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Abstract

The maintenance cost for an engineering system is an uncertain quantity due to un-

certainties associated with occurrence of failure and the time taken to restore the system.

The problem of probabilistic analysis of maintenance cost can be modeled as a stochastic

renewal-reward process, which is a complex problem. Assuming that the time horizon of

the maintenance policy approaches infinity, simple asymptotic formulas have been derived

for the failure rate and the cost per unit time. These asymptotic formulas are widely

utilized in the reliability literature for the optimization of a maintenance policy. However,

in the finite life of highly reliable systems, such as safety systems used in a nuclear plant,

the applicability of asymptotic approximations is questionable. Thus, the development of

methods for accurate evaluation of expected maintenance cost, failure rate, and availability

of engineering systems is the subject matter of this thesis.

In this thesis, an accurate derivation of any mth order statistical moment of mainte-

nance cost is presented. The proposed formulation can be used to derive results for a

specific maintenance policy. The cost of condition-based maintenance (CBM) of a system

is analyzed in detail, in which the system degradation is modeled as a stochastic gamma

process. The CBM model is generalized by considering the random repair time and delay

in degradation initiation. Since the expected cost is not informative enough to estimate the

financial risk measures, such as Value-at-Risk, the probability distribution of the mainte-

nance cost is derived. This derivation is based on an interesting idea that the characteristic

function of the cost can be computed from a renewal-type integral equation, and its Fourier

transform leads to the probability distribution. A sequential inspection and replacement

strategy is presented for the asset management of a large population of components. The

finite-time analyses presented in this thesis can be combined to compute the reliability and
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availability at the system level.

Practical case studies involving the maintenance of the heat transport piping system

in a nuclear plant and a breakwater are presented. A general conclusion is that finite time

cost analysis should be used for a realistic evaluation and optimization of maintenance

policies for critical infrastructure systems.
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Chapter 1

Introduction

1.1 Background

The basic premise of this thesis is a system, structure or component (SSC) in which the

occurrence of failure is uncertain. The unexpected occurrence of failure can have adverse

consequences, i.e., risk, to the plant, machinery, and people. The uncertain nature of failure

can be attributed to many factors, such as random fluctuations in operating environment

(temperature, stress etc.) and loss of system capacity by various processes of degradation

(corrosion, wear, fatigue etc.), and many other reasons.

A nuclear reactor is a critical system in which the failure of major equipment can be

risky for plant personnel and surrounding environment. In the Canadian nuclear reactor

design (CANDU), the reactor core consists of a large number (380–480) of pressure vessels,

referred to as fuel channels (Figure 1.2). The fuel channel has two concentric cylinders.

The inner tube is called pressure tube which stores the nuclear fuel required for fission

reaction. The outer tube is called the calandria tube, which is filled with a gas. The heavy
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water is the primary coolant, which picks up the heat generated from the fission reaction.

The heated heavy water is transferred to steam generators using the feeder pipes (Figure

1.3). A typical steam generator has thousands of thin-walled tubes (2500 – 4000) in which

the primary coolant flows, and transfers the heat energy to surrounding light water (i.e.,

secondary coolant) to produce steam. Steam is finally taken to turbines that drive the

electrical generator for producing power.

 

Figure 1.1: A schematic of major systems/components in a CANDU reactor

Because of intensely high temperature, pressure and radiation field, nuclear reactor

components can experience various degradation mechanisms. Pressure tubes, feeders, and

steam generator (SG, Figure 1.4) tubing are highly critical components in a reactor. The

creep deformation of pressure tube diameter can reduce the efficiency of cooling. Feeder

pipes experience flow-accelerated corrosion (FAC) and SG tubing is susceptible to corrosion

and fretting wear. These degradation mechanisms are fairly uncertain.
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(a) A schematic of fuel channel in CANDU re-
actor

 

(b) Cross-section of fuel channel

Figure 1.2: A fuel channel

 

Figure 1.3: A feeder pipe showing the wall thickness loss due to FAC

The equipment reliability is maintained through inspection and maintenance of various

components and systems in a systematic manner. In a nuclear plant, maintenance outage

is commenced at a regular interval of 1–3 years in which all the major components are

inspected and repaired/replaced as per the need. Typical policies are age-based and block
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Figure 1.4: Cross-section of SG

replacement, condition-based maintenance, and numerous combinations of other types.

A key responsibility of the plant owner is to ensure high reliability of a system by

implementing an optimal maintenance program. “Optimal” means: (1) the system failure

rate is below an acceptable regulatory limit, (2) availability exceeding a specified limit,

and (3) minimum cost of maintenance over a defined time horizon.

If a system experiences uncertain degradation, the time of occurrence of failure becomes

a random variable, referred to as “time to failure”. The time to repair of the system can also

be modelled as a random variable to account for uncertainties associated with deployment

of maintenance staff, detection of failure, and availability of spare parts. When the system

is undergoing repair, the revenue (or productivity) may be lost due to loss of functionality.

In this context, it is important to investigate the following problems:

(1) In a defined operating life of a system, what could be the cost resulting from failures?
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(2) If an inspection and maintenance program is implemented, what should be the inspec-

tion interval and criteria for maintenance that would minimize the total maintenance

cost?

(3) What are the benefits of a chosen maintenance program in terms of reduction in failure

rate and increase in availability?

(4) What should be the maintenance budget for a fixed planning horizon?

The central problem is that the maintenance cost (including costs of inspection, repairs,

and failures) in a time interval is not predictable in a deterministic sense, since it is also an

uncertain quantity. The general goal of this thesis is to provide more accurate methods for

analyzing the maintenance cost, failure rate, and availability of engineering systems with

uncertain lifetime.

1.2 Motivation

If the time between failures is a random variable with some known probability distribution

and the system is renewed after each failure to as-good-as-new condition, then this process

of renewal over a time interval (0, t] can be modelled as a stochastic renewal process. The

total cost, C(t), is the sum of costs incurred in N(t) renewals. Since N(t) is a random

variable, C(t) is also referred to as a random sum with certain probability distribution.

The derivation of the expected number of renewals can be formulated in terms of a

renewal integral equation, and a similar approach can be taken to derive the expected

cost. Since solutions of integral equations are somewhat involved, asymptotic limits (as

time approaches infinity) have been derived for N(t) and C(t). For example, the asymptotic

5



limit of N(t) is the reciprocal of mean time between failure, and the asymptotic limit for

C(t) is the ratio of expected cost in one renewal cycle to the mean time between failure.

Because these asymptotic limits are very simple to compute, they have been widely used

in reliability-based maintenance modeling and optimization literature [6, 40, 67, 53].

A typical rule of thumb is that asymptotic solution is applicable when the time horizon

is greater than three times the mean time between failure. If this condition is not fulfilled,

the asymptotic solution will not serve as an adequate approximation. In many mechanical

and electrical systems where components are relatively inexpensive and the impact of

failure is small, the mean time between failure tends to be much smaller than the planning

horizon. In such cases the validity of asymptotic approach is acceptable. However, for

critical systems, such as those in a nuclear plant, the high reliability requirement dictates

that the mean time between failure should be of the order of the plant operating lifetime.

In such cases, the application of asymptotic formulas becomes questionable.

Thus, development of methods for accurate evaluation of expected maintenance cost,

failure rate, and availability of highly reliable systems is the motivation for research pre-

sented in this thesis. Initially the focus was on the derivation of expected cost, but later it

was realized that the standard deviation of cost is also necessary to quantify uncertainty.

Also, higher order moments are required to model the distribution tails.

1.3 Research Objectives

(1) Investigate probabilistic approaches for the estimation of maintenance cost associated

with condition-based maintenance models by relaxing the asymptotic approximations

used in the literature;
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(2) Derive statistical moments of maintenance cost (e.g., mean, variance and other higher

order moments) for a fixed planning horizon, also referred to as finite-time solutions.

(3) Derive probability distribution of maintenance cost for the evaluation of financial risk

measures, such as Value-at-Risk (VaR) and statistical prediction intervals.

(4) Conduct case studies using real-life data to illustrate the applications of analyti-

cal/computational methods developed in this thesis.

1.4 Organization of the Thesis

Chapter 2 provides an overview of the theory of stochastic renewal process that is relevant

to the research scope of this thesis. Key terminology, definitions and theorems are presented

to set the stage for subsequent chapters.

Chapter 3 presents a general derivation of any mth order statistical moment of main-

tenance cost in a finite time horizon. The moment of cost is derived as a renewal-type

integral equation. The proposed formulation can be used to derive results for a specific

maintenance policy, so long as it can be modelled as a stochastic renewal-reward process.

This general approach would allow the finite time cost analysis of a variety of maintenance

policies. Subsequent chapters will use the results presented in this chapter.

Chapter 4 analyzes the cost of condition-based maintenance of a system in which degra-

dation is modelled as a stochastic gamma process. Although the gamma process is widely

used in the literature, the finite time mean and variance of cost are derived for the first

time in this work. This chapter presents a case study involving CBM of the piping system

in a nuclear plant. The CBM model analyzed in Chapter 4 assumes that time required
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for repair is negligible, and degradation is initiated as soon as the system is put in service.

These two assumptions are relaxed in Chapter 5 by considering the repair (or down) time

and delay in degradation initiation as random variables. The finite time cost analysis, with

and without discounting, presented in this chapter is not yet seen in the existing litera-

ture. The evaluation of expected cost is reasonable for finding an optimal maintenance

policy among a set of possible alternatives. However, this approach is not informative

enough to enable the estimation of financial risk measures, such as percentiles of the cost,

also known as Value-at-Risk (VaR). To address this issue, Chapter 6 presents a derivation

of the probability distribution of the maintenance cost. The proposed approach is based

on formulating a renewal equation for the characteristic function of cost in finite time.

Subsequently, the Fourier transform of the characteristic function leads to the probability

distribution of the cost.

In Chapter 7, a sequential inspection and replacement model is presented for the asset

management of a large population of components in a large infrastructure system. In this

approach, the population is divided into δ blocks (or sub-populations) and one block per

year is inspected such that it takes δ years to inspect the entire population. Note that all

the failed components found through inspection are replaced with new components. The

model is based on the concept of delayed renewal process and it is used to predict the

expected number of replacements and substandard components in any given year.

Chapter 8 presents the reliability analysis of systems with repairable components. Each

component has a random life time and repair time described by general (non-exponential)

probability distributions. The time-dependent unavailability and failure rate are derived

for each individual component of the system by solving a set of renewal equations. Then,

system unavailability and failure rate are computed based on the component level informa-
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tion. This chapter illustrates that models presented in the previous chapters can be used

to analyze reliability at the system level.

Conclusions of the thesis are presented in Chapter 9.
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Chapter 2

Introduction to Renewal Theory

2.1 Introduction

Renewal process theory had its origin in the studies of population analysis and strategies

for replacement of technical components [38]. Later, it was developed as a general topic in

the field of stochastic processes [23, 17]. The renewal process became an important part

of the reliability theory [6, 55].

This chapter summarizes main aspects of the renewal theory that are relevant to re-

search presented in this thesis. It should be noted that a complete overview of stochastic

renewal process is not intended here.

Key terminology related to ordinary and the delayed renewal processes is introduced.

Formulas for evaluating the expected number of failures (or renewal function) and the

expected maintenance cost are summarized. Illustrative examples are also presented.
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2.2 Lifetime Distribution

Let X be the lifetime of a component (system). X (> 0) is a random variable. The

cumulative distribution function (CDF) and the survival function (SF) of X are defined

as,

FX(x) = P {X ≤ x} , F X(x) = P {X > x} = 1 − FX(x). (2.1)

Here, P {∗} denotes the probability of an event inside the {}.

If X is continuous, the probability density function (PDF) and the expected value are

defined as

fX(x) = lim
∆x→0

1

∆x
P {x < X ≤ x + ∆x} =

dFX(x)

dx
= −dF X(x)

dx
(2.2)

E [X] =

∫ ∞

0

xfX(x)dx. (2.3)

The hazard rate of X is defined by [17]

λX(x) = lim
∆x→0

1

∆x
P {x < X ≤ x + ∆x|X > x} . (2.4)

Here the notation P {A|B} represents the probability of event A conditional on event B.

λX(x)dx is the probability that a component will fail in the interval (x, x + dx] given that

it has survived for a period of x. Since

P {x < X ≤ x + ∆x|X > x} =
P {x < X ≤ x + ∆x}

P {X > x} =
FX(x + ∆x) − FX(x)

FX(x)
, (2.5)
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Figure 2.1: A typical hazard rate

the hazard rate can be written as

λX(x) =
fX(x)

F X(x)
= − 1

F X(x)

dF X(x)

dx
. (2.6)

Then we have

F X(x) = e−
∫ x

0 λX(τ)dτ . (2.7)

A typical hazard rate is shown in Figure 2.1, which is usually called a bathtub curve.

The hazard rate is often high in the initial phase, known as “infant mortality”. This can

be explained by the fact that there may be undiscovered defects in a component, which

contribute to early failures. When the component has survived the infant mortality period,

the hazard rate often stabilizes at a level where it remains constant for a certain period of

time. With time, it starts to increase as the component begins to wear out. From the shape

of the bathtub curve, the lifetime of a unit may be divided into three typical intervals: the

burn-in period, the useful life period, and the wear-out period.

If X is discrete and takes value of xk, where k = 1, 2, · · · , and xk = k∆x, the probability
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mass function (PMF) of X is defined as

fX(xk) = P {X = xk} = FX(xk) − FX(xk−1) = F X(xk−1) − F X(xk). (2.8)

The expected value of X is then given by

E [X] =
∞∑

k=1

xkfX(xk). (2.9)

The hazard rate in the discrete sense is defined as [39, 3]

λX(xk) = P {X = xk|X > xk−1} =
fX(xk)

F X(xk−1)
(2.10)

Substituting Eq. (2.8) into the above equation gives

λX(xk) = 1 − F X(xk)

F X(xk−1)
. (2.11)

Then we have

F X(xk) =
k∏

i=1

[1 − λX(xi)] . (2.12)

The Weibull distribution is a typical lifetime distribution used in reliability theory [40].

For continuous time, the Weibull distribution has the following CDF and hazard rate,

respectively,

FX(x) = 1 − e−(x/β)α

, λX(x) =
α

β

(
x

β

)α−1

, (2.13)
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where x ≥ 0, α > 0, and β > 0. For discrete time, there are multiple types of the Weibull

distribution, one of which has the following hazard rate [59, 34, 73]

λX(x) =







(x/β)α−1 (x = 1, 2, · · · , β) if α > 1,

θxα−1 (x = 1, 2, · · · ) if 0 < α ≤ 1,

(2.14)

where β is an integer and 0 < θ < 1. The above definition preserves the power function

form of the hazard rate. Use Eq. (2.12) to compute the SF, and then the CDF and the

PMF can be calculated. These four quantities are shown in Figure 2.2.

2.3 Ordinary Renewal Process

The following example is used to illustrate the ordinary renewal process. Suppose that we

have a population of identical components. The lifetime of any component, denoted by X,

is a discrete random variable with probability mass function (PMF)

fX(x) = P {X = x} , x = 0, ∆t, 2∆t, · · · , (2.15)

and fX(0) = 0. We start with a new component at time zero. The component survives a

period of X1. Then it is replaced immediately by a new one. The time for replacement is

assumed to be negligible. The second component survives a period of X2, and fails at time

(X1 + X2). Then it is also replaced immediately by a new one, and so on and so forth (see

Figure 2.3).

Let Xn, n = 1, 2, · · · , be the length of the nth survival period and Sn is the time of the
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Figure 2.2: Discrete Weibull distribution
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Figure 2.3: Renewal process

nth replacement, i.e.

Sn =
n∑

j=1

Xj, n = 1, 2, · · · . (2.16)
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Let S0 = 0. S0, S1, · · · , are called renewal times and X1, X2, · · · , are called renewal

intervals.

A counting process N(t) is defined as

N(t) = max{n; Sn ≤ t}, t = 0, ∆t, 2∆t, · · · . (2.17)

N(t) is the number of replacements up to time t. N(t) is called the ordinary renewal

process (ORP) with renewal distribution fX(x).

Let M(t) = E [N(t)]. M(t) is called the renewal function. In the following we are going

to derive M(t). Obviously, we have M(0) = 0. For t > 0, use the law of total expectation

by conditioning on X1

M(t) =
∑

0<x≤t

E [N(t)|X1 = x] fX(x) =
∑

0<x≤t

E [1 + N(x, t)|X1 = x] fX(x). (2.18)

In the above equation, the term N(t) is split into 1 + N(x, t), where N(x, t) is the number

of replacements in the interval (x, t]. Note that since X1, X2, · · · , are idd random variables,

given X1 = x, N(x, t) can be considered as an ORP with length of (t − x) with x as the

new origin. Thus, N(x, t) is stochastically the same as N(t − x). Hence

E [N(x, t)|X1 = x] = E [N(t − x)] = M(t − x). (2.19)

Substituting Eq. (2.19) into (2.18) gives

M(t) =
∑

0<x≤t

[1 + M(t − x)] fX(t) =

t/∆t
∑

k=1

M(t − k∆t)fX(k∆t) + FX(t), (2.20)
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where FX(t) =
∑

x≤t fX(x) is the cumulative distribution function (CDF) of X. Equation

(2.20) is a discrete renewal equation. The values of M(∆t), M(2∆t), · · · , can be obtained

recursively from this equation with the initial condition M(0) = 0.

Define the convolution of two discrete functions f1(t) and f2(t) as

(f1 ∗ f2)(t) =
∑

0≤x≤t

f1(t − x)f2(x) =

t/∆t
∑

k=0

f1(t − k∆t)f2(k∆t).

Noting that fX(0) = 0, Eq. (2.20) can be written in a more compact form as

M(t) = (M ∗ fX)(t) + FX(t). (2.21)

Let I(t) be the indicator of a replacement at time t, 1 for yes and 0 for no. Define

the renewal density as m(t) = E [I(t)] /∆t. Note that E [I(t)] is equal to the probability of

replacement at time t. Then m(t) is the probability density of replacement or renewal at

t. Since I(t) = N(t) − N(t − ∆t), we have

m(t) =
1

∆t

[
M(t) − M(t − ∆t)

]
. (2.22)

Letting m(0) = 0, Eq. (2.21) and (2.22) yield

m(t) = (m ∗ fX)(t) +
1

∆t
fX(t). (2.23)

The above equation is also a renewal equation and m(t) can be determined recursively

with the initial condition m(0) = 0.

If there exists an integer δ > 1 such that a replacement can only occur at times δ,
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2δ, · · · , i.e. fX(x) = 0 if x is not divisible by δ, then the replacement is called periodic.

The greatest δ with this property is called the period of replacement. For non-periodic

replacements, we have the following renewal theorem [23]

Theorem 2.1. (Erdö-Feller-Pollard) If a replacement is not periodic, then the asymptotic

renewal density

lim
t→∞

m(t) =
1

µX
, (2.24)

where µX is the expected length of a renewal interval, i.e. µX =
∑

x>0

xfX(x).

For periodic replacements, Eq. (2.24) should be changed into lim
k→∞

m(kδ) = δ/(µX∆t),

where δ is the period of replacement.

Using L’Hôpital’s rule [58], equation (2.22) and (2.24) yield

lim
t→∞

M(t)

t
= lim

t→∞
m(t) =

1

µX

. (2.25)

The above equation implies that M(t) = t/µX + o(t), where o(t) is of lower order than

t. Hence for a large t, we can use t/µX to approximate M(t). A better approximation of

M(t) is presented by Feller as follows [22]

M(t) =
1

µX
t +

µ2
X + σ2

X + µX∆t

2µ2
X

− 1 + o(1), (2.26)

where σX is the standard deviation of the renewal interval, i.e. σ2
X =

∑

x>0

(x − µX)2fX(x).

Example 2.1. Suppose that the time unit is ∆t = 1 and the renewal interval X of a renewal

process is a discrete Weibull distributed random variable. The hazard rate is shown by Eq.
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(2.14) with parameters α = 3 and β = 30. The PMF of X is shown in Figure 2.4. Then

the mean and the standard deviation of X are µX = 12.1 and σX = 4.2, respectively.
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Figure 2.4: PMF of X

The renewal function and the renewal density are show in Figure 2.5. As shown in

Figure 2.5b, the renewal density oscillates and then converges to 1/µX.
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Figure 2.5: Renewal function & rate of an ordinary renewal process

So far we have only considered discrete time. Letting ∆t → 0, we will obtain the results
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for continuous time. The renewal equation (2.21) will still hold for the renewal function

M(t) except that now fX(x) represents the PDF instead of the PMF of X, and the sign

∗ represents continuous convolution instead of discrete convolution, i.e. (M ∗ fX)(t) =
∫ t

0
M(t− x)fX(x)dx. The renewal density will become m(t) = dM(t)/dt. Equation (2.25)

will also still hold [17, 40], while Eq. (2.23) and (2.26) should be modified as

m(t) = (m ∗ fX)(t) + fX(t), (2.27)

M(t) =
1

µX

t +
µ2

X + σ2
X

2µ2
X

− 1 + o(1), as t → ∞. (2.28)

Equation (2.28) can be found in Chapter 8 of [63].

The method of Laplace transform can be used to solve for M(t) for continuous time.

The Laplace transform of a function g(t) is defined as

L{g} (s) =

∫ ∞

0

g(t)e−stdt.

Taking the Laplace transforms of the both sides in Eq. (2.21) follows

L{M} (s) = L{M} (s)L{fX} (s) + L{FX} (s) ⇒ L{M} (s) =
L{FX} (s)

1 − L{fX} (s)
.

(2.29)

Since FX(t) =
∫ t

0
fX(x)dx, we have L{FX} (s) = L{fX} (s)/s. Then Eq. (2.29) gives

M(t) = L−1

{ L{fX} (s)

s [1 − L{fX} (s)]

}

(t), (2.30)

where L−1 means the inverse Laplace transform.
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Example 2.2. Suppose that X is an exponentially distributed random variable with PDF

fX(x) = λe−λx, x > 0. Then the Laplace transform of fX(x) is L{fX} (s) = λ/(λ + s).

Substituting L{fX} (s) into Eq. (2.29) gives L{M} (s) = λ/s2. Then the renewal function

is obtained as M(t) = λt. Hence the renewal density is m(t) = λ, which is a constant.

Note that here N(t) is actually a Poisson process with rate parameter λ, from which we

can also draw the conclusion that m(t) = λ.

In general, L{M} (s) is so complicated that the analytical solution of M(t) can not

be obtained. In most practical cases, numerical solution of inverse Laplace transform is

required.

2.4 Delayed Renewal Process

In an ORP, the probability distribution of inter-arrival times, X1, X2, · · · , are iid, since we

start with a new component at time 0. If we start with an aged component at the beginning,

X1 will have a different probability distribution from those of X2, X3, · · · . Suppose that

the initial age is a, a = 0, ∆t, 2∆t, · · · . Let N(t|a) be the number of renewal up to t.

N(t|a) is called the delayed renewal process. Let fX(x|a) be the PMF of X1 and fX(x) be

that of the other renewal intervals. Obviously, N(t) and fX(x) in the previous section can

be considered as the special cases of N(t|a) and fX(t|a) when a = 0, respectively.

Since the first component has been aged for a period of a, the PMF of the first renewal

interval is equal to

fX(x|a) = P {X = x + a|X > a} =
fX(x + a)

F X(a)
. (2.31)
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In the above equation, X is the lifetime of the first component and F X is the SF of fX .

Let M(t|a) be the renewal function and m(t|a) the renewal density in the delayed

renewal process. In the following we are going to derive these two values. Similar to Eq.

(2.18), using the law of total expectation by conditioning on X1, we have

M(t|a) =
∑

0<x≤t

E [1 + N(x, t)|X1 = x] fX(x|a). (2.32)

Note that we always start with a new component except in the first renewal interval. Hence

given X1 = x, N(x, t) can be considered as an ORP with length (t − x). Then

E [N(x, t)|X1 = x] = M(t − x). (2.33)

Here M(t − x) is the renewal function of an ORP and can be computed from Eq. (2.21).

Substituting Eq. (2.33) into (2.32) gives

M(t|a) =
∑

0<x≤t

M(t − x)fX(x|a) + FX(t|a). (2.34)

where FX(t|a) =
∑

x≤t fX(x|a) is the CDF of X1.

The renewal density m(t|a) can be similarly obtained as

m(t|a) =
∑

0<x≤t

m(t − x)fX(x|a) +
1

∆t
fX(t|a), (2.35)

where m(t−x) is the renewal density of an ORP and can be computed from Eq. (2.23). The

asymptotic value of m(t|a) is the same as that of m(t), which is equal to 1/µX , regardless

of the initial age a [23].
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Example 2.3. Take the same parameters as in Example 2.1 except that the initial age at

time 0 is a = 5. The renewal function and the renewal density are shown in Figure 2.6.

Comparing Figure 2.5a and 2.6a, we can see that M(t|a) is larger than M(t), which is

because we start with an aged component in the delayed renewal process, leading to more

replacements. As shown in Figure 2.6b, the renewal density still oscillates about the value

of 1/µX and asymptotically tends to it.
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Figure 2.6: Renewal function & rate of a delayed renewal process

2.5 Summary

This chapter provides an overview of the theory of stochastic renewal process that is

relevant to research scope of this thesis. Key terminology, definitions, and theorems are

presented to set the context for subsequent chapters.

The renewal process, N(t), is defined as the number of renewals up to time t with inter-

renewal times, X1, X2, · · · , being independent and identically distributed (iid) random

variables. The expected number of renewals in a time interval (0, t] is referred to as the
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renewal function, which can be derived from a renewal equation. In case of the delayed

renewal process, X1 has a different probability distribution than other inter-renewal times.

The renewal density, i.e., probability of renewal per unit time, has a asymptotic value that

is equal to 1/µX, where µX is the expected length of a renewal interval. This result is called

the classical renewal theorem, and it has been fundamental to expected maintenance cost

analysis in an asymptotic sense.
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Chapter 3

Basic Concepts of Maintenance Cost

Analysis

3.1 Introduction

3.1.1 Motivation

A wide variety of maintenance policies can be analytically treated as stochastic renewal-

reward processes, so long as the system is renewed after each maintenance work. An

accurate evaluation of mean, variance and other higher order moments of the reward (or

cost) is an analytically challenging task. For this reason, simple asymptotic expected cost

analysis is commonly used in the literature.

Accurate evaluation of expected cost was studied only in a few papers [13, 14, 41] for

simple cases, such as age-based replacement policy. Derivation of higher order moments

maintenance cost has not been presented.
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This chapter presents a general derivation of any mth order statistical moment of main-

tenance cost in a finite time horizon. The moment of cost is derived as a renewal-type

integral equation. This approach also allows the computation of unavailability and failure

rate of the system under a given maintenance policy. This chapter presents fundamental

formulation that will be frequently utilized in applications presented in the subsequent

chapters.

In this thesis, only discrete time is considered unless explicitly stated. The time unit

is ∆t.

3.1.2 Organization

This chapter is organized as follows. Section 3.2 introduces basic concepts underlying the

theory of the renewal-reward process. Section 3.3 presents a general derivation of statistical

moments of maintenance cost in a finite time horizon. The asymptotic formulation is

discussed in Section 3.4. The unavailability and failure rate are analyzed in Section 3.5.

An illustrative example is given in Section 3.6.

3.2 Renewal-Reward Process

3.2.1 Ordinary & General Renewal-Reward Process

Consider an ordinary renewal process N(t). A cost Cn is incurred at the end of each

renewal interval Tn, n = 1, 2, · · · (see Figure 3.1). Here Cn may be a fixed value or a

random variable. Assume that pairs {Tn, Cn} are iid random vectors.
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Figure 3.1: Renewal Reward Process

Denote the cumulative cost in the time interval (t1, t2] by C(t1, t2) and write C(0, t)

as C(t) for simplicity. Up to time t, there will be N(t) complete renewal intervals and an

incomplete renewal interval (SN(t), t], where Sn =
∑n

j=1 Tn is the nth renewal time. There

is no cost in (SN(t), t]. Hence

C(t) =

N(t)
∑

n=1

Cn. (3.1)

C(t) is called the renewal-reward process (RRP). The ordinary renewal process can be

considered as a special case of the RPP when Ck ≡ 1.

In the above model, cost is assumed to be only incurred at the end of each renewal

interval. However, in many maintenance policies, as shown in the following, cost may be

incurred during renewal intervals. To differentiate these two cases, C(t) in the former case

is called the ordinary renewal-reward process in this thesis, while that in the latter case is

called the general renewal-reward process or just simply called the renewal-reward process.
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For a general RRP, Eq. (3.1) should be modified as

C(t) =

N(t)
∑

n=1

Cn + C
(
SN(t), t

)
, (3.2)

since now the cost incurred in (SN(t), t] may not be equal to 0.

3.2.2 Example: Age Based Replacement

In this maintenance policy, a component is replaced either when it fails (called corrective

maintenance, CM) or at an age of tp (called preventive maintenance, PM), tp being a pre-

determined constant, whichever occurs first. This policy is called the age based replacement

policy, which has been widely discussed in the literature.

In general, CM cost is much larger than PM cost due to loss resulting from component

failure. Let L be the lifetime of the component and X be the time to replacement by CM

or PM, then

X = min{L, tp} =







L, if 0 < L < tp,

tp, if L ≥ tp.

(3.3)

If time spent on replacement is negligible, i.e. the component is renewed instantly, the

associated maintenance cost C(t) is an ordinary RRP. The length of a renewal interval is

then given by

T = X, (3.4)
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and the cost incurred in a complete renewal interval is equal to

C =







cF, if 0 < L < tp,

cP, if L ≥ tp,

(3.5)

where cF is the CM cost and cP is the PM cost.

0

1

State

Up
X

1Y 2Y

2X 3X

Down

timeS1 S2 t

T1 T2

Figure 3.2: The component alternates between the up and the down states.

If time spent on replacement is non-negligible, the component will be in the down state

during replacement, resulting in a down time cost due to component unavailability. The

down time cost is proportional to the length of down time. As shown in Figure 3.2, where

X’s are the times to replacement and Y ’s are the subsequent down times, the component

alternates between the up and the down states. The component is renewed only when the

replacement is finished. Hence the length of a renewal interval is given by

T = X + Y. (3.6)
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The cost incurred in one complete renewal interval is equal to

C = cDY +







cF, if 0 < L < tp,

cP, if L ≥ tp,

(3.7)

where cD is the unit down time cost.

Note that if time spent on replacement is non-negligible the maintenance cost C(t) is

a general RRP instead of an ordinary RRP since cF, cP, and cD are all incurred during

the renewal interval. The cost incurred in an incomplete renewal interval may not be zero.

For example, in Figure 3.2 with N(t) = 2, suppose that at the time of (S2 + X3), the

component fails. Then the cost incurred in the incomplete interval (S2, t] is equal to

C(S2, t) = cF + cD(t − S2 − X3).

3.2.3 Renewal Argument

The renewal argument discussed in Section 2.3 also applies to the RRP. If τ is a renewal

point, then the cost C(τ, t), t > τ , can be considered as an RRP over an interval (t − τ),

and C(τ, t) is independent of C(0, τ). In summary we have the following theorem (renewal

argument for the RRP)

Theorem 3.1. Given that τ is a renewal point of an RRP C(t), t > τ , we have

(1) C(τ, t) is stochastically the same as C(0, t − τ) or C(t − τ); and

(2) C(τ, t) is independent of C(0, τ) or C(τ).
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For example, as shown in Figure 3.2, after the first renewal point S1, the component is

still subjected to the same age based replacement policy except that the time horizon is

reduced to t − S1.

3.3 Moments of Maintenance Cost

3.3.1 General Approach

Let Um(t) be the mth moment of C(t), defined as

Um(t) = E [Cm(t)] .

with an initial condition that Um(0) = 0. In this section we derive a general expression for

Um(t) as

Um(t) = (Um ∗ fT )(t) + Gm(t), (3.8)

where fT is the PMF of the length of the renewal interval T , and Gm(t) is a function asso-

ciated with the expected cost in one renewal interval and is determined by the maintenance

policy.

Equation (3.8) is referred to as a generalized renewal equation [27]. It can be used for a

general maintenance policy that can be treated as an RRP. A specific maintenance policy

only influences the values of fT (t) and Gm(t). Once fT (t) and Gm(t) are given, Um(t) can
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be recursively calculated as follows

Um(∆t) = Gm(∆t),

Um(2∆t) = Um(∆t)fT (∆t) + Gm(2∆t),

Um(3∆t) = Um(2∆t)fT (∆t) + Um(∆t)fT (2∆t) + Gm(3∆t),

...

Um(t) = Um(t − ∆t)fT (∆t) + Um(t − 2∆t)fT (2∆t) + · · ·+ Um(∆t)fT (t − ∆t) + Gm(t).

3.3.2 First Moment

Conditioning on the first renewal time T1 (see Figure 3.2) and using the law of total

expectation, the expected cost, U1(t), is written as

U1(t) =
∑

0<τ≤t

E [C(t)|T1 = τ ] fT (τ) + E [C(t)|T1 > t] F T (t), (3.9)

where F T (t) = P {T1 > t} is the SF of T . In the above equation, U1(t) is partitioned into

two parts associated with events T1 ≤ t and T1 > t. When T1 = τ < t, split C(t) into

two terms: (1) the cost in the first renewal interval (C1), and (2) the cost in the remaining

time horizon, C(τ, t), such that

E [C(t)|T1 = τ ] = E [C1|T1 = τ ] + E [C(τ, t)|T1 = τ ] = E [C1|T1 = τ ] + U(t − τ). (3.10)

In the above equation we used the renewal argument (Theorem 3.1) that E [C(τ, t)|T1 = τ ] =

U1(t− τ). This is because given the first renewal point T1 = τ , C(τ, t) is stochastically the

same as C(0, τ) or C(τ).
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Substituting Eq. (3.10) into Eq.(3.9) gives

U1(t) = (U1 ∗ fT )(t) + G1(t), (3.11)

where

G1(t) =
∑

0<τ≤t

E [C1|T1 = τ ] fT (τ) + E [C(t)|T1 > t] F T (t). (3.12)

3.3.3 Second Moment

Similar to Eq.(3.9), the second moment or mean-square of the cost can be written as

U2(t) =
∑

0<τ≤t

E
[
C2(t)|T1 = τ

]
fT (τ) + E

[
C2(t)|T1 > t

]
F T (t), (3.13)

When T1 = τ < t, split C(t) into C1 + C(τ, t), which allows to write the first expectation

term in the right hand side of Eq.(3.13) as

E
[
C2(t)|T1 = τ

]
= E

[
C2

1 |T1 = τ
]
+ 2E [C1C(τ, t)|T1 = τ ] + E

[
C2(τ, t)|T1 = τ

]
. (3.14)

Based on the renewal argument, the last two terms in Eq.(3.14) can be simplified as

E [C1C(τ, t)|T1 = τ ] = E [C1|T1 = τ ] E [C(τ, t)|T1 = τ ]

= E [C1|T1 = τ ] U1(t − τ), (3.15)

E
[
C2(τ, t)|T1 = τ

]
= E

[
C2(t − τ)

]
= U2(t − τ). (3.16)
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Substituting Eq. (3.14), (3.15) and (3.16) into (3.13), the following renewal equation is

obtained

U2(t) = (U2 ∗ fT )(t) + G2(t), (3.17)

where t ≥ 1 and

G2(t) =
∑

0<τ≤t

E
[
C2

1 |T1 = τ
]
fT (τ) + 2

∑

0<τ≤t

E [C1|T1 = τ ] fT (τ)U1(t − τ)

+ E
[
C2

1(t)|T1 > t
]
F T (t). (3.18)

To compute U2(t), U1(t) should be first derived from Eq.(3.11). Finally, the variance (V (t))

and the standard deviation (σ(t)) of cost can be obtained as,

V (t) = U2(t) − U2
1 (t) and σ(t) =

√

V (t). (3.19)

3.3.4 Higher-Order Moments

For simplicity, define

hm(τ) = E [Cm
1 |T1 = τ ] fT (τ) and Hm(t) = E [Cm(t)|T1 > t] F T (t). (3.20)

Then hm(τ) is the partition of E [Cm
1 ] over the set {T1 = τ} and Hm(t) is that of E [Cm(t)]

over the set {T1 > t}. We have

∑

τ>0

hm(τ) =
∑

τ>0

E [Cm
1 |T1 = τ ] fT (τ) = E [Cm

1 ] and lim
t→∞

Hm(t) = 0. (3.21)
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Using the above definition, G1(t) in Eq. (3.12) and G2(t) in Eq. (3.18) can be simplified

as

G1(t) =
∑

0<τ≤t

h1(τ) + H1(t). (3.22)

G2(t) =
∑

0<τ≤t

h2(τ) + 2(h1 ∗ U1)(t) + H2(t). (3.23)

Similar to the derivation of U2(t), the renewal equation (3.8) can be obtained for the mth

moment of C(t), where

Gm(t) =
∑

0<τ≤t

hm(τ) +

m−1∑

j=1






m

j




 (hj ∗ Um−j)(t) + Hm(t), (3.24)

where






m

j




 =

m!

j!(m − j)!
is the binomial coefficient.

Equation (3.24) shows that computation of the mth moment requires all the moments

of order less than m.

Letting ∆t → ∞, we will obtain the results for continuous time. Then the term

∑

0<τ≤t hm(τ) in Eq. (3.24) should be replaced by
∫ t

0
hm(τ)dτ and Eq. (3.8) will still hold.

3.3.5 Computational Procedure

To compute an mth moment of maintenance cost, Um(t), we need to take the following

procedure

(1) For specific maintenance policies, evaluate the renewal distribution fT (τ) and the
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terms hj(τ) = E
[
Cj

1 |T1 = τ
]
fT (τ) and Hj(τ) = E [Cj(τ)|T1 > τ ] F T (τ), where 0 <

τ ≤ t and 1 ≤ j ≤ m;

(2) Use Eq. (3.24) to obtain Gj(t) and substitute Gj(t) and fT (τ) into Eq. (3.8) to

compute Uj(t) recursively.

(2.1) substitute h1(τ) and H1(τ) into Eq. (3.24) to obtain G1(τ) and then substitute

G1(τ) and fT (τ) into Eq. (3.8) to obtain U1(τ) as

U1(∆t) = G1(∆t),

U1(2∆t) = U1(∆t)fT (∆t) + G1(2∆t),

U1(3∆t) = U1(2∆t)fT (∆t) + U1(∆t)fT (2∆t) + G1(3∆t),

...

U1(t) = U1(t − ∆t)fT (∆t) + U1(t − 2∆t)fT (2∆t) + · · ·+ U1(∆t)fT (t − ∆t)

+ G1(t)

(2.2) Substitute U1(τ), h1(τ), h2(τ) and H2(τ) into Eq. (3.24) to obtain G2(t) and

then substitute G2(τ) and fT (τ) into Eq. (3.8) to obtain U2(τ);

...

(2.m) Substitute U1(τ) – Um−1(τ), h1(τ) – hm(τ), and Hm(τ) into Eq. (3.24) to

obtain Gm(τ) and then substitute Gm(τ) and fT (τ) into Eq. (3.8) to obtain

Um(τ).
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3.4 Asymptotic Formula for Expected Maintenance

Cost

In this section, we are going to use Eq. (3.11) to obtain the asymptotic formula of the first

moment of cost, U1(t).

For renewal equations, we have following theorem [21]

Theorem 3.2. For a given function g(t) which is bounded on finite intervals and a PDF

f(t) which has a finite first moment µ, let z(t) be defined by the renewal equation

z(t) = (z ∗ f)(t) + g(t), t > 0

Then

lim
t→∞

z(t) =
1

µ

∫ ∞

0

g(t)dt (3.25)

In the above theorem, if all the functions are discrete, then the integral sign in Eq.

(3.25) should be changed to the summation sign, i.e. Eq. (3.25) should be modified as

lim
t→∞

z(t) =
1

µ

∑

t>0

g(t)∆t. (3.26)

Let u1(t) =
[
U1(t)−U1(t−∆t)

]
/∆t and g1(t) =

[
G1(t)−G1(t−∆t)

]
/∆t. Differentiating
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Eq. (3.11) gives

u1(t) = (u1 ∗ fT )(t) + g1(t).

The above equation is still a renewal equation. Using Theorem 3.2, the asymptotic value

of u1(t) is obtained as

lim
t→∞

u1(t) =
1

µT

∑

t>0

g1(t)∆t =
1

µT

lim
t→∞

G1(t), (3.27)

where µT is the expected value of the renewal interval T . Equation (3.22) gives that

lim
t→∞

G1(t) =
∑

τ>0

h1(τ) + lim
t→∞

H1(t).

Note that

∑

τ>0

h1(τ) =
∑

τ>0

E [C1|T1 = τ ] fT (τ) = E [C1] and lim
t→∞

H1(t) = 0.

Denote E [C1] by µC . Equation (3.27) becomes

lim
t→∞

u1(t) =
µC

µT
. (3.28)

Hence we have the following asymptotic formula of U1(t)

U1(t) =
µC

µT

t + o(t). (3.29)

The above formula has been widely used as an objective function for optimizing main-
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tenance cost in the literature [40]. In this thesis we will show that this is not a precise

approximation of the expected maintenance cost.

3.5 Unavailability and Failure Rate

Unavailability is the probability that a component is in the down state, and failure rate

is the expected number of failures per unit time. Denote the unavailability at time t by

uD(t) and the failure rate by uF (t). Then uD(t) is the probability of the event shown by

Figure 3.3a and uF (t)∆t is that shown by Figure 3.3b.
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(a) Down at t

0

1

State

Up
X

1Y n-1Y

2X nX

nY
Down

timeS1 Sn-1 t

(b) Failure at t

Figure 3.3: Unavailability and failure rate

In the following we derive uD(t) and uF (t) by using Eq. (3.8) for an age based replace-

ment model with finite replacement time (see Section 3.2.2).

Let ID(t) be the indicator of component state at time t, 1 for down and 0 for up. Then

uD(t) = P {ID(t) = 1} = E [ID(t)]

The event of {ID(t) = 1} implies that the component keeps in the down state in the interval

of (t − ∆t, t] . Hence
∑

0<τ≤t ID(τ)∆t is equal to the total down time up to t.
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Note that if the unit costs in the age based replacement model are taken as cD = 1 and

cF = cP = 0 (see Eq. (3.7)), then C(t) will be equal to the total down time up to t. Denote

such C(t) by ND(t) and the associated expected value U1(t) by UD(t). Then we have

E

[
∑

0<τ≤t

ID(τ)∆t

]

= UD(t).

Therefore unavailability can be obtained as

uD(t) =
∆UD(t)

∆t
, (3.30)

where ∆UD(t) = UD(t)−UD(t−∆t). Then we can use Eq. (3.8) to obtain UD(t) first and

then use the above equation to compute uD(t).

Failure rate uF (t) can be obtained similarly. Let IF (t) be the indicator of component

failure at time t, 1 for yes and 0 for no. Then

uF (t) =
1

∆t
P {IF (t) = 1} =

1

∆t
E [IF (t)] ,

and
∑

0<τ≤t IF (τ) is equal to the number of failures up to t. Taking the unit costs in Eq.

(3.7) as cF = 1 and cP = cD = 0, then C(t) will be equal to the number of failures up to t.

Denote U1(t) by UF (t), such that

uF (t) =
∆UF (t)

∆t
, (3.31)

where ∆UF (t) = UF (t) − UF (t − ∆t).
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For continuous time, i.e., ∆t → 0, Eq. (3.30) and (3.31) will become

uD(t) =
dUD(t)

dt
, uF (t) =

dUF (t)

dt
. (3.32)

3.6 Example

A numerical example is presented to illustrate the age based replacement policy with finite

replacement time as described in Section 3.2.2.

This example is purely illustrative. The units of various quantities in this section are

not of any practical relevance.

3.6.1 Input Data

Suppose that time is discretized as 0, 1, 2, · · · . Component lifetime L is a discrete Weibull

distributed random variable. The hazard rate is shown by Eq. (2.14) with parameters

α = 4 and β = 40. Then the PMF fL(l), the CDF FL(l), and the SF F L(l), l = 1, 2, · · · ,

β, can be computed. The mean and the standard deviation of L are µL = 20 and σL = 5.5,

respectively.

The down time, Y , is a geometrically distributed random variable with PMF

fY (y) = φ(1 − φ)y−1, y = 1, 2, · · · (3.33)

where the parameter φ is the probability that replacement will be finished at time y. We

take φ = 0.5 so that the mean down time is µY = 1/φ = 2. It is assumed that L and Y

are independent of each other.
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Unit costs are taken as cF = 5, cP = 1 and cD = 0.2. The length of time horizon is

t = 30.

3.6.2 Computation

For any age of replacement tp, the procedure of Section 3.3.5 to obtain the expected

maintenance cost U1(t) requires computation of the following quantities.

(1) fT (τ)

Note that the time to replacement X = min(L, tp). Then X = 1, 2, · · · , tp − 1, and

the PMF of X is obtained as

fX(x) =







fL(x), if x < tp,

F L(tp − 1), if x = tp.

Since X is independent of Y and the length of renewal interval is T = X + Y , the

PMF of T is equal to

fT (τ) = (fX ∗ fY )(τ).

(2) h1(τ)

Using the law of total expectation by conditioning on X1 and Y1, h1(τ) is obtained
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as

h1(τ) = E [C1|T1 = τ ] fT (τ)

=

min(τ,tp)
∑

x=1

E [C1|X1 = x, Y1 = τ − x] fX(x)fY (τ − x). (3.34)

In the above equation, the event {T1 = τ} is partitioned into mutually exclusive

subevents as
⋃min(τ,tp)

x=1 {X1 = x, Y1 = τ − x}. Given {X1 = x, Y1 = τ − x}, the

maintenance cost of the first renewal interval is equal to

C1 =







CCM(x, τ) = cF + cD(τ − x), if x < tp,

CPM(tp, τ) = cP + cD(τ − tp), if x = tp,

Then Eq. (3.34) gives

h1(τ) =







τ∑

x=1

CCM(x, τ)fX(x)fY (τ − x), if τ < tp,

tp−1∑

x=1

CCM(x, τ)fX(x)fY (τ − x) + CPM(tp, τ)fX(tp)fY (τ − tp), if τ ≥ tp.

(3) H1(t)

Using the law of total expectation by conditioning on X1 and Y1, H1(t) is obtained

as

H1(t) = E [C(t)|T1 > t] F T (t)

=

min(t,tp)
∑

x=1

E [C(t)|X1 = x, Y1 > t − x] fX(x)F Y (t − x). (3.35)
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Given {X1 = x, Y1 > t − x}, the maintenance cost up to t is equal to

C(t) =







CCM(x, t) = cF + cD(t − x), if x < tp,

CPM(tp, t) = cP + cD(t − tp), if x = tp,

Then Eq. (3.35) gives

H1(t) =







t∑

x=1

CCM(x, t)fX(x)F Y (t − x), if t < tp,

tp−1∑

x=1

CCM(x, t)fX(x)F Y (t − x) + CPM(tp, t)fX(tp)F Y (t − tp), if t ≥ tp.

Then use Eq. (3.12) to obtain G1(t) and substitute G1(t) and fT (τ) into Eq. (3.11) to

calculate U1(t) recursively.

3.6.3 Numerical Results

Figure 3.4 shows the expected maintenance cost in a time horizon of t = 30 versus the

replacement age. The finite time formula shows that the optimal replacement age is tp = 15,

for which the minimum cost is 2.8. However, the asymptotic formula shows that the

optimal replacement age is tp = 13, for which the minimal cost is 3.6. The asymptotic cost

over-predicts the expected maintenance cost by almost 30%. The finite time formulation

provides a mroe accurate estimate of the expected cost.
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Figure 3.4: Expected cost vs. replacement age

3.7 Summary

This chapter presents a general derivation of any mth order statistical moment mainte-

nance cost in a finite time horizon. The moment of cost is derived as a renewal-type

integral equation. The proposed formulation can be used to derive results for a specific

maintenance policy, so long as it can be modelled as a stochastic renewal-reward process.

This general approach allows the finite time cost analysis of a variety of maintenance

policies. Subsequent chapters will use the results presented in this chapter.
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Chapter 4

Condition Based Maintenance

4.1 Introduction

4.1.1 Motivation

Critical engineering systems and structures, such as dams, dikes, breakwater, and other

protection systems are adversely affected by degradation caused by over-stress and aging

related mechanisms such as erosion, corrosion, and fatigue.

To ensure safety and availability of these systems, the condition based maintenance

(CBM) policy is often used. Under this policy, the condition of the system is examined

through inspections planned at a fixed interval. If the degradation is found to exceed a

threshold, the system is preventively replaced prior to onset of a catastrophic failure.

A CBM policy is more appropriate than age-based replacement policy, if the replace-

ment of the system is prohibitively costly, such as in a nuclear plant. The reason is that an
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age-based policy requires replacement of the system irrespective of its condition, whereas

decision-making in a CBM policy is based on the existing condition of the system.

Several variations of CBM models have been discussed in the industrial and main-

tenance engineering literature, depending on whether or not the inspection schedule is

periodic, inspection tools are perfect, failure is detected immediately, or repair duration

is negligible. Abdel-Hameed [1] and Park [50] presented models of periodic CBM of com-

ponents subjected to gamma process degradation. The model of non-periodic CBM was

presented by Grall [25] and that of imperfect inspection by Kallen [33]. Castanier [10]

studied such a maintenance policy in which both the future maintenance (replacement or

imperfect repair) and the inspection schedule depend on the magnitude of degradation. A

detailed review of stochastic maintenance models is presented in a recent monograph [40].

The optimization of CBM is based on minimization of maintenance cost with respect

to the inspection interval and preventive maintenance criteria while complying with the

regulatory limits of reliability and availability.

As discussed before, maintenance cost optimization is based on the asymptotic cost,

since its evaluation is quite easy. However, finite-time cost analysis is required for practical

engineering systems with relatively finite operating life and financing horizon [44, 11, 47,

12]. The finite time cost analysis of the CBM policy has not been reported in the literature.

A recent survey shows that the finite time cost model has been limited to age and block

replacements, and minimal repair policy [41]. Christer [13] and Christer & Jack [14] derived

the expected finite time cost for an age-based replacement policy in form of a recursive

equation. The examples given in these studies showed that the traditional asymptotic

solution for optimal age can lead to significant error in comparison to finite time cost.

Later Jack [29, 30] applied this approach to analyze a policy in which a component is
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minimally repaired after failure and replaced after failure. In a recent paper, Jiang [32]

presented an optimal solution of age replacement problem for a finite time horizon.

The objective of this chapter is to derive finite-time mean and variance of the main-

tenance cost of a CBM program. This formulation serves as a foundation to subsequent

optimization of the maintenance cost.

4.1.2 Organization

Section 4.2 provides the details of the CBM model discussed in this chapter. Section 4.3.2

introduces the stochastic gamma process model of uncertain degradation process. The

mean and variance of the cost, and failure rate are derived in Section 4.4. The method

of simulation is given in 4.5. The asymptotic cost is discussed in Section 4.6. Section 4.7

presents a practical example of corrosion in the heat transport piping system of a nuclear

power plant.

4.2 Maintenance Model

Figure 4.1 is an illustration of the CBM policy studied in this chapter. Let W (t) be degra-

dation of a component at time t. W (t) is a non-decreasing process, and component failure

will occur when W (t) exceeds a critical thresh hold wF . To avoid component failure, the

component is inspected periodically at times δ, 2δ, · · · , and the value of W (t) is measured.

If W (t) exceeds a preventive threshold wP (< wF ), the component will be renewed (re-

placed or repaired into an as-good-as-new condition), called preventive maintenance (PM,

Figure 4.1a). If W (t) exceeds wF between two consecutive inspection times, the component
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will fail and will be renewed right after failure, referred to as corrective maintenance (CM,

Figure 4.1b), which is much more costly than PM.
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Figure 4.1: Illustration of CBM

In this chapter, it is assumed that: (1) a component’s degradation starts as it is put into

service; (2) time for maintenance, whether PM or CM, is negligible; and (3) component

failure is self-announcing, i.e., no inspection is needed to detect component failure and

then CM will be performed right after failure. After component renewal, the inspection

schedule will restart from then on. For example, if the time of renewal is t, then inspection

times following that will be t+δ, t+2δ, · · · . In a finite time horizon, there will be multiple

renewal intervals (see Figure 4.2).
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Figure 4.2: Sample path of CBM

In the above model, the total maintenance cost consists of inspection cost, PM cost,

and CM cost. The unit costs of these items are denoted as: inspection cost – cI , CM cost
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– cF , and PM cost – cP . Then the cost incurred in a PM renewal interval of length τ , τ

being a multiple of δ, is equal to

CPM(τ) = (τ/δ)cI + cP , (4.1)

and that incurred in a CM renewal interval of length τ , τ being of any value, is equal to

CCM(τ) = ⌊τ/δ⌋ cI + cF , (4.2)

where ⌊⌋ denotes the floor function. Since the inspection schedule is also renewed after

component renewal, the new component is still subject to periodic inspection and replace-

ment, if any, by taking the last renewal point as the new time origin. Hence {Tn, Cn}, Tn

being the length of the nth renewal interval and Cn the associated cost, are iid random

vectors. Then the total cost up to time t, C(t), is a renewal-reward process.

The above CBM model is the same as that in [50], where it is used to maintain break

linings subjected to stochastic wear.

4.3 Stochastic Degradation Process

4.3.1 Background

The theory of stochastic processes has served as a fundamental basis for modeling an

uncertain, dynamic process of degradation, and for estimating the maintenance cost by in-

corporating uncertainties associated with the occurrence of failure and maintenance events

over a stipulated service life of the system. Although stochastic maintenance models are
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common in operation research and queuing theory literature [40], van Noortwijk and his

co-workers [66, 69, 67, 68] presented several formal applications of the renewal theory to

maintenance cost analysis of structures. Van der Weide et al. [64] used the compound

renewal process to model system degradation. Optimization of inspection and repair for

the Wiener and gamma processes of degradations was discussed in [42]. Other recent ex-

amples of stochastic models for structural maintenance are presented by Rackwitz et al.

[54], Streicher et al. [60], Rackwitz & Joanni [53].

4.3.2 Gamma Process

The gamma process is an example of a stochastic cumulative process with a simple math-

ematical structure that provides an effective tool to model the evolution of damage. The

basic mathematical framework of the gamma process model was developed in early 1970’s,

and then is introduced by van Noortwijk to civil engineering community [69, 67, 68].

Gamma process has been applied to model various types of degradation processes, such as

creep in concrete [15], recession of coastal cliffs [26], deterioration of coating on steel struc-

tures [43], structural degradation [24] and wall thinning corrosion of pipes in nuclear power

plants [75]. A comprehensive review of the gamma process model and its applications was

recently published [65].

A gamma process is defined as follows. Denote a gamma distributed random vari-

able with shape parameter ξ and scale parameter β by Gamma(ξ, β). Let fG(w; ξ, β),

FG(w; ξ, β) and F
G
(w; ξ, β) be the PDF, the CDF, and the SF of Gamma(ξ, β). Then

fG(w; ξ, β) =
wξ−1e−w/β

βξΓ(ξ)
, FG(w; ξ, β) =

Γ(ξ, w/β)

Γ(ξ)
, F

G
(w; ξ, β) = 1 − F

G
(w; ξ, β),

(4.3)
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where Γ(a) =
∫ ∞

0
xa−1e−xdx is the complete gamma function, and Γ(a, b) =

∫ b

0
xa−1e−xdx

is the lower incomplete gamma function.

Let tk = k∆t, k = 0, 1, 2, · · · . A stochastic process W (t) is called a gamma process

with shape function ξ(t) and scale parameter β if

(1) W (0) = 0;

(2) the sequence of one-step differences W (tk−1, tk) = W (tk) − W (tk−1) is a sequence of

independent random variables; and

(3) W (tk−1, tk) ∼ Gamma(ξ(tk−1, tk), β), where ξ(tk−1, tk) = ξ(tk) − ξ(tk−1).

Generally, ξ(t) can be taken in a form of a general power law as

ξ(t) = αtθ. (4.4)

When the shape function ξ(t) is nonlinear in time, W (t) is referred to as a non-stationary

gamma process. In a special case of θ = 1, W (t) is called a stationary gamma process.

Given degradation measurement data collected at various time intervals, α, β and θ can be

estimated using the methods of maximum likelihood or the method of moments [7, 43, 65].

As mentioned before, the component fails as soon as the gamma degradation passes a

failure level wF . Hence, the lifetime of the component, denoted by L, is equal to

L = min{t : W (t) > wF}.
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The PMF of L is then given by

fG
L (tk) = P {L = tk}

= P {W (tk−1) ≤ wF , W (tk) > wF}

= P {W (tk−1) ≤ wF , W (tk−1) + W (tk−1, tk) > wF} .

Note that the random variables W (tk−1) and W (tk−1, tk) are independent of each other,

W (tk−1) ∼ Gamma
(
ξ(tk−1), β

)
and W (tk−1, tk) ∼ Gamma

(
ξ(tk−1, tk), β

)
. Then the above

probability can be evaluated by conditioning on the W (tk−1) as

fG
L (tk) =

∫ wF

0

fG
(
w; ξ(tk−1), β

)
P {W (tk−1, tk) > wF − w}dw

=

∫ wF

0

fG
(
w; ξ(tk−1), β

)
F

G(
wF − w; ξ(tk−1, tk), β

)
dw.. (4.5)

For a stationary gamma process with shape function ξ(t) = α and scale parameter β,

the average degradation per unit time is equal to [65]

1

t
E [W (t)] = αβ. (4.6)

4.3.3 Simulation of Gamma Process

A variety of simulation methods have been presented in the literature, such as gamma-

increment sampling [4], gamma-bridge sampling [19, 56], and compound Poisson simula-

tion [74, 51]. A simple and efficient gamma-increment sampling method is chosen. Sam-

ples of independent increment, ∆W (tk−1, tk), are simulated from a gamma distribution,

Gamma(ξ(tk−1, tk), β). Then the sample of W (ti) is obtained as W (ti) =
∑i

k=1 ∆W (tk−1, tk).
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4.4 Maintenance Cost Analysis

Since the total cost C(t) in the CBM model as described in Section 4.2 is a renewal-reward

process, we can directly use results of Chapter 3 to obtain the moments of C(t). To use

Eq. (3.8) to compute the expected value and the variance of C(t), the renewal distribution

fT (τ) and the term Gm(t), m = 1, 2, should be first derived, as shown in Section 4.4.1 and

4.4.2, respectively.

4.4.1 Renewal Interval Distribution

To derive the renewal distribution fT (τ), the following two events are defined at any jth

inspection time, tIj = jδ, for j ≥ 1:

Aj =
{
W (tIj−1) ≤ wP , wP < W (tIj) ≤ wF

}
,

Bj =
{
W (tIj−1 ≤ wP , W (tIj ) > wF

}
.

Only one of the two events can terminate the renewal interval.

• If Aj occurs, then T = tIj ;

• If Bj occurs, then T takes a value in the set
{
tIj−1 + ∆t, tIj−1 + 2∆t, · · · , tIj−1 + δ = tIj

}
.

For r = ∆t, 2∆t, · · · , δ, let

Bj,r =
{
W (tIj−1) ≤ wP , W (tIj−1 + r − ∆t) ≤ wF , W (tIj−1 + r) > wF

}
.

For a fixed j, the sets {Bj,r} are a partition of Bj . If Bj,r occurs, then T = tIj−1 + r.
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Events Aj and Bj,r are illustrated in Figure 4.3 for a specific case of ∆t = 1, δ = 5 and

r = 3.
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Figure 4.3: Illustration of events Aj and Bj,r

To derive fT (τ), probabilities of the events Aj and Bj,r are computed using the same

argument as for the evaluation of (4.5), which leads to

P {Aj} =

∫ wP

0

fG
(
w1; ξ(t

I
j−1), β

)
[∫ wF−w1

wP−w1

fG
(
w2; ξ(t

I
j−1, t

I
j), β

)
dw2

]

dw1, (4.7)

and

P {Bj,r} =

∫ wP

0

fG
(
w; ξ(tIj−1), β

)
Q(wF − w; ξ1, ξ2, β)dw, (4.8)

where ξ1 = ξ(tIj−1, t
I
j−1 + r − ∆t), ξ2 = ξ(tIj−1 + r − ∆t, tIj−1 + r), and the function

Q(w; ξ1, ξ2, β) =

∫ w

0

fG(w′; ξ1, β)F
G
(w − w′; ξ2, β)dw′.

Then the probability of a renewal interval ending by PM at an inspection time τ = tIj

is given by

fPM(τ) = P {Aj} . (4.9)
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Similarly, the probability of CM at any time τ = tIj−1 + r, 0 < r ≤ δ, is given by

fCM(τ) = P {Bj,r} . (4.10)

Then the PMF of T is given by

fT (τ) = fCM(τ) +







fPM(τ), if mod(τ, δ) = 0,

0, otherwise.

(4.11)

4.4.2 Computation of Gm(t)

To compute Gm(t) by using Eq. (3.24), we need to obtain the terms hm(τ) and Hm(τ)

first.

To derive hm(τ), note that the cost incurred in a renewal interval associated with event

Aj is equal to CPM(τ), where τ = jδ, and that associated with Bj,r is equal to CCM(τ),

where τ = (j − 1)δ + r. CPM(τ) and CCM(τ) are given by Eq. (4.1) and (4.2), respectively.

Then using the law of total expectation by conditioning on the type of maintenance, hm(τ)

can be obtained as

hm(τ) = E [Cm
1 |T1 = τ ] fT (τ)

= Cm
CM(τ)fCM(τ) +







Cm
PM(τ)fPM(τ), if mod(τ, δ) = 0,

0, otherwise.

(4.12)

To derive Hm(τ), note that if T1 > t, no maintenance will be taken before t. Then only

inspection cost is incurred. The number of inspections up to t is equal to ⌊t/δ⌋. Hence
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Hm(τ) can be obtained as

Hm(τ) = E [C(t)m|T1 > t] F T (t) = ⌊t/δ⌋ cIF T (t). (4.13)

In the above equation, F T (t) is the SF of T and can be obtained from fT (τ).

Substitute hm(τ) and Hm(τ) into Eq. (3.24) to derive Gm(t) and then the first and the

second moment of C(t) can be obtained from Eq. (3.8).

4.4.3 Failure Rate

Note that if we take cI = cP = 0 and cF = 1, C(t) will become the number of failures up

to t. Then failure rate can be obtained from Eq. (3.31).

4.5 Simulation

The Monte Carlo simulation method is also used to evaluate the maintenance cost and

verify the results of renewal equation method. Sample paths of gamma degradation process

are simulated using the method described in Section 4.3.3. The algorithm for evaluation

of maintenance cost is shown in Figure 4.4. Note that ∆W is the degradation increment,

W is the total degradation, and C is the maintenance cost.
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Figure 4.4: Algorithm of simulation
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4.6 Asymptotic Cost

The expected length and the expected cost of a renewal interval can be obtained from

fT (τ) as

µT =
∑

τ>0

τfCM(τ) +

∞∑

j=1

jδfPM(jδ), (4.14)

µC =
∑

τ>0

CCM(τ)fCM(τ) +
∞∑

j=1

CPM(jδ)fPM(jδ). (4.15)

Then the asymptotic cost can be obtained from Eq. (3.29).

4.7 Example

Flow accelerated corrosion (FAC) degradation is common in the heat transport piping

system (PHTS) of nuclear power plants. The uncertain corrosion process can be modelled

as a stochastic gamma process [75]. The following information is gathered from past

inspections and design documents [49]. The initial wall thickness of the pipe is 6.50 mm.

The minimum required wall thickness is 2.41 mm. The degradation threshold of failure is

thus wF =3.09 mm.

Assume that FAC is a stationary gamma process, i.e. the parameter θ in Eq. (4.4) is

equal to 1 and then the shape function is ξ(t) = αt. Using wall thickness measurements

collected from several inspections, the parameters of the gamma process were estimated

as α = 1.13/year and β = 0.0882 mm. The lifetime of the pipe is the time when wall

thickness exceeds the threshold of 3.09 mm. Using this criterion, the PMF of the lifetime

is computed from equation (4.5) and plotted in Figure 4.5. The mean and the standard

59



deviation of lifetime are 32 and 5.25 years, respectively.
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Figure 4.5: Lifetime distribution of pipes affected by corrosion

Cost data are specified in the unit of million$ as cI = 0.01, cP = 1, and cF = 5. The

preventive replacement level is chosen as wP =2.0 mm based on a regulatory requirement.

The maintenance cost is evaluated for a t = 30 years time horizon. Use Eq. (4.12) and

(4.13) to calculate hm(τ) and Hm(t). Then the first and the second moments of cost, U1(t)

and U2(t), can be obtained by substituting hm(τ) and Hm(t) into Eq. (3.8).

The variation of U1(t) with the inspection interval is plotted in Figure 4.6. The finite

time model results in an optimal inspection interval of 21 years and corresponding cost of

0.82 million$. The asymptotic formula results in an optimal inspection interval of 6 years

and the associated cost is 1.31 million$, which is about 60% higher than that calculated

from the finite time formula. Given that the Canadian reactor design consists of 380 to

480 pipe sections, this cost differential for the entire reactor would be quite large.

Expected cost versus inspection interval results are also evaluated using simulation
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Figure 4.6: Expected cost vs. inspection interval

method. In each simulation run 104 samples are used. Figure 4.6 shows that results

obtained from the finite time formula are quite close to those obtained from simulation.

However, the computational time of simulation method is much larger. Using MATLAB

2010a version, the computational time of the simulation method is 58 seconds, but the

finite time formula takes only 1 second.

The standard deviation of cost is equal to σ(t) =
√

U2(t) − U1(t). σ(t) provides valuable

information about potential uncertainty associated with the estimated cost. Figure 4.7

plots the finite time expected cost (U1) and one standard deviation upper bound (U1 + σ)

against the inspection interval. This Figure shows that an increase in inspection interval

is accompanied with increase in the standard deviation of cost. It makes sense, since

the temporal uncertainty associated with gamma process degradation increases as the

inspection interval becomes long.

The expected cost curve has 3 competing optimal points (P2, P3 and P4), though the
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Figure 4.7: Mean and standard deviation of maintenance cost vs. inspection interval

standard deviation associated with them is remarkably different. At the most optimal

inspection interval of δ=21 years (point P4 in Figure 4.7), the standard deviation is equal

to σD = 1.12 million$. There is another competing solution, δ = 11 years (point P3),

with slightly higher expected cost of 0.85 million$, and lower standard deviation of 0.99

million$. The next optima is point P2 with δ =8 years, U1 = 0.91 million$ and σ = 0.72

million$. As the inspection interval is reduced, the expected cost increases, but associated

standard deviation declines. Therefore, based on the risk tolerance of a decision maker, an

appropriate combination of the mean and the standard deviation of cost can be used to

determine an optimal policy.

Based on a minimum upper bound, U1 + σ, criteria, the most optimal inspection inter-

val is 4 years and associated upper bound cost is 1.28 million$ (Point P1). It should be

remarked that the analysis favors a shorter inspection interval, because the cost of inspec-

tion is much smaller (0.01 million$) than that associated with PM or CM. The results of

the finite time cost analysis emphasize the fact that the consideration of variance of the
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cost is of utmost importance in the optimization of a maintenance program. These results

can be used to evaluate the benefit-cost analysis of various maintenance strategies with

various combinations of inspection interval and the PM threshold, wP .
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Figure 4.8: Time-dependent failure rate for various inspection intervals (δ years)

The variation of the failure rate over a 30 years time horizon is shown in Figure 4.8

for four competing solutions of optimal inspection intervals. To interpret these results,

take a case of the first subfigure for δ = 4, which shows that the failure rate in year 15,

for example, is approximately 10−5. This failure rate is a result of inspecting the pipe at

4 year interval and replacing it if its wall thickness loss exceeded wP (=2.00 mm). The

failure rate drops right after the inspection in years, e.g., year 9, 13, 17, · · · , reflecting the

benefit of the PM policy. All other subfigures can be interpreted in a similar manner. In

summary, Figure 4.8 shows the benefit of the maintenance program in terms of reduction
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in the failure rate. The smaller the inspection interval, the lower is the failure rate. For

a given regulatory limit on the maximum failure rate, Figure 4.8 can help identify a valid

optimal solution. If the objective is to keep the failure rate below 10−3 per year, inspection

intervals of δ=8, 11 and 21 years are not appropriate, since the maximum failure rate in

these cases exceeds the limit 10−3 per year.

4.8 Summary

This chapter analyzed the cost of CBM of a system in which degradation is modelled as a

stochastic gamma process. Although the gamma process is widely used in the literature,

the finite time mean and variance of cost are derived for the first time in this work.

This chapter presents a case study involving CBM of the piping system in a nuclear

plant. The study illustrates that the asymptotic formula over-predicts the maintenance

cost as compared to that obtained from the proposed finite time model. Given that a plant

contains a large fleet of piping components, the over-prediction by the asymptotic formula

can be substantial, which can adversely affect the maintenance budget at the plant level.

This chapter also emphasizes the fact that the consideration of variance of the cost

is of utmost importance in maintenance optimization. In a set of competing optimum

solutions based on expected cost, the variance of cost would determine a more robust (less

uncertain) solution. From a practical point of view, the utility of an optimum expected

cost solution without knowing the associated variance is quite limited. The failure rate is

another important quantity of the optimal inspection policy, especially if there is a need

to satisfy a regulatory limit on failure rate during the entire service life of the system.

It is concluded that the finite time model should be used for a realistic evaluation and
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optimization of CBM for safety critical infrastructure systems. The optimal inspection

and maintenance should be based on a prudent consideration of an upper bound cost and

failure rate. In this context, the asymptotic solutions have limited utility for a decision

maker.

The results of this chapter have been published in [44, 11, 47].
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Chapter 5

Condition Based Maintenance-An

Advanced Model

5.1 Introduction

5.1.1 Motivation

The CBM model analyzed in the previous chapter assumed that time required for repair

is negligible, and degradation initiated as soon as the system was put in service. These

two assumptions are relaxed in this chapter by considering the repair (or down) time and

delay in degradation initiation as random variables. This chapter presents the derivation

of the expected maintenance cost in a finite time horizon. In addition, computation of net

present value of maintenance cost (or discounted cost) is also formulated.
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5.1.2 Organization

Section 5.2 describes CBM model, and Section 5.3 presents the computation of the expected

cost. The asymptotic cost, unavailability, and failure rate are derived in Section 5.4. The

formulation of discounted maintenance cost is given in Section 5.5. A practical case study

related to the maintenance of a hydraulic structure is presented in Section 5.6.

5.2 Maintenance Model

This chapter considers a component degradation process that initiates and grows in a

stochastic manner over time (see Figure 5.1). Degradation of a component does not accu-

mulate until it is initiated. When degradation exceeds a threshold value wF , the component

fails and a CM is required to restore its condition (see Figure 5.1a). To reduce the risk of

failure, it is planned to carry out periodic inspections at interval of δ and a PM is taken to

repair any detected degradation, i.e. PM threshold wP = 0 (see Figure 5.1b). The time for

maintenance, whether CM or PM, is assumed to be non-negligible. Of course, inspections

are not taken any more during maintenance interval. Note that maintenance intervals, PM

and CM, could be different from each other. Generally, CM interval is longer than PM

interval since CM is unpredicted maintenance and it takes more time to get ready. After

maintenance, both the component and the inspection schedule are renewed, i.e. the new

component will be inspected at times τ + δ, τ + 2δ, · · · , τ being the last renewal time.

As shown in Figure 5.1, the degradation free interval is X, the degradation growth

interval is Y , and the maintenance interval is Z. Then the operation interval of this
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Figure 5.1: Proposed stochastic model of degradation and maintenance (wF = failure
threshold, = initiation of degradation, = start of maintenance, = end of mainte-
nance)

component and the length of a renewal interval are, respectively,

L = X + Y, (5.1)

T = L + Z = X + Y + Z. (5.2)

Denote the degradation growth process by W (y), where y is the time elapsing from degra-

dation initiation. It is assume that (1) X and Z are both random variables; (2) W (y) is

a stationary gamma process with shape parameter α and scale parameter β. Due to the

uncertainty of W (y), Y is also a random variable; and (3) X is independent of W (y) and

Z. Denote the PMF of X by fX(x). Note that the PMF of Z depends on the type of

maintenance (CM or PM). Denote the PMF of CM interval and that of PM by fZ,CM(z)

and fZ,PM(z), respectively.

The total maintenance cost consists of inspection cost, CM cost, PM cost, and down

time cost. The down time cost is due to the unavailability of the component when it is in
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maintenance and is proportional to the length of the maintenance interval. Different from

the previous chapter, the PM cost is composed of a fixed cost and a variable cost. The

variable PM cost is proportional to the amount of degradation (see W (Y ) in Figure 5.1b).

The following notations are used to denote the unit costs of various items: inspection cost–

cI , CM cost–cF , fixed PM cost–cP , variable PM cost per unit degradation –cV , and down

time cost per unit time–cD. Then the cost incurred in a CM renewal interval as shown in

Figure 5.1a and that incurred in a PM renewal interval as shown in Figure 5.1b are equal

to, respectively,

CCM = ⌊L/δ⌋ cI + cF + cDZ, (5.3)

CPM = (L/δ)cI + [cP + cV W (Y )] + cDZ. (5.4)

Since the inspection schedule is also renewed after component renewal, the new component

is still subject to periodic inspection and replacement, if any, by taking the last renewal

point as the new time origin. Hence {Tn, Cn}, Tn being the length of the nth renewal

interval and Cn the associated cost, are iid random vectors. Then the total cost up to time

t, C(t), is a renewal-reward process.

5.3 Maintenance Cost Analysis

In this section, the expected maintenance cost is derived. Since the total cost C(t) in the

CBM model as described in Section 5.2 is a renewal-reward process, we can directly use Eq.

(3.8) in Chapter 3 to obtain the expected value of C(t). In Chapter 3, we use a subscript

below U to denote the order of moments. However, in this chapter, only the first order
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of cost is considered. Hence we will omit the subscript of U in this chapter, i.e. use U(t)

to denote E [C(t)] for simplicity. Similarly, we use the notations of h(τ), H(t) and G(t)

instead of h1(τ), H1(t) and G1(t) in this chapter.

To use Eq. (3.11), the renewal distribution fT (τ) and the term G(t) should be first

derived, as shown in Section 5.3.1 and 5.3.2, respectively.

5.3.1 Renewal Interval Distribution

As mentioned in Section 5.2 (see Eq. (5.1) and (5.2)), a complete renewal cycle T consists

of two subintervals: (1) operation interval L; and (2) the maintenance interval Z. The

operation interval L also consists of subintervals: (1.1) degradation free interval X; and

(1.2) degradation growth interval Y . In the following, we are going to obtain the probability

distribution of L first and then to obtain that of T .

As shown by Figure 5.1a, in a CM renewal interval, the event {L = l}, denoted by

ACM(l), implies that component degradation is initiated during
[
tI(l, δ), l

)
and then exceeds

wF at time l, i.e.

ACM(l) =
⋃

tI(l,δ)≤x<l

{X = x, W (l − x − ∆t) ≤ wF , W (l − x) > wF}, (5.5)

where

tI(l, δ) =







⌊l/δ⌋ δ, if mod(l, δ) 6= 0,

l − δ, if mod(l, δ) = 0,

(5.6)

is the inspection time up to but not including l. Let fL,CM(l) be probability of such an
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event. Then

fL,CM(l) =
∑

tI(l,δ)≤x<l

P {X = x, W (l − x − ∆t) ≤ wF , W (l − x) > wF} (5.7)

As mentioned in Section 5.2, degradation free interval X is independent of degradation

growth W (y). Then the probability in the right hand side of the above equation is equal

to fX(x)P{W (l − x − ∆t) ≤ wF , W (l − x) > wF}, where fX(x) is the PMF of X. The

probability that a gamma process exceeds a critical value of wF at time tk has been derived

as function fG
L (tk) in Eq. (4.5) in Chapter 4. Using this function, the probability of

{W (l−x−∆t) ≤ wF , W (l−x) > wF} can be obtained as fG
L (l−x). Then Eq. (5.7) gives

fL,CM(l) =
∑

tI(l,δ)≤x<l

fX(x)fG
L (l − x). (5.8)

As shown by Figure 5.1b, in a PM renewal interval, the event {L = l}, denoted by

APM(l) and l being a multiple of δ, implies that component degradation is initiated during
[
l − δ, l

)
and does not exceed wF at time l, i.e.

APM(l) =
⋃

l−δ≤x<l

{X = x, W (l − x) ≤ wF}. (5.9)

Let fL,PM(l) be probability of such a event. As mentioned in Section 4.3.2, a gamma

distribution has gamma distributed increments. Then W (l − x) ∼ Gamma(α(l − x), β),

where α and β are the shape and the scale parameters of the gamma degradation process,

respectively. Hence the probability of {W (l − x) ≤ wF} is equal to FG(wF ; α(l − x), β),

where FG is the CDF of the gamma distribution as shown in Eq. (4.3). Then using Eq.
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(5.9) and noting that X is independent of W (y), fL,PM(l) can be obtained as

fL,PM(l) =
∑

l−δ≤x<l

fX(x)FG(wF ; α(l − x), β). (5.10)

Finally, since ACM(l) and APM(l) are mutually exclusive events and T = L + Z, the

PMF of T can be obtained as

fT (τ) = (fL,CM ∗ fZ,CM) (τ) + (fL,PM ∗ fZ,PM) (τ), (5.11)

where fZ,CM(z) and fZ,PM(z) are the PMF of Z for CM and PM, respectively.

5.3.2 Computation of G(t)

To compute G(t) by using Eq. (3.24), we need to obtain the following two terms first:

h(τ) = E [C1|T1 = τ ] fT (τ) and H(t) = E [C(t)|T1 > t] F T (t).

(1) h(τ)

Conditioning on L, Z, and the maintenance type, partition the event {T = τ} into

mutually exclusive subevents as

{T = τ} =
⋃

0<l≤τ

(

{ACM(l), Z = τ − l}
⋃

{APM(l), Z = τ − l}
)

. (5.12)

Events APM(l) and APM(l) are given in Eq. (5.5) and (5.9). Then based on the above
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partition, h(τ) can be obtained by using the law of total expectation as

h(τ) =
∑

0<l≤τ

[

CCM(l, τ)fL,CM(l)fZ,CM(τ − l) + CPM(l, τ)fL,PM(l)fZ,PM(τ − l)
]

,

(5.13)

where CCM(l, τ) and CPM(l, τ) are the expected costs incurred in a renewal interval

of {L = l, T = τ} with maintenance type CM and PM, respectively. Using Eq. (5.3)

and (5.4), CCM(l, τ) and CPM(l, τ) can be obtained as

CCM(l, τ) = ⌊l/δ⌋ cI + cF + cD(τ − l), (5.14)

CPM(l, τ) = (l/δ)cI + [cP + cV V (l)] + cD(τ − l), (5.15)

where V (l) = E [W (Y )|APM(l)] is the expected value of degradation at time l given

that a PM is taken at l. Then V (l) is given by

V (l) =

∫ wF

0

w · d
[
FW (Y )

(
w|APM(l)

)]
, (5.16)

where FW (Y )

(
w|APM(l)

)
is the conditional CDF of W (Y ) given APM(l). The integral

interval in Eq. (5.16) is taken as 0 < w ≤ wF due to the fact that degradation at the

time of PM should be less than or equal to wF . In Appendix B, FW (Y )

(
w|APM(l)

)
is

derived as

FW (Y )

(
w|APM(l)

)
=

1

fL,PM(l)

∑

l−δ≤x<l

fX(x)FG(wF ; α(l − x), β). (5.17)

Then the value of h(τ) in Eq. (5.13) can be obtained. Note that the derivation of
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V (l) in this thesis is logically simpler and more straight forward than that given by

van Noortwijk & van Gelder [69].

(2) H(t)

Partition the event {T1 > t} into two mutually exclusive subevents as {L1 ≤ t <

T1}
⋃{L1 > t}. Then H(t) is given by

H(t) = E [C(t)|L1 ≤ t < T1]P {L1 ≤ t < T1}
︸ ︷︷ ︸

H
(1)

(t)

+ E [C(t)|L1 > t] P {L1 > t}
︸ ︷︷ ︸

H
(2)

(t)

. (5.18)

Using the law of total expectation by conditioning on L1 and the maintenance type,

H
(1)

(t) is obtained as

H
(1)

(t) =
∑

0<l≤t

{

E [C(t)|ACM(l), Z1 > t − l] P {ACM(l), Z1 > t − l}

+ E [C(t)|APM(l), Z1 > t − l] P {APM(l), Z1 > t − l}
}

=
∑

0<l≤t

[

CCM(l, t)fL,CM(l)F Z,CM(t − l) + CPM(l, t)fL,PM(l)F Z,PM(t − l)
]

(5.19)

where F Z,CM(z) and F Z,PM(z) are the SF of fZ,CM(z) and fZ,PM(z), respectively,

CCM(l, t) is the cost incurred in the interval of (0, t] if {L1 = l, T1 > t} and the

maintenance in the first renewal interval is a CM, and CCM(l, t) is that if the main-

tenance in the first renewal interval is a PM (see Figure 5.2). As shown by Figure

5.2, CCM(l, t) and CPM(l, t) can be obtained as

CCM(l, t) = ⌊l/δ⌋ cI + cF + cD(t − l), (5.20)
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CPM(l, t) = (l/δ)cI + [cP + cV V (l)] + cD(t − l), (5.21)
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Figure 5.2: L1 ≤ t < T1

In the case of {L1 > t} (see Figure 5.3), only inspection cost is incurred up to t,

which is equal to

CI(t) = cI ⌊t/δ⌋ . (5.22)

Hence H
(2)

(t) is given by

H
(2)

(t) = CI(t)F L(t), (5.23)

where FL(t) is the SF of L and is equal to

F L(t) = 1 −
∑

0<l≤t

[fL,CM(l) + fL,PM(l)] .

Then H(t) can be obtained by substituting Eq. (5.19) and (5.23) into (5.18).

75



0
0 (j-1)δ

D
eg

ra
d

at
io

n

Failure

Timeδ jδ

X Y Z

w F

1 1 1

1

1

L

T

t

(a) CM

0
0 (j-1)δ

D
eg

ra
d

at
io

n

Failure

Timeδ jδ

X

L

Y Z

T

W(Y )

w F

1 1

1

1

1

1

t

(b) PM

Figure 5.3: L1 ≤ t < T1

5.4 Asymptotic Cost, Unavailability & Failure Rate

The expected length and the expected cost of a renewal interval can be obtained as

µT =
∑

τ>0

τfT (τ), µC =
∑

τ>0

h(τ), (5.24)

where fT (τ) and h(τ) are given in Eq. (5.11) and (5.13), respectively. Then the asymptotic

cost can be obtained from Eq. (3.29).

Note that if we take cD = 1 and other unit costs as 0, C(t) will become the length of

down time up to t. Then unavailability can be obtained from Eq. (3.30). Similarly, if we

take cF = 1 and other unit costs as 0, C(t) will become the number of failures up to t.

Then failure rate can be obtained from Eq. (3.31).
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5.5 Discounted Cost

In this section, cost discounting is considered. The discounted cost over a time horizon is

determined by summing the discounted values of the costs over that time horizon. In the

following, we suppose that ∆t = 1. Let r be the discount rate per unit time and b the

discounted factor. Then

ρ =
1

1 + b
.

The net present value (NPV) or the discounted value of a cost of c incurred at time t is

given by

NPV = cρt.

In this section, we use the superscript d to denote the discounted value. Then for a renewal-

reward process, the expected discounted cost up to t, denoted by Ud(t), can be written as

the following renewal equation (see Appendix C)

Ud(t) =

t∑

τ=1

ρτfT (τ)Ud(t − τ) + Gd(t), (5.25)

where

Gd(t) =

t∑

τ=1

hd(τ) + H
d
(t),

hd(τ) = E
[
Cd

1 |T1 = τ
]
fT (τ).

H
d
(t) = E

[
Cd(t)|T1 > t

]
F T (t).
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Equation (3.11) can be considered as a special case of Eq. (5.25) when ρ = 1.

The discounted terms hd(τ) and H
d
(t) in the above equation can be still obtained from

Eq. (5.13) and (5.18) except that CCM(l, τ), CPM(l, τ), CCM(l, τ), CPM(l, τ) and CI(t) in

these two equations should be replaced with the following discounted terms

Cd
CM(l, τ) =

⌊l/δ⌋
∑

j=1

ρjδcI + ρlcF +

τ∑

i=l+1

ρicD

=
ρδ

(
1 − ρ⌊l/δ⌋δ

)

1 − ρδ
cI + ρlcF +

ρl+1
(
1 − ρτ−l

)

1 − ρ
cD, (5.26)

Cd
PM(l, τ) =

l/δ
∑

j=1

ρjδcI + ρl [cF + V (l)cV ] +

τ∑

i=l+1

ρicD

=
ρδ

(
1 − ρl

)

1 − ρδ
cI + ρl [cP + V (l)cV ] +

ρl+1
(
1 − ρτ−l

)

1 − ρ
cD, (5.27)

C
d

CM(l, t) =

⌊l/δ⌋
∑

j=1

ρjδcI + ρlcF +

t∑

i=l+1

ρicD

=
ρδ

(
1 − ρ⌊l/δ⌋δ

)

1 − ρδ
cI + ρlcF +

ρl+1
(
1 − ρt−l

)

1 − ρ
cD, (5.28)

C
d

PM(l, t) =

l/δ
∑

j=1

ρjδcI + ρl [cP + V (l)cV ] +

t∑

i=l+1

ρicD

=
ρδ

(
1 − ρl

)

1 − ρδ
cI + ρl [cP + V (l)cV ] +

ρl+1
(
1 − ρt−l

)

1 − ρ
cD, (5.29)

Cd
I (t) =

⌊t/δ⌋
∑

j=1

ρjδcI =
ρδ(1 − ρ⌊t/δ⌋δ)

1 − ρδ
cI . (5.30)

The equivalent average cost rate ud(t) is often used as an optimization criterion, which

is defined as

Ud(t) = ud(t)
t∑

i=1

ρi =
ρ(1 − ρt)

1 − ρ
ud(t) =⇒ ud(t) =

1 − ρ

ρ(1 − ρt)
Ud(t). (5.31)
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In an infinite time horizon, the expected discounted cost can be derived as [69]

Ud(∞) =

∞∑

τ=1

τ∑

l=1

[
Cd

CM(l, τ)fL,CM(l)fZ,CM(τ − l) + Cd
PM(l, τ)fL,PM(l)fZ,PM(τ − l)

]

1 −
∞∑

τ=1

ρτfT (τ)
. (5.32)

Here Cd
CM(l, τ) and Cd

PM(l, τ) appropriately include the discounting factor as shown in

equations (5.26) and (5.27). Then the asymptotic equivalent average cost can be obtained

from Eq. (5.31) as

ud(∞) =
(
ρ−1 − 1

)
Ud(∞). (5.33)

5.6 Example

5.6.1 Problem

This section considers an example of maintenance of berm breakwater structure. This

problem was first analyzed by van Noortwijk & van Gelder [69]. In the following, time unit

is taken as ∆t = 1 year.

Berm breakwaters are used to prevent coastal lines of defence from being affected by

severe hydraulic loads from the sea. The main components of a berm breakwater are the

core and the armour layer (see Figure 5.4). The armour layer is subjected to longshore

transport of stones, resulting from wave attack. Failure of a berm breakwater is caused by

the longshore transport of an excessive number of rocks, wF , in the armour layer after the

breach of protection barrier. Therefore, this structure has to be inspected and preventively

maintained upon rock displacement is detected at a regular interval.
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Figure 5.4: The cross-section of a berm breakwater[69]

The process of rock displacement consists two consecutive steps: (1) initiation of an

armour breach; and (2) longshore rock transport. These two steps were both considered

as stochastic processes in [69]. The PMF of the degradation free interval, X, is assume to

be a geometrically distributed random variable with PMF as

fX(x) = φ(1 − φ)x−1,

where x = 1, 2, · · · , and φ is the probability of armour breach occurrence per unit time.

Assumed that the times for CM and PM are both random variables and are also geo-

metrically distributed with PMF

fZ,CM(z) = λCM(1 − λCM)z−1, fZ,PM(z) = λPM(1 − λPM)z−1,

where λCM and λPM are the probabilities of completing CM and PM per unit time, re-

spectively. The input data given in [69] are also used here (see Table 5.1). Note that

for the stationary gamma process with shape parameter α and scale parameter β, the ex-

pected annual growth of degradation is θ = αβ (see [65]). Hence in this example, the scale

parameter is equal to β = θ/α = 80 stones.
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Table 5.1: Data for numerical example

Parameter Description Value Dimension
∆t time unit 1 year
α shape parameter of gamma process 1 year−1

θ average rate of longshore rock transport 80 stone/year
φ probability of armour breach occurrence

per unit time
0.4 year−1

λCM probability of completing CM per unit
time

0.5 year−1

λPM probability of completing PM per unit time 0.9 year−1

b discount rate per year 5% year−1

ρ discount factor per year 0.9524 year−1

cI unit inspection cost 1, 000 euro
cD unit down time cost 10, 000 euro/year
cP fixed PM cost 10, 000 euro
cV variable PM cost 100 euro/stone
cF CM cost 2, 500, 000 euro
wF failure threshold 2500 stone
t time horizon 40 year

Van Noortwijk & van Gelder [69] optimized the inspection interval by minimizing the

asymptotic cost rate, and they ignored the time required for maintenance. These two

limitations of the past analysis are relaxed in the present analysis. For this reason, few

additional input data are added in Table 1, such as the down time cost and probability

distribution of CM and PM intervals.

5.6.2 Results

The variation of the expected cost rate with inspection interval is shown in Figure 5.5.

Here the expected cost rate is defined as u(t) = U(t)/t. Based on the asymptotic cost

analysis without discounting (see Figure 5.5a), an optimal inspection interval is found as 4

years with a cost rate of u = 7, 866 euros/year, while the finite time model leads to a longer
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Figure 5.5: Expected cost rate vs. inspection interval

optimal interval of 21 years at a lower cost rate of u = 5, 132 euros/year. The asymptotic

model over-predicts the optimal cost by 53%.

In the case of discounting, the expected equivalent cost rate is computed using an

annual discount rate of 5%. Figure 5.5b shows that the asymptotic model leads to an

optimal interval of 19 years at an equivalent cost rate of ud = 5, 254 euros/year, whereas

the finite time analysis leads to an optimal interval of 21 year as before, and an equivalent

cost rate of ud = 4, 196 euros/year. Here, the asymptotic model over-predicts the optimal

cost rate by 25.2%.

These results show that the use of a refined approach based on finite time formulation is

necessary to obtain realistic estimates of maintenance cost associated with a maintenance

program.

Figure 5.6 shows the time-dependent unavailability and failure rate of the breakwater

corresponding to an inspection interval of 20 years, which is close to the optimal interval

of 21 years. Initially the unavailability is almost zero and it gradually increases up to the

time of PM. There is a jump at time 20 years, because the time required for PM would
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Figure 5.6: Time-dependent unavailability and failure rate for an inspection interval k = 20
years

render the structure unavailable with a high probability. The failure rate curve shows a

familiar pattern. It increases up to the time of PM and then drop significantly as a effect

of renewal through PM. This is because a PM is performed at time 20 years. Hence at

time 21 years unavailability will increase while the failure rate will decrease.

5.7 Summary

This chapter presents maintenance cost analysis of a more complex CBM policy, which

includes the repair time and delay in degradation initiation as random variables. The

finite time cost analysis, with and without discounting, presented in this chapter is not yet

seen in the existing literature.

A case study related to the maintenance of breakwaters is analyzed. This problem was

originally analyzed by van Noortwijk & van Gelder [69] using the asymptotic cost rate

criterion without considering the repair time distribution. A re-analysis of this example

illustrates that the asymptotic formula can be a rather crude approximation of the actual
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expected cost. In addition, the present work evaluates the unavailability failure rate of the

structure. It is concluded that the finite time cost formula should be used for a realistic

evaluation and optimization of the maintenance policy for critical infrastructure systems.

The results of this chapter have published in [45].
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Chapter 6

Probability Distribution of

Maintenance Cost

6.1 Introduction

6.1.1 Motivation

The financial risk assessment of a maintenance program deals with different issues, such as,

how much capital is required to implement a maintenance policy, and what is the residual

risk after the implementation of a maintenance policy. The evaluation of expected cost

is reasonable for finding an optimal maintenance policy among a set of alternatives in a

relative sense. However, this approach is not informative enough to enable the estimation

of financial risk measures, such as percentiles of the cost, also known as Value-at-Risk

(VaR). To address these questions, it is clear that complete probability distribution of

maintenance cost is required, which would allow accurate prediction of cost and assess the
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financial risk.

6.1.2 Research Objective and Approach

The objective of this chapter is to derive probability distribution of cost of condition-based

maintenance of a system affected by stochastic degradation.

The proposed solution is based on the fact that the characteristic function of a con-

tinuous/discrete random variable is the inverse Fourier transform of its probability den-

sity/mass function. Therefore, a renewal equation is firstly formulated to evaluate the

characteristic function. Then, the Fourier transform of the characteristic function is com-

puted, which leads to complete probability distribution of cost in a finite time setting.

Once the cost distribution is derived, financial risk measures, such as VaR, can be eas-

ily calculated. The proposed method is applicable to a general stochastic renewal-reward

process.

6.1.3 Organization

Section 6.2 presents the terminology and the basic assumptions on cost distribution anal-

ysis. Section 6.3 formulates a renewal equation for the characteristic function, and its

Fourier transform leads to the probability distribution of maintenance cost. A computa-

tion procedure on how to obtain the probability distribution of maintenance cost is given

in Section 6.4. Illustrative numerical examples are presented in Section 6.5.
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6.2 Terminology and Assumptions

In this chapter, time is discrete and is equal to 0, 1, 2, · · · , i.e. ∆t = 1. Let C(t) be

the total cost up to time t for a specific maintenance model. It is assumed that C(t) is

a renewal-reward process. Furthermore for any t, C(t) is a discrete random variable with

PMF

fC(c, t) = P {C(t) = c} . (6.1)

The cost is discretized in a unit of ρ as 0, ρ, 2ρ, · · · , ncρ, where ncρ is an upper limit of the

cost, such that P {C(t) > ncρ} ≈ 0.

Modeling the cost as as a discrete variable is justified on a practical ground. In financial

planning, the cost estimates are typically rounded off to hundreds or thousands of dollars,

or any other suitable number depending the cost involved. Therefore, treating the cost as

a precise continuous variable is unwarranted. For the CBM model in Chapter 4, the unit

cost ρ can be taken as the greatest common factor of cI , cF , and cP . Since all the unit

costs are a multiple of ρ, C(t) will also be a multiple of ρ. For example, if cI = 2, cP = 10

and cF = 20, then ρ = 2.

The upper bound of C(t), ncρ, can be estimated based on an upper bound number of re-

newal cycles. The expected number of renewal intervals up to time t is approximately t/µT ,

where µT is the expected length of one renewal interval. The probability that the actual

number would exceed 3t/µT renewals is expected to be negligible. Therefore, 3Csupt/µT

is a conservative upper bound of C(t), where Csup is the upper bound of the cost in one
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renewal interval. Thus nc can be estimated as

nc ≈
⌈

3Csupt

µTρ

⌉

, (6.2)

where ⌈∗⌉ is an integer ceiling function. For the CBM model in Chapter 4, since cI ≪ cP

cF in general, then Csup can be taken as cF . For other maintenance models, Csup can be

conservatively taken as 3µC, µC being the expected cost incurred in one renewal interval.

The characteristic function (CF) of a random variable X is defined as

φX(ω) = E
[
eiωX

]
, (6.3)

where i =
√
−1 is the imaginary number and ω is an argument in the circular frequency

domain. It is recognized that φX(ω) is the inverse Fourier transform (FT) of the probability

density (or mass) function of X [9]. Therefore, the Fourier Transform of φX(ω) would

recover the PDF/PMF of X.

In the context of financial risk analysis, a pth percentile of the distribution of cost is

also referred to as Value-at-Risk, VaR(c, p), defined as

VaRp(C(t)) = inf{x : P {C(t) ≤ x} ≥ p} (6.4)

For example, 95th percentile means 5% probability that the maintenance cost would exceed

this value.
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6.3 Characteristic Function of Cost

Let φ(ω, t) be the characteristic function of C(t), i.e.

φ(ω, t) = E
[
eiωC(t)

]
. (6.5)

Because the cost is a discrete variable, ω will also be a discrete quantity: 0, ∆ω, 2∆ω, · · · ,

nc∆ω. The unit frequency is defined as [61]

∆ω =
2π

[nc + 1]ρ
. (6.6)

In general, a frequency is denoted as ωm = m∆ω.

Similar to the derivation of renewal equation for expected cost, (3.8), a renewal equation

for φ(ω, t) is derived based on renewal argument described as follows.

Let T1 be the length of the first renewal interval. The expectation associated with the

CF in Eq. (6.5) can be partitioned into two cases: T1 ≤ t and T1 > t. Since T1 can take

any value between 1 and t, the law of total expectation is used to rewrite Eq. (6.5):

φ(ω, t) =
t∑

τ=1

E
[
eiωC(t)|T1 = τ

]
fT (τ) + E

[
eiωC(t)|T1 > t

]
F T (t). (6.7)

The above equation is valid for any ω0, ω1, · · · , ωnc
. But the subscript is avoided in this

section for sake of brevity and readability of formulas.

When T1 = τ (≤ t), the cost can be written as a sum: C(t) = C1 + C(τ, t), where

C1 is the cost in the first renewal cycle. The second component is equivalent to C(t − τ)

based on the renewal argument discussed in Chapter 3. Therefore, the first expectation in
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Eq.(6.7) can be re-written as

E
[
eiωC(t)|T1 = τ

]
= E

[
eiωC1eiωC(τ,t)|T1 = τ

]
= E

[
eiωC1 |T1 = τ

]
E

[
eiωC(t−τ)

]

= E
[
eiωC1 |T1 = τ

]
φ(ω, t− τ). (6.8)

Substituting Eq. (6.8) into (6.7) leads to

φ(ω, t) =

t∑

τ=1

E
[
eiωC1 |T1 = τ

]
fT (τ)

︸ ︷︷ ︸

fφ(ω,τ)

φ(ω, t− τ) + E
[
eiωC(t)|T1 > t

]
F T (t)

︸ ︷︷ ︸

Gφ(ω,t)

. (6.9)

Thus, the following renewal-type equation is obtained for the CF:

φ(ω, t) =

t∑

τ=1

φ(ω, t− τ)fφ(ω, τ) + Gφ(ω, t) (6.10)

Equation (6.10) is similar to Eq. (3.8), except that fT (τ) is replaced by fφ(ω, τ) and G(t)

by Gφ(ω, t). Here, the initial condition is φ(ω, 0) = 1 for all values of ω, since C(0) = 0.

Equation (6.10) is genetic and it holds for any maintenance models as long as the

maintenance cost in these models is a renewal-reward process. The values of fφ(ω, τ),

Gφ(ω, t) depends on maintenance models. For the CBM model in Chapter 4, since C1 can

be CPM(τ) or CCM(τ) depending on the type of renewal (see Eq. (4.1) and (4.2)), fφ(ω, τ)

can be accordingly written as

fφ(ω, τ) = eiωCCM(τ)fCM(τ) + eiωCPM(τ)fPM(τ). (6.11)

When T1 > t, only inspection cost, ⌊t/δ⌋ cI , is incurred in (0, t]. Thus, Gφ(ω, t) can be
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written as

Gφ(ω, t) = eiω⌊t/δ⌋cIF T (t). (6.12)

The terms fPM(τ), fCM(τ), and F T (t) in the above two equations can be obtained from

Eq. (4.9) (4.10) and (4.11) in Chapter 4.

Note that fφ(ω, τ), Gφ(ω, t) and φ(ω, t) are all complex variables. Using superscript R

and I to denote the real and the imaginary part, respectively, Eq. (6.10) can be written as







φR(ω, t) = GR
φ (t) +

t∑

τ=1

[
φR(ω, t − τ)fR

φ (τ) − φI(ω, t− τ)f I
φ(τ)

]
,

φI(ω, t) = GI
φ(t) +

t∑

τ=1

[
φR(ω, t− τ)f I

φ(τ) + φI(ω, t− τ)fR
φ (τ)

]
.

(6.13)

Equation (6.13) forms a set of two coupled recursive equations with initial condition

φ(ω, 0) = 1, or φR(ω, 0) = 1 and φI(ω, 0) = 0.

6.4 Computational Procedure

6.4.1 Summary of Variables

The analysis involves the following key variables.

(1) The time horizon for the calculation of maintenance cost is discrete and finite as

0, 1, 2, · · · , τ, · · · , t.

(2) The renewal cycle length (T ) is a discrete random variable, 0, 1, 2, · · · , τ, · · · ,∞, with

PMF fT (τ).
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(3) The maintenance cost is a discrete variable, 0, ρ, 2ρ, · · · , ncρ, with PMF fC(c, t).

(4) The circular frequency, ω is discretized as 0, ∆ω, 2∆ω, · · · , nc∆ω, where ∆ω is given

by Eq. (6.6).

6.4.2 Steps of Computation

The discrete FT of φ(ω, t) leads to the PMF of cost as

fC(c, t) =
1

nc + 1

nc∑

m=0

φ(ωm, t)eiωmc, (6.14)

The use of the Fast Fourier transform (FFT) algorithm makes the computation of (6.14)

very efficient [61].

First prepare the input data about the specific maintenance model to be studied. Es-

timate the mean renewal cycle length µT and the upper bound of the cost in one renewal

cycle Csup. Compute the number of discrete intervals of cost, nc, using Eq. (6.2). The

frequency interval, ∆ω, is calculated from (6.6).

The computation of fC(c, t) involves the following steps:

(1) Start with m = 0 and compute ωm = m∆ω.

(2) Compute φ(ωm, τ) for all the discrete time values τ = 1, 2, · · · , t, from the renewal

equation (6.10) or (6.13)

(2.1) Start with τ = 1 and compute φ(ωm, τ).

(2.2) Continue computation of φ(ωm, τ) for τ = 2, 3, · · · t.

92



(3) Take the next increment of the frequency (m = 1) and repeat the step 2. Continue

with computation of φ(ωm, t) until m = nc.

(4) At the end of step (3), a two dimensional array of complex numbers φ(ωm, τ) of size

(nc + 1) × t is obtained.

(5) Compute FFT of the last column, φ(ωm, t), resulting in the discrete PMF of the cost,

fC(c, t), where c = 0, ρ, · · · , ncρ.

(6) Note that the PMF of cost for any intermediate time 1 ≤ τ ≤ t can be obtained by

taking FFT of the suitable column of CF matrix.

The numerical computation is involved, because a pair of renewal equations has to be

solved (nc + 1) times. However, the use of an efficient FFT algorithm reduces the burden

of computation and provides a practical approach to the evaluation of distribution of cost.

6.5 Numerical Results

Numerical examples are presented to illustrate the proposed methodology for deriving the

distribution of maintenance cost. The maintenance model is the CBM model as described

in Chapter 4.

6.5.1 Input Data

The parameters of gamma process, maintenance thresholds and unit cost data are given in

Table 6.1. The time horizon is taken as t = 60. Since this example is purely illustrative,

the units of the quantities in Table 2 are not of any practical relevance.
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Table 6.1: Input data used in numerical example

Variable Value

Gamma Degradation Process
α 0.4

β 4

Failure level wF 20

PM level wP 15

Unit Cost

cI 0.2

cP 1

cF 4

Time horizon t 60

The cost is discretized in the unit of ρ = 0.2, which is the unit cost of inspection in

the current example. The maintenance cost is considered to have an upper bound, ncρ,

which is estimated based on an upper bound number of CM renewal cycles. The expected

number of CM renewal is approximately t/µT . The probability that the actual number

would exceed 3t/µT renewals is expected to be negligible. Since cI ≪ cP ≪ cF , the cost of

one CM renewal is about cF . Therefore, 3cF t/µT is a conservative upper bound of C(t).

Thus, nc can be estimated as

nc ≈
⌈

3cF t

µT∆c

⌉

. (6.15)

6.5.2 Example-1

Expected Cost

For a chosen inspection interval, δ, the expected cost, U(t), was calculated using (3.8)

for the time horizon t = 60. The inspection interval was varied from 1 to 30 and U(t)

94



was calculated for each case. The variation of U(t) versus δ is plotted in Figure 6.1. The

expected cost is minimum for δ = 4, which is an optimal inspection interval.
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Figure 6.1: Expected cost, C(t = 60), vs. the inspection interval

CF and Distribution of Cost

The PMF of cost is derived corresponding to the optimal inspection interval of δ = 4. In

this case, the expected length of a renewal cycle is µT = 14.2. Substituting this and cF = 4

in Eq. (6.2), leads to nc = 253. Using Eq. (6.6), the circular frequency, ω, is discretized in

steps of ∆ω = 0.12.

The real and imaginary parts of the characteristic function, φ(ω, t) versus t, are plotted

in Figure 6.2 for three values of ω.

Using Eq.(6.14), the PMF of C(t) was obtained and plotted in Figure 6.3. The distri-

bution is bounded between 5 and 25 units of cost. The mean and standard deviation of
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Figure 6.2: CF of cost,φ(ω, t), plotted over time

the maintenance cost are 15 and 3.4, respectively. The 95th percentile of the cost is 19.4

units.
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Figure 6.3: PMF of the maintenance cost C(t)

PMF of cost was also evaluated using simulation method with 105 simulations. The

result of simulation is presented in Figure 6.3. PMFs obtained from simulation and CF

methods are fairly close, which confirms the validity of proposed CF method. However, the
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computational time of the simulation method is 72 seconds, which is much larger than that

associated with CF method (only 2 seconds). Both methods are implemented in MATLAB

2010a version.

6.5.3 Example-2

In this example, only the scale parameters the gamma process is changed to β = 2, such

that the mean of degradation rate is reduced to αβ = 0.8 per unit of time. This results in

an increase in the mean renewal cycle length, and therefore decreases the expected number

of renewals in the time horizon. All other parameters are the same as in Table 2.
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Figure 6.4: Expected cost vs. inspection interval - Example 2

The variation of the expected cost with inspection interval is shown in Figure 6.4, and

the optimum interval turns out to be δ = 7. In this case, the expected renewal cycle length

is µT = 23.7. Substituting this and cF = 4 in Eq. (6.2), leads to nc = 152.

The PMF of cost shown in Figure 6.5 is rather sparse, and bounded by 2 and 12 units
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Figure 6.5: PMF of maintenance cost - Example 2

of cost. The mean and standard deviation of the cost are 5.5 and 2.2, respectively. The

95th percentile of the cost is 9 units.

6.6 Summary

In the literature, the optimization of a maintenance program is typically based on the

minimization of the asymptotic cost rate. However, expected cost solution (asymptotic or

accurate) is not informative enough to enable an accurate prediction of the upper bound of

maintenance cost in a fixed time horizon. For the evaluation of measures of financial risk,

such as VaR, a complete probability distribution of cost is required. The method presented

in this chapter meets this objective.

The main contribution of this chapter is the derivation of the probability distribution

of the maintenance cost. It is a general method that can be applied to any maintenance

policy that can be treated as a stochastic renewal-reward process.
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The proposed approach is based on formulating a renewal equation for the characteristic

function of cost in finite time. Subsequently, the Fourier transform of the characteristic

function leads to the probability distribution of cost. The CBM policy presented in Chapter

4 is analyzed to illustrate the proposed approach.

It is concluded that the proposed model would serve as a foundation to realistic financial

risk assessment and optimization of maintenance of engineering systems.
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Chapter 7

Sequential Inspection and

Replacement Model

7.1 Introduction

7.1.1 Motivation

This chapter presents a probabilistic approach to manage a large population of components

in a large infrastructure system, such as electrical transmission and distribution networks

consisting of thousands of poles, cross-arms, switches, and other components.

Latent failure is of primary concern in such systems, which are also referred to as

degradation failure, i.e., degradation exceeding an acceptable limit specified by the stan-

dard of practice. A degradation failure is detected through inspection only, because the

component remains functional despite degradation. Nevertheless, degradation makes a

component more vulnerable to failure.
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Standards and regulations recommend that components with degradation exceeding a

critical limit should be identified and must be preventively removed from the electrical net-

work in order to maintain a high level of reliability. For example, Canadian Standard (CSA

C22.3 2001) recommends that a component should be replaced when the total degradation

of its capacity exceeds one-third of the installed capacity.

A key challenge in the asset management of such systems is that all the components

cannot be inspected in any one given year due to prohibitively large inspection cost and

labour requirements associated with a large population. Therefore, the industry typically

adopts a sequential inspection and replacement program under which the total population

is divided into several blocks or subpopulations and each is inspected in a sequential manner

[48]. In each year, only one block is inspected and all failed components in that block are

replaced.

Under this asset management policy, the number of blocks to be divided, say δ, is

critical to reliability and cost-effectiveness of the electrical network. A small δ will impose

a high work load on maintenance stuff and large inspection cost, while a large δ will make

a system very vulnerable to failure. Hence we should optimize δ to balance the costs and

reliability. This infrastructure renewal problem is in contrast with traditional models of

maintenance strategies discussed in the literature [18, 31].

The expected cost for a sequential inspection and replacement policy is derived in this

chapter. The basic idea is that components in an individual block are subjected to periodic

inspection and replacement, which can be modelled as a renewal-reward process. Then the

results of Chapter 3 can be used to obtain the expected cost.
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7.1.2 Organization

Section 7.2 gives a detailed description of the inspection and replacement program. The

cost analysis of an individual block is presented in Section 7.3. Section 7.4 gives the ex-

pected cost of the entire population. The asymptotic formulation is also given in this

section. Section 7.5 evaluates expected proportion of failed components and required re-

placements in any given year. An example that is related to wood poles in electrical

network is given in Section 7.6.

7.2 Maintenance Model

7.2.1 Latent Failure and Down Time Cost

In this chapter, the latent failure is considered, which means that failure can be detected

only by an inspection. Then there will be a time delay between component failure and its

detection, resulting in a down time cost or penalty cost due to the unavailability of the

component.

Many examples of the latent failure are given in [62], one of which is the redundant

component. Failure of redundant components will not lead to shut-down of a system until

the component in service fails. The down time cost of redundant components is referred

to the increased risk of system shut-down after failure of redundant components. Another

example is the component which will fall into a state with lower performance after failure.

The down time cost of this example is referred to the cost of reduced performance.
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7.2.2 Sequential Inspection and Replacement Program

Suppose that there is a population of size N of identical components. Component lifetime,

denoted by X, is a random variable with PMF fX(x). Inspection is done to detect and

replace failed components. It is assumed that (1) at time 0, all the components are new;

(2) components are independent of each other; and (3) the time spent for inspection and

replacement is negligible.

Because of lack of resources, it may not be possible to inspect all the components in

one year. Hence, the population can be divided into several blocks or subpopulations.

Only one block or subpopulation is inspected in a year such that it takes several years

to complete the entire population. This program is called the sequential inspection and

replacement program (SIRP) [48].

Figure 7.1 is an illustration of SIRP. Components are divided into δ blocks. Each

block has N/δ components and is sequentially inspected each year. Failed components

found during an inspection will be replaced by new ones. For example, in year 1, block

1 is inspected and failed components are replaced, while blocks 2–δ are left uninspected,

leading to accumulation of failed components in these blocks. In year 2, block 2 is subject

to inspection and replacement, and blocks 1 and 3–δ are unattended. Failed components in

blocks 3–δ continue to accumulate. Furthermore, previously inspected block 1 experiences

accumulation of failed components as well. This process continues and at the end of year

δ, all the components have been inspected. Then in year (δ+1), block 1 is inspected again,

and so on and so for until the end of the planning horizon t, typically 30 to 50 years.

In SIRP, each block is subjected to period inspection, and replacement, if any, at a

interval of δ years (see Figure 7.1). For example, block 1 is inspected at time 1, δ + 1,
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Figure 7.1: Sequential Inspection and Replacement Program

2δ + 1, · · · , and block δ is inspected at time δ, 2δ, · · · .

Maintenance cost of SIRP includes inspection cost, down time cost, and the replacement

cost. Replacement cost is incurred at renewal points. The unit costs of these items are

denoted by: inspection cost–cI , down time cost –cD, and replacement cost–cR.

7.3 Maintenance Cost of Block or Sub-population

In this section, the expected maintenance cost of an individual block is derived. Note that

since components are independent of each other, we can use a component in each block

to represent all the components in that block. For any component, denote the cost in

the interval of (t1, t2] by C(t1, t2) and write C(0, t) as C(t) compactly. Denote E [C(t)] by

U(t|r) for the component in Block r, r = 1, 2, · · · , δ, and write U(t|r = δ) as U(t) for

simplicity. In this chapter, time unit is taken as ∆t = 1.
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7.3.1 Block δ

As shown in Figure 7.1, the component in Block δ is inspected at times δ, 2δ, · · · . Figure

7.2 is an illustration of the state alternation of such components, where Y denotes the

length of down time and T = X + Y is the length of a renewal interval. As shown in

that figure, in each renewal interval, the component is always inspected at times δ, 2δ,

· · · . Hence all the renewal intervals are identically distributed, resulting in that {Tn, Cn},

n = 1, 2, ·, are iid random vectors. Here Cn is the cost associated with the nth renewal

interval. Therefore C(t) is a renewal-reward process. Then U(t) can be obtained from Eq.

(3.8) by taking m = 1 (note that U(t) is the first moment of C(t)) as

U(t) = (U ∗ fT )(t) + G(t), (7.1)

where fT (t) is the PMF of T , and

G(t) =
∑

0<τ≤t

E [C1|T1 = τ ] fT (τ)
︸ ︷︷ ︸

h(τ)

+ E [C(t)|T1 > t] F T (t)
︸ ︷︷ ︸

H(t)

. (7.2)

The asymptotic formula of U(t) is obtained from Eq. (3.29) as

U(t) =
µC

µT

t + o(t), (7.3)

where

µT = E [T1] =
∑

τ>0

fT (τ), µC = E [C1] =
∑

τ>0

h(τ). (7.4)

The terms fT (τ), h(τ), and H(t) in Eq. (7.1) are given as follows.
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Figure 7.2: State alternation of components in Block δ

(1) fT (τ)

As shown in Figure 7.2, renewals can only take place at an inspection time. Hence

renewal interval T can only take a value of multiple of δ. The event {T = kδ} implies

that the component fails in the interval of ((k − 1)δ, kδ], i.e., (k − 1)δ < X ≤ kδ.

Hence fT (τ), τ = kδ, is obtained as

fT (τ) = P {τ − δ < X ≤ τ} = FX(τ) − FX(τ − δ). (7.5)

(2) h(τ)

Since h(τ) = E [C1|T1 = τ ] fT (τ) and fT (τ) takes a non-zero value only when τ is a

multiple of δ, h1(τ) also takes a non-zero value only when τ is a multiple of δ.

To derive h1(τ), τ being a multiple of δ, partition the event {T1 = τ} into mutually

exclusive subevents as
⋃

τ−δ<x≤τ{X1 = x, Y1 = τ−x}. The event {X1 = x, Y1 = τ−x}

implies that the component survives for a period of x and then is renewed at the

following inspection time (see Figure 7.3). In such a renewal interval, the number
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of inspections is equal to k = τ/δ and the length of down time is equal to (τ − x).

Therefore the cost incurred in the first renewal interval of {X1 = x, Y1 = τ − x} is

given by

C1 = cI(τ/δ) + cD(τ − x) + cR.

Then using the law of total expectation by conditioning on X1, h1(τ) is obtained as

h(τ) =
∑

τ−δ<x≤τ

[

cI(τ/δ) + cD(τ − x) + cR

]

fX(x). (7.6)

0 τ=kδδ x

X

Time

Up

State

Down

(k-1)δ

1

T1

Y1

Figure 7.3: Event {X1 = x, Y1 = τ − x} for components in Block δ

(3) H(t)

To derive H(t), partition the event {T1 > t} into mutually exclusive subevents as
(

⋃

ν(t,δ)<x≤t{X1 = x, Y1 > t − x}
)

⋃
{X1 > t}. Here

ν(t, δ) = ⌊t/δ⌋ δ (7.7)

is the inspection time right before t. The event {X1 = x, Y1 > t − x} is shown in

Figure 7.4, where (k−1)δ < t ≤ kδ. Up to time t, the number of inspections is equal
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to ⌊t/δ⌋ and the length of down time is equal to (t − x). Note that no replacement

cost is incurred up to t since replacement cost is only incurred at renewal points

and t is not a renewal point. Hence the cost up to t associated with the event

{X1 = x, Y1 > t − x} is given by

C(t) = cI ⌊t/δ⌋ + cD(t − x).

For the event {X1 > t}, only inspection cost is incurred before t. Hence the cost up

to t associated with the event {X1 > t} is given by

C(t) = cI ⌊t/δ⌋ .

Then using the law of total expectation by conditioning on X1, H(t) is obtained as

H(t) =
∑

ν(t,δ)<x≤t

{

cI ⌊t/δ⌋ + cD(t − x)
}

fX(x) + cI ⌊t/δ⌋F X(t). (7.8)

0 kδδ x

t

X

Time

Up

State

Down

(k-1)δ

1

T1

Y1

Figure 7.4: Event {X1 = x, Y1 > t − x} for components in Block δ
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7.3.2 Other Blocks

As shown in Figure 7.1, the component in Block r is inspected at times r, r + δ, r + 2δ,

· · · . Figure 7.5 is an illustration of the state alternation of such components. As shown in

that figure, in all the renewal intervals except the first one, the component is still inspected

at times δ, 2δ, · · · . However, in the first renewal interval, the component is inspected at

times r, r + δ, r +2δ, · · · . Then all the renewal intervals are identically distributed except

the first one. Denote the PMF of T1 by fT (τ |r) and the associated CDF and SF by FT (τ |r)

and F T (τ |r), respectively. Obviously, fT (τ) given in Eq. (7.5) is a special case of fT (τ |r)

when r = δ.

0 r+k  δr+δr

X

Time

Up

State

Down

1 r+k  δ2r+(k  -1)δ1

1

T1 T2

Y1 Y2X2

r+(k  -1)δ2

Figure 7.5: State alternation of components in Block r

To derive U(t|r), use the law of total expectation by conditioning on T1 and then U(t|r)

is written as

U(t|r) =
∑

0<τ≤t

E [C(t)|T1 = τ ] fT (τ |r) + E [C(t)|T1 > t] F T (t|r). (7.9)

Here, U(t|r) is partitioned into two parts associated with events {T1 ≤ t} and {T1 > t}.
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When T1 = τ < t, split C(t) into C1 + C(τ, t), such that

E [C(t)|T1 = τ ] = E [C1|T1 = τ ] + E [C(τ, t)|T1 = τ ] (7.10)

As mentioned above that in all the renewal intervals, except the first one, the component is

inspected at times of δ, 2δ, · · · . Then if we take the first renewal point T1 = τ as the new

time origin, the cost in the remaining interval can be considered as the cost of a component

in Block δ. Hence C(τ, t) will be stochastically the same as the cost of a component in

Block δ with time horizon of (t − τ). Then the term E [C(τ, t)|T1 = τ ] in Eq. (7.10) can

be simplified as

E [C(τ, t)|T1 = τ ] = U(t − τ). (7.11)

Substituting Eq. (7.10) into (7.9), U(t|r) will be obtained as

U(t|r) =
∑

0<τ≤t

U(t − τ)fT (τ |r) + G(t|r), (7.12)

where

G(t|r) =
∑

0<τ≤t

E [C1|T1 = τ ] fT (τ |r)
︸ ︷︷ ︸

h(τ |r)

+ E [C(t)|T1 > t] F T (t|r)
︸ ︷︷ ︸

H(τ |r)

. (7.13)

The asymptotic formula of Eq. (7.3) still holds for U(t|r) despite of r. The terms fT (τ |r),

h(t|r), and H(t|r) are given as follows.

(1) fT (τ |r)

Since the inspection times of the first renewal interval are r, r + δ, r +2δ, · · · , T1 can
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only take a value of r + kδ, k = 0, 1, · · · . The event {T1 = r + kδ} implies that the

component fails in the interval of (r+(k−1)δ, r+kδ], i.e., r+(k−1)δ < X ≤ r+kδ.

Hence fT (τ |r), τ = r + kδ, is obtained as

fT (τ |r) = P {τ − δ < X ≤ τ} = FX(τ) − FX(τ − δ). (7.14)

(2) h(τ |r)

Since h(τ |r) = E [C1|T1 = τ ] fT (τ |r) and fT (τ |r) takes a non-zero value only when

τ = r + kδ, h1(τ) also takes a non-zero value only when τ = r + kδ.

To derive h1(τ |r), τ being equal to (r +kδ), partition the event T1 = τ into mutually

exclusive subevents as
⋃

τ−δ<x≤τ{X1 = x, Y1 = τ −x}. In a renewal interval of {X1 =

x, Y1 = τ−x} (see Figure 7.6), the number of inspections is given by k = (τ−r)/δ+1

and the length of down time is equal to (τ − x). Therefore the cost incurred in the

first renewal interval of {X1 = x, Y1 = τ − x} is given by

C1 = cI [(τ − r)/δ + 1] + cD(τ − x) + cR.

Then using the law of total expectation by conditioning on X1, h1(τ |r) is obtained

as

h(τ |r) =
∑

τ−δ<x≤τ

{

cI [(τ − r)/δ + 1] + cD(τ − x) + cR

}

fX(x). (7.15)

(3) H(t|r)

To derive H(t|r), partition the event {T1 > t} into mutually exclusive subevents as
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Figure 7.6: Event {X1 = x, Y1 = τ − x} for components in Block r

(
⋃

ν(t,δ|r)<x≤t{X1 = x, Y1 > t − x}
)

⋃{X1 > t}. Here

ν(t, δ|r) = r +

⌊
t − r

δ

⌋

δ (7.16)

is the inspection time right before t. The event {X1 = x, Y1 > t − x} is shown in

Figure 7.7, where r + (k − 1)δ < t ≤ r + kδ. Up to time t, the number of inspections

is equal to ⌊(t − r)/δ⌋ + 1 and the length of down time is equal to (t − x). No

replacement cost is incurred up to t since t is not a renewal point. Hence the cost up

to t associated with the event {X1 = x, Y1 > t − x} is given by

C(t) = cI

(⌊
t − r

δ

⌋

+ 1

)

+ cD(t − x).

For the event {X1 > t}, only inspection cost is incurred before t. Hence the cost up

to t associated with the event {X1 > t} is given by

C(t) = cI

(⌊
t − r

δ

⌋

+ 1

)

.
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Then using the law of total expectation by conditioning on X1, H(t|r) is obtained as

H(t|r) =
∑

ν(t,δ|r)<x≤t

{

cI

(⌊
t − r

δ

⌋

+ 1

)

+ cD(t − x)

}

fX(x)

+ cI

(⌊
t − r

δ

⌋

+ 1

)

FX(t). (7.17)
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Time
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r+(k-1)δ

1
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Y1

Figure 7.7: Event {X1 = x, Y1 > t − x} for components in Block r

7.4 Maintenance Cost for Population

Since there are N/δ components in each block and components are independent of each

other, the expected cost of Block r will be equal to U(t|r)×N/δ. Then the expected cost

of the entire population is given by

Utotal(t) =
N

δ

δ∑

r=1

U(t|r). (7.18)

Define

Uav(t) =
1

N
Utotal(t) =

1

δ

δ∑

r=1

U(t|r). (7.19)
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Uav(t) is the average cost per component. Note that the asymptotic formula of Eq. (7.3)

holds for any U(t|r), substituting which into Eq. (7.19) gives the asymptotic formula of

Uav(t) as

Uav(t) =
µC

µT

t + o(t), (7.20)

which is the same as that of U(t).

7.5 Expected Down Components & Replacements

The expected number of down components and replacements are two important terms in

the analysis of reliability and maintainability. A large proportion of down components

will make a system very vulnerable to failure. The proportion of replacements need to be

estimated to raise capital for the maintenance program.

7.5.1 Expected Components in Down State

Take unit costs cD = 1 and cI = cR = 0, and then U(t|r) becomes the expected length of

down time of a component in Block r up to time t. Using Eq. (3.30), the unavailability of

the component at time t is obtained as (note that here ∆t = 1)

uD(t|r) = U(t|r) − U(t − 1|r). (7.21)

Then the expected down components in Block r will be equal to uD(t|r)×N/δ. Summing up

these values gives the expected down components in the entire population. Then dividing
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the summation by N gives the expected proportion of down components in the entire

population at time t as

PD(t) =
1

δ

δ∑

r=1

uD(t|r)

=
1

δ

δ∑

r=1

[U(t|r) − U(t − 1|r)]

= Uav(t) − Uav(t − 1). (7.22)

Note that the asymptotic value of uD(t|r) is equal to

lim
t→∞

uD(t|r) =
µY

µT
(7.23)

despite of r. Here µY is the value of Y and can be obtained as µY = µT − µX , µX being

the expected value of X. Then the asymptotic value of PD(t) is obtained as

lim
t→∞

PD(t) =
µY

µT

, (7.24)

which is the same as that of uD(t|r).

7.5.2 Expected Number of Replacements

Take unit costs cR = 1 and cI = cD = 0, and then U(t|r) becomes the expected number of

replacements of a component in Block r up to time t. Similar to Eq. (3.31), the replacement

rate, i.e., the probability density of replacement, at time t is obtained as

uR(t|r) = U(t|r) − U(t − 1|r). (7.25)
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Then the expected replacements in Block r at time t will be equal to uD(t|r) × N/δ.

Summing up these values gives the expected replacements in the entire population. Then

dividing the summation by N gives the expected proportion of replacements in the entire

population at time t as

PR(t) =
1

δ

δ∑

r=1

uR(t|r) = Uav(t) − Uav(t − 1). (7.26)

Note that the asymptotic value of uR(t|r) is equal to

lim
t→∞

uR(t|r) =
1

µT

(7.27)

despite of r. Then the asymptotic value of PR(t) is obtained as

lim
t→∞

PR(t) =
1

µT

, (7.28)

which is the same as that of uR(t|r).

7.6 Example

Consider an electrical network consisting of a large population of wood poles. The lifetime

of a component (wood pole), X, is a discrete weibull distributed random variable. The

hazard rate is shown by Eq. (2.14) with parameters α = 5 and β = 35, such that the mean

life time is µX = 21.5 and the coefficient of variation (COV) is equal to 0.22. The PMF of

X is shown in Figure 7.8.

Suppose that the unit costs are cI = 1, cD = 5, and cR = 25, and the planning horizon is
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Figure 7.8: PMF of X

tm = 40 years. The average cost per component, Uav(tm), can be obtained from Eq. (7.19).

Uav(tm) with respect to δ is plotted in Figure 7.9 (the curve of the finite time cost). We can

see that the optimal value of δ is δopt = 5, for which the average cost Uav(tm) is minimum

Umin
av (tm) = 49.2. If δ = 1, i.e., SIRP is not used and then the entire population will be

inspected in one year, then average cost is equal to 73.6, which is larger than Umin
av (tm) by

almost 50%. Hence SIRP has considerable effect on reducing maintenance cost.

The average cost obtained from asymptotic formula (7.20) is also presented in Figure

7.9 (the curve of the asymptotic cost). The difference between the finite time cost and the

asymptotic cost is considerable. The asymptotic formula results in an optimal δ of 3 and

the minimal average cost of 66.7, which is 35% higher than the finite time cost.

Taking δ as 5, the expected proportions of down components and replacements in the

entire population can be obtained from Eq. (7.22) and (7.26), and are plotted in Figure

7.10a and 7.10b, respectively. As a comparison, the cases of δ = 2 and δ = 10 are also
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Figure 7.9: Average cost per component Uav(tm) vs. δ

presented. We can see that PD increases with δ. The case of δ = 2 has the minimal PD.

This is at the expense of a much more frequent inspections than the other two cases. The

values of PR in the three cases are fairly close. Considering cost and reliability, δ = 5 can

be a better choice.
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Figure 7.10: Expected proportions of down components and replacements in the entire
population
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7.7 Summary

In case of a large population of components with latent failures, it is not possible to inspect

all the components in one year due to limited resources. Hence, the population is divided

into several blocks or subpopulations, say δ, and in one year only one block is inspected

to replace all failed components. It means that the entire population is inspected over

a period of δ years. This policy is called sequential inspection and replacement program

(SIRP). The objective is to optimize δ to minimize the expected maintenance cost.

The expected maintenance cost of SIRP in a finite planning horizon is derived by using

the theory of renewal-reward process. Using this model, δ can be optimized. An illustrative

example related to the asset management of a large population of wood poles used in the

electrical network is given.
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Chapter 8

System Reliability Analysis

8.1 Introduction

8.1.1 Motivation and Approach

The results and discussions presented in the previous chapters are relevant to reliability

and maintenance of a single system. Since a practical engineering system includes many

sub-systems and components, it is of interest to estimate maintenance cost at the system

level. This topic is explored in this chapter. Reliability analysis of a system with repairable

components is a difficult problem to analyze. Various assumptions and approximations are

used to simplify the computation of system reliability. A common simplification is to model

the failure and repair as an alternate renewal process and assign exponential distributions

to the time to failure and time to repair.

Fault-tree analysis is a common method of system reliability analysis used in the nuclear

industry [36]. In this approach, all possible pathways of the system failure are investigated
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as various combinations of component failures. Each pathway is referred to as a cut-set. In

the nuclear industry, asymptotic results for failure rate and unavailability are often used

to further reduce the computational burden. In summary, the system reliability analysis is

also conducted in some asymptotic sense, and the notion of finite-time reliability and cost

analysis are not fully explored.

It should be acknowledged that research efforts have been directed towards time-

dependent system reliability analysis using methods such as simulation [5, 72], Markov

[16, 2] and semi-Markov process [70] models, stochastic Petri nets [35], dynamic fault

threes [20] and binary decision diagrams [57]. Our objective is to illustrate a more prac-

tical approach of analyzing system reliability once the sub-systems are analyzed using the

methods presented in the previous chapters.

The starting point is the reliability block diagram of the system from which cut-sets are

derived by usual methods [36]. Assuming the statistical independence of sub-systems [71],

system level formula for unavailability and failure rate are derived. Finally, these results

are used for maintenance cost estimation.

In passing we note that system reliability analysis of structures has been an active

topic of research in civil engineering. However, most of the civil engineering literature

deals with systems with non-repairable components only. It means that only probability of

first system failure is computed, and therefore, the renewal process models are not utilized.

Approximate methods based on First-Order Reliability Method (FORM) have been utilized

for time-invariant and time-dependent reliability analysis of structures [28, 37, 52].
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8.1.2 Organization

This chapter is organized as follows. Section 8.2 presents the structure of the system

and the maintenance model. The derivation of the unavailability and the failure rate

for individual components, subsystems and the whole system are given in Sections 8.3,

8.4, and 8.5, respectively. The computation of maintenance cost is given in Section 8.6.

Reliability analysis of a system with non-repairable components is presented in Section 8.7.

An illustrative example is given in Section 8.8.

8.2 System Model

For the sake of clarity of discussion, we present the model development through an exam-

ple of a system as shown in Figure 8.1. There are four independent components in this

system, denoted as Ai, i =1–4. There are two parallel sub-systems, {A1, A2} and {A3, A4},

connected in a series. It is assumed that components are independent of each other. This

system has been analysed in [46].

3A

4A

1A

2A

Figure 8.1: Reliability block diagram of the example system

Each component has a random lifetime X. Components are repaired to an as-good-

as-new condition upon failure. Time spent on repair is also a random variable Y . In this

maintenance model, each component alternates between the up and the down states (see

Figure 8.2), generating an alternating renewal process [8]. The length of renewal interval
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is given by

T = X + Y. (8.1)

0

1

State

Up
X

1Y 2Y

2X

1T 2T

3X

Down

Time

Figure 8.2: State alternation of a component

In this chapter, continuous time is considered. Denote the PDF of X by fX(x) and

that of Y by fY (y). Note that the four components in this system are not necessarily the

same. Then fX(x) and fY (y) vary with components. It is assumed that X and Y are

independent of each other. Then the PDF of T is equal to

fT (τ) = (fX ∗ fY )(τ). (8.2)

8.3 Component Reliability Analysis

In this section, the unavailability and the failure rate of a specific components are derived.
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8.3.1 Unavailability

Denote the length of down time up to time t by ND(t) and E [ND(t)] by UD(t). As mentioned

in Section 3.5, the unavailability of a component is equal to

uD(t) =
dUD(t)

dt
, (8.3)

and UD(t) can be obtained from Eq. (3.8) as

UD(t) = (UD ∗ fT )(t) +

[∫ t

0

hD(τ)dτ + HD(t)

]

︸ ︷︷ ︸

GD(t)

, (8.4)

where

hD(τ) = E [ND1|T1 = τ ] fT (τ), HD(t) = E [ND(t)|T1 > t] F T (t), (8.5)

and ND1 is the length of down time in the first renewal interval. Using the law of total

expectation by conditioning on X1 (see Figure 8.2), hD(τ) is obtained as

hD(τ) =

∫ τ

0

E [ND1|X1 = x, Y1 = τ − x] fX(x)fY (τ − x)dx

=

∫ τ

0

(τ − x)fX(x)fY (τ − x)dx, (8.6)

and HD(t) is obtained as

HD(t) =

∫ t

0

E [ND(t)|X1 = x, Y1 > t − x] fX(x)F Y (t − x)dx

=

∫ t

0

(t − x)fX(x)F Y (t − x)dx. (8.7)
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Then uD(t) can be obtained by substituting Eq. (8.3) into (8.4) as

uD(t) = (uD ∗ fT )(t) + gD(t), (8.8)

where (see Appendix D)

gD(t) =
dGD(t)

dt
= (fX ∗ F Y )(t). (8.9)

The initial condition for uD(t) is uD(0) = 0.

8.3.2 Failure Rate

Denote the number of failures up to time t by NF (t) and E [NF (t)] by UF (t). As mentioned

in Section 3.5, the failure rate of a component is equal to

uF (t) =
dUF (t)

dt
, (8.10)

and UF (t) can be obtained from Eq. (3.8) as

UF (t) = (UF ∗ fT )(t) +

[∫ t

0

hF (τ)dτ + HF (t)

]

︸ ︷︷ ︸

GF (t)

, (8.11)

where

hF (τ) = E [NF1|T1 = τ ] fT (τ), HF (t) = E [NF (t)|T1 > t] F T (t), (8.12)
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and NF1 is the number of failures in the first renewal interval and is equal to 1. Then

hF (τ) is obtained as

hF (τ) = fT (τ). (8.13)

Given T1 > t, NF (t) is equal to 1 if X1 < t and 0 otherwise. Then HF (t) is obtained by

conditioning on X1 as

HF (t) =

∫ t

0

fX(x)F Y (t − x)dx = (fX ∗ F Y )(t) (8.14)

Then uF (t) can be obtained by substituting Eq. (8.10) into (8.11) as

uF (t) = (uF ∗ fT )(t) + gF (t), (8.15)

where (see Appendix E)

gF (t) =
dGF (t)

dt
= fX(t). (8.16)

The initial condition for uF (t) is uF (0) = 0.

8.4 Reliability of a Subsystem

In the following, we will use a superscript {i} over uF or uD, i =1-4, to imply that this

quantity is associated with component Ai. Since subsystem {A1, A2} is a parallel system,

{A1, A2} is down if and only if both A1 and A2 are down. Then the unavailability of
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{A1, A2} is obtained as

u
{1,2}
D (t) = u

{1}
D (t)u

{2}
D (t). (8.17)

The event that {A1, A2} fails in the interval (t, t + dt] implies that (1) one of the two

components has already been down at time t and then the other fails in (t, t + dt]; or (2)

both of them fail in (t, t + dt]. Hence the probability that {A1, A2} fails in (t, t + dt] is

equal to

u
{1,2}
F (t)dt = u

{1}
D (t)u

{2}
F (t)dt + u

{2}
D (t)u

{1}
F (t)dt + u

{1}
F (t)u

{2}
F (t)(dt)2,

where u
{1,2}
F (t) is the failure rate of the subsystem {A1, A2}. Validly neglecting orders

greater than 1 in the above equation gives

u
{1,2}
F (t) = u

{1}
D (t)u

{2}
F (t) + u

{2}
D (t)u

{1}
F (t). (8.18)

The unavailability and the failure rate of the subsystem {A3, A4}, u
{3,4}
D (t) and u

{3,4}
F (t),

can be obtained similarly.

8.5 Reliability of the System

Note that {A1, A2} and {A3, A4} are connected in series. Then the system is down if either

one of the two subsystems is down. Hence the unavailability of the system is equal to

uS
D(t) = u

{1,2}
D (t) + u

{3,4}
D (t) − u

{1,2}
D (t)u

{3,4}
D (t). (8.19)
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The event that the system fails in the interval (t, t+dt] implies that at least one of the two

subsystems fails in that interval. Hence the probability that the system fails in (t, t + dt]

is equal to

uS
F (t)dt =

[

1 − u
{1,2}
D (t)

]

u
{3,4}
F (t)dt +

[

1 − u
{3,4}
D (t)

]

u
{1,2}
F (t)dt + u

{1,2}
F (t)u

{3,4}
F (t)(dt)2,

where uS
F (t) is the failure rate of the system. On the right hand side of the above equation,

the first and the second terms are the probability that only one of the two subsystems fails

while the other keeps in the up state, and the third term is the probability that both of

the two subsystems fail. Validly neglecting orders greater than 1 gives the failure rate of

the system as

uS
F (t) =

[

1 − u
{1,2}
D (t)

]

u
{3,4}
F (t) +

[

1 − u
{3,4}
D (t)

]

u
{1,2}
F (t). (8.20)

8.6 Maintenance Cost Analysis

The maintenance cost in a finite time horizon (0, t] consists of the following three parts

C(t) = Repair Cost + System Failure Cost + System Outage Cost

=

4∑

i=1

c
{i}
R N

{i}
F (t) + cS

F NS
F (t) + cS

DNS
D(t),

where N
{i}
F (t) and NS

F (t) are the number of failures of component Ai and the system,

respectively, NS
D(t) the length of down time of the system, c

{i}
R the unit repair cost of Ai,

cS
F the unit system failure cost, and cD the unit system outage cost. Then the expected
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maintenance cost U(t) = E [C(t)] is given by

U(t) =
4∑

i=1

c
{i}
R U

{i}
F (t) + cS

F US
F (t) + cS

DUS
D(t), (8.21)

where

U
{i}
F = E

[

N
{i}
F (t)

]

, US
F (t) = E

[
NS

F (t)
]
, US

D(t) = E
[
NS

D(t)
]
.

U
{i}
F (t) can be derived from Eq. (8.11) for specific components. To derive US

F (t) and US
D(t),

note that we can still obtain Eq. (3.32) for the system by using the same derivation as

shown in Section 3.5, i.e.

uS
D(t) =

dUS
D(t)

dt
, uS

F (t) =
dUS

F (t)

dt
.

Then US
F (t) and US

D(t) can be obtained from the failure rate and the unavailability of the

system as

US
F (t) =

∫ t

0

uS
F (τ)dτ, US

D(t) =

∫ t

0

uS
D(τ)dτ. (8.22)

8.7 System with Non-repairable Components

In the literature, components are often assumed implicitly to be non-repairable in the

analysis of system reliability. In this section, the unavailability, the failure rate, and the

expected maintenance cost of systems with non-repairable components are presented. The

structure of the system is still the same as that in Section 8.2 except that all the four
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components are non-repairable.

For non-repairable components, the failure rate is equal to the PDF of the component

lifetime, i.e.,

uF (t) = fX(t). (8.23)

A component is down at time t if and only if component lifetime X is less than t. Hence

the unavailability of the component is equal to

uD(t) = P {L ≤ t} = FX(t). (8.24)

Since the structure of the system is still the same, the reliability of the subsystems and the

system can still be obtained by using the methods described in Section 8.4 and 8.5.

Note that in the new model, there is no repair cost. Hence Eq. (8.21) should be

modified as

U(t) = cS
F US

F (t) + cS
DUS

D(t). (8.25)

8.8 Example

A numerical example is presented to illustrate the proposed methodology for deriving the

system reliability and the expected maintenance cost. This example is purely illustrative.

The units of the quantities in this section are not of any practical relevance.
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8.8.1 Input Data

The distributions of component lifetime and repair time are given in Table 8.1. Unit system

failure cost and system outage cost are taken as cS
F = 100 and cS

D = 20, respectively. Repair

cost for any component is equal to cR = 20.

Table 8.1: Distributions of lifetime and repair time of each component

Lifetime X Repair Time Y

Distribution Mean COV Distribution Mean COV

A1 Exponential 40 1 Exponential 0.5 1

A2 Weibull 30 0.3 Exponential 1 1

A3 Exponential 30 1 Exponential 0.5 1

A4 Weibull 20 0.25 Exponential 1 1

8.8.2 Numerical Results

(1) Reliability of individual components and the system

For repairable components, the unavailability and the failure rate can be obtained

from Eq. (8.8) and (8.15), respectively. For non-repairable components, these two

quantities can be obtained from Eq. (8.24) and (8.23), respectively. Then the un-

availability and the failure rate of the subsystems and the system can be obtained

from Eq. (8.17), (8.18), (8.19) and (8.20).

For repairable components, the component reliability and the associated system re-

liability are shown in Figure 8.3 and 8.4, respectively. The reliability of the system

with non-repairable components is shown in Figure 8.5. We can see that system

reliability is greatly improved by using repairable components. As time t increases,
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the unavailability of the system with repairable components oscillates about a con-

stant value (≈ 1.2 × 10−3, as shown in Figure 8.4), while that of the system with

non-repairable components tends to 1.
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Figure 8.3: Reliability of repairable components
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Figure 8.4: System reliability with repairable components

(2) Maintenance Cost
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Figure 8.5: System reliability with non-repairable components

The expected maintenance cost can be obtained from Eq. (8.21) for repairable com-

ponents or from Eq. (8.25) for non-repairable components and is shown in Figure

8.6. We can see that if t < 18.5, the expected maintenance cost with non-repairable

components is less than that with repairable components, which is because there is

no repair cost for non-repairable components. However, as t increases, the expected

maintenance cost with non-repairable components becomes significantly larger than

that with repairable components, which is because the system unavailability with

non-repairable components is much larger than that with repairable components.

Hence if the design time is large, it is better to use repairable components.

8.9 Summary

This chapter presents time-dependent reliability analysis of systems with repairable com-

ponents. Each component has a random life time and repair time described by general

(non-exponential) probability distributions. The time-dependent unavailability and failure
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Figure 8.6: Expected maintenance cost vs. time horizon

rate are derived for each individual component of the system by solving a set of renewal

equations. Then, system unavailability and failure rate are computed based on the com-

ponent level information. The analysis method is illustrated using a simple example. The

differences between the reliability of the system with repairable components and that with

non-repairable components are discussed.

This method can be used to optimize CBM of different components by minimizing

maintenance cost of the overall system. The proposed method can be applied to a variety

of infrastructure systems, such as bridges, buildings and power systems.
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Chapter 9

Conclusion

9.1 Summary of Results

This thesis deals with the probabilistic analysis of maintenance cost for all those failure-

repair processes that can be modelled as a stochastic renewal-reward process. A key feature

of this process is that time-to-failure and time-to-repair are modelled as random variables.

After each repair, preventive or corrective, the system is restored to as-good-as-new con-

dition. The failures can be contributed by an underlying stochastic process describing

the degradation in the condition of a system over time. The stochastic gamma process

model is used in this thesis. The attention is focussed on condition-based maintenance of

system, structures and components that are part of safety critical infrastructure, such as

nuclear plants, dams, and dikes. Since existing maintenance cost optimization models rely

on asymptotic results for stochastic renewal-reward process, such as the renewal theorem,

the cost analysis in a finite-time horizon is a key topic of research interest in this thesis.

A general derivation of any mth order statistical moment of maintenance cost is pre-
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sented in Chapter 3. The proposed formulation can be used to derive results for a specific

maintenance policy, so long as it an be modelled as a stochastic renewal-reward process.

In Chapter 4, degradation is modelled as a stochastic gamma process and the cost of

condition-based maintenance policy (CBM) is analyzed. Although the gamma process is

widely used in the literature, the finite-time mean and variance of cost are derived for the

first time in this work. Chapter 5 generalizes the CBM model of Chapter 4 by consid-

ering the repair (or down) time and delay in degradation initiation as random variables.

The finite time expected cost analysis with discounting is presented in this chapter. It is

recognized that the expected cost is not informative enough to enable the estimation of

financial risk measures, such as the Value-at-Risk (VaR). To address this issue, Chapter 6

presents a derivation of the probability distribution of the maintenance cost. In Chapter

7, another application of renewal theory is presented to model the sequential inspection

and replacement strategy for the asset management of a large population of components,

such as electrical networks. Chapter 8 illustrates that the models presented in the previ-

ous chapters can be used to analyze reliability at the system level. Here, time-dependent

unavailability and failure rate are derived for each individual component of the system

by solving a set of renewal equations. Then, system unavailability and failure rate are

computed based on the component level information.

Case studies involving the maintenance of heat transport piping system in a nuclear

plant and a breakwater are presented in the thesis. A general conclusion is that finite time

cost analysis should be used for a realistic evaluation and optimization of maintenance

policies for critical infrastructure systems.
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9.2 Key Research Contributions

This thesis presents the probabilistic analysis of maintenance cost expected to incur in a

finite time horizon for all those maintenance policies that can be modelled as a stochastic

renewal-reward process. A particular emphasis is placed on condition-based maintenance

policies with a fixed inspection interval and provision for preventive maintenance. The

degradation is modelled as a stochastic gamma process. An important aspect of this work

is accurate analysis of moments and distribution of cost, instead of relying on asymptotic

solutions for optimization of a maintenance policy. The specific contributions are as follows:

(1) Renewal-type integral equations are derived for statistical moments of any mth order

moments of the maintenance cost. Specific solutions for the mean and variance of

cost are derived for condition-based maintenance policies.

(2) Probability distribution of cost of a condition-based maintenance policy is derived.

Here, an interesting idea is that the characteristic function of cost is formulated as a

renewal integral equation. The Fourier transform of the characteristic function leads

to the probability distribution.

(3) Practical case studies are presented that confirm that the use of asymptotic solutions

is not warranted for maintenance cost analysis of highly reliable systems.

9.3 Recommendations for Future Research

Recommendations for future research are as follows:
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(1) In the present work inspection is assumed to be perfect for detecting the failure or

quantifying the magnitude of degradation. However, inspection instruments in prac-

tice are not perfect. The analysis in future should consider the imperfect nature of

inspection by incorporating the probability of detection and sizing error.

(2) A fast algorithm should be developed for solving renewal equations, especially in the

case of continuous random variables. The order of computation of renewal equations

is n2, n being the number of time steps. If the time step is very small, the computation

can be very time consuming.

(3) A higher order approximation of the maintenance cost should be developed, which

would be closer to finite time cost estimate.

(4) The system reliability should be analyzed for more complicated maintenance policies

adopted at the component level. The approach presented in Chapter 8 can enable

this generalization.
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Appendix A

Abbreviations and Notations

CANDU CANada Deuterium Uranium

CF Characteristic Fucntion

CBM Condition Based Maintenance

CDF Cumulative Distribution Function

COV Coefficient of Variance

FT Fourier Transform

FAC Flow Accelerated Corrosion

PDF Probability Density Function

ORP Ordinary Renewal Process

RRP Renewal-Reward Process

PMF Probability Mass Function

SIRP Sequential Inspection and Replacement Program

SF Survival Function

SG Steam Generator

140



VaR Value-at-Risk

P {E} Probability of event E

E [X] Expected value of X

fX(x) PDF of X

FX(x) CDF of X

FX(x) Survival function of X

Gamma(ξ, β) Gamma distribution with shape parameter ξ and scale parameter β

fG(w; ξ, β) PDF of Gamma(ξ, β)

FG(w; ξ, β) CDF of Gamma(ξ, β)

F
G
(w; ξ, β) Survival function of Gamma(ξ, β)

⌊⌋ Floor function
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Appendix B

Derivation of Eq. (5.17)

Given APM(l), l being a multiple of δ, degradation should have been initiated in the interval

[l − δ, l) (see Figure 5.1b), i.e. l − δ ≤ X < l. Then the degradation growth interval is

equal to Y = l − X. Therefore

FW (Y )

(
w|APM(l)

)
= P {W (l − X) ≤ w|APM(l)} =

P {W (l − X) ≤ w,APM(l)}
P {APM(l)} . (B.1)

In the above equation, P {APM(l)} is equal to fL,PM(l), which is given in Eq. (5.10). Note

that APM(l) means that at time l, degradation does not exceed wF , i.e. W (l − X) ≤ wF .

Hence event {W (l − X) < w} implies APM(l) since w ≤ wF . Then

P {W (l − X) ≤ w,APM(l)} = P {W (l − X) ≤ w} .
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Using the law of total probability by conditioning on X, the above probability is obtained

as

P {W (l − X) ≤ w} =
∑

l−δ≤x<l

P {X = x, W (l − x) ≤ w}

Note that W (y) is a stationary gamma process with shape parameter α and scale parameter

β. Then W (l − x) ∼ Gamma(α(l − x), β). Hence the probability of {W (l − x) ≤ wF} is

equal to FG(wF ; α(l−x), β), where FG is the CDF of the gamma distribution as shown in

Eq. (4.3). Since X is independent of W (y), the above equation gives

P {W (l − X) ≤ w} =
∑

l−δ≤x<l

fX(x)FG(wF ; α(l − x), β).

Substituting the above equation into Eq. (B.1), FW (Y )

(
w|APM(l)

)
is obtained as

FW (Y )

(
w|APM(l)

)
=

1

fL,PM(l)

∑

l−δ≤x<l

fX(x)FG(wF ; α(l − x), β) (B.2)
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Appendix C

Derivation of Eq. (5.25)

Similar to the derivation of Eq. (3.8), using the law of total expectation by conditioning

on the time of first renewal T1, the expected cost, U(t), is written as

Ud(t) =
∑

0<τ≤t

E
[
Cd(t)|T1 = τ

]
fT (τ) + E

[
Cd(t)|T1 > t

]
F T (t). (C.1)

Here, Ud(t) is partitioned into two cases corresponding to T1 ≤ t and T1 > t. When

T1 = τ < t, split Cd(t) into two terms: (1) the cost in the first renewal interval (C1), and

(2) the cost in the remaining time horizon, Cd(τ, t), such that

E
[
Cd(t)|T1 = τ

]
= E

[
Cd

1 |T1 = τ
]
+ E

[
Cd(τ, t)|T1 = τ

]
(C.2)

Note that given T1 = τ < t, the non-discounted cost C(τ, t) is stochastically the same as

C(t−τ) by taking τ as the new time origin. Then taking τ as the present time, the NPV of

C(τ, t) should be stochastically the same as Cd(t− τ). However, the cost at time τ should

be discounted with a factor of ρτ if time 0 is taken as the present time. Hence Cd(τ, t) is
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stochastically the same as ρτC(t− τ). Therefore the second term in the right hand side of

Eq. (C.2) is given by

E
[
Cd(τ, t)|T1 = τ

]
= ρτUd(t − τ). (C.3)

Then substituting Eq. (C.2) into (C.1), we can obtain Ud(t) as

Ud(t) =

t∑

τ=1

ρτfT (τ)Ud(t − τ) + Gd(t), (C.4)

where

Gd(t) =

t∑

τ=1

hd(τ) + H
d
(t), (C.5)

hd(τ) = E
[
Cd

1 |T1 = τ
]
fT (τ). (C.6)

H
d
(t) = E

[
Cd(t)|T1 > t

]
F T (t). (C.7)
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Appendix D

Derivation of Eq. (8.9)

Since

GD(t) =

∫ t

0

hD(τ)dτ + HD(t),

we have

gD(t) =
dGD(t)

dt
= hD(t) +

dHD(t)

dt
.

Substituting Eq. (8.6) and (8.7) into the above equation gives

gD(t) =

∫ t

0

(t − x)fX(x)fY (t − x)dx +
d

dt

∫ t

0

(t − x)fX(x)F Y (t − x)dx. (D.1)

The second term on the right hand side of the above equation can be obtained as

d

dt

∫ t

0

(t − x)fX(x)F Y (t − x)dx =

∫ t

0

(t − x)fX(x)
[
F Y (t − x) − (t − x)fY (t − x)

]
dx
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= (fX ∗ F Y )(t) −
∫ t

0

(t − x)fX(x)(t − x)fY (t − x)dx,

substituting which into Eq. (D.1) gives

gD(t) = (fX ∗ F Y )(t). (D.2)
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Appendix E

Derivation of Eq. (8.16)

Since

GF (t) =

∫ t

0

hF (τ)dτ + HF (t),

we have

gF (t) =
dGF (t)

dt
= hF (t) +

dHF (t)

dt
.

Substituting Eq. (8.13) and (8.14) into the above equation gives

gF (t) = fT (t) +
d(fX ∗ F Y )(t)

dt
. (E.1)

The second term on the right hand side of the above equation can be obtained as

d(fX ∗ F Y )(t)

dt
=

d

dt

∫ t

0

fX(x)F Y (t − x)dx
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= fX(t) −
∫ t

0

fX(x)fY (t − x)dx

= fX(t) − fT (t),

substituting which into Eq. (E.1) gives

gF (t) = fX(t). (E.2)
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