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Abstract 
 

 

Over the last fifty years financial markets have seen an enormous expansion and development both in size 

and variety. An industry that was once small and secluded has transformed into an essential part of 

today’s economy. Such changes should in part be attributed to substantial advances in computer 

technology. The latest allowed for a transition from face-to-face trading on organized exchanges to a 

distributed system of electronic markets with new mechanisms serving the purposes of efficiency, 

transparency and liquidity. In majority of cases this new trading system is driven by a double auction 

market mechanism, in which market participants submit buy and sell orders, aiming to strike a balance 

between certainty of execution and attractiveness of trade price. Generally, information about outstanding 

buy and sell orders is made available to market participants in the form of a limit order book. It has been 

suggested by multiple prior research that limit order books contain information that could be used to 

derive market sentiment and predict future price movement. 

In the current study we have presented ideas behind double auction market mechanism and have 

attempted to model run and reversal market regimes using a simple and intuitive Hierarchical Hidden 

Markov Model. We have proposed a statistical measure of the limit order book imbalance and have used 

it to build observation (feature) vector for our model. We have built Limit Order Book analyzer – the 

software tool that has become essential for data cleaning and validation, as well as extraction of feature 

vector components from the data. We have used the model on high frequency tick-by-tick trade and limit 

order book data from the Toronto Stock Exchange. We have performed the analysis of computational 

results; for this purpose we have used a sample of annualized returns of stocks which comprised the 

TSX60 index at the time of data collection; we have performed the comparative analysis of our results 

with a simple daily buy & hold trading strategy as well as results of the trade price and volume model 

presented in the prior research. 
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Introduction 
 

 

 

One question that every investor asks before committing capital to an investment opportunity is about its 

expected return. In most cases the answer depends on the nature of the undertaking, and in particular on 

the level of risk involved. In general, investors can expect to be compensated more when they run higher 

risks of not seeing back the originally invested money.  This principle seems to be intuitively plausible, 

however the question of whether the rule always holds true, or if there exist investment opportunities with 

similar risk profile, but different levels of return, still remains to be answered. If such opportunities 

existed simultaneously and information about their existence was readily available, a typical investor 

would choose the one with a higher level of return
1
. Furthermore, a combination of such opportunities 

could yield risk-free return. 

 Hence the most natural answer is that such opportunities do not exist in practice. Indeed, if they 

existed, every investor would be interested in higher return opportunity, and demand for it would greatly 

outweigh supply, which in turn would bring the level of return down, in line with other opportunities. 

This would hold especially true in transparent markets where all investors are well-informed about 

existing opportunities, and asset prices consistently reflect the level of risk associated with those assets. In 

such markets any new information would disseminate among market participants in an efficient manner 

and the prices would adjust very quickly, therefore leaving no space for the systematic risk-free profiting. 

                                                           
1
 Similarly if two opportunities with the same level of expected return by different risk profiles existed, a typical 

investor would be inclined to choose the one with the lower risk. 
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In the context of financial markets, this idea was put into the basis of the Random Walk 

Hypothesis, popularized by Samuelson [32], and later on further developed and formalized into the 

Efficient Market Hypothesis (EMH) by Fama [11]. The EMH suggests that based on the level of 

informational awareness any financial market can be classified as efficient in a weak, semi-strong, or 

strong form. In a market with the weak form of efficiency, future prices cannot be predicted from 

historical prices, therefore rendering technical analysis useless; there are no patterns in historical time 

series that could provide any clues into the future market prices; in the absence of changes in fundamental 

information, price movements are random, and therefore an investor shouldn’t expect to be able to make 

risk-adjusted returns higher than those offered by the general market in a consistent manner. The semi-

strong form further denies fundamental analysis of any predictive power due to the fact that any new 

information spreads out in the market rapidly and therefore trading on such information cannot bring any 

excess returns. The strong form of hypothesis extends information awareness beyond publicly available 

information; public availability of private (insider) information ensure that participants in the market with 

the strong form of efficiency cannot consistently earn excess returns. 

Theory behind EMH has seen some extensive support in the empirical evidence and it has been 

well accepted by many practitioners, including some heavy-weight market players like mutual fund 

managers. Such managers run beta programs and, depending on fund’s prospectus, get exposure to either 

a specific industry or market as a whole by investing in industry- or market-wide indices, respectively. 

They would not employ any winner-picking strategies based on fundamental or technical analysis, but 

would rather expect to make returns consistent with the level of risk taken. If investors require higher 

returns, those can be obtained by borrowing additional funds on margin and leveraging the initial 

investment. However, in this case the risk increases along with the expected return, therefore keeping 

risk-return profile unchanged. 

Despite popularity of EMH during 1970s, some evidence was found against it. In particular, stock 

markets appeared to have tendency to trend over periods of time [31]. Mean-reverting properties of price 

processes were revealed in analysis of some correlated time series. Quite opposite to the EMH, such 

market inefficiencies persisted for prolonged periods of time, which yielded excess returns for some 

market participants. Starting in 1980s, a whole new type of market participants, the hedge funds, 

emerged. Unlike mutual funds, hedge funds have concentrated their efforts on alpha programs, looking 

for different ways to exploit market inefficiencies in a systematic way. By the very nature of their 

activities, hedge fund managers rejected EMH, and concentrated on winner-picking, trend following, 

mean-reverting and many other strategies with the sole purpose of earning excess returns from investment 

activities. Initially, these efforts have seen a fair amount of skepticism: a number of hedge funds have 



3 
 

failed, and success of others has been attributed to pure luck and co-incidence. However, as time passed, 

the hedge fund industry has found its own leaders. The two most prominent ones are the Quantum 

Endowment Fund established in 1972 by a renowned economist George Soros, and the Renaissance 

Technology Medallion Fund, which was started back in 1982 by a brilliant mathematician Jim Simons. 

Both funds had very successful runs: over the course of their existence they have earned their clients $32 

billion and $28 billion, respectively, net of fund management fees
2
. More importantly, they had 

spectacular consistency in delivering excess returns to their investors. According to Ziemba et al [43], 

over the period of 12 years, from January 1993 to January 2005, the RenTec’s Medallion fund has earned 

its investors on average 39.88% annually, without a single year with negative returns - the lowest return 

was in 1997, when the fund earned 21.21%; other sources quoted an average annual return of 35% since 

1989. According to Bloomberg data, over the same period of time market-wide S&P500 Total Return 

Index has yielded an average annual return of 12.6% with three consecutive down-years: -9.10% in 2000, 

-11.89% in 2001, and -22.10% in 2002 (see Table 1); to put this in dollar values, an investment into a 

broad market index would have turned $1 in 1993 into $3.48 by the beginning of 2005; the Medallion 

Fund has transformed $1 of investors’ money into $49.62 over the same period of time. 

    S&P500 Total Return Index   HFRIFWI Weighted Composite Index  

Date   Last Price  Return Value $1   Last Price Return Value of $1 

12/31/1992   516.178   $1.00   1695.45   $1.00 

12/31/1993   568.202 10.08% $1.10   2218.99 30.88% $1.31 

12/30/1994   575.705 1.32% $1.12   2310.03 4.10% $1.36 

12/29/1995   792.042 37.58% $1.53   2806.78 21.50% $1.66 

12/31/1996   973.897 22.96% $1.89   3399.03 21.10% $2.00 

12/31/1997   1298.821 33.36% $2.52   3969.76 16.79% $2.34 

12/31/1998   1670.006 28.58% $3.24   4073.69 2.62% $2.40 

12/31/1999   2021.401 21.04% $3.92   5348.49 31.29% $3.15 

12/29/2000   1837.365 -9.10% $3.56   5615.09 4.98% $3.31 

12/31/2001   1618.979 -11.89% $3.14   5874.68 4.62% $3.46 

12/31/2002   1261.176 -22.10% $2.44   5789.45 -1.45% $3.41 

12/31/2003   1622.939 28.68% $3.14   6921.2 19.55% $4.08 

12/31/2004   1799.548 10.88% $3.49   7546.42 9.03% $4.45 
 

Table 1: The annualized return of the S&P 500 Total Return Index and  

HFRIFWI Hedge Fund Weighted Composite Index, and the value of $1 over the investment horizon. 

                                                           
2
 According to independent study of LCH Investments NV as presented by John Paulson of Paulson & Co. 
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The returns of the hedge fund industry as a whole over the same period of time are less 

impressive than those of the Medallion Fund. However, as it can be seen from Table 1, the annualized 

compounded returns are still higher than those of the S&P500 Total Return Index, and the investment 

risk, as measured by the standard deviation of returns and maximum draw downs, is considerably smaller. 

It is hard to ignore such spectacular results and blindly follow the EMH, even for academia. A 

number of statistical tools have been found to be applicable to forecasting of financial time series. Simple 

linear factor models as well as autoregressive (AR), moving average (MA), autoregressive moving 

average (ARMA) models were historically first. Non-linear models have been found to be successful in 

some forecasting applications [25]. Over the course of 1990s, in part due to significant advances in 

computer technology, modeling focus has shifted towards data driven models, which involved model 

learning over vast sets of data; to name a few, we mention genetic algorithms, reinforcement learning, 

artificial neural networks and hidden Markov models. Due to their flexibility and high adaptability to 

various kinds of problems hidden Markov models (HMM) became one of the most popular modeling 

approaches.  

Among recent studies of financial markets which employ HMMs is the work of Tayal [38]. The 

author has designed a high-frequency regime-switching hierarchical hidden Markov model of trade price 

and volume. His study has been inspired by technical analysis: the main concept behind the model is that 

of interaction between the price of a security and the traded volume in different market regimes. Novelty 

of the approach comes from the underlying probabilistic framework – the dynamic Bayesian network 

(DBN) - employed for the technical pattern learning and inference purposes. The DBNs have seen prior 

successful applications in the computationally intensive fields of speech recognition, bio-sequencing, 

visual interpretation, etc. The regime-switching model of Tayal adds to this success – it was able to 

identify run and reversal market regimes in TSX60 price and volume data in a statistically significant 

way. The study presented results of statistical tests which suggest that the model was able to capture 

unique trade return distributions conditional on market regimes. These results presented strong evidence 

in support of the information content being available in price and volume intraday high-frequency data, 

further undermining the EMH. 

Sophisticated computer technology has also affected the way financial markets operate, and has 

contributed to the transition from face-to-face trading on organized exchanges to a distributed system of 

electronic markets with new mechanisms of achieving better efficiency, transparency and liquidity. In 

majority of cases this new trading system is driven by a double auction market mechanism, in which 

market participants submit buy and sell orders, aiming to strike a balance between the certainty of 

execution and the attractiveness of the trade price. Generally, the information about outstanding buy and 
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sell orders is made available to market participants in the form of a limit order book. Such transparency of 

inherently rich market microstructure data spurred great interest to modeling of the limit order book, and 

this has become an intriguing topic both in academia and among practitioners [20]. Several aspects are of 

particular interest: the distribution of the price and volume in limit order books, the effects of the limit 

order book’s density on bid-ask spread, the trade price development.  

It has been suggested by the multiple prior research that limit order books contain information 

that could be used to predict future price movements
3
. Limit order books have been studied from different 

angles. Cao et al [4] have used limit order information from the Australian Stock Exchange to examine 

the effects of limit order books on investors’ order placement strategies; they found that top of the order 

book (up to ten top-level limit orders) has significant effect on order submissions, cancellations and 

amendments.  Slanina [36] has developed a limit order driven market model and studied forces behind 

evolution of limit order books. Cont et al [6] have used high-frequency observations to study dynamics of 

limit order books and proposed a stylized continuous-time stochastic model; among other applications, 

their model can be used to calculate probabilities of certain events of interest, such as increase in mid-

price, execution of an order at the bid before changes in the ask quotes, execution of buy and sell order at 

the best quotes before the price moves, all of the above events conditional on the state of the limit order 

book; authors have found that their model has adequately captured behavior of the limit order book and 

generated useful short-term predictions, sufficient to build a successful simple trading strategy. Some 

effort was directed towards modeling of limit order volume and price distributions. Zovko et al [44] 

discovered that relative limit prices follow power law with significant price clustering. Considerable 

effort to study behavior and predictive power of limit order books was undertaken within the framework 

of the Penn-Lehman automated trading project [21]. The centerpiece of the project, the Penn Exchange 

Simulator, was developed based on limit order data from the Island ECN. The majority of trading 

strategies employed by the project participants were based on limit order book models. The basic static 

order book imbalance model offered to participants was further developed to incorporate online parameter 

learning algorithms and real-time measures of volatility. 

In the current study we present a simple and intuitive Hierarchical Hidden Markov Model 

(HHMM) of high-frequency market run and reversal regimes.  We describe double auction market 

mechanism and propose a statistical measure of the limit order book imbalance. Our objective is to extract 

valuable information from the vast limit order book data. The resulting measure, along with trade price 

trend indicators, is put together to build a feature vector, which is used by the HHMM framework to 

derive optimal (in probabilistic sense) predictions of the future state of a financial market. The ultimate 

                                                           
3
 According to internal sources, the earlier mentioned RenTec’s Medallion Fund made use of the Nasdaq and New 

York Stock Exchange limit order books in its trading strategies [3]. 
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goal of the study is to investigate whether there is any evidence in the trade price and limit order book 

data against the EMH.  

 

Academic Contribution 

 

Work presented in this thesis is of a quantitative finance nature and is based on a symbiosis of 

mathematics and computer science.  

At the early stages of research significant effort has been dedicated to development of a software 

application – Limit Order Book (LOB) Analyzer (Figure 16), which has greatly helped navigating the 

tick-by-tick trade and limit order book data. Besides data cleaning and identification of the problems 

encountered in data, LOB Analyzer has been essential in calculation of the LOB-based component of the 

feature vector. As shown in Chapter 4, it is fairly easy to calculate price direction and magnitude 

components of the feature vector directly from the trades data, as such calculations are dependent only on 

time, and the trades data is chronologically ordered. However, the LOB-based component of the feature 

vector required calculations on the order book stacks, which are ordered based on both the limit price and 

the time of order arrival. The task would be daunting to complete without the LOB Analyzer tool. 

In addition, we have proposed a measure of imbalance of the limit order book and, based on this 

measure, we have built an HHMM of the high-frequency market regimes driven by the trade price and the 

limit order book data. 

Furthermore, we have performed analysis of the computational results; for this purpose we have 

used a sample of annualized returns of stocks which comprised TSX60 index at the time of data 

collection; we have performed comparative analysis of our results with a simple daily buy & hold trading 

strategy. 

Finally, we have assessed model’s ability to distinguish the run and reversal market regimes out-

of-sample. We have validated results of the price and volume model presented in Tayal [38] and 

performed the comparative analysis of our results with results of the price and volume model. 
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Thesis Outline 

 

In Chapter 2 we provide necessary background on market microstructure, and describe double auction 

mechanism. Chapter 3 provides a short summary of classical approach to modeling of financial time 

series, and further describes theory behind statistical models used in our study: Markov processes and 

Hidden Markov models. Special attention is paid to learning and inference stages of the modeling 

process. In Chapter 4 we discuss volume-weighted average price and introduce the order book imbalance 

feature; we describe intuition behind our model and briefly discuss mechanics of time series processing 

and extraction of the feature vector. In Chapter 5 we describe the Limit Order Book Analyzer tool and the 

Toronto Stock Exchange high-frequency data set used in our experimental analysis. The same chapter is 

used to report computational results. Finally, we summarize our conclusions, and provide some insights 

into future research. 
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Chapter 2            

              

Market Microstructure: Order Types, Time and Sales, 

Limit Order Book 
 

 

 

In this chapter we review concepts which are essential to the understanding of any trading model in the 

context of a modern financial market. In particular, we discuss different types of orders available to 

market participants and talk about mechanics of double auction markets and limit order books. These are 

often collectively referred to as market microstructure [21]. 

 

2.1 Orders and Order Types 

 

Before we get to describe the double auction market mechanism, we need to introduce the trading 

order concept, and discuss different order types. In the context of the current study, we define an order in 

a financial market as an instruction from a trader to a public exchange, either directly or through a broker, 

to buy or sell a security
4
.  

                                                           
4
 A general definition of an order would include over-the-counter orders submitted via private venues (proprietary 

trading systems) from a customer, usually a large financial institution, to a broker or a dealer. These are of no 
interest to us, as they are isolated from public markets and therefore do not contribute to supply and demand on 
exchanges. 
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We should clearly distinguish order types which are universally supported by the public 

exchanges from custom order types supported by specific brokerages. Good examples of standard order 

types are market and limit orders. Terms and conditions for these order types are clearly defined by the 

exchange and they are universal for all participants. These are the only types of orders that can be 

submitted to the exchange by its participants. Such orders fit well into the double auction mechanism of 

any public exchange
5
. These orders are tracked by the exchange and therefore order-flow information is 

available through the exchange for a data subscription fee. Public availability of data makes such orders 

good candidates for the academic research. 

In the current study we utilize only publicly available exchange-level information. Hence, 

classification of order types given below is primarily based on price level constraints, which have to be 

met for the execution to take place. We also introduce a classification based on the time period during 

which the order is valid, and describe special order types which are the major source of dark liquidity in 

the markets. We follow the standard definitions proposed by the U.S. Securities and Exchange 

Commission [34]. 

 Any order can be submitted as either a day order, or a good-till-cancelled (GTC) order. Day order 

is the default type of order used by brokerages. Such orders are good for one trading day in which they 

are submitted. Orders that have been placed but have not been executed during regular trading hours will 

not automatically carry over into the after-hours trading session or the next trading day - they will be 

cancelled by the exchange. Unlike the day orders, GTC orders last until they have been successfully filled 

or cancelled. A designated cancelling order is required to remove the original GTC order. Since the 

lifespan of day orders is fairly short, they are usually placed closer to the prevailing market price, and 

therefore such orders constitute the majority of the publicly traded daily volume. GTC orders on the other 

hand are often used by investors to set limit prices which are far away from the current market price, 

leaving them somewhat out of the “hot” market action. 

From the perspective of price level constraints, we distinguish market and limit orders. A market 

order is an order to buy or sell a security at the current market price. A market order, submitted by a 

brokerage to the exchange, gets executed immediately, provided that market liquidity is in place - there 

are willing buyers and sellers to meet the volume requested in the order. There are no constraints set on 

the execution price level for a market order – it gets filled at the current market price. Such orders can be 

met by opposite side market orders. When no matching opposite side market order is available, the market 

order is filled at the best bid (for sell market orders) or at the best ask (for buy market orders), whatever 

                                                           
5
 The double auction mechanism is defined later in this chapter. 

http://www.sec.gov/answers/afterhours.htm
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those price levels are. Therefore, market orders favor the certainty of execution over the price level of 

execution. A market order, compared to a limit order, has an increased likelihood of being filled, but there 

is no guarantee over the price of execution – it can be far away from the bid-ask spread at the time when 

the order is submitted. This holds especially true for volatile markets, when abrupt market movements are 

likely. 

Limit order is there to address price uncertainty of a market order. A buy limit order is an order to 

buy a security at a price no more than the specified limit price. Such order can be filled at a price which is 

lower than the limit price, and therefore more beneficial to the buyer. On the other hand, a sell limit order 

is an order to sell at price no less than the specified limit price. Similarly to buy limit orders, sell limit 

orders can be filled to a greater benefit for the seller, but in this case the execution price has to be higher 

than the limit price. A trader submitting a limit order has complete control over the price level at which 

the order will be executed. However, it is uncertain whether such an order will be filled at all. It might 

well be that market participants would not be willing to transact at the limit price. Therefore, there is no 

guarantee that the limit order will be filled. Unlike market orders, limit orders favor certainty of price 

over uncertainty of execution. A limit order that does not get filled is placed onto limit order book (LOB), 

according to the rules described in the next section. It remains on the book until either market conditions 

change and the order gets filled, or until it is cancelled/expired. 

 

2.2 Trades 

 

Every time a pair of orders of any type described in the previous section is matched by price and 

volume a trade takes place. All trades are recorded on Time & Sales (T&S), which is a list maintained by 

an exchange. Each trade-record on T&S will contain price and volume information, as well as time when 

the trade occurred. Often bid-ask spreads and their supporting volumes are recorded as well.   

All the examples and corresponding figures in the following discussion were obtained using the 

Limit Order Book Analyzer – a tool that we built for the purposes of data cleaning, data validation, 

feature vector extraction and analysis. We provide a detailed description of the LOB Analyzer in Chapter 

5. 

We shall look at the following example in order to get a better understanding of T&S. Suppose 

we are interested in shares of Research in Motion, listed on the Toronto Stock Exchange under the symbol 

RIM. State of the market for this ticker on May 1
st
 2007 around noon time is illustrated in Figure 1. In our 

example, last trade, #1578, has happened at 11:59:58 AM for 100 shares of RIM and was transacted at 
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$CAD 147.67. According to the LOB Analyzer, sell order that was recorded for this transaction is the 

market order, whereas buy order is a limit order. For the sell order, the price is determined by the market, 

whereas buy order was transacted at the limit price. 

 

Figure 1: Time and Sales of TSX:RIM stock on May 1st 2007 at noon. 

 

An order match can happen either through the exchange mechanism, or off-the market. In first 

case, orders on both sides are market/limit orders submitted through different brokerages. Off-the-market 

trades can happen when both buy and sell orders are submitted by clients of the same brokerage. Such 

trades are called crosses. Brokerage takes care of the price and volume matching process. In both cases 

trades are publicly reported, since even off-the-market trades conducted through the brokerage have to be 

reported to the exchange in order to ensure fairness to all parties involved. Also, bulk order trades, those 

with abnormally high volume, have to be reported to the exchange and logged.  

Therefore, it is important to distinguish trade records for orders that were actually matched 

through public markets and those only reported to the exchange by brokerages. There is no special 

designation for reported trades; they appear on the trading history as any other publicly matched trades 
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would
6
. For example, a bulk order trade of 500-times average order’s volume gets reported to the 

exchange and is recorded on the T&S. However, market price of the security is not affected by such 

order. In after-hours trading, conditional orders, like     -guaranteed
7
, can cause a jump in the 

recorded price of the trade with no visible sign of change in the LOB. For these reasons reported trades 

have to be filtered out. Such cleaning was performed in our study on the raw dataset and the rules that 

have been applied are discussed in Chapter 5. 

 

2.3 Double Auction Market Mechanism – Limit Order Books 

 

Organizational structure of a classic pit-based exchange did not encourage (neither it could handle) direct 

access to trading for the majority of market participants. For liquidity purposes such environment was 

heavily dependent on market makers, where a market maker is a participant of an organized market, who 

is prepared to quote both bid and ask prices on a given financial instrument. Some exchanges, like the 

New York Stock Exchange (NYSE) and American Stock Exchange (AMEX), even had official 

designated market makers, also known as specialists, who traded market in a particular set of securities. 

Under such organizational structure, market makers became the primary source for liquidity on exchange. 

Over the last fifty years the landscape of financial markets has dramatically changed. Being early 

adopters of technology, exchanges around the globe have replaced pit trading with electronic trading 

platforms to a great extent. Some regulated exchanges, like NASDAQ, became completely electronic, 

screen-based trading markets. As of today all orders submitted on NASDAQ are routed via electronic 

order routing system, and order matching is performed by NASDAQ’s computer system. Electronic 

trading has received even a larger boost with the advent of Electronic Communication Networks (ECNs), 

which were officially authorized by the US SEC in 1998, with trading going on virtually around the 

clock. There are multiple drivers behind these changes, starting with the mere convenience of automating 

procedures that used to be performed manually and moving on to a greater market and price transparency, 

faster order processing and, most importantly, increased liquidity.  

Most recent development in electronic markets is the direct access to trading resources by a large 

number of market participants. It has resulted in increased liquidity and allowed exchanges to shift 

                                                           
6
 This is the case with the TSX streamed data used in our analysis; it also holds true for most publicly available data. 

More advanced, professional data systems, like Bloomberg, provide special trade codes with each trade, so that 
traders (or trading algorithms) can easily distinguish between publicly executed and reported trades. 
7
 A     -guaranteed order is a conditional order offered by some brokerages; it guarantees time-constrained 

volume-weighted execution price. 
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operation to order-driven basis. There are still market makers in such markets. However their role in 

providing liquidity has greatly diminished. Incoming buy and sell orders are matched by the exchange’s 

electronic system. Matching orders are brought together and a trade is executed. Limit orders that cannot 

be matched by the system, end up in buy and sell waiting queues, collectively known as the limit order 

book (LOB), or the market depth. 

The LOB is a collection of buy and sell limit orders arranged into bid and ask stacks, 

respectively. Such arrangement is based primarily on the limit price and, secondarily, on the order arrival 

time. On both sides of the book only limit orders are stored. Rules, which apply to order book 

organization, ensure that the most competitive orders, those with the limit prices closer to the bid-ask, are 

favored. For the bid side of the LOB, orders with the higher price are positioned closer to the top of the 

bid stack, whereas for the ask side, orders with the lower price are placed closer to the top of the ask 

stack. Orders that appear on the same side of the order book and have the same price are positioned on the 

stack based on time of arrival of such orders, with those having an earlier timestamp being placed closer 

to the top of the book. On the bid side, prices of all orders are less than those on the ask side
8
. If this were 

not the case, it would imply that buyers are willing to pay price that is higher than the price at which 

sellers are willing to sell. This would automatically result in trades taking place until there are no more 

orders on the LOB with buy order limit prices higher than sell-order limit prices. The two top-most orders 

on the LOB (one from bid side and another from ask side) form the market’s bid-ask spread. 

There are several ways in which orders can be removed from the LOB. Since market conditions 

are constantly changing, many of the limit orders are short-lived and get submitted to the exchange as day 

orders. They automatically expire by the end of trading day and get removed from the LOB
9
. On the other 

hand, good-till-cancelled orders are removed from LOB only after a special cancellation order is 

submitted. Any limit order, which no longer satisfies the requirements of a trading strategy due to 

changing market environment, can be explicitly cancelled as long as it has not been filled prior to the 

submission of the cancellation order. Finally, a limit order gets removed from the LOB when it gets filled. 

                                                           
8
 Strictly speaking, there are situations when bid and ask side of the limit order book overlap, but they are 

concerned with very specific limit orders. These include AON (all-or-none) limit orders, for which the order does 
not get executed until there is an opposite side order with both matching price and matching volume. Large 
volume AON orders are rarely to be seen on the LOB since order initiators try to split the initial order into multiple 
orders of smaller size, or submit an iceberg order to avoid market impact. Therefore most often LOB overlaps 
occur with odd size lot orders, where size of the order is not a multiple of a hundred. These, however, do not make 
large volume impact and also get removed from the LOB quickly enough to ignore them when claiming that LOB 
stacks do not overlap. 
9
 Day orders can outlive the closing market bell, which is, for example, 4:00 pm EST on NASDAQ, and stay on the 

LOB until 8:00 pm if they are submitted as “valid after-hours”; but even such orders do not survive from one 
trading session to another and get automatically removed from the LOB once after-hours trading is closed. 
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This can happen when an opposite side market order or a buy (sell) side limit order with limit price higher 

(lower) than the limit price of the order in the LOB hits the market. In this case a trade gets recorded on 

the T&S. If the available trade volume is greater or equal to the limit order volume, limit order gets 

removed from the LOB. Partially filled limit order remains on the LOB in the original position (provided 

no order with a better price arrives) until it’s either completely filled or cancelled for the remaining 

volume. In cases when limit order on the LOB is matched with the incoming limit order, the price of the 

order on the LOB is the one that gets recorded on the T&S as the execution price [20]. 

Continuing with the example of the RIM stock traded on May 1, 2007 at noon, the state of the 

limit order book at this time is illustrated on Figure 2. Bid and ask stacks of the limit order book are 

displayed on the Bid and Ask panes. The best bid price is $CAD 147.67, whereas the best ask price is 

$CAD 147.75. Note that at this time the price of the last trade is identical to the best bid on the LOB. This 

is a mere coincidence, and does not have to be the case in general. As a matter of fact, bid-ask bracket 

often moves away from the price of last trade very quickly, especially in volatile markets. Again, the only 

requirement is that bid prices are lower than ask prices, which is the case in this example. Buy limit 

orders are inserted into the bid stack of the LOB based on their limit prices. The higher the price is the 

closer the order gets placed to the top of the bid stack. Suppose a new buy order with the limit price of 

$CAD 147.65 arrives next. It is then inserted on the bid side of the book at the fifth position, shifting 

down existing buy orders with lower limit prices. On the opposite side, for sell limit orders, a lower limit 

price puts the order closer to the top of the ask stack. If the next order to arrive is a sell order with the 

limit price of $CAD 147.76, it is inserted at the second position on the ask side, therefore shifting all the 

sell orders with a higher limit price by one position down. 

As can be seen from the LOB snapshot, it is quite possible for orders with the same price on one 

side of the book to co-exist. Multiple orders with the same price get placed onto the LOB stacks based on 

their time of arrival, with those orders arriving earlier in the day being placed closer to the top of the 

LOB. Application of this rule can be easily seen for orders which are further away from the current 

market price. In particular, consider orders #33-42 submitted on the bid side of the LOB. For all orders 

submitted at the limit price of $CAD 146.00, the ones submitted earlier in the day are placed closer to the 

top of the bid stack. Similarly, sell orders #25-28 are all submitted at the price of $CAD 148.50; orders 

higher on the ask stack have earlier timestamps. 

Now, if a sell market order for 1,000 shares of RIM were to arrive, it would have completely 

consumed buy limit orders #1 to #4 at $CAD 147.67 per share, and order #5 would be partially filled, 200 

shares at $CAD 147.64. Orders #1 to #4 would be completely removed from the bid stack, and order #5 
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would move to the top of the stack with the remaining volume of 2,300 shares and the limit price of 

$CAD 147.64. Similar logic holds for the arriving buy market order with respect to the ask stack of the 

LOB. 

 

Figure 2: Bid and ask stacks of a limit order book; the TSX:RIM stock on May 1st 2007 at noon. 

 
The number of limit orders that appear on each side of the exchange-maintained LOB is 

unlimited by the exchange (in the current example there are 143 buy limit orders and 244 sell limit 

orders). However, many of these orders are significantly away from the current “market action”. 

Therefore many brokerages maintain and publish a truncated version of the LOB, with the standard being 

fifteen to twenty top orders on each side propagated to traders.  
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Chapter 3            

            

Statistical Modeling of Financial Time Series:     

Hidden Markov Models 
 

 

 

In the current chapter we provide an overview of tools used for statistical modeling of financial time 

series, focusing on models that are used in our study – the (Hierarchical) Hidden Markov Models and 

Dynamic Bayesian networks. 

 

3.1 Overview 

 

Analysis of financial time series has a long history with a wide spectrum of statistical models used for the 

purpose of forecasting
10

. 

Simple linear models such as autoregressive (AR), moving average (MA) and autoregressive 

moving average (ARMA) were historically first. A time series      is said to be linear if its model can be 

defined as 

            

 

   

 

                                                           
10

 For a comprehensive coverage of such statistical tools see [41]. 



17 
 

 

where   is the mean of   ,    are weights defining dynamic structure of      with     , and      is a 

sequence of        random variables with mean zero and a well-defined distribution –    is a shock at time 

  [41].  Underlying these models is the assumption of linearity of data. Another standard assumption for 

linear models is weak stationarity. Suppose that      is a weak stationary time series; then the mean of    

is constant, the covariance between    and      is also constant for integer  , i.e. covariance is constant 

for a given lag. In practice, most financial data is non-linear. This translates into dependency of residuals 

in a linear model, which can be verified using nonparametric (Q-statistic of squared residuals, Bispectral, 

etc.) or parametric (F, Thereshold) tests. Failure to pass such tests yields inadequacy of the linearity 

assumption and therefore proves simple linear models unusable. Weak stationarity requires one to assume 

a finite (of length  ) historical window with recurrent pattern of behavior. Such fixed-length window 

might be unknown and hard to identify, or too restrictive and simple to yield results useful for 

applications such as prediction.  

Non-linear models proved useful in overcoming deficiencies of simple linear models in analysis 

of financial time series. A comparative example of modeling using linear (AR) model vs. non-linear 

model (MCMC) is provided in [25]. In particular, changes in seasonally adjusted U.S. civilian 

unemployment rate time series from 1948 to 1993 analyzed using AR model fail to pass linearity test, 

whereas applying Markov switching model yields better forecasting results. A non-linear model of    can 

be written in terms of its conditional moments [41]. If we let      be the sigma-field generated by 

available information at time     ), then the conditional mean and variance of    given      are  

                       

  
                       

then the following model is non-linear (provided               are not constant): 

 

                      

 

Many non-linear time series models, including state-dependent and Markov switching models, 

have found their place in modeling of financial time series; however practical application of non-linear 

models has been constrained by inability to process vast amounts of available financial data. Advances in 

computer systems allowed for exploration of time series using data-driven methods.  

Hidden state space non-linear models address high complexity of the financial time series by 

introducing a layer of hidden (latent) states. Such states replace one another with evolution of time.  Each 
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state is capable of generating observations according to some probability distribution. These observations 

are, in fact, the time series that we observe in practice. Although observed signal may be extremely 

complicated, the hidden state space might be fairly simple, and modeling of the observations in any given 

state, as well as the state transition would yield much better results as opposed to straight modeling of the 

observed data both in terms of complexity of such models and model error-proneness. 

Among deficiencies of state-space models one can name computational intensity due to increased 

complexity of such models. Learning such models from large time series might be overwhelming due to 

increased number of parameters, which include both transitional probabilities between hidden states and 

also probability distributions over observations given each hidden state. In particular, suppose    is a 

hidden state at time   and    is an observation at time  . Then any state-space model must define a state 

transition function,            and an observation function,         . Finding globally optimal parameter 

values in a system with hidden variables and multi-modal likelihood surface presents a real challenge due 

to existence of multiple local maximizers [26].  

 

3.2 Hidden Markov Models 

 

3.2.1 Markov Models 

 

Hidden Markov Model is a special case in a broad class of stochastic models which assume that 

the underlying stochastic process possesses a Markov property. A stochastic process is said to have 

Markov property if “the conditional probability distribution of future states of the process, given the 

present state and the past states depends only upon the present state” [10]
11

. For the simplest of all 

Markov processes, discrete-time discrete-state Markov chain, this property can be formulated as 

following: 

                               

where      is a stochastic process and domain of    consists of all possible states,              , that 

the process can assume over the course of time
12

 (see Figure 3 for an example of a simplest Markov 

                                                           
11

 Strictly speaking this definition covers only first-order Markov processes. In general, future state of a Markov 
processes can depend on k past states. However, for any practical applications a k-order Markov model is usually 
converted to first order by augmentation of the state-space, so the definition still holds.  
12

 Domain of a Markov chain can be either finite, or infinite; finite state space is assumed by most applications in 
practice. 
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chain). A Markov model requires specification of an initial-state probability distribution, referred to as 

prior  , such that            , and a set of state-transition probabilities                   . 

State-transition probabilities can either vary with time, or stay constant. In case such probabilities stay 

constant, Markov process is modeled as stationary, time invariant, and the set of transition probabilities 

can be represented by a time-independent transition probability matrix,  , such that         element of the 

matrix  is given by 

                     

Both prior and state-transition probability distributions satisfy standard constraints:       for 

all             
     and       , for all        ,          

    

Markov model described above is applicable when each of the model’s states,   , is directly 

observable and can be measured. Sometimes this is simply not possible due to physical, funding or other 

constraints by which researchers are bound. Also, very often a realistic model of a complicated physical 

phenomenon would require specification of state-space domain which is way too complicated for 

practical use, whereas state space reduction would yield a model that is not representative of reality. This 

is especially true in cases when stationarity restriction is applied.  

 

 

Figure 3: Example of a simplest Markov model – a Markov chain. 

 

3.2.2 The Structure of HMMs: Topology and Parameters 

 

In order to overcome these problems one might consider introducing a layer of hidden variables into the 

model. Such variables would represent the true underlying stochastic process, which is not directly 

observable, but rather can be estimated via realizations of another stochastic process of observations
13

. 

The resulting model, Hidden Markov Model (HMM), is often much simpler as the number of states drops 

significantly, addressing dimensionality concern of the original observable Markov model. It is also more 

                                                           
13

 In those cases when the underlying process is observable, but hard to observe and measure due to 
aforementioned physical and funding constraints, treating the process as hidden and applying machinery of hidden 
Markov models helps solve a problem which otherwise would have been abandoned. 
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flexible since additional layer of latent stochastic variables allows for variation in observed 

states/variables. In a multilayered model with hidden variables unexpected changes in observed variables 

(statistical outliers) do not necessarily trigger a change in the underlying state, but can be rather explained 

away by stochastic nature of observed process. 

Similarly to observable Markov model, HMM’s specification would require a definition of   

states in the model          14
. In addition, one would have to specify   distinct observation symbols 

per state           ; these correspond to physical output of the system – something that one can 

observe and measure. Specification of an HMM would also include an initial state distribution - prior, and 

a state transition conditional probability function. In order to address stochastic nature of relations 

between hidden states and real-world observations, one would also have to specify state-conditional 

observations function.  

In, particular, let      be a hidden stochastic process, and      be an observable stochastic 

process. Then,  

(i)   is a prior distribution such that  

                   

(ii)   is a state transition conditional probability function in a matrix form such that 

                              and 

(iii)             is a state dependent conditional probability function of observations such 

that 

                                   

For notational convenience, we shall denote a complete parameter set of the model by          . 

A single run of the HMM results in an observation sequence           where each 

observation    is one of the symbols from  , and   is the number of observations in the sequence.  See 

Figure 4 for an example of an HMM topology and parameter set. 

The only assumption underlying HMMs is that the state space, the domain of   , is discrete. No 

further restrictions are imposed on either observations process or conditional probability functions, except 

                                                           
14

 The following review of Hidden Markov Models is based on Rabiner [29] unless noted otherwise. 
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for standard stochastic restrictions for probability measures. The resulting versatility have led to Hidden 

Markov Models (along with Kalman Filter Models) being ranked as the most commonly used state-space 

models [26]. 

In order to get a better grasp of modeling conditions under which an HMM might be applicable, 

we consider the following example from Rabiner [29]. Suppose there is a room with   urns. Each urn 

contains a large number of colored balls in it. We assume that there are   different colors of the balls. At 

a first step, an initial urn is chosen according to some random process and a ball is drawn from that urn 

with replacement. We have no knowledge of which urn the ball was chosen from, but we do observe color 

of the ball. The color gets recorded as an observation. At the next step, an urn is chosen by the same 

random process (depending on the random process the urn can very well be the same as in the previous 

step), and the ball selection process is repeated. Several iterations of the urn-ball selection process would 

yield a finite observations sequence of colors, which can be modeled as observable output from the 

HMM. There are multiple HMM structures that can be assigned to this model. However the simplest is 

the one in which each hidden state corresponds to an urn; the choice of the urn at each time-step is driven 

by the state transition matrix of the HMM; color (ball) selection is based on conditional probability 

distribution for the given urn.  

 

3.2.3 Learning 

 

A typical process of modeling with an HMM would include several stages. First step is coming up with 

the model’s structure. Finding state-space usually requires good knowledge of the physical phenomenon 

that one is trying to model. Once hidden states are chosen, one has to come up with a set of observation 

states. At this point we are looking for such properties of observation states that have little deviation 

within the same hidden state, but do differ significantly between different hidden states. The more 

successful we are at finding such properties, the easier it would be for the HMM to perform its task - 

identify a sequence of hidden states based on a given sequence of observations. Once both hidden and 

observation states have been identified and the structure of the model is decided upon, it is time to learn 

model parameters – the conditional probabilities. Parameter estimation is performed on a training set. In 

case when the data set is complete, estimation of parameters boils down to either maximum likelihood 
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(ML) estimation or Bayesian Estimation (BE)
15

. In practice, data set is often incomplete: sometimes 

values are missing from the training data, or variables are simply unobservable (latent).  

 

 

Figure 4: An example of a hidden Markov model (from Wikipedia). 

   states 

   possible observations 

   state transition probabilities 

   output probabilities 

 

In case of hidden variables, ML estimation can still be applied. However, the likelihood function 

has to incorporate the “missing data” – hidden variables. In particular, if   is the observed training set, 

and   is the set of hidden variables, then the log-likelihood function is given by 

                                                           
15

 BE is often used when training set is either too small to be sufficiently representative of the population, or when 
there is a suspicion that it might be biased relative to the population. BE allows incorporation of “expert opinion” 
into the estimation process via a prior distribution. 

http://upload.wikimedia.org/wikipedia/commons/2/2e/HiddenMarkovModel.png
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and the ML estimate is the argument   , which maximizes the value of log-likelihood function
16

: 

         
 

            
 

        

Another standard approach to parameter estimation in presence of hidden variables is the Baum-

Welch algorithm. Baum et al [2] have proposed the algorithm to address estimation problem in the 

context of HMMs when training set is not complete
17

. The algorithm is iterative. There are two steps for 

each iteration of the algorithm. First there is an expectation step, at which values for missing data are 

obtained as expectations using current parameter estimates   . The second step is a maximization step, 

when initial data set is complemented by the estimated data points from the first step and is used to obtain 

new best estimates for model parameters    . These newly obtained model parameters are used in the 

expectation step of the algorithm over the next iteration. 

Consider a discrete time finite state HMM. Formally, let us define         as the probability of 

being in state    at time   , and in state    at time       , conditional on model (both structure and 

parameters) and observation sequence: 

                             

Denote probability of partial observation sequence from time   to time            , and state    

at time  , conditional on model parameters as 

                          

and the probability of partial observation sequence from time       to the end of sequence at time  ,  

           , conditional on state    at time   and on model parameters 

                           

Then         can be written as  

                                                           
16

 Since logarithm is a strictly increasing function, same argument necessarily maximizes the value of likelihood 
function. 
17

 Later the idea was generalized by Dempster et al [8] to a widely recognized and used Expectation-Maximization 
(EM) algorithm. 
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where the numerator term is equivalent to                         and denominator is a 

normalization term
18

. 

If       is the probability of being in state   at time   given the observation sequence and the 

model, then       can be expressed in terms of         by summing over all possible states  : 

              

 

   

  

Furthermore, summing       over time       
   
      yields the expected number of times state Si 

is transited through. In a similar manner, one can obtain the expected number of transitions from state    

to state    by summing over the time index,         
   
     

The above quantities can be used in calculation of model parameter estimates. In particular: 

           expected frequency in state    at time   , 

     
        

   
   

      
   
   

  
                                                       

                                            
  

        
             

       
  

                                                           

                                  
  

Finally, model parameter estimates    from the current step of the algorithm can be used over next 

iteration to calculate new best model parameter estimates    . As the algorithm proceeds, new estimates 

converge to a value at which the probability of observing the data is maximized
19

. 

  

                                                           
18

 Note that definition of conditional probability can be extended to 3 or more variables, so that if           are 
events, then                            
19

 It should be noted that estimates obtained using Baum-Welch algorithm (or EM algorithm alike) are only locally 
optimal. This presents a problem of its own, especially in cases when likelihood surface is multimodal. A number of 
solutions have been proposed to overcome the problem. Simple (but computationally intensive) solution is to 
perform the task multiple times with different starting parameter estimates. 
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3.2.4 Inference 

 

Once HMM structure is defined and model parameters are estimated from the training set, one 

can start using the model. There are multiple questions that can be answered while using the model; 

however one of particular importance to us can be formulated as following: “Given the observation 

sequence             , and estimated model parameters,    , what is the hidden state sequence, 

         , that best explains observations?” Prior to answering the question one has to define a measure 

of “best explanation”. One could choose a solution in which states    are individually most likely, 

effectively maximizing the expected number of correct states. Although such approach is theoretically 

plausible, one might encounter practical issues due to the fact that by examining each state individually, 

the problem ignores probability of states occurrence as a sequence. In particular, the model might 

determine that      , and         are the most optimal states and time   and      , respectively. 

However, estimated conditional probability of transitioning from state   to state        might be equal to 

zero. Clearly, such contradictory results are of no practical use. 

An alternative solution addresses the above problem by maximizing the probability of occurrence 

of the sequences of hidden states. The number of tuples, used in a solution can vary from two, i.e. 

maximize                    up to   tuples, i.e. maximize           . The last formulation 

aims at finding the single best hidden state sequence. The solution to this problem can be obtained using 

Viterbi algorithm, which we describe next. 

Viterbi algorithm consists of two stages. The first stage requires a forward sequential pass 

through the aligned sequence of observations          , and all possible hidden states          , at 

every time step  . Joint probabilities of state and observation sequences up to the current time step are 

computed. At each time step the algorithm keeps track of the states which maximize the aforementioned 

joint probability. Since maximization is performed over sequences, the desired “tupled” maximization is 

achieved. The second stage starts with finding at the terminal time a hidden state for which the joint 

probability is the highest, and then rolling back iteratively, picking out states which are most probable 

based on the highest joint and transition probabilities.  

More formally, we can define a quantity      : 

          
            

                                  

Effectively, we consider all possible sequences of states that end in state   at time  , and choosing 

the one with the greatest probability of occurrence. We can express the same idea inductively for state   at 
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time      in terms of the highest scoring sequence that terminates in state    at time     transition 

probability from state   to state    and observation conditional probability distribution in state    

            
 

                  

 
Note that incrementally, from time   to      , the above expression accounts for the transitional 

probability    , and the conditional probability of observations         . 

A two-dimensional array,      , is required to keep track of the states for which the joint 

probabilities are maximized, for each time step moving from one hidden state to another.  

All of the above is summarized in [29] as the following algorithm: 

1) Initialization: 

                     

                  

 
2) Recursion: 

         
     

                               

            
     

                                       

 
3) Termination: 

      
     

        

  
         

     
        

 
4) Backtracking of the path: 

  
           

                 

where   
 , as required, is the most probable state sequence given the observation sequence   and the 

model  . 
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3.3 Hierarchical HMMs 

 

The unparalleled modeling power of a simple HMM comes from underlying stochastic process 

that generates a sequence of hidden states. Success of such structure at modeling complicated physical 

phenomena has prompted the development of an even more versatile tool – hierarchical HMMs. Fine et al 

[13] introduced a  “recursive hierarchical generalization of …  hidden Markov models”, which was 

“motivated by the complex multi-scale structure which appears in many natural sequences”
20

.  

Hierarchical HMM (HHMM) incorporated the idea of a hidden structure similar to that of a 

simple HMM, except for every hidden state in the HHMM’s case is an HMM itself. HHMM is a model 

with its own structure and a parameter set – hence the recursive hierarchical generalization of the basic 

HMM idea
21

. All nodes in the hidden structure are classified as either internal or production states. The 

internal states do not emit observations directly. Rather they activate child states, which can be either 

internal or production, depending on the hierarchy. As a result of such a vertical transition through the 

HHMM’s structure, a production state is eventually reached. The production states are the ones that emit 

observation symbols according to the conditional probability distribution of the observations in a way 

identical to that of a simple HMM. Once an observation is emitted, control returns to the internal states in 

the activation chain. Since each node is an HMM of its own, a horizontal transition within the state can 

happen according to its state-transition probability.  

Following the notation used for HMMs, the observation sequence is denoted by            . 

Each state of the HHMM, whether internal or production, is denoted by   
 , where   is the index of the 

level in the vertical hierarchy and   is the index of the state within the     level. Hierarchy starts with the 

root node and ends with leaf nodes, which are the production states. The number of internal states 

between the root and different leafs does not have to be the same – HHMM’s branches can have different 

lengths. In a way similar to HMM, definition of the hierarchical model requires the initial probability 

distribution, the state transition probability distribution for each level, and the observation conditional 

distribution. The prior         
   

           
          is the initial distribution over the child-

states of   . It is the probability that the state    will initially activate the state   
   . In those cases 

when    
    is an internal state,       

     is the probability of making a vertical transition from a parent 

state,     to the child node   
   . Transition probability distribution is represented by the state transition 

                                                           
20

 Our discussion of hierarchical hidden models and formal definition follows that of the original paper by Fine et al 
[13]. 
21

 Note that every Hierarchical HMM can be represented as a standard single level HMM by flattening out the 
hierarchical structure and re-calculating model parameters. 
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probability matrix    
, where    

  
     

      
     is the probability of making a horizontal transition 

between states   and   . Finally, identically to HMMs, each of the production states is assigned a 

conditional probability distribution,      where                    is the probability of emitting 

observation   , while in the production state   . A sample HHMM structure with both horizontal and 

vertical transitional dependencies as well as numerical values for parameters is presented in Figure 5.  

 

 

Figure 5: Illustration of a four-level HHMM: gray and black edges respectively denote vertical and 

horizontal transitions. Dashed thin edges denote (forced) returns from the end state of each level to the 

level’s parent state. For simplicity, the production states are omitted from the figure (from Fine et al [13]) 

 

3.4 Dynamic Bayesian Networks 

 

(Hierarchical) HMM is a tool that can be very powerful when it comes to modeling complex physical 

phenomena. However, versatility and flexibility of (H)HMMs do not come for free. The cost that we pay 
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for creating structurally complicated (hierarchical) models comes from the number of parameters that we 

would have to estimate. The number of states in the model, especially in those cases when states are 

marginally distinguishable, commands substantial sets of training data for the purpose of model learning. 

The sample data has to be representative of the population in order to avoid bias and over-fitting. The 

requirement is known as high sample complexity, and often becomes an issue when sample data is limited 

or expensive to obtain. Another issue is high computational complexity at the inference stage in HMMs 

[26].  

In order to overcome aforementioned computational inefficiencies, an (H)HMM can be 

represented as a Dynamic Bayesian Network (DBN). For details on mechanics of such transformation as 

well as general description of DBNs we further refer our reader to Murphy [26], and Tayal [38]. Here we 

only briefly discuss the main underlying idea. In the (H)HMM framework the joint probability 

distribution of states of the hidden nodes is factored into a product of probability distribution functions of 

child nodes, conditional on the state of their parent nodes, and marginal probability distributions of parent 

nodes. Computational complexity of an (H)HMM comes from calculations of these conditional 

probabilities. Bayesian network reveals conditional independence relations, therefore, reducing the 

number of calculations that have to be performed. The idea is summarized in the principle of  -

separation. Jensen et al [16] give the following definition of  -separation for graphical causal nets:  

 

“Two distinct variables   and   in a causal network are  -separated (    for 

directed graph) if for all paths between   and   , there is an intermediate 

variable   (distinct from   and  ) such that either 

− the connection is serial or diverging and   is instantiated, or 

− the connection is converging, and neither   nor any of  ’s descendants have 

received evidence. 

If   and   are  -separated, then changes in the certainty of A have no impact on 

the certainty of  .” 

 

 The principle of  -separation reduces complexity of any given network by breaking it up into 

conditionally independent subsets. Local inferences in such subsets are computationally more efficient. 

Once the required computations have been performed, the subsets can be recombined back together to 

form the original structure, therefore providing the same result in a computationally efficient manner. 
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Chapter 4           

                  

Trade Price and Limit Order Book     -based Model 
 

 

 

Although the idea of a double auction is straight forward, the structure and dynamics of a limit order book 

might become a modeling nightmare due to multiple sources of uncertainty affecting the limit order book. 

As described in Chapter 2, limit orders can be submitted on both sides of the limit order book, at different 

price levels and with different supporting volumes. Such orders can be explicitly cancelled, or they can 

expire. They can be executed due to price cross with new incoming limit orders, or they can transact at 

the prevailing market price due to market orders. All of this can happen at random times. As pointed out 

by Cont et al in [6], “given the complexity of the structure and dynamics of the order books, it has been 

difficult to construct models that are both statistically realistic and amenable to rigorous quantitative 

analysis”.  

However, in the context of the machine learning, and DBN in particular, an order book can play a 

different role and provide a different perspective. We do not attempt to come up with analytical models 

for any of the aforementioned phenomena, but our objective is rather to find an aggregated metric, a 

feature, that would describe the state of the order book at any given moment in time. This feature would 

become a driving force behind our hierarchical hidden Markov model for modeling and predicting high-

frequency market regimes. 

 

4.1 Volume-Weighted Average Price (    ) 

 
Multiple studies in the past have suggested that a limit order book price and volume at any given price 

level might contain information that could be used to predict the direction and magnitude of the future 
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price change over the short term. For example Slanina [36] uses density of the order book stacks, and 

describes such density in terms of the potential price change that would occur if a market order of a pre-

defined size were to arrive. Effectively, author measures the volume support on both bid and ask sides of 

the order book
22

.  Our approach is close in spirit to that of Slanina [36], however the measure that we 

choose to impose on the limit order book is the Volume Weighted Average Price, or simply the     . 

The practical usage of the      measure is mostly limited to calculations on a set of transactions 

(trades) that have taken place over a certain period of time
23

.   

We take the idea of     , but we change the underlying set. Instead of trades we use limit 

orders of both bid and ask stacks. Consider the state of the order book bid and ask stacks at any given 

point in time  . Let    
          

     and    
          

     be the price and volume of a limit order in the     

position from the top of the bid (or ask) stack of an order book at time   . Then, we can define 

     
    and      

    to be the volume weighted average prices of the bid and ask sides of the order 

book, respectively: 

     
        

     
       

    
   

    
    

   

 

     
        

     
       

    
   

    
    

   

 

 

In the formulae above, the      is parameterized by the depth of the LOB  ;   can be chosen 

based on different criteria, such as the volume of the stock traded per unit of time or local volatility. The 

choice of the parameter should be motivated by how well limit orders in the chosen scope represent 

market sentiment. The      calculations based on deeper orders would bias estimates towards orders 

that are rarely traded and do not affect the market price development. At the same time, if we were to 

limit the      calculations only to the top orders we would be necessarily exposed to undesirable noise, 

as top-of-the book limit orders are constantly changing mostly due to trades, often with minimal volume 

support
24

. However, our objective is to capture price support and resistance in the order book. Based on 

empirical observations, Kearns et al [21] chose a constant number of rows for the      calculation – up 

                                                           
22

 Although the approach is intuitively appealing, it introduces some simplifications which might limit practical 
applications of such measure: in particular, market orders are assumed to have the same volume, and all limit 
order events - arrivals and cancellations – are assumed to have the same volume. Both assumptions simplify 
modeling, but are not realistic in any practical setting. 
23

 Kakade et al [20] define      of a stock as the average price per share over a specified period of time, where 
the “average” comes from price of each transaction being weighted by volume of the trade. Authors claim that 
     trading is one of the most common trading activities in modern financial markets. 
24

 For example, the average volume per trade for the RIM stock is about 150 shares, whereas volume support for 
the Bid and Ask      at the 10-row depth is in the order of thousands. 
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to 15 currently available limit orders in the stack. Cao et al. [4] show that the optimal depth to be used is 

in the range of 2 to 10 orders. In our computations 10 orders seem to be the optimal depth
25

. 

LOB-based      can be further illustrated based on our original example, where shares of 

TSX:RIM were traded at noon on May 1, 2007. Figure 6 shows the state of the order book at 11:59 AM. 

The bid      at the 10-row depth is $147.50 with the corresponding cumulative size
26

 of 7,030 shares. 

Similarly, the ask      at the 10-row depth is $147.93 with the corresponding cumulative size of 4,500 

shares. Figure 7 shows the state of the order book one-trade-later, at 12:00 PM with changes both in bid 

and ask     s and the corresponding cumulative sizes. The actual trade that took place is shown in 

Figure 8.  

 

Figure 6: State of the TSX:RIM limit order book at 11:59 AM on May 1, 2007. Outlined in blue crossed 

markers are the bid and the ask      prices and cumulative volume sizes calculated at 10-row depth. 

 
 

Figure 7: State of the TSX:RIM limit order book at 12:00 PM on May 1, 2007. Outlined in red dotted 

markers are the bid and the ask      prices and cumulative volume sizes calculated at 10-row depth. 

                                                           
25

 We have experimented with different values of  . At      performance of the feature appears to deteriorate. 
Dependency of the optimal depth on daily trading volume and volatility of the underlying stock remains to be 
investigated and we leave this to future research. In the following discussion we omit parameter   from the 
     formulae with the understanding that the depth is set to be constant at 10. 
26

 Cumulative size is the total volume included in calculation of volume weighted average price. 
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Figure 8: The Time and Sales show the trade in 100 shares of TSX:RIM at $147.68. 

 

 

 

Figure 9: The time series of the May 1, 2007 TSX:RIM trade price, bid and ask     s calculated at the 

10-row depth. The blue crossed markers and red dotted markers correspond to the data points in Figures 

6, 7. The plain green marker denotes the trade in Figure 8. 

  



34 
 

Let              
         

    be a two-dimensional stochastic process. Then the 

dynamics of       can serve as a proxy for the dynamics of the limit order book. Let    be the trade 

execution price at time  . Then      is a one-dimensional stochastic process. Our hypothesis is that there 

is a stochastic functional dependency between the two, and that       contains information that can be 

used to predict movement of   .  We materialize the hypothesis in the Order Book Imbalance feature. 

 

4.2 Order Book Imbalance 

 
One can think of a limit order book as being a micro model of the market for a particular security. Ask 

and Bid represent supply and demand, respectively. If we continue with the analogy, what would be a 

reasonable proxy for the equilibrium market price? Silaghi et al. [35] suggest several trading strategies 

based on     , where an order book is thought of as an expression of market sentiment and the      

price, calculated on the total order book is seen as a proxy for the market equilibrium price. The order 

book-derived      was also popularized by Kearns et al [21] as an indicator for the Static Order Book 

Imbalance strategy. Kearns et al came up with the idea of measuring imbalance in order book stacks and 

using that as a measure of the equilibrium in the market. In particular, define  

     
                  

     and 

     
               

       

If the market were at equilibrium (see Figure 10 for a schematic example) one would expect 

     
          and      

          to be the same, up to some reasonable threshold that would 

exclude noise. This would imply that the market price used in the calculation of the spread and the 

theoretical equilibrium price, suggested by the order book, are the same, and no market action for the 

price adjustment would be expected. This does change when      
          and      

          

are different. If      
               

          (see Figure 11), then the actual market price is 

lower than the equilibrium price suggested by the order book and one would expect the price to adjust 

upwards. Intuition behind this expectation is based on a notion of volume support from technical analysis 

- there is a significant volume at higher bid prices on the buy side of the order book and this would create 

necessary support to the market price. On the other hand, when      
               

         , 

the market price is higher than the equilibrium price suggested by the order book and one would expect 

the price to adjust downwards. The intuition is that the market price would meet resistance from the sell 

side of the order book, which is highly dense at the lowest ask prices. 
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Figure 10: The balanced Limit Order Book:      
    and      

    are equally distanced from the 

current market price. 

 

         

Figure 11: The imbalanced Limit Order Book: a) the market price is skewed towards      
    and 

therefore faces resistance from the highly dense at the lowest ask prices sell side of the order book – we 

expect market price to go down; b) the market price is skewed towards      
    and therefore faces 

support from the highly dense at the highest bid prices buy side of the order book – we expect market 

price to go up. 
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4.3 Zigzag Aggregation of Time Series 

 
It might come as a surprise, but most often the execution price does not change from one trade to another. 

Based on data used in their study, McCulloch et al [24] have found that on a high frequency level trade 

price stays the same in 67% of cases. We had similar findings with the TSX60 data: on average the trade 

price did not change in 65% of cases with the price being constant for more than three transactions most 

of the time (see Table 2 for details). At the same time the LOB imbalance has fluctuated with every single 

trade, generating trading signals for the order book imbalance model. In order to bring the two inline, an 

aggregation on the time series is required. Although most transactions do not contain directional price 

movement information, they, as noted in [24], certainly contribute to the intensity of trading. Moreover, 

changes in the order book     s over these periods of no price change can be used to model the 

direction and the size of the upcoming price move. Therefore, instead of dropping out trades with no-

price-change as well as corresponding limit orders from the original time series, we follow a zigzag 

approach of Lo et al [23], Tayal [38] and choose to reduce granularity to aggregate the available trade 

information. Once zigzag boundaries are identified on the price series, we apply them to the order book 

time series to come up with a time series of aggregated bid and ask     s.  

In particular, let      be a sequence of local extrema extracted from the price series     .  Then 

  
  

        is the     zigzag bounded by the start and end indices   and   in the original price 

series     . The series      is such that       for       for local maxima, and       for     

  for local minima. By construction      is a time series of alternating local minima and maxima. 

Individual zigzags,   
  

, form a time series      of the local extrema and its boundaries. Aforementioned 

transactions with no price changes form plateaus (for local maxima) and valleys (for local minima). These 

are included into adjacent zigzags, which is consistent with approach taken in Ord [27]. The alternating 

nature of zigzag series achieves the desired property – the trade price changes over every step in time 

series.  

We illustrate these ideas on Figure 12. For this purpose we use the time series of the May 1, 2007 

TSX:RIM trade price. All markers on the graph correspond to trades. The blue square markers correspond 

to the plateau and the valley trades - these are the prevailing trades and they happen without change in 

price, as expected. The red circle markers correspond to the end-of-zigzag trades - the zigzag local 

extrema points. The green crossed circle markers correspond to the zigzag-internal trades – these trades 

only contribute to the zigzags’ overall volume. We have marked boundaries for the first three zigzags 

with letters  ,   and  . Zigzags   and   overlap in a plateau, zigzags   and   overlap in a valley. We 
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observe the alternating nature of the zigzag series. In particular, zigzag   is a short-term up trend, zigzag 

  is a short-term down trend, zigzag   is a short-term up-trend, and so on. 

 

Figure 12: Time series of the May 1, 2007 TSX:RIM trade price from Figure 9. The blue square markers 

correspond to the plateau and the valley trades; the red circle markers correspond to the end-of-zigzag 

trades; the green crossed circle markers correspond to the zigzag internal trades. 

 
The zigzag boundaries     , established on the price series, can be applied to the limit order book 

     time series. The      information accumulated in the order book over each zigzag run is 

averaged to bring the data back to the trade price scale. In particular, 

    
  

  
     

     
   

   

 

   

 

    
  

  
     

     
   

   

 

   

 

Here we note that          for all      , since every zigzag would include at least two trades - 

these are the price points which are identified as the local extrema. The resulting time series      and 

     
  

  
        

  
  

     are used to extract the limit order book based feature vector.   
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Ticker Number of trades without price change Ticker Number of trades without price change 

  0 1 2 3 > 3   0 1 2 3 > 3 

ABX 25.48% 16.58% 11.11% 8.38% 38.45% MDS 30.65% 22.72% 14.44% 9.05% 23.14% 

AEM 30.20% 19.41% 13.05% 9.09% 28.25% MFC 26.25% 18.29% 11.94% 7.90% 35.62% 

AER.UN 37.78% 21.65% 12.88% 7.57% 20.11% MG.A 51.51% 21.44% 10.60% 5.69% 10.77% 

AGU 38.01% 19.88% 11.83% 7.82% 22.46% NA 36.73% 22.53% 13.66% 8.30% 18.79% 

BAM.A 39.89% 20.93% 12.29% 7.62% 19.27% NCX 37.86% 19.94% 12.45% 7.86% 21.89% 

BBD.B 23.01% 19.32% 11.26% 7.61% 38.80% NT 35.06% 19.68% 12.50% 8.00% 24.77% 

BCE 24.28% 17.77% 11.61% 8.80% 37.55% NXY 30.82% 19.31% 11.76% 8.30% 29.81% 

BMO 30.05% 22.40% 14.11% 9.06% 24.38% PCA 28.33% 19.17% 12.82% 8.79% 30.89% 

BNS 25.42% 17.87% 12.27% 8.98% 35.46% POT 53.41% 22.22% 10.59% 5.56% 8.23% 

BVF 40.11% 21.52% 12.93% 7.65% 17.79% PWT.UN 26.46% 18.93% 13.51% 9.16% 31.93% 

CCO 34.45% 19.58% 11.93% 8.15% 25.88% RCI.B 25.63% 18.71% 12.65% 9.36% 33.66% 

CM 41.06% 23.11% 13.20% 7.53% 15.10% RIM 55.78% 21.51% 9.49% 4.95% 8.26% 

CNQ 39.50% 21.15% 12.42% 7.87% 19.05% RY 26.54% 19.32% 12.96% 8.80% 32.38% 

CNR 33.93% 20.82% 12.66% 8.22% 24.38% SC 32.15% 21.75% 13.05% 8.98% 24.07% 

COS.UN 36.87% 23.30% 13.31% 7.94% 18.57% SJR.B 36.72% 22.37% 13.07% 8.20% 19.64% 

CP 42.54% 22.32% 12.09% 7.25% 15.81% SLF 29.69% 19.88% 12.46% 8.84% 29.11% 

CTC.A 47.42% 22.54% 12.20% 6.87% 10.98% SNC 38.08% 22.60% 13.18% 7.59% 18.55% 

ECA 34.83% 20.48% 12.99% 7.91% 23.79% SU 45.84% 21.35% 11.42% 6.97% 14.42% 

ENB 27.67% 19.14% 13.40% 8.64% 31.15% SXR 33.48% 20.50% 12.77% 8.56% 24.69% 

ERF.UN 33.08% 21.53% 13.59% 8.21% 23.58% T 38.99% 22.06% 13.39% 7.45% 18.11% 

FM 51.39% 22.12% 11.07% 5.87% 9.55% TA 33.16% 22.01% 13.68% 8.60% 22.55% 

FTS 33.76% 22.18% 12.99% 8.45% 22.61% TCK.B 29.84% 20.74% 13.24% 8.99% 27.19% 

G 26.21% 19.03% 12.37% 8.71% 33.69% TD 28.82% 21.84% 13.76% 9.33% 26.24% 

GIL 44.73% 20.93% 12.18% 6.88% 15.28% THI 27.71% 20.17% 12.93% 8.47% 30.71% 

HSE 47.43% 23.23% 12.14% 6.39% 10.80% TLM 28.84% 18.25% 12.18% 8.85% 31.88% 

IMN 48.62% 23.64% 11.96% 6.45% 9.34% TOC 27.70% 18.16% 12.37% 8.81% 32.97% 

IMO 33.62% 19.99% 12.31% 8.46% 25.63% TRP 27.69% 19.74% 12.30% 9.01% 31.26% 

K 26.48% 16.12% 10.50% 8.11% 38.79% WN 49.60% 22.87% 11.21% 6.34% 9.97% 

L 35.65% 22.45% 11.87% 8.04% 21.99% YLO.UN 21.96% 22.23% 14.32% 9.65% 31.84% 

LUN 23.52% 17.71% 11.46% 9.24% 38.07% YRI 28.76% 16.78% 11.12% 8.35% 34.98% 

      

Average 35.23% 20.62% 12.33% 7.93% 23.89% 

Table 2: Percentage of runs with no change in price for 0, 1, 2, 3 and more than 3 trades. On average in 

65% of trades price does not change from one transaction to another with price staying constant for more 

than 3 transactions most of the time.  
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4.4 Model Specification and Feature Vector Extraction 

 
When deciding on a model for any real life phenomena one should be aware of two major pitfalls: the in-

sample over-fitting and the model oversimplification. In-sample over-fitting happens when a chosen 

model closely replicates patterns in data at hand, but fails to recognize data characteristics out of the 

sample. Such models are often fairly complicated parametric models that involve distributional 

assumptions as well as the estimation of the required parameters on a limited sample data. There exist 

numerous examples when sound complicated theoretical models fail in practice
27

. Oversimplified models, 

on the other hand, fail to distinguish vital characteristics in the sample data. Such models might be 

analytically tractable and fairly easy to estimate, but would fail to reflect the reality and would lack any 

meaningful predictive power. Finding a balance between the two extremes is as much of an art as it is of a 

science, and requires thorough knowledge of the problem’s domain and ability to introduce 

simplifications without affecting usability of the model. In case of graphical probabilistic models, such as 

Hidden Markov Models, knowledge of problem’s domain translates into the topology of the model and a 

feature vector that accurately reflects the characteristics of the time series data. 

An investment doctrine used by quantitative hedge funds - active money management - is 

primarily based on alpha trading models
28

. These models effectively reject Efficient Market Hypothesis 

and exploit market inefficiencies, such as temporary mispricing of financial instruments, limited or 

absence of liquidity, etc. 
29

. The underlying hypothesis for the majority of alpha models, which include 

mean-reverting models, such as statistical arbitrage, and trend following models, is that short, medium, 

and long term trends exist in financial markets. Therefore, we speculate that a successful alpha trading 

model must incorporate runs and reversals. Indeed, regime switching models have been widely used for 

financial price modeling (for multiple examples see [41]). The usefulness of such models is established 

based on their ability to identify bull and bear regimes. Clearly, the task is daunting – indicators that can 

help with a reliable identification of the current and future trends simply do not exist. We believe that a 

hidden Markov model has the potential in modeling and generating signals for regime switching.  

                                                           
27

 For example, in portfolio construction, theoretically sound mean-variance optimization is built entirely on 
assumption of availability of reliable estimates for large number of parameters to yield meaningful results. 
However, parameters, such as mean returns, are impossible to estimate with a necessary level of precision. 
28

 Active money management is different from static money management used by the majority of mutual funds, 
which employ beta-models, like CAPM, and passively invest in market as a whole, or a particular industry sector 
with the intention of getting only the beta exposure. 
29

 Such strategies have proven to be robust and profitable. For example, Theory of Reflexivity, popularized by the 
famous speculator George Soros in his “Alchemy of Finance” is based on existence of trends [37]. 
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Figure 13: Time series of the May 1, 2007 TSX:RIM trade price. The solid red lines correspond to the 

trends identified at high retracement levels; the double green line corresponds to trends identified with 

lower retracement levels. 

 
Typically, price trends persist for prolonged periods of time. In macro-driven trading, this can 

mean weeks, months, and even years. In high frequency trading, a trend can exist only for minutes or 

hours, but would still correspond to multiple trades and zigzags, and therefore be considered a trend on 

the relevant time scale. Trend identification typically involves specification of a retracement level. The 

retracement level defines the minimum that the price is required to deviate from the most recent extrema 

in the opposite direction before a run is relabeled as a reversal, and vice versa. Therefore, the retracement 

level defines a scale to be used to measure trends. In Figure 13 we present the time series of the May 1, 

2007 TSX:RIM trade price with the two series of the possible price trends. The solid red lines correspond 

to the trends identified at high retracement levels (therefore low frequency of trend switching). The 

double green line corresponds to trends identified with lower retracement levels (high frequency of 

switching).  

Regardless of how low the retracement level is, one would still expect to see short term 

deviations from the general trend. At the ultra high frequency level these are known as bid-ask bounce. 

The phenomenon is well-studied and documented in the academic literature (see for example [24]). 

Therefore, any long-term macro trend (either upward or downward) is expected to have short-lived micro 
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trends that do not change labeling of the trend as a run or reversal based on the specified retracement 

level, but at the same time work in the opposite direction to the general trend. These are embedded in the 

price time series. By construction of the zigzag time series, individual zigzags can be identified with 

short-term micro trends
30

. Based on the discussion above, we contemplate that a successful alpha model 

should take into account identifiable micro-trends at the level of observations. Clearly, short-term micro-

trends exist in both run and reversal regimes; therefore it seems appropriate to consider a symmetric 

topology for such model. Figure 14 shows topology of a hypothetical model. 

 

Figure 14: A schematic representation of a graphical model that incorporates our knowledge about the 

existence of runs and reversals as well as short-lived micro trends within those runs and reversals.  

 
The existence of the short term trends could be interpreted as local noise and therefore the 

corresponding continuous time model of price development in the run and reversal regimes could be of 

the form 

                     

                                                           
30

 In the context of our study, the bid-ask bounce of the trade price is treated as a Brownian motion. In our data 
structure, these correspond to zigzags. We argue that price series when analyzed at the high frequency zigzag level 
does not contain any consistently useful information to base the trading on. 
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where   is the asset price,    is a standard Wiener process,   is the volatility term, and       is the drift 

term which at any given point in time   takes on one of two values,    or   , that are necessarily different 

for the run and reversal regimes. Effectively, the price development in the two regimes is driven by the 

two processes which have the same stochastic factor, but different drift terms. The regime switching is 

based on a stochastic process,       taking the value of 1 or 2 at any time  31. 

A simple topology of a hierarchical hidden Markov model proposed by Tayal [38] incorporates 

hidden market states identified above. The structural symmetry of different market regimes has been 

preserved as well. In addition, the proposed conditional dependencies between different interior states, 

vertical and horizontal transactions within the HHMMs structure are also appealing. Therefore we adopt 

this model in our study. Since our goal is to study predictive power of the limit order book, we need to 

incorporate the LOB info into the feature vector appropriately. Using the same structure for the model 

would also allow us to perform unbiased comparative analysis of the computational results produced by 

the volume and limit order book models. 

The HHMM under consideration contains three hidden levels
32

. At the top level there is a single 

root node   . Its presence is required only for the initial vertical transition to one of the mid-level internal 

states,   
  and   

 , which represent run and reversal regimes in the market. Each of these internal states is a 

probabilistic model, which consists of two production states that emit observations, and a termination 

state that allows for the vertical transition back to the mid-level internal states. The short-term micro-

trends, represented in terms of zigzags, are used as the observable output of the model. The model’s 

topology is symmetric: each of the child models allows for emissions of positive observations (zigzags 

containing local maxima) via the production nodes   
  and   

   and negative observations (zigzags 

containing local minima) via the production nodes   
  and   

   Once activated, each child model alternates 

between positive and negative production nodes, until a termination node is entered which automatically 

triggers a vertical transition back to the mid-level internal state, followed by a forced horizontal 

transaction to another child model as there are no internal loop-backs. Termination nodes   
   in both child 

models are identical. Their sole purpose is to return control back to the parent node in the mid-level. We 

should note that a horizontal transition from the production state emitting positive (negative) zigzag 

                                                           
31

 The regime switching process can be modeled using different approaches. For example, Chen et al [5] label the 
two market regimes as 0 and 1, and use a two-state continuous-time Markov chain     , represented by  

                               , 

where “ - is the time infinitesimally before  , and     and      are the independent Poisson processes with 
intensity      and        respectively”. (       denotes the probability of shifting from regime 0 to regime 1 over a 
small time interval   , and         is the probability of switching from regime 1 to regime 0 over   ). 
32

 The discussion will closely follow that of Tayal [38], unless otherwise noted. Refer to Figure 15 for details on the 
model. 
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observations is necessarily followed by either a production state emitting negative (positive) zigzag 

observations, or a terminating state. At the lowest level positive and negative production nodes alternate 

between each other. This way the model preserves alternating order of the zigzag sequences – there are no 

loopbacks on either positive or negative emitting nodes. Even when there is a transition between the two 

mid-level models, the alternating order of emissions is preserved. The model of   
  can only be terminated 

from a node which emits negative zigzag observations,   
   and the first observation after termination 

node    
   is necessarily produced by the production state emitting positive zigzag observations,   

   

Similarly, the model of    
  can only be terminated after emitting a positive observation from the 

production node   
   and the first observation after the termination node   

  is necessarily produced by the 

production state emitting negative zigzag observations,   
 . We shall see later how this restriction is 

enforced via the state transition probability matrix. 

 

 

Figure 15: The Hierarchical Hidden Markov model of the price and limit order book;   
  and   

  are the 

top level hidden states representing the run and reversal regimes in the market;   
  and   

  represent 

negative zigzags, whereas   
  and   

  represent positive zigzags. The production nodes are filled in grey 

colour; the lowest level transition nodes enforce the alternating sequence of the positive and negative 

zigzags (from Tayal [38]). 

 
The initial vertical transition through the model is guided by the probability distribution function 

   
  where    is the hierarchy level index,          For the root node,     we define                          

    
            

 
; for the mid-level internal states   

   and    
   the vertical transition is restricted to 



44 
 

the production states   
   and   

    respectively, and therefore the probability functions are defined as 

   
 
                  and    

 
                 , respectively. 

As mentioned earlier, neither of the child models allows internal loop-backs; therefore once a 

child model enters a termination state, there is a horizontal transition between the mid-level models. This 

is signified by the top-level state transition probability matrix, 

 

At the production state level, state transition probabilities are defined as 

        
and 

 
 

Finally, each of the production states   
    

    
  and    

  is parameterized by an observation 

probability function     
 

     
 

    , where    
 

        
   is the probability of emitting observation 

symbol   , while in the producton state   
               

Once the topology of the model is established, and conditional dependences and transition flows 

are identified, our focus shifts to the feature vector. The essence of the task is to extract information from 

the data, such that the model would be able to classify short-term micro trends and identify them with 

particular hidden regimes
33

. The most natural starting point for such a search is the price time series. It 

can provide insight into the direction of the price change (up or down), as well as the persistence on the 

                                                           
33

 The big question that the model should answer can be formulated as following: “Given the information 
extracted from data in the form of a feature vector, does the short-term up micro trend belong to a run or a 
reversal state of the market?” Same question is asked for a given short-term down micro trend. 
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price action - whether the price has risen or fallen over a sequence of time steps, such as zigzags. 

Furthermore, one could look for the strength of the price action by imposing threshold limits on the price 

difference. Breaking through the threshold could signal a trend formation, whereas any price change 

below the threshold could be recognized as noise. Support for trends identified in the price time series 

could also be found in other data sources. Probably most widely used is the volume time-series. 

Numerous studies have been conducted on the topic, primarily by followers of the technical analysis
34

. 

This topic has been studied in the academic literature as well. Tayal [38] has been successful in extracting 

price and volume information: the model used by the author demonstrated superior results both in- and 

out-of-sample. Our current study echoes that of Tayal in terms of using price time series for the purpose 

of identifying the direction of the price development and trends. However, trend supporting information is 

extracted from the limit order book data. We describe the feature vector based on the trade price and LOB 

     feature next. 

We start by noting that      has been defined as a time series of individual zigzags,   
  
  and 

contains information necessary to construct the following feature vector, 

       
    

    
    

The first two components of the feature vector are based strictly on the price exrema,   , and 

therefore mimic those of Tayal [38]. In particular, 

 

    
   

                                                       

                                                        

  

 

    
  

 
 
 

 
 

                                                 

                                                       

                                                                                    

  

 

The definition of the direction component,    
 , is simple –     

zigzag is either positive or 

negative. Some variation in the trending component,   
 , is possible, although the definition above 

presents itself as the most plausible since (i) it captures the trending information in the price time series, 

                                                           
34

 See references to [38] for an extensive list of literature. 
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(ii) it accounts for the earlier described phenomenon of the bid-ask bounce by avoiding restrictions on the 

relationship between prices in consecutive zigzags. 

For the last component   
   we use the aggregated information from the limit order book. We 

extend the definition of      
          and      

          from section 4.2 to zigzags using the 

    
  

  
    and     

  
  

    components as defined in section 4.3. Let 

     
                 

  
  

    

     
              

  
  

       

denote the      to the trade price spread in the bid and ask stacks for the     zigzag, respectively.  

Next we define a measure for the limit order book over     
zigzag to capture the imbalance as 

         
                

          

We would like to capture the dynamics of the      imbalance to measure how it changes from 

one zigzag to another. A ratio would suffice for this purpose; however there is subtlety that we have to 

account for. In a manner similar to the bid-ask spread,      spread changes over time. Hence we want 

to normalize the      imbalance feature over multiple zigzags by the size of      spread. Let 

                
  

  
        

  
  

    

Then we can define variables 

  
   

               

                   
  

  
   

               

                   
  

  
   

                   

                   
  

 
This      spread adjustment allows for comparisons of      imbalance features on the same 

scale. 
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We use the following transformation to discretize   
 
 as 

 

   
 
 

 
 
 

 
                   

 
    

                     
 
  

                         
 
     

  

 
where     is a threshold used to distinguish the noise from the signal, and          . 

Finally, in order to reduce the feature vector dimension we aggregate the      imbalance 

information as follows: 

 

  
  

 
 
 
 
 

 
 
 
 

                   
       

        
                                                                   

                                            

                        
        

       
                                                                   

                                          

                                                                                                                

  

 
The increase in magnitude of the spread has to be accompanied by the consistency in the spreads’ signs in 

order to generate strong support signal to the price direction and trend components. In cases when the 

magnitude of the spread does not change significantly, or if the spreads’ signs are mixed, there is strong 

evidence against any price trend development. Otherwise, we assume that we observe local volatility and 

we choose not to generate any signal.  

The resulting observation features are summarized in Table 3. All feature vectors are divided into 

two groups, depending on whether the local price extremum was a maximum,            or a 

minimum,         . The presence of        , and        , would indicate a bullish state of the 

market, since for the zigzags         the directional price movement up is supported by either the trade 

price trend or the LOB components of the feature vector, whereas for the zigzags         the directional 

price movement down is not supported by the trade price trend or the LOB components of the feature 

vector. The presence of        , and        , would signal a bearish state, since for the zigzags 

        the directional price movement down is supported by either the trade price trend or the LOB 



48 
 

components of the feature vector, whereas for the zigzags         the directional price movement up is 

not supported by the trade price trend or the LOB components of the feature vector. The zigzags 

          capture local volatility noise as the direction of the price movements does not find support in 

either the trade price trend or in the LOB feature vector components. 

 

 

Table 3: The trade price and      Imbalance feature space (from Tayal [38]). 

 
The objective of the model is to identify hidden states based on the sequence of observations. If 

our hypothesis is correct and the limit order book information combined with the price signals can be 

used to identify hidden states (trends) in the market, then we would expect to be able to build a profitable 

trading strategy based on the information about the inferred hidden states. We discuss whether the model 

is successful in doing so in the next chapter. 
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Chapter 5            

               

Computational Results 
 

 

 

In this chapter we describe the data used in our numerical experiments, and present some preliminary 

computational results from the price and limit order book model. In addition, we assess its statistical 

significance. We further perform comparative analysis of our results with the results of a simple daily buy 

and hold trading strategy as well as the results produced by the price and volume model. We start with a 

description of the Limit Order Book Analyzer – the software tool that we have built to navigate the tick-

by-tick trade and the limit order book data, and to calculate the      component of the feature vector. 

 

5.1 Limit Order Book Analyzer 

 

The quality of the input data is of a paramount importance to the success of any applied statistical study. 

In general, researchers employ a number of techniques to ensure the quality of the data. Simple visual 

inspections of data using a variety of plotting techniques and calculation of basic sample statistics are 

often sufficient for this purpose. 

The challenge presented by the high-frequency data lies in its sheer amount, which makes manual 

data cleaning and validation almost impossible
35

. At the same time, such data is often very well 

structured, therefore making it a perfect candidate for machine-processing. We have built a Limit Order 

                                                           
35

 The data used in our study serves as a good example of how vast the high-frequency data can be – the text files 
with day-worth of order and trade records have an average size of 1 Gb each. 
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Book Analyzer, which has greatly helped us navigate the tick-by-tick trade and the limit order book data, 

and calculate the      component of the feature vector. We present a snapshot of the LOB Analyzer in 

Figure 16.  

The choice of the programming language is dictated by the requirements of computational 

efficiency and by the presence of graphical user interface (GUI) library. Any of the compiled languages 

would serve the task of efficiency well. However, some of the most computationally efficient languages, 

such as C++, lack a universal GUI library. Therefore, we have opted to use the Java programming 

language, which offers Swing widget toolkit as part of the Sun Microsystems’ Java Foundation Classes
36

.  

High-level design of the application follows the classic Model-Viewer-Controller architectural 

pattern. Internally the application is built of the four main blocks: the data processing block, the user 

interface (UI) block with the control panel, the block for the internal models of the limit order book and 

the time and sales, and the block for the calculation of the feature vector. 

The data processing block is designed for processing of the raw input data, which is read from the 

comma-delimited text files. This block is abstracted from the rest of the application, so that the LOB 

Analyzer is not dependent on any particular data source or data format. This way the LOB Analyzer can 

be easily adapted to process data from other sources, like databases. 

The UI is comprised of the limit order book stacks, the time and sales, the control panel, and the 

output panel for error and warning messages. The application is managed by a user via the control panel, 

which is comprised of the Settings and Controls panes. The Settings pane is used at the startup time to 

specify ticker and raw data file information. The Controls pane is used both at the startup time and during 

the application run time. User has the option to specify whether the application should run in automatic 

mode either until the next record, or the next trade, or the particular time during the day, or the end of the 

day, or the end of the available ticker data. At any moment during the run time, user can pause the 

execution, and capture the state of the limit order book and the time and sales panes, as well as calculate 

statistics of interest based on this snapshot in time.  

Internally, the limit order book is represented by a class which maintains a list of buy limit orders 

and a list of sell limit orders and encapsulates the functionality for order insertion and order removal as 

well as calculation of the volume-weighted average price. The time and sales model maintains a list of 

executed trades.  

                                                           
36

 Portability of Java applications came as a bonus. 
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Figure 16: A snapshot of the Limit Order Book Analyzer tool. The Time and Sales pane displays most 

recent trades with the price and volume information, the corresponding buy and sell orders and the total 

volume traded on the day. The Bid and Ask stacks display buy and sell limit orders, order ids, time when 

the orders were submitted, the size of the orders, the limit prices, the volume-weighted average prices and 

the cumulative volumes used in the      calculation. 
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Finally, there is a feature vector calculation block, which encapsulates the logic for calculation of 

the zigzag time series following the feature vector definition provided in section 4.4. It is fairly easy to 

calculate the price direction and the magnitude components of the feature vector directly from the trades 

data, as such calculation depends only on time, and the trades data is chronologically ordered. However, 

the      component of the feature vector requires calculations on the order book stacks, which are 

ordered first based on the limit price and only then on the time of the order arrival. This presents a 

challenge that would be hard to overcome without the LOB Analyzer. 

 

5.2 Data Set 

 

The data used in our analysis is obtained from the Toronto Broadcast Feed. The original raw data contains 

records for 278 tickers that were traded on the Toronto Stock Exchange in May of 2007. We choose to 

perform our analysis only on the actual constituents of the TSX60 index at that time. These are the largest 

companies traded on the Toronto Stock Exchange as measured by their market capitalizations. The 

filtered TSX60 records are aggregated by the date, giving us 22 source text files of the streamed data to 

work with based on the number of trading days, excluding weekends and holidays.  All the records come 

chronologically ordered with by-the-second precision. The date and time, as well as the ticker information 

are present in each record. We check every record for the matching date. Those records for which the date 

does not match the file time stamp are discarded. Cross trades are removed from the data
37

. Potential 

crosses (the same broker id, and one of the limit orders is found on either side of the limit order book) are 

not considered to be crosses; such records are left in the data. 

Each record is classified as either a buy order or a sell order, or a trade report. Every buy or sell 

order record in the data is either a booking of a new order or a cancellation of an existing one. Other types 

of order records, such as Accepted and Pending, are also encountered in the data. Such records are 

discarded from the data set as they designate transitional states and are later confirmed by the Booked and 

Cancelled records. The total number of such records is found to be less than 0.005% of all the records. 

Booked and Cancelled order records contain the volume information, recorded as the number of shares to 

be bought or sold. In the current study we concentrate on the analysis of the day orders, therefore good-

till-canceled orders are removed from the data set. This is not expected to significantly affect the results, 

as the total number of trades carried over from one trading day to the next in our dataset is found to be 

                                                           
37

 Cross trades are those for which both the buy order and the sell order are originated from the same brokerage, 
but neither one of those orders is recorded in the limit order book. Corresponding trades are propagated to the 
exchange, but they do not affect the market price. 
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less than 1%. The Booked order records contain the price information as well as the record identification 

number, which is a combination of the identification number of the brokerage firm from which the order 

is originated and a unique order identification number. The Cancelled order records contain information 

about the original order identification number and the time stamp of the original booking record. Booking 

order ids are brokerage-unique up to a trading day. The Booked orders include new orders as well as re-

booked orders, with the latest being the case when either the price or volume information of the original 

order change. 

Trade reports contain the volume and price information for the trades, as well as the information 

about the original buy and sell orders that are matched by this trade. The original buy and sell order 

identification numbers and the time stamps are included with each trade report record. In addition, these 

records contain information about the volume remaining in the original buy and sell orders after the 

current trade. Although this information can be deduced directly from the original order and trade 

volume, it serves as a good check in data cleaning and in the order book reconstruction process. If the 

remaining volume of a limit order is equal to zero, such an order is removed from the LOB stack. 

 

5.3 Learning the Model from the Data 

 

The Limit Order Book Analyzer application is used to process the raw data and generate zigzag-based 

feature vectors. There are 724,067 zigzags in the TSX60 sample data, with half of zigzags containing 

local minima, and another half – local maxima. There are 362,020    zigzags and 362,047    zigzag 

occurrences; this almost equal division is expected since by construction an up-zigzag is followed by a 

down-zigzag, and vice-versa. As demonstrated in Figure 17, the distribution within each sub-group 

follows similar pattern, with the majority of zigzags (about 64%) falling into the feature buckets    and 

  , in which case there is no price trend and no limit order book signal to support the changing trade price 

(see Table 3 in section 4.4. for the details of the feature vector specification). This does not come as a 

surprise - we would expect the majority of the price changes to be driven by the local volatility, and only 

a minor portion of the price changes to provide the actual trend signal, rather than the price action noise. 

Another interesting observation is that the distribution of zigzags is skewed. In particular, we see a large 

number of observations with the matching direction and the LOB imbalance components, but without the 

trend support (  and   ); at the same time there are fewer observations with the mismatching direction 

and the LOB components (   and   ). The immediate conclusion out of this observation is that there is a 

positive correlation between the price direction and the order book imbalance. The occurrences of the 



54 
 

feature vectors with the coinciding direction, the price trend and the order book imbalance components 

(   and   ) are found in small numbers – just over 2.5% of the total sample. This is expected as the 

strong directly observable signals are rare. 

 

   

Figure 17: Distributions of zigzags with the local maxima and minima derived from the TSX60 data using 

the price trend and limit order book feature. 

 

A comparative analysis of the distribution of the LOB-based features and volume-based features 

of Tayal [38] reveals some commonalities as well as differences (see Figure 18 for reference). In 

particular, both distributions are highly modal with majority of observations being non-informative 

features. However, the relative number of such non-informative features is smaller in the volume-based 

features (48.95% in the volume-based vs. 63.96% in the LOB-based features). Also, the volume–based 

features appear less skewed. The last comes from the fact that both the strong and weak volume support is 

equally likely to be present in the up- and down-direction features – there appears to be no correlation 

between the two. 
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Figure 18: Distributions of zigzags with the local maxima and minima derived from the TSX60 data using 

the price trend and volume feature. 

 

The zigzag-based feature vector time series generated by the limit order book analyzer represents 

observations in the price and limit order book      model; they are used to learn model parameters and 

perform in- and out-of-sample inferences. Following Tayal [38], we restrict in-sample learning to a 

rolling window of five days of data and use the Baum-Welch (EM) algorithm to learn model parameters, 

identify and classify hidden states as runs and reversals. As an alternative, one could manually label the 

hidden states based on the subjective beliefs about what level of price change (a retracement level) is 

required to signal a switch from a bullish market regime (a run) to a bearish market regime (a reversal), 

and vice versa. Although such an approach is used by a number of technical price trend indicators, it 

introduces a possibility of mislabeling hidden states, as the same zigzag could be considered to be part of 

a run or a reversal, depending on the magnitude of the retracement level chosen. The EM learning 

methodology appears to be a more robust and therefore a preferable approach to identify regime 

switching. Once optimal boundaries for the hidden states have been identified using the Baum-Welch 

(EM) algorithm and the inference mechanism, it is then trivial to decide which state is bullish and which 

is bearish based on the in-state expected returns. In particular, let the expected trade returns in a hidden 

state          , be 
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where  
  

 
   and  

  
 

   are, respectively, the trade prices at the beginning and the end of the series of zigzags 

which comprise state  , and    
  is the number of such sequencies attributed to state   

 . Then state   
  is 

bullish and   
  is bearish if      

        
  , or   

  is bearish and   
  is bullish if      

        
  . 

The learned model parameters – the distributions of zigzags, conditional on the hidden states – 

are demonstrated in Figure 19. The shapes of these distributions are intuitively appealing. One would 

expect to see a higher number of the bullish zigzag features (        and        ) with a steadily 

increasing price and imbalance support from the bid stack of the limit order book during the run market 

regimes. Similarly, the bearish zigzag features (       , and        ) with the consistently decreasing 

price and imbalance resistance from the ask stack of the order book would be prevailing in the reversal 

regimes. The distinction between the two different regimes visually appears to be less pronounced than 

that of the price trend and volume feature in Tayal [38]. For reference purpose, we provide graphs of 

conditional distribution of price trend and volume feature in Figure 20.  

 

   

Figure 19: Distributions of zigzags conditional on the hidden state, aggregated over a 5-day rolling 

window – the price trend and LOB feature.  
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Figure 20: Distributions of zigzags conditional on the hidden state, aggregated over a 5-day rolling 

window – the price trend and volume feature. 

 

5.4 Out-of-Sample Inference 

 

The model that we have learned can be used for multiple purposes – a comprehensive list of tasks, which 

can be performed by such a model, is presented by Murphy [26]. For the purpose of this study we are 

particularly interested in the predictive power of our model out of sample. In particular, we would like to 

assess the model’s ability to predict the sequence of hidden states    
     

       
 , given the history of 

zigzag observations          and the model’s parameters. The resulting sequence of hidden states 

  
 

 
   

 

 
     

 

  
is Viterbi-optimal as discussed in section 3.2.4. Formally, we can define the problem as 

follows: 
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If our model is successful in identifying such upcoming hidden states, we could devise a number of 

profitable trading strategies. The simple strategy that we employ in our further analysis is to buy at the 
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beginning and sell at the end of the run regime, but sell at the beginning and buy at the end of the reversal 

regime
38

.  

The inferred regimes of each of the top level states can be used to generate the out-of-sample 

returns. Such returns are calculated as a ratio of the difference between the price at the end and the 

beginning of the regime divided by the price at the beginning of that regime, regardless of the regime’s 

time length. Since the individual realizations of the run and reversal regimes are of different time lengths, 

the resulting time series of the returns is non-synchronous. We normalize the series by scaling each return 

by the length of the regime for which it was calculated. The resulting normalized return series is used to 

obtain the annualized returns. We calculate the following annualized trade returns for each ticker: (i)        

which is the return cumulatively generated in all the    states identified as the run regime, (ii)        

which is the return cumulatively generated in all the    states identified as the reversal regime, and 

(iii)       , which is the total return generated by the trading strategy,        =              39. Our further 

analysis of the out-of-sample computational results is based on these annualized trade returns. Using the 

resulting sets of the annualized returns for the TSX60 index constituents, we study two problems of 

interest. 

First, we compare the total returns         to the benchmark returns     . We choose a simple buy 

and hold daily trading strategy as our benchmark: a security is bought at the start of the trading, and sold 

with the closing bell; both transactions happen at the prevailing market prices and yield daily returns. 

Second, we establish whether our model is successful in learning two distinct market regimes. For 

this purpose we compare the returns in the run regime,      , to the returns in the reversal regime      . If 

the returns are consistently different, we would be able to conclude that they are generated in different 

market regimes, which our model is able to identify. 

We study the above problems in the context of liquidity. Following Tayal [38], we assess how 

liquidity of the underlying ticker affects predictive ability of our model and profitability of the trading 

strategy. It is a common practice to proxy liquidity of publicly traded stocks with their average daily 

                                                           
38

 In a real world environment profitability of the LOB-trading strategy would depend on its capacity. This is a large 
topic on its own and it is therefore beyond scope of the current study. It should be noted that expected returns are 
calculated under the assumption that the market would not significantly change if our trading strategy were to 
contribute limit orders to the market. This might be a realistic assumption for high average daily volume stocks. 
39

 Total return definition that we use for the analysis implies that the trading strategy takes a long position in the 
underlying instrument during the bull regimes and a short position in the underlying instrument during the reversal 
regimes. This way, for example, negative returns in reversal regimes yield positive contributions to the total 
returns. 
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trading volumes
40

. Therefore we divide our sample into four groups listed in Table 4, based on the 

average daily trading volume. 

Once the sample data is split into four groups, we calculate returns generated by the trading 

strategy based on the LOB model
41

 over the course of the 17 out-of-sample days, as well as calculate 

returns of the simple B&H strategy. The sample summary statistics of these returns are presented in Table 

5. The total return generated by the LOB strategy at 23.80% is higher than the benchmark return of the 

B&H strategy at 6.63%. However this relation is not consistent throughout liquidity quartiles. The 

performance of the B&H strategy steadily improves from the 1
st
 Quartile to the 4

th
 Quartile. On the 

opposite, the performance of the LOB strategy deteriorates along with the disappearing liquidity. These 

findings are consistent with those of Tayal [38] – the high-frequency regime based models thrive in the 

highly liquid market environment and struggle to perform well when the trading volume is low. The 

distributions of the returns appear to be asymmetric, which is supported by the skewness numbers. The 

standard deviations of the annualized returns per quartile are mixed. 

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile 

Ticker Vol (MM) Ticker Vol (MM) Ticker Vol (MM) Ticker Vol (MM) 

SJR.B 22.6 MFC 2.1 YLO.UN 1.24 IMO 0.59 

TOC 10.5 CCO 1.99 TRP 1.18 CP 0.56 

BCE 9.4 RY 1.98 T 1.17 SC 0.56 

BBD.B 5.06 ABX 1.96 BAM.A 1.03 NA 0.54 

MG.A 4.7 PCA 1.91 TA 1.02 SNC 0.52 

G 4.11 YRI 1.85 MDS 0.91 BVF 0.5 

SXR 3.95 CNR 1.78 SLF 0.91 FM 0.45 

TLM 3.78 BNS 1.73 HSE 0.85 L 0.45 

LUN 3.53 RCI.B 1.54 POT 0.83 NCX 0.44 

CTC.A 3.4 RIM 1.48 AEM 0.79 THI 0.4 

K 3.32 COS.UN 1.43 AGU 0.77 GIL 0.38 

SU 2.92 BMO 1.36 ENB 0.72 FTS 0.33 

TCK.B 2.7 TD 1.3 CM 0.65 ERF.UN 0.32 

ECA 2.23 CNQ 1.29 AER.UN 0.65 IMN 0.29 

NXY 2.19 NT 1.27 PWT.UN 0.62 WN 0.13 
 

Table 4: The quartile groupings of the TSX60 tickers by the average daily volume  

in the month of April 2007 (from Tayal [38]). 

                                                           
40

 Risk management and portfolio analysis tools in trading systems such as Bloomberg use average daily volume as 
a simple way of measuring liquidity. 
41

 From now on this strategy is referred to as the LOB strategy. 
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       (a)                                                                                                (b) 

 

       (c)                                                                                            (d) 

Figure 21: The value of $1 invested in the four quartiles of different liquidity for the month of May 2007:  

(a) 1
st
 Quartile – (d) 4

th
 Quartile 
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B & H LOB 

  Mean Std Skew Mean Std Skew 

1st Quartile -40.50% 112.80% -0.11 82.00% 159.79% 1.44 

2nd Quartile 13.24% 88.97% -0.49 34.98% 117.89% -0.01 

3rd Quartile 19.76% 84.59% -0.01 0.54% 86.22% -0.27 

4th Quartile 34.02% 107.59% 1.20 4.42% 77.50% -0.46 

TSX60 6.63% 100.76% 0.08 23.80% 116.82% 1.21 

 
Table 5: Descriptive statistics of the annualized trade returns. 

 

 

Figure 22: The value of $1 invested in the TSX60 index for the month of May 2007. 

The time series of the returns in each of the quartiles are presented in Figure 21. The performance 

of the LOB strategy is consistently higher than that of the B&H strategy in the first quartile and it is 

consistently worse in the last quartile, and the performances in the 2
nd

 and 3
rd

 Quartiles are mixed. This 

supports our previous conclusion about benefits of high liquidity environment for the LOB strategy. 

Overall, the LOB strategy still consistently beats the B&H strategy as it can be seen on Figure 22. 

Historically, the LOB strategy delivers returns which are more stable than those of the B&H strategy. 

This can be observed from the above graphs as well measured by the maximum daily draw-down of both 

strategies. For this purpose we define the maximum daily draw-down as the largest negative daily return 

delivered by the strategy relative to the previous day’s closing price. Low maximum draw-down is a 

desirable property for a trading strategy to have. The LOB strategy has lower maximum daily draw-down 

than the B&H strategy in all the quartiles as shown in Table 6.  
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  1st Quartile 2nd Quartile 3rd Quartile 4th Quartile TSX60 42 

B&H -1.91% -1.47% -1.51% -1.62% -1.63% 

LOB -0.76% -0.83% -0.46% -0.53% -0.24% 

 

Table 6: The maximum daily draw-down of the B&H and LOB strategies. 

 

 

Run Regime Reversal Regime 

Mean Std. dev Skew 
ZigZags 

Long 
Minutes 

Long 
Mean Std. dev Skew 

ZigZags 
Long 

Minutes 
Long 

1st 
Quartile 

34.19% 95.39% 0.91 15.07 10.44 -47.81% 91.23% -0.61 14.55 9.67 

2nd 
Quartile 

29.48% 72.43% 1.23 12.22 6.61 -5.50% 77.79% 0.14 17.20 8.71 

3rd 
Quartile 

8.17% 60.76% -0.06 13.02 14.78 7.63% 48.66% -0.09 12.89 14.21 

4th 
Quartile 

26.68% 46.38% 0.28 9.81 15.29 22.26% 68.29% 1.42 11.82 16.74 

TSX60 20.72% 65.43% 0.75 12.53 11.85 -3.08% 69.54% 0.18 14.05 12.41 

 

Table 7: Descriptive statistics of the regime-conditional annualized trade returns  

in different liquidity quartiles. 

 
Next, we establish whether our model is successful in learning two distinct market regimes. We 

start by calculating the regime-conditional annualized trade returns. The sample summary statistics of 

these returns are presented in Table 7. First we notice that there is a significant difference in the 

conditional mean returns for the 1
st
 and 2

nd
 high liquidity quartiles. The LOB model was able to 

successfully identify two distinct market regimes. The other two quartiles, the 3
rd

 and 4
th
, with less liquid 

tickers show considerably smaller difference in mean returns. Effectively, the difference is negligible. We 

believe that the LOB model failed to identify distinct market regimes for tickers in these two quartiles. 

These observations explain strong (poor) performance of the LOB strategy when compared to B&H 

strategy discussed earlier: if the model is able to identify hidden market regimes it proves to be superior to 

                                                           
42

 The maximum daily draw-downs in the quartiles can happen on different days; these highly negative returns in 
one quartile are offset by returns in the other quartiles, therefore there is no direct dependency of the maximum 
daily draw-down in the TSX60 index and any particular quartile. 
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B&H strategy, and the lack of such ability translates into poor performance results
43

. We also observe 

how regime length changes from one quartile to another. When measured in minutes, on average regimes 

tend to be shorter for tickers with higher liquidity and longer when liquidity is deteriorating. The number 

of zigzags per regime goes down along with liquidity. In the context of the above discussion, it’s worth 

recalling that our model’s topology, as described in section 4.4, necessarily forces a top level market 

regime switch via states   
  as there are no loopbacks into the same regime. This might help explain poor 

performance in quartiles with less liquid tickers and smaller average daily trading volume. 

In order to confirm the above findings it is beneficial to conduct statistical tests. In particular we 

could test a null hypothesis of the regime-conditional returns in each quartile coming from the same 

distribution. If we are able to reject the null hypothesis, we would be confident that the model has been 

indeed successful in learning the two distinct market regimes within each quartile. Standard tests 

employed for this purpose are the two sample  -test and the paired  -test. The reliability of the tests’ 

results is based on few assumptions, including sufficiently large sample size and the shape of the 

underlying population distributions fitting well the Normal distribution. The return samples in each 

quartile are fairly small, and therefore it’s difficult to make distributional assumptions based on 

histograms and   -plots of the return samples. We argue that in these conditions conducting  -tests 

would not improve our confidence in model’s ability to distinguish two market regimes. 

In order to address the above problem of a small sample size we aggregate the returns from 

different quartiles. As a result, we have two samples each consisting of sixty sample return points. We 

start by plotting histograms of the annualized regime-conditional returns data in Figure 23. The visual 

inspection of the histograms suggests that the data could fit well Normal distribution.  Our guess is 

confirmed by the   -plots of the sample data against the quantiles of the Standard Normal distribution in 

Figure 24. The only exception is the right tail of the returns distribution in the run regime in Figure 24 (a). 

However, we believe that Normal distributional assumption is still reasonable. Based on the above, we 

perform data fitting to the Normal distribution. The fitted distributions of the annualized regime-

conditional returns are plotted over the data histograms in Figure 23. 

The visual inspection of the fitted distributions in Figure 23 suggests that the returns might be 

generated by the different market regimes. However, the distinction between the two fitted distributions in 

Figure 23 is not as profound as in the case of fitted distributions of the price and volume model of Tayal 

[38], as presented in Figure 25. The sample means of the returns are distinct with the actual numerical 

                                                           
43

 We should note here again that negative returns in reversal regime contribute to the positive total return as we 
are short the underlying security during market reversal; the resulting total returns used in the analysis of the B&H 
vs. LOB strategies are obtained as the sum of the returns in the run regime and the negative of the returns in the 
reversal regime. 
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values being 20.72% for the run regime and -3.08% for the reversal regime. We report these and other 

calculated descriptive statistics for the conditional returns in Table 8. 

 

 

Figure 23: Annualized returns data from the price and limit order book model and fitted distributions in 

run and reversal regimes. 

 

 

Run Regime Reversal Regime 

Mean Std. dev Skew 
ZigZags 

Long 
Minutes 

Long 
Mean Std. dev Skew 

ZigZags 
Long 

Minutes 
Long 

LOB 20.72% 65.43% 0.75 12.53 11.85 -3.08% 69.54% 0.18 14.05 12.41 

Volume 36.34% 73.42% 0.66 10.93 9.98 -27.41% 79.52% -0.12 10.59 9.19 

 

Table 8: Descriptive statistics of the conditional annualized trade returns:  

the trade price and LOB model, and the trade price and volume model. 
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(a) 

 

(b) 

Figure 24: (a) The   -plot of the annualized returns in the run regime vs. quantiles of the Standard 

Normal distribution; (b) the   -plot of the annualized returns in the reversal regime vs. quantiles of the 

Standard Normal distribution. 
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Figure 25: The annualized returns data from the price and volume model and the fitted distributions in the 

run and reversal regimes. 

 

In order to establish statistical significance of the difference between the two regimes we shall 

employ the two-sample location   -test, more commonly known as the Student’s  -test
44

. The initial 

condition of the equal sample size is automatically satisfied as we have return statistics for each ticker in 

both regimes. As already discussed, the validity of the test is based on several assumptions. The first 

assumption is regarding the normality of the distributions from which the samples are drawn; as 

mentioned earlier we believe this assumption is satisfied based on the   -plots in Figure 24. The second 

assumption for the test is related to the variances of the distributions from which the samples are drawn. 

They are required to be the same. Although a formal statistical test can be performed to test for variance 

equality, we believe that this assumption is satisfied, as we have sufficiently large samples and the 

samples’ standard deviations are reasonably close, 65.43% for the run and 69.54% for the reversal 

regimes
45

. 

                                                           
44

 There are multiple tests that could be conducted to establish statistical significance of results. Tayal [38] is using 
a one-sample t-test for each of the regimes in order to establish positivity of returns in the bullish regime and 
negativity of returns in the bearish regime; we would argue that separate tests might not be necessary. As long as 
the sample returns can be attributed to distributions with different means and there is a clear evidence against 
hypothesis in the two-sample t-test, the trading strategy would be to go “long” over bullish regimes, and “short” 
over bearish ones, regardless of whether returns are positive or negative. 
45

 Daly et al [7] suggest using a factor of three as a rule of thumb for variance equality verification. In our case the 
factor is slightly over one. 
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Our test is set up as the following: 

         

         

 

The appropriate test statistic is  

  
       

   
 
  

 
 
  

 

where     and     are the sample means and,          
  

  
              are the sizes of the respective 

samples; and   
  

        
          

 

       
 is the pooled estimator for the common variance, which is 

constructed using the sample variances   
  and   

 . The test is conducted on the annualized returns in the 

different market regimes as identified by the price and LOB model; the same test is conducted on the 

annualized returns produced by the price and volume model for reference purposes. A 5% confidence 

level is used in both cases. Test results are presented in Table 9. 

 

 
Price and LOB Price and Volume 

   Not rejected Rejected 

p-value 0.0602 0.0000 

Confidence 
Interval 

[-0.0104, 0.4863] [0.3509, 0.9242] 

t-statistic 1.8981 4.4083 

 

Table 9: The results of a two-sample t-test conducted at 5% significance level on annualized returns data 

from price and LOB and price and volume models. 
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Price and LOB Price and Volume 

   Not rejected Rejected 

p-value 0.0793 0.003 

Confidence 
Interval 

[-0.0287, 0.5046] [0.3048, 0.9703] 

t-statistic 1.7870 3.8402 

 

Table 10: The results of a paired  -test conducted at 5% significance level on annualized returns data from 

price and LOB and price and volume models. 

 

The results of the test suggest that returns generated in the different market regimes by the price 

and LOB model come from the same distribution; effectively, this means that the price and LOB model 

has failed to distinguish the hidden regimes in a statistically significant way
46

. On the other hand, the test 

results of the returns generated by the price and volume model confirm earlier findings by Tayal [38] – 

the distinct market regimes have been successfully identified by that model. 

In order to improve our confidence in the results of the two-sample  -test, we conduct a paired 

two sample  -test. This test has a greater statistical power than the unpaired test, and comes naturally in 

our study, as each annualized return sample point in the run regime has a counterpart in the reversal 

regime per ticker. The test setup is as following 

 

          

          

and the appropriate test statistic is  

  
       

     
    

 

where      is the meanof the paired differences;    is zero;   
  is the sample variance of the differences in 

the annualized returns;   is the number of pairs;           . The test results are presented in Table 10; 

they confirm the findings of the two-sample  -test. 

                                                           
46

 One fact that speaks in favour of the price and LOB model is that the  -test was marginally close to rejection of 
the null hypothesis with the  -value being 0.0602 (the cutoff point for the 5% significance level is 0.05). 
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Conclusions 
 

 

 

 

This study is motivated by the contradiction between the Efficient Market Hypothesis, widely accepted in 

the academic literature, and the stunning performance consistently demonstrated by some asset 

management firms. Our view is that if the price development process is not a random walk as the EMH 

suggests, then one should be able to identify regimes in the market when either a bullish or a bearish 

sentiment prevails. We further argue that despite the longer term trends, temporary changes in the price 

direction due to local volatility exist. 

 Keeping all of the above in mind, we develop a suitable model. A Hierarchical Hidden Markov 

Model of Tayal [38] is adapted for the purpose of this study. After conducting a thorough literature 

research, we decide to study the properties of the Limit Order Book in search of the reliable information 

for the generation of a trading signal. As a result, the order book imbalance is chosen as a representative 

measure of the LOB’s state for the trend-support purposes. We use a time series of the price trend 

supported by the order book imbalance as the observation feature for the model. 

 A comprehensive data set of transactions from the Toronto Stock Exchange is obtained. The data 

is validated and cleaned. We build the Limit Order Book analyzer tool which is used to generate the 

feature vectors for the sixty largest companies by the market capitalization during the studied time period. 

We have twenty-two days of market data.  

We use a five day rolling window to learn the model’s parameters. The resulting learned model is 

used for the inference purposes with the sole goal of predicting the future hidden market states out of the 

sample. The model produces a string of the predicted hidden states which are used to generate two sets of 
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annualized returns from a simple trading strategy. Based on these set of annualized returns, we study two 

problems of interest. 

First, we compare the total returns to the benchmark returns. We choose a simple daily buy and 

hold trading strategy as our benchmark: a security is bought at the start of the trading, and sold with the 

closing bell; both transactions happen at the prevailing market prices and yield daily returns. Second, we 

establish whether our model is successful in learning two distinct market regimes. For this purpose we 

compare the returns in the run regime and the reversal regime. We study the above problems in the 

context of liquidity. We assess how liquidity of the underlying ticker affects the predictive ability of our 

model and the profitability of the trading strategy. We divide our sample of annualized returns into four 

groups based on the average daily trading volume of the underlying ticker. 

Our analysis reveals that the trading strategy based on the price and LOB model performs well in 

quartiles with high liquidity of the underlying tickers: the model has an edge and beats the simple daily 

buy and hold strategy. The same conclusion is made for the model’s ability to distinguish the run and 

reversal market regimes: we observe consistently higher returns in the run regime and lower returns 

during the reversals for the two most liquid quartiles. Our model fails at both tasks in the illiquid 

quartiles. 

In order to establish statistical significance of our observations regarding the model’s ability to 

distinguish the run and reversal market regimes we conduct two statistical tests. Due to the sample size 

limitations the tests are performed on the aggregated samples of annualized returns. First, a two-sample  -

test is conducted on the sample returns obtained in the different regimes. If the null hypothesis of the test 

were rejected, we could argue that returns come from different distributions, and therefore our model is 

able to identify the bullish and bearish market regimes. The two return samples used are sufficiently large, 

and approximately normally distributed; variance of two samples is comparable. All of the above gives us 

confidence in the test results. Unfortunately, at the 5% significance level we are unable to reject the 

hypothesis about the samples being drawn from the same distribution. In order to confirm the results we 

have conducted a paired  -test; we are able to conduct the paired test as each ticker in the index has two 

mean return estimates associated with it, one per regime. The results of this test are similar to those of the 

first one.  

The overall conclusion that we make is that the LOB model is capable of performing well and is 

able to distinguish the run and reversal market regimes in high liquidity environments. It is most likely 

that the model can be further developed, both in the feature selection and topology in order to improve the 
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overall performance. In this regard, the results of Tayal [38] that are validated in our tests serve as a great 

inspiration for future research. 

 

The topology of the model used in the current study is derived based on our subjective 

understanding of the underlying phenomenon. It is however possible to algorithmically produce an HMM 

by means of structural learning. A simple approach of learning all possible structures might be non-

tractable due to the number of structures exponentially growing with the number of nodes, and even 

undesirable due to the issues with over-fitting. A score-based method of learning structure [16] applied to 

a set of candidates could yield an improved topology. 

The EM algorithm used in our study for the parameter estimation is that of a classic Baum-Welch 

form proposed by Baum et al [2]. It is used to compute the maximum likelihood estimates without 

additional weighting on the sample input data. Some previous studies ([15], [42]) used Exponentially 

Weighted EM (EWEM) algorithm, in which recent observations are given more significant weight for 

parameter estimation purposes. It remains unclear whether such a modification would be beneficial in the 

framework of our model; however Idvall et al [15] show that EWEM did not significantly improve their 

results. 

Another possible direction for the future research is modification of the feature vector. In the 

current study we have discretized the observation space, which consists of 18 simple events. We strongly 

believe that such representation is, on one hand, sufficient to make a realistic model, and, on the other 

hand, parsimonious enough not to drag the learning process into the realm of parameter estimation 

difficulties and over-fitting. However, there are other possible configurations described in the literature. 

Idvall et al [15], who studied foreign exchange high frequency data, suggest a model with a continuous 

observation space - they used Gaussian Mixture Model for this purpose. Zhang [42] uses continuous 

observation probability distribution function for the training stage, and switches to discrete distribution 

function for prediction. However, there are several pitfalls related to the modeling of continuous 

observations that one should be aware of. An assumption about distribution has to be made. The most 

typical choice is a Gaussian Mixture Model, which can be easy to work with, but it does not necessarily 

describe phenomena with the desired level of accuracy. Parameter estimation is another potential 

difficulty.  

Based on the results of the price and volume model of Tayal [38], the feature vector could be 

modified to include the price as well as both volume and order book information. We intend to further 

research the interaction of the volume and order book information as preliminary results on the combined 

model show no significant improvement over the stand-alone models. 
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