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Abstract

Box and Jenkins methodologies have massively contributed to the analysis of time series

data. However, the assumptions used in these methods impose constraints on the type of the

data. As a result, difficulties arise when we apply those tools to a more generalized type of

data (e.g. count, categorical or integer-valued data) rather than the classical continuous or

more specifically Gaussian type. Papers in the literature proposed alternate methods to model

discrete-valued time series data, among these methods is Pegram’s operator (1980).

We use this operator to build an AR(p) model for integer-valued time series (including both

positive and negative integers). The innovations follow the differenced Poisson distribution, or

Skellam distribution. While the model includes the usual AR(p) correlation structure, it can be

made more general. In fact, the operator can be extended in a way where it is possible to have

components which contribute to positive correlation, while at the same time have components

which contribute to negative correlation. As an illustration, the process is used to model the

change in a stocks price, where three variations are presented: Variation I, Variation II and

Variation III. The first model disregards outliers; however, the second and third include large

price changes associated with the effect of large volume trades and market openings.

Parameters of the model are estimated using Maximum Likelihood methods. We use several

model selection criteria to select the best order for each variation of the model as well as

to determine which is the best variation of the model. The most adequate order for all the

variations of the model is AR(3). While the best fit for the data is Variation II, residuals’

diagnostic plots suggest that Variation III represents a better correlation structure for the

model.
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Chapter 1

Introduction

1.1 General Overview

The classic tools used in modeling and analyzing time series data are the Box and Jenkins

methodologies (Box & Jenkins, 1976). They presented a rich class of models for continuous

distributed time series. Unfortunately those methods are not applicable to discrete-valued time

series data because of the constraints imposed on the marginal distribution. As a result, a lot

of research has been done to model discrete-valued time series.

Many discrete-valued time series are built with an operator. A number of these operators

have specific assumptions leading to some restrictions while others can be used to build models

with fewer restrictions. One of the main restrictions is the marginal distribution which depends

on the type of discrete data, whether it is binary, count, integer or categorical. Another re-

striction focuses on the resemblance of the process to Box and Jenkins’ which would affect the

interpretation of the model as well as the expressions derived from it and the properties of the

model. Developing new models and extending previous models and operators to fit integer-

valued data has received great attention in the past two decades.

This research uses Pegram’s mixing operator (Pegram, 1980) in order to develop an integer-

valued stationary AR(p) process. This operator is known for its flexibility regarding the

marginal distribution as well as its similitude to Box and Jenkins’ methodologies. For the

marginal distribution of the innovations we will use the Skellam distribution which is the dif-

ference between two Poisson random variables. An important feature of this distribution is

its symmetry which has been missing in almost all the integer-valued time series models to

date appearing in the literature. This particular feature has many advantages and allows us

to construct processes covering both positive and negative correlations while maintaining the

similarities with the traditional Box-Cox ARIMA models.
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1.2 Thesis Layout

This thesis is composed of six chapters of which the first is the introduction. In chapter

2, we review the models developed so far in the literature and discuss their advantages and

drawbacks. The model in its three variations is defined in detail in chapter 3 with a derivation

of its properties. In chapter 4 we look at the estimation method and the model selection

criteria. Score functions are derived to find Maximum Likelihood estimates for the parameters

and several model selection criteria are discussed in this chapter. The application of the model

is presented in chapter 5 and we conclude in chapter 6 with a summary of the findings and

suggest some recommendations to improve and further extend the model.
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Chapter 2

Literature Review

2.1 Introduction

This literature review is an overview of some of the models that were used previously to fit

discrete-valued time series data. Due to the large number of models, we narrowed our focus in

this review to models fitting similar forms of data and models from which our model has been

expanded. Both advantages and disadvantages of each methodology are discussed next to the

model’s summary and outcomes.

As mentioned before, Box and Jenkins’ models cover continuous-valued time series data but

are not able to model discrete-valued time series. Therefore, the latter has been studied from

different perspectives in the literature. We first look at several discrete-valued time series mod-

els built using different types of mixing schemes then we examine closely the binomial thinning

operator along with the different models developed using this particular operator. A brief defini-

tion of each model/operator is included in the review along with a summary of its specification,

advantages and drawbacks. We conclude the review by a brief definition of Pegram’s operator

on which our model is built and a discussion on models that appeared in the literature that are

aimed at fitting a similar type of data.

2.2 Background

2.2.1 Discrete-Valued Time Series Models

Among several methods used to create discrete-valued time series models and more specif-

ically, binary autoregressive processes, we mention ”Addition mod 2” which is a stochastic

operator proposed by Kanter (1975). Given a set of independent 0 - 1 random variables and

kth order Markov Chain with state space {0, 1}, the operator assigns different probabilities to

different values of the process. Therefore if Xn is the set of independent binary random variables

with P (Xn = 1) = β and Yn is the kth Markov process after n periods, then

3



Yn =

{
Xn with a probability p0

Xn ⊕ Yn−j with a probability pj for 1 ≤ j ≤ p
(2.1)

In this case ⊕ denotes ”Addition mod 2”. Kanter shows that this stochastic operator gen-

erates a stationary process. Morever, he looks into its covariance structure and derives several

theorems that are deemed useful in the estimation and interpretation of the parameters under

different values of beta (β = 0.5, β < 0.5, β > 0.5). Although it is well defined for the case of

independent Bernoulli trials as well as for a more general case, this process cannot be applicable

to categorical data as the operator used can only be manipulated arithmetically.

Jacobs & Lewis (1978a) consider a mixture as well to model discrete-valued time series.

The special case of their model is binary too. However, the approach is different than Kanter’s

whereby they use a probabilistic linear model to build the process. Also, the set of independent

random variables is spread over a wider discrete space and follows any discrete distribution.

The model is derived given both a specified marginal distribution and a correlation structure

and is called discrete mixed autoregressive moving average (DARMA). Therefore if Xn is the

set of discrete independent random variables having each a certain distribution, the stationary

process of dependent random variables is obtained using several other independent sequences.

Let Un and Wn be two independent sequences of independent 0 - 1 random variables such that

P (Wn = 1) = α and P (Un = 1) = β for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Also, let Zn be a sequence

of i.i.d. random variables taking values 0,1,2,...,N. Then Yn, which is the stationary process of

dependent random variables, will be constructed under the following model, for n = 1, 2, ...:

Yn = WnXn−Zn + (1−Wn)Sn−(N+1)

Sn = UnSn−1 + (1− Un)Xn

(2.2)

This model is called DARMA(1, N + 1). Properties and inferences of this model are drawn

in Jacobs & Lewis (1978b). Later, Jacobs and Lewis extended the special case of this model

which is DAR(1). In a third paper (Jacobs & Lewis, 1978c), they construct an autoregressive

process for representing a stationary sequence of discrete random variables with p-th order

Markov dependence. The process is called mixed p-th order discrete autoregressive (DAR(p)).

Similarly to DARMA(1, N + 1), it is specified by a marginal distribution and a correlation

structure and defined using several sequences of independent random variables. Let Xn be a

sequence of i.i.d. random variables and Yn a sequence of independent 0 - 1 random variables

such that P (Yn = 1) = 1 − P (Yn = 0) = β for 0 ≤ β < 1. In addition, let Vn be a sequence

of independent random variables such that P (Vn = i) = αi where i = 1, 2, ..., p, αi ≥ 0, and∑p
i=1 αi = 1. Then for n = 1, 2, ...:

Zn = YnZn−Vn + (1− Yn)Xn (2.3)

In the above definition, Zn is called DAR(p). Jacobs and Lewis extended the DARMA(1, N+1)

4



to develop DARMA(p,N + 1) and NDARMA(p,N) and discussed some of their properties

(Jacobs & Lewis, 1983). Note that, the structure of the models developed by Jacobs and

Lewis allows for the time indices to be a sequence of independently and identically distributed

random variables. This representation is not appropriate for modeling time series observed at

deterministic time points. As a result, the model interpretation becomes problematic and the

process differs from Box and Jenkins ARMA structure.

2.2.2 Thinning Operator

The thinning operation is one of the most popular means of building discrete-valued time

series models. More specifically, the binomial thinning operator has been used and extended to

construct several types of integer-valued processes. The thinning operator originates from the

discussion on self-decomposability and stability of discrete-valued time series in Steutel and van

Harn (1979) and is defined as follows:

Let X be a non-negative integer-valued random variable; then for any α ε [0, 1] the operator is

defined by

α ◦X =

X∑
i=1

Yi (2.4)

where ”◦” is the thinning operator and Yi is a sequence of i.i.d. Bernoulli random variables such

that P (Yi = 1) = 1−P (Yi = 0) = α. Note that 0 ◦X = 0, 1 ◦X = X, and E(α ◦X) = αE(X).

Poisson Integer-Valued processes

The thinning operator has been used in many discrete-valued time series models having

different discrete marginal distributions. One example is the first-order integer-valued autore-

gressive (INAR(1)) process discussed in Al-Osh & Alzaid (1987). The model uses the binomial

thinning operator to construct the discrete version of AR(1) process which is defined as follows

Xt = α ◦Xt−1 + εt (2.5)

where α ∈ [0, 1] and εt is a sequence of uncorrelated non-negative integer-valued random vari-

ables having mean µ and finite variance σ2. In the traditional Box-Jenkin’s AR(1) model, the

current observation, Xt, is made up of the fraction of the previous observation, αXt−1, plus a

random innovation, εt. Since the sample space is made of real numbers, the lagged term is sim-

ply Xt−1 multiplied by α, where α represents the correlation coefficient and is usually restricted

to −1 < α < 1 (Box & Jenkins, 1976). However, when the sample space is made of integers,

the approach under the thinning operator is to replace the scalar multiplication, αXt−1, with

the operation defined in (2.4), α ◦ Xt−1, then add the random innovation εt. The purpose of

the operator is to ”thin out” Xt−1. For example, in the case of binomial thinning, the operator

is defined as follows; given Xt−1, α ◦ Xt−1 =
∑Xt−1

i=1 Bit, where B1t, B2t, ..., BXt−1t are i.i.d.

Bernoulli random variables with P (Bit = 1) = 1−P (Bit = 0) = α. It follows that α ◦Xt−1 has

5



a binomial distribution with Xt−1 trials and probability of ”success” α since it is a sum of Xt−1

Bernoulli random variables. The process is also referred to as a birth-death process in which

the number of people at time t, i.e. Xt, is the number of survivals represented by α ◦Xt−1 with

a probability of survival α added to the number of newborn at time t given by the innovation

term εt. Correlation structure and distributional properties are discussed in Al-Osh & Alzaid

(1987) and shown similar to the Gaussian AR(1). In addition, several methods of parameter

estimation are presented such as Maximum Likelihood Estimation (MLE). An illustration of

the different methods of parameter estimation was given when the innovation term followed a

Poisson distribution. Inference on this particular process (Poisson INAR(1)) is developed in

Freeland & McCabe (2004a) in which new expressions of the score function and the information

matrix are derived which led to the construction of new types of residuals. As a result, several

ways of assessing the model were derived in this paper including formal tests and graphical

analyses. Freeland and McCabe used the conditional probability of Xt given Xt−1 to derive the

expressions mentioned earlier. The conditional probability is given by the convulotion of the

two random components, α ◦Xt−1 and εt, and is defined by

p(Xt|Xt−1) =

min(Xt,Xt−1)∑
s=0

(
Xt−1

s

)
αs(1− α)Xt−1−s × e−λλXt−s

(Xt − s)!
(2.6)

where () is the standard combinatorial symbol. Since the model is Markovian, the likelihood

function would be formed by the product of p(Xt|Xt−1). The authors also studied forecasting

methods under the Poisson INAR(1) in Freeland & McCabe (2004b) using the median of the

k-step-ahead conditional distribution. The methods were applicable to low count time series

data such as wage loss claims. The INAR(1) was later extended to higher orders (INAR(p))

in Alzaid & Al-Osh (1990) where they presented it in the following way

Xn =

p∑
i=1

αi ◦Xn−i + εt for n = 0,±1,±2, ... (2.7)

where the α′is for i = 1, 2, ...p are non-negative constants such that
∑p

i=1 αi < 1. Some of

the similarities with Gaussian AR(p) process are not extended with higher orders such as the

behaviour of the correlation which actually looks like a standard ARMA(p, p− 1). In addition,

INAR(p) does not have the Markovian property and also differs from the Gaussian AR(p) in

terms of the regression. The main similarity that holds for any order relies in the form of the

process. In terms of parameter estimation, no illustration was presented but it is noted that

using MLE to estimate the INAR(p)′s could be complicated. Bu & McCabe (2008) developed

a likelihood based Markov Chain approach for estimation, forecasting, and model selection for

INAR(p) suitable for time series count data. The work done was an extension of Freeland &

McCabe (2004b) in which coherent forecasts were developed for higher order INAR processes.

Parameter estimation is done using Conditional Maximum Likelihood. In terms of forecasting,

the authors develop an approach to produce k-step-ahead forecasts of the conditional prob-

6



ability distribution using the transition probability function of the INAR(p) process. They

assessed the parameter uncertainty by computing confidence intervals for probability forecasts

and developed new model selection tools using residual processes. It is important to note that

there are two main restrictions in the INAR(p) process; one is on the innovation term, εt, and

the other on the correlation coefficients, α′is. Both terms must take positive values which limits

the application of the process to only positively correlated integer-valued data. In addition the

estimation, inference, and forecasting of the process were only applicable to count data, more

specifically Poisson distributed time series data.

McKenzie (1988) developed a wider range of Poisson processes besides the AR(1). The class of

models developed in this paper includes the moving-average component as well as an extension

to higher-order processes. Hence, models such as MA(q) and ARMA(1, q) were derived and

their properties were discussed in detail such as time-reversibility and asymptotic behaviour.

Note that McKenzie did not extent AR(1) to a higher order.

Other Integer-Valued processes

The binomial thinning operator was also used to develop processes with other discrete

marginal distributions. McKenzie (1986) developed a combination of AR, MA, and ARMA

processes to model sequences of dependent discrete random variables having negative binomial

and geometric distributions. The models are found to be analogue to their continuous version,

gamma and negative exponential. Those continuous models mirror the well-known standard

Gaussian ARMA processes. Inferential problems are not addressed as the paper focuses on the

derivation of each process and studies in depth the similarities between the discrete and the

continuous version of the models as well as the interval processes.

Extension of the thinning operator

Joe (1996) extended the binomial thinning operator to include all distributions in the family

of convolution-closed infinitely divisible class. This class includes but is not limited to gamma,

inverse Gaussian, Poisson, negative binomial, and generalized Poisson margins. Note that the

Gaussian is considered to be a special case in these models. To define an infinitely divisible

distribution we consider a random variable X having a probability distribution F , X ∼ F . Then

for every positive integer n, n ∈ N, there exist n i.i.d. random variables, X1, X2, ..., Xn, such

that Y =
∑n

i=1Xi is equal in distribution to X, i.e. the sum follows the same distribution as X,

Y ∼ F (Steutel , 1979). This means that if the innovations of the processes were added together

they would remain in the same distribution. Joe developed AR, MA and ARMA models of

arbitrary orders and discussed their special cases. He also mentioned the possible extension to

non-stationary AR processes. The marginal distributions of the processes covered in this paper

are used either for count data (Poisson, negative binomial, or generalized Poisson margin) or

for positive response variable (gamma or inverse Gaussian). Joe constructed a generalized form

7



of AR(1) with marginal distribution Fθ and autocorrelation 0 < α < 1 as follows:

Yt = At(Yt−1) + εt (2.8)

where the innovations εt are i.i.d. following an F(1−α)θ distribution for all t and {At : t ≥ 1}
are independent replications of the operator A. The author discussed the special cases of this

model under the different marginal distributions mentioned above. It is noted that when Fθ

is Poisson(θ) the resulting process is the one that appeared in McKenzie (1988) and Al-Osh &

Alzaid (1987). However, when Fθ is negative binomial, the process obtained differs from the

one developed in McKenzie (1986). Joe also extended the model to higher order AR processes

by defining AR(2) as follows:

Yt = At(Yt−1, Yt−2) + εt (2.9)

The extension is based on an operator applied to a vector of p random variables. This

approach differs from the extension suggested by Alzaid & Al-Osh (1990) which was based on

the sum of operators applied to different random variables. Joe studied in detail the properties of

AR(2) noting that the generalization to AR(p), p > 2, is straightforward using the multivariate

extension of the convolution-closed infinitely divisible univariate family but the notation cannot

be simplified. Note that the Binomial distribution is not part of this family of distributions;

hence this case was excluded from Joe’s extension. In addition to that restriction, the models

studied in Joe’s paper are only suitable for positively correlated data; either count data or

positive response variable can be modeled under this extension of the thinning operator.

True Integer Value Time Series model

Freeland (2010) extended the autoregressive process developed in Joe (1996) and constructed

the True Integer Value Time Series of order one (TINAR(1)) which is a discrete valued station-

ary symmetric AR(1) model having either negative or positive autocorrelation. The innovations

are distributed on both the positive and negative integers. In Freeland’s model the innovations

follow a symmetric distribution, more specifically their distribution is built by taking the differ-

ence between two i.i.d. Poisson random variables which is called the Skellam distribution. This

is also the distribution for the innovations of our model which will be defined and discussed

in detail in chapter 3. Freeland studied the model’s basic properties as well as the parameter

estimation by conditional least squares. In order to construct TINAR(1), the author defined

a new operator ”?”. Let Zt be the difference of two latent i.i.d. Poisson random variables, Xt

and Yt. Then the operator would be defined as

α ? Zt|Zt = α ◦Xt − α ◦ Yt|Xt − Yt (2.10)

where 0 < α < 1 and ”◦” is the binomial thinning operator. TINAR(1) process is then defined

by

Zt = α ? Zt−1 + εt (2.11)
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where Zt is an integer valued stochastic process and ”?” is the operator defined in (2.10) by

replacing t by t− 1. For the negative correlation the process would be defined as

Zt = α ?−Zt−1 + εt (2.12)

given the same specifications of α and Zt. TINAR(1) is also seen as the difference between two

latent independent Poisson INAR(1). It follows that the process preserved some important

properties from INAR(1) such as being ergodic and strongly stationary and could be extended

to other processes having a Skellam marginal distribution such as MA(q), ARMA(1, q), and

ARMA(p, p-1). One main limitation of this model is the fact that it is defined in terms of a

latent process which makes higher order TINAR models difficult to use.

2.2.3 Pegram’s Operator

A more flexible operator which allows the construction of Box and Jenkins’ type ARMA

models is Pegram’s operator, (Pegram, 1980). The operator will be defined and discussed in

detail in Chapter 3, prior to defining our model. At this point, we will discuss briefly the mod-

els developed by Biswas & Song (2009) using this operator to model binomial and categorical

data that were excluded from Joe’s extension of the thinning operator since they weren’t in-

finitely divisible, (Joe, 1996). Pegram’s operator’s flexibility lies in the marginal distribution;

the operator does not impose any restrictions on the margins. It was originally proposed to

develop AR processes. Biswas and Song extended the operator and developed discrete-valued

ARMA processes with arbitrary discrete marginal distributions. More specifically, the authors

developed AR(p), MA(q), and ARMA(p, q) processes as well as discussed different methods

for parameter estimation including maximum likelihood. Biswas and Song conducted a simu-

lation study to compare AR(1) processes developed by the thinning operator and by Pegram’s

operator. They concluded that neither of the operators outperforms the other unless the data

generation mechanism is similar to Pegram’s mechanism (for e.g. Xt = Xt−1 for a large portion

of the data points); then in that case AR(1) under Pegram’s operator is better. However, there

are two main advantages in using Pegram’s operator; one is the absence of restrictions for the

type of discrete-valued time series data and the other the flexibility in building higher order

processes. For these two reasons, we build our model using Pegram’s operator.

2.2.4 Models for stock price change data

Modeling stock price change data has received a lot of attention recently. We are looking

specifically at a discrete type of data in which the stock price is recorded after each transaction

during the day. Engle & Russel (1998) developed a complex model, Autoregressive Conditional

Duration (ACD) process, which aims at fitting positive and negative integer-valued time series

and applied their model to a financial data which is the price change in each transaction of

IBM stock. The ACD is an approach to model irregularly spaced transactions and the focus

is therefore on the expected duration between the events. More specifically, the model derives
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the density of the duration at time t conditional on past durations. The main variable in the

ACD model is then the arrival time and other variables could be associated to the model such

as price and volume. Our model is focused on the price change and we look at the conditional

probabiliy of the price change at time t given past observations; volume and duration are two

covariates added to the variance term of our innovations. Russel & Engle (1998) developed

another model applicable to financial data in which the price of the stock is dependent on both

previous events and the historic distribution, they called their model the Autoregressive Con-

ditional Multinomial (ACM) process. Both the ACD and ACM were later combined in Russel

& Engle (2005) to develop one model, Autoregressive Conditional Multinomial-Autoregressive

Conditional Duration model (ACM-ACD), in which the price change distribution is conditional

on past information as well as on the duration between transactions. The price change covered

is limited to a maximum of two-ticks jump (5 states) which means that large values of price

change are not taken into consideration. The authors included the duration between transac-

tions in their model but excluded large price changes. Moreover, the models developed involve

a large number of parameters to estimate. For instance, in Russel & Engle (1998), the number

of parameters estimated for ACM(2,2,2) is 46 after applying a restriction and consequently re-

ducing the number of estimated parameters.

In Freeland (2010), the model is applied to a discrete stock price change data for one day.

Freeland excluded both duration and large price changes from his model as they had insignif-

icant impact on the price change for that day. However, he presented a much simpler model

with only two parameters to be estimated.
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Chapter 3

The Model

In this chapter we define and discuss the properties of our AR model; we present the model

in three variations. We start by defining Pegram’s operator which we use to build our model and

we compare this operator with the binomial thinning operator by studying two Poisson AR(1)

models, one constructed using Pegram’s operator and the other using the binomial thinning

operator. We then define the distribution of the innovations, the Skellam distribution, and we

derive the first variation of our model which is its simplest form, excluding outliers in the data.

We discuss some of the model’s properties and derive some useful expressions and present briefly

an extension to this model. The other two variations are defined at the end of this chapter,

one includes a covariate that relates the large price changes to the volume of the trade and the

other adds a covariate to account for the duration between each transaction and also related to

large price changes.

3.1 Pegram’s Operator

3.1.1 Definition

The Pegram operator or mixing operator will be denoted by ”∗” and is defined as follows.

For any two independent discrete random variables U and V over the same sample space Ω and

any coefficient α ∈ (0, 1), the Pegram operator mixes the two random variables to produce a

third random variable Z. The mixing operation is denoted as

Z = (U,α) ∗ (V, 1− α) (3.1)

and the resulting marginal probability function is defined as

P (Z ∈ A) = αP (U ∈ A) + (1− α)P (V ∈ A) for all A ∈ Ω (3.2)

Note that if α = 0 then Z = V with probability 1. The operator is mixing two discrete distri-

butions with respective weights of α and 1−α. There is no restriction over the type of discrete

distributions used for V and U , only that they must have the same sample space. Furthermore,
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the sample space does not have to be integers or a subset of integers and can include categorical

sample spaces.

In this thesis we will use the integers as our sample space. Further, since our marginal dis-

tribution will be symmetric around zero, we will extend the Pegram operator to allow both

positive and negative values of our correlation parameter α. To do that, we assume three cases

of possible probability function. Let U and V be any two independent integer valued random

variables and let 0 < α < 1.

Then for Z = (U,α) ∗ (V, 1− α) the probability function is

P (Z = j) = αP (U = j) + (1− α)P (V = j), j = 0,±1,±2, . . . (3.3)

and for Z = (U,−α) ∗ (V, 1− α) the probability function is

P (Z = j) = αP (U = −j) + (1− α)P (V = j), j = 0,±1,±2, . . . (3.4)

as for Z = (−U,α) ∗ (V, 1− α) the probability function is

P (Z = j) = αP (−U = j) + (1− α)P (V = j), j = 0,±1,±2, . . . (3.5)

Thus Z = (U,−α)∗(V, 1−α) is the same as Z = (−U,α)∗(V, 1−α). As noted above, 0 < α < 1,

which means that the parameter’s value will always be positive. Therefore, in order to account

for the negative correlation, the structure of the mixing operation would differ and we would

use (3.5) to construct the model.

The conditional probability of the new random variable is a useful tool in the parameter esti-

mation that will be discussed in Chapter 4. Conditional on U and using the same case as (3.3),

the probability function the new random variable would be

P (Z = j|U) = αI[U = j] + (1− α)P (V = j), j = 0,±1,±2, . . . (3.6)

where I[B] is an indicator function taking value 1 if event B is present and 0 otherwise. This

means that the conditional probability could be constructed as follows

P (Z = j|U) =

{
α+ (1− α)P (V = j) if U = j

(1− α)P (V = j) if U 6= j
(3.7)

In order to express negative correlation, the conditional probability remains the same but the

indicator events would be U = −j or U 6= −j.
One of the nice features of Pegram’s operator is that it can be easily extended to handle more

than two discrete random variables which will later be useful in developing higher order AR

models. For instance, if we start with three discrete random variables U , V , and W , then the
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new random variable Z is defined under the mixing operator as follows:

Z = (U,α1) ∗ (V, α2) ∗ (W, 1− α1 − α2) (3.8)

and its conditional probability function is

P (Z = j|U, V ) = α1I[U = j] + α2I[V = j] + (1− α1 − α2)P (W = j), j = 0,±1,±2, . . . (3.9)

3.1.2 Comparison

We consider in this section two Poisson integer-valued AR(1) processes each constructed

using a different operator: one is the Pegram’s operator, Yt, and the other is the binomial

thinning operator, Xt. This comparison study is useful to observe how each model behaves

under different operators.

Table 3.1: Comparison between the Binomial Thinning and Pegram’s operator

Binomial Thinning Pegram’s Operator

Model Xt = α ◦Xt−1 + ωt Yt = (Yt−1, α) ? (εt, 1− α)

Innovations’ distribution ωt ∼ Poisson((1− α)λ) εt ∼ Poisson(λ)

Marginal Distribution Xt ∼ Poisson(λ) Xt ∼ Poisson(λ)

Conditional Expectation E[Xt|Xt−1] = αXt−1 + (1− α)λ E[Yt|Yt−1] = αYt−1 + (1− α)λ

We notice that the main similarities lie in the marginal distribution, both processes follow

marginally the Poisson distribution. In addition to that, the expressions of the conditional

expectations are the same. However, the innovations’ distributional specifications are different.

Although under both models the innovations are Poisson distributed, the parameters are not

the same. The most significant difference is in terms of conditional distributions, and we will

examine these graphically in a numerical example.

Suppose we have α = 0.5 and λ = 2. Then our processes marginal distribution is Poisson(2).

The innovations’ distributions are Poisson(1) for Xt and Poisson(2) for Yt. In figures 3.1, 3.2,

and 3.3 we have the plots of the marginal probability functions of Xt and Yt as well as the

conditional probability functions given three different values of Xt−1 and Yt−1; the values are 1,

3 and 5. We notice, as expected, that the marginal distribution is the same for both processes,

it is Poisson distribution. As for the conditional distribution, the model constructed under

Pegram’s operator represents more consistency among the different values given for Yt−1. The

main pattern is that Yt will most likely take a value equal to the value of Yt−1. As for the rest

of the values, the probability that Yt might take them is very small. However, for the model

built under the binomial thinning operator, this consistency does not hold; the model behaves
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differently with larger values. For small values such as in figure 3.1, Xt would most likely have

a value equal to Xt−1 but note that the probability is not as large as for the case of Yt and

that the probability of getting other values is not very small. As the value of Xt−1 gets larger,

we notice that the probability of Xt taking the value of Xt−1 becomes smaller and smaller and

the probability for other values to occur is higher than before to the point where the highest

probability is no longer assigned to Xt taking the value of Xt−1, see figures 3.2 and 3.3.

Figure 3.1: Marginal and Conditional Probability function of Xt and Yt given Xt−1 = Yt−1 = 1

Figure 3.2: Marginal and Conditional Probability function of Xt and Yt given Xt−1 = Yt−1 = 3

Figure 3.3: Marginal and Conditional Probability function of Xt and Yt given Xt−1 = Yt−1 = 5
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3.2 Skellam Distribution

For the marginal distribution of our time series model we use the difference between two

i.i.d. Poisson random variables. This symmetric distribution is studied in Irwin (1937) and fur-

ther generalized by Skellam (1946). The general case would be having two independent Poisson

random variables Z1∼Po(λ1) and Z2∼Po(λ2) and taking their difference. Then D = Z1 − Z2

follows a Skellar distribution with parameters λ1 and λ2. The mean and variance would respec-

tively be λ1 − λ2 and λ1 + λ2. Note that in the special case where we have two i.i.d Poisson(λ)

random variables, the Skellam distribution would have a mean equal to zero and a variance of

2λ. As stated previously, we will be working with this special case of Skellam distribution.

Suppose that our time series is denoted by Yt, which is symmetrically distributed over the

integers and has a marginal probability function which is time-dependent. We will denote the

probability function as pj(λ) = P (Yt = j) = P (Yt = −j) for j = 0, 1, . . . , which has the

following form

pj(λ) =
∑∞

x=0
e−2λλ2x+j

x!(x+j)!

= e−2λIj(2λ),

(3.10)

where x is the difference between the two i.i.d. Poisson random variables, λ is the sole param-

eter of the distribution and Ij(2λ) is the modified Bessel function of the first kind of order j

with argument 2λ. We will call this the Skellam distribution with parameter λ. Note that the

moment generating function of this distribution is MD(s) = eλ(e
s+e−s−2).

The probablity distribution for different values of λ is presented in the histogram in figure 3.4.

Figure 3.4: Probability function for Skellam distribution
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3.3 Variation I

We now define our integer-valued AR(p) process, which is essentially a special case of the

discrete-valued AR(p) process of Biswas & Song (2009). As noted before this is the simplest

form of our model in which the variance of the innovations, 2λ, is constant and does not depend

on t. This means that we are assuming the variation in the stock price change is not related

to either the volume of the trade or the duration between trades. We will discuss some of the

model’s properties and conclude this section by an important extension of our model.

3.3.1 Definition

Suppose that Yt is an integer valued time series and that εt’s are i.i.d. random variables

following the Skellam distribution with parameter λ. Respectively, denote µ and σ2 the mean

and variance of the Skellam distribution. It follows that µ = 0 and σ2 = 2λ. The probability

function of the marginal distribution is denoted by pyt .

Definition 1 Let Yt be an integer-valued discrete-time stochastic process such that

Yt = (Yt−1, α1) ∗ (Yt−2, α2) ∗ · · · ∗ (Yt−p, αp) ∗ (εt, 1− α1 − · · ·αp) (3.11)

which is a mixture of p+ 1 discrete distributions, where conditionally Yt−1, . . . , Yt−p are p point

masses and εt has a Skellam distribution with parameter λ, with respective weights α1, . . . , αp

and 1 − α1 − · · · − αp, αk ∈ (0, 1), k = 1, . . . , p and
∑p

k=1 αk ∈ (0, 1). This implies that for

every t ∈ 0,±1,±2, . . . , the conditional probability function is

P (Yt = yt|Yt−1, . . . , Yt−p) = α1I[Yt−1 = yt]+ · · ·+αpI[Yt−p = yt]+(1−α1−· · ·−αp)pyt (3.12)

where αk, k = 1, . . . , p are such that 1−α1z− · · · −αpzp = 0 has roots outside of the unit disc.

3.3.2 Properties

Marginal Stationarity

Biswas & Song (2009) note that the marginal distribution of Yt is the same as εt, which in our

case is a Skellam distribution with parameter λ. Note that if P (Yt−h = j) = pj for h = 1, ..., p,

then P (Yt = j) = pj , which implies marginal stationarity. This means that, marginally, Yt ∼
Skellam(λ).
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The conditional mean

Denoting pyt as the marginal distribution defined in (3.10), the conditional mean is derived

as follows

E[Yt|Yt−1, . . . , Yt−p] =
∑
yt

ytP (Yt = yt|Yt−1, ..., Yt−p)

=
∑
yt

yt{α1I[Yt−1 = yt] + ...+ αpI[Yt−p = yt] + (1− α1 − ...− αp)pyt}

= α1Yt−1 + ...+ αpYt−p + (1− α1 − ...− αp)
∑
yt

ytpyt

= α1Yt−1 + ...+ αpYt−p + (1− α1 − ...− αp)E(Yt)

= α1Yt−1 + ...+ αpYt−p

=

p∑
k=1

αkYt−k

(3.13)

The autocorrelation function

Given that Yt and Yt−h are uncorrelated when Yt−1, ..., Yt−p are conditionally given, the

autocovariance function (ACVF) is

γ(h) = E[cov(Yt, Yt−h|Yt−1, ..., Yt−p)] + cov[E(Yt|Yt−1, ..., Yt−p), E(Yt−h|Yt−1, ..., Yt−p)]

= cov(
∑p

k=1 αkYt−k, Yt−h)

= α1cov(Yt−1, Yt−h) + ...+ αpcov(Yt−p, Yt−h)

= α1γ(h− 1) + ...+ αpγ(h− p)
(3.14)

Dividing both sides of (3.14) by γ(0), we obtain a recursive relation for the autocorrelation

function (ACF)

ρ(h) = α1ρ(h− 1) + ...+ αpρ(h− p) (3.15)

Note that the ACF we obtain is similar to Box and Jenkins’ AR(p) ACF. For instance, the

ACVF of an AR(1) process is

γ(h) = cov(Yt, Yt−h) = α|h|σ2,
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consequently the ACF is

ρ(h) = corr(Yt, Yt−h) = α|h|

which is the same as the ACF of a Box and Jenkins’ AR(1) process.

The moment generating function

MYt|Yt−1...Yt−p(s) =
∑
esytP (Yt = yt|Yt−1, ..., Yt−p)

=
∑
esyt{α1I[Yt−1 = yt] + ...+ αpI[Yt−p = yt] + (1− α1 − ...− αp)pyt}

= α1
∑
esytI[Yt−1 = yt] + ...+ αp

∑
s e

sytI[Yt−p = yt] + (1− α1 − ...− αp)
∑
esytpyt

= α1e
sYt−1 + · · ·+ αpe

sYt−p + (1− α1 − · · · − αp)Mε(s)

(3.16)

where Mε(s) is the moment generating function of the Skellam distribution and has been defined

in section 3.2. Since the Skellam distribution is symmetric around zero, we have the added

feature that the lags may also have a negative correlation. To accomplish this we continue to

let the α′ks denote the mixing weights and simply change the sign of the lagged value of Yt

in our model. This has been show in section 3.1 and will be illustrated in a simple numerical

example.

Example

We will first consider two AR(1) processes, one with a positive correlation and the other

with a negative correlation. We will define them and look at each model’s properties. Then

we will consider a numerical example in which we use an AR(2) process having one positive

correlation and one negative correlation.

Starting with AR(1) where we have a lag one positive correlation. The process is defined

as follows:

Yt = (Yt−1, α) ∗ (εt, 1− α), (3.17)

with the following conditional probability function,

P (Yt = yt|Yt−1) = αI[Yt−1 = yt] + (1− α)pyt (3.18)

The properties of the model are:

(i) Conditional mean: E[Yt|Yt−1] = αYt−1

(ii) Autocorrelation function: ρ(h) = (α)|h|

(iii) Moment generating function:MYt|Yt−1
(s) = αesYt−1 + (1− α)Mε(s)
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If AR(1) had a lag one negative correlation, it would be defined by

Yt = (−Yt−1, α) ∗ (εt, 1− α), (3.19)

with the following conditional probability function,

P (Yt = yt|Yt−1) = αI[Yt−1 = −yt] + (1− α)pyt (3.20)

As for the properties of this model, they are:

(i) Conditional mean: E[Yt|Yt−1] = −αYt−1
(ii) Autocorrelation function: ρ(h) = (−α)|h|

(iii) Moment generating function:MYt|Yt−1
(s) = αe−sYt−1 + (1− α)Mε(s)

As a numerical example, consider an AR(2) model where the second lag has a negative

correlation and the first lag has a positive correlations. Suppose the correlations are respec-

tively 0.5 and -0.3. The mixing weights for this model are then 0.5, 0.3 and (1 - 0.5 - 0.3)=0.2

and the model is written as

Yt = (Yt−1, 0.5) ∗ (−Yt−2, 0.3) ∗ (εt, 0.2) (3.21)

The conditional probability function is

P (Yt = yt) = 0.5I[Yt−1 = yt] + 0.3I[Yt−2 = −yt] + 0.2pyt , (3.22)

and the model’s properties are:

(i) Conditional mean: E[Yt|Yt−1] = 0.5Yt−1 − 0.3Yt−2

(ii) Autocorrelation function: ρ(h) = 0.5ρ(h− 1)− 0.3ρ(h− 2)

(iii) Moment generating function:MYt|Yt−1
(s) = 0.5esYt−1 + 0.3e−sYt−1 + 0.2Mε(s)

Both the conditional and the marginal probability functions of Yt are illustrated in fig-

ure 3.5. It has been noted earlier that the marginal distribution of Yt is the Skellam distri-

bution which explains the symmetrical shape of the graphical representation of its probability

function. In terms of the conditional probability, Yt is more likely to take values of 1 or -1 given

that Yt−1 = Yt−2 = 1; this is due to having both the negative and positive correlations. Also

note that the first lag has a larger weight which explains the higher conditional probability of

obtaining a value equal to 1 at time t as opposed to obtaining -1.
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Figure 3.5: Conditional and Marginal Probability function of Yt

3.3.3 Extension: Mixed Lag Correlation

Definition

As mentioned previously, the model is a special case of the AR(p) process proposed by

Biswas & Song (2009). This special case is quite rich because the correlation structure can be

broadened. In particular it may contain both positive and negative dependence within the same

lag. This allows more flexibility in terms of expressing the correlations properly at different lags.

Models of this form can quickly become unmanageable for higher order lags. To illustrate we

will only consider the AR(1) case.

Definition 2 Let Yt be an integer-valued discrete-time stochastic process such that

Yt = (Yt−1, α+) ∗ (−Yt−1, α−) ∗ (εt, 1− (α+ + α−)) (3.23)

which is a mixture of 3 discrete distributions, where conditionally Yt−1 and −Yt−1 are two point

masses and εt has a Skellam distribution with parameter λ, with respective weights α+, α− and

1− α+ − α−, with 0 < α+ < 1, 0 < α− < 1, and 0 < α+ + α− < 1. This implies that for every

t ∈ 0,±1,±2, . . . , the conditional probability function is

P (Yt = j|Yt−1) = α+I[Yt−1 = j] + α−I[Yt−1 = −j] + (1− α+ − α−)pj (3.24)

Model properties

Moment Generating Function

MYt|Yt−1
(s) = α+e

sYt−1 + α−e
−sYt−1 + (1− (α+ + α−))Mε(s) (3.25)
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where Mε(s) is the moment generating function for the Skellam distribution with parameter

λ.

Conditional Expectation

E[Yt|Yt−1] = α+Yt−1 − α−Yt−1 (3.26)

Autocorrelation Function

ρ(1) = α+ − α− (3.27)

Note that if α+ = α− then ρ(1) = 0 and in that case we don’t have correlation but we would

still have dependence.

3.4 Other variations of our model

The other variations of our model lie in the specification of the marginal distribution which

is the Skellam distribution. More specifically, the variance of the marginal distribution will have

a different expression in model variations II and III.

Since we are interested in the behaviour of the price change and want to specifically model

the large values of price changes, then we are looking at the variability of our random variable.

This is represented by the variance of the marginal distribution. As mentioned in Section 3.2,

the variance of our Skellam distribution is 2λ since the distribution is constructed using two

i.i.d. Poisson random variables, i.e. having the same parameter λ.

In the first variation of the model, λ was a constant parameter and did not depend on time or

any other factor. This means that at any given time (including opening or closing of the market)

and for any transaction (including large or small volumes), λ had the same value. In order to

capture the effect of these factors on the price change we need to let λ vary with duration and

volume.

3.4.1 Variation II

In this variation of the model we develop an expression in which λt is a function of the

volume as we believe that the extreme decreases or increases in the stock price are due to large

trades. Hence, λt is modeled as follows:

λt = γ + β

(
|Vt − Vt−1|
max(V ol)

)p
(3.28)

where Vt is the volume of the trade at time t and max(V ol) is a constant to be determined

based on the data set. There are two components in the new expression of λt; the first is a

constant parameter, γ and the second component which contains the additional parameter β
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Table 3.2: Stock Price Change Data

Time Volume(Vt) |Vt − Vt−1| Price Price Change

1 2681 NA 9.21 NA

2 6835 4154 9.21 0

3 150,000 143,165 9.09 -0.12

4 4352 145,648 9.20 0.11

5 3080 1272 9.20 0

depends on the size of the volume of the trade. The reason behind using the difference of the

trade volumes instead of relating the parameter directly to the volume is that a large portfolio

trade at a certain time will not only affect the price at this specific time but also the price during

the next transaction. To illustrate this we look at a small portion of a stock price change data,

table 3.2. We notice that the transaction at time t = 3 has a very large volume, V3 = 150, 000

which explains the big drop of twelve ticks in the price of the stock. However, looking at the

transaction at time 4, the price change is large but it is not associated with the corresponding

volume of the transaction, V4. In fact, the increase in the price at time 4 occurred to restore the

original level of the price of the stock. Comparing the price change and the absolute value of

the difference in the volumes of the trades, we can see that when the price change is very large,

it is associated with a large value of the difference in the volumes such as at times t = 3 and t = 4.

Another parameter appears in the second component; it is the power of the fraction, p. We

will discuss in detail how to estimate this parameter in Chapter 4. The values of p can range

from 1, where the variance and the volume would be linearly related, to 2, where the relation

is quadratic.

The way λt is defined in this model suggests that when the difference between the volume

of the trade at time t and the one at time t − 1 is large enough (greater than the pre-defined

max(V ol)), the fraction will consequently be large and β is therefore significant and has an

impact on λt. However, when the difference in the volumes is small, the fraction will be very

small and the term with β will not be significant. Hence, the value of λt will be a constant

equal to the first component of the expression, γ.

3.4.2 Variation III

In the third variation of the model, the variance is not only related to the volume of the trade

but also to the duration between two trades. It is known that the effect of closing and opening

of the market has a great impact on the price of the stock. We add a covariate to capture the
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duration between the transactions and relate it to the variance. The new expression for λt is

λt = γ + β

(
|Vt − Vt−1|
max(V ol)

)p
+ δ

(
Dt −Dt−1
max(Dt)

)q
(3.29)

where Dt is the time of the transaction; it is expressed in the number of seconds in a given day.

The duration is then expressed in terms of the difference in time between the current transac-

tion and the previous one. The value of max(Dt) is determined in the same way as max(V ol)

is determined; it is a constant chosen according the data. The power of the fraction q will be

shown to have a value of 2 according to the data we have which makes the relation between the

variance and the duration quadratic. This value could change in case we had a different set of

data. More details on this topic are discussed in chapter 4.

The idea behind the additional covariate is the same as the covariate of the volume; if the

duration is large enough, δ will be significant and will have more effect on λt. However, if the

duration is small to the point where
(
Dt−Dt−1

max(Dt)

)q
is very close to zero then there is no additional

time effect on λt. For instance, the duration between the first transaction of today and the

last transaction of yesterday is significant enough to make a difference in the value of λt which

actually explains the effect of market opening on the price of the stock resulting in a large price

change.
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Chapter 4

Parameter Estimation and Model

Selection

4.1 Maximum Likelihood Estimation

In order to get estimates for the parameters of our model we use Maximum Likelihood

Estimation (MLE). Freeland (2010) did not use this method to estimate the parameteres of

his model due to the complication of the likelihood function; he used instead Yule-Walker and

conditional least squares. In our model, the likelihood function can be easily derived along with

the log-likelihood and the score functions. MLE method in this case is not computationally

complicated and it gives a rich set of tools useful in the model selection procedure.

To construct the likelihood function, we will denote Pt(p) = P (Yt = yt|Yt−1, . . . , Yt−p) and

α = (α1, . . . , αp)
T . In our case we are basing the MLE on the conditional likelihood function,

which is

L(α, λ) = Πn
t=p+1Pt(p)

= Πn
t=p+1P (Yt = yt|Yt−1, . . . , Yt−p)

then the log-likelihood for our AR(p) model is

l(α, λ) = ln{Πn
t=p+1Pt(p)}

=
n∑

t=p+1

lnPt(p)

=

n∑
t=p+1

ln{(1− α1 − · · · − αp)pyt + α1I(yt−1 = yt) + · · ·+ αpI(yt−p = yt)}

where pyt is the marginal probability function and can be taken from any discrete valued dis-

tribution. In our case, pyt = pyt(λ) =
∑∞

x=0
e−2λλ2x+yt
x!(x+yt)!

which is the Skellam probability function.
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In order to estimate the parameters, we need to find the score functions by computing the

partial derivative of the log-likelihood with respect to each parameter. Each variation of the

model has a certain number of parameters to be estimated, and since the variance of Skellam

distribution has different specifications for each variation of the model we will consider the three

variations separately.

Note that α is a common parameter among all models. Thus to estimate any αk under any

model, the score function would be

∂l

∂αk
=

∂

∂αk

n∑
t=p+1

lnPt(p)

=
n∑

t=p+1

∂
∂αk

Pt(p)

Pt(p)

=

n∑
t=p+1

∂
∂αk
{(1− α1 − · · · − αp)pyt + α1I(yt−1 = yt) + · · ·+ αpI(yt−p = yt)}

Pt(p)

=
n∑

t=p+1

−pyt + I(yt−k = yt)

Pt(p)

(4.1)

The same procedure is followed to derive the rest of the score functions.

4.1.1 Variation I: λ

Recall that the first variation is the simplest version of the model: the variance of the

marginal distribution is constant. Thus, beside α, the parameter to estimate in this model is

λ. The corresponding score function is

∂l

∂λ
=

n∑
t=p+1

∂
∂λ{(1− α1 − · · · − αp)pyt + α1I(yt−1 = yt) + · · ·+ αpI(yt−p = yt)}

Pt(p)

=

n∑
t=p+1

(1− α1 − · · · − αp)
∂pyt
∂λ

Pt(p)

(4.2)

where
∂pyt
∂λ is the partial derivative of the Skellam probability function with respect to its

parameter λ.

∂pyt
∂λ

=
∂

∂λ

∞∑
x=0

e−2λλ2x+yt

x!(x+ yt)!

=
∞∑
x=0

e−2λλ2x+yt
(
2x+yt
λ − 2

)
x! + (x+ yt)!

(4.3)
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4.1.2 Variation II: γ and β

In the second variation of the model, the parameter λ of the Skellam distribution (i.e. the

marginal distribution) is no longer a constant and is expressed as a function of two other pa-

rameters γ and β; λt = γ + β
(
|Vt−Vt−1|
max(V ol)

)p
.

Therefore the parameters we need to estimate beside α are γ and β. Let us denote V =(
|Vt−Vt−1|
max(V ol)

)p
, then the score functions are

∂l

∂γ
=

n∑
t=p+1

(1− α1 − · · · − αp)
∂pyt
∂γ

Pt(p)
(4.4)

∂l

∂β
=

n∑
t=p+1

(1− α1 − · · · − αp)
∂pyt
∂β

Pt(p)
(4.5)

The partial derivatives are derived in the same way as
∂pyt
∂λ but in this case we replace λ with

γ + βV . Then the partial derivatives of the Skellam probability function with respect to γ and

β are

∂pyt
∂γ

=
∂

∂γ

∞∑
x=0

e−2(γ+βV )(γ + βV )2x+yt

x!(x+ yt)!

=
∞∑
x=0

e−2(γ+βV )(γ + βV )2x+yt
(

2x+yt
(γ+βV ) − 2

)
x! + (x+ yt)!

(4.6)

and
∂pyt
∂β

=
∂

∂β

∞∑
x=0

e−2(γ+βV )(γ + βV )2x+yt

x!(x+ yt)!

=
∞∑
x=0

V e−2(γ+βV )(γ + βV )2x+yt
(

2x+yt
(γ+βV ) − 2

)
x! + (x+ yt)!

(4.7)

4.1.3 Variation III: γ, β, and δ

As for the third variation, λt = γ+β
(
|Vt−Vt−1|
max(V ol)

)p
+δ
(
Dt−Dt−1

max(Dt)

)q
, thus we have one additional

score function for the additional parameter, δ. Note that the score functions of γ and β are the

same. We will denote D =
(
Dt−Dt−1

max(Dt)

)q
. Then the additional score function needed is

∂l

∂δ
=

n∑
t=p+1

(1− α1 − · · · − αp)
∂pyt
∂δ

Pt(p)
(4.8)

The partial derivatives of the Skellam probability function with respect to γ and β under the

third variation of the model are slightly different than the ones under the second variation. To

find the partial derivatives of pyt with respect to the three parameters, γ, β, and δ, we replace
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λ with γ + βV + δD.

∂pyt
∂γ

=
∂

∂γ

∞∑
x=0

e−2(γ+βV+δD)(γ + βV + δD)2x+yt

x!(x+ yt)!

=
∞∑
x=0

e−2(γ+βV+δD)(γ + βV + δD)2x+yt
(

2x+yt
(γ+βV+δD) − 2

)
x! + (x+ yt)!

(4.9)

∂pyt
∂β

=
∂

∂β

∞∑
x=0

e−2(γ+βV+δD)(γ + βV + δD)2x+yt

x!(x+ yt)!

=
∞∑
x=0

V e−2(γ+βV+δD)(γ + βV + δD)2x+yt
(

2x+yt
(γ+βV+δD) − 2

)
x! + (x+ yt)!

(4.10)

∂pyt
∂δ

=
∂

∂δ

∞∑
x=0

e−2(γ+βV+δD)(γ + βV + δD)2x+yt

x!(x+ yt)!

=

∞∑
x=0

De−2(γ+βV+δD)(γ + βV + δD)2x+yt
(

2x+yt
(γ+βV+δD) − 2

)
x! + (x+ yt)!

(4.11)

4.2 Model Selection Criteria

We look at model selection criteria under two perspectives. We examine first each variation

of the model individually to determine the best order for our AR(p) model. Then we use the

models in their most adequate order and compare the three variations to determine which one

fits best the data.

4.2.1 Order selection of AR(p)

An important issue in fitting our model to a set of data is to determine the appropriate

order p using the most effective and least biased model selection criterion. Numerous model

selection criteria for the order of AR(p) can be suggested. Some are classical and some were

developed in the literature when the classical approach performs poorly.

Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) are two clas-

sical model selection criteria widely used as order selection criteria for AR(p) models. However,

both AIC and BIC perform poorly in the context of Box and Jenkins’ ARMA models due to

overfitting issues and severe bias caused by autocorrelation. Alternative approaches to select

the best order for time series models were discussed in the literature.
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For instance, Hurvich & Tsai (1989) proposed a bias correction to AIC, AICc, defined as

the sum of AIC and a nonstochastic penalty term. The authors developed a generalized form

of AICc in Hurvich & Tsai (1993) for vector AR models containing the special case of uni-

variate AR models. AICc is applicable to Box Jenkins’ AR(p) models and was found to be a

better approach then the classical AIC. In an unpublished work, Song, Freeland and Biswas

extended the AICc to discrete-valued time series models, more specifically to determine the

order of AR(p) constructed under Pegram’s operator. By means of simulation studies, the

authors concluded that this new approach outperforms AIC and BIC in selecting the most

adequate order for the model which is in agreement with Hurvich and Tsai’s results. Note

that the biasness of AIC discussed in these papers is only in the case where we have a small

sample size or when the number of parameters is a moderate to large fraction of the sample size.

Azzam (2007) compares three different order selection criteria for AR(p) based on the idea

that all model selection criteria perform poorly in small samples. The author performs sim-

ulations to determine how each order selection criterion behaves relatively to the other. The

three approaches are Schwarz’s criterion (SC), Shao’s criterion and AIC. Azzam concluded that

for small samples SC and Shao’s are similar and they both outperform the AIC. This result

confirms the biasness of AIC in small samples and is in compliance with the results found in

the papers mentioned above. Another interesting conclusion is that for larger samples, AIC and

SC are better than Shao’s.

It is important to note that in the simulations performed in the papers discussed earlier the

largest sample size was n = 1, 000. Since our data set contains a total of more than 20, 000

transactions, this puts it in the category of large samples. Thus it is best for us to use the

classical AIC to determine the order of our AR(p) model. The formula for this criterion is

AIC = 2k − 2ln(L) (4.12)

where k is the number of parameters, n is the number of observations or the sample size and

L is the value of the likelihood function at its minimum. Normally, this value is obtained by

plugging the parameters’ estimates in the log-likelihood function.

As mentioned previously, Azzam (2007) concluded that for large samples AIC and SC are better

than the third criterion, Shao’s. Looking at the formula of SC,

SC =
kln(n)

n
− 2ln(L)

n
(4.13)

we notice that it is nothing but the BIC divided by the sample size. In fact,

BIC = kln(n)− 2ln(L) (4.14)
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Therefore we will also use BIC as an order selection criterion.

The procedure of selecting the most adequate order for our AR(p) model is to start by a

preliminary analysis of the data using the Partial Autocorrelation Function (PACF) plot to

obtain an idea about the interval of the order. Given several candidates for the order of the

model, we use AIC and BIC to choose the best model among them. The order to be chosen is

the one providing the minimal value for AIC and BIC.

4.2.2 Model Selection among the variations of the model

After determining the order of AR(p) separately under each variation, we try to determine

which variation of the model is the best fit. In order to do so, we compute the standardized

sum of squared errors (SSSE) according to this formula

SSSE =

t=n∑
t=0

(
E[Yt|Yt−1, ...Yt−p]− Yt√

2λt

)2

=

t=n∑
t=0

(
α1Yt−1 + ...+ αpYt−p − Yt√

2λt

)2

(4.15)

The conditional expectation of Yt given (Yt−1, ..., Yt−p) was derived in Chapter 3. We took the

standardized error because the variance of our marginal distribution is not constant and varies

with time. Therefore, dividing by the standard deviation would give a more accurate error

term.

The variation of the model with the smallest SSSE would be the best fit for the data.

In a second stage, we examine the residuals’ diagnostic plots. We focus on the time series

plots, the ACF (Autocorrelation Function) and the PACF plots of the standardized residuals.

We determine how well each model behaves based on the residuals.
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Chapter 5

Application

5.1 Data analysis

The data to which we fit our model is composed of the stock price change during the finan-

cial transactions of an Australian firm, Broken Hill Proprietary (BHP) Limited. The price of

the stock is observed and recorded each time a stock is traded and this could happen hundreds

of times in a day. Our Yt is then the change in stock price for the tth trade of the month.

BHP was incorporated in 1885 and operated in the mining of silver and lead at Broken Hill,

which is in western New South Wales, Australia. In 2001, BHP merged with the British-Dutch

company Billiton to form BHP Billiton, which is the world’s largest mining company. In August

2010, the company offered an all cash-bid for the Canadian fertilizer producer, PotashCorp lo-

cated in Saskatchewan, worth about $40 million. According to the Conference Board in Canada,

if the takeover occurs, Saskatchewan government revenues will be cut by at least $2 billion. Af-

ter a series of negotiations, the offer is rejected and BHP Billiton withdrew the bid in November

2010.

Freeland (2010) examined the same data for the day of October 1, 2001. He noted that the

transactions occurring in that day did not present any particular relationship with the duration

or the volume of the transactions. The duration ranged from 1 second to 8 minutes and most

of the trade volumes are less than 10,000 shares.

We will look at the entire month of October, there are 20,524 trades recorded in total. The

average stock price for this month is $9.16 and the standard deviation is $0.24. The histogram

of the stock price changes is presented in figure 5.1. The histogram shows a relatively symmetric

data with most of the price changes being zero. In fact, 69.79% of the transactions occurred

with an unchanged stock price. 14.35% moved up one tick while 14.48% moved down one tick.

Also, 0.59% moved up by two ticks while and 0.51% moved down by two ticks. Note that

having the frequency of up and down movements almost equal makes the data close enough

to a symmetrical distribution. As for movements of higher values, 0.29% of the changes are

greater than or equal to three ticks. In terms of duration the range is from 1 second to 2.8 days
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and the difference in the volumes of the trades between time t and time t− 1 ranged from 0 to

4,997,003 shares. This preliminary analysis of the data suggests that there should be a certain

relationship between the price change and the duration and difference in the volume between

two trades.

Figure 5.1: Histogram of Stock Price Changes

5.2 Parameter Estimation and Order Selection

5.2.1 Variation I

In this variation of the model, the outliers are not modeled and therefore for fitting this

particular model, outliers have been excluded from the data. By outliers we mean all price

changes that are greater than 3 ticks, i.e. Yt > 3 and Yt < −3. Although the number of outliers

represents a very small portion of the data, their impact is still significant. We confirm this by

comparing the behaviour of the data set with and without the outliers.

We then estimate the parameters and explain the procedure followed as well by the assumptions

taken. Finally, using PACF, AIC and BIC we decide which order is the best for this model.

Excluding Outliers

Out of the 20,524 trades, 41 trades result in a stock price change greater than ±3. This

number of outliers seems to be small since it barely constitutes 0.2% of the complete data.

However, if we examine some factors we find that the presence of the outliers in the data makes

a significant difference. We will refer to the two data sets as: complete data (which includes

the outliers) and modified data (which excludes the outliers).
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We first look at the estimates of the parameters. Note that the method of estimation is simpli-

fied here and merely serves the purpose of comparison between the two sets of data. A more

specific method of estimation will be outlined later in this section and will be used to estimate

the parameters and select the best model. We compare the parameter estimates for three mod-

els: AR(1), AR(2) and AR(3) for both the complete and the modified data in table 5.1. The

estimation here treats the data as one group and does not take into account each day separately,

more details on this topic will follow in this section. In addition, the starting values used to find

MLE’s are the estimates of the parameter using Yule-Walker approach. We notice that values

of α′ps are identical for both sets of data with a possible difference in the third digit. However,

in the estimates of λ we have a significant difference. This difference is due to the reduced vari-

ability in the data with the absence of outliers. As noted previously, the variance of the skellam

distribution is 2λ. Since this variance is decreased in the modified data so does the estimate of λ.

The absence of these outliers has also an impact on PACF. Figures 5.2 and 5.3 show the

respective plots of the PACF of the complete and modified data. Similarly to the parameter

estimation, those plots are only used for comparison reasons not for model selection purposes.

The PACF plot will be later constructed differently to obtain some candidates for the order of

our model. The plots shown below represent the partial autocorrelation computed when the

data is considered as one entity.

For the complete data, the partial autocorrelation vanishes after the third lag. As for the data

without the 41 oultiers, the partial autocorrelation is significant for a larger number of lags and

does not vanish until the sixth lag. This affects the procedure of model selection since the order

of the AR(p) will be different for each set of data.

One last note is that after excluding the outliers we remain with 20,483 data points out of

which 69.92% correspond to an unchanged price. 14.37% correspond to a one tick up move and

14.51% to a one tick down move and 0.59% to a two ticks up move and 0.50% to a two ticks

down move.

Table 5.1: Comparison of the estimates of the complete and modified data

Complete Data Modified Data

λ α1 α2 α3 λ α1 α2 α3

AR(1) 0.2021 0.2263 0.1787 0.2187

AR(2) 0.2020 0.2299 0.0638 0.1756 0.2222 0.0617

AR(3) 0.2032 0.2299 0.0664 0.0299 0.1746 0.2219 0.0642 0.0288
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Figure 5.2: Partial Autocorrelation Function of the complete data

Figure 5.3: Partial Autocorrelation Function of the modified data
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Parameter Estimation and Order Selection

A first step in the procedure of parameter estimation and order selection is to compute and

plot the PACF, this will give us an idea of the maximum order the model might take, pmax.

Based on the analysis of the plot, we fit several AR(p) for all orders p such that p = 1, ..., pmax

and compute AIC and BIC for each model. The order selection takes place at this stage, where

we examine the values of AIC and BIC and choose the order that gives the smallest value for

these model selection criteria.

Before showing the results of the estimation and the order selection, we explain how the data

was managed to produce the most accurate results. We assume that there is no correlation

between the days in the month of October. This means that the value of Yt depends on previ-

ous values of the price change, Yt−1, Yt−2, ..., for a given day and could not depend on previous

values of the price change from previous days. Therefore, after removing all outliers, we divide

the data into smaller portions according to the number of days in which transactions are taking

place. Hence, excluding the week-ends during which the company is closed and no transactions

are taking place, we have 23 days of activity.

We plot the PACF for each day separately, figures 5.4 and 5.5, and we also plot the weighted

average PACF, figure 5.6, which should give us an idea about the range of the possible orders

of the model. Note that the first three lags are significant in almost all days. PACF’s for some

of the days suggest a higher order such as October 5, 15 and 25, 2001. Other PACF’s suggest

a smaller model such as October 1 and 4, 2001.

We can see that there is a well diversified correlation structure among the days in the month

of October. The best way to group these results into one PACF plot is by computing their

weighted average according to the number of transactions happening in each day. We obtain

the weighted PACF in figure 5.6. This plot suggests a maximum order for AR(p) equal to 6.

This means that we will be fitting models for orders ranging from 1 to 6.

Table 5.2 is a summary of the MLE estimates of the parameters and table 5.3 shows the values

for AIC and BIC for each order. The model selected is of order 3.
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Figure 5.4: Partial Autocorrelation Function for each day, excluding outliers (a)
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Figure 5.5: Partial Autocorrelation Function for each day, excluding outliers (b)
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Figure 5.6: Weighted Partial Autocorrelation Function (excluding outliers)

Table 5.2: MLE estimates for Variation I

λ α1 α2 α3 α4 α5 α6

AR(1) 0.1782 0.2197

AR(2) 0.1751 0.2234 0.0592

AR(3) 0.1744 0.2232 0.0614 0.0234

AR(4) 0.1743 0.2232 0.0615 0.0236 0.0025

AR(5) 0.1742 0.2232 0.0614 0.0236 0.0026 0.0019

AR(6) 0.1741 0.2232 0.0614 0.0235 0.0026 0.0020 0.0016

Table 5.3: Order Selection for Variation I

AIC BIC

AR(1) 33516.57 33532.41

AR(2) 33288.06 33311.82

AR(3) 33254.43 33286.11

AR(4) 33255.79 33295.39

AR(5) 33255.79 33295.39

AR(6) 33255.79 33295.39
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5.2.2 Variation II

Here we let the variance λ vary with time which allows us to include outliers. This does not

actually mean that all values of Yt are considered. In fact, some large values of Yt are not the

result of a large trade but rather the effect of the market opening. Those data points corre-

spond to the first transaction of the day and they are still excluded from the model at this point.

We examine the individual PACF’s for each day, figures 5.7 and 5.8, as well as the weighted

PACF, figure 5.9. Comparing figures 5.4 and 5.5 with figures 5.7 and 5.8, the differences are

obviously insignificant for the days that originally did not include any large price changes.

However, we can see that the PACF’s for the days having large-volume transactions show some

differences. For instance, PACF for October 9, 11, 15 and 23 showed a more significant auto-

correlation for higher lags. This result is in compliance with the comparative analysis between

the complete and modified data discussed in section 5.2.1.

If we examine the weighted PACF plot in figure 5.9, the maximum order suggested is 6. There-

fore we will fit six models and choose among them the one with the smallest AIC and BIC.

Let us recall the expression of λt under this model:

λt = γ + β

(
|Vt − Vt−1|
max(V ol)

)p
We already noted that we must specify a constant value for max(V ol) and for the power p. A

first suggestion is to choose max(V ol)=10,000 and a value for p and fit the six models and choose

the most adequate order. Once we determine the order of our model, we fix all parameters and

treat the power p as a variable ranging between 1 and 2. We fit the model with all possible

values of p and choose the one having the smallest minimum of the log-likelihood function. We

start by using p = 1.5 as a starting value for p, we estimate the parameters and compute the

AIC and BIC for each model; AR(3) is chosen, see tables 5.4 and 5.5.
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Figure 5.7: Partial Autocorrelation Function for each day, including outliers (a)
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Figure 5.8: Partial Autocorrelation Function for each day, including outliers (b)
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Figure 5.9: Weighted Partial Autocorrelation Function (including outliers)

Table 5.4: MLE estimates for Variation II, max(V ol) = 10, 000

γ β α1 α2 α3 α4 α5 α6

AR(1) 0.1702 0.0109 0.2219

AR(2) 0.1666 0.0120 0.2256 0.0604

AR(3) 0.1655 0.0127 0.2254 0.0627 0.0246

AR(4) 0.1653 0.0128 0.2255 0.0628 0.0249 0.0036

AR(5) 0.1651 0.0129 0.2254 0.0627 0.0248 0.0038 0.0024

AR(6) 0.1650 0.0130 0.2254 0.0627 0.0248 0.0038 0.0024 0.0021

Table 5.5: Order Selection for Variation II, max(V ol) = 10, 000

AIC BIC

AR(1) 34187.69 34211.47

AR(2) 33948.49 33980.21

AR(3) 33911.27 33950.91

AR(4) 33911.94 33959.51

AR(5) 33911.29 33966.79

AR(6) 33912.81 33976.24
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Now we fix all the parameters and let p vary from 1 to 2. We fit the models with several

iterations and compare the minima of the log-likelihood function. Figure 5.10 shows a plot of

the minimum of the log-likelihood function as a function of the power p. We conclude that the

most adequate power to use is 1.7.

Figure 5.10: Likelihood function as a function of the power p, (max(V ol) = 10, 000 shares)

Notice that there is a trend followed in the relationship between the likelihood function and the

power; the higher the power, the lower is the minimum of the log-likelihood. Another thing to

note is that 1.7 is the highest power for which the process is converging. All powers p > 1.7 are

not applicable when we have max(V ol) = 10, 000 shares.

In a final stage we compute the parameters’ estimates given max(V ol) = 10, 000 and p = 1.7

and find:

Parameter Estimate

γ 0.1667

β 0.0090

α1 0.2254

α2 0.0628

α3 0.0248
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Another suggestion is to let max(V ol) = 100, 000 and p = 2 and proceed directly to find the

ML estimates for the rest of the parameters. We will see that when we choose this value for

max(V ol), we will no longer have the issue with the convergence for the values of p > 1.7. To

confirm this, we look at figure 5.11 and see the same trend as in figure 5.10. The only difference

is that the plot continues up to p = 2 with the latter being the best power value.

Figure 5.11: Likelihood function as a function of the power p, (max(V ol) = 100, 000 shares)

Since we are still working with the same data, it means that we refer to the same PACF and

consequently fit models up to order 6 before deciding on the order according to AIC and BIC

values. The estimates of the parameters are in table 5.6 and according to table 5.7, we choose

once again AR(3).

Table 5.6: MLE estimates for Variation II, max(V ol) = 100, 000

γ β α1 α2 α3 α4 α5 α6

AR(1) 0.1783 0.1419 0.2258

AR(2) 0.1742 0.1419 0.2113 0.0604

AR(3) 0.1723 0.1419 0.2105 0.0628 0.0243

AR(4) 0.1725 0.1419 0.2113 0.0647 0.0267 0.0034

AR(5) 0.1709 0.1419 0.2105 0.0659 0.0280 0.0038 0.0017

AR(6) 0.1713 0.1419 0.2084 0.0669 0.0291 0.0030 0.0034 0.0024
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Table 5.7: Order Selection for Variation II, max(V ol) = 100, 000

AIC BIC

AR(1) 34218.36 34211.47

AR(2) 33992.10 34023.81

AR(3) 33960.39 34000.03

AR(4) 33962.26 34009.83

AR(5) 33963.92 34019.42

AR(6) 33968.89 34032.31

It would be interesting to graphically look at how λt behaves as a function of the difference in

the volumes of the trades. If we look at figure 5.12 we notice that the value of λt is increasing

as the difference in the volume increases, meaning the variability of the price change is more

significant when we have a transactions with large portfolio.

Figure 5.12: λt as a function of |Vt − Vt−1|
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5.2.3 Variation III

In this model, λt is expressed as a function of both the volume and the duration. In terms of

the relation of the price change to the volume we will use the second suggestion in Variation II

of the model which sets max(V ol) = 100, 000 shares and the power p = 2. As for the part that

relates the duration to the price change which is
(
Dt−Dt−1

max(Dt)

)q
, we choose max(Dt) = 10, 000

seconds and q = 2.

We are now looking at the data as one entity since we related the duration to the price change

and therefore defined a correlation structure that links all the transactions together. This means

that the first transaction of the day is no longer excluded and it is related to the last transaction

of the previous day.

In order to determine a starting value for the order of our model, we look at the PACF of

the complete data, since it is now considered as one group, figure 5.2; the maximum order

suggested is 3. We fit our three models, see table 5.8. AIC and BIC values suggest AR(3) to

be the best model, table 5.9.

Table 5.8: MLE estimates for Variation III

γ β δ α1 α2 α3

AR(1) 0.1779 0.1419 0.3053 0.2170

AR(2) 0.2816 0.1419 0.1715 0.2407 0.0709

AR(3) 0.1719 0.1419 0.3012 0.2109 0.0593 0.0249

Table 5.9: Order Selection for Variation III

AIC BIC

AR(1) 34786.20 34817.92

AR(2) 35737.97 35777.61

AR(3) 34495.57 34543.15

5.3 Model Selection

In this final section of the application we look at the three variations of the model we fitted

and try to determine which one fits best the data. As mentioned in chapter 4, we will be using

both SSSE and the residuals’ diagnostic plots to determine the best variation of the model.
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5.3.1 Standardized Sum of Squared Errors

Looking at table 5.10, we notice that the model with the lowest SSSE corresponds to the

second variation with a max(V ol) = 100, 000 shares.

The worst model is the third variation, with the duration covariate. The reason behind this

could be related to having a small portion of the data with large duration and it could also

be that the relation between the duration and the variability of the price of the stock is not

quadratic.

Table 5.10: Model Selection

Model SSSE

Variation I 17340.96

Variation II, max(V ol) = 10, 000 21396.64

Variation II, max(V ol) = 100, 000 15942.12

Variation III 38934.76

5.3.2 Residuals’ diagnostic plots

We examine the time series plots as well as the PACF and ACF plots of the standardized

residuals to assess each variation of the model.

Time Series Plots

We notice the absence of any particular pattern in all the residuals plots. However, as the

model gets more complicated and include more outliers in the data, we witness the presence of

more outliers in the times series plots of the residuals. For instance, in Variation I of the model,

the residuals’ values range approximately between −4 and 4, figure 5.13. This range becomes

larger in the subsequent plots.

One important thing to note is that, although Variation II of the model with max(V ol) =

100, 000 shares includes outliers, it has a more concised interval for the residuals. The plot is

similar to the one for Variation I and it shows a more constant standardized variance except

for the sole outlier around t = 12, 000, figure 5.15. We notice further that the residuals’ plot

of Variation III, figure 5.16, does not show a constant standardized variance and represents the

largest amount of outliers among all the plots. This suggests that the model does not fit very

well the data. This result is in compliance with the outcome of the SSSE.
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Figure 5.13: Residuals’ Time Series plot, Variation I

Figure 5.14: Residuals’ Time Series plot, Variation II with max(V ol) = 10, 000 shares
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Figure 5.15: Residuals’ Time Series plot, Variation II with max(V ol) = 100, 000 shares

Figure 5.16: Residuals’ Time Series plot, Variation III
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PACF and ACF plots

Both PACF and ACF plots behave similarly among the models and consequently lead to

the same conclusion, therefore we examine only PACF plots in this section. Furthermore, the

plots show comparable results for Variation I and Variation II models so we only compare the

plots of Variation II with max(V ol) = 100, 000 shares, figure 5.17, with Variation III, figure 5.18.

We notice in that case that Variation III behaves much better than Variation I and II. More

specifically, the correlation is better captured as it is noticeable that in figure 5.18 the stan-

dardized residuals are not correlated as opposed to the significant correlation present among

the residuals in figure 5.17. This leads us to the conclusion that the covariate of time which

is only included in Variation III, plays a major role in capturing the correlation in the data.

However, according to the results of the SSSE and the time series plots, the way the duration

was modeled in that case should be investigated as it does not provide the best fit for the data.

Figure 5.17: Residuals’ PACF plot, Variation II with max(V ol) = 100, 000 shares
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Figure 5.18: Residuals’ PACF plot, Variation III
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Chapter 6

Conclusions

In this chapter we present a summary of the study done in the thesis as well as an outline

of the results of the application. We also make some recommendations for future studies that

could further extend this research.

6.1 Summary

In this thesis we developed a discrete-valued time series model, which is a type of model

that cannot be covered by Box and Jenkins’ methodologies. We use Pegram’s operator to build

our AR(p) model which is an extension as well as a special case of some of the previous mod-

els developed in the literature. Some of these models did not cover all types of discrete data

(e.g. excluding negative integers) while others presented some restrictions in the interpretation

and extension of the model. For instance, some had issues in their interpretation due to the

structure of the model and others could not be extended to arbitrary orders. Pegram’s op-

erator served as a very flexible operator taking any type of discrete distribution and making

it easier to develop higher order models. In addition, models constructed using this operator

resembled Box and Jenkins’ models in terms of form, correlation structure and other properties.

The marginal distribution of our AR(p) is the Skellam distribution which is the difference be-

tween two independent Poisson random variables. This is a symmetric distribution which means

that both negative and positive integers are in the sample space. As a result, we can have both

negative and positive correlations. Pegram’s operator was extended in a way to accomodate

for this type of correlation and this was shown in simple numerical examples. Properties of

our model were also discussed such as the conditional expectation, the autocorrelation function

and the moment generating function. The extension for Pegram’s operator can also be used to

develop models where we have negative and positive correlation at the same lag, we discussed

an AR(1) model under this specification.

We presented three variations of our model. The first one is the simplest with a Skellam

marginal distribution with parameter λ. The other two variations let λ vary with time and
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included more covariates inside this parameter to model extreme values in financial data. We

looked at the parameter estimation under the ML method and developed score functions for

the three variations of the model.

We also discussed order selection criteria for each model and used AIC and BIC to deter-

mine the best order. Then we studied the selection of the best variation of the model using the

Standardized Sum of Squared Errors (SSSE) and the standardized residuals’ diagnostic plots.

6.2 Results

As an illustration, we fit our models to a stock price change data during the financial

transactions of BHP Billiton Proprietary Limited. We analyze the data and fit the three vari-

ations of the model. In the second variation, we try two different scenarios: the first takes

max(V ol) = 10, 000 shares and p = 1.7, and the second scenario takes max(V ol) = 100, 000

shares and p = 2.

In the order selection procedure, we start by examining PACF plots to find starting values

for the order and, after finding the ML estimates of the parameteres, we compute AIC and BIC

for each possible order of the model and choose the order for which AIC and BIC have the

smallest values. AR(3) was selected for all variations of the models.

We last look at finding the best fit among the three variations we had. According to SSSE

and the time series plots of the standardized residuals, the best model for our data is the second

variation of AR(3) with max(V ol) = 100, 000 shares and p = 2. However, by examining the

PACF and ACF plots of the standardized residuals, we notice that Variation III is the best

model to capture the correlation in the data which suggests that the duration must be included

in the model to assure the residuals are not correlated.

6.3 Recommendations

Two main extensions could follow this research. One is related to the third variation of the

model and the other extension looks at the mixed lag correlation.

As noted previously, SSSE picked the second variation. This variation is not the most compli-

cated version of the model, more specifically it does not relate the duration to the price change

and does not model well the correlation. Therefore, it is believed that a relationship exists

between the price change and the duration between transactions. This is due to the price jump

at the opening of the market and the outcome of the PACF and ACF plots of the standardized

residuals for Variation III. Therefore, it would be interesting to investigate the true relation

between λt and Dt and try to improve this portion of the model. This means that duration

could be re-modeled or it can be fitted to another type of data.
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Another recommendation would be to study further the idea of mixed lag correlation. It has

been noted that higher orders in such model can become cumbersome and that is why only

the first order was developed. It would be interesting to investigate other possibilities to model

mixed lag correlation such as trying a different operator.
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