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Abstract

In this thesis we propose a formal framework for specifying and validating properties of

software system architectures. The framework is founded on a model of software architecture de-

scription languages (ADLs) and uses a theorem-proving based approach to formally and mechan-

ically establish properties of architectures. Our approach allows models defined using existing

ADLs to be validated against properties that may not be expressible using the original notation

and tool-set.

The central component of the framework is a conceptual model of architecture description

languages. The model formalizes a salient, shared set of design categories, relationships and

constraints that are fundamental to these notations. An advantage of an approach based on a

conceptual model is that it provides a uniform view of design information across a selection of

languages. This allows us to construct alternate formal representations of design information

specified using existing ADLs. These representations can then be mechanically validated to en-

sure they meet their specific formal requirements.

After defining the model we embed it in the logic of the PVS theorem-proving environment

and illustrate its utility with a case study. We first demonstrate how the elements of a design

are specified using the model, and then show how this representation is validated using machine-

assisted proof. Our approach allows the correctness of a design to be established against a wide

range of properties. We illustrate with structural properties, behavioural properties, relation-

ships between the structural and behavioural specification, and dynamic, or evolving aspects of a

system’s topology.
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Chapter 1

Introduction

1.1 Motivation

As the size, complexity and demands placed on software systems have grown, there has been

increased effort aimed at developing techniques and notations to support the high-level specifi-

cation of these systems. The field of software architecture has emerged in response to both the

recognition of and the need for methods that support a software engineering process at this level

of abstraction.

A notable benefit of formally specifying the architecture of a software system is that of early

analysis or validation [GP95, PW92]. Analysis at this stage can reveal limitations, oversights,

or errors in a system’s high-level design specification. Undetected errors or inconsistencies in a

system’s design are more costly to correct when discovered at a later point in the development

cycle [Boe84]. Research activity in architecture specification and analysis has led to a number

of formal design notations. Despite making significant inroads for the representation of software

architecture, many of these architecture description languages (ADLs) and their accompanying

tool-sets1 have either not targeted analysis as a primary goal, or offer varying degrees of sup-

1We use the term “architecture description language” and “ADL” to refer to both the design language and its

1
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port for mechanized analysis. Supported types of analysis range from parser-driven syntax and

type-checking to high-level forms of completeness and consistency analysis. Approaches that

do provide more extensive forms of analysis typically allow reasoning over a subset of the total

information available within the design.

This work proposes a formal framework that supports an alternate approach to the specifi-

cation and mechanized validation of architectural designs. Our approach is based on a formal

model of architecture description that encompasses a range of existing design notations. Using

this formalization we represent an ADL-based design in an alternate mathematical form, one that

is directly amenable to formal verification techniques. Specifically, application of this approach

introduces new opportunities for detecting errors in high-level system models. Our interest lies

in the validation of a design against formally stated properties. We begin by introducing soft-

ware architecture description and its role in supporting design analysis. We then discuss formal

methods and outline their applicability to software architecture.

1.1.1 Software Architecture Description

In recent years modeling notations known as architecture description languages have emerged

as the enabling technology for software architecture. These design languages allow architects to

construct models of their systems at a high level of abstraction. UniCon [SDK+95], Wright [AG94,

AG96], Rapide [LV95, LKA+95] and Darwin [MDEK95, MK96] are well-known examples of

this class of design languages.

Although each of these focuses on a particular set of activities [SG95], these design languages

have a significant common core in that they are primarily concerned with capturing the decom-

position of a system into its essential high-level computational abstractions and their intercon-

nections [SG94, KC94, Cle96, MT97]. It is generally accepted that the mainstay of architectural

supporting tool-set.
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description is a hierarchically defined configuration of architectural elements [GP95]. ADLs of-

ten further classify these high-level elements as either components, which are the basic units of

computation, or connectors2 , which mediate the interactions of the components.

This relative importance of system structure is reflected in current ADLs, most of which

provide similarly extensive support for modeling this aspect of the architecture. By codifying

design information that until recently was represented informally through “box-and-line” dia-

grams [SG96], these notations introduce the possibility of, among other things, applying formal

validation techniques to the resulting design.

1.1.2 Formal Architecture Validation

Validation is the process of challenging a formal specification by constructing and attempting

to prove theorems that should logically follow from the specification3 [Rus95a]. The role of

a software architecture validation framework is to assist the architect in answering questions

regarding the system before it is constructed. For example, does the architectural specification

possess certain critical properties or conform to stated constraints? Architectural validation may

also serve other purposes, such as comprehension, reuse, re-engineering, or impact and change

analysis. A system architect might need to know if the collection of architectural components and

connectors remains well-formed after a new component is connected, or if a property still holds

when one component is substituted for another.

Architecture validation is performed in the context of a formal system and is therefore de-

pendent upon the use of formal methods. A formalism that supports validation consists of the

following components:

� a framework for specifying a mathematical representation of the system;

2Not all ADLs support the distinction between components and connectors.

3We also use the term verification, although it usually refers to the process of demonstrating that a system satisfies
its formal specification [Win90]. We validate the system, or verify that it possess a property.
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� a formal specification language for describing desired properties or correctness criteria;

� a verification procedure to ensure that the criteria are met fully by the modeled system.

In the following section we discuss the role of formal methods applied to the task of specifying

and validating architectural designs.

1.1.3 Applying Formal Methods

Formal methods can be used for a precise and unambiguous specification of a system, as well

as for providing a rigorous mathematical foundation upon which a variety of formal reasoning

techniques can be based. Currently, most applications of formal methods are in the domain of

safety- and security-critical systems where the mathematical rigor they impart is recognized as an

effective means of establishing the level of required assurance [Rus95a]. The lack of widespread

adoption of formal methods across all domains is due to the perceived investment required to

produce economically viable returns [Hal90, HPPR95, DR96, HB96, Hal96]. However, contin-

ued experience with formal methods is expected to result in the advance of tools and techniques

where, through mechanization, the potential costs can be reduced to the point where formalization

can be integrated into more mainstream methodologies.

It has been noted that formal methods can offer the largest return for investment when applied

early in the design cycle [Rus95b] where discovered errors or omissions are least expensive to

correct. Architecture, as the highest level of system design, is an ideal candidate for realizing

a return on investment from formalization efforts. Software architecture description has already

derived considerable benefit from the application of formal techniques. First, the supporting

notations have a well-defined syntax through formal grammar specifications. Given a parser

for the grammar, the information contained within a design can be made readily available for

further automated interpretation. Second, some have adopted more descriptive formalisms as

the underlying semantics for specifying certain aspects of the design. This in turn opens up the
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possibility of more specific and useful forms of analysis on the resulting model.

These current approaches to describing architectures can serve as a foundation for more ex-

pressive or mechanized representations of architectures. A formal model of the information cap-

tured by existing notations can act as a substrate upon which alternate representations can be

based, allowing design information to be both specified and formally challenged.

1.2 Problem Statement

Despite widespread recognition that formally verifying properties of an architectural model is

useful for uncovering errors or inconsistencies early in a system’s development cycle, not all

approaches to architectural specification fully support reasoning about the model as a primary

goal. Specifically, an architect’s initial choice of a modeling notation and its support environment

effectively imposes limits upon the nature and scope of follow-on validation efforts. This situation

can result in missed opportunities for validating the model and increased likelihood of errors

surfacing in subsequent design or implementation activities.

The problem has two important facets. First, existing architecture description languages de-

fine a concrete set of syntactic constructs for expressing design information - an ADL simply

may not offer the necessary facilities for describing certain required elements of the system. Ad-

ditional design information, perhaps expressed using an alternate language, generally cannot be

incorporated in a meaningful way into an existing description. Second, having defined a model

of the system, the support environment might not offer powerful enough reasoning capabilities.

Even if the language supports the specification of all required aspects of the system, the analysis

environment may be unable to check properties relating to a specific portion of the design.
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1.2.1 Expressiveness of Modeling Notations

While current architectural design notations tend to have equivalent support for describing the

large-scale structure of a software system, this is where most of the similarities end. As a con-

sequence of focusing on different high-level design activities each notation is founded upon dif-

ferent formal semantics, and in turn formalizes a concrete syntax that directly supports its main

activity.

The lack of a common theoretical or syntactic foundation renders each notation descriptively

distinct. System models described by one language only have meaningful interpretations within

the support environment and tool-sets that are designed explicitly for that notation. Unlike pro-

gramming languages which are operationally equivalent to Turing machines, architecture design

notations share no such common underlying theoretical foundation. Certain categories of infor-

mation and analyses available within some ADLs are simply not available in the context of others

and cannot easily be added to an existing notation by the architect. For example, languages aimed

at generating final implementations of the modeled system are typically structure-based and do

not address the issue of incorporating a high-level behavioural specification4 [SDK+95]. This

makes them unsuitable for describing high-level patterns of behaviour among system compo-

nents.

One approach that can be used to overcome these limitations is to specify additional informa-

tion using external (unsupported) notations and tool-sets. The approach, while a partial solution,

is unsatisfactory in that it offers no ability to relate information from within the design to descrip-

tions expressed using external notations. In other words, it precludes the opportunity to specify

relationships (perhaps critical) between the supported and unsupported design information.

These issues have more to do with the encompassing scope of software architecture than

the shortcomings of any particular design notation. First, no single language could, nor should,

4Indeed, the focus is usually on associating low-level source-code modules as implementations of the architectural-
level computational elements.
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support the breadth of information and activities that could potentially be handled at the level

of architecture. Second, the information needed in the design often varies depending on the ap-

plication. For example, a description of an architecture with a non-static or evolving structure

requires a notation that permits the specification of its allowed structural changes. For an ADL

to support a wider variety of purposes it would have to allow extensions to its core syntax. How-

ever, a concrete syntax does not readily offer the opportunity to incorporate unsupported design

information.

1.2.2 Support for Formal Validation

While the end product of the architectural design phase is a high-level model of the system, there

is considerable variability in the intended application of this model. As previously noted, most

current design notations share similar descriptive support for a core set of conceptual design cat-

egories. However, since each notation and environment targets a particular range of architectural

activities, emphasis may or may not include extensive mechanized reasoning. Indeed, the focus

on formal validation varies substantially between existing approaches. The choice of a notation

for its supported end goal may reduce or even eliminate the possibility of validation.

At the very least, most languages support parser-driven semantic checks of the specification.

While this form of analysis is suitable for ensuring that the specification is syntactically correct, as

well as for enforcing constraints relating to the legal combinations of typed architectural entities,

it is generally unsuitable for reasoning about more complex system properties and relationships.

Languages accompanied by more powerful facilities for formally analyzing designs may not

support validation across all of the design information included in the specification. For instance,

more expressive notations support both a structural and behavioural characterization of the sys-

tem. However, existing approaches do not address the issue of verifying properties across the full

range of design information in that it is usually only possible to validate the model against prop-

erties from a single aspect of the architecture - usually behaviour. Structural information can be
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specified but not mechanically checked. This limitation extends to aspects of the architecture that

are expressed as combinations of both structure and behaviour related (i.e., hybrid) properties.

Finally, most notations support only a static view of a system. In other words, a system is

modeled as a fixed set of architectural elements with a static interconnection topology. However,

many real-world software systems exhibit high-level structures that can change over the course

of a single execution. These dynamic architectures are systems that are best described as a family

of related configurations. While some design notations support the specification of dynamic

architectures, most either have a static view of system structure or offer no analysis capabilities

on the resulting system.

1.3 Proposed Solution

To address these issues, we propose a framework that incorporates the specification and formal

validation of architectural designs. The goal of our approach is to provide a systematic means

to construct (either manually or in an automated fashion) formal representations of architectural

descriptions directly from ADL-based specifications in a form suitable for mechanical reason-

ing [LAC98]. Our approach centers on a formal abstract model of architecture description lan-

guages [LAC00a]. This model formalizes a salient, core set of design concepts, relationships and

constraints that are invariant across a large class of architectural design notations, including but

not limited to UniCon, Wright, Rapide and Darwin. By focusing on shared features, the model

provides a uniform representation of design information across these languages.

Figure 1.1 presents a high-level overview of our framework. We restrict our attention to the

areas shaded with grey. The arrows within the diagram represent the flow of architectural design

information (shown in the boxes) through the framework. The shaded oval in the figure repre-

sents the model of architecture description that forms the central component of the framework.

The model is used as a guide to express the information from existing ADL-based design specifi-
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Figure 1.1: An overview of the framework.

cations (shown in the unshaded box at the top of the figure) in an alternate formal representation.

This alternate representation can then be augmented with additional design information (depicted

in the boxes on the left-hand side of the diagram). The final specification is then subject to formal

validation (shown in the round-corner boxes at the bottom of the figure). In this thesis we use a

theorem-proving environment that supports validation through deductive proof.

1.3.1 A Specification Framework

An important aspect of the framework is its overall flexibility. The model defines an architectural

specification framework with two dimensions of possible extension. First, once a specification

is converted into an alternate representation, it can be augmented with any additional design in-

formation that is expressible within the context of the chosen formal system. This affords the

architect the opportunity to add or substitute design information that may not have been directly

supported using the original tool-set. Examples include the definition of new basic architec-

tural types, additional formal constraints or properties, or even behavioural descriptions for the
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design’s component and connector elements. While the model itself does not provide a formal-

ization of a semantics for expressing system behaviour, it is parameterized with a set of design

categories that are intended to act as placeholders for such a definition. These hooks provide a

mechanism for mapping elements of a specification to descriptions of their behaviour, allowing

previously structure-only specifications to be augmented with behavioural semantics.

Second, the model itself can be extended to incorporate other architectural design categories,

including those from other architectural views [CN96]. This can be done on a per-application ba-

sis to describe information crucial to the application or the follow-on analysis, or on a per-ADL

basis to more closely characterize a specific notation. This capability allows the individual users

of the framework, i.e., the architects, to tailor the amount of detail modeled to that required by

their specific design validation needs. This type of extensibility is also important for realizing

immediate benefits from continued research in architectural description. Approaches to architec-

tural design should not be considered static. As the field of software engineering matures, new

notations or extensions to existing notations are expected to be introduced. A framework that

supports extension can potentially take advantage of new advances as they appear.

1.3.2 A Machine-Assisted Validation Framework

The model is an abstract description of a system, and as such there are no a priori restrictions

on our choice of formal specification language to describe the model. Depending on the desired

form of analysis, a representation can be chosen that supports it. For example, formalizing the

model using Horn clauses [Pad85] would allow reasoning within an inference engine such as

PROLOG [War77]. Alternatively, an Entity-Relationship [Che75] representation would allow

analysis based on structured queries on a relational database.

However, by formalizing it within the logic supported by a theorem-proving system we

can provide an approach for reasoning about architectural designs based on mechanized formal

proof [LAC00b]. The goal of mechanization is important; an automated environment handles te-
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dious details allowing the prover to focus on essential issues [VH96] which leads to more reliable

proofs than those done by hand [Avr89, GGH90]. The overall (amortized) cost of the verification

can be reduced as portions of proofs, or high-level proof strategies can be reused as the system

evolves.

The formal system we employ for our machine-assisted verification is higher-order log-

ic5 [And86], as mechanized by the Prototype Verification System [ORS92] (PVS) theorem-

proving environment. The main advantage of using higher-order logic is its expressiveness. The

basic constructs of the logic are sufficient to represent structural design information directly. El-

ements of a design are encoded as typed logical expressions and constants. These expressions

may be formed or arbitrarily manipulated through higher-order functions. The expressiveness of

higher-order logic also allows us to make use of a number of existing alternatives for express-

ing behaviour; mechanizations of CSP [Hoa85], execution sequence semantics [Tre92] and I/O

Automata [LT88], to name a few, are readily available.

This flexibility comes at the cost of fully automated reasoning. The proofs performed will

always require some level of guidance from the user. However, the PVS system has many high-

level proof commands that can automate significant portions of the proof or capture repeating

patterns of proof steps, which help to make the overall effort more economical.

1.4 Contributions

This work develops an extensible model encompassing shared features of existing ar-

chitecture description languages that provides a foundation for a formal framework

supporting the specification and mechanical validation of architectural designs.

The primary contribution of this thesis is the development of a new approach to design-based

software architecture specification and validation. The work involved in attaining this goal has

5Essentially first order predicate logic augmented with typed �-calculus.
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produced the following visible contributions:

� development of a formal model of software architecture description languages;

� development of a mechanization of the model in the context of a formal verification envi-

ronment;

� application of the formal model for the specification of architectural designs in a logic-

based representation;

� use of the framework to validate a system specification formally across application-specific

properties relating to structure, behaviour and combinations of both;

� development and demonstration of a technique for specifying and validating models of

systems with evolving structure.

1.5 Outline

In this thesis we develop a framework for specifying and reasoning about architectural designs.

The central component of the framework is a formal model of architecture description languages.

In the following chapter we give a high-level overview of our model-based approach to architec-

ture specification and validation and provide an introduction to the basic concepts of architectural

design and of the model. The complete formalization of the model is presented in Chapter 3.

In Chapter 4 we discuss the mechanization of the model and describe its use for specifying

architectural design information from an illustrative case study within the formal context of a

theorem-proving system. We also discuss and give an example of integrating a mechanization

of behavioural semantics into the model. In Chapter 5 we discuss how we reason about such

specifications, and give examples based on the previously introduced case study. A comparison
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of our work with related research is presented in Chapter 6. Finally, in Chapter 7 we summarize

our work and outline possible directions for future research.



Chapter 2

Preliminaries

In this chapter we introduce our model-based approach by describing in more detail how our

model relates to both architecture description languages and the designs they produce. We al-

so provide a preliminary introduction to the main design categories formalized in the model.

In conjunction with an example specification of a small system, we introduce the terminology

and model design categories using both semi-formal and informal descriptions. This is intended

to help both illustrate our approach and aid in understanding the model’s formal text which is

presented in the next chapter.

2.1 A Model-based Approach to Architecture Description

The framework presented here encompasses concepts of three distinct levels of specification relat-

ed to software architecture: the model, architecture description languages and designs. Through-

out this thesis we use the term model to refer to our conceptual model, language or notation to

refer to an ADL and specification or design to refer to a system described using a design notation.

The relationship between these specification levels is shown in Figure 2.1.

The central, unifying theme of this work is a conceptual model of architectural description,

14
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Figure 2.1: Relationship between the model, ADLs, and architectural designs.

or an architectural meta-model. A conceptual model of a design language is a formalization of an

abstract syntax; that is, it defines the information content of a set of syntactic categories and the

static semantics of the relationships between them. By modeling this information at an abstract

level, a formalization such as this allows a uniform representation of design information from a

selection of concrete design notations.

The model supports the activities of architectural specification and analysis. Specification

of an architecture is most often facilitated through design languages, which provide a concrete

syntax through which design information is encoded. Although the model in and of itself does

not constitute a concrete syntax, it describes the constituent components of one and can therefore

be used for the purpose of specifying architectural design information. Each category modeled

is a formalization of a class of design information. Instances of the formalized design constructs

may be used for encoding the specific information taken from the corresponding constructs of

an architectural specification. In this way the basic categories are used to represent elements of
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a high-level, concrete syntax. We use this approach in Chapter 4 to encode design information

from an architectural description. While currently performed in a manual fashion, the process of

converting information from a design into instances of the model can be partially automated by

providing a parser for the language that the design is specified with.

2.2 Introduction to the Model

In this section we introduce the main elements of the formalization through semi-formal and

informal descriptions of the model’s key categories.

2.2.1 Specification Structure

The goal of a formal specification is the precise and readable communication of ideas. With this

in mind, particular attention must be paid not only to what information is presented, but how it is

presented. As noted by a number of authors [Hal90, Wor92, BH95, LMZ96] the formal text of

a specification can not stand on its own; rather, it must be accompanied by informal but precise

supporting text. The primary role of the informal text is to bridge the gap between the initial de-

scription of the system and the final formal specification. This includes providing a brief overview

of the scope of the formalization, introducing the technical vocabulary and describing data types

and constants. Combined, the informal and formal texts constitute a complete specification.

The model is introduced in a series of stages starting with an abstract description and fol-

lowed by progressively more concrete (and formal) detail. To help develop an intuition of the

formalization, we begin by presenting an overview of the main entities in the OMT [RBP+91]

graphical design notation. This preliminary formalization is intended primarily as a rhetorical aid

to introduce the fundamental design categories and relationships, and assist in the comprehension

of the model as a whole. We then informally describe and give a graphical depiction of each of

the main categories.
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2.2.2 Example Architecture Description

To illustrate the design concepts formalized by the model, we provide a small example system

presented in an idealized1 architecture description language (shown in Figure 2.2). The example

describes a simple architecture for a compiler specified in a pipe-and-filter [GS92] architectural

style.

architecture compiler {
library {
interface pipe_interface {
type Pipe;
port input : sink
port output : source

}

interface filter_interface {
type Filter;
port input : dataIn
port output : dataOut

}

element lexer is Component {
specified_by filter_interface;

}

element parser is Component {
specified_by filter_interface;

}

element codegen is Component {
specified_by filter_interface;

}

element compiler is Component {
specified_by filter_interface;

}

element pipe is Connector {
specified_by pipe_interface;

}
}

configuration compiler_config
implements compiler {

lexer : l;
parser : p;
codegen : c;
pipe : p1, p2;

connect l.output to p1.input;
connect p1.output to p.input;
connect p.output to p2.input;
connect p2.output to c.input;

bind l.input to input;
bind c.output to output;

}
}

Figure 2.2: ADL-based compiler specification.

2.2.3 Modeling Structure

Figure 2.3 illustrates the main elements of the structural model. For clarity we have further

subdivided the structural model into two sub-models, a design- and run-time formalization. The

design-time model captures the primitive categories (both finite and infinite) that support the

construction of configurations. That is, they represent the building-blocks that are “instantiated”

1Where, for both clarity and to provide a consistent terminology, the language’s syntactic elements have a direct
correspondence to similarly named categories defined within the model.
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to form an architecture. The run-time formalization captures the arrangement and connection of

instantiated elements within a specification. As it defines the specific topology of components

and connectors, elements of the run-time model capture the key configuration information of an

architectural specification. We begin by summarizing the basic structural design categories.

Structural Design Categories

The basic structural model is composed of eight main design categories, their interrelationships

and the operations that act upon them. The design categories are defined as follows:

Definition 2.2.1 (Element) An architectural element is a basic template corresponding to a com-

ponent or connector abstraction.

Components are the architecture’s computational elements, while connectors are the glue ele-

ments that bind them together, i.e., connectors model the protocols that mediate the interactions

of the components. Note that most but not all architecture description languages make an explicit

distinction between components and connectors. In this overview we introduce only the catego-

ry Element; however, we do support both components and connectors in the full formalization

of Chapter 3. We graphically depict2 architectural elements as labeled rectangles, as shown in

Figure 2.4.

lexer

Figure 2.4: Graphical depiction of an architectural element.

Definition 2.2.2 (Interface) An Interface defines a collection of “connection point” templates

2The graphical notation we use is based on one introduced by [Bum96] for describing user interface components.
We have extended it to incorporate aspects of architectural specifications.
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through which the element interacts with its environment. It also records basic element-type

information.

An interface is a specification of how an element “appears” to the rest of the system. Its primary

constituent is a set of Ports which model the points through which an element connects to other

elements. An interface is also responsible for maintaining architectural type information, both

for ports and elements. An interface is graphically shown as a dashed box with rounded corners

(Figure 2.5).

filter_interface

input output

Figure 2.5: Graphical depiction of an Interface and Ports.

Definition 2.2.3 (Port) A Port represents a template for an architectural connection point.

Ports are important abstractions in that they represent a key portion of the endpoints of archi-

tectural connections. Languages that distinguish between components and connectors usually

distinguish between ports of components and ports of connectors. For example, UniCon labels

ports of components as Players and those of connectors as Roles [SDK+95]. Wright uses Ports

and Roles to indicate those of components and connectors respectively [AG94]. We do not make

this distinction as it is both redundant (i.e., from a linguistic point of view, a port declared within

the context of a component is already a port of a component and need not be redeclared as such),

and can be readily specified using the notion of port type. The graphical depiction of ports is

shown in Figure 2.5 as labeled rectangles.

Definition 2.2.4 (Library) A Library models the collection of elements and interfaces defined

within an architectural design. It also maintains the relationship between an element and the

interface through which it interacts.
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While most description languages do not have an explicit construct representing a library, they

all allow for a section of the specification to be used as a declarative region for both elements

and interfaces. The Library category explicitly models this region by acting as a repository for

a design’s element and interface definitions. Additionally, a library records the specified by as-

sociation between elements and interfaces. A graphical representation of a library is shown in

Figure 2.6. The arrows in this figure depict the relationship between an element and its interface.

pipe

pipe_interface

filter_interface

input output

source sink

lexer

parser

codegen compiler

Figure 2.6: Graphical depiction of a Library.

Definition 2.2.5 (Instance) An Instance is an element that has been instantiated within a design.

The notion of an Instance in an architectural design is very similar to that of an instance in

an object-oriented language; it represents an element that has been instantiated from its basic

component or connector template definition. A graphical depiction of an instance is shown in

Figure 2.7. It is represented as a solid box with rounded corners, showing both the instance name

and its element type.

Definition 2.2.6 (IPort) An IPort (Instance Port) models the Port of an Instance.

Instantiating an element has the additional effect of instantiating its port templates. Primarily this

is so that each instance will have its own “copy” of the ports declared within its interface. This
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l : lexer

l.input l.output

Figure 2.7: Graphical depiction of an Instance and Instance Ports.

is necessary for distinguishing between the ports of multiple instances of the same basic element.

An IPort is graphically depicted in much the same way as a port. The only difference is that

an IPort is labeled with both the instance name and the basic port definition name (as shown in

Figure 2.7).

Definition 2.2.7 (Configuration) A Configuration is an interconnected set of component and

connector instances.

A system modeled at the architectural level of design is represented as a configuration of instan-

tiated elements. The topology of the system is defined by a set of connections between instance

ports. A configuration is depicted graphically, as shown in Figure 2.8, as a set of instances within

a dashed box outline. The lines between the IPorts represent architectural connections.

l : lexer

l.input l.output

c : codegen

c.input c.output

p2 : pipe

p2.input p2.output

p1 : pipe

p1.input p1.output

p : parser

p.input p.output

Figure 2.8: Graphical depiction of a Configuration.

Definition 2.2.8 (Architecture) An Architecture models the full set of design information defined

within an architectural specification.

The Architecture design category models a complete specification. Each design has at least one

configuration corresponding to the top-level system model. However, our model also supports hi-

erarchical system descriptions; that is, an element may be further specified as being implemented
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by a configuration. An architecture maintains the set of all of the configurations that have been

defined, along with the implementation relationship between a configuration and an element. Fig-

ure 2.9 shows an architecture. The portion above the shaded dividing area is a representation of

pipe

pipe_interface

filter_interface

input output

source sink

lexer

parser

codegen compiler

l : lexer

l.input l.output

c : codegen

c.input c.output

p2 : pipe

p2.input p2.output

p1 : pipe

p1.input p1.output

p : parser

p.input p.output

Figure 2.9: Graphical depiction of an Architecture.

the design-time model entities (i.e., those that are contained within the library). The portion be-

low are the entities of the run-time formalization. The dashed arrows represent the implements

relationship. Note that this relationship must also be accompanied with a description of how the

ports of the configuration are associated with the ports of the element. For clarity, the figure omits

the specific details of this association. These binding mappings are illustrated in Figure 3.2.

Architectural Constraints

Note that our formalization does not include a design category for the notion of architectural

constraints. Although some architecture description languages allow constraint specification on
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elements of an architectural design3, we have explicitly not captured it with a model design cate-

gory for two reasons. First, not all languages support the idea of constraints as first-class design

categories. Indeed, not all languages even support the notion of explicitly expressed constraints

and instead rely on parser-based semantic analysis to enforce implicit constraints.

Additionally, even though the notion of high-level constraints expressed over the elements of

a system is a very important one, especially in terms of model validation, the definition of a con-

ceptual model category representing constraints offers little direct benefit. To be useful during an

automated analysis phase, we would require additional formal machinery for mapping instances

of these categories to sentences of the logic used for representing the design information. Instead,

as we illustrate in Chapter 5, it is more useful to specify architectural constraints directly in the

same logic that the design is encoded in. In this way these constraints can be incorporated into

the analysis phase; the system can be mechanically checked to ensure that it meets these formal

requirements.

2.2.4 Modeling Behaviour

Support for the specification of behaviour is not as prevalent within architecture description lan-

guages as it is for the description of structure. Rapide and Wright are two examples of ADLs that

do support a behaviour specification. Although they are based on different semantic foundations4,

they share abstract similarities in the way behaviour is specified and component communication

is modeled. The main commonalities are that behaviour specification is provided at the level of

individual elements, and that the notion of an event is used to denote element communication.

An event initiated at the port of one element and observed at the port of another is viewed as

the discrete communication of information from initiator to observer. This communication can

3Usually by providing a specification sublanguage based on first-order predicate calculus.

4Wright uses the CSP process algebra while Rapide uses an execution model based on partially ordered sets of
events.
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only occur if the ports are connected through an architectural connection. The behavioural design

categories we introduce formalize this static, or syntactic aspect of event-based component com-

munication: elements are mapped to a behavioural specification, and events are both initiated and

observed at ports.

This formalization is not intended to serve as a semantics for describing element behaviour;

we have intentionally not attempted to define a more complicated behavioural semantic model

as doing so is equivalent to the task of defining a “universal” model of architectural behaviour.

Rather, our goal is to provide a generic framework through which a choice of behavioural for-

malism can be integrated into the model. This type of framework allows flexibility in that a

behavioural formalism can be chosen based on its suitability for describing specific requirements

of a system, or for permitting a particular type of analysis. We demonstrate how a behavioural

formalism is incorporated into the framework in Chapter 4.

Behavioural Design Categories

Figure 2.10 presents the two main categories of this model, Events and Operations, and their

relationship to categories of the structural model. Within the formalization, the design categories

Event and Operation are uninterpreted; they are provided as placeholders though which a specific

behavioural formalism can be incorporated into the model.

Definition 2.2.9 (Event) The basic unit of element communication.

As mentioned above, components interact by initiating and observing events. This basic commu-

nication represents a discrete transfer of information from one point in the architecture to another

through a connection. Ports, as the templates for connection endpoints, are the entities from

which events are either initiated or observed.

Definition 2.2.10 (Operation) An Operation represents an “executable” command of a behavioural

specification.
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Figure 2.10: Model of Behaviour.

The behaviour of an architectural element is specified as a set of Operations that engage in a set

of events in the context of a port. Different languages with behavioural support will provide a dif-

ferent interpretations for this category. For example, in the context of the Wright language, an op-

eration is a CSP process. In Rapide it can be interpreted as a transition rule. The behaves through

relationship associates an element with a sequence of values of this type.



Chapter 3

A Model of Architecture Description

In this chapter we present a formalization of the model of software architecture description in-

troduced in the previous chapter. Architecture description languages are predominately defined

as text-based notations, although some have an equivalent graphical form (where the syntactic

categories are represented by symbols). The process of formalization involves finding suitable

formal semantic representations for each category of information expressible by the syntax.

For this work we use the Z specification language [Spi92]. Our choice of Z for the initial

definition of the model is a reflection of its effectiveness for communicating information. Z is

both well-known and widely accepted within the software engineering community. It has been

shown to be clear, concise and relatively easy to learn compared with other formal specification

languages [KDGN97].

The model is fully defined in the remainder of this chapter. We begin by first providing an

introduction to the Z specification language. Appendix A presents a complete summary of the Z

syntax used in this thesis. We then briefly introduce the structure of the model, followed by the

formal text itself.

27
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3.1 Modeling Architectural Design Categories with Z

The Z specification language is a strongly typed formalism based on first-order predicate logic

and set theory. The basic means of formalizing information in Z is by introducing new types. We

use types within our specification to model both the abstract state of the system1 and the abstract

operations that define the relationships between states.

The complete formal text of the model is composed of Z type definitions, axiomatic defini-

tions and generic constant definitions. We model each of the top-level design categories with one

or more of these constructs. Types are introduced into a Z specification in one of two ways, either

by declaring a given set2 or a schema.

A given set denotes an infinite but enumerable set of items. For example, the declaration

[NAME ]

introduces the set of all names; no other assumptions are made about the type. A given set is

useful for defining types where a more elaborate internal representation is either not required, or

would add no further descriptive power to the specification.

More complicated or structured types are defined with schemas. Besides declaring a new type,

a schema is the basic unit of specification modularity, grouping a collection of related declarations

and predicates into a separate namespace or scope. For example, the schema

SimplePhoneBook [NUM ]
entry : PNAME

number : NAME 7! NUM

entry = dom number

1Recall that the system we model is an architectural design.

2Also known as a given type.
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defines a simple abstraction representing a phone book. Most schemas consist of two sections

partitioned by a horizontal line: a declaration section above the line and a predicate section below

the line. As the name suggests, the declaration section introduces a set of named, typed variable

declarations. The schema given above declares two variables, entry and number, where entry is

defined as a set of names, and number as a function mapping names to values of type NUM .

The lower region of the schema contains the predicates that constrain the values of its variables.

The predicate in the SimplePhoneBook schema states that number maps only names of the set

entry to phone numbers. All constraints appearing in this section are satisfied in every system

state; each operation that modifies the state must also maintain these invariants. In formal terms,

a schema defines a subset of the cross product of its variables.

The SimplePhoneBook schema is generic in that it is parameterized by the (undefined) type

NUM . Before it can be used the schema must be instantiated by providing an actual type pa-

rameter in place of this formal generic parameter. This facility allows definitional flexibility: the

schema can be used with any type, basic or complex, that models phone numbers. Our formal-

ization makes significant use of parameterized schemas primarily for incorporating ADL-specific

architectural type information into a design (discussed further in Section 3.2.3).

3.1.1 Structure of the Formal Text

A fundamental requirement of a formal specification is that it be simple, modular and extensi-

ble [LMZ96, vdPHdJ98]. There are a number of reasons why this flexibility is desirable in a

specification. First, specifications are rarely written in one pass, but rather are developed itera-

tively. Modularizing the formal text so that each iteration need not modify the entire specification

is crucial. Second, the goal of the specification is the readable presentation of information. The

individual pieces of formal text must be simple enough that there is no doubt as to exactly what

is being discussed and that it is indeed correct.

The overall extensibility of the specification is an especially significant requirement of our
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model. A fundamental tension in any specification is capturing the information at the “right” lev-

el of abstraction. Our goal adds another level to this tension - the model must be abstract enough

to describe a wide selection of ADLs, while detailed enough to capture their fundamental design

constructs. There may be design information not formalized by the model that is necessary for

specifying and reasoning about certain aspects of a particular system model. From a practical

point of view, partitioning the formal text into a structure that allows architects to readily ex-

tend the main (core) categories with additional design information would significantly improve

the utility of the model. Conversely, a “good” structure would also allow an architect to remove

design information which may not be a critical component of the specification for some applica-

tions of the model. A final readability consideration is that it should be obvious to a reader of the

specification which information is “core” and which is an “extension”.

The specification structure we have adopted strives to meet these requirements. We divide the

main design categories of the model into a core constituent and (possibly) several extensions. A

design category core is defined as a composite of two schemas: the basic entity sets defined by

the category and the relationships and constraints on the entities:

CategoryCore

CategoryEntity

CategoryRelationship

Extensions are useful for capturing design information that is either ADL-specific, application

specific, or more naturally (and readably) introduced into the specification at a later point. An ex-

tension to a design category is defined by augmenting either or both of the entity and relationship

schemas. For example, a new relationship between existing entities could be specified as:
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CategoryExtNewRelationship

CategoryEntity

NewRelationship

NewPredicates

The core and extension schemas are then combined using the schema conjunction operator (^).

The resulting schema represents the complete definition of the design category:

Category b= CategoryCore ^

CategoryExtExtension1 ^ ::: ^ CategoryExtExtensionn

This operation merges the signatures of the schemas and conjoins their predicates. Section 3.7

demonstrates how both ADL- and application-specific information can be added to the model

using this mechanism.

Up to this point we have relied on the reader’s intuition and good faith in our use of the term

“design category” as a collection of entity sets and relationships between them. We now define

the notion of a design category core and an extension:

Definition 3.1.1 (Design Category Core) A Design Category Core C = hV ;R;�i consists of

a set V of typed variables, a set R of relations and a set � of predicates s.t. 8 r 2 R � dom r 2

V ^ ran r 2 V and 8� 2 � � dom � � V [ R

Definition 3.1.2 (Extension) An Extension E = hVe ;Re ;�ei is an extension of a Design Cate-

gory Core C = hV ;R;�i if V � Ve , R � Re and � � �e .

3.2 Design-time Categories

We begin the formal text by introducing the categories of the design-time sub-model.
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3.2.1 Element

Architectural elements are the fundamental building-blocks or templates of an architectural spec-

ification. We introduce the element type as a given set:

[ELEMENT ]

An element may be either a component or a connector. Components act as the computational

and data-store elements, while connectors represent the architectural “glue” that mediates the

interactions between components. Although it has been argued that this distinction is required at

the architectural level [Sha96], not all ADLs provide connector abstractions. Our formalization

supports both forms of element, but can be easily extended to more closely characterize languages

that have no support for explicit first-class connectors.

These two basic kinds of elements are distinct yet share many similar characteristics; it can

be useful (when appropriate) to consider them as specializations of the same type. In Z, this can

be accomplished by defining them as disjoint subsets of the ELEMENT type. We introduce the

(infinite) sets of all possible components and connectors as an axiomatic definition:

COMPONENT : PELEMENT

CONNECTOR : PELEMENT

hCOMPONENT ;CONNECTORi partitionsELEMENT

The predicate indicates that the sets of components and connectors are disjoint. Note that Z

considers different subsets of the same given set to have identical type.

Architecture description languages that support the distinction usually make a stronger sep-

aration between the two forms, i.e., they provide two symmetric constructs of different types.

While our definition is non-standard, it has the novel advantage that the representations of both

concepts are identical. This allows us to use the same specification techniques and reasoning
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machinery for either category of element, which in turn can shorten both the specification and

proofs. Even though their basic structure and type is the same, instances of either element type

can still be distinguished if need be as they are partitioned into different sets within the model.

3.2.2 Port

A port is an individual connection point that defines a service an element either offers to, or

expects from, its environment. We introduce ports into the model as a given set:

[PORT ]

3.2.3 Architectural Types

Architectural types play a role similar to that of types in programming languages in that they

provide a means of associating additional semantics to a set of language entities. For example, it

is typically more meaningful for readers of a specification to classify elements as either pipes or

filters when dealing with systems defined to be in the “pipe-and-filter” style3 [AG92].

The precise technical vocabulary introduced by types fulfills a number of roles, both within

and outside the context of a specification. First, they establish a meaningful, common vocabulary

that permits easier communication between the system’s various stake-holders. Second, as allud-

ed to above, they are useful in defining and demonstrating adherence to a particular architectural

style. They also provide a basis for a number of parser-driven semantic checks. For example,

port typing information is used for ensuring the legality of architectural connections, i.e., the

pairs of ports involved in connections must be compatible. Using type information, a parser can

also ensure that element interfaces contain only ports that are meaningful within that particular

context.

3Indeed, the notion of style is often viewed as being based on a foundation of types. See [SG96] for a thorough
introduction to architectural style.
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Our model supports the inclusion of a predefined set of ADL-specific types for both elements

and ports. We use the generic facility of Z schemas as the basic mechanism for incorporating

this additional type information. Most of our schemas are declared with two formal generic

parameters, one corresponding to a set of supported port types and one to a set of element types.

Additionally, we use a generic constant definition to declare two relations that are used to specify

the legal combinations of these types:

[PORTTYPE ;ELEMENTTYPE ]
export map : ELEMENTTYPE $ PORTTYPE

port map : PORTTYPE $ PORTTYPE

8 e : ELEMENTTYPE ;9p : PORTTYPE � (e; p) 2 export map

8 p1 : PORTTYPE ;9 p2 : PORTTYPE � p1 6= p2 ^ (p1; p2) 2 port map

The parameters PORTTYPE and ELEMENTTYPE serve as a means of integrating ADL-

specific type information into the model. When used to characterize a particular ADL the generic

schemas are instantiated by providing values for these formal parameters.

In addition to the generic parameters, this definition declares two relations, export map and

port map, which together model the key semantics of ADL typechecking systems. The ex -

port map relation is used to define the legal port types for a particular element type. The

port map relation is used for typechecking connections; it encodes the legal combinations of

port types that may interact through an architectural connection. As specified in the predicate

section, these two relations must be defined at each point in their domain.

Some languages, such as UniCon, provide a rich vocabulary of predefined architectural types,

both for elements and their ports. We demonstrate the use of these definitions with an example of

a portion of the UniCon type system. We first define an enumeration of both the supported port

and element types:
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ELEMENTTYPE UniCon == fModule;Computation;Filter ;Pipe; :::g

PORTTYPE UniCon == fStreamIn;StreamOut ;Source;Sink ; :::g

The predicate portion of the generic definition is augmented with the specific values of the type-

mapping relations:

export map = f(Pipe;Source); (Pipe;Sink); (Filter ;StreamIn); :::g
port map = f(Sink ;StreamIn); (StreamIn ;Sink); (Source;StreamOut); :::g

The first two tuple values in export map state that elements of type Pipe can expose ports of type

Source and Sink . Similarly, the first two tuple values of port map define that ports of type Sink

and StreamIn may be involved in the same connection.

The relations are used by explicitly supplying the actual generic parameters:

export map[PORTTYPE UniCon;ELEMENTTYPE UniCon]
port map[PORTTYPE UniCon;ELEMENTTYPE UniCon]

Sections 3.2.4 and 3.4.3 demonstrate the use of these relations in the context of the model.

3.2.4 Interface

An architectural element presents an interface to the rest of the system. The primary constituent

of an interface is a non-empty, finite set of ports that represents the complete set of interaction

points through which an element communicates. This set is defined within the InterfaceEntity

schema:

Definition 3.2.1 (InterfaceEntity) InterfaceEntity is defined as hinteracts throughi, where inter-

acts through is a finite set of ports.
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InterfaceEntity

interacts through : F PORT

interacts through 6= ?

The predicate portion of the schema restricts the set of ports defined by an interface to be non-

empty.

An interface specifies other information regarding its ports, in particular, their type. Ad-

ditionally, element type information is maintained through the interface construct; an interface

implicitly defines the type of each element that is specified by it. This additional information is

defined within the InterfaceRelationship schema:

Definition 3.2.2 (InterfaceRelationship) InterfaceRelationship is defined as the tuple hport type,

type ofi, where port type is a mapping from ports to their types and where type of is the element

type defined by this interface.

InterfaceRelationship [PORTTYPE ;ELEMENTTYPE ]
InterfaceEntity

port type : PORT 7! PORTTYPE

type of : ELEMENTTYPE

port type 2 interacts through ! PORTTYPE

8 t : port type(j interacts through j) �
(type of ; t) 2 export map[PORTTYPE ;ELEMENTTYPE ]

This schema is primarily responsible for maintaining type information, both element and port.

It is parameterized by the two types, PORTTYPE and ELEMENTTYPE (defined in Sec-

tion 3.2.3). The two predicates of this schema have the following meanings:

� All ports defined by the interface have a type; in other words, the function port type is

total on the set interacts through .
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� For an interface to be well-formed, the type of each port must be compatible with the type

of element to which it belongs (as defined by the relation export map). In other words, for

each port, the export map relation must include a tuple with the appropriate element and

port type values.

Having provided definitions of the basic entity sets, relationships and constraints constituting

the notion of an architectural interface, we construct a core schema by explicitly including both

definitions (note that for readability we omit the generic arguments to the included schemas):

InterfaceCore [PORTTYPE ;ELEMENTTYPE ]
InterfaceEntity

InterfaceRelationship

or, given that the InterfaceRelationship schema already includes InterfaceEntity , more suc-

cinctly as4:

InterfaceCore [PORTTYPE ;ELEMENTTYPE ]
InterfaceRelationship

An Interface schema is composed from its primary constituents, which, having not yet defined

any extensions, consists of just the InterfaceCore schema:

Interface[PORTTYPE ;ELEMENTTYPE ] b=
InterfaceCore[PORTTYPE ;ELEMENTTYPE ]

The Interface schema formalizes a basic notion that is common to architectural design no-

tations; however, the term, interface, is not consistently applied across languages. For example,

the properties we formalize closely corresponds to those of the UniCon INTERFACE language

4While both forms are equivalent, our preference is for the first as the intent of the schema is more clearly illustrat-
ed.
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construct in that its primary role is to introduce a set of logical, typed architectural connection

points. While both Wright and Rapide also have an explicit interface construct, theirs are

used to model different aspects of the architecture. Wright’s interfaces capture behavioural prop-

erties that may be shared among a (related) set of ports, while a Rapide interface is a superset

of our definition in that it not only defines a set of ports, but also serves the role of a complete

architectural component.

3.2.5 Library

A library represents the sets of elements and interfaces that have been declared in an architectural

specification. Since a given design is, by definition, a finite construction, these sets are finite

as well. We begin the definition of a library by introducing a schema that formalizes the repre-

sentation of the sets of elements (both components and connectors) and interfaces present in an

architectural design:

Definition 3.2.3 (LibraryEntity) LibraryEntity is defined as the tuple helements, components,

connectors, containsi, where elements, components and connectors are (respectively) the sets of

element, component and connector templates that have been introduced into the specification and

where contains is the set of declared element interfaces.

LibraryEntity

elements : F ELEMENT

components : F COMPONENT

connectors : F CONNECTOR
contains : F Interface

hcomponents; connectorsi partitions elements
8 i ; j : contains j i 6= j �

i :interacts through \ j :interacts through = ?

Commentary:
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� The set of elements declared within the design is composed of the union of two disjoint

subsets, the set of components and the set of connectors.

� No interface shares a port with any other interface. That is, the sets of ports through which

any two interfaces interact are disjoint.

A library also maintains the relationship between an element and its interface. This mapping

is formalized in the LibraryRelationship schema:

Definition 3.2.4 (LibraryRelationship) LibraryRelationship is defined as hspecified byi, where

specified by is a mapping from an element to its interface.

LibraryRelationship [PORTTYPE ;ELEMENTTYPE ]
LibraryEntity

speci�ed by : ELEMENT 7!! Interface

speci�ed by 2 elements !! contains

Commentary:

� Each element is specified by an interface and each interface defines at least one element;

that is, the speci�ed by mapping is a total surjective, or “many-to-one” relation.

We omit the definitions of the LibraryCore and Library schemas as they are defined in a manner

identical to those for Interface (see Section 3.2.4). Similar to the interface schema, at this point

in the formalization, the schema for library is composed of only its core constituent.

Library [PORTTYPE ;ELEMENTTYPE ] b=
LibraryCore[PORTTYPE ;ELEMENTTYPE ]
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3.3 Run-time Categories

In this section we present the formalization for the run-time portion of the structural model. We

define the four remaining design categories, Instances, IPorts, Configurations and Architectures.

3.3.1 Instance and Instance Ports

A value of type INSTANCE represents the name given to an instance of an element, i.e., an

element that has been instantiated within a configuration. The INSTANCE design category is

introduced into the specification with a given set:

[INSTANCE ]

Instantiating an element also has the secondary effect of instantiating the ports that are defined by

its interface. These “instantiated ports” differ from our previous definition of element PORT s in

that they are paired with the instance that they are associated with. We distinguish between ports

and instance ports by modeling the latter as the type IPORT:

IPORT == (INSTANCE � PORT )

This definition introduces a new tuple type with an INSTANCE and PORT component. The

primary role of the IPORT type is to partition the ports of multiple instances of the same element

type into disjoint sets. Even though each instance will share the same basic port definitions

(defined by the interface), IPORT s allow us to uniquely identify a port of a specific instance.

Values of type IPORT form the endpoints of architectural connections (see Definition 3.3.2

below).
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3.3.2 Configurations

Con�gurations are the central concept of an architectural design, consisting of a set of elements

instantiated from their template (element) definitions. The topology of a configuration is defined

by the set of connections between instance ports. The basic constituents of a configuration, name-

ly a finite set of instances and instance ports, are formalized in the Con�gurationEntity schema.

Additionally, this schema also maintains a set of element templates that are available for instanti-

ation within the configuration. This additional set is used to model the notion of a configuration

scope which is supported by some design notations. Specifically, the set of elements available for

instantiation within a configuration may be a subset of the total collection of elements declared

within the design.

Definition 3.3.1 (ConfigurationEntity) ConfigurationEntity is defined as the tuple hinScope-

Elements, instances, portsi, where inScopeElements is the set of elements that are available

for instantiation, instances is the set of names of elements instantiated into the configuration, and

ports is the set of instantiated ports.

Con�gurationEntity [PORTTYPE ;ELEMENTTYPE ]
Library

inScopeElements : F ELEMENT

instances : F INSTANCE
ports : F IPORT

inScopeElements � elements

8(i ; p) : ports �
i 2 instances ^

9 e : inScopeElements �
p 2 speci�ed by(e):interacts through

Commentary:

� The elements that may be instantiated within a configuration are drawn from a subset of the
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elements defined in the design, that is, the set of elements that are visible within the scope

of the configuration.

� The instance component of all instance ports must belong to the configuration’s set of

instances. Also, the port component must be a member of the set of ports belonging to an

element that is available for instantiation.

The Con�gurationRelationship schema defines the associations between configuration en-

tities. Instances are mapped to both their basic component or connector definitions, and to their

interface. Additionally, a configuration contains a set of architectural connections. These con-

nections are modeled as a general relation among instance ports. We discuss the semantics of

connections in more detail in Section 3.4.3.

Definition 3.3.2 (ConfigurationRelationship) ConfigurationRelationship is defined as the tuple

hcomponent, connector, connections, inst2interfacei, where component is the mapping from in-

stances of components to the basic component template from which they take their definition, con-

nector is the mapping between instances of connectors and their connector template, connections

is the relation capturing the connection association between instance ports and inst2interface is

a mapping from instances to their interface.

Con�gurationRelationship [PORTTYPE ;ELEMENTTYPE ]
Con�gurationEntity

component : INSTANCE 7! COMPONENT

connector : INSTANCE 7! CONNECTOR

connections : IPORT $ IPORT

inst2interface : INSTANCE 7! Interface

component 2 instances 7! components

connector 2 instances 7! connectors

hdom component ; dom connectori partitions instances
inst2interface = (component [ connector) o

9
speci�ed by

8(i ; p) : ports � p 2 inst2interface(i):interacts through

dom connections [ ran connections � ports
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Commentary:

� All instances that are components are mapped to a component template.

� All instances that are connectors are mapped to a connector template.

� Every instance within the configuration is either a component or a connector, but not both.

� Given an instance, the inst2interface mapping uniquely identifies its interface.

� All instantiated ports are derived from the ports defined in the interface.

� Connections only occur between ports of the configuration’s instances.

The Con�guration schema is define as the following:

Con�guration[PORTTYPE ;ELEMENTTYPE ] b=
Con�gurationCore[PORTTYPE ;ELEMENTTYPE ]

3.3.3 Architecture

The Architecture category models a complete architectural design. It contains the sets of the

design-time and run-time definitions and instantiations. In addition to the “top-most” configura-

tion that defines a system’s overall structure and topology, an architectural design can include

other configurations. This capability is primarily to support hierarchically defined elements.

Specifically, an entire configuration can be “packaged” and used as if it were a single element.

These composite elements, like their primitive counterparts, can be instantiated and used within

other configurations.

Definition 3.3.3 (ArchitectureEntity) An ArchitectureEntity is defined as hcomposed ofi where

composed of is a non-empty set of configurations that have been defined in the specification.
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ArchitectureEntity [PORTTYPE ;ELEMENTTYPE ]
Library

composed of : F Con�guration

composed of 6= ?

The main relationships and constraints defined in an architecture are modeled by theArchitec-

tureRelationship schema. This schema specifies the mapping between configurations and the

composite elements they implement. A set of bindings models the relationship between the in-

stance ports of the implementation (the internal ports) and the ports of the interface (the external

ports). Conceptually, a connection made to an element with a composite implementation is made

to the bound ports of its implementation. Bindings are discussed further in Section 3.4.5 and are

depicted graphically in Figure 3.2.

Definition 3.3.4 (ArchitectureRelationship) An ArchitectureRelationship is defined as the tuple

himplements, bindingsi, where implements maps configurations to elements and bindings is the

mapping of a configuration’s instance ports to element ports.

ArchitectureRelationship [PORTTYPE ;ELEMENTTYPE ]
ArchitectureEntity

implements : Con�guration 7� ELEMENT

bindings : Con�guration 7! (IPORT $ PORT )

implements 2 composed of 7� elements

dom bindings = dom implements

8 c : dom bindings �

(�rst(j bindings(c) j) � c:ports) ^
(second(j bindings(c) j) �
(implements o

9
speci�ed by)(c):interacts through)

The schema predicates constrain the values of the implements and bindings relationships to the

following:
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� An element is implemented by at most one configuration.

� The set of configurations that implement elements is exactly the set of configurations for

which bindings may be specified.

� Only the instance ports belonging to the configuration can take part in bindings and they

can only be bound to the ports of the element which the configuration implements.

The schema for the Architecture design category is defined as the ArchitectureCore schema :

Architecture[PORTTYPE ;ELEMENTTYPE ] b=
ArchitectureCore[PORTTYPE ;ELEMENTTYPE ]

3.4 Architecture Construction Operations

In addition to schemas denoting abstract state, a model-theoretic specification must define the

operations that take the system from one state to another. In this section we define the operations

that affect the state formalized by the model; we term these architecture construction operations.

Operations in Z are specified with schemas. Unlike schemas that define state, the predicate

section of an operation schema specifies both the preconditions of the operation and the effect the

operation has on the abstract system. A change in state is modeled as a relationship between the

state before the operation is applied and the state after the operation is applied. To describe the

additional semantics required by an operation, a number of well-defined conventions are used.

The delta (�) convention is used in conjunction with schema inclusion to introduce two sets of

variables, those representing both the before and after state. Names without a dash (0) represent

state before the operation, while names with a dash are interpreted to mean the state after the

operation. We also use the convention of appending a question mark (?) to schema variables to

indicate that they must be provided as input to (that is, arguments of) the operation.
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3.4.1 Add Library

The Add Library operation adds an element and its interface to an existing library:

Definition 3.4.1 (Add Library) The Add Library operation takes a value of either type COMP-

ONENT or CONNECTOR and a value of type Interface. It has the effect of adding both to a

library and updating the specified by relation.

The model supports a distinction between components and connectors. We therefore define two

operations, Add Component and Add Connector , which add (respectively) a component and

connector to the library. Add Component is defined as:

Add Component [PORTTYPE ;ELEMENTTYPE ]
�Library
i? : Interface
c? : COMPONENT

c? 62 elements

contains 0 = contains [ fi?g
components 0 = components [ fc?g
elements 0 = elements [ fc?g ^
speci�ed by 0 = speci�ed by � fc? 7! i?g
connectors 0 = connectors

Commentary:

� The component is not already contained within the library.

� The component’s interface is added to the library.

� The new component is added to both the set of components and elements of the library.

� The specified by mapping is updated to include the component and its interface.

� The other state of the library schema does not change.
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For brevity we omit the definition of the symmetric Add Connector operation; it is specified

similarly. The composite Add Library operation is formalized as the disjunction of the twoAdd

operations:

Add Library [PORTTYPE ;ELEMENTTYPE ] b=
Add Component [PORTTYPE ;ELEMENTTYPE ] _
Add Connector [PORTTYPE ;ELEMENTTYPE ]

3.4.2 Instantiate

The Instantiate operation creates an instance of a component or connector template within the

context of a configuration. Similar to the Add Library operation, the Instantiate operation also

comes in two variants, one for each of the two basic element forms.

Definition 3.4.2 (Instantiate) The Instantiate operation takes a value of either type COMPO-

NENT or CONNECTOR along with a value of type INSTANCE and has the effect of instantiating

the template within the configuration with the name specified by the INSTANCE value.

The Instantiate Component schema formalizes the operation of creating a new component:

Instantiate Component [PORTTYPE ;ELEMENTTYPE ]
�Library
�Con�guration
c? : COMPONENT

i? : INSTANCE

c? 2 components ^ c? 2 inScopeElements ^

i? 62 instances

instances 0 = instances [ fi?g
component 0 = component � fi? 7! c?g
ports 0 = ports[

fi? 7! p j p 2 speci�ed by(c?):interacts throughg

inst2interface 0 = inst2interface � fi? 7! speci�ed by(c?)g
connector 0 = connector ^

connections 0 = connections
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Commentary:

� The component is in scope and the instance name has not been used previously.

� The instance is added to the configuration.

� The component template is associated with the instance.

� The ports defined by the component’s interface are instantiated.

� The mapping from instance to interface is updated to reflect the newly created instance.

� The other schema state does not change as a result of the operation.

As mentioned above there is a symmetric operation for instantiating connectors which is not

shown here. The Instantiate operation is defined as the disjunction of these two operations:

Instantiate[PORTTYPE ;ELEMENTTYPE ] b=
Instantiate Component [PORTTYPE ;ELEMENTTYPE ] _
Instantiate Connector [PORTTYPE ;ELEMENTTYPE ]

3.4.3 Connect

The Connect operation forms connections between instance ports of a configuration. Figure 3.1

shows an architectural connection between two instances belonging to the same configuration. A

connection is modeled as a pair of instance ports5, both of which are provided as inputs to the

Connect operation.

Definition 3.4.3 (Connect) The Connect operation forms an architectural connection with end-

points specified by the two input IPORT values.

5The Rapide language also supports a more general connection mechanism based on event patterns [LV95]. Cur-
rently, our model formalizes only Rapide’s basic connections.
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connection
(i1.port, i2.port)

i1 : element

i1.port

i2 : element

i2.port

Figure 3.1: A connection between two instance ports.

Connect [PORTTYPE ;ELEMENTTYPE ]
�Library
�Con�guration
(i1?; p1?) : IPORT
(i2?; p2?) : IPORT

(i1?; p1?) 2 ports ^ (i2?; p2?) 2 ports

(inst2interface(i1?):port type(p1?);
inst2interface(i2?):port type(p2?))

2 port map[PORTTYPE ;ELEMENTTYPE ]
connections 0 = connections [ f(i1?; p1?) 7! (i2?; p2?)g
component 0 = component ^ connector 0 = connector ^

inst2interface 0 = inst2interface ^ ports 0 = ports

Commentary:

� Both instance ports have been instantiated.

� The combination of port types making up the connection is legal (as specified in the

port map relation).

� The new connection is incorporated into the set of connections.

� The other schema state does not change as a result of the operation.
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3.4.4 Add Configuration

Once a configuration is defined it must be associated with the architectural design in which it was

declared. The Add Configuration operation formalizes this relationship.

Definition 3.4.4 (Add Configuration) The Add Configuration operation has the effect of adding

a value of type Configuration to an architecture.

Add Con�guration [PORTTYPE ;ELEMENTTYPE ]
�Architecture
c? : Con�guration

composed of 0 = composed of [ fc?g
implements 0 = implements ^

bindings 0 = bindings

Commentary:

� The configuration is added to the architecture.

� The other schema state does not change as a result of the operation.

3.4.5 Implement Composite and Bind

We formalize two operations for constructing hierarchical element descriptions. The first, Imp-

lement Composite assigns a configuration as the composite implementation of an element:

Definition 3.4.5 (Implement Composite) The Implement Composite operation takes a value of

type Configuration and a value of type ELEMENT and establishes the configuration as the com-

posite implementation for the element.
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Implement Composite [PORTTYPE ;ELEMENTTYPE ]
�Library
�Architecture
c? : Con�guration
e? : ELEMENT

c? 2 composed of ^ e? 2 elements

implements 0 = implements � fc? 7! e?g
bindings 0 = bindings � fc? 7! ?g

composed of 0 = composed of

Commentary:

� The configuration has been defined in the specification and the element exists in the library.

� The configuration is set as the composite implementation of the element.

� Initially, the set of bindings is empty.

� The other schema state does not change as a result of the operation.

Once we have provided a configuration as the implementation of an element, we need only

a mechanism for associating (instantiated) ports of the configuration with ports of the element.

This relationship is termed a binding, and is graphically illustrated in Figure 3.2. Bindings are

modeled as values of type IPORT � PORT , and are added to an architecture with the Bind

operation:

Definition 3.4.6 (Bind) The Bind operation associates an instance port of a configuration with

a port of an element. The configuration must have previously been set as the composite imple-

mentation of the element.
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interface

port1 port2

element

i1 : element

i1.port1 i1.port2

i2 : element

i2.port1 i2.port2

binding
(i1.port1, port1)

binding
(i2.port2, port2)

Figure 3.2: Bindings between instance ports and ports of elements.

Bind [PORTTYPE ;ELEMENTTYPE ]
�Library
�Architecture
c? : Con�guration
(i1?; p1?) : IPORT
p2? : PORT

c? 2 dom implements ^ (i1?; p1?) 2 c?:ports
(let int == (implements o

9
speci�ed by)(c?) �

p? 2 int :interacts through ^

c?:inst2interface(i1?):port type(p1?) = int :port type(p2?))
implements(c?) 2 components ) i1? 2 dom component ^

implements(c?) 2 connectors ) i1? 2 dom connector

bindings 0 = bindings�

fc? 7! fbindings(c?) [ f((i1?; p1?); p2?)ggg
composed of 0 = composed of ^

implements 0 = implements

A binding is added to the architecture based on the following constraints:

� The configuration has been defined to implement an element and the instance port belongs

to an instance within the configuration.
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� The port belongs to the element’s interface and its type is the same as that of the instantiated

port.

� If the configuration has been defined to implement a component (connector), then the in-

stance port must be that of a component (connector).

� The binding is added to the configuration’s current set of bindings.

� The other schema state does not change as a result of the operation.

3.5 Initial State Schemas

The final aspect of a complete model-theoretic specification is a formalization of the system’s

initial abstract state. As before, Z schemas are used for this specification. These initial state

schemas define an abstract starting point for the state space of the system; the first operation

applied to an abstract state operates on its initial state.

Initial state schemas are defined using conventions similar to that of operations with the ex-

ception that they consist of only an after state. For brevity, we illustrate with the Library schema

only, although similar definitions could be given for other schemas representing system state.

We define a new schema incorporating a dashed version of the library. The dash indicates that a

“before” state does not exist.

InitialLibrary [PORTTYPE ;ELEMENTTYPE ]
Library 0

component 0 = ?

connector 0 = ?

contains 0 = ?

The three predicates state that the entity sets of the library are initially empty. Note that we need

only constrain these schema variables to specific values - these are sufficient to trivially deduce
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that the other schema variables are implicitly initialized by these predicates.

Defining initial value constants for system state places an obligation upon us to formally

demonstrate that such an abstract initial state exists. This obligation ensures that we have not

introduced inconsistency into our model by specifying a state that does not satisfy the Library

schema predicates. Formally, the obligation for the library initial state is stated as:

` 9Library 0 � InitialLibrary

While straightforward to demonstrate by hand, the details of this proof are not shown here; we de-

fer this and other initial state obligations to Section 4.2.2 where we discharge them using machine-

assisted proof.

3.6 Modeling Behaviour

Figure 2.10 highlights the close association between the entities of the core structural model

and those relating to the behavioural model. This close relationship makes it natural to express

the definitions of the behavioural categories and relationships using the defined mechanism for

extensions. Within the formal text we use the structural model as the basic “framework” into

which the elements of the behavioural model are placed. Specifically, we present the model

as extensions to the Interface and Library structural categories. The main advantage of this

approach is that a design category defined as an extension is optional; applications with no need

for a behavioural specification can remove the related definitions, thus simplifying the model.

3.6.1 Events and Operations

We begin by introducing the basic sets of all events and operations:

[EVENT ;OPERATION ]
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As mentioned in the previous chapter, conceptually an event signifies the transfer of informa-

tion from one element (the initiator) to another (the observer). Members of the infinite set

OPERATION are intended to be interpreted as the “executable” commands of a behavioural

specification.

3.6.2 Extensions to Interface

The events defined in a specification are a finite subset of the set of all events. This is formalized

in the BehaviourInterfaceEntity schema:

Definition 3.6.1 (BehaviourInterfaceEntity) BehaviourInterfaceEntity is defined as heventsi,

where events is the finite set of events.

BehaviourInterfaceEntity

events : F EVENT

Events are associated with ports. A port can either initiate, or observe a set of events. This

relationship is formalized in the BehaviourInterfaceRelationship schema:

Definition 3.6.2 (BehaviourInterfaceRelationship) BehaviourInterfaceRelationship is defined

as hinitiates, observesi, where initiates and observes are mappings from a port to the set of events

that it initiates and observes, respectively.
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BehaviourInterfaceRelationship [PORTTYPE ;ELEMENTTYPE ]
InterfaceEntity

BehaviourInterfaceEntity

initiates : PORT 7! F EVENT

observes : PORT 7! F EVENT

dom initiates � interacts through

dom observes � interacts through

8 p : dom initiates � initiates(p) � events ^ initiates(p) 6= ?

8 p : dom observes � observes(p) � events ^ observes(p) 6= ?

8 p : dom initiates \ dom observes �

initiates(p) \ observes(p) = ?

Note that this schema uses both the definitions of the InterfaceEntity and the Behaviour -

InterfaceEntity schemas. Commentary:

� The first two predicates state that any port defined in an interface may initiate or observe

an event.

� The next two predicates are used to constrain the particular set of events initiated and

observed to the set defined by the interface. If a port engages in events, it engages in at

least one event.

� No port may initiate and observe the same event.

As before, we combine the schemas into a core schema (whose definition is omitted). The ba-

sic structural interface is composed with the behavioural core schema to yield the final definition

of an interface:

Interface[PORTTYPE ;ELEMENTTYPE ] b=
InterfaceCore[PORTTYPE ;ELEMENTTYPE ] ^
BehaviourInterfaceCore[PORTTYPE ;ELEMENTTYPE ]
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3.6.3 Extensions to Library

No additional entity sets are needed to specify the behavioural component of the library. There

is, however, an additional function required for mapping elements to the sequence of operations,

or “behavioural process”, that defines their behaviour. This is formalized by BehaviourLibrary-

Relationship:

Definition 3.6.3 (BehaviourLibraryRelationship) BehaviourLibraryRelationship is defined as

hbehaves throughi, where behaves through maps values of type ELEMENT to the sequence of

OPERATION values that represent the behaviour of the ELEMENT.

BehaviourLibraryRelationship [PORTTYPE ;ELEMENTTYPE ]
LibraryRelationship

behaves through : ELEMENT 7! seqOPERATION

dom behaves through � elements

8 e : dom behaves through � behaves through(e) 6= h i

8 e : elements � e 2 dom behaves through , speci�ed by(e):events 6= ?

The predicates on this schema primarily define the correspondence between elements with be-

haviour and their interfaces. In particular:

� An element may have a behavioural process associated with it.

� If an element has a behavioural process then it cannot be the empty sequence of operations.

� Elements with behaviour must observe or initiate some events.

As before, this definition is composed into a core schema. The complete Library schema con-

sisting of both the structural and behavioural elements is defined as:

Library [PORTTYPE ;ELEMENTTYPE ;PROPERTY ;VALUE ] b=
LibraryCore[PORTTYPE ;ELEMENTTYPE ] ^
BehaviourLibraryCore[PORTTYPE ;ELEMENTTYPE ]
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3.7 Other Extensions to the Core Categories

As introduced in Section 3.1.1, an approach to formalizing architecture description should support

a mechanism for incorporating additional architect-defined design information. The rationale for

this requirement is twofold: the field of architecture encompasses a diverse range of goals and

activities. A model that supports specification of design information must be tailorable to the

level of detail required by the specific ADL or application. Second, an extensible foundation is

required to leverage off of expected advancements in architecture description. In this section we

demonstrate through several examples how the basic framework of the model supports extensions

to the core design categories. We provide examples of extensions that are both language-specific

and application-specific.

3.7.1 Language Specific Extensions

Language specific extensions are useful for tailoring the model to the design information captured

by a particular architecture description language. Extensions are shown for the categories Inter-

face, Library, Configuration and Architecture. These extensions more accurately characterize a

particular ADL by defining additional design category constraints, or by introducing new basic

entity sets.

Extension to Interface

In the previous section we introduce behavioural design categories as extensions to the structural

model. Similarly, schemas of the behavioural model can be used as a basis for extension. We

demonstrate by introducing an extension that more closely characterizes the Rapide language.

Rapide differs from the core behavioural specification in that a port may only initiate a single

event, or observe a single event. This property is stated formally as the schema BehaviourInter-

faceExtRapide:
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BehaviourInterfaceExtRapide [PORTTYPE ;ELEMENTTYPE ]
BehaviourInterfaceRelationship

dom initiates \ dom observes = ?

8 p : dom initiates � #(initiates(p)) = 1
8 p : dom observes � #(observes(p)) = 1

The predicates constrain the two mappings as follows:

� No port both initiates and observes an event.

� All ports that initiate events are restricted to a single event.

� All ports that observe events are restricted to a single event.

Given this extension, a definition of the interface construct characterizing the Rapide language is:

InterfaceRapide[PORTTYPE ;ELEMENTTYPE ] b=
InterfaceCore[PORTTYPE ;ELEMENTTYPE ] ^
BehaviourInterfaceCore[PORTTYPE ;ELEMENTTYPE ] ^

BehaviourInterfaceExtRapide[PORTTYPE ;ELEMENTTYPE ]

Extension to Library

The function specified by is given in Schema LibraryRelationship (Definition 3.2.4) as a sur-

jective relation; however, for some languages, this is a weaker statement than necessary. In

particular, both UniCon and Wright share the notion of a one-to-one, or bijective, relationship

between elements and interfaces. This additional constraint is introduced as an extension to the

LibraryRelationship schema:

LibraryExtUniConWright [PORTTYPE ;ELEMENTTYPE ]
LibraryRelationship

8 x ; y : dom speci�ed by �

speci�ed by(x ) = speci�ed by(y)) x = y
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The extension is composed with the core schema (and possibly other extensions) using schema

conjunction:

LibraryUniConWright [PORTTYPE ;ELEMENTTYPE ] b=
LibraryCore[PORTTYPE ;ELEMENTTYPE ] ^
LibraryExtUniConWright [PORTTYPE ;ELEMENTTYPE ]

Extension to Configuration

Using the Configuration schema, we place additional constraints on the instance ports involved

in an architectural connection. Both the UniCon and Wright language enforce the constraint that

connections must be formed only between the ports of components and ports of connectors. A

connection between two components is not legal, nor is one between two connectors. We model

this restriction by augmenting the Con�gurationRelationship (Definition 3.3.2) schema with an

additional predicate:

Con�gurationExtUniconWright [PORTTYPE ;ELEMENTTYPE ]
Con�gurationRelationship

8(ip1; ip2) : connections �
�rst(ip1) 2 dom component ) �rst(ip2) 2 dom connector ^

�rst(ip1) 2 dom connector ) �rst(ip2) 2 dom component

This predicate states that if the first instance port of a connection belongs to a component abstrac-

tion, then the second instance port must be taken from a connector element and vice-versa. We

omit the definition of the final Configuration schema as it is defined in a manner similar to the

above Library schema.
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Extension to Architecture

The Architecture schema is useful for formalizing a fundamental design property of the UniCon

language, namely, that composite implementations are restricted to components. That is, they

are not available for connector abstractions. This is modeled as an additional constraint on the

ArchitectureRelationship schema (Definition 3.3.4):

ArchitectureExtUnicon [PORTTYPE ;ELEMENTTYPE ]
ArchitectureRelationship

ran implements � components

When conjoined with the ArchitectureCore schema, the predicate places an additional constraint

on the implements function, limiting its range to only those elements that are components.

Augmenting the Model with Property Lists

ADLs often allow entities of the specification to have extra information associated with them

in the form of property lists, usually sets of attribute-value pairs. These properties are either

interpreted or uninterpreted depending on the intended role of the ADL. Interpreted properties,

such as those of UniCon, further enrich the body of information available to the compiler for the

purposes of generating an implementation of the architecture. They can also be used to provide

information about the system to external tools.

On the other hand, the ACME architectural interchange language [GMW97a] supports prop-

erty lists that have no predefined semantic interpretation. They are provided only to capture

design information that is not directly supported by the language for the purpose of external tool

support.

A mapping of entities to sets of properties (with corresponding values) is readily specified and

integrated into our model using the extension mechanism. The generic EntityProperty schema
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introduces these additional basic sets and relationships:

Definition 3.7.1 (EntityProperty) EntityProperty is defined as the tuple hentity, property, prop-

ertyOfEntityi, where entity is the finite set of entities that (optionally) have properties, property

is a relation between properties and values and propertyOfEntity is a function mapping entities

to their property/value pairs.

EntityProperty [ENTITY ;PROPERTY ;VALUE ]
entity : PENTITY
property : P(PROPERTY �VALUE )
propertyOfEntity : ENTITY 7! P(PROPERTY �VALUE )

propertyOfEntity 2 entity 7! property

Commentary:

� An entity may have a set of property/value tuples associated with it.

We can use the EntityProperty schema to attach property lists to arbitrary sets of entities. We

demonstrate with ports, interfaces and instances:

InterfaceExtPortProperty [PROPERTY ;VALUE ] b=
EntityProperty [PORT ;PROPERTY ;VALUE ][interacts through=entity ]

LibraryExtInterfaceProperty [PROPERTY ;VALUE ] b=
EntityProperty [Interface;PROPERTY ;VALUE ][contains=entity ]

Con�gurationExtInstanceProperty [PROPERTY ;VALUE ] b=
EntityProperty [INSTANCE ;PROPERTY ;VALUE ][instances=entity ]

In the above definitions, schema renaming (the ‘=’ operator) is used to change the name of the

variable “entity” to the name of the set variable to which properties are associated. Applied to a
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schema, the effect of renaming is to replace all occurrences of the name following the ‘=’ with

the name preceding it. This formulation allows properties to be attached to any basic entity set

in a completely generic fashion. The final definitions of the Interface, Library and Configuration

schemas including the above extension are given as:

Interface[PORTTYPE ;ELEMENTTYPE ;PROPERTY ;VALUE ] b=
InterfaceCore[PORTTYPE ;ELEMENTTYPE ] ^
InterfaceExtPortProperty [PROPERTY ;VALUE ]

Library [PORTTYPE ;ELEMENTTYPE ;PROPERTY ;VALUE ] b=
LibraryCore[PORTTYPE ;ELEMENTTYPE ] ^
LibraryExtInterfaceProperty [PROPERTY ;VALUE ]

Con�guration[PORTTYPE ;ELEMENTTYPE ;PROPERTY ;VALUE ] b=
Con�gurationCore[PORTTYPE ;ELEMENTTYPE ] ^
Con�gurationExtInstanceProperty [PROPERTY ;VALUE ]

Note that we have left the types PROPERTY andVALUE as generic parameters to the schemas.

This is suitable for describing a language with uninterpreted property lists. However, if the prop-

erties are interpreted, additional extensions must be provided to further define and constrain the

allowable values of these types.

3.7.2 Application Specific Extensions

Augmenting the Model with Names

Up to this point, we have not addressed the issue of the naming of certain entities. A general

model of names is an important first step in supporting more complex extensions, such as the

decomposition of the elements of the system into a module structure6. Entity names are the basic

6From an architectural perspective, this is sometimes referred to as the module-view [CN96].
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unit of specification in a module’s import/export relationships. A definition of names is also

required to fully model the notion of a “scope”7. The same name may be assigned to distinct

entities occupying different scopes.

As in any specification there is a distinction between the thing named and the name of the

thing. Similar to programming language source code, systems specified using ADLs require

labels, or names to be assigned to entities so that they may be referenced in other parts of the

specification. Many of the basic entities defined within the model, including ELEMENT and

PORT , do not have names associated with them. However, this notion is easily defined as an

extension to the model. We introduce the set of all names:

[NAME ]

We relate names to entities with a generic schema, EntityName . This schema declares a set

of entities, a set of names and a mapping from each entity to a unique name. As we map each

entity to a different name, this particular definition models a set of names existing within the

same scope. A more general definition of entity naming might allow entities to share names. A

formalization of scope could then be introduced as a separate extension.

Definition 3.7.2 (EntityName) EntityName is defined as the tuple hentity, name, nameOfEntityi,

where entity is the set of entities with names associated, name is a finite, non-empty set of names

and nameOfEntity is the mapping between the entities and their names.

EntityName [ENTITY ]
entity : PENTITY
name : PNAME

nameOfEntity : ENTITY 7� NAME

nameOfEntity 2 entity �! name

7A scope is essentially a namespace; it models a region of the specification where a set of names has a specific
visibility.
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Commentary:

� All entities in the set have a unique name.

We can instantiate this generic definition with a particular entity set to complement a specific

schema with names. As in the definition of entity properties, schema renaming is used to con-

figure the application of the schema. For example, the EntityName schema can be used in the

following manner to define extensions for adding names to the sets of PORTs and ELEMENTs:

InterfaceExtNamedPort b=
EntityName[PORT ][interacts through=entity ;

portName=name;

nameOfPort=nameOfEntity ]

LibraryExtNamedElement b=
EntityName[ELEMENT ][elements=entity ;

elementName=name;

nameOfElement=nameOfEntity ]

While not strictly necessary in this case, we also give the variables name and nameOfEntity

distinct names to avoid conflict in the case where names are provided to two or more entity sets

of the same core schema.



Chapter 4

Architectural Specification

In this chapter we demonstrate how the framework presented in the previous chapter is used to

represent architectural design information. In order to reason about a design we first formalize the

model in the context of a system that supports machine-assisted proof. We use higher-order logic

as mechanized by the Prototype Verification System1 [ORS92] (PVS) as the formal system for

both specifying and verifying architectural designs. The choice of PVS over the Z language for

this stage was influenced by the higher level of automation provided by the PVS theorem-prover

compared with available Z proof environments, such as the Z/EVES system [Saa97]. We translate

the information from within an architectural specification into the typed terms and expressions of

this logic. The properties against which a specification is validated are expressed as formulae and

we use the deductive rules of higher-order logic as our reasoning system.

While the primary role of the PVS prover is that of “proof assistant”, it is capable of automat-

ing significant portions of the proof through a large complement of powerful, high-level proof

commands. An important design goal of PVS that differentiates it from other deductive environ-

ments such as HOL [GM93], Nuprl [CAhB+86], or Coq [CH85] is that it automates more of the

1We use PVS Version 2.3, which is freely available for a variety of host operating systems at
http://pvs.csl.sri.com/.
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tedious simplifications commonly required in proof steps [JSJ+95]. We take full advantage of

this capability; some of the properties we verify are completely or largely demonstrated with the

application of only a small set of proof commands.

We begin by presenting a brief overview of the PVS language and the proof checking envi-

ronment. We then discuss how the various elements of the model are represented using the logic

of PVS. In Section 4.3 we present a case study illustrating the use of the framework for the role

of specifying architectural design information, both structural and behavioural. In order to de-

fine a behavioural specification for the system, we integrate a suitable formal semantics into the

framework. In the next chapter we subject this representation to formal challenges.

4.1 The Prototype Verification System

The Prototype Verification System is an environment developed at the Stanford Research Institute

(SRI) that is aimed at supporting the mechanized verification of specifications. The system is

composed of a collection of tightly integrated components that support this end goal. Tools for

parsing specifications, checking type consistency and issuing formal challenges are included,

along with a set of graphical and pretty-printing tools for viewing and stepping through proofs.

As PVS is a large system with many features, we introduce only some of the main characteristics

of the language [OSRSC99a] and the prover [SORSC99]. A more complete summary of the PVS

syntax used in this thesis is given in Appendix B.

4.1.1 The PVS Specification Language

The PVS language is based on a strongly typed higher-order logic. It includes a rich collection of

basic types including booleans, integers, strings, enumerated types (fred, blue, greeng),

records ([# field1 : int, field2 : string #]), tuples ([int,int])2, func-

2The nth component of a tuple expression t is accessed as t‘n.



CHAPTER 4. ARCHITECTURAL SPECIFICATION 68

tions ([domaintype->rangetype]) and sets (setof[int])3.

The richness of the higher-order logic type structure used by PVS provides considerable flex-

ibility for developing specifications. Unfortunately, this expressiveness comes at the cost of de-

cidability in typechecking; type correctness conditions (TCCs), or proof obligations, that ensure

the specification is type-consistent are emitted during the typechecking phase. This facility is

very useful for identifying potential weaknesses or omissions in the specification. A specification

should not be considered type-correct until all TCCs are discharged. The typechecker invokes

the prover to attempt to automatically discharge as many proof obligations as possible. However,

there are usually many instances that require significant interaction with the user and the deduc-

tive environment. In Section 4.2.4 we introduce the theorem-prover by demonstrating a proof of

a TCC generated by the typechecker.

PVS specifications are composed of a collection of parameterized theories. Theories are the

basic units of modularity used to package the various elements of the specification including

its types, axioms, constants and theorems. Theories can build on top of other already existing

theories using the importing clause. This construct incorporates all of the exported definitions

of one theory into another. We use this feature extensively to modularize our formalization. The

model is partitioned into three main theories: the basic definitions of the model, the design time

formalization and the run-time formalization4.

4.1.2 The PVS Proof Checking Environment

The PVS environment includes a highly-automated proof checker, or interactive theorem prover,

that assists the user in carrying out the proof steps. The user guides the proof checker with

a series of rules. At each step, the prover provides assistance in both managing the tedious

3Sets can also be declared as predicates, i.e., functions mapping the set element type to bool. PVS allows a choice
in syntax.

4A PVS dump file with the complete mechanization of the model is available for anonymous FTP at ft-
p://csgwww.uwaterloo.ca/pub/kjl/architecture.dmp.
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details of the proof and feedback as to what remains to be proved. An important feature of the

prover is that it generates a record of all proof attempts, both partial (unfinished) and complete.

These proof records can be viewed in both human-readable text or graphical proof-tree form. Not

only does this make it easy to view the details of a proof session, but also allows the steps of

previously attempted proofs to be reused within new proofs in an automated way. This capability

is a noteworthy advantage of a machine-assisted proof system over proofs performed by hand.

The Sequent Calculus

The system of proof used by PVS is based on natural deduction. Each goal or subgoal is repre-

sented by a sequent of the form � ` �, where � is a set of antecedent (i.e., assumption) formulae

and � is a set of consequent (conclusion) formulae. A sequent that has a proof is known as a the-

orem. In other words, it is either an axiom or follows from other theorems by rules of inference.

The proof-checker presents sequents to the user in the following form:

f-1g A1

f-2g A2

[-3] A3
...

|-------

[1] C1

f2g C2

f3g C3
...

where Ai is an antecedent formula and Ci is a consequent formula. The individual formulae are

numbered so that they can be uniquely identified as proof command arguments. Note also that if

the formula number appears within a sequent as fng then it has been affected (or introduced) as
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a result of the previous proof command. If it appears as [n] then it has not been affected.

A sequent has a natural interpretation of:

(A1 ^ A2 ^ A3 ^ ::: ^ An) � (C1 _ C2 _ C3 _ ::: _ Cn)

The task then of showing that a sequent corresponds to a theorem is demonstrating that the truth

value of material implication is preserved by the sequent formulae. It is therefore sufficient

to show that any of the antecedent formulae are false, usually by finding a contradiction. This

makes the implication, and therefore the sequent, vacuously true. It can also be proven by demon-

strating that any one of the consequent formula is true, usually by implication of any one of the

antecedents.

There are three main approaches that are commonly used within PVS to show that a property

represented by a sequent is a theorem: using the built-in, or predefined proof rules, creating

property-specific inference rules, or defining high-level proof strategies.

Predefined Proof Rules

The PVS prover provides a number of powerful proof commands that correspond to the deductive

rules of higher order logic composed with a selection of high-level strategies for applying them

in combination. The purpose of these rules and strategies is to automate as much of the proof

as possible by repeatedly decomposing complex terms into simpler ones. The commands are

organized into a number of categories: propositional simplification, controlling the structure of

the sequent, logical quantification, rewriting sequent formulae and applying extensionality, to

name a few.

One advantage of the predefined rules is that they can be applied at various points through-

out a proof to handle otherwise tedious simplification of the sequent formulae. They also have

the advantage of being largely independent of the overall structure of the property (unlike more
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specialized rules of inference). One disadvantage is that it is not always obvious how the prover

arrived at a particular subgoal representing a simplification, especially within a highly automated

theorem-proving environment such as PVS. However, the prover provides the necessary indica-

tion (in the form of sequent formulae) as to what is expected to complete the current subgoal.

Rules of Inference

Another common means of proving properties is to construct specialized rules of inference for

decomposing the property manually into a series of simpler goals. In PVS these are often called

rewrite rules. As they rely on and take advantage of the structure of the property, they are gener-

ally only applicable to a proof of one specific type of property. Different properties or classes of

properties may require new sets of proof rules.

The advantage of inference rules is that they provide a mechanism for the verifier to recognize

and provide simplifications for complex proofs which may not be supported through the prede-

fined rules. Another advantage of their application is that, unlike the predefined rules, it is always

obvious exactly how their application affects the current proof goal.

User Defined Proof Strategies

PVS also allows users to define their own high-level proof strategies. These let users capture

the steps of a proof that has either a predictable or repetitive structure. The PVS environment is

constructed upon the LISP [McC60] functional programming language. The basic framework for

PVS strategies uses LISP along with a collection of control rules as a simple language for defining

more powerful combinations of proof commands or capturing patterns of required proof steps.

LISP expressions can be constructed to select sequent formulae and apply specific predefined or

user-defined rules based on the structure or nature of a (sub)goal. Once specified, these proof-

strategies can be applied as atomic proof commands.

Strategies are a convenient way for a verifier to significantly simplify the task of tackling
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similar or repetitive proofs, or to create a simplified proof environment for those with less formal

backgrounds. Proofs of properties from specific domains of verification may exhibit significant

regularity in their structure; strategies can allow non-specialists to attempt what previously may

have been a difficult or tedious proof.

4.2 Mechanization of the Model

In order to apply machine-assisted analysis techniques to architectural designs, a necessary step

is the mechanization of the framework in which designs are expressed. In this section we import

the definitions of the model into the PVS theorem proving environment. The conversion from

Z’s first-order logic and set-theoretic notation to the higher-order logic dialect of PVS posed little

technical challenge. The great majority of the time spent on the conversion was dedicated to

proving the model’s type obligations. We discuss this further in Section 4.2.4. Despite having to

make a few modifications to the original model (discussed below), the PVS language is capable

of expressing a significant and useful subset of Z. Our approach for performing the conversion is

similar to that of other researchers who adopted PVS for its proof capabilities [MB97, SCSW97].

There are three main issues that we need to address: the representation of the abstract state

schemas, the schemas representing operations and those representing initial state.

4.2.1 Translation of Schemas

The conversion of the information formalized by our Z schemas to PVS is relatively straightfor-

ward. However, PVS differs from Z in a few notable ways that affect the resulting specification.

In particular, PVS has no directly equivalent support for the following:

� the schema construct

� partial functions
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� schema composition operators

Schema Representation

The lack of an equivalent counterpart for Z’s schema construct can be addressed in one of two

ways. We can simulate a schema by defining a PVS record type which contains the same internal

variables as the Z schemas (called “fields” in PVS). The constraints on the fields are specified

with a separate set of axioms. With this style of formalization, each of the predicates from a Z

schema is given as an axiom that is intended to hold across all instances of the record type. This

technique leads to what is known as an “assertional” style of specification.

The main disadvantage of the assertional style is that the theorem-prover has no automatic

support for checking compliance of a type with a separate set of axioms; each instance of the

record type, including operations that return the record type, would have to be manually verified

to ensure they satisfy all of the axioms specified over values of that type.

Given the opportunity to introduce constants of constrained types that do not satisfy all of their

axioms, the danger of the axiomatic specification style is that it is relatively easy to introduce an

inconsistency into the design. These inconsistencies are particularly dangerous in a verification

environment as they could potentially allow any conjecture to be proven, including false = true.

A better solution is to simulate schemas using the record type of PVS in concert with the

predicate sub-typing facility of the typechecker. Types in PVS can be defined as sets whose

values are constrained by predicates. For example, the expression

t : TYPE = { i : int | i >= 0 }

defines the type t corresponding to the non-negative integers. Using elements of this type either

as variables or constants automatically causes the typechecker to emit the appropriate type obli-

gation (TCC) into the specification. For example, creating a constant c of type t in the following

manner,
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c : t = 5

introduces the proof obligation:

c_TCC1 : OBLIGATION 5 >= 0

In this case, the TCC is automatically discharged by the typechecker using the predefined decision

procedures for integers; if the typechecker is unable to show this obligation true using its default

strategy then the burden of proof falls upon the user. Of course, the full range of rules and

strategies are available for completing the proof of a TCC.

We introduce subtypes of this form for the schemas that represent model state. For example,

the Configuration type is shown below:

1Configuration : type = { c : [#
lib : Lib,
com_instances : finite_set[INSTANCE],
con_instances : finite_set[INSTANCE],
component : [(com_instances)->(lib‘components)],
connector : [(con_instances)->(lib‘connectors)],
ports : finite_set[IPORT],
connections : finite_set[[IPORT,IPORT]]

#] |

(forall (ip:(c‘ports)) :
(member(ip‘1, c‘com_instances) and
c‘lib‘specified_by(c‘component(ip‘1))‘interacts_through(ip‘2)) or

(member(ip‘1, c‘con_instances) and
c‘lib‘specified_by(c‘connector(ip‘1))‘interacts_through(ip‘2)))

and

(forall (cn:(c‘connections)) :
cn‘1 /= cn‘2 and c‘ports(cn‘1) and c‘ports(cn‘2))

and

(disjoint?(c‘com_instances, c‘con_instances))
}
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This representation declares the type Configuration as the set of all c of record type, such that the

predicates following the vertical bar (‘|’) hold over the fields of c. This declaration has a very

similar meaning to the Z schema defined in Section 3.3.2.

As noted previously, the primary advantage of representing schemas as predicate subtypes is

that it allows us to take full advantage of the automated typechecking facility. Every instance of a

predicate subtype must be demonstrated correct relative to its axioms (through TCCs). Provided

all TCCs generated during the typechecking phase are properly discharged, the possibility of

introducing inconsistency into the specification is significantly reduced.

Partial Functions

Many of the relationships between model entities are expressed using partial functions, or func-

tions that are not necessarily defined at every point in their domain. Partial functions are a natural

means of expressing relationships that are either specified over a restricted set of elements chosen

from an infinite domain (as are most of the basic entities comprising a design), or are optional.

We use partial functions extensively as our formalization contains both types of relationships.

Many higher-order logic based theorem provers, including PVS, do not admit strict partial

functions as doing so adds significant complexity to the deductive apparatus [OSRSC99a]. How-

ever, PVS allows a nearly equivalent definition based on the previously introduced notion of pred-

icate subtypes. The basic idea is to model a smaller, restricted domain over which the function

can be declared as total.

This conversion is readily specified by introducing additional entity sets corresponding to

the restricted domain. Functions are then declared as total on these sets. We use this technique

extensively in the PVS mechanization of the model. For example, in the case of our Configu-

ration type of Schema 1, the functions component and connector were originally defined as

partial on the domain of the set instances. We partition this set into two, one representing com-

ponent instances (comp instances) and one for connector instances (conn instances).
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The declarations of the functions component and connector can then be given as total over these

newly introduced sets:

component : [(com_instances)->(lib‘components)]
connector : [(con_instances)->(lib‘connectors)]

Schema Composition

The Z language has a range of expressive constructs for composing new schemas from existing

definitions, many of which are not available in the PVS language. In particular, both schema

inclusion and schema conjunction are used in our model. While these constructs can significantly

reduce the size of, and lead to a clearer, more concise specification, their effects are merely

definitional shorthand; both can be replaced by manual combination of the operand schemas.

For the purpose of our model, schema inclusion is replaced by substituting a field of the

included schema type in place of the schema inclusion. For example,

Con�gurationEntity [PORTTYPE ;ELEMENTTYPE ]
Library

::: remainder omitted

is represented in our PVS model as

2Configuration : type = { c : [#
lib : Lib,
... remainder omitted

While these semantics are similar to that of schema inclusion, they are not identical. Rather than

incorporate the abstract state of the schema, this approach replaces it with an instance of that type

as another field of the record. This is very similar to the Z idiom of schema inclusion and theta (�)

binding. It is, however, a sufficient meaning as our approach to architectural specification involves

creating and manipulating specific, concrete instances of these constructs. Making the change



CHAPTER 4. ARCHITECTURAL SPECIFICATION 77

shown in Schema 2 had another side effect; we were able to simplify the schema somewhat

by removing the inScopeElements field. Each configuration is now defined with a library that

contains exactly those elements that are available for instantiation, eliminating the need for a

separate set of elements.

Schema conjunction is very similar to schema inclusion, and is likewise easily replaced. The

semantics of the conjunction operator define the resultant schema as the union of the signatures of

the two schemas with both sets of predicates conjoined. The approach we take involves manually

performing the same operation: the PVS records are defined such that they incorporate all of the

fields and predicates from each of the schemas used in their definition. In other words, the new

predicate subtype is a composite of the state and constraints of the operand schemas.

4.2.2 Initial Model State

As part of the formalization we must provide initial state constants for the Lib, Configu-

ration and the Architecture design categories. We show only the initial state for the

Configuration type; the others are specified similarly:

3e0 : ELEMENT % The bottom valued element

initial_configuration(l:Lib) : Configuration = (#
lib := l,
con_instances := emptyset,
com_instances := emptyset,
ports := emptyset,
component := (lambda (i:(emptyset[INSTANCE])) : e0),
connector := (lambda (i:(emptyset[INSTANCE])) : e0),
connections := emptyset

#)

This constant is characterized with an initially specified library and is therefore represented as a

function. The fields with set type are assigned the predefined constant value emptyset. One

complication that arises relates to the unavailability of empty functions; the typechecker insists

that functions always evaluate to a legal value from their range. This includes functions with no
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legal values in their domain. Our solution is to define a fictitious, or bottom value for the function.

This value is used in the initial declaration of the function and covers the special case where the

domain is the (initial) empty set.

As noted earlier, whenever a constant of a dependent, or predicate subtype is given we must

be careful to ensure that such a specification is allowed by the predicates defined for that type.

Fortunately, the typechecking machinery of PVS automatically generates the appropriate proof

obligations. In the case of the model’s initial state constants, these TCCs are automatically dis-

charged during the typechecking phase.

4.2.3 Translation of Operations

The architecture construction operations defined in Chapter 3 are modeled with Z schemas and

specify the relationships between the system’s abstract before and after states using the delta (�)

convention and schema inclusion. Given the functional bias of many higher-order logics5 includ-

ing PVS, this style of specifying operations is not commonly used although it is possible [MB97].

A much more natural representation of an operation is that of a function which receives the be-

fore state as an argument and evaluates to the after state. We use this representation for the PVS

definition of the model’s operations. For example, the instantiate component operation

(Definition 3.4.2) is formalized in PVS as:

5The bias exists because of the first-class status of functions in this logic. Higher-order logic theorem proving
environments are typically constructed on top of functional language environments.
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4instantiate_component(i,com,c) : Configuration =
if c‘lib‘components(com) and not c‘com_instances(i)

and not c‘con_instances(i)
then

c with [com_instances := add(i, c‘com_instances),
component := c‘component with [(i) |-> com],
ports := union(c‘ports,
{ ip1 | ip1‘1 = i and

c‘lib‘specified_by(com)‘interacts_through(ip1‘2)
})

]
else

c
endif

The schema preconditions are specified as part of the outermost if statement; if any of the pre-

conditions are not met, the function evaluates to the original, unmodified before state. Otherwise,

the specified component is instantiated within the architecture. TCCs are also generated for any

operation that evaluates to an instance of a predicate subtype. These TCCs ensure that, given the

preconditions to the operation, the value returned does not violate the constraints specified for the

subtype. We omit the definition of the remainder of the operations as they are represented in the

same fashion as this one.

The main advantage of defining the architecture construction operations as higher-order logic

functions is greater automation of proofs. A system that is defined through a series of architecture

construction operations on an initial state is specified in PVS as a sequence of nested function

calls. The PVS prover, which is based on a functional programming language, has very powerful

rule-based support for reducing expressions of this form into simpler subexpressions. When

invoked, these proof rules repeatedly expand the definitions of the functions and perform beta

reduction6 and other simplifications on the result.

6This basic pattern of expansion and reductions is the �-calculus equivalent of performing the call.
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4.2.4 Typechecking the Model

One strength of the PVS environment is the degree to which the various tools support and interact

with each other. The typechecker not only generates TCCs, but also invokes the prover using

default strategies in an attempt to discharge as many as possible. However, if these attempts fail

the user can employ the full capabilities of the proof environment to discharge the obligation.

We illustrate both the operation of the typechecker and the theorem-prover by discharging a

type correctness condition generated from the definition of the instantiate component

operation. This operation generates a number of TCCs, most of which are not automatically

discharged by the typechecker.

The theorem-proving framework supports the top-down construction of proof trees. At each

step the prover returns a set of simpler subgoals corresponding to the application of a rule on

the current goal. This divide-and-conquer approach reduces the task of proving the larger (more

complex) goal to that of proving each of the subgoals. Once the subgoals are demonstrated, the

prover automatically records the larger goal as complete. The TCC we prove is given as:

5instantiate_component_TCC4: OBLIGATION
FORALL (c, com, i):

(c‘lib‘components(com) AND NOT c‘com_instances(i)) AND
NOT c‘con_instances(i)
IMPLIES
is_finite[IPORT]

(union[IPORT]
(c‘ports,
{ip1 |
ip1‘1 = i AND
c‘lib‘specified_by(com)‘interacts_through(ip1‘2)}));

This obligation requires us to demonstrate that given the preconditions to the operation, the set

of the configuration’s instance ports remains finite after the component’s ports are instantiated.

To assist us with this proof, we introduce the following theorems which are used as rules of

deduction:
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finite1 : lemma is_finite(d) =>
is_finite(f ip1 | ip1‘1 = i and d(ip1‘2)g)

finite2 : lemma is_finite(a) and is_finite(b) =>
is_finite(union(a,b))

The identifiers a, b and d are free (unbound) variables of type finite set[PORT], and i and

ip1 are free variables of type INSTANCE and IPORT respectively. A feature of PVS is that

within the context of a proof, all of a specification’s free variables are assumed to be universally

quantified at the outermost level. This property means that we do not have to use the forall

quantifier for these variables as they are implicitly declared as such.

The first lemma, finite1, states that if d is a finite set, then a set of instance ports where the

second component of the tuple is chosen from the set d, is also finite. The lemma finite2 states

that the union of two finite sets remains finite. The proofs of both lemmas are straightforward to

demonstrate using the properties of finite sets and consist of about eight proof commands in total.

We invoke the prover by positioning the cursor over the obligation and entering prove at

the command line. PVS asks for a proof rule to apply with the Rule? prompt. We respond by

instructing the prover to perform skolemization and simplify the result:

6Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
instantiate_component_TCC4 :

{-1} c!1‘lib‘components(com!1)
|-------

{1} c!1‘com_instances(i!1)
{2} c!1‘con_instances(i!1)
{3} is_finite[IPORT]

(union[IPORT]
(c!1‘ports,
{ip1 |

ip1‘1 = i!1 AND
c!1‘lib‘specified_by(com!1)‘interacts_through(ip1‘2)}))
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This response shows how the prover reorganizes the conjecture into the appropriate sequent for-

mat. As we have requested skolemization, the prover has generated the skolem constants c!1,

com!1 and i!1 to remove universal quantification. We can now introduce the definition of the

first lemma “finite1” into the sequent:

Rule? (lemma "finite1")

The prover returns the previous sequent but with the lemma having been added as the first formula

of the antecedent:

7{-1} FORALL (d: finite_set[PORT], i: INSTANCE):
is_finite(d) => is_finite({ip1 | ip1‘1 = i AND d(ip1‘2)})

... details elided

We remove the universal quantification in the antecedent by instantiating the variables d and i

with witness values; the prover can deduce and use the already skolemized constants for these

values:

8Rule? (inst?)
Found substitution:
d: finite_set[PORT] gets c!1‘lib‘specified_by(com!1)‘

interacts_through,
i: INSTANCE gets i!1,
Using template: {ip1 | ip1‘1 = i AND d(ip1‘2)}
Instantiating quantified variables,
this yields 2 subgoals:
instantiate_component_TCC4.1 :

{-1} is_finite(c!1‘lib‘specified_by(com!1)‘interacts_through) =>
is_finite({ip1 |

ip1‘1 = i!1 AND
c!1‘lib‘specified_by(com!1)‘

interacts_through(ip1‘2)})
... details elided

We note that this command has caused the prover to split our current goal into two subgoals, the

current one and one corresponding to a TCC generated by the instantiation - the substitution has

matched variable d with a set expression from the consequent formula 3. However, for this match
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to be valid the prover requires that the element definition of com!1 must be a member of the

elements set of the library. This requirement stems from the fact that ports are associated with

elements, not components. The subgoal corresponding to this newly introduced TCC is,

9instantiate_component_TCC4.2 (TCC):

[-1] c!1‘lib‘components(com!1)
|-------

f1g lib(c!1)‘elements(com!1)
... details elided

and is easily demonstrated using the type predicates of the Lib type.

The presentation of our current sequent can be improved (simplified) by introducing a name

for the set expression given in formula -1, and then substituting that name throughout the sequent

with:

Rule? (NAME "set2" "fip1 | ip1‘1 = i!1 AND
c!1‘lib‘specified_by(com!1)‘interacts_through(ip1‘2)g")

Rule? (replace -1 (-2 3))
Rule? (delete -1)

This leaves us with the sequent:

10[-1] is_finite(c!1‘lib‘specified_by(com!1)‘interacts_through) =>
is_finite(set2)

[-2] c!1‘lib‘components(com!1)
|-------

[1] c!1‘com_instances(i!1)
[2] c!1‘con_instances(i!1)
[3] is_finite[IPORT](union[IPORT](c!1‘ports, set2))

The prover has again split our proof into two subgoals with another instance of the same TCC

discussed above.

In order to use the rewrite rule “finite2”, consequent formula 3 tells us that we need to demon-

strate that the sets c!1‘ports and set2 are finite. The latter is easily added to the antecedent

with the command
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Rule? (assert)

This command asserts the truth of the implication of formula -1.

11{-1} is_finite(set2)
[-2] c!1‘lib‘components(com!1)
|-------

[1] c!1‘com_instances(i!1)
[2] c!1‘con_instances(i!1)
[3] is_finite[IPORT](union[IPORT](c!1‘ports, set2))

We now only need to show that the set c!1‘ports is finite. We first remove all unneeded

formulae from our sequent and then add the implicit type predicates of the set c!1‘ports:

Rule? (delete -2 1 2)
Rule? (typepred "c!1‘ports")

We see now that the final sequent leaves us with a set of formulae that correspond exactly to the

rewrite rule finite2:

12{-1} is_finite[IPORT](c!1‘ports)
[-2] is_finite(set2)
|-------

[1] is_finite[IPORT](union[IPORT](c!1‘ports, set2))

Applying this rule to the sequent is all that is required to finish off the proof:

13Rule? (rewrite "finite2")
Found matching substitution:
b: finite_set[IPORT] gets set2,
a gets c!1‘ports,
Rewriting using finite2, matching in *,

This completes the proof of instantiate_component_TCC4.1.1.

The prover now asks us to prove the type obligations that it has inserted into the current proof.

After discharging these subgoals the prover responds with the indication that the entire obligation

has been demonstrated:
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14This completes the proof of instantiate_component_TCC4.2.

Q.E.D.

Run time = 2.14 secs.
Real time = 152.92 secs.

The complete proof tree is shown in Figure 4.1. Based on this proof, one can imagine that the

(skosimp*)

(lemma "finite1")

(inst?)

(name ...)

(replace −1 (−2 3))

(delete −1)

(assert)

(delete −2 1 2)

(typepred "c!1‘ ports")

(rewrite "finite2")

(typepred "lib(c!1)")

(delete −2 −3 −4 −5 2 3 4)

(expand* "extend" "union" "member")

(replace −1 (1) rl)

(grind)

(typepred "lib(c!1)")

(delete −2 −3 −4 2 3 4)

(expand* "extend" "union" "member")

(replace −1 (1) rl)

(grind)

Figure 4.1: Proof of the TCC.

process of discharging all type obligations for a large specification is not a trivial undertaking.

However, it is an important step in establishing type consistency. Demonstrating that our model
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was type consistent took considerable effort, requiring nearly 400 proof commands to discharge

all obligations.

The effort required to do so had both a positive and negative impact on the overall formal-

ization. First, it forced us to be precise in the definition of the entities and was very useful in

uncovering small errors and oversights that we had made in the definition of the original model.

However, we also found some limitations exhibited by the typechecker when dealing with de-

pendent types that caused considerable frustration. For example, it required nearly one week of

trial and error and consultation with the developers of PVS to understand why the typechecker

would not handle the add configuration operation in the expected fashion. The issue arose

from the definition of an additional set field, implementations. This field was introduced

to represent the subset of configurations that implemented elements (thereby providing a domain

over which the implements and bindings functions were total):

15Architecture : type = { a : [#
composed_of : setof[Configuration],
implementations : setof[(composed_of)],
bindings : [(implementations) -> setof[[IPORT,PORT]]],

... details elided ...

However, the expected way of adding a configuration to the architecture,

16add_configuration(c, arch) : Architecture =
arch with [composed_of := add(c, arch‘ composed_of)]

generated an unprovable TCC even though the operation was clearly type correct. Further in-

vestigation revealed the problem as a domain mismatch stemming from an internal limitation of

the typechecker7. This limitation was addressed by explicitly providing the domain expected by

the typechecker for the implementations set8. As implementations was declared as a

subset of composed of, it had to be defined over the same domain. However, the value “c”

needed to be excluded from the set, and the previous value of implementations included:

7Thanks to Sam Owre at SRI for explaining this particular issue.

8Recall that sets in higher-order logic are implemented as functions from the domain (set) type to bool.
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17add_configuration(c, arch) : Architecture =
arch with [composed_of := add(c, arch‘ composed_of),

implementations := { x:(add(c, arch‘ composed_of)) |
(arch‘ composed_of(c) or x /= c)
and arch‘ implementations(x) }

]

The result, although satisfying the internal requirements of the typechecker is far less readable

than the intended specification of the operation and is therefore not used in our model. This

example provides an illustration of how PVS specifications, with their strong relationship to the

reasoning machinery, may be more complicated or potentially less readable than those of the Z

specification language.

4.3 Case Study: The RPC-Memory Specification Problem

We illustrate the use of the framework with a case study based on the RPC-Memory Specifica-

tion problem9 [BL96]. Originally proposed as a means of comparing different approaches to

formal specification and verification, the problem describes a compact system corresponding to

the implementation of a memory component by a collection of cooperation components and asks

for a series of formal proofs along the way. A variety of approaches to the problem are given

in [BMS96]. Despite its relatively short description, the problem is remarkably rich; authors

were given the option of addressing only aspects they considered important, or omitting those not

supported by their specific formal system. As a result, each of the studies address various subsets

of the original problem.

As our primary aim is to demonstrate how our framework can be used to specify and validate

an architectural design, we formalize aspects of the problem that are useful in demonstrating

our approach. We make no attempt to specify the problem in its entirety, nor perform all of the

formal proofs asked in the description. Rather, the aim is to illustrate how the previously defined

9Note that RPC stands for Remote Procedure Call.
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framework may be used to provide mechanized analysis of a specification of an architecture for

a selection of desired formal properties. Our general approach is to define selected aspects of the

problem using the ADL vocabulary of components, interconnections and configurations and then

analyze the resulting description using the theorem-proving environment of PVS.

4.3.1 Problem Statement

The RPC-Memory specification problem is given in [BL96]. It calls for “the specification and

verification of a series of components”. The problem statement consists of two main portions:

the definition of the procedure-call interface through which the components interact, and the

specification of the components themselves.

The Procedure Interface

The components interact with each other through a procedure call interface. A component can

issue a call to another component, which then responds to the call by issuing a return. A call

communicates the procedure name along with a list of arguments to the procedure. A return

can be either normal or exceptional, both of which may also return a value (in the exceptional

case, this value could possibly be used for indicating the nature of the exception). An important

restriction on procedures is that a response can only be initiated as a result of a previous call.

In other words, a component correctly implementing the specification can generate no spurious

returns.

The Components

The specification of the individual components is quite detailed. The aspects of their description

that affect our specification are summarized below. The full specification is presented in [BL96].
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� The Memory Component: This component models a memory unit that accepts procedure

calls representing either reads or writes. The memory is specified as behaving as if it is

composed of a set of memory cells, each of which can hold a specific value. A memory

component can reply to a request with a normal return, or it can fail and issue a memfailure

exception. Additionally, a non-failing reliable variant of the basic memory component is

given as one that issues no memfailure exceptions.

� The RPC Component: The purpose of this component is to relay procedure calls between

a sender component and a receiver component. Initially, it receives a call from the sender

which it then forwards to the receiver. When the receiver completes its computation it

returns with a reply. This reply is given to the RPC component which then forwards the

response back to the sender. The RPC component is defined to receive procedure calls

of type RemoteCall, which are accompanied by the name of the procedure to invoke on

the receiver, along with any parameters to the call. Additionally, the RPC component can

spuriously fail, issuing an RPCFailure exception. This can occur even if the receiver of the

remote call replies successfully.

� The Clerk: Described only implicitly within the problem specification, this component is

required to adapt the interface of the RPC component to that of the memory component.

In other words, it is responsible for translating incoming read and write procedure calls

from the environment (i.e., a client component) into the RPC component’s RemoteCall

procedure. Furthermore, upon receipt of an RPCFailure exception, the clerk replies with

a MemFailure. In this manner, the clerk ensures that a client of a memory component

implemented by both an RPC component and a memory component (i.e., memory unit on

a remote system) will see the same interface as that of a single memory component.

For completeness, our specification also includes a definition of a “client” component which is

responsible for issuing the write or read requests to the memory. This component is not explicitly
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described in the problem statement, however it is useful for describing and reasoning about the

behaviour of a complete system.

4.3.2 Problem Specification

We begin by introducing a description of the system using the same idealized ADL notation as

shown in Chapter 2. We use this description as a starting point for specifying aspects of the

problem in our framework. This is accomplished using the vocabulary of architectural elements

defined in Chapter 3. We address both a structural and a behavioural description for the individual

components and resulting configuration.

As with many of the presented solutions, we do not consider the full detail of the original

problem, but rather focus on aspects that are helpful in illustrating the application of our frame-

work. For example, part four of the problem description calls for the specification and analysis of

timing behaviour (i.e., real-time constraints). As with other solutions, the formalism we use for

behavioural semantics (introduced in Section 4.3.4) does not readily support timing information.

We therefore have omitted this aspect. Another simplifying decision was to specify the behaviour

of the memory component by focusing on its interface, not its internal representation as a finite

set of memory cells. In other words, the behaviour of this component is specified as the sequence

of procedure calls and replies that it may engage in. We have also omitted a number of error

cases that may arise as a result of the execution of the system. These relate to the requirement to

support a BadArg exceptional return. Including these cases would have posed no specific chal-

lenges, however, they would have complicated the specification while providing little additional

illustrative benefit.

The problem specification for the RPC system is shown in Figure 4.2 in both ADL and graphi-

cal form. The remainder of this section discusses the translation of the specification into the PVS

language. Section 4.3.3 discusses the translation of the structural specification. This phase is

currently performed manually. However, as most ADLs have publicly available grammar spec-
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ifications it is an obvious candidate for automation. The behavioural specification is introduced

later in Section 4.3.4.

architecture RPC_Memory {
library {

element client is component {
interface {

type Procedure
port client_caller {

type : Caller
initiates : read, write
observes : normal,

memfailure
}

}
}

element clerk is component {
interface {

type Procedure
port clerk_definer {

type : Definer
initiates : normal,

memfailure
observes : read, write

}
port clerk_caller {

type : Caller
initiates : remotecall
observes : normal,

rpcfailure
}

}

element rpc is component {
interface {

type Procedure

port rpc_caller {
type : Caller
initiates : read, write
observes : normal

port rpc_definer {
type : Definer
observes : remotecall
initiates : normal,

rpcfailure
}

}
}

element mem is component {
interface {

type Procedure
port mem_definer {
type : Definer
initates : normal
observes : read, write

}
}

}
}

configuration RPC_System1 {
client1 : client
clerk1 : clerk
rpc1 : rpc
mem1 : mem

connect client1.client_caller to clerk1.clerk_definer
connect clerk1.clerk_caller to rpc1.rpc_definer
connect rpc1.rpc_caller to mem1.mem_definer

}
}

Figure 4.2: Specification of the RPC problem.

client1 : client

client1.client _caller

clerk1 : clerk

clerk1.clerk _definer
clerk1.clerk _caller

mem1 : mem

mem1.mem _definer

rpc1 : rpc

rpc1.rpc _definer
rpc1.rpc _caller

Figure 4.3: Graphical depiction of the system shown in Figure 4.2.
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4.3.3 Specification of Structural Entities

The PVS representation of the architecture is constructed by introducing typed logical constants

for each of the language constructs formalized by the model. We create a new PVS theory for

the translated specification. The theories corresponding to the model are incorporated using the

IMPORTING statement of PVS. We begin by defining the enumeration of architectural types

supported by our original description language.

Architectural Types

The main design- and run-time theories of our model are parameterized with the types and rela-

tions that describe ADL-specific type information. They need therefore be instantiated with this

information before they can be used.

We define two enumerated types corresponding to the “predefined” element and port types

supported by our ADL. In this example we assume a single built-in element type, Procedure, and

two legal port types, Caller and Definer:

18elementTypes : type = {Procedure}
portTypes : type = {Caller, Definer}

The port types Caller and Definer have much the same meaning as the UniCon predefined role

types of the same name. Caller ports initiate a procedure call, while Definer ports wait to be

called. This corresponds to the two distinct roles of procedures within programming languages,

both issuing and receiving calls.

We also define the export map and port map relations which encode the type semantics

for the modeled language. As defined in Section 3.2.3, these relations specify the legal combi-

nations of element- and port-type (i.e., the legal port types that an element may define), and the

legal combination of port types that may partake in the same architectural connection. They are

modeled as sets of tuple types:
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19export_map : setof[[elementTypes,portTypes]] =
add((Procedure,Caller),
add((Procedure,Definer), emptyset[[elementTypes,portTypes]]))

port_map : setof[[portTypes, portTypes]] =
add((Caller, Definer),
add((Definer, Caller), emptyset[[portTypes, portTypes]]))

Basic Definitions

We introduce the definitions for the constructs corresponding to the basic types of our model.

These basic definitions are modularized into the theory basic def and are then imported into the

other theories as required.

20basic_def : THEORY
BEGIN

ELEMENT : type = int
COMPONENT : type from ELEMENT
CONNECTOR : type from ELEMENT

% Must specify that components and connectors are disjoint types
typeAx1 : axiom disjoint?((COMPONENT_pred),(CONNECTOR_pred))

PORT : type = int
INSTANCE : type = int
IPORT : type = [INSTANCE, PORT]
EVENT : type = int

END basic_def

Note that components and connectors are modeled as subtypes of the basic element type (as indi-

cated with the ‘type from’ construct). The axiom typeAx1 is used to indicate the (implicit)

predicates that define these two types specify disjoint sets.

The basic entities declared in this theory are modeled as integers. This is primarily for suc-

cinctness; although any type, both interpreted or uninterpreted, could potentially have been used,

PVS has a default understanding of integers in terms of well-defined allowable values and deci-

sion procedure support.
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At first glance, the predefined string type of PVS appears a more natural choice for model-

ing entities representing names (i.e., INSTANCE); however, we do not use them for two reasons.

First, they are internally implemented as a list of the character datatype. String constants are suc-

cinctly specified using a shorthand double quoted notation (e.g., “String”). Unfortunately, when

these terms appear within proofs they are expanded to their full internal representation,

cons(0S 0
; cons(0t 0; cons(0r 0; cons(0i 0; cons(0n 0

; cons(0g 0;null [character ]))))))

which not only makes the sequent less readable, but causes the prover to do significantly more

work, including more frequent garbage collection. Second, and perhaps most importantly, their

current implementation makes reasoning about certain properties difficult. For example, the as-

sertion “a” = “b” can not be decided automatically by the prover.

Component and Port Specification

The components and their associated ports are introduced into the specification as logical constant

values of type COMPONENT and PORT. As part of the translation phase, these entities are given

unique constant values (which, for succinctness are not shown here):

21client, mem, rpc, clerk : COMPONENT
client_caller,
mem_definer,
rpc_definer, rpc_caller,
clerk_definer, clerk_caller : PORT

Basic Events

The basic notion of component communication of the behavioural model centers around initiated

and observed events. Within the description of the problem, the basic units of component com-

munication are given as procedure calls and returns. We therefore introduce basic elements of

component communication for this problem, namely the invoking of a procedure or the returning
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of a value, in terms of events.

In other words, a component that issues a procedure call initiates an event corresponding to

the name of the procedure. The called procedure, if it is interested in being invoked must observe

an event of that same basic type (procedure name). The various return types allowed by the

problem specification are also given as specific events. We introduce the set of basic events as

values of the type EVENT:

22read, write, remotecall, normal,
memfailure, rpcfailure : EVENT

Interface Specification

The interfaces of the various elements are introduced into the specification as values of the record

type Interface. We show only the interface for the client component; the interfaces of the

other elements are specified similarly:

23client_interface : Interface = (#
interacts_through := client_interacts_through,
port_type := client_port_type,
type_of := Procedure,
events := client_events,
initiates_set := client_initiates_set,
observes_set := client_observes_set,
initiates := client_initiates,
observes := client_observes

#)

The values given to the fields of the client interface record are defined as:
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24client_interacts_through : setof[PORT] =
add(client_caller, emptyset)

client_port_type : [(client_interacts_through)->portTypes] =
(lambda (p:(client_interacts_through)) :

cond
p = client_caller -> Caller

endcond)

client_events : setof[EVENT] =
add(read, add(write, add(normal, add(memfailure,

emptyset[EVENT]))))

client_initiates_set : setof[PORT] =
add(client_caller, emptyset[PORT])

client_observes_set : setof[PORT] =
add(client_caller, emptyset[PORT])

client_initiates : [(client_initiates_set)->setof[EVENT]] =
(lambda (p:(client_initiates_set)) :

cond
p = client_caller -> add(read, add(write, emptyset[EVENT]))

endcond)

client_observes : [(client_observes_set)->setof[EVENT]] =
(lambda (p:(client_observes_set)) :

cond
p = client_caller -> add(normal, add(memfailure, emptyset))

endcond)

As with all constants of a predicate subtype, PVS ensures that it is type-consistent (satisfies each

of the predicates specified on the type) by issuing proof obligations, many of which must be

manually demonstrated.

Library Specification

Once definitions of the elements and interfaces have been introduced, they are added to the library

with the add component operation. The expression representing the library, lib, is composed

of a series of nested uses of this construction operation. We use the initial lib constant in
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the first use of the operation.

25lib : Lib =
add_component(client, client_interface, (: client_behaviour :),
add_component(clerk, clerk_interface, (: clerk_behaviour :),
add_component(rpc, rpc_interface, (: rpc_behaviour :),
add_component(mem, mem_interface, (: mem_behaviour :),

initial_lib))))

This operation is an extension of that defined in Section 3.4 in that it also adds each element’s

behavioural specification to the library10. These are defined in Section 4.3.4.

Configuration Specification

The names of the system’s instances are introduced into the specification as a series of constant

declarations of type INSTANCE. Based on these names, the structural configuration of the sys-

tem is specified as a series of instantiations and connections made upon the initial, or empty

configuration:

26client1, clerk1, rpc1, mem1 : INSTANCE

RPC_System1: Configuration =
connect((client1, client_caller), (clerk1, clerk_definer),
connect((clerk1, clerk_caller), (rpc1, rpc_definer),
connect((rpc1, rpc_caller), (mem1, mem_definer),

instantiate_component(rpc1, rpc,
instantiate_component(clerk1, clerk,
instantiate_component(client1, client,
instantiate_component(mem1, mem,

initial_configuration(lib))))))))

Similar to the library, the expression is a set of nested configuration construction operations.

The resulting constant RPC System1 models the description of the configuration shown in Fig-

ures 4.2 and 4.3.

10Alternatively, we considered adding a new operation “Add Behaviour” to model this behavioural extension.
Ultimately, this approach resulted in a more succinct specification.
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Architecture Specification

The complete architectural specification, which consists of the collection of entities defined pre-

viously, is modeled with an expression of type Architecture. The expression modeling our

system which includes a single configuration is given with:

27RPC_Memory: Architecture =
add_configuration(RPC_System1, initial_architecture(lib))

4.3.4 Specification of Behaviour

Although many ADLs share the same notion of a structural specification, considerable variability

exists in the specific details of how, if at all, they incorporate a formalism for behaviour. In

general, this fact precludes fully automated translation from ADL-based behaviour description to

higher-order logic, although it does open up the possibility for the architect to experiment with a

number of manually specified, possible semantic alternatives.

Indeed, as discussed earlier, one advantage of using higher-order logic as a semantic founda-

tion for an architectural analysis environment is the ability to leverage off of the wide variety of

mechanizations of formal systems suitable for specifying system behaviour. As there is no uni-

versal consensus on a single semantics for specifying architectural behaviour, leaving the choice

to the architect permits consideration of a number of alternatives. Indeed, we contend that the

choice of formalism for modeling architectural behaviour is best selected to suit the properties

that are to be specified and validated. For example, ensuring the architecture possesses real-time

response properties requires a notation that supports timing information. Similarly, if the notion

of fairness is required, it must be addressed in the underlying semantics.

Communicating Sequential Processes

A choice of a semantics for behaviour should reflect the specific set of goals that the architect

needs to achieve. Our main requirements are for a formalism that is readily amenable to me-
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chanical analysis. We use Hoare’s Communicating Sequential Processes (CSP) [Hoa85], which

is a language for describing the behaviour and synchronization of concurrent systems. CSP is a

member of the class of process algebra formalisms; that is, systems are described using primitive

processes which are combined using algebraic rules (operators) into more complex descriptions.

The basic unit of behaviour in CSP is a process; the basic unit of communication between

processes is called an event. An event signifies an important “moment” in the behaviour of the

system. Processes are described by a finite alphabet � of events that they engage in.

CSP mechanizations in the context of higher-order logic have previously been studied [Cam90,

DS97]. These mechanizations formalize the trace semantics model of CSP which is the simplest

of the semantic models presented in [Hoa85]. In this model, a process is represented as the set

of all sequences of events that it may engage in, making it suitable for studying safety properties.

Alternate models based on refusals or divergences, while more complex, can be used to study

progress or liveness properties, such as absence of deadlock.

The specific mechanization of CSP we employ was originally developed for analysis of au-

thentication protocols [DS97]. It incorporates the basic elements of CSP, including type defini-

tions for traces and processes along with a subset of the main CSP algebraic operators. Addition-

ally, it includes a large collection of specialized proof rules for reasoning about authentication

protocols, which we do not use in our proofs. In the following sections we introduce the CSP lan-

guage, followed by the additional definitions that are needed to incorporate CSP and behavioural

descriptions into our framework.

The CSP Language

The dialect of CSP mechanized by Dutertre et al. [DS97] includes three main algebraic opera-

tions: prefix, choice and parallel composition, along with the primitive process, Stop. Table 4.1

summarizes the syntax of the CSP expressions that we use as part of our behaviour specification.

Stop is the process that engages in none of the events in the alphabet of the system. The



CHAPTER 4. ARCHITECTURAL SPECIFICATION 100

CSP Expression Equivalent PVS Syntax Description
Stop Stop The Stop process
e ! P e >> P Prefix
P 2 Q P \/ Q Choice
2

i2I
Pi Choice! i : P(i) Indexed Choice

P kQ P // Q Parallel Composition
P j[A ]jQ Par(A)(P,Q) Parallel Comp. with Synchronization
jjj

i2I
Pi Interleave! i : P(i) Indexed Interleaving

Table 4.1: Summary of CSP Expression Syntax.

prefix operator e ! P describes a process that first engages in event e and then behaves exactly

as process P . This operator can be used to specify a sequence of events that the process engages

in. For example,

P = (e ! (f ! Stop))

describes a process P that engages in event e followed by event f and then does not partake in

any further events. Note that the prefix operator is right associative.

A choice between two different behaviours is specified with the choice operator P 2 Q . This

defines a process that behaves either as process P or as process Q . While the choice operator

allows a choice of two different processes, it is often useful to describe behaviour as a choice

between a larger number of processes. Indexed choice allows a process to be defined as a choice

between a family of processes. For example, in the following expression process Q behaves as

one of Pi for all i 2 I :

Q =2
i2I

Pi

Processes that operate side-by-side, or concurrently, are specified using parallel composition.

The composition of two processes that do not synchronize is specified with the basic parallel
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composition operator P k Q . The resulting process is defined as all possible interleavings of

the traces of P and Q . As in the case with choice, it is often useful to specify a family of

indexed processes that operate in parallel. This is specified with the indexed interleaving operator

jjj
i2I

Pi . The synchronized parallel composition operator allows two processes to be composed

in parallel with synchronization. For example, the process

P j[A ]jQ

behaves as the parallel composition of processes P and Q with synchronization on the events in

set A. That is, if either process wishes to engage in an event e 2 A, then it must wait until the

other process also engages in that event.

Modeling Behaviour

We now provide a definition for the previously uninterpreted OPERATION type defined in Sec-

tion 3.6. As the behavioural description for an element will be a CSP process, it seems obvious

that we define OPERATION as a synonym for the type corresponding to a CSP process. One

complication that arises from this definition is the need to distinguish the behaviour of differ-

ent instances of the same basic element type as independently identifiable processes (i.e., each

will have its own state). This observation leads to a generalized notion of OPERATION as a

mapping from an instance to a process:

Definition 4.3.1 (OPERATION) We define OPERATION as a function type with signature:

INSTANCE ! Process

In PVS, this definition is given by specifying a parametric type for the Process type:

OPERATION : type = [INSTANCE->Process[RPCEv]]
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where RPCEv is the event type used for this system (defined below). This type definition is used

as a generic parameter in the instantiation of the design time theory.

Modeling System Events

At this point we need to adopt a representation for the events of the system. We have already

introduced the collection of primitive events supported by this architecture, i.e., the names of the

available procedures and return types. However, we need a more elaborate mechanism to fully

support other required aspects of our component communication. Events transferred between

components of an architecture must also provide a means to:

� support a distinction between an event signifying the initiation of a procedure call (i.e., the

caller), and an event representing the observation of a procedure call (i.e., the called). In

other words, we must be able to distinguish between events that represent initiated calls (or

replies) and events for observed calls (or replies);

� carry additional information. A procedure call event must be associated with a procedure

name and provide the opportunity to pass any additional parameters. Similarly a reply also

conveys information back to the caller;

� distinguish between identical events of two processes of the same basic component type.

By default, CSP event names are global. Therefore, an event must be “tagged” with the

instance it was initiated from. Note that this is essentially the same issue as that discussed

in the previous section.

Processes within the CSP mechanization are generic in the type of event they engage in. In other

words, the process type is instantiated with a particular type of event. For example, we can create

processes that use integers as the basic event type:

28SimpleSystem : process[int] =
(1 >> (2 >> Stop[int]))
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The choice of type for events is denoted by the [int] syntax. This simple system engages first

in event “1” and then in event “2”. This ability to parameterize processes gives us considerable

flexibility in deciding upon the information that is to be transferred as a result of an event; we

are free in our choice of a representation so long as it meets the specific requirements previously

outlined.

We introduce a definition of events that have either of the forms:

initiate:ip:e:i :l

observe:ip:e:i :l

where ip is the instance port from which the event originated or appeared, e is the basic primitive

event representing the procedure name or return type, i uniquely identifies the instance from

where the call originated or the instance to where the reply is directed, and l is a list of optional

information. With this formulation, both calls and replies are specified using an initiate event,

and the type of event is indicated by the basic event field e.

We use the PVS datatype construct to define the representation of events:

29RPCEv [ IP, E, I, L : type ] : DATATYPE

BEGIN

initiate(ip : IP, e : E, i:I, l:L) : initiate?
observe(ip : IP, e : E, i:I, l:L) : observe?

END RPCEv

This definition partitions events into two disjoint subsets, those that are initiated and those that are

observed. Because it is defined as part of a different theory it is specified with generic parameters.

In order to use this definition we import it into the current theory and provide the following type-

values for the parameters:

IMPORTING RPCEv[IPORT,EVENT,INSTANCE,list[int]]
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Given this definition of event type we can now define the behaviour for the four components of

our example system.

The Reliable Memory Component

A reliable memory component is defined as one that never fails. In other words, it always issues

a normal return for either a read or write request. The implementation is given below. As we are

not interested in an implementation of the memory cells, we do not have to be concerned with

returning a value. Therefore, the memory component simply returns an empty (null) list:

30mem_behaviour(i:INSTANCE) : process[RPCEv] =
Choice! origin, l1 :

(observe((i,mem_definer), read, origin, l1) >>
(initiate((i,mem_definer), normal, origin, null) >>
Stop[RPCEv]))

\/

Choice! origin, l1 :
(observe((i,mem_definer), write, origin, l1) >>
(initiate((i,mem_definer), normal, origin, null) >>
Stop[RPCEv]))

Note that origin and l1 are unbound logical variables.

The RPC Component

The RPC component defines a single procedure, remotecall. The name of the remote procedure

to be called is provided to the RPC component as the first item in the incoming parameter list.

The RPC component is free to fail immediately with an rpcfailure return value. If it does not fail,

it passes the request on by initiating a call to the receiver and then awaits a reply. Once a reply is

received, the component can then either pass the reply back to the sender, or issue an rpcfailure.
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31rpc_behaviour(i:INSTANCE) : process[RPCEv] =
Choice! origin, (l1:(cons?[int])) :

(observe((i,rpc_definer), remotecall, origin, l1) >>
(initiate((i,rpc_definer), rpcfailure, origin, null) >>
Stop[RPCEv]))

\/

Choice! ret, origin, (l1:(cons?[int])), l2 :
(observe((i,rpc_definer), remotecall, origin, l1) >>

(initiate((i,rpc_caller), car(l1), i, cdr(l1)) >>
(observe((i,rpc_caller), ret, i, l2) >>

((initiate((i,rpc_definer), ret, origin, l2) >>
Stop[RPCEv])

\/
(initiate((i,rpc_definer), rpcfailure, origin, null) >>
Stop[RPCEv])))))

The Clerk

The role of the clerk is that of an interface adapter; that is, it receives memory requests from the

environment (modeled as a client component) and translates those requests into an appropriate

call for the RPC component. The clerk also receives the return values from the RPC component

and forwards them back to the environment. If the response indicates that the RPC component

issued an rpcfailure exception, the clerk returns an exception of type memfailure. In this way it

appears to the client as if it is communicating directly with a memory component.
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32clerk_behaviour(i: INSTANCE): process[RPCEv] =
((Choice! rq, origin, l1, l2:

(observe((i, clerk_definer), rq, origin, l1) >>
(initiate((i, clerk_caller), remotecall, i, cons(rq, l1)) >>

(observe((i, clerk_caller), rpcfailure, i, l2) >>
(initiate((i, clerk_definer), memfailure, origin, l2) >>
Stop[RPCEv])))))

\/
(Choice! rq, origin, l1, l2:
(observe((i, clerk_definer), rq, origin, l1) >>

(initiate((i, clerk_caller), remotecall, i, cons(rq, l1))
>>
(observe((i, clerk_caller), normal, i, l2) >>

(initiate((i, clerk_definer), normal, origin, l2) >>
Stop[RPCEv]))))))

The Client

The client is the component that issues requests to the memory component. It calls either the read

or write procedure and then waits for the response. The response can indicate success or failure,

that is, it may be either normal or exceptional:

33client_behaviour(i:INSTANCE) : process[RPCEv] =
Choice! l1 :
(initiate((i,client_caller), read, i, null) >>
((observe((i,client_caller), normal, i,l1) >> Stop[RPCEv])

\/
(observe((i,client_caller), memfailure, i,l1) >> Stop[RPCEv])))

\/

Choice! l2:
(initiate((i,client_caller), write, i, null) >>
((observe((i,client_caller), normal, i,l2) >> Stop[RPCEv])

\/
(observe((i,client_caller), memfailure, i,l2) >> Stop[RPCEv])))

4.3.5 Behavioural Mappings

Now that the behaviour of the individual components is specified, we must define how instances

of these element types are mapped to their appropriate CSP processes. We must also define the
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semantics of architectural connections and configurations.

Modeling Single Instance Behavior

Note that the previous definitions of component behaviour are instances of the type OPERATION,

which is defined as a mapping from type INSTANCE to process. This basic behavioural

definition is associated with a primitive ELEMENT template through the behaves through

field of the Library. Moreover, for generality behaves through associates an element with a

sequence11 of OPERATION.

In order to reason about the behaviour of a specific instance within a configuration we con-

struct a function that, given an instance (and the configuration in which it is defined), constructs

the unique CSP process representing its behaviour:

34InstanceBehaviour(c: Configuration,
i: (union(c‘ com_instances, c‘ con_instances))):

process[RPCEv] =
COND member(i, c‘ com_instances) ->

car(c‘ lib‘ behaves_through(c‘ component(i)))(i),
member(i, c‘ con_instances) ->

car(c‘ lib‘ behaves_through(c‘ connector(i)))(i)
ENDCOND

The process representing an instance is constructed by retrieving the element definition of the

instance and applying the behaves throughmapping. The procedure is the same for connec-

tors.

Modeling Connections

Special consideration must be given to the modeling of architectural connections. CSP has no a

priori construct specifically for describing communication channels; in fact, processes operate in

a global event namespace and can synchronize on the events of any other process that they are

11In our model we use a list datatype.
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operating in parallel with. However, our model of architecture requires that when an instance

initiates an event on one of its ports, it is observed only by processes whose ports it is connected

to. Given our definition of events this is not as difficult as it first appears - each event is uniquely

tagged with the instance port from where it originates. Because connections are modeled as

instance port pairings we need only to define a CSP process that, for each connection, matches

the initiate events on one end of a connection with observe events on the other end, and vice-versa.

We achieve this using parallel composition: connections are modeled as the parallel compo-

sition of two processes, each of which ferries an event from the port on one side of a connection

to the port on the other side:

Definition 4.3.2 (Connect) The mapping Connect is defined as:

Connect : c : Con�guration � cn : connections ! Process = P jjj Q

where P and Q are defined as

P =2
j ;k ;l

(initiate:cn`1:j :k :l ! (observe:cn`2:j :k :l ! Stop))

Q =2
j ;k ;l

(initiate:cn`2:j :k :l ! (observe:cn`1:j :k :l ! Stop))

and where cn is an IPORT�IPORT tuple, and j, k and l are variables of the types that compose

the RPCEv datatype.

We are left with one remaining issue; how to ensure that this function models only the family

of processes representing connections that exist within the configuration. We address this in the

PVS definition through the use of dependent typing. We constrain the value of the cn parameter

to members of the set of connections within the configuration by stating that it must be chosen

from this set:
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35Connect(c:Configuration, cn:(c‘ connections)) : process[RPCEv] =
Choice! j, k, l :

(initiate(cn‘ 1,j,k,l) >>
(observe(cn‘ 2,j,k,l) >>
Stop[RPCEv]))

//
Choice! j, k, l :

(initiate(cn‘ 2,j,k,l) >>
(observe(cn‘ 1,j,k,l) >>
Stop[RPCEv]))

Modeling Configurations

Although CSP processes must be provided for each of the basic architectural elements in our

specification, their combined behaviour within a configuration is automatically produced. In

other words, given a structural description of a configuration we automatically generate a process

that models the behaviour of the configuration.

We define the function ConfigBehaviour that maps configurations to the CSP process

representing the combined behaviour of their components:

Definition 4.3.3 (ConfigBehaviour) The mapping ConfigBehaviour is defined as:

Con�gBehaviour : c : Con�guration ! process =

jjj
i2c`instances

InstanceBehaviour(c; i) j[A ]j jjj
cn2c`connections

Connect(c; cn)

where A = fx j x = initiate _ x = observeg, i.e., the set of all initiate and observe events.

The basic idea is to use synchronized parallel composition to combine the composite behaviour

of the configuration’s instances with the composite behaviour of the connection processes. The

behaviour of the set of instance processes is modeled with indexed interleaving. In other words,

the processes of all instances are composed in parallel without any synchronization. The same is

true for the behaviour of the set of connection processes. Both the behaviours for the instances

and connections are then composed in parallel with synchronization on all initiate and observe
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events. This definition has the effect of causing any of the instances that wish to partake in an

event to synchronize with the process responsible for either initiating or observing it. The PVS

specification of this function is given as,

36ConfigBehaviour(c) : process[RPCEv] =
Par(union((initiate?),(observe?)))

(Interleave! (i:(union(c‘ com_instances,c‘ con_instances))) :
InstanceBehaviour(c,i),

Interleave! (cn:(c‘ connections)) :
Connect(c,cn))

where c is a variable of type Configuration.

Modeling Hierarchy

The behaviour of an element with a composite implementation is modeled in a manner very

similar to that of the behaviour of a configuration but includes additional definitions to support

the binding of implementation ports to element ports and the hiding of internal events. First,

we introduce the notion of a Bind process. This process is similar in nature to the one used for

modeling connections in that it is composed from the parallel interleaving of two event-ferrying

processes. It is responsible for conveying events from an instance port of the configuration to its

bound element port abstraction:

Definition 4.3.4 (Bind) The mapping Bind is defined as:

Bind : a : Architecture � c : Con�guration
�b : bindings � i : INSTANCE ! Process = P jjj Q

where P and Q are defined as

P =2
j ;k ;l

(initiate:b`1:j :k :l ! (initiate:(i ; b`2):j :k :l ! Stop))

Q =2
j ;k ;l

(observe:(i ; b`2):j :k :l ! (observe:b`1:j :k :l ! Stop))
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and where b is an IPORT � PORT tuple and j, k and l are variables of the types that compose

the RPCEv datatype.

This definition provides the means to transfer events initiated within the configuration to the

bound port, and events observed at the bound port to the implementation.

The complete behaviour of the composite element can then be given as the synchronized

parallel composition of the behaviour of the instances, the connections and the bindings. We

model this with the CompositeBehaviour function:

Definition 4.3.5 (CompositeBehaviour) The mapping CompositeBehaviour is defined as:

CompositeBehaviour : a : Architecture � c : Con�guration�
i : INSTANCE ! process =

jjj
j2c`instances

InstanceBehaviour(c; j ) j[A ]j

(jjj
cn2c`connections

Connect(c; cn)k jjj
b2a`bindings(c)

Bind(a; c; b; i))

where A = fx j x = initiate _ x = observeg, i.e., the set of all initiate and observe events.

When an instance of a composite element is instantiated, we need to hide the “internal” events

of the configuration. In other words, we only want to expose the events that are related to the

PORTs of the element, and not the IPORTs of the implementing configuration. This is straight-

forward to define with a function that when given a process and a set of events, constructs the set

of traces that contain only those events:

Definition 4.3.6 (HideInternal) HideInternal is defined as:

HideInternal : pr : process � es : setof [RPCEv ]! process =
fs j 8 tr 2 pr � s = tr � esg

where s and tr are variables of type trace.
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The set of events corresponding to the instantiated composite element can be specified with

the function ProjEvents:

Definition 4.3.7 (ProjEvents) ProjEvents is defined as:

ProjEvents : i : INSTANCE ! setof [RPCEv ] =
fev j 9 p; j ; k ; l �

ev = initiate:(i ; p):j :k :l _ ev = observe:(i ; p):j :k :lg

where ev is a variable of type RPCEv, p is a variable of type PORT and j, k, and l are variables

of the types that compose the RPCEv datatype.

The related PVS definitions are as follows:
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37Bind(a:Architecture, c:(a‘ implementations), b:(a‘ bindings(c)),
i:INSTANCE) : process[RPCEv] =

Choice! j, k, l :
(initiate(b‘ 1,j,k,l) >>

(initiate((i,b‘ 2),j,k,l) >>
Stop[RPCEv]))

//
Choice! j, k, l :

(observe((i,b‘ 2),j,k,l) >>
(observe(b‘ 1,j,k,l) >>

Stop[RPCEv]))

CompositeBehaviour(a,(c:(a‘ implementations)), i: INSTANCE) :
process[RPCEv] =

Par(union((initiate?),(observe?)))
(Interleave! (j:(union(c‘ com_instances,c‘ con_instances))) :

InstanceBehaviour(c,j),
((Interleave! (cn:(c‘ connections)) : connect(c,cn)) //
(Interleave! (b:(a‘ bindings(c))) : Bind(a,c,b,i))))

HideInternal(pr,es) : process[RPCEv] =
{ s1 | forall t1: member(t1,pr) => s1 = proj(t1, es) }

ProjEvents(i:INSTANCE) : setof[RPCEv] =
{ ev | exists (p:PORT), j, k, l :

ev = observe((i,p), j, k, l) or
ev = initiate((i,p), j, k, l)}



Chapter 5

Machine-Assisted Validation

In this chapter we demonstrate how the representation of the system introduced in the previous

chapter is validated against formally expressed properties. We first construct a description of the

desired property and then demonstrate that it is implied by, or a consequence of, the specification.

This entails proving theorems of the form:

` speci�cation � property :

Properties over the architectural specification are expressed as higher-order formulae and use the

same vocabulary of entity sets and relationships previously used for constructing the representa-

tion of the system.

The framework we present is not limited to reasoning about a restricted portion of the speci-

fication. The novel aspect of our work is not in the complexity of the proofs we demonstrate, but

rather in the range of property categories that we are able to verify using the framework. We il-

lustrate the use of our framework by demonstrating proofs for three main categories of properties:

structural, behavioural and combinations of the two. Finally, we introduce additional formal ma-

chinery for representing and reasoning about dynamic architectures, or systems with a structure

114
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that evolves over the course of its lifetime.

5.1 Verifying Properties of the Structural Specification

In this section we illustrate how properties relating to the structure of the system are subject

to mechanical reasoning. Structural elements of the specification are represented directly using

typed logical constants; structural properties are expressed directly over these constants using

higher-order logic formulae.

5.1.1 Structural Constraints

The first property that we demonstrate is a completeness1 constraint over the system connections

- namely, that there are no unconnected ports in the configuration. Alternatively, we can state the

property as “all instance ports of the configuration are involved in at least one connection”. The

PVS formulation of this statement is given as:

38PortsConnected: CONJECTURE
FORALL (ip: (RPC_System1‘ ports)):

EXISTS (c: [IPORT, IPORT]):
member(c, RPC_System1‘ connections) AND
(ip = c‘ 1 OR ip = c‘ 2)

Proof: This property is shown to hold with the application of a single proof command that per-

forms repeated reductions and simplifications:

Rule? (grind :if-match all)

The (grind) command is the workhorse of the PVS environment. Among other things, it

repeatedly expands definitions, instantiates universal and existential quantifiers, and performs

propositional simplifications until the result is either trivially true or some further direction from

1There are many types of completeness; we use the term to refer to the completeness of the configuration with
respect to some externally defined criteria.
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the user is required. The parameter :if-match all instructs the prover that when instantiating

existential quantifiers, all possibilities should be considered, that is, all connections of RPC Sys-

tem1‘ connections should be tried. The prover responds with the success notification:

39Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

The second property is another form of completeness with respect to architectural connec-

tions; do the events initiated of one end of connection match with the expected events on the

other end of the connection, and vice-versa? In other words, over all connections is the set of

possible initiated events a subset of the observed events? Recall from Section 4.3.5 that individu-

al connections are modeled as a process that conveys an initiated event on one end to an observed

event on the other end. The connection and instance processes synchronize on every initiate and

observe event. If a process initiates an event that is not observed on the other end of one of its

connections then that process will not engage in any further events. We state this property for one

direction of the connection as:

40EventsMatch: CONJECTURE
FORALL (c: (RPC_System1‘ connections)):

subset?(inst2interface(RPC_System1, c‘ 1‘ 1)‘ initiates(c‘ 1‘ 2),
inst2interface(RPC_System1, c‘ 2‘ 1)‘ observes(c‘ 2‘ 2))

For brevity we do not show or prove this property for the other direction; it is stated in the same

manner and is shown true with the same proof as for this one.

Proof: We begin this proof in the same way as the previous one, however, as there are no ex-

istentially quantified variables we do not need to provide the proof environment with special

instructions:

Rule? (grind)

In response to this command, the prover generates a large collection of similar subgoals, the first

of which is given below:
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41Trying repeated skolemization, instantiation, and if-lifting,
this yields 441 subgoals:
EventsMatch.1 :

{-1} integer_pred(x!1)
{-2} ((0, 0), (1, 4)) = c!1
{-3} 2 = x!1
{-4} c!1‘ 1‘ 2 = x!1
{-5} c!1‘ 1‘ 1 = x!1
{-6} 3 = e0
{-7} c!1‘ 2‘ 2 = 4
|-------

{1} x!1 = c!1‘ 2‘ 1
{2} 1 = c!1‘ 2‘ 1
{3} 0 = c!1‘ 2‘ 1
{4} e0 = c!1‘ 2‘ 1
{5} 0 = e0

As with all sequents, there are two different ways to prove its truth; either demonstrate that at

least one of the consequent formulae follows from an antecedent, or find a contradiction among

the antecedent formulae. We can immediately see that we can use either strategy in this case.

The definition of the skolemized constant, c!1, in antecedent formula -2 implies that consequent

formula 2 is true. Formula -2 also contradicts both formulas -4 and -5 of the antecedent.

Choosing the former approach, the definition of the skolemized constant is expanded into

formula 2:

Rule? (replace -2 (2) rl)

The subgoal returned from the application of this command is a modification of the previous one

with the definition of c!1 expanded into the target formula.
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42Replacing using formula -2,
this simplifies to:
EventsMatch.1 :

... details elided
|-------

[1] x!1 = c!1‘ 2‘ 1
f2g 1 = ((0, 0), (1, 4))‘ 2‘ 1

... details elided

The subgoal can be completed by beta-reducing the expression of formula -2 and asserting its

truth. We issue the (assert) command which performs both:

43Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of EventsMatch.1.

The remainder of the subgoals are all completed in a similar fashion. Figure 5.1 shows a portion

of the proof in the text-based human- and machine-readable format used by PVS.

(""
(GRIND)
(("1" (REPLACE -2 (2) RL) (ASSERT))
("2" (REPLACE -2 (2) RL) (ASSERT))
("3" (REPLACE -2 (2) RL) (ASSERT))
("4" (REPLACE -2 (2) RL) (ASSERT))
("5" (REPLACE -2 (2) RL) (ASSERT))
("6" (REPLACE -2 (2) RL) (ASSERT))
... remainder omitted

Figure 5.1: Proof of Property EventsMatch1.

Proof Strategy

Although this proof at first appears tedious, the substantial regularity in the proof tree makes it

an ideal candidate for the application of a high-level structural proof strategy. We first formulate

a strategy expression that is capable of completing the individual subgoals:
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44(defstep StructExp (fnum)
(let ((fnums (gather-fnums (s-forms *goal*)

’ *
fnum
#’ (lambda (sf) T))))

(then* (replace fnum (fnums) rl) (assert)))
"Replace formula fnum in all sequent formulae"
"Applying StructExp rule")

The defstep function is used to define strategies. Once a strategy is defined it can be invoked

exactly as a predefined proof rule. The basic idea in this strategy is to take a parameter (fnum)

corresponding to the formula number of the equality expression that is to be expanded into the

other sequent formulae. The value half of this expression is then replaced in all other sequent

formulae2. The let construct defines the LISP expression that collects the list of formula num-

bers. Once collected, this list is assigned to the variable fnums, allowing it to be used within the

following rule:

(then* (replace fnum (fnums) rl) (assert))

This rule issues the sequence of proof steps required to complete the subgoals: first the (re-

place ...) rule is issued followed by an (assert).

With this basic step defined, the following command is sufficient to prove the property in its

entirety:

Rule? (try (grind) (structexp -2) (skip))

The try strategy first applies the rule (grind). If this generates subgoals then the second rule,

(structexp -2), is applied to each one. If the first rule generates no subgoals then the third

rule is applied (i.e., (skip)). In this way, try represents the basic mechanism for generating

and completing subgoals, and backtracking within the proof tree.

2Ideally, we would like to collect only those sequent formulae representing equality expression; more specifically,
those in which a certain pattern such as “c!1” occurred. A current limitation in the strategy definition mechanism
prevents us from doing so.
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5.1.2 Style Constraints

The notion of an architectural style has many possible interpretations3 . Different languages sup-

port style through different constructs. For example, UniCon supports a built-in vocabulary of

architectural types combined with compiler driven semantic checks. The Wright language de-

fines a style as a family of systems described by architect-specified predicates over elements and

configurations. A system is an instance of a style if it satisfies all the constraints defined by that

style. Typically these constraints are placed upon the types, interconnection, or behaviour of the

elements. We adopt this definition of style.

Our modeled system is based on a style of procedures and procedure calls. The following

property states two relevant aspects that we would expect to hold on systems of this style: that

the instances of the configuration are restricted to type Procedure, and that a port representing a

procedure call is involved in at most one connection. This formalizes the programming language

notion that a procedure call passes control to only one other procedure:

45Style1: CONJECTURE
FORALL (i: (RPC_System1‘ com_instances)):

(inst2interface(RPC_System1, i)‘ type_of = Procedure)
AND

(FORALL (p: (inst2interface(RPC_System1, i)‘ interacts_through)):
(inst2interface(RPC_System1, i)‘ port_type(p) = Caller)
=>
(FORALL (c: (RPC_System1‘ connections)) :

(c‘ 1‘ 2 = p or c‘ 2‘ 2 = p)
=>
not (EXISTS (cn: (RPC_System1‘ connections)) :

(cn /= c and (cn‘ 1‘ 2 = p or cn‘ 2‘ 2 = p)))))

Proof: The proof of this property proceeds in a similar fashion to the previous one. We begin by

instructing PVS to perform skolemization, repeatedly expand definitions and simplify:

Rule? (grind)

3Indeed, determining exactly what a style is and isn’t is still an active research topic.



CHAPTER 5. MACHINE-ASSISTED VALIDATION 121

This results in the following sequent:

46Trying repeated skolemization, instantiation, and if-lifting,
this yields 72 subgoals:
Style1.1 :

{-1} ((p!1, p!1), (1, 4)) = cn!1
{-2} ((1, 5), (2, 2)) = c!1
{-3} i!1 = p!1
{-4} 0 = p!1
{-5} c!1‘ 1‘ 2 = p!1
{-6} cn!1‘ 1‘ 2 = p!1
|-------

{1} (cn!1 = c!1)

Although there are now 72 subgoals to prove, they are all straightforward and similarly demon-

strated. We immediately note that based on antecedent formulae -1 and -2, the consequent formu-

la is false; therefore, our approach must involve finding a contradiction in one of the antecedent

formulae. Based on formula -2 it is obvious that -5 is false. We force the proof checker to see this

contradiction by expanding the definition of c!1 in formula -5 and simplifying:

Rule? (replace -2 (-5) rl)

Rule? (assert)

This completes the subgoal. Each of the remaining subgoals is proved with the identical strategy.

Figure 5.2 shows an excerpt from the completed proof.

(""
(GRIND)
(("1" (REPLACE -2 (-5) RL) (ASSERT))
("2" (REPLACE -2 (-5) RL) (ASSERT))
("3" (REPLACE -2 (-5) RL) (ASSERT))
("4" (REPLACE -2 (-5) RL) (ASSERT))
("5" (REPLACE -2 (-5) RL) (ASSERT))
("6" (REPLACE -2 (-5) RL) (ASSERT))

("7" (REPLACE -2 (-5) RL) (ASSERT))
("8" (REPLACE -2 (-5) RL) (ASSERT))
("9" (REPLACE -1 (-6) RL) (ASSERT))
("10" (REPLACE -1 (-6) RL) (ASSERT))
("11" (REPLACE -1 (-6) RL) (ASSERT))
("12" (REPLACE -1 (-6) RL) (ASSERT))
("13" (REPLACE -1 (-6) RL) (ASSERT))
... remainder omitted

Figure 5.2: Proof of Property Style1.
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Proof Strategy

After the first few proof steps we immediately recognize a structure similar to that of the previous

property. In fact, the same basic strategy definition can be reused to complete this property as

well. The main difference is that we first attempt to replace formula 1. If that does not complete

the subgoal we try with formula 2. The following rule is sufficient to fully complete the proof of

this property:

Rule? (try (grind)
(then* (structexp -1) (structexp -2))
(skip))

Other Structural Properties

The properties shown here are not intended to represent an exhaustive list of possible validations,

but instead are meant to illustrate the types of logical relationships that can be shown to hold on

system structure. The only restriction as to what can be expressed for the purpose of validation is

that it be captured by the model’s categories and definitions. The previous three structure proper-

ties were expressed over the run-time specification or a combination of run-time and design-time

information; however, challenges could also be made strictly on the design-time information. For

example, we might want to ensure that all elements with a port of type T1 also have a port of

type T2. In a more detailed treatment of a Procedure element type, we would likely define a

new port type for passing exceptions back to the caller. This more closely corresponds to the

two separate mechanisms that procedures (in a programming language context) use; they either

issue a valid return or throw an exception. In this case, it would be important to validate that all

elements of type Procedure that have a definer port (i.e., can be called) also have an exception

port. Conjectures such as this one are useful for establishing that the basic building-blocks used

within configurations meet their application-specific definitions of correctness.
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5.2 Verifying Properties of the Behavioural Specification

We now consider properties relating to the system’s behavioural specification. As discussed in

Section 4.3.4, processes in the trace semantics model of CSP are characterized by sets of traces.

Traces have the property that they are prefix-closed4 and correspond to a sequence of events that

the process has engaged in. This particular semantic model is well suited to specifying properties

that must hold across all possible traces of a process.

Using the trace semantics model of CSP, properties on processes are expressed as predicates

over its traces. Specifically, we say that a process P has the property S if P satisfies S , that is,

every possible behaviour of P is described by S . Satisfaction is denoted as:

P sat S

Note that the sat operator is simply the classic CSP refinement operation. If S is a process that P

refines, then the expression P sat S is true. If S is interpreted as a specification then we say that

P implements S . More formally, with the trace-set characterization of processes, satisfaction is

defined as an operation on sets. Demonstrating that a process P has the property S is equivalent

to proving a conjecture of the following form:

8 tr :tr 2 P � tr 2 S

which, as P and S are sets, is specified more succinctly as the subset operation:

P � S

Within the PVS mechanization, satisfaction has this same set-based meaning, however a special

satisfaction operator has been defined for clarity:

4Each prefix of a trace is also a trace, that is, if a trace t is observed, then all prefixes of t have also been observed.
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P |> S

This operator |> is simply defined as a synonym for the predefined PVS subset? predicate.

With this definition then, a property of a process is stated simply as the set of all traces that satisfy

the given property. Any process that satisfies this property must be a subset of the given set of

traces. Within PVS a specification S can be expressed as:

f tr | ... a property on tr g

where tr is a universally quantified variable representing a trace, and the property is specified as

a higher-order logic formula with tr as an unbound variable. The CSP restriction operator ‘�’

is useful for specifying properties on traces, notably the presence (or absence) of events from a

particular trace. The expression,

tr �A

denotes the trace tr restricted to events from the setA, that is to say, events not inA are eliminated

from tr . In PVS, restriction is specified using the function proj, which has the signature

tr : trace �A : set [event ]! trace

and is defined as returning the maximal subsequence of events in A that are observed by tr . For

example, the following property states that process P does not engage in any of the events of set

A:

P |> { tr | proj(tr, A) = null}

Stating the property in this way is equivalent to the PVS formulation:

forall tr : member(tr, P) => proj(tr, A) = null

In addition to demonstrating that an event never occurs in any trace, it is also useful to state that

if an event occurs it must have been preceded by another event. This is given as:
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P |> { tr | proj(tr, A1)) /= null => proj(tr, A2) /= null }

If the sets of events A1 and A2 contain as members e1 and e2 respectively, then this property

states that if the trace engaged in e1 then it must have previously engaged in e2. This is by virtue

of the fact that traces are prefix-closed - if the property holds on a trace tr , then it must also hold

on all prefixes of tr .

5.2.1 Instance Behaviour

We begin by demonstrating how a single component of the architecture, in this case the clerk,

is validated against a property expressed on its behaviour. The role of the clerk is to adapt the

interface of the RPC component to that of the memory. The specific variant of the memory

component that we use in this example is defined so that it will never fail; however, the RPC

component is allowed to fail with an rpcfailure exception. The clerk is responsible for adapting

the failures of the RPC component into the memory component’s memfailure exceptions. An

important property of the clerk is that it should never return a memfailure unless first receiving an

rpcfailure. This statement is formulated in PVS as,

47ClerkBehaviour : CONJECTURE
InstanceBehaviour(RPC_System1, clerk1) |>

{ tr | exists origin, l1:
proj(tr, add(initiate((clerk1,clerk_definer), memfailure,

origin, l1), emptyset)) /= null
IMPLIES

proj(tr, add(observe((clerk1,clerk_caller), rpcfailure,
clerk1, l1), emptyset)) /= null }

where InstanceBehaviour is the function that maps instances to their behavioural descrip-

tions (defined in Section 4.3.5).

Proof: The strategy we adopt for this proof illustrates the use of some of the basic CSP proof

rewrite rules. Note that we use the proof rules to simplify the structure of the sequent; the fi-

nal proof that the property holds on the simplified processes is performed with the predefined
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proof commands of PVS. We begin by expanding definitions and simplifying. However, since

the rewrite rules (shown below) are dependent on the structure of the conjecture we must ensure

that the simplification step does not attempt to unfold or simplify the basic definition for either the

behaviour specification of the clerk or the satisfaction operator. These exclusions are explicitly

stated within the proof command’s :exclude parameter list:

Rule? (grind :exclude ("clerk_behaviour" "|>"))

PVS responds with the sequent containing the unfolded definitions with the required structure of

the conjecture intact:

48|-------
{1} clerk_behaviour(1) |>

({tr |
EXISTS origin, l1:

... details elided

Recall from Chapter 4 that the function clerk behaviour maps an instance name to the

process of the clerk. We expand the definition of the behaviour function with:

Rule? (expand "clerk_behaviour")

The definition of the process is expanded in place in consequent formula 1.
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49|-------
{1} ((Choice! rq, origin, l1, l2:

(observe((1, clerk_definer), rq, origin, l1) >>
(initiate((1, clerk_caller), remotecall, 1,

cons(rq, l1)) >>
(observe((1, clerk_caller), rpcfailure, 1, l2) >>

(initiate((1, clerk_definer), memfailure,
origin, l2) >>

Stop[RPCEv])))))
\/
(Choice! rq, origin, l1, l2:

(observe((1, clerk_definer), rq, origin, l1) >>
(initiate((1, clerk_caller), remotecall, 1,

cons(rq, l1)) >>
(observe((1, clerk_caller), normal, 1, l2) >>

(initiate((1, clerk_definer), normal, origin, l2) >>
Stop[RPCEv]))))))

|>
({tr |

... details elided

At this point we can use a CSP rewrite rule to break sequent formula 1 into two simpler goals

corresponding to the processes of the choice operation:

sat_choice1 : LEMMA (P \/ Q) |> E IFF P |> E AND Q |> E

This theorem states that a choice between two processes satisfies a predicate on a trace iff both

processes individually satisfy the predicate. Its proof is based on the basic properties of CSP

processes and is provided as part of the basic CSP mechanization.

Rule? (rewrite "sat_choice1")

Applying this rule and performing propositional grounding results in PVS splitting the main

branch of our proof into two (see Figure 5.3). As both branches are proved in a similar manner,

we only demonstrate with one.
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50{1} (Choice! rq, origin, l1, l2:
(observe((1, 4), rq, origin, l1) >>

(initiate((1, 5), 4, 1, cons(rq, l1)) >>
(observe((1, 5), 5, 1, l2) >>

(initiate((1, 4), 3, origin, l2) >> Stop[RPCEv])))))
|>
({tr |

... details elided

We use a similar rewrite rule to further simplify the sequent, this one based on the properties of

the indexed choice operator. Recall that indexed choice defines a process as choice from a family

of related processes. The rule

sat_choice3 : LEMMA
Choice(P) |> E IFF Stop[T] |> E AND (FORALL x : P(x) |> E)

corresponds to the intuitive notion that a predicate holds on indexed choice iff it holds on the

null process (there are no valid members of the family) and all possible members of the family.

Applying this rewrite rule and grounding the sequent with the following rules:

Rule? (rewrite "sat choice3")

Rule? (ground)

yields two simpler subgoals, each of which we prove by application of the (grind) command.

The result of this applied to the first sequent leaves us with,

51{-1} null?(x!1)
|-------

{1} EXISTS origin, l1: TRUE

which can be shown as true by supplying two witness values for the existential quantification:

Rule? (inst 1 "0" "null")

The other branch requires slightly more work as PVS gives us five subgoals to prove; however,

each requires little effort.

The first subgoal simply requires a witness for the existential quantification similar to above.

The second subgoal,
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52{-1} null?(t1!2)
{-2} t1!1 = cons(initiate((1, 5), 4, x!1‘ 2,

cons(x!1‘ 1, x!1‘ 3)), t1!2)
{-3} x!2 =

cons(observe((1, 4), x!1‘ 1, x!1‘ 2, x!1‘ 3),
cons(initiate((1, 5), 4, x!1‘ 2,
cons(x!1‘ 1, x!1‘ 3)), t1!2))

{-4} initiate((1, 4), 3, 1, x!1‘ 3) =
initiate((1, 5), 4, x!1‘ 2, cons(x!1‘ 1, x!1‘ 3))

{-5} null?(null)
|-------

{1} observe((1, 5), 5, 1, x!1‘ 3) =
observe((1, 4), x!1‘ 1, x!1‘ 2, x!1‘ 3)

is easily proven by noting a contradiction in formula -4. We issue the decompose-equality

command to force PVS to recognize the contradiction. The rule

Rule? (decompose-equality -4)

completes the subgoal:

53Applying decompose-equality,

This completes the proof of ClerkBehaviour.1.2.2.

The third and fourth subgoals are proved similarly. We adopt a different tactic for the final

subgoal:

54... details elided
f-6g initiate((1, 4), 3, 1, x!1‘ 3) = initiate((1, 4), 3, x!1‘ 2, x!1‘ 4)
|-------
... details elided

f2g observe((1, 5), 5, 1, x!1‘ 3) = observe((1, 5), 5, x!1‘ 2, x!1‘ 4)

For this case we observe that formula -6 implies formula 2 is true. We need only to ensure that

the prover takes note of this fact. PVS does not automatically break complicated, structured e-

quality expressions into their simpler component equalities. However, by manually decomposing

the above equality in this manner we are provided with the basic set of expressions needed to

complete the subgoal. Issuing the command

Rule? (decompose-equality -6)
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adds the following formulae to the antecedent of the current sequent:

55{-1} 1 = x!1‘ 2
{-2} x!1‘ 3 = x!1‘ 4

By substituting these values into formula 2 we force PVS to recognize its truth:

56Rule? (replace -1 (2) rl)
Rule? (replace -2 (2) rl)

This completes the proof of the first branch. Finally, after proving the second main proof branch

in a nearly identical manner PVS responds with:

57Applying decompose-equality,

This completes the proof of ClerkBehaviour.2.2.5.
This completes the proof of ClerkBehaviour.2.2.
This completes the proof of ClerkBehaviour.2.

Q.E.D.

A graphical representation of the final proof tree is shown in Figure 5.3.

(grind ...)

(expand "clerk_behaviour")

(rewrite "sat_choice1")

(ground)

(rewrite "sat_choice3")

(ground)

(grind)

(inst 1 "0" "null")

(grind)

(inst 1 "null") (decompose−equality −4) (decompose−equality −5) (decompose−equality −6) (decompose−equality −6)

(replace −1 (2) rl)

(replace −2 (2) rl)

(propax)

(rewrite "sat_choice3")

(ground)

(grind)

(inst 1 "0" "null")

(grind)

(inst 1 "null") (decompose−equality −4) (decompose−equality −5) (decompose−equality −6) (decompose−equality −6)

Figure 5.3: Proof of Property ClerkBehaviour.
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5.2.2 Configuration Behaviour

A system modeled using an architectural design notation is specified at the top-level as a con-

figuration of instantiated, interacting elements. For this reason, an important requirement of an

architectural validation environment is that it permits reasoning about the combined behaviour of

this collection of instances. In this section we illustrate how a property can be shown to hold over

the system as a whole.

We illustrate with two safety properties relating to a specific aspect of the RPC problem

description; the first, that a return from a procedure is issued only in response to a call. Given our

trace-based notation, this property can also be worded as “if a return is observed by a component,

then the component must have issued a prior call”. We first show that this property holds over a

description of the system for the events of the client component.

The structure of this conjecture is similar to the previous behavioural properties. One differ-

ence is that we derive the (composite) behavioural specification for the system from the structural

description using the ConfigBehaviour function. The PVS formulation of the property is stated

as:

58ProcCall1 : conjecture ConfigBehaviour(RPC_System1) |>
{ tr |

proj(tr, add(observe((client1,client_caller),
normal, client1, null),emptyset)) /= null

IMPLIES
proj(tr, add(initiate((client1,client_caller),

read, client1, null),
add(initiate((client1,client_caller),

write, client1, null), emptyset))) /= null }

Proof: This proof requires a different approach than with the previous proofs of behaviour. This

is because of the manipulation of a more complex CSP process. We begin by issuing the rule

Rule? (grind)

to perform skolemization and simplify the term. PVS responds with the sequent:
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59{-1} prod(emptyset)(t!1, t1!1)
{-2} prod(emptyset)(t!2, t2!1)
{-3} prod(union((initiate?), (observe?)))(t1!1, t2!1, x!1)
{-4} null?(filter(x!1,

extend[RPCEv[IPORT, number, number, list[number]],
(initiate?[IPORT, number, number, list[number]]),

bool,
FALSE]
(add(initiate((0, 0), 0, 0, null),
add(initiate((0, 0), 1, 0, null), emptyset)))))

|-------
{1} null?(filter(x!1,

extend[RPCEv[IPORT, number, number, list[number]],
(observe?[IPORT, number, number, list[number]]),

bool,
FALSE]
(add(observe((0, 0), 2, 0, null), emptyset))))

We note that this is simply the original conjecture restructured into sequent format with skolem

constants replacing universally quantified variables. The first three antecedent formulae are ex-

pressions resulting from the expansion of the definition of the ConfigBehaviour function.

Recall that this function is defined as the parallel composition of two other processes, both of

which themselves are formed from indexed (parallel) interleaving. Indexed interleaving is im-

plemented in the CSP mechanization with the function prod. This function takes a family of

processes and recursively constructs a trace representing all possible interleavings of the traces

of each process in the family. Parallel composition with synchronization is implemented with a

different version of the prod function5 that takes a set of events and two traces. The resulting

trace represents all possible interleavings of the two traces with synchronization on the events

belonging to the set.

Recognizing that indexed iteration operates on a family of processes, we can immediately

deduce that formulae -1 and -2 correspond to the CSP process expressions

jjj
i2c`instances

InstanceBehaviour(c; i)

5PVS supports function name overloading.
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and

jjj
cn2c`connections

Connect(c; cn)

where the skolem constants t!1 and t!2 represent the functions mapping instances and connec-

tions to their respective processes. The trace constants t1!1 and t2!1 therefore represent the

parallel interleaving of the family of instance processes and the family of connection processes.

Given that formulae -1 and -2 represent the behaviour of components and the connections,

we can deduce that antecedent formula -3 defines the behaviour of the entire system with trace

constant x!1 resulting from the parallel interleaving of the two with synchronization on initiate

and observe events. We verify our intuition by asking the prover to show us the definitions of the

skolem constants:
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60Skolem-constant: type
---------------------
t!1: [i: (union(add(2, add(1, add(0, add(3, emptyset)))),

emptyset)) ->
(COND 2 = i OR 1 = i OR 0 = i OR 3 = i ->

car((LAMBDA (e: (emptyset[ELEMENT])): null[OPERATION])
WITH [(1) |-> (: mem_behaviour :),

(2) |-> (: rpc_behaviour :),
(3) |-> (: clerk_behaviour :),
(0) |-> (: client_behaviour :)]

((LAMBDA (i: (emptyset[INSTANCE])): e0)
WITH [(3) |-> 1,

(0) |-> 0,
(1) |-> 3,
(2) |-> 2]

(i)))
(i),

ELSE ->
car((LAMBDA (e: (emptyset[ELEMENT])): null[OPERATION])

WITH [(1) |-> (: mem_behaviour :),
(2) |-> (: rpc_behaviour :),
(3) |-> (: clerk_behaviour :),
(0) |-> (: client_behaviour :)]

(e0))
(i)

ENDCOND)]
t!2: [i:

(add(((0, 0), (1, 4)),
add(((1, 5), (2, 2)),

add(((2, 3), (3, 1)), emptyset)))) ->
(Choice! j, (i_735: int), l1:

Par(emptyset)
((initiate(i‘ 1, j, i_735, l1) >>

(observe(i‘ 2, j, i_735, l1) >> Stop[RPCEv])),
Choice! j, (i_736: int), (l1_737: list[int]):
(initiate(i‘ 2, j, i_736, l1_737) >>

(observe(i‘ 1, j, i_736, l1_737) >> Stop[RPCEv]))))]
x!1: trace[RPCEv[IPORT, number, number, list[number]]]

We see that t!1 maps instances to their associated behaviour, and t!2 maps connections to

their behaviour. The proof proceeds by constructing all possible behaviours of the system from

the expansion of the prod function expressions. The property is then verified to hold on each of
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these traces. This is accomplished by instructing the prover to expand the definitions of the prod

functions and then simplify the result:

Rule? (expand "prod")

Rule? (reduce)

The system responds with 67 subgoals all with the following form:

61Repeatedly simplifying with decision procedures, rewriting,
propositional reasoning, quantifier instantiation, skolemization,
if-lifting and equality replacement,

this yields 67 subgoals:
ProcCall1.1 :

{-1} ((0, 0), (1, 4)) = i!1
{-2} null?(t1!1)
{-3} null?(t!1(0))
{-4} cons?[RPCEv[IPORT, number, number, list[number]]](t!2(i!1))
{-5} car(t!2(i!1)) = car(x!1)
{-6} prod(emptyset)(t!2 WITH [(i!1) := cdr(t!2(i!1))], cdr(t2!1))
{-7} car(t2!1) = car(x!1)
{-8} prod(union((initiate?), (observe?)))(t1!1, cdr(t2!1), cdr(x!1))
{-9} null?(filter(cdr(x!1),

extend[RPCEv[IPORT, number, number, list[number]],
(initiate?[IPORT, number, number, list[number]]),
bool,
FALSE]

(add(initiate((0, 0), 0, 0, null),
add(initiate((0, 0), 1, 0, null), emptyset)))))

|-------
{1} null?(t2!1)
{2} null?(x!1)
{3} (initiate?)(car(x!1))
{4} (observe?)(car(x!1))
{5} null?(filter(cdr(x!1),

extend[RPCEv[IPORT, number, number, list[number]],
(observe?[IPORT, number, number, list[number]]),
bool,
FALSE]

(add(observe((0, 0), 2, 0, null), emptyset))))
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Antecedent formula -5 and consequent formulae 3 and 4 give us the clue as to how we should

proceed: recall that t!2 is the skolem constant representing the function mapping connections to

their behaviour. Formulae 3 and 4 are true if the first event of the trace constant x!1 is an initiate

or an observe (respectively). Note from formula -5 that the first event of x!1 is first event of the

process expression “t!2(i!1)”. To complete this subgoal we need to introduce the behaviour

process expression for the connection indicated in formula -1 (i.e., ((0,0),(1,4))). We

introduce this description into the sequent by asking for the type information for the expression

representing the process:

Rule? (typrepred "t!2(i!1)")

The response is a new antecedent formula:

62Adding type constraints for t!2(i!1),
this simplifies to:
ProcCall1.1 :

{-1} Choice(LAMBDA j, (i_735: int), l1:
Par(emptyset)

((initiate(i!1‘ 1, j, i_735, l1) >>
(observe(i!1‘ 2, j, i_735, l1) >> Stop[RPCEv])),

Choice! j, (i_736: int), (l1_737: list[int]):
(initiate(i!1‘ 2, j, i_736, l1_737) >>

(observe(i!1‘ 1, j, i_736, l1_737) >>
Stop[RPCEv]))))

(t!2(i!1))
... details elided

Issuing a (grind) is all that is required to complete this subgoal. This strategy works success-

fully for the majority of the subgoals. However, there are some that require both the descriptions

of t!1 and t!2 expanded. The pattern that the proof takes is shown in Figure 5.4.

We also wish to confirm our intuition that the first event that the system as a whole engages in

is that of a client request. If any of the components other than the client issue spurious returns (that

is, initiating a return before observing a call), then a trace of the system would exist where that
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(""
(GRIND)
(EXPAND "prod")
(REDUCE)
(("1" (TYPEPRED "t!2(i!1)") (GRIND))
("2" (TYPEPRED "t!2(i!1)") (GRIND))
("3" (TYPEPRED "t!2(i!1)") (GRIND))
("4" (TYPEPRED "t!1(i!1)") (GRIND))
("5" (TYPEPRED "t!1(i!1)") (GRIND))
("6" (TYPEPRED "t!1(i!1)") (GRIND))
("7" (TYPEPRED "t!1(i!1)") (GRIND))
("8" (TYPEPRED "t!1(i!1)") (GRIND))
("9" (TYPEPRED "t!1(i!1)") (GRIND))
("10" (TYPEPRED "t!1(i!1)") (GRIND))
("11" (TYPEPRED "t!1(i!1)") (GRIND))
("12" (TYPEPRED "t!1(i!1)") (GRIND))
("13" (TYPEPRED "t!1(i!1)") (GRIND))
("14" (TYPEPRED "t!1(i!1)") (GRIND))
("15" (TYPEPRED "t!1(i!1)") (GRIND))
("16" (TYPEPRED "t!1(i!1)") (GRIND))
("17" (TYPEPRED "t!1(i!1)") (GRIND))
("18" (TYPEPRED "t!1(i!1)") (GRIND))
("19" (TYPEPRED "t!1(i!1)") (GRIND))

("20"
(TYPEPRED "t!1(i!1)")
(GRIND)
(("1" (TYPEPRED "t!2(i!2)") (GRIND))
("2" (TYPEPRED "t!2(i!2)") (GRIND))
("3" (TYPEPRED "t!2(i!2)") (GRIND))
("4" (TYPEPRED "t!2(i!2)") (GRIND))
("5" (TYPEPRED "t!2(i!2)") (GRIND))
("6" (TYPEPRED "t!2(i!2)") (GRIND))
("7" (TYPEPRED "t!2(i!2)") (GRIND))))

("21"
(TYPEPRED "t!1(i!1)")
(GRIND)
(("1" (TYPEPRED "t!2(i!2)") (GRIND))
("2" (TYPEPRED "t!2(i!2)") (GRIND))
("3" (TYPEPRED "t!2(i!2)") (GRIND))
("4" (TYPEPRED "t!2(i!2)") (GRIND))
("5" (TYPEPRED "t!2(i!2)") (GRIND))
("6" (TYPEPRED "t!2(i!2)") (GRIND))
("7" (TYPEPRED "t!2(i!2)") (GRIND))))

("22"
... remainder omitted

Figure 5.4: Portion of Proof for Conjecture ProcCall1.

event would be the first6. Ensuring that the client request event is the first event across all traces

of the system gives us a much greater confidence in the correctness of the overall behavioural

specification.

The property specifying that a client event must be the first of the system is stated in a similar

manner to the previous property. It is formulated as:

63FirstEvent1: CONJECTURE
ConfigBehaviour(RPC_System1) |>
({tr |

tr /= null IMPLIES
proj(tr,
(add(initiate((client1, client_caller), read,

client1, null),
add(initiate((client1, client_caller), write,

client1, null), emptyset))))
/= null})

This property is read: “If the trace is not empty, then it contains either a client read or write

request”. If it is shown to hold on the system, then it holds across all traces, including those

composed of only one event. The implication is that there are no traces of length one where the

6Recall that our system is composed of all possible parallel interleavings of the components and connections.
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event is not either a client read or write.

Proof: The details of this proof are similar to that of the previous proof. After issuing the

(grind) rule, the system responds with:

64Trying repeated skolemization, instantiation, and if-lifting,
this yields 31 subgoals:
FirstEvent1.1 :

{-1} ((0, 0), (1, 4)) = i!2
{-2} 2 = i!1
{-3} cons?[RPCEv[IPORT, number, number, list[number]]](t!1(i!1))
{-4} car(t!1(i!1)) = car(x!1)
{-5} prod(emptyset)(t!1 WITH [(i!1) := cdr(t!1(i!1))], cdr(t1!1))
{-6} cons?[RPCEv[IPORT, number, number, list[number]]](t!2(i!2))
{-7} car(t!2(i!2)) = car(x!1)
{-8} prod(emptyset)(t!2 WITH [(i!2) := cdr(t!2(i!2))], cdr(t2!1))
{-9} (initiate?)(car(x!1))
{-10} cons?[RPCEv[IPORT, number, number, list[number]]](t1!1)
{-11} cons?[RPCEv[IPORT, number, number, list[number]]](t2!1)
{-12} car(t1!1) = car(x!1)
{-13} car(t2!1) = car(x!1)
{-14} prod(union((initiate?), (observe?)))(cdr(t1!1), cdr(t2!1),

cdr(x!1))
{-15} null?(filter(cdr(x!1),

extend[RPCEv[IPORT, number, number, list[number]],
(initiate?[IPORT, number, num-

ber, list[number]]),
bool,
FALSE]

(add(initiate((0, 0), 0, 0, null),
add(initiate((0, 0), 1, 0, nul-

l), emptyset)))))
|-------

{1} null?(x!1)
{2} initiate((0, 0), 0, 0, null) = car(x!1)
{3} initiate((0, 0), 1, 0, null) = car(x!1)

As in the previous proof, sequent formula -4 shows us how to proceed. This proof takes the same

pattern of type-predicate expansion and simplification as with the previous one and will not be

shown in its entirety. A portion of it is shown in Figure 5.5.
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(""
(GRIND)
(("1" (TYPEPRED "t!1(i!1)") (GRIND))
("2" (TYPEPRED "t!1(i!1)") (GRIND))
("3" (TYPEPRED "t!1(i!1)") (GRIND))
("4" (TYPEPRED "t!1(i!1)") (GRIND))
("5" (TYPEPRED "t!1(i!1)") (GRIND))
("6" (TYPEPRED "t!1(i!1)") (GRIND))
("7" (TYPEPRED "t!1(i!1)") (GRIND))
("8" (TYPEPRED "t!1(i!1)") (GRIND))
("9" (TYPEPRED "t!1(i!1)") (GRIND))

("10" (TYPEPRED "t!1(i!1)") (GRIND))
("11" (TYPEPRED "t!1(i!1)") (GRIND))
("12" (TYPEPRED "t!1(i!1)") (GRIND))
("13"
(TYPEPRED "t!1(i!1)")
(GRIND)
(("1" (TYPEPRED "t!2(i!2)") (GRIND))
("2" (TYPEPRED "t!2(i!2)") (GRIND))
("3" (TYPEPRED "t!2(i!2)") (GRIND))
("4" (TYPEPRED "t!2(i!2)") (GRIND))
... remainder omitted

Figure 5.5: Portion of Proof for Conjecture FirstEvent1.

The elements instantiated within this configuration do not have composite implementations.

Although the model supports hierarchical specification, we have opted for simplicity and chosen

not to include composite elements in our mechanical validations. Regardless of the implemen-

tation of the elements, at the topmost level a system is modeled as a configuration of connected

instances. An instance of a composite element is modeled with a more complex expression.

From a behavioural point of view, including hierarchy serves only to increase the number of ba-

sic proof steps needed to demonstrate the resulting proofs, while offering no additional insight

into the types of properties that the framework is able to demonstrate. The same is true from

a structural perspective. Structural properties relating to hierarchy are stated and mechanically

checked in the exact same fashion as those of Section 5.1.

Strategies for Configuration Behaviour

As in the case of structure, the majority of the regularity exhibited in these proofs can be ab-

stracted into higher-level strategies. We first identify the basic steps required to expand a process

description, and then reduce:

65(defstep BehaveExp (expr)
(then* (typepred expr) (grind))
"Expand a process expression"
"Applying BehaveExp rule")

This strategy is applied as:
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Rule? (BehaveExp "t!1(i!1)")

This strategy first adds the expression’s type predicates to the sequent and then applies (grind).

We incorporate this strategy into a more complex definition that first expands one behavioural

expression. If this expansion generates subgoals it continues with a second:

66(defstep MultipleExp (expr1 expr2)
(try (BehaveExp expr1) (BehaveExp expr2) (skip))
"Expand multiple process expressions"
"Applying MultipleExp rule")

The first of the configuration properties, ProcCall1, is easily demonstrated with a proof

rule that uses these basic strategies:

Rule? (branch (then* (grind) (expand "prod") (reduce))
((behaveexp "t!2(i!1)")
(behaveexp "t!2(i!1)")
(behaveexp "t!2(i!1)")
(multipleexp "t!1(i!1)" "t!2(i!2)")))

The (branch) rule applies the first argument as a proof rule. If subgoals result, then the nth

element of the second argument is applied to the nth subgoal. If there are more subgoals than

steps in the argument list, then the last step is applied to the remainder of the subgoals.

Similarly, the second property, FirstEvent1 has all but three subgoals completed with the

single rule:

Rule? (try (grind)
(multipleexp "t!1(i!1)" "t!2(i!2)")
(skip))

After this rule completes we are left with three remaining subgoals. Each is completed with a

single application of the strategy:

Rule? (expandexp "t!2(i!1)")
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5.3 Verifying Structure/Behaviour Relationships

An important advantage of adopting the same higher-order logic formalism for representing both

structural properties and as a basis for behavioural semantics is that, within a single framework,

we are able to analyze an architecture for expected relationships between structural properties and

behavioural properties. This ability is particularly useful for ensuring that application specific

properties linking structure to behaviour are true.

As an example, in our procedure-based architecture, an implicit assumption not easily de-

duced by inspection of the specification is that all components with ports of type Caller must

first initiate an event on that port and then wait for a reply (i.e., observe an event) on that same

port. The converse is true for components with Definer ports in that they must first observe an

event and then initiate a response. The first half of this property is stated as:

67StructBehaviour: CONJECTURE
FORALL (i: (RPC_System1‘ com_instances)):

FORALL (p: (inst2interface(RPC_System1, i)‘ interacts_through)):
(inst2interface(RPC_System1, i)‘ port_type(p) = Caller) =>
(InstanceBehaviour(RPC_System1, i) |>
({tr |
EXISTS rq, ret, origin, l1, l2:
proj(tr, add(observe((i, p), ret, origin, l1),

emptyset)) /= null
=>
proj(tr, add(initiate((i, p), rq, origin, l2),

emptyset)) /= null}))

Proof: This property is demonstrated true with an approach using predefined proof rules. We

begin with:

Rule? (grind :if-match nil)

The parameter :if-match nil instructs the prover not to try instantiating existential quantifiers, as

appropriate values are not deducible from the expression in which they appear. By default, PVS

heuristically attempts (by pattern- and type-matching) to instantiate quantifiers with other already
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existing skolem constants of the same type. However, in many cases the prover cannot deduce

the correct witness values which can result in the sequent being unprovable.

As a result of applying this proof rule, PVS returns 30 subgoals. The first two require values

for existential quantifiers which then make the expression trivially true (similar to Schema 51).

After being further simplified with the application of a grind, the third subgoal is presented as:

68StructBehaviour.3 :

[-1] null?(t1!1)
[-2] 2 = i!1
[-3] 3 = p!1
[-4] x!1 = cons(observe((i!1, i!1), 4, i!2‘ 1, i!2‘ 2), t1!1)
{-5} observe((i!1, p!1), i!1, i!1, i!2‘ 2) =

observe((i!1, i!1), 4, i!2‘ 1, i!2‘ 2)
|-------

[1] p!1 = i!1

As in Schema 52, we force the prover to recognize a contradiction in an antecedent formula. In

this case, formula -5 contains the contradiction. We issue the following rule:

Rule? (decompose-equality -5)

This completes the subgoal. The remaining subgoals are all demonstrated using combinations of

these same basic rules. Figure 5.6 shows the complete proof.

5.4 Dynamic Architectures

Up to this point we have dealt exclusively with specifying and validating static descriptions, or

descriptions of systems that do not change their topology or communication structure during the

course of their construction or ongoing evolution. However, with advances in networking and

distributed system technology more and more systems are not characterized with a single, static

depiction of their overall topology. These architectures are often best viewed as dynamic, where

the configuration of instantiated components varies as the system evolves. A simple and intuitive
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(""
(GRIND :IF-MATCH NIL)
(("1" (INST 2 "0" "0" "0" "null" "null"))
("2" (INST 2 "0" "0" "0" "null" "null"))
("3" (GRIND) (DECOMPOSE-EQUALITY -5))
("4" (GRIND) (DECOMPOSE-EQUALITY -6))
("5" (INST 2 "0" "0" "0" "null" "null"))
("6" (GRIND) (DECOMPOSE-EQUALITY -5))
("7" (GRIND))
("8" (GRIND))
("9" (GRIND))
("10" (GRIND))
("11" (INST 3 "0" "0" "0" "null" "null"))
("12" (INST 3 "0" "0" "0" "null" "null"))
("13" (GRIND) (DECOMPOSE-EQUALITY -5))
("14" (GRIND)) ("15" (GRIND))
("16" (GRIND))
("17" (INST 3 "0" "0" "0" "null" "null"))
("18" (GRIND) (DECOMPOSE-EQUALITY -5))
("19" (GRIND))
("20" (GRIND))
("21" (GRIND))
("22" (INST 3 "0" "0" "0" "null" "null"))
("23" (INST 3 "0" "0" "0" "null" "null"))
("24" (INST 3 "0" "0" "0" "null" "null"))
("25" (GRIND))
("26" (GRIND))
("27" (INST 3 "0" "0" "0" "null" "null"))
("28" (INST 3 "0" "0" "0" "null" "null"))
("29" (GRIND))
("30" (GRIND))))

Figure 5.6: Proof of Property StructBehaviour.
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example of a dynamic architecture is that of a client-server system, where the number of clients

is variable, that is, the server supports multiple simultaneous client connections.

Specification of a dynamic architecture requires a description of the set of topological changes

that occur, or are allowed to occur to a configuration of components as the system executes. We

extend our existing framework to support the description and validation of this class of systems.

Our approach allows the stages in the system’s construction and reconfiguration to be constrained

and mechanically analyzed. Moreover, it permits reconfiguration properties to be combined with

structural and/or behavioural properties expressed over the individual configurations that charac-

terize the system.

The model of dynamism we introduce uses the notion of architecture construction events to

describe the changes made to a configuration over time. These events correspond directly to the

architecture construction operations instantiate component, instantiate connector, connect, etc.

of Section 3.4.

The basic idea behind this model is that the reconfiguration of a system is modeled by a

process that engages in these events. An example of a system specified using these architecture

construction events is shown in Figure 5.7. In the same way as the construction operations, the

events are parameterized with additional information that indicates the basic architectural ele-

ments that they operate on. This process describes the construction of a system that is composed

of two “client” components, a memory “server” and a topology defined by two architectural

connections. The process is initially able to engage in the event inst com.mem.mem1, which rep-

resents the instantiation of the element mem with instance name mem1. In the same way, the next

event the process engages in specifies the creation of a client component, client1. A connection

between these two instances is then allowed with the conn.client1.mem1 event.

The set of traces defined by this process represents static “snapshots” of the system, taken at

specific points in its reconfiguration. Figure 5.8 enumerates all of the possible traces that char-

acterize this system. Combined, these traces describe all possible topologies that the system of
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Figure 5.7 evolves through. Figure 5.9 graphically depicts each of the configurations that corre-

spond to a system trace. Given this system, we need only define a mechanism for constructing

the individual configuration instances from a specific trace.

It is important to note that this model of dynamism is built on top of our existing framework

and can take full advantage of all of the mechanized reasoning capability previously described;

once a configuration is constructed from its trace it is available for the same mechanical analysis

as was previously demonstrated for static architectures. Each instance of a configuration may be

validated directly against structural properties, and its behavioural specification can be generated

through the ConfigBehaviour mapping. This allows structural properties, behavioural properties,

or any property relating both to be verified over all configurations of the system.

The following sections introduce the additional formal machinery required to support this

approach within our framework. We first give the definition of the architecture construction

events and then discuss how processes defined over these events are used to construct instances of

architectures. Finally, we demonstrate how properties are expressed over the set of configurations

defined by these processes.

5.4.1 Architecture Construction Events

This approach is straightforward to mechanize within our framework. We introduce the notion

of architecture construction events using the PVS datatype construct. These events correspond

directly to the run-time7 architecture construction operations:

7One could also envision the design-time operations available as construction events. This would allow basic
element definitions to be added to the system over time. We have not pursued this here.
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DynamicSystem =
(inst com:mem:mem1 !

(inst com:client :client1!
(conn:client1:mem1 !

(inst com:client :client2!
(conn:client2:mem1 ! Stop)))))

Figure 5.7: A system described using architectural construction events.

fhi;

hinst comi;

hinst com; inst comi;

hinst com; inst com; conni;

hinst com; inst com; conn; inst comi;

hinst com; inst com; conn; inst com; connig

Figure 5.8: The traces resulting from the system of Figure 5.7.

client1 : client

client1.client _caller mem1 : mem

mem1.mem _definer

mem1 : mem

mem1.mem _definer

client1 : client

client1.client _caller mem1 : mem

mem1.mem _definerclient2 : client

client2.client _caller

client1 : client

client1.client _caller mem1 : mem

mem1.mem _definer

client1 : client

client1.client _caller mem1 : mem

mem1.mem _definerclient2 : client

client2.client _caller

Figure 5.9: The configurations that correspond to the traces of Figure 5.8.
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69ACEvent : DATATYPE

BEGIN

inst_com(i : INSTANCE, e : ELEMENT) : inst_com?
inst_con(i : INSTANCE, e : ELEMENT) : inst_con?
conn(ip1, ip2 : IPORT) : conn?

END ACEvent

Recall from previous discussion that the basic CSP process type is generic in the type of event

that it can engage in. Therefore, a process expressed over these events is readily declared in the

following manner:

DynamicSystem : process[ACEvent] = ...

A description of a dynamic system is expressed using the same CSP process algebra operators

introduced earlier. The events that the system interacts in, however, are taken from the ACEvent

datatype defined above. For example, the system of Figure 5.7 is defined with the following CSP

process:

70DynamicSystem : process[ACEvent] =
(inst_com(client1, client) >>

(inst_com(mem1, mem) >>
(conn(((client1, client_caller),(mem1, mem_definer))) >>
(inst_com(client2, client) >>

(conn(((client2, client_caller),(mem1, mem_definer))) >>
Stop[ACEvent])))))

5.4.2 Configuration Construction

The next step is to define a systematic means of deriving instances of configurations from sys-

tem traces. This process can be intuitively viewed as applying the corresponding architecture

construction operation for each event composing the trace. An operation of this nature is readily

described with a recursive function:
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71actr : var trace[ACEvent]
c : var Configuration

arch_gen(actr,c) : recursive Configuration =
cases actr of

null : c,
cons(x, y) :

cases x of
inst_com(i, e) :

arch_gen(y, instantiate_component(i, e, c)),
inst_con(i, e) :

arch_gen(y, instantiate_connector(i, e, c)),
conn(ip1, ip2) :

arch_gen(y, connect(ip1, ip2, c))
endcases

endcases
measure length(actr)

When evaluated with an architecture construction trace and an initial system configuration8

(represented by the variables actr and c respectively), the function arch gen evaluates to an

expression of type Configuration. This expression represents the application of the archi-

tecture construction operations to the configuration “c”. For each event in the trace, the function

identifies the event and its parameters. It then recursively applies itself to the remainder of the

trace with the operation indicated by the event applied to c. The result of this process is an

expression consisting of a series of nested functions that represents a configuration in the same

manner as described in Section 4.3.2. For example, when applied to the following trace (taken

from the system of Figure 5.7),

hinst com:mem:mem1; inst com:client :client1; conn:client1:mem1i

and given the initial configuration constant, arch gen evaluates to the configuration

expression:

8Which can be any constant of type configuration, including the initial configuration constant.
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connect(((client1,client_caller),(mem1,mem_definer)),
instantiate component(client1, client,
instantiate component(mem1, mem, initial_configuration)))

This expression can then be subject to all of the types of verification described in the first part of

this chapter using the same techniques.

5.4.3 Validation

Our previous approach to reasoning about a single configuration is easily extended to handle the

case of a system described with multiple configurations. As before, there is no restriction on the

type of property against which the resulting configurations can be validated; it can be structural,

behavioural, or specify any relationship between the two.

We demonstrate with a property that combines a constraint on the reconfiguration behaviour

with a structural property on the resulting configurations. For example, it is possible to ensure

that no new clients are instantiated until all existing clients are connected to the memory “server”,

that is, after every connect operation the configuration corresponds to a connected topology. In

our language of architecture construction events, the property is stated as “there should not be

any unconnected components in a configuration derived from an architecture construction trace

where the last event represents a connect operation”. The PVS formulation of this property is

given as:

72dynamic: CONJECTURE
System |> { actr |

member(car(reverse(actr)), (conn?)) =>
(FORALL (ip: (arch_gen(actr,

initial_configuration(lib))‘ ports)):
EXISTS (c: [IPORT, IPORT]):
member(c, (arch_gen(actr,

initial_configuration(lib))‘ connections))
AND (ip = c‘ 1 OR ip = c‘ 2))}

The property is expressed as a predicate on the architecture construction traces of the system.

Every trace satisfying the predicate
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member(car(reverse(actr)), (conn?))

implies that the configuration generated from it with arch gen meets the criteria of having no

unconnected ports. Note that this property is very similar to the one presented in Schema 38

of Section 5.1, with the exception that it is now expressed over all configurations which have a

connect as their last operation.

Proof: We begin by issuing

Rule? (grind :if-match nil)

which, as described earlier, simplifies the sequent but instructs the prover not to heuristically

deduce the instantiations for the existential witnesses. PVS responds with five subgoals:

73Trying repeated skolemization, instantiation, and if-lifting,
this yields 5 subgoals:
dynamic.1 :

{-1} null?(t1!3)
{-2} t1!2 = cons(conn((ip!1‘ 2, ip!1‘ 2), (3, 1)), t1!3)
{-3} t1!1 = cons(inst_com(3, 1), cons(conn((ip!1‘ 2, ip!1‘ 2),

(3, 1)), t1!3))
{-4} ip!1‘ 1 = ip!1‘ 2
{-5} 0 = ip!1‘ 2
{-6} x!1 =

cons(inst_com(ip!1‘ 2, ip!1‘ 2),
cons(inst_com(3, 1), cons(conn((ip!1‘ 2, ip!1‘ 2),

(3, 1)), t1!3)))
{-7} (conn?)(conn((ip!1‘ 2, ip!1‘ 2), (3, 1)))
|-------

{1} EXISTS (c: [IPORT, IPORT]):
((ip!1‘ 2, ip!1‘ 2), (3, 1)) = c AND (ip!1 = c‘ 1 OR ip!1 = c‘ 2)

Inspection of the schema yields no opportunity for contradiction in the antecedent formulae.

However, it is straightforward to demonstrate the truth of consequent formula 1 by simply sup-

plying a witness value for the existential quantification, one that makes the whole formula true.

Its value is readily deduced from formula 1:
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Rule? (inst 1 "((ip!1‘ 2, ip!1‘ 2), (3, 1))")

This yields:

74Instantiating the top quantifier in 1 with the terms:
((ip!1‘ 2, ip!1‘ 2), (3, 1)),

this simplifies to:
dynamic.1 :

... details elided
|-------

{1} ((ip!1‘ 2, ip!1‘ 2), (3, 1)) = ((ip!1‘ 2, ip!1‘ 2), (3, 1)) AND
(ip!1 = ((ip!1‘ 2, ip!1‘ 2), (3, 1))‘ 1 OR
ip!1 = ((ip!1‘ 2, ip!1‘ 2), (3, 1))‘ 2)

The subgoal is completed by asserting the truth of this statement:

Rule? (assert)

Each of the four remaining subgoals is addressed with the same strategy. After the truth of

the last subgoal has been demonstrated, PVS responds with:

75This completes the proof of dynamic.5.

Q.E.D.

The complete proof is shown in Figure 5.10.

(grind :if−match nil)

(inst ...)

(assert)

(inst 1 "((0, 0), (3, ip!1‘ 2))")

(assert)

(inst ...)

(assert)

(inst 1 "((4, 0), (3, ip!1‘ 2))")

(assert)

(inst 1 "((4, ip!1‘ 2), (3, 1))")

(assert)

Figure 5.10: Proof of Property Dynamic.

While the level of detail in the example system has been kept to a minimum for clarity,

the complexity of architecture construction processes is limited only by the expressiveness of
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the underlying formalism, in this case CSP. The example we presented showed how a property

can be demonstrated to hold on a dynamic system. It is not difficult to specify more complex

architectural construction behaviours that define similar systems but do not preserve this property.

For example, the process

DynamicSystem2 =
(inst comp:mem1!

((inst comp:client1! (connect :client1:mem1 ! Stop))k
(inst comp:client2! (connect :client2:mem1 ! Stop))))

exhibits a trace where both clients are created before any connections are made.

The approach to modeling and validating dynamic systems that we have introduced in this

section preserves a separation of concerns between the process that describes the system’s overall

collection of configurations, and those of the individual steady-state descriptions. The ability

to separately describe (and analyze) these two aspects of a dynamic system has been identified

as being valuable [ADG98]. Within our framework we are able to specify and reason about

a system’s construction process independent of any validation of the resulting configurations.

Note however, that given this separation, our model of dynamism does not allow the steady-state

behaviour of a configuration to “trigger” its own topology changes. This form of dynamism

is analogous to the creation of new objects during the execution of an object-oriented system,

and requires an underlying formalism with a dynamic process- and communication-structure.

While formalisms of this nature exist, there is limited support for mechanized analysis of their

specifications. We compare our work with other architectural models of dynamism in Chapter 6.

Our approach is dependent upon an event-sequence or trace-based formalism for describing

the behaviour of the configuration process. Fortunately, this representation is commonly used

in theorem-proving based mechanizations. In addition to CSP, other candidate possibilities are

trace representations of I/O Automata [NS95, MN97], and execution sequence semantics [Tre92,
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Bum96]. Although we have not tried our approach with other formalisms, we foresee no technical

difficulties in doing so. The main changes required will be in the specific details of the trace

interpretation portion of the arch gen function.

We have also not included all of the operations that would be useful for a more complete

model of dynamism. A general configuration/reconfiguration approach needs construction op-

erations corresponding to the removal of connections and instances from a configuration. This

would allow for a more realistic model of the evolution of systems as components could also be

removed from a configuration over time. These operations could easily be added to our existing

framework; however, as these operations are not generally available in architecture description

languages, we have not included them in our model.



Chapter 6

Related Work

6.1 Architecture Description

Our work addressing architectural specification builds primarily upon the foundation provided by

research into notations aimed at describing architectures. As previously discussed, architectural

analysis is usually provided through ADLs and their environments. Each ADL is normally built

upon a formal semantic foundation which predisposes it to a particular class of properties and

style of analysis.

The UniCon [SDK+95] language is concerned primarily with supporting the automated gen-

eration of implementations. It provides tools for generating an executable version of a system

from its high-level specification, elements of which can be associated with source-level imple-

mentation modules. The language defines a rich and expressive architectural vocabulary con-

sisting of a fixed set of types, along with constructs for describing components, connectors and

configurations. With a focus on compilation, the main form of analysis is through parser-driven

semantic enforcement of type- and property-constraints. As such, UniCon does not provide a

comprehensive approach to reasoning about the specification.

Wright [AG96], which is based on CSP [Hoa85], can analyze a system for properties such

154



CHAPTER 6. RELATED WORK 155

as connector deadlock freedom. A Wright description is translated into a subset of CSP for

input into the FDR1 [FDR93] static analysis tool. Reasoning is then performed using the model-

checking capability of FDR. Model-checking constructs the finite reachability graph representing

the state-space of behavioural description and then uses exhaustive analysis to check whether or

not a particular property holds across all states. Although Wright provides a very useful approach

to static analysis, it suffers from two main drawbacks. First, as it is based on model-checking

it is sensitive to the state-explosion problem. Second, it does not support the mapping of struc-

tural design information into the underlying semantic model of the system. In contrast with our

framework, Wright does not permit its models to be validated against either structural properties

or properties that involve both structure and behaviour. Many desirable checks introduced by

Allen [All97], including checks to ensure a configuration meets its style-specific constraints, are

not supported within the Wright framework.

The analysis provided by Rapide [LV95], which is based on system simulation, focuses on

execution trace analysis resulting from a simulation step. In simulation-based analysis, the model

of the architecture is “executed”, usually in an event-driven simulation loop. The result of the

execution is a partially ordered set of events representing the actions the system engaged in during

the simulation step. While simulation offers unique advantages over other forms of analysis2, it

is not capable of showing the absence of errors; the set of events generated represent a single

execution of the system. The subsequent analysis of the trace can show the presence of an error

but can not guarantee that a simulation involving a different sequence of events is error free. In

this sense, the analysis provided is equivalent to testing.

Darwin [MDEK95] is a general purpose configuration language with semantics based on

Milner’s �-calculus [MPW92]. Darwin is intended to provide a sound basis for the specifica-

tion of distributed, dynamic systems and is supported by an environment for the construction of

1“Failure Divergence Refinement.”

2It is one of only a handful of techniques that can be used to reason about dynamism in architectural models.
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executable implementations. Although modeled on the �-calculus, Darwin supports only struc-

tural specification; there are no provisions for expressing the behaviour of Darwin components

or configurations. Additionally, while the particular semantics used are expressive and allow

for an elegant model of dynamic structure, the environment does not support an approach for

mechanized analysis of the system.

Our work is also related to the ACME [GMW97b] interchange language in that it is similarly

motivated. ACME is an architectural design syntax which primarily models the shared structural

core of architectures, but supports other design information through uninterpreted property sets.

However, ACME is intended primarily as a vehicle for transferring a design from one architectural

design notation to another. In other words, it facilitates the interoperability of various notations,

allowing the architect to leverage the benefits of using multiple design notations. In contrast

to our work, ACME is not intended as a basis for machine-assisted validation of architectural

designs.

6.2 Formal Models of Architecture

Other research has produced a number of formal models of software architecture. Much of the

previous work yielding architectural models has centered on producing frameworks for the de-

scription or analysis of architectural styles.

Abowd et al. [AAG95] define a formal model of architecture to serve as the foundation for

style definitions. Their formalization is in two parts: a concise abstract syntax of architectures,

and, for a given style, a concrete syntactic vocabulary and a semantic model that captures the

meanings of systems that are formed in that style. The semantics of two styles, pipe-and-filter

systems and implicit invocation event-driven systems, are operationally formalized as state ma-

chines. The elements of the syntax are mapped to their associated semantic definitions with a

set of meaning functions. As their formalization includes a compact model of abstract syntax
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describing components, connectors and configurations, there is some intersection between their

models and ours; however, as their basic aim is not to formalize architecture design notations,

their abstract syntax includes only a selection of the design elements formalized by our model.

The Architecture Style Description Language [RS96c, RS98] (ASDL), uses Z and CSP as a

framework for a style representation language that also forms the basis of an approach to style

analysis [RS96a, RS96b]. Their model differs from ours in that it is tailored to describing ele-

ments of a system’s style, and does not directly model architecture description languages. Al-

though it is used as an architectural style description framework, it is based on a model of module

interconnection languages [RS94] which underscores the close evolutionary relationship between

MILs and ADLs. Similar to the approach of Abowd et al., Z is used to describe an abstract vo-

cabulary for specifying the elements of a specific style, with interpretation functions mapping

these elements to their CSP process descriptions (i.e., their semantic definitions). From a formal

verification perspective their work has some important differences compared with ours. Their

approach currently is not supported by a mechanized proof environment. It is intended primar-

ily as a means for supporting architectural test-case generation from the simulation of the CSP

expressions.

Abd-Allah [eSAA96] has also proposed an architectural model as the foundation for spec-

ifying style. Unlike our formalization which is intended to be a general model of architecture

description, his formalization is aimed at providing a basis for both specifying and analyzing the

composition of architectures defined in different styles. The formalization includes operations

which compose two unrelated instances of architectures, of possibly differing styles. Reasoning

is provided through a PROLOG-based tool which assists in the analysis of the resulting architec-

ture for a set of properties representing architectural mismatches.

Radestock and Eisenback [RE96] present a first-order logic representation of Darwin for the

purpose of exploring the relationship between a set of component types and configurations result-

ing from their instantiation. In this work they only consider composite, or hierarchically defined
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components. They use this representation to derive notions of validity for Darwin programs

(component types) and configurations. While their work shares some similarities to ours, there

are a number of important differences. First, while they define a model, their approach does not

provide an environment for mechanized validation of architectural designs. Second, their defi-

nitions and axioms apply only to the structural specification of a Darwin program, and are not

intended as a general model of architecture description. As such, a behaviour specification is not

considered.

Another formalization, the CHAM model [IW95], is based on an abstract model of chemical

reactions. It has been shown to be a promising new formalism for the modeling and analysis

of architectures. Unlike our model, however, their approach centers more on describing specific

instances of architectures rather than on providing a model of architectural design notations.

6.3 Other Static Analysis Techniques

Our work is also related to the field of static analysis, both for traditional programming-language

source code specifications and software architecture. Both techniques are based on using con-

ceptual models of the specification to extract and analyze a particular set of design aspects from

an existing description. In the case of static program analysis, however, the conceptual model

captures abstract entities and relationships taken from system source-code [Jar94]. That is, the

specification is that of an executable program. The analysis environment is a Program Query

Language (PQL) [Jar95] constructed on top of a relational knowledge base.

Naumovich et al. [NACO97] have investigated the application of other static analysis tech-

niques to existing descriptions of software architecture. Their approach treats reasoning as an

exercise in concurrency analysis. It is based on translating the CSP based behavioural description

from a Wright specification into the Ada programming language. This program is then fed into

two different analysis tools, INCA [CA95] and FLAVERS [DC94], to check for properties such
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as the absence of race conditions and deadlock. The primary purpose of their work is to demon-

strate that existing tools are applicable to software architecture. Their approach differs from ours

in that they simulate the system using a concurrent program; they do not model nor consider any

other aspects of the system such as structure.

Stafford et al. [SRW97] present another static analysis technique based on identifying chains

of relationships between architectural entities. The aim of their work is to discover dependence

relationships between the architectural elements of a specification. This information is captured

in a tabular form which is then analyzed to identify chains of related components. The technique

presented is similar to ours in that it focuses on modeling a design’s entities and relationships.

However, they do not use a single model of architecture. Rather, the information contained in

the table will depend on the source language that is used for the original specification. Their

approach is also not intended for formal verification. The types of analysis it supports are similar

to those of program slicing in that it can identify the aspects of a design that are impacted if an

element is modified (or replaced).

6.4 Dynamic Architectures

Finding a suitable formal basis for specifying and analyzing dynamic software architectures is

still an active research topic. The majority of architecture description languages do not support

either the specification or analysis of dynamic architectures. A notable exception is Rapide, where

by virtue of its event-driven simulation environment, can handle new component instances as well

as a dynamically evolving communication structure. Rapide implements component instantiation

in a manner similar to that of objects within an object-oriented system. As in the case of an

executable program, it can not, in general, be known in advance what specific topologies will be

created during a simulation of a Rapide specification. This restricts the analysis to a subset of

possible topologies as indicated by the specific event trace generated from a simulation.
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A recently proposed extension to Rapide [VPL99] defines an approach for using architectural

events to analyzing the topological evolution of a system (termed an execution architecture).

Similar to our use of architecture construction events, this extension defines a fixed set of events

that can be interpreted as indicating basic configuration changes. Using the tools accompanying

Rapide, the sets of these events can be analyzed, constrained and visualized. Although similar, the

two approaches have some fundamental differences. First, the events of an execution architecture

are generated through simulation in the same manner as a standard Rapide specification. As

discussed earlier, this technique can only be used to identify the presence of constraint violations,

not their absence. Second, the execution architecture describes only the pattern of topological

changes of a system. It does not construct the instances of the topologies which characterize the

system. There is no associated means of deriving an instance of a configuration from a specific

set of architectural events. This approach can therefore not be used for combining the reasoning

about a series of topological changes with the analysis of the resulting system’s structural or

behavioural specification.

Mobile process calculi are one alternative for expressing dynamic architectures. These for-

malisms are suitable for modeling a dynamic system in that they naturally support an evolv-

ing communication structure. The Darwin language [MDEK95, MK96], which is semantically

founded on Milner’s �-calculus [MPW92] allows dynamic architectures to be specified. Darwin

is a general purpose configuration language intended to provide a sound basis for the specification

of distributed, dynamic systems. However, while Darwin has constructs for specifying aspects

of an architecture to be dynamic, it has no provision for allowing behavioural specification or

for mechanized validation. Primarily this limitation stems from the expressiveness of �-calculus

which makes decision procedures computationally expensive. Inroads have been made at re-

ducing these costs and tools are now becoming available that support bi-simulation3 analysis of

3Bi-simulation is used to determine the semantic equivalence of two specifications.
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�-calculus specifications [Vic94, VM94].

Allen et al. [ADG98] have also addressed the issue of dynamic architectures in the context of

the Wright language. Wright is based on CSP and therefore inherits the basic CSP static process

structure. The approach they define simulates dynamic structure by selecting between a number

of predefined configurations by tagging their basic events with the (statically defined) config-

uration in which they will appear. These “control” events correspond to a set of architectural

operations and trigger reconfiguration by selecting an appropriately tagged CSP expression cor-

responding to the currently active configuration. As part of the translation phase into pure CSP,

the descriptions of each instance along with the control events are transformed into one static

CSP process.

A noteworthy feature of this approach is that the control events are interspersed with “regu-

lar” non-control CSP events. This permits topological restructuring as a result of the computation

of the system and can be used to ensure that the reconfigurations happen only at a point in the

process where they are allowed. Their approach differs in a number of ways when compared with

ours. First, their approach simultaneously models all possible configurations by constructing the

process representing their combined behaviour. In contrast, with our model a configuration or its

behavioural specification is constructed only when a specific topological property is encountered.

This lets us combine the reasoning about topological properties with the specific properties of

the resulting system. Second, the reconfiguration program is compiled into CSP and becomes an

integral component of the single CSP process that models the entire system. It is not possible to

reason about this process independent from the rest of the system. Third, as in the original Wright

language, structural information and constraints are not part of the analysis model. Nonetheless,

it is interesting in that it both permits a pseudo-dynamic interpretation of a finite set of CSP pro-

cesses and allows the behaviour of a steady-state to indicate when a change should be tolerated.

As we are currently using CSP, their approach can be used directly within our framework.

Our work is also related to formal models for specifying and reasoning about evolving soft-
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ware systems. The logical framework described in [AL96] allows the specification of evolving

systems where the (re)configurations are specified by a set of axioms. The resulting specifica-

tions represent the evolving software systems from a configuration management perspective and

are mainly used for version control of critical systems. In contrast, the specifications presented

in this paper relate to architectural description and analysis from the standpoint of ADLs. Justo

et al. [JPC98] present a formal configuration language for specifying evolving distributed sys-

tems. Although their model is similar to the one presented here, there is considerable difference

in the focus of the work. Specifically, their model formalizes a reconfiguration language for use

within a configuration management framework. Their formalism differs from ours in that it is

not specifically a model of ADL design information, but rather focuses on an abstract execution

model. This allows for the analysis of system reconfiguration behaviour within a configuration

management framework. Our intent is to model the structural and behavioural design categories

of current architecture description languages for the purpose of mechanized formal validation.



Chapter 7

Conclusions and Future Work

7.1 Summary

Representing and validating high-level architectural models of software systems is gaining im-

portance. Steadily increasing size, complexity and cost is fueling demand for new and alternative

approaches that support software engineering activities at this abstract level. In this thesis we have

proposed a framework for specifying and reasoning about an architecture description and have

illustrated its application with a case-study. The approach that we propose is centered around a

conceptual model of architecture description that formalizes salient features of current languages,

providing a unified view of architectural designs. Design information is represented directly in

our framework using instances of the basic model categories.

In Chapter 2 we provided an introduction to the main categories formalized within our mod-

el, and in Chapter 3 we presented the full formalization using the Z specification language. We

discussed the embedding of this model into the higher-order logic of the PVS theorem-proving

system in Chapter 4. We then showed how this framework can be used to specify the design

information from a description of a system given using an architectural design notation. Finally,

Chapter 5 illustrated the utility of the framework by demonstrating its use for reasoning mechan-
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ically about the resulting models.

7.2 Evaluation and Discussion

The thesis of this work is that an extensible model of architecture description provides a suitable

formal basis for both specifying and applying mechanical reasoning techniques to architectural

designs. Establishing the viability of this approach has produced the following contributions:

� We have developed a formal model of software architecture description languages. The

design categories that are included in the model were selected based on their relative im-

portance for describing designs as indicated by their presence in current notations. A num-

ber of architecture architecture description languages were considered, including UniCon,

Wright, Rapide and Darwin. The model is not intended to capture all possible design cate-

gories, but rather to formalize an extendible core that allows architects to add information

as required. We have found that it was a straightforward process to describe additional de-

sign information and incorporate it into the model in the form of extensions. In addition to

defining the main elements of the behavioural model using extensions, we have illustrated

this mechanism with a selection of ADL- and application-specific extensions.

� We have mechanized the model in the context of the formal verification environment of

PVS. This formalization was a necessary step in order to reason mechanically about archi-

tectural designs. PVS proved to be a suitable choice for this type of formalization effort; it

was a straightforward task to formalize the model in the dialect of higher-order logic used

by PVS. One additional benefit of this stage was the strong typechecking of PVS - by veri-

fying the type-consistency of the model, our confidence in its correctness was significantly

increased.

� We have demonstrated the model’s application to the formal specification of architectural
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design information. Our case-study was based on the RPC-Memory Specification problem

and was chosen for its concise specification and the range of properties that it could be

validated against. As part of this work we also demonstrated how a behavioural formalism

could be integrated to allow a specification of element and system behaviour.

� We have demonstrated how this framework is used to mechanically validate a model of

a system against formally specified properties. These properties were chosen to highlight

the ability of the framework to allow reasoning across the breadth of design information

formalized in the model: to the best of our knowledge, no other ADL handles all of the

types of properties that we are able to demonstrate formally and mechanically within a

single reasoning environment. While the proofs were not automatically generated in their

entirety, the PVS environment provided significant automation. Additionally, many of the

patterns exhibited in the proofs were captured in higher-level strategies and made available

for reuse.

� We have also developed a technique for using the framework to specify and reason about

systems that are characterized by an evolving structure. This approach was constructed

upon the existing elements of the framework and allowed the evolution or construction of a

system to be defined as a process over architecture construction events. We are able to rea-

son about properties relating to this process and to the structural or behavioural properties

of the individual configurations of the system.

An important advantage of a higher-order approach over first-order formalisms is that of the

underlying descriptive power of the logic. While structural information is naturally representable

as typed terms and expressions, higher-order logic offers enough expressive capability to serve

as a basis for other classes of formal systems such as process algebras and finite-state automata.

The ability to reason about specifications defined with these additional formal systems using their

natural algebra or calculus representations ensures that the validation effort remains an intuitive
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process. Furthermore, relationships between design information, whether it is expressed within

these formal systems or directly in higher-order logic, can be explored and validated. We have

demonstrated this ability with a structural/behavioural relationship in Section 5.3.

One drawback of our approach is that significant emphasis is placed on mechanical proof

techniques. While this form of reasoning helps to provide assurance, it is limited in its appli-

cation to individuals with a solid grounding mathematical logic and a good working knowledge

of theorem proving. This issue can be addressed by the addition of a design verifier role to the

software architecture development process. The role of the verifier would be to take the de-

signs produced by an architect and construct the logic-based representation. Working in concert

with the architect, the verifier would construct formal representations of the properties and then

attempt to show that they are theorems. If a proof attempt failed, the verifier would provided

feedback to the architect who would then modify the design appropriately.

As part of this thesis, we have not fully explored the boundaries of our approach in terms of

the size or complexity of the system that can be validated. While large systems may be specified,

the costs of validating the resulting specification may be greater than that of smaller systems,

and as is the case for all formal approaches, must be weighed against the potential benefits. This

trade-off is not unique to our work - applying any type of modeling/reasoning approach, including

but not limited to formal techniques, incurs an associated up-front cost. There may be systems

where an approach such as ours is more than what is deemed necessary, and others where it may

prove useful for providing a necessary level of assurance. We argue that techniques such as ours

represent a contribution to a larger collection of tools for architects that should be applied when

dictated by both experience and economics.

It should also be noted that there is nothing inherent in the approach that restricts it to either

the specification or validation of the entire system model. Indeed, it may be the case that only a

portion of the architecture would benefit from the type of formal validation that we have intro-

duced here. That specific subset could be isolated, specified and validated using our framework.
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These types of decisions are best made on a case-by-case basis.

7.3 Future Work

There are a number of ways that the framework proposed in this thesis can be further developed.

They fall into four general categories: 1) extending and simplifying the behavioural reasoning

model, 2) expanding the approach to include reasoning other than formal validation, 3) using

the framework for architectural activities other than reasoning, and 4) further automating the

translation of an ADL-based design.

The approach we adopted for reasoning about behaviour relied heavily on the predefined

proof rules of PVS to simplify the process expressions of the behavioural specification, rather than

on user-supplied rewrite or deductive rules. Doing so had the advantage that we did not have to

construct a new set of proof rules for each type of property that we were trying to show. It also had

the drawback that we were unable to take advantage of more expressive techniques for specifying

behaviour. In particular, we were limited to specifying non-repeating patterns of component

behaviour. Even though the CSP mechanization included proof rules for manipulating recursive

processes through an induction-based fixed-point theory, we did not make use of it for reasoning

about our configurations as it requires the recursion to be specified as a top-level process (on the

right-hand side of the satisfaction operator); the application of the built-in proof rules did not

leave the simplified sequent in the correct form. This can be addressed within the framework

by adding proof rules for decomposing the configuration expression into the simpler structure

of component processes required by the induction. These rules would not be independent of

the property in the same way as the built-in rules; however, as in the case of the authentication

properties of [DS97], particular classes of trace properties could potentially make use of the same

set of rules.

Beyond validation, the approach we outlined could take advantage of other forms of reason-
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ing. In [LAC98] we introduced and outlined the requirements for a software architecture analysis

environment based on an Architecture Query Language (AQL). Rather than higher-order logic,

this approach represents design information in a form suitable for a logic-programming inference

engine (such as PROLOG), or a relational database. We believe that the type of analysis possi-

ble with this approach provides a useful complement to that of strict validation. For example, it

allows for queries of the form “list all configurations that instantiate elements of type X”. The a-

bility to make queries on the design information is a useful form of analysis for the understanding

or comprehension of larger, more complicated specifications.

While this thesis has only considered using the model as a basis for specifying and rea-

soning about architectural descriptions, our framework could be extended to encompass other

architectural activities, such as architectural refinement. Refinement allows more concrete levels

of detail to be systematically derived from abstract models with refinement mappings, or pat-

terns [MQR95]. These mappings define the relationship between the abstract level and the more

concrete level, establishing the relative correctness of the two models. One possible application

of our logical framework is as a formal basis for refinement. The model would serve to codify the

vocabulary at the abstract level. Refinement patterns corresponding to architectural design prob-

lems could be applied to the architecture to produce a description at a more detailed level. We

are interested in identifying some useful patterns and examining the applicability of our model

for this activity.

Finally, we can further automate our approach by defining additional conversion tools for

working with existing ADLs. Currently our conversions are performed by hand; however, our ap-

proach would benefit from the incorporation of language-parsers for a selection of popular ADLs.

This addition would impose no specific technical challenges as most languages have published

grammar specifications. This form of automation would reduce the possibility of introducing

error into the specification during the conversion stage.



Appendix A

Summary of Z Syntax

This section summarizes the Z notation used in this paper. The formal semantics of the Z speci-

fication language is based on first-order predicate logic and set theory. A complete description of

the language can be found in Spivey [Spi92].

Declarations

The basic unit of modularity is the schema. A schema, which may be parameterized by a set of

types (i.e., a generic schema), introduces a set of variables and the predicates constraining their

possible values:

SchemaName

variables

predicates

GenSchemaName[FORMALPARM1::n ]
variables

predicates

Schema variables are not visible outside the definition, however, a definition can incorporate the

declarations and constraints of other schemas using schema inclusion:
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SchemaName

S

other variables

predicates

where S is a schema defined previously. The declarations of both schemas are merged, and their

predicates are conjoined. Schemas may also be defined as the result of schema expressions:

SchemaName b= S ^ T SchemaName b= S _ T

These definitions result in a new schema whose signature consists of the signatures of both S and

T , and whose predicates are joined by the respective logical connective.

Global variables and axioms are introduced with an axiomatic description:

global variables

predicates

A generic constant definition is similar to a schema, but without a name. The constants are

introduced into the global specification scope:

[FORMALPARM1::n]
constants

predicates

[X ;Y ] Introduces given sets, i.e., X and Y are uninterpreted types.

X == Y The identifier X is a syntactic abbreviation for the expression, Y .

For the following definitions, assume that P and Q are predicates, S , T , and U are sets, X

and Y are arbitrary types, and R and Z are relations:
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Logic

P ^ Q Conjunction

P _ Q Disjunction

P ) Q Implication

P , Q Equivalence (if and only if)

9 x : S � P There exists at least one element of S that satisfies P

8 x : S � P All elements of S satisfy P

Set Theory

fx1; x2; :::xng Set enumeration

PS The power set (set of all subsets) of S

F S The set of all finite subsets of S

x 2 S Membership

x 62 S Non-membership

#S Cardinality of S

x � S Subset

? Empty set

fx : S j Pg The elements of S that satisfy P

S \ T The intersection of S and T

S [ T The union of S and T
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Relations

X �Y Cartesian product

X $ Y Binary relation

(a; b) Ordered pair

�rst First of an ordered pair

second Second of an ordered pair

domR Domain of R

ranR Range of R

R o

9
Z The composition of R and Z , e.g., fa : A; b : B ; c : C j (a; b) 2 R ^ (b; c) 2 Z � (a; c)g

R(j S j) Relational image of R, e.g., fa : A; b : B j (a; b) 2 R ^ a 2 S � bg

Functions

X 7! Y The set of all partial functions from X to Y

X ! Y The set of all total functions from X to Y

X 7!! Y The set of all partial surjections from X to Y

X !! Y The set of all total surjections from X to Y

X 7� Y The set of all partial injections from X to Y

f (a) Function application

f � f(a; b)g Function override, e.g., f (a) = b replacing any previous value of f (a)

Sequences

seqX Finite sequence of X

h i Empty sequence

hS ;T i partitionsU U = S [ T ^ S \ T = ?

Important Identities

X $ Y == P(X �Y )

x 7! y == (x ; y)



Appendix B

The PVS Environment

The PVS environment consists of several tools that are integrated to support the specification of

systems or subsystems [OSRSC99b]. A PVS specification, which is based on higher order logic,

is parsed and typechecked by supporting tool-set. Theorems raised by the typechecker or by the

user can be interactively proved with the assistance of the proof checker. Such a tool partially

automates the proving process with a number of built-in strategies.

B.1 The PVS Language

The specification language supported by PVS is based on a classical higher-order logic. This

logic allows quantification over functions, sets and properties. The PVS language is also based

on a rich type system.

In this section, we summarize the PVS language used in this thesis. In the following defini-

tions, we use P , Q and R to denote predicates, S to denote sets, and X and Y to denote arbitrary

types. A complete specification of the language can be found in [OSRSC99a].
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Declarations

The syntax of a theory declaration is given by the following rule:

name [theory formals] : THEORY

[exportings]

BEGIN

[assuming part]

[theory part]

END name

where theory formals represents a list of formal parameters, exportings defines the list of ele-

ments made available by the theory, and assuming part allows the definition of constraints on the

use of the theory by means of assumptions. The theory part section typically contains the main

body of the theory.

A few other declarations usually defined within the theory part section of a theory are listed

next.

IMPORTING theorynames Importation of elements from other theories

X, Y : TYPE Uninterpreted types

X, Y : NONEMPTY TYPE Uninterpreted nonempty types

X, Y : TYPE = type expression Type declarations

x, y : VAR type expression Variable declarations

x, y : type expression [= expression] Constant declarations

names : AXIOM expression Specification of theory axioms

names : CONJECTURE expression Specification of conjectures
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Logic

= Equality

/= Not Equal

not P Negation

P and Q Conjunction

P or Q Disjunction

P => Q or P IMPLIES Q Implication

P IFF Q Equivalence (if and only if)

if P then Q else R Conditional statement

exists (x : S): P There exists at least one element of S that satisfies P

forall (x : S): P All elements of S satisfy P

Set Theory

add(x1, add(x2, ..., add(xn,emptyset))) Set enumeration

member(x, S) or S(x) Membership

emptyset Empty set

Functions

f(x:X) : Y = ...function expression Function declaration

f:[X->Y] = ...function expression Function declaration

lambda (x:X) = ...function expression Function declaration

f(a) Function application



APPENDIX B. THE PVS ENVIRONMENT 176

Expression Evaluation

if boolean expression then expression endif If statement

cond Multi-way if statement

boolean expression -> expression,

boolean expression -> expression,

...

boolean expression -> expression,

endcond

cases x of Pattern matching on abstract datatypes

pattern : expression,

pattern : expression,

...

pattern : expression,

endcases

B.2 PVS Prover Commands

The PVS documentation organizes the large number of available commands in categories. PVS

supports a collection of proof commands to carry out propositional, equality, and arithmetic

reasoning. There are also structural rules which allow, for example, to copy, delete, or hide

selected formulae, quantifier rules which allow to generalize, instantiate, or skolemize formulae,

and control rules which allow to postpone, quit, undo, or skip partial or complete proof attempts.

There is also support to the use of definitions and lemmas, induction, simplification procedures,

and other types. The environment also supports the combination of a number of proof commands

into a strategy.

This section describes some of the commands available in the PVS proof checker, which
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is one of the tools available in the PVS verification environment. It is not our goal to make a

complete or detailed description of the commands, which can be found in the PVS prover guide

[SORSC99]. Rather, we give a brief description of the applicability of some of the commands

used during the research associated with this thesis. To this small set we add a few other com-

mands which we consider relevant.

B.2.1 Verification Commands

ASSERT - This command represents a combination of rules to perform simplification using de-

cision procedures. These procedures are invoked to prove trivial theorems, to simplify complex

expressions, and to perform matching.

BASH - This command performs the ordered execution of a number of simplification and instan-

tiation commands.

BDDSIMP - Performs propositional simplifications by means of an external package based on

binary decision diagrams (BDDs).

BRANCH (use: branch step (list)) - Apply step to the current goal. If this succeeds and generates

subgoals apply the nth element of list to nth subgoal. If there are more subgoals than items in

the list, apply the last item of the list to the remaining subgoals.

CASE (use: case “expression1” “expression2”) - The CASE command allows the splitting of the

current sequent in a number of subgoals. These subgoals are derived from the parameters speci-

fied in the proof command. If n parameters are given, n + 1 subgoals are generated.

DECOMPOSE-EQUALITY - Decomposes a function, tuple, record or datatype equality term into

its component equality expressions.

EXPAND - Expands the name to its complete definition.

FLATTEN - Disjunctively simplifies sequent formulae containing disjuncts. A disjunct is an

antecedent formula of the form :A or A ^ B , or a consequent formula of the form :A, A! B

or A _ B .
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GRIND - This strategy is commonly used to automatically complete a proof branch or to apply

the obvious simplifications. PVS calls it a “catch-all” strategy.

GROUND - This command invokes propositional simplifications followed by an ASSERT com-

mand.

LEMMA (use: lemma “lemma name”) - This rule introduces in the sequent an instance of the

lemma called lemma name. All of the lemmas used in our proofs were defined as axioms of a

theory.

INDUCT (use: induct “variable”) - This command automatically employs an induction scheme.

The variable name variable must be quantified at the outermost level of a universally quantified

consequent formula.

INST (use: inst formula number “term1” “term2”) - The universally quantified formulae in the

antecedent and the existentially quantified formulae in the consequent are reduced by instantiating

the quantified variables.

PROPAX - This command proves trivial sequents such as “TRUE ! �”. It is automatically

applied by the prover to conclude the proving process.

REDUCE - This command is the main workhorse of the GRIND command. It repeatedly uses the

BASH command to perform simplification with decision procedures.

REPLACE (use: replace fnum (list) dir) - Rewrite a list of formulae given an equality formula,

fnum. The parameter RL denotes that the rewrite should occur in a right-to-left direction. That is,

the target occurances on the right-hand side of the equality are rewritten into the left-hand side of

the formulae.

REWRITE (use: rewrite “lemma name”) - This rule applies lemma name as a rewrite rule. It

attempts to determine the required substitutions automatically.

SKIP - Do nothing - the no-op rule.

SKOSIMP* - Repeatedly skolemize and simplify.

SPLIT - The conjuntive formulae in the current goal sequent are split.
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THEN* (use: then* list) - Apply the each of the rules indicated by list in order.

TRY (use: try step1 step2 step3) - Apply step1 to the current goal. If this succeeds and generates

subgoals apply step2 to each one. If step1 has no effect, then apply step3.

TYPEPRED - Introduce all implicit type predicates for the given expression.

B.2.2 Control and Structural Commands

DELETE (use: delete formula number) - This command yields the subgoal where the formulae

identified by formula number in the current goal sequent have been deleted.

POSTPONE - This is used to mark the current goal as pending to be proved and to shift the focus

to the next pending proof.

QUIT - It terminates the current proof attempt.

UNDO - This command is used to undo the proof until a certain previous step.
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