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Abstract 

Plant shape affects the ability of insect predators to locate prey by altering search 

paths or by providing partial refugia for prey.  Changes in predator foraging efficiency can 

have significant consequences for population dynamic of both predators and prey.  Yet, the 

relationship between plants and insect predators is not well understood despite its relevance 

to agriculture and biological control.  The effect of plant gross morphology on predator 

foraging success was tested using multicoloured Asian ladybeetles, Harmonia axyridis Pallas 

(Coleoptera: Coccinellidae), and green lacewing larvae, Chrysoperla carnea Stephens 

(Neuroptera: Chrysopidae), preying on pea aphids, Acyrthosiphon pisum Harris (Hemiptera: 

Aphididae).  These predators differed in body size and therefore might be expected to have 

different responses to a given plant morphology.  Experiments were conducted using four 

different pea plant morphologies (Pisum sativum L.) that differed in fractal dimension, but 

which were controlled for surface area.  The consumption rate of each predator on each pea 

morph was determined by measuring the number of aphids consumed in a 48 hour foraging 

period at 3 prey densities.  I also tracked predator search paths using 2D time-lapse 

photography to determine if the two predators search plants differently. 

I found that both predators were more successful at capturing prey on plants with a 

higher leaf edge to leaf area ratio (lower fractal dimension).  Plants with more edges were 

easier for predators to grip, thus increasing their mobility and manoeuvrability.  Also, plants 

with more edges and fewer leaf surfaces had fewer locations where aphids could hide.  As a 

result, predators are more effective at locating and capturing prey on these morphologies.   
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 

Predation rates are dependent on prey density (Solomon, 1949; Holling, 1959).  When 

few prey are present, predation rates are low, but these rates increase as prey density 

increases.  Therefore, for a given number of prey individuals, I expect that predators will 

have lower foraging rates when these prey are spread over a large area (low prey density), as 

compared to when the same number of prey are concentrated over a small area (high prey 

density).  However, prey density is not the only factor which dictates predator foraging 

success.  In tritrophic systems consisting of plants, herbivores and predators, previous studies 

have shown that aspects of plant structure, such as branching and connectivity influence 

predator-prey interactions by reducing predator mobility and prey encounter rates (Kareiva 

and Sahakian, 1990; Grevstad and Klepetka, 1992; Clark and Messina, 1998a, 1998b; 

Legrand and Barbosa, 2003).  Therefore, predictions about the efficiency of insect predators 

drawn from data collected in spatially simple lab environments, without spatial structure, 

may be incorrect.   

In general, authors report that as habitat structure becomes more heterogeneous, 

predator foraging efficiency decreases (Kaiser, 1983; Andow and Prokrym, 1990; 

Lukianchuk and Smith, 1997; Cloyd and Sadof, 2000; Grez and Villagran, 2000; Gingras and 

Boivin, 2002; Hoddle, 2003; Legrand and Barbosa, 2003; Gingras et al., 2008).  For 

example, Legrand and Barbosa (2003) suggest that increased branching of pea plants 

decreases the foraging efficiency of 7-spot ladybugs.  To test the hypothesis that plant 

morphology affects insect predator foraging behaviour, I measured the predation rates of two 
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predators, the green lacewing Chrysoperla carnea Stephens, and the multicoloured Asian 

ladybeetle, Harmonia axyridis Pallas, feeding on pea aphids, Acyrthosiphon pisum Harris.  I 

compared predator consumption rates on aphids placed on leaf tissue in Petri plates and on 

whole plants.  I also compared consumption rates on pea plants (Pisum sativum L.) that 

differed in gross morphology.  In all cases, I ensured that the foraging arenas were the same 

volume, and that the surface area of the plant tissue was not significantly different.  By 

keeping prey density constant I was able to isolate the effects of plant morphology on 

predation rates.  I also tested the effects of plant morphology on predator searching behaviour 

by measuring and comparing predator movement trajectories.   

   In this chapter, I will review the literature about the effects of habitat structure on 

predator foraging behaviour.  In chapter 2, I will discuss experiments designed to test the 

effects of gross morphology on predator foraging success.  In chapters 3, I will describe the 

potential mechanisms that account for varying consumption rates on plants with different 

gross morphologies.     

1.2 Literature Review  

1.2.1  Overview 

There is a large body of literature that describes the foraging behaviour of insect 

predators and how they respond to changes in prey density.  However, the interactions 

between insect predators and prey often include a third trophic level – plants.  Prey species 

are often herbivorous; therefore, predators must search within plant canopies to locate prey.  

However, the interactions between plants and predators are not well understood.  Throughout 
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this thesis I will use the term gross morphology.  Studies have shown that several factors 

affect a predator’s ability to search for prey on plants.  Plant morphological characteristics 

such as leaf texture, branching, and structures that provide refugia for prey, all influence 

predator foraging success.  Although plant-predator relationships have been previously 

studied there are several aspects of this relationship that have been overlooked.  In particular, 

the effects of whole plant or gross morphology are not well understood because many studies 

have used different plant species, which can influence predator behaviour through 

phytochemical and nutritional differences.  Also, in many studies plant surface areas were 

not controlled.  Therefore, prey densities may have differed, which has a strong effect on 

predator consumption rates.  Second, it is not clear if the effects of plant structure are similar 

for all predators.  The literature suggests that as body size changes a predator’s experience 

with its environment may also change.  Therefore, certain morphological characteristics may 

not affect predator forging success in the same manner. 

In this review I will summarize effects of habitat structure on insect predator 

foraging behaviour.  I will also give a detailed description of the effects of small-scale plant 

structure i.e. surface texture, refugia and morphology on predator foraging efficiency.  I will 

discuss the various search strategies that predators use to navigate in heterogeneous 

environments.  Finally, I will review literature on the size-grain hypothesis, which suggests 

that body size may affect environmental experience. 
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1.2.2 Predator Foraging and Habitat Structure 

Predator consumption rates depend on prey densities.  At low density, consumption 

rates are low, and increase in proportion with prey density.  In other words, in an area of a 

given size, a predator is more likely to encounter and consume prey if there is a greater 

number of individuals present than if there are very few, as demonstrated by Holling’s work 

on functional responses of predators (1959, 1961, 1966).  However, the size of a predator’s 

searching environment is not the only factor that may affect its relative success.  The 

structure of the environment also has a strong influence because it can slow predator 

movements, which reduces foraging efficiency.  For example, in experimental plots of the 

same size, but with different habitat structures beetle movement was reduced in plots with 

greater structural heterogeneity (Weins et al., 1997; Grez and Villagran, 2000).  However, it 

is challenging to accurately measure and quantify the effects of habitat structure on predator 

foraging success.  Field experiments have the advantage of incorporating realism to the study 

system, but they can be labour-intensive and difficult to run.  On the other hand, laboratory 

experiments may simplify interactions between plants and predators, but they may be useful 

for observing predator foraging behaviours.        

 While several laboratory studies have demonstrated that habitat structure affects 

insect predator foraging success, their applicability to real-world ecosystems is limited.  

When quantifying predator foraging capacity, many authors agree that measuring predator 

consumption rates in small experimental arenas leads to an overestimate of predator foraging 

rates (Kiritani and Dempster 1973; Grant and Shepard 1984; Luck et al. 1988).  This may be 

particularly true when prey densities are low.  If a predator is confined to a small enclosure it 
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will repeatedly search the same area and is more likely to locate prey.  However, in the 

natural environment, if prey density is low a predator will most likely abandon the area and 

emigrate to a more suitable one (Luck et al., 1988).  However, Latham and Mills (2009) 

contest that laboratory observations may actually underestimate predator daily per capita 

consumption and the methods of measuring consumption rates in the field may be the reason.  

They measured both biomass killed and biomass consumed by Harmonia axyridis and 

Chrysoperla nigricornis and found higher consumption in the field and cages than in 

laboratory arenas.  Whichever case is true, it is clear that measuring predator foraging rates in 

simple environments may lead to inaccurate conclusions about their capacity to consume 

prey or control pest populations in more natural conditions.  Yet, these methods are often 

used for assessing biological control agents (e.g., Cabral et al., 2007; Oliveira et al., 2007). 

Nonetheless, using simple environments to measure parameters, such as the attack 

rate and handling time of predators, can provide valuable information about how predators 

respond to different prey species.  They can also be used to determine at what density a 

predator’s functional response will be overwhelmed (Oaten and Murdoch, 1975).  This can 

be a valuable first step in evaluating the predatory potential of biological control agents.   

Making reliable large-scale predictions about predator-prey interactions from simple 

laboratory experiments is difficult, and carrying out large-scale field experiments is often 

labour-intensive and impractical.  Therefore, incorporating habitat structure, such as plant 

morphology, into laboratory experiments is necessary to improve our understanding of 

predator mobility and foraging efficiency and to ensure accuracy for predictions about real-

world settings.   
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1.2.3 Effects of Plant Morphology on Predator Foraging 

Plants produce a variety of morphological features to protect themselves from 

herbivory, such as surface features like pubescence, spines, or waxes (Price, 1980).  While 

these features may directly impede herbivore attack, they also affect the predators that feed 

on these herbivorous insects.  In some instances, plant morphology can impede predator 

foraging success by decreasing mobility.  However, Marquis and Whelan (1996) suggest that 

there may be a subtle and unrecognized relationship between plants and predators, whereby 

plant morphology improves the predator’s ability to move through plant canopies and capture 

herbivorous prey.  

I use the term plant morphology to refer to a variety of plant characteristics from 

large to very fine-scale features.  Gross morphology describes the size, surface area and 

branching of a whole plant.  Plant morphology can also refer to small-scale features such as 

leaf surface textures (i.e. trichomes and waxes).  There is a large body of literature indicating 

that all these aspects of plant morphology affect predator foraging success.  In the following 

sections I will discuss the plant morphological features that have been well studied with 

respect to their effects on predator foraging behaviour.  These features include, leaf surface 

textures, plant structures that serve as prey refugia, and gross morphology.  

1.2.3.1 Leaf Surface Texture 

Leaf surface textures, such as hairiness or slipperiness can affect insect predators.  

Trichomes are hair-like projections of the plant epidermis that protect plants from herbivores 

(Levin, 1973).  The effects of trichome density on natural enemy foraging have been 

examined on a variety of different plant and insect species.  Intuitively, one would suspect 
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that as trichome density increases an insect’s rate of movement would decrease.  Some 

experimental studies have confirmed this relationship.  For example, the predatory mite, 

Phytoseiulus persimilis, captured the least prey on chrysanthemums with high trichome 

density compared to those with intermediate and low trichome density (Stavrinides and 

Skirvin, 2003).  Increased trichome density on cotton reduced the ability of the parasitoid, 

Trichogramma pretiosum, and the predator, Chrysopa rufibralis, to attack cotton bollworm 

eggs (Treacy et al., 1985).  Podisus nigrispinus, foraging on tomatoes, sweet pepper and 

eggplant captured the fewest prey on tomatoes due to glandular trichomes (DeClercq et al., 

2000).  Similarly, Picromerus bidens captured fewer prey on tomatoes than sweet pepper and 

eggplant due to longer handling times on tomatoes (Mahdian et al., 2006). As well, Coll and 

Ridgway (1995) observed that Orius insidiosus captured fewer Western flower thrips on 

tomato plants than beans and sweet pepper because the leaf surface of tomatoes were dense 

with trichomes.   

Not all studies on the relationship between trichomes and predator foraging have 

found an inverse relationship between trichome density and prey capture. Styrsky et al. 

(2006) found that trichomes did not inhibit the predatory abilities of fire ants on 

lepidopterans.  In fact, more prey were consumed on pubescent isolines than glaborous ones.  

Romero et al. (2008) determined that there was a mutualism between the predatory spiders, 

Peucetia flava, P. Rubrolineata and glandular trichomes.  In times when prey are scarce, 

spiders can feed on dead carcasses trapped in glandular trichomes.  As a result, spiders living 

on plants with trichomes had a larger body mass and were more effective at defending plants 

from herbivore attack.   
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Waxy leaf surfaces can also affect the mobility and foraging of predators.  Many 

plants produce leaf waxes to reduce water loss and to deter herbivores.  Predator foraging 

efficiency may be greatly decreased on waxy surfaces because predators slip from leaves 

frequently or engage in other activities, such as grooming, rather than searching for prey 

(Eigenbrode et al., 1996).  

On pea plants (Pisum sativum) with different wax blooms, Hippodmia convergens, 

Orius insidiosus and larval Chrysoperla carnea control pest populations more effectively on 

non-wax cabbage than a waxy variety because their tarsae cannot grip the smooth surface of 

the waxy cabbage (Chang et al., 2006).  The same effect was reported by Eigenbrode et al. 

(1996) who tested Chrysoperla carnea, Hippodamia convergens, and Orius insidiosus 

foraging on waxy and non-wax cabbage.  All predators were more effective at capturing 

diamondback moth (Plutella xylostella) on cabbage with a non-wax surface rather than a 

waxy one.  Brachonid wasps, Diaeratiella rapae, attack more hosts on a reduced wax variety 

of cauliflower, and spent less time engaged in grooming (Gentry and Barbosa, 2006).   

The interpretation of these results can be confounded by the fact that herbivores 

respond differently to wax blooms on their host plant.  Since waxes are used by plants as a 

defense from herbivores, it is possible that herbivores may respond differently to plants with 

normal versus reduced wax blooms.  For example, canola, Brassica napus, with reduced 

epicuticular wax, was found to reduce aphid numbers, whereas, it increased the number of 

flea beetles (Eigenbrode et al., 2000).  Pea aphids, Acyrthosiphon pisum, were less numerous 

on peas with reduced wax, while pea leaf weevils, Sitona lineatus, caused more damage on 

peas with reduced wax than normal wax (White and Eigenbrode, 2000).  To eliminate this 
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potentially confounding factor, Rutledge et al. (2003) used near isolines of pea that did not 

affect the growth and fecundity of aphids.  They showed that increased predation was a result 

of reduced wax, rather than a variable response of aphids to the different wax blooms.       

Although it seems quite apparent that leaf waxes decrease the efficiency of natural 

enemies, this area of research has primarily focused on plants that differ obviously in wax 

bloom.  Insect attachment on plants with amorphous waxes differing in composition rather 

than bloom has not been examined, despite the fact that these types of wax are prevalent in 

nature (Walton, 1990). 

1.2.3.2 Prey Refugia 

Many morphological features of plants can be used by herbivores for protection from 

predators.  These features are known as refugia.  Refugia can be either partial or complete.  

Complete refugia are plant structures which fully conceal herbivores.  Galls are an example 

of complete refugia.  They are abnormal plant growths that form when insects are feeding 

within plant tissue (Weis and Kapelinski, 1994).  Herbivores that feed within complete 

refugia are often difficult or impossible for natural enemies to reach, thus they greatly 

decrease foraging efficiency.  Some natural enemies, such as parasitoids have developed 

adaptations to reach prey in these locations.  For example, the parasitoid Itoplectis 

conquisitor can successfully parasitize pupae of the European pine shoot moth, Rhyacionia 

buoliana, feeding within complete refugia by driving its ovipositor through the plant tissue to 

reach the host (Ball and Dahlsten, 1973).   

Partial refugia include structures that do not conceal prey but prevent easy access by 

predators.  Partial refugia affected the ability of coccinellids and chrysopids to capture 
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Russian wheat aphids, Diuraphis noxia, on crested wheatgrass, Agropyron desertorum, in 

comparison with Indian ricegrass, Oryzopsis hymenoides (Kauffman and LaRoche, 1994; 

Clark and Messina, 1998a, 1998b).  Wheatgrass has flat, broad leaves while ricegrass has 

slender, rolled leaves.  As a consequence, predators were more successful at capturing aphids 

on ricegrass than wheatgrass since prey fed in exposed locations.  Predation and parasitism of 

the boll weevil, Anthonomus grandis, increased on cotton expressing the “frego bract” trait 

(rolled-up floral bud bracts) in comparison to normal cotton plants.  Rather than seeking 

refuge in the rolled bracts, this trait caused weevils to engage in movement from plant to 

plant thus exposing them to natural enemies.  Prey attack was much lower on normal cotton 

since weevils remained in the flower buds (Mitchell et al., 1973).  However, partial refugia 

are not necessarily associated with a plant structure that offers concealment. Grevstad and 

Klepetka (1992) observed that several species of coccinellids searching for aphids on 

crucifers could not reach aphids that fed on the middle of the undersides of the leaves 

because it may be impossible for them to grip these surfaces.    

1.2.3.3 Gross Morphology 

Gross morphology refers to whole plant shape, particularly the surface areas and 

branching of plant parts.  Gross morphology can range from simple and linear to highly 

complex and branched.  In general, researchers report that as a plant becomes more branched, 

predator efficiency decreases (Andow and Prokrym, 1990; Lukianchuk and Smith, 1997; 

Cloyd and Sadof, 2000; Gingras and Boivin, 2002; Legrand and Barbosa, 2003; Gingras et 

al., 2008).     
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A useful analogy for the effect of increased branching of plants can be drawn from 

various experiments in artificial environments.  Researchers report that as the number of 

possible paths increases, natural enemy foraging success decreases.  Kaiser (1983) compared 

foraging rates of predatory mites in flat arenas with varying numbers of borders.  Arenas with 

a greater number of borders caused predators to have the lowest predation rates because 

discontinuous paths slowed predator searching behaviour.  Similarly, Hoddle (2003) 

experimented with arenas with increasing numbers of vertices.  He found that each additional 

vertex led to a decrease in prey capture.  In three-dimensional environments the same pattern 

has been observed.  By using paper structures that differed only in the number of branches, 

Andow and Prokrym (1990) were able to eliminate influences of chemicals, surface textures, 

and size on the searching behaviour of the parasitoid Trichogramma nubilale.  Highly 

branched structures differed from simple ones in that they were cut to have more finger-like 

projections, thus introducing more edges along which parasitoids could search.  The results 

showed that on simple paper structures T. nubilale was able to locate hosts almost two and a 

half times faster than on complex ones.  The same results were observed for Trichogramma 

evanescens searching for hosts on artificial structures that were of simple, intermediate and 

complex architecture.  The artificial plant structures in the latter experiment differed only in 

the density of connections.  Parasitoids attacked twice as many hosts on simple structures 

(Gingras and Boivin, 2002).   

 Studying the effects of architecture on predator foraging using real plants is 

challenging due to confounding factors such as plant phytochemicals, differing nutritional 

quality of plants and differing surface features.  The use of near isogenic plants is an 
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effective way to study the effects of plant architecture since it eliminates these issues.  Near-

isolines of the same species differ in only one trait (Bottrell et al., 1998).  Legrand and 

Barbosa (2003) used pea near-isolines to study coccinellid searching abilities on plants with 

divergent architectures.  Previously, they had found that these pea near-isolines did not alter 

aphid fecundity and intrinsic rate of increase, and the differing leaf morphology did not 

influence the within-plant distribution of aphids (Legrand and Barbosa, 2000).  They showed 

that the predator, Coccinella septempunctata, was less successful at capturing prey on plants 

that had more junctions, a high leaf edge to leaf surface ratio and greater surface area.  

Ladybugs searched predominantly leaf edges; therefore on more highly branched peas with 

more edges, predators took longer to encounter prey.  Search paths overlapped more 

frequently on complex plants resulting in poor efficiency.  In contrast, Kareiva and Sahakian 

(1990) found that coccinellids were more effective at capturing prey on leafless pea morphs 

that leafy ones.  Ladybugs fell from tendril morph plants less frequently, apparently because 

they could grasp the tendrils and manoeuvre on these leafless plants more easily.  As a result, 

predators controlled aphid populations more effectively on the leafless morphology.  

Although these two sets of authors did not compare exactly the same range of pea 

morphologies, their results do represent an interesting contrast.  In one case the authors 

conclude that highly branched plants decrease predator consumption, and in another case, the 

authors find increase consumption on highly branched plants.  One possible explanation for 

these differing results is the effect of surface area.  It is known that prey density affects 

predator consumption rates.  Therefore, if differences in morphology lead to differences in 
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surface area, we should expect different consumption rates irrespective of any effect of 

morphology on predator movement rates.  

 Within a canopy of branches, the amount of connectivity between branches is also 

important.  The parasitoid, Trichogramma turkestanica, encountered more eggs on simple 

plants because this architecture favoured linear walking at high velocities.  Increasing 

connectivity increased the number of possible paths and directions that can be taken (Gingras 

et al., 2008).  Similarly, Trichogramma minutum, attacked more eggs when searching on 

continuous surfaces than divided surfaces, because edges redirected their search path such 

that previously searched areas were re-examined (Lukianchuk and Smith, 1997).  Kareiva 

and Perry (1989) created a higher degree of plant connectivity by attaching leaves of adjacent 

peas together.  Hippodamia convergens captured more prey in these altered canopies because 

they could travel among plants more easily than if adjacent leaves were not overlapping.  

Adding linear connectivity changed the trajectory of the predators and increased their 

efficiency.  It should be noted that insects search behaviour is not completely random.  Insect 

predators employ a variety of strategies to navigate through plant canopies to locate prey.    

1.2.4 Insect Foraging Behaviour 

 Predators who feed on herbivores are faced with the challenge of travelling among 

plants to locate prey.  Insects have developed a number of strategies to deal with the 

challenges of plant architecture. The searching behaviour of coccinellids and chrysopids has 

been particularly well studied since these generalist predators are conspicuous in a variety of 

habitats and have potential as biological control agents (Bond, 1980; Norlund and Morrison, 

1990; Dixon, 2000; Koch 2003).   
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   A common search mechanism used by entomophagous insects is a combination of 

area-concentrated (intensive) searching and extensive searching (Carter and Dixon, 1982; 

Bond, 1980).   This mechanism is seen mostly in predators such as coccinellids, syrphids and 

chrysopids that feed on sedentary insects such as aphids (Krebs, 1973; Curio 1976; Bond, 

1980).  It is generally used by predatory insects whose resources are distributed in patches or 

clumps (Nakamuta, 1985).  Intensive search is initiated when a prey item is encountered.  If 

prey is captured, there is a period of handling time while the predator consumes the prey 

item.  Afterwards, intensive searching continues since the predator may be aware it is within 

a prey patch.  This period of searching is characterized by frequent turning and a reduction in 

speed (Carter and Dixon, 1982).  If a period of time passes and no further prey is found the 

predator switches to extensive searching whereby it decreases turning and increases speed in 

an effort to locate the next patch of prey (Bond, 1980; Carter and Dixon, 1982; Nakamuta, 

1985). 

Understanding the sensory capabilities of these predators is crucial for predicting 

their capacity to recognize and to capture prey.  There are several cues that insects rely on to 

guide them between patches.  These cues can be visual, chemical, tactile (Bell, 1990) and, in 

some instances, learning can play a role in determining how a predator finds patches (Ferran 

and Dixon, 1993).  For example, many insects depend on the surface features of plants to 

direct their searching. They will follow leaf edges or veins since these features help them to 

orient their search and lead them to prey (e.g. coccinellids Bell, 1990).  This technique is 

effective since aphids are often concentrated in these areas (Ferran and Dixon, 1993).  

Although their sense of sight is not highly developed, coccinellids have demonstrated the 
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ability to visually recognize prey.  Nakamuta (1985) found that Coccinella septempunctata 

was capable of visually deciphering prey from non-prey like objects.  Harmonia axyridis can 

use both visual and olfactory cues to detect its prey.  Obata (1986) found that H. axyridis, 

when presented with the choice between entering opaque bags filled with aphid-infested 

leaves and clean leaves, the ladybugs chose the bags with aphids.  In another trial, when 

ladybugs could only see leaves but could not detect smell, they entered bags filled with 

leaves rather than control bags which were empty (Obata, 1986).  Bahlai et al. (2008) tested 

the ability of H. axyridis to discern between the visual appearance and odour of apple and 

buckthorn leaves, since these ladybugs are often seen feeding on aphids on buckthorn.  

During visual bioassays, ladybugs chose to move towards silhouettes of leaves over blank 

spaces.  Ladybugs did not choose buckthorn leaves over apple leaves unless olfactory cues 

were also included. 

Conversely, lacewings do not appear to respond to visual or chemical cues.  They 

search primarily by moving their head from side to side until their mandibles contact a prey 

item.  Prey contact is the only cue that initiates intensive search, which means that their 

searching efforts are intensified following the successful attack of a prey item (Bond, 1980; 

Norlund and Morrison, 1990). 

Internal information, gained from learning or conditioning, can also impact the way a 

predator searches (Ferran and Dixon, 1993).  Predators may learn from previous experience, 

which improves their searching efficiency, while conditioning can influence the search 

mechanism or the type of prey captured (Bell, 1990).  Conditioning has been observed in 

coccinellids and it affects their switch from extensive to intensive search as well as the type 
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of prey they seek.  For example, H. axyridis raised on either pea aphids, Acyrthosiphon 

pisum, or Ephestia kuehniella eggs developed a preference for the food on which they were 

reared.  When other food was available they consumed it but it would not cause them to 

switch from extensive to intensive searching.  H. axyridis continued to search extensively 

until their preferred prey was encountered (Ettifouri and Ferran, 1993). 

1.2.5 Predator Body Size 

Based on what is reported in the literature, plant morphology can influence predator 

foraging success in a variety of ways.  It is often argued that opposing results may be related 

to the body size of the predator (Vohland, 1996; Yang, 2000; Lucas et al., 2004).  As body 

size changes, the way in which an individual experiences its environment also changes 

(With, 1994).  The size-grain hypothesis states that as body size decreases, the environment 

experienced by terrestrial walking organisms becomes less planar and more rugose, that is, it 

has more contours or wrinkles (Kaspari and Weiser, 1999).  With respect to morphological 

features such as trichomes, waxes, refugia and gross morphology there is evidence that body 

size is influential (eg. Lucas et al., 2004)  

There is an allometric relationship between leg and body length for walking insects 

(Teuscher et al., 2009).  Therefore, as body size increases, leg length increases in proportion.  

A longer leg implies a longer stride length which may be directly correlated with movement 

ability (With, 1994).  A greater stride length also allows individuals to interact with the 

environment at a different scale of habitat structure, which may help lower complexity (With, 

1994).  For example, when a large insect is travelling across a surface with dense trichomes it 

will step over these obstacles because it has long enough legs to do so.  A small insect, on the 
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other hand, may be able to travel between the spaces of the trichomes, and its mobility will 

also be relatively unimpeded.  Medium-sized individuals, therefore, may be the most likely to 

be impeded by dense trichomes since they cannot step over or fit between trichomes.   

It is difficult to conclude if a particular size is preferential for mobility on surfaces 

with trichomes.  Some authors have suggested that small body size is preferable on pubescent 

plants (Obrycki and Tauber, 1984; Yang, 2000).  Treacy et al. (1985) found that third instar 

lacewing larvae, Chrysopa rufilabris, were less affected by trichome presence than smaller 

second instars.   In this case the smaller predator did not have an advantage in the pubescent 

environment.  Conversely, Lucas et al. (2004) measured the efficiency of the ladybugs, 

Coleomegilla maculata and Delphastus catalinae, preying on greenhouse whitefly and 

observed that C. maculata were impeded by trichomes while smaller D. catalinae individuals 

were not.     

With respect to smooth leaf surface covered with waxes, there is evidence that 

indicates body mass affect an insect’s attachment to these slippery surfaces.  Gorb et al. 

(2001, 2002) reported that as insect body mass increases, friction and adhesion decrease.  In a 

centrifugal force tester they found that more acceleration was required to detach small insects 

than large ones because the relationship of mass-to-friction is higher in small insects.  Since 

body mass generally increases with body size, it is possible that larger, heavier insects would 

slip from waxy surfaces more frequently than small insects.  However, the effect of body size 

and mass has not been examined in relation to attachment to leaf wax.   

Although studies of plant architecture and foraging capacity generally conclude that 

branching and prey capture are inversely related, very few studies have examined the effect 
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of body size on foraging in environments of varying complexity.  Bearing in mind that body 

size and environmental experience are linked (With, 1994), and body size is correlated with 

stride length (Teuscher et al., 2009), in environments with varying levels of branching and 

connectivity, one might suspect that natural enemies with longer stride lengths would have an 

advantage since they could step from branch to branch with ease.  Their ability to span 

between obstacles could enable them to search a particular patch faster or a whole plant in 

less time than it would take a small predator to search the same plant.  If this is true, large 

insects would be more efficient than small ones on plants with greater architectural 

complexity.   

1.2.6 Conclusions 

Upon reviewing the literature there is a strong indication that the relationship between 

plants and predators is not well understood.  Predator foraging efficiency is strongly 

influenced by habitat structure: specifically, plant morphological features such as shape, size, 

surface textures and prey refugia.  Studies have shown that these features affect predator 

foraging success by slowing predator movement, decreasing prey encounters, or decreasing 

manoeuvrability.  There are two aspects of the plant-predator relationship that I believe need 

to be further investigated.  First, the effects of gross plant morphology are not well 

understood.  For example, Legrand and Barbosa (2003) reported that Coccinella 

septempunctata foraging on highly branched pea morphs were less successful at capturing 

aphids than on normal morphs.  In contrast, Kareiva and Sahakian (1990) reported that 

ladybugs were more successful at controlling aphid populations on highly branched leafless 

peas.  Plant surface area was overlooked in these studies and therefore it is difficult to 
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conclude what effect gross morphology had on ladybugs.  Future studies should be careful to 

control plant surface area since it effects prey density, which is the most influential factor on 

predator consumption.   

Second, while it is apparent that plant morphology has an impact on predator 

mobility, it is not clear what this effect is, and how it relates to predator body shape and size.  

Several studies indicate that body size and environmental experience are directly linked.   I 

could find no studies which compared the success rate of predators of differing size foraging 

in complex environments.  Hence, it remains unclear if particular plant morphological 

features affect smaller predators in the same manner.  A better understanding of predator and 

plant relationships is invaluable for understanding population dynamics of predators and 

prey, and is also important if predators are going to be used in a biological control context.  

The aim of this project is to study the effects of gross plant morphology on the foraging 

success of insect predators.         
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Chapter 2: Effects of plant gross morphology on predator foraging 

success 

2.1 Overview 

The effects of habitat structure on the consumption rates of two generalist predators: 

the multicoloured Asian ladybeetle, Harmonia axyridis Pallas, and the green lacewing, 

Chrysoperla carnea Stephens, feeding on pea aphids¸ Acyrthosiphon pisum Harris, were 

measured.  Predator consumption was first compared in homogeneous environments (Petri 

dishes) and heterogeneous environments (whole plants).  Consumption rates were also 

compared on four peas (Pisum sativum L.) with similar surface areas but different gross 

morphologies.  I found that habitat structure had a significant effect on the predators’ abilities 

to find and consume prey.  Predators consumed significantly more aphids in Petri dishes than 

on whole plants of the same size (P<0.0001), which suggests that habitat structure has a 

strong influence on predator foraging behaviour.  Furthermore, I found that small-scale 

differences in plant gross morphology also had a significant effect on the consumption rates 

of both ladybugs (P=0.015) and lacewings (P<0.0001).  Both predators were more successful 

at capturing aphids on morphologies that were highly branched.  I speculated that predators 

move more easily over highly branched plants because there are more edges to grasp.  

2.2 Introduction 

Previous studies have shown that spatial structure can influence predator-prey 

interactions by impeding predator mobility (Kareiva and Sahakian, 1990; Grevstad and 

Klepetka, 1992; Clark and Messina, 1998a, 1998b; Legrand and Barbosa, 2003).  For 
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example, morphological characteristics, such as leaf waxes, can make surfaces too slippery 

for predators to walk across (Eigenbrode et al. 1996; Chang et al., 2006; Gentry and Barbosa, 

2006) while hairy surfaces with trichomes can be cumbersome to traverse (Treacy et al., 

1985; Coll and Ridgway, 1995; DeClercq et al., 2000; Stavrinides and Skirvin, 2003; 

Mahdian et al., 2006).  In addition, some plant structures may provide partial or full refugia 

for prey, thus reducing predator attack (Mitchell et al., 1973; Kauffman and LaRoche, 1994; 

Clark and Messina, 1998a, 1998b).   

The overall shape and connectivity of plant parts (i.e. its gross morphology) can also 

affect a predator’s foraging success (Andow and Prokrym, 1990; Lukianchuk and Smith, 

1997; Gingras and Boivin, 2002; Gingras et al., 2008).  For example, Cloyd and Sadof 

(2000) found that the height, number of leaves, leaf surface area, and number of branches of 

variegated coleus, Solenostemon scutellarioides, was negatively correlated with the searching 

efficiency of Leptomastix dactylopii.     

It is clear that leaf surface textures and gross morphology can alter predator mobility 

and yet predator efficiency is often measured in simple lab environments such as Petri dishes 

(Norlund and Morrison, 1990; Lee and Kang, 2004; Provost et al., 2006; Cabral et al., 2007; 

Oliveira et al. 2007).  These studies may lead to inaccurate predictions about how predators 

behave in natural environments. For example, O’Neil (1989) compared the functional 

responses of the spined soldier bug, Podisus maculiventris, measured under laboratory and 

field conditions.  In Petri dishes, P. maculiventris consumed an average of 4.4 Mexican bean 

beetles per day, and its ability to consume more prey was associated with limitations of 
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handling time.  In field experiments, P. maculiventris consumed only 0.42 bean beetles per 

day because its ability to locate prey was reduced by the structure of the plant canopy. 

In addition, it is unknown if different predators will be affected by morphological 

characteristics in the same manner.  As body size changes, the way in which an individual 

experiences its environment also changes (With, 1994).  The size-grain hypothesis states that 

as body size decreases, the environment experienced by terrestrial walking organisms 

becomes less planar and more rugose, that is, it has more contours or wrinkles (Kaspari and 

Weiser, 1999; Farji-Brener et al., 2004).  As well, there is an allometric relationship between 

leg and body length for walking insects (Teuscher et al., 2009).  Therefore, as body size 

increases, leg length increases in proportion.  A longer leg implies a longer stride length 

which may be directly correlated with movement (With, 1994).  A greater stride length also 

allows individuals to interact with the environment at a different scale of habitat structure, 

which in some cases may help lower complexity (With, 1994).  For example, a large insect 

travelling across a surface with dense trichomes will step over these obstacles because it has 

long enough legs to do so, while a smaller predator will have less mobility since it cannot 

step over these structures.   

While we can determine the scale-dependency of plant effects on insect predators by 

comparing the response of animals of different size to aspects of plant morphology, it is more 

difficult to isolate the effects of gross plant morphology. A comparison of different plant 

species confounds effects of gross morphology, surface textures and phytochemistry.  For 

example, Mahadian et al. (2007) measured the functional response of predatory shield bugs 

(Picromerus bidens) on tomato, sweet pepper and eggplant.  They observed that predators 
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were less efficient on tomatoes and concluded that plant morphology and chemistry had an 

influence on predator foraging behaviour. However, because these plants differed in more 

than one trait, it was not possible for them to draw specific conclusions about the effects of 

plant morphology. 

Plants that are the same species but which have different shapes may allow us to 

isolate the effect of gross morphology, if the different varieties are sufficiently similar.  Near-

isolines are plants of the same species that differ in only one trait (Bottrell et al., 1998).  

However, this approach has yielded contradictory results.  Using near-isolines of pea that 

differed only in gross morphology, Legrand and Barbosa (2003) found that Coccinella 

septempunctata was less successful at capturing prey on pea morphs that had more junctions, 

and a high leaf edge to leaf surface ratio.  In contrast, Kareiva and Sahakian (1990) found 

that Coccinella septempunctata and Hippodamia variegata were more effective at capturing 

prey on pea morphs which had more junctions and a high leaf edge to surface area ratio than 

leafy ones. 

A possible explanation for these differing findings is that in both studies, pea plant 

surface area was not controlled.  Differences in gross morphology could cause differences in 

the mean plant size.  In fact, Legrand and Barbosa (2003) report that plants with more edges 

also had larger surface area.  A plant with the larger surface area but the same number of 

aphids would have fewer aphids per unit area.  Since predator consumption increases with 

prey density below a saturation density associated with handling time, it is possible that a 

larger surface area would decrease predator consumption. 
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This study has three objectives.  I determined the effects of gross morphology on the 

foraging rates of the multicoloured Asian ladybeetle, Harmonia axyridis, and the green 

lacewing, Chrysoperla carnea, by comparing the number of prey consumed on simple Petri 

dish environments versus whole plants.  I hypothesized that the more heterogeneous plant 

structure would reduce consumption rates, even when the same surface area was available to 

search.  Second, I investigated whether more subtle differences in gross morphology, in 

particular Pisum sativum L. near-isolines with different shapes, might alter predation 

successes when surface area was controlled.  Finally, I compared the consumption rates of 

the two predators on these pea plants to determine if body size influences the effects of gross 

plant morphology.   

2.3 Materials and Methods 

2.3.1 Study System 

I used near-isoline morphs of the pea cultivar “Frogel” with reduced stipules as a host 

plant, (USDA-ARS Western Regional Plant Introduction Station, Pullman, WA).  Near-

isolines reduce the confounding effects that plant phytochemicals and nutrients may have on 

either aphids or predators (Legrand and Barbosa, 2000).  Furthermore, previous research 

indicated that these pea near-isolines did not affect aphid fecundity and reproduction, and 

that the differing leaf morphology did not influence the within-plant distribution of aphids 

(Legrand and Barbosa, 2000; Buchman and Cuddington, 2009).   

 The architecture of the near-isolines is caused by differences in 2 alleles, af (afila) 

and tl (acacia), at 2 loci (Wehner and Gritton, 1981).  The “normal” (AfAFTlTl) morph 
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consisted of several pairs of leaflets with an odd number of tendrils.  The “leaflet” morph 

(AfAftltl) had additional leaves in the place of tendrils making this morph dense with foliage.  

The tendril morph (afafTlTl) had only tendrils and no leaves.  Lastly, the combination of 

both af and tl alleles creates the “parsley” morph (afaftltl) which consists of highly branched 

petioles and tiny leaflets (Figure 2.1). 

To quantify the differences in architecture I measured the fractal dimension of each 

morph.  Fractal dimension describes the space-filling properties of an object and has 

commonly been used as a metric for describing plant morphologies (Morse et al., 1985; 

Gunnarsson, 1992; Gee and Warwich, 1994).  As fractal dimension increases, the space-

filling properties of the object increase.  Therefore, I expected a higher fractal dimension for 

plants with more leaf tissue and a low fractal dimension for those that had more branching 

and less tissue.   

 Peas were potted in 12cm deep x 10cm wide pots with Pro-Mix ‘BRK’ soil and 

watered daily.  Plants were kept in growth chambers (model GC-20; Bio Chambers, 

Winnipeg, MB) on 16L: 8D photoperiod with a 14 °C-18 °C temperature regime for 

approximately 30 days.  The light intensity of the growth chambers was approximately 450 

μmol m-2 s-1.  Maintaining constant conditions for growth helped to control the size of the 

peas so they had approximately equal surface areas.  Since the tendril morph is leafless and 

has a low surface area, two seeds were planted in each pot to ensure the surface area would 

be similar to the leafed morphs.  

Aphids were obtained from laboratory populations that were originally supplied by 

Carolina Biological Supply (Burlington, NC).  Populations were maintained on a mixture of 
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“Little Marvel” garden peas (Pisum sativum) and broad bean, (Vicia faba).  Adult 

multicoloured Asian ladybeetles (Harmonia axyridis) were reared on a diet of Ephestia 

kuehniella eggs, pea aphids (Acyrthosiphon pisum), organic apples and sugar water.  Larvae 

were fed Ephestia kuehniella eggs and pea aphids daily.  Aphids and ladybugs were housed 

in mesh enclosures (Bugdorm II; BioQuip Products, Rancho Dominguez, CA).  Green 

lacewing larvae (Chrysoperla carnea) were supplied by Plant Products (Brampton, ON).  

They were reared in individual Petri dishes, to avoid cannibalism, and fed Ephestia 

kuehniella eggs and pea aphids daily.  All insects were kept on a 16L: 8D photoperiod, 

between 18 and 24oC.  

2.3.2 Experiment 1: Effects of habitat structure on consumption rates 

Prey consumption by H. axyridis and C. carnea was measured in Petri dishes and on 

whole plants.  Petri dishes, 10 cm in diameter, were filled with semi-soft agar.  Leaf tissue 

from pea plants was cut and placed on the agar surface until the Petri dish was covered.  

Twenty-five pea aphid nymphs (Acyrthosiphon pisum) were added to the Petri dishes with a 

fine paintbrush.  Nymphs were placed in an aggregated distribution and allowed to settle for 

one hour.  Whole plants of approximately the same surface area were inoculated with 3 adult 

aphids, which were allowed to reproduce for 72 hours.  Afterwards, the 3 adults were 

removed and nymphs were counted to ensure only 25 individuals were present on each plant.  

Removing adults ensured that there would be no further aphid reproduction during the 

experimental period.  To measure the spatial distribution of aphids, photographs of aphid 

clusters were taken in a 2 x 2cm sampling area (Figure 2.2).  Using Photoshop, aphids in the 

sampling area were marked with a dot.  The x, y coordinates of each aphid were then 
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measured using the particle counter in ImageJ and a SAS macro created by Moser (1987) 

was used to calculate two-dimensional nearest neighbour distances which acted as a 

surrogate for three-dimensional distances on whole plants.  Petri dishes and whole plants 

were placed in behavioural enclosures consisting of a 10 cm pot with a Styrofoam insert, 

enclosed by a 20 x 30 cm acrylic cylinder with an Anti-virus mesh screenTM top (Figure 2.3).   

Predators were starved for 24 hours and then allowed to forage in Petri dishes and on 

whole plants for 48 hours (16L: 8D cycle).  Following the 48 hour foraging period, predators 

were removed and the remaining aphids were counted.  Each treatment was replicated 15 

times with a naïve predator.  Following each trial, Petri dishes and whole plants were 

scanned using a CanoScan 5600F photo scanner.  Using ImageJ, scans were converted into 

binary images and a standard box count was done using the FracLac_2.5 Release 1d plugin.  

The number of pixels in scanned images was used to calculate whole plant and Petri dish 

surface areas.   

2.3.3 Experiment 2: Effects of gross morphology on consumption rates 

To determine the effect of plant gross morphology on predator consumption rates, I 

measured the number of pea aphid nymphs consumed by H. axyridis and C. carnea on the 

four pea morphs (normal, leaflet, parsley, tendril) at 3 different approximate aphid densities.  

As previously described, adult aphids were allowed to reproduce on 30 day old pea plants 

reared in growth chamber conditions.  After 72 hours, the number of aphid nymphs was 

adjusted by addition or removal to be exactly 10, 25 or 50 animals in an aggregated pattern.  

Experiments were conducted in the same enclosures described in experiment 1 (Figure 2.3), 

and consumption rates were measured using the same protocol.  Exact aphid densities were 
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determined by measuring the plant surface area following the trail, and those plants with very 

large or small surface areas were not used.  Each treatment was replicated 15-20 times.  

2.4    Results 

2.4.1 Experiment 1: Effects of habitat structure on consumption rates 

Student’s t-tests (SAS Institute, 2010) were used to compare the surface areas of Petri 

dishes and whole plants, as well as, mean nearest neighbour distances on Petri dishes and 

whole plants.  All surface area and nearest neighbour data passed the Shapiro-Wilk test for 

normality and the Levene’s test for homogeneity of variances.  The surface areas of Petri 

dishes and whole plants did not differ for ladybug or lacewing experiments (Student’s t-test, t 

=0.42; 28 df; P=0.679 and t =1.10; 28 df; P=0.281), and mean nearest neighbour distance of 

aphids on Petri dishes and whole plants did not differ (Student’s t-test t=1.20; 20 df; P=0.244 

and t=0.56; 20 df; P=0.581).  Therefore, predators experienced the same prey density and 

aggregation in the two treatments.  

  Petri dish consumption data was non-normal according to the Shapiro-Wilk test; 

however, a data transformation was not appropriate because consumption was nearly 100% 

in many cases.  Petri dish and whole plant consumption data were compared using a Mann-

Whitney U test.  Consumption on Petri dishes and whole plants differed significantly for both 

ladybugs and lacewings (Mann-Whitney U, U=23; df=1; P<0.0001 and U=18; df=1; 

P<0.0001; Figure 2.4).  On Petri dishes, predators consumed 80-100% of all aphids present, 

while on whole plants they consumed approximately 30%.   
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2.4.2 Experiment 2: Effects of gross morphology on consumption rates 

A one-way ANOVA was used to compare surface areas and fractal dimensions of 

each of the four pea morphs to ensure that plants were the same size, but different in fractal 

dimension.  The surface areas of peas used for ladybug experiments did not differ 

significantly (one-way ANOVA F3,239 =0.13; P=0.943).  The average surface area of pea 

plants was about 188 cm2 (Table 2.1), giving aphid density treatments of 0.05, 0.13 and 0.27 

individuals/cm2.  In addition, the mean nearest neighbour distances of aphids did not differ 

on each pea morph (one-way ANOVA F3,43=1.66; P=0.190).  Therefore, ladybugs 

experienced the same prey density and aggregation across the 4 different pea morphologies. 

However, as expected, there was a significant difference in the fractal dimensions of each pea 

morph (one-way ANOVA, F3,28=175.05; P<0.0001; Table 2.1).  Tukey’s comparison of 

means indicated that the leaflet morphology had the highest fractal dimension, followed by 

normal, parsley and tendril, indicating that the tendril morphology had the most branching 

and linear form. 

Ladybug consumption data failed normality tests, and therefore was transformed 

using a square-root transformation, which is recommended for count data.  A two-way 

analysis of variance on square-root transformed ( 5.0+x ) data showed a significant effect 

of plant morphology on ladybug consumption (F3, 239=3.56; P=0.015).  Tukey’s comparison 

of means indicated that ladybugs consumed significantly more aphids on tendril plants 

compared to normal plants (Figure 2.5 a).  There was also a significant effect of aphid 

density on consumption rates (F2,239=71.62; P<0.0001), but no interaction between 

morphology and density (F6,239=0.85; P=0.535).  
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The surface areas of pea morphs used for lacewing predation experiments did not 

differ significantly (Table 2.1), however their variances did.  I used a Welch’s one-way 

ANOVA for each aphid number to test that surface areas were comparable (10 aphids: 

F=2.05, P=0.127; 25 aphids: F=0.83, P=0.487; 50 aphids: F=0.10, P=0.962).  In addition, the 

mean nearest neighbour distances of aphids did not differ on each pea morph (one-way 

ANOVA F3,39=1.56; P=0.172). The fractal dimensions of pea morphs was significantly 

different (one-way ANOVA, F3,30=73.49; P<0.0001; Table 2.1), with the lowest fractal 

dimension found for tendril morphs.  A two-way ANOVA on square-root transformed

5.0( +x ) data indicated that there was a significant effect of morphology on lacewing 

consumption rates (F3,179=12.14; P<0.0001).  Similarly to ladybug consumption data, 

Tukey’s comparison of means indicated that the highest average consumption was on the 

tendril morph.  As well, tendril and parsley had significantly different consumption rates than 

leaflet and normal (Figure 2.5 b).  There was also a significant effect of aphid density on 

consumption rates (F2,179=84.48; P<0.0001), but no interaction between morphology and 

density (F6,239=1.77; P=0.108).   

To determine if one predator was more efficient than the other I used a two-way 

ANOVA on predator type and consumption at one prey density (25 aphid nymphs).  I found 

no significant interaction between predator type and morphology (Two-way ANOVA, 

F3,119=0.61; P=0.592), indicating that the different sized predators had similar predation 

success on the differing plant morphology. 
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2.5 Discussion 

I found that the foraging success of Harmonia axyridis and Chrysoperla carnea is 

greatly affected by gross plant morphology.  Predator consumption rates were significantly 

higher on Petri dishes than on whole plants of the same surface area.  As well, on pea near-

isolines that did not differ significantly in surface area, both predators consumed significantly 

more aphids on tendril morphs than on leafier plants.   

My results contradict the hypothesis that on highly branched, discontinuous structures 

predator foraging efficiency decreases (Andow and Prokrym, 1990; Lukianchuk and Smith, 

1997; Cloyd and Sadof, 2000; Gingras and Boivin, 2002; Legrand and Barbosa, 2003; 

Gingras et al., 2008).  I agree that foraging behaviour is influenced by plant gross 

morphology; however, my results show that both H. axyridis and C. carnea were more 

successful at capturing prey on morphologies with more edges and branches.  More 

specifically, my results contradict those reported by Legrand and Barbosa (2003) who 

indicate that the seven-spot ladybug, Coccinella septempunctata, captured the fewest pea 

aphids on parsley pea morphs when they compared normal, leaflet and parsley morphologies 

of the same pea near-isolines.  I found that on the parsley morph the ladybug, H. axyridis, 

tended to consume more aphids than on leaflet and normal morphs. 

Kareiva and Sahakian (1990) report similar results to mine when they measured aphid 

suppression on tendril and normal pea varietals.  They observed that the ladybugs, Coccinella 

septempunctata and Hippodamia variegata, captured more pea aphids on tendril peas than 

normal ones.  They attributed this difference to ladybugs falling off the normal morph 

because they could not grip leaves as effectively as they could tendrils.  In contrast, Legrand 
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and Barbosa hypothesized that ladybugs were less successful on parsley morphs because 

these plants had many edges and junctions which caused predators to retrace their footsteps 

creating an inefficient search strategy.   

There are two possible explanations for these contradictory results.  First, Legrand 

and Barbosa used the seven-spot ladybug (C. septempunctata) while I used the multicoloured 

Asian ladybug (H. axyridis).  Therefore, I cannot rule out the possibility that these predators 

have different searching strategies or consumption capacities which could account for the 

differences observed.  However, I note that Kareiva and Sahakian (1990) also used the seven-

spot ladybug and found a different result.  Secondly, it is unclear if Legrand and Barbosa 

(2003) controlled the surface areas of peas in their study.  Their methods state that they grew 

pea plants until they had nine leaves (in the case of the parsley morph, I assume the term 

“leaf” refers to each cluster of tiny leaflets).  They reported that the mean leaf areas of 

normal, leaflet and parsley morphs were 137.8, 194.7 and 807.0 cm2.  Therefore, it would 

appear that the overall surface areas of the normal and leaflet morphs were significantly 

smaller than those of the parsley morph.  The large difference in surface area may have 

contributed to the lower consumption rates on parsley morphs since aphid density was lower 

on this morph.  Predator consumption decreases at low prey densities (Holling, 1959).  

Furthermore, I observed a negative correlation between consumption and surface area 

(Figure 2.6); a relationship which has been reported by other authors as well (Ables et al. 

1980; Casas 1991; Maini et al. 1991; Stamp and Bowers 1993; Wang et al. 1997; Cloyd and 

Sadof, 2000).  
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Prey inaccessibility also affects predator consumption rates (Mitchell et al., 1973; 

Grevstad and Klepetka, 1992; Kauffman and LaRoche, 1994; Clark and Messina, 1998a, 

1998b).  Morphs with large leaves (i.e. normal and leaflet) may provide partial refugia for 

prey.  Pea aphids most often congregate on the undersides of leaves to feed, and this area 

may be inaccessible for H. axyridis and C. carnea if they require leaf and tendril edges to 

manoeuvre on the plant, as suggested by Kareiva and Sahakian (1990).  Similarly, adaxial 

leaf surfaces of the crucifer, Brassica oleracea caulorapa, provided partial refugia for 

cabbage aphids because ladybugs could not cling to leaf undersides (Grevstad and Klepetka, 

1992).  I found that lacewings and ladybugs consumed significantly more aphids on tendril 

morphs than on leaflet and normal morphs.  It is likely that prey inaccessibility is one of the 

reasons for this difference.  Therefore, predators are more likely to control aphid populations 

on this type of morphology since manoeuvrability and prey access are increased.   

There was no clear indication that body size had a strong influence on the predators’ 

experiences with their spatial environment.  I expected that the larger bodied H. axyridis 

might be less affected by the branching structure of parsley and tendril morphs, since it has a 

larger stride length which might allow it to span branching structures when walking.  

However, there was no indication that this predator had an advantage over smaller C. carnea 

larvae.  In fact, I suspect that the larger body size of H. axyridis may have decreased its 

manoeuvrability and increased its propensity to fall off of plants.    

  Moreover, it is surprising that mean consumption rates for these two predators were 

so similar on whole plants.  Predators with smaller body sizes generally have smaller guts 

and therefore become satiated more quickly.  As well, Latham and Mills (2009) found that in 



 

 34 

field, cage and lab tests H. axyridis always consumed more than the lacewing, Chrysoperla 

nigricornis.  In Petri dishes, with 25 aphids, I observed that 75% of the time ladybugs 

consumed all aphids present, while lacewing larvae consumed all 25 aphids only about 35% 

of the time.  However, I observed that on whole plants lacewing larvae consumed 

comparable quantities of prey.  In fact, on tendril morphs at high prey density (50 aphids) 

lacewings consumed slightly more aphids on average than ladybugs (Figure 2.5).  

Differences in prey encounter rates may account for this difference.   The smaller body size 

and vermiform shape of lacewing larvae may enable them to disturb prey patches less 

frequently.  Aphids can detect plant vibrations caused by an approaching predator.  This 

triggers the defensive response to drop from plants (Losey and Denno, 1998).  Ladybugs or 

large-bodied predators are easier for prey to detect and avoid by dropping.  Francke et al. 

(2008) found that aphid dropping behaviour reduced consumption by H. axyridis by 40%.  

Small-bodied predators, such as, a lacewing larvae, can approach prey patches without 

disturbing them, and therefore, may encounter more prey than ladybugs.  This difference may 

be more pronounced if there was a larger difference between predator body sizes. 

 The results of this study clearly demonstrate that plant morphology has a strong 

influence on predator foraging success, and even subtle differences in plant gross 

morphology change predator consumption rates.  Highly branched morphologies have a 

significant effect on predator foraging success, and therefore it is possible that on a larger 

scale these effects would significantly affect prey populations.  In order to extrapolate these 

results to biological control recommendations, factors such as microclimate and community 

interactions would have to be observed more closely. 
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 It would also be valuable to identify the underlying search mechanisms that explain 

why predators are more successful on certain plant morphologies than others.  My 

observations lead me to believe that partial prey refugia and edge effects are the two main 

factors that dictate foraging success for these predators.  Therefore, I tested these hypotheses 

by observing predator movement on the four pea near-isolines to see if movement patterns 

correspond with consumption rates.  By understanding predator foraging behaviour in greater 

detail it will be possible to make more accurate predictions about how they will respond to 

prey populations in real-world ecosystems.      
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Figure 2.1 Binary images of leaves of pea near-isolines (Pisum sativum L.). From left to right: leaflet, 

normal, parsley, tendril. 
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Table 2.1  Mean surface areas and fractal dimensions of pea morphs.   

Predator Morphology   Surface Area (cm2)   Fractal Dimension

 
Ladybug Leaflet   184.6 �  48.9   1.63  0.01 

   Normal   181.0  37.6   1.54  0.02 

   Parsley   186.1  47.6    1.49  0.03 

   Tendril   184.7  52.7   1.40  0.02 

 

Lacewing  Leaflet   192.8  28.4   1.63 � 0.02 

   Normal   188.6  35.1   1.55  0.04 

   Parsley   195.3  34.1   1.44  0.04 

   Tendril   195.3 � 21.1   1.37  0.04 
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(a) 

(b) 

Figure 2.2 Photograph illustrating method used to calculate 2-dimensional nearest neighbour 

distances on (a) Petri dishes and (b) whole plants. 
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Figure 2.3 Behavioural enclosures used for Petri dish and whole plant foraging experiments. 
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Figure 2.4 Aphid consumption by (a) H. axyridis and (b) C. carnea when foraging in Petri dishes and 

on whole plants with 25 aphids for 48 hours.              
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Figure 2.5 Mean aphid consumption by (a) H. axyridis and (b) C. carnea at low (10), medium (25), 
and high (50) aphid densities.  Untransformed data ±1 S.E is shown in graphs.  Bars with the same 
pattern show morphologies that are not significantly different according to Tukey’s comparison of 
means.      
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Figure 2.6 Scatter plot of aphids consumed by H. axyridis versus plant surface area.  
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Chapter 3: Effects of plant gross morphology on predator 

searching behaviour 

3.1 Overview 

I previously concluded that the consumption rates of Harmonia axyridis Pallas and 

Chrysoperla carnea Stephens feeding on pea aphids (Acyrthosiphon pisum Harris) were 

altered by the different morphologies of a set of four peas (Pisum sativum L.) that differed 

only in two alleles at two loci.  The searching behaviour of these two predators was analyzed 

on the same pea near-isolines to determine what mechanisms were responsible for these 

results.  It has been previously suggested that the search paths of predatory insects may be 

altered by the branching of plant morphology.  Using time-lapse photography I recorded the 

search paths of these two predators on the four pea near-isolines in order to test this 

hypothesis.  I digitized two-dimensional representations of predator search paths and then 

measured total path length, percentage of plant covered, and path tortuosity.  The search 

paths of H. axyridis were significantly longer on more highly branched morphologies 

(P=0.002), while the search paths of C. carnea did not differ.  Previous observations of 

predator foraging behaviour led me to hypothesize that consumption rates were affected by 

predators falling off plants and by prey residing on the undersides of leaves where predators 

could not access them.  To test these two hypotheses I measured the drop rates of H. axyridis 

on leafed versus leafless morphs, and found that ladybugs fell off leafed morphs more 

frequently than leafless ones.  To test the effect of partial prey refugia on searching behaviour 

I used Petri dishes layered with leaf tissue.  I placed Petri dishes at one of three orientations 
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(right-side up, upside down, and sideways) and allowed ladybugs to forage for prey.  

Ladybugs consumed significantly fewer prey on plates that were sideways and upside down 

(P<0.0001) which suggests that they cannot grip surfaces that are not oriented upward.  

Therefore, it is unlikely they can capture prey located on the undersides of leaves.          

3.2 Introduction 

The branching architecture of an individual plant is often considered a classic 

example of a dendritic network (Thompson, 1917).  Dendritic networks are those that are 

made up of hierarchical branches, and habitats with this particular spatial arrangement have 

specific implications for the species that live within them.  Because dendritic habitats are 

made up of a series of branches, individuals foraging in this type of environment will have 

restricted movement (Grant et al., 2007).  Unless an individual’s body size and stride length 

allows it to step across branches it will be confined to following specific search paths which 

may or may not lead it to prey. 

There are several factors that affect prey encounter in habitats with branching 

structures.  Some of these factors include:  branch connectivity (Kareiva and Perry 1989; 

Randlkofer et al., 2010), attachment and manoeuvrability through branches (Kareiva and 

Sahakian, 1990), and prey inaccessibility due to partial refugia (Clark and Messina 1998a, 

1998b).  For example, Kareiva and Perry (1989) found that on bean plants with a large 

amount of leaf overlap, Hippodamia convergens had longer and straighter trajectories than 

on beans with less overlap, which they hypothesized would translate into more efficient 

searching.  Conversely, Randlkofer et al. (2010) observed that connectivity prevented the 
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parasitoid, Oomyzus galerucivorus, from reaching upper areas of vegetation because they 

engaged in backwards movement or used connection points as resting places.  This prevented 

them from continuing to search upward where most hosts were located. 

 Furthermore, the number of branches can significantly change a predator’s foraging 

rate (Andow and Prokrym, 1990; Lukianchuk and Smith, 1997; Cloyd and Sadof, 2002; 

Gingras and Boivin, 2002; Legrand and Barbosa, 2003; Gingras et al., 2008).  In general, 

these studies have concluded that an increasing degree of plant structural complexity leads to 

a decrease in foraging efficiency (Randlkofer et al., 2010).  For example, Gingras and Boivin 

(2002) found that on plants with complex architecture, parasitoids attacked fewer hosts than 

on those structures that were simple and linear.  On pea plants, Legrand and Barbosa (2003) 

found that ladybugs had decreased searching efficiency on highly branched plants because 

they retraced their steps and engaged in less “new area search”.  Conversely, Kareiva and 

Sahakian (1990) observed that ladybugs were more successful at capturing prey on branched, 

leafless peas than leafy ones because they could manoeuvre on branched morphologies 

without falling off of plants. 

 A predator’s ability to attach to plant structures and manoeuvre over heterogeneous 

surfaces will also influence its movement rates.  Leaves with waxes can cause predators to 

slip (Eigenbrode et al., 1996), while those with trichomes can be difficult to walk over with 

ease (Coll and Ridgway, 1995).  Plants that do not have adequate edges for insect tarsae to 

grip may cause them to fall (Kareiva and Sahakian, 1990) or it may prevent them from 

searching particular portions of plants, where prey may be located, because they do not have 

adequate foot holds. 
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 Plant structures that preclude predator search can act as partial refugia for prey.  The 

presence of partial refugia can greatly affect predator foraging success because certain 

patches of prey will not be accessible.  For example, Kauffman and LaRoche (1994) tested 

the ability of five aphidophagous coccinellids to exploit curled wheat leaves while foraging 

for Russian wheat aphids.  They found that predator foraging success was affected by curled 

leaves because several of the ladybug species could not enter leaf curls where many aphids 

were feeding.  This leaf structure served as partial refugia for prey, and only those predators 

that had body sizes smaller than the diameter of leaf curls could reach aphids feeding in these 

locations.   

My objective was to observe the searching behaviours of predators on peas that 

differed in morphology to see if search strategies differed and if any observed differences in 

predator behaviour corresponded to the different consumption rates reported in the previous 

chapter.  First, I measured the total path lengths, percentages of plants searched, and path 

tortuosity of Harmonia axyridis and Chrysoperla carnea on pea near-isolines that differed 

only in gross morphology to see if predator search paths differed on plants with different 

branching patterns.  Based on the higher consumption rates on branched morphologies I 

previously observed, I hypothesized that search paths would be longer on these morphs, and 

that predators would search these morphs more thoroughly than leafy morphologies. 

I also conducted two experiments to explore the mechanisms responsible for 

differences in consumption rates previously observed.  I measured H. axyridis drop rates on 

leafless versus leafed morphologies to determine if there was a difference in attachment and 

manoeuvrability on each morph.  I hypothesized that on leafless morphs, ladybugs would fall 
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off plants less frequently since they could grip tendrils more easily than leaves.  I also 

hypothesized that the requirement for predators to grip tendrils and the edges of leaves might 

produce partial refugia in the center of large leaves.  I tested this hypothesis by measuring 

predator consumption on Petri dishes with different spatial orientations (right-side up, upside 

down and sideways).  I predicted that ladybugs would be unsuccessful at capturing prey on 

Petri dishes that were oriented downwards since they may not be able to grip flat surface with 

no edges while upside-down.      

3.3 Materials and Methods 

3.3.1 Study System 

Near-isoline morphs of the pea cultivar “Frogel” with reduced stipules were used as a 

host plant, (USDA-ARS Western Regional Plant Introduction Station, Pullman, WA).  Using 

isolines reduces the likelihood that plants will affect predator behaviour because they differ 

in only one trait (Bottrell et al., 1998).  Previous research indicated that these particular pea 

isolines did not affect aphid fecundity and reproduction, and that the differing leaf 

morphology did not influence the within-plant distribution of aphids (Legrand and Barbosa, 

2000; Buchman and Cuddington, 2009).   

 The morphology of the near-isolines is caused by differences in 2 alleles, af (afila) 

and tl (acacia), at 2 loci (Wehner and Gritton, 1981).  The “normal” (AfAFTlTl) morph 

consisted of several pairs of leaflets with an odd number of tendrils.  The “leaflet” morph 

(AfAftltl) had additional leaves in the place of tendrils.  The combination of both af and tl 
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alleles creates the “parsley” morph (afaftltl) which consists of highly branched petioles and 

tiny leaflets.  The tendril morph (afafTlTl) had only tendrils and no leaves.   

To characterize the gross morphology of these four plant morphs I used fractal 

dimension, and I avoided the use of the term “complexity”, which has commonly been used 

in other studies. The term “complexity” is quite vague, and plant structures that some 

researchers have identified as “complex” may not be perceived that way by a foraging insect.  

Fractal dimension describes plant morphology based on its space-filling properties.  A low 

fractal dimension indicates a structure that is linear and branched.  Highly branched 

morphologies would correspond to those that other authors have labeled as “complex”.  As 

fractal dimension increases, plant structure becomes less linear and more space-filling.  Leafy 

morphologies may be considered less complex since there are fewer junctions and branches, 

therefore, predators may have fewer search paths to choose from.  However, leafy 

morphologies may not be simpler for predators to search because leaves may provide partial 

refugia for prey (Grevstad and Klepetka, 1992) or they may be too slippery for predators to 

walk across (Kareiva and Sahakian, 1990; Eigenbrode et al. 1996; Chang et al., 2006; Gentry 

and Barbosa, 2006). 

 Peas were potted in 12 cm deep x 10 cm wide pots with Pro-Mix ‘BRK’ soil and 

watered daily.  Plants were kept in growth chambers (model GC-20; Bio Chambers, 

Winnipeg, MB) on 16L: 8D photoperiod with a 14 °C-18 °C temperature regime for 

approximately 30 days.  The light intensity of the growth chambers was approximately 450 

μmol m-2 s-1.  Maintaining constant conditions helped control the size and surface area of 
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peas so they were similar.  Because tendril morphs are leafless, I planted two seeds per pot to 

ensure the surface areas of this morph would be similar to the leafed morphs.  

Aphids were obtained from laboratory populations that were originally supplied by 

Carolina Biological Supply (Burlington, NC).  Populations were maintained on a mixture of 

“Little Marvel” garden peas (Pisum sativum) and broad bean, (Vicia faba).  Adult 

multicoloured Asian lady beetles (Harmonia axyridis) were reared on a diet of Ephestia 

kuehniella eggs, pea aphids (Acyrthosiphon pisum), organic apples and sugar water.  Larvae 

were fed Ephestia kuehniella eggs and pea aphids daily.  Aphids and ladybugs were housed 

in mesh enclosures (Bugdorm II; BioQuip Products, Rancho Dominguez, CA).  Green 

lacewing larvae (Chrysoperla carnea) were supplied by Plant Products (Brampton, ON).  

They were reared in individual Petri dishes to avoid cannibalism, and fed Ephestia kuehniella 

eggs and pea aphids daily.  All insects were kept on a 16L:8D photoperiod, between 18 and 

24 oC.  

3.3.2 Experiment 1: Effects of gross morphology on predator movement 

The searching behaviour of H. axyridis and C. carnea was recorded on each of the 

four pea near-isolines.  Pea plants were removed from growth chambers after 30 days and 

inoculated with three adult pea aphids.  Aphids were allowed to reproduce for 72 hours, and 

then removed.  Aphid nymphs were counted and additions or removals were done until each 

plant had 25 nymphs in an aggregated distribution.  Using plants infested with aphids helped 

ensure predators would engage in natural searching behaviour rather than wandering off 

plants.  Predators were starved for 24 hours prior to experiments which increased their 

motivation to search for prey.  Plants were placed in enclosures consisting of 20 cm pots with 
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Styrofoam inserts containing 12 x 10 cm square pots embedded in the Styrofoam.  Pea plants 

were placed in the square pots and enclosed by a 20 x 30 cm acrylic cylinder with an Anti-

virus mesh screenTM top. One predator was placed in each enclosure and its movements were 

recorded for ten minutes. 

To record predator movements, digital cameras (Hp Photosmart 618) were clamped 

on retort stands and placed in front of behavioural enclosures (Figure 3.1).  Digital cameras 

were set to take time-lapse photographs every 15 seconds for 40 frames while predators 

foraged on plants.  If a predator wandered off the plant during the ten minute observation 

period, the trial was not used.   

 Photographs were uploaded to a computer and stacks of images were analyzed using 

the Manual Tracking plugin of ImageJ.  Using this plugin I recorded the x,y coordinates of 

each movement the predator made.  By tracing the predator’s two-dimensional trajectory I 

was also able to provide an index of the total path length.  I also measured an index of the 

total percentage of the plant searched by measuring the size, in pixels, of the plant and of the 

2D trajectory and dividing these two values. 

Finally, I measured path tortuosity by calculating the fractal dimension of 2D 

trajectories.  Several authors have shown that the fractal dimension of an animal’s path can 

be used as an index for the tortuosity of its movement (Katz and George, 1985; Dicke and 

Burrough, 1988; Casas and Aluja, 1997; Etzenhouser et al., 1998; Doerr and Doerr, 2004; 

Loureiro et al., 2007).  Measuring path tortuosity is one method for characterizing insect 

movements through dendritic habitats.  When the fractal dimension of an animal’s search 

path is close to 1, its movement is relatively linear.  As fractal dimension increases towards 
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2, the path becomes more convoluted.  A search path with a high fractal dimension indicates 

that the animal is back-tracking or constrained in a certain area. Therefore, search behaviour 

may be inefficient.  It may also indicate that the animal is engaged in an “area restricted 

search” meaning that the predator has located a patch of prey and is focusing on searching in 

an area of high prey density.  This searching technique is used by many entomophagous 

insects that search for prey that aggregate in patches (Krebs, 1973; Curio, 1976; Bond, 1980; 

Carter and Dixon, 1982). 

I tested each predator on each plant morph a total of 10 times and compared the total 

path length, percentage of plant covered and path tortuosity to determine if there was a 

difference in the efficiency with which each plant morph was searched for prey.  The effect 

of plant morphology on each metric was compared using a one-way analysis of variance. 

3.3.3 Experiment 2: Effects of gross morphology on H. axyridis drop rates 

I measured how frequently H. axyridis fell off of plants while foraging.  Methods for 

this experiment were taken from Kareiva and Sahakian (1990) so that the two studies could 

be compared.  I compared only leaflet and tendril morphs for this experiment because these 

two morphs have the greatest difference in edge to surface area ratios.  An individual 

predator was added to either a tendril or leaflet plant with a paintbrush and observed for two 

minutes.  If a predator fell off the plant during the two minute observation period it was 

counted as a “drop” and the trial was ended.  Each experiment was replicated 60 times with a 

naïve predator.  Drop rates were compared using a G-test of independence.   
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3.3.4 Experiment 3: Effects of partial refugia on H. axyridis foraging success 

To test the ability of H. axyridis to grip leaf undersides I measured aphid 

consumption on Petri dishes at different orientations.  Ten centimeter Petri dishes were filled 

with agar and whole pea leaves pressed into the agar surface (Figure 3.2).  Leaves were 

inoculated with 25 aphid nymphs in a uniform distribution.  Dishes were placed in 

behavioural enclosures described in experiment 1, except Styrofoam inserts had additional 

supports to hold Petri dishes in one of three orientations: right-side up, upside down, and 

sideways.  After being starved for 24 hours, one ladybug was added to each enclosure and 

allowed to forage for 24 hours.  At the end of the foraging period the remaining aphids were 

counted.  Each treatment was replicated 19 times.  A Kruskal-Wallis test was used to 

compare median consumption at each orientation. 

3.4 Results 

3.4.1 Experiment 1: Effects of gross morphology on predator movement 

 Two-dimensional path lengths and the percentages of plants covered by the search 

path violated homoscedasticity according to a Levene’s test, so a log transformation was 

applied.  Plant gross morphology had a significant effect on ladybug foraging behaviour.  

There was a significant difference in path lengths (one-way ANOVA, F3,39=6.24; P=0.002; 

Figure 3.3).  Total path lengths were significantly longer on parsley than on normal and 

leaflet morphs (Table 3.1).  In addition, the total percentage of plants covered by the search 

path differed between morphologies (one-way ANOVA, F3,39=6.60; P=0.001; Figure 3.4).  

Ladybugs searched a significantly larger total percentage of parsley and tendril morphs than 
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leaflet (Table 3.1).  I should note that the index of proportions of plants searched, given by 

the 2-dimensional approximation of the true path, are low and are of course underestimates 

of the true proportion of plants searched because measurements were taken from 2D images.  

Finally, there was no difference in ladybug path tortuosity on each of the morphs (one-way 

ANOVA, F3,39=0.71; P=0.552; Figure 3.5). 

 Lacewing searching behaviour was not affected by plant gross morphology.  There 

was no significant difference in total path lengths (F3,39=0.42; P=0.739; Figure 3.3) and 

percentages of  plants searched (F3,39=0.57; P=0.636; Figure 3.4) on each of the four morphs.  

Also, there was no difference in path tortuosity (F3,39=0.97; P=0.416; Figure 3.5).    

3.4.2 Experiment 2: Effects of gross morphology on H. axyridis drop rates 

The edge to surface area ratio of pea plants had an effect on the ability of ladybugs to 

attach to peas while walking on them.   H. axyridis fell off plant with fewer edges (leaflet 

morphs) more frequently than those with more edges (tendril morphs), (G-test of 

independence, G= 75.8; df =1; P<0.001). 

3.4.3 Experiment 3: Effects of partial refugia on H. axyridis foraging success 

There was a significant difference in ladybugs’ ability to capture prey on Petri dishes 

with different orientations.  Consumption data was non-normal according to a Shapiro-Wilk 

test.  Applying a data transformation did not improve normality so a non-parametric Kruskal-

Wallis test was used.  Ladybugs captured a significantly greater number of aphids on Petri 

dishes that faced upwards (Kruskal-Wallis, H=37; df=2; P<0.001; Figure 3.6).  On plates that 



 

 54 

were upside down and sideways, ladybugs captured, on average, 12% of aphids present while 

on plates that were right-side up they consumed about 80% of aphids.    

3.5 Discussion 

Plant gross morphology appears to have an effect on H. axyridis mobility but not C. 

carnea.  These results demonstrate that increasing plant branching (or “complexity” as it is 

called by many authors e.g. Andow and Prokrym, 1990) does not always decrease predator 

movement or foraging success.  While foraging on pea near-isolines, I observed that 

Harmonia axyridis searched branched morphologies (parsley and tendril) more thoroughly 

than compact leafy ones (leaflet and normal).  This result contradicts Legrand and Barbosa’s 

report (2003) about Coccinella septempunctata foraging on similar isogenic peas.  The 

authors found that ladybugs were inefficient when searching on parsley morphs because they 

would retrace their search paths, and spent more time searching tiny leaflets rather than 

advancing to new areas of the plant.  I found that Harmonia axyridis had the longest search 

paths on parsley morphs, and consequently they searched a greater total percentage of these 

plants.  The consumption rates reported in the previous chapter also reflect the movement 

behaviour of this predator.  I observed that ladybugs consumed significantly more aphids on 

parsley and tendril morphs than on leaflet and normal.   

There are several possible explanations for this difference in the observed behaviour 

of very similar predators.  First, I suspect that my results differ from those of Legrand and 

Barbosa (2003) because they observed the behaviour of predators foraging on pairs of leaves, 

while I observed predators moving on whole plants.  Legrand and Barbosa found that 7-spot 
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ladybugs spent more time searching clusters of leaflets on parsley morphs than whole leaves 

of the normal and leaflet morphs.  It should be noted that I observed that multicoloured Asian 

ladybugs can only search the perimeter of whole leaves and cannot thoroughly search the 

undersides of leaves where aphids are commonly found.  Therefore, these ladybugs walk 

around the edges of leaves quickly and then advance to a new area of the plant.  On the 

parsley morph, ladybugs may spend a greater amount of time searching individual leaflets 

before they advance to a new search area, but in doing so they are more likely to encounter 

aphids.   

The total path lengths and percentages of plants searched by lacewings did not differ 

on peas with different morphologies.  It appears that plant gross morphology does not affect 

their mobility.  However, lacewings consumed a greater number of aphids on tendril and 

parsley morphs than leaflet and normal (see chapter 2), despite the fact that they searched the 

same percentage of each morph.  Since path lengths did not differ, but consumption rates did, 

lacewings likely had a higher encounter rate with aphids on tendril and parsley morphs.  I 

speculate that on normal and leaflet morphs lacewings encountered fewer aphids because 

they were hidden on the undersides of leaves. 

The likelihood that a predator will fall off of plants also affects its foraging 

efficiency.  Predators that fall will spend much of their time finding their way back to the 

plant, and may only search the bottom portion of the plant thoroughly.  I measured the 

frequency at which ladybugs dropped off leaflet and tendril pea morphs.  Ladybugs fell off 

leaflet plants 33 times and off tendril plants 23 times out of 60 trials each.  This behavior 

likely contributes to their lower consumption rates on normal and leaflet morphs, as reported 



 

 56 

in chapter 2.  My result is similar to what Kareiva and Sahakian (1990) report about the 

ladybugs, Coccinella septempunctata and Hippodamia variegata foraging on leafless peas 

and normal peas.  They found that ladybugs fell off normal peas more frequently than on 

leafless peas and concluded that this was because predators could grip tendrils of leafless 

peas more effectively than whole leaves of normal peas.   

The presence of prey refugia plays a significant role in predator foraging success 

(Mitchell et al., 1973; Grevstad and Klepetka, 1992; Kauffman and LaRoche, 1994; Clark 

and Messina, 1998a, 1998b).  In this system, I hypothesized that there may be a partial 

refugia on the underside of large leaves, because of the need for larger bodied predators to 

grip leaf edges in order to remain on the plant.  I tested this hypothesis by measuring 

consumption rates of differently oriented Petri dishes layered with leaf tissue.  I found that on 

plates which were upside-down and sideways, ladybugs consumed very few aphids compared 

to plates oriented upwards.   

In other systems, prey inaccessibility directly influenced predator foraging success.  

Clark and Messina (1998a, 1998b) observed that lacewing larvae and ladybugs captured 

fewer aphids on grasses with rolled leaves where aphids could not be reached.  Similarly, 

ladybugs could not capture prey located on leaf undersides of crucifers (Grevstad and 

Klepetka, 1992).  Because ladybug tarsae cannot grip leaf surfaces, I observed that they kept 

at least two tarsae on leaf edges at all times to prevent them from falling.  Therefore, not all 

aphids on leaf undersides were inaccessible; only those that were in the centre of the leaves.  

Ladybugs could not grip Petri dishes that were upside-down, and as a result they consumed 

few aphids.  In fact, I suspect that they only consumed those that had fallen off the Petri 
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dishes.  Frazer and McGregor (1994) observed similar behaviour when they examined the 

foraging behaviour of seven ladybug species foraging on artificial leaf and stem models.  

They found that ladybugs searched on the upper edges of artificial leaf disks, but ladybugs 

seldom walked on the central or undersides of disks.    

In this particular system, the greater number of edges on parsley and tendril pea 

morphs appears to be the most influential morphological feature on predator search 

behaviour.  Having more edges reduced the likelihood that H. axyridis fell off plants.  It also 

reduced the amount of partial refugia that aphids could use to escape predation.  To confirm 

this result, the drop rates and effects of prey refugia on C. carnea must be measured since 

they were only measured for H. axyridis.   

When studying predator-prey interactions to better understand population dynamics 

for either ecological or practical purposes, the relationship between plants and predators has 

often been overlooked.  My results on predator searching behaviour, in combination with the 

results on consumption rates from the previous chapter, indicate that plant gross morphology 

has an effect on insect predator foraging efficiency.  This study emphasizes that plant-

predator interactions should not be neglected when evaluating predator-prey dynamics.  

Instead, this system should be examined as a tritrophic one since each trophic level has an 

effect on the others.   
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Figure 3.1 Experimental setup used to record predator movement. 
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Figure 3.2 Photograph of Petri dish filled with pea leaves used for experiments on partial refugia  
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Table 3.1 Summary of predator trajectories on the four pea near-isolines. 

 

    Mean path  Mean % of   

Predator Morph  length (cm)   plant searched  Path tortuosity 

 

H. axyridis        Leaflet     44.38           2.92             1.22 

Normal     45.93                       5.03                         1.26 

Parsley                 83.17                 10.49                         1.28 

Tendril     63.37           6.06                         1.24 

   

C. carnea Leaflet     40.79           4.20             1.27 

Normal     41.98                       4.88                         1.24 

Parsley                 48.76                 6.78                         1.18 

Tendril     49.90           5.21                         1.24 
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Figure 3.3 Untransformed mean total path length of H. axyridis and C.carnea (±1 S.E.) on four pea 
near-isolines.  H. axyridis had a significantly longer path length on the parsley morph.   
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 Figure 3.4 Untransformed mean percentage of plant searched by H. axyridis and C.carnea (±1 S.E.) 

on four pea near-isolines.  
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 Figure 3.5 Mean tortuosity of H. axyridis and C.carnea search paths (±1 S.E.) on four pea near-

isolines.   
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Figure 3.6 Mean consumption of aphids by H. axyridis (±1 S.E.) on Petri dishes with different 

orientations.  Aphid capture was significantly higher (P<0.0001) on Petri dishes that faced upwards.   

 

 
 
 
 
 
 



 

 65 

Bibliography 

Ables, J. R., D. W. McCommas, S. L. Jones, and R. K. Morrison. 1980. Effect of cotton plant 
size, host egg location, and location of parasite release on parasitism by Trichogramma 
pretiosum. Southwestern Entomololgist 5:261-264. 

 
Andow, D.A., and D.R. Prokrym. 1990. Plant structural complexity and host-finding by a 

parasitoid. Oecologia 82:162-165. 
 
Bahlai, C.A., J.A. Welsman, E.C. Macleod, A.W. Schaafsma, R.H. Hallett, and M.K. Sears. 

2008. Roles of visual and olfactory cues from agricultural hedgerows in the orientation 
behaviour of multicoloured Asian lady beetle (Coleoptera: Coccinellidae) Environmental 
Entomology 37:973-979. 

 
Ball, J. C., and D.L. Dahlsten.1973.  Hymenopterous parasites of Ips paraconfusus 

(Coleoptera:  Scolytidae) larvae and their contribution to mortality. I. Influence of host 
tree and tree diameter on parasitization.  Canadian Entomologist 105:1453-1464. 

Bell, W.J. 1990. Searching behavior patterns in insects. Annual Review Entomology 35:447-
467. 

Bond, A.B. 1980. Optimal foraging in a uniform habitat: the search mechanism of the green 
lacewing. Animal Behaviour 28:10-19. 

Bottrell, D.G., Barbosa, P., and F. Gould. 1998. Manipulating natural enemies by plant 
variety selection and modification: A realistic strategy? Annual Review Entomology 
43:347-367. 

Buchman N., and K. Cuddington. 2009. Influences of pea morphology and interacting factors 
on pea aphid (Homoptera: Aphididae) reproduction. Environmental Entomology 38:962-
970. 

Cabral, S., A.O. Soares, and P. Garcia. 2009. Predation by Coccinella undecimpunctata L. 
(Coleoptera: Coccinellidae) on Myzus persicae Sulzer (Homoptera: Aphididae): effect of 
prey density. Biological Control 50:25-29. 

Carter, M.C., and A.F.G. Dixon. 1982. Habitat quality and the foraging behaviour of 
coccinellid larvae (Coccinella septempunctata). Journal of Animal Ecology 51:865-878. 

Casas, J. 1991. Density dependent parasitism and plant architecture. Redia 74:217-222. 

Casas J. and M. Aluja. 1996. The geometry of search movements of insects in plant canopies. 
Behavioural Ecology 8:37-45. 



 

 66 

Chang, G.C., Neufeld, J., Eigenbrode, S.D., and G.C. Chang. 2006. Leaf surface wax and 
plant morphology of peas influence insect density. Entomologia Experimentalis et 
Applicata 119:197-205. 

Clark, T.L., and F.J. Messina. 1998a. Plant architecture and the foraging success of ladybird 
beetles attacking the Russian wheat aphid. Entomologia Experimentalis et Applicata 
86:153-161. 

Clark, T.L., and F.J. Messina. 1998b. Foraging behavior of lacewing larvae (Neuroptera: 
Chrysopidae) on plants with divergent architectures. Journal of Insect Behavior 11:303-
317. 

Cloyd, R.A., and C.S. Sadof. 2000. Effects of plant architecture on the attack rate of 
Leptomastix dactylopii (Hymenoptera: Encyrtidae), a parasitoid of the Citrus Mealybug 
(Homoptera: Pseudococcidae). Environmental Entomology 29:535-541. 

Coll, M., and R.L. Ridgway. 1995. Functional and numerical responses of Orius insidiosus 
(Heteroptera: Anthocoridae) to its prey in different vegetable crops. Annals of the 
Entomological Society of America 88:732-738. 

Curio, E. 1976. The ethology of predation. Springer-Verlag, Berlin, Germany. 

De Clercq, P., Mogaghegh, J., and L. Tirry. 2000. Effect of host plant on the functional 
response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological 
Control 18:65-70. 

Dicke, M. and P.A. Burrough. 1988. Using fractal dimensions for characterizing tortuosity of 
animal trails. Physiological Entomology 13:393-398. 

Dixon AFG. 2000. Insect Predator-Prey Dynamics: Ladybird beetles and Biological Control. 
Cambridge University Press. Cambridge, United Kingdom. 

Doerr V.A.J., and E.D. Doerr. 2004. Fractal analysis can explain individual variation in 
dispersal search paths. Ecology 85:1428-1438. 

Eigenbrode, S.D., Castagnola, T., Roux, M.B., and L. Steljes. 1996. Mobility of three 
generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a 
wax bloom. Entomologia Experimentalis et Applicata 81:335-343. 

Eigenbrode S.D., Kabalo N.N., and C.E. Rutledge. 2000. Potential of reduced-wax bloom 
oilseed Brassica for insect pest resistance. Journal of Agricultural Entomology 17:53-63. 

Ettifouri, M., and A. Ferran. 1993. Influence of larval rearing diet on the intensive searching 
behaviour of Harmonia axyridis [Coccinellidae] larvae. Entomophaga 38:51-59. 



 

 67 

Etzenhouser, M.J., M. Keith Owens, D.E. Spalinger, and S. Blake Murden. 1998. Foraging 
behaviour of browsing ruminants in a heterogeneous landscape. Landscape Ecology 
13:55-64. 

Farji-Brener, A.G., G. Barrantes, and A. Ruggeiro. 2004. Environmental rugosity, body size 
and access to food: a test of the size-grain hypothesis in tropical litter ants. Oikos 
104:165-171. 

Ferran, A., and A.F.G. Dixon. 1993. Foraging behaviour of ladybird larvae (Coleoptera: 
Coccinellidae). European Journal of Entomology 90:383-402. 

Francke, D.L., J.P. Harmon, C.T. Harvey, and A.R. Ives. 2008. Pea aphid dropping behavior 
diminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis et 
Applicata 127:118-124. 

Frazer, B. D., and R. R. McGregor. 1994. Searching behaviour of adult female coccinellidae 
(Coleoptera) on stem and leaf models. Canadian Entomologist 126:389–399. 

Gee, J.M., and R.M. Warwich 1994. Metazoan community structure in relation to the fractal 
dimension of marine macroalgae. Marine Ecology Progress Series 103:141-150. 

Gentry, G.L., and P. Barbosa. 2006. Effects of leaf epicuticular wax on the movement, 
foraging behavior, and attack efficacy of Diaeretiella rapae. Entomologia Experimentalis 
et Applicata 121:115–122. 

Gingras, D., and G. Boivin. 2002. Effect of plant structure, host density and foraging 
duration on host finding by Trichogramma evanescens (Hymenoptera: 
Trichogrammatidae). Environmental Entomology 31:1153-1157. 

Gingras, D., Dutilleul, P., and G. Boivin. 2008. Effect of plant structure on searching strategy 
and searching efficiency of Trichogramma turkestanica. Journal of Insect Science 8:1-9.  

Gorb, S., Gorb, E., and V. Kastner. 2001. Scale effects of the attachment pads and friction 
forces in syrphid flies (Diptera, Syrphidae). Journal of Experimental Biology 204:1421-
1431. 

Gorb, S.N., Beutel, R.G., Gorb, E.V., Jiao, Y., Kastner, V., Niederegger, S., Popov, V.L., 
Scherge, M., Schwarz, U., and W. Votsch. 2001. Structural Design and Biomechanics of 
Friction-Based Releasable Attachment Devices in Insects. Integrative and Comparative 
Biology 42:1127-1139.  

Grant, J. F., and M. Shepard. 1984. Techniques for evaluating predators for control of insect 
pests. Journal of Agricultural Entomology 2:99-116. 



 

 68 

Grant, E.H.C., W.H. Lowe, and W.F. Fagan. 2007. Living in the branches: population 
dynamics and ecological processes in dendritic networks. Ecology Letters 10:165-175. 

Grevstad, F.S., and B.W. Klepetka. 1992. The influence of plant architecture on the foraging 
efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia 92:399-404. 

Grez, A.A., and P. Villagran. 2000. Effects of structural heterogeneity of a laboratory arena 
on the movement patterns of adult Eriopis connexa and Hippodamia variegate 
(Coleoptera: Coccinellidae). European Journal of Entomology 97:563-566. 

Gunnarsson, B. 1992. Fractal dimension of plants and body size distribution in spider. 
Functional Ecology 6:636-631. 

Hoddle, M.S. 2003. The effect of prey species and environmental complexity on the 
functional response of Franklinothrips orizabensis: a test of the fractal foraging model. 
Ecological Entomology 28:309-318. 

Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. The 
Canadian Entomologist 91:385-398. 

Holling, C.S. 1961. Principles of insect predation. Annual Review of Entomology 6:163-182. 

Holling, C.S. 1966. The functional response of invertebrate predators to prey density. 
Memoirs of the Entomological Society of Canada 48:5-86. 

Kaiser, H. 1983. Small scale spatial heterogeneity influences predation success in an 
unexpected way: model experiments on the functional response of predatory mites 
(Acarina). Oecologia 56:249-256. 

Kareiva, P., and R. Perry. 1989. Leaf overlap and the ability of ladybird beetles to search 
among plants. Ecological Entomology 14:127-129. 

Kareiva, P. and R. Sahakian. 1990. Tritrophic effects of a simple architectural mutation in 
pea-plants. Nature 345:433-434. 

Kaspari, M., and M.D. Weiser. 1999. The size-grain hypothesis and interspecific scaling in 
ants. Functional Ecology 13:530-538.  

Katz, M.J. and E.B. George. 1985. Fractals and the analysis of growth paths. Bulletin of 
Mathematical Biology 2:273-286. 

Kauffman, W.C., and S. L. LaRoche. 1994. Searchingactivities by coccinellids on rolled 
wheat leaves infested by the Russian wheat aphid. Biological Control 4:290-297. 



 

 69 

Kiritani, K., and J.P. Dempster.  1973. Different approaches to the quantitative evaluation of 
natural enemies. Journal of Applied Ecology 10:323-330. 

Krebs, J.R. 1973. Behavioral  aspects of predation. Pages 73-111 in P.P.G. Bateson and P.H. 
Klopfer, editors, Perspectives in Ethology. Plenum Press, New York, New York, USA. 

Koch, R.L., 2003. The multicolored Asian lady beetle, Harmonia axyridis: A review of its 
biology, uses in biological control, and non-target impacts. Journal of Insect Science 
32:1-15. 

Latham, D.R., and N.J. Mills. 2009. Quantifying insect predation: a comparison of three 
methods for estimating daily per capita consumption of two aphidophagous predators. 
Environmental Entomology 38:1117-1125. 

Lee J.H., and T.J. Kang. 2004. Functional response of Harmonia axyridis (Pallas) 
(Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: Aphididae) in the 
Laboratory. Biological Control 31:306-310. 

Legrand., A and Barbosa P. 2000. Pea aphid (Homoptera: Aphididae) fecundity, rate of 
increase, and within-plant distribution unaffected by plant morphology. Environmental 
Entomology 29:987-993. 

Legrand, A., and P. Barbosa. 2003. Plant morphological complexity impacts foraging 
efficiency of adult Coccinella septempunctata L. (Coleoptera: Coccinellidae). 
Environmental Entomology 32:1219-1226. 

Levin, D.A. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 
48:3-15. 

Losey, J.E., and R.F. Denno. 1998. The escape response of pea aphids to foliar-foraging 
predators: factors affecting dropping behaviour. Ecological Entomology 23:53-61. 

Loureiro, F., L.M. Rosalino, D.W. Macdonald, and M. Santos-Reis. 2007. Path tortuosity of 
Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecological 
Research 22:837-844. 

Lucas, E., Labreque, C., and D. Coderre. 2004. Delphastus catalinae and Coleomegilla 
maculata lengi (Coleoptera: Coccinellidae) as biological control agents of the 
greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae).  Pest 
Management Science 60:1073-1078. 

Luck, R.F., B.M. Shepard, and P.E. Kenmore. 1988. Experimental methods for evaluating 
arthropod natural enemies. Annual Review of Entomology 33:367-391. 



 

 70 

Lukianchuk, J.L., and S.M. Smith. 1997. Influence of plant structural complexity on the 
foraging success of Trichogramma minutum: a comparison of search on artificial and 
foliage models. Entomologia Experimentalis et Applicata 84:221-228.  

Mahdian, K., Tirry, L., and P. DeClercq. 2007. Functional response of Picromerus bidens: 
effects of host plant. Journal of Applied Entomology 131:160-164.  

Maini, S., G. Burgio, and M. Carrieri. 1991. Trichogramma maidis host-searching in corn vs. 
pepper. Fourth European Workshop on Insect Parasitoids, Redia 74:121-127. 

Marquis, R.J., and C. Whelan. 1996. Plant morphology and recruitment of the third trophic 
level: subtle and little-recognized defenses? Oikos 75:330-334. 

Mitchell, H.C., Cross, W.H., McGovern, W.L., and E.M. Dawson. 1973. Behavior of the boll 
weevil on frego bract cotton.  Journal of Economic Entomology 66:677-680. 

Morse, D.R., J.H. Lawton, and M.M. Dodson. 1985. Fractal dimension of vegetation and the 
distribution of arthropod body lengths. Nature 314:731-733. 

Moser, E.B. 1987. The analysis of mapped spatial point patterns. Pages 1141-1145 in 
Proceedings of the SAS Users Group International Conference, Dallas, Texas, USA, 
SAS Institute, Inc. 

Nakamuta, K. 1985. Mechanisms of the switchover from extensive to area-concentrated 
search behaviour of the ladybird beetle, Coccinella spetempunctata bruckii. Journal of 
Insect Physiology 31:849-856.  

Norlund, D.D., and R.K. Morrison. 1990. Handling time, prey preference, and functional 
response of Chrysoperla rufilabris in the laboratory. Entomologia Experimentalis er 
Applicata 57:237-242. 

Oaten, A., and W.W. Murdoch. 1975. Functional response and stability in predator-prey 
systems. The American Naturalist 109:289-298. 

Obata, S. 1986. Mechanisms of prey finding in the aphidophagous ladybird beetle, Harmonia 
axyridis [Coleoptera: Coccinellidae]. Entomophaga 31:303-311. 

Obrycki, J.J., and M.J. Tauber. 1984. Natural enemy activity on glandular pubescent potato 
plants in the greenhouse: an unreliable predictor of effects in the field. Environmental 
Entomology 13:679–83. 

Oliveira, H., A. Janssen, A. Pallini, M. Venzon, M. Fadini, and V. Duarte. 2007. A 
phytoseiid predator from the tropics as potential biological control agent for the spider 
mite Tetranychus urticae Koch (Acari: Tetranychidae). Biological Control 42:105-109. 



 

 71 

O’Neil, R.J. 1989. Comparison of laboratory and field measurements of the functional 
response of Podisus maculiventris (Heteroptera:  Pentatomidae). Journal of the Kansas 
Entomological Society 62:148-155.  

Price, P.W., C.E. Bouton, P. Gross, B.A. McPheron, J.M. Thompson, and A.E. Weis. 1980. 
Interactions among three trophic levels: influence of plants on interactions between 
insect herbivore and natural enemies. Annual Review of Ecology and Systematics 
11:41-65. 

Provost, C., E. Lucas, D. Coderre, and G. Chouinard. 2006. Prey selection by the lady beetle 
Harmonia axyridis: the influence of prey mobility and prey species. Journal of Insect 
Behavior 19:265-277.  

Randlkofer, B., E. Obermaier, J. Casas, and T. Meiners. Connectivity counts: disentangling 
effects of vegetation structure elements on the searching movement of a parasitoid. 
Ecological Entomology 35:446-455. 

Romero G.Q., and W.W. Benson. 2005. Biotic interactions of mites, plants and leaf domatia. 
Current Opinion in Plant Biology 8:436-440. 

Rutledge, C.E., A.P. Robinson, and S.D. Eigenbrode. 2003. Effects of a simple plant 
morphological mutation on the arthropod community and the impacts of predators on a 
principal insect herbivore. Oecologia 135:39-50. 

SAS Institute. 2010 SAS/STAT software: changes and enhancements through release 9.2. 
SAS Institute, Cary, N.C. 

Solomon, M.E. 1949. The natural control of animal populations. The Journal of Animal 
Ecology 18:1-35.  

Stamp, N.E., and M.D. Bowers. 1993. Presence of predatory wasps and stinkbugs alters 
foraging behavior of and non-cryptic caterpillars on plantain (Plantago lanceolata). 
Oecologia 95:376-384. 

Stavrinides, M.C., and D.J. Skirvin. 2003. The effect of chrysanthemum leaf trichome 
density and prey spatial distribution on predation of Tetranychus urticae (Acari: 
Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bulletin of 
Entomological Research 93:343-350. 

Styrsky, J.D., Kaplan, I., and M.D. Eubanks. 2006. Plant trichomes indirectly enhance 
tritrophic interactions involving a generalist predator, the red imported fire ant. 
Biological Control 36:375-384. 



 

 72 

Teuscher, M., Brandle, M., Traxel, V., and R. Branbl. 2009. Allometry between leg and body 
length of insects: lack of support for the size-grain hypothesis. Ecological Entomology 
34: 718-724.   

Thompson, D.W. 1917. On Growth and Form. Cambridge University Press, Cambridge, 
United Kingdom. 

Treacy, M.F., Zummo, G.R., and J.H. Benedict. 1985. Interactions of host-plant resistance in 
cotton with predators and parasites. Agriculture, Ecosystems and Environment 13:151-
157. 

Vohland K. 1996. The influence of plant structure on searching behaviour in the ladybird, 
Scymnus nigrinus (Coleoptera: Coccinellidae). European Journal of Entomology 
93:151-160. 

Walton, T.J. 1990. Waxes, cutin and suberin. Pages 105-158 in P. M. Dey and J.B. Harborne, 
editors, Methods in plant biochemistry. Academic Press Inc., San Diego, California. 

 
Wang, B., D.N. Ferro, and D.W. Hosmer. 1997. Importance of plant size, distribution of egg 

masses, and weather conditions on egg parasitism of the European corn borer, 
Ostrinia nubilalis by Trichogramma ostriniae in sweet corn. Entomologia 
Experimentalis et Applicata 83:337-345. 

 
Wehner, T.C., and E.T.Gritton. 1981. Horticultural evaluation of eight foliage types of peas 

near-isogenic for the genes af, tl and st. Journal of the American Society for 
Horticultural Science 106:272-278. 

 
Weins, J.A., R.L. Schooley, and D. Weeks Jr. 1997. Patchy landscapes and animal 

movements: do beetles percolate? Oikos 78:257-264.  
 
Weis, A.E., and A. Kapelinski. 1994. Variable selection on Eurosta’s gall size. II. A path 

analysis of the ecological factors behind selection. Evolution 48:734-745.  
 
White, C., and D. Eigenbrode. 2000. Effects of surface wax variation in Pisum sativum on 

herbivorous and entomophagous insects in the field. Environmental Entomology 29: 
773-780. 

 
With, K.A. 1994. Ontogenetic shifts in how grasshoppers interact with landscape structure: 

an analysis of movement patterns. Functional Ecology 8:477-485. 

Yang, L.H. 2000. Effects of body size and plant structure on the movement ability of a 
predaceous stinkbug, Podisus maculiventris (Heteroptera: Pentatomidae). Oecologia 
125:85-90. 


