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Abstract

The main motivation behind this thesis is the lack of belief subjectivity in problems of
contracting, and especially in problems of demand for insurance. The idea that an under-
lying uncertainty in contracting problems (e.g. an insurable loss in problems of insurance
demand) is a given random variable X on some exogenously determined probability space
(Ω,F , P ) is so engrained in the literature that one can easily forget that the notion of an
objective uncertainty is only one possible approach to the formulation of uncertainty in
economic theory.

On the other hand, the subjectivist school, led by De Finetti [93] and Ramsey [234],
challenged the idea that uncertainty is totally objective, and advocated a personal view of
probability (subjective probability). This ultimately led to Savage’s [266] approach to the
theory of choice under uncertainty, where uncertainty is entirely subjective and it is only
one’s preferences that determine one’s probabilistic assessment.

It is the purpose of this thesis to revisit the “classical” insurance demand problem from
a purely subjectivist perspective on uncertainty. To do so, we will first examine a general
problem of contracting under heterogeneous subjective beliefs and provide conditions un-
der which we can show the existence of a solution and then characterize that solution. One
such condition will be called vigilance. We will then specialize the study to the insurance
framework, and characterize the solution in terms of what we will call a generalized de-
ductible contract. Subsequently, we will study some mathematical properties of collections
of vigilant beliefs, in preparation for future work on the idea of vigilance. This and other
envisaged future work will be discussed in the concluding chapter of this thesis.

In the chapter preceding the concluding chapter, we will examine a model of contracting
for innovation under heterogeneity and ambiguity, simply to demonstrate how the ideas
and techniques developed in the first chapter can be used beyond problems of insurance
demand.
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2.3.3 Some “Convergence” Results . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Another Characterization of the Nondecrasing Rearrangement . . . 34

2.4 The DM’s Demand for Contingent Claims . . . . . . . . . . . . . . . . . . 36

2.4.1 The DM’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Existence of a Monotone Solution and Pareto-Improving Claims . . 37

2.4.3 Characterization of the Solution . . . . . . . . . . . . . . . . . . . . 41

xi



2.4.4 Some Sufficient Problems . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.5 Solving Problems 2.32 and 2.33 . . . . . . . . . . . . . . . . . . . . 46

2.5 Monotone Likelihood Ratios and Vigilance of Beliefs . . . . . . . . . . . . 47

2.5.1 The Monotone Likelihood Ratio Assumption . . . . . . . . . . . . . 47

2.5.2 MLR vs. Vigilance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Appendix: Related Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Appendix: Dynkin’s π-λ Theorem . . . . . . . . . . . . . . . . . . . . . . . 51

3 The Demand for Insurance under Heterogeneous Subjective Beliefs 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Design of the Optimal Insurance Contract . . . . . . . . . . . . . . . . . . 61

3.4 Proof of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Proof of Theorem 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Proof of Corollary 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.1 Perfect Intersubjectivity of Beliefs . . . . . . . . . . . . . . . . . . . 89

3.5.2 Equivalent Subjective Beliefs . . . . . . . . . . . . . . . . . . . . . . 89

3.5.3 Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Belief Subjectivity in the Work of Marshall [207] . . . . . . . . . . . . . . . 94

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8 Appendix: The “Classical” Insurance Demand Problem . . . . . . . . . . . 96

3.9 Appendix: Related Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 More on Vigilant Beliefs 99

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Some “Convergence” Properties of Cµ and C∗µ . . . . . . . . . . . . . 102

4.3 Vigilance and Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . 104

xii



4.4 Geometric Properties of Some Collections of Vigilant Beliefs . . . . . . . . 106

4.4.1 Extreme Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.2 Second-Order Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Contracting for Innovation under Heterogeneity and Ambiguity 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Preliminaries and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Capacities and the Choquet Integral . . . . . . . . . . . . . . . . . 115

5.2.2 Uncertainty, Preferences, and Beliefs . . . . . . . . . . . . . . . . . 119

5.3 The DM’s Demand for Contingent Claims . . . . . . . . . . . . . . . . . . 122

5.3.1 The DM’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 Existence of a Solution and Pareto-Improving Claims . . . . . . . . 123

5.4 An Application: The Case of a Concave Distortion of a Measure . . . . . . 125

5.4.1 Proof of Theorem 5.34 . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Contracting under Bilateral Ambiguity . . . . . . . . . . . . . . . . . . . . 138

5.5.1 Uncertainty, Preferences, and Beliefs . . . . . . . . . . . . . . . . . 138

5.5.2 The DM’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Appendix: A Dominated Convergence Theorem for the Choquet Integral . 144
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Preface

As soon as there is life there is danger
Ralph Waldo Emerson

Uncertainty in Economic Theory

Life and danger are metaphysical concepts which cannot be directly observed. Just as
wind is not perceptible, but its consequences and effects are, so are the concepts of life and
danger. As far as economic theory is concerned, life is discernible through the ability to
carry on a decision-making process, and danger is manifest in the presence of uncertainty1,
which is itself observable in mathematical objects2 such as a random variable, a capacity,
etc. This presumably posits decision theory, also known as the theory of choice under
uncertainty, at the center of every musing on the nature and scope of the actions of the
human being as a social being endowed with free will, and even more so if this reflection is
of a mathematical nature, e.g. in economic theory3. Indeed, the coming of age of economics
as a distinctive science of human action is inseparable from the historical development of
Expected-Utility Theory, although, from a purely epistemological positioning, this needs
not be the case: as long as market phenomena are explained by a general theory taking
the individual’s freedom of choice as a starting point, any model of the economic agent’s
choice under uncertainty is normatively acceptable. We shall only require its mathematical
consistency.

At the center of any theory of choice lie a few simple, yet deep questions:

1The term “uncertainty” is used here as a generic term that encompasses both the notion of risk and
the concept of Knightian uncertainty. When the need for distinction arises the proper term will be used
in each situation.

2Note that the validity of this argument relies on a prior ontological study of mathematical objects.
3The Austrian School in economics went as far as to consider the concept of marginal utility, which is

a concept emerging from decision theory, as the cornerstone of economic theory.
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1. How can we mathematically model the notion of an uncertain prospect?

2. How do people act when facing uncertainty?

3. Do people have free will?

4. If people have free will, how can their behavior be predicted?

The first two questions will be considered in Appendix A, which is a review of the
classical theory of choice under risk and uncertainty, and of some of its paradoxes. The
third and fourth questions are not discussed. Here, we will briefly discuss the three major
ways in which uncertainty is defined in microeconomic theory, and in particular in the
theory of choice under uncertainty.

Formulations of Uncertainty

Objective vs. Subjective Probability

It is customary in decision theory4 to make the following distinction:

• An objective probability measure is any probability measure that is not derived from
the individual’s preferences over objects of choice, but one which is given exogenously;
and,

• A subjective probability measure is a probability measure that is derived from the
individual’s preferences over objects of choice, and is hence derived endogenously.

Objective Uncertainty

The von Neumann-Morgenstern approach to the theory of choice ([297]) defines uncer-
tainty as totally objective, in the sense that uncertainty is simply a random variable on an
objectively (exogenously) given probability space. Equivalently, objective uncertainty can

4The reader is referred to any introductory textbook on the subject, such as Gilboa [149] or Kreps [187].
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be identified with a situation in which the objects of choice are probability measures5. The
von Neumann-Morgenstern setting will be reviewed in Appendix A.1.

In the vast majority of the financial literature and the actuarial literature, uncertainty
(be it a random loss, a stock price, etc.) is seen as random variable (or a stochastic process,
on an objectively given and appropriately filtered probability space). However, the idea
that uncertainty can be totally objective has been severely criticized in economic theory,
starting from the advocates of a personal view of probability (subjective probability), such
as De Finetti [93], Ramsey [234], and especially Savage [266].

Subjective Uncertainty

Contrary to the von Neumann-Morgenstern approach to uncertainty – and building
upon the work of De Finetti [93], Ramsey [234], and von Neumann and Morgenstern [297]
– Savage [266] formulates uncertainty in the objects of choice without exogenous objective
probabilities. Likelihoods are then derived from preferences, and probabilities are hence
subjective. The individual’s preferences over acts of choice induce a unique subjective
probability measure. The Savage model will be exposed in Appendix A.1.

The Anscombe-Aumann Approach

The von Neumann-Morgenstern and the Savage approaches to uncertainty are opposite
extremes, and the elegance of Savage’s theory comes at a high price: the derivation of
subjective expected utility is not an easy task. Admitting that there might exist objective
randomizing devices (such as the toss of a coin), Anscombe and Aumann [19] introduced
a setting where the uncertainty is partly objective and partly subjective. This setup then
tremendously simplifies the derivation of a subjective probability measure from a decision
maker’s preferences over appropriately defined objects of choice. The Anscombe-Aumann
model will be discussed in Appendix A.1.

Risk vs. Uncertainty

It is customary in decision theory6 to make the following distinction:

5If X is a random variable on a probability space (Ω,F , P ), then the image measure of P under X,
namely the quantity P ◦X−1 is a Borel probability measure on R.

6The reader is referred to any introductory textbook on the subject, such as Gilboa [149] or Kreps [187].

3



• We refer to a situation of decision under objective uncertainty as a situation of
decision under risk ; and,

• We refer to a situation of decision under subjective uncertainty as a situation of
decision under uncertainty.

Ambiguity (Knightian Uncertainty)

Ellsberg [118] proposed a series of thought experiments to show that, contrary to the
Bayesian paradigm (e.g. Savage’s view), there ought to exist a meaningful distinction be-
tween subjective uncertainties that are perfectly known and subjective uncertainties that
are imperfectly known. This distinction was argued for by Knight [184]. Consequently, we
use the term Knightian Uncertainty to refer to a situation where the subjective uncertain-
ties are not perfectly known, in the sense that the decision maker is not able to formulate
a unique subjective probability measure that will represent his or her beliefs. Such a situ-
ation is also called a situation of Ambiguity, or of Ambiguous Beliefs, and it was the main
motivation behind what is called today neo-Bayesian theories of choice (e.g. [14], [121],
[123], [134], [139], [148], [151], [182], [195], [274], [275]). This is discussed in more detail in
Appendix A.2.3 and Appendix A.3.2.

4



Chapter 1

Introduction

1.1 Some Historical Notes

Reflections on the nature of the insurance problem can be seen in Bernouilli [35], Smith
[283], and Walras [298]; and then in Böhm-Bawerk [44], Lindenbaum [190], Tauber [291],
and Willett [300]. For instance, Adam Smith [283] writes:

“That the chance of loss is frequently under-valued, and scarce ever valued more
than it is worth, we may learn from the very moderate profit of insurers. In
order to make insurance, either from fire or sea-risk, a trade at all, the common
premium must be sufficient to compensate the common losses, to pay the expence
of management, and to afford such a profit as might have been drawn from an
equal capital employed in any common trade. The person who pays no more
than this, evidently pays no more than the real value of the risk, or the lowest
price at which he can reasonably expect to insure it. But though many people
have made a little money by insurance, very few have made a great fortune; and
from this consideration alone, it seems evident enough, that the ordinary balance
of profit and loss is not more advantageous in this, than in other common trades
by which so many people make fortunes. Moderate, however, as the premium of
insurance commonly is, many people despise the risk too much to care to pay it.
Taking the whole kingdom at an average, nineteen houses in twenty, or rather,
perhaps, ninety-nine in a hundred, are not insured from fire. Sea risk is more
alarming to the greater part of people, and the proportion of ships insured to
those not insured is much greater. Many sail, however, at all seasons, and even
in time of war, without any insurance. This may sometimes perhaps be done
without any imprudence. When a great company, or even a great merchant,
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has twenty or thirty ships at sea, they may, as it were, insure one another.
The premium saved upon them all, may more than compensate such losses as
they are likely to meet with in the common course of chances. The neglect
of insurance upon shipping, however, in the same manner as upon houses, is,
in most cases, the effect of no such nice calculation, but of mere thoughtless
rashness and presumptuous contempt of the risk.” – ([283], Book I, Chap. 10)

Or,

“The only trades which it seems possible for a joint stock company to carry on
successfully without an exclusive privilege are those of which all the operations
are capable of being reduced to what is called a routine, or to such a uniformity
of method as admits of little or no variation. Of this kind is, first, the banking
trade; secondly, the trade of insurance from fire, and from sea risk and capture
in time of war; thirdly, the trade of making and maintaining a navigable cut
or canal; and, fourthly, the similar trade of bringing water for the supply of
a great city. [...] The value of the risk, either from fire, or from loss by sea,
or by capture, though it cannot, perhaps, be calculated very exactly, admits,
however, of such a gross estimation as renders it, in some degree, reducible to
strict rule and method. The trade of insurance, therefore, may be carried on
successfully by a joint stock company without any exclusive privilege. Neither
the London Assurance, nor the Royal Exchange Assurance companies, have any
such privilege.” – ([283], Book V, Chap. 1)

It was not until the revolution initiated by von Neumann and Morgenstern in their
seminal work entitled Theory of Games and Economic Behavior ([297]) that the theory of
insurance found a proper foundation in the early work of Kenneth J. Arrow on this subject
(e.g. [23]).

What is now called the “classical” theory of insurance, or the post-von-Neumann-
Morgenstern theory, can be traced back to Arrow ([23], [24], [25], [26]), Borch ([46], [47],
[48], [49], [50], [52]), and Raviv [239]. As Borch himself writes in [51],

”It is probably fair to say that the present interest in the economics of insurance
springs from the theory of the economics of uncertainty which has been developed
during the last twenty years. The pioneering work in this field is certainly
Arrow’s paper [from 1953].”

Or, as Gollier writes in [153],
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”It is fair to state that the blossoming of research in this area in the last thirty
years springs from the work of these two authors [(Arrow and Borch)].”

Nevertheless, and as we will argue below, it seems that the extent to which the theory
of choice under uncertainty was involved in laying down the foundations of the “classical”
theory of insurance was limited to the approach of von Neumann and Moregenstern. In
other words, the underlying uncertainty was seen as purely objective. Needless to say,
this disregards the tremendous contributions of the subjectivist school, that is, De Finetti
[93], Ramsey [234], and Savage [266]. More importantly, this leaves out of consideration
some very interesting problems, one of which will be considered in this thesis, namely the
problem of demand for insurance under heterogeneous subjective beliefs, and some others
that will be discussed in Chapter 6.

1.2 Towards a Subjectivist Theory of insurance

Objective Uncertainty in the “Classical” Model

In the “classical” theory of insurance, the idea that the underlying uncertainty is
a random variable X on some objectively given probability space (Ω,F , P ), where X
represents the insurable loss, is almost never questioned. What this setting implicitly
assumes is the existence of the objective probability measure P . This is not surpris-
ing if one adopts the von Neumann-Moregenstern view (see Appendix A.1.2), where the
elements of choice are the random variables on (Ω,F), or equivalently the collection{
P ◦ X−1 : X is a random variable on (Ω,F)

}
of exogenously given objective (Borel)

probability measures on R. With two exceptions that we are aware of (and that will be
discussed in section 3.1), this is precisely how the insurance demand problem was ap-
proached in the past 60 years or so.

Subjective Uncertainty in this Thesis

As mentioned in the Preface, the approach to the notion of uncertainty in economic
theory at large, and especially in decision theory, has been in constant modification since
the work of von Neumann and Moregenstern. Savage [266] proposed a purely subjective
approach, while Anscombe and Aumann [19] suggested a midway position that simplified
the derivation of subjective probability. Finally, Knight’s [184] intuition and Ellsberg’s
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[118] thought experiments led to the blossoming of neo-Bayesian decision theory, starting
with the seminal contributions of Schmeidler (e.g. [275] and [151]).

It is then only natural to examine an alternative foundation of the notion of a random
loss in problems of insurance demand, and more generally the notion of an underlying
uncertainty in problems of contracting. This is precisely what the object of this thesis
is. All throughout this thesis we will adopt a purely subjectivist approach to uncertainty,
by assuming that the only primitives of our model are the primitives in Savage’s [266]
approach, namely, a collection of states of the world, a collection of events, a collection of
acts, or objects of choice, and an individual’s preference over acts. We will not assume the
existence of an objective, exogenously given probability measure. Rather, as in Savage’s
[266] approach, we will start from the basic philosophical stance that it is solely the in-
dividual’s preference over the elements of choice that determines the individual’s beliefs.
These beliefs are hence entirely subjective, and are represented by a subjective probability
measure on the state space.

At points (in Chapter 5 of this thesis), we will also consider situations of Knightian
uncertainty, i.e. ambiguity, where an individual’s preference determines the individual’s
beliefs, but the latter are not represented by an additive probability measure. Rather, as
in Schmeidler’s [275] approach, these beliefs are represented by a non-additive measure,
also known as a capacity.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows:

1. In Chapter 2, we examine a general model of contracting under heterogeneous sub-
jective beliefs. We consider an abstract problem of demand for claims that are con-
tingent on some given underlying uncertainty, and nondecreasing functions of that
uncertainty. A decision makers’ (DM) wealth depends on both the uncertainty and
the contingent claim that is issued to her by a claim issuer (CI). The DM seeks to
maximize her expected utility of wealth with respect to her subjective probability
measure, whereas claims are evaluated by the CI according to his expected utility
of wealth with respect to his subjective probability measure. We show that under a
consistency requirement on the subjective probabilities that we call vigilance, we can
drop the monotonicity constraint – hence simplifying the problem considerably – and
we can show the existence of a monotone solutions. We then provide a technique for
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dealing with the heterogeneity of beliefs. We also show that in most relevant situa-
tions, the assumption of vigilance is implied by the more or less usual assumption of
a monotone likelihood ratio, when the latter can be defined.

2. In Chapter 3, we examine an important special case of the abstract model of Chapter
2, namely a problem of demand for insurance with heterogeneous beliefs. Unlike the
“classical” approach to this old problem, we consider a situation where the insurer
and the risk-averse DM have different subjective beliefs, and hence assign different
probabilities to the realizations of a given insurable random loss. The decision maker
seeks to maximize her expected utility of terminal wealth with respect to her sub-
jective probability measure, whereas the insurer sets premiums on the basis of his
subjective probability measure. We show that if vigilance holds then there exists an
event to which the DM assigns full subjective probability and on which an optimal
solution has a generalized deductible form.

3. In Chapter 4, we study the mathematical structures underlying some collections of
vigilant beliefs, and we give a crisp characterization of second-order vigilant beliefs, i.e.
beliefs about vigilant beliefs. The results of Chapter 4 will be the basic mathematical
tools used in future work about the notion of vigilance, as discussed in Chapter 6.

4. In Chapter 5 we examine a model of contracting for innovation under heterogeneity
and ambiguity, in order to demonstrate how the ideas and techniques developed in
Chapter 2 can be used beyond problems of insurance demand. A DM is an innovator
who wishes to sell her innovation to an interested CI. The latter will pay a fixed
fee H > 0 as a lump-sum upon entering into the contract, in return of which he
will receive the innovation (quantified monetarily) and pay an amount to the DM
contingent on the value of that innovation. We will consider a situation where the CI’s
preference has a Choquet-Expected Utility (CEU) representation (as in Schmeidler
[275] and Gilboa [148]), hence reflecting some level of ambiguity in the CI’s beliefs.
We then show that there exists a monotone solution to the DM’s demand problem,
using similar techniques to those of Chapter 2. We also consider a special case and
characterize the solution in that case. Finally, we consider a situation where both
the DM and the CI have preferences admitting a representation that exhibits some
ambiguity in their beliefs, whereby that the CI is a CEU-maximizer and the DM’s
preferences are represented by a symmetric Choquet integral (defined in Appendix
5.7), hence reflecting some gain-loss separability, in the spirit of the Cumulative
Prospect Theory of Kahneman and Tversky ([177] and [293]). We show that even in
this setting, the notion of vigilance is fruitful: if vigilance holds, then for any payoff
function Y1 which is feasible for the DM’s problem there is another feasible payoff
function Y2 which is (i) a nondecreasing function of the underlying uncertainty, and
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(ii) such that for a given fixed fee H > the CI prefers a contract in which he pays Y2

to a contract in which he pays Y1. However, to prove this result we had to extend the
notion of an equimeasurable rearrangement to the case where we have a non-additive
measure instead of a measure (this is done in Appendix 5.8).

5. In Chapter 6 we outline our future research agenda as it relates to the work done in
this thesis. In particular, we discuss how the results of Chapter 4 will be useful in
future investigations of the notion of vigilance. We also discuss possible extensions
of the models of Chapter 2, Chapter 3, and Chapter 5.

The Appendices at the end of some chapters contain specific material directly related
to some ideas developed in these chapters, whereas the Appendices at the end of this thesis
provide all necessary background (both mathematical and decision-theoretic).

Finally, in Appendix A.3.1 we briefly discuss Cumulative Prospect Theory and some of
the work done in Bernard and Ghossoub [32] and in Ghossoub [141].
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Chapter 2

Contracting under Heterogeneous
Beliefs

2.1 Introduction

In this chapter we examine an abstract contracting problem under heterogeneous sub-
jective beliefs. The main motivation behind this study is its application to the insurance
setting, which will be considered in Chapter 3.

The DM faces a fundamental uncertainty that she wishes to transfer to the CI for a
fixed fee, and in return of a claim contingent on the initial uncertainty (e.g. a risk sharing
rule). The model will be formally introduced in section 2.2. For instance, in problems of
insurance demand, the CI can be interpreted as the insurer, the fee paid by the DM can be
seen as the premium, and the claim issued by the CI is the indemnity paid by the insurer.

The DM’s problem is that of finding the contingent claim that will maximize her ex-
pected utility of terminal wealth, subject to some constraints. These constraints typically
include the CI’s individual rationality constraint, or participation constraint, and a mono-
tonicity constraint stipulating that the contingent claim should be a monotone function of
the underlying uncertainty (typically, a nondecreasing function). In the insurance setting,
for example, the optimal indemnity is desired to be nondecreasing in the loss, so as to
prevent some moral hazard issues that might result from a downward misrepresentation of
the loss by the DM (see Huberman, Mayers and Smith [169], for instance).

This contracting problem can be reformulated as a problem of demand for claims that
are contingent on some given underlying uncertainty. A decision makers’ (DM) wealth
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depends on both the uncertainty and the contingent claim that is issued to her by a claim
issuer (CI). The DM seeks to maximize her expected utility of wealth with respect to her
subjective probability measure, whereas claims are evaluated by the CI according to his
expected utility of wealth with respect to his subjective probability measure.

Problems of Demand for Contingent Claims

Many problems of contracting can be formulated as problems of demand for contingent
claims, as follows:

sup
I

{ˆ
u (a−X + I ◦X) dP : I ∈ Θ

}
(2.1)

for some a ∈ R, where X is a representation of some underlying uncertainty, I ◦ X is a
contingent claim that depends on the uncertainty X, u (a−X + I ◦X) is the DM’s utility
of wealth (see below), and P is a probability measure on the state space. The collection Θ is
a given problem-specific nonempty feasibility set that often restricts I to be nondecreasing,
and accounts for the CI’s individual-rationality constraint (a.k.a. participation constraint),
as will be explained below.

For instance, “classical” problems of demand for insurance coverage against a random
loss1 can be formulated as in (2.1), with X being the underlying insurable loss against
which a DM seeks an insurance coverage Y = I ◦X. If the DM is a risk-averse Expected-
Utility (EU) maximizer, with utility function u and initial wealth W0, and if the insurance
premium is a given Π > 0 and P is a probability measure on the state space, then the
DM’s problem of optimal demand for insurance can be written as:

Problem 2.1. For a given loading factor ρ ≥ 0,

sup
I

{ˆ
u
(
W0 − Π−X + I ◦X

)
dP

}
:

0 ≤ I ◦X ≤ X
Π ≥ (1 + ρ)

´
Y dP

I is a nondecreasing function

1See Appendix 3.8 for a review of the “classical” insurance demand problem.

12



Belief Heterogeneity

The abstract problem that we will examine in this chapter takes the following form:

sup
I

{ˆ
u (a−X + I ◦X) dµ : 0 ≤ I ◦X ≤ X, I is nondecreasing,

and

ˆ
v (b− I ◦X) dν ≥ R

} (2.2)

where X is the underlying uncertainty (defined below), I ◦ X is a contingent claim that
depends on the uncertainty X, a, b ∈ R, u (a−X + I ◦X) is the DM’s utility of wealth,
µ is the DM’s subjective probability measure, v (b− I ◦X) is the CI’s utility of wealth, ν
is the CI’s subjective probability measure, and R ∈ R is given. The functions u and v and
the probability measure µ and ν are discussed and defined below.

The most important observation to be made here is that the probability measures µ
and ν are not identical, a priori. This poses some important mathematical complications,
and makes the problem radically different from what has been done in the related literature
on contracting, and especially in problems of insurance demand.

This Chapter’s Contribution

In this chapter, we propose the notion of vigilant beliefs as a consistency requirement
between the subjective beliefs of both parties, and we show how vigilance leads to the
existence of a solution to the DM’s problem which is a nondecreasing function of the
underlying uncertainty.

We will also give a general technique for solving the DM’s demand problem, within the
abstract framework of this chapter. In Chapter 3, we will apply the techniques developed
here to the specific problem of optimal insurance design.

Outline

In section 2.2 we introduce some notation and definitions, as well as the general setup
for our model. In section 2.3 we discuss the notion of an equimeasurable rearrangement
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of a measurable function with respect to another measurable function. In section 2.4 we
state the DM’s problem and give some general techniques for showing the existence and
monotonicity of a solution, and for characterizing this solution. In section 2.5 we compare
our vigilance requirement with an alternative “monotonicity” requirements that we might
have otherwise imposed, namely a Monotone Likelihood Ratio (MLR). Finally, section 2.6
concludes. Appendices 2.7 and 2.8 contain some useful related results that are used in this
chapter.

2.2 Preliminaries

Let S denote the set of states of the world, and suppose that G is a σ-algebra of subsets
of S, called events. We denote by B (G) the supnorm-normed Banach space of all bounded,
R-valued and G-measurable functions on (S,G) (see Proposition D.23 on p. 229), and we
denote by B+ (G) the collection of all R+-valued elements of B (G). For any f ∈ B (G), the
supnorm of f is given by ‖f‖s := sup{|f (s)| : s ∈ S} < +∞. For C ⊆ S, we will denote
by 1C the indicator (characteristic) function of C. For any A ⊆ S and for any B ⊆ A, we
will denote by A \B the complement of B in A.

For any f ∈ B (G), we shall denote by σ{f} the σ-algebra of subsets of S generated by
f , and we shall denote by B (σ{f}) the linear space of all bounded, R-valued and σ{f}-
measurable functions on (S,G). Then by Doob’s measurability theorem (Theorem D.4 on
p. 224), for any g ∈ B (σ{f}) there exists a Borel-measurable map ζ : R → R such that
g = ζ ◦ f . We will denote by B+ (σ{f}) the cone of nonnegative elements of B (σ{f}).

2.2.1 Uncertainty and Preferences

We assume that the DM faces a fundamental uncertainty that affects her wealth and
consumption. This uncertainty will be modeled to be a (henceforth fixed) element X of
B+ (G) with a closed range [0,M ] := X (S), where M := ‖X‖s < +∞. In other words, the
uncertainty is a mapping of S onto the closed interval [0,M ]. For instance, in problems
of demand for insurance the uncertainty X can be seen as the underlying insurable loss
against which the DM seeks an insurance coverage I ◦ X. In problems of optimal debt
contracting, the uncertainty X can be seen as the interest on a loan, and I ◦ X as the
repayment scheme. Hereafter, we shall denote by Σ the σ-algebra σ{X} of subsets of S
generated by X.
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If A is any sub-σ-algebra of G such that Σ ⊆ A and if P is any probability measure
on the measurable space (S,A), we will say that X is a continuous random variable for P
when the law P ◦X−1 of X is a nonatomic Borel probability measure2.

The DM’s decision process is assumed to consist in choosing a certain act among a
collection of given acts whose realization, in each state of the world s, depends on the
value X (s) of the uncertainty X is the state s. Specifically, we will assume that these acts
are the elements of B+ (Σ).

Formally, the DM and the CI have preferences over acts in a framework à la Savage (see
Appendix A.1.3). Here, the set of consequences (or prizes) is taken to be R. Let F denote
the collection of all G-measurable functions f : S → R. The elements of choice (or acts) are
taken to be the elements of B+ (Σ) ⊂ F . The nature of the problem makes this a natural
assumption. Indeed, what we are interested in is determining the optimal function of the
uncertainty, that is, the optimal claim Y := I ◦ X ∈ B+ (Σ), for some Borel-measurable
map I : X (S)→ R+, that will satisfy a certain set of requirements (constraints).

The DM’s preferences <DM overB+ (Σ) and the CI’s preferences <CI overB+ (Σ) admit
a Subjective Expected-Utility (SEU) representation, as in Theorem A.20 in Appendix
A.1.3. Formally, we assume the following:

Assumption 2.2. There are bounded, nondecreasing, and continuous utility functions
u, v : R→ R, unique up to a positive affine transformation, and unique countably additive3

subjective probability measures µ and ν on the measurable space (S,Σ), such that for each
Y1, Y2 ∈ B+ (Σ),

Y1 <DM Y2 ⇐⇒
ˆ
u (Y1) dµ ≥

ˆ
u (Y2) dµ (2.3)

and

Y1 <CI Y2 ⇐⇒
ˆ
v (Y1) dν ≥

ˆ
v (Y2) dν (2.4)

In sum, the DM’s problem here is choosing the optimal act Y ∗ ∈ B+ (Σ) that will

2A finite measure η on a measurable space (Ω,A) is said to be nonatomic if for any A ∈ A with
η (A) > 0, there is some B ∈ A such that B ( A and 0 < η (B) < η (A).

3Countable additivity of the subjective probability measure representing preferences can be obtained
by assuming that preferences satisfy the Arrow-Villegas Monotone Continuity axiom (see p. 178). See
Arrow [25], Chateauneuf et al. [77], and Villegas [296]. See also Corollary A.19 on p. 179.
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maximize her expected utility of wealth, with respect to her subjective probability measure
µ.

We also make the assumption that the uncertainty X (with closed range [0,M ]) has a
nonatomic law4 induced by the probability measure µ, and that the CI and the DM are
both aware of the fact that µ represents the DM’s beliefs and ν represents that CI’s beliefs.
Specifically:

Assumption 2.3. We assume that:

1. µ ◦X−1 is nonatomic;

2. µ is known by the CI; and,

3. ν is known by the DM.

The assumption of nonatomicity of µ ◦ X−1 is simply a technical requirement that is
needed for defining the notion of an equimeasurable monotone rearrangement, as will be
seen in section 2.3.

2.2.2 Uncertainty and Wealth

The contract between the DM and CI is a pair (Π, Y ) ⊂ R+ \ {0} × B+ (Σ), whereby
upon entering into the contract with the CI, the DM pays a fixed fee Π > 0 to the CI, in
return of which she receives the amount Y (s) from the CI in state s ∈ S .

The DM has initial wealth W0, and after entering into the contract (Π, Y ) with the CI,
her total wealth is the Σ-measurable, R-valued and bounded function on S defined by

WDM (Π, Y ) (s) := W0 − Π−X (s) + Y (s) , ∀s ∈ S (2.5)

The CI has initial wealth WCI
0 , and after entering into the contract (Π, Y ) with the

DM, his total wealth is the Σ-measurable, R-valued and bounded function on S defined by

4A finite measure η on a measurable space (Ω,A) is said to be nonatomic if for any A ∈ A with
η (A) > 0, there is some B ∈ A such that B ( A and 0 < η (B) < η (A).
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WCI (Π, Y ) (s) := WCI
0 + Π− Y (s) , ∀s ∈ S (2.6)

Letting R := v
(
WCI

0

)
be the CI’s reservation utility, the CI’s individual rationality

constraint, or participation constraint, for entering into a contract (Π, Y ) with the CI is
then given by

ˆ
v
(
WCI

0 + Π− Y
)
dν ≥ v

(
WCI

0

)
(2.7)

2.2.3 Vigilant Beliefs and Probabilistic Consistency

Definition 2.4. The probability measure ν is said to be (µ,X)-vigilant if for any Y1, Y2 ∈
B+ (Σ) such that

(i) Y1 and Y2 have the same distribution under µ, and,

(ii) Y2 is a nondecreasing function of X,

the following holds:

WCI (Π, Y2) <CI W
CI (Π, Y1) (2.8)

Remark 2.5. An equivalent definition of vigilance in this context is the following: the
probability measure ν is (µ,X)-vigilant if for any Y1, Y2 ∈ B+ (Σ) such that

(i) Y1 and Y2 have the same distribution under µ,

(ii) Y2 is a nondecreasing function of X,

the following holds:

ˆ
v
(
WCI

0 + Π− Y2

)
dν ≥

ˆ
v
(
WCI

0 + Π− Y1

)
dν (2.9)
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Remark 2.6. In this context, vigilance can simply be seen as a technical condition. It
is a feasibility condition that will allow us to show that whenever the feasibility set of
the DM’s demand problem (stated below) is nonempty, there are feasible functions that are
nondecreasing in X. Most importantly, vigilance will show that for any feasible claim for the
the DM’s demand problem, there is another feasible claim which is not only nondecreasing
in X but also Pareto-improving (as defined later – Definition 2.27 on p. 38).

However, depending on the specific application of the general contracting problem out-
lined here, vigilance becomes more than just a technical condition. For instance,

1. the interpretation of (µ,X)-vigilance in the specific problem of insurance design that
will be examined in Chapter 3 is more or less natural, and in that context vigilance is
more than simply a feasibility condition. Indeed, the intuition behind this terminology
comes from the insurance framework.

2. Also, in Amarante, Ghossoub, and Phelps [16], vigilance has a very natural inter-
pretation that is very well suited for the specific problem of entrepreneurship that the
authors discuss. We refer the interested reader to that paper for more about that
specific setting.

In section 2.5 we will show that in the specific setting where the DM and the CI assign
different probability density functions to the uncertainty X with range [0,M ], the assump-
tion of vigilance is implied by the (more or less usual) assumption of a monotone likelihood
ratio. This result shows yet another useful property of the notion of vigilance. Indeed,
whenever densities cannot be defined or simply do not exist, vigilance can be used.

2.3 Equimeasurable Monotone Rearrangements and

Supermodularity

In this section we will discuss the notion of an equimeasurable monotone rearrangement
of a measurable function with respect to another measurable function. This notion will be
the basic tool that we will use to show the existence of a monotone solution to the DM’s
problem (introduced in section 2.4).

The concept of an equimeasurable rearrangement of a Borel-measurable function on R
with respect to a finite Borel measure, and the notion of an equimeasurable rearrangement
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of a measurable function f from a measurable space into R with respect to a finite Borel
measure on the range of f is by now part of the classical literature5.

Here, we are interested in the idea of an equimeasurable rearrangement of a random
variable with respect to another random variable. The nomenclature used here has been
chosen with the present context in mind, whereby the same measurable space may be
endowed with different measures.

In this section we introduce two specific formulations of the nondecreasing rearrange-
ment of any element Y of B+ (Σ) with respect to the fixed underlying uncertainty X.
Although some of the results presented here are not new, the approach is novel, to the best
of our knowledge.

2.3.1 The Nondecreasing Rearrangement

Let (S,G, P ) be a probability space, and let X ∈ B+ (G) be a continuous random
variable6 with range [0,M ] := X (S), where M := sup{X (s) : s ∈ S} < +∞, i.e. X is a
mapping of S onto the closed interval [0,M ]. Denote by Σ the σ-algebra σ{X}, and denote
by φ the law of X defined by

φ (B) := P
(
{s ∈ S : X (s) ∈ B}

)
= P ◦X−1 (B) (2.10)

for any Borel subset B of R.

If I, In : [0,M ]→ [0,M ], for each n ≥ 1, we will write In ↓ I, φ-a.s., to signify that the
sequence {In}n is a nonincreasing sequence of functions and that lim

n→+∞
In (t) = I (t), for

φ-a.a. t ∈ [0,M ]. Similarly, we will write In ↑ I, φ-a.s., to signify that the sequence {In}n
is a nondecreasing sequence of functions and that lim

n→+∞
In (t) = I (t), for φ-a.a. t ∈ [0,M ].

5See, e.g. Bennett and Sharpley [31], Carlier and Dana [72], [73] and [74], Chong [78], [79] and [80],
Chong and Rice [81], Dana and Scarsini [88], Epperson [120], Hardy, Littlewood and Pólya [163], Luxem-
burg [192], or Rakotoson [233]. The results of Epperson [120] are the most relevant in this case, since [120]
considers rearrangements of Borel measurable functions with respect to arbitrary nonatomic measures,
that is, not necessarily the Lebesgue measure. Nevertheless, all the results for the case of a rearrangement
with respect to the Lebesgue measure can be easily generalized to the case of any nonatomic finite Borel
measure.

6Recall that this means that P ◦X−1 is a nonatomic Borel probability measure.
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Definition 2.7. For any Borel-measurable map I : [0,M ] → R, define the distribution
function of I as the map φI : R→ [0, 1] defined by

φI (t) := φ
(
{x ∈ [0,M ] : I (x) ≤ t}

)
(2.11)

Then φI is a nondecreasing right-continuous function, and the function t 7→ 1 − φI (t) is
called the survival function of I.

Definition 2.8. Let I : [0,M ] → [0,M ] be any Borel-measurable map, and define the

function Ĩ : [0,M ]→ R by:

Ĩ (t) := inf
{
z ∈ R+ : φI (z) ≥ φ

(
[0, t]

)}
(2.12)

The following proposition gives some useful properties of the map Ĩ defined above.

Proposition 2.9. Let I : [0,M ] → [0,M ] be any Borel-measurable map and let Ĩ :
[0,M ]→ R be defined as in (2.12). Then the following hold:

1. Ĩ is left-continuous, nondecreasing, and Borel-measurable;

2. For each t ∈ [0,M ], φI

(
Ĩ (t)

)
≥ φ ([0, t]);

3. Ĩ (t) ≥ 0, for each t ∈ [0,M ], Ĩ (0) = 0, and Ĩ (M) ≤M ;

4. If I1, I2 : [0,M ]→ [0,M ] are such that I1 ≤ I2, φ-a.s., then Ĩ1 ≤ Ĩ2;

5. If Id : [0,M ]→ [0,M ] denotes the identity function, then Ĩd ≤ Id;

6. Ĩ is φ-equimeasurable with I, in the sense that for any Borel set B,

φ
(
{t ∈ [0,M ] : I (t) ∈ B

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ∈ B}

)
(2.13)
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7. If I : [0,M ] → R+ is another nondecreasing, Borel-measurable map which is φ-

equimeasurable with I, then I = Ĩ , φ-a.s.;

8. If I, In : [0,M ]→ [0,M ], for each n ≥ 1, and In ↓ I, φ-a.s., then Ĩn ↓ Ĩ , φ-a.s.

Proof.

1. The monotonicity of Ĩ, and hence its Borel-measurability, is clear. Left-continuity
of Ĩ is an immediate consequence of the monotonicity, the nonatomicity, and the
continuity of the measure φ for monotone sequences, as well as the left-continuity
of the left-inverse7 of the distribution function of Ĩ, namely the function φ∗I (t) :=

inf
{
z ∈ R+ : φI (z) ≥ t

}
, for t ∈ [0, 1];

2. This is an immediate consequence of the right-continuity of the distribution function
φI of I;

3. By the very definition of Ĩ given in (2.12), we have Ĩ (t) ≥ 0 for each t ∈ [0,M ].
Now, φ ([0, 0]) = φ ({0}) = 0, by nonatomicity of φ. Therefore, for each x ≥ 0,
φ
(
{t ∈ [0,M ] : I (t) ≤ x}

)
≥ φ ([0, 0]). In particular,

φ
(
{t ∈ [0,M ] : I (t) ≤ 0}

)
= φ

(
{t ∈ [0,M ] : I (t) = 0}

)
≥ φ ([0, 0])

Hence, by (2.12), Ĩ (0) ≤ 0, and so Ĩ (0) = 0. Moreover, for each x ∈ [0,M ],

1 = φ ([0,M ]) ≥ φ
(
{t ∈ [0,M ] : I (t) ≤ x}

)
Therefore,

{
z ∈ R+ : φ

(
{x ∈ [0,M ] : I (x) ≤ z}

)
≥ φ

(
[0,M ]

)}
=
{
z ∈ R+ :

φ
(
{x ∈ [0,M ] : I (x) ≤ z}

)
= 1
}

. Since I (t) ≤M for each t ∈ [0,M ], it follows that

M ∈
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : I (x) ≤ z}

)
= 1
}

, and so from (2.12) we have that

Ĩ (M) = inf
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : I (x) ≤ z}

)
= 1
}
≤M ;

7See also Embrechts and Hofert [119] for more about the left-inverse (a.k.a. the left-continuous inverse)
of a nondecreasing function.
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4. Let I1, I2 : [0,M ] → [0,M ] be such that I1 ≤ I2, φ-a.s. Then, for each x ≥ 0,

φ
(
{t ∈ [0,M ] : I1 (t) ≤ x}

)
≥ φ

(
{t ∈ [0,M ] : I2 (t) ≤ x}

)
. Therefore, for each

t ∈ [0,M ],{
z ∈ R+ : φ

(
{x ∈ [0,M ] : I2 (x) ≤ z}

)
≥ φ

(
[0, t]

)}
⊆
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : I1 (x) ≤ z}

)
≥ φ

(
[0, t]

)}
It then follows from (2.12) that Ĩ1 ≤ Ĩ2;

5. By (2.12), for each t ∈ [0,M ],

Ĩd (t) = inf
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : Id (x) ≤ z}

)
≥ φ

(
[0, t]

)}
= inf

{
z ∈ R+ : φ

(
[0, z]

)
≥ φ

(
[0, t]

)}
Therefore, Ĩd (t) ≤ t = Id (t), for each t ∈ [0,M ];

6. To show that Ĩ is φ-equimeasurable with I, we need to show that for any Borel set
B,

φ
(
{t ∈ [0,M ] : I (t) ∈ B

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ∈ B}

)
(2.14)

We first show that for each α ∈ [0,M ],

φ
(
{t ∈ [0,M ] : I (t) ≤ α}

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)

Since Ĩ is nondecreasing, we have that for each α ∈ [0,M ] there is some x0 ∈ [0,M ]

such that the set
{
x ∈ [0,M ] : Ĩ (x) ≤ α

}
has the form [0, x0) or [0, x0], with

Ĩ (x) > α for each x ∈ (x0,M ]. But by nonatomicity of φ, we have

φ
(

[0, x0)
)

= φ
(

[0, x0]
)

= φ
(
{x ∈ [0,M ] : Ĩ (x) ≤ α}

)
Moreover, by left-continuity of Ĩ, it follows that Ĩ (x0) ≤ α. Therefore, since φI is
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nondecreasing, we have

φ
(
{t ∈ [0,M ] : I (t) ≤ Ĩ (x0)}

)
≤ φ

(
{t ∈ [0,M ] : I (t) ≤ α}

)
Now, from (2) above, we have φI

(
Ĩ (x0)

)
≥ φ ([0, x0]) = φ ([0, x0)). Therefore,

φ ([0, x0]) = φ ([0, x0)) ≤ φI

(
Ĩ (x0)

)
≤ φI (α)

Suppose that φ ([0, x0]) < φI (α). Then there is some z0 ∈ (x0,M ] such that

φ ([0, z0]) = φ ([0, z0)) = φI (α)

Thus,

Ĩ (z0) = inf
{
z ∈ R+ : φI (z) ≥ φ

(
[0, z0]

)}
= inf

{
z ∈ R+ : φI (z) ≥ φI (α)

)}
≤ α

contradicting the fact that Ĩ (x) > α for each x ∈ (x0,M ]. Therefore,

φ ([0, x0]) = φ ([0, x0)) = φI (α) = φĨ (α) ;

Thus, for each α ∈ [0,M ], we have

φ
(
{t ∈ [0,M ] : I (t) ≤ α}

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)
Now, the collection

{
[0, α] : α ∈ [0,M ]

}
is a π-system (see Appendix 2.8) that

generates the Borel σ-algebra on [0,M ] (see Resnick [240], pp. 18-19). Moreover, the

collection of all Borel subsets B of R such that φ◦I−1 (B) = φ◦ Ĩ−1 (B) is easily seen
to be a λ-system (see Appendix 2.8 and Resnick [240], Proposition 2.2.3 on p. 37).

Therefore, by Dynkin’s π-λ theorem (Theorem 2.53 on p. 51), φ◦I−1 (C) = φ◦Ĩ−1 (C),
for each Borel subset C of [0,M ]. That is, for any Borel set B,

φ
(
{t ∈ [0,M ] : I (t) ∈ B

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ∈ B}

)
(2.15)
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7. Let I : [0,M ] → R+ be another nondecreasing, Borel-measurable map which is

φ-equimeasurable with I. To show that I = Ĩ , φ-a.s., it is enough to show that
φ
(
{x ∈ [0,M ] : Ĩ (x) > I (x)}

)
= φ

(
{x ∈ [0,M ] : I (x) > Ĩ (x)}

)
= 0. Let Q denote

the set of all rational numbers. Then{
x ∈ [0,M ] : I (x) < Ĩ (x)

}
=
⋃
q∈Q

(
{x ∈ [0,M ] : I (x) < q} ∩ {x ∈ [0,M ] : q ≤ Ĩ (x)}

)

Fix q ∈ Q arbitrarily. Since both Ĩ and I are nondecreasing functions, there are
numbers t1, t2 ∈ [0,M ] such that

{x ∈ [0,M ] : I (x) < q} = [0, t1) or [0, t1]

and
{x ∈ [0,M ] : q ≤ Ĩ (x)} = (t2,M ] or [t2,M ]

By nonatomicity of φ, φ ([0, t1)) = φ ([0, t1]) and φ ((t2,M ]) = φ ([t2,M ]). Thus, since

I and Ĩ are both φ-equimeasurable with I, we have

φ ([0, t1)) = φ ([0, t1]) = φ
(
{x ∈ [0,M ] : I (x) < q}

)
and

φ ((t2,M ]) = φ ([t2,M ]) = φ
(
{x ∈ [0,M ] : q ≤ I (x)}

)
Thus

φ ([0, t1)) = φ ([0, t1]) = 1− φ ([t2,M ]) = φ ([0, t2)) = φ ([0, t2])

If t1 = t2, then

[0, t1) ∩ (t2,M ] = [0, t1) ∩ [t2,M ] = [0, t1] ∩ (t2,M ] = ∅

and
[0, t1] ∩ [t2,M ] = {t1}

Thus,

φ
(

[0, t1) ∩ (t2,M ]
)

= φ
(

[0, t1) ∩ [t2,M ]
)

= φ
(

[0, t1] ∩ (t2,M ]
)

= 0
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and, by nonatomicity of φ,

φ
(

[0, t1] ∩ [t2,M ]
)

= 0

Therefore, φ
(
{x ∈ [0,M ] : I (x) < q} ∩ {x ∈ [0,M ] : q ≤ Ĩ (x)}

)
= 0.

If t1 > t2, then
[0, t1) = [0, t2) ∪ [t2, t1) = [0, t2] ∪ (t2, t1)

and
[0, t1] = [0, t2) ∪ [t2, t1] = [0, t2] ∪ (t2, t1]

Since φ ([0, t1)) = φ ([0, t1]) = φ ([0, t2)) = φ ([0, t2]), it then follows that

φ ((t2, t1)) = φ ((t2, t1]) = φ ([t2, t1)) = φ ([t2, t1]) = 0

Therefore, 
φ
(

[0, t1) ∩ (t2,M ]
)

= φ
(

(t2, t1)
)

= 0
φ
(

[0, t1) ∩ [t2,M ]
)

= φ
(

[t2, t1)
)

= 0
φ
(

[0, t1] ∩ (t2,M ]
)

= φ
(

(t2, t1]
)

= 0
φ
(

[0, t1] ∩ [t2,M ]
)

= φ
(

[t2, t1]
)

= 0

Thus, φ
(
{x ∈ [0,M ] : I (x) < q} ∩ {x ∈ [0,M ] : q ≤ Ĩ (x)}

)
= 0.

Finally, if t2 > t1, then

[0, t2) = [0, t1) ∪ [t1, t2) = [0, t1] ∪ (t1, t2)

and
[0, t2] = [0, t1) ∪ [t1, t2] = [0, t1] ∪ (t1, t2]

Since φ ([0, t2)) = φ ([0, t2]) = φ ([0, t1)) = φ ([0, t1]), it then follows that

φ ((t1, t2)) = φ ((t1, t2]) = φ ([t1, t2)) = φ ([t1, t2]) = 0

Therefore,
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
φ
(

[0, t2) ∩ (t1,M ]
)

= φ
(

(t1, t2)
)

= 0
φ
(

[0, t2) ∩ [t1,M ]
)

= φ
(

[t1, t2)
)

= 0
φ
(

[0, t2] ∩ (t1,M ]
)

= φ
(

(t1, t2]
)

= 0
φ
(

[0, t2] ∩ [t1,M ]
)

= φ
(

[t1, t2]
)

= 0

Thus, φ
(
{x ∈ [0,M ] : I (x) < q} ∩ {x ∈ [0,M ] : q ≤ Ĩ (x)}

)
= 0. Since q ∈ Q was

chosen arbitrarily, it then follows that

φ
({
x ∈ [0,M ] : I (x) < Ĩ (x)

})
= 0

Similarly, we can show that φ
({
x ∈ [0,M ] : Ĩ (x) < I (x)

})
= 0. Thus, Ĩ = I, φ-a.s.;

8. For each Borel-measurable and finite function ψ : R→ R define the mapping δ (ψ) :
R→ R by

δ (ψ) (t) := inf
{
z ∈ R : φ

(
{x ∈ R : ψ (x) > z}

)
≤ φ

(
(−∞, t)

)}
, ∀t ∈ R

Then, as in Epperson [120] (proposition 2 on p. 225), δ (ψ) is nonincreasing and φ-
equimeasurable with ψ. Moreover, by Epperson [120] (proposition 2 on p. 225), if
{fn}n is a sequence of Borel-meaurable finite real-valued functions on R such that
fn ↑ f, φ-a.s., where f is some Borel-meaurable finite real-valued functions on R,
then δ (fn) ↑ δ (f).

Now, for each Borel-measurable and finite function ψ : R→ R define the mapping

ι (ψ) := −δ (−ψ)

Then ι (ψ) is nondecreasing and φ-equimeasurable with ψ. Thus, by (7) above, for

each Borel-measruable function I : [0,M ] → [0,M ], we have ι (I) = Ĩ , φ-a.s., that

is, φ
({
t ∈ [0,M ] : Ĩ (t) = ι (I) (t)

})
= 1. The rest then follows trivially (see also

Proposition 3.60 on p. 98).

Ĩ will be called the nondecreasing φ-rearrangement of I (see also Epperson [120] pp.
224-225, Carlier and Dana [72] p. 876, Carlier and Dana [73] Proposition 1, p. 830, or
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Carlier and Dana [74] Proposition 1 on p. 486). Now, define Y := I ◦X and Ỹ := Ĩ ◦X.

Since both I and Ĩ are Borel-measurable mappings of [0,M ] into itself, it follows that

Y, Ỹ ∈ B+ (Σ). Note also that Ỹ is nondecreasing in X, in the sense that if s1, s2 ∈ S are

such that X (s1) ≤ X (s2) then Ỹ (s1) ≤ Ỹ (s2), and that Y and Ỹ are P -equimeasurable,

that is, for any α ∈ [0,M ], P ({s ∈ S : Y (s) ≤ α}) = P
(
{s ∈ S : Ỹ (s) ≤ α}

)
. Indeed,

P
(
s ∈ S : Ỹ (s) ≤ α

)
= P

(
{s ∈ S : X (s) ∈ {t ∈ [0,M ] : Ĩ (t) ≤ α}}

)
= φ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)
= φ

(
{t ∈ [0,M ] : I (t) ≤ α}

)
= P

(
{s ∈ S : X (s) ∈ {t ∈ [0,M ] : I (t) ≤ α}}

)
= P

(
s ∈ S : Y (s) ≤ α

)

We will then call Ỹ a nondecreasing P -rearrangement of Y with respect to X,
and we shall denote it by ỸP to avoid confusion in case a different measure on (S,G) is also
considered. For example, in case both P1 and P2 are probability measures on the measurable
space (S,G), we shall denote by ỸP1 (resp. ỸP2) a nondecreasing P1-rearrangement (resp.
P2-rearrangement) of Y with respect to X. In the general case, nothing can be said a priori

about the relationship between ỸP1 and ỸP2 . What can be asserted, however, is that:

1. Both ỸP1 and ỸP2 are nondecreasing in X, and hence ỸP1 and ỸP2 are comonotonic,

i.e.
[
ỸP2 (s)− ỸP2 (s′)

][
ỸP1 (s)− ỸP1 (s′)

]
≥ 0, for all s, s′ ∈ S;

2. Y and ỸP1 are P1-equimeasurable; and,

3. Y and ỸP2 are P2-equimeasurable.

Note that ỸP is P -a.s. unique. Note also that if Y1 and Y2 are P -equimeasurable and
if Y1 ∈ L1 (S,G, P ), then Y2 ∈ L1 (S,G, P ) and

´
ψ (Y1) dP =

´
ψ (Y2) dP , for any

measurable function ψ such that the integrals exist.

Remark 2.10. The previous construction of the nondecreasing rearrangement guarantees
that the collection of all those functions Y1, Y2 ∈ B+ (Σ) considered in Definition 2.4 is
rich enough.
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Similarly to the previous construction, for a given a Borel-measurable B ⊆ [0,M ] with
φ (B) > 0, there exists a φ-a.s. unique (on B) nondecreasing, Borel-measurable mapping

ĨB : B → [0,M ] which is φ-equimeasurable with I on B, in the sense that for any α ∈
[0,M ],

φ
(
{t ∈ B : I (t) ≤ α}

)
= φ

(
{t ∈ B : ĨB (t) ≤ α}

)
(2.16)

ĨB is called the nondecreasing φ-rearrangement of I on B8. Since X is G-measurable,
there exists A ∈ G such that A = X−1 (B), and hence P (A) > 0. Now, define ỸA :=

ĨB ◦ X. Since both I and ĨB are bounded Borel-measurable mappings, it follows that
Y, ỸA ∈ B+ (Σ). Note also that ỸA is nondecreasing in X on A, in the sense that if

s1, s2 ∈ A are such that X (s1) ≤ X (s2) then Ỹ (s1) ≤ Ỹ (s2), and that Y and ỸA
are P -equimeasurable on A, that is, for any α ∈ [0,M ], P ({s ∈ S : Y (s) ≤ α} ∩ A) =

P
(
{s ∈ S : ỸA (s) ≤ α} ∩ A

)
. Indeed,

P
(
s ∈ A : ỸA (s) ≤ α

)
= φ

(
{t ∈ B : ĨB (t) ≤ α}

)
= φ

(
{t ∈ B : I (t) ≤ α}

)
= P

(
s ∈ A : Y (s) ≤ α

)

We will then call ỸA a nondecreasing P -rearrangement of Y with respect to X
on A, and we shall denote it by ỸA,P to avoid confusion in case a different measure on
(S,G) is also considered. For example, in case both P1 and P2 are probability measures

on the measurable space (S,G), we shall denote by ỸA,P1 (resp. ỸA,P2) a nondecreasing
P1-rearrangement (resp. P2-rearrangement) of Y with respect to X on A. In the general

case, nothing can be said a priori about the relationship between ỸA,P1 and ỸA,P2 . What
can be asserted, however, is that:

1. Both ỸA,P1 and ỸA,P2 are nondecreasing in X on A, and hence ỸP1 and ỸP2 are

comonotonic on A, i.e.
[
ỸA,P2 (s) − ỸA,P2 (s′)

][
ỸA,P1 (s) − ỸA,P1 (s′)

]
≥ 0, for all

s, s′ ∈ A;

2. Y and ỸA,P1 are P1-equimeasurable on A; and,

3. Y and ỸA,P2 are P2-equimeasurable on A.

8See Carlier and Dana [72], p. 876.
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Note that ỸA,P is P -a.s. unique. Note also that if Y1,A and Y2,A are P -equimeasurable on
A and if

´
A
Y1,A dP < +∞, then

´
A
Y2,A dP < +∞ and

´
A
ψ (Y1,A) dP =

´
A
ψ (Y2,A) dP ,

for any measurable function ψ such that the integrals exist.

Lemma 2.11. Let Y ∈ B+ (Σ) and let A ∈ G be such that P (A) = 1 and X (A) is a Borel

set9. Let ỸP be the nondecreasing P -rearrangement of Y with respect to X, and let ỸA,P be

the nondecreasing P -rearrangement of Y with respect to X on A. Then ỸP = ỸA,P , P -a.s.

Proof. Since P (A) = 1, we have P (S \ A) = 0, and so it follows that for all t ∈ R,

P
[
{ỸA,P ≥ t} ∩ A

]
= P [{Y ≥ t} ∩ A] by definition of ỸA,P

= P [{Y ≥ t} ∩ A] + P [{Y ≥ t} ∩ (S \ A)] since P (S \ A) = 0

= P [{Y ≥ t}] = P
[
{ỸP ≥ t}

]
by definition of ỸP

= P
[
{ỸP ≥ t} ∩ A

]
+ P

[
{ỸP ≥ t} ∩ (S \ A)

]
= P

[
{ỸP ≥ t} ∩ A

]
since P (S \ A) = 0

= P
[
{ỸP1A ≥ t} ∩ A

]

Furthermore, both ỸA,P and ỸP are nondecreasing in X on A. Hence, by the P -a.s. unique-
ness of the nondecreasing P -rearrangement of Y with respect to X on A, it follows that
ỸP = ỸA,P , P -a.s. on A, that is, P -a.s.

2.3.2 Supermodularity and Hardy-Littlewood-Pólya Inequalities

A partially ordered set (poset) is a pair (T,<) where < is a reflexive, transitive and
antisymmetric binary relation10 on T . A point t ∈ T is called an upper bound (resp. lower
bound) for a subset S of T if t < x (resp. x < t) for each x ∈ S. A point t∗ ∈ T is called

9Note that if A ∈ Σ = σ{X} then X (A) is automatically a Borel set, by definition of σ{X}. Indeed,
for any A ∈ σ{X}, there is some Borel set B such that A = X−1 (B). Then X (A) = B ∩X (S) (see, e.g.
Dieudonné [103], p. 7). Thus X (A) = B ∩ [0,M ] is a Borel subset of [0,M ].

10See Appendix A.1.1 for more about binary relations.
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a least upper bound (resp. greatest lower bound) for S if it is an upper bound (resp. lower
bound) for S and for any other upper bound (resp. lower bound) t of S we have t < t∗

(resp. t∗ < t). It is easily seen that the least upper bound and the greatest lower bound
are unique.

For any x, y ∈ S we denote by x∨ y (resp. x∧ y) the least upper bound (resp. greatest
lower bound) of the set {x, y}. A poset (T,<) is called a lattice when x∨ y, x∧ y ∈ T , for
each x, y ∈ T .

For instance, the Euclidian space Rn is a lattice for the partial order < defined as
follows: for x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, we write x < y when xi ≥ yi,
for each i = 1, . . . , n. It is then easy to see that x ∨ y = (max (x1, y1) , . . . ,max (xn, yn))
and x ∧ y = (min (x1, y1) , . . . ,min (xn, yn)).

Definition 2.12. Let (T,<) be a lattice. A function L : T → R is said to be supermodular
if for each x, y ∈ T ,

L (x ∨ y) + L (x ∧ y) ≥ L (x) + L (y) (2.17)

In particular, a function L : R2 → R is supermodular if for any x1, x2, y1, y2 ∈ R with
x1 ≤ x2 and y1 ≤ y2, we have

L (x2, y2) + L (x1, y1) ≥ L (x1, y2) + L (x2, y1) (2.18)

Lemma 2.13. A function L : R2 → R is supermodular if and only if the function η (y) :=
L (x+ h, y)− L (x, y) is nondecreasing on R, for any x ∈ R and h ≥ 0.

Proof. Immediate consequence of (2.18).

Example 2.14. The following are useful examples of supermodular functions:

1. If g : R → R is concave, and a ∈ R, then the function L1 : R2 → R defined by
L1 (x, y) = g (a− x+ y) is supermodular.

30



2. If f : R → R is concave, and a ∈ R, then the function L2 : R2 → R defined by
L2 (x, y) = f (a+ x− y) is supermodular.

3. The function L3 : R2 → R defined by L3 (x, y) = − (y − x)+ is supermodular.

4. If ψ : R → R is nonincreasing function, then the function L4 : R2 → R defined by
L4 (x, y) = −y ψ (x) is supermodular.

5. If ζ : R→ R+ is a nondecreasing function, g : R→ R is concave and nondecreasing,
and a ∈ R, then the function L5 : R2 → R defined by L5 (x, y) = g (a− x+ y) ζ (x)
is supermodular.

6. If η : R→ R+ is a nonincreasing function, f : R→ R is concave and nondecreasing,
and a ∈ R, then the function L6 : R2 → R defined by L6 (x, y) = f (a+ x− y) η (x)
is supermodular.

Lemma 2.15 (Hardy-Littlewood-Pólya Inequalities). Let Y ∈ B+ (Σ) and let A ∈ G be

such that P (A) > 0 and X (A) is a Borel set. Let ỸP be the nondecreasing P -rearrangement

of Y with respect to X, and let ỸA,P be the nondecreasing P -rearrangement of Y with respect
to X on A. If L is supermodular then:

1.
´
L
(
X, Y

)
dP ≤

´
L
(
X, ỸP

)
dP , and,

2.
´
A
L
(
X, Y

)
dP ≤

´
A
L
(
X, ỸA,P

)
dP ,

provided the integrals exist (i.e. they are not of the form ∞−∞).

Proof. By the P -a.s. uniqueness of the nondecreasing P -rearrangement of Y ∈ B+ (Σ) with
respect to X, it suffices to show that (1) holds for a pair

(
Y, Y

)
∈ B+ (Σ) × B+ (Σ) such

that Y and Y are P -equimeasurable and Y is a nondecreasing function of X, and that
(2) holds for a pair

(
Y, Y A

)
such that Y and Y A are P -equimeasurable on A and Y A is a

nondecreasing function of X on A. But these are classical results, and we refer the reader
to Cambanis et al. [68], Carlier and Dana [74], and especially Dana and Scarsini [88], whose
Lemma 3.4 on p. 158 is identical to our Lemma.

For a more formal treatment of this subject, within the larger framework of the Monge-
Kantorovich optimal transport problems, see Rachev and Rüschendorf [230] (Chap. 3) and
[231] (Chap. 7), and Villani [294] and [295].
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Lemma 2.16. Let Y ∈ B+ (Σ) and let A ∈ G be such that P (A) > 0 and X (A) is a Borel

set. Let ỸP be the nondecreasing P -rearrangement of Y with respect to X, and let ỸA,P be
the nondecreasing P -rearrangement of Y with respect to X on A. Then the following hold:

1. If 0 ≤ Y ≤ X, P -a.s., then 0 ≤ ỸP ≤ X; and,

2. If 0 ≤ Y ≤ X, P -a.s. on A, then 0 ≤ ỸA,P ≤ X, P -a.s. on A.

Proof. Since Y is σ{X}-measurable, by Doob’s measurability theorem there is a real-valued
bounded Borel-measurable function I on [0,M ] such that Y = I ◦ X. Moreover, we can
write X = Id ◦X, where Id denotes the identity map on [0,M ].

If 0 ≤ Y ≤ X, P -a.s. then 0 ≤ I ≤ Id, φ-a.s. Therefore, by Proposition11 2.9,
0 ≤ Ĩ ≤ Ĩd ≤ Id, where Ĩ denotes the nondecreasing φ-rearrangement of I and where Ĩd
denotes the nondecreasing φ-rearrangement of Id. Hence, 0 ≤ ỸP ≤ X.

Now, suppose that 0 ≤ Y ≤ X, P -a.s. on A. To show that 0 ≤ ỸA,P ≤ X, P -
a.s. on A, let L (X, Y ) := − (Y −X)+ and let Ψ := L (X, Y ). Then the function L is

supermodular, and the functions L (t, I (t)) and L
(
t, Ĩ (t)

)
are bounded, and hence φ-

integrable functions on [0,M ]. Thus, Ψ is P -integrable12. Let Ψ̃ := L
(
X, ỸA,P

)
. Then

similarly, Ψ̃ is P -integrable. Since 0 ≤ Y ≤ X, P -a.s. on A, it follows that
´
A

Ψ dP = 0.
Moreover, since L is supermodular, Lemma 2.15 yields:

0 = −
ˆ
A

Ψ dP ≥ −
ˆ
A

Ψ̃ dP =

ˆ
A

(
ỸA,P −X

)+

dP ≥ 0

Therefore,
´
A

(
ỸA,P −X

)+

dP = 0. Since
(
ỸA,P −X

)+

≥ 0 and P (A) > 0, it then

follows form Lemma 2.49 that ỸA,P ≤ X, P -a.s. on A. The fact that ỸA,P ≥ 0, P -a.s. on

A follows from the definition of ỸA,P and the fact that Y ≥ 0, P -a.s. on A.

11Chong and Rice [81] (Proposition 4.3 (ii) on p. 30) provide a similar result for the case where φ is the
Lebesgue measure.

12See Theorem E.11 on p. 241.
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2.3.3 Some “Convergence” Results

Lemma 2.17. If f and fn are [0,+∞)-valued, Σ-measurable functions on S such that
the sequence {fn}n converges pointwise P -a.s. to f monotonically downwards, then the

sequence {f̃n,P}n converges pointwise P -a.s. to f̃P monotonically downwards, where f̃P is

the nondecreasing P -rearrangement of f with respect to X, and f̃n,P is the nondecreasing
P -rearrangement of fn with respect to X, for each n ∈ N.

Proof. Follows from Proposition 2.9 (8) and Doob’s measurability theorem. Similar results
can be found in Epperson [120] (Proposition 2 (ii) on p. 225) and Chong [80] (p. 142), for
the specific formulation of the monotone equimeasurable rearrangement that the authors
use.

Lemma 2.18. Let f and fn be [0,+∞)-valued, Σ-measurable functions on S. If fn ∈
B+ (Σ), for each n ≥ 1, and if the sequence {fn}n converges uniformly to f ∈ B+ (Σ),
then

1. The functions f̃P and f̃n,P are in L∞, for each n ≥ 1, where f̃P is the nonde-

creasing P -rearrangement of f with respect to X, and f̃n,P is the nondecreasing P -
rearrangement of fn with respect to X, for each n ∈ N; and,

2. The sequence {f̃n,P}n converges to f̃P in the L∞ norm.

Proof. Since f, fn are uniformly bounded, they are essentially bounded (i.e. they belong to

L∞) and so, by Lemma 2.16, the functions f̃P and f̃n,P are essentially bounded, for each
n ≥ 1.

Since f, fn ∈ B+ (Σ) for each n ≥ 1, by Doob’s measurability theorem there are real-
valued Borel-measurable functions I and In on [0,M ] such that f = I ◦ X and fn =
In ◦ X, for each n ∈ N. Moreover, the functions I, In are uniformly bounded since the
functions f, fn are uniformly bounded (by hypothesis), and since X is uniformly bounded
(by hypothesis). Also, the sequence {In}n converges uniformly to I, on the range of X, i.e.

on the interval [0,M ], and hence convergence is also in the sense of the L∞ norm. Let Ĩ be

the nondecreasing φ-rearrangement of I, and let Ĩn be the nondecreasing φ-rearrangement
of In, for each n ∈ N. Then the sequence {Ĩn}n converges to Ĩ in the L∞ norm (see, e.g.
Rakotoson [233], Corollary 1.3.3 on p. 17, which shows that the monotone rearrangement
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is a norm-continuous operator on Lp, for each p ∈ [1,+∞], and hence in particular for the
space L∞. Horsley and Wrobel [168] also discuss various ways in which the nondecreasing
rearrangement operator is continuous). The rest then follows trivially.

2.3.4 Another Characterization of the Nondecrasing Rearrange-
ment

Consider the nonatomic Borel probability measure φ on the interval [0,M ] introduced
in section 2.3.1. The next proposition gives another characterization of the nondecreasing
φ-rearrangement of any Borel-measurable function I : [0,M ]→ [0,M ].

Proposition 2.19. Let I : [0,M ] → [0,M ] be any Borel-measurable map, and let Ĩ :
[0,M ]→ [0,M ] denote the nondecreasing φ-rearrangement of I. Then for φ-a.e. t ∈ [0,M ],

Ĩ (t) = η (t) (2.19)

where,

η (t) := sup
{
u ∈ R : ξ (u) ≤ t

}
(2.20)

and

ξ (u) := inf

{
β ∈ [0,M ] : φ

(
[β,M ]

)
= φ

({
s ∈ [0,M ] : I (s) ≥ u

})}
(2.21)

Proof. By the φ-a.s. uniqueness of the nondecreasing φ-rearrangement of I (Proposition
2.9 (7)), it suffices to show that the map η is nondecreasing and φ-equimeasurable with I.

First note that ξ is nondecreasing by monotonicity of the measure φ, and so η is also
nondecreasing. To show that η and I are φ-equimeasurable, note that for any u and t,

u > η (t) ⇐⇒ ξ (u) > t

Therefore, for any u ∈ R,

φ
({
s ∈ [0,M ] : η (s) < u

})
= φ

({
s ∈ [0,M ] : ξ (u) > s

})
= φ

([
0, ξ (u)

))
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Now, since φ
(

[0,M ]
)

= 1, it follows that

ξ (u) = inf

{
β ∈ [0,M ] : φ

(
[0, β)

)
= φ

({
s ∈ [0,M ] : I (s) < u

})}

Therefore, φ
([

0, ξ (u)
))

= φ
({
s ∈ [0,M ] : I (s) < u

})
, which completes the proof.

Simple functions

Any Σ-simple function13 Y ∈ B+ (Σ) can be written as Y =
∑n

i=1 αi1Ci , for some
{αi}ni=1 ⊂ R+ and a partition {Ci}ni=1 of S, where Ci ∈ Σ, for each i ∈ {1, . . . , n}. Since
Ci ∈ Σ, for each i ∈ {1, . . . , n}, and since Σ = σ{X}, it follows that

Y (s) =
n∑
i=1

αi1Bi
(
X (s)

)
, ∀s ∈ S (2.22)

where Bi is a Borel subset of X (S) = [0,M ], for each i ∈ {1, . . . , n}, and {Bi}ni is a
partition of [0,M ]. in other words, Y = I ◦X, where the function I is a simple function
on [0,M ] of the form

I =
n∑
i=1

αi1Bi (2.23)

Since the nondecreasing rearrangement Ỹ of Y with respect to X is simply Ĩ ◦ X,
where Ĩ is the nondecreasing φ-rearrangement of I (recall that φ = P ◦X−1), it suffices to

characterize Ĩ. This is done in the following proposition.

Proposition 2.20. Let I =
∑n

i=1 αi1Bi be any Borel-measurable simple function on [0,M ],

and suppose, without loss of generality, that α1 < α2 < . . . < αn. If Ĩ denotes the

13Note that the collection of all Σ-simple functions on (S,Σ) (i.e. the collection of all finite linear
combinations of indicator functions of sets in Σ) is supnorm dense in the supnorm-normed Banach space
B (Σ) of all bounded, R-valued and Σ-measurable functions on S (Hewitt and Stromberg [166], Theorem
11.35 on p. 159), where as before Σ = σ{X}.
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nondecreasing φ-rearrangement of I, then Ĩ = η, φ-a.s., where η is given by

η (t) :=
n−1∑
i=1

αi1[βi−1,βi) (t) + αn1[βn−1,M ] (2.24)

where:

1. β0 := 0

2. βi := inf

{
β ∈

[
0,M

]
: φ
([
β,M

])
= φ

(
{t ∈

[
0,M

]
: I (t) ≥ αi+1}

)}
, for each

i ∈ {1, . . . , n− 1}.

Proof. To show that η = Ĩ φ-a.s., it suffices to show that η is nondecreasing and φ-
equimeasurable with I. The fact that η is nondecreasing follows directly from (2.24). To
show that I and η are φ-equimeasurable, fix any i0 ∈ {1, . . . , n}. Then

φ
(
{t ∈

[
0,M

]
: η (t) ≥ αi0}

)
= φ

([
βi0−1,M

])
However, by definition of βi0−1, φ

([
βi0−1,M

])
= φ

(
{t ∈

[
0,M

]
: I (t) ≥ αi0}

)
. Since i0

was chosen arbitrarily in {1, . . . , n}, this completes the proof.

2.4 The DM’s Demand for Contingent Claims

2.4.1 The DM’s problem

The problem of designing the optimal contract can be seen as that of finding the claim
that will maximize the expected utility of the DM’s wealth, under her subjective probability
measure, subject to the CI’s participation constraint and to some constraints on the claim.
Specifically, the DM’s problem is the following:
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Problem 2.21.

sup
Y ∈B+(Σ)

{ˆ
u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y ≤ X´
v
(
WCI

0 + Π− Y
)
dν ≥ v

(
WCI

0

)

In an insurance framework, the first constraint is standard (see Arrow [25] and Ra-
viv [239]), and says that an indemnity is nonnegative and cannot exceed the loss itself.
The second constraint is simply the CI’s participation constraint, or individual rationality
constraint. We will discuss these constraint further in the next chapter.

Remark 2.22. Assuming Problem 2.21 has a nonempty feasibility set, the supremum value
of Problem 2.21 is finite since the utility function u is bounded. That is, there exists some

R < +∞ such that u
(
W0 − Π − X (s) + Y (s)

)
≤ R, for each s ∈ S and for each

Y ∈ B+ (Σ). Consequently,
´
D
u
(
W0 − Π −X + Y

)
dµ ≤ Rµ (D), for each D ∈ Σ and

for each Y ∈ B+ (Σ).

2.4.2 Existence of a Monotone Solution and Pareto-Improving
Claims

Here we will give a sufficient condition for Problem 2.21 to admit a solution which is a
nondecreasing function of X.

Definition 2.23. Let FSB be defined by

FSB :=

{
Y ∈ B+ (Σ) : 0 ≤ Y ≤ X and

ˆ
v
(
WCI

0 + Π− Y
)
dν ≥ v

(
WCI

0

)}

That is, FSB is the feasibility set for Problem 2.21. In the following, we will assume
that this feasibility set is nonempty:

37



Assumption 2.24. FSB 6= ∅.

Let F↑SB denote the collection of all feasible Y ∈ B+ (Σ) for Problem 2.21 which are also
nondecreasing in X, i.e. of the form Y = I ◦X where I : [0,M ]→ [0,M ] is nondecreasing:

Definition 2.25. Let F↑SB :=

{
Y = I ◦X ∈ FSB : I is nondecreasing

}
.

Lemma 2.26. If ν is (µ,X)-vigilant, then F↑SB 6= ∅.

Proof. By Assumption 2.24, FSB 6= ∅. Choose any Y = I ◦X ∈ FSB, and let Ỹµ denote

the nondecreasing µ-rearrangement of Y with respect to X. Then (i) Ỹµ = Ĩ ◦X where Ĩ

is nondecreasing, and (ii) 0 ≤ Ỹµ ≤ X, by Lemma 2.16.

Furthermore, since ν is (µ,X)-vigilant, it follows from the definition of vigilance that

ˆ
v
(
WCI

0 + Π− Ỹµ
)
dν ≥

ˆ
v
(
WCI

0 + Π− Y
)
dν

However,
´
v
(
WCI

0 + Π − Y
)
dν ≥ v

(
WCI

0

)
since Y ∈ FSB. Therefore,

´
v
(
WCI

0 +

Π− Ỹµ
)
dν ≥ v

(
WCI

0

)
. Thus, Ỹµ ∈ F↑SB, and so F↑SB 6= ∅.

Definition 2.27. If Y1, Y2 ∈ FSB, we will say that Y2 is a Pareto improvement of Y1 (or
is Pareto-improving) when the following hold:

1.
´
u
(
W0 − Π−X + Y2

)
dµ ≥

´
u
(
W0 − Π−X + Y1

)
dµ; and,

2.
´
v
(
WCI

0 + Π− Y2

)
dν ≥

´
v
(
WCI

0 + Π− Y1

)
dν.
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Lemma 2.28. Suppose that ν is (µ,X)-vigilant and that U (X, Y ) := u
(
W0−Π−X+Y

)
is supermodular14. If Y ∈ FSB, then there is some Y ∗ ∈ F↑SB which is Pareto-improving.

Proof. First note that by Lemma 2.26 F↑SB 6= ∅. Choose any Y ∈ FSB, and let Y ∗ := Ỹµ,

where Ỹµ denotes the nondecreasing µ-rearrangement of Y with respect to X. Then Y ∗ ∈
F↑SB, as in the proof of Lemma 2.26. Moreover, since U (X, Y ) is supermodular, it follows
from Lemma 2.15 that

ˆ
u
(
W0 − Π−X + Y ∗

)
dµ ≥

ˆ
u
(
W0 − Π−X + Y

)
dµ

Finally, since ν is (µ,X)-vigilant, it follows from the definition of (µ,X)-vigilance that

ˆ
v
(
WCI

0 + Π− Y ∗
)
dν ≥

ˆ
v
(
WCI

0 + Π− Y
)
dν

Therefore, Y ∗ ∈ F↑SB is a Pareto improvement of Y ∈ FSB.

Proposition 2.29. If ν is (µ,X)-vigilant and U (X, Y ) := u
(
W0−Π−X +Y

)
is super-

modular (e.g. u is concave), then Problem 2.21 admits a solution which is a nondecreasing
function of X.

Proof. The main idea of this proof (the use of maximizing sequences) is rather standard.
For instance, Dana and Scarsini [88] use a similar idea based on maximizing sequences to
prove their Theorem 3.8 and Theorem 8.4. Also, Cardaliaguet and Tahraoui [70] use a
similar idea based on minimizing sequences to show existence of solutions to some classes
of Calculus of Variations problems (their Theorem 3.3).

By Lemma 2.28, we can choose a maximizing sequence {Yn}n in F↑SB for Problem 2.21.
That is,

lim
n→+∞

ˆ
u
(
W0 − Π−X + Yn

)
dµ = N

14This happens for instance when the utility function u is concave, i.e. when the DM is risk-averse. See
Example 2.14 (1) and (2).

39



where N < +∞ is the supremum value of Problem 2.21. Since 0 ≤ Yn ≤ X ≤M := ‖X‖s,
the sequence {Yn}n is uniformly bounded. Moreover, for each n ≥ 1 we have Yn = In ◦X,
with In : [0,M ] → [0,M ]. Consequently, the sequence {In}n is a uniformly bounded
sequence of nondecreasing Borel-measurable functions. Thus, by Lemma 2.50, there is
a nondecreasing function I∗ : [0,M ] → [0,M ] and a subsequence {Im}m of {In}n such
that {Im}m converges pointwise on [0,M ] to I∗. Hence, I∗ is also Borel-measurable, and
so Y ∗ := I∗ ◦ X ∈ B+ (Σ) is such that 0 ≤ Y ∗ ≤ X. Moreover, the sequence {Ym}m,
defined by Ym = Im ◦ X, converges pointwise to Y ∗. Thus, by continuity of the utility

function v (Assumption 2.2), the sequence
{
v
(
WCI

0 + Π− Ym
)}

m
converges pointwise to

v
(
WCI

0 + Π − Y ∗
)

. Boundedness of v and Lebesgue’s Dominated Convergence Theorem

(Theorem E.9 on p. 241), hence give that

lim
m→+∞

ˆ
v
(
WCI

0 + Π− Ym
)
dν =

ˆ
v
(
WCI

0 + Π− Y ∗
)
dν

Now, since Ym ∈ FSB, for each m ≥ 1, it follows that:

ˆ
v
(
WCI

0 + Π− Ym
)
dν ≥ v

(
WCI

0

)
, ∀m ≥ 1

Therefore, Y ∗ ∈ F↑SB.

Similarly, by continuity and boundedness of the utility function u (Assumption 2.2)
and by Lebesgue’s Dominated Convergence Theorem, we have

ˆ
u
(
W0 − Π−X + Y ∗

)
dµ = lim

m→+∞

ˆ
u
(
W0 − Π−X + Ym

)
dµ

= lim
n→+∞

ˆ
u
(
W0 − Π−X + Yn

)
dµ = N

Hence Y ∗ solves Problem 2.21.
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2.4.3 Characterization of the Solution

By Lebesgue’s decomposition theorem (Theorem D.10 on p. 226) there exists a unique
pair (νac, νs) of (nonnegative) finite measures on (S,Σ) such that ν = νac + νs, νac << µ,
and νs ⊥ µ. That is, for all B ∈ Σ with µ (B) = 0, we have νac (B) = 0, and there is
some A ∈ Σ such that µ (S \ A) = νs (A) = 0. It then also follows that νac (S \ A) = 0
and µ (A) = 1. Hence, for all Z ∈ B+ (Σ),

´
Z dν =

´
A
Z dνac +

´
S\A Z dνs. Moreover,

by the Radon-Nikodým theorem (Theorem E.22 on p. 244) there exists a µ-a.s. unique Σ-
measurable and µ-integrable function h : S → [0,+∞) such that νac (C) =

´
C
h dµ, for all

C ∈ Σ. Consequently, for all Z ∈ B+ (Σ),
´
Z dν =

´
A
Zh dµ+

´
S\A Z dνs. Furthermore,

since νac (S \ A) = 0, it follows that
´
S\A Z dνs =

´
S\A Z dν. Thus, for all Z ∈ B+ (Σ),´

Z dν =
´
A
Zh dµ+

´
S\A Z dν. In particular,

´
Y dν =

´
A
Y h dµ+

´
S\A Y dν.

In the following, the Σ-measurable set A on which µ is concentrated (and νs (A) = 0)
is assumed to be fixed all throughout. Moreover, since A ∈ Σ and since X (S) = [0,M ],
X (A) is a Borel subset15 of [0,M ].

Lemma 2.30. Let Y ∗ be an optimal solution for Problem 2.21, and suppose that ν is

(µ,X)-vigilant and that U (X, Y ) := u
(
W0−Π−X + Y

)
is supermodular. Let Ỹ ∗µ be the

nondecreasing µ-rearrangement of Y ∗ with respect to X. Then:

1. Ỹ ∗µ is optimal for Problem 2.21; and,

2. Ỹ ∗µ = Ỹ ∗µ,A, µ-a.s., where Ỹ ∗µ,A is the nondecreasing µ-rearrangement of Y ∗ with
respect to X on A.

Proof. Optimality of Ỹ ∗µ for Problem 2.21 is an immediate consequence of Lemma 2.28 and
its proof.

Let Ỹ ∗µ,A be the nondecreasing µ-rearrangement of Y ∗ with respect to X on A. Since

µ (A) = 1, then by Lemma 2.11 we have that Ỹ ∗µ = Ỹ ∗µ,A, µ-a.s.

15for any A ∈ Σ = σ{X}, there is some Borel set B such that A = X−1 (B). Then X (A) = B ∩X (S)
(see, e.g. Dieudonné [103], p. 7). Thus X (A) = B ∩ [0,M ] is a Borel subset of [0,M ].
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Lemma 2.31. Let an optimal solution for Problem 2.21 be given by:

Y ∗ = Y ∗1 1A + Y ∗2 1S\A (2.25)

for some Y ∗1 , Y
∗

2 ∈ B+ (Σ). Let Ỹ ∗µ be the nondecreasing µ-rearrangement of Y ∗ with
respect to X, and let Y ∗1,µ be the nondecreasing µ-rearrangement of Y ∗1 with respect to X.

Then Ỹ ∗µ = Ỹ ∗1,µ, µ-a.s.

Proof. Let Ỹ ∗µ,A be the nondecreasing µ-rearrangement of Y ∗ with respect to X on A.

Since µ (A) = 1, then by Lemma 2.11 we have Ỹ ∗µ = Ỹ ∗µ,A, µ-a.s.

Similarly, let Ỹ ∗1,µ,A be the nondecreasing µ-rearrangement of Y ∗1 with respect to X on

A. Then Ỹ ∗1,µ = Ỹ ∗1,µ,A, µ-a.s.

Therefore, it suffices to show that Ỹ ∗µ,A = Ỹ ∗1,µ,A, µ-a.s. Since both Ỹ ∗µ,A and Ỹ ∗1,µ,A are
nondecreasing functions of X on A, then by the µ-a.s. uniqueness of the nondecreasing
rearrangement, it remains to show that they are µ-equimeasurable with Y ∗ on A. Now,
for each t ∈ [0,M ],

µ
(
{s ∈ A : Ỹ ∗µ,A (s) ≤ t}

)
= µ

(
{s ∈ A : Y ∗ (s) ≤ t}

)
= µ

(
{s ∈ A : Y ∗1 (s) ≤ t}

)
= µ

(
{s ∈ A : Ỹ ∗1,µ,A (s) ≤ t}

)
where the first equality follows from the definition of Ỹ ∗µ,A (equimeasurabiltiy), the second
equality follows from equation (2.25), and the third equality follows from the definition of

Ỹ ∗1,µ,A (equimeasurabiltiy).

2.4.4 Some Sufficient Problems

Consider now the following two problems16:

16The general “splitting” procedure that we use hereafter is inspired by a similar technique used by Jin
and Zhou [175], albeit in a different setting and for different reasons.
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Problem 2.32. For a given β ∈ R,

sup
Y ∈B+(Σ)

{ˆ
A

u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y 1A ≤ X1A´
A
v
(
WCI

0 + Π− Y
)
dν = β

Problem 2.33.

sup
Y ∈B+(Σ)

{ˆ
S\A

u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y 1S\A ≤ X1S\A´
S\A v

(
WCI

0 + Π− Y
)
dν ≥ v

(
WCI

0

)
− β, for the same β as in Problem 2.32

Remark 2.34. By Remark 2.22, the supremum value of each of the above two problems is
finite when their feasibility sets are nonempty.

Definition 2.35. For a given β ∈ R, let:

1. ΘA,β be the feasibility set of Problem 2.32 with parameter β. That is,

ΘA,β :=

{
Y ∈ B+ (Σ) : 0 ≤ Y 1A ≤ X1A,

and

ˆ
A

v
(
WCI

0 + Π− Y
)
dν = β

}

2. ΘS\A,β be the feasibility set of Problem 2.33 with parameter β. That is,

ΘS\A,β :=

{
Y ∈ B+ (Σ) : 0 ≤ Y 1S\A ≤ X1S\A,

and

ˆ
S\A

v
(
WCI

0 + Π− Y
)
dν ≥ v

(
WCI

0

)
− β

}
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Denote by Γ the collection of all β for which the feasibility sets ΘA,β and ΘS\A,β are
nonempty:

Definition 2.36. Let Γ :=

{
β ∈ R : ΘA,β 6= ∅, ΘS\A,β 6= ∅

}

Lemma 2.37. Γ 6= ∅.

Proof. By Assumption 2.24, there is some Y ∈ B+ (Σ) such that 0 ≤ Y ≤ X, and´
v
(
WCI

0 + Π − Y
)
dν ≥ v

(
WCI

0

)
. Let βY :=

´
A
v
(
WCI

0 + Π − Y
)
dν. Then, by

definition of βY , and since 0 ≤ Y ≤ X, we have Y ∈ ΘA,βY ∩ ΘS\A,βY , and so ΘA,βY 6= ∅
and ΘS\A,βY 6= ∅. Consequently, βY ∈ Γ, and so Γ 6= ∅.

Now, consider the following problem:

Problem 2.38.

sup
β

{
F ∗A (β) + F ∗A

(
v
(
WCI

0

)
− β

)
: β ∈ Γ

}
:{

F ∗A (β) is the supremum value of Problem 2.32, for a fixed β ∈ Γ
F ∗A
(
v
(
WCI

0

)
− β

)
is the supremum value of Problem 2.33, for the same fixed β ∈ Γ

Lemma 2.39. If β∗ is optimal for Problem 2.38, Y ∗3 is optimal for Problem 2.32 with
parameter β∗, and Y ∗4 is optimal for Problem 2.33 with parameter β∗, then Y ∗2 := Y ∗3 1A +
Y ∗4 1S\A is optimal for Problem 2.21.

Proof. Feasibility of Y ∗2 for Problem 2.21 is immediate. To show optimality of Y ∗2 for

Problem 2.21, let Ỹ be any other feasible function for Problem 2.21, and define α :=´
A
v
(
WCI

0 + Π − Ỹ
)
dν. Then α is feasible for Problem 2.38, and Ỹ 1A (resp. Ỹ 1S\A) is

feasible for Problem 2.32 (resp. Problem 2.33) with parameter α. Hence
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 F ∗A (α) ≥
´
A
u
(
W0 − Π−X + Ỹ

)
dµ

F ∗A
(
v
(
WCI

0

)
− α

)
≥
´
S\A u

(
W0 − Π−X + Ỹ

)
dµ

Now, since β∗ is optimal for Problem 2.38, it follows that

F ∗A (β∗) + F ∗A
(
v
(
WCI

0

)
− β∗

)
≥ F ∗A (α) + F ∗A

(
v
(
WCI

0

)
− α

)
(2.26)

However,  F ∗A (β∗) =
´
A
u
(
W0 − Π−X + Y ∗3

)
dµ

F ∗A
(
v
(
WCI

0

)
− β∗

)
=
´
S\A u

(
W0 − Π−X + Y ∗4

)
dµ

Therefore, ˆ
u
(
W0 − Π−X + Y ∗2

)
dµ ≥

ˆ
u
(
W0 − Π−X + Ỹ

)
dµ (2.27)

Hence, Y ∗2 is optimal for Problem 2.21.

Remark 2.40. By Lemma 2.39, we can restrict ourselves to solving Problems 2.32 and
2.33 with a parameter β ∈ Γ.

Remark 2.41. By Lemmata 2.30, 2.31, and 2.39, if ν is (µ,X)-vigilant, U (X, Y ) :=

u
(
W0 − Π −X + Y

)
is supermodular, β∗ is optimal for Problem 2.38, Y ∗1 is optimal for

Problem 2.32 with parameter β∗, and Y ∗2 is optimal for Problem 2.33 with parameter β∗,

then Ỹ ∗µ is optimal for Problem 2.21, and Ỹ ∗µ = Ỹ ∗1,µ, µ-a.s., where Ỹ ∗µ (resp. Ỹ ∗1,µ) is the
µ-a.s. unique nondecreasing µ-rearrangement of Y ∗ := Y ∗1 1A + Y ∗2 1S\A (resp. of Y ∗1 ) with
respect to X.
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2.4.5 Solving Problems 2.32 and 2.33

Since µ (S \ A) = 0, it follows that, for all Y ∈ B+ (Σ), we have

ˆ
S\A

u
(
W0 − Π−X + Y

)
dµ = 0

Consequently, any Y which is feasible for Problem 2.33 with paramter β is also optimal for
Problem 2.33 with parameter β.

Now, for a fixed parameter β ∈ Γ, we will solve Problem 2.32 “statewise”, as follows:

Lemma 2.42. If Y ∗ ∈ B+ (Σ) satisfies the following:

1. 0 ≤ Y ∗ (s) ≤ X (s), for all s ∈ A;

2.
´
A
v
(
WCI

0 + Π− Y ∗
)
h dµ = β; and,

3. There exists some λ ≥ 0 such that for all s ∈ A,

Y ∗ (s) = arg max
0≤y≤X(s)

[
u
(
W0 − Π−X (s) + y

)
− λ v

(
WCI

0 + Π− y
)
h (s)

]
(2.28)

Then the function Y ∗ solves Problem 2.32 with parameter β.

Proof. Suppose that Y ∗ ∈ B+ (Σ) satisfies (1), (2), and (3) above. Then Y ∗ is clearly
feasible for Problem 2.32 with parameter β. To show optimality of Y ∗ for Problem 2.32
note that for any other Y ∈ B+ (Σ) which is feasible for Problem 2.32 with parameter β,
we have, for all s ∈ A,

u
(
W0 − Π−X (s) + Y ∗ (s)

)
− u
(
W0 − Π−X (s) + Y (s)

)
≥ λ

[
h (s) v

(
WCI

0 + Π− Y ∗ (s)
)
− h (s) v

(
WCI

0 + Π− Y (s)
)]

Consequently,
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ˆ
A

u
(
W0 − Π−X + Y ∗

)
dµ−

ˆ
A

u
(
W0 − Π−X + Y

)
dµ ≥ λ

[
β − β

]
= 0

which completes the proof.

Remark 2.43. In Chapter 3 we will apply these ideas to a problem of demand for insurance
under heterogeneous subjective beliefs, and we will characterize the solution.

2.5 Monotone Likelihood Ratios and Vigilance of Be-

liefs

2.5.1 The Monotone Likelihood Ratio Assumption

The purpose of this subsection is to show that our assumption of vigilance of beliefs is
implied by the assumption of a monotone likelihood ratio in a setting where the DM and the
insurer assign a different probability density function (pdf) to the random loss on its range.
Needless to say, this presupposes the existence of such pdf-s. We will model this situation
as follows: let (S,G) be a measurable space, and let X ∈ B+ (G) be a random variable
with range X (S) := [0,M ] on the real line, where M := sup{X (s) : s ∈ S} < +∞. Let
Σ := σ{X}. The DM’s subjective probability measure µ on (S,Σ) is such that the law
µ ◦ X−1 is absolutely continuous with respect to the Lebesgue measure, with a Radon-
Nikodým derivative f , where f(t) is interpreted as the pdf that the DM assigns to the
loss X. Similarly, the insurer’s subjective probability measure ν on (S,Σ) is such that
the law ν ◦ X−1 is absolutely continuous with respect to the Lebesgue measure, with a
Radon-Nikodým derivative g, where g(t) is interpreted as the pdf that the insurer assigns
to the loss X. Both f and g have support [0,M ].

Definition 2.44. The likelihood ratio is the function LR : [0,M ]→ R+ defined by

LR(t) := g(t)/f(t) (2.29)

for all t ∈ [0,M ] such that f(t) 6= 0.
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Now, define the map Z : S → R+ by Z := LR ◦ X. Then Z is nonnegative and
Σ-measurable, and LR is a nondecreasing (resp. nonincreasing) function on its domain if
and only if Z is a nondecreasing function (resp. a nonincreasing function) of X. Consider
the following two conditions that one might impose.

Condition 2.45 (Monotone Likelihood Ratio). LR is a nonincreasing function on its
domain.

Condition 2.46 (Vigilance). ν is (µ,X)-vigilant.

2.5.2 MLR vs. Vigilance

The following proposition shows that the vigilance condition is implied by the monotone
likelihood ratio condition in this particular setting.

Proposition 2.47. If Condition 2.45 (Monotone Likelihood Ratio) holds, and if the map
v (I ◦X)LR (X) : S → R is µ-integrable for each I ◦ X ∈ B+ (Σ), then condition 2.46
(Vigilance) holds.

Proof. First note that since the utility function v is a nondecreasing function (by Assump-
tion 2.2), it follows from Condition 2.45 and Lemma 2.13 that the map L : [0,M ]×[0,M ]→
R defined by

L (x, y) := v
(
WCI

0 + Π− y
)
LR (x) (2.30)

is supermodular (see also Example 2.14 (6)).

Suppose that Condition 2.45 holds. To show that Condition 2.46 is implied, choose
Y1, Y2 ∈ B+ (Σ) such that Y1 and Y2 have the same distribution under µ, and Y2 is
a nondecreasing function of X. Then by the µ-a.s. uniqueness of the nondecreasing µ-
rearrangement, Y2 is µ-a.s. equal to Ỹ1,µ, where Ỹ1,µ is the nondecreasing µ-rearrangement

of Y1 with respect to X, that is, Y2 = Ỹ1,µ, µ-a.s.

Since the function L (x, y) is supermodular, as observed above, then part (1) of Lemma
2.15 yields
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ˆ
L
(
X, Ỹ1,µ

)
dµ ≥

ˆ
L
(
X, Y1

)
dµ

that is,
ˆ
v
(
WCI

0 + Π− Ỹ1,µ

)
Z dµ ≥

ˆ
v
(
WCI

0 + Π− Y1

)
Z dµ

where Z is as defined above. Since Y2 = Ỹ1,µ, µ-a.s., we then have

ˆ
v
(
WCI

0 + Π− Y2

)
Z dµ ≥

ˆ
v
(
WCI

0 + Π− Y1

)
Z dµ

which yields (by two “changes of variable”17, and using the definition of f and g as Radon-
Nikodým derivatives of µ ◦ X−1 and ν ◦ X−1, respectively, with respect to the Lebesgue
measure) the following:

ˆ
v
(
WCI

0 + Π− Y2

)
dν ≥

ˆ
v
(
WCI

0 + Π− Y1

)
dν

as required. Condition 2.46 hence follows from Condition 2.45. This completes the proof
of Proposition 2.47.

Remark 2.48. Needless to say, the Likelihood Ratio is only defined in situations where
densities exist. In other words, when the DM and the CI assign distributions to the un-
derlying uncertainty, with probability density functions, then the Likelihood Ratio can be
defined. What Proposition 2.47 asserts is that in more abstract situations where densities
do not necessarily exist and hence likelihood ratios cannot be defined, the notion of vigilance
might serve as a substitute.

17As in Theorem E.11 on p. 241, and since the map v (I ◦X)LR (X) : S → R is µ-integrable for each
I ◦X ∈ B+ (Σ).
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2.6 Conclusion

In this chapter we considered an abstract problem of contracting under heterogeneous
beliefs, restated as a problem of demand for contingent claims under belief heterogeneity.
This problem is an abstraction of many contracting problems where belief heterogeneity is
allowed for, such as the problem of optimal insurance design under heterogeneous beliefs
that we will examine in Chapter 3.

We showed that under a specific probabilistic consistency assumption on the subjective
beliefs of the decision maker (DM) and the Claim Issuer (CI) that we called Vigilance,
there exists a solution which is a nondecreasing function of the underlying uncertainty. We
then provided a general method for solving the problem, based on a splitting procedure
suggested by Lebesgue’s Decomposition Theorem.

Technically, the assumption of Vigilance is essential to show existence of optimal claims
which are nondecreasing functions of the underlying uncertainty. Vigilance of beliefs is
implied by the assumption of a monotone likelihood ratio, as discussed in section 2.5.

In Chapter 4 we will study some mathematical properties of collections of vigilant
beliefs.

2.7 Appendix: Related Analysis

Lemma 2.49. Let (Ω,F) be a given measurable space, and suppose that η is a finite non-
negative measure on (Ω,F). Let Z be any R+-valued, bounded, and F-measurable function
on Ω. If A ∈ F is such that η (A) > 0, then the following are equivalent:

(i)
´
A
Z dη = 0

(ii) Z = 0, η-a.s. on A.

Proof. The proof is elementary and will be skipped. See, for instance, Aliprantis and
Border [3], Theorem 11.16–(3) on p. 412.
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Lemma 2.50. If (fn)n is a uniformly bounded sequence of nondecreasing real-valued func-
tions on some closed interval I in R, with bound N (i.e. |fn (x) | ≤ N, ∀x ∈ I, ∀n ≥ 1),
then there exists a nondecreasing real-valued bounded function f ∗ on I, also with bound N ,
and a subsequence of (fn)n that converges pointwise to f ∗ on I.

Proof. See Carothers [75], Lemma 13.15 on p. 211. Lemma 2.50 is a special case of Helly’s
First Theorem, sometimes also called Helly’s Selection Theorem or Helly’s Compactness
Theorem (see Carothers [75], Theorem 13.16 on p. 212, or Doob [106], Theorem X.9 on pp.
165-166).

2.8 Appendix: Dynkin’s π-λ Theorem

Definition 2.51 (π-system). Let S be a nonempty set. A nonempty collection P of subsets
of S is said to be a π-system if for each A,B ∈ P, A ∩B ∈ P.

Hence, a π-system is a nonempty collection of subsets of a set, which is closed under
finite intersections.

Definition 2.52 (λ-system, or Dynkin class). Let S be a nonempty set. A nonempty
collection L of subsets of S is said to be a λ-system if

1. S ∈ L;

2. If A,B ∈ L are such that A ⊂ B, then B \ A ∈ L; and,

3. If {An}n is a nondecreasing sequence of elements of L such that An ↑ A :=
⋃+∞
n=1An,

then A ∈ L.

Theorem 2.53 (Dynkin’s π-λ Theorem). Let S be a nonempty set, P a π-system in S,
and L a λ-system in S. If P ⊂ L then σ{P} ⊂ L, where σ{P} is the σ-algebra of subsets
of S generated by P.

Proof. See Aliprantis and Border [3] (pp. 135-136), or Resnick [240] (p. 37).
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Chapter 3

The Demand for Insurance under
Heterogeneous Subjective Beliefs

3.1 Introduction

The problem of optimal design of an insurance contract has become part of the folklore
of the theory of insurance, as it were. From the outset, the problem was studied within the
framework of Expected-Utility Theory (EUT), as in the seminal work of Arrow [25], Borch
[52], and Raviv [239], where it was shown that full insurance above a deductible is optimal
when the premium principle depends on the actuarial value of the indemnity, when the
decision maker (DM) is a risk-averse Expected-Utility Maximizer, and when both the DM
and the insurer share the same (additive) probabilistic beliefs about the realization of a
given insurable loss. These basic results were then extended in many different directions,
while maintaining the assumption of homogeneity of beliefs. For instance,

1. analysis of the optimal deductible level was done in Drèze [107], Eeckhoudt et al.
[116], Gould [156], Meyer and Ormiston [211], Moffet [213], Mossin [214], Pashigian
et al. [223], and Schlesinger [272];

2. Cummins and Mahul [86] impose an additional upper limit on coverage, and show
that the optimal indemnity is full insurance above a deductible up to a cap;

3. effects of changes in the distribution of the loss on the level of the deductible were
studied by Demers and Demers [95], Eeckhoudt et al. [116], and Schlee [271];

4. effects of changes in the DM’s risk-aversion (curvature of the concave utility) on the
level of the deductible were studied by Schlesinger [272];
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5. optimal insurance with more general premium principles was investigated in Carlier
and Dana [72], Deprez and Gerber [97], Promislow and Young [228], and Young [304].

In this “classical” approach, however, the uncertainty inherent in the insurable loss is
assumed to be totally objective, a priori. Indeed, the insurable loss is assumed to be a
random variable X on an objective probability space (Ω,F , P ). That is, the probability
measure P is a totally objective object, the only role of which is to induce a law for X on
the real line. Hence, P cannot be a reflection of the subjective beliefs of the insurer and
the DM, which have no reason whatsoever to be identical a priori. The main motivation
behind the present study is precisely this lack of subjectivity in the “classical” insurance
model.

Even in insurance models with Non-Expected Utility representation of preferences, the
insurable loss has always been taken to be an exogenously given random variable X on an
objective probability space (Ω,F , P ). This was done, for instance, in Carlier and Dana [72]
and [74], Doherty and Eeckhoudt [104], Gollier and Schlesinger [155], Karni [179], Machina
[198], Safra and Zilcha [264], Schlesinger [273], and Zilcha and Chew [307].

Information Asymmetry

In a related stream of the literature, problems of information asymmetry in insurance
markets were usually studied in the context of adverse selection or moral hazard. Adverse
selection was introduced into the theory of insurance starting from the ground-breaking
work of Akerlof [2], Rothschild and Stiglitz [247], Stiglitz [287], and Wilson [301]. The
classical setup considers a risk-neutral EU-maximizing insurer and two types of risk-averse
EU-maximizing insureds: a high-risk type (h) and a low risk-type (l). There are only two
states of the world: an accident state and a no-accident state. An insurable loss X then
takes the value 0 with a probability 1 − pi, for i = h, l, and a fixed value L > 0 with
probability pi. However, for each risk type i, both the insurer and the i-type insured have
perfectly homogeneous beliefs, in that they both assign the distribution (L, pi; 0, 1− pi) to
the loss. In this framework, “information asymmetry” refers to the fact that the type of
the insured is private information, not the insured’s perception of the loss distribution.

Moral hazard issues, initially considered within the more general principal-agent setting,
were introduced into the theory of insurance by Arnott and Stiglitz [20], [21], and [22],
Shavell [278], and Stiglitz [288], for instance. In these models, there is risk-neutral EU-
maximizing insurer and a risk-averse EU-maximizing insured. There is a two-state world
(accident and no-accident) where the loss X can take a value L > 0 (in case of accident),
with a known probability pe that depends on the insured’s effort (e) in preventing the
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loss. In the no-accident state, the loss takes the value 0 with probability 1− pe. However,
both the insurer and the insured have perfectly homogeneous beliefs at each effort level.
That is, for a given effort level e, both the insurer and the insured assign the distribution
(L, pe; 0, 1− pe) to the loss. In this framework, “information asymmetry” refers to the fact
that the effort level of the insured is private information, not the insured’s perception of
the loss distribution for a given effort level.

Recently, Jeleva and Villeneuve [173] extended the two-state adverse selection model
of Stiglitz [287] to account for belief heterogeneity. In their framework, for each type of
insured, the insurer and the insured have different beliefs about the probability of the
loss taking the positive value L. Although the authors give an interesting analysis, one
might argue that the two-state framework is of limited interest to actuaries, for at least
two reasons: (i) typically, financial and insurance risks are not binary risks as in the
two-state model; and (ii) assuming the classical constraint that an indemnity I (X) be
nonnegative and not larger than the loss itself, a two-state model where the loss X has a
distribution (L, p; 0, 1− p) cannot determine the shape of the optimal indemnity schedule.
For instance, the indemnity can be a deductible contract of the form I (X) = (X − d)+,
for some d ≥ 0. Indeed, in the no-accident state, the loss is 0, and so the indemnity is 0.
In the accident state, the loss is L > 0, and so the indemnity is N , for some N ∈ (0, L].
Letting d = L−N ≥ 0, we can then write the indemnity as I (X) = (X − d)+. However,
the indemnity can also be of the coinsurance type, i.e. of the form I (X) = αX, for some
α ∈ (0, 1]. Indeed, in the no-accident state, the loss is 0, and so the indemnity is 0. In the
accident state, the loss is L > 0, and so the indemnity is N , for some N ∈ (0, L]. Letting
α = N/L, we can then write the indemnity as I (X) = αX. From an actuarial viewpoint,
the interest in such a framework is limited.

Heterogeneity of Subjective Beliefs

In this chapter, we examine a general problem of belief asymmetry in an insurance
model with one insurer and one DM. We adopt a decision-theoretic approach to belief
formation and rely on the heterogeneity of subjective beliefs as a proxy for belief asymmetry.
Moreover, we do not assume that the DM’s actions influence the realization of the random
loss under consideration. We then use the results and techniques of Chapter 2 to determine
the optimal form of an indemnity, within an insurance model that resembles the “classical”
model. We show that if Vigilance holds, then there exists an event to which the DM assigns
full subjective probability, and on which an optimal solution has a generalized deductible
form (defined below).

Although the problem is a very natural one, the effect of the heterogeneity of beliefs
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in an insurance market on the shape of an optimal contract was only studied at a more
or less suitable level of generality by Marshall [207], to the best of our knowledge. After
the exposition of this chapter’s main result, we will explain Marshall [207]’s model in more
detail, so as to show how the model presented in this chapter is radically different in spirit
and in scope.

Outline

In section 3.2 we introduce some notation and definitions, as well as the general setup
for our model. In section 3.3 we state the problem and our main result. In section 3.4
we prove the main result of this chapter. In section 3.5 we discuss some special cases of
our setting. In section 3.6 we discuss the work of Marshall [207] and how it differs from
ours. Finally, section 3.7 concludes. Appendix 3.8 reviews the “classical” insurance design
problem, and Appendix 3.9 provides a useful mathematical result that will be used in this
chapter.

3.2 Preliminaries

Consider the setting of section 2.2 to be applicable all throughout this chapter. In the
context of this chapter, the underlying uncertainty X is interpreted as a given random loss
against which the DM seeks an insurance coverage. As in section 2.2, X is a bounded,
measurable, real-valued function on the state space (S,G), with closed range X (S) =
[0,M ], where M = ‖X‖s < +∞. In other words, the random loss X is a mapping of S
onto the closed interval [0,M ]. In particular, there are states of the world in which the
loss takes a zero value, that is, {s ∈ S : X (s) = 0} 6= ∅. Henceforth, we shall denote by
Σ the σ-algebra σ{X} of subsets of S generated by the random loss X. Moreover, in the
present context, the CI is simply the insurer and the insurance contract is a claim of the
form I ◦X.

The insurance market gives the DM the possibility of entering into an insurance contract
with the insurer. Such a contract is represented by a pair (Π, I), where Π > 0 is the
premium paid by the DM in return of the indemnity I. The indemnity is a Borel-measurable
map I : [0,M ]→ [0,M ], such that 0 ≤ I (X (s)) ≤ X (s) for all s ∈ S. Then Y := I ◦X ∈
B+ (Σ), the collection of all bounded, Σ-measurable R+-valued functions on S, where
Σ := σ{X}, as in section 2.2.
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Setup

As in section 2.2, the DM and the insurer have preferences over the elements of B+ (Σ).
Both the DM’s and the insurer’s preferences have a Subjective Expected-Utility (SEU)
representation (see Appendix A.1.3). The DM’s preferences induce a utility function u :
R→ R, unique up to a positive linear transformation, and the insurer’s preferences induce
a utility function v : R → R, also unique up to a positive linear transformation. Both
the DM’s and the insurer’s preferences are also assumed to satisfy the Arrow-Villegas
Monotone Continuity axiom (Arrow [25], Chateauneuf et al. [77], and Villegas [296] – see
also p. 178), hence yielding a unique countably additive subjective probability measure on
the measurable space (S,Σ), for each (as in Corollary A.19 on p. 179).

The subjectivity of the beliefs of each of the DM and the insurer is reflected in the
different subjective probability measure that each has over the measurable space (S,Σ):

Assumption 3.1. The DM’s beliefs are represented by the countably additive probability
measure µ on (S,Σ), and the insurer’s beliefs are represented by the countably additive
probability measure ν on (S,Σ).

Additionally, we suppose that the DM is risk averse, having a utility index u such that
following holds:

Assumption 3.2. The DM’s utility is bounded and satisfies Inada’s [172] conditions.
Specifically,

1. u is bounded;

2. u (0) = 0;

3. u is strictly increasing and strictly concave;

4. u is continuously differentiable; and,

5. u′ (0) = +∞ and u′ (+∞) = 0.

Remark 3.3. Assumption 3.2 (1) above on the DM’s utility function is, strictly speaking,
redundant. Indeed, the utility function given from the DM’s preferences in Savage’s SEU
representation is a bounded function1.

1See, e.g. Fishburn [128] (Theorem 14.1 on pp. 192-193) or Gilboa [149] (Theorem 10.2 on pp. 108-109).
See also Theorem A.20 in Appendix A.1.3.
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Moreover, assuming that u is strictly concave and continuously differentiable implies
that u′ is both continuous and strictly decreasing. This then implies that (u′)−1 is continuous
and strictly decreasing, by the Inverse Function Theorem.

We will also assume that the DM has initial wealth W0 strictly larger than the premium
Π.

Assumption 3.4. W0 > Π > 0.

We also make the assumption that the random loss X (with closed range [0,M ]) has
a nonatomic law induced by the probability measure µ, and that the CI and the DM are
both aware of the fact that µ represents the DM’s beliefs and ν represents the insurer’s
beliefs. Moreover, we will assume that the subjective probability measures µ and ν are not
mutually singular2, that the DM is almost certain that the random loss she will incur is
not larger than her remaining wealth after the premium has been paid. Specifically:

Assumption 3.5. We assume that:

1. µ ◦X−1 is nonatomic;

2. X ≤ W0 − Π, µ-a.s. In other words, µ
(
{s ∈ S : X (s) > W0 − Π}

)
= 0;

3. µ is known by the insurer, and ν is known by the DM; and,

4. µ and ν are not mutually singular.

Remark 3.6. Assumption 3.5 (1) is a technical requirement that is needed for defining the
equimeasurable monotone rearrangement, as in section 2.3.

Assumption 3.5 (2) simply states that the DM is well-diversified so that the particular
loss exposure X against which she is seeking an insurance coverage is sufficiently small.

Assumption 3.5 (4) means that the insurer and the DM do not have beliefs that are
totally incompatible. However, this does not prevent the agents from assigning different
probabilities to events, and they typically do not assign same likelihoods to the realizations
of the uncertainty X.

2Two finite nonnegative measures m1 and m2 on the measurable space (S,Σ) are said to be mutually
singular, denoted by m1 ⊥ m2, if there is some A ∈ Σ such that m1 (S \A) = m2 (A) = 0. In other words,
m1 ⊥ m2 if there is a Σ-partition {A,B} of the set S of states of nature such that µ1 is concentrated on
A and µ2 is concentrated on B.
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The total wealth of the DM is the Σ-measurable, R-valued and bounded function on S
defined by

W (s) := W0 − Π−X (s) + Y (s) , ∀s ∈ S (3.1)

Finally, we assume that the insurer is risk-neutral. This assumption is common in
contracting problems, principal-agent problems, and especially in the insurance framework
(as in Arrow [25]). Since the insurer’s utility function v is unique up to a positive linear
transformation3, we can then assume, without loss of generality, that v is simply the
identity function. The total wealth of the insurer is the Σ-measurable, R-valued and
bounded function on S defined by

W ins (s) := W ins
0 + Π− Y (s)− ρ Y (s) , ∀s ∈ S (3.2)

where W ins
0 is the insurer’s initial wealth and ρ > 0 is a (proportional) cost associated with

handling the insurance contract Y , as in the model of Arrow [25] (or section III of Raviv
[239]).

Vigilance of Beliefs

Proposition 3.7. The probability measure ν is (µ,X)-vigilant if and only if for any
Y1, Y2 ∈ B+ (Σ) such that

(i) Y1 and Y2 have the same distribution under µ,

(ii) Y2 is a nondecreasing function of X,

the following holds: ˆ
Y2 dν ≤

ˆ
Y1 dν (3.3)

Proof. By Definition 2.4 and by risk-neutrality of the insurer, ν is (µ,X)-vigilant if and
only if

´
(W ins

0 + Π− Y2 − ρ Y2) dν ≥
´

(W ins
0 + Π− Y1 − ρ Y1) dν, that is

[
W ins

0 + Π
]
− (1 + ρ)

ˆ
Y2 dν ≥

[
W ins

0 + Π
]
− (1 + ρ)

ˆ
Y1 dν,

3See Theorem A.20 in Appendix A.1.3.
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which yields
´
Y2 dν ≤

´
Y1 dν.

One possible interpretation of (µ,X)-vigilance, when one thinks of
´
Y dν as the

insurer’s subjective measure (albeit very rudimentary) of the risk associated with Y ∈
B+ (Σ), in reference to X, is as follows: if ν is (µ,X)-vigilant, then for a given risk Y1

for the insurer that depends on X, if Y2 is another such risk that depends on X and that
the DM believes to be identically distributed as Y1 (under her subjective probability mea-
sure µ) and nondecreasing in X, then the insurer will not assign a higher subjective risk
measure to Y2 than to Y1. In this sense, the insurer is vigilant in his assessment of the
riskiness of Y2 as a function of X. In a sense, the insurer assigns some credibility to the
DM’s subjective assessment of Y2 in reference to both Y1 and X. This implies a certain
probabilistic consistency between the DM’s and the insurer’s subjective beliefs for a class
of risks which are seen as functions of a given risk. As we shall see later on, this consis-
tency requirement is crucial to rule out moral hazard problems that might result from a
downward misrepresentation of the loss by the DM.

Remark 3.8. Recall that in section 2.5 we showed that in the specific setting where the DM
and the insurer assign different probability density functions to a random loss X with range
[0,M ], the assumption of vigilance is implied by the assumption of a monotone likelihood
ratio.

Generalized Deductible Contracts

Henceforth, we shall adopt the following terminology:

Definition 3.9. The indemnity schedule I : [0,M ]→ [0,M ] will be called:

1. A full insurance when I (t) = t, for all t ∈ [0,M ];

2. A deductible when there is some d ∈ [0,M ] such that

I (t) =

{
0 if t ∈ [0, d)
t− d if t ∈ [d,M ]

3. A capped deductible when there are d, c ∈ [0,M ] such that
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I (t) = min [Id (t) , c] , ∀ t ∈ [0,M ]

where Id is a deductible contract with deductible d.

4. A generalized deductible when there is some d ∈ [0,M ] such that

I (t) =

{
0 if t ∈ [0, d)
f (t) if t ∈ [d,M ]

for some nondecreasing Borel-measurable function f : [0,M ] → [0,M ] such that
0 ≤ f (t) ≤ t for t ∈ [0,M ].

Figure 3.1 below illustrates the shapes of these insurance contracts.

3.3 Design of the Optimal Insurance Contract

The DM’s problem

The problem of designing the optimal insurance contract can be seen as that of finding
the indemnity that will maximize the expected utility of the DM’s wealth, under her sub-
jective probability measure, subject to a constraint on the premium and to some constraints
on the indemnity function. Specifically, the DM’s problem is the following:

Problem 3.10.

sup
Y ∈B+(Σ)

{ˆ
u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y ≤ X´
v
(
W ins

0 + Π− (1 + ρ)Y
)
dν ≥ v (W ins

0 )

The first constraint is standard (see Arrow [25] and Raviv [239]), and says that an
indemnity is nonnegative and cannot exceed the loss itself. The latter requirement simply
rules out situations where the DM has an incentive to create damage (see Huberman, May-
ers and Smith [169]). The second constraint is simply the insurer’s participation constraint,
or individual rationality constraint, where R = v (W ins

0 ) is the insurer’s reservation utility.
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(d) Example of a generalized deductible contract

Figure 3.1: Some examples of insurance contracts.

Since v was assumed to be the identity function (by risk-neutrality of the insurer),
the insurer’s individual rationality constraint can be re-written as the following premium
constraint :

W ins
0 + Π− (1 + ρ)

ˆ
Y dν ≥ W ins

0 ,
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that is,

Π ≥ (1 + ρ)

ˆ
Y dν

Hence, we can write the DM’s problem as follows:

Problem 3.11. For a given loading factor ρ > 0,

sup
Y ∈B+(Σ)

{ˆ
u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y ≤ X
Π ≥ (1 + ρ)

´
Y dν

The second constraint in Problem 3.11 is commonplace in insurance problems. Raviv
[239], for instance, assumes that the premium is at least equal to (1 + α)

´
(I ◦X) dP ,

where P in Raviv’s [239] context is the probability measure common to both the DM and
the insurer, and α ≥ 0 is a loading factor.

Also typical in the classical insurance setting is to impose an additional monotonicity
constraint on the desired optimal indemnity by requiring that it be nondecreasing in the
loss. This constraint, first introduced by Huberman, Mayers and Smith [169], is meant
to prevent moral hazard issues that might result from a downward misrepresentation of
the loss by the DM. Here, we prefer not to impose this monotonicity as a constraint, but
rather to achieve it as a property of an optimal indemnity. This is done using rearrangement
techniques and the assumption of vigilance.

In the following, we will assume that the feasibility set for Problem 3.11 is nonempty:

Assumption 3.12. FSB 6= ∅, where FSB is the collection of all feasible Y ∈ B+ (Σ) for
Problem 3.11.

The Main Results

Recall from section 2.4.3 that there exists a unique pair (νac, νs) of (nonnegative) finite
measures on (S,Σ) such that ν = νac + νs, νac << µ, and νs ⊥ µ. As in section 2.4.3, let
h : S → [0,+∞) de the Radon-Nikodým derivative of νac with respect to µ. That is, h
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is the µ-a.s. unique Σ-measurable and µ-integrable nonnegative function on S such that
νac (C) =

´
C
h dµ, for all C ∈ Σ. The following Theorem characterizes an optimal solution

of Problem 3.11.

Theorem 3.13. Suppose that the previous assumptions hold, and for each λ ≥ 0 define
the function Y ∗λ ∈ B+ (Σ) by:

Y ∗λ := min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1
(λh)

])]
(3.4)

Let Ỹ ∗λ,µ denote the µ-a.s. unique nondecreasing µ-rearrangement of Y ∗λ with respect to
X. If the insurer’s subjective probability measure ν is (µ,X)-vigilant, then there exists a
λ∗ ≥ 0 and an optimal solution Y∗ to Problem 3.11 which is nondecreasing in the loss X,
and such that Y∗ = Ỹ ∗λ∗,µ, µ-a.s.

Corollary 3.14. Under the previous assumptions, and provided the insurer’s subjective
probability measure ν is (µ,X)-vigilant, there exists an event E∗ ∈ Σ such that µ (E∗) = 1,
and an optimal solution Y∗ to Problem 3.11 which is nondecreasing in the loss X, and such
that for µ-a.a. s ∈ S,

Y∗ (s) =

{
0 if X (s) ∈ [0, a∗)
f (X (s)) if X (s) ∈ [a∗,M ]

(3.5)

for an a∗ ≥ 0 and a nondecreasing, left-continuous, and Borel-measurable function f :
[0,M ]→ [0,M ] such that 0 ≤ f (t) ≤ t for each t ∈ [a∗,M ].

Moreover, a∗ > 0 when µ (DE∗) 6= 0, where:

(i) DE∗ :=
{
s0 ∈ E∗ : X (s0) > 0, h (s0) > 0,

´
E∗
Y∗ h dµ < L (s0)

}
; and,

(ii) L (s0) :=
´
E∗

min
[
X,max

(
0, X −

[
W0 − Π− (u′)−1

(
u′(W0−Π−X(s0))

h(s0)
h
)])]

h dµ.

Finally, there exists κ ∈ R+ such that a∗ > 0 when µ (EE∗) 6= 0, where:
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EE∗ :=

{
s0 ∈ E∗ : h (s0) > 0, κ h (s0) > u′ (W0 − Π) ,

0 < X (s0) < W0 − Π− (u′)
−1

(κ h (s0))

} (3.6)

Corollary 3.14 essentially says that when vigilance holds, there is a measurable set D
to which the DM assigns full (subjective) probability, and such that an optimal indemnity
schedule I∗ will pay the DM, in the state of the world s ∈ D, the amount Iop (s), where
Iop is a generalized deductible contract on D.

Remark 3.15. The most interesting implication of Corollary 3.14 is the existence of the
deductible a∗, mainly because of the resemblance with the classical result of Arrow [25],
Borch [52], and Raviv [239]. We do not provide an explicit characterization of the function
f that appears in Corollary 3.14, although it is possible to do so using the ideas developed
in section 2.3.4 (see Remark 3.48 on p. 89).

3.4 Proof of the Main Results

3.4.1 Proof of Theorem 3.13

Existence of a Monotone Solution and its Characterization

Since the function U (x, y) := u (W0 − Π− x+ y) is supermodular (see Example 2.14
(1)) and since ν is assumed to be (µ,X)-vigilant, the results of section 2.4.2 hold here
(with Y replaced by (1 + ρ)Y in the CI’s wealth process and participation constraint). In
particular, there exists a solution to Problem 3.11 which is a nondecreasing function of the
loss X.

Similarly, the results of section 2.4.3 also hold. In the following, the Σ-measurable set
A on which µ is concentrated4 (and νs (A) = 0) is assumed to be fixed all throughout.

4As in the setting of section 2.4.3.
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Some Sufficient Problems

Lemma 3.16. Let Y ∗ be an optimal solution for Problem 3.11, and suppose that ν is
(µ,X)-vigilant. Let Ỹ ∗µ be the nondecreasing µ-rearrangement of Y ∗ with respect to X.
Then:

1. Ỹ ∗µ is optimal for Problem 3.11; and,

2. Ỹ ∗µ = Ỹ ∗µ,A, µ-a.s., where Ỹ ∗µ,A is the nondecreasing µ-rearrangement of Y ∗ with
respect to X on A.

Proof. See Lemma 2.30.

Lemma 3.17. Let an optimal solution for Problem 3.11 be given by:

Y ∗ = Y ∗1 1A + Y ∗2 1S\A (3.7)

for some Y ∗1 , Y
∗

2 ∈ B+ (Σ). Let Ỹ ∗µ be the nondecreasing µ-rearrangement of Y ∗ with
respect to X, and let Y ∗1,µ be the nondecreasing µ-rearrangement of Y ∗1 with respect to X.

Then Ỹ ∗µ = Ỹ ∗1,µ, µ-a.s.

Proof. See Lemma 2.31.

Remark 3.18. What Lemma 3.16 asserts is that when the insurer’s subjective probability
measure is vigilant with respect to the DM’s subjective probability measure in regards to the
risk X, and if there exists an indemnity schedule which is perceived by the DM as optimal
for her initial problem, then there exists another indemnity schedule which is perceived
by the DM as optimal for her initial problem, and which rules out any possibility of moral
hazard resulting from a voluntary downward misrepresentation of losses by the DM. Indeed,
as long as an indemnity schedule is nondecreasing in the insurable loss, there is no incentive
for the DM to misrepresent the loss downwards.

Consider now the following three problems:
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Problem 3.19. For a given β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
,

sup
Y ∈B+(Σ)

{ˆ
A

u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y 1A ≤ X1A´
A
Y dν = β

Problem 3.20.

sup
Y ∈B+(Σ)

{ˆ
S\A

u
(
W0 − Π−X + Y

)
dµ

}
:{

0 ≤ Y 1S\A ≤ X1S\A´
S\A Y dν ≤ min

(
Π

1+ρ
− β,

´
S\AX dν

)
, for the same β as in Problem 3.19

Problem 3.21.

sup
β

[
F ∗A (β) + F ∗A

(
Π

1 + ρ
− β

)
: 0 ≤ β ≤ min

(
Π/ (1 + ρ) ,

ˆ
A

X dν

)]
:{

F ∗A (β) is the supremum value of Problem 3.19, for a fixed β

F ∗A

(
Π

1+ρ
− β

)
is the supremum value of Problem 3.20, for the same fixed β

Remark 3.22. The feasibility sets of Problems 3.19 and 3.20 are nonempty. To see why
this is true, first note that:

1. Since µ and ν are not mutually singular, by Assumption 3.5, and since µ (S \ A) = 0,
it follows that ν (A) > 0;

2. Since ν (A) > 0, h ≥ 0, and ν (A) = νac (A) + νs (A) = νac (A) =
´
A
h dµ, it follows

from Lemma 2.49 that there exists some B ∈ Σ such that B ⊆ A, µ (B) > 0, and
h > 0 on B.
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If
´
A
X dν =

´
A
Xh dµ = 0, then by Lemma 2.49 we have Xh = 0, µ-a.s. on A.

However, h > 0 on B. Thus, X = 0, µ-a.s. on B. Consequently, there is some C ∈ Σ, with
C ⊆ B and µ (C) > 0, such that X = 0 on C and µ (B \ C) = 0. Therefore, µ (B) = µ (C).
Now, since X (s) = 0, for each s ∈ C, it follows that C ⊆ {s ∈ S : X (s) = 0}. Thus, by
monotonicity of µ, µ (C) ≤ µ ({s ∈ S : X (s) = 0}) = µ◦X−1 ({0}). But µ◦X−1 ({0}) = 0,
by nonatomicity of µ◦X−1 (Assumption 3.5). Therefore, µ (C) = 0, a contradiction. Hence´
A
X dν > 0.

Now, for a given β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
, the function Y1 := βX´

AX dν
is

feasible for Problem 3.19 with parameter β.

If
´
S\AX dν = 0, then Y2 := 0 is feasible for Problem 3.20. If

´
S\AX dν > 0, then

Y3 := αX´
S\AX dν

, with α := min
(

Π
1+ρ
− β,

´
S\AX dν

)/
2, is feasible for Problem 3.20 with

parameter β, for any given β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
.

Remark 3.23. Just as in Remark 2.22, the supremum value of each of the above three
problems is finite.

Lemma 3.24. If β∗ is optimal for Problem 3.21, Y ∗3 is optimal for Problem 3.19 with
parameter β∗, and Y ∗4 is optimal for Problem 3.20 with parameter β∗, then Y ∗2 := Y ∗3 1A +
Y ∗4 1S\A is optimal for Problem 3.11.

Proof. See Lemma 2.39.

Remark 3.25. By Lemmata 3.16, 3.17, and 3.24, if ν is (µ,X)-vigilant, β∗ is optimal for
Problem 3.21, Y ∗1 is optimal for Problem 3.19 with parameter β∗, and Y ∗2 is optimal for

Problem 3.20 with parameter β∗, then Ỹ ∗µ is optimal for Problem 3.11, and Ỹ ∗µ = Ỹ ∗1,µ, µ-

a.s., where Ỹ ∗µ (resp. Ỹ ∗1,µ) is the µ-a.s. unique nondecreasing µ-rearrangement of Y ∗ :=
Y ∗1 1A + Y ∗2 1S\A (resp. of Y ∗1 ) with respect to X.

Lemma 3.26. If β∗ is optimal for Problem 3.21, then β∗ > 0.

Proof. First note the following:
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(i) Since µ (S \ A) = 0, it follows that
´
S\A Z dµ = 0, for each Z ∈ B (Σ), and

so F ∗A

(
Π

1+ρ
− β

)
= 0, for each β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
. Consequently,

F ∗A (β)+F ∗A

(
Π

1+ρ
− β

)
= F ∗A (β), for each β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
. There-

fore, in particular, F ∗A (β∗) + F ∗A

(
Π

1+ρ
− β∗

)
= F ∗A (β∗).

(ii) Since µ and ν are not mutually singular, by Assumption 3.5, it follows that ν (A) > 0.

(iii) Since ν (A) > 0, h ≥ 0, and ν (A) = νac (A) + νs (A) = νac (A) =
´
A
h dµ, it follows

from Lemma 2.49 that there exists some B ∈ Σ such that B ⊆ A, µ (B) > 0, and
h > 0 on B.

Now, suppose, per contra, that β∗ = 0 is optimal for Problem 3.21, and let Y0 be optimal
for Problem 3.19 with parameter 0, so that F ∗A (0) =

´
A
u (W0 − Π−X + Y0) dµ.

Since β∗ = 0 is optimal for Problem 3.21, we have F ∗A (0) ≥ F ∗A (β), for each β ∈[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
.

Since Y0 is feasible for Problem 3.19 with parameter β∗ = 0, we have
´
A
Y0 dν =´

A
Y0h dµ = β∗ = 0. Now, since µ (A) > 0 and Y0h ≥ 0, it follows from Lemma 2.49

that Y0h = 0, µ-a.s. on A. Moreover, since h > 0 on B and µ (B) > 0, it follows that
Y0 = 0, µ-a.s. on B.

Define the function Z by Z := Y01A\B+min
(
X,Π/ (1 + ρ)

)
1B, and let KZ :=

´
A
Z dν.

Then the following clearly hold:

(i) Z ∈ B+ (Σ);

(ii) 0 ≤ Z1A ≤ X1A;

(iii) 0 ≤ KZ ≤ min
( ´

A
X dν,Π/ (1 + ρ)

)
.

Therefore, in particular, KZ is feasible for Problem 3.21 and Z is feasible for Problem
3.19 with parameter KZ . Moreover,

0 ≤ KZ =

ˆ
A\B

Y0 dν +

ˆ
B

min
(
X,Π/ (1 + ρ)

)
dν

=

ˆ
B

min
(
X,Π/ (1 + ρ)

)
dν =

ˆ
B

min
(
X,Π/ (1 + ρ)

)
h dµ
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If KZ = 0, then
´
B

min
(
X,Π/ (1 + ρ)

)
h dµ = 0 and min

(
X,Π/ (1 + ρ)

)
h ≥ 0.

Hence, by Lemma 2.49, min
(
X,Π/ (1 + ρ)

)
h = 0, µ-a.s. on B. However, h > 0 on

B. Thus, min
(
X,Π/ (1 + ρ)

)
= 0, µ-a.s. on B. Since Π > 0, this yields X = 0, µ-

a.s. on B. Consequently, there is some C ∈ Σ, with C ⊆ B and µ (C) > 0, such that
X = 0 on C and µ (B \ C) = 0. Therefore, µ (B) = µ (C). Now, since X (s) = 0, for
each s ∈ C, it follows that C ⊆ {s ∈ S : X (s) = 0}. Thus, by monotonicity of µ,
µ (C) ≤ µ ({s ∈ S : X (s) = 0}) = µ ◦X−1 ({0}). But µ ◦X−1 ({0}) = 0, by nonatomicity
of µ ◦X−1 (Assumption 3.5). Therefore, µ (C) = 0, a contradiction. Hence KZ > 0.

Finally,

F ∗A (KZ) ≥
ˆ
A

u (W0 − Π−X + Z) dµ

=

ˆ
A\B

u (W0 − Π−X + Y0) dµ+

ˆ
B

u (W0 − Π−X + min (X,Π/ (1 + ρ))) dµ

≥
ˆ
A\B

u (W0 − Π−X + Y0) dµ+

ˆ
B

u (W0 − Π−X) dµ

=

ˆ
A

u (W0 − Π−X + Y0) dµ := F ∗A (0) = F ∗A (β∗)

This contradicts the optimality of β∗ = 0 for Problem 3.21. Consequently, if β∗ is
optimal for Problem 3.21 then β∗ > 0.

Solving Problem 3.20

Since µ (S \ A) = 0, it follows that, for all Y ∈ B+ (Σ), we have

ˆ
S\A

u
(
W0 − Π−X + Y

)
dµ = 0

Consequently, any Y which is feasible for Problem 3.20 with paramter β is also optimal

for Problem 3.20 with parameter β. For instance, define Y ∗4 := min

[
X,max

{
0, X−dβ

}]
,

where dβ is chosen such that
´
S\A Y

∗
4 dν ≤ min

(
Π

1+ρ
− β,

´
S\AX dν

)
. Then Y ∗4 1S\A is

optimal for Problem 3.20.
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Remark 3.27. The choice of dβ so that
´
S\A Y

∗
4 dν ≤ min

(
Π

1+ρ
− β,

´
S\AX dν

)
is justified

by the following argument: define the function φ : R+ → R+ by

φ (α) =

ˆ
S\A

Y4,α dν (3.8)

where Y4,α := min [X,max{0, X − α}], for each α ≥ 0. Then φ is a nonincreasing func-
tion of α. Moreover, by the continuity of the functions max (0, .) and min (x, .), and by
Lebesgue’s Dominated Convergence Theorem, φ is a continuous function of the parameter
α.

Now, by the continuity of the functions max and min, lim
α→0

Y4,α = X and lim
α→+∞

Y4,α = 0.

Therefore, by continuity of the function φ in α,

lim
α→0

φ (α) =

ˆ
S\A

X dν

and

lim
α→+∞

φ (α) = 0

Consequently, φ is a continuous nonincreasing function of α such that lim
α→+∞

φ (α) = 0 and

lim
α→0

φ (α) =
´
S\AX dν. Thus, by the Intermediate Value Theorem, one can always choose α

such that φ (α) ≤ min
(

Π
1+ρ
− β,

´
S\AX dν

)
, for any β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
.

Solving Problem 3.19

For a fixed parameter β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
, we will solve Problem 3.19

“statewise” as in Lemma 2.42. Moreover, by Lemma 3.26, we can restrict the analysis to
the case where β ∈

(
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
.

Lemma 3.28. If Y ∗ ∈ B+ (Σ) satisfies the following:

1. 0 ≤ Y ∗ (s) ≤ X (s), for all s ∈ A;
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2.
´
A
Y ∗h dµ = β, for some β ∈

(
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
; and,

3. There exists some λ ≥ 0 such that for all s ∈ A \ {s ∈ S : h (s) = 0},

Y ∗ (s) = arg max
0≤y≤X(s)

[
u
(
W0 − Π−X (s) + y

)
− λyh (s)

]

Then the function Z∗ := Y ∗1A\{s∈S:h(s)=0} + X1A∩{s∈S:h(s)=0} solves Problem 3.19 with
parameter β.

Proof. Suppose that Y ∗ ∈ B+ (Σ) satisfies (1), (2), and (3) above. Then Z∗ is clearly
feasible for Problem 3.19 with parameter β. To show optimality of Z∗ for Problem 3.19
note that for any other Y ∈ B+ (Σ) which is feasible for Problem 3.19 with parameter β,
we have, for all s ∈ A \ {s ∈ S : h (s) = 0},

u
(
W0 − Π−X (s) + Z∗ (s)

)
− u
(
W0 − Π−X (s) + Y (s)

)
= u

(
W0 − Π−X (s) + Y ∗ (s)

)
− u
(
W0 − Π−X (s) + Y (s)

)
≥ λ

[
h (s)Y ∗ (s)− h (s)Y (s)

]
= λ

[
h (s)Z∗ (s)− h (s)Y (s)

]

Furthermore, since u is increasing, since 0 ≤ Y ≤ X on A, and since Z∗ (s) = X (s) for all
s ∈ {s ∈ S : h (s) = 0} ∩ A, it follows that for all s ∈ {s ∈ S : h (s) = 0} ∩ A,

u
(
W0 − Π−X (s) + Z∗ (s)

)
= u

(
W0 − Π

)
≥ u

(
W0 − Π−X (s) + Y (s)

)

Thus,

ˆ
A∩{s∈S:h(s)=0}

u
(
W0 − Π−X + Z∗

)
dµ −

ˆ
A∩{s∈S:h(s)=0}

u
(
W0 − Π−X + Y

)
dµ ≥ 0

Consequently,
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ˆ
A

u
(
W0 − Π−X + Z∗

)
dµ−

ˆ
A

u
(
W0 − Π−X + Y

)
dµ

≥
ˆ
A\{s∈S:h(s)=0}

u
(
W0 − Π−X + Z∗

)
dµ−

ˆ
A\{s∈S:h(s)=0}

u
(
W0 − Π−X + Y

)
dµ

≥ λ
[
β − β

]
= 0

which completes the proof.

Lemma 3.29. For any λ ≥ 0, the function given by

Y ∗λ := min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1
(λh)

])]
(3.9)

satisfies conditions (1) and (3) of Lemma 3.28.

Proof. This results directly from the fact that u is strictly increasing and concave. The
proof is almost identical to the standard proof for the “classical” case, where the term h
does not appear in the objective function. We refer the reader to any proof of the classical
insurance problem, such as Bernard and Tian [34], pp. 75-76, for instance. The same
methodology was also used in Bernard and Tian [33], pp. 722-724.

To prove this result directly, one has to solve an elementary Kuhn-Tucker problem of
maximizing a concave function with two inequality constraints, which is exactly what the
problem appearing in part (3) of Lemma 3.28 is.

Lemma 3.30. For Y ∗λ defined in equation (3.9), the following holds:

Y ∗λ 1A\{s∈S:h(s)=0} +X1A∩{s∈S:h(s)=0} = Y ∗λ 1A (3.10)

Therefore,

ˆ
A

[
Y ∗λ 1A\{s∈S:h(s)=0} +X1A∩{s∈S:h(s)=0}

]
dν =

ˆ
A

Y ∗λ dν =

ˆ
A

Y ∗λ h dµ (3.11)
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Proof. Indeed, if s ∈ {s ∈ S : h (s) = 0}, then (u′)−1 (λh (s)) = (u′)−1 (0) = +∞, by
Assumption 3.2. Thus, for each s ∈ {s ∈ S : h (s) = 0} we have

Y ∗λ (s) = min

[
X (s) ,max

(
0, X (s)−

[
W0 − Π− (u′)

−1
(0)
])]

= X (s)

The rest then follows trivially.

Lemma 3.31. Define the function φ : R+ → R+ as follows: for each λ ∈ R+,

φ (λ) :=

ˆ
A

[
Y ∗λ 1A\{s∈S:h(s)=0} +X1A∩{s∈S:h(s)=0}

]
dν

=

ˆ
A

Y ∗λ dν =

ˆ
A

Y ∗λ h dµ

(3.12)

Then φ is a continuous nonincreasing function of the parameter λ.

Proof. First, recall that

Y ∗λ := min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1
(λh)

])]
(3.13)

Continuity of φ is a direct consequence of Lebesgue’s Dominated Convergence Theorem
and of the continuity of each of the functions (u′)−1, max (0, .), and min (x, .) (the function
(u′)−1 is continuous by Remark 3.3). The fact that φ is nonincreasing in λ results from the
concavity of u, i.e. from the fact that u′ is a nonincreasing function.

Lemma 3.32. Consider the function φ defined above. Then:

1. lim
λ→0

φ (λ) =
´
A
X dν; and,

2. lim
λ→+∞

φ (λ) = 0.
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Proof. By continuity of the functions (u′)−1, max (0, .), and min (x, .), we have that for
each s ∈ S,

lim
λ→0

Y ∗λ (s) = min

[
X (s) ,max

(
0, X (s)−

[
W0 − Π− (u′)

−1
(0)
])]

Moreover, as we showed above,

min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1
(0)
])]

= X

Therefore, lim
λ→0

Y ∗λ (s) = X (s), for each s ∈ S. Hence, by continuity of the function φ in λ,

it follows that

lim
λ→0

φ (λ) =

ˆ
A

X dν

Similarly, by continuity of the functions (u′)−1, max (0, .), and min (x, .), we have that
for each s ∈ S,

lim
λ→+∞

Y ∗λ (s) = min

[
X (s) ,max

(
0, X (s)−

[
W0 − Π− (u′)

−1
(+∞)

])]

However, by continuity of the function φ in λ, we have

lim
λ→+∞

φ (λ) =

ˆ
A

lim
λ→+∞

Y ∗λ dν

But by Assumption 3.2, (u′)−1 (+∞) = 0, and by Assumption 3.5, X ≤ W0 − Π, µ-a.s.
Moreover, µ (A) = 1. Therefore,

ˆ
A

lim
λ→+∞

Y ∗λ dν =

ˆ
A

lim
λ→+∞

Y ∗λ h dµ = 0
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Remark 3.33. Hence, summing up, the function φ defined above is a nonincreasing con-
tinuous function of the parameter λ such that lim

λ→0
φ (λ) =

´
A
X dν and lim

λ→+∞
φ (λ) = 0.

Therefore, φ (λ) ∈
[
0,
´
A
X dν

]
, and so by the Intermediate Value Theorem, for each

β ∈
(
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
we can chose λ = λβ ∈ [0,+∞) such that

β = φ
(
λ
)

=

ˆ [
Y ∗
λ
1A\{s∈S:h(s)=0} +X1A∩{s∈S:h(s)=0}

]
h dµ (3.14)

Therefore, by Lemmata 3.28 and 3.29, the function Y ∗
λ

defined above solves Problem
3.19, with parameter β. Finally, let β∗ be optimal for Problem 3.21, let λ∗ be chosen for
β∗ just as λ was chosen for β in Remark 3.33, and let Y ∗λ∗ be a corresponding optimal
solution for Problem 3.20 with parameter β∗. The rest then follows from Remark 3.25.
This concludes the proof of Theorem 3.13.

3.4.2 Proof of Corollary 3.14

Approximating Y ∗
λ

Fix β ∈
(
0,min

(
Π/ (1 + ρ) ,

´
A
X dν

)]
, and let λ be the corresponding λ, chosen as

in to Remark 3.33. Since h is nonnegative, Σ-measurable and µ-integrable, there is a se-
quence {hn}n of nonnegative, µ-simple and µ-integrable functions on (S,Σ) that converges
monotonically upwards and pointwise to h (Proposition D.6 on p. 224). Therefore, since
u′ is bicontinuous (so that, in particular, (u′)−1 is continuous), it follows that the sequence
{Yλ,n}n, defined by

Yλ,n := X −W0 + Π + (u′)
−1 (

λhn
)
, (3.15)

converges pointwise to Yλ, defined by

Yλ := X −W0 + Π + (u′)
−1 (

λh
)

(3.16)

Since the sequence {hn}n converges monotonically upwards and pointwise to h, and
since (u′)−1 is continuous and decreasing, it follows that the sequence {Yλ,n}n converges
monotonically downwards and pointwise to Yλ.
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Now, for each n ∈ N, there is some mn ∈ N, a Σ-partition {Bi,n}mni=1 of S, and some
nonnegative real numbers αi,n ≥ 0, for i = 1, ...,mn, such that

hn =
mn∑
i=1

αi,n 1Bi,n (3.17)

Since X −W0 + Π can be written as
∑mn

i=1 (X −W0 + Π) 1Bi,n , it is then easy to see
that

Yλ,n =
mn∑
i=1

(
(u′)

−1 (
λ αi,n

)
+X −W0 + Π

)
1Bi,n (3.18)

Define Y ∗
λ,n

by

Y ∗
λ,n

:= min
[
X,max

(
0, Yλ,n

)]
(3.19)

By continuity of the functions max (0, .) and min (x, .), and since max (0, t) and min (X (s) , t)
are nondecreasing functions of t for each s ∈ S, it follows that the sequence {Y ∗

λ,n
}n con-

verges monotonically downwards and pointwise to Y ∗
λ

(given by equation (3.9)).

Remark 3.34. For each n ≥ 1, let Ỹ ∗
λ,n,µ

denote the µ-a.s. unique nondecreasing µ-

rearrangement of Y ∗
λ,n

with respect to X. Then by Lemma 2.17, the sequence {Ỹλ,n,µ}n
converges monotonically downwards and pointwise µ-a.s. to Ỹλ,µ.

Note that, for each n ∈ N, we can rewrite Y ∗
λ,n

as

Y ∗
λ,n

=
mn∑
i=1

I∗
λ,n,i

1Bi,n (3.20)

where, for i = 1, ...,mn,

I∗
λ,n,i

:= min
[
X,max

(
0, X − dλ,n,i

)]
(3.21)

and

dλ,n,i := W0 − Π− (u′)
−1 (

λαi,n
)

(3.22)
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Lemma 3.35. For each n ∈ N, and for each i0 ∈ {1, 2, ...,mn}, I∗λ,n,i0 is either a full

insurance contract or a deductible contract (with a strictly positive deductible) on the set
Bi0,n.

Proof. Fix n ∈ N, and fix i0 ∈ {1, 2, ...,mn}. If αi0,n > 0 and λ ≤ u′ (W0 − Π) /αi0,n, then
since u′ is decreasing (u is concave) it follows that

(u′)
−1 (

λαi0,n
)
≥ W0 − Π

Therefore, (u′)−1 (λαi0,n) −W0 + Π + X ≥ X ≥ 0, and so I∗
λ,n,i0

= X, a full insurance

contract (on Bi0,n).

If αi0,n = 0, then I∗
λ,n,i0

= min
[
X,max

(
0, (u′)−1 (0) +X −W0 + Π

)]
. But (u′)−1 (0) =

+∞, by Assumption 3.2. Therefore, (u′)−1 (0)−W0 + Π +X ≥ X ≥ 0, and so I∗
λ,n,i0

= X,

a full insurance contract (on Bi0,n).

If αi0,n > 0 and λ > u′ (W0 − Π) /αi0,n, then since u′ is strictly decreasing (u is strictly
concave) it follows that (u′)−1 (λαi0,n) < W0−Π. Therefore, 0 < W0−Π−(u′)−1 (λαi0,n) =

dλ,n,i0 , and so I∗
λ,n,i0

=
(
X − dλ,n,i0

)+
, a deductible insurance contract (on Bi0,n) with a

strictly positive deductible, where for any a, b ∈ R, (a− b)+ := max (0, a− b).

Remark 3.36. Hence, we have constructed a sequence {Y ∗
λ,n
}n converging pointwise (on

S and hence on A) to Y ∗
λ

. Consequently, by Egoroff’s theorem (Theorem D.12 on p. 227),
for each ε > 0, there exists some Bε ∈ Σ, Bε ⊆ A, with µ (A \Bε) < ε, such that {Y ∗

λ,n
}n

converges to Y ∗
λ

uniformly on Bε. In other words, for each ε > 0, there is some Bε ∈ Σ,
Bε ⊆ A, with µ (A \Bε) < ε, and there is some Nε ∈ N such that for all n ≥ Nε,
|Y ∗
λ,n

(s)− Y ∗
λ

(s)| < ε/2n, for all s ∈ Bε.

Rearrangement of the Approximation

The following lemma is a direct consequence of Lemmata 2.11 and 2.17, and it is hence
stated without a proof.

Lemma 3.37. If Ỹ ∗
λ,n,µ

(resp. Ỹ ∗
λ,µ

) denotes the nondecreasing µ-rearrangement of Y ∗
λ,n

(resp. Y ∗
λ

) with respect to X, then {Ỹ ∗
λ,n,µ
}n converges monotonically downwards and point-

wise µ-a.s. to Ỹ ∗
λ,µ

. Moreover, Ỹ ∗
λ,n,µ

= Ỹ ∗
λ,n,A,µ

, µ-a.s., where Ỹ ∗
λ,n,A,µ

denotes the nonde-

creasing µ-rearrangement of Y ∗
λ,n,µ

with respect to X on A.
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Let C2,n :=
{
s ∈ S : Y ∗

λ,n
(s) = X (s)

}
. Then C2,n is of the form5

C2,n = Bk1,n ∪ ... ∪BkN ,n (3.23)

for some {k1, k2, ..., kN} ⊆ {1, 2, ...,mn}. Therefore,

Y ∗
λ,n

=
∑
j∈J

(
X − dλ,n,j

)+
1Bj,n +X1C2,n (3.24)

for J = {1, 2, ...,mn} \ {k1, k2, ..., kN}.

Lemma 3.38. Fix n ∈ N. If there exists some i0 ∈ {1, 2, . . . ,mn} such that αi0,n = 0 and
Bi0,n \ {s ∈ S : X (s) = 0} 6= ∅, then C2,n \ {s ∈ S : X (s) = 0} 6= ∅.

Proof. Trivial, in light of the second paragraph in the proof of Lemma 3.35.

Lemma 3.39. If µ is not absolutely continuous with respect to ν, then for each n ∈ N
there is some i0 ∈ {1, 2, ...,mn} such that αi0,n = 0.

Proof. Suppose, per contra, that µ is not absolutely continuous with respect to ν but
that there is some n ∈ N such that αi0,n > 0, for each i0 ∈ {1, 2, ...,mn}. Then hn =∑mn

i=1 αi,n1Bi,n > 0. But the sequence {hn}n converges monotonically upwards, and point-
wise, to h := dνac/dµ. Hence, since hn > 0, it follows that h (s) ≥ hk (s) > 0, for each
s ∈ S and for each k ≥ n. Consequently, h > 0. Therefore µ and νac are mutually ab-
solutely continuous (i.e. equivalent6). Furthermore, the finite measures ν, νac, and νs are
nonnegative, and hence νac << ν. Thus, µ << ν, a contradiction.

Lemma 3.40. If µ = ν then C2,n \ {s ∈ S : X (s) = 0} = ∅, for each n ≥ 1.

5Note that since the random loss X is a mapping of S onto the closed interval [0,M ], it follows that
{s ∈ S : X (s) = 0} 6= ∅, as mentioned previously (see section 3.2). Now, since 0 ≤ Yλ,n ≤ X, it follows
that ∅ 6= {s ∈ S : X (s) = 0} ⊆ C2,n. Therefore, C2,n 6= ∅.

6See, e.g. Bogachev [42] (p. 179).
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Proof. Suppose that µ = ν. Then, in this case, νs = 0, νac = ν = µ, and so h = 1 and
A = S. Thus, hn = 1, for all n ∈ N.

We claim that λ > u′ (W0 − Π). Suppose, per contra, that λ ≤ u′ (W0 − Π). Then by
concavity of u, u′ is decreasing, and so (u′)−1 (λ) ≥ W0 − Π. Therefore,

Y ∗
λ

= min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1 (
λ
)])]

= X,

contradicting the classical result that a deductible insurance contract, with a positive
deductible, is optimal in this case (as in Raviv [239] or Proposition 3.59). Therefore,
λ > u′ (W0 − Π). But then from the proof of Lemma 3.35 it follows that C2,n \ {s ∈ S :
X (s) = 0} = ∅, for each n ≥ 1.

Now, let C1,n :=
{
s ∈ S : Y ∗

λ,n
(s) = 0

}
. Then C1,n is non-empty7 and of the form

C1,n = C
(i)
1,n ∪ C

(ii)
1,n (3.25)

Where C
(i)
1,n ⊆ C2,n and C

(ii)
1,n ⊆ S \ C2,n. Indeed, since

{
s ∈ S : X (s) = 0

}
6= ∅ and

0 ≤ Y ∗
λ,n
≤ X, it follows that for all s ∈

{
s ∈ S : X (s) = 0

}
we have Y ∗

λ,n
(s) = X (s) = 0.

It is then easily verified that

C
(i)
1,n :=

{
s ∈ C2,n : Y ∗

λ,n
(s) = 0

}
=
{
s ∈ S : X (s) = 0

}
6= ∅ (3.26)

Therefore, C1,n =
{
s ∈ S : X (s) = 0

}
∪ C(ii)

1,n . Moreover, we can write

C
(ii)
1,n =

kQ⋃
j=kN+1

Bj,n (3.27)

for some {kN+1, ..., kQ} ⊆ J . Letting J ′ := J \ {kN+1, ..., kQ}, it follows that

7Since 0 ≤ Y ∗
λ,n
≤ X and {s ∈ S : X (s) = 0} 6= ∅.
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0 <
(
X − dλ,n,j

)+
= X − dλ,n,j < X (3.28)

for each j ∈ J ′. Therefore,

Y ∗
λ,n

= 01C1,n +
∑
j∈J ′

(
X − dλ,n,j

)
1Bj,n +X1C2,n\{s∈S:X(s)=0} (3.29)

We can assume, without loss of generality, that αj,n < αk,n, for all j, k ∈ J ′ such that
j < k. Then it is easily verified that dλ,n,j < dλ,n,k, because of the concavity of u.

Now, if Ỹ ∗
λ,n,µ

denotes the nondecreasing µ-rearrangement of Y ∗
λ,n

with respect to X, we

have the following result:

Lemma 3.41. Let Ỹ ∗
λ,n,µ

denotes the nondecreasing µ-rearrangement of Y ∗
λ,n

with respect

to X. There exists an ∈ [0,M ] such that for µ-a.a. s ∈ S,

Ỹ ∗
λ,n,µ

(s) =

{
0 if X (s) ∈ [0, an)
fn (X (s)) if X (s) ∈ [an,M ]

(3.30)

where fn : [0,M ] → [0,M ] is a nondecreasing and Borel-measurable function such that
0 ≤ fn (t) ≤ t for each t ∈ [0,M ], and, for µ ◦ X−1-a.a. t ∈ [0,M ], we have f (t) > 0 if
t > an.

Proof. First note that 0 ≤ Ỹ ∗
λ,n,µ
≤ X, by Lemma 2.16, since 0 ≤ Y ∗

λ,n
≤ X, by definition of

Y ∗
λ,n

. Moreover, we have Y ∗
λ,n

= Iλ,n◦X, for some Borel-measurable function Iλ,n : [0,M ]→
[0,M ]. Therefore, Ỹ ∗

λ,n,µ
= Ĩ∗

λ,n
◦X, where Ĩ∗n is the nondecreasing µ ◦X−1-rearrangement

of Iλ,n. Let fn := Ĩ∗
λ,n

. Then 0 ≤ fn (t) ≤ t, for each t ∈ [0,M ], and fn : [0,M ]→ [0,M ] is
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nondecreasing and Borel-measurable. Now, note that

µ
({
s ∈ S : Y ∗

λ,n
(s) ≤ 0

})
= µ

({
s ∈ S : Y ∗

λ,n
(s) = 0

})
= µ (C1,n)

= µ
({
s ∈ S : Y ∗

λ,n
(s) ≤ 0, X (s) = 0

})
+ µ
({
s ∈ S : Y ∗

λ,n
(s) ≤ 0, X (s) > 0

})
= µ

({
s ∈ S : X (s) = 0

})
+ µ

(
Cii

1,n

)
= µ

(
Cii

1,n

)
where the last equality follows form the nonatomicity of µ ◦X−1 (Assumption 3.5). More-
over, by equimeasurability, we have that

µ
({
s ∈ S : Y ∗

λ,n
(s) ≤ 0

})
= µ

({
s ∈ S : Ỹ ∗

λ,n,µ
≤ 0
})

However,

µ
({
s ∈ S : Ỹ ∗

λ,n,µ
(s) ≤ 0

})
= µ

({
s ∈ S : Ỹ ∗

λ,n,µ
(s) = 0

})
= µ

({
s ∈ S : Ỹ ∗

λ,n,µ
(s) ≤ 0, X (s) = 0

})
+ µ
({
s ∈ S : Ỹ ∗

λ,n,µ
(s) ≤ 0, X (s) > 0

})
= µ

({
s ∈ S : X (s) = 0

})
+ µ
({
s ∈ S : Ỹ ∗

λ,n,µ
(s) = 0, X (s) > 0

})
= µ

({
s ∈ S : Ỹ ∗

λ,n,µ
(s) = 0, X (s) > 0

})
where the last equality follows form the nonatomicity of µ ◦X−1 (Assumption 3.5). Con-
sequently,

µ (C1,n) = µ
(
Cii

1,n

)
= µ

({
s ∈ S : Ỹ ∗

λ,n,µ
(s) = 0, X (s) > 0

})
(3.31)

Thus, if µ
(
Cii

1,n

)
6= 0, then there exists an > 0 such that for µ-a.a. s ∈ S, Ỹ ∗

λ,n,µ
(s) = 0

if X (s) belongs to [0, an] or [0, an), and Ỹ ∗
λ,n,µ

(s) > 0 if X (s) > an. Therefore, fn (t) > 0

if t > an, for µ ◦X−1-a.a. t ∈ [0,M ].

If µ
(
Cii

1,n

)
= 0, then µ

({
s ∈ S : Ỹ ∗

λ,n,µ
(s) = 0, X (s) > 0

})
= 0, and so for µ-a.a.
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s ∈ S, Ỹ ∗
λ,n,µ

(s) = 0 if X (s) = 0, and Ỹ ∗
λ,n,µ

(s) > 0 if X (s) > 0. Thus, with an = 0, Ỹ ∗
λ,n,µ

is µ-a.s. of the form (3.30), with fn (t) > 0 if t > an = 0, for µ ◦X−1-a.a. t ∈ [0,M ].

Remark 3.42. For each n ≥ 1, let En ∈ Σ be the event such that µ (En) = 1 and Ỹ ∗
λ,n,µ

is of the form (3.30) on En. Let E :=
⋂+∞
n=1 En. Then E ∈ Σ and, by Proposition 3.60,

µ (E) = 1. Moreover, for each s ∈ E, and for each n ≥ 1, Ỹ ∗
λ,n,µ

(s) is given by (3.30).

Convergence to an Optimal Solution of Problem 3.11

By Lemma 3.37, the sequence {Ỹ ∗
λ,m,µ
}m defined by equation (3.30) converges pointwise

µ-a.s. to Ỹ ∗
λ,µ

, the nondecreasing µ-rearrangement of Y ∗
λ

with respect to X.

Now, let Y ∗4,β be an optimal solution to Problem 3.20 with parameter β, as defined
previously, and for each m ∈ N let

Ỹ ∗m,β := Ỹ ∗
λ,m,µ

1A + Y ∗4,β1S\A (3.32)

Finally, let β∗ be optimal for Problem 3.21, let λ∗ be chosen for β∗ just as λ was chosen
for β, and let Y ∗4,β∗ be a corresponding optimal solution for Problem 3.20 with parameter
β∗. For each m ≥ 1, let

Ỹ ∗m,β∗ := Ỹ ∗λ∗,m,µ1A + Y ∗4,β∗1S\A (3.33)

Then, by Remark 3.25, the sequence {Ỹ ∗m,β∗}m converges pointwise µ-a.s. to an optimal
solution of the initial problem (Problem 3.11), which is µ-a.s. nondecreasing in the loss X.
Henceforth, we shall denote by Y∗ that optimal solution. Then

Y∗1A = Ỹ ∗λ∗,µ1A (3.34)

A Characterization of the Optimal Solution of Problem 3.11

To conclude the proof of Corollary 3.14, we now show that the optimal solution Y∗ to
Problem 3.11 obtained above has the form of a generalized deductible contract, µ-a.s. That
is, we show that Ỹ ∗λ∗,µ has the form of a generalized deductible contract, µ-a.s.
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Recall that Ỹ ∗λ∗,µ is the µ-a.s. unique nondecreasing µ-rearrangement of Y ∗λ∗ with respect
to X, where

Y ∗λ∗ := min

[
X,max

(
0, Yλ∗

)]
(3.35)

and

Yλ∗ := X −W0 + Π + (u′)
−1

(λ∗h) (3.36)

Moreover, the sequence {Yλ∗,m}m, defined by

Yλ∗,m := X −W0 + Π + (u′)
−1

(λ∗hm) , (3.37)

converges pointwise to Yλ∗ . Since the sequence {hm}m converges monotonically upwards
and pointwise to h, and since (u′)−1 is continuous and decreasing, it follows that the se-
quence {Yλ∗,m}m converges monotonically downwards and pointwise to Yλ∗ . Consequently,
one can easily check that the sequence {Y ∗λ∗,m}m converges monotonically downwards and
pointwise to Y ∗λ∗ , where for each m ≥ 1,

Y ∗λ∗,m := min

[
X,max

(
0, Yλ∗,m

)]
(3.38)

Remark 3.43. For each m ≥ 1, let Ỹ ∗λ∗,m,µ denote the µ-a.s. unique nondecreasing µ-

rearrangement of Y ∗λ∗,m with respect to X. Then by Lemma 2.17, the sequence {Ỹλ∗,m,µ}m
converges monotonically downwards and pointwise µ-a.s. to Ỹλ∗,µ. That is, there is some

A∗ ∈ Σ with A∗ ⊆ A and µ (A∗) = 1, such that for each s ∈ A∗ the sequence {Ỹλ∗,m,µ (s)}m
converges monotonically downwards to Ỹλ∗,µ (s).

Now, as in Lemma 3.41, for µ-a.a. s ∈ S,

Ỹ ∗λ∗,n,µ (s) =

{
0 if X (s) ∈ [0, an)
fn (X (s)) if X (s) ∈ [an,M ]

(3.39)
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for a given an ≥ 0, and fn : [0,M ] → [0,M ], a nondecreasing and Borel-measurable
function such that 0 ≤ fn (t) ≤ t for each t ∈ [0,M ], and f (t) > 0 if t > an for µ◦X−1-a.a.
t ∈ [0,M ].

Lemma 3.44. The sequence {am}m is bounded and nondecreasing.

Proof. Since {am}m ⊂ [0,M ], boundedness of the sequence {am}m is clear. We show that

it is nondecreasing. Fix m ∈ N. Since the sequence {Ỹλ∗,m,µ}m is nonincreasing pointwise

on A∗ (as in Remark 3.43), we have Ỹλ∗,m,µ (s) ≥ Ỹλ∗,m+1,µ (s), for each s ∈ A∗.

To show that am ≤ am+1, first note that if am = 0, then am+1 ≥ 0 = am. If am > 0, let
E ∈ Σ be as in Remark 3.42, let A∗ ∈ Σ be as in Remark 3.43, and choose s ∈ E ∩A∗ such
that X (s) ∈ [0, am). Then 0 = Ỹλ∗,m,µ (s) ≥ Ỹλ∗,m+1,µ (s) ≥ 0, and so Ỹλ∗,m+1,µ (s) = 0.
Consequently, X (s) ∈ [0, am+1], and so [0, am) ⊆ [0, am+1]. Therefore, 0 < am ≤ am+1.

Hence, the sequence {am}m is bounded and monotone. Therefore, it has a limit. Let

a := lim
m→+∞

am (3.40)

Moreover, if there is some n ≥ 1 such that an > 0, then for each m ≥ n, we have
am ≥ an > 0.

Lemma 3.45. With a as defined above, we have 0 ≤ a ≤ M , and a > 0 if there is some
n ≥ 1 with an > 0.

Proof. Since 0 ≤ am ≤ M , for each m ≥ 1, it follows that 0 ≤ a ≤ M . Moreover, if there
is some n ≥ 1 such that an > 0, then for each m ≥ n we have am ≥ an > 0. Therefore,
a ≥ am > 0, for each m ≥ n, and so a > 0.

Lemma 3.46. There exist a∗ ≥ 0 such that for µ-a.a. s ∈ S,

Y∗ (s) =

{
0 if X (s) ∈ [0, a∗)
f (X (s)) if X (s) ∈ [a∗,M ]

(3.41)

for some nondecreasing, left-continuous, and Borel-measurable function f : [0,M ]→ [0,M ]
such that 0 ≤ f (t) ≤ t for each t ∈ [a∗,M ].
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Proof. Let a∗ := a, where a = lim
m→+∞

am, as above, let E ∈ Σ be as in Remark 3.42, let

A∗ ∈ Σ be as in Remark 3.43, and let E∗ := E∩A∗. Suppose that there exists some s1 ∈ E∗
such that X (s1) ∈ [0, a∗), but Y∗ (s1) > 0. Then for each m ≥ 1 we have Ỹλ∗,m,µ (s1) > 0,

since the sequence {Ỹλ∗,m,µ}m converges monotonically downwards and pointwise on E∗

to Ỹλ∗,µ and Y∗1E∗ = Ỹ ∗λ∗,µ1E∗ , by definition of Y∗. Consequently, X (s1) ≥ am, for each
m ≥ 1. Therefore, X (s1) ≥ a∗ = a = lim

m→+∞
am, a contradiction. Hence, for each s ∈ E∗,

X (s) ∈ [0, a∗) ⇒ Y∗ (s) = 0. Also, since µ (E) = µ (A∗) = 1, it follows form Proposition
3.60 that µ (E∗) = 1.

Moreover, Ỹ ∗λ∗,µ = Ĩ◦X, for some bounded, nonnegative, nondecreasing, left-continuous,

and Borel-measurable function Ĩ on the range [0,M ] of X (see section 2.3.1). Let f := Ĩ.
We then have, for each s ∈ E∗, Y∗ (s) = f (X (s)) if X (s) ∈ [a∗,M ]. Furthermore,

since 0 ≤ Ỹ ∗λ∗,µ ≤ X, it follows that 0 ≤ f (t) ≤ t, for each t ∈ [0,M ]. In particular,
f (0) = 0.

Remark 3.47. Note that If there is some n ≥ 1 such that an > 0, then a > 0 by Lemma
3.45, and hence it follows from the definition of a∗ that a∗ > 0.

Positivity of the Deductible Level a∗

Let E ∈ Σ be as in Remark 3.42, let A∗ ∈ Σ be as in Remark 3.43, and let E∗ := E∩A∗,
as above. For each s0 ∈ E∗, define L (s0) by:

L (s0) :=

ˆ
E∗

min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1

(
u′ (W0 − Π−X (s0))

h (s0)
h

)])]
h dµ

Then

L (s0) =

ˆ
A

min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1

(
u′ (W0 − Π−X (s0))

h (s0)
h

)])]
h dµ
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Now, let

DE∗ :=
{
s0 ∈ E∗ : X (s0) > 0, h (s0) > 0,

ˆ
E∗
Y ∗ h dµ < L (s0)

}

Then

DE∗ =
{
s0 ∈ E∗ : X (s0) > 0, h (s0) > 0,

ˆ
A

Y ∗ h dµ < L (s0)
}

Suppose that µ (DE∗) 6= 0. Then, in particular, DE∗ 6= ∅. Fix some s0 ∈ DE∗ . Then
X (s0) > 0, h (s0) > 0, and

´
A
Y∗ h dµ < L (s0). In other words,

β∗ = φ (λ∗) =

ˆ
A

Y∗ h dµ < φ
(
u′ (W0 − Π−X (s0))

/
h (s0)

)
= L (s0) .

Therefore,

λ∗ ≥ u′ (W0 − Π−X (s0))
/
h (s0) ,

since φ is a nonincreasing function. Consequently, X (s0) ≤ W0−Π− (u′)−1 (λ∗h (s0)), and
so

Y ∗λ∗ (s0) = min

[
X (s0) ,max

(
0, X (s0)−

[
W0 − Π− (u′)

−1
(λ∗h (s0))

])]
= 0

Hence, for each s0 ∈ DE∗ , we have X (s0) > 0 and Y ∗λ∗ (s0) = 0. Since µ (DE∗) 6= 0 by
hypothesis, it follows that

µ

({
s ∈ E∗ : X (s) > 0, Y ∗λ∗ (s) = 0

})
6= 0

Thus, the fact that in this case we have a∗ > 0 follows from the properties of the equimea-
surable rearrangement (recall equation (3.34) and the proof of Lemma 3.41).

Now, let κ = λ∗, and define the set EE∗ as follows:
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EE∗ :=

{
s0 ∈ E∗ : h (s0) > 0, κ h (s0) > u′ (W0 − Π) ,

0 < X (s0) < W0 − Π− (u′)
−1

(κ h (s0))

}

Suppose that µ (EE∗) 6= 0. Then, in particular, EE∗ 6= ∅. Fix some s0 ∈ EE∗ . Then
h (s0) > 0, λ∗ > u′ (W0 − Π) /h (s0), X (s0) > 0, and X (s0) < W0 − Π− (u′)−1 (λ∗h (s0)).
Since the sequence {hn}n of nonnegative, µ-simple functions on (S,Σ) previously defined
converges pointwise to h, we can choose n large enough so that hn (s0) is close enough to
h (s0) and the following hold:

1. hn (s0) > 0;

2. λ∗ > u′ (W0 − Π) /hn (s0); and,

3. 0 < X (s0) < W0 − Π− (u′)−1 (λ∗hn (s0)).

Therefore, from the proof of Lemma 3.35 (third paragraph), we have X (s0) > 0 and
Y ∗λ∗,n (s0) = 0. Since µ (EE∗) 6= 0 by hypothesis, it follows that

µ

({
s ∈ E∗ : X (s) > 0, Y ∗λ∗,n (s) = 0, for some n ≥ 1

})
6= 0

Thus, there exists n∗ ≥ 1 such that µ
({
s ∈ E∗ : X (s) > 0, Y ∗λ∗,n∗ (s) = 0

})
6= 0. For

such n∗, we have an∗ > 0 by properties of the equimeasurable rearrangement (as in the

proof of Lemma 3.41), and by definition of the function Ỹ ∗λ∗,n∗,µ given in (3.30). This then
yields a > 0 (by Lemma 3.45) and so a∗ > 0. This completes the proof of Corollary 3.14.

Remark 3.48. We have mentioned that the function f that appears in Corollary 3.14 can
be characterized using the ideas developed in section 2.3.4. Indeed, the optimal solution
appearing in Corollary 3.14 has been constructed as the limit of a sequence of rearrange-
ments of nonnegative functions (each bounded by M := ‖X‖s). For ease of notation, let
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us refer to the initial sequence as (km)m≥1, so that the sequence
(
k̃m

)
m≥1

of nondecreasing

rearrangements converges to the optimal solution appearing in Corollary 3.14. Now each
element km of the initial sequence can in turn be approximated by a nondecreasing sequence
{lm,i}i≥1 of Σ-simple nonnegative functions. By Proposition 2.20, we can completely char-

acterize the nondecreasing rearrangement l̃m,i of each one of these simple functions lm,i.

Each sequence {l̃m,i}i≥1 of nondecreasing simple functions hence obtained converges to the

nondecreasing rearrangement k̃m of each element km of the initial sequence {km}m≥1 (by
Lemma 2.18).

3.5 Some Special Cases

3.5.1 Perfect Intersubjectivity of Beliefs

When the DM’s and the insurer’s beliefs are perfectly intersubjective, in the sense that
µ = ν, then we recover the classical setup where the random loss endured by the DM is a
nonnegative, bounded and continuous random variable on an objective probability space
(S,Σ, P ).

In this case, νs = 0, νac = ν = µ, and so h = 1 and A = S. Thus, hn = 1, for all n ∈ N,
and the optimal indemnity is a deductible insurance contract, just as in Arrow [25] and
Raviv [239]8.

3.5.2 Equivalent Subjective Beliefs

When the DM’s and the insurer’s beliefs are not perfectly intersubjective but only
equivalent, in the sense that µ << ν and ν << µ, then νs = 0, νac = ν, A = S, and
h > 0, µ-a.s. (see Proposition E.23 on p. 244), and hence ν-a.s. Moreover, dµ/dν = h−1.
This case is treated similarly to the general case, taking into consideration the fact that
the measurable set {s ∈ S : h (s) = 0} has measure 0 (for both µ and ν), and that there is
no need for a “splitting” procedure with respect to the events A and S \A (as in Problems
3.19, 3.20, and 3.21, and Lemma 3.24) since S \ A = ∅.

8See also Bernard and Tian [34], Proposition 2.1 on p. 53 and Lemma C.1 on p. 75.

89



3.5.3 Absolute Continuity

Consider the case where the DM’s subjective beliefs fail to capture events that are
otherwise deemed possible by the insurer. This situation arises naturally in insurance
markets where an insurer’s past experience and expertise give him an advantage over the
DM in the understanding of the insurable risk under consideration.

We will model this state of affairs as a situation where the DM’s subjective probability
µ is absolutely continuous with respect to the insurer’s subjective probability ν, with a
Radon-Nikodým derivative r = dµ/dν. The motivation behind this assumption is that
events of zero probability for the insurer are those trivial events that even the DM deems
impossible, whereas there might exist events that are considered impossible by the DM
but to which the insurer attaches a positive probability: the latter are precisely the DM’s
Black Swan events9 that might not be so for the insurer. The DM’s problem becomes the
following:

Problem 3.49. For a given loading factor ρ > 0,

sup
Y ∈B+(Σ)

{ˆ
u
(
W0 − Π−X + Y

)
r dν

}
:{

0 ≤ Y ≤ X
Π ≥ (1 + ρ)

´
Y dν

This case is treated similarly to the general case exposed in the previous section, albeit
with a slight modification to account for the fact that the function r now appears in the
integrand. Moreover, the “splitting” procedure requires an adjustment here, as will be
apparent below.

Lemma 3.50. Let Y ∗ be an optimal solution for Problem 3.49, and suppose that ν is
(µ,X)-vigilant. Let Ỹ ∗µ be the nondecreasing µ-rearrangement of Y ∗ with respect to X.

Then Ỹ ∗µ is optimal for Problem 3.49 and nondecreasing in the loss X.

Proof. See Lemma 2.30.

Let B := {s ∈ S : r (s) 6= 0} = {s ∈ S : r (s) > 0}, and consider the following three
problems:

9The terminology is borrowed from Taleb [290].
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Problem 3.51.

sup
Y ∈B+(Σ)

{ˆ
B

u
(
W0 − Π−X + Y

)
r dν

}
:{

0 ≤ Y ≤ X, on B´
B
Y dν = β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
B
X dν

)]

Problem 3.52.

sup
Y ∈B+(Σ)

{ˆ
S\B

u
(
W0 − Π−X + Y

)
r dν

}
:{

0 ≤ Y ≤ X, on S \B´
S\B Y dν ≤ min

(
Π

1+ρ
− β,

´
S\BX dν

)
, for the same β as in Problem 3.51

Problem 3.53.

sup
β

[
F ∗B (β) + F ∗B

(
Π

1 + ρ
− β

)
: 0 ≤ β ≤ min

(
Π/ (1 + ρ) ,

ˆ
B

X dν

)]
:

F ∗B (β) is the supremum value of Problem 3.51, for a fixed
β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
B
X dν

)]
F ∗B

(
Π

1+ρ
− β

)
is the supremum value of Problem 3.52, for the same fixed β

Lemma 3.54. If β∗ is optimal for Problem 3.53, Y ∗3 is optimal for Problem 3.51 with
parameter β∗, and Y ∗4 is optimal for Problem 3.52 with parameter β∗, then Y ∗2 := Y ∗3 1B +
Y ∗4 1S\B is optimal for Problem 3.49.

Proof. Similar to the proof of Lemma 3.24.

Remark 3.55. By Lemmata 3.54 and 3.50, if ν is (µ,X)-vigilant, β∗ is optimal for Prob-
lem 3.53, Y ∗3 is optimal for Problem 3.51 with parameter β∗, Y ∗4 is optimal for Problem 3.52

with parameter β∗, and Y ∗2 := Y ∗3 1B + Y ∗4 1S\B, then Ỹ ∗2,µ is optimal for Problem 3.49 and

nondecreasing in the loss X, where Ỹ ∗2,µ is the µ-a.s. unique nondecreasing µ-rearrangement
of Y ∗2 with respect to X.
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Now, in order to solve Problem 3.52, note that for any s ∈ S \ B we have r (s) = 0,

and so for any Y ∈ B+ (Σ), we have
´
S\B u

(
W0 − Π − X + Y

)
r dν = 0. Therefore, for

any β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
B
X dν

)]
, any Y which is feasible for Problem 3.52 with

parameter β is also optimal for Problem 3.52 with parameter β. As was done in the

general case, take for instance Y ∗4 := min

[
X,max

{
0, X − dβ

}]
, where dβ is chosen such

that
´
S\B Y

∗
4 dν ≤ min

(
Π

1+ρ
− β,

´
S\BX dν

)
. Then Y ∗4 1S\B is optimal for Problem 3.20

with parameter β.

Note that the choice of dβ so that
´
S\B Y

∗
4 dν ≤ min

(
Π

1+ρ
− β,

´
S\BX dν

)
is justified

by an argument similar to that used in the general case.

In order to solve Problem 3.51, we will use a “statewise” technique as in the general
case.

Lemma 3.56. If Y ∗ ∈ B+ (Σ) satisfies the following:

1. 0 ≤ Y ∗ (s) ≤ X (s) on B;

2.
´
B
Y ∗ dν = β, for some β ∈

[
0,min

(
Π/ (1 + ρ) ,

´
B
X dν

)]
; and,

3. There exists some λ ≥ 0 such that for each s ∈ B,

Y ∗ (s) = arg max
0≤y≤X(s)

[
u
(
W0 − Π−X (s) + y

)
r (s)− λy

]

Then Y ∗1B solves Problem 3.51 with parameter β.

Proof. Fix some β ∈
[
0,min

(
Π/ (1 + ρ) ,

´
B
X dν

)]
, and suppose that Y ∗ ∈ B+ (Σ) satis-

fies (1), (2), and (3) above. Then Y ∗ is feasible for Problem 3.51 with parameter β. To show
optimality of Y ∗ for Problem 3.51 with parameter β note that for any other Y ∈ B+ (Σ)
which is feasible for Problem 3.51 with parameter β, we have, for each s ∈ B,

u
(
W0 − Π−X (s) + Y ∗ (s)

)
r (s)− u

(
W0 − Π−X (s) + Y (s)

)
r (s)

≥ λ [Y ∗ (s)− Y (s)]
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Consequently,

ˆ
B

u
(
W0 − Π−X + Y ∗

)
r dν −

ˆ
B

u
(
W0 − Π−X + Y

)
r dν ≥ λ [β − β] = 0

which completes the proof.

Lemma 3.57. For any λ ≥ 0, the function given by:

Y ∗λ := min

[
X,max

(
0, X −

[
W0 − Π− (u′)

−1
(λ/r)

])]
1B (3.42)

satisfies conditions (1) and (3) of Lemma 3.56 (recall that B := {s ∈ S : r (s) > 0}).

Proof. Trivial, since u is strictly increasing and concave. The proof is almost identical to
the “classical” case.

Now, as was done previously for the general case, by the continuity of the function´
B
Y ∗λ dν in the parameter λ and by the Intermediate Value Theorem, for any β ∈[

0,min
(
Π/ (1 + ρ) ,

´
B
X dν

)]
one can chose λ such that

β =

ˆ
B

Y ∗
λ
dν (3.43)

On B, r can be approximated by a sequence {rn}n of ν-simple, ν-integrable, positive
functions. The continuity of (u′)−1 then gives an approximation of Y ∗

λ
on B, as was done

previously. Indeed, for each n ∈ N, rn can be written as

rn =
mn∑
i=1

αi,n1Ci,n (3.44)
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for some mn ∈ N, a Σ-partition {Ci,n}mni=1 of S, and some positive real numbers αi,n > 0,
for i = 1, ...,mn. Then, we can write

λ/rn =
mn∑
i=1

(
λ/αi,n

)
1Ci,n (3.45)

By continuity of the map x 7→ 1/x on (0,+∞), it follows that λ/rn → λ/r, and
hence that (u′)−1 (λ/rn) → (u′)−1 (λ/r), by continuity of (u′)−1. Then, as done pre-
viously, Y ∗

λ,n
→ Y ∗

λ
, where Y ∗

λ,n
=
∑mn

i=1 I
∗
λ,n,i

1Ci,n ; where, for i = 1, ...,mn, I∗
λ,n,i

=

min
[
X,max

(
0, X − dλ,n,i

)]
, and dλ,n,i = W0 − Π− (u′)−1 (λ/αi,n). One can easily check,

as was done previously, that for each i0 ∈ {1, 2, ...,mn}, I∗λ,n,i0 is either a full insurance

contract or a deductible contract with a positive deductible. The rest then follows as was
done previously.

3.6 Belief Subjectivity in the Work of Marshall [207]

The motivation behind Marshall [207] stems partly from his observation that hetero-
geneity of beliefs is an inherent trait of insurance markets. The way such heterogeneity
in beliefs is introduced into the insurance model in Marshall [207] is very specific, and we
quote the author for the sake of completeness (see Marshall [207], p. 261):

“The client’s beliefs deviate from those of the insurer when she (the client) holds
a probability density function g(t) different from f(t)”

where it is understood that f(t) in that context is the probability density function that the
insurer attributes to the (bounded) insurable loss X, and g(t) is the probability density
function that the DM attributes to X.

One immediate observation to make here is that Marshall [207] hence implicitly assumes
that we are given a measurable space (S,Σ), two probability measures P1 and P2 repre-
senting the DM and the insurer’s subjective beliefs, respectively, and a bounded random
variable X, such that the laws P1 ◦X−1 and P2 ◦X−1 are both absolutely continuous with
respect to the Lebesgue measure on the range of X. This is a first limitation of the scope
of the problem.
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A second limitation is the author’s requirement that the DM be more optimistic than
the insurer, which is essentially sort of a probabilistic consistency requirement. The author
defines the notion of “more optimistic than” as follows (see Marshall [207], p. 262): If G(t)
denotes the distribution function associated with f(t) and G(t) that associated with g(t),
then we say that the DM is more optimistic than the insurer when for all s,

ˆ s

0

G(t) dt >

ˆ s

0

F (t) dt (3.46)

This occurs, for instance, when g(t) is obtained from f(t) by shifting probability mass from
areas of large loss to areas of smaller loss, as the author notes. However, even under such
a limitation, the author provides an example showing that optimum contracts might not
be “insurance contracts”, where the author calls a contract an “insurance contract” when
it is a deductible contract.

The author then imposes a further restriction on the way in which the beliefs can differ:
he assumes that, conditional on the event that the loss is nonzero, f(t) and g(t) agree, but
that the probability of a zero loss is higher for the DM than for the insurer. In this case,
the DM is of course more optimistic than the insurer.

The author then shows that under these limitations, an optimal contract is an “insur-
ance contract”. Needless to say, this is considerably more restrictive than the approach
considered in this chapter.

3.7 Conclusion

The subjectivity of beliefs in problems of optimal insurance design was largely over-
looked in the relevant actuarial literature. The classical actuarial approach to insurance
design has traditionally assumed that the insurer and the insured share the same proba-
bilistic beliefs about the realization of a given insurable loss. While Aumann’s Agreement
Theorem (Aumann [28]) might give a justification for such an assumption, it might be ar-
gued that in real-life situations, instances of divergence of beliefs are the most interesting
ones to examine.

In this chapter we have shown that under a specific probabilistic consistency assumption
on the subjective beliefs of the decision maker (DM) and the insurer, an optimal insurance
contract has the form of a generalized deductible contract on an event to which the decision
maker assigns full subjective probability. This probabilistic consistency requirement can
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be intuitively interpreted in terms of the credibility that the insurer gives to the decision
maker’s subjective assessment of the risk inherent in the insurance contract. It essentially
stipulates that the insurer will not assign a higher subjective risk assessment to the insur-
ance contract on an event which is certain for the decision maker and on which the decision
maker’s information about the aforementioned risk is “better” in a specific sense.

Technically, this assumption of probabilistic consistency between the DM and the in-
surer is essential to show existence of optimal indemnities which are comonotonic with the
random loss X (a.s. for the DM), and hence to avoid probems of moral hazard arising from
a downward misrepresentation of losses by the DM.

Vigilance of beliefs is implied by the assumption of a monotone likelihood ratio, as
discussed in section 2.5. In the absence of this assumption of probabilistic consistency there
might exist solutions to the optimal insurance design problem that are not nondecreasing
in the loss, and hence moral hazard issues might arise.

The work done in this chapter implicitly assumed that there is no risk associated with
the insurer’s default on payments. Future research will incorporate such default risk in
the present framework in order to generalize, for instance, the work done by Cummins and
Mahul [85]. In Chapter 6 we will consider some other possible extensions of this chapter’s
setting that are left for future work.

3.8 Appendix: The “Classical” Insurance Demand

Problem

The classical problem of demand for insurance considers two agents: an insurer and a
DM. The DM seeks an insurance coverage against a random loss she is facing. The market
gives the DM the opportunity to purchase a coverage I from an insurer, for a premium Π
set by the latter.

The random loss is modeled as an essentially bounded nonnegative random variable X
on some exogenously given probability space (Ω,G, P ). Both the DM and the insurer are
assumed to know what the distribution of X is and to agree on that distribution, in the
sense that both assign to X the law P ◦X−1 on the range D ⊆ R+ of X. The insurance
coverage is modeled as a Borel-measurable mapping I : D → R+.

Moreover, the insurer is assumed to be a risk-neutral Expected-Utility (EU) maximizer,
and the DM is assumed to be a strictly risk-averse EU maximizer, with a strictly increasing,
concave, and twice continuously differentiable utility function u.
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The DM has an initial wealth of amount W0, and her wealth in state ω ∈ Ω is given by

W (ω) := W0 − Π−X (ω) + I (X (ω)) (3.47)

Since the DM’s preference has an EU representation, the problem from the perspective
of the DM is to find the indemnity I∗ that will maximize her expected utility of wealth,
subject to some feasibility and participation constraints. Formally, the problem is the
following:

Problem 3.58. For a given loading factor ρ > 0,

sup
I

{ˆ
u
(
W0 − Π−X + I ◦X

)
dP

}
:{

0 ≤ I ◦X ≤ X
Π ≥ (1 + ρ)

´
I ◦X dP

These constraints were previously discussed.

Optimality of the Deductible Contract

The classical literature has studied Problem 3.58 extensively. Starting with Arrow
[25], Borch [52], and Raviv [239], it was shown that the solution to Problem 3.58 is given
by a deductible contract, when the premium principle used by the insurer depends on
the actuarial value of the indemnity, and when the DM is a risk-averse EU maximizer.
Cummins and Mahul [86] show that if an additional upper limit constraint on the indemnity
is imposed, then the optimal insurance contract is a capped deductible. The following
proposition summarizes the classical theory:

Proposition 3.59. There exists a deductible contract Id, for some d > 0, such that (Id ◦X)
is optimal for Problem 3.58.

Proof. See Raviv [239], Corollary 1 on p. 90 (and the setting of his model on p. 86), for
instance. See also Mossin [214] (pp. 561-562), Arrow [25] (p. 212), Gollier [154] (p. 372),
Moffet [213] (p. 674), or Bernard and Tian [34] (p. 53).

97



3.9 Appendix: Related Analysis

Proposition 3.60. Let (S,Σ, µ) be a finite nonnegative measure space. If {An}n ⊂ Σ is
such that µ (An) = µ (S), for each n ≥ 1, then µ

(⋂+∞
n=1An

)
= µ (S).

Proof. Since for each n ≥ 1 we have µ (An) = µ (S), it follows that µ (S \ An) = 0, for
each n ≥ 1. Therefore, since µ is nonnegative, and by countable subadditivity of countably
additive measures10, it follows that

0 ≤ µ

(
+∞⋃
n=1

S \ An

)
≤

+∞∑
n=1

µ (S \ An) = 0

Therefore, µ
(⋂+∞

n=1 An
)

= µ (S)− µ
(⋃+∞

n=1 S \ An
)

= µ (S).

10See, e.g. Cohn [82], Proposition 1.2.2 on p. 10.
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Chapter 4

More on Vigilant Beliefs

In this chapter we provide a characterization of the mathematical structure underpin-
ning collections of what we previously called vigilant beliefs. In particular, several conver-
gence results are provided, as well as a characterization of second-order vigilant beliefs (i.e.
beliefs about vigilant beliefs) on classes of vigilant beliefs.

The results presented here will serve as the basic mathematical tools for future work
related to the notion of vigilance. This will be discussed in more detail in Chapter 6. For
instance, in section 6.4 we outline the main ideas of an ongoing work aimed at characterizing
a DM’s preference among insurers that are vigilant with respect to the DM.

4.1 Preliminaries

The notation adopted here is standard and is consistent with the Appendices, where all
necessary background material is given. Relevant references from which necessary back-
ground material is drawn include Bartle, Dunford, and Schwartz [30], Diestel [100] (chap.
VII), Dunford and Schwartz [109] (sections IV.1, IV.2, IV.5, and IV.9), Gänssler [132],
Maccheroni and Marinacci [194], Marinacci and Montrucchio [204], Megginson [210] (chap.
2), or Rao and Rao [238] (sections 2.2, 2.3, 2.4, 4.7, 9.1, and 9.2).

Let S denote the set of states of the world, and suppose that Σ is a σ-algebra of subsets
of S, called events. Let B(S) denote the Banach space of all bounded, R-valued functions
on S, normed by the supnorm ‖.‖s (see Dunford and Schwartz [109], IV.2.13 on p. 240,
and the first paragraph of p. 258). Let B0 (Σ) denote the normed linear space of R-valued,
Σ-measurable simple functions on S (i.e. finite linear combinations of indicator functions of
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sets in Σ), endowed with the supnorm. Let B (Σ) denote the collection of all bounded Σ-
measurable R-valued functions on S. Then B (Σ) is a Banach space for ‖.‖s, by Proposition
D.23 (p. 229). Let B+ (Σ) denote the cone of nonnegative elements of B (Σ).

Let ba (Σ) denote the linear space of all bounded finitely additive set functions on Σ,
endowed with the usual mixing operations. Let ba+ (Σ) denote the cone of nonnegative
elements of ba (Σ), and let ba+

1 (Σ) denote the collection of those elements µ of ba+ (Σ)
for which µ (S) = 1. Elements of ba+

1 (Σ) are the finitely additive probability charges on
Σ. When endowed with the variation norm ‖.‖v, ba (Σ) is a Banach space, by Proposition
D.20 (p. 228).

By Theorem D.24 (p. 229), (ba (Σ) , ‖.‖v) is isometrically isomorphic to the norm-dual
of B (Σ) (respectively, B0 (Σ)), via the duality < φ, µ >=

´
φ dµ, ∀µ ∈ ba (Σ) , ∀φ ∈

B (Σ) (respectively, B0 (Σ)). Consequently, we can endow ba (Σ) with the weak∗ topologies
σ (ba (Σ) , B (Σ)) or σ (ba (Σ) , B0 (Σ)). These two topologies coincide1 on ba+

1 (Σ). We can
also endow ba (Σ) with the weak topology σ (ba (Σ) , ba∗ (Σ)).

Let ca (Σ) denote the linear subspace of ba (Σ) consisting of countably additive set
functions. When endowed with the variation norm ‖.‖v, ca (Σ) is a Banach space, by
Proposition D.20 (p. 228). In particular, ca (Σ) is a ‖.‖v-closed linear subspace of ba (Σ).
Let ca+ (Σ) denote the cone of nonnegative elements of ca (Σ), and let ca+

1 (Σ) denote the
collection of those elements ν of ca+ (Σ) for which ν (S) = 1. Elements of ca+

1 (Σ) are
the countably additive probability measures on Σ. We can endow ca (Σ) with the weak
topology σ (ca (Σ) , ca∗ (Σ)), which coincides with the weak topology that ca (Σ) inherits
from the weak topology of ba (Σ) (see Proposition C.16 on p. 219). In particular, weak
compactness in ca (Σ) is equivalent to weak compactness in ba (Σ).

4.2 Some Definitions

Recall that two elements X and Y of B (Σ) are called comonotonic if for all s, t ∈ S,[
X (s)−X (t)

][
Y (s)− Y (t)

]
≥ 0.

Definition 4.1. Let X ∈ B+ (Σ) be given, and let M := sup {s ∈ S : X (s)} < +∞. Let
µ, ν ∈ ca+

1 (Σ). For a given B ∈ Σ, let AB,µ be the subset of B+ (σ {X}) × B+ (σ {X})
1See Maccheroni, Marinacci and Rustichini [195], p. 1475, for instance.
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consisting of all those pairs (W,Z) such that W and Z are identically distributed under µ
on B, and Z is comonotonic with X on B. That is,

AB,µ =

{
(W,Z) ∈ B+ (σ {X})×B+ (σ {X}) :

µ
(
{s ∈ B : W (s) ∈ Γ}

)
= µ

(
{s ∈ B : Z (s) ∈ Γ}

)
, for any Borel set Γ,

and
[
X (s)−X (t)

][
Z (s)− Z (t)

]
≥ 0, for all s, t ∈ B

}
(4.1)

The following is a slight generalization of the definition of vigilance in the context of
the insurance problem of Chapter 3.

Definition 4.2. Let X ∈ B+ (Σ). For µ, ν ∈ ca+
1 (Σ), we say that ν is (µ,X)-vigilant if

for any A ∈ Σ with µ (A) = 1 and for any (Y1, Y2) ∈ AA,µ, the following holds:

ˆ
A

Y2 dν ≤
ˆ
A

Y1 dν (4.2)

Definition 4.3. Let µ ∈ ca+
1 (Σ) and X ∈ B+ (Σ) be given. We define the subsets Cµ and

C∗µ of ca+
1 (Σ) as follows:

Cµ =
{
ν ∈ ca+

1 (Σ) : ν is (µ,X) -vigilant (in the sense of Definition 4.2)
}

(4.3)

and

C∗µ =

{
ν ∈ ca+

1 (Σ) :

ˆ
Y2 dν ≤

ˆ
Y1 dν, ∀ (Y1, Y2) ∈ AS,µ

}
(4.4)
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Remark 4.4. In light of Definition 4.2, Cµ can be written as:

Cµ =

{
ν ∈ ca+

1 (Σ) :

ˆ
A

Y2 dν ≤
ˆ
A

Y1 dν,

∀A ∈ Σ with µ (A) = 1, ∀ (Y1, Y2) ∈ AA,µ

} (4.5)

Furthermore, both Cµ and C∗µ are non-empty since µ ∈ Cµ ∩ C∗µ.

4.2.1 Some “Convergence” Properties of Cµ and C∗µ

Proposition 4.5. The sets Cµ and C∗µ are convex, norm-bounded, and hence weakly bounded
and weak∗ bounded.

Proof. The convexity of Cµ and C∗µ is clear, and their norm-boundedness follows from the
norm-boundedness of ca+

1 (Σ). Consequently, Cµ and C∗µ are also weakly bounded (by
Proposition C.21 on p. 221). Finally, since B (Σ) is a Banach space, Cµ and C∗µ are also
weak∗ bounded (also by Proposition C.21 on p. 221).

Proposition 4.6. The set Cµ has the following properties:

(i) Cµ is convex, norm-bounded and weak∗ bounded;

(ii) Cµ is weak∗ compact and weakly compact;

(iii) Cµ is weak∗ closed, weakly closed, and norm-closed;

(iv) Cµ is weakly complete.

Proof. Convexity, norm-boundedness, weak boundedness and weak∗ boundedness of Cµ
follow from Proposition 4.5. Let {να}α∈Γ be a net in Cµ that converges to some ν ∈ ca (Σ)
in the weak∗ topology. Then by the standard duality it follows that the net

{´
φ dνα

}
α∈Γ

converges to
´
φ dν, for all φ ∈ B (Σ).
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Now, fix any A ∈ Σ such that µ (A) = 1 and choose any (Y1, Y2) ∈ AA,µ. Then
Y1, Y2, Y11A, Y21A ∈ B (Σ). Hence, the net

{´
Y11A dνα

}
α∈Γ

converges to
´
Y11A dν, and

the net
{´

Y21A dνα
}
α∈Γ

converges to
´
Y21A dν. Moreover, for each α ∈ Γ we have

0 ≤
ˆ
A

Y2 dνα =

ˆ
Y21A dνα ≤

ˆ
A

Y1 dνα =

ˆ
Y11A dνα

since να ∈ Cν for each α ∈ Γ. Therefore,

0 ≤
ˆ
A

Y2 dν = lim
α∈Γ

ˆ
A

Y2 dνα ≤ lim
α∈Γ

ˆ
A

Y1 dνα =

ˆ
A

Y1 dν

and so ν ∈ Cµ. Hence, Cµ is weak∗ closed.

Since Cµ is also norm bounded, it follows from the Banach-Alaoglu theorem (Theorem
C.24 on p. 222) that Cµ is weak∗ compact. Now from Theorem D.31 (p. 232) it follows that
Cµ is weakly compact. Therefore Cµ is weakly closed (since the weak topology is Hausdorff
and using Proposition B.16 on p. 206). Norm-closure of Cµ follows from its weak closure.
Finally, since ca (Σ) is weakly complete (by Proposition D.28 on p. 231), and Cµ is weakly
closed, it follows that Cµ is weakly complete.

Proposition 4.7. The set C∗µ has the following properties:

(i) C∗µ is convex, norm-bounded and weak∗ bounded;

(ii) C∗µ is weak∗ compact and weakly compact;

(iii) C∗µ is weak∗ closed, weakly closed, and norm-closed;

(iv) C∗µ is weakly complete.

Proof. Immediate consequence of Proposition 4.6.
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4.3 Vigilance and Absolute Continuity

We now characterize the collection of all probability measures ν on (S,Σ) that are both
absolutely continuous with respect to some µ ∈ ca+

1 (Σ) and (µ,X)-vigilant, for a given
X ∈ B+ (Σ).

Definition 4.8. For a given µ ∈ ca+
1 (Σ), let

ca (Σ, µ) :=
{
ν ∈ ca (Σ) : ν << µ

}
(4.6)

and
ACµ :=

{
ν ∈ Cµ : ν << µ

}
(4.7)

and
H :=

{
h ∈ L1 (S,Σ, µ) : h = dν/dµ, for some ν ∈ ACµ

}
(4.8)

Remark 4.9. As in Remark 4.4, one can easily check that in light of Definition 4.2, H
can be written as:

H =

{
h ∈ L1 (S,Σ, µ) : h ≥ 0, µ-a.s., and for any A ∈ Σ with µ (A) = 1,

ˆ
A

Y2h dµ ≤
ˆ
A

Y1h dµ, ∀ (Y1, Y2) ∈ AA,µ

} (4.9)

Note that for any A ∈ Σ with µ (A) = 1, and for any (Y1, Y2) ∈ AA,µ, we have´
A
Y2h dµ =

´
Y2h dµ and

´
A
Y1h dµ =

´
Y1h dµ.

By the Radon-Nikodým theorem (Theorem E.22 on p. 244), there is an isometric iso-
morphism between the space ca (S,Σ, µ) and the space L1 (S,Σ, µ), given by ν (E) =´
E
f dµ, ∀E ∈ Σ (see Corollary E.25 on p. 245). Hence, we can identify ACµ with H.

Proposition 4.10. If ACµ is uniformly absolutely continuous with respect to µ, then the
set ACµ has the following properties:

(i) ACµ is convex, norm-bounded and weak∗ bounded;
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(ii) ACµ is weakly sequentially compact;

(iii) ACµ is weak∗ compact and weakly compact;

(iv) ACµ is weak∗ closed, weakly closed, and norm-closed;

(v) ACµ is weakly complete.

Proof. Convexity of ACµ is clear, and norm-boundedness (resp. weak boundedness, weak∗

boundedness) of ACµ follows from Proposition 4.5. For all ν ∈ ACµ, we have ν << µ ∈
ca+

1 (Σ) and, given any E ∈ Σ, the limit limµ(E)→0 ν (E) = 0 is uniform with respect to
ν ∈ ACµ, by hypothesis. Consequently, since ACµ is norm-bounded, it follows that ACµ
is weakly sequentially compact (by Theorem D.27 on p. 231), and hence weakly compact
by the Eberlein-Šmulian theorem (Theorem C.25 on p. 222). Now from Theorem D.31
(p. 232) it follows that ACµ is weak∗ compact. Therefore ACµ is weak∗ closed and weakly
closed (since both of these topologies are Hausdorff, and using Proposition B.16 on p. 206).
Norm-closure of ACµ follows from its weak closure. Finally, since ca (Σ) is weakly complete
(by Proposition D.28 on p. 231), and ACµ is weakly closed, it follows that ACµ is weakly
complete.

Remark 4.11. In Proposition 4.10, if ACµ is countable, that is, ACµ is of the form
{νn, n ≥ 1}, and if limn νn (A) exists for each A ∈ Σ, then the requirement that ACµ be
also uniformly absolutely continuous with respect to µ is superfluous by the Vitali-Hahn-
Saks theorem (Theorem D.26 on p. 231).

Proposition 4.12. H is a convex, norm-closed and weakly closed subset of the Banach
space L1 (S,Σ, µ).

Proof. The convexity of H is clear. To show that H is closed in the L1-norm simply note
that by standard duality results, there is an isometric isomorphism between the topological
dual of the space L1 (S,Σ, µ) and the space L∞ (S,Σ, µ) ⊇ B (Σ) given by T (f) =

´
fg dµ,

for every continuous linear functional T on L1 (S,Σ, µ) and for every f ∈ L1 (S,Σ, µ), where
g is some element of L∞ (S,Σ, µ) (see Theorem E.29 on p. 246).

Therefore, it follows that for any Y1, Y2 ∈ AA,µ the maps T1 : H → R+ and T2 : H → R+

defined by T1 (h) =
´
Y1h dµ and T2 (h) =

´
Y2h dµ are continuous in the L1-norm topology,
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and hence sequentially continuous (by Proposition B.47 on p. 212). Now, choose a sequence
{hn}n of elements of H that converges in the L1-norm to some h ∈ L1 (S,Σ, µ). Then by
continuity of the maps T1 and T2, it follows that

lim
n→+∞

ˆ
Y1hn dµ =

ˆ
Y1h dµ (4.10)

and

lim
n→+∞

ˆ
Y2hn dµ =

ˆ
Y2h dµ (4.11)

Moreover, since hn ∈ H, for each n ∈ N, it follows that for each n ≥ 1

0 ≤
ˆ
Y2hn dµ ≤

ˆ
Y1hn dµ (4.12)

and therefore, taking limits as n→ +∞ yields

0 ≤
ˆ
Y2h dµ ≤

ˆ
Y1h dµ (4.13)

Consequently, h ∈ H, and hence H is closed in the norm-topology. Since H is also convex,
it follows by Mazur’s theorem (Theorem C.23 on p. 221) that it is also closed in the weak
topology.

Corollary 4.13. H is both norm-complete and weakly complete.

Proof. Being a norm-closed subset of the Banach space L1 (S,Σ, µ) (as shown in the pre-
vious proof), H is complete in the L1-norm. Furthermore, the space L1 (S,Σ, µ) is weakly
complete (see Theorem E.30 on p. 246), and hence H is also weakly complete, being weakly
closed.

4.4 Geometric Properties of Some Collections of Vig-

ilant Beliefs

Both the weak and weak∗ topologies on ca (Σ) are locally convex and Hausdorff linear
topologies2. Consequently, in light of Propositions 4.6, 4.7 and 4.10, both the Krein-Milman

2See, e.g. Schaefer [270], p. 52, and note that the topological dual of ca (Σ) for the strong (variation
norm) topology on ca (Σ) separates points of ca (Σ) since any norm topology is a locally convex topology.
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Theorem (Theorem F.17 on p. 251, and Corollary F.25 on p. 253) and the Choquet-Bishop-
De Leeuw Theorem (Theorem F.27 on p. 253) can be used to characterize the collections
Cµ, C∗µ and ACµ in terms of (i) their extreme points, and of (ii) second-order beliefs on
them, i.e. beliefs about beliefs.

4.4.1 Extreme Points

Proposition 4.14. For any ν ∈ Cµ there exists a net {λα}α∈Γ in Cµ and a net {φβ}β∈Γ in
Cµ such that:

1. For each α ∈ Γ, λα is a convex combination of extreme points of Cµ;

2. For each β ∈ Γ, φβ is a convex combination of extreme points of Cµ;

3. The net {λα}α∈Γ converges to ν in the weak topology; and,

4. The net {φβ}β∈Γ converges to ν in the weak∗ topology.

Proof. By Proposition 4.6, the set Cµ is a nonempty, convex and weakly compact subset
of ca (Σ), which is a locally convex and Hausdorff topological vector space when equipped
with its weak topology. Therefore, by the Krein-Milman Theorem, Cµ is the weakly closed
convex hull of the set of its extreme points. Therefore, there exists a net in Cµ which
converges to ν in the weak topology, and each element of which is a convex combination
of extreme points of Cµ.

Similarly, by Proposition 4.6, the set Cµ is a nonempty, convex and weak∗ compact
subset of ca (Σ), which is a locally convex and Hausdorff topological vector space when
equipped with its weak∗ topology. Therefore, by the Krein-Milman Theorem, Cµ is the
weak∗ closed convex hull of the set of its extreme points. Therefore, there exists a net
in Cµ which converges to ν in the weak∗ topology, and each element of which is a convex
combination of extreme points of Cµ.

See also Rudin [248] (Theorem 3.10 on p. 62 and Section 3.14 on p. 66) or Aliprantis and Border [3] (pp.
211-212).
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Remark 4.15. By Proposition 4.6 and the Krein-Milman Theorem, the collection Cµ is
the weakly closed convex hull of the set of its extreme points. However, the weak and strong
closure of a convex subset of a locally convex Hausdorff topological vector space coincide
(see, e.g. Dunford and Schwartz [109], Theorem V.3.13 on p. 422, or Rudin [248], Theorem
3.12 on p. 64). Therefore, Cµ is also the norm-closed convex hull of the set of its extreme
points, and so for every ν ∈ Cµ there exists a net {ηα}α∈Γ in Cµ, each element of which
is a convex combination of extreme points of Cµ, and which converges to ν in the strong
(variation norm) topology.

A net converges to some limit if and only if ever subnet of that net converges to the
same limit (see, e.g. Willard [299], 11.4.e on p. 75). In particular, if a net converges to
some limit, then every subsequence of that net converges to the same limit. We then have
the following corollary:

Corollary 4.16. For any ν ∈ Cµ there exist three sequences {λn}n≥1, {φn}n≥1, and {ηn}n≥1

in Cµ such that:

1. For each n ≥ 1, λn, φn, and ηn are convex combinations of extreme points of Cµ;

2. The sequence {ηn}n≥1 converges to ν in the strong topology;

3. The sequence {λn}n≥1 converges to ν in the weak topology; and,

4. The sequence {φn}n≥1 converges to ν in the weak∗ topology, that is, for any Ψ ∈
B (Σ), lim

n→+∞

´
Ψ dφn =

´
Ψ dν.

Proof. Immediate

Remark 4.17. By Proposition 4.7, the previous results also apply to the collection C∗µ.

Similarly, in light of Proposition 4.10 and the Krein-Milman Theorem, the following
two results hold for the collection ACµ:

Proposition 4.18. For any ν ∈ ACµ there exists three nets {λα}α∈Γ, {φβ}β∈Γ, and {ηδ}δ∈Γ

in ACµ such that:
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1. For each α ∈ Γ, λα is a convex combination of extreme points of ACµ;

2. For each β ∈ Γ, φβ is a convex combination of extreme points of ACµ;

3. For each δ ∈ Γ, ηδ is a convex combination of extreme points of ACµ;

4. The net {λα}α∈Γ converges to ν in the weak topology;

5. The net {φβ}β∈Γ converges to ν in the weak∗ topology; and,

6. The net {ηδ}δ∈Γ converges to ν in the strong topology.

Proof. Immediate

Corollary 4.19. For any ν ∈ ACµ there exist three sequences {λn}n≥1, {φn}n≥1, and
{ηn}n≥1 in ACµ such that:

1. For each n ≥ 1, λn, φn, and ηn are convex combinations of extreme points of ACµ;

2. The sequence {ηn}n≥1 converges to ν in the strong topology;

3. The sequence {λn}n≥1 converges to ν in the weak topology; and,

4. The sequence {φn}n≥1 converges to ν in the weak∗ topology, that is, for any Ψ ∈
B (Σ), lim

n→+∞

´
Ψ dφn =

´
Ψ dν.

Proof. Immediate

Remark 4.20. It is well-known that the extreme points of ca+
1 (Σ) are those probability

measures on (S,Σ) taking only the values 0 and 1. An example of an extreme point for
ca+

1 (Σ) is a Dirac measure, i.e. a set function of the form

δx : Σ→ [0, 1]

A 7→ δx (A) :=

{
1 if x ∈ A
0 if x /∈ A

(4.14)
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for some x ∈ S. In general, not all extreme points of ca+
1 (Σ) are Dirac measures3. How-

ever, in many common situations the extreme points of the collection of probability mea-
sures are precisely the Dirac measures. These situations occur frequently in practice. For
instance, the extreme points of the collection of all Borel probability measures on a Polish
space (e.g. R with the usual metric) are the Dirac measures. More generally, the extreme
points of the collection of all Borel probability measures on any Souslin space (Definition
D.40 on p. 234, and Proposition D.41 on p. 234) are the Dirac measures4.

4.4.2 Second-Order Beliefs

Corollary F.25 (p. 253) and Theorem F.27 (p. 253) can be used to characterize second-
order beliefs on some collections of vigilant beliefs, as follows:

Proposition 4.21. Let ν ∈ Cµ, and let E (Cµ) denote the set of extreme points of Cµ.
Denote by Σ the Borel σ-algebra on Cµ generated by the weak topology, and denote by
Σ∗ the Borel σ-algebra on Cµ generated by the weak∗ topology. Then there exist a regular
probability measure λ1 on Σ and a regular probability measure λ2 on Σ∗ such that:

1. φ (ν) =
´
φ dλ1, for any linear and weakly continuous function φ on Cµ;

2. ψ (ν) =
´
ψ dλ2, for any linear and weak∗ continuous function ψ on Cµ;

3. λ1 is supported by the weak closure of E (Cµ); and,

4. λ2 is suported by the weak∗ closure of E (Cµ).

Proof. Immediate consequence of Corollary F.25 (p. 253) and Proposition 4.6.

3Suppose, for instance, that S is uncountable and that Σ is the collection of all subsets of S that are
either countable or whose complement is countable. Then Σ is a σ-algebra on S. Define the set function
µ on Σ as follows: For each A ∈ Σ, let µ (A) be equal to 0 when A is countable and let µ (A) be equal to
1 when A is uncountable. Then µ is an extreme point of ca+

1 (Σ) but is not a Dirac measure.
4See, e.g. Bugajski et al. [67] (pp. 3-4), Topsøe [292] (Theorem 11.1 on p. 48), Winkler [302] (p. 585)

and Winkler [303] (p. 11). Adamski [1] studies certain types of measurable spaces in which the Dirac
measures are precisely the zero-one measures.
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By Proposition 4.7, a similar result holds for the collection C∗µ.

Proposition 4.22. Let ν ∈ Cµ, and let E (Cµ) denote the set of extreme points of Cµ.
Denote by Σ the Borel σ-algebra on Cµ generated by the weak topology, and denote by Σ∗

the Borel σ-algebra on Cµ generated by the weak∗ topology. Denote by B the Baire σ-algebra
on Cµ generated by the weakly compact Gδ-s. Similarly, denote by B∗ the Baire σ-algebra
on Cµ generated by the weak∗ compact Gδ-s (note that B ⊆ Σ and B∗ ⊆ Σ∗).

Then there exist a regular probability measure λ3 on Σ and a regular probability measure
λ4 on Σ∗ such that:

1. φ (ν) =
´
φ dλ3, for any linear and weakly continuous function φ on Cµ;

2. ψ (ν) =
´
ψ dλ4, for any linear and weak∗ continuous function ψ on Cµ;

3. λ3 vanishes on every subset of B which is disjoint from E (Cµ); and,

4. λ4 vanishes on every subset of B∗ which is disjoint from E (Cµ).

Proof. Immediate consequence of Theorem F.27 (p. 253) and Proposition 4.6.

By Proposition 4.7, a similar result holds for the collection C∗µ. Similarly, using Propo-
sition 4.10, Corollary F.25 (p. 253), and Theorem F.27 (p. 253) we obtain the following:

Proposition 4.23. Let ν ∈ ACµ, and let E (ACµ) denote the set of extreme points of ACµ.
Denote by Σ the Borel σ-algebra on ACµ generated by the weak topology, and denote by
Σ∗ the Borel σ-algebra on ACµ generated by the weak∗ topology. Then there exist a regular
probability measure λ1 on Σ and a regular probability measure λ2 on Σ∗ such that:

1. φ (ν) =
´
φ dλ1, for any linear and weakly continuous function φ on ACµ;

2. ψ (ν) =
´
ψ dλ2, for any linear and weak∗ continuous function ψ on ACµ;

3. λ1 is supported by the weak closure of E (ACµ); and,

4. λ2 is suported by the weak∗ closure of E (ACµ).
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Proof. Immediate

Proposition 4.24. Let ν ∈ ACµ, and let E (ACµ) denote the set of extreme points of ACµ.
Denote by Σ the Borel σ-algebra on ACµ generated by the weak topology, and denote by
Σ∗ the Borel σ-algebra on ACµ generated by the weak∗ topology. Denote by B the Baire
σ-algebra on ACµ generated by the weakly compact Gδ-s. Similarly, denote by B∗ the Baire
σ-algebra on ACµ generated by the weak∗ compact Gδ-s (note that B ⊆ Σ and B∗ ⊆ Σ∗).

Then there exist a regular probability measure λ3 on Σ and a regular probability measure
λ4 on Σ∗ such that:

1. φ (ν) =
´
φ dλ3, for any linear and weakly continuous function φ on ACµ;

2. ψ (ν) =
´
ψ dλ4, for any linear and weak∗ continuous function ψ on ACµ;

3. λ3 vanishes on every subset of B which is disjoint from E (ACµ); and,

4. λ4 vanishes on every subset of B∗ which is disjoint from E (ACµ).

Proof. Immediate
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Chapter 5

Contracting for Innovation under
Heterogeneity and Ambiguity

5.1 Introduction

The purpose of this chapter is to show how the techniques of Chapter 2 can be used be-
yond problems of insurance demand. Specifically, we will consider a problem of contracting
for innovation under heterogeneous and ambiguous beliefs, as will be explained below.

In Chapter 2 both the CI and the DM had beliefs that were unambiguous, in the sense
that these beliefs were represented by an additive measure. In reality, however, it is often
the case that one party’s preferences over the acts of choice (i.e. the contracts) induce
a representation of beliefs that reflects some level of ambiguity, while the other party’s
beliefs are unambiguous. Nevertheless, this is not identical to a situation of information
asymmetry. It simply is a state of affairs whereby (i) the two parties have divergent beliefs,
and (ii) one party’s beliefs are ambiguous.

The situation that we will examine here can be summarized as follows: a DM is an
innovator who improves upon a certain commodity for which there is a market. This
improvement may be due to technological or other advances. A CI wishes to purchase that
innovation, or the rights for using that innovation. The innovation will be modeled as a
random variable X (see below). A contract between the DM and the CI is a pair (H, Y ),
where H > 0 is a fixed fee that the CI pays as a lump-sum upon entering into the contract
with the DM. The DM then promises to transfer to the CI the amount X (s), in the state
of the world s ∈ S, in return of which the CI promises to pay the contingent amount
Y (s) = I (X (s)), for some predetermined payment scheme I. The DM’s problem is that
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of determining the optimal payment scheme I, or equivalently the optimal contingent claim
Y = I ◦X.

Additionally, the CI’s preferences admit a representation in terms of a Choquet-Expected
Utility (CEU), as in Schmeidler [275] and Gilboa [148] (see Appendix A.3.2), hence ex-
hibiting a certain level of ambiguity.

We will then illustrate how we can still use some of the techniques of Chapter 2 in
this setting so as to show the existence of a monotone solution to the DM’s problem.
Additionally, we will consider a special case and characterize the solution to the DM’s
problem in that case using a similar “splitting” method to the one used in Chapter 2 and
Chapter 3.

Finally, we also consider a situation where both the DM and the CI have preferences
over the elements of choice that admit a representation which exhibits some ambiguity
in their beliefs. We will extend the definition of vigilance to such a situation, and we
will then show how in this case for each feasible solution to the DM’s problem there
corresponds at least one other feasible solution which is a nondecreasing function of the
underlying uncertainty. However, to prove this result we will need to extend the notion
of an equimeasurable rearrangement to the case where we have a non-additive measure
instead of a measure (this is done in Appendix 5.8).

Outline

In section 5.2 we introduce definitions as well as the general setup. In section 5.3 we
state the DM’s problem and use the techniques of Chapter 2 to show the existence and
monotonicity of a solution. In section 5.4, we consider a special case, and characterize the
solution in that case using a “splitting” procedure as was done in Chapter 2. In section 5.5
we briefly consider yet another extension, whereby both the DM and the CI have ambiguous
beliefs, and we show the existence of a monotone solution to the DM’s problem. Finally,
section 5.6 concludes. Appendix 5.7 contains a useful theorem that will be used in this
chapter. Appendix 5.8 extends the idea of an equimeasurable rearrangement to a situation
where we have a capacity (defined below) instead of a measure. This will be used in the
proof of the main Theorem of section 5.5.
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5.2 Preliminaries and Setup

In this section we recall the definition of a capacity and of the Choquet integral, which
are the building blocks the CEU model and of the contracting model we will consider in
this chapter.

5.2.1 Capacities and the Choquet Integral

Definition 5.1. A capacity on (S,G) is a set function ν : G → [0, 1] such that

1. ν (∅) = 0;

2. ν (S) = 1; and,

3. ν is monotone: for any A,B ∈ G, A ⊆ B ⇒ ν (A) ≤ ν (B).

Remark 5.2. An example of a capacity on a measurable space (S,G) is a set function
ν := T ◦ P , where P is a probability measure on (S,G) and T : [0, 1]→ [0, 1] is increasing
with T (0) = 0 and T (1) = 1.

Definition 5.3. A capacity ν on (S,G) is said to be continuous from above if for any
sequence {An}n in G such that An+1 ⊆ An for each n ≥ 1, we have:

lim
n→+∞

ν (An) = ν

(
+∞⋂
n=1

An

)
(5.1)

A capacity ν on (S,G) is said to be continuous from below if for any sequence {An}n
in G such that An ⊆ An+1 for each n ≥ 1, we have:

lim
n→+∞

ν (An) = ν

(
+∞⋃
n=1

An

)
(5.2)

Finally, a capacity ν on (S,G) is said to be continuous if it is both continuous from
above and continuous from below.
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Remark 5.4. If P is a probability measure on (S,G) and T : [0, 1] → [0, 1] is increasing
and continuous, with T (0) = 0 and T (1) = 1, then the set function ν := T ◦P is a capacity
on (S,G) which is continuous. This is an immediate consequence of the continuity of the
measure P for monotome sequences1 and the continuity of T .

Definition 5.5. A capacity ν on (S,G) is said to be submodular if for each A,B ∈ G,

ν (A ∪B) + ν (A ∩B) ≤ ν (A) + ν (B) (5.3)

Remark 5.6. If P is a probability measure on (S,G) and T : [0, 1] → [0, 1] is increasing
and concave, with T (0) = 0 and T (1) = 1, then the set function ν := T ◦ P is a capacity
on (S,G) which is submodular2.

Definition 5.7. For a given capacity ν and a given ψ ∈ B+ (G), the Choquet integral¸
ψ dν of ψ with respect to ν is defined by

˛
ψ dν :=

ˆ +∞

0

ν ({s ∈ S : ψ (s) ≥ t}) dt (5.4)

Moreover, for any A ∈ G,
¸
A
ψ dν will be defined by:

˛
A

ψ dν :=

˛
ψ 1A dν (5.5)

If φ ∈ B (G), then the Choquet integral
¸
φ dν of φ with respect to ν is defined by

˛
φ dν :=

ˆ +∞

0

ν ({s ∈ S : φ (s) ≥ t}) dt+

ˆ 0

−∞
[ν ({s ∈ S : φ (s) ≥ t})− 1] dt (5.6)

Moreover, for any A ∈ G,
¸
A
φ dν will be defined by:

˛
A

φ dν :=

˛
φ 1A dν (5.7)

1See, e.g. Cohn [82], Proposition 1.2.3 on p. 11.
2See, e.g. Denneberg [96], Example 2.1 on pp. 16-17.
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Remark 5.8. The Choquet integral with respect to a measure is simply the usual Lebesgue
integral with respect to that measure3. The Choquet integral is a well-defined Riemann
integral4. Moreover, for any capacity ν on (S,G) and for any ψ ∈ B+ (G), the following
holds5:

˛
ψ dν =

ˆ +∞

0

ν ({s ∈ S : ψ (s) ≥ t}) dt =

ˆ +∞

0

ν ({s ∈ S : ψ (s) > t}) dt (5.8)

Furthermore, for any capacity ν on (S,G) and for any φ ∈ B (G), the following holds6:

˛
ψ dν =

ˆ +∞

0

ν ({s ∈ S : φ (s) > t}) dt+

ˆ 0

−∞
[ν ({s ∈ S : φ (s) > t})− 1] dt (5.9)

Finally, as a functional on B (G), the Choquet integral (with respect to some given
capacity) is supnorm-continuous being Lipschitz continuous7.

Definition 5.9. Two functions Y1, Y2 ∈ B (G) are said to be comonotonic if[
Y1 (s)− Y1 (s′)

][
Y2 (s)− Y2 (s′)

]
≥ 0, for all s, s′ ∈ S (5.10)

Similarly, two functions Y1, Y2 ∈ B (G) are said to be anti-comonotonic if[
Y1 (s)− Y1 (s′)

][
Y2 (s)− Y2 (s′)

]
≤ 0, for all s, s′ ∈ S (5.11)

For instance any Y ∈ B (G) is comonotonic with any c ∈ R. Moreover, if Y1, Y2 ∈ B (G),
and if Y2 is of the form Y2 = I ◦ Y1, for some Borel-measurable function I, then Y2 is
comonotonic (resp. anti-comonotonic) with Y1 if and only if the function I is nondecreasing
(resp. nonincreasing).

3See, e.g. Marinacci and Montrucchio [204], p. 59.
4See, e.g. Marinacci and Montrucchio [204], p. 61.
5See, e.g. Marinacci and Montrucchio [204], Proposition 4.8 on p. 60.
6See, e.g. Marinacci and Montrucchio [204], p. 60.
7See, e.g. Marinacci and Montrucchio [204], Proposition 4.11–(iv) on p. 64.
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Proposition 5.10. Let ν be a capacity on (S,G). If φ1, φ2 ∈ B (G) are comonotonic, then
the following holds: ˛

(φ1 + φ2) dν =

˛
φ1 dν +

˛
φ2 dν (5.12)

Proof. See Marinacci and Montrucchio [204], Theorem 4.3 on p. 66.

Proposition 5.11. Let ν be a capacity on (S,G). If φ ∈ B (G) and c ∈ R, then the
following holds: ˛

(φ+ c) dν =

˛
φ dν + c (5.13)

Proof. See Denneberg [96], Proposition 5.1–(v) on p. 65. This is an immediate consequence
of the definition of the Choquet integral and of Proposition 5.10.

Proposition 5.12. Let ν be a capacity on (S,G). Then the following hold:

1. If A ∈ G then ˛
1A dν = ν (A) (5.14)

2. If φ ∈ B (G) and a ≥ 0, then

˛
a φ dν = a

˛
φ dν (5.15)

3. If φ1, φ2 ∈ B (G) are such that φ1 ≤ φ2, then

˛
φ1 dν ≤

˛
φ2 dν (5.16)

Proof. See Denneberg [96] (Proposition 5.1–(i), (ii), and (iv) on pp. 64-65) or Marinacci
and Montrucchio [204] (Proposition 4.11–(i), (ii), and (iii) on p. 64).
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Proposition 5.13. Let ν be a submodular capacity on (S,G). If φ1, φ2 ∈ B (G), then the
following holds: ˛

(φ1 + φ2) dν ≤
˛
φ1 dν +

˛
φ2 dν (5.17)

Proof. See Denneberg [96], Proposition 6.3 on p. 75, or Marinacci and Montrucchio [204],
Theorem 4.6 on p. 73.

5.2.2 Uncertainty, Preferences, and Beliefs

Representation of preferences

As in Chapter 2, S is the set of states of the world and G is a σ-algebra of events on
S. B+ (G) denotes the collection of bounded, R+-valued, and G-measurable functions of S.
The innovation will be quantified in monetary terms and will be taken to be a henceforth
fixed X ∈ B+ (G) with a closed range [0,M ] := X (S), where M := ‖X‖s < +∞, and Σ
denotes the σ-algebra σ{X} of subsets of S generated by X.

The DM has preference <DM over B+ (Σ), and the CI has preference <CI over B+ (Σ).
We will assume that the DM is an Expected-Utility maximizer, whereas the CI’s preferences
<CI over B+ (Σ) admit a Choquet Expected-Utility (CEU) representation (as in Schmeidler
[275] or Gilboa [148])8. Specifically, we will assume the following about the representation
of preferences:

Assumption 5.14. There is a bounded, nondecreasing, and continuous utility function
u : R→ R, unique up to a positive affine transformation, and a unique countably additive
subjective probability measure µ on the measurable space (S,Σ), such that for each Y1, Y2 ∈
B+ (Σ),

Y1 <DM Y2 ⇐⇒
ˆ
u (Y1) dµ ≥

ˆ
u (Y2) dµ (5.18)

Moreover, there is a nondecreasing and continuous utility function v : R → R, which
is bounded on bounded subsets of R and unique up to a positive affine transformation,

8See also Appendix A.3.2.
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and a unique subjective capacity ν on the measurable space (S,Σ), such that for each
Y1, Y2 ∈ B+ (Σ),

Y1 <CI Y2 ⇐⇒
˛
v (Y1) dν ≥

˛
v (Y2) dν (5.19)

Additionally, as usual in contracting problems and principal-agent problems, we suppose
that the DM is risk-averse, having a concave utility function, and that the CI has a linear
utility index v. In the Expected-Utility framework this is equivalent to assuming risk-
neutrality of the CI. Since the utility index v is given up to a positive affine transformation,
we might then assume the following:

Assumption 5.15. The CI’s utility function v is the identity function, that is, v (t) = t
for each t ∈ R.

As in Chapter 2, we also make the assumption that the innovation X (with closed range
[0,M ]) has a nonatomic law induced by the probability measure µ, and that the CI and
the DM are both aware of the fact that µ represents the DM’s beliefs and ν represents
the CI’s beliefs. We also assume that the capacity ν that represents that CI’s beliefs is
continuous. Specifically:

Assumption 5.16. We assume that:

1. µ ◦X−1 is nonatomic;

2. ν is continuous;

3. µ is known by the CI; and,

4. ν is known by the DM.

The assumption of continuity of ν is a technical assumption that is needed for the proof
of the existence of a monotone solution to the DM’s demand problem, which will be stated
below. Moreover, as in the previous chapters, the assumption of nonatomicity of µ ◦X−1

is simply a technical requirement that is needed for defining the equimeasurable monotone
rearrangement of some Y ∈ B+ (Σ) with respect to X, as in section 2.3.
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Uncertainty and Wealth

The contract between the DM and CI is a pair (H, Y ) ⊂ R+ \ {0} × B+ (Σ), whereby
upon entering into the contract with the CI, the DM receives a fixed fee H > 0 from the
CI, in return of which she accepts to transfer to the CI the amount X (s) of the innovation
X in the state of the world s ∈ S, and to receive the amount Y (s) from the CI.

The DM has initial wealth W0, and after entering into the contract (H, Y ) with the CI,
her total wealth is the Σ-measurable, R-valued and bounded function on S defined by

WDM (H,Y ) (s) := W0 +H −X (s) + Y (s) , ∀s ∈ S (5.20)

The CI has initial wealth WCI
0 , and after entering into the contract (H, Y ) with the

DM, his total wealth is the Σ-measurable, R-valued and bounded function on S defined by

WCI (H,Y ) (s) := WCI
0 −H +X (s)− Y (s) , ∀s ∈ S (5.21)

Letting R := v
(
WCI

0

)
= WCI

0 be the CI’s reservation utility, the CI’s individual ra-
tionality constraint, or participation constraint, for entering into a contract (H,Y ) with

the CI is then given by
¸
v
(
WCI

0 − H + X − Y
)
dν ≥ v

(
WCI

0

)
. However, since we

have assumed v to be the identity function, the CI’s participation constraint becomes¸ (
WCI

0 − H + X − Y
)
dν ≥ WCI

0 . Now, since WCI
0 − H ∈ R and X − Y ∈ B (Σ), it

follows from Proposition 5.11 then yields that the CI’s participation constraint is given by:

˛ (
X − Y

)
dν ≥ H (5.22)

Vigilant Beliefs and Probabilistic Consistency

As in Chapter 2, we will adopt the following definition of vigilance.

Definition 5.17. The capacity ν is said to be (µ,X)-vigilant if for any Y1, Y2 ∈ B+ (Σ)
such that
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(i) Y1 and Y2 have the same distribution under µ, and,

(ii) Y2 is a nondecreasing function of X, i.e. Y2 and X are comonotonic,

the following holds:

WCI (H,Y2) <CI W
CI (H,Y1) (5.23)

Remark 5.18. Equivalently, we can define vigilance in this setting as follows: the capacity
ν is (µ,X)-vigilant if and only if for any Y1, Y2 ∈ B+ (Σ) such that

(i) Y1 and Y2 have the same distribution under µ, and,

(ii) Y2 is a nondecreasing function of X, i.e. Y2 and X are comonotonic,

the following holds: ˛ (
X − Y2

)
dν ≥

˛ (
X − Y1

)
dν (5.24)

5.3 The DM’s Demand for Contingent Claims

5.3.1 The DM’s problem

The problem of designing the optimal contract can be seen as that of finding the claim
that will maximize the expected utility of the DM’s wealth, under her subjective probability
measure, subject to the CI’s participation constraint and to some constraints on the claim.
Specifically, the DM’s problem is the following:

Problem 5.19.

sup
Y ∈B+(Σ)

{ˆ
u (W0 +H −X + Y ) dµ

}
:{

0 ≤ Y ≤ X¸
(X − Y ) dν ≥ H
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Remark 5.20. Assuming Problem 5.19 has a nonempty feasibility set, the supremum in
Problem 5.19 is finite since the utility function u is bounded.

5.3.2 Existence of a Solution and Pareto-Improving Claims

Here we will give a sufficient condition for Problem 5.19 to admit a solution which is
comonotonic with X.

Definition 5.21. Let FSB be given by

FSB :=

{
Y ∈ B (Σ) : 0 ≤ Y ≤ X and

˛
(X − Y ) dν ≥ H

}

That is, FSB is the feasibility set for Problem 5.19. In the following, we will assume
that this feasibility set is nonempty:

Assumption 5.22. FSB 6= ∅.

Let F↑SB denote the collection of all feasible Y ∈ B+ (Σ) for Problem 5.19 which are also
comonotonic with X, i.e. of the form Y = I ◦X where I : [0,M ]→ [0,M ] is nondecreasing:

Definition 5.23. Let F↑SB :=

{
Y = I ◦X ∈ FSB : I is nondecreasing

}
.

Lemma 5.24. If ν is (µ,X)-vigilant, then F↑SB 6= ∅.

Proof. Similar to the prof of Lemma 2.26.
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Definition 5.25. If Y1, Y2 ∈ FSB, we will say that Y2 is a Pareto improvement of Y1 (or
is Pareto-improving) when the following hold:

1.
´
u
(
WDM (H,Y2)

)
dµ ≥

´
u
(
WDM (H, Y1)

)
dµ; and,

2.
¸
WCI (H, Y2) dν ≥

¸
WCI (H,Y1) dν.

Lemma 5.26. Suppose that ν is (µ,X)-vigilant and that U (X, Y ) := u
(
W0 +H−X+Y

)
is supermodular (e.g. u is concave). If Y ∈ FSB, then there is some Y ∗ ∈ F↑SB which is
Pareto-improving.

Proof. Similar to the proof of Lemma 2.28.

Proposition 5.27. If ν is (µ,X)-vigilant and U (X, Y ) := u
(
W0 + H − X + Y

)
is

supermodular (e.g. u is concave), then Problem 5.19 admits a solution which is comonotonic
with X.

Proof. The main idea of this proof is to extend the methods used for the proof of Propo-
sition 2.29 and to adapt them to the present context.

By Lemma 5.26, we can choose a maximizing sequence {Yn}n in F↑SB for Problem 5.19.
That is,

lim
n→+∞

ˆ
u
(
W0 +H −X + Yn

)
dµ = N

where N < +∞ is the supremum value of Problem 5.19. Since 0 ≤ Yn ≤ X ≤M := ‖X‖s,
the sequence {Yn}n is uniformly bounded. Moreover, for each n ≥ 1 we have Yn = In ◦X,
with In : [0,M ] → [0,M ]. Consequently, the sequence {In}n is a uniformly bounded
sequence of nondecreasing Borel-measurable functions. Thus, by Lemma 2.50, there is a
nondecreasing function I∗ : [0,M ] → [0,M ] and a subsequence {Im}m of {In}n such that
{Im}m converges pointwise on [0,M ] to I∗. Hence, I∗ is also Borel-measurable, and so
Y ∗ := I∗ ◦X ∈ B+ (Σ) is such that 0 ≤ Y ∗ ≤ X. Moreover, the sequence {Ym}m, defined
by Ym = Im◦X, converges pointwise to Y ∗. Thus, the sequence {X−Ym}m is nonnegative,
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uniformly bounded, and converges pointwise to X − Y ∗. Therefore, since ν is continuous
by Assumption 5.16, it follows from Corollary 5.70 on p. 147 that

H ≤ lim
m→+∞

˛ (
X − Ym

)
dν =

˛ (
X − Y ∗

)
dν

and so Y ∗ ∈ F↑SB.

Now, by continuity and boundedness of the function u (Assumption 5.14), and by
Lebesgue’s Dominated Convergence Theorem, we have

ˆ
u
(
W0 +H −X + Y ∗

)
dµ = lim

m→+∞

ˆ
u
(
W0 +H −X + Ym

)
dµ

= lim
n→+∞

ˆ
u
(
W0 +H −X + Yn

)
dµ = N

Hence Y ∗ solves Problem 5.19.

5.4 An Application: The Case of a Concave Distor-

tion of a Measure

Here we consider a special case of the previous general model. Namely, we suppose that
ν = T ◦ P , for some probability measure P on (S,Σ) and some function T : [0, 1]→ [0, 1],
increasing, concave and continuous, with T (0) = 0 and T (1) = 1. Then T ◦ P is a
continuous submodular capacity on (S,Σ). Based on Gilboa [147], we may assume that
both the distortion function T and the probability measure P are subjective, i.e. they are
determined entirely from the CI’s preferences, since ν is9. We will also assume that P ◦X−1

is a nonatomic Borel probability measure. Specifically:

Assumption 5.28. We assume that ν = T ◦ P , where:

1. P is a probability measure on (S,Σ) such that P ◦X−1 is nonatomic;

9Theorem 3.1 of Gilboa [147] also yields that both T and P are unique.
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2. T : [0, 1]→ [0, 1] is increasing, concave and continuously differentiable; and,

3. T (0) = 0 and T (1) = 1.

Remark 5.29. Since the seminal work of Schmeidler [275], it is customary in the CEU-
model to equate the submodularity of the capacity with an ambiguity seeking attitude. Specif-
ically, if ν is a submodular capacity on the measurable space (S,Σ), then there exists a
(weak∗-)compact and convex set C0 of probability measures on (S,Σ) such that for any
φ ∈ B+ (Σ), ˛

φ dν = max
λ∈C0

ˆ
φ dλ (5.25)

It is not surprising in the present context to assume that the CI is ambiguity seeking.
Indeed, (5.25) can be interpreted as indicating that the CI is optimistic about the possible
realizations of the innovation X. Arguably, this is in practice a necessary condition for
the existence of such markets for innovation in the first place, and – more generally – for
venture capitalism.

We will also make the assumption that the DM is risk-averse, i.e. that u is a concave
utility function.

Assumption 5.30. The DM’s utility function u is concave10 and nondecreasing.

For each Z ∈ B+ (Σ), let FZ (t) := P
(
{s ∈ S : Z (s) ≤ t}

)
denote the distribution

function of Z with respect to the probability measure P , and let FX (t) := P
(
{s ∈ S :

X (s) ≤ t}
)

denote the distribution function of X with respect to the probability measure
P . Let F−1

Z (t) be the left-continuous inverse of the distribution function FZ (that is, the
quantile function of Z), defined by

F−1
Z (t) := inf

{
z ∈ R+ : FZ (z) ≥ t

}
, ∀t ∈ [0, 1] (5.26)

Definition 5.31. Denote by AQ the collection of all quantile functions f of the form F−1,
where F is the distribution function of some Z ∈ B+ (Σ) such that 0 ≤ Z ≤ X.

10This then implies that the function U (x, y) = u (W0 +H − x+ y) is supermodular.
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By Lebesgue’s decomposition theorem, there exists a unique pair (µac, µs) of (nonneg-
ative) finite measures on (S,Σ) such that µ = µac + µs, µac << P , and µs ⊥ P . That
is, for all B ∈ Σ with P (B) = 0, we have µac (B) = 0, and there is some A ∈ Σ such
that P (S \ A) = µs (A) = 0. It then also follows that µac (S \ A) = 0 and P (A) = 1.
Note also that for all Z ∈ B (Σ),

´
Z dµ =

´
A
Z dµac +

´
S\A Z dµs. Furthermore, by

the Radon-Nikodým theorem, there exists a P -a.s. unique Σ-measurable and P -integrable
function h : S → [0,+∞) such that µac (C) =

´
C
h dP , for all C ∈ Σ. Consequently, for all

Z ∈ B (Σ),
´
Z dµ =

´
A
Zh dP +

´
S\A Z dµs. Moreover, since µac (S \ A) = 0, it follows

that
´
S\A Z dµs =

´
S\A Z dµ. Thus, for all Z ∈ B (Σ),

´
Z dµ =

´
A
Zh dP +

´
S\A Z dµ.

Moreover, since h : S → [0,+∞) is Σ-measurable and P -integrable, there exists a
Borel-measurable and P ◦X−1-integrable map φ : X (S) → [0,+∞) such that h = dµac/
dP = φ ◦X. We will also make the following assumption:

Assumption 5.32. The Σ-measurable function h = φ◦X = dµac/dP is anti-comonotonic
with X, i.e. φ is nonincreasing.

Since P ◦X−1 is nonatomic (by Assumption 5.28), it follows that FX (X) has a uniform
distribution over (0, 1) (see Föllmer and Schied [129], Lemma A.1 on p. 409), that is,
P
(
{s ∈ S : FX (X) (s) ≤ t}

)
= t for each t ∈ (0, 1). Letting U := FX (X), it follows that

U is a random variable on the probability space (S,Σ, P ) with a uniform distribution on
(0, 1). Consider the following quantile problem:

Problem 5.33. For a given β ≥ H,

sup
f

{
V (f) :=

ˆ
u
(
W0 +H − f (U)

)
φ
(
F−1
X (U)

)
dP

}
:{

f ∈ AQ´
T ′ (1− U) f (U) dP = β

The following theorem characterizes the solution of Problem 5.19 in terms of the solution
of the relatively easier quantile problem given in Problem 5.33, if the previous assumptions
hold.
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Theorem 5.34. Under the previous assumptions, there exists a parameter β∗ ≥ H such
that if f ∗ is optimal for Problem 5.33 with parameter β∗, then the function

Y ∗ :=
(
X − f ∗ (U)

)
1A +X1S\A

is optimal for Problem 5.19.

5.4.1 Proof of Theorem 5.34

“Splitting”

In the following, the Σ-measurable set A on which P is concentrated (and µs (A) = 0)
is assumed to be fixed all throughout.

Lemma 5.35. Let Y ∗ be an optimal solution for Problem 5.19, and suppose that ν is
(µ,X)-vigilant. Let Ỹ ∗µ be the nondecreasing µ-rearrangement of Y ∗ with respect to X.

Then Ỹ ∗µ is optimal for Problem 5.19 and comonotonic with X.

Proof. This is an immediate consequence of Assumption 5.30 and of Lemma 5.26 and its
proof.

Consider now the following two problems:

Problem 5.36. For a given β ≥ H,

sup
Y ∈B+(Σ)

{ˆ
A

u
(
W0 +H −X + Y

)
dµ

}
:{

0 ≤ Y ≤ X¸ (
X − Y

)
dT ◦ P = β
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Problem 5.37.

sup
Y ∈B+(Σ)

{ˆ
S\A

u
(
W0 +H −X + Y

)
dµ

}
:{

0 ≤ Y 1S\A ≤ X1S\A¸
S\A

(
X − Y

)
dT ◦ P = 0

Remark 5.38. By Remark 5.20, the supremum value of each of the above two problems is
finite when their feasibility sets are nonempty. Now, the function X is feasible for Problem
5.37, and so Problem 5.37 has a nonempty feasibility set.

Definition 5.39. For a given β ≥ H, let ΘA,β be the feasibility set of Problem 5.36 with
parameter β. That is,

ΘA,β :=

{
Y ∈ B+ (Σ) : 0 ≤ Y ≤ X,

˛
(X − Y ) dν = β

}

Denote by Γ the collection of all β for which the feasibility set ΘA,β is nonempty:

Definition 5.40. Let Γ :=
{
β ≥ H : ΘA,β 6= ∅

}

Lemma 5.41. Γ 6= ∅.

Proof. By Assumption 5.22, there is some Y ∈ B+ (Σ) such that 0 ≤ Y ≤ X, and¸
(X − Y ) dν ≥ H. Let βY :=

¸
(X − Y ) dν. Then, by definition of βY , and since

0 ≤ Y ≤ X, we have Y ∈ ΘA,βY , and so ΘA,βY 6= ∅. Consequently, βY ∈ Γ, and so
Γ 6= ∅.

Lemma 5.42. X is optimal for Problem 5.37
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Proof. The feasibility of X for Problem 5.37 is clear. To show optimality, let Y be any
feasible function for Problem 5.37. Then for each s ∈ S \ A, Y (s) ≤ X (s). Therefore,
since u is increasing, we have u

(
W0 +H −X (s) + Y (s)

)
≤ u

(
W0 +H −X (s) +X (s)

)
=

u
(
W0 +H

)
, for each s ∈ S \ A. Thus,

ˆ
S\A

u
(
W0 +H −X + Y

)
dµ ≤

ˆ
S\A

u
(
W0 +H −X +X

)
dµ = u

(
W0 +H

)
µ (S \ A)

Remark 5.43. Since P (S \ A) = 0 and T (0) = 0, it follows that T ◦ P (S \ A) = 0,
and so

¸
1S\A dT ◦ P = T ◦ P (S \ A) = 0, by Proposition 5.12 (1). Therefore, for any

Z ∈ B+ (Σ), it follows form the monotonicity and positive homogeneity of the Choquet
integral (Proposition 5.12 (2) and (3)) that

0 ≤
˛
S\A

Z dT ◦ P =

˛
Z1S\A dT ◦ P

≤
˛
‖Z‖s1S\A dT ◦ P = ‖Z‖s

˛
1S\A dT ◦ P = 0

and so
¸
S\A Z dT ◦ P = 0. Consequently, it follows form Proposition 5.13 that for any

Z ∈ B+ (Σ), ˛
Z dT ◦ P ≤

˛
Z1A dT ◦ P =

˛
A

Z dT ◦ P

Now, consider the following problem:

Problem 5.44.

sup
β∈Γ

{
F ∗A (β) : F ∗A (β) is the supremum value of Problem 5.36, for a fixed β ∈ Γ

}

Lemma 5.45. Under Assumption 5.28, if β∗ is optimal for Problem 5.44, and if Y ∗1 is
optimal for Problem 5.36 with parameter β∗, then Y ∗ := Y ∗1 1A + X1S\A is optimal for
Problem 5.19.
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Proof. By the feasibility of Y ∗1 for Problem 5.36 with parameter β∗, we have 0 ≤ Y ∗1 ≤ X
and
¸

(X − Y ∗1 ) dT ◦ P = β∗. Therefore, 0 ≤ Y ∗ ≤ X, and

˛
(X − Y ∗) dT ◦ P =

˛ [
(X − Y ∗1 ) 1A + (X −X) 1S\A

]
dT ◦ P

=

˛
A

(X − Y ∗1 ) dT ◦ P ≥
˛

(X − Y ∗1 ) dT ◦ P

= β∗ ≥ H

where the inequality
¸
A

(X − Y ∗1 ) dT ◦ P ≥
¸

(X − Y ∗1 ) dT ◦ P follows from the same
argument as in Remark 5.43. Hence, Y ∗ is feasible for Problem 5.19. To show optimality
of Y ∗ for Problem 5.19, let Y be any other feasible function for Problem 5.19, and define
α :=

¸ (
X − Y

)
dT ◦P . Then α ≥ H, and so Y is feasible for Problem 5.36 with parameter

α, and α is feasible for Problem 5.44. Hence

F ∗A (α) ≥
ˆ
A

u
(
W0 +H −X + Y

)
dµ

Now, since β∗ is optimal for Problem 5.44, it follows that

F ∗A (β∗) ≥ F ∗A (α)

Moreover, Y is feasible for Problem 5.37 (since 0 ≤ Y ≤ X and so
¸
S\A

(
X − Y

)
dT ◦P = 0

by Remark 5.43). Thus,

F ∗A (β∗) + u
(
W0 +H

)
µ (S \ A) ≥ F ∗A (α) + u

(
W0 +H

)
µ (S \ A)

≥
ˆ
A

u
(
W0 +H −X + Y

)
dµ

+ u
(
W0 +H

)
µ (S \ A)

≥
ˆ
A

u
(
W0 +H −X + Y

)
dµ

+

ˆ
S\A

u
(
W0 +H −X + Y

)
dµ

=

ˆ
u
(
W0 +H −X + Y

)
dµ
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However,

F ∗A (β∗) =

ˆ
A

u
(
W0 +H −X + Y ∗1

)
dµ

Therefore,

ˆ
u
(
W0 +H −X + Y ∗

)
dµ = F ∗A (β∗) + u

(
W0 +H

)
µ (S \ A)

≥
ˆ
u
(
W0 +H −X + Y

)
dµ

Hence, Y ∗ is optimal for Problem 5.19.

Remark 5.46. By Lemma 5.45, we can restrict ourselves to solving Problem 5.36 with a
parameter β ∈ Γ.

Solving Problems 5.36

Recall that for all Z ∈ B (Σ),
´
Z dµ =

´
A
Zh dP +

´
S\A Z dµ, where h = dµac/dP

is the Radon-Nikodým derivative of µac with respect to P . Moreover, by definition of the
set A ∈ Σ, we have P (S \ A) = µs (A) = 0. Therefore,

´
A
Zh dP =

´
Zh dP , for each

Z ∈ B (Σ). Hence, we can rewrite Problem 5.36 (restricting ourselves to parameters β ∈ Γ
and recalling that h = φ ◦X) as the following problem:

Problem 5.47. For a given β ∈ Γ,

sup
Y ∈B+(Σ)

{ˆ
u
(
W0 +H −X + Y

)
φ (X) dP

}
:{

0 ≤ Y ≤ X¸
(X − Y ) dT ◦ P = β
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Now, consider the following problem:

Problem 5.48. For a given β ∈ Γ,

sup
Z∈B+(Σ)

{ˆ
u
(
W0 +H − Z

)
φ (X) dP

}
:{

0 ≤ Z ≤ X¸
Z dT ◦ P = β =

´ +∞
0

T
(
P
(
{s ∈ S : Z (s) ≥ t}

))
dt

Lemma 5.49. If Z∗ is optimal for Problem 5.48 with parameter β, then Y ∗ := X − Z∗ is
optimal for Problem 5.47 with parameter β.

Proof. Let β ∈ Γ be given, and suppose that Z∗ is optimal for Problem 5.48 with parameter
β. Define Y ∗ := X − Z∗. Then Y ∗ ∈ B (Σ). Moreover, since 0 ≤ Z∗ ≤ X, it follows that
0 ≤ Y ∗ ≤ X. Now,

˛
(X − Y ∗) dT ◦ P =

˛ (
X − (X − Z∗)

)
dT ◦ P =

˛
Z∗ dT ◦ P = β

and so Y ∗ is feasible for Problem 5.47 with parameter β. To show optimality of Y ∗ for
Problem 5.47 with parameter β, suppose per contra that Y 6= Y ∗ is feasible for Problem
5.47 with parameter β and

ˆ
u
(
W0 +H −X + Y

)
h dP >

ˆ
u
(
W0 +H −X + Y ∗

)
h dP

that is, with Z := X − Y , we have

ˆ
u
(
W0 +H − Z

)
h dP >

ˆ
u
(
W0 +H − Z∗

)
h dP

Now, since 0 ≤ Y ≤ X and
¸ (

X − Y
)
dT ◦P = β, we have that Z is feasible for Problem

5.48 with parameter β, hence contradicting the optimality of Z∗ for Problem 5.48 with
parameter β. Thus, Y ∗ := X − Z∗ is optimal for Problem 5.47 with parameter β.
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The next result shows that for any feasible claim, there is a another feasible claim which
is comonotonic with X and Pareto-improving.

Lemma 5.50. Fix a parameter β ∈ Γ. If Z is feasible for Problem 5.48 with parameter
β, then Z̃ is feasible for Probem 5.48 with parameter β, comonotonic with X, and Pareto-
improving, where Z̃ is the nondecreasing P -rearrangement of Z with respect to X.

Proof. Let Z be feasible for Problem 5.48 with parameter β, and note that by Assump-
tions 5.30 and 5.32 and by Lemma 2.13, the map L (X,Z) := u

(
W0 + H − Z

)
φ (X) is

supermodular (see Example 2.14 (6)). Let Z̃ denote the nondecreasing P -rearrangement

of Z with respect to X. Then by Lemma 2.16 (1) and by equimeasurability of Z and Z̃,

the function Z̃ is feasible for Problem 5.48 with parameter β. Also, by Lemma 2.15 (1)

and by supermodularity of L (X,Z), it follows that Z̃ is Pareto-improving.

Quantile reformulation

Fix a parameter β ∈ Γ, let Z ∈ B+ (Σ) be feasible for Problem 5.48 with parameter

β, and let Z̃ denote the nondecreasing P -rearrangement of Z with respect to X. Since
Z ∈ B+ (Σ), it can be written as ψ◦X for some nonnegative Borel-measurable and bounded
map ψ on X (S) = [0,M ]. Moreover, since 0 ≤ Z ≤ X, ψ is a mapping of [0,M ] into
[0,M ]. Let φ := P ◦ X−1 be the image measure of P under X. By Assumption 5.28, φ

is nonatomic. We can then define the mapping ψ̃ : [0,M ] → [0,M ] as in Section 2.3 (see
equation (2.12) on p. 20) to be the nondecreasing φ-rearrangement of ψ, that is,

ψ̃ (t) := inf
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : ψ (x) ≤ z}

)
≥ φ

(
[0, t]

)}
(5.27)

Then, as in Section 2.3, Z̃ = ψ̃ ◦X. Therefore, for each s0 ∈ S,

Z̃ (s0) = ψ̃ (X (s0))

= inf
{
z ∈ R+ : φ

(
{x ∈ [0,M ] : ψ (x) ≤ z}

)
≥ φ

(
[0, X (s0)]

)} (5.28)

However, for each s0 ∈ S,
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φ
(

[0, X (s0)]
)

= P ◦X−1
(

[0, X (s0)]
)

= FX (X (s0)) := FX (X) (s0) (5.29)

Moreover,

φ
(
{x ∈ [0,M ] : ψ (x) ≤ z}

)
= P ◦X−1

(
{x ∈ [0,M ] : ψ (x) ≤ z}

)
= P

(
{s ∈ S : ψ (X (s)) ≤ z}

)
= FZ (z)

(5.30)

Consequently, for each s0 ∈ S,

Z̃ (s0) = inf
{
z ∈ R+ : FZ (z) ≥ FX (X) (s0)

}
= F−1

Z (FX (X (s0))) := F−1
Z (FX (X)) (s0)

(5.31)

That is,

Z̃ = F−1
Z (FX (X)) (5.32)

where F−1
z is the left-continuous inverse of FZ , as defined in (5.26).

Hence, by Lemma 5.50 and equation (5.32), we can restrict ourselves to finding a
solution to Problem 5.48 of the form F−1 (FX (X)), where F is the distribution function
of a function Z ∈ B+ (Σ) such that 0 ≤ Z ≤ X and

¸
Z dT ◦ P = β. Moreover, since

X is a nondecreasing function of X and P -equimeasurable with X, it follows from the
P -a.s. uniqueness of the equimeasurable nondecreasing P -rearrangement (see Section 2.3)
that X = F−1

X (FX (X)), P -a.s. (see also Föllmer and Schied [129], Lemma A.1 on p. 409).
Thus, for any Z ∈ B+ (Σ),

ˆ
u
(
W0 +H − F−1

Z (FX (X))
)
φ
(
F−1
X (FX (X))

)
dP =

ˆ
u
(
W0 +H − Z̃

)
φ (X) dP

≥
ˆ
u
(
W0 +H − Z

)
φ (X) dP
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where the inequality follows from the proof of Lemma 5.50.

Moreover, since P ◦X−1 is nonatomic (by Assumption 5.28), it follows that FX (X) has
a uniform distribution over (0, 1) (see Föllmer and Schied [129], Lemma A.1 on p. 409),
that is, P

(
{s ∈ S : FX (X) (s) ≤ t}

)
= t for each t ∈ (0, 1). Finally, letting U := FX (X),

˛
F−1 (U) dT ◦ P =

ˆ +∞

0

T
[
P
(
{s ∈ S : F−1 (U) (s) ≥ t}

)]
dt

=

ˆ +∞

0

T
[
P
(
{s ∈ S : F−1 (U) (s) > t}

)]
dt

=

ˆ +∞

0

T
[
1− F (t)

]
dt

=

ˆ 1

0

T ′ (1− t)F−1 (t) dt =

ˆ
T ′ (1− U)F−1 (U) dP

where the third and last equalities above follow from the fact that U has a uniform distri-
bution over (0, 1), and where the second-to-last equality follows from a standard argument
(see, e.g. Denneberg [96], Proposition 1.4 on p. 8 and the discussion on pp. 61-62. See also
Jin and Zhou [175] p. 418, He and Zhou [164] p. 210 and p. 213, or the remark of Carlier
and Dana [71] on p. 207).

Now, recall from Definition 5.31 that AQ is the collection of all admissible quantile
functions, that is the collection of all functions f of the form F−1, where F is the distribu-
tion function of a function Z ∈ B+ (Σ) such that 0 ≤ Z ≤ X, and consider the following
problem:

Problem 5.51. For a given β ∈ Γ,

sup
f

{
V (f) :=

ˆ
u
(
W0 +H − f (U)

)
φ
(
F−1
X (U)

)
dP

}
:{

f ∈ AQ´
T ′ (1− U) f (U) dP = β

Lemma 5.52. If f ∗ is optimal for Problem 5.51 with parameter β ∈ Γ, then the function
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f ∗ (U) is optimal for Problem 5.48 with parameter β, where U := FX (X). Moreover,
X − f ∗ (U) is optimal for Problem 5.47 with parameter β.

Proof. Fix β ∈ Γ, suppose that f ∗ ∈ AQ is optimal for Problem 5.51 with parameter β,
and let Z∗ ∈ B+ (Σ) be the corresponding function. That is, f ∗ is the quantile function

of Z∗ and 0 ≤ Z∗ ≤ X. Let Z̃∗ := f ∗ (U). Then Z̃∗ is the equimeasurable nondecreasing

P -rearrangement of Z∗ with respect to X, and so 0 ≤ Z̃∗ ≤ X by Lemma 2.16 (1).
Moreover,

β =

ˆ
T ′ (1− U) f ∗ (U) dP =

˛
f ∗ (U) dT ◦ P

=

˛
Z̃∗ dT ◦ P =

ˆ +∞

0

T
[
P
(
{s ∈ S : Z̃∗ (s) ≥ t}

)]
dt

=

ˆ +∞

0

T
[
P
(
{s ∈ S : Z∗ (s) ≥ t}

)]
dt =

˛
Z∗ dT ◦ P

where the second-to-last equality follows from the P -equimeasurability of Z∗ and Z̃∗.
Therefore, Z̃∗ = f ∗ (U) is feasible for Problem 5.48 with parameter β. To show opti-
mality, let Z be any feasible function for Problem 5.48 with parameter β, and let F be the
distribution function for Z. Then, by Lemma 5.50, the function Z̃ := F−1 (U) is feasible
for Probem 5.48 with parameter β, comonotonic with X, and Pareto-improving. Moreover,
Z̃ has also F as a distribution function. To show optimality of Z̃∗ = f ∗ (U) for Problem
5.48 with parameter β, it remains to show that

ˆ
u
(
W0 +H − Z̃∗

)
φ (X) dP ≥

ˆ
u
(
W0 +H − Z̃

)
φ (X) dP

Now, let f := F−1, so that Z̃ = f (U). Since Z̃ is feasible for Probem 5.48 with
parameter β, we have

β =

˛
Z̃ dT ◦ P =

˛
F−1 (U) dT ◦ P

=

ˆ 1

0

T ′ (1− t)F−1 (t) dt =

ˆ
T ′ (1− U) f (U) dP

Hence, f is feasible for Problem 5.51 with parameter β. Since f ∗ is optimal for Problem
5.51 with parameter β we have
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ˆ
u
(
W0 +H − f ∗ (U)

)
φ
(
F−1
X (U)

)
dP ≥

ˆ
u
(
W0 +H − f (U)

)
φ
(
F−1
X (U)

)
dP

Finally, since X = F−1
X (U) , P -a.s., we have

ˆ
u
(
W0 +H − Z̃∗

)
φ (X) dP ≥

ˆ
u
(
W0 +H − Z̃

)
φ (X) dP

Therefore, Z̃∗ = f ∗ (U) is optimal for Problem 5.48 with parameter β. Finally, by

Lemma 5.49, Y ∗ := X − Z̃∗ = X − f ∗ (U) is optimal for Problem 5.47 with parameter
β.

By Lemmata 5.45 and 5.52, this completes the proof of Theorem 5.34.

5.5 Contracting under Bilateral Ambiguity

5.5.1 Uncertainty, Preferences, and Beliefs

In this section we consider a situation where both the DM and the CI have preferences
over B+ (Σ) that admit a representation that reflects some ambiguity in their beliefs. We
also suppose that the DM’s preferences are represented by a symmetric Choquet integral
(see Appendix 5.7), hence reflecting some gain-loss separability, in the spirit of the Cumu-
lative Prospect Theory (CPT) of Kahneman and Tversky ([177] and [293]). We refer the
reader to Appendix A.3.1, p. 189, for a description of CPT. For more about the separa-
bility properties of a CPT-functional, including several equivalent characterizations of the
CPT-functional, as well as a discussion and definition of the notion of Loss Aversion, see
Ghossoub [141]. Bernard and Ghossoub [32] also provide some equivalent formulations of
a CPT-functional.

Specifically, we will assume the following about the representation of preferences:

Assumption 5.53. There is a bounded, nondecreasing, and continuous utility function
u : R→ R, unique up to a positive affine transformation, and a unique subjective capacity
η on the measurable space (S,Σ), such that for each Y1, Y2 ∈ B+ (Σ),
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Y1 <DM Y2 ⇐⇒

[˛
(u ◦ Y1)+ dη −

˛
(u ◦ Y1)− dη

]
≥

[˛
(u ◦ Y2)+ dη −

˛
(u ◦ Y2)− dη

]

(5.33)

Moreover, there is a nondecreasing and continuous utility function v : R → R, which
is bounded on bounded subsets of R and unique up to a positive affine transformation,
and a unique subjective capacity ν on the measurable space (S,Σ), such that for each
Y1, Y2 ∈ B+ (Σ),

Y1 <CI Y2 ⇐⇒
˛
v (Y1) dν ≥

˛
v (Y2) dν (5.34)

As in Appendix 5.8, we define “continuity” of the random variable X with respect to
the capacity η as follows:

Definition 5.54. We say that ψ := η ◦ X−1 is nonatomic if for any Borel set A with
ψ (A) > 0, there is some Borel set B ( A such that 0 < ψ (B) < ψ (A).

We will say that X is a “continuous” random variable for η if ψ is nonatomic.

We will make the following assumptions:

Assumption 5.55. We assume that:

1. The CI’s utility function v is the identity function, that is, v (t) = t for each t ∈ R;

2. η is continuous and submodular;

3. η ◦X−1 is nonatomic;
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4. ν is continuous;

5. η is known by the CI; and,

6. ν is known by the DM.

As in the previous setting (section 5.2.2), the contract between the DM and CI is a
pair (H,Y ) ⊂ R+ \ {0}×B+ (Σ). Also, for a given contract (H, Y ), the wealth of the DM
(resp. of the CI) is the element WDM (H, Y ) (resp. WCI (H,Y )) of B (Σ) given in equation
(5.20) (resp. equation (5.21)). Moreover, the CI’s participation constraint is given by:

˛ (
X − Y

)
dν ≥ H (5.35)

Definition 5.56. We say that Y, Z ∈ B+ (Σ) have the same distribution under η if for
each α ≥ 0,

η
(
s ∈ S : Y (s) ≤ α

)
= η
(
s ∈ S : Z (s) ≤ α

)

Remark 5.57. In Definition 5.56, if η were a bona fide (additive) measure then the fact
that for each α ≥ 0,

η
(
s ∈ S : Y (s) ≤ α

)
= η
(
s ∈ S : Z (s) ≤ α

)
is enough to imply that for any Borel set B,

η
(
{s ∈ S : Y (s) ∈ B

)
= η
(
{s ∈ S : Z (s) ∈ B}

)
,

as was shown in the proof of Proposition 2.9 (6).

However, in more general situations where η is not a measure, the fact that

η
(
s ∈ S : Y (s) ≤ α

)
= η
(
s ∈ S : Z (s) ≤ α

)
for each α ≥ 0 need not imply that

η
(
{s ∈ S : Y (s) ∈ B

)
= η
(
{s ∈ S : Z (s) ∈ B}

)
,
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for each Borel set B. Consequently, there are several ways in which one can define the
notion of “ η-equimeasurability” of two elements of B+ (Σ), when η is not additive. For
instance:

1. Denneberg [96] (p. 46) defines the “distribution function” of Y ∈ B+ (Σ) with respect
to a capacity η on a measurable space (S,Σ) as the function

Gη,Y (t) := η
(
{s ∈ S : Y (s) > t}

)
One would then say that Y, Z ∈ B+ (Σ) have the same distribution under η if for
each α ≥ 0,

Gη,Y (α) = Gη,Z (α)

2. One could also say that Y, Z ∈ B+ (Σ) have the same distribution under η if for each
Borel set B,

η
(
{s ∈ S : Y (s) ∈ B

)
= η
(
{s ∈ S : Z (s) ∈ B}

)

Here, we will adopt the following definition of vigilance:

Definition 5.58. The capacity ν is said to be (η,X)-vigilant if for any Y1, Y2 ∈ B+ (Σ)
such that

(i) Y1 and Y2 have the same distribution under η (in the sense of Definition 5.56) and,

(ii) Y2 is a nondecreasing function of X, i.e. Y2 and X are comonotonic,

the following holds: ˛ (
X − Y2

)
dν ≥

˛ (
X − Y1

)
dν (5.36)
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5.5.2 The DM’s Problem

The DM’s problem is the following:

Problem 5.59.

sup
Y ∈B+(Σ)

{˛ (
u
(
W0 +H −X + Y

))+

dη −
˛ (

u
(
W0 +H −X + Y

))−
dη

}
:{

0 ≤ Y ≤ X¸
(X − Y ) dν ≥ H

Remark 5.60. By boundedness of the utility function u (Assumption 5.53) and by Propo-
sition 5.12, the supremum value of Problem 5.59 is finite whenever its feasibility set is
nonempty.

Definition 5.61. Let FSB be given by

FSB :=

{
Y ∈ B (Σ) : 0 ≤ Y ≤ X and

˛
(X − Y ) dν ≥ H

}

That is, FSB is the feasibility set for Problem 5.59. In the following, we will assume
that this feasibility set is nonempty:

Assumption 5.62. FSB 6= ∅.

Let F↑SB denote the collection of all feasible Y ∈ B+ (Σ) for Problem 5.59 which are also
comonotonic with X, i.e. of the form Y = I ◦X where I : [0,M ]→ [0,M ] is nondecreasing:

Definition 5.63. Let F↑SB :=

{
Y = I ◦X ∈ FSB : I is nondecreasing

}
.
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Theorem 5.64. If ν is (η,X)-vigilant, then F↑SB 6= ∅ and for each Y ∈ FSB there exists

some Ỹ ∈ F↑SB such that

WCI
(
H, Ỹ

)
<CI W

CI (H,Y )

Proof. By Assumption 5.62, FSB 6= ∅. Choose any Y = I ◦X ∈ FSB, and let Ỹ denote a
nondecreasing η-rearrangement of Y with respect to X, as defined in Appendix 5.8. Then
(i) Y and Ỹ have the same distribution under η; (ii) Ỹ = Ĩ ◦X where Ĩ is nondecreasing,

and (iii) 0 ≤ Ỹ ≤ X, by Proposition 5.80 on p. 153.

Furthermore, since ν is (η,X)-vigilant, it follows from the definition of vigilance that

˛ (
X − Ỹ

)
dν ≥

˛ (
X − Y

)
dν

However,
¸ (

X − Y
)
dν ≥ H since Y ∈ FSB. Therefore,

¸ (
X − Ỹ

)
dν ≥ H. Thus,

Ỹ ∈ F↑SB, and so F↑SB 6= ∅.

Moreover, by Proposition 5.11,

˛ (
X − Ỹ

)
dν ≥

˛ (
X − Y

)
dν

⇐⇒
˛ (

WCI
0 −H +X − Ỹ

)
dν ≥

˛ (
WCI

0 −H +X − Y
)
dν

⇐⇒ WCI
(
H, Ỹ

)
<CI W

CI (H,Y )

where the last equivalence holds because we have assumed that the CI’s utility function v
is the identity function (Assumption 5.55 (1)).

Remark 5.65. What Theorem 5.64 asserts is that if vigilance holds, then for any function
Y1 ∈ B+ (Σ) which is feasible for the DM’s problem there is another feasible function
Y2 ∈ B+ (Σ) which is (i) comonotonic with the underlying uncertainty X, and (ii) is such
the contract (H,Y2) is preferred by the CI to the contract (H,Y1).
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5.6 Conclusion

In this chapter we examined a problem of contracting for innovation under heteroge-
neous and ambiguous beliefs in order to demonstrate how the techniques of Chapter 2 can
be used beyond problems of insurance demand. We showed that even in such a framework,
and even if preferences admit a representation that reflects a certain level of ambiguity in
beliefs, the notion of vigilance yields the existence a solution to the DM’s problem which
is a nondecreasing function of the underlying innovation (what we called the underlying
uncertainty in Chapter 2).

We then considered the special case where the CI’s beliefs are represented by a distorted
probability measure, with a concave distortion function. We provided a general technique
for characterizing the solution of the DM’s problem in terms of the solution of a relatively
easier quantile problem, using a “splitting” procedure resembling what was done in Chapter
2.

Finally, we considered a situation where both the DM and the CI have preferences
over the elements of choice that admit a representation that exhibits some ambiguity in
their beliefs. We assumed that the CI is a CEU-maximizer and the DM’s preferences are
represented by a symmetric Choquet integral, hence reflecting some gain-loss separability,
in the spirit of the Cumulative Prospect Theory of Kahneman and Tversky ([177] and
[293]). We showed that in this setting, if vigilance holds, then for any payoff function Y1

which is feasible for the DM’s problem there is another feasible payoff function Y2 which
is (i) comonotonic with the underlying uncertainty, and (ii) such that for a given fixed fee
H > 0 the CI prefers a contract in which he pays Y2 to a contract in which he pays Y1.

5.7 Appendix: A Dominated Convergence Theorem

for the Choquet Integral

5.7.1 The Šipoš Integral

Given a capacity ν on a measurable space (S,Σ), recall from Definition 5.7 and Remark
5.8 that the Choquet integral of a given φ ∈ B (Σ) with respect to ν is defined as
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˛
φ dν : =

ˆ +∞

0

ν ({s ∈ S : φ (s) ≥ t}) dt+

ˆ 0

−∞
[ν ({s ∈ S : φ (s) ≥ t})− 1] dt

=

ˆ +∞

0

ν ({s ∈ S : φ (s) > t}) dt+

ˆ 0

−∞
[ν ({s ∈ S : φ (s) > t})− 1] dt

(5.37)

If φ+ (resp. φ−) denotes the nonnegative (resp. nonpositive) part of φ, then

1. φ = φ+ + (−φ−); and,

2. φ+ and −φ− are comonotonic.

Therefore, by Proposition 5.10, we have:

˛
φ dν =

˛
φ+ dν +

˛ (
−φ−

)
dν (5.38)

However, unless ν is a bona fide measure or φ ≥ 0, it does not hold that
¸

(−φ−) dν =
−
¸
φ− dν. Indeed, by (5.37),

˛ (
−φ−

)
dν =

ˆ +∞

0

ν
(
{s ∈ S : −φ− (s) > t}

)
dt+

ˆ 0

−∞

[
ν
(
{s ∈ S : −φ− (s) > t}

)
− 1
]
dt

= 0 +

ˆ 0

−∞

[
ν
(
{s ∈ S : −φ− (s) > t}

)
− 1
]
dt

=

ˆ 0

−∞

[
ν
(
{s ∈ S : φ− (s) < −t}

)
− 1
]
dt

Letting u = −t, we then have

˛ (
−φ−

)
dν = −

ˆ 0

+∞

[
ν
(
{s ∈ S : φ− (s) < u}

)
− 1
]
du

=

ˆ +∞

0

[
ν
(
{s ∈ S : φ− (s) < u}

)
− 1
]
du

= −
ˆ +∞

0

[
1− ν

(
{s ∈ S : φ− (s) < u}

)]
du
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On the other hand,

−
˛
φ− dν = −

ˆ +∞

0

ν
(
{s ∈ S : φ− (s) ≥ u}

)
du−

ˆ 0

−∞

[
ν
(
{s ∈ S : φ− (s) ≥ u}

)
− 1
]
du

= −
ˆ +∞

0

ν
(
{s ∈ S : φ− (s) ≥ u}

)
du

However, since ν is not additive,

ν
(
{s ∈ S : φ− (s) ≥ u}

)
6= 1− ν

(
{s ∈ S : φ− (s) < u}

)
Therefore, if φ− 6= 0, then

¸
(−φ−) dν 6= −

¸
φ− dν, and so

˛
φ+ dν +

˛ (
−φ−

)
dν 6=

˛
φ+ dν −

˛
φ− dν (5.39)

This is the motivation behind the following definition.

Definition 5.66 (The Šipoš Integral). Let ν be a given capacity on a measurable space
(S,Σ), and let φ ∈ B (Σ). The Šipoš integral (a.k.a. the symmetric Choquet integral) of φ
with respect to ν is defined as:

“
φ dν :=

˛
φ+ dν −

˛
φ− dν (5.40)

Proposition 5.67. If ν is a given capacity on a measurable space (S,Σ), and if φ ∈ B+ (Σ),
then ˛

φ dν =

“
φ dν

Proof. Trivial.

Unlike the Choquet integral which is merely positively homogeneous (Proposition 5.12),
the Šipoš integral is homogeneous, and therefore it is also symmetric:
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Proposition 5.68. If ν is a given capacity on a measurable space (S,Σ), and if φ ∈ B (Σ).
Then for any a ∈ R, we have

“
a φ dν = a

“
φ dν

In particular, the Šipoš integral is symmetric, in the sense that

“
(−φ) dν = −

“
φ dν

Proof. See Denneberg [96] (Propostion 7.1 on p. 88) or Pap [221] (Theorem 7.10 on p.
155).

5.7.2 A Dominated Convergence Theorem

Theorem 5.69 (Dominated Convergence). Let ν be a continuous capacity (Definition 5.3)
on a measurable space (S,Σ). If {φn}n is a sequence in B (Σ) that converges pointwise to
some φ ∈ B (Σ), then

lim
n→+∞

“
φn dν =

“
φ dν (5.41)

Proof. This is a special case of a more general theorem given in Pap [221] (Theorem 7.16
on p. 166).

Since the Choquet integral and the Šipoš integral of a nonnegative (bounded and mea-
surable) function coincide, we then have the following corollary immediately:

Corollary 5.70. Let ν be a continuous capacity on a measurable space (S,Σ). If {φn}n is
a sequence in B+ (Σ) that converges pointwise to some φ ∈ B+ (Σ), then

lim
n→+∞

˛
φn dν =

˛
φ dν (5.42)
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There are several other convergence theorems for the Choquet integral in the literature,
but not for pointwise convergent sequences. For instance:

1. By Marinacci and Montrucchio [204] (Proposition 4.11–(iv) on p. 64), the Choquet
integral is a supnorm-continous operator on B (Σ), and so it preserves uniform con-
vergence, i.e. convergence in the supnorm on B (Σ);

2. Greco [157] also gives a Dominated Convergence Theorem for the Choquet integral,
but for uniformly convergent sequences of functions;

3. Denneberg [96] (Theorem 8.9 on p. 101) provides a Dominated Convergence Theorem
for the Choquet integral (with respect to a given capacity ν), but for sequences of
functions that converge “in ν-distribution”. Denneberg’s definition of “convergence
in ν-distribution” is similar to the usual definition for measures, with the exception
that here ν is not additive.

5.8 Appendix: Equimeasurable Monotone Rearrange-

ments with Respect to a Continuous Submodular

Capacity

In section 2.3, we introduced a specific formulation of the equimeasurable monotone
P -rearrangement of an element Y of B+ (Σ) with respect to X, where Σ = σ{X} and P is
a given probability measure on the space (S,Σ). Any such Y can be written as Y = I ◦X,
for some Borel-measurable nonnegative function on the range of X. The construction of
the equimeasurable rearrangement of ỸP of Y with respect to X was defined as Ĩ ◦ X,
where Ĩ was the equimeasurable φ-rearrangement of I, with φ = P ◦X−1.

In this Appendix we use a similar construction to define an equimeasurable monotone η-
rearrangement of an element Y of B+ (Σ) with respect to X, where η is a given continuous
and submodular capacity on the space (S,Σ). The results presented here are new, to the
best of our knowledge.

5.8.1 Distribution Functions

Let (S,G) be a measurable space, and let X ∈ B+ (G) with [0,M ] := X (S), where
M = ‖X‖s < +∞. Denote by Σ the σ-algebra σ{X} of subsets of S generated by X.
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Let η be a continuous submodular capacity on (S,Σ), and recall from section 5.2 that this
means the following:

1. η (∅) = 0;

2. η (S) = 1;

3. η is monotone: for any A,B ∈ Σ, A ⊆ B ⇒ η (A) ≤ η (B);

4. η is submodular: for each A,B ∈ Σ,

η (A ∪B) + η (A ∩B) ≤ η (A) + η (B) (5.43)

5. η continuous from above: for any sequence {An}n in Σ such that An+1 ⊆ An for each
n ≥ 1, we have:

lim
n→+∞

η (An) = η

(
+∞⋂
n=1

An

)
(5.44)

6. η is continuous from below: for any sequence {An}n in Σ such that An ⊆ An+1 for
each n ≥ 1, we have:

lim
n→+∞

η (An) = η

(
+∞⋃
n=1

An

)
(5.45)

Definition 5.71. We define the “image capacity” of η under X as the quantity ψ := η◦X−1,
where for each Borel set B, ψ (B) = η

(
X−1 (B)

)
.

Proposition 5.72. The set function ψ is a continuous submodular capacity on the Borel
σ-algebra of the range of X.

Proof. Immediate.

Definition 5.73. For any Borel-measurable map I : [0,M ] → R, define the distribution
function of I as the map ψI : R→ [0, 1] given by

ψI (t) := ψ
(
{x ∈ [0,M ] : I (x) ≤ t}

)
(5.46)
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Proposition 5.74. For any Borel-measurable map I : [0,M ]→ R, the function ψI : R→
[0, 1] is nondecreasing and right-continuous.

Proof. The monotonicity (resp. right-continuity) of ψI is a consequence of the monotonicity
(resp. continuity) of ψ.

5.8.2 Equimeasurable Rearrangements

Here, we will construct a ψ-equimeasurable rearrangement of any Borel-measurable
map I : [0,M ]→ [0,M ], assuming that η satisfies a “nonatomicity” condition.

Definition 5.75. We say that ψ = η ◦ X−1 is nonatomic if for any Borel set A with
ψ (A) > 0, there is some Borel set B ( A such that 0 < ψ (B) < ψ (A).

When η ◦X−1 is nonatomic, we will say that X is a continuous random variable for η.

Assumption 5.76. ψ = η ◦X−1 is nonatomic.

Remark 5.77. Since ψ is nonatomic, ψ ({t}) = 0, for each t ∈ [0,M ]. Therefore, it follows
that ψ

(
[0, t]

)
= ψ

(
[0, t)

)
, for each t ∈ [0,M ]. Indeed, we have ψ

(
[0, t]

)
≥ ψ

(
[0, t)

)
, by

monotonicity of ψ. Moreover, since [0, t] = [0, t) ∪ {t}, it follows from the submodularity
of ψ that

ψ
(

[0, t]
)

= ψ
(

[0, t) ∪ {t}
)

+ ψ
(

[0, t) ∩ {t}
)
≤ ψ

(
[0, t)

)
+ ψ

(
{t}
)

= ψ
(

[0, t)
)

Similarly, ψ
(

(t,M ]
)

= ψ
(

[t,M ]
)
, for each t ∈ [0,M ].

Definition 5.78. Let I : [0,M ] → [0,M ] be any Borel-measurable map, and define the

function Ĩ : [0,M ]→ R by:

Ĩ (t) := inf
{
z ∈ R+ : ψI (z) ≥ ψ

(
[0, t]

)}
(5.47)

The following proposition gives some useful properties of the map Ĩ defined above.
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Proposition 5.79. Let I : [0,M ] → [0,M ] be any Borel-measurable map and let Ĩ :
[0,M ]→ R be defined as in (5.47). If Assumption 5.76 holds, then:

1. Ĩ is left-continuous, nondecreasing, and Borel-measurable;

2. For each t ∈ [0,M ], ψI

(
Ĩ (t)

)
≥ ψ ([0, t]);

3. Ĩ (t) ≥ 0, for each t ∈ [0,M ], Ĩ (0) = 0, and Ĩ (M) ≤M ;

4. If I1, I2 : [0,M ] → [0,M ] are such that I1 ≤ I2 except on a Borel set C such that

ψ (C) = 0, then Ĩ1 ≤ Ĩ2;

5. If Id : [0,M ]→ [0,M ] denotes the identity function, then Ĩd ≤ Id;

6. Ĩ is ψ-equimeasurable with I, in the sense that for any α ∈ [0,M ],

ψ
(
{t ∈ [0,M ] : I (t) ≤ α}

)
= ψ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)
(5.48)

Proof.

1. The monotonicity of Ĩ, and hence its Borel-measurability, follows from the mono-
tonicity of ψ. By Remark 5.77 and by the monotonicity and the continuity of ψ,
left-continuity of Ĩ is an immediate consequence of the left-continuity of the function

ψ∗I (t) := inf
{
z ∈ R+ : ψI (z) ≥ t

}
, for t ∈ [0, 1] (i.e. the left-continuous inverse11 of

ψI);

2. This is an immediate consequence of the right-continuity of the distribution function
ψI of I;

3. Similar to the proof of Proposition 2.9 (3);

11See also Embrechts and Hofert [119] for more about the left-inverse (a.k.a. the left-continuous inverse)
of a nondecreasing function.
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4. Let I1, I2 : [0,M ]→ [0,M ] be such that I1 ≤ I2, except on a Borel subset C of [0,M ]
with ψ (C) = 0. Let D := [0,M ] \ C, then for each x ≥ 0,

ψ
(
{t ∈ [0,M ] : I1 (t) ≤ x}

)
≥ ψ

(
{t ∈ D : I1 (t) ≤ x}

)
,

by monotonicity of ψ. On the other hand, since ψ is submodular, we have

ψ
(
{t ∈ [0,M ] : I1 (t) ≤ x}

)
= ψ

(
{t ∈ D : I1 (t) ≤ x} ∪ {t ∈ C : I1 (t) ≤ x}

)
= ψ

(
{t ∈ D : I1 (t) ≤ x} ∪ {t ∈ C : I1 (t) ≤ x}

)
+ ψ

(
{t ∈ D : I1 (t) ≤ x} ∩ {t ∈ C : I1 (t) ≤ x}

)
≤ ψ

(
{t ∈ D : I1 (t) ≤ x}

)
+ ψ

(
{t ∈ C : I1 (t) ≤ x}

)
= ψ

(
{t ∈ D : I1 (t) ≤ x}

)
where the last equality follows form monotonicity of ψ and from the fat that ψ (C) =
0. Therefore, for each x ≥ 0, we have

ψ
(
{t ∈ [0,M ] : I1 (t) ≤ x}

)
= ψ

(
{t ∈ D : I1 (t) ≤ x}

)
Similarly, or each x ≥ 0, we have

ψ
(
{t ∈ [0,M ] : I2 (t) ≤ x}

)
= ψ

(
{t ∈ D : I2 (t) ≤ x}

)
Since I1 ≤ I2 on D, it follows from the monotonicity of ψ that for each x ≥ 0,

ψ
(
{t ∈ [0,M ] : I1 (t) ≤ x}

)
= ψ

(
{t ∈ D : I1 (t) ≤ x}

)
≥ ψ

(
{t ∈ D : I2 (t) ≤ x}

)
= ψ

(
{t ∈ [0,M ] : I2 (t) ≤ x}

)
Therefore, for each t ∈ [0,M ],{

z ∈ R+ : ψ
(
{x ∈ [0,M ] : I2 (x) ≤ z}

)
≥ ψ

(
[0, t]

)}
⊆
{
z ∈ R+ : ψ

(
{x ∈ [0,M ] : I1 (x) ≤ z}

)
≥ ψ

(
[0, t]

)}
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It then follows from (2.12) that Ĩ1 ≤ Ĩ2;

5. Similar to the proof of Proposition 2.9 (5);

6. To show that for each α ∈ [0,M ],

ψ
(
{t ∈ [0,M ] : I (t) ≤ α}

)
= ψ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)
the proof is similar to the one in the proof of Proposition 2.9 (6), bearing in mind
Remark 5.77.

Ĩ will be called a nondecreasing ψ-rearrangement of I. Now, define Y := I ◦X and Ỹ :=
Ĩ◦X. Since both I and Ĩ are Borel-measurable mappings of [0,M ] into itself, it follows that

Y, Ỹ ∈ B+ (Σ). Note also that Ỹ is nondecreasing in X, in the sense that if s1, s2 ∈ S are

such that X (s1) ≤ X (s2) then Ỹ (s1) ≤ Ỹ (s2), and that Y and Ỹ are η-equimeasurable,

that is, for any α ∈ [0,M ], η ({s ∈ S : Y (s) ≤ α}) = η
(
{s ∈ S : Ỹ (s) ≤ α}

)
. Indeed,

η
(
s ∈ S : Ỹ (s) ≤ α

)
= η
(
{s ∈ S : X (s) ∈ {t ∈ [0,M ] : Ĩ (t) ≤ α}}

)
= ψ

(
{t ∈ [0,M ] : Ĩ (t) ≤ α}

)
= ψ

(
{t ∈ [0,M ] : I (t) ≤ α}

)
= η
(
{s ∈ S : X (s) ∈ {t ∈ [0,M ] : I (t) ≤ α}}

)
= η
(
s ∈ S : Y (s) ≤ α

)

We will then call Ỹ a nondecreasing η-rearrangement of Y with respect to X,
and we shall denote it by Ỹη to avoid confusion in case a different continuous submodular
capacity on (S,Σ) is also considered.

Finally, in light of Proposition 5.79, we have the following:

Proposition 5.80. Under Assumption 5.76, if Y ∈ B+ (Σ) is such that 0 ≤ Y ≤ X, then

0 ≤ Ỹη ≤ X.
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Proof. With M = ‖X‖s, as before, since Y is Σ-measurable, by Doob’s measurability
theorem there is a real-valued bounded Borel-measurable mapping I on [0,M ] such that
Y = I ◦ X. Moreover, we can write X = Id ◦ X, where Id denotes the identity map on
[0,M ].

If 0 ≤ Y ≤ X then 0 ≤ I ≤ Id, since X (S) = [0,M ]. Therefore, by Proposition 5.79

(4) and (5), 0 ≤ Ĩ ≤ Ĩd ≤ Id, where Ĩ denotes the nondecreasing ψ-rearrangement of I

and where Ĩd denotes the nondecreasing ψ-rearrangement of Id. Hence, 0 ≤ Ỹη ≤ X.
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Chapter 6

Conclusion and Future Work

6.1 Some Concluding Remarks

In this thesis we have considered the effect of the subjectivity of beliefs in contracting
problems, and especially in problems of insurance demand, which were the motivation
behind this thesis. As we mentioned in Chapter 1, the idea that the random loss in
insurance models is a given random variable on an objectively and exogenously given
probability space is inherited from the von Neumann-Morgenstern approach, stipulating
that uncertainty is totally objective. In contrast, the work done in this thesis is based on
Savage’s [266] approach to uncertainty, and is entirely in the subjectivist tradition of De
Finetti [93] and Ramsey [234].

This subjectivist foundation then gave us a proper framework in which heterogeneity
of beliefs would arise naturally as a consequence of the heterogeneity of preferences. We
then examined an insurance model in which the beliefs of both parties are subjective
and heterogeneous. In other words, there are two probability measures on an underlying
measurable space, and the insurable loss is a random variable on that underlying space.
Each party then evaluates the likelihood of the different realizations of this loss according
to their own probability measure. This is radically different from the “classical” insurance
model, both in scope and philosophy. Nevertheless, we showed that under a consistency
requirement on these different probability measures that we called vigilance, we can show
the existence of an optimal contract which is a nondecreasing function of the insurable loss.
Moreover, we provided a general technique for characterizing the solution, and we did so
in terms of a generalized deductible contract.

Finally, we examined a problem of contracting for innovation under heterogeneous and
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ambiguous beliefs, to illustrate the techniques of Chapter 2 outside of the insurance frame-
work. We showed that in that case, and even if preferences admit a representation that
reflects a certain level of ambiguity in beliefs, the notion of vigilance yields the existence
a solution to the DM’s problem which is a nondecreasing function of the underlying inno-
vation (what was called the underlying uncertainty in Chapter 2). We then characterized
the solution is a special case, using a “slitting” procedure as in Chapter 2.

In this chapter we will discuss some possible extensions of the results presented in this
thesis, as well as some more properties of the notion of vigilance.

6.2 The Effect of the “Distance” between Subjective

Beliefs

The work done in Chapter 3 did not consider the effect of a change in the insurer’s
subjective probability measure on the shape of the optimal contract, or on the existence of
a monotone solution to the DM’s demand problem. Future research will examine how the
shape of the optimal contract changes with the “distance” between the subjective beliefs
of the DM and the insurer, for an appropriately defined notion of “distance”.

There are several ways in which one can define a “distance” between two probability
measures. Let P and Q be probability measures on a measurable space (Ω,F). We can
then define a “distance” between P and Q in many different ways, such as:

1. If Q << P , let dKL (P,Q) = DKL (P‖Q) = −
´

Ω
log dQ

dP
dP , where for any probability

measures µ2 << µ1, DKL(µ1‖µ2) is Kullback-Leibler divergence from µ1 to µ2.

2. dH (P,Q) = H2 (P,Q) = 1
2

ˆ
Ω

(√
dP

dλ
−
√
dQ

dλ

)2

dλ, where λ = (P +Q) /2, and

where for any probability measures µ1, µ2, and µ3 such that µ1 << µ3 and µ2 << µ3,
H2 (µ1, µ2) is called the Hellinger distance, and it does not depend on the specific
choice of the probability measure µ3. For instance, µ3 = (µ1 + µ2) /2 is acceptable.

3. dJS (P,Q) = 1
2
DKL (P‖λ) + 1

2
DKL (Q‖λ), where λ = (P +Q) /2. The quantity

dJS (P,Q) is called the Jensen-Shannon divergence.
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4. For a given convex function f with f (1) = 0, if Q << P , let df (P,Q) = Df (Q‖P ) =´
Ω
f
(
dQ
dP

)
dP , where for any probability measures µ2 << µ1, Df (µ2‖µ1) is f -divergence

of µ2 from µ1.

5. dTV (P,Q) = sup { |P (A)−Q (A)| : A ∈ F } is the total variation distance between
the probability measures P and Q.

6. dW (P,Q) = sup
{ ∣∣´

Ω
f dP −

´
Ω
f dQ

∣∣ : f is 1-Lipschitz
}

is the Wassertein distance,
or the Kantorovich-Monge distance between the probability measures P and Q.

6.3 The Demand for Insurance in the Presence of

Moral Hazard and Belief Heterogeneity

6.3.1 Ex-ante Moral Hazard in Insurance Models

The setting of Chapter 3 did not incorporate the possibility of moral hazard in the
insurance model considered. Future work will consider such a possibility, while maintaining
heterogeneity of subjective beliefs. Specifically, we will consider a situation where the DM
can exercise an effort in preventing the loss X or reducing its severity. This effort level is
unknown to the insurer, and hence ex ante moral hazard exists.

Before we can state the mathematical model that suits this situation, we need the
following definition:

Definition 6.1. A probability kernel from a measurable space (S1,F1) to a measurable
space (S2,F2) is a mapping Q : S1 ×F2 :→ [0, 1] such that:

1. For each t ∈ S1, the mapping

Q (t, .) : F2 → [0, 1]

B 7→ Q (t, B)
(6.1)

is a (countably additive) probability measure on (S2,F2);
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2. For each B ∈ F2, the mapping

Q (., B) : S1 → [0, 1]

t 7→ Q (t, B)
(6.2)

is F1-measurable.

6.3.2 A Model of Moral Hazard in Insurance

Mathematically, we will model this insurance market with moral hazard as follows:

1. As in section 3.2, S denotes the set of all states of the world, and G is a σ-algebra of
events on S.

2. The insurable loss is a fixed element X of B+ (G) with closed range X (S) = [0,M ],
where M = ‖X‖s < +∞. Let Σ be the σ-algebra σ{X} of subsets of S generated by
the random loss X.

3. The insurance market gives the DM the possibility of entering into an insurance
contract with the insurer. Such a contract is represented by a pair (Π, I), where
Π > 0 is the premium paid by the DM in return of the indemnity I. The indemnity
is a Borel-measurable map I : [0,M ] → [0,M ], such that 0 ≤ I (X (s)) ≤ X (s) for
all s ∈ S. Then Y := I ◦X ∈ B+ (Σ).

4. Both the DM and the insurer have preferences over the elements of B+ (Σ). The
insurer’s preferences <CI have a Subjective Expected-Utility (SEU) representation
of the form

Y1 <CI Y2 ⇐⇒
ˆ
S

v (Y1) dν ≥
ˆ
S

v (Y2) dν

where v : R → R is a continuous utility, bounded on bounded sets, and ν is the
insurer’s subjective probability measure on (S,Σ).

5. (E, E) is a measurable space of possible effort levels that the DM can exercise, and
<E is a total order on E. The cost of effort is modeled by a cost function c : E → R+,
where c is nondecreasing, i.e. for each e1, e2 ∈ E,

e1 <E e2 =⇒ c (e1) ≥ c (e2)
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Both the effort level e and its cost c (e) are unknown to the insurer, and unobservable
by him.

6. The DM’s preferences <DM over B+ (Σ) yield the existence of a probability kernel
Q form (E, E) to (S,Σ) and a continuous, bounded, concave, and increasing utility
function u : R→ R such that for each effort level e ∈ E and for each Y1, Y2 ∈ B+ (Σ),

Y1 <DM Y2 ⇐⇒
ˆ
S

u (Y1) dQ (e, .) ≥
ˆ
S

u (Y2) dQ (e, .)

7. The DM has initial wealth W0 > Π > 0, and for each effort level e the total wealth
of the DM is the Σ-measurable, R-valued and bounded function on S defined by

We (s) := W0 − Π− c (e)−X (s) + Y (s) , ∀s ∈ S (6.3)

where c (e) is the cost associated with the effort level e.

8. The insurer has initial wealth WCI
0 and final wealth WCI ∈ B (Σ).

6.3.3 The DM’s Demand Problem

The DM’s problem can then be formulated as the following problem:

Problem 6.2.

sup
Y ∈B+(Σ)

{ˆ
S

u
(
W0 − Π− c (e)−X + Y

)
dQ (e, .)

}
:

0 ≤ Y ≤ X´
v
(
WCI

)
dν ≥ v

(
WCI

0

)
e ∈ arg max

z∈E

[ ´
S
u
(
W0 − Π− c (z)−X + Y

)
dQ (z, .)

]

The first constraint has been discussed previously. The second constraint is simply
the insurer’s participation constraint, or individual rationality constraint, where v

(
WCI

0

)
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is the insurer’s reservation utility. The third constraint is commonly called an incentive-
compatibility constraint in the literature on principal-agent problems. However, in that
context, the beliefs of the principal and the agent are identical, for a given effort level.

For more about moral hazard in principal-agent problems, including an interpretation
of the incentive-compatibility constraint, we refer the reader to Arnott and Stiglitz [20],
[21], and [22], Conlon [84], Grossman and Hart [160], Jewitt [174], Kadan and Swinkels
[176], Mirrlees [212], Page [219] and [220], Rogerson [245], Shavell [278], Sinclair-Desgagné
[279] and [280], or Stiglitz [288], for instance.

6.4 The DM’s Preference for “Compatibility”

6.4.1 A Collection of Insurers

We saw in Chapter 3 that one possible interpretation of the notion of vigilance is that
the insurer assigns a certain credibility to the DM’s assessment of a given risk Y that is a
function of the underlying random loss X.

However, in the setting of Chapter 3, both the DM and the insurer are given a priori.
The DM is not assumed to have a choice over which insurer to purchase the insurance
coverage from. Future work on the notion of vigilance will also examine a situation where
the DM not only seeks an insurance contract that maximizes her expected utility of ter-
minal wealth with respect to her subjective measure, but she also has a choice between
which insurers to contract with, and will seek the “best” such insurer according to some
representation of some preference over a suitable set of available insurers.

It is hence natural to start by defining a suitable collection of available insurers with
which the DM can contract, and then define a proper notion of preference among these
insurers. For this, we need the following terminology:

Definition 6.3 (Compatibility). For a given DM whose beliefs are represented by a sub-
jective probability measure ν, we will say that the DM is compatible with an insurer CIN
if the insurer’s beliefs are represented by a subjective probability measure ν which is (µ,X)-
vigilant. Alternatively, we will also say that the DM and the insurer CIN are compatible.
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6.4.2 A Ranking of Insurers

We will start with a DM and a collection of compatible insurers. Given this collection
of insurers, we assume that the DM has an ability to rank these compatible insurers via
a “compatibility preference”. This preference is to be interpreted as follows: a compatible
insurer CIN1 is preferred by the DM to another compatible insurer CIN2 if the DM
believes that CIN1 is “more compatible” than CIN2.

The DM then chooses which compatible insurer to contract with, solely on the basis of
her compatibility preference. Once her choice of insurer is made, the DM then seeks the
optimal form of insurance coverage as in Chapter 3.

We will take as primitives of our model the DM’s preference <DM over indemnity
schedules (i.e. elements of B+ (Σ)), and her preference over compatible insurers. Moreover,
for a given compatible insurer, the insurer’s preference over B+ (Σ) is also taken as a
primitive.

Formally, the DM’s preference <DM overB+ (Σ) determine her utility u and a subjective
probability measure µ representing her beliefs. As in Chapter 4, we let Cµ ⊂ ca+

1 (Σ) denote
the collection of all (µ,X)-vigilant beliefs.

Definition 6.4. We denote by CIN the collection of all compatible insurers, indexed by
Cµ. That is, CIN ∈ CIN if and only if ν ∈ Cµ, where ν ∈ ca+

1 (Σ) represents CIN’s beliefs.

Then the DM is assumed to have a preference over the collection CIN of all compatible
insurers :

Assumption 6.5. The DM has a preference <comp over CIN .

The problem is then to give a certain axiomatization of this preference <comp in order
to obtain a representation, in the spirit of the various representation theorems given in
Appendix A. To do so, we need to

6.4.3 A Representation Theorem for the “Compatibility Prefer-
ence”

Here we will outline two possible ways in which one can obtain an integral representation
of the preference relation <comp. The first method is a straightforward application of the
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von Neumann-Morgenstern Representation Theorem (Theorem A.11 on p. 174), while the
second relies heavily on the mathematical structure of Cµ, as discussed in Chapter 4.

Method I

By definition of CIN , we can identify CIN with Cµ, and hence assume that <comp is a
preference over elements of Cµ. By Proposition 4.5, the collection of all vigilant beliefs is
a convex subset of ca+

1 (Σ). Then following the results of section A.1.2, or Fishburn [128]
(pp. 137-143), we can give axioms that would imply an integral representation for <comp

of the form

CIN1 <comp CIN2 ⇐⇒
ˆ
S

ξ dν1 ≥
ˆ
S

ξ dν2, ∀CIN1, CIN2 ∈ CIN (6.4)

where ξ : S → R is a bounded “utility” function.

Method II

The approach outlined here relies on the properties of collections of vigilant beliefs
given in Propositions 4.6 and 4.7, as well as on the results of Propositions 4.21 and 4.22.
Indeed, by identifying CIN with Cµ, the results of either Proposition 4.21 or Proposition
4.22 can be used to give an integral representations for <comp, as long as we can find a
linear functional L : Cµ → R which is continuous in either the weak or weak∗ topologies on
Cµ.

A possible starting point would be the classical Mixture Space Theorem of Herstein and
Milnor [165].

Definition 6.6. A mixture space is a nonempty set M and a collection {rα}α∈[01] of func-
tions rα : M ×M →M , such that for all s, t ∈M and for all α, β ∈ [0, 1],

1. r1 (s, t) = s;

2. rα (s, t) = r1−α (t, s);

3. rα (rβ (s, t) , t) = rαβ (s, t).
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For instance, any convex subset of a real vector space is a mixture space, with the
operation of vector addition being the mixing operation. Therefore, by Proposition 4.5,
the collection of all vigilant beliefs is a mixture space, for the usual vector operations on
the real vector space ba (Σ) of all finitely additive measures of bounded variation on (S,Σ).
That is, rα (ν1, ν2) = αν1 + (1− α) ν2.

Theorem 6.7 (Mixture Space Theorem ([165])). Let < be a binary relation on a mixture

space
(
M, {rα}α∈[01]

)
. Then the following are equivalent:

1. There exists a function L : M → R such that for all s, t ∈M and for all α ∈ [0, 1],

(a) s < t ⇔ L (s) ≥ L (t);

(b) L
(
rα (s, t)

)
= αL (s) + (1− α)L (t).

2. The binary relation < satisfies the following three axioms:

(a) Axiom 1 (weak order): < is complete and transitive, that is, (i) for all s, t ∈M ,
either s < t, or t < s, or both; and (ii) for all s, t, z ∈ M , if s < t and t < z,
then s < z;

(b) Axiom 2 (Independence): for all α ∈ (0, 1] and for all s, t, z ∈ M , if s < t then
rα (s, z) < ra (t, z);

(c) Axiom 3 (continuity): for all s, t, z ∈M , the sets {α ∈ [0, 1] : rα (s, t) < z} and
{α ∈ [0, 1] : z < rα (s, t)} are closed.

Moreover, if L represents < in the sense of (1)(a), then L is unique up to a positive
affine transformation.

By identifying CIN with Cµ, we can think of CIN as a mixture space with the mixing
operation defined as follows: fix CIN1, CIN2 ∈ CIN . Then there are ν1, ν2 ∈ Cµ such that
ν1 represents CIN1’s beliefs and ν2 represents CIN2’s beliefs. We then define, for each
α ∈ [0, 1],

rα (CIN1, CIN2) := αν1 + (1− α) ν2 (6.5)

Then r hence defined is a mixing operation on CIN since Cµ is a convex set (Proposition
4.5). Hence we can assume that <comp is a preference over elements of the mixture space
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(
CIN , {rα}α∈[01]

)
hence defined. The Mixture Space Theorem can then be applied to(

CIN , {rα}α∈[01]

)
to obtain a representation L : CIN → R of the preference relation

<comp.
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Appendix A

Some Elements of the Theory of
Choice under Risk and Uncertainty

A.1 The Classical Theory

In this section we will review the classical theory of choice under risk and uncertainty,
as introduced by von Neumann and Morgenstern [297], Savage [266], and Anscombe and
Aumann [19]. First, however, we start from the very basics: binary relations on arbitrary
sets and numerical representations of order relations. This will then lead us to von Neu-
mann and Morgenstern’s Expeted-Utility Representation Theorem, to Savage’s Subjective
Expected-Utility Representation Theorem, and to Anscombe and Aumann’s Subjective
Expected-Utility Representation Theorem.

A.1.1 Preliminaries

Preferences

Binary Relations Throughout this chapter, let S denote an arbitrary nonempty set,
and let S × S denote the usual Cartesian product of S with itself. Then S × S is the
collection of all ordered pairs of elements of S. That is,

S × S := {(x, y) : x, y ∈ S} (A.1)
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Definition A.1. A binary relation on S is a subset R of S × S, that is, a collection of
ordered pairs of elements of S. We write xRy to mean that (x, y) ∈ R, and we write
¬ (xRy) to mean that (x, y) /∈ R.

The following proposition shows that the concept of a binary relation is “well-defined”,
in a sense.

Proposition A.2. If R is a binary relation on an arbitrary nonempty set S then for any
x, y ∈ S, only one of the following holds:

1. xRy; or

2. ¬ (xRy).

Moreover, only one of the following holds:

1. xRy and yRx; or,

2. xRy and ¬ (yRx); or,

3. ¬ (xRy) and yRx; or,

4. ¬ (xRy) and ¬ (yRx).

Proof. See Fishburn [128], p. 10.

Thus far, we have introduced the notion of a binary relation and shown that this concept
is philosophically consistent. We now turn to some properties that a binary relation might
have.

Definition A.3. Let R be a binary relation on an arbitrary nonempty set S. Then R is
said to be:

1. Reflexive if xRx, for each x ∈ S;

2. Irreflexive if ¬ (xRx), for each x ∈ S;
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3. Symmetric if xRy ⇒ yRx, for each x, y ∈ S;

4. Asymmetric if xRy ⇒ ¬ (yRx), for each x, y ∈ S;

5. Antisymmetric if (xRy and yRx)⇒ (x = y), for each x, y ∈ S;

6. Transitive if (xRy and yRz)⇒ xRz, for each x, y, z ∈ S;

7. Negatively transitive if

(¬ (xRy) and ¬ (yRz))⇒ ¬ (xRz) , for each x, y, z ∈ S;

8. Weakly complete if (x 6= y)⇒ (xRy or yRx), for each x, y ∈ S;

9. Complete if xRy or yRx or both, for each x, y ∈ S;

To illustrate the previous definition, consider the usual strict order > on R. Then > is
irreflexive, asymmetric, transitive, negatively transitive, and weakly complete. Now, just
as > on R possesses more than just one of the above property, a binary relation R on an
arbitrary nonempty set S might have more than just one of the above properties. It is
customary to give special names to special combinations of the above properties, as in the
following definition.

Definition A.4. Let R be a binary relation on an arbitrary nonempty set S. Then R is
said to be:

1. A weak order if it is asymmetric and negatively transitive;

2. A strict order if it is a weakly complete weak order;

3. An equivalence if it is reflexive, transitive, and symmetric.

As an example, the strict order > on R is indeed a strict order in the understanding of
the above definition. The usual equality = on R is easily seen to be an equivalence relation.
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Preference Relations Theories of choice often take a preference relation over some
collection S of elements of choice as a primitive notion. The Decision Maker (DM) is
assumed to express his preferences over those elements of choice via statements of the form
“I strictly prefer x to y”. We will write this as x � y, for x, y ∈ S, and where � ⊆ S × S
is a binary relation that will express the DM’s strict preference over elements of S.

A moment’s reflection will show that two natural properties to require of � are asym-
metry and negative transitivity. Henceforth, we will thus assume that a DM’s preference
over elements of S are expressed by a weak order � on S that we will refer to as a strict
preference. Hence, the DM’s strict preference � is a primitive of choice. We assume it
to be given prior to any theoretical investigation. Form this primitive notion �, we can
define two additional binary relations on S to express the notions of weak preference and
indifference, as in the following definition.

Definition A.5. Let � be a strict preference (asymmetric and negatively transitive) over
elements of an arbitrary nonempty set S. From � we define two additional binary relations
< and ∼ on S, respectively called weak preference and indifference, as follows: For each
x, y ∈ S,

1. x < y ⇔ ¬ (y � x);

2. x ∼ y ⇔ (¬ (x � y) and ¬ (y � x))⇔ (y < x and x < y).

Throughout this thesis, we will often say that < and ∼ are defined from �“in the usual
manner” whenever < and ∼ are defined from � according to Definition A.5. Now, given �
as a primitive of choice, and suppose that we have defined weak preference and indifference
from strict preference in the usual manner, what can we say about the properties of the
latter two notions? The following Theorem gives an answer.

Theorem A.6. If � is a strict preference (asymmetric and negatively transitive) over
elements of an arbitrary nonempty set S then

1. � is transitive;

2. ∼ is an equivalence relation;

3. < is transitive and complete;
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4. Exactly one of the following holds, for each x, y ∈ S:

(a) x � y; or,

(b) y � x; or,

(c) x ∼ y.

Proof. See Fishburn [128], Theorem 2.1 on p. 13.

Cardinal Utility

A fundamental mathematical issue that arises naturally whenever one is dealing with
some sort of an ordering of elements of some set S is whether it is possible to represent this
ordering by an ordering on R (in the usual ordering on R) via some mapping of S into R
that preserves the ordering. For instance, if � is a strict preference on S, does there exist
a mapping u : S → R such that for all x, y ∈ S, x � y ⇔ u (x) > u (y), where > is the
usual strict order on R? Needless to say, this is a deep and serious mathematical question,
and it has indeed occupied such mathematicians as the great Cantor himself (Cantor [69]).

Definition A.7. Let � be a strict preference over elements of an arbitrary nonempty set
S, and define < from � in the usual manner. A subset D of S is called �-order dense if
for each x, y ∈ S such that x � y, there exists z ∈ D such that x < z < y.

Theorem A.8 (Cantor). Let � be a binary relation on an arbitrary nonempty set S. Then
there exists a real-valued function u on S such that:

∀ (x, y) ∈ X ×X, x � y ⇔ u (x) > u (y) (A.2)

if and only if � on S is a strict preference relation (asymmetric and negatively transitive)
and there exists a countable �-order dense subset of S. Furthermore, when such a function
u exists, it is unique up to a strictly increasing transformation. We will refer to u as a
cardinal utility function, or simply a utility function.

Proof. See Kreps [187], Theorem 3.5 on p. 25 and Theorem 3.6 on p. 26.
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Cantor’s theorem guarantees the existence of a utility function that represents the
DM’s strict preference � over elements S in terms of a strict ordering on R. However, the
theorem does not mention continuity of the utility function u, and in fact such a question is
meaningless in the setting of the previous theorem, for there is no topology on S. Moreover,
even if there were a topology T on S, Cantor’s theorem does not guarantee that u would
be T -continuous. This motivates the following theorem:

Theorem A.9 (Debreu-Fishburn). Let (S, T ) be a topological space, and let � be a binary
relation on S. Suppose that there is a real-valued function u1 on S representing � in the
sense of (A.2). Then there is another real-valued function u2 on S, satisfying (A.2) and
continuous in the topology T , if and only if either one of the following two conditions holds:

1. For each y ∈ S, {x ∈ S : x � y} ∈ T and {x ∈ S : y � x} ∈ T ; or,

2. If x, y ∈ S, then there are sets Tx, Ty ∈ T such that:

(a) x ∈ Tx, y ∈ Ty;

(b) x � y′ for all y′ ∈ Ty; and,

(c) x′ � y for all x′ ∈ Tx.

Proof. See Fishburn [128], Theorem 3.5 on p. 36. Also, see Debreu [92], Corollary on p.
289.

Theorem A.10 (Debreu-Eilenberg). Let (S, T ) be a connected and separable topological
space, and let � be a strict preference (asymmetric and negatively transitive) on S. If, for
each y ∈ S, the sets {x ∈ S : x � y} and {x ∈ S : y � x} are open (for T ), then there is
a real-valued function u on S representing � in the sense of (A.2), and continuous in the
topology T .

Proof. See Debreu [92], Proposition 4 on p. 291, or Fishburn [128], Lemma 5.1 on p. 62.
The work of Eilenberg [117] can be seen as the foundation of continuous cardinal utility,
and we refer the reader to [117] for many interesting results.

For more about continuity properties of cardinal utility functions we refer the reader
to Debreu [90], [91] and [92], Newman and Read [218], Peleg [224], pr Rader [232], for
instance.
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A.1.2 The von Neumann-Morgenstern Approach

Setup

In the setting of von Neumann and Morgenstern [297], a decision maker (DM) expresses
preference between exogenously given objective probability measures on some measurable
space. We will model this situation as follows: Let (S,Σ) be a given measurable space and
let P denote the collection of all probability measures on (S,Σ). We suppose that the DM
has a strict preference � over elements of P . Define weak preference < and indifference ∼
from� in the usual manner, and note that the collection P is closed under countable convex
combinations. For each x ∈ S, define the element δx of P as the degenerate probability
distribution that assigns value 1 to the (Σ-measurable) singleton {x}. By a customary
slight abuse of notation, we will write x � y, for x, y ∈ S to mean δx � δy.

We will make the following structural assumptions on Σ:

1. For each x ∈ S, {x} ∈ Σ; and,

2. For each y ∈ S, {x ∈ S : x � y} ∈ Σ and {x ∈ S : y � x} ∈ Σ.

Axioms on Preferences

Consider the following axioms for the DM’s preference � over elements of P :

Axiom A.1 (Weak Order). � is asymmetric and negatively transitive.

Axiom A.2 (Independence Axiom). for all µ, ν, η ∈ P, and for all α ∈ (0, 1), we have:

µ � ν ⇐⇒ αµ+ (1− α) η � αν + (1− α) η (A.3)

Axiom A.3 (Archimedean Axiom). for all µ, ν, η ∈ P, we have:

µ � ν � η ⇒ ∃ α, β ∈ (0, 1) , αµ+ (1− α) η � ν � βµ+ (1− β) η (A.4)
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Axiom A.4 (Monotonicity). For any µ ∈ P and for any A ∈ Σ, the following holds:

1. If µ (A) = 1, y ∈ S, and δx < δy, for each x ∈ A, then µ < δy; and,

2. If µ (A) = 1, z ∈ S, and δz < δx, for each x ∈ A, then δz < µ.

Expected Utility Representation of Preferences

Theorem A.11 (Expected Utility Representation). If � on P satisfies axioms A.1, A.2,
A.3 and A.4, then there exists some bounded function u : S → R such that for each
µ, ν ∈ P:

µ � ν ⇐⇒
ˆ
u dµ >

ˆ
u dν (A.5)

Moreover, such a function u is unique up to a positive linear transformation.

Proof. See Fishburn [128], Theorem 10.3 on p. 139 and Lemma 10.5 on p. 138.

Theorem A.12 (Expected Utility Representation with Continuous, Bounded Utility). Let
(S, d) be a separable metric space, and denote by Σ the Borel σ-algebra on S. Let � be a
binary relation on the collection PB of all (Borel) probability measures on the measurable
space (S,Σ). If � is such that:

1. � satisfies axioms A.1 and A.2; and,

2. The projection of � onto PB is continuous in the weak∗ topology on PB, that is, for
any ν ∈ PB, the sets {µ ∈ PB : µ < ν} and {µ ∈ PB : ν < µ} are weak∗ closed1,

1The collection PB of Borel probability measures on a metrizable topological space S can be endowed
with the weak∗ topology σ (PB , Cb (S)), where Cb (S) is the collection of all bounded continuous R-valued
functions on S. This topology is characterized by the fact that a net {µα}α∈Γ of Borel probability measures
on S converges in the weak∗ topology to some Borel probability measure µ on S if and only if the net
{
´
φ dµα}α∈Γ converges to

´
φ dµ, for each continuous bounded real function φ on S. We refer the reader

to Chap. 15 of Aliprantis and Border [3] for more about the weak∗ topology of PB . All required background
material is given in the mathematical appendix, and notably in appendix D.4.
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then there exists some continuous and bounded function u : S → R such that for all
µ, ν ∈ PB,

µ � ν ⇐⇒
ˆ
S

u dµ >

ˆ
S

u dν (A.6)

Moreover, such a function u is unique up to a positive linear transformation.

Proof. See Kreps [187], pp. 65-66. For more about the weak∗ topology on PB, we refer
the reader to Aliprantis and Border [3], Chap. 14 (Riesz Representation Theorem) and
Chap. 15 (Duality theory for PB), Billingsley [38], Theorem 2.1 on p. 16 (Portmanteau
Theorem), Dunford and Schwartz [109], Theorem IV.6.2 on p. 262 (Riesz Representation
Theorem), or Hewitt and Stromberg [166], Theorem 20.48 on p. 364 (Riesz Representation
Theorem).

Remark A.13. The results of this section can be generalized to any convex subcollection P∗
of P, provided P∗ satisfies some structural requirements. The interested reader is referred
to Fishburn [128] (pp. 137-143).

A.1.3 The Savage Approach

Setup and Preliminaries

The Savage Setting Let S be an arbitrary nonempty set. We interpret S as the set of
all possible states of the world, and 2S as the collection of all possible events. Let X be an
arbitrary nonempty set that we interpret as the set of all possible outcomes (e.g. X might
be taken to be R if we are considering monetary outcomes). We denote by F the collection
of all mappings of S into X, and we refer to elements of F as acts.

A decision maker (DM) expresses preferences over acts, i.e. F is the choice set. Let
� be a binary relation on F that will be taken to be the DM’s preference over acts, and
define < and ∼ from � in the usual manner. Note that, contrary to the von Neumann-
Morgenstern setting, the only primitive in this context is the agent’s preference over acts.
There are no exogenous objective probabilities given a priori here. Probability and utility
will be derived from �, and are hence entirely subjective. We seek a Subjective Expected
Utility Representation of � of the form:

∀f, g ∈ F , f � g ⇐⇒
ˆ
S

u (f(s)) dµ (s) >

ˆ
S

u (g(s)) dµ(s) (A.7)
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for some utility function u : X → R and some subjective probability measure µ on (S,Σ).

Definitions

Definition A.14 (Conditional Preference). If A ⊆ S, and f, g ∈ F , we say that f � g
given A if there exist f ′, g′ ∈ F , with f ′ � g′ and:

1. f = f ′ and g = g′ on A;

2. f ′ = g′ on S \ A.

Definition A.15 (Null Event). A ⊆ S is called null if for all acts f, g ∈ F , we have f ∼ g
given A.

Definition A.16 (Constant Act). For each x ∈ X, we define the constant act x as that
element of F that yields the outcome x in each states of the world.

Hence, we can embed X into F by identifying x with x, for any x ∈ X.

Axioms on Preferences

Consider the following seven axioms on the binary relation � ⊆ F × F :

Axiom P.1 (Weak Order). � is a strict preference (asymmetric and negatively transitive)
on F .

Axiom P.1 states that � is a weak order.

Axiom P.2 (Sure-Thing Principle). If A ⊆ S, f, g, f ′, g′ ∈ F , f = f ′ on A, g = g′ on A,
f = g on S \ A, and f ′ = g′ on S \ A, then f � g ⇔ f ′ � g′.

Axiom P.2 says that the preference between two acts depends only on the states where
those acts have different consequences.

Axiom P.3 (Eventwise Monotonicity). If A is not null, x, y ∈ X, f = x on A, and g = y
on A, then f � g given A⇔ x � y.

176



Axiom P.3 says that if you consider an act that yields the outcome x for each state of
the world in an event A and you modify it only on A so as to get an another act guarantying
the outcome y on A, then the preference between these two acts should depend only on
the preference between the constant acts x and y.

Axiom P.4 (Weak Comparative Probability). Suppose f, g, f ′, g′ ∈ F , x, y, x′, y′ ∈ X,
A ⊆ S, B ⊆ S, and:

1. x � y, and x′ � y′;

2. f = x on A and f ′ = x′ on A;

3. f = y on S \ A and f ′ = y′ on S \ A;

4. g = x on B and g′ = x′ on B;

5. g = y on S \B and g′ = y′ on S \B;

Then f � g ⇔ f ′ � g′

Axiom P.4 is the counterpart of axiom P.3 for ranking events, and it will be an essential
axiom for inferring likelihood judgments on elements of 2S from preference ranking of
elements of F . Axiom P.4 essentially says that likelihood of events are not affected by
acts.

Axiom P.5 (Nondegeneracy)). There exist some x, y ∈ X such that x � y.

Axiom P.6 (Small Event Continuity). For each x ∈ X and for each f, g ∈ F such that
f � g, there exists a finite partition of S such that for every event A in that partition:

1. If f ′ = x on A and f ′ = f on S \ A, then f ′ � g;

2. If g′ = x on A and g′ = g on S \ A, then f � g′.

Axiom P.6 is a continuity axiom that has a clear Archimedean flavor, and it is essential
for the derivation of a subjective probability measure on

(
S, 2S

)
.
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Axiom P.7 (Uniform Monotonicity). For all A ⊆ S,

1. If f � g (s) given A, for all s ∈ A, then f < g given A;

2. If g (s) � f given A, for all s ∈ A, then g < f given A.

Axiom P.8 (Monotone Continuity). Let f, g ∈ F and x ∈ X. Let {An}n≥1 be a sequence
of events such that An+1 ⊆ An and

⋂
n≥1An = ∅. For each n ≥ 1, define the acts f ′n and

g′n as follows:

1. f ′n = x on An and f ′n = f on S \ An; and,

2. g′n = x on An and g′n = g on S \ An.

If f � g then there exists some N ≥ 1 such that:

1. f ′N � g; and,

2. f � g′n.

Likelihood Judgements from Preferences

Definition A.17. We define a binary relation �̇ on 2S as follows: let A and B be any
two events. Let x, y ∈ X be such that x � y, let f ∈ F be such that f = x on A and f = y
on S \ A, and let g ∈ F be such that g = x on B and g = y on S \ B. We say that the
DM judges A to be more likely than B, written A �̇ B, when f � g.

Definition A.17 gives us a way to determine the DM’s likelihood judgements over events
from his preference ranking of acts in F . The derivation of subjective probability from
preferences should be consistent with the likelihood ranking of events as defined above.
Specifically, we seek a unique probability measure µ on

(
S, 2S

)
such that for any events A

and B,

A �̇ B ⇐⇒ µ (A) > µ (B) (A.8)
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Theorem A.18. If � on F satisfies axioms P.1 to P.7 above, then there exists a unique
nonatomic2 and finitely additive probability measure µ on

(
S, 2S

)
such that:

1. For all events A and B, we have A �̇ B ⇔ µ (A) > µ (B); and,

2. For any event A and for any r ∈ [0, 1], there exists some B ⊆ A and µ (B) = rµ (A).

Proof. See Kreps [187], Proposition 9.2 on p. 133, Proposition 9.3 on p. 133, and Theorem
8.10 on p. 125.

Corollary A.19. If � on F satisfies axioms P.1 to P.8 above, then there exists a unique
nonatomic and countably additive probability measure µ on

(
S, 2S

)
such that:

1. For all events A and B, we have A �̇ B ⇔ µ (A) > µ (B); and,

2. For any event A and for any r ∈ [0, 1], there exists some B ⊆ A and µ (B) = rµ (A).

Proof. See Theorem A.18, Arrow [25] p. 48 and p. 76, Chateauneuf et al. [77] p. 974, and
Villegas [296] Theorem 2 on p. 1794.

Subjective Expected Utility Representation

Theorem A.20 (Subjective Expected Utility Representation). If � on F satisfies axioms
P1 to P7, and if the binary relation �̇ on S is defined as in Definition A.17, then:

1. There exists a unique finitely additive nonatomic probability measure µ on
(
S, 2S

)
such that

(a) For all events A and B,

A �̇ B ⇐⇒ µ (A) > µ (B) (A.9)

(b) For any event A, and for any r ∈ [0, 1], there exists an event B ⊆ A such that

µ (B) = r µ (A) (A.10)

2That is, for any A ⊆ S with µ (A) > 0, there is some B ⊂ A and 0 < µ (B) < µ (A).
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2. For µ given above, there exists a bounded utility function u : X → R such that for all
f, g ∈ F ,

f � g ⇐⇒
ˆ
S

u (f (s)) dµ (s) >

ˆ
S

u (g (s)) dµ (s) (A.11)

Moreover, u is unique up to a positive linear transformation. If � also satisfies axiom
P.8, then µ is countably additive.

Proof. See Fishburn [128] (Theorem 14.1 on p. 192), Gilboa [149] (Theorem 10.2 on p.
109), Kreps [187] (Theorem 9.16 on p. 136), and Corollary A.19 above.

Remark A.21. The previous theorem can be generalized to a measurable space (S,Σ)
instead of

(
S, 2S

)
. Events will then have to be taken to be only those Σ-measurable subsets

of S, and acts will be taken to be only those Σ-measurable elements of F .

A.1.4 The Anscombe-Aumann Approach

Setup and Preliminaries

The Anscombe-Aumann Setting Let S be an arbitrary nonempty set. We interpret
S as the set of all possible states of the world, and 2S as the collection of all possible events.
Let X be an arbitrary nonempty set that we interpret as the set of all possible outcomes
(e.g. X might be taken to be R if we are considering monetary outcomes), and endow X
with a σ-algebra Σ of events. Assume that {x} ∈ Σ, for each x ∈ X. We denote by ∆ (X)
the collection of all simple countably additive probability measures on (X,Σ)3. When
endowed with the usual mixing operations4 for set functions, ∆ (X) is a convex subset of
the real vector space of all countably additive finite measures on (X,Σ).

We denote by H the collection of all mappings of S into ∆ (X), and we refer to elements
of H as Anscombe-Aumann (AA) acts. As in the previous chapter, we also denote by F
the collection of all mapping of S into X, and we refer to elements of F as Savage acts.

3A countably additive probability measure P on Σ is called simple if there is a finite Σ-measurable set
A such that P (A) = 1. In other words, P is simple if there is a finite collection {x1, . . . , xn} of distinct
points in X such that {xi} ∈ Σ, for each i ∈ {1, 2, . . . , n}, and

∑n
i=1 P ({xi}) = 1.

4The usual mixing operations for set functions are the set-wise mixing operations. That is, for any set
functions µ and ν, define the set function µ+ ν by (µ+ ν) (A) = µ (A) + ν (A), for any set A. Moreover,
for any set function µ and for any scalar α, define the set function α.µ by (α.µ) (A) = α.µ (A), for any set
A.
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For each x ∈ X let δx ∈ ∆ (X) denote the degenerate simple probability distribution
assigning value 1 to the event {x}. We can then embed F into H by identifying x with δx,
for each x ∈ X.

For each s ∈ S, let X (s) := {f (s) : f ∈ F} be the set of all possible consequences
in the state of the world s. Then X =

⋃
s∈S X (s). In the following, we will assume (as

Fishburn [128] does in Section 13.3) that X (s) = X, for each s ∈ S.

Preferences A decision maker (DM) expresses preferences over elements of H, via a
binary relation � ⊆ H×H. We define the binary relations < and ∼ from � in the usual
manner.

The DM’s preference � ⊆ H × H then implies a preference over Savage acts as the
restriction of � to F , when the latter is seen as a subset of H. We will sometimes make
the usual abuse of notation and write:

1. µ � ν, for µ, ν ∈ ∆ (X), to mean that f � g, where f, g ∈ H are such that f (s) = µ
and g (s) = ν, for each s ∈ S;

2. x � y, for x, y ∈ X, to mean that δx � δy;

3. h � µ, for h ∈ H and µ ∈ ∆ (X), to mean that h � f , where f ∈ H is such that
h (s) = µ, for each s ∈ S; or,

4. h � x, for h ∈ H and x ∈ X, to mean that h � δx.

Definitions

Definition A.22. An AA act h ∈ H is said to be constant on an event A ⊆ S when
h (s) = h (t), for each s, t ∈ A.

Definition A.23. Let h ∈ H, A ⊆ S, and µ ∈ ∆ (X). We will say that h = µ on A when
h (s) = µ, for each s ∈ A.

Definition A.24. Let f, h ∈ H and A ⊆ S. We will say that f = h on A when f (s) =
h (s), for each s ∈ A.
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Definition A.25. If A ⊆ S, and f, g ∈ H, we say that f � g given A if there exist
f ′, g′ ∈ H, with f ′ � g′ and:

1. f = f ′ and g = g′ on A;

2. f ′ = g′ on S \ A.

Definition A.26. A ⊆ S is called null if for all AA acts f, g ∈ H, we have f ∼ g given
A.

Axioms on Preferences

Consider the following axioms on the DM’s preference � over elements of H:

Axiom AA.1 (Weak Order). � is asymmetric and negatively transitive.

Axiom AA.2 (Independence Axiom). for all f, g, h ∈ H, and for all α ∈ (0, 1), we have:

f � g ⇐⇒ αf + (1− α)h � αg + (1− α)h (A.12)

Axiom AA.3 (Archimedean Axiom). for all f, g, h ∈ H, we have:

f � g � h⇒ ∃ α, β ∈ (0, 1) , αf + (1− α)h � g � βf + (1− β)h (A.13)

Axiom AA.4 (Nondegeneracy). There exist some µ, ν ∈ ∆ (X) such that µ � ν.

Axiom AA.5 (State-Independence). Let A ⊆ S be a non-null event. Let h, g ∈ H, and
let µ, ν ∈ ∆ (X). Suppose that h = µ on A, g = ν on A, and h = g on S \ A. Then:

h � g ⇔ µ � ν (A.14)
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Axiom AA.6 (Monotonicity). For each f, g, h ∈ H:

1. (f (s) � h, ∀s ∈ S)⇒ f < h; and,

2. (h � g (s) , ∀s ∈ S)⇒ h < g.

Anscombe-Aumann Representation Theorem

Theorem A.27 (Anscombe-Aumann Expected Utility Representation). If � on H sat-
isfies axioms AA.1 to AA.6 above then there exists a utility function u : X → R and a
unique probability measure µ on

(
S, 2S

)
such that for all h, g ∈ H,

h � g ⇐⇒
ˆ
S

[ˆ
X

u dh (s)

]
dµ (s) >

ˆ
S

[ˆ
X

u dg (s)

]
dµ (s) (A.15)

Moreover, u is unique up to a positive linear transformation, and for all A ⊆ S, µ (A) = 0
if and only if A is a null event.

Proof. See Fishburn [128] (Theorem 13.3 on p. 179) and Gilboa [149] (Theorem 14.1 on p.
144).

Remark A.28. The previous theorem can be generalized to a measurable space (S,B)
instead of

(
S, 2S

)
. Events will then have to be taken to be only those B-measurable subsets

of S, and acts will be taken to be only those B-measurable elements of F .

Moreover, the AA setting can be generalized so that acts are mappings of S into the col-
lection ca+

1 (Σ) of all countably additive probability measures on the measurable space (X,Σ)
of consequences. This generalization is based on the general von Neumann-Morgenstern
representation theorem (Theorem A.11) and hence requires, among other things, an addi-
tional axiom on �, in the spirit of axiom A.4 of the von Neumann-Morgenstern setting.
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A.2 The Paradoxes of Expected Utility Theory

A.2.1 Introduction

The three versions of Expected-Utility Theory (EUT) discussed thus far (namely, the
von Neumann-Morgenstern version, the Savage version, and the Anscombe-Aumann ver-
sion) provide a normative approach to decision making. In other words, if a decision
maker’s (DM) preference is assumed to satisfy a set of axioms then EUT essentially asserts
that the DM’s behavior can be predicted according to a certain representation theorem. In
practice, however, there has been considerable documentation of the inadequacy of EUT
from a purely descriptive standpoint. We refer the reader to Machina [197] for a historical
overview.

In this chapter we briefly discuss two major challenges to EUT that experimental studies
have put forward: The Allais pradox ([4] and [5]) and the Ellsberg paradox ([118]). The
former can be seen as a descriptive argument against linearity in probabilities, whereas the
latter can be seen as a descriptive argument against the Bayesian paradigm in Subjective
Expected Utility (SEU), whereby the DM’s beliefs are represented by a unique additive
prior, that is, a unique subjective probability measure.

A.2.2 The Allais Paradox

Independence of Irrelevant Alternatives

Recall that in the setting of von Neumann and Morgenstern of decision under risk the
DM’s preference � over elements of P (the collection of all probability measures on a given
measurable space) was assumed to satisfy the following independence axiom:

Axiom A.2 (Independence Axiom). for all µ, ν, η ∈ P, and for all α ∈ (0, 1), we have:

µ � ν ⇒ αµ+ (1− α) η � αν + (1− α) η (A.16)

The independence axiom states that when comparing two alternative elements of choice,
the DM should only focus on the differences between these elements. In Savage’s setting,
where a DM has preference � over elements of F (the collection of all mappings of the
states space S into a space X of consequences), a similar axiom says that the preference
between two acts depends only on the states where those acts have different consequences.
This is Savage’s sure-thing principle that we recall below:
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Axiom P.2 (Sure-Thing Principle). If A ⊆ S, f, g, f ′, g′ ∈ F , f = f ′ on A, g = g′ on A,
f = g on S \ A, and f ′ = g′ on S \ A, then

f � g ⇔ f ′ � g′ (A.17)

The main implication of the independence axiom on the form of the functional that
represents the DM’s preference (namely, the Expected-Utility functional) is linearity in the
probabilities (see Machina [197], p. 127).

Allais’ Experiment

Allais [5]’s famous experimental study showed that this independence axiom is typically
violated in practice. Here we recall Allais’ experimental setting.

Consider the following four gambles:

1. Gamble A:
Win $100 with probability 1.

2. Gamble B:
Win $500 with probability 0.10
Win $100 with probability 0.89
Win $0 with probability 0.01

3. Gamble C:
Win $100 with probability 0.11
Win $0 with probability 0.89

4. Gamble D:
Win $500 with probability 0.10
Win $0 with probability 0.90

Lemma A.29. If the DM’s preference � over elements of P admits an Expected-Utility
representation in the spirit of Theorem A.11, then:

(Gamble A � Gamble B)⇒ (Gamble C � Gamble D) (A.18)
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Proof. Suppose that the DM has preference � over elements of P that admits an Expected-
Utility representation as in Theorem A.11. Then there exists some real-valued (utility)
function u on the space S such that for any µ, ν ∈ P , µ � ν ⇔

´
S
u dµ >

´
S
u dν.

Now suppose that Gamble A � Gamble B and assume, without loss of generality,
that u (0) = 0. It then follows that u (100) > 0.1u(500) + 0.89u (100). Thus, u (500) <(

1−0.89
01

)
u (100) = 1.1u (100), that is, 0.1u (500) < 0.11u (100). This means that Gamble

C � Gamble D.

However, as noted by Allais [5] (and Slovic and Tversky [282]), most individuals typi-
cally strictly prefer Gamble A to Gamble B and Gamble D to Gamble C, hence violating
Lemma A.29, and therefore violating the independence axiom (that is, the linearity in
probabilities).

A.2.3 The Ellsberg Paradox

Ellsberg’s One-Urn Problem

The Ellsberg Paradox (Ellsberg [118]) is descriptively important for it demonstrates a
violation of Savage’s axioms underlying the existence of a unique subjective probability
measure. It is also historically important in a normative sense, for to a large extent, the
Ellsberg Paradox can be seen as the starting point of theoretical studies of the concept of
ambiguity (a.k.a. Knightian uncertanity).

Ellsberg’s ([118]) problem is as follows: Consider an urn containing 30 red balls and
60 other balls that are either black or yellow. All balls are very well mixed. Consider the
following four gambles:

1. Gamble A:
Win $100 if you draw a red ball
Win $0 otherwise

2. Gamble B:
Win $100 if you draw a black ball
Win $0 otherwise

3. Gamble C:
Win $100 if you draw a red or yellow ball
Win $0 otherwise
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4. Gamble D:
Win $100 if you draw a black or yellow ball
Win $0 otherwise

Lemma A.30. Suppose that a DM has preference � over Savage acts (i.e. elements of
F), and that his preference admits a subjective expected-utility representation in the spirit
of Theorem A.20. Then the following necessarily holds:

(Gamble A � Gamble B)⇒ (Gamble C � Gamble D) (A.19)

Proof. According to Subjective Expected-Utility Theory (SEU), the DM will choose gamble
A over gamble B if and only if he believes that the probability of drawing a red ball is
higher than that of drawing black ball. Similarly, according to SEU, he will prefer gamble
C to gamble D if and only if he believes that drawing a red or yellow ball is more likely
than drawing a black or yellow ball. Hence, if you prefer gamble A to gamble B, you will
also prefer gamble C to gamble D, assuming that your beliefs are represented by a unique
subjective probability measure (in particular, an additive set function).

In Ellsberg’s problem, Individuals are asked to rank their preferences between gambles
A and B on the one hand, and gambles C and D on the other hand. Ellsberg predicted (and
his prediction was supported by empirical evidence, as in Slovic and Tversky [282]) that
most individuals tend to strictly prefer gamble A to gamble B and gamble D to gamble C,
violating the prediction of SEU. In essence, people prefer known uncertainties to unknown
uncertainties : the probability of winning $100 in gamble A is exactly 1/3, whereas the
probability of winning $100 in gamble B is unknown. Similarly, the probability of winning
$100 in gamble D is exactly 2/3, whereas the probability of winning $100 in gamble C is
unknown.

Aversion to Knightian Uncertainty (Ambiguity)

Recall that we referred to a situation of decision under objectively known uncertainty
as a situation of decision under risk, an example of which is the von Neumann-Morgenstern
setting. We also referred to a situation of decision under subjective uncertainty as a situa-
tion of decision under uncertainty, an example of which is the setting of Savage. What the
Ellsberg Paradox demonstrates is that, contrary to the Bayesian paradigm (e.g. Savage’s
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view), there ought to exist a meaningful distinction between subjective uncertainties that
are perfectly known and subjective uncertainties that are imperfectly known. This distinc-
tion was argued for by Knight [184]. Consequently, we use the term Knightian Uncertainty
to refer to a situation where the subjective uncertainties are not perfectly known, in the
sense that the DM is not able to formulate a unique subjective probability measure that
will represent his beliefs. Such a situation is also called a situation of Ambiguity, or of Am-
biguous Beliefs, and it was the main motivation behind the work of Epstein et al. ([121],
[122], [123]), Gilboa ([148], [151]), Marinacci et al. ([77], [134], [139], [182], [195], [201],
[202], [203], [205]), and Schmeidler ([274], [275]).

A.3 Alternative Theories of Choice

The challenges to Expected-Utility Theory (EUT) created the need for alternative the-
ories of choice that would give a normative foundation for decision making which would be
consistent with the paradoxes of EUT. Some of these models include models that deal with
Knightian uncertainty, such as the Choquet Expected-Utility Model (CEU) (Gilboa
[148], Schmeidler [275]), the Multiple Priors Model, or Maxmin Expected-Utility
model (MEU) (Amarante [13], Amarante and Filiz [15], Amarante and Maccheroni [17],
Chateauneuf, Maccheroni, Marinacci, and Tallon [77], Epstein and Schneider [122], Ghi-
rardato and Siniscalchi [140], Gilboa, Maccheroni, Marinacci, and Schmeidler [150], Gilboa
and Schmeidler [151], Maccheroni [193], and Marinacci [201] and [203]), Bewley’s Model
(Bewley [36] and [37], and Gilboa, Maccheroni, Marinacci, and Schmeidler [150]), the
Smooth Ambiguity Model (Klibanoff, Marinacci, and Mukerji [182] and [183]), and
the Variational Preference Model (Maccheroni, Marinacci, and Rustichini [195] and
[196]).

A unifying model of decision under ambiguity, called the Invariant Biseparable
Preference Model (IBP), encompasses many of the most popular ambiguity models. It
was axiomatized and studied by Ghirardato, Maccheroni, and Marinacci ([134] and [135])5,
and it includes as special cases the CEU and the MEU, among other models. Recently,
Amarante ([12] and [14])6 has extended Ghirardato-Maccheroni-Marinacci’s IBP model,
hence providing a very general, and quite elegant, model of decision under ambiguity7.

5See also Ghirardato, Maccheroni, Marinacci, and Siniscalchi [136], and Ghirardato and Marinacci [138]
and [139].

6See also Amarante [8], [9], [10], and [11].
7Scholarly work aimed at defining the notions of ambiguity and ambiguity aversion and examining

some properties of these definitions include Amarante [7] and [13], Amarante and Filiz [15], Epstein
[121], Epstein and Zhang [123], Ghirardato [133], Ghirardato, Maccheroni, and Marinacci [134] and [135],
Ghirardato and Marinacci [137] and [139], Nehring [216] and [217], and Zhang [306].
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Other models, such as Prospect Theory ([177]) and Cumulative Prospect Theory ([293]),
were primarily developed to tackle empirical findings that are mainly of a psychological
nature, such as loss aversion and framing effects. In this chapter we will only discuss
(Cumulative) Prospect Theory (CPT), the Choquet Expected-Utility Model (CEU) (Gilboa
[148], Schmeidler [275]), and the Multiple Priors Model, or Maxmin Expected-Utility Model
(MMEU) (Gilboa and Schmeidler [151]) as alternatives to EUT and Subjective Expected-
Utility Theory (SEU).

A.3.1 Cumulative Prospect Theory (CPT)

Loss Aversion

The Markowitz-Kahneman-Tversky Heritage An important empirical finding that
partly motivated the development of Prospect Theory is called loss aversion and refers to
the fact that people typically experience a gain of a certain amount as less psychologically
severe than a loss of the same amount. Markowitz [206] writes (p. 154):

”Generally people avoid symmetric bets. This suggests that the curve falls faster
to the left of the origin than it rises to the right of the origin. (I.e., U(X) >
|U(−X)|, X > 0)”

Even though the term loss aversion was not explicitly used by Markowitz [206], the idea
behind the predominant view that loss aversion is a property of the utility that manifests
itself in the fact that the utility of a given gain is lower than the absolute value of the
utility of a loss of the same magnitude was noted by Markowitz [206], in 1952; so was the
idea that people dislike symmetric bets, which was the definition of loss aversion given by
Kahneman and Tversky [177], a mere 27 years later. Kahneman and Tversky [177] write
(p. 279):

“A salient characteristic of attitudes to changes in welfare is that losses loom
larger than gains. The aggravation that one experiences in losing a sum of
money appears to be greater than the pleasure associated with gaining the same
amount [...] Indeed, most people find symmetric [50:50] bets [...] distinctively
unattractive. Moreover, the aversiveness of symmetric fair bets generally in-
creases with the size of the stake”
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Experimental Setting The following example is adapted from Gilboa [149] (p. 155).
Consider the following four gambles:

1. Gamble A:
Win $500 with probability 1

2. Gamble B:
Win $1000 with probability 0.50
Win $0 with probability 0.50

3. Gamble C:
Lose $500 with probability 1

4. Gamble D:
Lose $1000 with probability 0.50
Lose $0 with probability 0.50

When asked to rank their preference between Gamble A and Gamble B on the one
hand, and Gamble C and Gamble D on the other hand, people typically prefer A to B
(that is, prefer a sure gain to a risky gain – hence exhibiting risk aversion over gains) and
D to C (that is, prefer a risky loss to a sure loss – hence exhibiting risk seeking over losses).
This phenomenon was coined the reflection effect by Kahneman and Tversky [177] and is
a direct consequence of what Tversky and Kahneman [293] later called loss aversion, that
is, the fact the losses loom larger than gains.

A More Robust Definition of Loss Aversion (Ghossoub [141])

Few theoretical investigations of loss aversion in CPT have dealt with the probability
weighting process as an inherent constituent of loss aversion, and the ones that were carried
out were done in a context where the objects of choice are lotteries, that is, discrete prob-
ability distributions (see, e.g. Schmidt and Zank [276] and Zank [305]). Accordingly, the
definitions proposed are very specific to this particular case. However, in most applications
of CPT to finance and insurance, for instance, one deals with an underlying (financial or
actuarial) risk which has a continuous distribution on the real line or on an interval thereof
(see, e.g. Barberis and Huang [29], Bernard and Ghossoub [32], He and Zhou [164], or Jin
and Zhou [175]). In such circumstances, a proper definition of loss aversion simply does
not exist as yet, to the best of my knowledge. For instance, the original definition of loss
aversion given by Kahneman and Tversky [177] is aversion to symmetric 50:50 bets ; but
what exactly is a symmetric 50:50 bet in the continuous case?
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One should note that Blavatskyy [41] recently explored the notion of loss aversion
outside of CPT, and in a general framework where outcomes are not necessarily monetary,
but with a finite state space and where the elements of choice are lotteries, i.e. simple
probability distributions. Blavatskyy’s [41] definition of loss aversion is behavioral, based
on the properties of a preference over the set of all lotteries. However, his definition is
essentially comparative, and an “absolute” notion of loss aversion is defined as “more loss
aversion than a loss-neutral” preference. The major complication, as the author remarks,
is that it is not immediately clear how to define loss-neutrality in that context.

It was the purpose of Ghossoub [141] to provide a proper definition of loss aversion in
the continuous case, and to examine its relation to the existing definitions. In Ghossoub
[141], we give a general behavioral definition of loss aversion for preferences that exhibit
probabilistic sophistication in the sense of Machina and Schmeidler [199] and gain-loss
separability in a specific sense. The class of such preferences is large enough, and includes,
inter alia, preferences that admit a Subjective Expected-Utility (SEU) representation and
preferences that have a CPT representation. We show that, under CPT, our proposed
definition generalizes many existing ones and that our analysis extends that of Schmidt
and Zank [276] and Zank [305].

We also define an index of loss aversion for preferences that are probabilistically sophis-
ticated, gain-loss separable, and adequately continuous. We show that CPT preferences
verify these requirements, and that our proposed index of loss aversion under CPT gen-
eralizes that of Köbberling and Wakker [185]: the latter is a special case of the index of
loss aversion that we introduce, when the probability weighting functions are identical over
losses and gains, that is, when beliefs are not affected by the sign of the outcome.

Finally, we examine loss aversion in SEU, and we show that in SEU loss aversion is not
equivalent to the utility function having an S shape. We show that loss aversion in SEU
holds for a class of utility functions that includes S-shaped functions, but which is strictly
larger than the collection of these functions. This class also includes utility functions that
are of the Friedman-Savage type ([131]) over both gains and losses (as illustrated in Figure
A.1a below), and utility functions such as the one postulated by Markowitz [206] (and
illustrated in Figure A.1b below), for instance. In sum, loss aversion might exist even for
utility functions that are not S-shaped.

Probability Weighting

The idea that individuals typically distort probabilities during their decision making
process is not exclusively a property of prospect theory. It was noted by Dale [87], Edwards
([111],[112], [113], [114], [115]), Fellner [125], Griffith [159], Handa [162], Karmarkar [178],
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6u (x)

(a) An example of a utility function where the positive
part is of the Friedman-Savage type.

-
x

6u (x)

(b) An example of a utility function of the type postulated
by Markowitz [206].

Figure A.1: Two examples of a utility function for which loss aversion holds in SEU.

Mosteller and Nogee [215], Preston and Baratta [227], Slovic and Lichtenstein [281], and
Sprowls [284], for instance, and all of these results appeared before Kahneman and Tversky
[177].

Typically, a probability distortion function, or a probability weighting function, is a
function T : [0, 1] → [0, 1] such that T (0) = 0 and T (1) = 1, and a probability weighting
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model of choice is any model of choice where probabilities are distorted. Two examples of
probability weighting models are the Original Prospect Theory (OPT) and the Cumulative
Prospect Theory (CPT).

Original Prospect Theory

In the literature, the term Original Prospect Theory (OPT) refers to the theory devel-
oped in Kahneman and Tversky [177], whereas Cumulative Prospect Theory (CPT) refers
to the refinement of OPT as presented in Tversky and Kahneman [293]. Here, we will
discuss OPT, and the next subsection deal with CPT.

Suppose that a DM has preference � over lotteries, that is, discrete probability dis-
tributions with finitely many outcomes (also called simple probability distributions). We
can represent a lottery L as follows: Suppose that the lottery takes on n distinct val-
ues x1, x2, . . . , xn, for some n ≥ 1, with probabilities p1, p2, . . . , pn, respectively, so that∑n

i=1 pi = 1. Without loss of generality, we may assume that outcomes are ranked as
follows x1 ≥ x2 ≥ . . . ≥ xk ≥ 0 > xk+1 ≥ . . . ≥ xn−1 ≥ xn, for some 1 ≤ k ≤ n. We then
write

L = (x1, p1;x2, p2; . . . ;xn, pn) (A.20)

The positive outcomes (x1, . . . , xk) are called gains and the negative outcomes (xk+1, . . . , xn)
are called losses.

We say that the DM’s preference has an OPT representation when there is an increasing
utility function u : R → R and a distortion function T : [0, 1] → [0, 1] such that for any
two lotteries L1 and L2,

L1 � L2 ⇔ Vopt (L1) > Vopt (L2) (A.21)

where for any lottery L = (x1, p1;x2, p2; . . . ;xn, pn),

Vopt (L) :=
n∑
i=1

u (xi)T (pi) (A.22)

In Kahneman and Tversky [177] experimental findings suggested that the utility func-
tion (value function) u has an S shape, i.e. it is convex over losses and concave over gains,
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and is steeper for losses than for gains, to account for the fact that losses loom larger than
gains. A typical value function in OPT is illustrated below.

Kahneman and Tversky’s [177] experimental findings also suggested that people typi-
cally overweight low probabilities and underweight high ones. A typical probability weight-
ing in OPT is illustrated below.

Figure A.2: Source: Kahneman and Tversky [177]

Cumulative Prospect Theory

How OPT violates first-order stochastic dominance Although quite plausible
from a descriptive point of view, OPT has a major flaw from a normative perspective:
it violates first-order stochastic dominance. Before we show how this might happen, a
definition is needed:

Definition A.31. Let X and Y be two random variables on a probability space (S,Σ, P ).
We say that X dominates Y in the sense of first-order stochastic dominance, if for each
t ∈ R, we have

P ({s ∈ S : X (s) ≤ t}) ≤ P ({s ∈ S : Y (s) ≤ t}) (A.23)
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Figure A.3: Source: Kahneman and Tversky [177]

From a purely normative perspective, it seems natural to require of a functional repre-
senting preference to preserve first-order stochastic dominance. In other words, if a DM has
preference � over lotteries (or, more generally, over probability distributions) such that for
any two lotteries L1 and L2, L1 � L2 ⇔ V (L1) > V (L2), for some functional V over the
DM’s choice set, then it seems natural to ask of V to be such that V (La) ≥ V (Lb) for any
two lotteries such that La dominates Lb in the sense of first-order stochastic dominance.
For instance, the expected-utility functional preserves first-order stochastic dominance.
However, this needs not hold for the function Vopt introduced above. To see why this is the
case, consider the following four gambles:

1. Gamble A:
Win $240 with probability 1

2. Gamble B:
Win $1000 with probability 0.25
Win $0 with probability 0.75

3. Gamble C:
Lose $750 with probability 1
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4. Gamble D:
Lose $1000 with probability 0.75
Lose $0 with probability 0.25

As we saw previously, in such a situation most individuals would prefer Gamble A to
Gamble B and Gamble D to Gamble C. Now consider grouping gambles A and D together
into a gamble that we will call Gamble AD and suppose that Gambles B and C are grouped
into a gamble that we will call Gamble CD. Then:

1. Gamble AD:
Win $240 with probability 0.25
Lose $760 with probability 0.75

2. Gamble BC:
Win $250 with probability 0.25
Lose $750 with probability 0.75

It is easy to verify that Gamble BC dominates Gamble AD in the sense of first-order
stochastic dominance, yet most individuals would prefer Gamble A to Gamble B and
Gamble D to Gamble C.

CPT and the distortion of cumulative probabilities To overcome this major dif-
ficulty with OPT, Tversky and Kahneman [293] proposed to adopt the ideas developed by
Quiggin [229] where cumulative probabilities of ranked outcomes are distorted instead of
individual probabilities of ranked outcomes. This led to what is now called Cumulative
Prospect Theory (CPT), which we describe below.

Suppose that a DM has preference � over lotteries of the form

L = (x1, p1;x2, p2; . . . ;xn, pn) (A.24)

Without loss of generality, we may assume that outcomes are ranked as follows x1 ≥
x2 ≥ . . . ≥ xk ≥ 0 > xk+1 ≥ . . . ≥ xn−1 ≥ xn, for some 1 ≤ k ≤ n. The positive outcomes
(x1, . . . , xk) are called gains and the negative outcomes (xk+1, . . . , xn) are called losses.

We say that the DM’s preference has a CPT representation when there is an increasing
utility function u : R → R and two distortion functions T+ : [0, 1] → [0, 1] and T− :
[0, 1]→ [0, 1] such that for any two lotteries L1 and L2,
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L1 � L2 ⇔ Vcpt (L1) > Vcpt (L2) (A.25)

where for any lottery L = (x1, p1;x2, p2; . . . ;xn, pn),

Vcpt (L) :=
k∑
i=1

u (xi)
[
T+ (p1 + . . .+ pi)− T+ (p1 + . . .+ pi−1)

]
+

n∑
i=k+1

u (xi)
[
T− (pi + . . .+ pn)− T− (pi+1 + . . .+ pn)

] (A.26)

with the convention that
∑0

j=1 pj = 0 and
∑n

j=n+1 pj = 0.

Now, going back to the previous example, consider the gambles:

1. Gamble AD:
Win $240 with probability 0.25
Lose $760 with probability 0.75

2. Gamble BC:
Win $250 with probability 0.25
Lose $750 with probability 0.75

Recall that Gamble BC dominates Gamble AD in the sense of first-order stochastic
dominance. Moreover,

Vcpt (AD) = u (240)T+ (0.25) + u (−760)T− (0.75) (A.27)

and

Vcpt (BC) = u (250)T+ (0.25) + u (−750)T− (0.75) (A.28)

Since the utility function is increasing, u (250) > u (240) and u (−750) > u (−760).
Hence
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Vcpt (BC) > Vcpt (AD) (A.29)

and so Vcpt is consistent with the fact that Gamble BC dominates Gamble AD in the sense
of first-order stochastic dominance.

Tversky and Kahneman [293] proposed a specific parameterization of their CPT model,
by giving specific forms for the function u and for the distortion functions T+ and T−.
Bernard and Ghossoub [32] and Ghossoub [141] extended the parameterization of Tversky
and Kahneman [293] to continuous distributions and gave some equivalent alternative for-
mulations of the CPT-functional. We refer the interested reader to [32] and [141] for more
details.

A.3.2 The Choquet Expected-Utility Model and the Multiple
Priors Model

The Choquet Expected-Utility Model (CEU) and the Multiple Priors Model (or Maxmin
Expected Utility (MMEU) model) were introduced, respectively, by Schmeidler [275] and
by Gilboa and Schmeidler [151] as a response to the inadequacy of Bayesianism in captur-
ing situations of Ambiguity, or Knightian uncertainty, as shown in the Ellsberg paradox.
As opposed to the Bayesian view of the Savage-Anscombe-Aumann tradition, the Gilboa-
Schmeidler approach stipulates that in situations of Knightian uncertainty a decision maker
(DM) is unable to formulate a unique additive prior (a unique subjective probability mea-
sure) to represent his beliefs. Instead, the DM can formulate either (i) a unique non-additive
prior (a capacity), as in Shcmeidler [275] (or Gilboa [148]); or, (ii) a unique collection of
additive priors as in Gilboa and Schmeidler [151]. In the latter case, the DM then bases
his decision making process on the worst-case scenario: the minimum expected utility over
his set of priors.

In this chapter, we recall the setting and axiomatization of (i) Schmeidler’s representa-
tion theorem (schmeidler89); and, (ii) the Gilboa-Schmeidler representation theorem that
appeared in [151]. Both used an Anscombe-Aumann framework. We will also discuss (i)
the axiomatization of the CEU model in a purely subjective Savage framework, as given
by Gilboa [148]; and, (ii) the axiomatization of the MMEU model in a purely subjective
Savage setting as given by Alon and Schmeidler [6], or Casadesus-Masanell, Klibanoff and
Ozdenoren [76].

198



Setup

Setting Let S be the set of all possible states of the world, and let Σ be a σ-algebra of
events. Let X be the set of all possible outcomes and endow X with a σ-algebra Σ∗. Assume
that {x} ∈ Σ∗, for each x ∈ X, and denote by ∆ (X) the collection of all simple countably
additive probability measures on (X,Σ∗). When endowed with the usual mixing operations
for set functions, ∆ (X) is a convex subset of the real vector space of all bounded countably
additive measures on (S,Σ∗). Moreover, for each s ∈ S, let X (s) := {f (s) : f ∈ F} be
the set of all possible consequences in the state of the world s. Then X =

⋃
s∈S X (s). In

the following, we will assume (as Fishburn [128] does in Section 13.3) that X (s) = X, for
each s ∈ S.

Denote by H the collection of all mappings of S into ∆ (X), and the elements of H
Anscombe-Aumann (AA) acts. Denote by F the collection of all mapping of S into X, and
call the elements of F Savage acts. For each x ∈ X let δx ∈ ∆ (X) denote the degenerate
simple probability distribution assigning value 1 to the event {x}. We can then embed F
into H by identifying x with δx, for each x ∈ X. Let H0 be the set of all those elements of
H that take on finitely many values, that is, the finite step function in H. Let Hc denote
the collection of constant elements of H0.

Definition A.32. Given a strict preference � on Hc, define weak preference < in the
usual way. An act h ∈ H is called:

1. Σ-measurable when {s ∈ S : h (s) � µ} ∈ Σ and {s ∈ S : h (s) < µ} ∈ Σ, for each
µ ∈ ∆ (X); and,

2. �-bounded if there are µ1, µ2 ∈ ∆ (X) such that µ1 < h (s) < µ2, for each s ∈ S.

Definition A.33 (Comonotonic Acts). Two acts f, g ∈ H are said to be comonotonic if
there are no states of the world s, t ∈ S such that

f (s) � f (t) but g (t) � g (s)

Preferences A decision maker (DM) expresses preferences over elements of H0, via a
binary relation � ⊆ H0×H0. We define the binary relations < and ∼ from � in the usual
manner. We will sometimes make the usual abuse of notation as explained in section A.1.4
where the AA approach is discussed. Also, all definitions of section A.1.4 apply here.
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Let Hbm denote the collection of all acts that are Σ-measurable and �-bounded. Then
Hbm and contains H0, and hence Hc.

Axioms on Preferences

Consider the following axioms on the DM’s preference � over elements of H0:

Axiom AA.1 (Weak Order). � is asymmetric and negatively transitive.

Axiom AA.2∗ (Certainty-Independence Axiom). for all f, g ∈ H0, for all h ∈ Hc, and
for all α ∈ (0, 1), we have:

f � g ⇐⇒ αf + (1− α)h � αg + (1− α)h (A.30)

Axiom AA.2∗∗ (Comonotonic-Independence Axiom). for every pairwise comonotonic acts
f, g, h ∈ H0, and for all α ∈ (0, 1), we have:

f � g ⇐⇒ αf + (1− α)h � αg + (1− α)h (A.31)

Axiom AA.3 (Archimedean Axiom). for all f, g, h ∈ H0, we have:

f � g � h⇒ ∃ α, β ∈ (0, 1) , αf + (1− α)h � g � βf + (1− β)h (A.32)

Axiom AA.4 (Nondegeneracy). There exist some h, g ∈ H0 such that h � g.

Axiom AA.5 (Monotonicity). For each g, h ∈ H0, if g (s) < h (s), for all s ∈ S, then
g < h.

Axiom AA.6 (Uncertainty Aversion). For each g, h ∈ H, and for all α ∈ (0, 1),

h ∼ g ⇒ αh+ (1− α) g < h (A.33)
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Schmeidler’s Representation Theorem

Theorem A.34. Let � be a strict preference over elements of H0. If � satisfies axioms
AA.1, AA.2∗∗, AA.3, AA.4, and AA.5, then there exists a nonconstant utility function
u : X → R, unique up to a positive affine transformation, and a unique capacity ν on
(S,Σ) such that for each g, f ∈ H0,

h � g ⇐⇒
˛
S

[ˆ
X

u dh (s)

]
dν (s) >

˛
S

[ˆ
X

u dg (s)

]
dν (s) (A.34)

where the sign
¸

refers to integration in the sense of the Choquet integral (see Definition
5.7). This theorem can be extended to Hbm (see Schmeidler [275]).

The Gilboa-Schmeidler Representation Theorem

Theorem A.35. Let � be a strict preference over elements of H0. If � satisfies axioms
AA.1, AA.2∗, AA.3, AA.4, AA.5, and AA.6, then there exists a nonconstant utility function
u : X → R, unique up to a positive affine transformation, and a closed8 and convex set C
of probabilites on (S,Σ) such that for each g, f ∈ H0,

h � g ⇐⇒ min
µ∈C

ˆ
S

[ˆ
X

u dh (s)

]
dµ (s) > min

µ∈C

ˆ
S

[ˆ
X

u dg (s)

]
dµ (s) (A.35)

This theorem can be extended to Hbm (see Gilboa and Schmeidler [151]).

Purely Subjective CEU and MMEU

The setting of Schmeidler [275] and of Gilboa and Schmeidler [151] is simply the
Anscome-Aumann setup where uncertainty is neither totally objective nor totally subjec-
tive. Is it possible to obtain Choquet expected utility and / or a multiple priors represen-
tation of preferences in a purely subjective framework à la Savage? This has been done by
Gilboa [148] for the case of CEU and by Alon and Schmeidler [6], and Casadesus-Masanell,
Klibanoff and Ozdenoren [76] for the case of MMEU.

8In the weak∗ topology on ∆ (X). For more about weak∗ topologies on collections of probability
measures see Appendix D.4.
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We will not review the axiomatization here; we will simply state the results. Alon and
Schmeidler [6] consider a finite state space, and a connected topological space of outcomes.
We will only review the setup of Casadesus-Masanell, Klibanoff and Ozdenoren [76] since
they deal with an arbitrary state space.

Let S be a set of states of nature and Σ a σ-algebra of events on S. let X be a set of
prizes, taken to be some closed interval on the real line.

Definition A.36. We will use the following terminology:

1. An act is a mapping f : S → X;

2. An act is called simple if takes only finitely many values (i.e. it is a finite step
function);

3. An act f is called Σ-measurable when f−1 (B) ∈ Σ for any Borel subset B of X.

Let F denote the collection of all Σ-measurable acts. Then Casadesus-Masanell, Klibanoff
and Ozdenoren [76] give axioms for a DM’s preference � over elements of F to have a rep-
resentation of the form: For all f, g ∈ F ,

f � g ⇐⇒ min
P∈C

ˆ
S

u ◦ f dP > min
P∈C

ˆ
S

u ◦ g dP (A.36)

for some continuous and strictly increasing utility function u : X → R, unique up to a
positive affine transformation, and a (weak∗) compact and convex set C of probabilities on
(S,Σ).

Gilboa [148] gives axioms for the DM’s preference � over elements of F to have a
representation of the form: For all f, g ∈ F ,

f � g ⇐⇒
˛
S

u ◦ f dν >
˛
S

u ◦ g dν (A.37)

for some bounded utility function u : X → R, unique up to a positive affine transformation,
and a unique capacity on (S,Σ).
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Appendix B

Topology

All of the definitions and results of this section are fairly elementary. Three classical
references on this subject are Bourbaki [58], Kelley [180] and Willard [299]. All proofs will
be omitted and the reader is referred to either one of the aforementioned references. Other
references include Aliprantis and Border [3] (chap. 2 and 3), Dudley [108] (chap. 2), Dunford
and Schwartz [109] (chap. I), Hewitt and Stromberg [166] (chap. 2), and Kolmogorov and
Fomin [186] (chap. 2 and 3).

B.1 Topological Spaces

B.1.1 Definitions

Definition B.1. A topology T on a nonempty set X is a subset of the collection P (X) of
all subsets of X, such that:

1. ∅ ∈ T and X ∈ T ;

2. T is closed under arbitrary unions; and,

3. T is closed under finite intersections

If T is a topology on a set X, then we say that the space (X, T ) is a topological space.
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Definition B.2. An element of T is called an open set. Moreover, a subset F of X is
called closed if and only if its complement in X is open.

From the previous two definitions, it follows that arbitrary intersections of closed sets
are closed and finite unions of closed sets are closed.

Definition B.3. Let (X, T ) be a topological space and H ⊆ X. The closure of H (in X
for the topology T ) is the smallest closed set containing H. We denote the closure of H by
H. It is easily verified that

H =
⋂
{F : H ⊆ F,X \ F ∈ T }

Definition B.4. Let (X, T ) be a topological space and H ⊆ X. The interior of H (in X
for the topology T ) is the largest open set contained in H. We denote the interior of H by
H◦. It is easily verified that

H◦ =
⋃
{U : U ⊆ H,U ∈ T }

Definition B.5. Let (X, T ) be a topological space and H ⊆ X. H is said to be dense in
X if H = X.

Definition B.6. A topological space (X, T ) is called separable if it has a countable dense
subset.

For instance, R with its usual topology is separable, since the rationals are dense.

Definition B.7. Let (X, T ) be a topological space, and fix x ∈ X. A neighborhood of x is
a subset U of X such that x ∈ G ⊆ U , for some G ∈ T . We denote by Ux the collection of
all neighborhoods of x, and we call it the neighborhood system at x.

Definition B.8. Let (X, T ) be a topological space. A neighborhood base Bx at a point
x ∈ X is a collection Bx ⊆ Ux such that

U ∈ Ux ⇒ ∃ B ∈ Bx, B ⊆ U (B.1)

We refer to the elements of Bx as basic neighborhoods of the point x.
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Definition B.9. Let (X, T ) be a topological space. A base for the topology is a collection
B ⊆ T such that for every G ∈ T , there exists C ⊆ B such that that G =

⋃
{B : B ∈ C}.

That is, every open set is a union of elements of B. Note that if C is empty, then⋃
{B : B ∈ C} is also empty, so we do not need to include the empty set in our base.

A subbase for the topology is a collection S ⊆ T such that the collection B of all finite
intersections of elements of S forms a base for the topology T .

B.1.2 Compactness

Definition B.10. Let (X, T ) be a topological space and let E ⊆ X. A cover (resp. open
cover) of E is a collection {Hα}α∈Λ of sets (resp. open sets) in X such that E ⊆

⋃
α∈ΛHα.

A subcover (resp. open subcover) for E of the cover (resp. open cover) {Hα}α∈Λ is a
subcollection of {Hα}α∈Λ which is again a cover (resp. open cover) of E.

Definition B.11. Let (X, T ) be a topological space. A subset K of X is called compact if
every open cover of K has a finite subcover.

Definition B.12. Let (X, T ) be a topological space and Y ⊆ X. The relative topology on
Y is the collection TY := {G ∩ Y : G ∈ T }.

One can easily verify that the relative topology on Y is itself a topology on Y . More
importantly, compactness is not a relative notion. specifically:

Proposition B.13. Let (X, T ) be a topological space, and let K ⊆ Y ⊆ X. Then the
following are equivalent:

1. K is a compact subset of the topological space (X, T ); and,

2. K is a compact subset of the topological space (Y, TY ).

Proposition B.14. Closed subsets of compact sets are compact.

205



B.1.3 Hausdorff Spaces and Normal Spaces

Definition B.15. A topological space (X, T ) is called a Hausdorff space if for any two
points x, y ∈ X such that x 6= y, there is some U ∈ Ux and some V ∈ Uy such that
U ∩ V = ∅.

Proposition B.16. Let (X, T ) be a Hausdorff topological space, and let K ⊆ X. If K is
compact then K is closed.

In particular, singletons are closed in a Hausdorff space.

Definition B.17. A topological space (X, T ) is called a normal space if for every disjoint
closed sets A and B, there are disjoint open sets U and V such that A ⊂ U and B ⊂ V .

B.1.4 Convergence in Topological Spaces

Definition B.18. A set Λ is called a directed set if there is a binary relation ≤ on Λ such
that:

1. ≤ is reflexive;

2. ≤ is transitive; and,

3. For all λ1, λ2 ∈ Λ, there is some λ3 ∈ Λ such that λ1 ≤ λ3 and λ2 ≤ λ3.

For instance, the set N with its usual order is a directed set.

Definition B.19. A net on a topological space (X, T ) is a function p : Λ → X, where Λ
is a directed set. It is customary to write xλ instead of p (λ), for any λ ∈ Λ. We denote
the net by (xλ)λ∈Λ

For instance, any sequence on (X, T ) is a net on (X, T ).

Definition B.20. Let (M,≤1) and (Λ,≤2) be nonempty directed sets. A function q : M →
Λ is called:
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1. Increasing if for all m1,m2 ∈M ,

m1 ≤1 m2 ⇒ q (m1) ≤2 q (m2)

2. Cofinal if for any λ0 ∈ Λ, there is some m0 ∈M with λ0 ≤2 q (m0)

Definition B.21. Let (X, T ) be a topological space, and let (M,≤1) and (Λ,≤2) be directed
sets. Let (xλ)λ∈Λ be a net in X. A subnet of (xλ)λ∈Λ is a function of the form p◦q : M → X,
where q : M → Λ is increasing and cofinal. It is customary to write

(
xλµ
)
µ∈M for the

subnet, i.e. xλµ = p (q (µ)).

For instance, any subsequence of a sequence is a subnet of that sequence.

Definition B.22. A net (xλ)λ∈Λ in a topological space (X, T ) is said to converge to a point
y ∈ X, and we write limλ∈Λ xλ = y if for any U ∈ Uy there is some λ0 ∈ Λ such that for
all λ ∈ Λ,

λ0 ≤ λ⇒ xλ ∈ U

The previous definition is a natural generalization of the notion of convergence for
sequences. In a metric space, sequences can be used to characterize continuity of functions,
closure of sets, and compactness. In more genral topological spaces, however, this can only
be done using nets. As a matter of fact, this is the main motivation behind the notion of
a net, as shown in the following propositions (which are natural generalization of classical
results for metric spaces).

Definition B.23. Let (X, TX) and (Y, TY ) be topological spaces. A mapping f : X → Y
is called continuous if f−1 (G) ∈ TX , for each G ∈ TY .

Let (xλ)λ∈Λ be a net in a topological space (X, TX). Let (Y, TY ) be another topological
space, and let f : X → Y be any mapping of X into Y . One can then easily observe that
(f (xλ))λ∈Λ is a net in the topological space (Y, TY ).

Proposition B.24. Let (X, TX) and (Y, TY ) be topological spaces. A mapping f : X → Y
is continuous if and only if for any net (xλ)λ∈Λ in X such that limλ∈Λ xλ = x, for some
x ∈ X, we have limλ∈Λ f (xλ) = f (x) ∈ Y .
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Proposition B.25. Let (X, T ) be a topological space and H ⊆ X. Denote by H the closure
of H. Then a point x ∈ X belongs to H if and only if there is a net (xλ)λ∈Λ of points in
H such that limλ∈Λ xλ = x.

Corollary B.26. Let (X, T ) be a topological space. A subset F of X is closed if and only
if F contains all the limit points of all nets in F .

Limits of nets need not be unique. However, when the space is Hausdorff, all limits are
unique:

Proposition B.27. Let (X, T ) be a topological space. Then the following are equivalent:

1. (X, T ) is a Hausdorff space; and,

2. Every convergent net in X has a unique limit.

Proposition B.28. Let (X, TX) and (Y, TY ) be a topological spaces. Let K be a compact
subset of X. If f : K → Y is a continuous mapping then f (K) is a compact subset of Y .

Proposition B.29. Let (X, T ) be a topological space, and let K be a compact subset of
X. If f : K → R is continuous then f is bounded f attains its supremum and its infimum.

B.1.5 Nets and Compactness

Proposition B.30. Let (X, T ) be a topological space, and let (xλ)λ∈Λ be a net in X.
Suppose that limλ∈Λ xλ = x ∈ X. If

(
xλµ
)
µ∈M is a subnet of (xλ)λ∈Λ, then limµ∈M xλµ = x.

Proposition B.31. Let (X, T ) be a topological space. Then the following are equivalent:

1. X is compact; and,

2. Every net in X admits a convergent subnet.
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B.1.6 Connectedness

Definition B.32. A topological space (X, T ) is called disconnected if there are some
nonempty sets G,H ∈ T such that:

1. G ∩H = ∅; and,

2. G ∪H = X.

We say that X is connected when it is not disconnected.

Proposition B.33. A topological space (X, T ) is connected if and only if the only subsets
of X that are both open and closed are ∅ and X.

Proposition B.34. Let (X, TX) be a connected topological space, let (Y, TY ) be an arbitrary
topological space, and let f : X → Y be any mapping of X into Y . If f is continuous then
(Y, TY ) is connected.

B.1.7 Product Topologies

The following definitions are taken form lecture notes for the course PMATH 702, as
given by Prof. Laurent W. Marcoux. The first is a natural abstraction of the notion of a
Cartesian product of finitely many spaces.

Definition B.35. Let {(Xα, Tα)}α∈Γ be an arbitrary collection of topological spaces. We
define the Cartesian product of the sets {Xα}α∈Γ as the collection

∏
α∈Γ

Xα :=

{
x : Γ→

⋃
α∈Γ

Xα | x (α) ∈ Xα, ∀ α ∈ Γ

}

It is customary to denote (xα)α∈Γ by x.

Definition B.36. Let {(Xα, Tα)}α∈Γ be an arbitrary collection of topological spaces, and
let
∏

α∈ΓXα denote their Cartesian product. For each β ∈ Γ, the map πβ :
∏

α∈ΓXα → Xβ

defined by πβ (x) = xβ is called the βth projection map.
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Definition B.37. The product topology on
∏

α∈ΓXα is the smallest collection for which
the collection B =

{∏
α∈Γ Uα

}
is a base, where:

1. Uα ∈ Tα, for all α ∈ Γ; and,

2. Uα = Xα, for all but finitely many α ∈ Γ.

In the definition above, it suffices to ask that we take Uα ∈ Bα, where Bα is a fixed
base for Tα, for each α ∈ Γ. Moreover, note that if Uα = Xα for all α ∈ Γ except for
α1, α2, . . . , αn, then ∏

α∈Γ

Uα = π−1
α1

(Uα1) ∩ π−1
α2

(Uα2) ∩ . . . ∩ π−1
αn (Uαn)

Therefore, the collection {π−1
α (Uα) : Uα ∈ Bα, α ∈ Γ} is a subbase for the product topol-

ogy on
∏

α∈Γ Xα, where Bα is a base (or even a subbase) for the topology on Xα. Conse-
quently, the product topology is the smallest topology that makes all the projection maps
continuous.

B.2 Metric Spaces

B.2.1 Metrization

Definition B.38. A metric on an arbitrary nonempty space X is a mapping d : X×X → R
such that:

1. For all x, y ∈ X, d (x, y) ≥ 0;

2. For all x, y ∈ X, d (x, y) = d (y, x);

3. For all x, y, z ∈ X, d (x, z) ≤ d (x, y) + d (y, z); and,

4. d (x, x) = 0 and for all x, y ∈ X, d (x, y) = 0 if and only if x = y.

When d is a metric on a set X, we call the pair (X, d) a metric space.
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Definition B.39. Let (X, d) be a metric space, x ∈ X, and r > 0. We define the open
ball of radius r with center at x as the subset Br (x) of X defined by:

Br(x) := {y ∈ X : d (x, y) < r}

Definition B.40. Let (X, d) be a metric space, and fix x ∈ X. The collection Bx :=
{Br (x) : r > 0} of all open balls centered at x forms a neighborhood base at x for a topology
T on X. We refer to T as a topology induced by the metric d, and we often say that the
metric d is compatible with the topology T , or that the topology T is metrizable by the
metric d.

Definition B.41. Let (X, T ) be a topological space. We say that T is metrizable if there
exists a metric d on X such that T is induced by the metric d.

Definition B.42. Let (X, d) be a metric space, and let (xn)n≥1 be a sequence in X. We
say that:

1. (xn)n≥1 converges to some x ∈ X if for any ε > 0 there is some N ∈ N such that for
any n ≥ 1,

n ≥ N ⇒ d (xn, x) < ε

2. (xn)n≥1 is a Cauchy sequence if for any ε > 0 there is some N ∈ N such that for any
m,n ≥ 1,

m,n ≥ N ⇒ d (xm, xn) < ε

Any convergent sequence is hence a Cauchy sequence.

Proposition B.43. Any metric space is a Hausdorff space. Therefore, limits are unique
in metric spaces.

Proposition B.44. Any metric space is a normal space.

Definition B.45. A metric space (X, d) is called:
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1. Complete if every Cauchy sequence in (X, d) converges in (X, d);

2. Separable if the topology induced by the metric is separable; and,

3. A Polish space if it is both complete and separable.

Proposition B.46. A closed subset of a complete metric space is complete (for its relative
metric topology). Moreover, any complete subset of a metric space is closed.

Proposition B.47. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be any
mapping of X into Y . Then the following are equivalent:

1. f is continuous; and,

2. For any x ∈ X, if (xn)n≥1 is a sequence in X that converges to x, then the se-
quence (f (xn))n≥1 in Y converges to f (x) (in this case, we say that f is sequentially
continuous).

Proposition B.48. A compact subset of a metric space is closed

B.2.2 Total Boundedness and Sequential Compactness

Definition B.49. Let (X, d) be a metric space, and fix ε > 0. An ε-net for X is a finite
subset of X of the form {x1, x2, . . . , xN}, for some N ∈ N, such that X ⊆

⋃N
i=1Bε(xi).

Definition B.50. A metric space (X, d) is called totally bounded if it admits an ε-net, for
every ε > 0.

Proposition B.51. Every totally bounded metric space is bounded. The converse generally
fails to hold.

Definition B.52. A topological space (X, T ) is called sequentially compact if every se-
quence (xn)n≥1 in X admits a convergent subsequence.
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Proposition B.53. Let (X, d) be a metric space. Then the following are equivalent:

1. X is compact;

2. X is sequentially compact; and,

3. X is complete and totally bounded.
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Appendix C

Duality in Normed Linear Spaces

Although extremely rich and deep, the theory of duality in topological vector spaces
has fairly basic foundations. In this Appendix we focus on the special case of normed
vector spaces. All material presented here is classical, and can be found in Aliprantis and
Border [3] (chap. 5 and 6), Dudley [108] (chap. 6), Hewitt and Stromberg [166] (chap.
4), Kolmogorov and Fomin [186] (chap. 4 and 5), Megginson [210] (chap. 1 and 2), or
Rudin [248] (chap. 4). For a very thorough treatment we refer the reader to Diestel [100],
Dunford and Schwartz [109], Kelley and Namioka [181], Schaefer [270]. A nice unpublished
introductory book is Marcoux [200]. The latter is based on lecture notes of Prof. Laurent
W. Marcoux for the course PMATH 653.

C.1 Normed Linear Spaces

Definition C.1. Let X be any vector space over the field R, and let 0 denote the zero
vector. A norm on X is a mapping ‖.‖ : X → R such that:

1. For all x ∈ X, ‖x‖ ≥ 0;

2. For all x ∈ X and for all c ∈ R, ‖c.x‖ = |c|.‖x‖;

3. For all x, y ∈ X, ‖x+ y‖ ≤ ‖x‖+ ‖y‖; and,

4. ‖x‖ = 0 if and only x = 0.

If ‖.‖ is a norm on a real vector space X then we refer to the pair (X, ‖.‖) as a normed
linear space.
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Let (X, ‖.‖) be a normed linear space, and define the mapping d : X × X → R by
d (x, y) := ‖x−y‖, for all x, y ∈ X. Then one can easily verify that d is a metric on X. We
refer to d as the norm metric. Let T be the topology on X induced by the norm metric
d. We then call T the norm topology, or strong topology, on X. Hence, any normed linear
space is a metrizable topological space.

Clearly, for any x ∈ X a neighborhood base at x for the strong topology on the
normed linear space (X, ‖.‖) is given by the collection Bx := {Br (x) : r > 0}, where
Br (x) := {y ∈ X : ‖x− y‖ < r}, for any r > 0. Moreover, whenever we refer to con-
vergence, continuity, closure, compactness, etc. in norm, we mean convergence, continuity,
closure, compactness, etc. for the norm topology defined above.

Definition C.2. A Banach space is a normed linear space which is complete for the norm
metric defined above.

C.2 The Topological Dual

Definition C.3. Let (X, ‖.‖) be a normed linear space over the field R, and let T : X → R
be a functional on X. T is called linear if for any x, y ∈ X and for any α, β ∈ R,

T (αx+ βy) = αT (x) + βT (y)

Definition C.4. Let (X, ‖.‖) be a normed linear space, and let T : X → R be a linear
functional on X. We say that T is bounded if there is some c ≥ 0 such that, for all x ∈ X,
|T (x)| ≤ c‖x‖.

Definition C.5. Let (X, ‖.‖) be a normed linear space, and let T : X → R be a bounded
linear functional on X. We define

‖T‖∗ := inf {c ≥ 0 : |T (x)| ≤ c‖x‖, ∀ x ∈ X}

Then, by boundedness of T , ‖T‖∗ < +∞

Proposition C.6. Let (X, ‖.‖) be a normed linear space, and let T : X → R be a bounded
linear functional on X. Then the following quantities are equal:
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1. ‖T‖∗;

2. sup {|T (x)| : x ∈ X, ‖x‖ = 1}; and,

3. sup {|T (x)|/‖x‖ : x ∈ X, x 6= 0}.

Proposition C.7. Let (X, ‖.‖) be a normed linear space, let 0 denote the zero vector in
X, and let T : X → R be a linear functional on X. Then the following are equivalent:

1. T is continuous (on X);

2. T is continuous at 0;

3. T is bounded; and,

4. sup {|T (x)| : x ∈ X, ‖x‖ = 1} < +∞.

Definition C.8. Let (X, ‖.‖) be a normed linear space. We denote by X∗ the collection of
all bounded linear (and hence continuous) functionals on X, and we call X∗ the (topological)
dual (or norm-dual, or simply dual) of X.

Proposition C.9. Let (X, ‖.‖) be a normed linear space, and let X∗ denote the dual of
X. Then ‖.‖∗ is a norm on X∗ and the normed linear space (X∗, ‖.‖∗) is a Banach space.

Since (X∗, ‖.‖∗) is itself a normed linear space we can, in turn, construct the dual space
of (X∗, ‖.‖∗). We call this space the double dual, or second dual of X.

Definition C.10. Let (X, ‖.‖) be a normed linear space, and let (X∗, ‖.‖∗) be its dual
space. We define the double dual (or second dual) of X as the dual of X∗, and we denote
it by X∗∗.

Definition C.11. Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space,
and let X∗∗ be its second dual. We can embed X into X∗∗ via the canonical embedding
Γ : X → X∗∗ defined by Γ (x) = x̂, for any x ∈ X, where for any x ∈ X, x̂ : X∗ → R is
defined by x̂ (φ) = φ (x), for each φ ∈ X∗.

One can easily verify that the canonical embedding is a linear map.

Definition C.12. Let (X, ‖.‖) be a normed linear space with second dual X∗∗, and let Γ
denote the canonical embedding of X into X∗∗. If Γ (X) = X∗∗ then X is called reflexive.
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C.3 Weak and Weak∗ Topologies

C.3.1 Definitions and Properties

Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space, and let X∗∗ be
its second dual. The topology on X∗ induced by the metric norm associated with the norm
‖.‖∗ is typically a very strong topology, in the sense that it has too many open sets. In
linear analysis it is customary to define two weaker topologies on X∗, namely the topology
on X∗ induced by X∗∗ (denoted by σ (X∗, X∗∗)) and the topology on X∗ induced by X
(denoted by σ (X∗, X)). Before we define and discuss these topologies, we first define the
notion of a topology induced on a set by some other set.

Definition C.13. Let X be an arbitrary nonempty set, and for each α ∈ Λ let fα : X → Xα

be a mapping of X into some topological space (Xα, Tα). Let Y denote the collection
{fα}α∈Λ. The topology on X induced by Y is the smallest topology on X that makes fα
continuous, for each α ∈ Λ. A subbase for this topology is the collection {f−1

α (Uα) : α ∈ Λ},
where Uα ∈ Tα, for each α ∈ Λ.

In the definition above, it suffices to ask that we take Uα ∈ Bα, where Bα is a fixed
base for Tα, for each α ∈ Λ. Moreover, recall the definition of the product topology on a
Cartesian product of topological space, and not that the product topology is simply the
topology induced by the collection of all projection mappings.

Now, if in the previous definition (Xα, Tα) is simply the real line with the Borel σ-
algebra, then a subbase for the topology onX induced by Y is the collection {f−1

α (Uα) : α ∈ Λ},
Uα is a Borel set, for each α ∈ Λ.

Definition C.14. Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space,
and let X∗∗ be its second dual. Let Γ be the canonical embedding of X into X∗∗. Then:

1. The weak topology on X, denoted by σ (X,X∗) is the topology on X induced by
X∗. That is, σ (X,X∗) is the topology on X that makes all ‖.‖-bounded and linear
functionals on X continuous;

2. The weak topology on X∗, denoted by σ (X∗, X∗∗) is the topology on X∗ induced by
X∗∗. That is, σ (X∗, X∗∗) is the topology on X∗ that makes all ‖.‖∗-bounded and
linear functionals on X∗ continuous; and,

3. The weak∗ topology on X∗, denoted by σ (X∗, X) is the topology on X∗ induced by
Γ (X).
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Proposition C.15. Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space,
and let X∗∗ be its second dual. If T ∗ denotes the strong topology on X∗, that is the topology
induced by the metric generated by the operator norm ‖.‖∗, then:

σ (X∗, X) ⊆ σ (X∗, X∗∗) ⊆ T ∗

This means that the weak∗ topology on the dual space is weaker than the weak topology,
which is in turn weaker than the strong topology.

Proposition C.16. Let (X, ‖.‖) be a normed linear space, and let M be a linear subspace
of X. Then the weak topology of the normed linear space (M, ‖.‖) coincides with the relative
weak topology on M .

Proof. See Megginson [210], proposition 2.5.22 on p. 218.

In what follows we refer to compactness (resp. closure, convergence, continuity, etc.)
with respect to the weak topology on X∗ as weak compactness (resp. weak closure, weak
convergence, weak continuity, etc.). Similarly, we refer to compactness (resp. closure, con-
vergence, continuity, etc.) with respect to the weak∗ topology on X∗ as weak∗ compactness
(resp. weak∗ closure, weak∗ convergence, weak∗ continuity, etc.).

Definition C.17. Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space,
and let X∗∗ be its second dual. Then:

1. A net (xα)α∈Γ in X converges weakly to some x ∈ X if and only if the net (T (xα))α∈Γ

converges to T (x), for each T ∈ X∗;

2. A net (φα)α∈Γ in X∗ converges weakly to some φ ∈ X∗ if and only if the net
(Ψ (φα))α∈Γ converges to Ψ (φ), for each Ψ ∈ X∗∗; and,

3. A net (φα)α∈Γ in X∗ weak∗-converges to some φ ∈ X∗ if and only if the net (φα (x))α∈Γ

converges to φ (x), for each x ∈ X.

Definition C.18. For any normed linear space (X, ‖.‖), define the closed unit ball of X
as

B1 [X] := {x ∈ X : ‖x‖ ≤ 1}

Theorem C.19 (Goldstine). Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its
dual space, and let X∗∗ be its second dual. Denote by Γ the canonical embedding of X into
X∗∗. Then Γ (B1 [X]) is weak∗-dense in B1 [X∗∗]. Consequently, X is weak∗-dense in X∗∗.
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C.3.2 Boundedness

Definition C.20. Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual space,
and let X∗∗ be its second dual. Let 0 denote the zero vector of X, and let 0∗ denote the
zero vector of X∗. Denote by:

1. T the norm topology on X;

2. σ (X,X∗) the weak topology on X;

3. T ∗ the norm topology on X∗;

4. σ (X∗, X∗∗) the weak topology on X∗; and,

5. σ (X∗, X) the weak∗ topology on X∗.

For any subset A of X, and for any t > 0, denote by t.A the set {t.x : x ∈ A}. Let H be
any subset of X and H∗ any subset of X∗. We say that:

1. H is bounded (or T -bounded) if for any T -neighborhood U of 0 there is some tU > 0
such that H ⊆ s.U , for all s > tU ;

2. H is weakly bounded (or σ (X,X∗)-bounded) if for any σ (X,X∗)-neighborhood V of
0 there is some tV > 0 such that H ⊆ s.V , for all s > tV ;

3. H∗ is bounded (or T ∗-bounded) if for any T ∗-neighborhood U of 0∗ there is some
tU > 0 such that H∗ ⊆ s.U , for all s > tU ;

4. H∗ is weakly bounded (or σ (X∗, X∗∗)-bounded) if for any σ (X∗, X∗∗)-neighborhood
V of 0∗ there is some tV > 0 such that H∗ ⊆ s.V , for all s > tV ; and,

5. H∗ is weak∗ bounded (or σ (X∗, X)-bounded) if for any σ (X∗, X)-neighborhood W of
0∗ there is some tW > 0 such that H∗ ⊆ s.W , for all s > tW .

Proposition C.21. Let (X, ‖.‖) be a normed linear space, and let (X∗, ‖.‖∗) be its dual
space. Let H be any subset of X and H∗ any subset of X∗. Then:
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1. H is bounded if and only if H is weakly bounded; and,

2. If X is a Banach space, then H∗ is bounded if and only if H∗ is weak∗ bounded.

Proof. See Megginson [210], Theorem 2.5.5 on p. 213, and Theorem 2.6.7 on p. 225.

C.3.3 Convexity

A subset of a linear space is called convex when it is closed under convex combinations,
that is:

Definition C.22. Let X be a real vector space and let H be any subset of X. Then H is
called convex when α.x+ (1− α) .y ∈ H, for all x, y ∈ H and for all α ∈ (0, 1).

Clearly, any linear subspace of X is convex. The interesting properties of convex subsets
of normed linear spaces stem form the following theorem:

Theorem C.23 (Mazur). Let (X, ‖.‖) be a normed linear space, let (X∗, ‖.‖∗) be its dual
space, and let C be a convex subset of X. Then the norm-closure and weak-closure of C
in X coincide. In particular, the following are equivalent:

1. C is norm-closed; and,

2. C is weakly closed.

Proof. See Diestel [100], Theorem 1 on p. 11 and Corollary 4 on p. 12.

For instance, the norm-closure and weak-closure of a linear subspace of a normed linear
space coincide.
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C.3.4 Compactness and Sequential Compactness

The main results pertaining to notions of compactness in normed linear spaces are
undoubtedly the Banach-Alaoglu Theorem and the Eberlein-Šmulian Theorem, which we
state below.

Theorem C.24 (Banach-Alaoglu). Let (X, ‖.‖) be a normed linear space and let (X∗, ‖.‖∗)
be its dual space. Then B1 [X∗] is weak∗-compact. Thus, norm-bounded and weak∗-closed
subsets of X∗ are weak∗-compact.

Proof. See Aliprantis and Border [3], Theorem 6.21 on p. 235.

Theorem C.25 (Eberlein-Šmulian). A subset of a normed linear space is weakly compact
if and only if it is weakly sequentially compact.

Proof. See Diestel [100] p. 18.

We then have the following result:

Corollary C.26. Let (X, ‖.‖) be a linear space and let (X∗, ‖.‖∗) be its dual space. Let H
be a subset of X and let H∗ be a subset of X∗. Then:

1. H is weakly compact if and only if it is weakly sequentially compact; and,

2. H∗ is weakly compact if and only if it is weakly sequentially compact.
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Appendix D

Duality in Spaces of Measures

The material presented in this Appendix can be found in references such as Aliprantis
and Border [3], Billingsley [38], Cohn [82], Doob [106], Dunford and Schwartz [109], Halmos
[161], Hewitt and Stromberg [166], Rao and Rao [238], or Saks [265]. We will also state a
remarkable theorem by Maccheroni and Marinacci [194] (which is essentially due to Bartle,
Dunford, and Schwartz [30], and Gänssler [132]).

D.1 Measures and Measurability

D.1.1 Measurable Functions

Definition D.1. Let S an arbitrary nonempty set and Σ any σ-algebra of subsets of S.
We call the pair (S,Σ) a measurable space.

Definition D.2. Let (S,Σ) be a measurable space and f a real-valued function on S. We
say that the function f : S → R is Σ-measurable, or simply measurable, if for any Borel
set B in R, f−1 (B) ∈ Σ, where f−1 (B) := {x ∈ S : f (x) ∈ B} is called the preimage of
B under f .

It is customary to refer to a real-valued Σ-measurable function on a measurable space
(S,Σ) as a random variable on (S,Σ).

Definition D.3. Let S be an arbitrary non-empty set and let (Y,Σ) be a measurable space,
and let f be a mapping of S into Y . We define a collection σ {f} of subsets of S as follows:

σ {f} :=
{
f−1 (A) : A ∈ Σ

}
(D.1)
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Then σ {f} is a σ-algebra on S, and we refer to it as the σ-algebra on S generated by f .

Theorem D.4 (Doob). Let S be an arbitrary non-empty set and let (Y,Σ) be a measurable
space. Let f be a mapping of S into Y , and denote by σ {f} the σ-algebra on S generated
by f . Let g : S → R. Then the function g is σ {f}-measurable if and only if there exists a
Σ-measurable function h : Y → R such that g = h ◦ f .

(S, σ {f}) f //

g
&&

(Y,Σ)

h
��
R

Proof. See Aliprantis and Border [3] (Theorem 4.41 on p. 147), Dellacherie and Meyer [94]
(Theorem 18 on p. 12), or Doob [105] (p. 603).

For a subset A of some set S, let 1A denote the indicator (characteristic) function of A.

Definition D.5. A Σ-simple function on a measurable space (S,Σ) is a function f : S → R
of the form f =

∑n
i=1 αi1Ai, for some n ≥ 1, {α1, . . . , αn} ⊂ R with αi 6= αj if i 6= j, and

a partition {Ai}ni=1 of S into elements of Σ.

Hence, a Σ-simple function is in particular measurable.

Proposition D.6. Let (S,Σ) be a measurable space, and let f : S → [0,+∞] be a Σ-
measurable function. Then there exists a sequence {hn}n≥1 of [0,+∞)-valued Σ-simple
function such that:

1. hn (x) ≤ hn+1 (x), for all n ≥ 1 and for all x ∈ S; and,

2. limn hn (x) = f (x), for all x ∈ S.

Proof. See Cohn [82] (Proposition 2.1.7 on p. 54), or Hewitt and Stromberg [166] (Theorem
11.35 on p. 159).
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D.1.2 Measures

Definition D.7. Let (S,Σ) be a measurable space. Then:

1. A finitely additive measure on (S,Σ) is a set function φ : Σ→ [−∞,+∞] such that:

(a) φ (∅) = 0; and

(b) φ (A ∪B) = φ (A) + φ (B), for all A,B ∈ Σ such that A ∩B = ∅.

2. A countably additive measure, or simply a measure, on (S,Σ) is a set function µ :
Σ→ [−∞,+∞] such that:

(a) µ (∅) = 0; and

(b) µ
(⋃+∞

n=1An
)

=
∑+∞

n=1 µ (An), for any sequence {An}n≥1 of pairwise disjoint ele-
ments of Σ.

3. A nonnegative finitely additive measure if it is both nonnegative and finitely additive;
and,

4. A nonnegative countably additive measure if it is both nonnegative and countably
additive.

Note that if φ is a finitely additive measure then, by induction, for any collection {Ai}ni=1

of pairwise disjoint elements of Σ, φ (
⋃n
i=1Ai) =

∑n
i=1 φ (Ai). Henceforth, we will refer to

a countably additive measure as simply a measure.

Definition D.8. Let (S,Σ) be a measurable space. Then:

1. A finitely additive measure λ on Σ is called bounded when supA∈Σ|λ (A)| < +∞;

2. A nonnegative finitely additive measure λ on Σ is called finite when |λ (S)| < +∞;

3. A nonnegative finitely additive measure λ on Σ is called a finitely additive probability
measure when λ (S) = 1; and,
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4. A nonnegative countably additive measure λ on Σ is called a countably additive prob-
ability measure, or simply a probability measure, when λ (S) = 1.

Definition D.9. Let (S,Σ) be a measurable space, and let µ and ν be two finite nonnegative
measures on (S,Σ). We say that:

1. µ is absolutely continuous with respect to ν, and we write µ << ν, if for all A ∈ Σ,
ν (A) = 0⇒ µ (A) = 0;

2. µ and ν are equivalent or mutually absolutely continuous, and we write µ ∼ ν, when
µ << ν and ν << µ; and,

3. µ and ν are mutually singular, and we write µ ⊥ ν (or ν ⊥ µ), when there is some
B ∈ Σ such that µ (B) = ν (S \B) = 0.

Theorem D.10 (Lebesgue Decomposition). Let (S,Σ) be a measurable space and let µ
and ν be two finite nonnegative measures on (S,Σ). Then there is a unique pair (νac, νs)
of finite nonnegative measures on (S,Σ) such that:

1. ν = νac + νs;

2. νs ⊥ µ; and,

3. νac << µ.

Proof. See Aliprantis and Border [3] (Theorem 10.61 on p. 401), Cohn [82] (Theorem 4.3.1
on p. 141), Hewitt and Stromberg [166] (Theorem 19.42 on p. 326), or Saks [265] (Theorem
14.6 on pp. 33-34).

Definition D.11. Let (hn)n≥1 be a sequence of functional on an arbitrary nonempty space
S, and let A ⊆ S. We say that the sequence (hn)n≥1 converges uniformly on A to some
functional φ on S if, for each ε > 0, there is some N ∈ N such that for all n ≥ 1,

n ≥ N ⇒ |hn (x)− φ (x)| < ε, ∀ x ∈ A
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Theorem D.12 (Egoroff). Let (S,Σ) be a measurable space, let µ be a finite nonnegative
measure on (S,Σ), and let E ∈ Σ be such that µ (E) > 0. Let (fn)n≥1 be a sequence of
R-valued Σ-measurable functions on S such that the sequence (fn (x))n≥1 converges to some
f (x), for all x ∈ A, for some A ∈ Σ, A ⊆ E, and µ (E \ A) = 0. Then for any ε > 0, there
is some F ∈ Σ, with F ⊆ E and µ (E \ F ) < ε, such that the sequence (fn)n converges to
f uniformly on F .

Proof. See Aliprantis and Border [3] (Theorem 10.38 on p. 389), Dunford and Schwartz
[109] (Definition III.6.1 on p. 145 and Theorem III.6.12 on p. 149), Hewitt and Stromberg
[166] (Theorem 11.32 on p. 158), or Saks [265] (Theorem 9.6 on p. 18).

D.2 The Dual of the Space B (Σ)

D.2.1 The spaces ba (Σ) and ca (Σ)

Definition D.13. Let (S,Σ) be a measurable space and µ a finitely additive measure on
(S,Σ). Define the nonnegative set function |µ| on Σ as follows: For each E ∈ Σ,

|µ| (E) := sup

{
n∑
i=1

|µ (Ai)| : {Ai}ni=1 is a partition of E,Ai ∈ Σ for i = 1, . . . , n

}

We call |µ| the total variation of µ, and for each E ∈ Σ, we call |µ| (E) the total variation
of µ on E.

Proposition D.14. If (S,Σ) be a measurable space and µ is a finitely additive measure
on (S,Σ), then the total variation |µ| of µ is a nonnegative finitely additive measure on
(S,Σ).

Note that when µ is also nonnegative |µ| (E) = µ (E), for each E ∈ Σ.

Definition D.15. Let (S,Σ) be a measurable space, and let µ and ν be two finitely additive
measures on (S,Σ). We say that µ is absolutely continuous with respect to ν, and we write
µ << ν, if

lim
|ν|(E)→0

µ (E) = 0
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Definition D.16. Let (S,Σ) be a measurable space, and let µ and ν be two finite measures
on (S,Σ). Then µ << ν if and only if for all A ∈ Σ,

|ν| (A) = 0⇒ µ (A) = 0

Definition D.17. Let (S,Σ) be a measurable space and µ a finitely additive measure on
(S,Σ). We say that µ is of bounded variation if |µ| (S) < +∞

Proposition D.18. Let (S,Σ) be a measurable space and µ a finitely additive measure on
(S,Σ). Then

sup
E∈Σ
|µ (E)| ≤ |µ| (S) ≤ 4 sup

E∈Σ
|µ (E)|

Consequently, a finitely additive measure has bounded variation if and only if it is bounded.

Definition D.19. For a measurable space (S,Σ), we denote by:

1. ba (Σ) the space of all finitely additive measures on (S,Σ) having bounded variation;

2. ba+ (Σ) the collection of nonnegative elements of ba (Σ);

3. ca (Σ) the collection of all countably additive elements of ba (Σ);

4. ca+ (Σ) the collection of nonnegative elements of ca (Σ); and,

5. ca+
1 (Σ) the collection of all probability measures on (S,Σ).

Under the usual setwise operations of addition and scalar multiplication, the spaces
ba (Σ) and ca (Σ) are real vector spaces, and ca (Σ) is a linear subspace of ba (Σ). They
turn out to be much more than that:

Proposition D.20. Let (S,Σ) be a measurable space and for each µ ∈ ba (Σ), let ‖µ‖v :=
|µ| (S). Then:

1. ‖.‖v is a norm on ba (Σ);

2. The space (ba (Σ) , ‖.‖v) is a Banach space; and,

3. ca (Σ) is a ‖.‖v-closed linear subspace of ba (Σ). Hence, ca (Σ) is ‖.‖v-complete, i.e.
(ca (Σ) , ‖.‖v) is a Banach space.
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D.2.2 The Space B (Σ) and its Dual

Definition D.21. For a measurable space (S,Σ), denote by:

1. B0 (Σ) the collection of R-valued, Σ-measurable Σ-simple functions on S;

2. B (Σ) the collection of all bounded Σ-measurable R-valued functions on S; and,

3. B+ (Σ) the collection of all nonnegative elements of B (Σ).

When endowed with the usual setwise operations of addition and scalar multiplication,
both B0 (Σ) and B (Σ) are real vector spaces. Moreover, there is a natural and useful norm
one can define on these spaces:

Definition D.22. Let f : S → R be a bounded function, and define

‖f‖s := sup {|f (s)| : s ∈ S}

Proposition D.23. The quantity ‖.‖s is a norm on the space B (Σ), called the supnorm,
or the uniform norm. Moreover, the space (B (Σ) , ‖.‖s) is a Banach space.

Proof. See Dunford and Schwartz [109], IV.2.12 on p. 240, and the first paragraph of p.
258.

A natural issue to examine at this point is the characterization of the topological dual
of the Banach space (B (Σ) , ‖.‖s). Fortunately, this is a rather classical problem.

Theorem D.24. Let B∗ (Σ) denote the topological dual of the Banach space (B (Σ) , ‖.‖s).
Then B∗ (Σ) is isometrically isomorphic to the space ba (Σ), via the identity

Ψ (f) =

ˆ
S

f dµ (D.2)

Therefore, for each Ψ ∈ B∗ (Σ) there is a unique µ ∈ ba (Σ) such that Ψ (f) =
´
S
f dµ,

for each f ∈ B (Σ). Moreover, for each µ ∈ ba (Σ) there is a unique Ψ ∈ B∗ (Σ) such that
Ψ (f) =

´
S
f dµ, for each f ∈ B (Σ).
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Proof. See Diestel [100] (Theorem 7 on p. 77), Dunford and Schwartz [109] (Theorem IV.5.1
on p. 258), Fichtenholz and Kantorovich [126], or Hildebrandt [167].

This is a deep and powerful result which will allow us to endow ba (Σ) with the
weak∗ topology σ (ba (Σ) , B (Σ)). We can also endow ba (Σ) with the weak topology
σ (ba (Σ) , ba∗ (Σ)). Finally, we can endow ca (Σ) with the weak topology σ (ca (Σ) , ca∗ (Σ)),
which coincides with the weak topology that ca (Σ) inherits from the weak topology of
ba (Σ), by Proposition C.16. In particular, weak compactness in ca (Σ) is equivalent to
weak compactness in ba (Σ).

D.3 Topological Properties of ba (Σ) and ca (Σ)

Definition D.25. Let (S,Σ) be a measurable space, let λ ∈ ba (Σ), and let M ⊆ ba (Σ).
We say that M is uniformly absolutely continuous with respect to λ if, for every ε > 0,
there is some δ > 0 such that

(A ∈ Σ and |λ| (A) < δ)⇒ (|ν (A)| < ε, for each ν ∈M)

In other words, the limit

lim
|λ|(A)→0

ν (A) = 0

is uniform with respect to ν ∈M .

Theorem D.26 (Vitali-Hahn-Saks). Let (S,Σ) be a measurable space and (µn)n≥1 a se-
quence in ca (Σ) such that, for each A ∈ Σ, the sequence (µn (A))n≥1 converges to some
real number. Define the set function µ on Σ by

µ (A) := lim
n
µn (A) , ∀ A ∈ Σ (D.3)

Then:

1. µ is a bounded measure on (S,Σ); and,

2. The collection M := {µn, n ≥ 1} is uniformly absolutely continuous with respect to
λ, for each λ ∈ ca (Σ) that satisfies µn << λ, ∀ n ∈ N.
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Proof. See Rao and Rao [238], Theorem 8.1.4 on pp. 204-205.

Theorem D.27. Let (S,Σ) be a measurable space, M ⊆ ca (Σ), and N ⊆ ba (Σ). Then:

1. M is weakly sequentially compact if and only if M is norm-bounded and there is some
λ ∈ ca+ (Σ) such that M is uniformly absolutely continuous with respect to λ; and,

2. N is weakly sequentially compact if and only if there is some φ ∈ ba+ (Σ) such that
N is uniformly absolutely continuous with respect to φ;

Proof. See Dunford and Schwartz [109], Theorem IV.9.2 on p. 306 and Theorem IV.9.12
on p. 314.

Proposition D.28. Let (S,Σ) be a measurable space, then:

1. The space ca (Σ) is weakly complete; and,

2. The space ba (Σ) is weakly complete.

Proof. See Dunford and Schwartz [109], Theorem IV.9.4 on p. 308 and Theorem IV.9.9 on
p. 311.

Proposition D.29. Let (S,Σ) be a measurable space. A sequence (µn)n≥1 in ca (Σ) con-
verges weakly to some µ ∈ ca (Σ) if and only if it is norm-bounded and the limit limn µn (E)
exists and equals µ (E), for each E ∈ Σ.

Proposition D.30. Let (S,Σ) be a measurable space. A sequence (µn)n≥1 in ba (Σ) con-
verges weakly to some µ ∈ ba (Σ) if and only if the sequence (µn)n≥1 converges to µ in the
weak∗ topology.

Although quite surprising at first sight, the following theorem by Maccheroni and Mari-
nacci [194] (which is essentially due to Bartle, Dunford, and Schwartz [30], and Gänssler
[132]) is remarkable for its extreme importance in practice. It can be seen as a complement
to the Eberlein-Šmulian theorem (Theorem C.25), or as a Heine-Borel theorem for the
space ba (Σ).
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Theorem D.31 (Maccheroni-Marinacci). Let (S,Σ) be a measurable space and M ⊆
ca (Σ). Then the following are equivalent:

1. M is weak∗ closed and norm-bounded;

2. M is weak∗ compact;

3. M is weakly compact;

4. M is sequentially weak∗ compact; and,

5. M is sequentially weakly compact.

Proof. See Maccheroni and Marinacci [194], Theorem 1 on p. 355.

D.4 Duality in Spaces of Borel Probability Measures

In this section we will discus a special case of a much larger, richer and deeper theory
of duality on topological measure spaces. We refer the reader to Bourbaki [59] and Kura-
towski [188] for many definitions and further results. The reader may also want to consult
Aliprantis and Border [3] (chap. 12, 14, and 15), Bogachev [43] (chap. 6, 7, and 8), and
Cohn [82] (chap. 7 and 8). The basic duality result that we will discuss here is based on the
Riesz representation theorem. We then apply it to the collection of probability measures
on some appropriately defined σ-algebra of a topological space to characterize a notion of
convergence for probability measures. First, however, we need some preliminary definitions
and results.

D.4.1 Preliminaries and the Riesz Representation Theorem

Definition D.32. Let (S, T ) be an arbitrary nonempty topological space. The Borel σ-
algebra of S is the σ-algebra B generated by T . Elements of B are called the Borel subsets
of S.
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Proposition D.33. Let (S, T ) be an arbitrary nonempty topological space and B its Borel
σ-algebra. If a mapping f : S → R is continuous, then it is Borel-measurable, i.e. B-
measurable.

Definition D.34. Let (S, T ) be an arbitrary nonempty topological space and B its Borel
σ-algebra. We refer to any countably additive (resp. finitely additive) measure on the
measurable space (S,B) as a countably additive (resp. finitely additive) Borel measure on
S. As usual, the term measure is reserved for countably additive measures.

Definition D.35. A nonnegative Borel measure µ (either finitely additive or countably
additive) on a topological space (S, T ) with Borel σ-algebra B is called:

1. Outer regular if for each A ∈ B, µ (A) = inf {µ (U) : U ∈ T , A ⊆ U};

2. Inner regular if for each A ∈ B, µ (A) = sup {µ (F ) : F is closed, F ⊆ A};

3. Normal if it is both inner and outer regular;

4. Tight if for each A ∈ B, µ (U) = sup {µ (K) : K is compact, K ∈ B, K ⊆ A}; and,

5. Regular if µ (K) < +∞, for each compact subset K of S in B, and it is both outer
regular and tight.

Moreover, a bounded Borel measure µ (either finitely additive or countably additive)
on the topological space (S, T ) is said to possess any of the above properties when its total
variation |µ| does.

Note that if in the definition above the space (S, T ) is Hausdorff, so that every compact
subset of S is closed, then the requirement that K be in B in the definition of tightness
and regularity is redundant.

Proposition D.36. A finite finitely additive nonnegative Borel measure is outer regular
if and only if it is inner regular (and hence if and only if it is normal).

Proposition D.37. On a Hausdorff space, any tight finite finitely additive nonnegative
Borel measure is also regular.
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Proposition D.38. On a metrizable space, any finite finitely additive nonnegative Borel
measure is normal.

Recall the definition of a Polish space: it is a metric space which is complete and
separable.

Proposition D.39. Every bounded Borel measure on a Polish space is regular. In partic-
ular, any Borel probability measure on a Polish space is regular.

This result can be generalized to more abstract spaces such as Lusin spaces and Souslin
spaces which we define below.

Definition D.40. A Lusin space is a Hausdorff space which is the image of a Polish space
under a continuous bijection (one-to-one and onto). A Souslin space is a Hausdorff space
which is the image of a Polish space under a continuous surjection (onto).

Hence, any Polish space is a Lusin space, and any Lusin space is a Souslin space.
Moreover, one can think of a Lusin space as a transformation of a Polish space, whereby
the metric topology is replaced by some weaker Hausdorff topology.

Proposition D.41. Every bounded Borel measure on a Souslin space is regular. In par-
ticular, any Borel probability measure on a Souslin space is regular.

Definition D.42. For any Hausdorff topological space (S, T ) with Borel σ-algebra B, we
define the following collections of set functions:

1. bar (S) is the collection of all regular bounded finitely additive Borel measures on
(S,B);

2. car (S) is the collection of all countably additive elements of bar (S);

3. ban (S) is the collection of all normal bounded finitely additive Borel measures on
(S,B); and,

4. can (S) is the collection of all countably additive elements of ban (S);

All of the above collections of set functions are real vector spaces when endowed with
usual mixing operations. Furthermore,
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Proposition D.43. If ‖.‖v denotes the total variation norm, then the spaces (bar (S) , ‖.‖v),
(car (S) , ‖.‖v), (ban (S) , ‖.‖v), and (can (S) , ‖.‖v) are Banach spaces.

Definition D.44. Let (S, T ) be a topological space. A function f : S → R is said to be
bounded if sup {|f (s)| : s ∈ S} < +∞.

Definition D.45. Let (S, T ) be a topological space. We denote by Cb (S) the collection of
all continuous and bounded R-valued functions on (S, T ).

With the usual mixing operations for functions, Cb (S) is a real vector space. Moreover:

Proposition D.46. Let (S, T ) be a topological space, and for each f ∈ Cb (S) let ‖f‖s :=
sup {|f (s)| : s ∈ S}. Then ‖.‖s : Cb (S) → [0,+∞) is a norm on Cb (S), and the space
(Cb (S) , ‖.‖s) is a Banach space.

We now come to this section’s two main results:

Theorem D.47 (Dual of Cb (S)). Let (S, T ) be a Hausdorff normal topological space, and
let C∗b (S) denote the topological dual of the space Cb (S). Define the map T : ban (S) →
C∗b (S) as follows: For each µ ∈ ban (S), we have

T (µ) (f) :=

ˆ
S

f dµ, ∀ f ∈ Cb (S) (D.4)

Then the map T is a surjective isometry. Hence, we can identify the Banach space
C∗b (S) with the Banach space ban (S).

Theorem D.48 (Positive Functionals on Cb (S)). Let (S, T ) be a Hausdorff normal topo-
logical space, and let T be a positive linear functional on Cb (S). Then there exists a unique
finite nonnegative and finitely additive normal measure µ on the Borel σ-algebra B of (S, T )
such that:

1. T (f) :=
´
S
f dµ, for each f ∈ Cb (S); and,

2. ‖µ‖v = µ (S) = ‖T‖ = T (1), where 1 denotes the constant function yielding 1.
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D.4.2 “Weak Convergence” of Borel Probability Measures

Any Borel probability measure on a Polish space (e.g. R with its usual metric) is regular
and normal. Therefore, the collection P (R) of Borel probability measures on (the Borel
σ-algebra of) R is a subset of the collection ban (R) of all bounded normal finitely additive
Borel measures on R.

Moreover, as per Theorem D.47, the topological dual of the space of all bounded con-
tinuous R-valued functions on a Hausdorff normal space S (e.g. R with its usual metric)
can be identified with the Banach space ban (S). Therefore, we can identify the topological
dual C∗b (R) of Cb (R) with the Banach space space ban (R). Hence, we can endow the
space ban (R) with the weak∗ topology σ (ban (R) , Cb (R)). Consequently, there is a weak∗

topology on P (R).

Definition D.49. “Weak convergence” in P (R) refers to convergence in the weak∗ topology
σ (ban (R) , Cb (R)). That is, a net {µα}α∈Λ of Borel probability measures on R converges
“weakly” to some Borel probability measure µ on R if and only if the net

{´
φ dµα

}
α∈Λ

converges to
´
φ dµ, for each continuous bounded real-valued function φ on R.

This terminology is unfortunate, for “weak convergence” in the language of probability
theory is nothing but weak∗ convergence in the language of functional analysis. How-
ever, weak convergence in the language of functional analysis refers to convergence in the
topology σ (ban (R) , ba∗n (R)) on ban (R). Nevertheless, this rather bad terminology is so
engrained in the literature that we see no point in challenging it here. However we will
always write “weak convergence” (between quotation marks) to mean weak∗ convergence.

Definition D.50. Let {Xα}α∈Λ be a net of random variables on a measurable space (S,Σ),
and let µ be a probability measure on (S,Σ). We say that the net {Xα}α∈Λ converges in
distribution to some random variable Y on (S,Σ) when the net {µ ◦X−1

α }α∈Λ of Borel
probability measures on R converges “weakly” to the Borel probability measure µ ◦ Y −1 on
R.

Definition D.51. For each random variable X on a probability space (S,Σ, P ), we define
the distribution function FX of X as the function FX : R→ [0, 1] given by

FX (t) := P ({s ∈ S : X (s) ≤ t}) = P ◦X−1 ((−∞, t]) (D.5)
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Similarly, for each Borel probability measure µ on R, we define the distribution function
Fµ of µ as the function Fµ : R→ [0, 1] given by

Fµ (t) := µ ((−∞, t]) (D.6)

Proposition D.52. Let {µα}α∈Λ be a net of Borel probability measures on R. Then
{µα}α∈Λ converges“weakly” to some Borel probability measure ν on R when the net {Fµα}α∈Λ

converges to Fν at the points of continuity of Fν.

We can even strengthen this result further, but we first need some definitions:

Definition D.53. Let (S, T ) be a topological space and A an arbitrary subset of S. Let A
denote the closure of A and let A◦ denote the interior of A. We define the boundary of A,
denoted by ∂A, as the set ∂A = A \ A◦.

Note that the boundary of any set is closed. In particular, it is a Borel set.

Theorem D.54 (Portmanteau). Let (S, T ) be a metrizable topological space, let P (S)
denote the collection of all Borel probability measures on S, and let Cb (S) denote the
collection of all continuous bounded R-valued functions on S. For a net {µα}α∈Λ in P (S)
and for some µ ∈ P (S), the following are equivalent:

1. The net {µα}α∈Λ converges to µ “weakly”;

2. The net
{´

S
f dµα

}
α∈Λ

converges to
´
S
f dµ, for each f ∈ Cb (S); and,

3. The net {µα (B)}α∈Λ converges to µ (B), for each Borel set B such that µ (∂B) = 0.

Proof. See e.g. Billingsley [38], Theorem 2.1 on p. 16.
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Appendix E

Duality in Lp Spaces

All the material presented in this Appendix is classical. We refer the reader to any
textbook on measure theory for a treatment of integration, the duality between Lp spaces,
and the Radon-Nikodým theorem1. Many of the topics discussed below can be found in
Prof. Andrew Heunis’ lecture notes for the course STAT902. Classical references include
Aliprantis and Border [3], Ash [27], Billingsley [38], Cohn [82], Dudley [108], Doob [106],
Halmos [161], Hewitt and Stromberg [166], or Saks [265]. For the specific problem of
characterizing the dual of an Lp space, we recommend the beautiful monograph by Gretsky
[158].

E.1 Integration

In the following, let (S,Σ) be a measurable space and µ a countably additive nonnega-
tive and finite measure on (S,Σ). We call the triple (S,Σ, µ) a finite measure space. If in
addition µ (S) = 1, then (S,Σ, µ) will be called a probability space.

Definition E.1. Let f : S → R be a Σ-simple function f on S of the form f =
∑n

i=1 αi1Ai,
for some n ≥ 1, {α1, . . . , αn} ⊂ R with αi 6= αj if i 6= j, and a partition {Ai}ni=1 of S into
elements of Σ. We define the integral

´
S
f dµ of a f with respect to µ as

ˆ
S

f dµ :=
n∑
i=1

αiµ (Ai) (E.1)

1For a different approach altogether to the theory of measure and integration, we refer the reader to
Bourbaki [53], [54], [55], [56], and [57], or Schwartz [277], for instance.
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Definition E.2. Let S+ denote the collection of all nonnegative, Σ-simple functions f :
S → [0,+∞).

Definition E.3. For any Σ-measurable function f : S → [0,+∞], we define the integral´
S
f dµ of f with respect to µ as

ˆ
S

f dµ := sup

{ˆ
S

g dν : g ∈ S+ and g (x) ≤ f (x) , ∀ x ∈ S
}

(E.2)

Definition E.4. For any function f : S → [−∞,+∞], define the functions f+ : S →
[0,+∞] and f− : S → [0,+∞] by f+ = max {0, f} and f− = (−f)+. Then f+ (resp. f−)
is called the nonnegative part of f (resp. the nonpositive part of f), and f = f+ − f−.

Definition E.5. A Σ-measurable mapping f : S → [−∞,+∞] is called µ-integrable if´
S
f+ dµ < +∞ and

´
S
f− dµ < +∞.

Proposition E.6. Let f : S → [−∞,+∞] be a Σ-measurable mapping, and define |f | :=
f+ + f−. Then f is µ-integrable if and only if

´
S
|f | dµ < +∞.

Definition E.7. For any Σ-measurable and µ-integrable function f : S → [−∞,+∞], we
define the integral

´
S
f dµ of f with respect to µ as

ˆ
S

f dµ :=

ˆ
S

f+ dµ−
ˆ
S

f− dµ (E.3)

Theorem E.8 (Monotone Convergence). Let f, fn : S → [0,+∞] be Σ-measurable func-
tions on S, for each n ≥ 1. Suppose that:

1. fn (x) ≤ fn+1 (x), for each n ≥ 1 and for µ-a.a. x ∈ S; and,

2. limn fn (x) = f (x), for µ-a.a. x ∈ S.

Then limn

´
S
fn dµ =

´
S
f dµ.
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Theorem E.9 (Dominated Convergence). Let g : S → [0,+∞] be a Σ-measurable and
µ-integrable function on S, and let f, fn : S → [−∞,+∞] be Σ-measurable functions on
S, for each n ≥ 1. Suppose that:

1. limn fn (x) = f (x), for µ-a.a. x ∈ S; and,

2. |fn (x)| ≤ g (x), for each n ≥ 1 and for µ-a.a. x ∈ S.

Then f and fn are µ-integrable, for each n ≥ 1, and limn

´
S
fn dµ =

´
S
f dµ.

Proof. See Aliprantis and Border [3] (Theorem 11.21 on p. 415) or Cohn [82] (Theorem
2.4.4. on p. 72).

Definition E.10. A measure µ on a measurable space (S,Σ) is called σ-finite if S is a
countable union of Σ-measurable sets each having finite measure under µ.

Theorem E.11 (Change of Variable). Let (X,ΣX) and (Y,ΣY ) be two measurable spaces,
and let T : (X,ΣX)→ (Y,ΣY ) be measurable, in the sense that T−1 (A) ∈ ΣX for each A ∈
ΣY . Let µ be a nonnegative (countably additive) measure on (X,ΣX) and let ν := µ ◦T−1.
Then ν is a measure on (Y,ΣY ), called the image measure of ν under T .

Moreover, for each function f : Y → R, we have:

1. If f is ν-integrable, then f ◦ T is µ-integrable and
´
Y
f dν =

´
X
f ◦ T dµ;

2. If ν is σ-finite, f is ν-measurable, and f ◦ T is µ-integrable, then f is ν-integrable
and
´
Y
f dν =

´
X
f ◦ T dµ.

Proof. See Aliprantis and Border [3] (Theorem 13.46 on p. 484), Dunford and Schwartz
[109] (Lemma III.10.8 on p. 182), or Resnick [240] (Theorem 5.5.1 on pp. 135-136).
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E.2 Lp and Lp Spaces

In the following, let (S,Σ) be a measurable space and µ a countably additive nonnega-
tive and finite measure on (S,Σ). We call the triple (S,Σ, µ) a finite measure space. If in
addition µ (S) = 1, then (S,Σ, µ) will be called a probability space.

Definition E.12. For each p ∈ [1,+∞) we denote by Lp (S,Σ, µ) the collection of all
Σ-measurable functions f on S such that |f |p is µ-integrable. In particular, L1 (S,Σ, µ) is
the collection of all µ-integrable functionals on S.

Definition E.13. For each p ∈ [1,+∞), define the functional ‖.‖p : Lp (S,Σ, µ)→ [0,+∞)
as follows: For each f ∈ Lp (S,Σ, µ), let

‖f‖p :=

[ˆ
S

|f |p dµ
]1/p

(E.4)

Proposition E.14. For each p ∈ [1,+∞), define the binary relation ∼ on Lp (S,Σ, µ) as
follows: For each f, g ∈ Lp (S,Σ, µ),

f ∼ g ⇔ f = g, µ-a.s. (E.5)

Then ∼ is an equivalence relation on Lp (S,Σ, µ).

Definition E.15. For each p ∈ [1,+∞) and for each f ∈ Lp (S,Σ, µ), let [f ] denote the
equivalence class of the function f for the equivalence relation ∼ of µ-a.s. equality defined
above. We define Lp (S,Σ, µ) as the collection of all equivalence classes of functions in
Lp (S,Σ, µ):

Lp (S,Σ, µ) := {[f ] : f ∈ Lp (S,Σ, µ)} (E.6)

Moreover, we define the functional ‖.‖p : Lp (S,Σ, µ)→ [0,+∞) by

‖ [f ] ‖p := ‖f‖p, ∀ f ∈ Lp (S,Σ, µ) (E.7)

Note that for each α, β ∈ R, for each f, g ∈ Lp (S,Σ, µ), for each f ′ ∈ [f ], and for each
g′ ∈ [g], we have [α.f + β.g] = [α.f ′ + β.g′]. Consequently, we can define vector addition
and scalar multiplication in Lp (S,Σ, µ) as follows:

α. [f ] + β. [g] := [α.f ′ + β.g′]
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This makes Lp (S,Σ, µ) a real vector space with zero vector [0].

Proposition E.16. For each p ∈ [1,+∞), the functional ‖.‖p hence defined is a norm on
Lp (S,Σ, µ), called the Lp-norm, and (Lp (S,Σ, µ) , ‖.‖p) is Banach space.

It is customary to abuse the notation and identify Lp (S,Σ, µ) with Lp (S,Σ, µ), and
we shall follow the same abuse of notation. Now, in order to define the space L∞ (S,Σ, µ),
and hence the space L∞ (S,Σ, µ), we need the following definition:

Definition E.17. A functional f : S → R is called µ-essentially bounded if there is some
M ∈ [0,+∞) such that the set {x ∈ S : |f (x)| > M} is µ-null, that is, |f | ≤M,µ-a.s.

We now turn to the definition of the spaces L∞ (S,Σ, µ) and L∞ (S,Σ, µ).

Definition E.18. We define the space L∞ (S,Σ, µ) as the collection of all µ-essentially
bounded functions on S, and we define the space L∞ (S,Σ, µ) as the collection of all equiv-
alence classes of functions in L∞ (S,Σ, µ) under the equivalence relation of µ-a.s. equality.

Proposition E.19. Define the functional ‖.‖∞ : L∞ (S,Σ, µ) → [0,+∞) as follows: For
each f ∈ L∞ (S,Σ, µ),

‖f‖∞ := inf {M > 0 : |f (x)| ≤M for µ-a.a. x ∈ S} (E.8)

Moreover, define the functional ‖.‖∞ : L∞ (S,Σ, µ) → [0,+∞) as follows: For each f ∈
L∞ (S,Σ, µ),

‖ [f ] ‖∞ := ‖f‖∞ (E.9)

Then ‖.‖∞ hence defined is a norm on L∞ (S,Σ, µ), called the L∞-norm or the essential
supnorm, and (L∞ (S,Σ, µ) , ‖.‖∞) is Banach space.

Proposition E.20. For each p ∈ [1,+∞], the collection of all simple functions in Lp (S,Σ, µ)
is norm-dense in Lp (S,Σ, µ), and hence it determines a norm-dense in Lp (S,Σ, µ).

Proposition E.21. For each 1 ≤ r < s ≤ +∞, we have that:
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1. Ls (S,Σ, µ) ⊂ Lr (S,Σ, µ); and,

2. The identity map of Ls (S,Σ, µ) into Lr (S,Σ, µ) is norm-continuous.

E.3 Duality

The first main result that we will state here is the Radon-Nikodým theorem, which is
essentially a duality result for the space L1, and states that L1 (S,Σ, µ) is isometrically
isomorphic to the collection of all countably additive measures on (S,Σ) of bounded vari-
ation that are absolutely continuous with respect to µ. The second main result concerns
duality between Lp spaces themselves.

Theorem E.22 (Radon-Nikodým). Let µ be a σ-finite nonnegative (countably additive)
measure on a measurable space (S,Σ), and let ν be a bounded countably additive measure
on (S,Σ) such that ν << µ. Then the following results hold:

1. There exists a µ-a.s. unique function f ∈ L1 (S,Σ, µ) such that ν (E) =
´
E
f dν, ∀ E ∈

Σ; and,

2. |ν| (S) = ‖ν‖v = ‖f‖1.

Proof. See Aliprantis and Border [3] (Theorem 13.18 on p. 470), Cohn [82] (Theorem 4.2.2
on p. 132), Dunford and Schwartz [109] (Theorem III.10.2 on p. 176), Hewitt and Stromberg
[166] (Theorem 19.23 on p. 315), or Saks [265] (Theorem 14.11 on p. 36).

The function f given by the Radon-Nikodým theorem is called the Radon-Nikodým
derivative of ν with respect to µ and denoted by dν/dµ. Moreover,

Proposition E.23. If µ ∼ ν, then dν/dµ > 0 and dµ/dν = [dν/dµ]−1. Moreover, if
dν/dµ > 0 then µ ∼ ν.

Proof. See Aliprantis and Border [3] (Corollary 13.24 on p. 473) or Bogachev [42] (p.
179).
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Proposition E.24. Let µ be a σ-finite nonnegative measure on a measurable space (S,Σ),
let ν be a bounded countably additive measure on (S,Σ) such that ν << µ, and let g = dν/
dµ be the Radon-Nikodým derivative of ν with respect to µ. If f is a ν-integrable function
on S then the function fg on S is µ-integrable and

´
S
f dν =

´
S
fg dµ.

Proof. See Aliprantis and Border [3] (Theorem 13.23 on p. 472).

In the language of duality between normed linear spaces, one can restate the Radon-
Nikodým theorem as follows:

Corollary E.25. Let (S,Σ) be a measurable space and let µ be a σ-finite nonnegative
measure on (S,Σ). Denote by ca (S,Σ, µ) the collection of all countably additive measures
on (S,Σ) of bounded variation that are absolutely continuous with respect to µ. Then there
is an isometric isomorphism between the space L1 (S,Σ, µ) and the space ca (S,Σ, µ), via
the duality ν (E) =

´
E
f dµ.

Proof. See Aliprantis and Border [3] (Theorem 13.19 on p. 470) or Dunford and Schwartz
[109] (p. 306).

The second main duality result for Lp spaces is a duality between these spaces them-
selves. This result is essentially due to Riesz [244] in the context of the Lebesgue measure
on [0, 1], and hence we will follow Aliprantis and Border [3] in attributing this result to
Riesz.

Lemma E.26. Let µ be a σ-finite nonnegative measure on a measurable space (S,Σ). Let
p ∈ (1,+∞) and let q be such that 1/p+ 1/q = 1. If f ∈ Lp (S,Σ, µ) and g ∈ Lq (S,Σ, µ),
then fg ∈ L1 (S,Σ, µ). Moreover, If h ∈ L1 (S,Σ, µ) and m ∈ L∞ (S,Σ, µ), then hm ∈
L1 (S,Σ, µ).

Theorem E.27 (Riesz). Let µ be a σ-finite nonnegative measure on a measurable space
(S,Σ). If p ∈ (1,+∞) and if q is such that 1/p + 1/q = 1, then there is an isometric
isomorphism between the space Lq (S,Σ, µ) and the space L∗p (S,Σ, µ) (the topological dual
of Lp (S,Σ, µ)). Moreover, the duality between these two Banach spaces is given by

T (f) =

ˆ
S

gf dµ, ∀ f ∈ Lp (S,Σ, µ) (E.10)

Proof. See Aliprantis and Border [3] (Theorem 13.26 on p. 473) or Dunford and Schwartz
[109] (Theorem IV.8.1 on p. 286).
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Consequently, the norm-dual of the space Lp (S,Σ, µ) can be identified with the space
Lq (S,Σ, µ). This then allows us to endow Lq (S,Σ, µ) with the weak∗ topology

σ (Lq (S,Σ, µ) , Lp (S,Σ, µ))

Corollary E.28. Let µ be a σ-finite nonnegative measure on a measurable space (S,Σ).
If p ∈ (1,+∞), then:

1. The space Lp (S,Σ, µ) is weakly complete; and,

2. A subset of Lp (S,Σ, µ) is weakly sequentially compact if and only if it is norm-
bounded.

Proof. See Dunford and Schwartz [109], Corollary IV.8.3 on p. 289 and Corollary IV.8.4
on p. 289.

Theorem E.29 (Riesz). Let µ be a σ-finite nonnegative measure on a measurable space
(S,Σ). Then there is an isometric isomorphism between the space L∞ (S,Σ, µ) and the
space L∗1 (S,Σ, µ) (the topological dual of L1 (S,Σ, µ)). Moreover, the duality between these
two Banach spaces is given by

T (f) =

ˆ
S

gf dµ, ∀ f ∈ L1 (S,Σ, µ) (E.11)

Proof. See Aliprantis and Border [3] (Theorem 13.28 on p. 473) or Dunford and Schwartz
[109] (Theorem IV.8.5 on p. 289).

Consequently, the norm-dual of the space L1 (S,Σ, µ) can be identified with the space
L∞ (S,Σ, µ). This then allows us to endow L∞ (S,Σ, µ) with the weak∗ topology

σ (L∞ (S,Σ, µ) , L1 (S,Σ, µ))

Theorem E.30. Let µ be a σ-finite nonnegative measure on a measurable space (S,Σ).
Then the space L1 (S,Σ, µ) is weakly complete.

Proof. See Dunford and Schwartz [109], Theorem IV.8.36 on p. 290.
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Appendix F

Convexity and the
Choquet-Bishop-De Leeuw Theorem

Of particular interest in both linear and convex analysis are convex compact sets, essen-
tially because of the Krein-Milmam Theorem and its generalization, the Choquet-Bishop-de
Leeuw Theorem, which give a “geometric” characterization of convex sets. The theory pre-
sented in this Appendix is just a small sample of a much richer theory of convex analysis
on locally convex Hausdorff topological vector spaces. All material presented here may
be found in Aliprantis and Border [3] (Chapter 7), Bourbaki [55] (chapter IV, section 7),
Diestel [100] (Chapter IX), Diestel and Uhl [102] (Chapter VII), Dunford and Schwartz
[109] (sections V.1 and V.8), Kelley and Namioka [181] (section 4.15), Megginson [210]
(sections 2.10 and 2.11), Schaefer [270] (section 2.10), and, most importantly, Phelps [226].

For more “geometric properties” in linear spaces, we refer the reader, inter alia, to
Andrews [18], Bishop and De Leeuw [39], Bishop and Phelps [40], Bourgain [60], [61], [62],
and [63], Bourgin [64] and [66], Collier [83], Davis and Phelps [89], Diestel [98] and [99],
Diestel, Ruess and Schachermayer [101], Edgar [110], Farmaki [124], Figiel, Ghoussoub
and Johnson [127], Fonf and Lindenstrauss [130], Ghoussoub et al. [142], Ghoussoub and
Maurey [143], Ghoussoub and E. Saab [144], Ghoussoub and P. Saab [145], Ghoussoub
and Talagrand [146], Gilliam [152], Huff [170], Huff and Morris [171], Lin et al. 1988 [189],
Matsuda [208], Maynard [209], Phelps [225], Randrianantoanina and E. Saab [235], [236],
and [237], Riddle [241] and [242], Riddle, Saab and Uhl [243], Rosenthal and Wessel [246],
Ruess and Stegall [249], E. Saab [250], [252], [253], [254], [251], [255], [256], and [257], E.
Saab and P. Saab [258] and [259], P. Saab [260], [261], [262], and [263], Schachermayer [268]
and [269], Stegall [286], and Talagrand [289].
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F.1 Preliminaries and Basic Results

Definition F.1. A subset C of a real vector space S is said to be convex if it is closed
under convex combinations, that is, if for any x, y ∈ C, and for any α ∈ (0.1),

αx+ (1− α) y ∈ C (F.1)

Note that by a simple induction argument, C ⊆ S is convex if and only if for any
{c1, c2, . . . , cn} ⊆ C and for any {α1, α2, . . . , αn} ⊂ R+ such that

∑n
i=1 αi = 1, it follows

that
∑n

i=1 αici ∈ C.

Definition F.2. Let S be a real vector space and {x1, x2, . . . , xn} ⊂ S. If {α1, α2, . . . , αn} ⊂
R+ are such that

∑n
i=1 αi = 1, then the linear combination

∑n
i=1 αixi is called a convex

combination of the points x1, x2, . . . , xn.

Definition F.3. A real topological vector space, or real topological linear space, is a real
vector space S with a topology T such that:

1. The mapping (x, y) 7→ x+ y of S × S into S is continuous; and,

2. The mapping (α, x) 7→ α.x of R× S into S is also continuous.

We then say that the topology T is a linear topology on S.

Proposition F.4. If {(Sα, Tα)}α∈Γ is an arbitrary family of topological vector spaces then
the Cartesian product S =

∏
α∈Γ Sα with the product topology T =

∏
α∈Γ Tα is also a

topological vector space.

If (S, T ) is a topological vector space, then an immediate consequence of the linearity
of the topology T is that T is translation invariant, in the sense that V ∈ T if and only
if x0 + V ∈ T , for each x0 ∈ S, where x0 + V := {y + x0 : y ∈ V }. Therefore, a
neighborhood base at zero1 of the topology T determines a neighborhood at each point of
S, by translation.

1Zero refers to the (unique) zero vector for the operation of addition defined on the vector space S.
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Definition F.5. A topological vector space (S, T ) is said to be locally convex if it has a
neighborhood base at zero consisting of convex sets, that is, if every neighborhood of zero
includes a convex neighborhood of zero.

For instance, any normed space is a locally convex and Hausdorff topological vector
space.

Proposition F.6. Let (S, T ) be a topological vector space over the field R, and let {Cα}α∈Γ

be an arbitrary collection of convex subsets of S. Then the following results hold:

1. For any α, β ∈ Γ, the set Cα + Cβ is a convex subset of S;

2. For any r ∈ R, the set r.C is a convex subset of S;

3. The arbitrary intersection
⋂
α∈ΓCα is itself a convex subset of S; and,

4. For any α ∈ Γ, the interior C◦ of C and the closure C of C are both convex subsets
of S.

Definition F.7. Let A be any nonempty subset of a real vector space S. We define the
convex hull of A, denoted by co (A) as the collection of all convex combinations of elements
of A. In other words,

co (A) =

{
n∑
i=1

αixi : n ≥ 1, xi ∈ A and αi ≥ 0,∀i = 1, . . . , n, and
n∑
i=1

αi = 1

}
(F.2)

The convex hull of A is the smallest convex set containing A. It is hence the intersection
of all convex sets containing A.

Definition F.8. Let A be any nonempty subset of a topological vector space (S, T ). We
define the closed convex hull of A, denotes by co (A), as the smallest closed convex set
containing A.

Proposition F.9. Let A be any nonempty subset of a topological vector space (S, T ). Then
the closed convex hull of A coincides with the closure of the convex hull of A, that is,

co (A) = co (A) (F.3)
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Proposition F.10. Let A be any nonempty compact subset of a Banach space S. Then
co (A) is compact.

F.2 Support Points

Definition F.11. Let A be an arbitrary nonempty subset of a topological vector space
(S, T ) with dual space S∗, and let φ ∈ S∗ be nonzero. We say that a point x ∈ A is a
support point of A, and that φ supports A at x, if φ attains its maximum or its minimum
on A at the point x.

Theorem F.12 (Bishop-Phelps). Let C be a norm-closed convex subset of a Banach space
S. The following results hold:

1. The collection of support points of C is norm-dense in the boundary ∂C of C; and,

2. If C is also norm-bounded, then the collection of bounded linear functionals on S that
support C is norm-dense in the topological dual S∗ of S.

Proof. See Aliprantis and Border [3] (Theorem 7.43 on p. 284), Bishop and Phelps [40],
Diestel and Uhl [102] (Theorem 4 on p. 189), and Megginson [210] (Theorem 2.11.9 on p.
275 and Theorem 2.11.13 on p. 278).

The Bishop-Phelps Theorem is a fundamental result that led to a very active area of
research in convex analysis and in optimization theory. Notable subsequent contributions
include Bollobas [45], Bourgain [61], Lindenstrauss [191], Partington [222], Schachermayer
[267], and Stegall [285].

F.3 Extreme Points

Definition F.13. Let C be an arbitrary nonempty subset of a real vector space S. We
say that a nonempty subset E of C is an extreme subset of C if no element of E can be
written as a convex combination of elements of C \E. That is, if x ∈ E can be written as
x = αy + (1− α) z, for some y, z ∈ C and some α ∈ (0, 1), then y, z ∈ E.
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Definition F.14. Let C be an arbitrary nonempty subset of a real vector space S. We say
that a point x ∈ C is an extreme point of C if the singleton {x} is an extreme subset of
C. That is, x ∈ C is an extreme point of C if it cannot be written as a (strict) convex
combination of distinct points in C.

For a given subset C of a real vector space S, we will denote by E (C) the collection of
all extreme points of C. Note that E (C) is itself an extreme subset of C if and only if it
is nonempty.

Lemma F.15. Let C be a nonempty convex subset of some real vector space S, and fix
x ∈ C. Then x ∈ E (C) if and only if C \ {x} is a convex set.

Proposition F.16. Let (S, T ) be a locally convex and Hausdorff topological vector space,
and let C be a nonempty subset of S. Then:

1. Every compact extreme subset of C contains an extreme point of C; and,

2. If C is also compact then C has at least one extreme point.

Theorem F.17 (Krein-Milman). Let (S, T ) be a locally convex and Hausdorff topological
vector space, and let C be a nonempty subset of S. If C is convex and compact then C is
the closed convex hull of the set of its extreme points.

Proof. See Aliprantis and Border [3] (Theorem 7.68 on p. 297), Diestel [100] (p. 148),
Dunford and Schwatrz [109] (Theorem V.8.4 on p. 440), or Megginson [210] (Theorem
2.10.6 on p. 265).

F.4 The Choquet-Bishop-De Leeuw Theorem

F.4.1 Preliminaries

Definition F.18. Let (S, T ) be a topological space. A subset of S is called a Gδ set if it
is a countable intersection of open sets in S.
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Definition F.19. Let (S, T ) be a topological space. The Baire σ-algebra on (S, T ) is the
sub-σ-algebra of the Borel σ-algebra on (S, T ) generated by the collection of all compact Gδ

sets in S.

Proposition F.20. Let (S, T ) be a topological space. If T is metrizable, then the Baire
and Borel σ-algebras on (S, T ) coincide.

Definition F.21. Let (S, T ) be a locally convex and Hausdorff topological vector space,
and let S∗ denote the topological dual of S. Let K be a compact subset of S, and suppose
that µ is a regular Borel probability measure on K. We will say that a point x ∈ S is
represented by µ, or is the barycenter of µ, if for each φ ∈ S∗, we have:

φ (x) =

ˆ
K

φ dµ (F.4)

Theorem F.22. Let (S, T ) be a locally convex and Hausdorff topological vector space, and
let F be a closed subset of S. If the closed convex hull K of F is compact then each regular
Borel probability measure µ on F has a unique barycenter in K.

Proof. See Diestel [100], Theorem 1 on p. 148.

F.4.2 Integral Representation Theorems

Choquet’s celebrated theorem which we will state below, together with its generalization
given by Bishop and De Leeuw, is essentially an integral representation theorem. As
a matter of fact, the Krein-Milman theorem can be seen as an integral representation
theorem, as we shall see below.

Definition F.23. Let (K, T ) be a compact Hausdorff space, and let B be a Borel subset
of K. We say that a Borel probability measure µ on K is supported by B, or concentrated
on B, if µ (K \B) = 0.

Theorem F.24. Let (S, T ) be a locally convex and Hausdorff topological vector space, and
let K be a compact subset of S. A point x ∈ S is in the closed convex hull of K if and only
if there exists some regular Borel probability measure µ on K whose barycenter exists and
is x.
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Proof. See Diestel [100], Theorem 2 on p. 149.

The previous theorem shows that the Krein-Milman theorem is an integral representa-
tion theorem. Indeed, in light of the previous theorem, we can restate the Krein-Milman
theorem as follows:

Corollary F.25. Let (S, T ) be a locally convex and Hausdorff topological vector space, and
let K be a compact and convex subset of S. Then each point x ∈ K is the barycenter of a
regular Borel probability measure µ on K which is suported by the closure of the extreme
points of K.

Proof. See Phelps [226], p. 5.

This is the starting point of Choquet’s integral representation theorem and of the
Bishop-De Leeuw theorem.

Theorem F.26 (Choquet). Let (S, T ) be a locally convex and Hausdorff topological vector
space, and let K be a nonempty compact and convex metrizable subset of S. Then each
point x0 ∈ K is the barycenter of a regular Borel probability measure µ that is supported
by the extreme points of K.

Proof. See Diestel [100] (p. 154) or Phelps [226] (p. 14).

Choquet’s theorem is a beautiful mathematical result, an important limitation of which
is that it requires the set K to be metrizable, which is often not the case in practice (e.g.
the weak topology of a linear space is metrizable if and only if that linear space is finite-
dimensional). A natural generalization of Choquet’s theorem to the non-metrizable case
was given by Bishop and De Leeuw [39], and we state their result below.

Theorem F.27 (Bishop-De Leeuw). Let (S, T ) be a locally convex and Hausdorff topo-
logical vector space, and let K be a nonempty compact and convex subset of S. Fix some
x0 ∈ K. Then there exists a regular Borel probability measure µ on K such that:

1. The point x0 is the barycenter of µ; and,

2. The measure µ vanishes on every Baire subset of K which is disjoint from the set of
extreme points of K.
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Proof. See Phelps [226], pp. 17-22.

The following reformulation of the Bishop-De Leeuw theorem is often more convenient
for applications:

Theorem F.28 (Bishop-De Leeuw). Let (S, T ) be a locally convex and Hausdorff topo-
logical vector space, and let K be a nonempty compact and convex subset of S. Denote
by E (K) the set of extreme points of K, and let Σ denote the σ-algebra of subsets of K
which is generated by E (K) and the Baire sets. Then for each point x0 ∈ K there exists a
nonnegative measure µ on Σ with µ (K) = 1 such that µ represents x0 and µ (E (K)) = 1.

Proof. See Phelps [226], p. 22.

Needless to say, the Choquet-Bishop-De Leeuw theorem is a remarkable result, for both
its depth and its elegance. In practice, it is often extremely useful in characterizing compact
convex sets in a “geometric” manner. Indeed, this theorem essentially says that any point
in a compact convex subset of a locally convex Hausdorff topological vector space is some
sort of an “average” of extreme points of that set. We should also mention that Bourgin
[65] has extended the previous results to the noncompact case.
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[44] E. Böhm-Bawerk. Rechte und Verhaltnisse vom Standpunkte der Volk-
swirtschaflichen Guterlehre. Innsbruck, 1881. 5

[45] B. Bollobas. An Extension to the Theorem of Bishop and Phelps. Bulletin of the
London Mathematical Society, 2(2):181, 1970. 250

[46] K. Borch. Reciprocal Reinsurance Treaties. Astin Bulletin, 1(4):170–190, 1960. 6

[47] K. Borch. Some Elements of a Theory of Reinsurance. The Journal of Insurance,
28(3):35–43, 1961. 6

[48] K. Borch. Equilibrium in a Reinsurance Market. Econometrica, 30(3):424–44, 1962.
6

[49] K. Borch. The Theory of Risk. Journal of the Royal Statistical Society. Series B
(Methodological), 29(3):432–467, 1967. 6

[50] K. Borch. The Optimal Reinsurance Treaty. Astin Bulletin, 5(2):293–297, 1969. 6

[51] K. Borch. Problems in the Economic Theory of Insurance. Astin Bulletin, 10(1):1–
11, 1978. 6

[52] K.H. Borch. The Mathematical Theory of Insurance: An Annotated Selection of
Papers on Insurance Published 1960-1972. Lexington Books, 1974. 6, 53, 65, 97

[53] N. Bourbaki. Éléments de Mathématique – Livre VI – Intégration: Chapitre 6.
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Glossary

S The set of all states of the world, 14.

G The σ-algebra of events on S, 14.

B (G) The supnorm-normed Banach space of all bounded, R-valued and G-
measurable functions on (S,G), 14).

‖f‖s For a given f ∈ B (G), ‖f‖s denotes the supnorm of f , i.e. ‖f‖s :=
sup{|f (s)| : s ∈ S} < +∞, 14.

X The underlying uncertainty (or innovation). X is a fixed element of
B+ (G) with a closed range [0,M ] := X (S), where M := ‖X‖s < +∞,
14.

Σ The σ-algebra σ{X} of subsets of S generated by X, 14.

ba (Σ) The linear space of all bounded finitely additive set functions on a
measurable space (S,Σ), endowed with the usual mixing operations.
ba+ (Σ) denotes the set of nonnegative elements of ba (Σ), and ba+

1 (Σ)
denotes the collection of those elements µ of ba+ (Σ) for which µ (S) =
1. Elements of ba+

1 (Σ) are the finitely additive probability charges on
(S,Σ). When endowed with the total variation norm ‖.‖v, ba (Σ) is a
Banach space, 100.

ca (Σ) The linear subspace of ba (Σ) consisting of countably additive set func-
tions. When endowed with the variation norm ‖.‖v, ca (Σ) is a Banach
space. In particular, ca (Σ) is a ‖.‖v-closed linear subspace of ba (Σ).
ca+ (Σ) denotes the collection of nonnegative elements of ca (Σ), and
ca+

1 (Σ) denotes the collection of those elements ν of ca+ (Σ) for which
ν (S) = 1. Elements of ca+

1 (Σ) are the countably additive probability
measures on (S,Σ), 100.
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Cµ The collection of all ν ∈ ca+
1 (Σ) that are (µ,X)-vigilant beliefs, 101.

¸
ψ dν The Choquet integral of ψ ∈ B (G) with respect to a capacity ν on

(S,G), 116.

›
φ dν The Šipoš integral of ψ ∈ B (G) with respect to a capacity ν on (S,G),

146.

FSB The feasibility set of a given problem, 38.

F↑SB The collection

{
Y = I ◦X ∈ FSB : I is nondecreasing

}
, 38.

LR The likelihood ratio, 47.

MLR The monotone likelihood ratio condition, 48.

AQ The collection of “admissible” quantile functions, 126.

ỸP The nondecreasing P -rearrangement of Y ∈ B+ (σ{X}) with respect
to X ∈ B+ (G), where P is a probability measure on (S,G), 27.

DM The decision maker, 11.

CI The claim issuer, 11.

<DM The preferences of DM over B+ (Σ), 15.

<CI The preferences of CI over B+ (Σ), 15.

W0 The DM’s initial wealth, 16.

WCI
0 The CI’s initial wealth, 16.

(H, Y ) The contract between the DM and the CI, with H > 0 and Y ∈
B+ (Σ), 16.

WDM (H,Y ) The DM’s wealth after entering into the contract (H,Y ), 16.
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WCI (H, Y ) The CI’s wealth after entering into the contract (H,Y ), 17.

u The DM’s utility function, 15.

v The CI’s utility function, 15.

µ The set function that represents the DM’s subjective beliefs, 15.

ν The set function that represents the CI’s subjective beliefs, 15.
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