalar quantization methods.

The pattern matching operation is the most challenging aspect of the system. The
algorithm must search the codebook for a vector best representing the input parameters.
Evaluation is made on the basis of some distortion measure between the input vector z and
the candidate vector y. Search size is a limiting factor in these systems. Practical systems
typically limit the possible dynamic range of the vector to be quantized.

The most sophisticated of the vector quantization coders employ a technique known as
Analysis by Synthesis Predictive Coding. These systems transmit LPC parameters and a
vector index for an approximation of the excitation type. Both sender and receiver contain
an identical component for synthesising the voice signal from the transmitted parameters.
The receiver does just that with the parameters, but the sender uses this subsystem to select
the optimal parameters for transmission. The sender employs a closed loop configuration
to compare synthesised speech from all possible code vectors to the input vector. The
code vector yielding the minimum distortion measure is selected for transmission. These
coders make the optimal vector choice for the current system state, resulting in a distortion
measure that is on the order of the system resolution.

Analysis by Synthesis systems such as the one described here are referred to as Vector
Excitation Coders (VXC) of Code-Excited Linear Predictors (CELP). These systems can
provide acceptable quality voice at 16 kbps. They are also capable of much lower bit rates
and are often used for secure implementations at rates of 2.4-4.8 kbps. S‘ubjective voice

quality at these rates is considerably reduced.

5.2.6 Vocoders

Vocoders identify and model the primary characteristics of speech. They offer a great band-

width reduction over waveform coders by transmitting only the minimal set a parameters
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necessary to re-synthesize the speech waveform. The disadvantage of vocoders is that they
are limited to analysing and reconstructing the speech signal with an approximate model
of the speech production system. The model can be quite complex, and yet still produce
speech lacking the naturalness of a toll quality signal.

It is difficult to compare vocoded speech to waveform-coded speech since the distortions
are quite different. Waveform coders suffer primarily from additive noise due to quantiza-
tion. Vocoders rarely have such background noise but rather, suffer from reconstruction
deficiencies such as whistles, burbles, buzziness, harshness, and muffled quality. Increasing
the bit rate in vocoded speech does not generally produce a noticeable improvement, as the
limitation in these systems is in the vocoder models. To the extent that the two approaches
have been compared, it was found that a phase vocoder was approximately equivalent to 3
bit log-PCM speech [23].

Performance improvements can be obtained by the combination of SBC at the more
crucial low frequencies and phase vocoding at high frequencies. This hybrid coder can
achieve high quality speech results at rates of 16 to 20 kbps.

Currently, the minimum achievable bit rates are obtained by phonetic vocoders. These
devices recognize and transmit codes for the phonetic content of the input speech. Assum-
ing approximately 42 phonemes in the English language and a normal speech rate of 10
phonemes/s, the basic minimum speech rate could be as low as 10 - log, 42 = 54 bps. For
a broader implementation where there are 1560 possible variations on the basic phonemes
(due to articulation constraints) and at a relatively high speech rate of 40 phonemes/s, the
maximum rate would be 40 - log,(42 x 1560) = 640 bps.

Extending compression algorithms beyond the analysis of the physical speech production
model leads to a somewhat quixotic specification for the identification of the semantic
content of the spoken word. User response to such an ideal device would likely be mixed,
however, as many conversations would too easily be identified as containing information

rates approaching zero. In any event, such a device is beyond our current capabilities.
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5.2.7 Summary of Coder Characteristics

Some of the relevant characteristics of the coders discussed above are outlined in table 5.1.
This table indicates the general sense that the higher the speech quality, the higher the
corresponding bit rate and that achieving lower bit rates generally requires a more sophis-

ticated algorithm.
Type Quality Bit Rate | Complexity Use
(kbps)

PCM toll 96 very low | common
log-PCM toll 64 low common

DPCM toll 58 low some

ADPCM toll 32 low-medium | some
ADPCM-VQ | communications 16 medium research
SBC communications 16 medium research

CELP communications 48 very high some
LPC synthetic 24 high common
Formant synthetic 1.2 very high | research
Phonetic synthetic 0.2 very high | research

Table 5.1: Properties of Some Speech Coders

Figure 5.1 summarizes the results of table 5.1 in a more qualitative manner (after [16]).
The figure indicates in general terms the performance of known coding methods in a test
of the subjective voice quality called the Mean Opinion Score (MOS) [64], [65]-

There is clearly a relationship between the parameters of bit rate, complexity, speech
quality, and error sensitivity in secure speech communication systems. In the following sec-
tions we will develop models of quality and bit rate for the class of speech coders commonly

used in secure applications.

5.2.8 Representative Speech Coders

It would be infeasible to perform experimental work on all possible variations of waveform
coders and vocoders, particularly when researchers are continually introducing improve-

ments to their algorithms. To obtain results that are relevant to the study of secure speech
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Figure 5.1: Subjective Quality Versus Bit Rate

communication systems, and that also reflect the general state of practical coding achieve-
ments we have selected a subset of coders for our experimental work.

The set includes the following coders, for the following reasons,

1. CCITT G.711 standard p-law PCM [14]. The uy-law PCM quantization forms the

standard for toll-quality speech communications and is the standard input to other

more sophisticated coders.

2. 32 kbps DPCM [22]. This simple non-adaptive coder represents an intermediate step
between PCM and more sophisticated waveform coders such as ADPCM. The non-
adaptive predictive filter reduces temporal redundancy.

3. CCITT G.721 ADPCM [66], [21]. This dual-adaptive ADPCM coder represents a high
standard in waveform coding that is used in a large number of practical applications.
In addition, the CCITT G.723 standard has been applied to provide variable rate
ADPCM coding at 24, 32, and 40 kbps. These additional rates allow a wide coverage
of potential bit-rate ranges for speech coders.
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4. Federal Standard 1016 4.8 kbps CELP coder [67]. This sophisticated design forms an
accepted reference point for other vocoder designs and achieves an attractively low

bit rate. The coder is widely used for low bit rate applications.

Presented in Appendix G are brief descriptions of the software algorithms used to imple-
ment the representative coders. A study of the SNR performance of these coders is provided
in Appendix H.

5.3 Rate-Distortion Measures

There is a theoretical basis for the relationship between the rate and quality of a transmission
that is defined for an optimal coding of the process. The rate-distortion function, R(D),
indicates the minimum rate that may be achieved for a given level of distortion in the
source coded signal [57]. This relationship can give insight to the behaviour of rate and
quality parameters in the class of non-optimal practical coders of interest to secure system

designers.

5.3.1 Memoryless Sources

The quantity R(D) is defined by the minimum value of mutual information between the
source coder’s input and output that is needed for signal reconstruction with a fidelity of
D.

We can derive bounds on R(D) for the class of stationary memoryless source processes.
Using a mean squared error distortion measure we can derive the MSE generalized Shannon

lower bound, R*(D). We define the set of admissible transformations from X to Y as those
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pairs (z,y) where the MSE distortion, E[p(z, y)] is bounded by D. Therefore,

R*(D) = I(X;Y)

min
(zw):Elp(z.y)]<D

min H(X)- H(X
(z.w):Elp(=z.4)]<D [H(X) (X1Y)]

(e B <D [H(X )~ E[H(X|Y = y)]] . (5.1)

If we let ¢(D,) = H(X|Y =y), and ¢(D) =
is achieved by,

max H(X]Y), then minimization
P(z.):Blp(zy)]<D

B(D) > H(X)- E[4(Dy)]

> H(x)-(ED)
> H(X)- 4(D), (52

where we utilize Jensen’s inequality for H(X|Y), a concave function. We obtain a general
lower bound by assuming the maximum achievable ¢(D). It can be shown that the con-
ditional entropy, H(X]Y), is maximized when X has a Gaussian distribution. Hence to
form our lower bound we choose, max{¢(D)} = -;-log21reD, the entropy of a memoryless

Gaussian signal with variance D. This yields the the general lower bound,
R*(D) > H(X) — %log oreD . (5.3)

As Berger noted in [68], an upper bound on R(D) can be defined by the rate-distortion
curve of the memoryless Gaussian process, which he proved to be the most difficult source
with a fixed second moment to reproduce with respect to the squared error criterion. A proof

of this result is presented in Appendix I. The rate-distortion function for any memoryless
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distribution is therefore bounded above and below as
R*(D) < R(D) € RgGaussian(D),

where,

RGaus.u‘an (D ) = - - (5 .4)

5.3.2 Sources with Memory

Sources with memory permit greater data compression than memoryless sources as it is
often possible to take advantage of the temporal correlation in the signal. For a given level
of distortion, these sources may be encoded at a lower rate than similar, but uncorrelated,
sources.

A distortion-rate function has been derived for the correlated zero-mean Gaussian source
in the work of Kolmogorov [69] and Berger [68]. Simplifying this work yields a distortion-rate
function for the Gaussian source under the conditions of small distortions. This simplified
distortion-rate function is,

DgGauyssian(R) = 12022'23,

where v2 is defined below and distortions are bounded by the minimum of the power spectral

density of the process,

# < min{S..(s*)}.

This simple function, from [22], makes use of the spectral flatness measure (sfin) pre-
sented by Makhoul and Wolf in [70]. The sfin is the ratio of the geometric and arithmetic
means of the power spectral density of a process and has the range 0 < v? < 1. It is defined
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as,

2 lim Hf_;.xs(‘"k)lw (5.5)

T = )
N=oo I\sz;c‘;l. S(we)

where S(wi) is the speech energy within a frequency bandwidth of #(k — )N, centered
at wi. The spectral flatness measure is a useful tool for describing the shape of a power
spectral density, and hence the correlation in the source, by a single value. The inverse of
the sfin is a measure of the waveform predictability, often referred to as the prediction gain.

As in the case of memoryless sources, we can bound the rate-distortion function of a
source with memory. For a given level of memory in the source, as expressed by the sfm
measure 2, we can upper bound the function with the rate distortion function of a Gaussian
source with the same characteristic of memory. As a lower bound, we refer to the derivation
of the MSE generalized Shannon lower bound in equation (5.3). Our general lower bound
was achieved by assuming the maximum possible value for ¢(D) in order to minimize the
rate-distortion function of equation (5.1). The presence of memory in the source does not
Jjustify the modification of this assumption in deriving a lower bound.

The rate-distortion function of a general source process with memory is bounded as
follows,

R*(D) < R(D) < RS prian(D);

Gaussian

where,

og, B2 0< D < v20?,

Rgamdcn(D) = (5.6)
0 D > y*o2.
The corresponding distortion-rate bounds are,
_1_2-2(R-H(X)) < D(R) < 720.22—211. (5’7)

2re
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5.3.3 Quality-Rate Bounds on the Speech Process

Accurate distortion-rate bounds can be obtained by evaluating equation (5.7) using mea-
sures specific to the conversational speech process. We can then detive a normalized mea-
sure to represent a quality-rate function for the process that will serve as a reference for the
experimental quality measures presented in section 5.5.

To determine an upper bound for the process we computed a spectral flatness measure
of 42 = 0.2 according to equation (5.5) for a large sample the speech process. The power
spectral density of this process is presented in figure 5.2. Using equation (5.7) we can define
the upper bound on the distortion-rate function to be a Gaussian process with memory

characteristic equivalent to v2 = 0.2.

Spectral flatness measure: 0.200
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Figure 5.2: Power Spectral Density of the Speech Process

The sfm of 0.2 indicates a speech predictability measure for the source process that is
lower than that usually reported for speech. This lower predictability is the product of our
definition of the source process as including all conversational English speech at y-law PCM

fidelity. The database used to compute the spectral flatness measure was very large, and
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contained many different speakers with different voice characteristics, making generalized
prediction of the source difficult.

A lower bound is defined by the MSE generalized Shannon lower bound and requires an
accurate estimation of the entropy rate of the speech process. Drawing upon the entropy
rate estimate of H(X) = 2.79 bits/sample computed in chapter 3 we can evaluate a lower
bound for the conversational English speech signal according to equation (5.7).

From these distortion-rate bounds we can derive a pair of quality-rate bounds for the

2 -D(R , derived

speech signal. Presented in figure 5.3 is a normalized quality measure,
from the upper and lower distortion-rate bounds of the speech process.
This figure indicates the region in which we can expect to bound the optimal performance
characteristics for coded conversational 64 kbps u-law PCM speech. The bounds also serve
to indicate the apparently logarithmic relationship between the rate and quality in an
optimal source coder. We must recognize however, that this level of optimal performance
may only be achievable by a coder of infinite, or at least infeasible, complexity. To further

our study of secure speech communication systems we must explore the relationship between

quality and rate that is achieve by practical complexity-limited source coders.

5.4 Objective Quality Measures for Speech

In order to derive an operational rate-distortion model for real speech coders we must
determine an appropriate measure of quality with which to quantify distortions of the
speech process. Typically, the best measures of quality are those derived from the subjective
evaluations of human listeners. This type of evaluation is difficult, time-consuming and
expensive to perform accurately; we therefore desire an objective quality assessment which
can be easily computed and shows a high correlation to the results of human preference
tests.

More than ten years of research were performed at the Georgia Institute of Technology in
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Figure 5.3: Quality-Rate Bounds for the Real Speech Process

pursuit of relevant objective speech quality measures. The major contributions of the work
are summarized by Quackenbush, Barnwell, and Clements in [61]. This research subjected
a large database of 17.2 hours of speech to a variety of moderate distortions originating
from transmission, coding, and other sources of corruption. The distorted and original
speech samples were then evaluated for subjective quality with the Diagnostic Acceptability
Measure [71] and a suite of objective quality measures.

The authors of [61] identified a large set of speech distortions that occur in the coding
and transmission of digital speech. This work was particularly useful for our purposes
because it included distortions present in PCM, Adaptive PCM, ADPCM, LPC, Subband
and vocoding systems. In addition, pure time and frequency domain effects such as additive
noise, clipping, echo, and lowpass, highpass and bandpass filtering were considered for their
effect on subjective quality.

In selecting relevant objective speech measures and typical distortion types, the authors
referred to a significant body of prior work, including [72], [73], [74], and [75]. A partial
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list of the correlation coefficients they obtained between subjective measures and objective

evaluations are summarized in table 5.2.

Objective Speech Quality Measure 1ol
SNR 0.24
Segmental-SNR 0.77
Frequency variant Seg-SNR 0.93
Itakura energy ratio 0.59
Linear spectral distance 0.38
Inverse linear spectral distance 0.63
Log spectral distance 0.60
Polynomial regression modelling,

Spectral distance 0.80
Frequency variant log spec. distance,

LPC-based 0.68

Filter bank 0.72
Composite measures,

Simple & freq. var. measures | 0.86

Parametric measures 0.82

Table 5.2: Correlation of Objective Measures to Subjective Measures

From the correlation results of table 5.2 it is clear that a single simple objective measure
of speech quality is not capable of perfect correlation with subjective measures over all pos-
sible speech distortions. Some of the objective measures do, however, indicate a reasonably
close correspondence to the subjective results. We must note that the results for the SNR-
based correlations were compiled exclusively on the basis of distortions of the class that
could be produced by waveform coders. These results do not include distortions classified
in [61] as vocoder-type, sub-band, and frequency domain distortions. This restriction was
imposed because signal-to-noise measures are only appropriate for distortions that produce
a facsimile that can be time-aligned with the original signal. Many of the non-waveform
type of distortions produce SNR evaluations that are unjustifiably low, despite having a
reasonable subjective quality level. This is typically due to the difficulty of time-aligning
the original and coded signals for comparison.
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The majority of our representative set consists of waveform coders, with the exception
of the CELP algorithm. With this in mind, we have identified the segmental-SNR as a
suitable objective measure for evaluating the quality of speech coders under the conditions
of a secure communications channel. Experimental evidence to be presented in the following
sections will verify that the segmental-SNR resuits obtained for CELP-coded speech are still
reasonably consistent with the results of waveform-coded speech.

The segmental-SNR measure is defined as,

10 M1 Ne#+N—-1 23(n)
SegSNR =137 2, Vo0 2, (mm—em): &8

where z(n) is the original signal, z4(n) is the distorted signal, N is the segment length and
M is the number of segments in the signal being analysed. The segmental-SNR measure
allows an unbiased measure of both high and low amplitude portions of the signal. The
segmental-SNR computes short-term SNRs over a set of consecutive sample segments and
averages the results. This measurement technique parallels one characteristic of the human
auditory system in that a short-term noise burst will have only a limited effect on the overall
assessment of quality. This similarity to the natural human response mechanism helps to
explain the correlation between the segmental-SNR and subjective listening measurements.

Referring to the correlation results of table 5.2 we see that with a measure of 77%, the
segmental-SNR measure has good relevance to subjective evaluations. In addition, it is an
attractive choice for a quality index due to its relative simplicity.

We note that while the frequency-weighted segmental-SNR achieves an excellent corre-
lation measure, it is significantly more complicated to compute. Similarly, the composite
measures proposed in table 5.2 are relevant to an even broader class of distortions, but

cannot be easily integrated into our models of speech quality.
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5.5 Operational Rate-Distortion Results

Rate-distortion performance evaluation of secure speech communication systems is compli-
cated by the hard-limiting nature of most encryption devices. We will move away from the
purely theoretical analysis of rate-distortion performance to consider the impact of channel
noise on the subjective quality of a secure speech system. Using experimentally derived
segmental-SNR measures for the representative coders under a variety of channel condi-
tions, we will present a set of operational rate-distortion curves. These curves will serve
to represent the relative performance of our speech coders under secure communications

conditions and will allow us to postulate models of quality as a function of redundancy.

5.5.1 Testing Methodology

To determine operational rate-distortion curves for the set of representative coders we per-
formed a set of experiments on a large volume of speech data. The testing methodology
is represented in the block diagram of figure 5.4. A database of speech samples was sub-
jected to a variety of controlled distortions. The distorted signal was then compared to the
undistorted original according to an objective quality evaluator. For the reasons discussed
in section 5.4 we chose the segmental-SNR. measure to evaluate the distortion.

The testing methodology outlined in figure 5.4 was applied to evaluate the relative qual-
ity of the various speech coders under noiseless conditions, and also under a wide variety of
non-ideal conditions relevant to encoding in a cryptographically secured environment. These
non-ideal channel characteristics were controlled by the channel simulator also indicated in
the figure.

We have noted the difficulty of applying SNR-type measures to signals affected by non-
waveform-type distortions as defined by Quackenbush, and consequently recognized the
potential difficulty of obtaining relevant measures of CELP coder quality. To compensate
for time alignment difficulties in segmental-SNR measurements of CELP coded speech,
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Figure 5.4: Block Diagram of Segmental-SNR Testing Methodology

the testing methodology included a provision for automatic re-alignment of the original
and distorted waveforms. The testing algorithms were designed to perform periodic cross-
correlation measures of the original and distorted speech waveforms and to re-align the two
signals within a narrow band of permitted offsets.

The test system was monitored and compared to subjective listening results in order
to verify its accuracy. The band of permitted offsets was intentionally limited to ensure a
fair comparison of the speech coders, and a report of re-alignments was generated for each
source file to ensure reasonable results. In general, CELP coders were found to be stable
in noiseless environments, and to degrade gracefully under noisy conditions. The waveform
coders were also evaluated using adaptive re-alignment, but were found to be stable under
all but the noisiest channel conditions.

The objective quality evaluator was implemented as the segmental-SNR measure defined
in equation (5.8). A segment length of 128 samples was used for all experimental measures.
This segmental-SNR. evaluator assigned a maximum SegSNR measurement of 35 dB to
noiseless reproductions of the speech signal. Measurements of (35 — A) dB indicate a A dB
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distortion of the original signal.

5.5.2 Quality Model Source Database

The source database for these operational quality measurements was a subset of the SWITCH-
BOARD database, which was defined in section 3.2 to represent the conversational English
speech process. The subset selected included only those files judged by the SWITCH-
BOARD transcribers to exhibit maximum transmission quality, and the absence of non-
speech sounds such as line noise, background noise, and echo. Examples of the transcriber
records are reproduced in Appendix C. In addition, the files were reviewed to ensure a high
subjective quality level. This selection procedure ensured that the uncoded source database
closely resembled the pure u-law PCM encoded English speech process defined to be our
source process. The difficulty of this selection procedure was justified by the need for a
nearly-uncorrupted source database with which to test the speech coders. The procedure
was feasible only due to the relatively small size of the subset, and could not be repeated for
the enormous database used in chapter 3 to measure the entropy rate of the speech process.
A total of 45 data files were selected, each containing speech recorded for two speakers.
This database provided a total of approximately 450 minutes of conversational speech data.

5.5.3 Noiseless Rate-Distortion Results

The operational rate-distortion performance of our set of representative speech coders was
determined under noiseless channel conditions. The entire quality model database was
subjected to encoding, decoding, and segmental-SNR comparison according to the testing
methodology outlined in figure 5.4. In this study, as in each of the following studies, quality
measures were computed for each of the 45 data files independently, and then the means
of these measures, and associated 95% confidence intervals were computed. The results of
this study are presented in figure 5.5.

The operational rate-distortion curves of figure 5.5 are clearly defined by an exponential
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Figure 5.5: SegSNR Measures for Representative Coders

relationship between rate and distortion, which results in the linear relationship between
segmental-SNR and rate observed in the figure.

A weighted linear regression analysis was performed on the experimental results, yielding
a model of the form,

1.142 + .528R (dB), 0 < R < 64.
SegSNR(R) = (5.9)

35 (dB), R > 64,

for rates of R kbps. This linear model is also included in the figure. An upper bound on
quality of 35 dB was imposed to indicate that u-law PCM signals can always be perfectly
represented at rates greater than 64 kbps.

Referring to the theoretic quality-rate bounds of the speech process presented in sec-
tion 5.3, figure 5.3, and the SNR-rate curves in Appendix H, figure H.1 we note a close
correspondence to the operational results of figure 5.5.
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5.5.4 Noisy Channel Condition Results

It is important to observe the behaviour of the representative coders under their expected
operational conditions, and this admits the possibility of noise being introduced to the

ciphertext during transmission.

Noise Types

To evaluate the effect of noise on secured speech transmissions we simulated a variety of
single-bit noise conditions and applied them to the coded speech signal as indicated in figure
5.4. In anticipation of a variety of channel conditions, we first simulated bit errors with
probability distributions modelled by Gaussian, Uniform, and Exponential functions. For a
chosen bit error rate, the channel simulator imposed bit errors distributed with the desired
characteristics.

To determine the effect of these different noise types on the coded speech quality we
performed a set of quality measurements on all of the waveform coders using a small subset
of the quality database. The results of this study are presented in figures 5.6, 5.7, and 5.8.
Analysis of the results indicates that the probability distribution of the noise process made
little difference to the objective measurements for this subset of naise types.

Given the results of this study, we selected the exponential noise distribution to generate
more comprehensive results for all coders in our representative set. Presented in figure 5.9
are the means and 95% confidence intervals computed for the entire quality database of 450
minutes of coded speech subjected to exponential noise conditions.

Of particular interest in this figure are the indications that the more complex coders
become preferable to simpler coders under increasingly noisy channel conditions. There are
two explanations for this behaviour. First, the more sophisticated coders, particularly the
CELP coder, implement better models of the speech production process and hence naturally

tend to synthesize more natural speech sounds in the presence of channel errors. Second,
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higher levels of compression achieved by the more sophisticated coders means that a smaller
number of bits will be subject to channel errors. While the impact of an error is greater
when redundancy is removed from a message, bit rate reduction can compensate to some
extent. In addition, all of the more complex coders have some error-recovery capability.
The DPCM and ADPCM coders “forget” bad inputs over a period of time, and the CELP
coder includes some forward error correcting ability.

The impact of burst errors was also measured and found to have a greater effect on
objective speech quality, as might be expected. Rather than present the results of these
studies here, we note that a burst error may be viewed differently in the context of a secure
communication session. This leads us to the development of two models for errors under

cryptographic communication requirements.
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Figure 5.7: SegSNR Measures Under Uniform Noise Conditions

5.5.5 Cryptographic Impacts on Noisy Channels

Under a cryptographically secured communication session, channel errors can have a sig-
nificant impact on the decrypted speech signal. The type of encryption algorithm will
determine the extent of this impact. We will assume that cryptographic synchronization is
maintained, and that we do not experience the effects of deliberate interference caused by
an active attacker. If this is not the case, measurement of quality during the unsynchro-
nized segment is trivial: well designed encryption algorithms will produce a signal entirely
uncorrelated with the intended signal and the quality will be minimal. If synchronization is

maintained, there are three possible modes of behaviour in response to a channel bit error:

1. If the encryptor is a synchronous stream cipher, a channel bit error will result in a
single error in the coded speech signal.

2. If the encryptor is a self-synchronizing stream cipher, a channel bit error will propagate
to cause n subsequent and sequential bit errors in the coded speech signal, where n is

the number of states in the cipher.
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3. If the encryptor is a block cipher, then a channel bit error will result in a spurious
decryption of the entire cipher block of n characters. This error will effect all coded
speech signal bits falling within the decryption block length, even those transmitted

before the occurrence of the channel error.

The cause of these effects is discussed in detail in section 4.1. In order to study the
effect of these cryptographic characteristics on the quality of coded speech transmission we
identify two models of cryptographic impact. The first model applies to synchronous stream
ciphers, where channel errors correspond directly to errors in the coded speech signal. These
cryptographic impacts can therefore be modelled by the bit error generators used in section
5.5.4. The second model can be applied to both self-synchronizing stream ciphers and block
ciphers of a given complexity or block size, n. In both cases a single bit error results in an
error in n coded speech signal bits. Assuming the noise source to be a stationary process,
the forward error propagation effect of the self-synchronizing cipher and the block error
effect of the block cipher will have the same average impact on quality. In the second model
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Figure 5.9: SegSNR Measures and 95% Confidence Intervals Under Exponential Noise Con-
ditions
we observe that a channel error will correspond to a fixed-duration burst of noise on the
channel.

The models used to describe the effect of error on cryptographic communication systems

are summarized in table 5.3.

Encryption Type Error Model
Synchronous stream ciphers Bit error generator
Self-synchronous stream ciphers (n states) | n-bit block error generator
Block cipher (n bits) n-bit block error generator

Table 5.3: Cryptographic Error Simulation Models

The first encryption error model can be adequately represented by the results of figure
5.9, while the second encryption error model may be computed using simulated block errors
of a fixed duration. A block encryption error simulator was developed using an exponentially
distributed block error model and a chosen constant block error length. This error simulator

was applied to the waveform coders at a variety of block error rates, for a fixed block error
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size of 64 bits. This would be a typical block size for encryption coders such as DES. The
results of this study are presented in figure 5.10.
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Figure 5.10: SegSNR Measures for Encryption Under 64 Bit Block Error Conditions

These results indicate an inversion of the objective quality evaluations for our waveform
coders beyond a given channel error rate. We note that reduction in quality is more rapid
than that experienced under single channel bit error conditions. This is obviously due to
the much greater signal disruption caused by block errors. It is quite interesting to note,
however, that below the threshold of a 10™* bit error rate, coder performance is mostly

similar to the results of figure 5.9.

5.6 Bit Rate as a Function of Redundancy

We will conclude this chapter by presenting a model of source caded bit rate as a function
of residual signal redundancy.
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Definition 7 (Residual signal redundancy) We define the residual signal redundancy
as the difference between the minimum rate required to transmit the coded speech signal and
the actual bit rate achieved by the source cader.

This definition corresponds exactly to the per-letter redundancy measurement used for
the unicity distance calculation in section 4.4. The entropy rate, H, of the speech signal
represents the limiting bit rate for lossless compression of the speech signal. If we represent
the entropy rate of the conversational speech process by H bits/sample, and the actual
source coded bit rate by R bits/sample, then the minimum per-sample redundancy that

may be achieved by a source coder operating at rate R is,
min =R—-H >0. (5.10)

In our experimental work we will find it more practical to scale these measures by the u-
law PCM sampling rate of 8000 samples/second in order to present models of bit rate and
redundancy in units of bits/second.

The rate-redundancy relationship of equation (5.10) represents the minimum redun-
dancy that may be obtained by a noiseless source coder. If the source coder is not noiseless,
then some of the source process information is destroyed by the coding operation and the
rate of real source information transmission is some H' < H.

An upper bound on the redundancy of a coded speech transmission is defined by the
rate of that transmission. In cases where the speech signal information has been completely
destroyed by the source coding operation, then all of the coded signal may be considered
to be redundant as it does not convey the desired information. The maximum redundancy

at a given transmission rate, R, is simply,

Duax=R >0. (5.11)
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These simple linear bounds define a region for the rate-redundancy performance of
practical speech coders that is identified by the shaded portion of figure 5.11. We can
improve the accuracy of this rate-redundancy model for speech coders by quantifying the
extent to which the coding operations destroy speech process information.

Bit Rate R (kbps)

0 10 20 30 40
Redundancy Rate D (kbps)

Figure 5.11: Linear Bounds on Rate-Redundancy Performance of Speech Coders
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5.6.1 Divergence Measures for Coded Speech

The rate of true information content in the coded speech signal was described above as
H' < H. The actual rate of desired speech information in the coded speech signal will
be lower than that of the original in any coder allowing distortion of the signal. When
information is destroyed in coding the signal for transmission it cannot be recovered upon
decoding. We would perform entropy rate measurements of the coded speech process to
obtain the desired redundancy results, but it is not possible to distinguish between true
speech information and coding distortions in the recovered speech signal. An entropy rate
measurement of distorted speech could be entirely uncorrelated with the original entropy
rate as a result of additive noise.

To determine the amount of distortion added to the speech signal by the coding operation
we can compute the Kullback-Leibler distance measure [76]. If we have two source processes,
P, and Q, with probability mass functions p(z), and ¢(z) respectively, then the Kullback-
Leibler distance measure between P, and Q is defined by

Disll) = 3 #(2 togs 2} (bi), (5.12)
where we define Ologg =0, and plog & = co.

The Kullback-Leibler distance, which is also called the relative entropy, is not a true
metric in that it is not symmetric, but it does provide a useful measure of the distance
between two distributions. Consider a coding operation where we wish to transmit the
source process P, but use a coding operation designed for process Q: it can be shown that
to reconstruct P exactly, we must send additional information at a rate of D(p||q) [77].

More accurate divergence measures for processes with memory can be obtained by ex-
tending the Kullback-Leibler distance measures to higher model orders. For kth order prob-
ability mass functions, p(z¥) and ¢(z¥), we compute the generalized per-symbol divergence
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measure,

k 1 k p(z}) .
DGl =7 3 p(ek)log, 2L} (bits). (5.13)
k & Q(zl)
zfcX*

By applying the Kullback-Leibler distance measure to the probability distributions of the
original speech process and a distorted version of that process we can determine the amount
of speech information destroyed by the coding process. We can therefore use this measure
to estimate the extent of the redundancy introduced by each of our representative speech
coders. The lower bound of equation (5.10) indicates the minimum level of redundancy
present in any coded speech signal. The Kullback-Leibler distance measure indicates the
absolute divergence of the transmitted signal from the real signal. Hence, if the transmitted

signal diverges by D*(p||q), then the decoded message contains only,
H - D*(pllq) = H, (5.14)
bits of information.

5.6.2 Relevance of the Divergence Measures

The Kullback-Leibler divergence measure will not yield relevant distortion measures for all
types of coding distortion. To illustrate this problem consider the case of a coder which
simply introduces a time-varying delay to a stationary input process. The input and output
of such a coder would have identical statistics and so achieve a zero distortion measure,
despite the presence of perceptually relevant and extreme distortions.

The purpose of all practical speech coders is to reproduce a reasonable facsimile of the
original process, so the Kullback-Leibler measure is appropriate for our model. However, it
is clearly necessary to confirm the relevance of the Kullback-Leibler distortion measures if

they are to be applied in this manner to new source processes or source coders.
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5.6.3 Divergence Measures for Representative Speech Coders

A series of experiments were performed to determine the average distortion introduced to
the speech signal by the coding operations of our representative coders. The testing method-
ology used was similar to the methodology used to compute segmental-SNR measures. A
database of speech process files was subjected to encoding and decoding by means of each of
the representative source coders. First, second, and third order probability mass functions
of original and distorted signals were computed by maximum likelihood estimation, and
then Kullback-Leibler distance measures were computed according to equations (5.12) and
(5.13). The testing methodology for information divergence measures is summarized by the

block diagram in figure 5.12.

Speech pmf p(zf)
— BEEEEEE———
Database MLE
Divergence { D*(pllq)
Evaluator |
Y
k
z
Source . Source pmf q(z1)
Coder Decoder MLE

Figure 5.12: Block Diagram of Divergence Testing Methodology

Divergence Model Source Database

A source database of 127 conversations, totaling 1269 minutes of speech data, was compiled
from the SWITCHBOARD database. This database contained the entire SWITCHBOARD

subset of 45 files used to compute segmental SNR measurements in section 5.5 and an
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additional 82 conversations. The additional conversations were selected on the basis of the
subjective evaluations of the SWITCHBOARD transcribers, but were not independently
evaluated for high subjective quality. The additional conversations admitted to the database
were those labeled as exhibiting maximum transmission quality and the absence of non-
speech sounds such as line noise, background noise and echo. The selection procedure was
designed to ensure that the maximum likelihood estimations of probability distributions

computed for the divergence measurements closely resembled those of the speech process.

First Order Divergence Results

The entire source database of 127 files was distorted by each of the representative source
coders as indicated in figure 5.12 to produce a large set of divergence measures. The means
and 95% confidence intervals were computed for each of the coders in our representative
set. The results, presented in figure 5.13, indicate the divergence of the distorted speech
from the original u-law PCM speech in bits/sample.
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Figure 5.13: First Order Divergence Means and 95% Confidence Intervals
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The results plotted in figure 5.13 indicate the relative first-order divergence of the rep-
resentative coders. The low divergence of the CELP coder is surprising, considering its
relatively low objective quality as measured by the segmental SNR study presented in sec-
tion 5.5. Low first-order divergence is a result of the CELP coder’s vocoding algorithm,
which simulates the vocal excitation process of speech. The output of CELP-synthesised
speech will therefore approximate the distribution of speech in low-order measures, even
when the higher order characteristics contain significant distortions as a result of the CELP
coding process.

As we have discussed in detail in chapters 2 and 3, the speech process should be described
by a model of much higher dimensionality. Hence, while the results obtained from a first-
order approximation grant a useful insight to the divergence properties of our various coders,

we should apply a higher order study to obtain definitive results.

Higher Order Divergence Results

Additional Kullback-Leibler distance measures were computed for models of order 2 and 3,
according to equation (5.13). These measures were computed for all representative coders
using the original 45 source conversations. The entire divergence database was not studied
mainly due to the high computational cost. The results of the first, second, and third order
divergence measures and their 95% confidence intervals are presented in figure 5.14. To
improve the clarity of the figure, data points at a given bit rate were separated slightly
according to model order, and labelled by source coder type. The real data consisted of
points measured at exactly 4.8, 24, 32, 40, and 64 kbps.

These results indicate a generally increasing divergence measure with bit rate reduc-
tion for the waveform coders. The exception to this rule, the CELP coder, continues to
demonstrate low divergence for low order modelling. As discussed above, the CELP coder
synthesizes speech with a model of the vocal tract and will generally approximate speech

at low model orders. The segmental-SNR measurements presented in section 5.5 clearly
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Figure 5.14: First to Third Order Divergence Means and 95% Confidence Intervals

indicate a large objective distortion in CELP speech, but this distortion is not evident in
the first to third order divergence measures presented here.

Additionally, the complexity of the coding algorithm has a significant impact on di-
vergence, as indicated by the difference between 32 kbps ADPCM and 32 kbps DPCM
performance.

It would be desirable to obtain fourth, fifth, and sixth order divergence measures in
order to verify the lower-order results computed here and more accurately measure the
divergence of the CELP coder, but as we noted in chapter 3, high order speech modelling
is a difficult task. These higher order measures were not computed here due to computa-
tional and time constraints, however we would like to point out that the entropy estimation
technique presented in chapter 2 could be modified to allow a low complexity estimation of
high order divergence measures. The estimation procedure could be modified by partition-
ing the generalized Kullback-Leibler distance measure into independent partial divergence
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measures,

£l 3 plep)ios, 2]

- 1
2 41 €A

forn>j3>1. (5.15)

Selecting the vectors z7,, € X™~7 by a Monte Carlo procedure, we can compile a set of
partial divergence measures with which to interpolate the complete nth order divergence
surface. The resulting divergence surface could then be analysed and interpolated as ap-

propriate to obtain reasonable nth order divergence estimates,

Dl = Y 49 (pllq). (5.16)

exi
5.6.4 A Rate-Redundancy Model from the Divergence Data

The first, second, and third order divergence measures do capture a sufficient amount of
information to yield a relevant measure of the rate-redundancy performance of typical speech
coders. We applied the experimental data of all three Kullback-Leibler model orders to
estimate a model of divergence as a function of coder rate.

As we have discussed earlier, the low order divergence measures of the CELP coder
are misleading and the true CELP coder divergence is expected to be much larger than
indicated by our experimental measures. For this reason the CELP coder measures were
omitted when we applied a weighted linear regression analysis to the data in figure 5.14.

The divergence measures of first, second, and third model orders for the waveform
coders were fitted by a regression analysis that weighted each data point by the inverse of
its confidence interval. The inclusion of data from all three model orders was beneficial to
modelling the divergence-rate function as each divergence measure contained information

unique to its model order.
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The regressed model of divergence plotted in figure 5.14 is defined by,

0.967 — 0.015R (bits), 0< R < 64.

0 (bits), R > 64,

The linear model seems to satisfactorily describe the behaviour of the representative
waveform coders. We can further justify the use of a linear model by returning to the
experimental segmental-SNR results presented in section 5.5.

We noté that the segmental-SNR defined by equation (5.8) is a measure of distortion
that is based upon the time-series of the original and distorted signals. The segmental
SNR is therefore sensitive to correlation effects in the signal that could only be captured
by higher order probability models. The measurements obtained by the segmental-SNR
are not directly comparable to the Kullback-Leibler distance measure, but they do indicate
distortions that would be captured by a higher-order divergence measure.

The segmental-SNR results for our representative speech coders in figure 5.5 were mod-
elled by the linear function of equation (5.9). This linear model matched very well with the
experimental data, and furthermore was supported by a pair of linear theoretic quality-rate
bounds in section 5.3 and a set of linear analytic models of SNR performance as indicated
in Appendix H. It is reasonable, given these prior observations, to propose the linear model
of divergence described by equation 5.17

The predicted model of divergence indicates the relative distance between the original u-
law PCM signal and the decoded signal, which is also in u-law PCM format. This divergence
measure therefore compares two signals that would be transmitted at a rate of 64 kbps. In
order to estimate the effective divergence rate of the coded signal as it is transmitted on
the communications channel we scale the divergence estimates of equation (5.17) by the

coder rate. For source coders using r bits/sample for a rate of R kbps we have the scaling
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relationship,

- - r coded bits 8000 samples
Diglea(R) = Digi)(R) 8 py-law PCM bits  second

= Diy(R)- é% (kbps) (5.18)

Scaling yields an effective divergence rate model for speech coders described by,

) 0.01525R — 0.000234R> (bits), 0 < R < 64.
Diyygea(R) = (5-19)
0 (bits), R > 64,

This function expresses the effective rate of divergence inherent in the coded bit stream
produced by a typical speech coder. Its principal purpose is to describe the rate at which
speech information is being destroyed by the coding operation. The effective divergence rate
function, presented in figure 5.15, yields some interesting observations. While the absolute
divergence measure of equation (5.17) increases linearly with decreasing bit rate, the fraction
of the total coded bit stream consumed by that distortion follows the more complex curve
of equation (5.19). It is apparent that the most sophisticated coders sacrifice a relatively
small amount of scarce bandwidth to distorted speech components. The medium complexity
waveform coders contain a relatively high proportion of distorted signal, likely as a result
of their lower complexity, but achieve a lower absolute distortion. Finally, coders operating
at high bit rates need introduce little absolute distortion, and so achieve a relatively low
proportion of effective distortion.

We can combine the result of equation (5.19) with the theoretical rate-redundancy func-
tion of equation (5.10) to propose a model of rate-redundancy performance for typical speech
coders. For ideal distortionless coders, equation (5.10) describes the relationship between
bit rate and redundancy: above the entropy rate H, any additional signaling, R — H, is

redundant, while below the entropy rate we have not enough bandwidth to communicate
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Figure 5.15: Effective and Absolute Divergence Rate Models

the entire information stream so all bits B < H are essential. Non-ideal coders introduce
distortion to the signal that destroys speech information, as indicated by equation (5.14).
To express the rate of divergence information contained in the coded speech signal we
developed the model of effective divergence expressed in equation (5.19).

Definition 8 (Operational Rate-Redundancy Function) Combining equations (5.10),
(5.14) and (5.19) yields a measure of the redundancy of the typical coded speech signal. We
ezpress the general operational rate-redundancy function for speech coders as follows,

R~ H+ D}, AR R2H,

'('pllq)exf(R) R<H.

Dopmtitmul(R) = (520)

Presented in figure 5.16 is the proposed operational rate-redundancy function of equation
(5.20), and the theoretical upper and lower bounds for rate-redundancy defined by equations
(5.10) and (5.11).
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Figure 5.16: Operational Rate-Redundancy Function and Theoretic Bounds

In table 5.4 we summarize the third order Kullback-Lejbler measures computed for the
speech coders and used to define the linear divergence model of equation (5.17). The table
includes the set of operational redundancy measures predicted by equation (5.20) using
the linear divergence model. Also presented in the table are the actual redundancy mea-
sures, Dpctual(R), that would be obtained using the actual third order divergence measures,
D?(p||g), rather that the approximate linear model of equation (5.17). This table confirms
the close correspondence between the actual and modelled results at all points except the
outlying DPCM and CELP measures. As we have noted earlier, the CELP divergence mea-
sures were not found to be indicative of the true higher order divergence characteristics.
The high DPCM divergence is expected for a non-adaptive waveform coder.

The shape of the operational rate-redundancy function is determined by the effective
divergence rate model computed from our experimental divergence measures for the rep-
resentative coders, and by the theoretical lower bound for redundancy. The curve plotted

in figure 5.1 displays a distinct discontinuity in the slope of the function at the entropy
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Coders Rate (kbps) | D*(pllg) | Doperationai(R) (kbps) | Dactuat(R) (kbps)
p-law PCM 64 0.000 42.06 41.68
DPCM 32 0.979 11.95 13.62
24K ADPCM 24 0.512 3.82 3.24
32K ADPCM 32 0.486 11.95 11.64
40K ADPCM 40 0.280 19.84 19.10
CELP 4.8 0.250 0.537 0.150

Table 5.4: Actual and Modelled Operational Redundancy Measures

rate of the speech process. This is due to the discontinuity in the theoretical redundancy
lower bound at the entropy rate. It may be reasonable to relax the requirement for a sharp
transition between sub-entropy and super-entropy coding characteristics. If we allow for a
continuous curve to describe the rate-redundancy lower bound near the entropy rate, then
the operational redundancy function of figure 5.16 could be continuous. Such an adjustment
to the rate-redundancy lower bound can not be supported by a theoretical development,
and would rely on assumptions about the performance of near-optimal coders at the entropy
rate. For this reason we prefer to use the lower bound predicted by theory.

We have noted how the Kullback-Leibler distance measures used to develop the opera-
tional rate-redundancy function could not be computed to as high a model order as might
be desired. As a result, significant differences in the original and distorted waveforms may
not have been detected by our measures, and the divergence rate measures of figure 5.15
may be quite conservative. We examined the effect of higher divergence measures by com-
puting operational rate-redundancy functions for a set of divergence functions characterized
by Kullback-Leibler distance function y-intercepts of 16, 24, 40, and 64 kbps. This set of
potential operational rate-redundancy functions is presented in figure 5.17.

Figure 5.17 serves to validate the form of the operational rate-redundancy function of
equation (5.20). The proposed model of rate-redundancy performance for typical speech
coders is evidently sensitive to increases in divergence between coders, and remains within

the theoretical rate-redundancy bounds under all conditions. The model indicates that
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Chapter 6

Experimental Measures for

Security Models

The true use of speech is not so muchk to erpress our wants as to conceal them.

Oliver Goldsmith. Oct. 20, 1759.

6.1 Introduction

In this chapter we will develop a set of experimental entropy measurements with which to
evaluate the 3 theoretic security indices defined in section 4.7.

These indices require measures of the message entropy, key entropy, ciphertext entropy,
and a measure of message redundancy. Most of these measurements have been derived,
computed, and presented in prior chapters. In chapter 3 we computed an estimate of the
speech process entropy using the techniques for entropy estimation developed in chapter
2. Our definition of the speech process has remained constant throughout this research so
the computed entropy estimate of 2.79 bits/sample constitutes our measure for the message

entropy in a secure speech communication system. This entropy measure is independent of

148
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any source coding or encryption operations subsequently applied to the speech process.

As we discussed in chapter 4, the entropy of the key is under the control of the cryp-
tographer. A maximum entropy of H(K) = K log Lx can be obtained by selecting keys
with uniform probability over the entire keyspace. We will assume that the key entropy is
always K bits when keys are K bits long. Measures of key entropy are therefore dependent
only on the choice of encryption algorithm and are equivalent to the key length.

In chapter 5 we developed a relationship between the redundancy of a coded message
and the coder bit rate for a class of representative source coding algorithms. We will refer
to the rate-redundancy model for speech coders developed in section 5.6 and summarized
by the operational rate-redundancy function of equation (5.20) for measures of redundancy.

The remaining measure required for a security model is the ciphertext entropy, H(C).
The ciphertext entropy is dependent on both the coded speech statistics and the encrypting
properties of the chosen cipher, so it must be computed for the ciphertext processes resulting
from each combination of unique source coding and encryption algorithms. In section 6.2 we
will discuss the broad set of encryption algorithms that may be used for enciphering speech
data and select a subset of generally representative encryption methods. This subset of
representative encryption algorithms is small enough to allow experimental measures of
ciphertext entropy to be computed for speech encoded by our set of representative speech
coders.

The testing methodology and the database used for measuring the entropy of source
coded and encrypted speech will be defined in section 6.3. In this section we will also
discuss how the techniques derived to compute conditional entropies of the speech process
in chapter 2 were modified to suit the unique characteristics of source coded and encrypted
speech.

In section 6.4 we will present the experimental measures of conditional entropy that will
comprise the data for our security models. This section will include a detailed study of the

convergence properties of direct measures as a function of the size of the speech database.
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Characteristics relevant to the computation of entropy for encrypted speech were found
to differ significantly from those of unencrypted speech. As a result of a very large state-
space and slow convergence characteristics, we found it significantly more difficult to com-
pute fourth order entropy for encrypted processes than for unencrypted speech. We will
present the results of our attempts to extend our conditional entropy measures for source
coded and encrypted speech in section 6.5.

Finally, in section 6.6 we will combine the experimental ciphertext entropy results de-
termined in this chapter with the message entropy computed in chapter 3 and the rate-
redundancy model developed in chapter 5 to evaluate the security indices proposed for the

secure speech system.

6.2 Representative Encryption Algorithms

We must define a set of encryption algorithms that represent the general performance of all
encryption techniques and yet is small enough to allow experimental measures of ciphertext
entropy to be computed for each representative speech coding algorithm.

There are many possible encryption algorithms available to serve as examples of the
main characteristics of encrypting transformations. Algorithms based on a block cipher

design include the following examples,

e Data Encryption Standard [78] [79]. This 64 bit block cipher has been a worldwide
standard for 20 years. Developed by IBM for the U.S. National Bureau of Standards,
this cipher has successfully resisted concerted efforts at cryptanalysis.

e Lucifer [80], [81]. Lucifer was a precursor of DES, also designed at IBM. Although
Lucifer uses a 128 bit block design, it was shown to be weaker than DES when sub-
jected to differential cryptanalysis by Biham and Shamir [82].

e IDEA [83]. This 128 bit key block cipher is considerably stronger than DES and has
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shown itself to be resistant to known forms of cryptanalysis. Lai has suggested it may

be immune to differential cryptanalysis [84].

NewDES (85]. Despite the name, this algorithm is not directly related to DES. It
uses a 120 bit key on 64 bit message blocks.

FEAL [86]. This DES-like algorithm was intended to achieve security through a
stronger round function and fewer total rounds. The original and variations on the

algorithm have all been vulnerable to differential cryptanalysis [87].

REDOC II [88]. This 120 bit key, 80 bit block cipher has been resistant to differential
cryptanalysis [82].

Skipjack [89]. This 80 bit key, 64 bit block size algorithm has been classified as
Secret by the U.S. Government. It was intended for use in the Clipper key-escrow
system. Due to the Secret classification little is known about the algorithm, but it is

purportedly a strong iterative block cipher [90].

Algorithms based on a stream cipher methodology include these examples,

Vernam Cipher [36]. The classical one-time-pad system can attain perfect secrecy
when implemented with a running key of length equal to the message length. There is
no passive cryptanalytic attack that can compromise a properly implemented Vernam

cipher system [51], [58].

A5 [91]. This is the stream cipher used to encrypt Group Special Mobile (GSM)
traffic. The algorithm is based on 3 linear feedback shift registers (LFSR’s) and is
vulnerable to an exhaustive attack of 24° encryptions [90].

RC4 . This variable key size stream cipher was developed by Rivest for RSA Data
Security Inc. The encryption algorithm is proprietary, but a compatible algorithm
was published on the Internet [90].
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It would be infeasible to perform experimental entropy measures on the ciphertext pro-
duced by all of these algorithms for each of our representative speech coders, so we have
selected the DES algorithm as an elemental encryption engine for finite key systems and
the Vernam stream cipher as an example of the behaviour of a perfect secrecy system.
As discussed in section 4.1.2, asymmetric cryptosystems are not generally appropriate for
real-time speech encryption and will not be included in our representative set.

6.2.1 The DES Encryption System

The DES encryption engine will be applied in four different modes to provide encryption
operations with a variety of interesting characteristics. The four standard modes of DES
were defined in [92] to provide a range of encryption operations. In Appendix L we provide a
description of the electronic codebook (ECB), cipher feedback (CFB), cipher block chaining
(CBC), and output feedback (OFB) modes of DES chosen as representative cryptosystems.

The use of a single encryption engine for our experiments allows a fair comparison of
the effect that different types of cipher design have on the entropy of the encrypted stream.
This fairness is particularly evident as all ciphers use the same key space and have virtually
equivalent complexity. The Data Encryption Standard design has experienced perhaps
the closest scrutiny of any conventional private key algorithm and has shown itself to be
resistant to known forms of cryptanalysis. The DES cipher satisfies the fundamental design
criteria for ciphers suggested in section 4.3, Proposition 2, and so is an excellent candidate

for study by our information-theoretic security measures.

6.2.2 The Vernam Cipher System

The Vernam cipher was described in chapter 4 as a theoretically perfect stream cipher. The
ciphertext is created by this system by combining each message bit with a running key bit
from an unpredictable source. The output of a Vernam cipher was shown in section 4.5.1

to be statistically random if the key stream is also random. This cipher serves as an upper
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bound on achievable security and so is an interesting cipher for inclusion in our security
models. Stream ciphers do not introduce the characteristics of diffusion or use the mixing
transformations outlined in Proposition 2, but satisfy all other requirements. The Vernam
cipher achieves perfect secrecy by adding a sufficient amount of confusion to each message

bit to completely obscure the message information.

6.2.3 Encryption System Implementations

The four DES encryption algorithms were implemented in software. It was not necessary to
obtain real-time performance and we were not concerned with the potential security risks
of performing encryption on a general use multi-user computer system. In the CFB and
OFB implementations a block size of k& = 64 bits was used to improve performance.

A perfect Vernam cipher was simulated in software using the output of a strong pseu-
dorandom number generator. Due to the known statistical characteristics of this cipher it
was unnecessary to read any real speech data when creating simulated ciphertext, allowing

a significant savings in processing time.

6.3 Testing Methodology
To determine a model of security we must compute the entropy of ciphertext produced by
encrypting the output of each representative speech coder with each of the representative
encryption algorithms.

The general testing methodology outlined in the block diagram of figure 6.1 was applied
to each combination of source and encryption coder to obtain these measures. Conditional
entropy measures of maximum feasible complexity were computed to obtain the best possible

security models.
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Source

Database

Source Encryption pmf Conditional H(X.|X7TY

Coder [ |  Coder — Mg [~ OBty
Estimation

Figure 6.1: Block Diagram of Ciphertext Entropy Measurement Methodology

6.3.1 Security Model Source Database

In order to obtain convergent measures of higher order conditional entropies it was nec-
essary to expand the database used in chapter 5 for Kullback-Leibler distance measures.
The speech data used for the security model experiments included the 127 conversations
compiled for the divergence measures and an additional 429 conversations selected from
the SWITCHBOARD database. The additional conversations were selected according to
the transcriber’s subjective evaluations of quality to maximize the similarity to high qual-
ity u-law PCM speech. Due to the large volume of data, it was not possible to confirm
the quality of each conversation by means of an independent subjective quality evaluation.
The complete database yielded at total of 556 files and approximately 5500 minutes of
conversational English speech data.

6.3.2 Representative Speech Coders

The same set of representative speech coders defined in section 5.2.8 and used for the
development of quality and redundancy models was applied to this experimental work.
Experimental measures of ciphertext entropy were performed on speech encoded in p-law
PCM, DPCM, 3,4, and 5-bit ADPCM, and CELP formats.
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6.3.3 Conditional Entropy Estimation Methods

Direct Measures
Conditional entropy measurements were obtained from first to third order, H(X), H(X;|X,),

H(X3|X3), by the direct calculation of equation (2.1). We found that encrypted speech ex-
hibited some characteristics that were not encountered when we computed fourth order
conditional entropy measurements in chapter 3. These characteristics made it infeasible to
compute fourth order conditional entropy measures of the encrypted speech data by the
direct approach.

In computing ciphertext entropy we noted a reduction in the rate of convergence for
encrypted speech measures from the rates experienced for the unencrypted speech entropy
measures of figure 3.5. Effective encryption algorithms tend to result in more uniform
probability distributions in the ciphertext than were observed in the original message. As
our procedure for computing conditional entropy measures requires a maximum likelihood
estimation of the process pmf, randomization tends to increase the number of observations
required for an accurate pmf measurement. It was necessary to increase the amount of
speech data processed by the direct entropy calculation routines from the 2725 minutes
used for unencrypted speech measurements in section 3.4 to a sample of approximately
5500 minutes.

Another effect of randomization was an enormous increase in the effective state-space
required to record higher order pmfs. When we computed fourth order conditional entropy
measurements of the original speech process in chapter 3 we employed a dynamic memory
allocation scheme for the state space, as discussed in Appendix D. This allocation scheme
could take advantage of the high redundancy of the speech process and minimize the number
of memory locations required for the model. We discovered that encryption removed such
significant amounts of temporal correlation in the samples that a fourth order probability
model would require a significant fraction of its nominal 256* states. It was not feasible to

allocate a model of this size on our 32 bit architecture Sparc 20 computing platform.
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Indirect Measures

Higher order entropy measures reveal more information about a process so it was desirable
to obtain the highest possible order of entropy measure for our security models. The ran-
domizing property of encryption increased the state-space required for direct fourth order
calculations beyond feasible levels so we applied the the entropy estimation algorithm of
chapter 2 to obtaining fourth order estimates.

A fourth order conditional entropy estimate, H(X4|X?) was computed from a set of
PCE measures of third order. Let Tp 1 € X be the set of p points at which we computed
PCE measures. We define the set of p PCE vectors computed from a data set of size Syax

minutes to be,
Hsmuﬂy‘rp.x = ¢(Smazr 4, Tp,l): (6.1)

as defined in equation (2.7).

From this set of vectors we could interpolate the remainder of the fourth order entropy
surface, Hs,, 4.x, and then compute the conditional entropy estimate, H(X4X?) according
to equation (2.12).

The operations cost for each PCE vector was considerably higher for encrypted speech
than experienced for the original unencrypted p-law process. In Appendix E we present
a detailed study of the operations required for fifth and sixth order conditional entropy
measures of the speech process. For encrypted PCE calculations we would add to this
estimate the significant number of operations required by the source and encryption coding
stages.

In computing third order PCE vectors for data encrypted by any of our representative
encryption coders we discovered the variance between the measures to be extremely small,
implying a near-uniform fourth order conditional entropy surface. Taking advantage of this
uniformity, we found we could reduce our calculation to a single randomly chosen PCE
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vector, (§(4, z), ), and compute the fourth order estimate as,
H(X4|X}) = 256 * (4, 2). (6.2)

To confirm this observation we computed complete conditional entropy surfaces for a
feasible model size of third order. Theses surfaces were computed for u-law PCM speech
encrypted by DES ECB, CFB, CBC, and OFB modes and are presented in Appendix M.
The four third order conditional entropy surfaces presented in figures M.1, M.2, M3, and
M.4 were found to be distinctly uniform. As the property of uniformity was found to be so
strongly evident in the third order surfaces we considered the fourth order data computed
to be indicative of a similar trend.

This simplification was prone to error but we found it sufficient to indicate the rate of
convergence of the fourth order measure. The indirect fourth order measures were pursued
no further when it was found that we could not provide a sufficient volume of encrypted

speech data to achieve model convergence for our entropy estimates.

6.4 Conditional Entropy Measures for Encrypted Speech

We examined the effect of encryption on first, second, and third order conditional entropy
measurements in detail for encrypted p-law speech in order to gain insight into its conver-
gence characteristics. These results are presented in section 6.4.1. We then performed third
order conditional entropy measurements for every combination of the remaining represen-
tative source coders and encryption coders. These results are presented in section 6.4.2.
The third order measures comprised the best feasible estimates of ciphertext entropy and

are summarized for use in the security models in table 6.1.
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6.4.1 Detailed Entropy Results for u-law Coded Speech

The entire database of u-law encoded speech was encrypted by each of the representative
ciphers, and first to third order conditional entropy measurements were computed at a
variety of sample sizes. The results of these measures are presented in figures 6.2, 6.3, 6.4,

and 6.5.
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Figure 6.2: ECB Conditional Entropy Convergence of g-law PCM

Observations on the Detailed p-law Convergence Results

The figures indicate that the ECB, CFB, CBC, and OFB ciphers all achieve good ran-
domization of ciphertext for first, second and third order measurements. The rates of
convergence varied slightly, with the ECB cipher appearing to converge more slowly than
the other ciphers. In addition, it was found that none of the block ciphers had attained an
ideal entropy measure of 8 bits/ciphertext byte for the volume of source data applied to
the experiments. This slow rate of convergence was confirmed with a study of the Vernam

cipher using a much larger volume of simulated speech data. This rate of convergence was
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Figure 6.3: CFB Conditional Entropy Convergence of y-law PCM

determined to be a characteristic of the maximum likelihood estimation procedure for the
process pmfs. These characteristics will be discussed in section 6.4.2 and used to normalize
all subsequent measures to obtain stable entropy estimates.

The results of the first and second order entropy calculations were found to be largely
reflected in the third order measures. As higher order measures yield the most informa-
tion about the processes, the remainder of our direct conditional entropy measures were

performed using the third order measure.

6.4.2 Third Order Entropy Results for all Coder Combinations

The remaining DPCM, ADPCM, and CELP coders were applied according to the testing
methodology to generate compressed speech for encryption by each of the representative
encryption algorithms. Third order conditional entropy measurements were performed at
various intermediate sample sizes to determine the convergence characteristics of each source

type.
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Figure 6.4: CBC Conditional Entropy Convergence of y-law PCM

Computational Considerations

Extending the ciphertext entropy measurements to include all combinations of the repre-
sentative source and encryption coders was computationally expensive. The least compu-
tationally intensive approach to the task would have been to create DPCM, 3, 4, and 5 bit
ADPCM and CELP coded versions of the complete source database of 5500 minutes of u-law
speech and then perform encryption on each version with each of the representative encryp-
tion algorithms. This minimization of computational work was, unfortunately, coupled with
a requirement for sufficient disk storage space for each of the source coded versions of the
speech data. The original u-law data required in excess of 2.6 Gbytes of storage space, and
the coded versions would require an additional 5.4 Gbytes in total. These resources were
not available so it was necessary to compress the entire speech database with each source
coder for each type of encryption algorithm. The additional computational cost of this

procedure added considerably to the effort required for our conditional entropy measures.
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Figure 6.5: OFB Conditional Entropy Convergence of y-law PCM

Convergence Characteristics by Encryption Type

The ciphertext entropy data can be presented in a variety of formats for insight into the
relationships between source coders and encryption coders. We found it interesting to
compare the ciphertext entropy measures for different source encodings under a single mode
of encryption. Presented in figures 6.6 and 6.7 are convergence measures for the source
coders under ECB and CFB encryption, respectively. The sample size coordinate in the
figures was computed for each coder to correspond to the volume of the original p-law
database processed by the speech coder.

It is important to note that the volume of coded speech data processed by the encryption
routines, and hence the volume of data available to the MLE pmf modelling routine was a
function of the source coder rate. This characteristic was found to be a factor in interpreting
the ciphertext entropy results. The data in figures 6.6 and 6.7 suggests the unexpected
result that speech compression results in a lower entropy measure and a correspondingly

lower security measure. This conclusion would be inaccurate. The discrepancy is a caused



CHAPTER 6. EXPERIMENTAL MEASURES FOR SECURITY MODELS 162

by a reduction in the volume of encrypted data available to the pmf modelling routines as
a result of speech compression.

To quantify this convergence problem we present the ciphertext entropy measurements
for various speech encodings under a Vernam cipher encryption in figure 6.8. This figure
indicates the relatively slow convergence expectations for a perfect cipher. A perfect cipher
randomizes the ciphertext statistics so well that the pmf modelling routines require the
maximum number of observations to obtain stable entropy measures. The figure indicates

how lower coder rates simply increase the number of observations required for convergence.

8.01 r
8 4
gre9}F =TT .
=
=3
E
% 7.981 1
g -
S 7.97} 7 -
= -
= 4
=2 7
§ 796 A A A A EER 32K DPCM g
i —— 24K ADPCM
7.asl J — — 32K ADPCM J
© 40K ADPCM
7.94 -t A L L L -
] 1000 2000 3000 4000 5000 6000

Sample Size (minutes)

Figure 6.6: Entropy Measures of ECB Encrypted Speech for Various Source Coders

Convergence Characteristics by Source Coder
The results of comparing different speech coders under a single mode of encryption in figures

6.6 and 6.7 and the relative convergence characteristics of the Vernam cipher in figure 6.8
reveal the need to compare the accumulated entropy data on a basis relative to the rate of
the source coder.

We found it preferable to present the convergence data for all encryptions of a source



CHAPTER 6. EXPERIMENTAL MEASURES FOR SECURITY MODELS 163

8.01 . ] ] )
8 ( -
o
§ 799 L -
-2
=
E
g 798} |
=
15
S 797} ‘ ﬂ
g k4
k= ;
B ; .
§ 7.96 ~ YA A carcmom T
’ — 24K ADPCM
T '! - - — 32K ADPCM .
!. o 40K ADPCM
14
7.94 1 . . | L |
o 1000 2000 3000 4000 =555 -

Sample Size (minutes)

Figure 6.7: Entropy Measures of CFB Encrypted Speech for Various Source Coders

coder type in a single figure. In the interest of space, these results are presented in Appendix
N, figures N.1, N.2, N.3, N .4, and N.5. Each figure is a summary of the complete set of third
order conditional entropy calculations for a particular waveform coder under all encryption
coder combinations.

The CELP coder results are not included in figures 6.6 and 6.7 because our CELP
results consist of single measurements at the maximum database sample size. The CELP
coder produces data at such a low rate that the entire database, when CELP coded, did not
produce a large enough volume of ciphertext to trigger an intermediate entropy calculation
in the automated testing software.

Observations on the Complete Third Order Entropy Measures

The conditional entropy data presented in Appendix N allows a fair comparison of the
convergence rates for each type of encryption, given the relative convergence rate of a

perfect Vernam cipher operating on the same source-coded data. The results of these
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Figure 6.8: Entropy Measures of Vernam Encrypted Speech for Various Source Coders

figures indicate that the DES based ciphers achieve a petformance that is similar to the
Vernam cipher at this order of entropy computation.

It is clear the conditional entropy measures in Appendix N have not converged to their
final values. To predict the eventual entropy rate for each coder-encryptor combination
we propose to scale the measure obtained at the maximum sample size in relation to the
convergence characteristics of the corresponding Vernam cipher results. This technique for
scaling conditional entropy measures according to measures obtained from larger sample
sets was described in detail for PCE measures in section 2.6. We propose a much simplified

scaling function of the form,

i . H (Xslxz)coder encryptor
Hgwo (X Xz o or = (81 Smas 1 P -8 ’
s ( al l)c der,encryptor == TN H %_‘(Xalxl?)coder,Vemm
(6.3)

where Hs__, (X3|X?)coder, Vernam represents the entropy measure obtained for the Vernam

cipher at the maximum sample size of Sy = 5500 minutes. By definition, the perfect
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Vernam cipher is known to attain a ciphertext entropy of 8 bits/ciphertext byte. This
trivial scaling relationship assumes the rate of convergence of the various ciphertext streams
remains constant relative to the Vernam cipher beyond the maximum sample set size. This
is a reasonable assumption for strong ciphers such as the DES variants studied here, and it
is further strengthened by having computed at a sample size S;,,, that is beyond the knee
of the convergence curves.

A close observation of the ciphertext convergence curves indicates that the measures
based on u-law PCM data in figure N.1, and to a lesser extent, the DPCM results in figure
N.2 diverge slightly from the ideal Vernam cipher convergence characteristics under ECB
mode encryption. The divergence is slight, but may indicate that the third order statistics
of ECB mode ciphertext are non-ideal. Higher order entropy measures would confirm the
presence of some redundancy in ECB enciphered speech data. In section 6.5 we will present
evidence that a fourth order conditional entropy measure of u-law speech is distinctly smaller
than that of the other encryption modes.

The evidence of figures N.3, N.4, and N.5 indicates that the more sophisticated forms of
source coding result in ciphertext convergence curves that are almost identical to Vernam
cipher convergence. We conclude that this result is a measurable effect of the removal of
redundancy from the input process to the encryption device. Despite the known deficien-
cies of ECB encryption, source coding resulted in a ciphertext process that could not be
distinguished from an ideal ciphertext process with a third order entropy calculation.

6.4.3 Entropy Measure Summary for Coder Combinations

The third order conditional entropy measures computed at the maximal sample size in
sections 6.4.1 and 6.4.2 constitute our best estimates. Using the simple scaling relationship
of equation (6.3) we predicted the third order measure that would be obtained at a model
size sufficiently large to guarantee model convergence. These estimates are summarized for

all combinations of source and encryption coders in table 6.1.
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Encryption Mode
Coders ECB CFB CBC OFB Vernam
p-law PCM | 7.99805 | 7.99919 | 7.99919 | 7.99918 | 8.00000
DPCM 7.99804 | 7.99933 | 7.99934 | 7.99933 | 8.00000
40K ADPCM | 7.99954 | 7.99954 | 7.99954 | 7.99955 | 8.00000
32K ADPCM | 7.99977 | 7.99987 | 7.99988 | 7.99987 { 8.00000
24K ADPCM | 7.99954 | 7.99994 | 7.99995 | 7.99994 | 8.00000
CELP 8.00000 | 8.00000 | 8.00000 | 8.00000 | 8.00000

Table 6.1: Predicted 3rd Order Entropy Measures for Encrypted Speech

A general pattern in the results is made more evident by the graphic presentation of

a surface consisting of the ciphertext entropy measurements as a function of source and

encryption coder combinations in figure 6.9.
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Figure 6.9: Ciphertext Entropy Surface

6.5 Fourth Order Entropy Calculations

Attempts to estimate fourth order conditional entropy for encrypted speech from a set of

partial conditional entropy vectors were thwarted by the randomizing characteristics of the
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encryption algorithms.

To determine the feasibility of fourth order entropy calculation, the simplified entropy
measure of equation (6.2) was applied according to the test methodology of figure 6.1 for
the Vernam cipher. A large volume of Vernam-encrypted data was simulated and the con-
vergence characteristics of the fourth order conditional entropy calculation on this process

were computed and presented in figure 6.10.
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Figure 6.10: 4th Order PCM Coder Results for All Encryption Modes

This figure indicates that the entropy estimation converges to the expected level for
a perfect cipher of 8 bits/ ciphertext byte, but does so at a very slow rate compared to
the unencrypted speech data in figure 3.6. Approximately 40000 minutes of simulated
encrypted u-law PCM speech data were required for convergence. Speech coders at lower
data rates will converge proportionately slower but will always yield the same result of 8
bits/ ciphertext byte since this is a perfect cipher.

The Vernam cipher achieves the highest possible randomization of ciphertext data and

hence will display the slowest rate of convergence. To determine the rate of convergence for
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speech encrypted by the DES cipher we performed a fourth order estimation on real p-law
PCM data under the four DES encryption modes. The convergence characteristics of these
four measures were computed up to the full database size of 5500 minutes of speech and
are also presented in figure 6.10

It was not possible to distinguish the converging entropy measures of these representative
ciphers from these experiments due to the limited size of the database. We computed these
measures to the maximum sample size that was feasible given finite space and computa-
tional constraints but were unable to reasonably predict fourth order conditional entropies.
The randomizing properties of the representative encryption coders slowed the rate of con-
vergence and the addition of source and encryption coding added computational costs that
were not encountered when the method was applied to the original unencrypted speech
process.

Referring to figure 6.10, we observe that ECB encrypted speech appears to possess a
lower fourth order entropy than CFB, CBC, and OFB encrypted speech up to the maximum
observable measurement. There is also evidence in the figure that the CFB, CBC, and
OFB measures diverge slightly from the Vernam cipher results at maximum model size. To
confirm these observations we would have to extend the measures to a much larger model
size. The Vernam cipher convergence curve is nearly logarithmic, suggesting that doubling
the size of the database will yield a significant improvement in the accuracy of the entropy
estimates.

While we were able to demonstrate that the entropy estimation technique could be used
for higher order measures, we found it was not feasible to compute for this research. We

concluded that third order measures would have to suffice for our security models.



CHAPTER 6. EXPERIMENTAL MEASURES FOR SECURITY MODELS 169

6.6 Security Index Evaluations

In this section we will evaluate the three proposed theoretic security indices using the
experimental data derived in chapter 3, chapter 5, and earlier in this chapter.

6.6.1 Unicity Index

The unicity index developed in chapter 4, N, = g%)-, yields an indication of the minimum
amount of ciphertext an attacker needs to intercept in order to break a cipher. This index
can provide a simple measure of the relative strength of a cipher in terms of its key space and
the redundancy of the message process. As we have already discussed in section 4.6.1, the
unicity index is insensitive to the encryption algorithm, so we do not require the measures
of ciphertext entropy summarized in table 6.1 to evaluate it.

For the set of representative ciphers there are only two values of H(K). The DES
variant algorithms have a key entropy of 56 bits, and the Vernam cipher has a key length
equal to the message length. For the conversational speech process defined for this research,
the Vernam key entropy may be considered to be effectively infinite. The resulting unicity
distance for Vernam ciphers is therefore infinite for all values of redundancy.

Presented in figure 6.11 is an evaluation of the unicity index model over the range of
all per-symbol redundancies, 0 < D < 8 bits/ciphertext byte, and a range of key entropies,
0 < H(K) < 60 bits. Also represented in the figure is a line indicating the range of the
unicity index for realizations of the DES ciphers.

6.6.2 Efficiency Index

The encryption efficiency index proposed in chapter 4 was defined by the equation £ =
ﬂ—%}fg@. This index facilitates the comparison of encryption algorithms on the basis of
the amount of ciphertext uncertainty added in proportion to the key cost.

The efficiency index requires the ciphertext entropy measures for the representative
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Figure 6.11: Unicity Index Model

source and encryption coders presented in this chapter and summarized in table 6.1. The
index also depends on the source process entropy estimated in chapter 3 as H(M)=2.79
bits/sample, and the encryption algorithm’s key entropy.

Presented in figure 6.12 is an evaluation of the efficiency index surface as a function of
source and encryption coder combinations.

The form of this simple efficiency surface is similar to that of the ciphertext entropy
surface in figure 6.9, except in the vicinity of the Vernam cipher measures. The key entropy
H(K) for each of the DES mode ciphers was a constant 56 bits for these efficiency measures.
For the conversational speech process studied here, the key entropy of the Vernam cipher
was effectively infinite. This resulted in an efficiency measurement of zero for each of the
Vernam cipher results. It should be noted that the Vernam cipher efficiency points are
not plotted to scale in figure 6.12 in order to allow a detailed view of the remainder of the

surface.
In developing a general model of the secure speech communication system we will find it
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Figure 6.12: Efficiency Surface as a Function of Source and Encryption Coders

useful to compare each of our system models on the basis of a single independent variable.
We found the redundancy rate of the source coded message stream to be an ideal indepen-
dent variable for this comparison. To present the efficiency surface of figure 6.12 in terms
of the redundancy rate we mapped the set of source coder variables to the correspond-
ing redundancy rates for each coder according to the experimental redundancy measures
performed in chapter 5.

Using the actual operational redundancy rate measures, Dactyai(R), summarized in table
5.4 we mapped the set of waveform source coders to a corresponding set of redundancy rates
to produce the efficiency surfaces in figure 6.13. An exception was made for the CELP coder
redundancy measures, where we used the predicted measure, D perational(R), rather than
the experimental measure. As discussed in chapter 5 the CELP coder results were found to
be unreliable and shown to be better represented by the model Doperational(R)-

The mapping to redundancy measures scales the efficiency measures in a manner more

suitable to a general model of security. Four views of the surface are presented in the figure
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to allow the efficiency surface to be examined in more detail. To reduce clutter in the figure,
we simplified the efficiency index scale to represent the actual efficiency index measures of
0.0930z by the last digit, 2. Once again, in this figure the Vernam cipher efficiency measures

of zero are not shown to scale in order to reveal more detail in the remaining measures.
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Figure 6.13: Efficiency Surface as a Function of Operational Redundancy Experiments

Presented in figure 6.14 is the same set of efficiency index measures mapped using the
operational rate redundancy function of equation (5.20). We were interested in comparing
the effect that our approximate operational rate redundancy function may have on the
efficiency index. The results presented in the figure indicate little change from the first
model, except in the vicinity of the DPCM and 32K ADPCM points. These points are
mapped to the same redundancy level by the operational rate redundancy function because
they operate at the same coder rate, despite the experimental evidence indicating a higher
redundancy in the DPCM-coded process. This is an unavoidable consequence of using the
simplified model for redundancy. Fortunately, we can avoid this problem as we have the

actual redundancy rate measures for these coders, Dyctual(R). We will refer to the results
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of figure 6.13 in our future evaluations of the efficiency index.
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Figure 6.14: Efficiency Surface as a Function of Operational Redundancy Function

6.6.3 Quality Index

The encryption quality index proposed in chapter 4, @ = mﬁm, was designed to
facilitate the comparison of encryption algorithms on the basis of their ability to mask a
redundant source process. The index measures the encryption algorithm’s ability to add
uncertainty to the ciphertext as a proportion of the per-symbol redundancy of the source
process. The information required for this measure includes the ciphertext entropy data,
message entropy, and operational redundancy measures used above in section 6.6.2.
Presented in figure 6.15 is an evaluation of the quality index as a function of the encryp-
tion coder and operational redundancy parameters. We applied the same set of operational
redundancy measures for the quality index as were applied to obtaining the efficiency index
in figure 6.13, using Dactuai(R) for the waveform coders, and Doperational( R) for an accurate

measure of CELP-coded redundancy.
The quality index surface is strongly determined by the redundancy parameter over the
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experimental data set. The features of this surface ate difficult to observe in this format, so
we have presented a set of normalized cross-sectional views of the quality surface in figure
6.16. Each line in the figure represents a set of quality index measures corresponding to a
source coder operating at the indicated redundancy rate, D (kbps). To allow a comparison
of the measures, each quality function is normalized by the quality index computed for that
redundancy rate under DES ECB encryption.
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Figure 6.15: Quality Surface as a Function of Operational Redundancy Experiments

The cross-sectional functions of figure 6.16 indicate lowest quality for DES ECB encryp-
tion, a higher quality for DES CFB, CBC, and OFB ciphers, and the highest quality for

Vernam encryption.

6.7 Observations on the Security Indices

We can make some general observations on the characteristics of the three security indices

based on the results in figures 6.11, 6.13, 6.15, and 6.16:
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Figure 6.16: Quality Curves Normalized to ECB Quality Measure

. The unicity index model allows comparison of encryption coders on the basis of the

size of the key space only. The unicity index confirms the value of performing source

coding to reduce redundancy prior to encryption.

. Redundancy plays a strong role in determining the unicity distance and quality indices.

The efficiency index is responsive to redundancy, but is also determined by other

factors.

. The efficiency index generally increases with reductions in redundancy, but the source

coder complexity also has a significant impact. A comparison of 32 kbps ADPCM and
DPCM coders revealed that the lower complexity DPCM coder resulted in a lower
efficiency index, despite a similar redundancy level.

. The perfect Vernam cipher reflected the expected theoretic security indices: an infinite

unicity distance, maximal quality for a given level of redundancy, and a minimal

efficiency measure of zero due to the large key size.
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5. The four DES cipher modes studied were found to be marginally distinguishable by the
quality and efficiency indices. The ECB mode cipher was found to exhibit the lowest
quality and efficiency over the range of operational redundancies. The CFB, CBC,
and OFB modes of DES exhibited almost identical indices over the range studied.

We have evaluated the three proposed security indices over a sample space defined by a
set of representative source coders and a set of representative encryption coders. Evaluating
the ciphertext entropy components of the indices was revealed to be a challenging task, due
to the effects of encryption on the ciphertext statistics. Despite a limitation in the maximum
feasible calculation order, the security index results are consistent with expectations. The
observations summarized above indicate that the security indices are capable of representing
the relative strength, efficiency, and quality of encryption coders. Higher order ciphertext
entropy measures would improve the ability to distinguish between encryption methods.



Chapter 7

Formulation of a General Model

When we mean to build,
We first survey the plot, then draw the model;
And when we see the figure of the house,

Then must we rate the cost of the erection.

William Shakespeare. King Henry IV. Act II, Sc. 3.

7.1 Introduction

In section 7.2 of this chapter we will define rudimentary models for the complexity of source,
encryption, and channel coders. These models will provide an essential dimension to the
analysis of secure communijcation system designs. We will then combine the models of
objective speech quality, bit rate, security, and complexity to form an optimization problem
for the integrated secure speech communication system.

As the general model comprises a multidimensional optimization problem, it is difficult
to simply summarize all of the characteristics of the integrated secure speech communication

system. Specific solutions will depend on the objectives and constraints on the secure system

177
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design. In section 7.3 we will present an analysis of the interrelationships among the model
parameters and define the functional notation for framing the optimization problem.

In section 7.4 we will formulate the objective function for optimization of the general
model of the secure speech communication system. The general model will serve to give
insight into what we have found to be a complex problem with many interdependent pa-
rameters.

Finally, section 7.5 will present the solutions to a variety of constrained and uncon-
strained optimizations with varying objectives in order to demonstrate the general behaviour
of the secure speech communication system as represented by our experiments. We will in-
clude two examples of practical system design problems and demonstrate the effectiveness

of the general model for developing secure systems.

7.2 Complexity Models

In this section we will define rudimentary models for the complexity of source, encryption,
and channel coders. These models are best considered as indicators of general trends rather
than as exact measurements.

The inclusion of complexity models adds a useful dimension to the study of secure
communications systems. In addition to the objective parameters of quality, bit rate, and
security, the complexity of a system realization is often a deciding factor in the design of
an integrated system. Often a system is constrained by complexity considerations such
as the maximum execution speed of a digital signal processor, the cost of implementing
a design in hardware, a limit on the area available to the speech processing units in a
integrated circuit design, or the need for real-time execution of an algorithm in software.
An acceptable solution to the secure system design problem must be sensitive to the issues

of cost represented by a complexity measure.
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7.2.1 Definition of Complexity

In many instances it is important to develop a precise definition of complexity before at-
tempting to evaluate it for a system implementation. Standard measures of complexity
include gate counts in integrated circuit realizations, operation counts such as the order
of operations estimates for entropy estimation presented in Appendix E, or measures of
the rate of operations required during execution such as MIPS counts (million instructions
per second). Less accurate may be estimates of complexity based on the time required to
execute a required function or component counts in a discrete physical implementation.

While a precise measurement of complexity is most desirable, for defining a complexity
function for the general system model we require only a measure of the relative performance.
We wish to develop estimates of relative complexity of the coders in each class of system
component. As a result of classifying the source, encryption, and channel coder complexities
separately, the measures need not be based on the same definition of complexity and we
are free to choose measures that are appropriate to each class of system component. This
simplifies the development of complexity estimates and allows the solution of the general
secure system model to be performed over three independent models of complexity.

In the following three sections we will present simple complexity models for the source,

encryption and channel coder components of the system.

7.2.2 Source Coder Complexities

Presented in table 7.1 is an estimate of the relative complexities of the 6 representative
source coders. These results are very approximate, and they are based on an evaluation of
three different types of complexity measures for the set of speech coders. The first type of
measure, presented in [19], was based on the relative number of gates required for hardware
implementations of the speech coders. The second measure was an estimate of the MIPS

count for each of the source coders as presented in [93]. Neither of the measures in [19]
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or (93] contained a reference to the simple DPCM coder included in our representative set.
For this reason, the third measurement type was based on our observations of the execution
times and sizes for the software implementations of the 6 source coders. The third measure
allowed an estimate of the relative complexity of the DPCM coder.

It should be stated that the results in [19] and [93] were considered to be very approxi-
mate, and hence our tabulated complexities must be viewed accordingly. Also included in

table 7.1 is a measure of the effective operational redundancy rate for each source coder.

Source Coder Relative Complexity | Redundancy (kbps)
64 kbps u-law PCM 1 41.7
32 kbps DPCM 2 13.6
24 kbps ADPCM 10 3.24
32 kbps ADPCM 10 11.6
40 kbps ADPCM 10 19.1
4.8 kbps CELP 1000 0.54

Table 7.1: Approximate Relative Complexity of Representative Speech Coders

7.2.3 Encryption Coder Complexities

The development of a model for the representative encryption coder complexities is uncom-
plicated because it includes only evaluations of the relative complexity of the Vernam cipher
and the four modes of the DES cipher.

The Vernam cipher has minimal complexity, and we will consider its only operation to be
the execution of an XOR function for each ciphertext bit produced. The four DES modes
have almost identical complexity, which is considerably higher than that of the Vernam
cipher. We can estimate the relative complexity of the basic DES block encryption by
observing the operations performed in a single round of the cipher. A single DES round
consists of 1 32 bit permutation and 1 32 to 48 bit expansion, a 48 bit shift operation for the
round key, 8 table substitutions to convert 6 bit inputs to 4 bit outputs, 1 32 bit XOR and
1 48 bit XOR. If we assume an efficient hardware implementation of the DES algorithm,
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such as those discussed in [94], [95], [96], [97], and [98], we can consider the permutation,
expansion, and bit shifting operations to be of minimal complexity. We conservatively
estimate each of these operations to have the same complexity as an XOR operation. The
table substitutions pose a more difficult problem for determining operations equivalence as
we must consider the implementation cost for the tables. We note that each substitution
box could be replaced with a combinational logic equivalent mapping 6 inputs to 4 outputs.
Such a circuit would contain roughly 6 x 4 = 24 gates, requiring a total of 192 gates to
implement the set of 8 substitution boxes. Based on these approximations, it is estimated
that a total of 3 + 192 4 32 448 = 275 XOR-equivalent operations are required per round.
The DES algorithm performs 16 rounds of these operations, leading to an estimated total
complexity of 4400 XOR equivalent operations to produce 64 bits of ciphertext in ECB
mode. Referring to the block diagrams of the CFB, CBC, and OFB ciphers in figures L.2,
L.3 and L.4, it can be seen that each of these algorithms requires an additional 64 bit XOR
operation to produce a ciphertext block.

Based on these estimates, and allowing for 64 XOR. operations in the Vernam cipher to
encrypt a block of the same size as the DES modes, we obtained the estimates of relative

complexity presented in table 7.2.

Encryption Coder | Relative Complexity
Vernam Cipher 1
DES ECB 69
DES CFB 70
DES CBC 70
DES OFB 70

Table 7.2: Approximate Relative Complexity of Representative Encryption Coders

In future work, it would be desirable to include a measure of the complexity required to
maintain cryptographic synchronization. As discussed in chapter 4 and in Appendix L, a
temporary loss of cryptographic synchronization causes complete distortion in the decoded
signal over a time period that is determined by the type of encryption algorithm. For highest
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security, it may be intended that there is no recovery in the event of suspected interference.
More robust implementations may be designed to re-synchronize whenever possible. The
cost of maintaining cryptographic synchronization is therefore dependent on the type of
encryption algorithm and the security objectives of the system designer.

7.2.4 Channel Coder Complexities

It is beyond the scope of this work to explore the characteristics of channel coders in detail.
This rich and complex subject requires considerable expertise and could not be adequately
represented by a cursory survey. In order to achieve a model of channel coder complexity
we must make many simplifications in our analysis of the relevant factors.

The most significant simplification is to conceive a model of source coder complexity as
a function of the bit error rate in the received transmission. We assume that an arbitrary
source coder operates under given channel conditions to produce a message stream at the
input to the encryption coder with a particular bit error rate. It is recognized that this
simplification does not consider the effects that the channel type may have on relative
channel coder performance. The interference statistics of a channel can determine the
optimal channel coder type, but these important characteristics will not be addressed in
this research.

We propose to represent the relative complexity of source coders as a non-increasing
function of the bit error rate in the message stream reaching the encryption coder. This
simple model identifies the likelihood that a channel coder operating on a given channel
must perform more complex operations to achieve reductions in the bit error rate.

As we have performed no detailed study of channel coder complexities, we can not justify
the choice of one model type over another, but for simplicity we will represent the channel
coder complexity as a linear function of BER.

Ce.c.(BER) = Cax ~ Camax - BER, (7.1)
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where Cyax > 0, and 0 < BER < 1.

Despite its lack of quantitative background, this simple model serves its purpose in the
formulation of a general model by indicating the requirement for an increase in complexity
with decreasing bit error rates. More specific data about source coder complexities under
the expected channel conditions, and an appropriate choice of weighting in the objective
function will improve the accuracy of this model.

7.3 Model Summary

Development of the quality, bit rate, security, and complexity models has suggested a degree
of interaction between these parameters that is dependent on the combination of specific
source, encryption, and channel coder characteristics. It is our goal to refine our observations
of interdependence between the parameters to create a clear and quantifiable relationship

that may be controlled to the benefit of the designer of the secure communication system.

7.3.1 Terminology
We must first present some common definitions for describing our terminology:

Definition 9 (Objective Parameters) The objective parameters are those system pa-
rameters of direct interest to the designer of an integrated secure communication system.
In this model of the secure system the objective parameters consist of the quality, bit rate,
security, and complezity measures of the system. Measurement of these parameters has been

the primary objective of our modelling work.

Definition 10 (Intermediate Parameters) The intermediate parameters are those quan-
tities measured in the development of the objective parameter models that were found to affect
the outcome of the objective parameter measurements. The intermediate parameters found
to have a significant effect in this research were redundancy, ciphertezt entropy, keyspace,

cipher mode, and bit error rate.
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Definition 11 (Controlling Parameters) The controlling parameters for our system have
been idealized to the choice of source, encryption, and channel coders. Through the selec-
tion of a particular combination of these three system components the designer may directly
determine the system complezity, and indirectly affect the remainder of the objective param-

eters.

7.3.2 Intermediate Parameters

In figure 7.1 we present a diagram indicating how the controlling parameters determine
the complexity measurements directly by the choice of particular source, encryption, and
channel coders, and indirectly affect the set of intermediate parameters.

The dotted arrows in figure 7.1 indicate the data path through the coder components,
while the solid arrows indicate the set of interrelationships noted among the objective and
intermediate parameters. These interrelationships were discovered in the development of the
objective parameter models. Here we will summarize our observations on the intermediate

parameters:

e Redundancy. The redundancy parameter was defined in equation (5.20) to be de-
termined by the rate of non-essential information remaining in the source coded bit
stream. As we will show in figure 7.2, this parameter was found to affect nearly all of

the objective parameters.

o Ciphertext Entropy. The ciphertext statistics are determined by both the source
and encryption coder characteristics. These statistics determined the level of cipher-

text entropy computed in chapter 6.

o Keyspace. The size of the keyspace is determined entirely by the design of the
encryption coder. This parameter was necessary for evaluating two of the theoretic

security models.



CHAPTER 7. FORMULATION OF A GENERAL MODEL 185

R Source e | Emcpyption  [oeeeeeeeeil Channel  }.- 7.,
""" Po Coder Coder Coder

Channel
Coder
Complexity

Bit
Error
Rate

[Block / Stream
Cipher Mode

© Objective Parameters

O Intermediate Parameters

Figure 7.1: Intermediate Parameter Relationships in the Secure System

e Block/Stream Cipher Mode. The type of encryption coder, whether block or
stream cipher design, affects the propagation of errors in the decrypted message pro-

cess and so affects the effective bit error rate percieved by the source coder.

e Bit Error Rate. In our idealized model of channel coders, the bit error rate is
determined by the error correcting capabilities of the channel coder. The encryption
device can transform single bit errors into block errors when in block cipher mode,

affecting the effective BER perceived by the source coder.
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7.3.3 Objective Parameters

In this section we will formally define all of the objective parameters in terms of the ap-
propriate intermediate parameters and the independent controlling parameters. This will
allow the formulation of an objective function for solution as an optimization problem.

The diagram of figure 7.2 indicates the significant relationships noted between the ob-
jective parameters as a function of the intermediate parameters. These relationships were
discovered in developing models of the objective parameters, and were described in detail
in chapters 4, 5, and 6. It is clear that the intermediate parameter of redundancy has a
significant impact on the performance of the entire secure communication system. We note
that 6 of the 8 objective parameters are in some way determined by the redundancy pa-
rameter. Only the encryption and source coder complexities are insensitive to redundancy.
This figure may be supplemented with the diagram of figure 7.1 for an overview of the
interdependencies noted in the integrated system.

In formulating the objective parameter functions we will use the intermediate parameter
of redundancy wherever possible as a replacement for the controlling source coder parameter.
This will make no significant change in our results as we may apply a direct mapping from
source coder to redundancy measure according to table 7.1. The substitution of redundancy
for source coder parameter allows a slightly simplified objective function where the objective
parameters of quality, bit rate, and security have been developed as functions of redundancy.
Similarly, we will use the intermediate BER parameter instead of a reference to the channel
coder as our research has not extended so far as to define an appropriate mapping function.

Summarized below are our observations on the objective parameters needed to define an
objective function for the general optimization problem. We will review the intermediate
parameters controlling each measure and define the functional notation for each objective

parameter as a function of the redundancy and BER parameters and the encryption coder
type.
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Figure 7.2: Major Parameter Relationships in the Secure System

Unicity Model

The unicity index model of equation (4.2) is defined in terms of the redundancy parameter

and the key entropy. As the key entropy is determined by the choice of encryption coder,
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we can define the unicity distance model for the objective function as, N,(D, E.C.), where
D is the redundancy rate in kbps and E.C. determines the encryption coder and the entropy
of the keyspace. This model has the form indicated in figure 6.11.

Encryption Efficiency Model

The efficiency index model of equation (4.7) is defined in terms of the intermediate param-
eters of ciphertext entropy and key entropy. It also contains a constant term representing
the source process entropy. The key entropy is determined by the choice of encryption
coder, while the ciphertext entropy is determined by both the encryption coder and the
redundancy, as indicated in figures 7.1 and 7.2. This leads to the definition of the efficiency
index model for the objective function as, £(D, E.C.), where D is the redundancy rate and
E.C. indicates the encryption coder type. This model is represented by the experimental
data presented in figure 6.13.

Encryption Quality Model

The encryption quality index model is defined in equation (4.8) in terms of the intermediate
parameters of ciphertext entropy and redundancy. It also contains a constant term repre-
senting the source process entropy. Similar to the efficiency index, we define the quality
index model for the objective function as, @(D, E.C.), where D is the redundancy rate and
E.C. indicates the encryption coder type. This model is represented by the experimental
data presented in figures 6.15 and 6.16.

Bit Rate Models

A model of the bit rate as a function of redundancy was derived in chapter 5. The model
was based on a linear model of divergence computed from experimental measures, and
a theoretical bound for redundancy. Redundancy as a function of bit rate is defined by
equation (5.20). We will define the bit rate model for the objective function as R(D), where
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D is the redundancy rate. The corresponding bit rate model is represented in figure 5.16

as a function of redundancy.

Quality Models

The data necessary for defining a quality model for the objective function was summarized
in figures 5.5, 5.9 and 5.10. These models present objective quality measures as a function
of the source coder type, encryption coder mode, and bit error rate. We can perform a
mapping from the source coder types to redundancy measures using the observed redun-
dancies summarized in table 7.1. This allows a similar presentation of all security, bit rate
and quality models in terms of the intermediate redundancy parameter.

Figures 7.3 and 7.4 summarize the segmental-SNR measures computed in chapter 5 as
a function of the source coder and bit error rate. The additional intermediate parameter of
encryption mode differentiates the results observed under 64 bit block encryption in figure
7.3 from the results obtained under stream cipher encryption in figure 7.4.

Segmental SNR (dB)

1e-06

40K ADPCM
a2k AD Po'\é4l( ADPCM

CELP 0.01 BER
Source Coder

Figure 7.3: Objective Quality Measures under 64 Bit Block Encryption
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Figure 7.4: Objective Quality Measures under Stream Encryption

In figure 7.5 we present a summary of the objective quality data as a function of redun-
dancy and bit error rates under 64 bit block encryption. In figure 7.6 we present a similar
summary under stream cipher encryption conditions. Four different views of the models are
presented in each figure to allow a more detailed examination of the surface features.

Figures 7.5 and 7.6 will comprise our models of objective speech quality as a function of
three parameters: redundancy, encryption mode, and bit error rate. We define the quality
model for the objective function as SegSNR(D, E.C., BER), where D is the redundancy
rate, E.C. indicates the encryption coder type, and BER indicates the bit error rate at the

input to the encryption coder.

Source Coder Complexity

The source coder complexity function can be represented by the approximate relative com-
plexities for the representative source coders tabulated in table 7.1. We choose to map the

set of source coders to the appropriate redundancy measures using the redundancy mea-
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Figure 7.5: Redundancy Dependent Objective Quality Measures under 64 Bit Block En-
cryption
sures also summarized in table 7.1. We define the source coder complexity for the objective

function as Cg ¢ (D), where D is the redundancy rate.

Encryption Coder Complexity

The encryption coder complexity was found to be purely dependent on the choice of en-
cryption coder. Tabulated in table 7.2 are the relative complexities of the representative
encryption coders used in this research. The encryption coder complexity will be defined
for the objective function as Cgc (E.C.), to indicate the dependence on the controlling

parameter.

Channel Coder Complexity

Our simplified model of channel coder complexity was defined by equation (7.1) to be a
linear function of the bit error rate experienced at the encryption coder. This function was
defined as Cc ¢ (BER), where BER represents the bit error rate.
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Figure 7.6: Redundancy Dependent Objective Quality Measures under Stream Encryption

7.4 Optimization Problem Formulation

The functional definitions presented in section 7.3.3 lead to the development of an objective
function for the integrated secure speech communication system. We define the optimization
problem over the parameters of redundancy, encryption coder, and bit error rate. We wish

to perform a maximization of the objective function, I, as follows,

ey I=v&(D,EC)+1.2(D,E.C)

—ysR(D

7R(D) (7.2)
+v4SegSNR(D,E.C., BER)
— ¥5Cs.c.(D) — 16Ce.c.(E.C.) — v7€c.c.(BER),

s.t. ®(D,E.C,BER) satisfied,

where 7; > 0, i =1...7. The expression $(D, E.C., BER) denotes a set of constraints
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on the system parameters. The unicity index has been omitted from the objective function
because, as demonstrated in equation (4.9), it may be described in terms of the encryp-
tion quality and efficiency indices. We have chosen to describe the optimization problem
using the distinct security indices of quality and efficiency, so it would not be appropriate
to include another security function that could be derived from these indices. It is felt
that these two measures are relevant to describing the security characteristics of a system,
and have the added advantage of having been derived from experimental measures on the
representative coders.

The objective function positively weights the security indices and the segmental-SNR
quality madel and negatively weights the bit rate and complexity models. This functional
description acknowledges the general design goals for a secure communication system, which
are to achieve high security and objective quality measures at a low cost in transmitted bit
rate and coder complexity. Defining the objective function in this manner allows all of the
weighting factors, v;, to be positive.

The optimal solution to this problem depends on the constraints, $(D,E.C., BER),
that may exist on each of the system parameters, and the secure system designer’s choice of
weighting factors, v;. The weighting factors indicate the relative importance of each compo-
nent in the secure system model and also serve to normalize the magnitude of the underly-
ing measures so that parameters expressed in units of large magnitude do not “swamp” the
features of smaller scale parameters. The general model has been defined as a linear com-
bination of objective models. This requires that each parameter behave in a linear fashion
as a function of the independent parameters. For models exhibiting non-linear behaviour it
is necessary to include a linearizing function to ensure that normalization will be effective.

The constraints on the system design may consist of factors beyond the designer’s con-
trol or may indicate desired bounds on performance. Examples of constraints on system

parameters include the following,
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1. Bit Rate Limit R(D) < Rnax. The secure communication system may be designed
for a limited bandwidth environment. Given a maximum sustainable bit rate for the
channel, the designer may need to constrain the source coder bit rate to a lower rate.
One factor not considered in the model is the bit rate expansion caused by the channel
coding operations. Allowance for this expansion must be considered in determining a
maximum coder bit rate. In the future, it would be desirable to include a parameter

describing channel coder bit rate expansion in the objective function.

2. Objective Quality Bounds Sy;, < SegSNR(D,E.C.,BER) < Spyax. The
designer may have a requirement for a minimum level of objective quality, say Sp,i, dB.
It may also be considered acceptable to provide service below some maximum quality
level so the designer may seek to obtain more flexibility in the design by limiting the
requirement on objective quality to S, dB.

3. Security Requirements &(D,E.C.) >e, @Q(D,E.C.) > q. The designer may
define certain minimum encryption security requirements. An example may be to
provide at least the level of encryption quality afforded by the DES ECB mode cipher
and a higher level of encryption efficiency. It would be desirable to extend the number
of representative encryption algorithms to include the ciphers discussed in section
6.2. We may also wish to indicate the desired type of cryptographic synchronization

protocol. These options remain objectives for future research.

4. Complexity Limits Cs.c.(D)+Cg.c.(E.C.)+Cc.c.(BER) < Crax- The combina-
tion of source, encryption, and channel coders may be subject to a maximum feasible

complexity, or individual coders may be constrained separately.

A set of constraints, (D, E.C., BER), which must be satisfied in solving the optimiza-

tion problem will consist of some subset of these examples.
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7.5 Optimization Problem Solutions

In this section we will evaluate the optimization problem for a variety of design constraints
and objectives. We will first examine the effects that the relative weighting assigned to each
parameter may have on the unconstrained system. We will then present examples of the
same effects under some chosen constraints. Finally, we will define two design problems that
are representative of the sort faced by secure speech system designers and present solutions
to the design problems based on the general model.

To solve the optimization problem we must convert it to a simpler single-mode form.
This may be accomplished by evaluating the objective function, I, over the space defined by
all of our representative source, encryption, and channel coders. Specifically, we compute
each of the 7 parameters measures in the objective function at specific points in the space
consisting of 6 source coders, 5 encryption coders, and 6 bit error rate channel conditions,
or over a subset of that space as defined by the constraint condition ®(D,E.C., BER).
In development of the objective parameter models we have either compiled experimental
measurements at each of the required points, or derived an algebraic model that may be
evaluated at the points. In this simplification the optimal system is considered to be the

source, encryption, and channel coder combination which yields the largest value of I.

7.5.1 Objective Model Weightings

In defining the objective function, I, of equation (7.2) we described the quantities, v;, as
factors for normalizing the models and for indicating the relative importance of each model

to the system solution. We can distinguish these two factors by defining,
Yi=wiey, 1=1...7,

where a; is the normalizing factor and w; is the weighting factor for the parameter.

The weighting factors, w;, are determined by the system designer’s objectives, while the
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normalizing factors are uniquely determined by the average value of the objective parameter
over the subset of points defined for the optimization problem.
For an objective parameter, P;(D, E.C., BER), the normalizing factor is,

1

®u= E [P{D,E.C, BER)]’
{D'.E.C,BER'}

(7.3)

where {D’, E.C., BER'} represents the subset of points permitted in the optimization under
the constraints indicated by $(D,E.C., BER).

We note that the method defined for parameter normalization is adaptive, depending
on the design constraints. Normalizing over a subset may result in a greater sensitivity
to variations in the objective parameters. This is likely to occur for objective parameters
where some of the points in the unconstrained set are significantly higher or lower than
the remainder of the set. Normalization in these unconstrained cases is correct in that the
average measure in a normalized objective parameter set is comparable to that of the all
other parameter sets, but small-scale variations in a set may become insignificant to the
objective function. Normalization in a constrained case may yield significant variations
in optimal results when the constraints exclude points that vary significantly from the
remainder of the parameter observations. This is a desirable characteristic for an accurate
optimization solution.

Normalization was performed according to equation (7.3) for all optimizations performed
on the general model.

7.5.2 Unconstrained General Optimization Problem Solutions

Due to the multidimensional problem definition and variable weightings that may be applied
to each parameter in the model, there are an enormous number of possible solutions to the
optimization problem.

To characterize the behaviour of the general model we present here a summary of the
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solutions obtained in an unconstrained problem definition when one choice of parameter
weighting is varied while the rest remain constant. Presented in table 7.3 is a summary
indicating the parameter studied, and the optimal problem solution obtained for various
ranges of the parameter weighting, w;. Weights were assigned relative to a unit weight for

the fixed parameters.

Objective Parameter | Relative Weight w; Optimal System
Objective [0.00, 0.71] {24K ADPCM, ECB, 10-°}
Quality [0.72, 10.0] {PCM, ECB, 0}
[0.00, 1.56] {PCM, ECB, 0}
Bit Rate [1.57, 4.92] {24K ADPCM, ECB, 10~}
[4.94, 10.0] {CELP, ECB, 0}
Encryption [0.00, 0.04] {24K ADPCM, Vernam, 10~}
Efficiency [0.04, 10.0] {PCM, ECB, 0}
Encryption [0.00, 1.65] {PCM, ECB, 0}
Quality [1.67, 10.0] {CELP, ECB, 0}
Source Coder [0.00, 0.47] {CELP, ECB, 0}
Complexity [0.49, 99.9] {PCM, ECB, 0}
) [0.00, 0.02] {PCM, CFB, 0}
E‘“’m’“‘;“ Coder [0.03, 1.90] {PCM, ECB, 0}
Complexity [1.91, 10.0] {24K ADPCM, Vernam, 10~}
Channel Coder [0.0, 210] {PCM, ECB, 0}
Complexity [211, 500] {24K ADPCM, Vernam, 102}

Table 7.3: Optimal Solutions for Unconstrained Problem Definitions

The optimal solutions generated by the model consist of a choice of source coder, encryp-
tion coder, and channel bit error rate. The existence of a unique mapping from redundancy
to source coder in table 7.1 allows us to interpret the optimal solution for redundancy as
a unique source coder. These solutions are consistent with the definition of the objective
function in equation (7.2) where optimization is performed over the space defined by the
representative source and encryption coders and simulated channel conditions.

The results of table 7.3 reveal many of the expected characteristics for the general
optimization problem. We can summarize our observations on the effect of each objective

parameter in the general model as follows,
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e Objective Quality. There are two modes of operation recommended by the uncon-
strained model. When quality is considered relatively unimportant, the best system
includes the lower quality 24 kbps ADPCM coder and allows a BER of 10~5. Higher
relative quality objectives yield an optimal system recommendation of highest quality
64 kbps p-law PCM and no bit errors.

o Bit Rate. The unconstrained model indicated three solutions over a range of weight-
ings. At a low relative bit rate weighting, when the cost of bandwidth is not important
to the designer, the 64 kbps y-law PCM coder was recommended. Higher relative
weightings reduced the system bandwidth, first to the 24 kbps ADPCM coder, and
finally to 4.8 kbps CELP coding.

o Encryption Efficiency. These results indicated the effect that the relative impor-
tance attached to encryption efficiency had on the recommended system. The low
weight range recommended a 24 kbps ADPCM coder and the perfect, but inefficient,
cryptographic protection of the Vernam cipher. Higher weightings quickly discounted

Vernam ciphers and recommended the more efficient ECB mode DES cipher.

o Encryption Quality. When the level of cryptographic protection required in the
system was unimportant, the model allowed PCM encoding and an ECB mode ci-
pher. It is interesting to note that higher encryption quality weightings resulted in a
transition in the source coder type, but not in the encryption coder type. In this case
we can explain the transition by noting that the ciphertext entropy results measured
for CELP coded speech were equally good for all encryption coders, and considerably
better than the results for PCM coded speech. There were additional factors in the
general model that contributed to the choice of ECB mode rather than another cipher

type.

e Source Coder Complexity. Optimal solutions included CELP coding when the
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cost of coder implementation was deemed unimportant. A higher cost sensitivity

causes the transition to the low complexity PCM format.

e Encryption Coder Complexity. The DES CFB mode attains preferred status
when encryption coder complexity is deemed unimportant by the system designer.
Higher cost sensitivities result first in a recommendation for the slightly less complex
ECB mode, and finally require the minimal complexity Vernam cipher. It is interesting
that the transition to Vernam encryption is accompanied with a recommendation to
use 24 kbps ADPCM source coding instead of PCM. In this case, the lower redundancy
in 24 kbps ADPCM contributes sufficiently to higher evaluations of the bit rate and

encryption quality models to compensate for the increase in source coder complexity.

o Channel Coder Complexity. As may be expected, an increased weighting on the
cost function for the channel coder results in an increase from a recommended zero bit
error rate to a rate of 10~ for an optimal system implementation. Another interesting
result is revealed by the recommended reduction in bit rate to 24 kbps ADPCM and
a change to the Vernam stream cipher from the 64 bit DES ECB block cipher. This
transition was motivated by the higher objective quality measures obtained by stream

ciphers, compared to block ciphers, under noisy channel conditions.

Clearly, the dependencies in the model are complex and non-linear and result in optimal
system solutions that could not be predicted by simple observations. We note that often
factors other than the primary weighting contributed to the choice of one coder over another
in table 7.3.

The solutions to the unconstrained optimization problem include only 3 of the 6 possible
source coders, 3 of the 5 encryption coders, and 3 of the 6 possible channel coders represented
by bit error rates. The results should not imply that these are the only solutions to the
problem. These are simply the most attractive solutions over the unconstrained set of

coders. In section 7.5.3 we will observe the presence of many other coders in the optimal
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solution when constraints are added to the objective function.

7.5.3 Constrained General Optimization Problem Solutions

Under constrained operational conditions we observed coders in the optimal solutions that
were not selected under unconstrained conditions. This was caused by the exclusion of
some previously attractive systems by the constraint conditions, and the effect of new
normalization factors on the measures remaining in the subset of possible solutions.

We wish to demonstrate how the addition of constraints affects the set of optimal solu-

tions presented in table 7.3. We define a sample constraint to be,

$(D,E.C.,BER) = {R(D) < 40 kbps, E.C.# ECB}.

This immediate effect of this constraint is to exclude the u-law PCM source coder and the
DES ECB mode cipher from the solution set.

To characterize the behaviour of the general model under this constraint we computed
optimal solutions over the same range of relative parameter weightings used for the uncon-
strained results of table 7.3. These constrained results are presented in table 7.4.

We note that the addition of constraints to the problem produced a variety of new
solutions. Adding constraints that excluded two of the more common optimal solution
components, PCM and ECB coding, increased the number of alternative systems suggested
by the model. The constrained system recommended CELP, DPCM, 24K, 32K, and 40K
ADPCM source coders, and each of the CFB, CBC, OFB and Vernam ciphers.

Given the large number of variables and potential constraint conditions, it is clear that
any of the source, encryption, and channel coding solutions may be obtained by solution
of the appropriate optimization problem. Even the simple DPCM coder, which is cleatly

inferior in quality for a given bit rate, was obtained in an optimal solution.
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Objective Parameter | Relative Weight w; Optimal System
Objective [0.00,0.73] {24K ADPCM, CBC, 10~%}
ol [0.74, 0.83] {32K ADPCM, CBC, 0}
Quality [0.84, 10.0] {40K ADPCM, OFB, 10~°} |
[0.00, 1.23] {40K ADPCM, OFB, 10~%} |
Bit Rate [1.24, 1.93] {32K ADPCM, CBC, 0}
[1.94, 4.00] {24K ADPCM, CBC, 10~5}
[4.01, 10.0] {CELP, CFB, 0}
Encryption [0.00, 0.15] {24K ADPCM, Vernam, 10~°} |
Efficiency [0.16, 10.0] {40K ADPCM, OFB, 10~%}
Encryption [0.00, 1.65] {40K ADPCM, OFB, 10~}
Quality [1.67, 10.0 {CELP, CFB, 0}
Source Coder [0.00, 0.47] {CELP, CFB, 0}
Complexity [0.49, 37.0] {40K ADPCM, CFB, 10-¢}
(38.0, 99.9] {DPCM, CBC, 0}
Encryption Coder [0.00, 1.85] {40K ADPCM, OFB, 10~%}
Complexity [1.87, 10.0] {24K ADPCM, Vernam, 10—}
Channel Coder [0.0, 230] {40K ADPCM, OFB, 10-5}
Complexity (231, 500] {24K ADPCM, Vernam, 10~2%}

7.5.4 Practical Secure System Design Examples

We wish to demonstrate the use of the general model and objective function for designing
optimal secure communication systems. We present here two examples where we utilize the

general model to obtain an optimal solution to a constrained system design problem.

Example 1

A system designer has a requirement to build a secure communication system in a con-
strained environment. Specifically, the designer is concerned with the complexity of the
integrated system as it must be implemented in a very small area as part of a larger IC de-
sign. The communications channel available to the system is capable of supporting up to a
maximum of 40 kbps. The designer, being aware of the risks inherent in electronic codebook

mode encryption, requires an encryption quality greater than that offered by ECB mode
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DES. In addition, key management costs are a consideration in the overall design. The key
management system can tolerate relatively long keys, but is not sufficient for supplying the
bandwidth required for Vernam ciphers.

This problem statement defines the constraints required for objective function formula-
tion, and implies a set of weighting criteria for the objective parameters. The statements

regarding bit rate, encryption quality and efficiency describe the following constraints,

$(D, E.C., BER) = {R(D) < 40 kbps,
Q(D,E.C)) > Q(D,ECB),
£(D,E.C) > 0}.

The problem description implies that the complexity parameters are of the greatest
importance in the design. No mention is made of the level of quality expected in the design,
so we will assume this is of only medium importance. It also appears that as long as the
constraints are satisfied, the designer will be content with any level of bit rate, encryption
efficiency and encryption quality. We can assign these remaining parameters relatively low
weightings.

Weights were assigned to the objective parameters according to the preferences indicated
above. Two schemes for the assignment of relative weightings were explored. The weightings
of the high, medium, and low importance groupings in the two schemes were assigned as

shown in table 7.5,

Relative Relative Weight
Importance | Scheme 1 | Scheme 2
High 5 10
Medium 1 1

Low 0.5 0.1

Table 7.5: Alternate Weighting Schemes

Under both weighting schemes the optimal system recommendation was for a 40 kbps
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ADPCM source coder, an output feedback mode DES cipher, and a channel coder yielding
a bit error rate of 1076,

The sensitivity of both schemes to variations in the relative parameter weightings was
examined to confirm the choice of system. Under the first weighting scheme, variations in
the relative weightings of each importance grouping indicated a very stable optimal solution.
The results, summarized in table 7.6, indicate no recommended change in optimal system,

except when the low-importance parameters were disregarded completely.

Importance Group | Relative Weight w; Optimal System
Low [0.00, 0.00] {40K ADPCM, CFB, 10-°}
[0.01, 1.00] {40K ADPCM, OFB, 10~%}
Medium [0.50, 5.00] {40K ADPCM, OFB, 10-°}
High [1.00, 10.0] {40K ADPCM, OFB, 10-°}

Table 7.6: Sensitivity Analysis of Example 1 with Scheme 1 Weightings

The second weighting scheme was found to be almost equally stable, except for a tran-
sition to DPCM coders when the weighting on the medium importance parameters was
reduced to the level of the low importance parameters. These results are summarized in

table 7.7.

Importance Group | Relative Weight w; Optimal System
Low [0.00, 0.00] {40K ADPCM, CFB, 10~°}
[0.01, 1.00] {40K ADPCM, OFB, 10-6}

. [0.00, 0.22] {DPCM, CBC, 0}
Medium 0.23,10.0] | {40K ADPCM, OFB, 10-}
High [1.00, 20.0] {40K ADPCM, OFB, 10~°}

Table 7.7: Sensitivity Analysis of Example 1 with Scheme 2 Weightings

We conclude that the constraints and weightings defined for this problem lead to a
relatively stable optimal solution. The designer may implement the recommended system
with confidence that it will achieve the optimal performance for the stated objectives and

conditions.
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Example 2

The secure system designer’s first project was so successful that he was asked to produce
another integrated system, this time as a discrete IC device. Given the entire chip area to
work with, the complexity of the secure system is no longer important to the designer and
he believes he can support any of the possible coder combinations contained in the general
model. The new design is intended to support communications quality speech at a maximum
rate of 32 kbps, but would be more favourably received if it could operate with a lower
bandwidth. The designer’s security objectives and the key management structure remain
the same as in the first design, so he will apply the same constraints to the new system
formulation. Allowing a segmental-SNR measurement of 20 dB to define the minimum
acceptable speech quality level, we may describe the set of constraints as follows,

&(D, E.C.,BER) = {R(D) < 32 kbps,
Q(D,E.C.) > Q(D,ECB),
£(D,E.C.) >0,
SegSNR(D,E.C.,BER) > 20 dB}.

The designer’s objective being to provide high quality speech, we will consider this
parameter to be of relatively high importance and weight it accordingly. The bit rate
required for the system is a consideration in this design so we will also give the bit rate
parameter high importance in our weighting schemes. The large chip surface available to the
designer suggests that complexity is not an issue so we will give the complexity parameters
low relative weightings. The remaining encryption quality and security parameters are
considered of medium importance.

Unfortunately for the system designer, there were no solutions to the general model

under the indicated constraints. This definition of the problem yielded no valid solutions
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to the model for either of the two relative weighting schemes summarized in table 7.5.
Closer examination of the problem revealed that the primary conflict was between the bit
rate constraint and the minimum quality constraint. Since both of these parameters were
considered of high importance by the designer, the choice of an alternate relative weighting
scheme could not alleviate the conflict.

This analysis resulted in the designer’s decision to re-evaluate and refine his design goal
using results from the general model. The designer found he had two options, the first was
to reduce the minimum acceptable segmental-SNR level, and the second was to increase
the allowable bandwidth of the system. The designer found that valid solutions could be
obtained by reducing the minimum acceptable segmental-SNR level from 20 dB to 19.8 dB,
or by increasing the bandwidth of the system to 40 kbps. In consultation with the project
manager it was decided that the small degradation in signal quality would be preferable to
the relatively large increase in bandwidth required for the other solution.

A sensitivity analysis was performed on the model under the refined constraints for both
of the relative weighting schemes. The results obtained under weighting scheme 1, presented
in table 7.8, and the results under scheme 2, presented in table 7.9, reveal a highly stable
optimal solution consisting of a 32 kbps ADPCM source coder, a cipher block chaining
mode DES cipher, and a channel coder capable of providing perfect transmission.

Importance Group | Relative Weight w; Optimal System
Low [0.00, 1.00] {32K ADPCM, CBC, 0}
Medium 0.50, 5.00] {32K ADPCM, CBC, 0}
High [1.00, 10.0] {32K ADPCM, CBC, 0}

Table 7.8: Sensitivity Analysis of Example 2 with Scheme 1 Weightings

Importance Group | Relative Weight w; Optimal System
Low 0.00, 1.00] {32K ADPCM, CBC, 0}
Medium 0.00, 10.0] {32K ADPCM, CBC, 0}
High [1.00, 20.0] {32K ADPCM, CBC, 0}

Table 7.9: Sensitivity Analysis of Example 2 with Scheme 2 Weightings
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This second example demonstrates how the general model can be a valuable tool for
developing secure communications systems. It allows decisions on the refinement of system
objectives and constraints to be based on the quantifiable results provided by the general
model.

7.6 Observations on the General Model

Most of the parameters comprising the general model were developed by means of experi-
mental measures performed on representative sets of coders. An exception, the complexity
parameters, were developed using a variety of approximation techniques and general obser-
vations. The accuracy of the general model could be improved by several means. The first
improvement would be to increase the representative coder sets to include a wider variety
of coders. This would reduce the granularity of observations in the regions of interest to
the system designer.

If, for instance, the designer could obtain quality and redundancy measures for a source
coder not included in the representative set, these could supplement the quality and bit rate
models. If the suite of ciphertext entropy measures could not be performed for this coder,
the designer could still obtain approximate measures by interpolating the security models
at the level of redundancy measured for the new source coder.

An additional improvement would be to increase the accuracy of each of the parameter
models contained in the general model. The manner in which this could be accomplished is
dependent on the nature of the individual measurements. The objective quality measures
may be improved slightly by additional measurements, but would benefit most from a
more specific description of the channel conditions. As was noted in chapters 5 and 6,
the bit rate and security models could be improved by higher order probability measures
on the underlying processes. As we have already noted in section 7.2, the complexity
models, particularly the channel coder model, would all benefit from a more sophisticated
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development.

The general model is an effective tool for exploring the design alternatives in a con-
strained secure communication environment, despite the opportunity for increasing its ac-
curacy by additional experiments. The data contained in the models is as accurate as it was
feasible to compute, and is truly indicative of the behaviour of the alternatives subjected to
study. Our choice of representative coders spanned a broad range of interest, so the results
contained in the model will represent approximate solutions that are relevant to a variety

of specific system implementations.



Chapter 8

Contributions, Conclusions, and

Future Research

8.1 Contributions

In chapter 2 we presented a method for high order conditional entropy estimation. This
technique allows the calculation of conditional entropy measures that are infeasibly complex
for the conventional direct calculation method. The method has the additional advantage
of being partitionable in time and across multiple processing units.

In addition to the estimation algorithm, we identified opportunities for increased effi-
ciencies in its application to real source processes. An adaptive sequential Monte Carlo
sampling algorithm was presented as an efficient method of obtaining estimates of various
information measures for a variety of source processes.

While the description of the entropy estimation algorithm is, in our view, quite straight-
forward, application of the algorithm to a large entropy estimation problem was found to be
a challenging task. In chapter 3 we presented the results of our experimental work towards
an estimate of the entropy rate of the speech process. The results of chapter 3 included

208
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measures of the first to sixth order conditional entropy, studies of the convergence proper-
ties of these measures, and the development of conditional entropy surfaces for all model
orders. All of the experimental PCE data computed in this study has been retained and
can be applied in future studies to increase the accuracy and reduce the computational cost
of additional conditional entropy measurements.

Applying non-linear regression analysis to fit an appropriate model to the first to sixth
order conditional entropy measurements, we obtained an estimate of the entropy rate of the
speech process to be 22.3 kbps 1 7 kbps with 95% confidence.

In chapter 4 we presented an argument for the development of theoretic measures of
the security of encryption systems and proposed two unique indices for use in the general
model of the secure speech system. We also defined in Proposition 2 a set of design criteria
for cryptosystems to ensure the relevance of the theoretic measures.

Chapter 5 presented models of objective quality and bit rate as a function of parameters
under the control of a secure system designer. We examined the segmental-SNR performance
of a class of representative source coders under a variety of channel conditions. Of particular
importance to the general model was the development of measures of the impact of channel
errors under cryptographic conditions.

In developing a model of bit rate we computed measures based on the informational
divergence in the coded speech process. These studies resulted in a well-supported analytic
model relating bit rate to the level of redundancy in the source coded signal.

In chapter 6 we defined a small set of representative encryption techniques meeting
Proposition 2 and performed experiments to evaluate the theoretic security indices. This
work combined the results of our entropy estimation work and redundancy modelling to
produce experimental models of cryptographic security.

In chapter 7 we defined rudimentary models for the complexity of source, encryption,
and channel coders. These simple models added an essential dimension in the analysis of

secure communications systems.
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Finally, we combined the models of objective speech quality, bit rate, security, and
complexity to define a general model of the secure communication system. Chapter 7
outlined the sets of objective, intermediate, and controlling parameters in the system and
indicated the general interrelationships between them. We then formulated an optimization
problem for secure system evaluation based on a general constrained objective function over
the parameters of redundancy, encryption, and bit error rate.

Due to its non-linearity and high dimensionality, it is difficult to observe all facets of
the resulting model. We performed studies of the sensitivity of the model to changes in the
design objectives and constraints in order to demonstrate its general characteristics. We
then demonstrated the use of the model with two examples where the model was applied

to determine an optimal secure communication solution under typical design constraints.

8.2 Conclusions

The entropy estimation work presented in chapters 2 and 3 revealed some general character-
istics of the estimation technique. Qur experimental work found the high order conditional
entropy surfaces to be relatively smooth and highly peaked around the mean of the process.
This form of entropy surface was particularly suitable to efficient sampling and interpolation
by the Monte Carlo selection procedure, allowing a good estimate of the entropy rate to be
computed from a relatively small number of PCE measures.

In general, we found characterizing the shape of the entropy surface to be a critical step
in efficient entropy estimation. A clear understanding of the entropy surface of a process
would allow a better a priori sampling distribution and increase the accuracy and efficiency
of the entropy estimate.

The experimental work performed in chapter 5 revealed a complex and non-linear rela-
tionship between the objective quality measure and the parameters of redundancy, bit error

rate, and encryption coder type. The experimental results determined under noiseless con-
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ditions indicated a linear relationship between bit rate and quality. Under noisy encrypted
conditions, however, the relative quality obtained by the representative coders was found to
exhibit more complex characteristics that were best represented by the sample observations
alone. This research clearly indicated the non-trivial nature of secure system design as it
related to the quality measure.

The model of bit rate as a function of redundancy, also presented in chapter 5, was found
to conform to the theoretic bounds on performance and to meet our intuitive expectations.
We noted that the data supporting the operational rate-redundancy function of equation
(5.20) could be improved by computing higher order divergence measures.

In developing the experimental models of cryptographic security in chapter 6 we discov-
ered the characteristics of encrypted speech to differ significantly from unencrypted speech.
Due to the randomizing effects of encryption, modelling ciphertext entropy was found to be
a difficult activity. A significant increase in the required state-space for a ciphertext entropy
calculation made it necessary to employ the entropy estimation technique at a lower model
order and to supply much larger volumes of sample data than were required for unencrypted
speech. We noted that these difficulties could be addressed with an increase in the time
and storage available for the experiments.

It was difficult to distinguish the security results of the representative encryption coders
on the basis of third order entropy measures. Higher order measures would reveal larger
variations between the coders and improve the accuracy of the security components in the
general model.

Most of the parameters comprising the general model were developed by means of exper-
imental measures performed on representative sets of coders. An exception, the complexity
parameters, were developed using a variety of approximation techniques and general obser-
vations. We could improve the accuracy and relevance of the general model by increasing
the representative coder sets to include a wider variety of coders. This would reduce the

granularity of observations in the regions of interest to the system designer.
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The general model is an effective tool for exploring the design alternatives in a con-
strained secure communication environment, despite the opportunity for increasing its ac-
curacy by additional experiments. The data contained in the models is as accurate as it was
feasible to compute, and is truly indicative of the behaviour of the alternatives subjected to
study. Our choice of representative coders spanned a broad range of interest, so the results
contained in the model will represent approximate solutions that are relevant to a variety
of specific system implementations.

While the modelling methodology and entropy estimation algorithms were applied in
this research to the specific case of a secure speech communication system, they may also
be applied to a wider class of sources possessing high levels of redundancy, including video
and facsimile signals.

8.3 Future Research Topics

There were a number of topics identified as being of interest for further research. Some of

the major topics are noted below,

o In developing estimates of the probability distributions of the speech process we en-
countered a variety of difficulties due to the large volume of speech data being pro-
cessed and the long execution times required of our experiments. These problems
precluded a constant and maximal sample size for the speech process under study.
The following are a few areas in our experimental work where we noted the oppor-
tunity for improvements that would enhance the accuracy and confidence interval of
the predicted entropy rate,

1. More accurate measures of the conditional entropy of the speech process could
be obtained by computing all PCE vectors from a single large sample set. A

larger sample set would improve the convergence of PCE vectors outside the
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more probable regions, and a constant sample set size would eliminate the need
to normalize the PCE measures with the set of computed convergence surfaces.
This procedure would require the use of larger, and more reliable, computing
facilities than were available for our initial prediction.

Were this not feasible, we could still increase the accuracy of our results by im-
proving the resolution of the set of convergence surfaces. This could be achieved
by expanding the set of convergence measures to include a larger number of
points over the calculation space. This process is feasible with the available com-
puting resources and simply requires the expenditure of a greater amount of time

to collect the convergence data.

The accuracy of the entropy measure could also be improved by including more
PCE vectors on the entropy surface. A larger number of PCE vectors would
directly improve accuracy by providing a higher resolution set of measures for

interpolating the complete entropy surface.

e We have noted that the Kullback-Leibler distance measures used to develop the op-

erational rate-redundancy function could not be computed to as high a model order

as might be desired. As a result, significant differences in the original and distorted

waveforms may not have been detected by our measures, and the divergence rate

measures of figure 5.15 may be quite conservative.

It would be desirable to obtain fourth, fifth, and sixth order divergence measures in

order to verify the lower-order results and more accurately measure the divergence of

the CELP coder. In future work it should be possible to extend the divergence measure

to higher model orders using a modified form of the entropy estimation technique

presented in chapter 2. The estimation procedure could be modified by partitioning

the generalized Kullback-Leibler distance measure into independent partial divergence
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measures,
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Selecting the vectors 27,; € X™~7 by a Monte Carlo procedure, we can compile a
set of partial divergence measures with which to interpolate the complete nth order

divergence surface.

e In the future it would be desirable to extend the order of the conditional entropy
calculation applied to the security models. Higher order measures could be obtained
by applying the entropy estimation technique to a much larger source coded database.
There is no theoretical impediment to these calculations, but many of the practical

problems of managing this large experimental effort would have to be addressed.

e In future work, it would be desirable to examine in detail the effects of maintaining
cryptographic synchronization on the model parameters. The cryptographic synchro-
nization protocol may be designed with a variety of security objectives, ranging from a
non-recovering high-security model to a robust self-synchronizing type. These choices

affect the parameters of complexity, objective quality, bit rate, and security.

e Finally, a more sophisticated treatment of the complexity models, particularly for
channel coders, would expand the abilities of the general model. Many of the charac-
teristics related to the channel were idealized in our work. More accurate models of
channel error rates and distributions, message expansion, and delay would contribute

greatly to the general system model.



Appendix A

Theoretic Entropy Rate of the

Speech Process

Theorem 1 (Shannon-McMillan-Breiman theorem) For stationary ergodic processes,
%logp(Xo, D Y nli)xgo E[—logp(Xa|X3™1)] = H with probability 1.

Proof: Algoet and Cover demonstrated in [99] a proof of the theorem by sandwiching the
non-ergodic sequence p(X;[Xc‘;-l) between the closely related ergodic quantities p(X,-lX:::zl

and p(X;|X*_1). These more tractable quantities define two measures of interest,

Hl = E[— logp(xllxl-h sy Xo)]
= E[-logp(Xo[X-1,.-.,X~1)] by stationarity,

an upper bound on the entropy rate and,

H®*® = E[—- logp(-XOIX—lr .. ’)]1
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a lower bound.

Using Levy’s martingale convergence theorem for conditional probabilities it was shown

that
: i _ i -1 -1
Jim B = ,1_‘,'{,1,,3[“36;1’(‘%"‘-1)1081’(’0"‘—1]
= E[~ Y p(zolXZL)logp(zolX=L)]
zoEX

= H™.

Since H! - H™ = H, the sandwich is closed around the sequence of interest and it is
proven to be asymptotically equal to the entropy rate. O
We can apply a minor modification to the Shannon-McMillan-Breiman theorem to derive

the entropy rate of the speech process.

Theorem 2 (Entropy rate of the speech process) Assuming the speech process to be
ergodic as well as stationary with limited memory as defined in equation (3.1),

H' - H* 3= H® = H with probability 1.
Proof: By equation (3.1) we have,
p(zolX=L) =p(zalXZ}) V 2o € X.
Therefore,

lim H! = P_ﬁE[— Z p(zol XZ}) 1°SP(ZOlX:11)}

-
* zoEX

= E[- Z p(zolX}) logp(zol X2})]
zgEX

= H¥,
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and,

H® = E[- Y p(zolXZ})logp(zolX})]
T EX

HE.

i

So H' —+ H* = H*™ = H. Applying the characteristic of limited signal memory, we
have shown that the entropy rate of the stationary ergodic speech process is bounded by
the two tractable quantities and is equivalent to the k + 1th order conditional entropy,
H(Xk{Xg—1,...,Xo)- For ease of use, we can apply the principle of stationarity to express
the jth order conditional entropy in the form, H(X;|X;_,,...,X1). O



Appendix B

The SWITCHBOARD Database

The NIST SWITCHBOARD database [15] was designed to address the need for a large
multi-speaker database of telephone bandwidth speech. It consists of 2430 spontaneous con-
versations spoken by 542 different speakers from every major dialect region in the United
States. The average conversation has a duration of 6 minutes, resulting in over 480 hours
of recorded speech. The collection process was automated in order to minimize any effect
of experimenter bias and to ensure uniformity throughout a long testing period. The initi-
ation protocol was designed to encourage a natural and spontaneous conversation from the
participants.

The data was collected directly from the telephone network’s T1 lines and stored in 8
bit g-law PCM format at 8 kHz for each of the two speech channels. This digital collection
technique avoided any degradation due to the collection system. The speech quality of these
recordings was determined solely by the speaker’s speech patterns and the local telephone
equipment.

We consider a conversation to be the vocal audio signal processed by a single speech
coder at the network end-point. A single SWITCHBOARD file therefore consists of two

conversations. Ideally we would screen out any conversations exhibiting non-speech sounds
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or post-quantization noise added by the telephone network, but to do so would be infeasible
for this experiment. The transcriber records included in the database provide subjective
assessments of noise, echo and clarity, but unfortunately they were found to be unreliable
because they were based upon an analog recording of the conversation and not the digital
data itself. It is infeasible to reassess the database on a case-by-case basis so it was decided
to admit all conversations to the model.

It is reasonable to assume that where these additional noises, &, do occur in the process,
they are uncorrelated with the signal. Their impact on the entropy rate measurement
will therefore be additive such that our estimate will include the signal and the noise,
H(X 4+ o) = H(X) + H(o). It should be stressed that these artifacts are rare and will
contribute little error to our estimate of the entropy rate. In future work it may be possible
to estimate and bound the magnitude of H(¢) by computing the entropy of the recorded
database during non-speaking segments.



Appendix C

SWITCHBOARD Database

Transcription Examples

A wide variety of subjective responses were recorded for the SWITCHBOARD database
[15] by the transcribers responsible for producing a time-alligned transcript of each conver-
sation. The transcribers recorded subjective evaluations including the intelligibility of the
conversation, the apparent naturalness of the conversation, echos on either communication
channel, and noise in the form of static or non-speech contributions in the background. The
degree of each characteristic was recorded as an integer measure between 1 and 4, with 1
being ideal and 4 being the worst performance. The transcribers made additional comments
as they deemed necessary to describe additional information about each conversation.

As we have discussed in Appendix B, the subjective measures provided by the tran-
scribers were found to be unreliable due in part to an inadequate testing methodology.
The problem with the subjective evaluations arose because the transcribers were supplied
with an analog recording of the conversations, and not the exact u-law data supplied in
the database. As a result of poor analog reproduction, the subjective evaluations of some

recordings do not correspond to the actual quality levels. The second problem arose from
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inconsistencies in subjective evaluations between individual transcribers. The results were
not normalized in any way, so the conclusions reached by the various transcribers are not
generally consistent.

We reproduce here several examples of the subjective evaluations accompanying the

transcription records of speech samples used in our model of the speech process.
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==> sw3806.txt <==

FILENAME: 3805_1490_1263
TOPIC#: 340

DATE: 920120

TRANSCRIBER: glp

DIFFICULTY: 1

TOPICALITY: 1

NATURALNESS: 2

ECHO_FROM_B: 1

ECHO_FROM_A: 2

STATIC.ON_A: 1

STATIC_.ON_B: 1

BACKGROUND_A: 1

BACKGROUND_B: 3

REMARKS : Speaker A dominated the conversation. Speaker B
had a TV on in the background.

o i S > e s

==> sw3806.txt <==
FILENAME: 3806_1477_1462
TOPIC#: 358

DATE: 920120
TRANSCRIBER: GLP
DIFFICULTY: 2
TOPICALITY: 1
NATURALNESS: 4
ECHO_FROM_B: 2
ECHO_FROM_A
STATIC_ON_

: 1
: 1
STATIC_ON_B: 2

A
B
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BACKGROUND_A: 4

BACKGROUND_B: 2

REMARKS : Speakers (especially A) had a hard time keeping the
conversation going. Speaker B seemed distracted toward the end of
the conversation.
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==> sw3808.txt <==
FILENAME: 3808_1372_1023
TOPIC#: 354

DATE: 920120
TRANSCRIBER: glp
DIFFICULTY: 2
TOPICALITY: 1
NATURALNESS: 3
ECHO_FROM_B: 1
ECHO_FROM_A: 2
STATIC_ON_A: 2
STATIC_ON_B: 1
BACKGROUND _A: 2
BACKGROUND_B: 2

REMARKS : Speaker B sounded as if he was using a speaker phone.

sS====== 3 = S . et e e e S S A - S S e S B v S i e s

==> sw3810.txt <==
FILENAME: 3810_12563_1307
TOPIC#: 308

DATE: 920121
TRANSCRIBER: glp
DIFFICULTY: 1
TOPICALITY:
NATURALNESS: 2
ECHO_FROM_B: 2
ECHO_FROM_A: 2
STATIC_ON_A: 1
STATIC_ON_B: 1
BACKGROUND_A: 1
BACKGROUND_B: 1
REMARKS : None.
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==> sw3811.txt <==
FILENAME: 3811_1477_1490
TOPIC#: 323

DATE: 920121
TRANSCRIBER: glp
DIFFICULTY: 3
TOPICALITY: 3
NATURALNESS: 3
ECHO_FROM_B: 2
ECHO_FROM_A: 1
STATIC_ON_A: 1
STATIC_ON_B: 2
BACKGROUND_A: 4
BACKGROUND_B: 2

REMARKS : Speaker A had excessive background noise (i. e.
dishes, child, doors)




Appendix D

Implementation Details of the
Speech Models

The memory requirements for calculation of the PCE measurements were much too large for
the computing resources at our disposal. In fact, full specification of any 0(256%) calculation
exceeds the practical capacity of a 32 bit address computing architecture. We used a group of
8 networked Sparc II workstations with real memory spaces ranging from 24 to 64 MBytes.
Sample data was distributed to the set of modelling and entropy calculating processes
on each machine by means of the network. The probabilistic models were maintained
independently in the local memory of each machine and were not distributed across multiple
processors. This separate modelling activity was made possible by the independent nature
of PCE measure.

Computing each 0(256*) PCE vector required a careful implementation of the data
structure for the probabilistic model. Naturally, it was essential to take advantage of any
redundancies in the source process to reduce the state-space of the model to a tenable size.
This was accomplished with a dynamic storage routine that recorded data for only those
4-tuples observed in the processed data set.

We approached the implementation of the data structure with a dynamically linked list
structure, indexed by a hash table computed from the stored data values. Originally, the
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hashing function was designed to ensure roughly equal length in each of the linked lists.
This type of balance was expected to minimize the time required to search and update the
data structure, but was discovered to be very inefficient for storing the speech model. The
poor performance of the original hashing function was caused by the combination of the
stochastic nature of the speech process with the dynamic storage allocation scheme.

We found our original approach achieved a highly homogeneous distribution of prob-
ability data throughout virtual system memory. This resulted in poor performance when
the data structure was large, as it was necessary to perform frequent swaps in and out of
active memory to perform the entropy calculation. For large models, a significant fraction
of execution time could be spent handling page faults.

These observations led to an improved hashing function. The new function was designed
to maintain locality among consecutive data values, meaning that 4-tuples that differed
only in the last data value were hashed to the same value. Our intent was to increase the
probability that when performing the entropy calculation, consecutive data values would
be found in the same page of memory. This design sacrificed some of the uniformity among
list lengths, but resulted in a 25% reduction in the entropy computation time.

A second improvement was found to increase the entropy computation and modelling
efficiency by an additional 25%. We found that despite the improvement in the logical
locality of the linked list structure, many of the supposedly adjacent elements were still
widely distributed across virtual memory. It became clear that an improved hashing func-
tion alone would not compensate fully for the combination of a stochastic input process
with another essentially stochastic dynamic storage routine. The computers on which these
processes were running had multi-user operating systems which support a variety of si-
multaneous tasks of varying priority. Our jobs, being long-running and computationally
intensive, were run at a lower priority and consequently were vulnerable to preemption and
frequent swapping out of active memory. As a result, while data elements may have been

logically adjacent in the list structure, if they did not appear in the sample set within the
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same time period they could be allocated to widely separated locations in virtual memory.
Such separation would incur the same swapping time penalty that was encountered prior
to increasing the logical locality of the list structure.

Our solution was to periodically store the entire list structure to disk and then retrieve
it. By storing the data structure in logical order on disk we could increase the real memory
locality of the list elements by a significant margin upon retrieval. Each time the data
structure was retrieved it was re-allocated in logical order, performing an implicit sorting
operation on the list elements. By balancing the time required to perform the store and
retrieve the list structure with the improvement in data storage and retrieval operations,
we achieved a 25% improvement in the time required for PCE calculations.

In total, the improvements in the hashing function and logical list order doubled the

rate of the entropy estimation routines.



Appendix E

Work Estimate for Entropy Rate
Prediction

In this section we will estimate the total number of operations required to produce the set
of six conditional entropy measures used to predict the entropy rate. The normalization,
interpolation, and non-linear regression procedures all contributed to the total work required
for the calculation, but the dominant cost was represented by the modelling and entropy
computation phases as these were repeated for every measurement.

In table E.1 we summarize the notation that will be used to denote the operations
performed in computing the entropy estimates. We will differentiate our count of the total
operations performed in computing the entropy estimates according to these operation
types. Also in this table we include an estimate of the relative cost of each operation [100].
These relative weightings allow us to form a comprehensive estimate of the computation cost
of our measurements. Throughout this section we will determine very conservative estimates
of the operational complexity of our algorithms. Qur final summation will provide a lower
bound on the real computational cost of our work in predicting the entropy rate of the

speech process.
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Symbol Operation Relative Cost
L/S Load,Store word 1 (Int)
<< Bit shift 1 (Int)
== Comparison 1 (Int)

= Assignment 1 (Int)
+ Integer addition subtraction 1 (Int)
X Integer multiplication 5 (Int)
% Modulus 10 (Int)
++ F.P. addition 1(F.P.)
* F.P. multiplication 1(F.P.)
/ F.P. division 4 (F.P.)
log Logarithm 10 (F.P.)

Table E.1: Symbols, Operations, and Relative Operation Costs

E.1 Modelling Cost

Each entropy calculation, whether the exact measure for first to fourth order, or a single
0(256*) PCE measure, required the two steps of model estimation followed by entropy
computation. The modelling process required an amount of work that was linear in relation

ta the length of the data set being analysed.
E.1.1 Direct Algorithms

Storage of the first and second order joint probability models required no more than a
static array in memory. For each byte of input data we performed one integer addition
and one load/store operation to update the data structure. The third and fourth order
models were also implemented in static arrays, utilizing a complete set of 256 second and
third order PCE models, respectively, to obtain exact entropy measures. For the third
order measure we managed to compute 64 PCE models simultaneously on a single pass
through the data set, while the fourth order model required 256 passes through the data.
For complete PCE modelling, we performed comparison operations to identify the elements
belonging in the PCE models being computed on a given pass, a single integer addition

and 2 load/stores for every byte in the input sample set. Summarized in table E.2 are
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the estimated computation costs for building the probability models required for the direct
conditional entropy measures. These direct calculations were computed on a range of sample
set sizes and were repeated on several disjoint sample sets to obtain confidence intervals.
The number of these direct calculations is summarized in the convergence data in figure
3.5 and the observation counts in table 3.1. The product of the sample set sizes and the
number of observations at each size yielded a measure of the total volume of sample data

that was processed by the direct modelling routines.

Model | Obs. Obs. No. Operations Total

Order | (min.) | (Bytes) | Passes per Byte (a;) Operations
1 18044 | 8.7x10° | 1 1 (+,L/S) 8.7 x10%(a;)
2 18044 | 8.7x10° 1 1 (+,L/S) 8.7 x10%(a3)
3 15319 | 7.4x10° 4 1 (1+,2 L/S),1(==) [ 3.0x10'%(a,)
4 12594 | 6.1x10° | 256 ,}:-;(14-,2 L/S),1(==) | 1.6x10%(a,)

Table E.2: Operations Count for Direct Modelling

E.1.2 Indirect Algorithms

The models used for fifth and sixth order PCE measures were implemented in dynamically
allocated linked lists in memory. This structure required a hash value to be computed, a list
to be traversed and one addition to be performed for every input byte. We maintained lists
with an average length of 10 elements, so we can assume an average of under 5 traversal
operations per list search. The hashing function was a permutation of a 3 byte word, reduced
by the modulus of the hash table size. We can conservatively estimate the hash value
calculation to require 24 bit shifting operations, and one modulus operation. Omitting the
cost of initializing new list elements, and estimating a single compatison and 4 load/stores
per traversal operation, we can estimate a total cost of 5 comparisons, 20 load/stores, 24
bit shifts, one integer addition, and one modulus operation for each access operation to the
dynamic memory structure.

To further complicate the work estimate for the dynamic structure we note that only
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those 4-tuples prefaced with the PCE vector of interest were stored in the data structure.
The Rabin-Karp search routine was used to screen the input data stream, requiring several
operations per sample set byte [101]. In the pseudocode excerpt shown in figure E.1 we
detail the operations performed by the search routine. We note that a simple optimization
will convert the multiplication operation, z * 256, to an 8 bit upshift of the integer z. We
will conservatively estimate 1 comparison, 2 load/stores, 2 assignments, 2 integer additions,

1 integer multiplication, 1 bit shift, and two modulus operations per input byte.

search_pattern_hash = Compute_Search_Pattern_Hash(Search_Pattern);
data_hash = Compute_Initial_data_hash();

/* Slide data window to end of file */
while ( More_Data() ) {
if (data_hash==search_pattern_hash) {
if Check_For_Match(Search_Pattern,Data)
Add_Data_Point (HashTable,Data);
}

/* Advance by one element and re-compute window value */
Data_next = Read_Data();
data_hash = (data_hash-(Data[last]+h %q))*256+Data_next)q;

/* Shift data window by one element */
Shift_Data(Data,Data_next);

} /* End of while */

Figure E.1: Pseudocode Excerpt from Rabin-Karp Search Algorithm

As discussed earlier, the search algorithm served to screen out significant quantities of
the input data set. In some cases as little as .01 % of the sample set was admitted to
the storage routine. The dominant component in the computation cost is therefore the
Rabin-Karp search algorithm. We will use this measure exclusively to estimate the cost of
building the dynamic models.
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Summarized in table E.3 is an estimate of the number of operations required to build the
fifth and sixth order probability models for the entropy calculations. Convergence statistics
were computed for these indirect measurements at a variety of sample set sizes and sample
points as is summarized in figures 3.6 and 3.7. Also included is an estimate of the volume
of data processed to generate the sets of K; and K; PCE vectors. For this calculation
we used an average data set size of 3800 minutes for the 5th order calculation and 10000
minutes for the 6th order calculation. Summing the number of convergence observations
with the product of the K;’s and their respective average data set sizes yielded an estimate
of the total number of bytes processed by the indirect modelling routines. This allowed a

conservative estimate of the number of indirect modelling operations.

Model | Converg. PCE Total Obs. | Operations per. Total

Order | Obs. (min.) | Obs. (min.) | (Bytes) Byte (b) Operations
5 75950 155800 1.1x10M1 | 1(==,x,<<), | 1.1x10!(b)
6 185220 1010000 5.7x10*" | 2(=,+,%,L/S) | 5.7x10""(b)

Table E.3: Operations Count for Indirect Modelling

E.2 Entropy Calculation Cost

The work performed in the entropy computation phase was largely independent of the size
of the data sample sets and primarily determined by the order of the entropy calculation
being performed. There were two algorithms used for the entropy calculations, one for
direct measures which were stored in static arrays of memory, and one for measures that
had to be stored in a dynamic structure.

The probabilistic models stored in both types of structure consisted of integer counts
of all events observed in the sample space. Dividing each count by the total number of
observations in the model would yield the probability measure, but it was more efficient
to perform this operation at the end of the entropy calculation rather than for every ele-

ment. For both types of algorithm, the probabilistic model was pre-processed in order to
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compute conditional entropy measures from the joint probability distributions developed
by the modelling process. This was accomplished by computing the marginal distributions
of the model, in terms of integer counts, and dividing each joint probability count by that

marginal count.

E.2.1 Direct Algorithms

In the pseudocode excerpt of figure E.2 we detail the operations required to compute the
conditional probability measures and the direct 3rd order conditional entropy measure. We
note that the static array design of the direct modelling approach allowed us to tabulate
the marginal distributions, P[i][j], without significant cost. A very similar algorithm was
used for all other direct entropy measures. From this code segment we estimate a total of 2
load/stores, 1 floating point (F.P.) addition, 1 F.P. multiply, 1 F.P. divide, and 1 logarithm

operation for each iteration of the entropy calculation.

for ( all.i ){
for ( all_j ){
for ( all_k ){
entropy -= PLil[j1[k] * log( PLil[j1(k] / PLil1(j] );
}
}
}
entropy /= ( Total_count * log(2) );

Figure E.2: Direct Entropy Calculation Excerpt

Using these estimates we have summarized the number of operations required for all
direct entropy measures in table E.4. We note again that the direct calculations were
performed on a range of sample set sizes and were repeated on several disjoint sample sets

to obtain confidence intervals, as is summarized in figure 3.5 and table 3.1.
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Model No. Ops. per Total
Order | Iterations Computation (c;) Ops.
1 64 256%(1(++,*./ log) 2(L/S)) | 64(c1)
2 64 256°*(1(++,*,/,log) 2(L/S)) | 64(c3)
3 63 256%*(1(4++,*,/ log) 2(L/S)) | 63(cs)
4 62 2565 (1(++*,/log) 2(L/S)) | 62(cq)

Table E.4: Operations Count for Direct Entropy Calculations

E.2.2 Indirect Algorithms

In the pseudocode excerpt of figure E.3 we detail the operations required to compute the
conditional probability measures and a PCE measure of complexity O(256%). We must
explicitly calculate the marginal distributions from the observations in the dynamic struc-
ture, resulting in an increase in the number of calculations performed per loop iteration.
Assuming the same characteristics for list searches noted in the modelling cost section, we
estimate the following operations being performed for each iteration of the indirect entropy
calculation: 6 assignments, 10 comparisons, 42 load/stores, 48 bit shifts, 1 integer addition,
1 F.P. addition, 1 F.P. multiplication, 1 F.P. division, and 1 logarithm .

Using these estimates we have summarized the number of operations required for all
indirect entropy measures in table E.5. We note again that convergence statistics were
computed for the indirect calculations at a variety of sample set sizes and sample points as
summarized in figures 3.6 and 3.7. We also computed K; = 41 and K, = 101 PCE vectors
to form the entropy surfaces. Summing the number of convergence calculations with the

number of data PCE calculations yielded the total number of entropy calculations.

Model | Converg. Total Operations per Total

Order | Points | PCE Calcs. Computation (d) Ops.
5 25 66 256%%(6(=),10(==),42(L/S), | 66(d)
6 36 137 48(>>),1(+,++,*,/,log)) | 137(d)

Table E.5: Operations Count for Indirect Entropy Calculations

By combining the dominant components of the modelling and entropy calculation rou-
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for( all_i ) {
for( all_j ) {
for( all_k ) {

/* Compute C(1) /*

c(l) = o;

for( all 1) {
data_value = (i,j,k,1);
data_node =

SearchNodes (HashTable [Compute_hash(data_value)],data_value);
C(1) += (»data_node) .count;

}

/* Compute Sum_(i,j,k,1) C(i,j,k,1) log C(i,j,k,1)/C(1) */
for( all.l ) {
data_value = (i,j,k,1);
data_node =
SearchNodes (HashTable [Compute_hash(data_value)] ,data_value);
PCE -= (*data_node) .count * log((*data_node).count/C(1));
}
}
}
}
PCE /= ( Total_count * log(2) );

Figure E.3: Indirect Entropy Calculation Excerpt

tines we can now summarize the total number of operations required to predict the entropy
rate of the speech process. In table E.6 we summarize the number of operations by model
order and provide a total measure for all six calculations.

Recognizing that some of these operations require more execution time than others, we
use the set of relative operation costs detailed in table E.1 to weight each operation by its
approximate cost. This weighted sum gives us a comprehensive lower bound estimate of
1.2 x 10 integer and 1.8 x 10'2 floating point operations for the complete entropy rate

prediction procedure. As noted before, this is a very conservative lower bound based upon
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Order Total Modelling and Entropy Operation Counts (x10'°)
LS| << | == | = + x| % |++]| * / log
1 .870 - - - 870 | - - .000 | .000 | .000 | .000
2 878 - - - 870 | - - 0041 .004 | .004 | .004
3 1.69 - 2.96 - 740 | - - 1.05| 1.05 | 1.05 | 1.05
4 65.2 - 160 - 610 | - - 26.2 1 26.2 | 26.2 | 26.2
5 1213 | 1372 295 [ 192 | 50 |11} 22 28 28 28 28
6 2585 | 2881 | 645 | 467 | 173 {57 | 114 | 59 59 59 59
Total | 3867 | 4253 | 1103 | 659 | 226 | 68 | 136 | 114 | 114 | 114 | 114

Table E.6: Total Modelling and Entropy Operations Counts

operation counts taken from simplified pseudocode excerpts of the real algorithms. It does
serve to indicate the magnitude of the entropy calculation and outline the computational

requirements for repeating this research.



Appendix F

Development of the Unicity
Distance and Related Measures

F.1 Equivocation

To define the theoretic security of a cryptosystem we make use of the properties of entropy
and conditional entropy defined in [57]. We may consider a cipher to be compromised by
the attacker when he is able to determine the secret key, or the message, from observations
of the encrypted message.

The natural information-theoretic measure to describe the attacker’s knowledge of the
key, or message, is defined by the conditional entropy function. We will denote a series
of sequential observations of a random variable, for instance j ciphertext elements, by C{ .
Shannon termed the uncertainty about the key given j observations of the ciphertext the
key equivocation and defined it by,

H(K[C]) = ¥ p(K,C]) logp(K|C}). (F-1)
K.ci

Similarly, the message equivocation is,

HMIC)) = Y p(M, C) log p(M(C). (F2)
M,c!
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F.2 Unicity Distance

If the attacker is to compromise the secrecy system he will utilize the information gained
about the key, or the message, from observations of the ciphertext. The unicity distance,
N,, is defined as the minimum number of ciphertext characters that the attacker must
observe before he may deduce a unique key or message corresponding to the ciphertext.
This is equivalent to reducing the equivocation to approximately zero.

The unicity distance of a cryptogram will be determined by the minimum of the key or
message equivocation, since the attacker will focus on whichever calculation is easier. In
general, it is more efficient for an attacker to attempt to recover the key to a cryptosystem
than a particular message. This is because a successful key attack will reveal all subsequent
messages, while a message attack will have to be repeated to decrypt each subsequent
message. For this reason a message equivocation solution is generally not a meaningful
measure of cipher security. We will assume a key attack and use the key equivocation
measure to derive a security index.

The key equivocation can be expressed in terms of quantities under the cryptographer’s

control. Since the key and message are chosen independently,
H(M,K)= H(M) + H(K), (F.3)
and since K and C uniquely determine M,
H(M,K)=H(C,K) = H(C) + H(K|C). (F.4)
Combining equations (F.3) and (F.4) we obtain,
H(K|C) = H(K) ~ (H(C) - H(M))- (F.5)

We can upper bound the term H(C) — H(M) by observing that an ideal cipher would
produce an output uniformly distributed over the possible set of ciphertexts. Thus the
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entropy of j consecutive observations of the ciphertext is upper bounded by,
H(C}) < jlogLe, (F-6)

where L¢ is the size of the ciphertext alphabet. The quantity H(M) is defined precisely
by the entropy rate of the source process, R,log Las, where Lps is the size of the message

alphabet. Therefore the entropy of j source elements is,
H(MJ) = jR,log Ly, (F.7)

and the quantity H (C{) -H (M'{") is upper bounded by the redundancy of j observations
of the source process. Using equations (F.6) and (F.7) we define the total redundancy of j

message elements,
D; = j(log Lc — R, log Lag). (F.8)

Therefore, using equations (F.5) and (F.8) we can obtain a lower bound for the key equiv-

ocation, given that j ciphertext characters have been transmitted,

HEKIC) = H(K)-~ (8(C]) - H (M)
> H(K)~ j(logLc — R,log L)
> H(K) -~ D;.

The unicity distance is the minimum number, N, of ciphertext elements that the at-
tacker needs to intercept in order to reduce the uncertainty about the key to approximately

zero. Hence,

N, & min{j: H(K|C])=0)}

s

min {j : H(K)- D; =0}. (F.9)

Maximum key equivocation is achieved by maximizing H (K). We shall assume therefore
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that the cryptographer designs the key source process to select keys with uniform probability
over the key space. This yields a maximal key entropy of,

H(K) = Klog Lx,
where the K digits in each key are chosen from an alphabet of size L.

Solving for the unicity distance yields,

N KlogLyg

o = . F.10
logLec — Rolog Ly ( )

Thus, in a cryptosystem where Lg = L¢ = L the unicity distance is simply expressed
as,

X

No= D' (F-ll)

where D =1 — R, is the percentage redundancy of the source process.

F.3 Unicity Distance with a Randomizer

Ciphers utilizing a randomizer as defined in figure 4.4 can attain a higher unicity distance
than those without. If the randomizing stream, R, is chosen independently of the message

and key, then the key equivocation for the cryptosystem can be developed as follows,

I

HM,K,R) = H(M)+H(K)+ H(R)
= H(C,K,R)

= H(C)+ H(K|C)+ H(R|C,K). (F.12)
Rearranging the terms yields the key equivocation,

H(K|C) = H(K)-(H(C)-H(M))+ (H(R) - H(R|C,K))

H(K) + HR) - (H(C) — H(M)). (F.13)

I

I
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Knowledge of the key and the ciphertext reveals the true message, so it must implicitly
reveal the randomizer stream, H(R|C, K) = 0.

This development yields a measure of the unicity distance for cryptosystems employing
a randomizer,

_ K+ H(R)

N, D

(F.14)



Appendix G

Speech Coder Implementations

The following are brief descriptions of the software algorithms used to simulate the y-law
PCM, DPCM, ADPCM, and CELP coders used in our experiments.

G.1 PCM Coder

The basic g-law PCM signals required only an elementary pre-processing in order to re-
move a header and de-interleave y-law PCM samples contained in the SWITCHBOARD
source files. No additional coding or decoding was required for the PCM samples. The
SWITCHBOARD database is discussed in more detail in Appendix B.

The remainder of the coders were implemented in the C programming language and were
run on Sun SparcStation II and SparcStation 20 computing platforms. There was no need
for real-time performance from the algorithms as the input data rate could be controlled
by file I/O operations and the quality evaluation routine was entirely unaffected by delay.

G.2 DPCM Coder

The DPCM coder was a simple non-adaptive 10 pole differential predictive filter design of
the type described in the block diagram of figure G.1.
The set of optimal non-adaptive predictor filter parameters, {a;}, were computed by

241
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Figure G.1: Block Diagram of DPCM Coder/Decoder

solving the set of equations represented by,

M
Zaipn—-i=pn Vna=12...,M,

i=1
where the model order is M = 10, and the terms p; are the correlation coefficients for the
speech process. These equations are known as normal equations, Yule-Walker prediction
equations, and Weiner-Hopf equations [22].

The correlation coefficients used to determine the filter parameters for this speech coder
were computed from a long-term study of the conversational speech process as presented
in figure 3.1. The 16 level quantizer was optimized for a gamma distributed input signal
according to the results of [102], resulting in a data rate of 32 kbps. The software imple-
mentation included a module for converting a 64 kbps p-law PCM input to 12 bit linear
PCM format according to the CCITT G.711 definition [14).
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G.3 ADPCM Coder

The ADPCM coder used for this research was implemented in C by Sun Microsystems Inc.
as a variable rate coder, providing 3, 4, and 5 bit quantizations of the residual signal. This
implementation was designed and tested to satisfy the CCITT G.721 standard for 32 kbps
ADPCM transmission [66], and the G.723 standard for ADPCM transmission at 24 and 40
kbps. The software implementation included a module for converting a 64 kbps y-law PCM
input to 12 bit linear PCM format according to the CCITT G.711 definition [14].

The CCITT ADPCM standard utilizes both predictor and step-size adaptation proce-
dures, as discussed in section 5.2. A block diagram of the ADPCM coder and decoder is
provided in figure G.2.

G.4 CELP Coder

The CELP coder used for these experiments consisted of an algorithm satisfying the stan-
dard for the Federal Standard 1016 4.8 kbps CELP voice coder as described in [67]. This
algorithm was implemented in C and distributed by the U.S. Federal government for public
use.

Our experiments were performed using the default values for all parameters of the CELP
coder, including a Hamming (15, 11) error control code on some of the more sensitive bits
in the encoded frames. The error control feature of the coder is specified by the CELP
standard to protect the most significant bits of the pitch delay and pitch gain portions of
the data frame and so was left functional for our experiments. The default parameters
specified a code book size of 512, and an LPC filter of 10th order. The remainder of the

CELP coder parameters are summarized in table G.1.
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Figure G.2: Block Diagram of ADPCM Coder/Decoder
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Parameter Value
Code book size 512
Code word length 60
LPC analysis frame size 240
LPC filter order 10
Pitch analysis frame size 60
Pitch order 1
Noise weighting factor 0.8
Input speech scaling factor 1.0
Output speech scaling factor 1.0

% bit error rate 0.0
modified excitation logical switch | 1
prefilter logical switch 0.0
type of fractional pitch search hier
codebook gain quantization log
pitch quantization max2

Table G.1: CELP Coder Parameters



Appendix H

SNNR Models for Representative
Speech Coders

It is possible to derive operational rate-distortion functions for the simpler coders in our
representative subset in terms of the simple SNR measurement. The models derived below
for linear, g-law and DPCM coders tend to support the experimental evidence compiled
in section 5.5 for the segmental-SNR measurement. In addition, this study will reveal
a correspondence between the performance of the representative speech coders and the

exponential behaviour of the theoretical rate-distortion curves for speech in figure 5.3.

H.1 uy-law PCM

The u-law compression characteristic is

log, (1 + ~“-|-’J-)

(=) = Tanax loge(1 + p)

sgn(z).

This characteristic is linear for small z values, but for large signals such that u|z| >> zyax
it is logarithmic.
The signal to noise ratio for nonlinear quantization is

f:o zzfx(z)dz

2
%

—
—_

SN Ryonlinear PCM =

atsleds
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If we assume the input pdf is approximately flat in each of our non-uniform intervals we

may express the quantization error variance as
L k4L
oi =Y fx(we) (2 — we)?dz,
k=1 T

where y;. is the representation level of our input signal x. As a consequence of our assumption

of a flat pdf within each interval we must have yx = }(z& + 2i41). This leads to the result
1 L
o = ﬁZPkAlzcr (H.1)
k=1

where pr = fx (ye)Ak.
Following the result of Bennett as presented in [103] we note that for large L, the slope

of the compressor characteristic in each interval is inversely proportional to the size of that

interval

de(z)  2Zmax
iz ~Ia (H.2)

Substituting H.2 into H.1 yields

-2
e S (4)” wrmees

Setting pr =~ fx(z)dz yields a useful approximation

/-a.-m.x fr(e )(dc(z)) dz for large L.

—Zmax

o~

3122

Computing the SNR for this nonlinear quantization yields

e 2 Ix(z)dz
SN Ruonlinear oM = S5 ——2== =
no PCM 2 ax :::::x fx (z) (%‘J_) de

;3::: Emax g (z)([s]lo!‘gl-i-u[)‘a

~Tmax Fmax

3
= ETLITH) for plzl >> Tmax
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The North American PCM standard [14] sets u = 255 and so we have an SNR measure

independent of the signal characteristics

SNR, 1awpcM = 6.02R — 10.1 dB.

H.2 DPCM

The input to the quantizer in a DPCM coder is the difference signal,
d(n) = z(n) — £(n),

where £(n) is a prediction of z(r). The ratio,

is the prediction gain indicating reduction in error variance that is achieved by linear pre-
diction of the signal.

It is possible to define the SNR performance of the DPCM coder in relation to that of the
PCM coder, subject to some minor constraints on the signal probability distributions. We
will not concern ourselves with these details, but rather present an approximate relationship
as developed in [22],

SN RppcM = SN Rinear peMm + 10 log Gp.

In general, a DPCM system can achieve better SNR performance than PCM by way
of attaining a prediction gain G, > 1. It may be shown that the maximum prediction
gain attainable by a linear predictor is equivalent to the reciprocal of the spectral flatness
measure of equation 5.5, hence,

max{Gp} = v~>.

The SNR performance of an optimal DPCM coder is therefore bounded by

SNRppcM = SN Riipea pom — 101logv?,
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which becomes,

SNRppcMm = SNRjjpearpcM +7 dB,

for the real speech signal with a computed spectral flatness measure of vy = 0.2.

H.3 ADPCM

The combination of adaptive prediction and adaptive quantization make calculation of gen-
eral ADPCM SNR performance very difficult.

Experimental work by Noll [104], and Jayant [105] demonstrated that adaptive quantiza-
tion could achieve a SNR gain of 5-6 dB over uy-law PCM performance. A study of adaptive
and fixed prediction by Noll in [106] has indicated an upper bound for adaptive prediction
to be a gain of about 14 dB over u-law PCM. Fixed prediction was found to achieve at most
a 10.5 dB gain over u-law PCM, so an adaptive characteristic in a linear predictor can be
expected to exhibit a gain of approximately 3.5 dB over non-adaptive systems.

A corresponding gain of 10-12 dB over p-law PCM has been observed in studies of
the CCITT G.721 ADPCM coder [21], which uses both types of adaptation, and similar
ADPCM coders aperating at bit rates ranging from 16 kbps to 40 kbps {106], [107].

H.4 CELP

As we noted in section 5.4, the SNR. measure is generally not a reliable indicator of subjective
quality for non-waveform type coders. The Federal Standard 1016 4.8 kbps CELP coder
[67] is a non-waveform coder, and as such introduces distortions to the original signal that
are less noticeable from a perceptual perspective than they are from a purely objective
measurement.

A subjective evaluation of our standard CELP coder was provided in [67]. This study
found the Diagnostic Acceptability Measure (DAM) [71] to range between 55 and 67 in a

variety of acoustic environments. For comparison, the input speech of y-law PCM demon-
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strated a DAM measurement between 60 and 84 in the same acoustic environments, and a
32 kbps ADPCM coder ranged from 54 to 68.

There would be little justification for associating these measures with SNR measures
since the SNR has little relevance to perceived quality for this type of distortion. However,
this is not to say that SNR measures, or in particular the segmental-SNR measure selected
for our objective quality measure, cannot indicate the relative quality of CELP coded speech

under a variety of channel conditions.

H.5 SNR-Rate Performance

Plotted in figure H.1 are the SNR-rate curves developed for the representative coders. In
this figure we have estimated the SNR performance of the CELP coder on the basis of
the subjective performance results discussed above to be similar to an ADPCM coder at
low bit rates. This figure, plotted on a logarithmic scale in dB, indicates rate-distortion
performance for real coders that corresponds to the exponential nature of the theoretical

rate-distortion developments of section 5.3.
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Figure H.1: SNR-Rate Performance of Representative Coders



Appendix I

Entropy-maximizing Property of
the Gaussian Distribution

The following theorem proves that for a fixed second moment, the zero-mean Gaussian

process yields the maximum entropy of any process.

Theorem 3 (Maximum Entropy of the Gaussian Process) The entropy of a process,
X, defined to have a fized second moment of o2,

-0

is mazimized when fx(z) = ¢x(z), the pdf of the Gaussian process.
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Proof: We compute the difference between the entropy of any process, H(X), and the

entropy of the Gaussian process, Hz(X), for a fixed second moment, o2,

H(X)-Hg(X) = HX)- | ¢x(z)log [ e ()] dz

~00

H(X)- [ txteytog 2] 4

o[ ]

* ¢x(z) _
s [-oo fx(=) [fx(z) ] 4= (1)
- [$x(z) — fx(2)] d=.

i

i

Hence, H(X) < Hg(X) for all probability distributions, fx(z), with equality only when
fx(z) = ¢x(z). We have shown then, that maximum entropy is obtained by the Gaussian
distribution when the process has a fixed second moment. Note that the inequality of

equation 1.1 follows the relation, logz<z—-1V z>0.



Appendix J

Analytic Models of the Speech
Process

A large number of studies have been performed over the years to determine an analytic
model of the speech signal. Early papers by Sivian [108], Dunn and White [109], Purton
{110}, and Richards [111], Paez and Glisson [102] all contributed to the development of first
order probability models for a signal widely held to be the result of a stationary and ergodic
stochastic process. All studies are agreed that the long term distribution of speech amplitude
is highly peaked around a zero mean. We refer to the experimental work performed in [102]
for the model of the analog speech signal pdf and proposed analytic functions for the signal
presented in figure J.1.

Here we will present a few of the models proposed to describe the first-order characteris-
tics of the signal. The short-term probability density function (pdf) of the speech waveform
is often characterized by a Gaussian distribution, as reported in [112], and [22]. This short
term model is useful for some applications, as it serves to simplify calculations for the speech
signal, but it is not considered to be adequate to express the long-term characteristics of the
process. Better approximations have been obtained from studies of larger speech samples.

McDonald [113] proposed an approximation of the long term speech waveform pdf to be a
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Figure J.1: Normalized Probability Density of Speech with Analytic Approximations

special form of the gamma distribution,

VE e-klel
pg(z) = ﬁ_\ﬂ—z—_[’

where k = 1@- And a simpler approximation with the Laplacian distribution,
a
pi(z) = ek,

where a = -},/-? Drawing on the work of Williams [114], he found the gamma distribu-
tion to yield a better fit to the true signal. Another model was proposed by Davenport in
{(112]. He determined a more specific model to fit the results of speech recorded in an ane-
choic chamber. Combining the behaviour of the exponential distribution with the Gaussian
distribution he obtained,

poe) = ppe A 422,

where o; = 1.23, and o, = 0.188.




APPENDIX J. ANALYTIC MODELS OF THE SPEECH PROCESS 256

We note that these models are equally relevant to PCM quantized speech, subject to the
granularity imposed by quantization into discrete steps. Jayant and Noll noted in [22] that
the residual signal in discrete differential-type speech coders such as DPCM and ADPCM
were also satisfactorily modelled by gamma and Laplacian distributions.



Appendix K

Converting Discrete Entropy to
Differential Entropy

Where we have used discrete entropy instead of differential entropy in ocur development of
rate-distortion measures for the real speech process we must justify our results with the

following theorem due to Cover and Thomas [1],

Theorem 4 If the probability density function, f(z), of a continuous random variable,
X, s Retmann integrable, then the entropy of an n-bit quantization of that variable is
approzimately,

H(X) = h(X) + n.

Proof: The proof of this theorem follows from defining the discrete probability distribution
corresponding to the continuous distribution in terms of a uniform quantization over the

range of the random variable, X.

We define the values of the quantized random variable to be,
X =z if tA<X<(i+1)A,
and the discrete probability distribution to be,

(+1)A
pe)= [ fle)e = f(z)A.
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Hence the discrete entropy of the process is,
HX) = - p(z:)logp(z:)
—o0
= =) f(z:)Alog f(z)A
= =) Af(z)log f(z:) ~logA.
-0

Therefore,
H(X) — h(X)—logA, as A—0.



Appendix L
DES Encryption Modes

Electronic Codebook Mode DES

The electronic codebook (ECB) mode of DES presented in figure L.1 represents a pure
block cipher design. Message blocks of 64 bits each are enciphered sequentially to produce
a corresponding sequence of 64 bit ciphertext blocks. This is the simplest implementation
of the DES cryptosystem and is also the most vulnerable to cryptanalysis as the statistical
characteristics of the input blocks are reproduced in the corresponding ciphertext blocks. In
addition, this cipher design is inherently vulnerable to insertion and deletion of ciphertext

blocks unless an additional synchronizing protocol is used to verify the message sequencing.
Cipher Feedback Mode DES

The statistical weaknesses of ECB mode can be countered by modifying the direction of
data flow through the elemental DES encryption algorithm. The Cipher Feedback (CFB)
mode arrangement denoted in figure L.2 achieves a self-synchronizing encryption implemen-
tation. The CFB mode cipher of figure L.2 begins with a 64 bit initialization vector (not
shown) being inputed to the encryption device. The message is then processed in blocks of
k bits, and after each encryption a block of k ciphertext bits is shifted into the input buffer
of the encryption device. This arrangement is self-synchronous as the decrypting device

can recover from any errors occurring on the channel after receiving k correct ciphertext
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Figure L.1: Electronic Codebook Mode DES

characters. The statistical characteristics of the message blocks are concealed in this ar-
rangement by the addition of encrypted ciphertext information with each step. Repeated
blocks of message will result in a sequence of uncorrelated ciphertext blocks.

The self-synchronizing design of the CFB cipher leaves it vulnerable to ciphertext being
inserted or deleted undetectably.

Cipher Block Chaining Mode DES

Another implementation, the cipher block chaining (CBC) mode denoted in figure L.3, can
also conceal the statistical characteristics of the message blocks. The CBC mode cipher of
figure L.3 begins by combining a 64 bit block of message data with a 64 bit initialization
vector and enciphering the product with the elemental ECB mode DES cipher. The cipher-
text is then combined with the next message block for all subsequent blocks to ensure that
identical message blocks produce non-identical ciphertext blocks. Any errors occurring in
transmission will propagate to at most 2 sequential blocks of 64 bits.

The CBC mode cipher solves the problem of message insertion and deletion by mak-
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Figure L.2: Cipher Feedback Mode DES

ing the ciphertext blocks dependent on the adjacent blocks. Any insertion or deletion of
ciphertext can be detected by the errors caused in the subsequent block.

Output Feedback Mode DES

The output feedback (OFB) arrangement creates a running key generator [115] for a stream
cipher based on the ECB DES encryption algorithm. The OFB arrangement indicated in
figure L.4 combines blocks of k message bits with blocks of k£ running key bits created by
the DES algorithm. The running key stream is obtained by feeding k bits of key stream into
the ECB cipher recursively. The result is a pseudorandom key stream with a high linear
complexity. Errors occurring in the ciphertext do not propagate in the OFB cipher; they
are limited to the affected bits only.

A purely synchronous stream cipher such as OFB DES is immune to insertion and

deletion attacks as it requires perfect synchronization between sender and receiver.
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Appendix M

Third Order Entropy Surfaces for
Encrypted p-law Data

Third order conditional entropy surfaces were computed at maximum sample size Spax =
5500 minutes for the u-law speech database used for security measures in chapter 6 under
four modes of DES encryption. These surfaces are defined by the equation H3 x as derived
in section 2.4. The PCE axis scale in these figures is highly magnified to reveal small
variations in the conditional entropy surfaces. Deviations from the mean surface value
of these figures was found to be a maximum of 0.16 %. The average excursion from the
mean was approximately 0.08 %. All four conditional entropy surfaces can be reasonably

approximated with uniform distributions.
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Appendix N

Ciphertext Entropy Convergence
by Source Coder

Presented in figures N.1, N.2, N.3, N4, and N.5 is a summary of the complete set of third
order conditional entropy calculations for all waveform speech coders, as required in section
6.4.2. Each graph compares the convergence measures obtained for a single type of source
coding over the range of representative encryption coders.

CELP coder results are not included here because the CELP coder produces data at
such a low rate that the entire database, when CELP coded, did not trigger an intermediate
entropy calculation in the automated testing software. The computed results consist of

single points at the maximum sample size.
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Appendix O

Information Theory Background

One of the main contributions of Shannon’s 1948 paper [57] was the development of a math-
ematical theory, called information theory, for describing the fundamental characteristics
of communications systems. The theory requires a measure of the event probabilities that
make up the set of all possible outcomes. This is simply the probability mass function in
discrete space, or the probability density function in continuous space: px(z).

Shannon defined a measure of the amount of information contained in a set of events

21, Z32, ..., Zn, With the function,
n
H(z1,23, .., 20) = — 3 _ px(2:) logpx(:)
=1

where the base of the logarithm corresponds to the base of the message alphabet. This
formula is commonly abbreviated to:
n
H(X)=~_px(z:)logpx(e:)
i=1

in the discrete case, and

wx)=- [ px(e)logpx(e) dz

)
in the continuous case. The quantity H(X) is called the entropy of the function. This

measure gives us some idea of how much “choice” is involved in the selection of an event,
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or the uncertainty regarding the outcome. For example, if we have a set of all possible
k-digit binary vectors, uniformly distributed over the sample space of size n = 2* then their
entropy is:

n

n
1, 1
HX)=- ;PX(‘B{) logpx(z:) =~ ) ~log, — = .

=1

In this example the measure of uncertainty tells us that, on average, each vector contains
k bits of information. Since X is only k bits long, we see that this is an example of a
distribution that yields maximum entropy.

Shannon also developed a measure of the amount of information that is provided about
one event given that another event has occurred. He called this a measure of mutual
information and defined it, as one would expect, on the basis of a measure of conditional
probability. The average mutual information that one random variable, Y, provides about
another random variable, X, is:

e pxjv(zely;
1061 =32 per(ens) tog 2 (7E)
where X and Y are discrete distributions with K elements and J elements, respectively. This
expression is commonly simplified to:

1067) = £ 3ot ) log2718)

in the discrete case, and to:

p(z,v)
I(X;Y) = f_ - / (e, 3)log 22, dz ay

in the continuous case.
There is one important distinction between continuous and discrete entropies. In the
discrete case, the entropy is an absolute measure of the randomness of a random variable.

In the continuous case the measurement of entropy is relative to the coordinate system. If
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we change coordinates from 2z, ...z, to y; ...y, the new entropy would be given by:

h(Y)-_-h(X)—-/»--/p(zl,...,z,,)logJ(z) dzy --- dz,

where J (5) is the Jacobian of the coordinate transformation.

One variation on the definition of entropy is of particular interest to cryptographic
applications. This is the conditional entropy, or equivocation of a random variable X when
the value of another random variable Y is known. The equivocation of X when Y is known
is:

H(X|Y) = Hy(X) =~ p(z,v) logp(zly).
z v

The preceding definitions allow us to develop some interesting relations. For two random

processes X and Y:

H(X,Y) < H(X)+ H(Y)

with equality only when the events are independent. This tells us that the uncertainty of
any joint event is less than or equal to the sum of the individual uncertainties. We can also

obtain:

H(X,Y)=H(X)+ Hx(Y)
H(X)+ H(Y) > H(X,Y) = H(X)+ Hx(Y)
and hence,
H(Y) > Hx(Y).

This tells us that knowledge of X can only lessen our uncertainty about ¥ and that in order
for X to reveal no information about Y they must be independent.
Finally, we may obtain another expression for the mutual information between two

processes:

I(X;Y) = H(X) - Hy(X).

From a cryptographic perspective, it is desirable to limit the amount of information
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that leaks between the plaintext, X, and the ciphertext, Y. From above, we see that if
X and Y are statistically independent then Hy(X) = H(X) and the information leakage
I{X;Y) is zero. Conversely, if X and Y are completely dependent then Hy(X) = 0 and
the information leakage is a maximum, I(X;Y) = H(X).
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Glossary

Chapters 2 and 3

PCE: Partial Conditional Entropy.

X: The sample space of a process.

b(m, z{): The O(X™7) partial conditional entropy (PCE) measure.

B(S,n, z{): The O(X™7) partial conditional entropy measure from a sample set of
size S.

P(-): The mapping from PCE measure to PCE vector.

Tx; i The set of x; (j + 1) dimensional PCE vectors.

[ The set of x; PCE vectors computed at sample size S;.

(2% S The set of K PCE vectors computed at sample sizes in S™.

Hor P The unique set of PCE vectors obtained from the largest available sample

set for each element in Tk ;. This gives our best estimate of a set of points

on the nth order conditional entropy surface.

Hoxi: The set of all PCE vectors in X7 computed from exact models of the
probability distribution of the process. This set is an exact representation

of the nth order conditional entropy surface.
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GLOSSARY

H.n'xjt

w(-):

A(Xo|X77):

HS,,, nTrjt

H.S'm X

H.’Sm (anx;.‘_l):

7'{S 2% S

ﬁsc ,n,.l’i:
Chapter 4
N,:

D:
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The approximate nth order conditional entropy surface obtained by inter-

polating the set of known PCE vectors.
The mapping from PCE vector to scalar PCE measure.

The approximation of the nth order conditional entropy computed from

the interpolated conditional entropy surface.

The unique set of PCE vectors normalized to a single, maximal sample

size, Sp,.

The approximate nth order conditional entropy surface obtained by inter-
polating the set of normalized PCE vectors.

The approximation of the nth order conditional entropy computed from

the normalized conditional entropy surface.

The set of » + |S€| PCE measures representing the convergence character-

istics of the source process.

The set of |SC| surfaces interpolated from the convergence characteristics.

The unicity distance index of a cipher.
The per-letter redundancy or the redundancy rate in kbps.
The encryption efficiency index of a cipher.

The encryption quality index of a cipher.



GLOSSARY

Chapter 5

7%

SegSNR:
D*(pllq):
Dty (B):
Dlatigren(R):
Dperationat(R):
Chapter 7
Cs.c.(D):
Cec(EC):
Cc.c.(BER):
&(D,E.C., BER):
a:

ws:
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The spectral flatness measure of a source.

The segmental-SNR, an objective measure of quality.

The kth order Kullback-Leibler distance measure.

A linearly regressed model of information divergence.

The effective rate of information divergence in a source coded bit stream.

The operational rate-redundancy function for speech coders.

The complexity model for source coders.

The complexity model for encryption coders.
The complexity model for channel coders.

A set of constraints on the system parameters.
Model parameter normalizing factors.

Model parameter weighting factors.





