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Abstract

Multiresolution analysis (MRA) has fairly recently become important, and even

essential, to image processing and signal analysis, and is thus having a growing

impact on image and signal related areas. As one of the most famous family

members of the MRA, the wavelet transform (WT) has demonstrated itself in

numerous successful applications in various fields, and become one of the most

powerful tools in the fields of image processing and signal analysis.

Due to the fact that only the scale information is supplied in WT, the

applications using the wavelet transform may be limited when the

absolutely-referenced frequency and phase information are required. The

Stockwell transform (ST) is a recently proposed multiresolution transform that

supplies the absolutely-referenced frequency and phase information. However,

the ST redundantly doubles the dimension of the original data set. Because of

this redundancy, use of the ST is computationally expensive and even infeasible

on some large size data sets. Thus, I propose the use of the discrete orthonormal

Stockwell transform (DOST), a non-redundant version of ST.

This thesis will continue to implement the theoretical research on the DOST

and elaborate on some of our successful applications using the DOST. We uncover

the fast calculation mechanism of the DOST using an equivalent matrix form that

we discovered. We also highlight applications of the DOST in image compression

and image restoration, and analyze the global and local translation properties.

The local nature of the DOST suggests that it could be used in many other local

applications.
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Chapter 1

Introduction

In signal and image processing, the Fourier transform (FT) [5] is commonly used

to decompose a signal into its frequency components. Explicitly, the FT of a

one-dimensional function, h(t) ∈ L1(R), is defined 1 as

H(f) = F{h(t)} =
∫ ∞

−∞
h(t)e−i2πftdt, (1.1)

where i2 = −1.
The inverse Fourier transform (IFT) of H(f) is defined as

h(t) = F−1{H(f)} =
∫ ∞

−∞
H(f)ei2πftdf. (1.2)

The FT offers the convenience to study and modify the signal in a different

manner – frequency space (also known as k−space in some application areas,

especially in medical imaging) [18, 7, 23]. But the global property of the FT – that

each sample affects every Fourier coefficient (and vice versa) – makes it unfavorable

in applications where local information is preferred (e.g. signal denoising and

1Other equivalent definitions are available for the pair of FT and IFT with the possible

modulation factor, 1/2π or 1/
√
2π, in the exponential. Additional factors in front of the integral

may arise on both the forward and inverse definitions.
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compression). For instance, when denoising a signal with useful information in

both high frequencies and low frequencies, if the noise is only localized within a

certain region, the FT would be incapable of separating the noise from the high

frequency information. This issue can be explained by the following well-know

Fourier uncertainty principle [4], which is derived from the Heisenberg uncertainty

principle [29] from Quantum Mechanics.

To elaborate the principle, we define the term, deviation, of a function g(x) as

�ag =

∫∞
−∞(λ− a)2|g(λ)|2dλ∫∞

−∞ |g(λ)|2dλ
. (1.3)

Then the Fourier uncertainty principle states that:

Theorem 1.0.1. (Fourier uncertainty principle)

Suppose f is a function in L1(R). Then

�af · �αf̂ ≥ 1

4
, (1.4)

for all points a ∈ R and α ∈ R.

As is manifested by the uncertainty principle, due to the perfect localization

of Fourier transform in frequency domain, the information in the time or space

domain has been entirely smeared into all Fourier coefficient. Tiny deviations of

the Fourier coefficients could cause huge deviations of the time component. That

is to say, a function in real world can never be both band-limited (compact in

Fourier domain) and time-limited (compact in time domain).

In order to resolve this global issue one may use the short-time Fourier

transform (STFT) [31], such as Gabor transform (GT) [19], defined as

STFT {x(t)} ≡ X(τ, f) =

∫ ∞

−∞
x(t)w(t− τ)e−ift dt, (1.5)
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where w(t) is the predefined window function. The STFT offers the way to

calculate the spectrum localized by the window function and has been

demonstrated to be viable in various fields for applications [19, 1]. However,

besides the absence of the perfect reconstruction algorithm in general, the

manually defined window size has put another significant barrier in applications

using the STFT. We use a chirp signal in Figure 1.1 (a) as an example and

intuitively show how the GT decomposes the signal into temporal-frequency

domain. From its filled contour plot in Figure 1.1 (b), we can see that the

frequency is increasing with respect to the precession of the signal. However, the

horizontal width of the substantial coefficients band, which illustrates the

resolution of the corresponding frequency, remains the same for all frequency

components. As well known by the sampling theorem (Chapter 2), a higher

frequency requires more resolution to pursue a flexible manipulation or to avoid

the aliasing phenomenon during real applications. On the other hand, it would

be redundant to put excessive resolution for the low frequency component.

As will be elaborated in the next chapter, based on the multiresuolution

analysis (MRA), the wavelet transform (WT) [15] has successfully overcome the

shortcomings of the STFT mentioned above by applying local decomposition

filters to a signal on multiple scales. Normally, the continuous wavelet transform

(CWT) for a continuous-domain input h(t) ∈ L2(R) is defined as the integral

W (τ, s) =
1√|s|
∫ ∞

−∞
h(t)ψ

(
t− τ
s

)
dt, (1.6)

where ψ(t), called the mother wavelet, is a continuous-domain function of both

the time and the scale; τ is the translation factor and s is the scale factor. By

convention, some discrete versions of wavelet are used in applications. For example,

the Daubechies wavelet [14, 15] of order K is defined by the conditions that the

3



mother wavelet satisfies∫
xkψ(x)dx = 0, 0 ≤ k ≤ K − 1. (1.7)

Each specific wavelet (in terms of different K) has a number of zero moments

or vanishing moments equal to half the number of coefficients, 2K, which are

normally involved in various wavelet applications.

The upsampling and downsampling algorithms [4] are available in applying

the discrete wavelet transform to applications with a computational complexity

of O(N), where N is the size of the input. However, the self-similarity constraint

among the wavelet basis functions destroys the phase information, so that the

coefficients will only supply locally-referenced scale information. Most of the

wavelet transforms, which have the complexity of O(N), will end up with

compact basis functions, which cause a perfect localization in time or space

domain. While using these wavelets to decompose the input, the overlap in the

frequency domain becomes non-avoidable. So, even though the term “scale” can

be approximately interpreted as “frequency” due to its ability in adjusting the

size of the basis function, there is no straightforward way to turn this scale

information into proper frequency information.

In response to this restriction, the Stockwell transform (ST, sometimes called

the S-transform) [39] was published in 1996. The ST is a time-frequency

decomposition that offers absolutely-referenced frequency and phase information

(i.e. the phase information is referenced to time t = 0) [17, 26, 27, 39]. Sharing

the same frame of definition with other integral transforms discussed above, but

with a different kernel function, the Stockwell transform of h(t) ∈ L1(R) is

defined as

S(τ, f) = S{h(t)} =
∫ ∞

−∞
h(t)

|f |√
2π
e−

(τ−t)2f2

2 e−i2πftdt, (1.8)
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where f is the frequency, and t and τ are both time variables. The ST decomposes

a signal into both temporal (τ) and frequency (f) components. The Gaussian part

inside the integral acts as a frequency sensitive window function, which creates a

comparably narrow window for large values of f (high frequency), and a relatively

wide window for small values of f (low frequency). The value of τ represents the

center of the window function, and thus, by exhausting all possible values for τ ,

the ST coefficients cover the whole temporal axis and create the full resolutions

for each designated frequency.

Moreover, considering the integral property of the Gaussian function,

1√
2

∫ ∞

−∞
e−

x2f2

2 dx =

√
2π

|f | , (1.9)

the accumulation over all the Stockwell coefficients for a certain value of f will

recover the corresponding Fourier coefficients,∫ ∞

−∞
S(τ, f)dτ = H(f), (1.10)

highlighting a special feature of the ST and its close relation with the FT.

For application convenience, the discretized Stockwell transform (DST) can be

achieved from its continuous version and will consistently maintain the temporal-

frequency nature of the ST (see Chapter 2 for more elaboration).

As such, Figure 1.1 (c) gives the filled contour plot of the 2-D ST coefficients

of the same 1-D chirp signal in Figure 1.1 (a). When we compare Figure 1.1

(c) with Figure 1.1 (b), we can see that the ST offers more substantially non-

zero coefficients (the dark blue pixel represents zero values) at higher frequency

location, while the GT always supplies the same substantially non-zero coefficients

for low frequency and high frequency. Again, see Chapter 2 for more theoretical

details about their comparison.
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The obvious shortcoming of the ST can be discovered immediately by its

definition – redundancy. In (1.8), we can see that for each specified t value, the

Stockwell coefficients over all the possible f values will be calculated, which

requires a huge amount of calculation time and storage for transforming even a

moderate size signal into its DST coefficients. For a signal of length N , the DST

generates N2 coefficients. The computational complexity to generate these

coefficients is O(N2 logN) by taking advantage of the fast Fourier transform

(FFT). This has become the main obstacle preventing the Stockwell transform

from being applied to larger size images or higher dimension data sets.

To combat the redundancy issue of the ST and maintain its advantages, in

these scenarios, a suitable non-overlapping partition strategy is applied on the

time-frequency domain. Consequently, higher frequencies will have more

partitions than lower frequencies. For example, the DC frequency will have fewer

partitions than higher frequencies, yielding a total of N sub-regions for the whole

time-frequency domain. Parameters and basis functions are defined

corresponding to each sub-region, and yield the discrete orthonormal Stockwell

transform (DOST) [35]. The dot-product between the input signal and DOST

basis functions gives a brute force way to calculate the DOST coefficients.

Compared to the ST, the DOST transform has successfully kept its

multiresolution nature and the absolutely-referenced frequency and phase

information by reducing the computational complexity to O(N2). Still,

compared to the original frequency analysis tool, the FT, which has a complexity

of O(N logN), the computation of the DOST is still expensive for large signals,

such as audio processing and remote sensing, and higher dimensional data sets,

such as medical imaging and volumetric imaging. A fast algorithm to compute

the DOST coefficients based on the proposed matrix expression of the DOST
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transform is presented in Chapter 4 as the Fast DOST (FDOST) [45]. Details

about how the time-frequency domain is partitioned and more analysis on its

time-frequency properties will be elaborated in Chapter 3.

1.1 Research Motivation and Objectives

Considering the many successful applications using the Fourier transform, the

Gabor transform, and the wavelet transform, we are interested in studying

another multiresolution facility, the Stockwell transform and its discrete

orthonormal version, the DOST. As I continued to spend an increasing amount

of time in this topic during the past three years, I focused on solidifying the

theoretical integrity of the newly invented DOST and on mining more reasonable

applications using the DOST, such as image compression and etc.

1.2 Thesis Organization

As a starting point of my thesis, in Chapter 2 we provide a brief review of the

multiresolution analysis of various transforms, such as the Gabor transform, the

wavelet transform and the Stockwell transform. Considering that the redundancy

and computational complexity of the Stockwell transform are still significant, in

Chapter 3, we propose a partition strategy adopted by the DOST and pursue a

detailed theoretical analysis of the DOST design. Besides, the negative frequency

parameters have been appropriately chosen to achieve the conjugate symmetry

for a real input signal. An alternative symmetric version of the DOST is also

delineated to show the freedom of defining the DOST with re-arranged

parameters. By reasonably varying the parameters, which can maintain the

7



orthogonality, the Nyquist criterion and the fast algorithm of Chapter 4, different

DOSTs can be defined to allow arbitrary windowing and interpolation over the

whole time-frequency domain. Brute-force calculation of the DOST coefficients is

expensive. To combat this issue, in Chapter 4, we propose a suitable matrix form

of the DOST calculation, which is directly related to the Fourier coefficients.

Hence, with the same computational complexity class as the Fourier transform, a

fast way of computing the DOST coefficients is recovered. The rigorous proof on

its complexity is available in that chapter. In Chapter 6, the global and local

translation properties on the DOST are studied individually. We discuss the

results that we have reached and state that, due to the Fourier uncertainty

principle, the local translation detection can not be done precisely. Nevertheless,

numerical experiment has convinced us that a possible approximation strategy

might exist for local translation detection. We also propose a mathematical

system for a possible analysis tool to benefit further researchers and applications

on local translation. In Chapter 5 and 6, we present two applications using the

DOST on image compression and image restoration. In Chapter 8, we state some

practical forward branching related to the DOST. Various diversities of the

branching will benefit either theoretical analysis or application fields, such as

image processing and designs of medical imaging devices.

In the Appendix, useful Matlab codes of the fast DOST are attached. We

would be especially delighted to see that more applications are born based on

Dr. Stockwell’s initiation of this field and based on our extension in both theoretical

and practical aspects of the DOST.
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1.3 Contribution of this thesis

Both the ST and the DOST are younger than other well established transforms,

such as the FT, the GT and the WT. As one of the many efforts in this thesis, I

have endeavored to integrate the theoretical structure of the ST and the DOST by

offering in depth understanding, intuitive properties and instructive comparisons

to other transforms. Proofs on essential equations and theorems, and the time-

frequency analysis including comparison to the GT and the WT have become the

major contributions of the first two chapters.

On various aspects (sampling theorem, spectrum analysis and more) in signal

and image processing, the virtues of the DOST have been highlighted in Chapter

3, which has formed a nearly comprehensive analysis on the DOST. The matrix

factorization and thus the fast DOST algorithm, with detailed proof of

computational complexity and experimental comparison, are some other major

contributions of this thesis. The analysis on the translation properties is entirely

new in this area. The global translation property is completely developed and

the local translation property is reasonably analyzed.

As another two major contributions in application aspects, the DOST is used

for image compression and image restoration. As proved in sufficient details in

Chapter 6 and Chapter 7, the DOST has outperformed the wavelet transform at

entrance level. More advanced applications will interest new researchers to gain

better results than the state of art wavelet techniques.
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(a) A chirp with increasing frequency

(b) Filled contour plot of the GT coefficients of (a)

(c) Filled contour plot of the ST coefficients of (a)

Figure 1.1: A comparison between the GT and the ST.
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Chapter 2

Stockwell Transform and

Time-Frequency Analysis

For a given signal, the Stockwell transform (ST) [39, 27, 26, 17] gives a full

time-frequency decomposition, which perfectly maintains the

absolutely-referenced frequency and phase information. In this chapter, we first

give a quick review of the ST and then highlight the comparison between the ST

and other modern transforms, such as STFT and WT, in time-frequency

analysis.

2.1 Stockwell Transform

2.1.1 1-D Continuous Stockwell Transform

For continuity, we will repeat the formal definition of the Stockwell transform

(ST). The ST of a given function, h(t) ∈ L1(R), is defined as [39, 27, 26, 17]

S(τ, f) = S{h(t)} =
∫ ∞

−∞
h(t)

|f |√
2π
e−

(τ−t)2f2

2 e−i2πftdt, (2.1)
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Figure 2.1: Each different f -value generates a different width of Gaussian curve, and hence

a different width of kernel function and different resolution.

where f is the frequency, and t and τ are both time variables. The ST

decomposes a signal into temporal (τ) and frequency (f) components. The value

of τ represents the center of the window function, and thus, by picking all

possible values for τ , the ST coefficients will cover the whole temporal axis and

create full resolutions for each designated frequency. Different values of f adjust

the sizes of the Gaussian windows over the temporal axis to realize

multiresolution over different frequencies, i.e. higher resolution on higher

frequencies and lower resolution on lower frequencies. Figure 2.1 illustrates

different widths of Gaussian curves in resizing the kernel functions generated by

different f values, and hence different resolutions for different f .
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Considering the integral property of the Gaussian function,

1√
2

∫ ∞

−∞
e−

x2f2

2 dx =

√
2π

|f | , (2.2)

the accumulation over all the Stockwell coefficients for a certain value of f will

recover the Fourier coefficients,∫ ∞

−∞
S(τ, f)dτ = H(f), (2.3)

highlighting the special feature of the ST, its close relation to the FT.

Hence, the original function h(t) can be recovered by calculating the inverse

Fourier transform of H(f),

h(t) = S−1{S(τ, f)} =
∫ ∞

−∞

{∫ ∞

−∞
S(τ, f)dτ

}
ei2πftdf. (2.4)

In general, the Stockwell coefficients S(τ, f) are complex, so we can write

S(τ, f) = A(τ, f)eiΦ(τ,f), (2.5)

where A(τ, f) is the “amplitude S-spectrum” and Φ(τ, f) is the “phase

S-spectrum”. The phase Φ(τ, f) allows the definition of a broadband

generalization of instantaneous frequency [38]. The absolutely-referenced phase

information allows the comparison of phases derived from similar time series for

correlation analysis [39].

2.1.2 1-D Discrete Stockwell Transform

As we will show below, taking advantage of the fast Fourier transform (FFT),

there is an equivalent frequency-domain definition of the continuous Stockwell

transform.
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Theorem 2.1.1. In the Fourier domain, the definition of the ST (equation (2.1))

becomes

S(τ, f) =

∫ ∞

−∞
H(α + f)e

− 2π2α2

f2 ei2πατdα, f 
= 0. (2.6)

Proof. We start by substituting

H(α + f) =

∫ ∞

−∞
h(t)e−2πi(α+f)tdt, (2.7)

into (2.6) to eventually derive (2.1).

After the substitution, (2.6) can be written as∫ ∞

−∞
H(α+ f)e

− 2π2α2

f2 ei2πατdα

=

∫ ∞

−∞

∫ ∞

−∞
h(t)e−2πi(α+f)te

− 2π2α2

f2 e2πiατdtdα

=

∫ ∞

−∞
h(t)e−2πfti

(∫ ∞

−∞
e
− 2π2α2

f2 e−2πiα(t−τ)dα

)
dt. (2.8)

To evaluate the integral in the brackets of (2.8), we use the integral formula 2.33.1

on page 108 of [21]∫
e−(ax2+2bx+c)dx =

1

2

√
π

a
exp

(
b2 − ac
a

)
erf

(√
ax+

b√
a

)
, (2.9)

where

erf(x) =
2√
π

∫ x

0

e−t2dt, (2.10)

and

erf(x)|∞−∞ =
2√
π

∫ ∞

−∞
e−t2dt = 2. (2.11)

In our case, a = 2π2

f2 , b = πi(t− τ) and c = 0, so∫ ∞

−∞
e
− 2π2α2

f2 e−2πiα(t−τ)dα

=
1

2

|f |√
2π

exp

(
−(t− τ)

2f 2

2

)
erf

(√
2
π

f
α +
√
2i(t− τ)f

)∣∣∣∣∞
−∞

=
|f |√
2π

exp

(
−(t− τ)

2f 2

2

)
, (2.12)
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which supplies the Gaussian in (2.1) and completes the proof.

We may discretize (2.6) to define the discrete Stockwell transform (DST) [39].

For an input h(m), m = 0, · · · , N − 1, its DST can be written as

S(j, n) =

N−1∑
m=0

H(m+ n)e
−2π2m2

n2 e
i2πmj

N , j = 0, · · · , N − 1, (2.13)

for n = 1, · · · , N − 1, where H(·) is the DFT of h(·). For the n = 0 voice, define

S(j, 0) =
1

N

N−1∑
m=0

h(m). (2.14)

It has been shown [27] that

1

N

N−1∑
j=0

S (j, n) = H (n) , (2.15)

where H(n) is the discrete Fourier coefficient. Thus, the original signal can be

recovered from the Stockwell coefficients as

h(k) =

(
1

N

)2 N−1∑
j=0

N−1∑
n=0

S (j, n) e
i2πk
N . (2.16)

It is not hard to see that if we also want multiple components over the

frequency axis (assuming that we also want N samples for each temporal axis),

via the discrete Stockwell transform, an N -tuple input signal will be decomposed

into N2 Stockwell coefficients. To get the explicit values of these N2 coefficients,

if the original discretized basis functions are involved for the dot product with

the input signal, a total of O(N3) operations would be required. However, taking

advantage of the FFT [11], definition (2.13) offers a shortcut and calculates the

Stockwell coefficients in an efficient way. More specifically, for a fixed value of j

in (2.13), the DST coefficients for different n can be regarded as the inverse

Fourier transform of the term H [m + n]e−2π2m2/n2
, so it could be done with
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operations of order O(N logN), which is identical to the computational

complexity of FFT. Consequently, rather than a total of O(N3), a total number

of O(N2 logN) operations are sufficient to evaluate all N2 Stockwell coefficients.

Multiresolution is a direct application of the Nyquist-Shannon sampling

theorem, which is stated as following.

Theorem 2.1.2. (Nyquist-Shannon sampling theorem)

If a function x(t) contains no frequencies higher than W hertz, it is completely

determined by giving its ordinates at a series of points spaced 1/2W seconds apart.

In other words, lower frequency signals require fewer samples, and higher

frequency signals require more samples. However, the DST includes N

coefficients for each of the N frequency bands resulting in obvious redundancy in

the low-frequency components according to the sampling theorem.

To achieve a reduced subset for each f , we might expect to require fewer

coefficients for lower frequencies and more coefficients for higher frequencies, and

thus form a key subset of all coefficients. However, if we accumulate the numbers

of the coefficients in this key subset, it is the sum of an N−element arithmetic

sequence. So, this reverse hierarchy still produces O(N2) number of coefficients.

Unless we have some prior of the signal (either high or low frequency dominates)

or we know what specific actions (either high or low pass) need to be done for the

signal, the way the ST is defined limits itself from being reconstructed by some

substantially small subset of all coefficients. How to deal with the compromise

between the temporal resolution and the frequency resolution becomes the design

purpose of the discrete orthonormal Stockwell transform (DOST). The smart way

of partitioning the time-frequency domain, and how it relates to the sampling

theorem, will be explained in Chapter 3.
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2.1.3 2-D Stockwell Transform

Like the FT, the ST is a separable transform over different dimensions. For a 2-D

continuous-domain function h(x′, y′) ∈ L1(R2), the 2-D ST with a 2-D Gaussian

envelope can be analogously defined as

S(x, y, kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
h(x′, y′)

|kx||ky|
2π

e−
(x′−x)2k2x+(y′−y)2k2y

2 e−i2π(kxx′+kyy′)dx′dy′.

(2.17)

As seen in (2.1), the Gaussian kernel changes shape with respect to spatial

frequencies kx and ky. Due to this separability, the calculation can be pursued

first over one dimension and then over another.

Integration of S(x, y, kx, ky) over the variables x and y gives the 2-D Fourier

spectrum,

H(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
S(x, y, kx, ky)dxdy. (2.18)

Then the 2-D inverse Fourier transform can be applied to H(kx, ky) to recover the

original function.

Following the similar proof of (2.6), the ST (2.17) can also be defined as

operations on the Fourier Spectrum H(α, β),

S(x, y, kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
H(α+ kx, β + ky)e

− 2π2α2

k2x e
− 2π2β2

k2y ei2π(αx+βy)dαdβ, (2.19)

for kx 
= 0 and ky 
= 0, where α and β are both frequency variables. In order to

take advantage of the FFT calculation, the discrete 2-D Stockwell coefficients of

an image h(p, q), where p = 0, · · · , N − 1 and q = 0, · · · ,M − 1, can be expressed

explicitly as

S(p, q, n,m)

=
N−1∑
n′=0

M−1∑
m′=0

H (n′ + n,m′ +m) e−
2π2n′2

n2 e
i2πn′p

N e−
2π2m′2

m2 e
i2πm′q

M , (2.20)
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for n 
= 0 and m 
= 0 (non-DC case).

For the case of n = 0 and m 
= 0, we need to use (2.13) with respect to m′

indices first and then apply (2.14) for n′ indices. For the case of n 
= 0 but m = 0

and n = m = 0, we can combine their definition similarly from (2.13) and (2.14).

It has been shown [27] that

1

M

M−1∑
q=0

1

N

N−1∑
p=0

S (p, q, n,m) = H (n,m) , (2.21)

where H(n,m) are the discrete 2-D Fourier coefficients. Thus the original image

can be reconstructed using

h(p, q) =

(
1

M

)2 M−1∑
q′=0

M−1∑
m=0

(
1

N

)2 N−1∑
p′=0

N−1∑
n=0

S (p′, q′, n,m) e
i2πp
N e

i2πq
M . (2.22)

In the Stockwell coefficients, each discrete point of the image has a

2-dimensional spatial-frequency representation, so the 2-D discrete Stockwell

transform is a complex function of x, y, kx and ky. This 2-D DST offers the

convenience and the freedom to manipulate data over spatial and frequency

domains, but processing the 4-D set of Stockwell coefficients does tax computer

resources and time; visualizing and analyzing these coefficients is a big challenge.

Because of this reason, normally only relevant components of the S(x, y, kx, ky)

are computed and stored during real applications. Some strategies in dealing

with 4-D data sets have been adopted successfully in various research

fields [39, 32], which are described later in this section.

2.1.4 Properties of the ST

In order to maintain the scope of this thesis, we will only discuss the properties

based on the 1-D case, with the exception of the rotation property of the ST. Most
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of the properties for the 2-D transform can be derived analogously. And due to

definition, the ST shares some similar properties of the FT. They are:

• Linearity: Assuming h(t), g(t) ∈ L1(R) and a, b are arbitrarily complex

numbers, the linear property holds as

S{ah(t) + bg(t)} = aS{h(t)} + bS{g(t)}. (2.23)

• Symmetry: The ST of a real function is a conjugate-symmetric function so

that half the calculation can be saved in decomposition.

• Modulation: Shifting a function introduces into its spectrum a phase shift

that is linear with frequency besides the shifting on the coefficients itself.

S{h(t− t0)} = e−i2πft0S(τ − t0, f). (2.24)

This alters the distribution of energy between the real and imaginary parts

of the spectrum without changing the total energy.

• Scaling: Narrowing a function with a scale a will broaden its ST coefficients

in the scale of 1/a, and vice versa,

S{h(at)} = S

(
aτ,

f

a

)
. (2.25)

• Rotation Invariance: Rotating a function rotates its ST coefficients on both

spatial and frequency axes. Specifically, in Cartesian coordinate system, for

a rotation operator R,

S{h(R(−→x ))} = S{R(−→τ ),R(−→f )}, (2.26)

where

S{h(−→x )} = S{−→τ ,−→f }. (2.27)
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The proofs of Linearity and Modulation are elaborated and can be found in

Appendix A. Using the definition of the ST, the rest properties can be proven

similarly.

2.1.5 Current Applications Using the ST

In this section, we highlight two applications of the ST using the DST, that have

come to light since the ST was published [39]: one in medical image processing

and the other in geophysics.

As one of the most accurate and efficient technologies in tumor study and

cancer detection, MRI is becoming increasingly powerful and popular because of

its non-invasive nature and increasing resolution. Today, the time it takes to

acquire data has dropped significantly due to modern image processing techniques

and improved technical design of the hardware itself. However, the movement of

the object, either inside or outside of the field of view (FOV), is still one of the

main sources of artifacts.

In Figure 2.2 (a), which shows a T2*-weighted fMRI image, the patient’s

coughing outside of the FOV causes obvious ghost view (the white-grey blurs

inside the FOV). Ghost intensity is relatively high and overlaps the visual cortex.

As located in the signal panel, Figure 2.2 (c), the high intensity peaks of the

artifact can be observed. After processing with the designed 1-D ST filter, the

ghost intensity magnitude is reduced to nearly baseline levels, as shown in

Figure 2.2 (b). It is stated that, compared to other filter designs, the ST is a

fairly powerful tool to deal with the artifacts caused by movement outside of the

FOV with minimal impact on the data detected in the cortex.

In its field of origin, geophysics, the ST has also built significant applications
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Figure 2.2: Stockwell transform (ST) filtering of fMRI data significantly reduces ghost

intensity. a: T2*-weighted image collected when a subject was coughing. Ghost intensity

is relatively high and overlaps the visual cortex. b: ST filtering reduces ghost intensity

magnitude to the near baseline levels. c: Average time course of image intensity for image

pixels inside the white boxes. ST filtering removes high frequency artifacts from the MR

signal. (Used by permission of Dr. Hongmei Zhu.)

[36, 37, 32, 33]. The following is an example in image segmentation [32]. Figure 2.3

is the sample picture of the deposited Fanshawe Section in Southern Ontario. Quite
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Figure 2.3: Photographic mosaic of the subsection data set for the Fanshawe section. Pixel

resolution is 1.7mm. (Used by permission of Dr. Greg Oldenborger.)

different textures are visible in this area because of the year by year depositing.

Researchers want to segment the sample in order to look for water or petroleum. In

this application, a suitable treatment on the 4-D Stockwell coefficients is required

so that the 2-D local spectrum on each pixel can be evaluated to a specific quantity

for reference of the texture. Various treatments on the coefficients have been tried

and compared by Dr. Oldenborger and an outstanding result is achieved in terms

of the segmentation. Figure 2.4 shows the result based on their strategy.

The DST is also used in a lot of other areas. For example, in geophysics it is

used for analyzing internal atmospheric wave packets [36], atmospheric studies [30],

characterization of seismic signals and global sea surface temperature analysis [26].

It is used in electrical engineering [13], mechanical engineering [28], in digital signal

processing [34], in the medical field in human brain mapping [2], in cardiovascular

studies [40] and in studying the physiological effects of drugs [3].
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Figure 2.4: Spectral texture map and estimated log-transformed hydraulic conductivity field

for the Fanshawe section. (Used by permission of Dr. Greg Oldenborger.)

2.2 Time-Frequency Analysis on ST, STFT and

WT

In many applications, such as signal processing, image processing, etc., since the

local information is usually required and needed to be treated, various techniques

in the time-frequency analysis have been proposed and are widely used. The ST,

STFT and WT are all popular transforms in terms of the time-frequency analysis.

We will provide a brief review on the STFT and the WT, and then compare them

in detail to the newly invented ST.
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2.2.1 STFT vs ST

Generally, for an input function h(t) ∈ L1(R), its short-time Fourier transform is

defined as

STFT {h(t)} ≡ X(τ, f) =

∫ ∞

−∞
w(t− τ)e−i2πfth(t)dt, (2.28)

where w(t− τ) is the pre-selected window function and τ represents the center of

the window. Adjusting the size and the center of the window allows the STFT to

detect the local information from the input. However, only a few choices of window

functions will yield a perfect reconstruction algorithm. Also, prior information is

preferable to determine the window size in applying the STFT to real applications.

Normally, the window function is chosen to be a Gaussian window function,

and thus defines the famous transform, the Gabor transform (GT). Explicitly,

given a function h(t) ∈ L1(R), the Gabor transform is formally defined as

G(τ, f) =
∫ ∞

−∞
e−π(t−τ)2e−i2πfth(t) dt, (2.29)

which offers the feasibility of recovering the original signal due to the integral

properties of the Gaussian function.

In theory, the ST outperforms the STFT in two main aspects. First, the

window size of the STFT is fixed for all frequency components, and thus needs

to be pre-defined. As a consequence, there would be a chance that a specific

frequency component will not be detected using the STFT (see this in detail in

the experiments below). On the other hand, the window size of the ST is self

adjusted in the sense that higher frequencies require more details and a higher

temporal resolution. Second, the STFT is not usually invertible, but the ST is

perfectly invertible, which makes the ST ideal for applications where reconstruction

is involved.

24



In 1996 [39], the ST and the STFT were compared in real experiments. Based

on the ST and STFT decomposition, two experiments were run to detect the

short window of high frequency bursts. Their experimental setup and results are

shown in Figure 2.5 and 2.6. First, to compare the performance of the ST and the

STFT, a high frequency signal, a low frequency signal and a high frequency burst

signal were combined to design the test signal of the experiment. In one result,

both the ST and the STFT succeeded to detect the high frequency burst with

noticeable non-zero coefficients at the right time interval. However, as the STFT

uses a constant window width, it leads to having poorer temporal definition in

the result. In the second experiment two non-overlapped but closely located high

frequency bursts were added to crossed chirps signal. In the result, only the ST

succeeded to detect both frequencies and to generate a clear separation between

the bursts. But, as seen in the contour plot of the STFT coefficients, there were

some non-zero coefficients between those two burst windows indicating that there

was extra information beyond the crossed chirps over that region; however, no

separation between the bursts was detected. The STFT coefficients of the bursts

were compromised and the accuracy in the time axis was lost. Another time-

frequency analysis facility, Wigner distribution, was also compared, but the result

was not comparable to the ST and no burst was detected. ST was shown more

useful than the other transforms since it indicated the bursts more clearly. This

suggests its functionality in other applications.

2.2.2 WT vs ST

The Wavelet transform (WT) is a tool that cuts up data, functions or operators

into different spatial-scale components, and then studies each component with a
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Figure 2.5: (a): A synthetic time series consisting of a low frequency signal for the first

half, a middle frequency signal for the second half, and a high frequency burst at t=20.

The function is h[0 : 63] = cos(2πt ∗ 6.0/128.0), h[63 : 127] = cos(2πt ∗ 25.0/128.0),
h[20 : 30] = h[20 : 30]+ 0.5 ∗ cos(2πt ∗ 52.0/128.0). (b): The amplitude of the S transform

of the time series. (c): The Short Time Fourier transform (STFT) of the time series using

a fixed gaussian window of standard deviation = 8 units. (d): Same as (c) except that the

window is a boxcar of length = 20 units. (Used by permission of Dr. Stockwell)

resolution matched to its scale. The continuous wavelet transform (CWT) for a

continuous-domain input h(t) ∈ L2(R) is defined as the integral

W (τ, s) =
1√|s|
∫ ∞

−∞
h(t)ψ

(
t− τ
s

)
dt, (2.30)

where ψ(t), called the mother wavelet, is a continuous-domain function of both

the time and the scale; τ is the translation factor and s is the scale factor.

To recover the original input h(t), based on the resolution of the identity
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Figure 2.6: (a): A synthetic time series consisting of two cross chirps and two high frequency

bursts. The time series is: h[0 : 255] = cos(2π(10 + t/7) ∗ t/256) + cos(2π(256/2.8 −
t/6.0) ∗ t/256), h[114 : 122] = h[114 : 122] + cos(2πt ∗ 0.42) and h[134 : 142] = h[134 :

142] + cos(2πt ∗ 0.42). (b): The amplitude of the S transform of the time series. (c): The

amplitude of the STFT (with a Gaussian window) of the time series. (d): The amplitude of

the Wigner distribution of the time series. (Used by permission of Dr. Stockwell)

formula, the inverse wavelet transform (IWT) is defined as

h(t) =

∫ ∞

0

∫ ∞

−∞

1

s2
W (τ, s)

1√|s|φ
(
t− τ
s

)
dτds, (2.31)

where φ(t) is the scaling function.

As one of the most important properties of the CWT, by conventionally

choosing the scale factor as 2, it satisfies the conditions of the Multiresolution
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Analysis (MRA) defined as the following,

Definition 1. (Multiresolution Analysis)

Let Vj, j = · · · ,−2,−1, 0, 1, 2, · · · be a sequence of subspaces of functions in

L2(R). The collection of spaces {Vj, j ∈ Z} is called a multiresolution analysis,

with the scaling function φ, if the following conditions hold:

• (nested) Vj ⊂ Vj+1, which creates an increasing subset of L2(R).

• (density)
⋃
Vj = L2(R), which makes sure that any function in L2(R) will

belong to a Vj and hence Vj+1, Vj+2, · · · , due to the nested property.

• (separation)
⋂
Vj = 0, which means the interception of all subset contains

only one element, 0.

• (scaling) The function f(x) belongs to V0 if and only if the function f(2jx)

belongs to Vj,

• (orthonormal basis) The function φ belongs to V0 and the set {φ(x−k), k ∈
Z} is an orthonormal basis (L2 inner product) of V0.

Figure 2.7 shows the nesting relations among the series of the of sets Vk and

gives the intuition of the MRA.

In real applications, the CWT can not be used conveniently due to the

requirement on continuous or infinite storage. The discrete wavelet transform

(DWT) can be defined based on the multiresolution analysis. Normally, a DWT

is obtained from a continuous representation by discretizing the dilation and

translation parameters, s and τ . The dilation parameter is typically discretized

by an exponential with base 2 and the translation parameter is chosen as

integers.
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Figure 2.7: Intuition of the Mutiresolution Analysis

Explicitly, given a series coefficients pi, i ∈ Z, the scaling function for DWT

can be defined as the function φ(x) that satisfies

1√
2
φ
(x
2

)
=
∑
k∈Z

pkφ(x− k), (2.32)

and the mother wavelet function ψ(x) is defined as

1√
2
ψ
(x
2

)
=
∑
k∈Z

(−1)kp1−kφ(x− k). (2.33)

This definition offers the basic properties of the scaling functions and the wavelet

functions – self similarity – which implies the calculation advantage of the DWT

and ability of using the DWT in other areas such as numerical analysis.

There are many kinds of wavelets, the Daubechies wavelet [14], in which∫
xkψ(x)dx = 0, k = 0, · · · , K − 1, (2.34)
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Figure 2.8: Mother wavelet function and scaling function for Haar wavelet.

the B-spline wavelet [10], the Shannon wavelet, etc., which prevail over various

fields [25], such as image processing and pattern recognition. In image

processing, it turns out the Daubechies wavelet has become one of the most often

used wavelets [9, 15, 42]. The Daubechies wavelet forms a family of orthogonal

wavelets with a finite set of non-zero coefficients. Generally, for the order-K

Daubechies wavelet, there are 2K non-zero coefficients. For example, the Haar

wavelet has two non-zero coefficients, which makes the Haar wavelet the simplest

wavelet. The mother wavelet and the scaling function for the Haar wavelet are

shown in Figure 2.8.

Due to the intrinsic relation, self similarity, between the scale functions and

wavelet functions, the wavelet coefficients need not be calculated by the

dot-product between the wavelet basis function and the input signal. Instead,

especially for the Daubechies wavelet, the finite numbers of non-zero scaling

coefficients, which generate the finer level basis functions from the coarser level,

play an important role during the calculation of the wavelet coefficients.

Super-fast implementations, known as downsampling and upsampling
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operators [4, 15], can be iteratively used to generate the Daubechies wavelet

coefficients within a computational complexity of O(N), where N is the size of

input for a 1-D case. Consequently, the decomposition algorithm of the input

signal {hj} can be diagrammatically shown as the following pyramid tree. All

the “leaves” of the tree form the set of the wavelet coefficients.

Downsample :

{hj} −→ {hj−1} −→ {hj−2} · · · −→ {h1} −→ {h0}
↘ ↘ ↘ ↘

{ωj−1} {ωj−2} · · · {ω1} {ω0},

As an example in discussing the complexity, an input {hj} of size N is

decomposed using the basic Harr wavelet with only two non-zero coefficients.

The first level decomposition in the following diagram takes N/2 ∗ 2 = N

operations to generate {hj−1} and {wj−1} which each has N/2 elements. Thus,

the second level decomposition will take N/4 ∗ 2 = N/2 operations to the third

level, and so on. To achieve the last level, only two operations are required since

{h0} is scalar. So, in total, as the sum of an arithmetic progress, N,N/2, · · · , 1,
the total complexity to decompose {hj} is 2N − 1, which is of order O(N).

Similarly, the reconstruction pyramid is

Upsample :

{hj} ←− {hj−1} ←− {hj−2} · · · ←− {h1} ←− {h0}
↖ ↖ ↖ ↖

{ωj−1} {ωj−2} · · · {ω1} {ω0}.

During the decomposition and the reconstruction, multiplications only occur

between the suitably chosen scaling coefficients and N wavelet coefficients, which

makes the complexity of order O(N).
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The calculation advantage of the DWT and its multiresolution ability highlights

it as one of the most widely used tools in signal processing and image processing.

The current computational complexity of the ST is still O(N2 logN). As we will

show in Chapter 4, even for the latest discretized orthonormal version of the ST,

the DOST, the optimum complexity we have achieved is still O(N logN).

However, other factors have made the ST outperform the WT in the real

world – frequency and phase advantage and quality advantage. First, as is well

known from the Fourier theory, the translation in time of any function

corresponds to a phase modulation in the Fourier spectral domain. The wavelet

basis functions are self-similar due to the dilation, the translation and the linear

combination of these operations. Hence, the wavelet voices have a phase

modulation applied to them in the spectral domain. However, the basis functions

of the ST are not translated and not self-similar to each other. Moreover, due to

its direct relation to the FT (2.3), the ST successfully maintains the ability to

recover the phase and frequency information from the ST coefficients without

reconstructing the signal, which is known as keeping the absolutely-referenced

frequency and phase information. The DOST, the compact version of the ST,

has perfectly inherited this ability and highlighted its usefulness with an

improved computational complexity. In particular, the absolutely-referenced

frequency and phase information makes the ST and the DOST more appropriate

to be applied when, for example, instantaneous frequency (IF) information is

involved [39, 35]. Second, it is well known that in image processing using the

DWT, block pattern often appears in the residual image: the visualization of the

error between the original image and the reconstructed image. Various strategies

have been attempted to solving this issue. However, as will be explained in detail

in Chapter 5, even the global application of the DOST on the test image, the
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residual image has a much milder block pattern.

There are discussions whether the ST is actually a member of the WT family.

However, even though the ST and the WT share some similar properties, they are

different kinds of transforms due to the following reasons:

• The CWT has a mother wavelet which makes all the wavelet functions

dilations or translations of it. However, the Gaussian functions under

different scales are not self-similar. Also, because of this reason, the ST will

not be able to satisfy all conditions of the MRA. Nevertheless, the various

resolutions obtained at different voices qualifies the ST to be used in the

area where the MRA has conquered and entitles the ST as a quasi-MRA.

• In the CWT, the integral of the mother wavelets function is zero and the

integral of the scaling function is one. However, the integral of the ST

basis function, which is the multiplication between the Fourier basis and the

Gaussian window, has no fixed value.

• In the CWT, only the scale information can be expected with a modulated

phase information. However, in the ST, a direct relation exists between the

ST coefficients and the FT coefficients, and the exact frequency and phase

information can be achieved without reconstructing the images.

Overall, since the inception of the ST in 1996, its special advantages

(multiresolution ability, keeping absolutely-referenced frequency and phase

information) has helped the ST outperform the STFT and the WT in various

fields. On the other hand, in solving the inefficiency and storage issues, either

intelligent strategies may be applied under different situations to deal with the

high dimensional data set, or attempts can be made to switch to the use of the
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discrete orthonormal version of the ST, the DOST. This will be elaborated upon

and discussed in the rest of this thesis.
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Chapter 3

Discrete Orthonormal Stockwell

Transform

As we already mentioned in the previous chapters, the mutiresolution

decomposition of the ST is useful but redundant and computationally expensive.

Starting from this chapter, we will focus on its discrete orthonormal version, the

DOST, to achieve the desired efficiency and compactness.

3.1 Overview of the DOST

The DOST [35] is a pared-down version of the fully redundant ST. In the sense

of multiresolution, less temporal resolution is required for a lower frequency band

based on the sampling theorem. As discussed in the previous chapter, the ST

has redundantly stored an equal amount of data in each low frequency band as

in each high frequency band, despite the fact that the Nyquist criterion indicates

that these two bands have very different sampling requirements.

The DOST manages to pursue a non-overlapping “multiresolution” partition
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over the time-frequency domain. It does this by constructing a set of N orthogonal

unit-length basis vectors in CN , each of which targets a particular region in the

time-frequency domain. The regions are described by a set of parameters: ν

specifies the center of each frequency band (voice), β is the width of that band,

and τ specifies the location in time. Using these parameters, the kth basis vector

is defined as

D[k][ν,β,τ ] =
1√
β

ν+β/2−1∑
f=ν−β/2

exp

(
−i2π k

N
f

)
exp

(
i2π

τ

β
f

)
exp (−iπτ) , (3.1)

for k = 0, · · · , N − 1, which can be summed analytically to

D[k][ν,β,τ ] = ie−iπτ e
−i2α(ν−β/2−1/2) − e−i2α(ν+β/2−1/2)

2
√
β sinα

, (3.2)

where α = π(k/N − τ/β) can be regarded as the center of the temporal window.

This partition strategy can be found in Figure 3.1. An alternative view is shown

later in Figure 3.7 (a) with detailed coefficients.

To make the family of basis vectors in (3.2) orthogonal, the parameters ν, β

and τ have to be chosen suitably. Letting the variable p index the frequency bands,

Dr. Stockwell defines the DOST basis vectors of the positive frequency for each p

on page 5 in [35] using,

• p = 0, (one basis vector)

ν = 0,

β = 1,

τ = 0, D[k][ν,β,τ ] = 1;

• p = 1, (one basis vector)

ν = 1,

β = 1,
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Figure 3.1: The order of the 2-D DOST coefficients into an 1-D N-vector.

τ = 0,

D[k][ν,β,τ ] = exp(−i2kπ/N);

• p = 2, 3, · · · , log2N − 1, (2p−1 basis vectors for each frequency band)

ν = 2(p−1) + 2(p−2),

β = 2(p−1),

τ = 0, · · · , β − 1,

D[k][ν,β,τ ] = ie−iπτ e−i2α(ν−β/2−1/2)−e−i2α(ν+β/2−1/2)

2
√
β sinα

.

(3.3)
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Figure 3.2: Plotting of two DOST basis functions.

Figure 3.2 shows some examples of the DOST basis functions. As is quite clear,

the basis functions are not self similar.

Mathematically, we can prove that these basis vectors are orthonormal,

1

N

∫ N

0

D[k][ν′,β′,τ ′]D[k]∗[ν,β,τ ]dk = δν′,ν δβ′,β δτ ′,τ , (3.4)

where

δx,y =

⎧⎨⎩ 1 for x = y

0 otherwise
(3.5)

is the Kronecker delta.
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Combining these basis vectors with the basis vectors for the negative

frequencies (described in the next section), we can prove that these parameter

choices generate a basis of N orthogonal unit vectors, hence N DOST

coefficients. For real applications, it is helpful to order these N coefficients into a

1-D vector. The ordering we use is shown in Fig. 3.1 for a signal of length 16 (see

Fig. 3.7 (a) for more details). By convention, our time index (τ) traverses the

time axis in the negative direction for negative frequencies. Doing so creates a

symmetric correspondence between the positive- and negative-frequency

coefficients in the 1-D representation. That is, for a given coefficient with index i

in the 1-D DOST vector, its negative-frequency analog is at index N − i. This

indexing convention will help later to gain symmetry of the DOST.

3.2 DOST and Sampling Theorem

As another way to address the Nyquist criterion, for a band limited signal with

a maximum frequency of W Hz, we require 2W pieces of information to achieve

a perfect reconstruction. By linear algebra, to recover this bandlimited signal,

we will need W pieces of information to represent W harmonics and another W

pieces to represent the corresponding phases. In this sense, this set of Fourier

coefficients (W complex coefficients, or 2W degrees of freedom) is equivalent to

the 2W samples, because the basis functions used in the sampling theorem are

actually spanning the same subspace (band-limited signal space for |f | ≤ W ) as

the Fourier decomposition and reconstruction.

For a bandpass signal staring from frequency WL and ending at frequency WH

( WL ≤ |f | ≤ WH), we will need (WH −WL + 1) harmonics and corresponding

phases to reconstruct the signal. Generalized to linear algebra, 2(WH −WL + 1)
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pieces of information are the minimum required to reconstruct this signal.

For the sampling theorem, recall that the signal is reconstructed within the

space spanned by the family of sinc functions

ψn(t) = sinc

{
t− nT
T

}
, (3.6)

where T is the temporal sample spacing. The Fourier spectrum of the sinc function

is

Ψn(f) =

⎧⎨⎩ Te−i2πnfT for |f | ≤W

0 for |f | > W.
(3.7)

As seen from the spectrum of the sinc function, for each temporal sampling, it

generates partial weights for all frequencies lower thanW . Also, notice that Ψn(f)

are orthogonal for different n, and so are the corresponding sinc functions. This

orthogonality offers the perfect equivalence between the Fourier-spanned signal

space and the sinc-functions-spanned signal space. However, in our case of the

bandpass signal, the low frequency components (|f | < WL) involved in the sinc

spectrum will need to be canceled out. Hence, a higher sampling rate than 2(WH−
WL + 1) is required. The sampling theorem for this bandpass signal has been

studied and a formal theory regarding the sampling rate is stated [12, 22]

2(WH + 1)

n
≤ fs ≤ 2WL

n− 1
, for n satisfying: 1 ≤ n ≤

⌊
WH + 1

WH −WL + 1

⌋
, (3.8)

where �·� rounds toward negative infinity.

The DOST basis function offers a perfect frequency response between the

designed frequency values. In this sense, the design of the DOST might be a

good supplement to the study of the sampling theorem (especially to the

non-uniform sampling theorem). Instead of calculating the locations of the

sampling points, some DOST coefficients can be calculated and used. This will

form an interesting branch of study for the DOST.
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Moreover, the number of DOST coefficients for a bandpass signal is consistent

with the sampling requirement stated in (3.8). For example, in Figure 3.7 (a) the

topmost band, along with its negative counterpart cover the frequency from four

to seven. According to the sampling theorem, eight samples are required to recover

that band. On the other hand, according to the definition of the parameter τ , we

have exactly eight DOST coefficients available, corresponding to the case of n = 2

in (3.8).

For applications in which narrower high-frequency bands are desired, a

reverse combination (wider frequency band at lower frequencies, and vice versa)

can generate different types of DOST. We claim that research in designing new

DOSTs for different applications is an exciting theoretical branch of research. As

will be shown in later sections and chapters, flexible ways of partitioning the

time-frequency domain and suitable definitions of the parameters (ν, β and τ)

are possible to maintain the orthogonality, conjugate symmetry and fast

calculation strategy. In section 3.7, we develop a new DOST, that keeps all the

properties of the original DOST and its calculation advantages by reasonably

varying the parameters according to the design diagram.

3.3 Visualization of Time-Frequency DOST

Coefficients

For computation and storage convention, the DOST coefficients of a signal of size

N have been stored as an N -tuple vector. However, it is important to be able to

analyze the data set back into its 2-D nature. For this purpose we implement the

2-D visualization according to the order of Figure 3.1.
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Figure 3.3: 2-D visualization of the DOST coefficients of a signal of size 64.

Figure 3.3 gives an outlook of this visualization, where the horizontal axis is

consistent with the temporal index of the signal and the vertical axis is consistent

with the ordered frequency bands.

3.4 Conjugate Symmetry of the DOST

If we pick the parameters (ν, β and τ) suitably, a real-valued input signal yields a

set of conjugate symmetric DOST coefficients.

More explicitly, if we use the negative integers p to index the negative frequency

bands, and let q = −p, then we can choose the parameters using:

• q = 1, (one basis vector)

ν = −1,
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β = 1,

τ = 0, D[k][ν,β,τ ] = exp(i2kπ/N);

• q = 2, 3, · · · , log2N − 1, (2q−1 basis vectors for each frequency band)

ν = −2(q−1) − 2(q−2) + 1,

β = 2(q−1),

τ = 0, · · · , β − 1,

D[k][ν,β,τ ] = ie−iπτ e−i2α(ν−β/2−1/2)−e−i2α(ν+β/2−1/2)

2
√
β sinα

;

• q = log2N , (one basis vector)

ν = −2q−1,

β = 1,

τ = 0,

D[k][ν,β,τ ] = exp(−ikπ).
(3.9)

Theorem 3.4.1. The DOST basis functions under the parameters ν, β and τ

according to the rules of (3.3) and (3.9) form an orthonormal basis in CN .

Moreover, for a real-valued input signal, the DOST coefficients are conjugate

symmetric about the DC value (p=0).

Proof. The orthogonality has been implied by the definition (3.1). We will focus

on the conjugate symmetry here.

For an arbitrarily given band index |p| (p 
= 0 and log2N), we have two

groups of basic functions: one group corresponding to the positive frequencies,

and the other group corresponding to the negative frequencies. Notice here the

values of β are the same and the values of τ have the same range, 0, 1, · · · , β − 1.

We will distinguish the positive-frequency parameters from the
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negative-frequency parameters using a superscripted positive sign or negative

sign. Then

D[k]∗[ν+,β,τ ] =

(
ie−iπτ e

−i2π(k/N−τ/β)(ν+−β/2−1/2) − e−i2π(k/N−τ/β)(ν++β/2−1/2)

2
√
β sin π(k/N − τ/β)

)∗

= −ieiπτ e
i2π(k/N−τ/β)(ν+−β/2−1/2) − ei2π(k/N−τ/β)(ν++β/2−1/2)

2
√
β sin π(k/N − τ/β) , (3.10)

where ∗ denotes complex conjugation. Note that, for the corresponding negative

index −p, we have ν+ = −(ν− − 1). Thus, (3.10) can be written

D[k]∗[ν+,β,τ ] = −ieiπτ e
i2π(k/N−τ/β)(−ν−+1−β/2−1/2) − ei2π(k/N−τ/β)(−ν−+1+β/2−1/2)

2
√
β sin π(k/N − τ/β)

= ieiπτ
e−i2π(k/N−τ/β)(ν−−β/2−1/2) − e−i2π(k/N−τ/β)(ν−+β/2−1/2)

2
√
β sin π(k/N − τ/β) , (3.11)

where we have swapped the terms in the numerator in (3.10). Since τ is an integer,

eiπτ is always real. Thus eiπτ = e−iπτ . Making these substitutions, we can write

(3.11) as

D[k]∗[ν+,β,τ ] = ie−iπτ e
−i2π(k/N−τ/β)(ν−−β/2−1/2) − e−i2π(k/N−τ/β)(ν−+β/2−1/2)

2
√
β sin π(k/N − τ/β)

= D[k][ν−,β,τ ], (3.12)

which means, if the same τ values have been picked, the basis vectors for the

positive-frequency band p are conjugate symmetric to the corresponding basis

vectors for the negative-frequency band −p. Hence, the corresponding DOST

coefficients will exhibit conjugate symmetry when the input is real-valued.

3.5 Spectrum Analysis of the DOST

As already shown in many works on wavelet analysis [4, 14, 20], the spectrum

intensity of the wavelets is not well localized, which is one explanation why the
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scale information of the wavelet is not equivalent to the frequency information. In

this section, we examine the localization of the DOST spectrum. As we have seen,

the DOST basis functions are grouped according to the same frequency band with

different temporal localizations. Basis functions within the same group share the

same ν and β values, but have different τ values.

In Figure 3.4, we plot the amplitude of their Fourier spectrum for some

selected basis functions at different bands. As we can see, each band covers one

specific frequency band and never overlaps in frequency. Within the same band,

the different basis vectors all have the same Fourier spectrum amplitude, which

means the basis functions in that group can cover the same frequency band as we

have analyzed. Only the phase plotting of these Fourier spectrums is different. In

Figure 3.5, within the period of 2π, we plot some phases of the Fourier spectrum

for some basis functions in the topmost band. In order to achieve the

orthogonality within the same frequency band, as illustrated by the definition in

(3.1), different τ values are picked for different basis functions to realize the

different phases with respect to different frequency components. According to

the Fourier shift theorem, these phase differences between different basis

functions are equivalent to the same unit shifts in the temporal domain. Thus,

the whole set of τ values forms a full coverage on the time duration. However,

due to Fourier uncertainty principle, we can not expect these temporal

coefficients within one specific frequency band to be non-overlapping, which

creates an essential difficulty in studying the local translation property of the

DOST. More discussion on this topic is in Chapter 5.

The perfect frequency localization and continuous phase resolution highlight

the DOST and illustrate the particular advantages for filter design using the

DOST.
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Figure 3.4: The amplitude of the Fourier spectrum of the basis functions, which covers

different band of the frequency. (a) stands for a high frequency band which consist of

multiple high frequencies, and while (d) stands for the lowest frequency band, DC.

3.6 Sub-band Coding and the DOST

Sub-band coding breaks a signal into a number of different frequency bands that

can be independently coded. This decomposition is often the first step in data

compression for audio and video signals. A high quality and low complexity

sub-band filter bank is usually applied before the signal is encoded in each

individual band. Effort has been made to make this algorithm faster while, at

the same time, preserving fairly high quality. As one of the earliest works in this

field, Dr. Burt et al. [6] proposed a Laplacian pyramid to accelerate the filter
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Figure 3.5: Some phase plotting of the Fourier spectrum of the basis functions in group

Figure 3.4 (a). A complete combination of all the phases implies full temporal resolution.

bank execution. The idea was that a low pass filter blurs an image so that an

alternative filter with a finite number of coefficients can be convolved

equivalently to realize an approximate blur. By doing that, the computational

complexity was reduced to O(N) comparing the general FFT, which is

O(N logN). However, an obvious frequency leakage happened, which could be

easily explained by the Fourier uncertainty principle.

Demand of high compression quality in consumer audio applications for

wireless networks continues to grow. Also, in order to accommodate the

properties of human ears, a highly accurate sub-band division is always

preferred. To my knowledge, to achieve a perfect sub-band decomposition in
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frequency space, the Fourier transform is a minimum to avoid the frequency

leakage caused by many other transforms, such as the wavelet transform,

Laplacian pyramid, etc. Without sacrificing the computational complexity, the

DOST has effectively reorganized the frequency band and, on the other hand,

offered nearly localized temporal resolution to achieve more freedom. These

advantages will be able to benefit sub-band coding at some level and form an

interesting future research area on the DOST.

3.7 Approximation Using the DOST

Normally, in the field of image processing, signal processing, etc., people are

dealing with low-frequency dominant sequences. In those sequences, the useful

information is kept in the low frequencies, which makes it reasonable to drop

some high frequency information to achieve a good approximation. Due to the

multiresolution nature of the DOST and its time-frequency representation,

approximation can be achieved by dropping or manipulating frequency- and/or

time-specific DOST coefficients. To test the approximating ability of the DOST,

we select one row from a test image, Barbara (which will be used in the next

chapter for a compression experiment). The length of the signal is 512 and its

intensity ranges from 0 to 255, stored as 8 bit integers.

We decompose the original input (the solid black curve in Figure 3.6 (a)) into

the DOST domain and then accumulate, band by band with reconstruction, from

low frequency band to high frequency band (small ν to large ν). Note that the

input signal is real-valued, so the DOST coefficients are conjugate symmetric.

When a band is included, its corresponding negative band is also included. In

theory, the input signal is decomposed into 9 bands, with the lowest band, DC,
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labeled as band 1, a higher band labeled as band 2 and so on. Figure 3.6 (a) shows

a step by step approximation produced by picking the first two bands (only four

coefficients), the first five bands (1/16 of the coefficients) or the first seven bands

(1/4 of the coefficients). In Figure 3.6 (b), the difference for the accumulation

up to a certain band is plotted. As we can read from the plot, by keeping only

half of the DOST coefficients (band 1 to band 8), the image intensity only bears

a sacrifice of 1.4 out of 256 (about 0.5%). Even for the approximation with only

1/4 of the coefficients (band 1 to band 7), on average, only 1.5% of the accuracy

is lost for each entry.

3.8 Alternative Symmetric DOST

Figure 3.7 (a) shows how the parameters ν, β and τ partition the time-frequency

domain and how the DOST gives conjugate symmetry when the input is real.

Motivated by the Fourier Shift Theorem, we can modify the definitions of the

parameters and define an alternative, fully-symmetric DOST. In Ref. [43], we

previously proposed a symmetric DOST where the basis vectors were altered so

that the resulting coefficients were conjugate symmetric for real-valued input. The

new basis is also orthonormal. Here, then, we repeat the derivation.

Imposing the conjugate symmetry requirement on the DOST coefficients [43]

gives us

D[ν,β,τ ] =
(
D[−ν,β,τ ]

)∗
. (3.13)

This symmetry constraint is satisfied for all non-zero ν if we simply shift all the

samples away from the zero frequency by 1/2. We are then left with a gap from

-1 to 1 containing one coefficient whose band extends from −1/2 to 1/2. Instead,

we split the gap into two coefficients, one with a band from 0 to 1, and the other
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(b) Step by step averaging of the difference.

Figure 3.6: Study on the approximation ability of the DOST. Good approximation is

achieved by keeping only a small part of the DOST coefficients.

with a band from -1 to 0. This alternative partition can be implemented by simply

replacing ν with (ν + 1/2) in (3.2) for the positive frequencies; a partition that is

mirrored for the negative frequencies. Then, the basis vectors for this symmetric
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(a) DOST.

(b) Alternative Symmetric DOST.

Figure 3.7: Partition diagram of the time-frequency domain. Each rectangle block area

with the same shape and color markers corresponds to one DOST coefficient. In (b), the

partitions for the symmetric DOST have been shifted along the frequency axis according to

the description in section 3.8 .
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DOST, denoted by D̃, can be written

D̃[k][ν,β,τ ] = ie−iπτ e
−i2α(ν−β/2) − e−i2α(ν+β/2)

2
√
β sinα

. (3.14)

The orthogonality property still holds for this family of basis vectors. Figure 3.7

(b) shows the partition over the time-frequency domain of this symmetric DOST,

and how it differs from that of the original DOST. This work was published in [43]

in 2008.

3.9 2-D DOST

The 2-D ST is a separable transform, as is the 2-D DOST. Figure 3.8 gives the

impression of how the DOST coefficients distribute in an ordered 2-D expression.

The input is a black image, of size 1024×1024, with only one white dot at position

of (360, 90). For a better comparison between the coefficients, the plot of the

coefficients is in log-scale.

Figure 3.9 shows the logarithm of the magnitude of the 2-D DOST coefficients

for a popular example image, Lena. As we can see, the coefficients decay very

quickly, which makes the DOST a powerful tool for image compression and other

applications. Moreover, the DOST coefficients decay in a consistent way. As you

can easily observe from the log-scale magnitude plot, there are still small “Lenas”

on each corner of the plot. And even for the square and rectangular blocks inside

the plot, where frequency bands with respect to different spatial axes of the image

overlap, the stretched “Lenas” are still visible.

Due to the side-lobes seen in the plotting of the DOST basis function (see

Figure 3.2), the 2-D DOST coefficients are non-zero almost everywhere, even for

the one-dot image. This dispersion has created difficulties in using the DOST for
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Figure 3.8: Logarithm of the DOST coefficients of an image with one white dot.

Figure 3.9: Lena and the logarithm of its DOST coefficients.

some applications. However, the extent of the temporal side-lobes is the price that

must be paid for perfect frequency banding. This can be a nuisance, as will be

seen in the discussion of the local translation in Chapter 5.
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3.10 Current Applications Using the DOST

The DOST is fairly young. However, compared to other transforms and

strategies, it has been demonstrated to be useful in some fields. The DOST has

been successfully applied in signal analysis to channel instantaneous frequency

analysis [35]. It has also been recently applied to image processing in image

texture analysis [16], image compression [46] and image restoration [44]. The

details of these applications can be found in the corresponding references and in

Chapter 6 and 7 of this thesis.
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Chapter 4

The Fast DOST

We stated above that the matrix-vector implementation of the DOST has

computational complexity of O(N2). However, the DOST can be calculated in a

faster manner by taking advantage of the FFT. While this was mentioned in [35],

we developed our method independently, and supply a rigorous proof of its

computational complexity class here. This work has been published in the SIAM

Journal on Scientific Computing (SISC) [45] in 2009.

4.1 FDOST Algorithm

Consider the inner product between D[k][ν,β,τ ], as shown in (3.1), and the input

signal h[k] (of length N). The resulting expression is the DOST coefficient, S, for

the region corresponding to the choice of [ν, β, τ ], and can be expressed as

S[ν,β,τ ] = 〈D[k][ν,β,τ ], h[k]〉

=
1√
β

N−1∑
k=0

ν+β/2−1∑
f=ν−β/2

exp

(
−i2π k

N
f

)
exp

(
i2π

τ

β
f

)
exp (−iπτ) h[k]. (4.1)
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In the above summation, the order of the sums can be switched and the common

factors can be taken out. Then (4.1) becomes

1√
β

ν+β/2−1∑
f=ν−β/2

exp (−iπτ) exp
(
i2π

τ

β
f

)[N−1∑
k=0

exp

(
−i2π k

N
f

)
h[k]

]
. (4.2)

The part in the square brackets is H [f ], the discrete Fourier coefficient of our

signal, evaluated at the frequency index f . Hence, we have

S[ν,β,τ ] =
1√
β

ν+β/2−1∑
f=ν−β/2

exp (−iπτ) exp
(
i2π

τ

β
f

)
H [f ], (4.3)

where the value of f is summed only on a certain band (depending on ν and β).

Hence, this summation can be represented by the inner product between a row in

a sparse matrix and the vector of the Fourier coefficients, H .

This strategy can be summarized as in Figure 4.1 (a). The block-diagonal

nature of the transform matrix T offers the opportunity to calculate the DOST

coefficients in a block-wise fashion. Hence, this sparse matrix allows for more

efficient matrix multiplication.

The alternative symmetric DOST can be represented in a similar way (as shown

in Figure 4.1(b)) by first multiplying the signal by a phase ramp. Despite the fact

that the symmetric DOST corresponds to a 1/2-sample shift along the frequency

axis, there is no loss of information due to resampling because the phase ramp that

precedes the FFT implements the shift by the Fourier shift theorem. Note that

the transform matrix is slightly different for the symmetric DOST. However, these

transform matrices essentially have the same structure, and are block-diagonal in

both cases.

Not only is T sparse, but each block of T has a special structure that facilitates

efficient matrix multiplication. To see this, consider the top-left block, labeled T1.
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(a) DOST.

(b) Alternative Symmetric DOST

Figure 4.1: Calculation strategies of the DOST and the alternative symmetric DOST. The

symmetric DOST is equivalent to the shifted version of the DOST with a different transform

matrix.

In the case where N = 16, T1 is

1√
β

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e−πiτ0e2πi
τ0
β
(A) e−πiτ0e2πi

τ0
β
(A+1) e−πiτ0e2πi

τ0
β
(A+2) e−πiτ0e2π

τ0
β
(A+3)

e−πiτ1e2πi
τ1
β
(A) e−πiτ1e2πi

τ1
β
(A+1) e−πiτ1e2πi

τ1
β
(A+2) e−πiτ1e2πi

τ1
β
(A+3)

e−πiτ2e2πi
τ2
β
(A) e−πiτ2e2πi

τ2
β
(A+1) e−πiτ2e2πi

τ2
β
(A+2) e−πiτ2e2πi

τ2
β
(A+3)

e−πiτ3e2πi
τ3
β
(A) e−πiτ3e2πi

τ3
β
(A+1) e−πiτ3e2πi

τ3
β
(A+2) e−πiτ3e2πi

τ3
β
(A+3)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

where we have replaced (ν−β/2) with A for notational simplicity. Noting that τk =

k, if we index the rows with k and the columns with j (where j, k = 0, · · · , β− 1),
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then the (j, k) element of T1 is

β− 1
2 e−πiτk e2πi

τk
β
(A+j) = β− 1

2 e−πiτk(1−2A
β ) e2πi

τk
β
j

= β− 1
2 e−πik(1−2A

β ) e2πi
k
β
j . (4.4)

From (4.4), we can see that T1 can be factored into a product of two matrices,

T1 = R1 V1, (4.5)

where R1 is a diagonal phase-ramp matrix with entries rk = β−1/2e−πik(1−2A/β) and

V1 is the inverse Fourier matrix (of size β = 4 in our example).

Therefore, the process of multiplying by T1 can be broken into two parts:

applying V1 which takes O(β log β), and applying R1 which takes O(β).
Accumulating the operation counts over all the blocks in T (i.e. for

β = N/4, N/8, · · · , 1, · · · , N/8, N/4, 1), the complexity to modify the Fourier

coefficients to get the DOST coefficients is O(N logN). A formal and detailed

proof of the computational complexity of this technique will be given in next

section. Since the initial FFT in Figure 4.1 (a) also has a complexity of

O(N logN), the total complexity for calculating the DOST coefficients is

O(N logN).

By studying the entries of the phase-ramp matrix in our algorithm, it turns

out (taking into consideration how the parameters have been chosen) that

rk = e−2πi k
β
(β−ν) = e−2πi k

β
β
2 , (4.6)

which means the slope is β/2 in the algorithm we presented here. According

to the Fourier Shift Theorem, that slope is equivalent to a shift over the input

sequence before the IFFT is taken, which makes our algorithm equivalent to the

one described in [16], where the shift of −Ny/2 is applied before the IFFT.
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Let us now consider the operation of reconstruction, the inverse DOST. All the

blocks of T are unitary matrices, so T is a unitary matrix. Hence the inverse of T

is the adjoint (conjugate transpose) of T . The adjoint of T has the same structure

as T , and can still be decomposed into a diagonal matrix and a Fourier matrix, and

therefore applied with computational complexity O(N logN). The other matrix

factors shown in Figure 4.1 (a) are all trivially invertible and applied with the same

computational complexity as the forward operators. Thus, the inverse DOST can

also be computed in O(N logN).

Moreover, during the decomposition and reconstruction, at no point does a

matrix need to be explicitly stored. The FT matrices are implemented by the

FFT, and the other matrices are all diagonal.

Besides the computational advantages, the matrix decomposition helps to

elucidate the nature of the DOST decomposition. In the series of calculations to

get the DOST, the input signal is transformed into pure frequency information

first. Next, an inverse Fourier transform is applied to a narrow frequency band,

yielding time-domain coefficients specific to that frequency band. Thus the final

coefficients will carry both frequency and temporal information. This

explanation is similar to the rationale given in [35] and [16].

Figure 4.2 plots the logarithm of the execution time for computing the FFT and

FDOST. Both curves show the same growth trend, although the FDOST appears

to be slower by a constant factor. As a comparison, the ideal O(N logN) line is

plotted as well.

Since the FDOST method is in a different computational complexity class than

the brute-force DOST computation (using vector dot-products), we did not embark

on a formal study to compare the execution times between the two methods.

However, we include here a realistic example to give an impression of the speed
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Figure 4.2: The comparison of time between the FDOST and FFT for various sizes of input

signals.

difference. On a signal of length 1024, it took 2.285 seconds to compute the

DOST using vector dot-products (including constructing the basis vectors), but

only 0.0086 seconds using our FDOST method. It is worth noting, however, that

these timings were run in Matlab. Although every effort was made to implement

the two methods on a “level playing-field” (using Matlab’s vectorization wherever

possible), the timings ultimately depend on the particular Matlab implementation.

The alternative symmetric DOST has a slightly different transform matrix, T̃ ,

as well as a different ramp matrix (e.g. R1 in (4.5)). However, both matrices have

the same structure as their regular-DOST counterparts, so the symmetric FDOST

algorithm also has complexity O(N logN). Moreover, if the input signal is real-

valued, the symmetry property allows one to compute only half of the coefficients.
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4.2 Computational Complexity

Theorem 4.2.1. The computational complexity of the fast DOST and fast inverse

DOST algorithms, as described in section 4.1, is O(N logN). The fast algorithms

for the alternative symmetric DOST are also O(N logN).

Proof. Assume we have an input series, h, of size N . As well known, the

computational complexity of taking the FFT on h is O(N logN). Assume that

the actual number of floating-point operations of the FFT (and IFFT) algorithm

is αN(logN).

First assume N = 2n, where n is a positive integer larger than three.1 The

total accumulation of the DOST operations has been divided into two stages.

Stage 1: In this stage, we take the global FT using the FFT, i.e. the right-most

matrix multiplication in Figure 4.1 (a). The operation count for this stage is

S1 = αN logN. (4.7)

Stage 2: In this stage, we perform the block-wise matrix multiplication of the

Fourier coefficients (from stage 1) with T , i.e. the matrix multiplication on the

left in Figure 4.1 (a).

Based on the partition strategy, in the left-most matrix of Figure 4.1 (a) we

have a series of matrices of size

{2n−2, 2n−3, · · · , 2, 1, 1, 1, 2, · · · , 2n−3, 2n−2, 1}.
1In this thesis, we have focused on the dyadic length signals or images. The non-dyadic length

case was mentioned in [35] by Dr. Stockwell. However, a formal theoretical structure and decent

verification of this topic will be required and form one possible future work of the DOST.
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Recall from (4.5) that the matrix block can be factored into a diagonal matrix (R)

and a Fourier matrix (V ). For a block of size 2m, the number of floating-point

operations required to perform the IFFT and diagonal matrix multiplication is

α2m log 2m + 2m = αm2m log 2 + 2m. (4.8)

So the total operations needed in this stage will be:

S2 = 2

n−2∑
m=0

(αm2m log 2 + 2m) + 2 ∗ 20

= 2α log 2

n−2∑
m=1

m2m + 2

n−2∑
m=0

2m + 2. (4.9)

Now we need to evaluate the sum of an arithmetic-geometric sequence, m2m, m =

1, · · · , n− 2. Letting

U =

n−2∑
m=1

m2m, (4.10)

multiply by 2 on both sizes

2U =

n−2∑
m=1

m2m+1 =

n−1∑
m=2

(m− 1)2m. (4.11)

Subtracting (4.10) from (4.11), we get

U = (n− 2)2n−1 −
n−2∑
m=2

2m − 2. (4.12)

Using the fact n = logN/ log 2,

S2 = 2α log 2

(
(n− 2)2n−1 −

n−2∑
m=2

2m − 2

)
+ 2

n−2∑
m=0

2m + 2

= α(n− 2)2n log 2− α2n log 2 + 2n + 4α log 2

= αN logN − (3α log 2 + 1)N + 4α log 2. (4.13)
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Thus, the total number of floating-point operations required to calculate the DOST

coefficients is

S = S1 + S2

= 2αN logN − (3α log 2 + 1)N + 8α log 2

= O(N logN). (4.14)

The computational complexity for the reconstruction and the alternative

symmetric version can be proven in a similar fashion, which completes this

proof.

The fast DOST and the separability between dimensions offer a way of using

the DOST to analyze higher dimensional data sets.
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Chapter 5

Global Translation and Local

Translation of the DOST

The FT has a convenient representation for image translation. When an image

is translated in a periodic manner (so that its contents wrap around), its Fourier

coefficients are modified by the addition of a linear component to its phase, which

is known as the Fourier Shift Theorem [5].

The ST is a compromise between localities in the temporal and frequency

domains. In this chapter, we will initialize the study of the DOST Shift theorem.

Considering the local properties of the DOST, we will attempt to achieve some

local translation properties of the DOST, so that local translations can be detected

and corrected based on the DOST coefficients themselves.

5.1 Global Translation

In Fourier theory, a circular shift of the input xn corresponds to multiplying the

Fourier coefficients Xk by a linear phase. Explicitly,
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Corollary 5.1.1. (Fourier Shift Theorem)

If {xn} represents the input vector x then

F({xn−m})k = Xk · e− 2πi
N

km. (5.1)

Recalling the matrix form presented in Chapter 4, the DOST coefficients can

be achieved by applying a global FT first and then block-wise inverse FTs with

ramp matrices. This calculation strategy offers the convenience to analyze the

global translation property on the DOST.

Theorem 5.1.2. (DOST Shift Theorem) If a one-dimensional signal is

translated, then the entire DOST coefficients are equivalently translated according

to the Fourier shift theorem on each frequency band.

Proof. Denote x = {xk} as the original signal. Regarding the matrix order of the

Fourier coefficients in the matrix form of Chapter 4, the index k to be taken as

k = N/2− 1, N/2− 2, · · · , 0, · · · ,−N/2 needs.

Denote Xk = F({xn})k, k = N/2− 1, · · · , 0, · · · ,−N/2 correspondingly, as its

Fourier coefficients. Assume that x′ is the translated version of the original signal.

Without loss of generality, we will assume that the signal is translated to the right

by the amount of m.

According to the Fourier shift theorem,

F({xn · e 2πi
N

nm})k = Xk−m, (5.2)

F({xn−m})k = Xk · e− 2πi
N

km. (5.3)

Equivalently, the shift theorem on the inverse Fourier transform states

F−1({Xk−m})k = xk · e 2πi
N

nm, (5.4)
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F−1({Xk · e− 2πi
N

km})k = xn−m. (5.5)

Taking advantage of the matrix expression of the DOST developed in Chapter

4, the DOST coefficients of x, S[ν,β,τ ], can be expressed as

S[ν,β,τ ] = T · F(x)

= T ·X. (5.6)

After plugging the translation into the input, the DOST coefficients of the

translated signal, S ′
[ν,β,τ ], can be expressed as

S ′
[ν,β,τ ] = T · F(x′)

= T ·Q ·X, (5.7)

where Q is the diagonal phase-ramp matrix, with the diagonal components of

exp{−2πi
N
km}, k = N/2 − 1, · · · , 0, · · · ,−N/2. So, Q · X is a vector which has

components exp{−2πi
N
km}Xk, k = N/2− 1, · · · , 0, · · · ,−N/2.

Recall that the transformation matrix T is a block-diagonal matrix. Therefore

the components in Q · X can be partitioned accordingly. We first consider the

positive frequency portion. Without loss of generality, only the top two blocks

need to be analyzed.

Using the expression of (4.5), the top block of the transformation matrix T is

T1 = R1 V1. (5.8)

Denote the size of T1 as β1 = N/4. Let [QX ]1 denote the first β1 elements

of Q · X. Denote the multiplication between V1 and [QX ]1 as [V QX]1 and the

multiplication between V1 and X (for k = N/2− 1, · · · , N/2− β1, or equivalently
k = 2β1 − 1, · · · , β1) as [V X ]1. Hence, we can write the band of shifted DOST

coefficients as R1[V QX]1.
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Without loss of generality, for now, the value of m/4 can be assumed to be

integer. The non-integer case will occur in the lower frequency bands. Ifm/4 is not

an integer, the interpolation among the highest frequency band will be required

at the very beginning.

We rewrite k = 3β1/2 + k1 (k1 = β1/2 − 1, · · · ,−β1/2) so that k1 is centered

in the voice, then rewrite the term in [QX ]1 as

exp

{
−2πi
N
km

}
Xk = exp

{
−2πi

4β1
(
3β1
2

+ k1)m

}
Xk

= exp
{
πi
m

4

}
exp

{
−2πi
β1

k1
m

4

}
Xk

= (−1)m
4 exp

{
−2πi
β1

k1
m

4

}
Xk. (5.9)

Recall from section 4.1 that V1 is the inverse FT matrix. Then [V QX ]1 turns

into the inverse Fourier transform of [QX ]1. Based on (5.5), the result will be the

translated version of [V X]1 by the amount of m/4 to the right with a possible

minus sign. Notice that a general translation permutation matrix H commutes

with R1, or commutes with R1 with an additional factor of −1. Indeed, for an

example of size 4, when translation is odd,

R1 ·H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 −1 0

0 0 0 1

−1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

H · R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0

0 0 1 0

0 0 0 −1
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

67



and when translation is even,

R1 ·H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

H · R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Multiplication between R1 and [V X]1 provides the DOST coefficients of the

original input on the positive highest frequency band. So, the Multiplication

between R1 and [V QX]1 gives the translated DOST coefficients (an m/4-vector)

on the same band with possible minus signs depending on the parity of m/4.

The next frequency band of DOST coefficients is half the size, and so are the

transformation matrix and the ramp matrix involved in the calculations. So, on the

next level of the matrix form, corresponding to the second highest frequency block,

we have the Fourier coefficients from k = β1 − 1, · · · , β1 − β2 = 2β2 − 1, · · · , β2,
where β2 = N/8 = β1/2.

We rewrite k = 3β2/2+k2, then k2 = β2/2−1, · · · ,−β2/2. Following the same

analysis and notations used above, we can rewrite the term in [QX ]2

exp

{
−2πi
N
km

}
Xk = exp

{
−2πi

8β2
(
3β2
2

+ k2)m

}
Xk

= exp

{
−3mπi

8

}
exp

{
−2πi
β2

k2
m

8

}
Xk, (5.10)

considering the assumption we made on m (m/4 is integer). Besides the factor

from commuting the matrices, the former exponential (independent of the index
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k) supplies another constant factor for this band. So if the m/8 is still an integer,

following the analysis of the topmost frequency block, the DOST coefficients will

be translated to the right by the amount of m/8 with possible minus signs. If

not, the above calculation procedure matches the Fourier shift theorem with an

additional constant factor, which is from both commuting and the index partition.

Moreover, the same analysis can go as deep as the smallest block in the center

of the matrix form, in which only one DOST coefficient is involved. Over this

block, no translation is required.

The complex conjugate property between the negative frequency and the

positive frequency guarantees the same analysis can be done for the negative half

of the frequency in the matrix form, which completes the proof.

Theorem 5.1.2 forms the fundamental property of the DOST translation.

With the amount of translation (usually called “offset” in applications),

coefficients of the original signal on different bands can be manipulated in

parallel to achieve new DOST coefficients. The lowest frequency coefficient in the

DOST is the DC, and the conjugate symmetric second lowest frequency

coefficients are actually Fourier coefficients regarding the definition of their

corresponding basis functions in Chapter 3. So, due to the Fourier shift theorem,

to quantify the amount of global translation is fairly straightforward by

observing the phase change of the second lowest frequency. However, in the

wavelet transform, the explicit relation between the coefficients before and after

translation is not obvious. In Multi-Carrier Modulation using the wavelet, the

algorithm needs to deal with the effect caused by the offset. Different techniques

have been discussed [24], however, no satisfactory result has been achieved.

Considering the multiresolution ability of the DOST and its direct relation with
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respect to the offset, the DOST could be a good candidate in similar areas.

5.2 Local Translation

Let us now consider a one-dimensional signal, where there is a periodic

translation over a small window inside the signal. Figure 5.1 shows an example

of this behavior. We intend to build the relation between the DOST coefficients

before and after the local translation, and thus detect the translation with only

the DOST coefficients before and after the local translation.

As we have already seen in the previous chapters, the DOST is perfectly band-

limited in the frequency domain. Due to the uncertainty principle between the

Fourier domain and the time domain, the DOST can not be perfectly compact in

the time domain. The side-lobes of the Gaussian window functions disperse the

contribution of a single component to every DOST coefficient in a given band.

Thus, we can not expect to find exact closed-form representations for temporally

local phenomena. Rather, we look for approximate representations, a valid pursuit

given that the Gaussian side-lobes fall off rapidly.

Let x ∈ RN be a signal. Suppose that part of x undergoes a periodic shift, so

that samples l through l + L shift to the right.

Define P ∈ RN as

Pi =

⎧⎨⎩ xi for l ≤ i ≤ l + L

0 otherwise
(5.11)

and B ∈ RN as

B = x− P. (5.12)

Since the shift is periodic, we can decompose P into two parts, one that shifts

to the right, and the other part that effectively shifts to the left because of the
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wrapping. Thus, if P is shifted by m samples (m < L), then define P 1 and P 2 as

P 1
i =

⎧⎨⎩ xi for l ≤ i ≤ l + L−m
0 otherwise

(5.13)

P 2
i =

⎧⎨⎩ xi for l + L−m+ 1 ≤ i ≤ l + L

0 otherwise
(5.14)

So, the original signal has been decomposed into three mutually exclusive parts,

B, P 1 and P 2. Following the notation from the previous chapter, we use a letter

D before the terms defined above to indicate the DOST transformation matrix. S

is used to denote the original DOST coefficients and S ′ is the DOST coefficients

of the locally translated signal. Tk(·) is used to denote the global translation to

the right by k samples. Then the model can be expressed explicitly as

S = DB +DP 1 +DP 2,

S ′ = DB +DTm(P
1) +DTm−M(P 2). (5.15)

To identify a local translation, we will need to solve form andM . Or, equivalently,

we need to solve for P 1 and P 2. Using the result of Theorem 5.1.2,

S ′
ν = DB + F−1(Rν,m · F(DP 1)) + F−1(Rν,m−M · F(DP 2)), (5.16)

where Rν,m = {e− 2πi
N

km} and Rν,m−M = {e− 2πi
N

k(m−M)} = {e− 2πi
N

km · e 2πi
N

kM}, k =

1, · · · , βν , are the diagonal phase-ramp matrices corresponding to the translation

of P 1 and P 2 on level β of the DOST coefficients. When we subtract S ′ from S in

(5.15), the effect from B cancels out with leaving only the coupling of the opposite

translations. In a special case whereM = N , which means the translation window

is identical to the original length of the signal, the factor e
2πi
N

kM becomes one and

makes it possible to combine DT (P 1) and DT (P 2), to solve for m. Otherwise,
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the effects from the P 1 are coupled with the effects of P 2, which means there are

not enough equations to exactly solve (5.15). In other special cases, if we do have

some priori information available, we can use (5.15) to solve for the rest of the

information. The total complexity remains O(N logN) compared to O(MN2),

which is the order of the brute-force solution for finding the local translation.

As an empirical study, we used the signal in Figure 5.1 (a) and its local

translated version in Figure 5.1 (b) as test signals to compare their DOST

coefficients in terms of magnitudes and phases. The results shown in Figure 5.2

are consistent with our analysis. The magnitude difference and phase difference

of the coefficients are mostly concentrated over the same area, which helps to

locate the window approximately. There could easily be an approximation

method to determine the window, and amount of translation. In particular,

phase difference information in the low-frequency bands gives a general

indication of the local translation. More precise information could be gleaned

from the higher-frequency DOST coefficients in the same temporal location. For

example, in Figure 5.2, the phase difference in the lower frequency might signal

an inspection of the DOST coefficients for the region in higher frequencies. This

future work will also be pursued in more detail in parallel with the theoretical

model-analysis mentioned above.

5.3 Conclusion

The DOST shift theorem states the explicit relations between coefficients before

and after global translation and opens the door for research of local translation.

Unfortunately, due to the non-local nature of the DOST coefficients, coupling

two opposite translations makes it difficult to solve the system (5.15). The
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(b) Local translated Signal.

Figure 5.1: The original signal and the locally translated signal. Samples 26 to 34 (indicated

by the solid filling) are periodically translated to the right by 4 samples.

(a) Phase Difference (b) Magnitude difference

Figure 5.2: The phase and magnitude difference between the DOST coefficients of the

signals in Figure 5.1.
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DOST does not yield a simple way to detect where the exact translation window

is and how much the signal inside the window has been translated. However,

numerical results give a hint that some approximation methods might be

possible, which would directly benefit the multiple windows translation.

Considering the computational complexity advantage using the DOST, we will

leave this as possible future research.
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Chapter 6

Image Compression Using the

DOST

Image compression is an important step in many image-processing pipelines,

allowing for smaller storage size, and faster download. Currently, JPEG image

compression is one of the most prevalent image compression standards [42]. The

most recent JPEG standard, called JPEG2000 [9], uses wavelets. Wavelets are

currently regarded as the leading technology for image compression.

Before the use of wavelets, the Fourier transform (FT) was commonly used in

image compression. The FT decomposes the image into its component frequencies,

but does so globally so that each pixel affects every Fourier coefficient. Wavelets

give a multiresolution decomposition in the spatial-scale domain. Even though

the scale information can be approximately treated as frequency information (i.e.

the fine scale information corresponds to the high frequency information and vice

versa), the wavelet basis functions (e.g. the compactly supported Daubechies

wavelets) are not entirely smooth. Hence, wavelet compression can be suboptimal

on smooth parts of an image.
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The Stockwell transform (ST) provides a continuous and infinitely

differentiable kernel function and a full decomposition over the spatial-frequency

domain. The orthonormal version of the Stockwell transform is the Discrete

Orthonormal Stockwell transform (DOST) discussed earlier, which gives a

spatial-frequency decomposition with no redundancy. In this chapter, we use an

image compression experiment to demonstrate the advantages of the DOST by

analyzing the peak signal to noise ratio (PSNR). We will see that a better

approximation is achieved in the smooth areas of the image without sacrificing

crisp edges. The result has been published in SPIE Proceedings [46] in 2009.

6.1 Methods

Our goal is to introduce the ST as a candidate tool for image compression. As an

initial stab at determining the ST’s capabilities, we compare it to two other

transforms in a rudimentary compression methodology – simply dropping a

percentage of the smallest coefficients (in modulus) and then reconstructing the

images.

For our experiments, we used one of the most efficient families of wavelets, the

Daubechies wavelets [14]. The Daubechies wavelets form a family of orthogonal

wavelets with a small number of coefficients. Generally, the order-K Daubechies

wavelet has 2K non-zero coefficients, which makes the Daubechies wavelets efficient

for image compression [15].

To compare the capabilities of the compression methods (DOST, FT,

Daubechies), we conducted an experiment in which we applied each of the three

methods to three different test images (shown in Figure 6.1) at different

compression rates. The test images are all 512× 512 pixels in size.
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(a) Babara (b) Lena (c) CT

Figure 6.1: Original sample images.

Definition 2. Peak Signal to Noise Ratio (PSNR)

Peak signal to noise ratio is mostly defined via the mean squared error (MSE)

which for two m × n monochrome images I and K where one of the images is

considered a noisy approximation of the other is defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2.

The PSNR is defined as:

PSNR = 10 · log10
(
MAX 2

I

MSE

)
= 20 · log10

(
MAX I√
MSE

)
. (6.1)

Tables 6.1-6.3 report the PSNR of the compressed images for our experiment.

In all cases, the DOST method yields a substantially higher PSNR than the FT

and Daubechies methods. In addition (though not reported in the tables), the

maximum intensity errors are roughly the same between the DOST and the

Daubechies methods.

Figure 6.2 compares the original Barbara and different compressed versions

using DOST, FT and Daubechies-2 (compressing by 90%, in other words,
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Table 6.1: PSNR for compression using 80% of coefficients.

Transform Barbara Lena CT

DOST 90.27 88.87 86.69

FT 52.39 56.61 53.87

Haar 74.42 76.56 78.10

Daubechies-2 87.13 83.18 82.36

Daubechies-5 84.68 82.29 81.85

Daubechies-15 88.1665 84.59 80.22

Daubechies-38 81.9181 80.84 79.95

reconstructing using only 10% of the coefficients). As we can see, the DOST

version remains sharper and keeps more detailed information (e.g. shadows

behind the door, expression on the face and texture over the pants) than the

wavelet version.

Figure 6.3 shows the corresponding intensity errors for different compression

methods. The distribution of the non-zero elements hints at each method’s

strengths and weaknesses. In particular, the FT method exhibits its largest

errors in the regions containing high-frequency content. The DOST method

shows relatively small errors throughout. Similar observations are made over

different compression rates.

To see more detailed comparison, as has been marked from the original

image, four different regions with different textures are chosen and magnified.

We can clearly see that the DOST compressed image has managed to maintain

more original textures than the same level wavelet compression.

In Figure 6.9 and 6.10, we give another example for comparison. Similar

comparison result can be achieved as above.
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Table 6.2: PSNR for compression using 50% of coefficients.

Transform Barbara Lena CT

DOST 55.17 53.20 52.45

FT 39.80 38.25 40.76

Haar 48.35 47.41 48.34

Daubechies-2 50.21 51.24 48.10

Daubechies-5 51.00 48.06 48.95

Daubechies-15 50.68 48.68 47.68

Daubechies-38 48.70 47.34 46.90

Table 6.3: PSNR for compression using 10% of coefficients.

Transform Barbara Lena CT

DOST 34.31 33.40 33.25

FT 27.80 26.25 26.76

Haar 31.07 30.41 28.34

Daubechies-2 31.27 31.24 30.10

Daubechies-5 32.56 30.06 30.95

Daubechies-15 32.44 29.96 31.68

Daubechies-38 31.84 29.34 30.90

6.2 Conclusion and Discussion

Over the baseline comparison, the DOST is a valuable tool for image compression

by giving a higher PSNR than the wavelet and the FT.

From the residual images of the experiment, Figure 6.3 and Figure 6.10, we

can see that there are some block patterns in both wavelet and DOST methods.
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(a) Original (b) DOST compressed

(c) FT compressed (d) Daubechies-2 compressed

Figure 6.2: Original and compressed versions of Barbara using 10% of coefficients.

However, we do find that the block pattern in the DOST residual is milder than

the one in the wavelet residual. Even though there is no explicit standard to

quantify the block pattern as one of the specifications of the image quality, this

block does introduce artifacts. We analyze this phenomenon using the following

experiment. First we set both the DOST coefficients and the wavelet coefficients

of the image to zero, and then assign a random value to random positions of those
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(a) FT

(b) DOST (c) Daubechies-2 wavelet

Figure 6.3: Intensity errors for Barbara image using 10% of coefficients (see Table 6.3).

The gray level is set so that -20 maps to black and 20 maps to white.
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Figure 6.4: Selected regions for detailed comparison.

two matrices. We run the corresponding reconstruction algorithms and study the

reconstructed images. In the wavelet experiment, aside from the information we

assigned, we see globally distributed information all over the image, which can

be explained by the upsampling algorithm (2.35). Considering (2.35), we know

that all the leaves of the tree are wavelet coefficients, which will contribute to the

reconstruction. So, once a random coefficient is assigned, the original image would

be affected over a larger area. The lower the coefficient is located in the pyramid

tree, the further reaching its influence. Moreover, in real applications, the high

frequency information, corresponding to the bottom positions of the tree, tends

to be dropped, which consequently has a global influence on the image. On the

other hand, as we can see from Figure (6.11) (b), a single DOST coefficient affects

only a small region of the image on its vertical and horizontal directions, and thus

introduces much milder blur to the image.
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(a) Original

(b)DOST compressed (c) Daubechies-2 wavelet compressed

Figure 6.5: Magnified comparison of Barbara’s eyes.

We understand that the state-of-the-art compression methods that use the FT

and WT are considerably more complex than the simplistic compression method

used in our experiments. This project is simply a pilot study, and we believe it

presents the motivation for more investigation which is needed to assess the degree

to which the DOST can challenge the best compression methods.
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(a) Original

(b)DOST compressed (c) Daubechies-2 wavelet compressed

Figure 6.6: Magnified comparison of the hood on Barbara’s right shoulder.
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(a) Original

(b)DOST compressed (c) Daubechies-2 wavelet compressed

Figure 6.7: Magnified comparison of the toy on the table.
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(a) Original (b)DOST (c) Daubechies-2 wavelet

Figure 6.8: Magnified comparison of the table cloth.
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(a) Original (b) DOST compressed

(c) FT compressed (d) Daubechies-2 compressed

Figure 6.9: Original and compressed versions of the CT image using 10% of coefficients.
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(a) FT

(b) DOST (c) Daubechies-2 wavelet

Figure 6.10: Intensity errors for CT image using 10% of coefficients (see Table 6.3). The

gray level is set so that -5 maps to black and 5 maps to white.
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(a) Wavelet (b) DOST

Figure 6.11: The reconstructed images from one wavelet coefficient or one DOST

coefficient.

89



Chapter 7

Image Restoration Using the

DOST

7.1 Introduction

Wavelets have been used to compress images since the 1970s. When the

compressed images are electronically transferred, the wavelet coefficients are

transferred. Due to the transportation, the routers and several other reasons, the

coefficients could get partially lost. To restore the partially lost information we

need to use a restoration algorithm so the image is acceptable to human eyes.

Even though wavelets have dominated image compression for years, other

competitive methods for compression are being studied. In Ref. [46] and Chapter

5, a compression algorithm was described using the newly invented discrete

orthonormal Stockwell transform (DOST) [35]. The possibility to restore a

DOST-encoded image with its partially lost information (coefficients) will make

the reality of DOST compression more convincing. These results have been

published in ICIP [44] in 2009.
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7.2 Method and Algorithm

In this section, we propose a total variation (TV) DOST based image inpainting

model for the case of additive noise. We start with a standard image model,

u(x) = u0(x) + n(x), (7.1)

where u0(x) is the original noise free image and n(x) the Gaussian white noise.

Assume u0(x) has the following DOST decomposition,

u0(f, x) =
∑
i,j

fi,jD[x1]iD[x2]j, (7.2)

where fi,j is the (i, j)th DOST coefficient (for simplicity of notation, the DOST

coefficients for an image have two indices, hence form a 2-D matrix as a whole)

and x = (x1, x2) ∈ R2 is the 2-D spatial coordinate.

Model: Define the total variation of the image as [8] [41]

min
di,j :(i,j)∈I

F (u; d) =

∫
R2

|∇xu(d, x)|dx = TV(u(d, x)), (7.3)

where u(d, x) is the damaged image and has the DOST decomposition:

u(d, x) =
∑
i,j

di,jD[x1]iD[x2]j , i, j ∈ Z, (7.4)

with the constraint

di,j = fi,j , (i, j) /∈ I, (7.5)

where I is the index set of damaged or lost coefficients.

The TV minimization model has been used to get promising quality in

denoising [41] and has started to benefit image restoration. In Ref. [8], Chan et

al. presented a method to restore a wavelet-encoded image by minimizing the

TV. In the above model, we let the first derivative of F (u; d) – with respect to
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the coefficients di,j – equal zero and solve for d. Following similar analysis in

section 2 and section 3 of Ref. [8], the minimization of TV is equivalent to

solving the corresponding Euler-Lagrange Equation which is, for this case,

0 =

∫
∇ ·
( ∇u
|∇u|

)
D[x1]iD[x2]jdx, (i, j) ∈ I. (7.6)

The following explicit finite difference iterative algorithm has been used to

numerically solve the Euler-Lagrange equation (7.6) and find the minimizer.

Algorithm:

1. Start with n = 0 and initial guess dnewi,j = di,j. Set doldi,j = 0, and the initial

error E = ||dnew − dold||2.

2. while n < N or E > δ, do

• Set dold = dnew,

• Calculate dTV as described after the main pseudo-code here.

• For all (i, j), update

dnewi,j = doldi,j +
Δt

Δx
λi,j, (7.7)

where λi,j = dTV
i,j χi,j, and

χi,j =

⎧⎨⎩ 1 if (i, j) ∈ I

0 if (i, j) /∈ I

• Compute error E = ||dnew − dold||2, and set n = n+ 1.

Inside the algorithm above, the dTV , which corresponds to the non-linear

integral inside the minimization process, can be calculated using u = IDOST(d),
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where IDOST is the inverse DOST transform. For all (i, j), compute

curvi,j = D−
1

(
D+

1 ui,j√
|D+

1 ui,j|2 + |D+
2 ui,j|2 + ε

)

+D−
2

(
D+

2 ui,j√
|D+

1 ui,j|2 + |D+
2 ui,j|2 + ε

)
, (7.8)

where

D+
1 ui,j = ui+1,j − ui,j,

D+
2 ui,j = ui,j+1 − ui,j

are the forward differences,

D−
1 ui,j = ui,j − ui−1,j,

D−
2 ui,j = ui,j − ui,j−1

are the backward differences, and ε is a small positive number used to prevent the

numerical blow-up.

The projection of the curvature on the DOST basis can then be calculated by

dTV = DOST(curv).

7.3 Results

For our tests, we used the synthetic image shown in Figure 7.1. To gain a

valuable comparison, we also implemented the wavelet restoration method for

wavelet-encoded images. The results from the numerical calculation are shown in

Figure 7.2 and Figure 7.3.

As we can observe from Figure 7.2 and Figure 7.3, the DOST restoration has

successfully restored more information than the wavelet restoration by offering a

higher PSNR and more visible features and clearer edges in the image. In the
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Figure 7.1: The original synthetic image for restoration test.

extreme case of randomly losing 90% of the coefficients, even though the original

damaged image can hardly be recognized, the DOST restoration method still

retains some of the features and edges.

Based on the above experiment, another fact can also be confirmed. When the

two methods are faced with equivalently-degraded images (having lost the same

percentage of coefficients), the DOST-encoded image recovers more information

than the wavelet-encoded image, suggesting that DOST encoding is more resilient

to packet loss.

7.4 Conclusion

The DOST restoration algorithm has outperformed wavelet restoration over the

corresponding encoding techniques. We conjecture that even better performance

can be realized using a more sophisticated restoration method that utilizes the

self-similarity in the DOST coefficients.
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(a) DOST degraded (b) DOST restored

(c) Wavelets degraded (d) Wavelets restored

Figure 7.2: Image restoration test for randomly losing 50% of the DOST and wavelet

coefficients. (a) is the damaged DOST encoded image with PSNR=11.17 and (c) is the

damaged wavelet encoded image with PSNR=10.15. (b) is restored using the DOST with

PSNR=28.94. (d) is restored using the wavelets with PSNR=26.28. As we can see, the

DOST-restored image is also sharper and clearer than the wavelet restored image.
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(a) DOST degraded (b) DOST restored

(c) Wavelets degraded (d)Wavelets restored

Figure 7.3: Image restoration test for randomly losing 90% of the DOST and wavelet

coefficients. (a) is the damaged DOST encoded image with PSNR=8.83 and (c) is the

damaged wavelet encoded image with PSNR=8.75. (b) is restored using the DOST with

PSNR=9.06. (d) is restored using the wavelets with PSNR=8.93. The 90% loss is an

extreme test of the restoration, with heavy degradation of information in both images. Even

though neither method can restore all features and edges, the DOST restoration method

restores more visible image characteristics than the wavelet restoration.

96



Chapter 8

Conclusions

8.1 Conclusions

The continuous version and discrete version of the Stockwell transform (ST) offer

the ability for multiresolution decomposition and provide absolutely-referenced

frequency and phase information over the time-frequency domain. We compare the

ST to other time-frequency analysis tools, such as the Gabor transform (GT) and

the wavelet transform (WT), in terms of definitions, properties and performance

in real experiments. Among its many advantages, the ST automatically supplies

more resolution over high frequencies due to its self-adjusted Gaussian window.

However, the ST of a 1-D signal is represented by a 2-D matrix, and the ST of

a 2-D signal is represented by a 4-D matrix. Hence, the ST coefficients contain

highly redundant information and require expensive calculation. We proved that

(2.6) is an equivalent definition of the ST, enabling the use of the FFT for faster

computation of the Stockwell coefficients. During the years of development of this

young transform, various research groups have pushed efforts on how to utilize

and reasonably visualize these high dimensional Stockwell coefficients. There have
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been quite a few successful applications of ST in a variety of scientific fields such

as geophysics and medical imaging.

Even though, in quality, the ST outperforms other transforms within the

same category, calculation and manipulation of Stockwell coefficients for

high-dimensional data sets are particularly difficult, and even impossible for

some scenarios. In addressing the redundancy issue of the ST, a feasible strategy

of partitioning the time-frequency domain was adopted and applied here to the

construction of the basis functions, yielding an orthogonal version of the ST

transform, the DOST. The DOST has inherited the multiresolution feature of the

ST, but significantly reduces the storage and calculation cost. The DOST

transforms an N -tuple 1-D input signal to an N -tuple 2-D output. We discussed

2-D visualization conventions to recover back the 2-D nature of the 1-D output

generated by the DOST transform.

The DOST has distinguished itself due to its perfect frequency localization,

multiresolution decomposition ability and due to many other advantages in terms

of time-frequency analysis. The basis functions of the DOST are complex

conjugate to their symmetric counterparts. Thus, for a real-valued input, only

half of the DOST coefficients need to be calculated. However, the brute-force

algorithm for computing the DOST is O(N2) for an input of size N . An efficient

calculation strategy was suggested in the original DOST paper [35], but we

formulated a matrix decomposition of the DOST, which offers great convenience

for its theoretical analysis. The matrix form reveals an O(N logN) algorithm for

computing the DOST. As shown both in the proof of the complexity and in the

numerical experiments, the ratio of the DOST computing time to the FFT

computing time is no more than 6. The comparison was run under the Matlab

environment, which can be slow at looping.
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We analyzed the time-frequency partitioning of the DOST in the context of

the sampling theorem; to our knowledge, this is the first such analysis. We also

explicitly define an alternative symmetric version of the DOST [43], in which the

definition of the DOST basis functions are modified by adjusting the parameters

of ν, β and τ . By doing this, we successfully adjusted the partitioning of the

frequency axis, while maintaining the complex conjugate symmetry, the

orthogonality between basis functions and, more importantly, the fast algorithm.

This theoretical branch of the DOST can be extended freely to offer different

versions of the DOST with arbitrary frequency windowing and temporal

sampling to benefit applications in different situations.

The analysis on the translation property of the DOST is new and opens the

door to applications in the field of signal or image tracking. Theories in global

translation are perfectly built and sophisticatedly proven. A global translation

can be observed in the phase change of one single DOST coefficient. Or, a global

translation can be generated by directly manipulating the DOST coefficients of

the original image. For local translations, the uncertainty principle between the

Fourier domain and the temporal domain confounds our search for a simple and

exact solution. The mathematical model we offered might contribute to solving

this problem in an approximate sense in the near future.

Researchers are putting more focus on using the DOST and more applications

of the DOST are being unearthed. In 2008, Dr. Mitchell and his group published

an application using the DOST for image segmentation [16]. In their application,

the horizontal and vertical frequency patterns are characterized using the DOST

coefficients to differentiate the different image textures. Their result has been

shown to be comparably better than the wavelet version of segmentation. In the

field of image compression, we verify that the DOST has potential advantages in
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giving a better approximation of the original image than the wavelet

method [46]. It turns out that the DOST compression can significantly suppress

the block phenomenon (commonly found in the wavelet compression) and

produces an approximation with higher PSNR. In the modern JPEG

compression algorithm using the wavelet, the local wavelet transform is used. It

will be exciting to see if the local DOST transform can benefit image

compression. The image restoration ability of the DOST has also been

investigated (Chapter 6) [44]. The results based on the DOST restoration

algorithm offer more recognizable objects and sharper edges than the wavelet

algorithm, especially when the loss of the coefficients is more severe.

8.2 Future Work

The absolutely-referenced phase information is one of the many promising

properties of the DOST. We will persist in our research of the phase properties of

the DOST and apply this knowledge to a wider range of applications in various

fields. As mentioned above, the local application of the DOST in an image might

have potential and could be expected to achieve better image approximation

with lower cost of storage than the wavelet. Considering the close relation

between the DOST and the FT, it is conceivable that the DOST could benefit

data acquisition in MRI, and could thus reduce the acquisition time and

significantly improve the image quality in conjunction with various techniques

such as compressive sensing.

At the theoretical stage, even though a comprehensive understanding of the

DOST has been achieved in combining the original DOST paper [35] and our

thesis here, there are still many deeper fields that can be touched with respect to
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the DOST. The inherent nature of the DOST (the independent parameters in

the basis, ν, β and τ) offers a great flexibility in the definition of different

versions of the DOST. Usually, since each transform (such as, the Fourier

transform, the Gabor transform and the wavelet transform) has nearly fixed

freedom in the frequency windowing and the temporal sampling, the DOST will

head a new tide of freely-adjusting windowing and sampling according to

different requirements of different applications. To do this, a sophisticated

theoretical study of how to use the sampling theorem to guide new definitions of

the DOST needs to be elaborated and will form a fairly large branch in the

DOST research of the future.

The explicit relationship between the DOST coefficients before and after the

global translation is stated as the DOST shift theorem. This shift theorem offers

the straightforward methods to manipulate the DOST coefficients and detect the

global translation, and thus highlights its advantage of dealing with the offset in

real applications such as Multi-Carrier Modulation. Compared to other

multiresolution transformation tools such as the wavelet transform, the DOST

might be deeply applied in similar areas. The local translation using the DOST

turns out to be a hard problem due to the uncertainty principle between the

Fourier domain and the time domain. A certain compromise needs to be achieved

to solve this issue. How precisely a local translation can be determined using the

DOST coefficients has been left as an interesting question for the future.

With the fast algorithm, the DOST can feasibly be applied in higher

dimensional applications. We are interested to see if more higher dimensional

applications will come to light and help this powerful young transform grow up.
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APPENDIX A

Proof of linearity and modulation

properties of the ST

Proof of (2.23), linearity:

Proof.

S{ah(t) + bg(t)}

=

∫ ∞

−∞
(ah(t) + bg(t))

|f |
2π
e−

(τ−t)2f2

2 e−i2πftdt

= a

∫ ∞

−∞
h(t)
|f |
2π
e−

(τ−t)2f2

2 e−i2πftdt+ b

∫ ∞

−∞
g(t)
|f |
2π
e−

(τ−t)2f2

2 e−i2πftdt

= aS{h(t)} + bS{g(t)}.
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Proof of (2.24), modulation:

Proof.

S{h(t− t0)}

=

∫ ∞

−∞
h(t− t0) |f |

2π
e−

(τ−t)2f2

2 e−i2πftdt

=

∫ ∞

−∞
h(t− t0) |f |

2π
e−

(τ−t0−(t−t0))
2f2

2 e−i2πf(t−t0+t0)d(t− t0)

=

∫ ∞

−∞
h(s)
|f |
2π
e−

(τ−t0−s)2f2

2 e−i2πf(s+t0)ds (Lets = t− t0)

= e−i2πft0S(τ − t0, f).
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APPENDIX B

Fast DOST code and 2-D

Visualization Code

Listing 1: 2-D Fast DOST Decomposition.

function D2 coe f f = FOST 2D DEC( S input )

% 2−Dimensional DOST:

% t i c

s i = s ize ( S input ) ;

D2 coeffM = zeros ( s i ) ;

D2 coe f f = zeros ( s i ) ;

%rows f i r s t

for i i = 1 : s i ( 1 )

t ime s e r i e s = S input ( i i , : ) ;

D2 coeffM ( i i , : ) = FOST 1D DEC( t ime s e r i e s ) ;

end

for j j = 1 : s i ( 2 )
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t ime s e r i e s = D2 coeffM ( : , j j ) ;

D2 coe f f ( : , j j ) = FOST 1D DEC( t ime s e r i e s ) ;

end

% Decomposition Time = toc

end

Listing 2: 1-D Fast DOST Decomposition.

function bas2 = FOST 1D DEC( S input )

s i = s ize ( S input ) ;

NN = max( s i ) ;

[ vv , bb , tt , num it , compact b ] = get vbt (NN) ;

%Ca lcu l a t e the FFT

f f t d a t a = transpose ( f f t s h i f t ( f f t ( S input ) ) ) ;

% t i c

%Use the i n v e r s e FFT to c a l c u l a t e the DOST c o e f f i c i e n t s

bas2 = zeros ( s i ) ;

i n i t p = 0 ;

coo f = −pi ∗ 1 i ;

for l l = 1 : num it

step = compact b ( l l ) ;

%Construct the correspond ing Ramp matrix

Ramp = zeros (1 , s tep ) ;

for i i = 1 : s tep

Ramp( i i ) = (−1)ˆ i i ;%
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end

temp matrix = . . .

i f f t ( f f t d a t a ( i n i t p +1: i n i t p+step ))∗ sqrt ( s tep ) ;

i f s ize (Ramp) == s ize ( temp matrix )

bas2 ( i n i t p + 1 : i n i t p + step ) = . . .

Ramp .∗ temp matrix ;

else

bas2 ( i n i t p + 1 : i n i t p + step ) = . . .

Ramp .∗ t ranspose ( temp matrix ) ;

end

i f vv ( i n i t p + 1) <0

bas2 ( i n i t p + 1 : i n i t p + step ) = . . .

bas2 ( ( i n i t p + step ) : −1 : ( i n i t p + 1 ) ) ;

Ramp2 = . . .

exp( t t ( i n i t p +(1: s tep ))∗2∗ pi∗1 i / step ) ;

i f s ize (Ramp2) == . . .

s ize ( bas2 ( i n i t p + 1 : i n i t p + step ) )

bas2 ( i n i t p + 1 : i n i t p + step ) = . . .

bas2 ( i n i t p + 1 : i n i t p + step ) . ∗Ramp2 ;

else

bas2 ( i n i t p + 1 : i n i t p + step ) = . . .

bas2 ( i n i t p + 1 : i n i t p + step ) . . .

.∗ t ranspose (Ramp2 ) ;

end

end
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clear temp matrix ;

clear Ramp;

i n i t p = i n i t p + step ;

end

bas2 = − bas2 / NN;

% FOST decom time = toc

end

Listing 3: Parameter Assigning Function.

function [ v , b , t , num, com b ] = get vbt (NN) ;

count = 0 ;

end P = log2 (NN)−1;
b = zeros (1 , NN) ;

v = zeros (1 , NN) ;

t = zeros (1 , NN) ;

com b = zeros (1 , 2 ∗ end P + 2 ) ;

num = 0 ;

%%%%%%NNegative f requency

count = count + 1 ;

v ( count ) = −NN/2 + . 5 ; b ( count ) = 1 ; t ( count ) = 0 ;

num = num + 1 ;

com b (num) = b( count ) ;

for p = end P :−1:2
f r eq = −2ˆ(abs (p ) − 2) ∗ 3 + 1 ;
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beta = 2ˆ(abs (p) − 1 ) ;

for tau = beta − 1:−1:0
% fo r tau = 0: be ta − 1

count = count + 1 ;

v ( count ) = f r eq ;

b ( count ) = beta ;

t ( count ) = tau ;

end

num = num + 1 ;

com b (num) = beta ;

end

count = count + 1 ;

v ( count ) = −0.5; b ( count ) = 1 ; t ( count ) = 0 ;

num = num + 1 ;

com b (num) = b( count ) ;

%%%%%%%Po s i t i v e f requency

count=count + 1 ;

v ( count ) = 0 . 5 ; b( count ) = 1 ; t ( count ) = 0 ;

num = num + 1 ;

com b (num) = b( count ) ;

count=count + 1 ;

v ( count ) = 1 . 5 ; b( count ) = 1 ; t ( count ) = 0 ;
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num = num + 1 ;

com b (num) = b( count ) ;

for p = 2 : end P

f r eq = 2ˆ(abs (p) − 2) ∗ 3 ;

beta = 2ˆ(abs (p) − 1 ) ;

for tau=0:beta − 1

count=count + 1 ;

v ( count ) = f r eq ;

b ( count ) = beta ;

t ( count ) = tau ;

end

num = num + 1 ;

com b (num) = beta ;

end

end

Listing 4: 2-D Visualization of the N -tuple DOST coefficients of an N -tuple signal.

function Diag1 = diag 1D ( do s t c o f )

% This func t i on re tu rns a 2−D matrix accord ing

% to the DOST diagram fo r v i s u a l i z a t i o n .

NN = max( s ize ( d o s t c o f ) ) ;

Diag1 = zeros (NN) ;

[ vv , bb , tt , num it , compact b ] = get vbt (NN) ;

i n d i i = NN;
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i n d j j = 1 ;

for l l = 1 :NN

h e i l l = bb( l l ) ;

l e n l l = NN/ h e i l l ;

for i i = i n d i i :−1:( i n d i i − h e i l l + 1)

for j j = i n d j j : ( i n d j j + l e n l l − 1)

Diag1 ( i i , j j ) = do s t c o f ( l l ) ;

end

end

i f bb( l l ) ˜= 1 && l l < NN

i f bb( l l ) ˜= bb( l l + 1)

i n d i i = i n d i i − h e i l l ;

i n d j j = 1 ;

else

i n d j j = i n d j j + l e n l l ;

end

else

i n d i i = i n d i i − h e i l l ;

i n d j j = 1 ;

end

end

for i i = (NN/2 + 1 ) :NN

Diag1 ( i i , 1 :NN) = Diag1 ( i i , NN: −1 : 1 ) ;
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end

% f i g u r e (1) ,

% imshow (Diag1 , [ ] ) ;

end
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