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Abstract 

A survey of the existing literature indicates that optimization on the power management logic of 

hybrid electric vehicle is mostly performed after the design of the powertrain architecture or the 

power source components are finalized.  The goal of this research is to utilize Multidisciplinary 

Design Optimization (MDO) to automate and optimize the vehicle’s powertrain component sizes, 

while simultaneously determining the optimal power management logic in developing the most cost-

effective system solution. 

A generic, modular, and flexible vehicle model utilizing a backward-looking architecture is created 

using scalable powertrain components.  The objective of the research work is to study the energy 

efficiency of the vehicle system, where the dynamics of the vehicle is not of concern; a backward-

looking architecture could be used to compute the power consumption and the overall efficiency 

accurately while minimizing the required computing resource.  An optimization software platform 

utilizing multidisciplinary design optimization approach is implemented containing the generic 

vehicle model and an optimizer of the user’s choice.  The software model is created in the 

MATLAB/Simulink environment, where the optimization code and the powertrain component 

properties are implemented using m-files, and the power consumption calculations of the vehicle 

system are performed in Simulink.  Furthermore, a feature-based optimization technique is developed 

with the motivation of significantly reducing the simulation run-time.  To demonstrate the capabilities 

of the developed approach and contributions of the research, two optimization case studies are 

undertaken: (i) series hybrid electric vehicles, and (ii) police vehicle anti-idling system.   

As the first case study, a plug-in battery-only series hybrid electric vehicle with similar power 

components as the Chevrolet Volt is created, where the battery size and the power management logic 

are simultaneously optimized.  The objective function of the optimizer is defined from the financial 

cost perspective, where the objective is to minimize the initial cost of batteries, gasoline and 

electricity consumption over a period of five years, and the carbon tax as a penalty function for fuel 

emissions.  The battery-only series hybrid electric vehicle is subsequently extended to include 

ultracapacitors, and the optimization process is expanded to the rest of the powertrain components 

and power management logic.  A comparison between the optimization algorithms found that only 

genetic algorithm (GA) was capable of finding the optimal solution during a full simulation, while 

simulated annealing and pattern search were not able to converge to any solution after a 24-hour 
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period.  A comparison between the full genetic algorithm optimization and the feature-based (FB) 

method with secondary optimization found that although the final cost function of the FB 

methodology is higher than that of the full GA optimization, the total simulation run-time is 

approximately ten times less using the FB method.  The behaviour of the solutions found via both 

methods exhibited almost identical characteristics, further confirming the validity of the feature-based 

methodology.  Finally, a benchmarking comparison found that with more accurate manufacturers’ 

component data and additional appropriate performance requirements, the proposed software platform 

will be capable of predicting a solution that is comparable to the Chevrolet Volt.  

The second case study involves optimizing an anti-idling system for police vehicles using the same 

optimization algorithm and generic vehicle model.  The goal of the optimization study is to select an 

additional battery and determine the power management logic to reduce the engine idling time of a 

police vehicle.  It is found that depending on the SOC threshold, the duration of time over which the 

engine is activated varies in a non-linear fashion, where local minima and maxima exist.  A design 

study confirmed that by utilizing the anti-idling system, significant cost reduction can be realized 

when compared to one without the anti-idling system.  

A comparison between the various optimization algorithms showed that the feature-based 

optimization can obtain a relatively accurate solution while reducing simulation time by 

approximately 90%.  This significant reduction in simulation time warrants the feature-based 

optimization technique a powerful tool for vehicle design.  Due to the high cost of the electrical 

energy storage components, it is currently still more cost-effective to use the fossil fuel as the primary 

energy source for transportation.  However, given the rise of fuel cost and the advancement in the 

electrical energy storage technology, it is inevitable that the cost of the electrical and chemical energy 

storage method will reach a balance point.  The proposed optimization platform allows the user the 

capability and flexibility to obtain the optimal vehicle solution with ease at any given time in the 

future. 
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Chapter 1 

Introduction 

In recent years, the global economy and industrial world have stridden towards alternative green 

technologies in the face of climate change.  Automobiles are currently a major source of air pollution, 

prompting collaborations among governments, academia, and industrial institutions to search for a 

solution to reduce vehicle emissions, while reducing the consumption of fossil fuels.  Hybrid electric 

vehicle systems became one of the best working solutions by utilizing the advantages of both internal 

combustion (IC) engine and electric energy source.  By definition, a hybrid vehicle is one that 

employs two or more power sources to improve the overall efficiency of the system.  The advantage 

of an IC engine is that fuels with high-energy content can be transported with ease, while the 

disadvantage is that burning of fossil fuels creates emissions that are hazardous to the environment.  

Alternatively, an electric vehicle uses electric energy from a battery or fuel cell, and converts it into 

kinetic energy via electric motors.  The advantage of an electric vehicle is that zero emissions are 

produced when electric energy is converted into kinetic energy.  However, current electrical energy 

storage technologies do not present a working solution with reasonable vehicle cost and range.  By 

combining an IC engine with an electric battery-motor system, the problem of energy portability can 

be solved.  In addition to achieving low emissions and reducing fuel consumption, hybrid electric 

vehicle can recapture the otherwise lost kinetic energy during the braking cycle, further improving the 

efficiency of the vehicle system.  In order to increase the efficiency and accuracy of automotive 

design, Computer Aided Engineering (CAE) has played an ever increasingly significant role 

throughout the process of vehicle design.  With the increase of computing power, manufacturers are 

now able to perform design, testing, and optimization of a vehicle through computer simulation, all 

prior to the actual manufacturing of a vehicle.  Given the complexity of automobile design, the 

greatest challenge for automotive engineers is to research and optimize component designs in their 

respective field while communicating with other disciplines to determine the optimal vehicle system 

design.  Only in recent years, CAE software products such as topology optimization from 

Hyperworks for structural optimization and MSC Software MD which combines ADAMS (dynamics) 

and NASTRAN (finite element analysis) for multi-disciplinary simulations, became available to assist 

automotive engineers in realizing optimal solutions across various disciplines. 

 The key contribution of the research is to develop a Multidisciplinary Design Optimization (MDO) 

methodology for hybrid electric vehicle design.  MDO is currently widely utilized in the aerospace 
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industry, where engineers seek a balance between the performances of aerodynamics and structural 

design.  However, in the field of hybrid electric vehicles, researchers are still working on improving 

efficiencies and performance at the component level, rather than from the system perspective.  A 

survey of the existing literature indicated that optimization on the power management logic is mostly 

performed after the design of the powertrain architecture or the power source components were 

finalized.  The goal of this research is to utilize MDO approach to automate and optimize the hybrid 

electric vehicle’s powertrain component sizing, while simultaneously determining the optimal power 

management logic in developing the most effective system solution.  The objective function seeks to 

minimize the cost from a financial perspective rather than only fuel consumption or emissions.  Since 

the target user of the optimized hybrid electric vehicles is the consumer market, it is more realistic to 

propose a cost conscious solution in balancing the size of the electrical energy storage devices while 

minimizing the consumption of fossil fuel.  On the other hand, if the target user is for the defense 

industry where financial cost is not the top priority, the objective function can be easily adjusted to 

maximize the performance of the system.  Using the proposed methodology, an automotive engineer 

will perform concurrent optimization at the beginning of the design cycle based on the vehicle design 

objective, and subsequently finalize the detailed design of each of the components only after the most 

optimal solution has been found.  Such methodology not only allows the designer to realize the most 

optimal system, but also greatly improves the efficiency of the design process while reducing 

developmental cost.  

The developed approach utilizes Multidisciplinary Feasible (MDF) method for multidisciplinary 

design optimization.  Various optimization techniques are implemented to search the design space 

containing scalable power components and the power management logic parameters.  The objective is 

to develop an optimization software platform to perform concurrent vehicle optimization while 

determining the most suitable and effective optimization process.  To demonstrate the effectiveness 

and the contribution of the research, concurrent optimizations are performed and demonstrated in two 

case studies: (i) series hybrid electric vehicles, and (ii) police vehicle anti-idling system.  Chapter 2 

will first provide some definitions for hybrid electric vehicles, as well as a literature survey of some 

of the existing optimization approaches and MDO methodologies.  Chapter 3 will present the generic 

vehicle model along with its scalable powertrain components and the power management logic of the 

electrical energy storage system.  Chapter 4 will discuss the overall software structure using the MDF 

method and the various optimization algorithms available.  Furthermore, detailed derivation of the 

proposed feature-based optimization method will be presented.  Chapters 5 and 6 will present the 
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design objectives and simulation results of the two case studies, i.e., series hybrid electric vehicle and 

police vehicle anti-idling system, respectively.  Finally, Chapter 7 will make conclusions based on the 

research undertaken and will highlight the contributions of the thesis.  
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Chapter 2 

Literature Review 

As hybrid electric vehicles (HEVs) are gaining widespread attention and popularity in the industry 

and the research community, various powertrain architectures and power management schemes have 

been proposed in order to improve the vehicle’s fuel economy and to reduce emissions.  This chapter 

provides an overview of the existing hybrid electric vehicle powertrain structures, and reports surveys 

of the previously proposed power management controller techniques.  In addition, powertrain sizing 

optimizations are presented, along with examples of existing concurrent optimization on the 

powertrain sizing and power management logic.  Finally, due to the multi-disciplinary nature of HEV, 

the concept of multidisciplinary design optimization along with the proposed methodology and theory 

is discussed.   

2.1 Hybrid Electric Vehicle Configuration 

The most successful hybrid configuration currently utilized by various vehicle manufacturers consists 

of a gasoline or diesel engine, coupled with a motor and a generator linked with a battery system.  

Although there exist many different hybrid configurations, most can be categorized under two hybrid 

system classes: (i) Series Hybrid and (ii) Parallel Hybrid. 

2.1.1 Series Hybrid 

In the series hybrid system, the IC engine drives the generator, where electricity is generated and 

supplied to the battery.  It is also sometimes referred to as an electric vehicle with a range extender in 

the industry.  The electrical energy from the battery is then delivered to the motor, which in turn 

drives the wheels to propel the vehicle.  Figure 2-1 illustrates the system configuration of a series 

hybrid electric vehicle [1]. 
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Figure 2-1: Schematic of a Series Hybrid Electric Vehicle [1] 

The advantage of the series hybrid architecture is that the engine runs at its best efficiency to 

generate electrical energy to charge the battery.  Since the engine is constantly operating at its 

optimum efficiency, and the vehicle receives its power solely from the electric motor, this system is 

most efficient during the stop and go of city driving.  In addition, the internal combustion engine and 

generator of the series hybrid electric vehicle can be replaced by a fuel cell and a DC-DC converter, 

thus converting it into a pure electric vehicle.  The disadvantage of a series hybrid electric vehicle is 

in that the efficiency of the system is reduced during highway driving cycles.  During highway 

driving, energy losses during the conversion process in addition to the lower torque output of the 

electric motor at high rotational speeds contribute to the overall lower efficiency of the system [1]. 

2.1.2 Parallel Hybrid 

The parallel hybrid configuration switches between the two power sources, i.e., the internal 

combustion engine and the electric motor, where the high-efficiency range of each is selected and 

utilized.  Depending on the situation, both power sources can also be used simultaneously to achieve 

maximum power output and peak performance.  Figure 2-2 shows the system configuration of a 

parallel hybrid electric vehicle [1]. 
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Figure 2-2: Schematic of a Parallel Hybrid Electric Vehicle [1] 

The advantage of a parallel hybrid electric vehicle is in that the system has the ability to offer higher 

efficiency during highway driving conditions.  During highway driving, the vehicle speed does not 

vary significantly and therefore it is more efficient to drive the wheels directly from the IC engine.  

On the other hand, the electric motor can be used solely during city driving to prevent the IC engine 

from operating in its low-efficiency range, thus providing higher overall efficiency [1]. 

2.2 Power Management Control Strategies 

As hybrid electric vehicles (HEVs) are gaining more popularity in the market, the efficiencies of the 

power management system in the hybrid powertrain are receiving increasing attention in the research 

communities worldwide.  Majority of the proposed solutions for the power management control logic 

can be classified under two types: (i) rule-based approach and (ii) optimization-based approach.  

Rule-based control strategies consist of deterministic and fuzzy logic rule-based methods, while 

optimization-based approaches typically utilized global optimization when determining the control 

strategy [2].  The following sections will provide an overview of the existing power management 

control strategies in details. 

2.2.1 Deterministic Rule-Based Methods 

Deterministic rule-based methods are usually based on analysis of power flow in a hybrid drivetrain, 

efficiency/fuel maps of ICE, and human experiences, generally implemented in the form of lookup 

tables and by splitting powers between power sources [2].  In the following subsections two types of 

deterministic rule-based methods will be described.  

Parallel HEV
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2.2.1.1 Power Follower Baseline Control Strategy 

The baseline control strategy is used in the parallel hybrid configuration, and uses the engine as a 

primary source of torque, while the electric motor supplements additional power when required.  

When the battery SOC is low, the system switches to charging mode in order to recharge the battery.  

The following rules depict the baseline control strategy. 

1. Only the electric motor is used below a certain minimum vehicle speed. 

2. If the power demand is greater than the maximum engine power at its operating speed, the 
electric motor is used to provide the additional required power. 

3. The batteries are recharged by regenerative braking. 

4. The engine shuts off when the power demand falls below a limit at the operating speed to 
prevent inefficient operation of the engine. 

5. If the battery SOC reaches its lower threshold, the engine provides additional power to 
recharge the battery. 

This is a popular strategy for power management in current hybrid systems.  For example, the basic 

control strategy of the Toyota Prius is that the motor provides additional power when required.  

Additionally, the motor is also exclusively used when the vehicle accelerate from standstill and at low 

speed.  Similarly, the Honda Insight uses the IC engine as the primer power source, with the electric 

motor assisting the engine during acceleration and when starting from standstill. Even though such an 

approach is popular and widely implemented, it suffers the drawback that the efficiency of the entire 

powertrain is not optimized [2,3]. 

2.2.1.2 Modified Power Follower Control Strategy 

In order to improve the baseline control strategy, Johnson et al. [3] proposed an adaptive rule-based 

power management strategy.  The main goal of this approach is to optimize both energy usage and 

emissions by introducing a cost function representing overall fuel consumption and emissions at all 

candidate operating points.  The control strategy uses a time averaged speed to obtain the 

instantaneous energy use and emission targets.  The proposed control strategy can be described as 

follows.  
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1. Define the range of candidate operating points represented by the range of acceptable 
motor torques for the current torque request. 

2. For each candidate operating point, calculate the constituent factors for optimization. 

a. Calculate the fuel energy that would be consumed by the engine. 

b. Calculate the effective fuel energy that would be consumed by the 
electromechanical energy conversion. 

c. Calculate the total energy that would be consumed by the vehicle. 

d. Calculate the emissions that would be produced by the engine. 

3. Normalize the constituent factors for each candidate operating point. 

4. Apply user weightings to the results from step 3. 

5. Apply target performance weightings to the results from step 4. 

6. Compute overall impact function, a composite of results from steps 3-5, for all candidate 
operating points. 

The final operating point is the operating point with the minimum impact factor.  Although this 

modified strategy has improved the problems associated with the baseline approach, repeating the 

above steps for all candidate operating points is not desirable for online implementation [2,3]. 

2.2.2 Fuzzy Rule-Based Methods 

Due to the multi-domain, nonlinear, and time-varying nature of the hybrid electric vehicle’s 

powertrain, many researchers have investigated the implementation of fuzzy logic as a solution.  

Instead of using deterministic rules, the decision making property of fuzzy logic can be adopted to 

realize a real-time power-split controller [2].  The past work performed by researchers on applying 

fuzzy logic to hybrid electric vehicle powertrain can be classified under the following categories. 

2.2.2.1 Conventional Fuzzy Strategy 

Schouten el al.[4] developed a fuzzy logic-based power management control logic that included a 

compression ignition (CI) engine, an electric motor, and a battery system, and was particularly 

designed for a parallel hybrid electric vehicle.  It was stated that the most efficient operating region of 

the battery occurred in the high SOC and low-power region for both charge and discharge, meaning 

that the battery should be frequently charged at low power levels.  Therefore, when the power 

command is below 6kW, only the electric motor is used to drive the vehicle.  Between 6 and 50 kW, 

only the CI engine is used to propel the wheels and charge the battery, if necessary.  If the power 

command is over 50 kW, both the electric motor and the CI engine are used.  The proposed fuzzy 

logic controller determines the optimal generator power and a scaling factor for the electric motor 
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during motor mode.  The inputs are the driver power command, the battery SOC, and the electric 

motor speed.  When the SOC is high, the scaling factor equals to one.  On the other hand, when the 

SOC is low, the scaling factor is set to zero to prevent battery damage.  Sample rules of the Fuzzy 

Logic Controller (FLC) are as follows: 

1. IF SOC is Low, Pdes is Normal, and ωm is Low, THEN Pgen is 5 kW 

2. IF SOC is Low, Pdes is Normal, and ωm is not Low, THEN Pgen is 15 kW 

The rules suggest that if the SOC is low, and the requested power is normal, and the electrical 

motor’s rotational speed is close to its optimum efficient region, the battery will be charged at a 

higher power level than when the electric motor speed is low.  Finally, the engine and the motor 

powers were computed based on the output of the FLC and Pdes, using simple deterministic rules.  

The advantage of this approach is that the operating points for the CI engine, electric motor, and the 

battery can be controlled in their optimal efficiency regions.  The drawback, however, is that the 

resultant vehicle emissions are not taken into account [2,4]. 

2.2.2.2 Fuzzy Predictive Strategy 

An alternate method proposed by researchers to achieve optimal solution is based on minimizing an 

appropriate cost function over a drive cycle, attainable by knowing the entire trip information 

beforehand.  The problem is to perform real-time control tasks, while accounting for situations in the 

future along a planned route.  In such scenario, Global Positioning System (GPS) can obtain prior 

knowledge of the vehicle operating environment, i.e., heavy traffic, road grade, etc.  The fuzzy logic 

predictive controller adapts the instantaneous controller parameters to the predictions from future 

states such as the road grade or speed dictated by traffic conditions.  The inputs to the predictive 

controller are the change in vehicle speed corresponding to the recent speeds, the predicted speed, and 

the road grade along the predetermined route from the navigational system.  The controller then 

determines the actions to be performed, based on the recent history of the motion of the vehicle, and 

applies the changes in the near future.  The prerequisite for such system is that detailed road grade 

and traffic information in real time must be known at all time.  The approach yields the closest to 

optimal solution as far as the vehicle operating efficiency is concerned, however, due to the current 

level of roadway infrastructure, it is still unrealistic to implement such controller for mass production 

[2,5]. 
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2.2.3 Optimization-Based Methods 

The goal of the optimization-based control strategies is to optimize the output power of the power 

components by minimizing a cost function typically represented by the fuel consumption and/or 

emissions.  Global optimum solution can be found by performing global optimization over a fixed 

drive cycle, which is non-casual since it finds the minimum fuel consumption using knowledge of 

future and past power demands.  The drawback of such approach is that it cannot be used directly for 

real-time power management.  However, it can be used as a basis for designing rules for online 

implementation or comparison for evaluating other control strategies. 

2.2.3.1 Dynamic Programming 

Dynamic programming (DP) is a powerful tool to solve general dynamic optimization problems, due 

to its ease of handling the constraints and nonlinearity of the problem while obtaining a globally 

optimal solution.  Optimal solution can be found by minimizing the optimization parameters by 

evaluating the objective function at every time step of the drive cycle.  The drawback however, is the 

complexity and the expensive computational resources required to obtain the solution [6,7,8].   

Lin et al. [9] applied the DP technique to solve the optimal power management problem of a hybrid 

electric truck by minimizing fuel consumption, NOx, and emissions as cost functions over a drive 

cycle.  To reduce the computational burden of the DP, only three state variables, the vehicle speed, 

transmission gear number, and the battery SOC were included in the state vector x to implement a 

dynamic model in the form of x(k+1)=f(x(k),u(k)) for the hybrid truck under study.  The control 

variables u(k) contains the desired output torque from the engine/motor and gear shift command to 

the transmission.  The overall dynamic optimization problem can be decomposed into a sequence of 

simpler minimization problems as follows. 

Step N – 1: 

ேିଵܬ
∗ ൫ݔሺܰ െ 1ሻ൯ ൌ min

௨ሺேିଵሻ
ሺܰݔ൫ܮൣ െ 1ሻ, ሺܰݑ െ 1ሻ൯ ൅  ሺܰሻሻ൧ݔሺܩ

Step k, for 0 ≤k< N – 1: 

௞ܬ
∗൫ݔሺ݇ሻ൯ ൌ min

௨ሺ௞ሻ
,ሺ݇ሻݔ൫ܮൣ ሺ݇ሻ൯ݑ ൅ ௞ାଵܬ

∗ ሺݔሺ݇ ൅ 1ሻሻ൧ 

(2.1) 

where J*
k(x(k)) is the optimal cost-to-go function or optimal value function at state x(k) starting from 

time state k.  It represents the optimal resulting cost that at stage k, the system starts at state x(k) and 

follows the optimal control law thereafter until the final stage.  The above recursive equation is solved 

backward to find the optimal control policy [2,9]. 
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Another solution proposed by Perez et al. [10] is to utilize dynamic programming to determine the 

optimal solution of a series HEV.  The control objective is to determine the value of the engine and 

the motor power to minimize the fuel consumption.  Since the total required power (Preq) is the sum of 

the engine, or the power from the fuel tank (PFT), and the motor, or the power from the electrical 

storage system (PESS), and either PFT or PESS can be taken as the control action or independent 

variable.  The dynamic programming equations can be expressed in the following recursive 

algorithm. 

ேܸሺ݅ሻ ൌ ܽ௜௧
ே, ݅ ∈ ܵே 

௞ܸሺ݅ሻ ൌ min
௝∈ௌೖశభ

ൣܽ௜௝
௞ ൅ ௞ܸାଵሺ݆ሻ൧ , ݅ ∈ ܵ௞, ݇ ൌ 0,… ,ܰ െ 1 

(2.2) 

where aN
it is the arc-cost from node i to stage N to a fictitious terminal node t and Vk(i) is the 

minimum cost from node i to stage k to the terminal node.  This algorithm is known as the backward 

algorithm.  In order to manage the integral constraints, a penalization term is introduced in the 

objective function.  The arc-cost is modified as follows. 

ܽ௜௝
௞ ൌ

1
2
ቆ ி்ܲ	௜,௞

௜,௞	ி்ߟ
൅ ி்ܲ	௝,௞ାଵ

௝,௞ାଵ	ி்ߟ
ቇ ݐ∆

൅ ߙ ቤ
1
2
ቆ ௥ܲ௘௤ሺ݇∆ݐሻ െ ி்ܲ	௜,௞

ாௌௌߟ ௜,௞
൅ ௥ܲ௘௤ሺሺ݇ ൅ 1ሻ∆ݐሻ െ ி்ܲ	௝,௞ାଵ

ாௌௌߟ ௝,௞ାଵ
ቇ∆ݐቤ 

(2.3) 

The parameter α is chosen by trial and error for the demanded cycle, and the resulting consumed 

energy profile satisfies the constraint for each t.  The DP algorithm can then be used to determine the 

split between the two power sources given a known drive cycle [10]. 

2.2.3.2 Equivalent Consumption Minimization Strategy 

Equivalent Consumption Minimization Strategy (ECMS) solves the local optimization problem 

instantaneously by considering the total energy consumption, while maintaining a constant battery 

state of charge (SOC).  Essentially, ECMS regulates the SOC around a reference point while 

providing the required power at the wheels and achieving minimum fuel consumption.  The concept 

of equivalent fuel consumption is based on the fact that in a hybrid powertrain the energy 

consumption from the battery is replenished by running the engine, and it is used in the objective 

function for the control optimization.  The objective function for the ECMS is  

ሻݔሺܬ ൌ ሶ݉ ூ஼ாሺ݇ሻ ൅ ሶ݉ ௕௔௧௧,௘௤ሺ݇ሻ (2.4) 
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where ሶ݉ ூ஼ாሺ݇ሻ is the fuel consumed by the IC engine. The ሶ݉ ௕௔௧௧,௘௤ሺ݇ሻ is the equivalent fuel 

consumed while charging/discharging the battery, k is the discrete time index.  The equivalent fuel by 

the battery is  

ሶ݉ ௕௔௧௧,௘௤ሺ݇ሻ ൌ
௧௢௧௔௟ߟ௘௤௙ܭ

௟ܪ
 ݑ

(2.5) 

where u is the battery power which is a control input, Keqf is the equivalence factor that acts as a 

weighting factor for the electric energy, ηtotal is the average efficiency of the electric drivetrain 

including the battery charge-discharge and the electric machine efficiency, and Hl is the lower heating 

value of the fuel.  The equivalence factor is very important and it affects the optimum power sharing 

between the engine and the motor.  Further details of the equivalence factor for different application 

and derivation can be found in [11,12,13]. 

2.2.3.3 Particle Swarm 

Wu et al. [14] proposed a control strategy parameter optimization using particle swarm optimization 

method for a series plug-in electric hybrid vehicle.  The goal of the control logic is to manage the 

energy consumption of the engine and the electric motor such that when the battery state of charge 

(SOC) is high, the energy consumption will be primarily from the electric source.  Once the SOC 

drops below a lower limit threshold, the engine will be used as the primary energy source, while 

maintaining the battery’s SOC to prevent damage and cycle life reduction.  Table 2-1 describes the 

parameters of the control strategy to be optimized.  

Table 2-1: Energy Management Strategy Parameter for Particle Swarm Optimization [14] 

Parameter Description 
LSOC Lower limit on the battery State of Charge 
HSOC Upper limit on the battery State of Charge 

Tch Torque load on engine to recharge the battery when the engine is on 
Tmin Fraction of maximum engine torque above which the engine must operate if SOC<LSOC 
VL Vehicle Speed below which the vehicle attempts to run all electrically at low SOC 
VH Vehicle Speed below which the vehicle attempts to run all electrically at High SOC 

 

In this work, the fuel economy (FE) is selected as the optimization target, and the objective 

function is defined as follows.  
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ሻݔሺܬ ൌ
௦௧ܧܨ

׬ ݐሻ݀ݐሺܧܨ
 

(2.6) 

The problem can be defined as the solution for a constrained nonlinear programming problem 

described as 

ሻݔሺܬ݊݅݉
ݔ ∈ ߗ

.ݏ .ݐ ݃௜ሺݔሻ ൑ 0 ݅ ൌ 1,2, … , ݊
 

(2.7) 

where Ω is the solution space, gi(x) ≤ 0 a group of nonlinear constraints, J(x) the objective function 

and n the number of constraints.  To apply particle swarm optimization to the control strategy 

parameters of the HEV, a fitness function is required to evaluate the performance of each particle.  

However, since particle swarm optimization is applicable only to unconstrained optimization 

problem, the constraints are handled by using a penalty function that penalizes the infeasible solutions 

by adding their fitness values.  The fitness function is described as: 

ሻݔሺܨ ൌ ሻݔሺܬ ൅ ݄ሺ݇ሻܪሺݔሻ (2.8) 

where h(k) is a dynamically modified penalty value, k the algorithm’s current iteration number, and 

H(x) the penalty factor.  The optimized parameters were used to perform two drive cycles, and the 

results were compared to those of ADVISOR (ADvanced VehIcle SimulatOR).  It was concluded that 

the optimal parameters successfully reduced the fuel consumption when compared to the original 

model [14].  

2.2.3.4 Genetic Algorithm 

Huang et al. [15] conducted power management control strategy optimization on a series hybrid 

electric vehicle utilizing genetic algorithm, and compared the results against those of Thermostatic 

and DIRECT (DIvided RECTangles).  The optimization problem is defined as: 

௜ሻݔሺܬ݊݅݉
.ݏ .ݐ ݃ሺݔ௜ሻ ൒ 0 ݅ ൌ 1,2, … , ݊

 
(2.9) 

where xi consist of parameters for power control strategy and ݃ሺݔ௜ሻ ൒ 0 is a group of nonlinear 

inequality constraints.  The optimization objectives are the fuel economy and emission (NOx, CO, 

and HC) reduction, where each component of the fitness function is weighted by factor wi, which can 

be used to take into account the relative importance of each objective.  For the SHEV model, there are 

five possible operation modes: electric power only, fuel power only, power-assist (electric power plus 
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fuel power), recharging, and regenerative braking.  The control strategy determines the torque and 

speed of which the engine should operate at, to generate electric power by the generator.  Table 2-2 

shows the upper and lower limits of the controls parameters optimization variables and the results of 

genetic algorithm [15]. 

Table 2-2: Powertrain Optimization Parameters of Genetic Algorithm [15] 

Parameter Lower Limit Upper Limit GA Results 
SOC Upper Limit [%] 50 90 90 
SOC Lower Limit [%] 10 50 30.47 

Min Power Command [kW] 0 25 16.557 
Max Power Command [kW] 25 50 34.651 

Charge Power [kW] 0 25 12.539 
Engine-off Time [s] 10 1000 434 

 

Upon comparing the results, it was found that genetic algorithm performed significantly better than 

those of Thermostatic control and DIRECT, demonstrating the effectiveness of the utilizing genetic 

algorithm for the power control strategy optimization [15]. 

2.2.3.5 Simulated Annealing 

In conjunction with the research performed by Huang et al. [15], Wang et al.[16] conducted the 

power management control optimization utilizing simulated annealing algorithm.  The problem 

statement and the fitness function remained the same as those introduced in Subsection 2.2.3.4, while 

utilizing different power component sizes.  The results obtained from simulated annealing were 

compared to those of DIRECT, and indicated that simulated annealing provided significantly better 

results.  Table 2-3 summarizes the upper and lower limits of the optimization variables and the results 

of simulated annealing [16]. 

Table 2-3: Powertrain Optimization Parameters of Simulated Annealing [16] 

Parameter Lower Limit Upper Limit SA Results 
SOC Upper Limit [%] 50 90 56.67 
SOC Lower Limit [%] 10 50 34.44 

Min Power Command [kW] 0 20.5 17.083 
Max Power Command [kW] 20.5 41 26.194 

Charge Power [kW] 0 20.5 3.416 
Engine-off Time [s] 10 1000 434 
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2.3 Hybrid Electric Vehicle Optimization 

In addition to power management control strategy optimization, additional research had been focusing 

on the optimization of the powertrain components.  Furthermore, concurrent optimization had been 

conducted in attempt to incorporate the optimizations on the powertrain sizing and the power 

management logic simultaneously.  The following sections describe some of the powertrain sizing 

optimization on different hybrid configurations.  Additionally, examples on existing concurrent 

optimization on hybrid electric vehicles are discussed.  

2.3.1 Powertrain Optimization 

2.3.1.1 Series Hybrid Electric Vehicle 

A design optimization was undertaken for a series hybrid electric mini-bus designed for the Beijing 

Olympic gymnasium by Liu et al. [17]. The vehicle model was created using advisor, and a real-

coded, adaptive based hybrid genetic algorithm combined with a local search method SQP was used 

to optimize the vehicle.  Details of the improvements of the genetic algorithm can be found in [17].  

The optimization problem is to minimize the fuel economy of the vehicle, where a city-highway test 

procedure is used to evaluate the fuel economy calculated by the following equation.  

௧௢௧ܩܲܯ ൌ
1

0.55
௖௜௧௬ܩܲܯ

൅
0.45

௛௪௬ܩܲܯ

 
(2.10)

where MPGtot is the overall fuel economy, MPGcity the fuel economy of the city drive cycle, and 

MPGhwy corresponds to the highway fuel economy.  The population size was set as 20, and the 

optimization program was terminated after 50 iterations.  The component sizing results is summarized 

in Table 2-4. 

Table 2-4: Series Hybrid Electric Bus Component Sizing Results [17] 

Parameter Before Optimization After Optimization 
Fuel Converter Max Power (kW) 38 82 

Generator Max Power (kW) 30 78 
Motor Max Power (kW) 120 82 

Battery Number 28 20 
Battery Capacity (Ah) 85 42.5 
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It was found that the optimizer increased the size of the engine and the generator, while reducing 

the size of the motor and the battery size, leading to the conclusion that the original vehicle may have 

been oversized.  Finally, even though the acceleration and top speed performance of the optimized 

vehicle was less than the original vehicle, the fuel economy was improved [17].  

2.3.1.2 Parallel Hybrid Electric Vehicle 

A parallel hybrid electric vehicle powertrain optimization was conducted by Gao and Porandla [18], 

utilizing PSAT for vehicle modeling.  Three optimization algorithms were used to perform the design 

optimization: DIRECT (DIvided RECTangles), simulated annealing, and genetic algorithm.  The 

objective was to increase the overall fuel economy of the parallel HEV on a composite city and 

highway driving cycle, as defined in Equation (2.10).  Table 2-5 shows the design variables and their 

corresponding upper and lower bound, while Table 2-6 summaries the results of the optimization 

algorithms. [18] 

Table 2-5: Parallel Hybrid Powertrain Design Variables [18] 

Description Lower Bound Upper Bound 
Fuel Converter Power (kW) 40 100 

Motor Controller Power (kW) 10 80 
Number Battery Cells  150 350 

Minimum SOC Allowed (%) 20 40 
Maximum SOC Allowed (%) 60 90 

Final Drive Ratio 2 4 
 

Table 2-6: Parallel Hybrid Powertrain Optimization Results [18] 

Description Original DIRECT 
Simulated 
Annealing 

Genetic 
Algorithm 

Fuel Converter Power (kW) 86 83.1 82.4 53.8 
Motor Controller Power (kW) 65.9 20.2 21.9 65.4 

Number Battery Cells  240 245 311 220 
Minimum SOC Allowed (%) 0 25 22 21 
Maximum SOC Allowed (%) 100 84 78 83 

Final Drive Ratio 3.63 3.9 4 3.49 
Fuel Economy (MPG) 35.1 39.64 40.37 36.6 

 

It can be seen that all three optimization algorithms improved the fuel economy when compared to 

the original configuration, where simulated annealing produced the best solution.  However, since the 
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control strategy was not report, further investigation is required to fully understand the behaviour of 

the vehicle.  

2.3.1.3 Fuel Cell Hybrid Electric Vehicle 

A fuel cell hybrid electric vehicle powertrain sizing optimization was performed by Hegazy and van 

Mierlo[19], where they sought to balance the sizing of the powertrain from the cost perspective.  The 

fuel cell hybrid powertrain consisted of the fuel cell pack to provide power during steady state 

operation while utilizing an ultracapacitor pack for transient and instantaneous peak power demand.  

The fuel cell and the ultracapacitor systems were connected via a set of DC/DC converters, and the 

powertrain model was created in MATLAB/Simulink.  Two drive cycles were considered for vehicle 

power calculation: Federal Test Procedure (FTP75) and New European Driving Cycle (NEDC) [19].   

The goal of the optimization problem is to minimize the cost of the fuel cell and the ultracapacitors.  

The objective function J(x) is defined as: 

ሻݔሺܬ ൌ 1ܥ ൈ ݏ݂ܿܰ ൈ ݌݂ܿܰ ൅ 2ܥ ൈ ݏܿݏܰ ൈ (2.11) ݌ܿݏܰ

where C1 and C2 are the unit cost of the fuel cell and ultracapacitor.  Nfcs and Nfcp respectively 

denote the number of fuel cell in series and parallel, while Nscs and Nscp are respectively the number 

of ultracapacitor in series and parallel.  Three methods were utilized to achieve the optimal sizing: 

trial and error, genetic algorithm, and particle swarm optimization.  It was found that in both the 

NEDC and FTP75 drive cycle, both optimization methods produced results better than the trial and 

error, while the results of particle swarm optimization was slightly better than those obtained by the 

genetic algorithm.  It was found with that the fuel cell hybrid electric vehicle improved the hydrogen 

consumption when compared to a fuel cell vehicle without the ultracapacitor by 9.22% on the NEDC 

and 13.29% on the FTP75 cycle.  Furthermore, the total cost reduction on the fuel cell and 

ultracapacitor components were around 13.4% and the NEDC and 12.21% on the FTP75 drive cycle 

[19]. 

2.3.2 Concurrent Optimization 

2.3.2.1 Parallel Hybrid Electric Vehicle 

The challenge of concurrent optimization for powertrain components and the control system 

parameters is due to the large amount of coupled design parameters, conflicting design objectives, 

and nonlinear constraints.  One effective strategy to solve such a problem was to utilize multi-
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objective genetic algorithms to find the Pareto-optimal solution proposed by Fang and Qin [20].  The 

aim of their work was to optimize the parameters of powertrain components and the control system of 

a parallel hybrid electric vehicle to improve fuel economy and reduce emissions (CO, HC, and NOx).  

The design optimization problem is defined as follows.  

ቊ
min
௑∈ఆ

ሺܺሻܬ ൌ ሾ݈݁ݑܨሺܺሻ, ,ሺܺሻܱܥ ,ሺܺሻܥܪ ܰ ௫ܱሺܺሻሿ

.ݏ .ݐ ݃௝ሺܺሻ ൐ 0 ݆ ൌ 1,2. . ݊
 

(2.12)

where X is the variable vector which includes the parameters of powertrain components and control 

system, and Ω the feasible solution space, governed by constraints gj, j=1,2,..n. The vehicle 

performance constraints imposed on the design problem were taken from those set out by the U.S. 

Consortium for Automotive Research for the PNGV (The Partnership for a New Generation of 

Vehicles).  The optimization variables are summarized in Table 2-7 [20]. 

Table 2-7: Optimization Variables for Multi-Objective Genetic Algorithm [20] 

Variables Description 
PICE Peak power of ICE 
PEM Peak power of electric motor 
Nbat Number of the battery cells 
Fd Final reduction ratio 

HSOC Highest desired battery SOC 
LSOC Lowest desired battery SOC 
VL Vehicle speed threshold for ICE to turn off 
Foff The minimum torque fraction of ICE turn-off 
Tchg The minimum torque for battery recharge 
Fmin Torque fraction for battery recharge 

 

Genetic algorithm was utilized to optimize the parameters in Table 2-7 using a population size of 

200, maximum number of 2000 generations, crossover probability of 0.9, and a mutation probability 

of 0.01.  Finally, eight sets of Pareto-optimal solution were found by the optimizer, and simulated 

using ADVISOR with its default parallel hybrid electric vehicle model to obtain the fuel consumption 

and the emissions.  Final results indicated a reduction of fuel consumption and emission, 

demonstrating the effectiveness of genetic algorithm to perform concurrent optimization on a parallel 

hybrid powertrain parameters and its control strategy.  However, the drawback of such approach was 

that for a series hybrid powertrain, the optimizer will seek the minimal battery size to achieve the 

design constraints without activating the IC engine to avoid any fuel consumption.  Such approach 



 

 19 

may not be feasible to strike a balance between the cost of batteries and fuel consumption from a 

financial cost perspective.  

2.3.2.2 Series Hybrid Electric Vehicle 

Similar to the concurrent optimization of parallel hybrid electric vehicle, Zhang et al. [21] optimized 

a series hybrid electric vehicle using multi-objective genetic algorithm. The optimization seeks to 

minimize the fuel consumption and vehicle emission by optimizing the powertrain sizing and the 

power management logic.  The optimization procedure and vehicle simulation was again performed 

using ADVISOR.  The optimization is defined as: 

ە
ۖ
۔

ۖ
ۓ
min
௑∈ఆ

ሺܺሻܬ ൌ ሺܺሻ݈݁ݑܨ0.7 ൅ ሺܺሻܱܥ0.1 ൅ ሺܺሻܥܪ0.1 ൅ 0.1ܰ ௫ܱሺܺሻ

.ݏ 			.ݐ

݃௝ሺܺሻ ൒ 0, ݆ ൌ 1,2, . . , ܬ
݄௞ሺܺሻ ൌ 0,			݇ ൌ 1,2, . . , ܮ

௜ݔ
ሺ௟ሻ ൑ ௜ݔ ൑ ௜ݔ

ሺ௨ሻ, ݅ ൌ 1,2, . . , ݊

 (2.13)

where J(X) is the multi-objective function, ݃௝ሺܺሻ ൒ 0, ݄௞ሺܺሻ ൌ 0 is a group of constraints, and the 

design variables xi bounded within a lower ݔ௜
ሺ௟ሻand upper ݔ௜

ሺ௨ሻ limit.  The power management logic 

utilizes a thermostat control strategy utilizing the generator and the IC engine to generate electrical 

energy for the traction motor.  The control strategy is described as follows [21]. 

 To maintain charge in the battery, the engine turns on when the state of charge reaches the 
low limit 

 The engine turns off when the SOC reaches the high limit 

 The engine operates at the most efficient speed and torque level 

The desired drive cycle composed of one highway (HWFET) and one city (UDDS) drive cycles.  

The optimization algorithm was implemented in ADVISOR with an initial population of 40, and a 

terminating condition of 80 generations.  Simulation was performed on a 3.4GHz Pentium computer, 

and took about 4 days for the program to complete.  The design variables and the optimized results 

are shown in Table 2-8 [21]. 

  



 

 20 

Table 2-8: Design Variables and the Results of SHEV Optimization [21] 

Description 
Default 
Value 

Lower 
Bound 

Upper 
Bound 

Optimized 
Results 

Engine Power 41kW 25kW 53kW 25.1kW 
Motor Power 75kW 38kW 112kW 80.9kW 

Battery Capacity 26Ah 13Ah 39Ah 38Ah 
Highest SOC 80% 70% 85% 74% 
Lower SOC 60% 30% 50% 49% 

Max Power Command 30kW 25kW 40kW 33kW 
Min Power Command 20kW 5kW 20kW 5.6kW 

Fuel Converter off Duration inf 10s 1000s 519s 
 

Table 2-8 showed the optimizer determined a minimum engine while indicating a battery size 

almost at its maximum value.  This is not surprising since the most fuel efficient configuration is for a 

vehicle to operate in pure electric mode throughout the drive cycle.  The key deciding factor of the 

powertrain sizing thus becomes determining the upper and the lower limit of the power components.  

Again, such approach may not be feasible to ensure a balance between the cost of batteries and fuel 

consumption from a financial cost perspective. 

2.4 Multidisciplinary Design Optimization 

Large engineering systems are usually complex and contain different components from various 

disciplines.  Optimal design of such complex systems usually requires various engineering teams 

specializing in different disciplines collaborating to provide a solution.  In order to increase the 

efficiency of the design process, researchers in the past two decades have proposed different 

optimization methods in attempt to solve various disciplines simultaneously, termed Multidisciplinary 

Design Optimization (MDO).  The proposed multidisciplinary design optimization have been applied 

to various complex engineering systems, such as spacecraft launch vehicles [22], air launch rockets 

[23], underwater autonomous vehicles [24], rail car suspension and dynamics control [25,26], and 

automotive crash and Noise, Vibration, and Harshness (NVH) design [27]. 

Multidisciplinary design optimization methods are classified into single-level and multilevel 

methods.  Single-level methods have a single optimizer and have a non-hierarchical structure.  

Multidisciplinary Feasible (MDF) and Individual Discipline Feasible (IDF) are two examples for the 

MDO approaches classified as single-level methods.  On the other hand, multilevel methods contain 

hierarchical structure, and each level has an optimizer.  Collaborative Optimization (CO), Concurrent 
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Subspace Optimization (CSSO), Bi-Level Integrated System Synthesis (BLISS), and Integrated 

System of System Synthesis (ISSS) are examples of multi-level MDO methods [28].  Since hybrid 

electric vehicle powertrain system is considered a single-level system, the following subsections 

provide a brief overview of the aforementioned single-level MDO techniques. 

2.4.1 Multidisciplinary Feasible Method 

Multidisciplinary feasible (MDF) method [29], also referred to as All-in-One method, is the most 

common methodology for solving MDO problems.  In such formulation, the vector of design 

variables XD is provided by the optimizer to the coupled system of analysis disciplines, and a 

complete multidisciplinary analysis (MDA) is performed at that value of XD to obtain the system 

output variable U(XD).  The system output variable U(XD) is then subsequently used to evaluate the 

objective function J(XD, U(XD)) and the constraints C(XD, U(XD)).  The MDF formulation is as 

follows. 

Minimize J(XD, U(XD)) w.r.t. XD 
s.t. C(XD, U(XD)) 

 
 

 

Figure 2-3: Multidisciplinary Feasible (MDF) Formulation 

Figure 2-3 illustrates the data flow in an MDF formulation.  The system consists of an optimizer 

that determines the objective function J with respect to the design variable vector XD, using the 

system output U(XD).  For each of the optimization loops, the design variable vector XD is fixed, while 

analysis A1 and analysis A2 are performed to obtain the system output variable vectors U1(XD) and 

U2(XD).  The output variable vectors U1(XD) and U2(XD) are then subsequently returned to the 

Optimizer

A1
Discipline 1

A2
Discipline 2

XD U1(XD)U2(XD)

U1(XD)=A1(XD,Y12) Y21=G21(XD, U1(XD))

Y12=G12(XD, U2(XD)) U2(XD)=A2(XD,Y21)
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optimizer for evaluating the objective functions J(XD, U1(XD), U2(XD)) and the constraints C(XD, 

U1(XD), U2(XD)).  Gij represents the interdisciplinary mapping from the output variable vector Uj of 

discipline j to a suitable input variable Yij for use by discipline i.  If a gradient approach optimization 

algorithm is to be used to solve the above problem, then a complete MDA is necessary not just at 

each iteration, but at every point where derivatives are to be evaluated.  Therefore, this can be 

computationally expensive for realistic applications [30]. 

2.4.2 Individual Discipline Feasible Method 

In order to avoid a complete multidisciplinary analysis every time an objective function, constraint, or 

sensitivity evaluation is required, Individual Discipline Feasible (IDF) method can be used. The IDF 

approach maintains the feasibility of the individual disciplines, while allowing the optimizer to obtain 

the multidisciplinary feasibility and optimality by controlling the interdisciplinary coupling variables.  

In such approach, the specific analysis variables representing the coupling, or the mappings between 

analysis disciplines, are “promoted” to become optimization variables.  From the point of view of a 

single analysis discipline solver, these optimization variables are indistinguishable.  The general IDF 

formulation can be written as follows: 

Minimize F(XD, U(X)) w.r.t. X=(XD, XY) 
s.t. C(XD, U(X)), Caux≜XY-G(XD, U(X))=0 

U(X)=A(X) 
 

XD is defined as the design variable vector of the optimizer, XY denotes the “promoted” optimization 

design variable vector from the input variable vector Y for an analysis discipline, U(X) is the system 

output variable vector and A(X) is the analysis mapping from the inputs XD and XY.  F(XD, U(X)) and 

C(XD, U(X)) represent, respectively, the objective function and the constraints of the system.  Also, G 

represents the interdisciplinary mappings and the condition Caux≜XY-G(XD, U(X))=0 converts the 

interdisciplinary mappings into auxiliary optimization constraints.   In order to evaluate U(X)=A(X), 

all the single discipline analysis codes can be executed simultaneously with the available 

multidisciplinary design variable vector X.  Therefore, these computations can be performed 

independently and concurrently, thus minimizing communication cost.  Hence, the IDF method is 

ideal for applications utilizing a parallel processing computing system [30].   
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Chapter 3 

Hybrid Electric Vehicle Modeling 

A generic, modular, and flexible vehicle model is created for the purpose of performing vehicle 

system optimization.  In particular, the powertrain components need to be scalable for the optimizer 

to determine the optimal sizes of the components.  The following sections discuss the vehicle system 

and the component modeling in detail.   

3.1 Generic Vehicle Structure 

There are currently two modeling approaches to perform vehicle simulations: (i) forward looking and 

(ii) backward looking.  In forward-looking type of modeling, simulation begins from the driver’s 

point of view, where a power demand from the driver is sent to the powertrain components, and the 

resulting power available from the powertrain is subsequently fed to the wheels of the vehicle.  The 

advantage of such architecture is that it is more realistic, since it mimics the actual driving of a human 

in the real world.  In addition, hardware-in-the-loop can be easily implemented to enhance the 

engineering and development of a vehicle system. However, the drawback is that a high fidelity 

model is required for each of the components, and the cost of computation can be high.  On the other 

hand, backward-looking modeling begins with determining the required vehicle power using a known 

drive cycle.  It then issues power demands for the powertrain components, where the actual power 

consumed is subsequently calculated while taking into consideration the power components’ 

efficiencies.  The benefit of such approach is that it greatly reduces the computational time during 

simulation, and that simplified quasi-static models can be used.  The drawback, however, is in that the 

dynamics of the components and the vehicle system is not considered, thereby making the approach 

not as realistic as the forward-looking models.  

In order to create a generic vehicle model to be used for optimization, a vehicle model covering all 

possible hybrid electric vehicle configurations is created.  Figures 3-1 and 3-2 illustrate, respectively, 

a generic vehicle structure in forward- and backward-looking simulation architectures.  



 

 24 

 

Figure 3-1: A Generic Vehicle Model in a Forward-Looking Simulation Architecture 

 

  

Figure 3-2: A Generic Vehicle Model in a Backward-Looking Simulation Architecture 

The generic vehicle structure consists of all possible components of a hybrid electric vehicle 

powertrain, where any desired hybrid electric vehicle configurations can be created.  For example, by 
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removing the connections between the engine, the gear set, and the electric motor, a series hybrid 

structure can be realized, as shown in Figure 3-3. 

  

Figure 3-3: Series Hybrid Electric Vehicle Model Created from the Generic Vehicle Structure 

 

  

Figure 3-4: Parallel Hybrid Electric Vehicle Model Created from the Generic Vehicle Structure 

Similarly, Figure 3-4 shows a parallel hybrid electric vehicle configuration, where the electric 

generator and the connection between the engine and the electric motor were deactivated.  Another 

type of hybrid electric vehicle currently available in the market is the Honda Integrated Motor Assist 

(IMA) architecture, where the electric motor is mounted directly between the engine and the 

transmission.  In such a system, the engine is the prime power source to the vehicle, and the electric 
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motor act as an assisting power source, where it supplements the engine power when necessary.  

Figure 3-5 depicts the Honda IMA configuration using the generic vehicle model.  

  

Figure 3-5: Honda IMA Vehicle Model Created from the Generic Vehicle Structure 

As shown above, the generic vehicle structure can be used to simulate all possible types of hybrid 

electric vehicle system as required by the user. 

3.1.1 Forward-Looking Vehicle Model 

In the forward-looking simulation platform, the simplest vehicle model that can be utilized is a 

particle vehicle model, where only the drive torque, the resistive aerodynamic and rolling resistance 

forces are considered.  Since only the overall power consumption of the vehicle is of interest, the 

effects of vehicle dynamics due to the suspension can be safely ignored. 

The vehicle model receives the drive torque from the powertrain components and outputs the 

vehicle speed and wheels.  The input and output variables of the vehicle model are illustrated in 

Figure 3-6 and the free-body diagram of the vehicle is depicted in Figure 3-7.  

 

Figure 3-6: Input and Output Variables of the Particle Vehicle Model 

Power Management Controller

Quasi-static Powertrain Components

Gear Set

Electric 
Motor

Engine

Electric 
Generator

Electrical 
Energy Storage

Vehicle
Drive Torque

Vehicle Speed

Wheel Speed



 

 27 

 

Figure 3-7: Free Body Diagram of the Particle Vehicle Model 

The summation of forces acting on the vehicle body with a given mass (mveh) is illustrated by 

෍ܨ௫ ሺݐሻ ൌ ݉௩௘௛ݔሷሺݐሻ ൌ ሻݐௗ௥௜௩௘ሺܨ െ ሻݐௗ௥௔௚ሺܨ െ ோோ (3.1)ܨ

where Fdrive(t), Fdrag(t), and FRR represent the drive force, aerodynamics drag force, and tire rolling 

resistance force respectively.  By integrating the acceleration, the vehicle speed can be obtained.  In 

addition, assuming constant tire radius (rt), the wheel speed can be calculated.  The drive force of the 

vehicle is obtained using  

ሻݐௗ௥௜௩௘ሺܨ ൌ
ௗܶ௥௜௩௘ሺݐሻ
௧ݎ

 (3.2) 

where Tdrive(t) is the input drive torque from the powertrain components.  The aerodynamics drag 

force is calculated by 

ሻݐௗ௥௔௚ሺܨ ൌ
1
2
 ܣሻଶݐ௫ሺݒߩ஽ܥ

(3.3) 

where CD is the drag coefficient, ρ the air density, vx(t) the longitudinal speed of the vehicle, and A the 

frontal area of the vehicle.  Finally, the tire rolling resistance force is expressed by 

ோோܨ ൌ  ோோ݉௩௘௛݃ (3.4)ܥ

where CRR is the rolling resistance constant of the tire, mveh the vehicle mass, and g gravitational 

acceleration.  Using the above-mentioned formulation, a simple vehicle model for power 

consumption calculation can be utilized. 

3.1.2 Backward-Looking Vehicle Model 

The basic components of the backward-looking vehicle model are similar to that of the forward-

looking particle vehicle model, where the drag force and rolling resistance components remain the 

x

Drive Force Aerodynamic Drag Force
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same.  However, the backward-looking vehicle model differs from the particle model from the 

viewpoints of the input and output variables to the model, as depicted in Figure 3-8. 

 

Figure 3-8: Input and Output Variables of the Backward-Looking Vehicle Model 

As previously mentioned, in the backward-looking vehicle model the desired drive cycle is known, 

and is used as the input to the vehicle model in the form of vehicle speed and acceleration.  The total 

desired power (Pdes(t)) to realize the drive cycle and to overcome the aerodynamic drag and tire 

rolling resistance force is given by 

ௗܲ௘௦ሺݐሻ ൌ ሻݐௗ௥௜௩௘ሺܨൣ ൅ ሻݐௗ௥௔௚ሺܨ ൅ ሻ (3.5)ݐௗ௘௦ሺݒோோ൧ܨ

where vdes(t) is the vehicle speed form the drive cycle, Fdrive(t) the drive force of the vehicle, Fdrag(t) 

the aerodynamics drag force, and FRR the rolling resistance force of the tires.  The drive force of the 

vehicle is given by 

ሻݐௗ௥௜௩௘ሺܨ ൌ ݉௩௘௛ܽௗ௘௦ሺݐሻ (3.6) 

where mveh is the vehicle mass and ades(t) is the acceleration defined by the drive cycle.  Fdrag(t) and 

FRR are defined by equations (3.3) and (3.4), respectively.  For the purpose of optimization, it is desire 

to use a backward-looking model to reduce the computational efforts; thus, a simple vehicle model is 

created to perform the aforementioned power consumption calculations using the above-mentioned 

formulation. 

Due to the fact that the backward-looking vehicle model looks at the vehicle performance only 

from the power consumption point of view, it lacks the information on the dynamics of the vehicle 

system.  Specifically, it lacks the capability of calculating whether the vehicle is capable of 

completing the drive cycle, which is critical in determining the final configuration of the vehicle 

model.  One method is to look at the additional amount of time that the vehicle needs to complete the 

drive cycle if the powertrain is not powerful enough to achieve the desired speed and acceleration.  

Consider the average speed (vavg,d) of the vehicle when a delay in completion of drive cycle occurs as 

described by the following equation. 

Vehicle

ades(t)

vdes(t)
Pdes(t)
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௔௩௚,ௗݒ ൌ
௧௢௧,ௗݔ
௧௢௧,ௗݐ

ൌ
௧௢௧,ௗݔ
ܶ ൅ ݐ∆

 (3.7) 

where xtot,d and ttot,d denote the total distance traveled and the total time the vehicle needs to complete 

the drive cycle.  T is the total time of the drive cycle with no delay and Δt is the delay.  Rearranging 

Equation (3.7) yields 

ݐ∆ ൌ
௧௢௧,ௗݔ
௔௩௚,ௗݒ

െ ܶ (3.8) 

The average speed (vavg,d) can be calculated by averaging the actual speed (vact(t)) of the vehicle 

during simulation time, where vact can be determined using the following equation. 

ሻݐሺݒ∆ ൌ ሺݒௗ௘௦ሺݐሻ െ ሻሻݐ௔௖௧ሺݒ ൌ
ሺ ௗܲ௘௦ሺݐሻ െ ௔ܲ௖௧ሺݐሻሻ

ሻݐ௧௢௧ሺܨ
 (3.9) 

where vdes(t) is the desired speed given by the drive cycle, Pdes(t) is the desired power from Equation 

(3.5), Ftot(t) is the algebraic sum of the vehicle’s driving and resisting forces, and Pact(t) is the total 

available power from the battery and genset.  Rearranging Equation (3.9), vact(t) can be calculated as 

follows.  

ሻݐ௔௖௧ሺݒ 	ൌ ሻݐௗ௘௦ሺݒ െ
ሺ ௗܲ௘௦ሺݐሻ െ ௔ܲ௖௧ሺݐሻሻ

ሻݐ௧௢௧ሺܨ
 (3.10)

By averaging the time history of vact(t), the average speed can be found.  Substituting vavg,d into 

Equation (3.8), the additional time required to complete the drive cycle can be easily determined.  It 

can also be used to check whether or not the vehicle powertrain is capable of completing the drive 

cycle during optimization.  

3.2 Component Descriptions 

The powertrain components are modeled using a scalable quasi-static backwards approach as 

proposed by Guzzella et al. [31,32,33,34], where the actual consumed power of the energy converters 

(i.e., engine and electric motor) is calculated by the required component torque at its current velocity 

state, while taking into account the components’ efficiencies.  Further details will be provided in the 

subsequent subsections. 
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3.2.1 Engine 

Willans line modeling approach for powertrain components which was first proposed by Rizzoni et 

al. [31], and further developed by Guzzella et al. [32,33,34], describes a scalable quasi-static engine 

model that calculates the engine efficiency of converting fuel energy to output power as a function of 

the internal combustion engine’s property, given by the following function: 

ሻݐ௘ሺߟ ൌ
௘ܶሺݐሻ߱௘ሺݐሻ

௙ܲ௨௘௟ሺݐሻ
 (3.11)

where ηe(t) is the efficiency of the engine, Pfuel(t) the enthalpy flow associated with the fuel mass 

flow, and Te(t) and ωe(t) denote the engine torque and speed, respectively.  The fuel mass flow is 

calculated by: 

ሶ݉ ௙ሺݐሻ ൌ
௙ܲ௨௘௟ሺݐሻ
௟ܪ

 (3.12)

where Hl is the fuel’s lower heating value.  The input and output variables to the quasi-static engine 

model are illustrated in Figure 3-9. 

 

Figure 3-9: Input and Output Variables of the Internal Combustion Engine 

The key idea in developing a scalable model of a combustion engine is to use the concept of mean 

effective pressure (pme(t)) to describe the engine’s ability to produce mechanical work, and to use its 

mean piston speed (cm(t)) to describe its operating speed. [32] When the engine is running in steady-

state condition, pme(t) and cm(t) describes its operating point in the following equations: 

ሻݐ௠௘ሺ݌ ൌ
ߨܰ

ௗܸ
௘ܶሺݐሻ (3.13)

ܿ௠ሺݐሻ ൌ
ܵ
ߨ
߱௘ሺݐሻ 

(3.14)

where S is the engine’s stroke and Vd its displacement.  The parameter N depends on the engine type: 

N=4 for a four-stroke engine and N=2 for a two-stroke engine [32].  Considering the thermodynamic 

ICE

Te(t)

ωe(t)
Pfuel(t)
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efficiency and the internal losses during the engine cycle, and introducing pmf(t) as the fuel mean 

effective pressure, the following relationships can be established: 

ሻݐ௘ሺߟ ൌ
ሻݐ௠௘ሺ݌
ሻݐ௠௙ሺ݌

 (3.15)

ሻݐ௠௘ሺ݌ ൌ ሻݐ௠௙ሺ݌݁ െ ሻ (3.16)ݐ௟௢௦௦ሺ݌

where e represents the thermodynamic properties of the engine related to the indicated mean effective 

pressure [32].  ploss(t) represents the engine’s losses due to gas exchange (ploss_g) and friction (ploss_f(t)) 

and is illustrated as follows: 

ሻݐ௟௢௦௦ሺ݌ ൌ ௟௢௦௦_௚݌ ൅ ሻ (3.17)ݐ௟௢௦௦_௙ሺ݌

Using the mean piston speed and experimental results, ploss_f(t) is defined as:  

ሻݐ௟௢௦௦_௙ሺ݌ ൌ ݇ଵሺ݇ଶ ൅ ݇ଷܵଶ߱௘ሺݐሻଶሻП௠௔௫ඨ
݇ସ
ܤ

 (3.18)

where Пmax is the maximum  boost pressure and B denotes the engine cylinder bore.  The k parameters 

are experimentally determined and are listed in Appendix A [32].  By combining Equations (3.16), 

(3.17), and (3.18), and substituting pme(t) in Equation (3.15), ηe(t) can be found.  Subsequently, the 

fuel consumption can be calculated for a given engine output torque and speed using Equations (3.11) 

and (3.12).  Detailed derivations can be found in references [31,32,33,34].  By utilizing of the Willans 

line model, a scalable engine model can be used for size optimization.   

3.2.2 Electric Motor-Generator 

The roles of the electric motor-generator besides acting as a tractive motor to provide motor torque 

during acceleration, is to perform regenerative braking to capture the otherwise lost kinetic energy of 

the vehicle.  The input and output variables of the electric motor-generator are depicted in Figure 

3-10.  

 

Figure 3-10: Input and Output Variables of the Electric Motor-Generator 
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Tm(t) and ωm(t) represent, respectively, the output torque and speed of the motor, and Pelec(t) 

denotes the electrical power consumed or generated by the electric motor-generator.  As a sign 

convention, positive torque and power represent the unit acting in the motor mode, while negative 

values denote the unit operating in the generator mode.   

Guzzella et al. [33] at the Swiss Federal Institute of Technology Zurich have developed a Quasi-

static (QSS) Toolbox that contained a scalable electric motor-generator using experimentally obtained 

efficiency map for a generic electric motor-generator.  The efficiency map is modeled as a look-up 

table indexed by motor-generator’s torque (Tm(t)) and speed (ωm(t)), which is provided in Appendix 

A.  During operation in motor or generator mode, the electric power (Pelec(t)) consumed or generated 

is given by the following equation. 

௘ܲ௟௘௖ሺݐሻ ൌ ሻݐ௠ሺߟ ௠ܶሺݐሻ߱௠ሺݐሻ (3.19)

3.2.3 Generator 

Using the same modeling approach as the electric motor-generator, the same model can be used 

solely as a generator, which is coupled to the IC engine to generate electrical power for the battery or 

the tractive motor.  Similar to the electric motor-generator, the size of generator can be scaled 

appropriately as necessary.  

3.2.4 Gear Set 

The purpose of the transmission is to perform torque multiplication from the power source to the 

wheels, while maintaining the operating range of the power source within its maximum torque range.  

For this reason, the number of gears of the transmission is dependent on the primary power source.  

For example, the torque of an IC engine typically peaks around the middle of its speed range; 

therefore, a common transmission for conventional vehicle contains 5 or 6 gears to ensure the engine 

operates within its maximum torque band as frequently as possible.  On the other hand, the maximum 

torque band of an electric motor is usually in the first half of its speed range; therefore, a transmission 

with 2 or 3 gears will satisfy the operation requirement.  Based on the aforementioned reason, the 

exact type of gear set will be dependent on the hybrid architecture utilized. 

3.2.5 Electrical Energy Storage 

The electrical energy storage (EES) system of the vehicle stores the electric energy in batteries and/or 

ultracapacitors.  Depending on the desired configuration, the EES may consist of only the battery, the 
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ultracapacitor, or a combination of both.  In addition to providing electric energy to the traction 

motor, the EES also stores the energy captured during regenerative braking.  The following 

subsections describe the modeling details of the battery and ultracapacitor.  

3.2.5.1 Battery 

The battery is an electrochemical device that stores electrical energy in the form of chemical energy.  

Many types of batteries that are used for providing traction energy for electric vehicles; some 

examples are lead-acid, nickel-metal-hydride, and lithium-ion batteries.  For this research, a simple 

battery model is utilized where the current is calculated while taking into consideration the internal 

resistance when calculating the charge and discharge power of the battery.  Figure 3-11 shows the 

electrical circuit diagram of the battery model.  

  

Figure 3-11: Electrical Circuit Diagram of the Battery Model 

The desired battery power, Pbatt,des(t), can be expressed as: 

௕ܲ௔௧௧,ௗ௘௦ሺݐሻ ൌ ௕௔௧௧ܫ
ଶ ሺݐሻܴ௜௡௧ ൅ ௕ܸ௔௧௧,௢௖ሺݐሻܫ௕௔௧௧ሺݐሻ (3.20)

where Rint and V batt,oc(t) are the internal resistance and the open circuit voltage of the battery, 

respectively.  As a sign convention, let positive power and current denote charging while negative 

power and current denote discharging of the battery.  Note that Equation (3.20) is valid for both 

charging and discharging modes even though the directions and signs of battery power and current 

will be different in these two cases.  Solving the quadratic Equation (3.20), the current can be 

determined by 

ሻݐ௕௔௧௧ሺܫ ൌ
െ ௕ܸ௔௧௧,௢௖ሺݐሻ േ ට ௕ܸ௔௧௧,௢௖

ଶ ሺݐሻ ൅ 4 ௕ܲ௔௧௧,ௗ௘௦ሺݐሻܴ௜௡௧

2ܴ௜௡௧
 

(3.21)

Rint

+- Vbatt,OC(t)
Vbatt,des(t)

Ibatt(t)

-

+
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Solving Equation (3.21) yields two values.  To determine which one of the two values is the correct 

solution, one can assume that when the internal resistance is zero, the ideal current can be determined 

by 

ሻݐ௜ௗ௘௔௟ሺܫ ൌ
ௗܲ௘௦ሺݐሻ

௢ܸ௖ሺݐሻ
 (3.22)

where Pdes(t) and Voc(t) are the desired power and the open circuit voltage of the electric energy 

storage system, respectively.  Upon inspection of the solutions from Equation (3.21), it is found that 

the larger value of the two answers is higher than the ideal current as determined by Equation (3.22), 

which is not acceptable.  Therefore, the solution from Equation (3.21) with the smaller absolute value 

will be chosen as the answer.  In addition, the current will be limited by the charge and discharge 

current limits specified by the battery manufacturer.  The open circuit voltage (V batt,oc(t)) as function 

of the battery SOC is modeled using a look-up table, which can also be obtained from the 

manufacturer.  Finally, once the current and the open circuit voltage are known the actual charge and 

discharge power at the battery can be found by: 

௕ܲ௔௧௧,௔௖௧ሺݐሻ ൌ ௕ܸ௔௧௧,௢௖ሺݐሻܫ௕௔௧௧ሺݐሻ (3.23)

In order to update the SOC of the battery, the actual charge and discharge power of the battery 

Pbatt,act(t), is integrated to obtain change in energy, and is added to the existing energy level of the 

battery.  The capacity of the battery is determined by taking the nominal capacity of each of the 

battery cell, as specified by the manufacturer, and multiplying it by the number of cells in the battery 

system.  The size of the battery system can therefore be scaled by changing the number of cells. 

3.2.5.2 Ultra-capacitor 

An ultracapacitor, also known as a supercapacitor or double-layer capacitor, is an electrochemical 

capacitor with relatively high energy density.  It has a much higher power density than that of a 

battery; therefore, it is advantageous to utilize the ultracapacitor during hard acceleration and braking 

period.  

Using a modeling approach similar to that used for the battery, the terminal voltage and the current 

of the ultracapacitor are calculated while taking into account the internal resistance in order to 

calculate the charge and discharge power of the ultracapacitor.  Figure 3-12 illustrates the electrical 

circuit diagram of the ultracapacitor model.  
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Figure 3-12: Electrical Circuit Diagram of the Ultracapacitor Model 

The desired ultracapacitor power, PUC,des(t) can be expressed as:  

௎ܲ஼,ௗ௘௦ሺݐሻ ൌ ௎஼ܫ
ଶ ሺݐሻܴாௌோ ൅ ௎ܸ஼,௢௖ሺݐሻܫ௎஼ሺݐሻ (3.24)

where RESR and VUC,oc(t) are the equivalent series resistance and the open circuit voltage of the 

ultracapacitor, respectively.  For an ultracapacitor, the open circuit voltage is simply  

௎ܸ஼,௢௖ሺݐሻ ൌ
ܳ௎஼ሺݐሻ
௎஼ܥ

 (3.25)

where QUC(t) and CUC denote the charge and capacitance of the ultracapacitor, respectively.  Again, as 

a sign convention, let positive power and current denote charging while negative power and current 

denote discharging of the ultracapacitor.  Solving the quadratic Equation (3.24), the current can be 

determined by 

ሻݐ௎஼ሺܫ ൌ
െ ௎ܸ஼,௢௖ሺݐሻ േ ට ௎ܸ஼,௢௖

ଶ ሺݐሻ ൅ 4 ௎ܲ஼,ௗ௘௦ሺݐሻܴாௌோ

2ܴாௌோ
 

(3.26)

Solving Equation (3.26) yields two values.  Upon inspection of the solutions from Equation (3.26), it 

is found that the larger value of the two answers is higher than the ideal current as depicted by 

Equation (3.22), which is not acceptable. Therefore, the solution from Equation (3.26) with the 

smaller absolute value will be chosen as the answer.  Additionally, the current will be limited by the 

charge and discharge current limits specified by the ultracapacitor manufacturer.  Once the charging 

or discharging current is calculated, it is then integrated to update the charge status (QUC(t)) of the 

ultracapacitor.  Finally, the state of charge (SOCUC(t)) of the ultracapacitor can be calculated by 

RESR

VUC,OC(t)VUC,des(t)

IUC(t)

-

+
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ሻݐ௎஼ሺܥܱܵ ൌ
ܳ௎஼ሺݐሻ
ܳ௎஼,௡௢௠

 (3.27)

where QUC,nom is the nominal charge of the ultracapacitor, as specified by the manufacturer.  

3.3 Power Management of the Electrical Energy Storage System 

Due to the difference in characteristics of the battery and ultracapacitor, it is important to utilize their 

strength while compensating for their weaknesses.  For example, ultracapacitor has a much higher 

power density, and therefore should be used during hard acceleration and regenerative braking 

periods.  On the other hand, the battery has a larger energy storage capacity than that of the 

ultracapacitor, and therefore should be used for longer cruising and milder regenerative braking 

durations.  However, the design and controls of a combined battery and ultracapacitor system is 

complex enough to warrant an entirely different field of study.  For the purpose of this research, it is 

sufficient to operate the battery and the ultracapacitor solely from the charging and discharging power 

transfer point of view.  

3.3.1 Power Distributing Function  

A simple approach to balance the operation of the battery and the ultracapacitor is to utilize a 

function that splits the desired electric power between the two components, defined as follows: 

ௗܲ௘௦ሺݐሻ ൌ ௕ܲ௔௧௧,ௗ௘௦ሺݐሻ ൅ ௎ܲ஼,ௗ௘௦ሺݐሻ

ൌ ሻݐሺߤ ൈ ௗܲ௘௦ሺݐሻ ൅ ൫1 െ ሻ൯ݐሺߤ ൈ ௗܲ௘௦ሺݐሻ
 (3.28)

Pdes(t) denotes the combined desired power, while Pbatt,des(t) and PUC,des(t) represent the desired power 

of the battery and the ultracapacitor respectively.  μ(t) is the power distributing function of the 

battery, where a value of 1 represents battery operation only with no power from the ultracapacitor, 

and 0 signals using no battery power with all the power dedicated to charge or discharge the 

ultracapacitor.  

When defining the power distributing function (μ(t)), it is necessary to monitor the state of charge 

(SOC) of the components (battery and ultracapacitor) to avoid discharging request when the 

component is depleted, or charging request when the component is full.  Furthermore, since the 

advantage of the ultracapacitor is the capability to provide high and sudden power request, the power 

distributing function shall also consider the power desired (Pdes(t)) and the rate of change of the 

desired power (dPdes(t)/dt).  Utilizing a membership function that is used in fuzzy logic, a sigmoid 
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function can be used as an activating function based on a monitored variable, where the characteristic 

curve can be modified with ease.  A general sigmoid function takes the following form: 

݂ሺݔሻ ൌ
1

ሺ1 ൅ eୟሺ୶ିୡሻሻ
 (3.29)

where f(x) is the output function based on the input variable x.  The parameter a defines the slope of 

the curve at the inflection point, while the parameter c defines the inflection point.  Figure 3-13 shows 

a general sigmoid function with an inflection point (c) of 5 with varying slope (a).  

 

Figure 3-13: A Sigmoid Function with Varying Slopes and Inflection Point of 5 

The advantage of utilizing a sigmoid function is that it can easily represent different types of 

activating function with ease by changing the slope and inflection point.  For example, a step function 

can be created by assigning a large value to the slope of the sigmoid function, thereby creating a 

continuous function that exhibit the behaviour of a step function.  This can be computationally 

efficient during simulation where the discontinuity of a step function may cause numerical error.  On 

the other hand, by setting the slope to be zero, a constant output function can be created.  

As previously mentioned, the power distributing function (μ(t)) will be a function of the SOC of the 

battery (SOCbatt(t)), SOC of the ultracapacitor (SOCUC(t)), the desired power (Pdes(t)), and the rate of 

change of the desired power (dPdes(t)/dt).  Using a sigmoid function for each of the monitored 

variable, the discharging power distributing function (μdis(t)) is defined as: 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sigmoid Function

f(
x)

x

 

 

a=0.75

a=1
a=2

a=4



 

 38 

ሻݐௗ௜௦ሺߤ ൌ
1

ሺ1 ൅ eୠౚ౟౩ሺୗ୓େౘ౗౪౪ሺ௧ሻିୡౚ౟౩ሻሻ
ൈ

1
ሺ1 ൅ eୢౚ౟౩ሺୗ୓େ౑ిሺ௧ሻିୣౚ౟౩ሻሻ

ൈ
1

ሺ1 ൅ e୤ౚ౟౩ሺ୔ౚ౛౩ሺ௧ሻି୥ౚ౟౩ሻሻ

ൈ
1

൬1 ൅ e୦ౚ౟౩ሺ
ௗ௉೏೐ೞሺ௧ሻ

ௗ௧ ି୧ౚ౟౩ሻ൰
 

(3.30) 

with the slopes (bdis, ddis, fdis, and hdis) and inflection points (cdis, edis, gdis, and idis) as described in 

Equation (3.29).  It should be noted that the parameter gdis is defined as the discharging power limit of 

the battery, and therefore its value is dependent on the specification of the component.   

The charging power distributing function (μch(t)) is similarly defined, with the exception of the 

desired power, where it is desired that the battery be charged first before the ultracapacitor.  Since the 

power charging limit of the battery is much lower than that of the ultracapacitor, this will ensure 

maximum possible charge of the battery at any given time.  The charging power distributing function 

(μch(t)) is therefore defined as 

ሻݐ௖௛ሺߤ ൌ
1

ሺ1 ൅ eୠౙ౞ሺୗ୓େౘ౗౪౪ሺ௧ሻିୡౙ౞ሻሻ
ൈ

1
ሺ1 ൅ eୢౙ౞ሺୗ୓େ౑ిሺ௧ሻିୣౙ౞ሻሻ

ൈ
1

൬1 ൅ e୦ౙ౞ሺ
ௗ௉೏೐ೞሺ௧ሻ

ௗ௧ ି୧ౙ౞ሻ൰

ൈ min ൬
gୡ୦

Pୢୣୱሺݐሻ
, 1൰ 

(3.31) 

where the slopes (bch, dch, and hch) and inflection points (cch, ech, and ich) are as described in Equation 

(3.29).  It should be noted that the parameter gch is defined as the charging power limit of the battery, 

and that the min function ensures that all charging power is first sent to the battery when the charging 

power (Pdes(t)) is less than the charging power limit of the battery (gch).  Since the battery charge limit 

is much lower than that of the ultracapacitor, this will ensure the maximum charging of the battery 

throughout the drive cycle.   

3.3.2 Power Distributing Function Illustrations 

Due to the multi-dimensional nature of the power distributing function, it is not possible to visually 

demonstrate the behavior of all the variables simultaneously.  Therefore, variables are selected in turn 

to illustrate visually their relationships with the power distributing function, as presented in the 

following subsections.  
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3.3.2.1 Scenario 1: Effects of Battery State of Charge 

Figures 3-14 and 3-15 depict the discharge power distributing function (μdis(t)) as a function of the 

ultracapacitor state of charge (SOCUC(t)) and the desired power (Pdes(t)), while changing the battery 

SOC (SOCbatt(t)) and holding the rate change of power (dPdes(t)/dt) constant.   

 

Figure 3-14: Discharging Power Distributing Function [SOCbatt(t)=90%, dPdes(t)/dt=5kW/s] 
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Figure 3-15: Discharging Power Distributing Function [SOCbatt(t)=10%, dPdes(t)/dt=5kW/s] 

Figure 3-14 indicates a close-to-full battery, while Figure 3-15 represents an almost depleted 

battery.  It can be seen that when the battery if full, depending on the ultracapacitor state of charge 

and the desired power, it is possible to discharge the battery at 100% share of power.  However, when 

the battery is depleted as shown in Figure 3-15, the discharge power distributing function is close to 

zero at all times, indicating the discharging power is solely provided by the ultracapacitor.  

Furthermore, since the inflection point (gdis) of the desired power (Pdes(t)) sigmoid function is the 

battery discharging power limit, when the desired discharging power is higher than that of the battery 

limit, power will be primarily discharged from the ultracapacitor regardless of the battery or the 

ultracapacitor’s states of charge.  It should be noted that the rate of change of power (dPdes(t)/dt) is set 

to a low value in this scenario, and will be studied later in the section.  Similarly, the charging power 

distributing function (μch(t)) is shown in Figures 3-16 and 3-17.  

 

Figure 3-16: Charging Power Distributing Function [SOCbatt(t)=90%, dPdes(t)/dt=5kW/s] 
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Figure 3-17: Charging Power Distributing Function [SOCbatt(t)=10%, dPdes(t)/dt=5kW/s] 

Figure 3-16 depicts a relatively full battery, and it is clear that in this case majority of the charging 

power is sent to the ultracapacitor.  Figure 3-17 shows a depleted battery, and due to the low charging 

power limit of the battery, it is desired to send all charging power to the battery up to its charging 

limit.  Any additional power will subsequently be used to charge the ultracapacitor.  It should be 

noted that in the above figures the inflection points (edis and ech) of the ultracapacitor state of charge 

(SOCUC(t)) are both set to 50% for illustration purposes.  They can be manually adjusted or used as 

optimization variables.  

3.3.2.2 Scenario 2: Effects of Ultra-capacitor State of Charge 

Similar to the previous scenario, Figures 3-18 and 3-19 illustrate the discharge power distributing 

function (μdis(t)) as a function of the battery state of charge (SOCbatt(t)) and the desired power (Pdes(t)), 

while changing the ultracapacitor SOC (SOCUC(t)) and holding the rate of change of power 

(dPdes(t)/dt) constant.  Figure 3-18 shows a relatively full ultracapacitor, while Figure 3-19 indicates a 

depleted ultracapacitor.  
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Figure 3-18: Discharging Power Distributing Function [SOCUC(t)=90%, dPdes(t)/dt=5kW/s] 

 

Figure 3-19: Discharging Power Distributing Function [SOCUC(t)=10%, dPdes(t)/dt=5kW/s] 
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(μdis(t)) in Figure 3-18 could be adjusted by changing the inflection point (edis) of the ultracapacitor’s 

sigmoid function.  Similarly, the charging distributing function (μch(t)) is shown in Figures 3-20 and 

3-21. 

 

 

Figure 3-20: Charging Power Distributing Function [SOCUC(t)=90%, dPdes(t)/dt=5kW/s] 

 

  

Figure 3-21: Charging Power Distributing Function [SOCUC(t)=10%, dPdes(t)/dt=5kW/s] 
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Again, as expected, the charging distributing function (μch(t)) ensures that the proper portion of the 

charging power is sent to the ultracapacitor to maintain its charge.  Again, it should be noted that in 

the above figures, the inflection points (cdis and cch) of the battery state of charge (SOCbatt(t)) are both 

set to 50% for illustration purposes, and can be manually adjusted or used as optimization variables. 

3.3.2.3 Scenario 3: Effects of Rate of Change of Power 

The previous examples examined the effects of the battery’s state of charge, the ultracapacitor’s state 

of charge, and the desired power on the power distributing function while setting the rate of change of 

power constant.  In this section, the rate change of power will be varied to illustrate its influence on 

the power distributing function.  Figure 3-22 illustrates the discharge power distributing function 

(μdis(t)) as a function of the desired power (Pdes(t)) and the rate change of power (dPdes(t)/dt) while the 

battery and the ultracapacitor’s states of charge remain at 50%.  

 

Figure 3-22: Discharging Power Distributing Function [SOCUC(t)=50%, SOCbatt(t)=50%] 

It can be seen from Figure 3-22 that when the desired power and rate of change of power are in the 
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Figure 3-23: Charging Power Distributing Function [SOCUC(t)=50%, SOCbatt(t)=50%] 

Similar to the discharging function, majority of the power is used to charge the battery when the 

charging power and the rate of change of power are low.  Also shown in Figure 3-23, due to the low 

charging limit of the battery, any additional charging power over the battery’s charging limit is sent to 

the ultracapacitor.  Finally, as expected, the ultracapacitor is used almost exclusively when the rate 

change of charging power is high. 

3.4 Summary 

For the purpose of optimization, a generic hybrid electric vehicle model consisting of all possible 

powertrain components was developed.  The connections or components can be utilized depending on 

the desired configuration determined by the user.  It was decided that since the objective of the 

research work was to study the overall efficiencies of the vehicle system, a backward-looking vehicle 

model would satisfy the power consumption calculation required while minimizing the computing 
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quasi-static scalable components, where the appropriate size will be determined by the optimizer.  A 

scalable internal combustion (IC) engine was modeled based on the Willans line modeling approach, 

while an electric motor-generator model consisting of a scalable lookup table was utilized.  Due to the 

characteristic of the electric motor and the IC engine, the number of gears of the transmission will 
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differ depending on which power source is driving the wheel directly.  As part of the electrical energy 

storage (EES) system of the vehicle, an open circuit voltage-based battery model was created, where 

the battery’s characteristic is determined by a lookup table depicting the relationship between the 

open circuit voltage and battery state of charge, available from the manufacturer.  Similar modeling 

approach was used to create the ultracapacitor model.  In order to manage the power flow within the 

EES, a power distributing function was proposed where the function monitors the battery and the 

ultracapacitor’s SOC, the desired tractive power and the rate of change of tractive power.  Based on 

the monitored values and the function’s parameters, the power distributing function determines the 

power split ratio between the battery and the ultracapacitor within the EES.  It was shown that the 

power distributing function is a simple, yet effective method to manage the power distribution 

between the battery and the ultracapacitor.  The parameters of the sigmoid functions allow the 

flexibility of manual design or can be automatically determined by an optimizer.  In conclusion, the 

aforementioned generic vehicle model with scalable powertrain components will allow flexibility and 

modularity during the optimization process, which will be discussed in detail in the subsequent 

chapters.   



 

 47 

Chapter 4 

Components and Power Controller Logic Optimization 

The key contribution of the research is performing concurrent optimization on a hybrid electric 

vehicle’s powertrain components and power management logic.  Each component of the vehicle 

system, such as engine, motor, and electrical energy storage components along with the power 

management logic is considered as an individual discipline.  The idea is to use Multidisciplinary 

Design Optimization (MDO) methodology to simultaneously optimize the overall system.  It is of 

importance that global optimization is performed to thoroughly search for the most effective vehicle 

system design.  Since the process of optimization is associated with a large amount of simulation a 

feature-based optimization approach is proposed to reduce the required simulation time.  This chapter 

discusses the MDO approach, the architecture of the software model including the optimizer, and the 

feature-based optimization approach. 

4.1 Process Overview 

Among the MDO methods reviewed in Section 2.4, the Multidisciplinary Feasible (MDF) method is 

not only the simplest, but also the closest match for the vehicle’s powertrain system.  In a vehicle’s 

simplest form, consider the vehicle chassis and its engine as two individual disciplines, where the 

engine speed is dependent by the vehicle’s wheel speed, while the wheel torque is mapped from the 

engine torque.  Similar correlations can be drawn between each of the powertrain components and the 

power management logic of a hybrid electric vehicle system.  Since the objective of the vehicle model 

is to study the energy efficiencies of the system, where the dynamics of the vehicle is not of concern, 

the backward-looking architecture can compute with ease the vehicle power consumption and the 

overall efficiency accurately while utilizing minimal computing resource.  Combining the MDF 

method and the modular vehicle layout shown in Figure 3-2, the MDF formulation of the overall 

system including the optimizer and the vehicle system is as follows.   

Minimize J(XD, U(XD)) w.r.t. XD 
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Figure 4-1: Schematics of the Optimizer with the Vehicle System 

Depending on the requirements, the vehicle system can be modified to perform various design 

studies while maintaining the same optimization procedure.  During each optimization iteration, the 

optimizer will choose a set of design candidates XD to provide to the vehicle system, and a complete 

vehicle simulation involving various disciplines (powertrain components and power management 

logic) at the value of XD is performed to obtain the system output variables U(XD).  The design 

candidate vector XD contains optimization variables such as the power management logic and the 

powertrain component sizing parameters, while the system output variables U(XD) are the energy 

consumptions of the vehicle in the form of either fuel and/or electricity consumption.  The system 

output variable vector U(XD) is then used to evaluate the objective function J(XD, U(XD)) of the 

optimization algorithm.   

4.2 Optimization Algorithm 

Many researchers had contributed to the field of optimization over the years, and numerous 

algorithms are available to solve different types of minimization problems.  The optimization 

methods can be classified into two categories: classical and global methods.  This section describes 

briefly some of the most commonly used optimization methods.  
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4.2.1 Classical Optimization 

Classical optimization is an established field of study, where most of the algorithms have existed for 

many years.  The benefit of classical methods is its high computational speed; however, the drawback 

is that they are all local optimization methods by nature.  The methods described in this section 

include both algorithms that require gradient information and derivative-free methods.  

4.2.1.1 Line Search Methods 

The line search method calculates a search direction pk from the current point and then decides how 

far to move along that direction.  The iteration is given by 

௞ାଵݔ ൌ ௞ݔ ൅  ௞ (4.1)݌௞ߙ

where the positive scalar αk is called step length, xk is the current point, and xk+1 the point at the next 

iteration.  The success of a line search method is dependent on the choices of both the direction pk and 

the step length αk.  Most line search algorithms require pk to be a descent direction, for which 

௞݌
௧ܬ׏௞ ൏ 0.  This property guarantees that the function J can be reduced along this direction.  

Furthermore, the search direction takes the form 

௞݌ ൌ െܤ௞
ିଵܬ׏௞ (4.2) 

where Bk is a symmetrical and nonsingular matrix.  In the steepest descent method, Bk is simply the 

identity matrix I, while in Newton’s method, Bk is the exact Hessian ׏ଶܬሺݔ௞ሻ.  In quasi-Newton 

methods, Bk is an approximation to the Hessian that is updated at each iteration by means of a low-

rank formula.  Detailed definition of various line search methods can be found in [35].  

4.2.1.2 Trust Region 

Trust region is similar to the line search method in that they both generate a step using a quadratic 

model of the objective function.  However the difference is in that line search methods use it to 

generate a search direction, while trust region methods define a region around the current iteration 

within which they trust the model to be an adequate representation of the objective function.  The 

algorithm then chooses the step that is the approximate minimizer of the model in this region.  If this 

step is not acceptable, the size of the region is reduced and a new minimizer if found.  In practical 

algorithms, the size of the region is chosen according to the performance of the algorithm during 

previous iterations.  If the model is consistently producing good steps and accurately predicting the 

behaviour of the objective function along these steps, the size of the trust region may be increased to 
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allow longer and large steps to be taken.  On the other hand, if the step failed, then the size of the 

region is reduced and the process is repeated.  Detailed procedures of the trust region algorithm are 

discussed in [35].  

4.2.1.3 Nelder-Mead Simplex Direct Search 

Nelder-Mead simplex-reflection method takes its name from the fact that at any stage of the algorithm 

there are n + 1 points of interest in an n-dimensional space, whose convex hull forms a simplex.  

Given a simplex S with vertices {z1, z2,…,zn+1}, an associated matrix V(S) is defined by taking the n 

edges along V from one of its vertices (e.g., z1). 

ܸሺܵሻ ൌ ሾݖଶ െ ,ଵݖ ଷݖ െ ,ଵݖ … , ௡ାଵݖ െ  ଵሿ (4.3)ݖ

In a single iteration of the Nelder-Mead algorithm, the vertex with the worst function value is 

removed and replaced with another point with a better value.  The new point is obtained by reflecting, 

expanding, or contracting the simplex along the line joining the worst vertex with the centroid of the 

remaining vertices.  If a better point cannot be found in this manner, the vertex with the best function 

value is retained, and the simplex is shrunk by moving all other vertices towards the retained vertex.  

Further information and details of the algorithm can be found in [35]. 

4.2.1.4 Pattern Search 

Pattern search is a constrained derivative-free optimization technique that is similar to line search 

methods.  At each iteration, a certain set of search directions is chosen, and the objective function (J) 

is evaluated at a given step length along each of these directions.  These candidate points form a 

frame around the current iterate, and if a point with a significantly lower function value is found, it is 

adopted as the new iterate and the center of the frame is shifted to this new point.  At each of the 

current iterations with a set of design variables xk, Dk is defined to be the set of possible search 

directions and γk to be the line search parameter.  The frame consists of the points xk + γkpk, for all pk 

∈ Dk.  When one of the points in the frame yields a significant decrease in J, the step is taken and γk is 

increased to expand the frame for the next iteration.  If none of the points in the frame has a 

significantly improved function value with respect to Jk, γk is reduced and the process is repeated.  

The main difference between a pattern search and a line search method is that in pattern search, the 

direction set pk does not require information on the derivative information of the objective function, 

as compared to that of the line search methods. [35] In MATLAB, the direction set is generated based 

on a set of rational basis vectors [36].  
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4.2.2 Global Optimization 

As opposed to classical optimization techniques, global optimization methods search the entire 

problem space, thus avoiding the optimizer being “stuck” in local minima.  The downside is the 

additional computational time required to search the global space thoroughly.  This section describes 

two global optimization techniques available: genetic algorithm and simulated annealing.  

4.2.2.1 Genetic Algorithm 

Genetic algorithm (GA), as its names suggests, is an optimization procedure inspired by the 

biological process of evolution and the survival-of-the-fittest concept, formally introduced by Holland 

in the 1970s [37].  It is a global optimization technique and is derivative-free, and thus can be easily 

applied to both continuous and discontinuous functions.  The algorithm is based on the evaluation of 

the objective function at a set of points within the function’s variable space, which is usually first 

chosen randomly within the search region.  Such feature allows the algorithm to be less vulnerable to 

local optima, and is an excellent method to solve global optimization problems.  

The algorithm begins with generating a random population in the range of the optimization 

variables, and uses the binary encoding procedure to represent each variable as a string of binary 

digits.  The generated variables are termed individuals, which contain a collection of genetic traits or 

genotypes, and are referred to as chromosomes.  The genotypes are represented as strings of binary 

digits, or genes in GA terminology.  The objective functions using individuals are first evaluated and 

the result is called the fitness of the individuals.  A set of genetic operators, such as selection, 

crossover, and mutation are then applied to the population.  Selection is a process in which 

individuals are copied based on their fitness values, where highly fit individuals will have a higher 

number of offsprings in the succeeding generation.  Crossover is then applied by combining 

successful individuals by exchanging equivalent lengths of their chromosomes, where the two strings 

from the reproduced population are mated randomly.  Finally, mutation is performed by picking a 

random chromosome and flipping a gene randomly.  In essence, crossover represents searching within 

the local region, while mutation explores the global space to avoid being trapped in a local optimum.  

The fitness function of the individuals is then evaluated, and the process is repeated until the best 

fitness is obtained or the maximum generation is reached.  Detailed GA procedure and formulation 

can be found in [37]. 
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4.2.2.2 Simulated Annealing 

Simulated annealing is a stochastic optimization techniques based on random evaluation of the 

objective function in order to avoid being trapped in a local minimum.  The name of the techniques is 

inspired by the annealling process in metallurgy, where a controlled and slow cooling of heated solid 

ensures proper solidification of its crystal while reducing their defects. Such process ensures a 

crystalline state that corresponds to its lowest internal energy. 

The optimization problem can be states as: 

Minimize J(x) 

Subject to ݔ௠
ሺ௟ሻ ൑ ௞ݔ ൑ ௠ݔ

ሺ௨ሻ,݉ ൌ 1,2, … , ݊ 

where J(x) is the objective function, and x is a vector of the optimization variables bounded by its 

upper (xm
(u)) and lower (xm

(l)) limits.  The algorithm starts with an initial vector x1, and moves 

randomly along each coordinate direction to generate successively improved point to a global 

minimum solution.  During each iteration, the objective function J(xk+1) is evaluated at a candidate 

vector xk+1 from the current point xk to determine whether an improvement of the objective function is 

achieved.  If ΔJ ≤ 0, the new point is accepted and xk+1 = x.  Otherwise, the new point is accepted with 

a probability of  

ܲሺ∆ܬሻ ൌ ݁ି∆௃ ௞ೄಲ்ೄಲ⁄  (4.4) 

where ΔJ = J(xk+1) - J(xk), kSA is a scaling factor called Boltzmann’s constant, and TSA is the 

temperature.  The algorithm begins with a “high” temperature (TSA,0), and a sequence of design 

vectors is generated until the equilibrium is reached, where the average value of J stabilizes as kSA 

increases.  Once the thermal equilibrium is reached, the temperature TSA is reduced and a new 

sequence of moves is made again until thermal equilibrium is reached once again.  This process is 

repeated until a sufficiently low temperature is reached, at which stage the global minimum is found. 

It should be noted that the initial guesses of the optimization variables does not affect the quality of 

the final solution, except that computational time may increase with worse starting point.  

Additionally, due to the discrete nature of the function and constraint evaluations, the convergence or 

transition characteristics are not affected by the continuity or differentiability of the functions.  

Therefore, the simulated annealing optimization algorithm is well suited to solve discrete problems 

with the ability to find the global optimal solution [38]. 
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4.2.3 Software Structure 

The modeling and simulation work of this research was implemented in the MATLAB/Simulink 

environment, where the vehicle component modules, described in Chapter 3, were created in 

Simulink, and the components’ properties were created using m-files.  The advantage of such 

approach is that the parameters of the components can be changed with ease and a library of various 

types of components can be constructed.  It is therefore desired to perform the optimization procedure 

within the MATLAB /Simulink environment.  

There are two methods of performing optimization in the MATLAB /Simulink environment: (i) 

Optimization Toolbox (optimtool) and (ii) Simulink Response Optimization.  The Optimization 

Toolbox is a graphical user interface toolbox that is based on MATLAB commands, while the 

Simulink Response Optimization is a library of block diagrams in the Simulink environment.  After 

an extensive investigation, it was found that using the MATLAB command provides the greatest 

flexibility over the control of each optimization algorithm while integrates most seamlessly with the 

vehicle software model.  

To execute an optimization procedure, a main MATLAB script is used to first define the upper 

(XD,u) and lower (XD,l) bounds of the design variables, and also the optimization parameters of each of 

the algorithms.  The main script then executes the optimization algorithm’s MATLAB command that 

minimizes a custom function, which takes the form of a user defined m-file that initializes the vehicle 

and its components’ properties, and subsequently performs the vehicle model simulation in Simulink.  

Once the vehicle simulation is complete, the output variables (U(XD)) are used to evaluate the 

objective function (J(XD, U(XD))) and passed back to the optimizer.  The vehicle simulation in 

Simulink and the objective function evaluation are repeated until the terminating condition of the 

optimizer is satisfied.  Once the optimization is completed, the main script executes the vehicle model 

simulation in Simulink using the best design candidate as determined from the optimization to obtain 

the final results.  Using the above-mentioned procedure, the optimized system configuration along 

with its results can be obtained with one click of a button.  Figure 4-2 illustrates the optimization 

procedure in the MATLAB/Simulink environment.  
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Figure 4-2: Optimization Procedure in MATLAB/Simulink 

4.2.4 Optimization Comparison 

MATLAB contains a library of optimization algorithms that includes the aforementioned classical 

and global optimization methods [39].  Due to the functionality available within the software 

package, it is desired to utilize the MATLAB optimization command to perform optimization of the 

vehicle system.  Due to the different nature of the optimization algorithms, not all will satisfy the 

requirement of performing the concurrent optimization of the vehicle system.  Since the evaluation of 

the objective function will be performed by the Simulink vehicle model, it is not possible to obtain 

derivative information, namely the Gradient and the Hessian, for use in derivative-based optimization 

algorithm.  Of those optimization algorithms available in MATLAB, several methods are derivative 

free and are therefore able to perform optimization using the Simulink vehicle model.  Table 4-1 

shows some of the derivative-free optimization algorithm available in MATLAB.  

 

 

Define Parameters 
Execute Optimizer

MATLAB Main Script

Vehicle Simulation in Simulink

Design Candidates

System Output
Variables

Best Candidates



 

 55 

Table 4-1: Derivative-Free Optimization Algorithms in MATLAB [39] 

Method MATLAB Command Type 

Nelder-Mead fminsearch Local, unconstrained 

Pattern Search patternsearch Local, constrained 

Simulated Annealing simulannealbnd Global, constrained 

Genetic Algorithm ga Global, constrained 

 

In addition to that the algorithm needs to be derivative-free, it is desired to have the capability of 

searching the global space to avoid being trapped in the local minimum.  Table 4-1 shows that both 

simulated annealing and genetic algorithm are global optimization by nature, and will be 

implemented to obtain the global optimal solution.  Furthermore, classical methods such as the 

Nelder-Mead and pattern search algorithm will also be used to perform vehicle system optimization 

for comparison purposes.  The optimization results of the aforementioned algorithms will be 

compared and presented in the subsequent Chapters.  

4.3 Feature-Based Optimization 

As described in the previous section, when performing vehicle energy consumption calculation, the 

entire drive cycle is used during simulation.  During optimization, thousands of simulations are 

performed where the vehicle is to complete the entire drive cycle.  With the large number of 

optimization variables of the vehicle powertrain and power management logic, running thousands of 

simulations for each optimization case could results in hours if not days of simulation time.   

To reduce simulation run-time, feature-based optimization is developed by utilizing a statistical 

approach to extract velocity and acceleration information of a drive cycle, where a 3D histogram of 

the drive cycle is first generated to determine the range of the velocity and acceleration values.  The 

extracted velocity and acceleration combination is then applied to the Simulink vehicle model to 

determine the energy consumption, thereby generating an energy map corresponding to the velocity 

and acceleration range of the histogram.  The energy map is then used to perform the energy 

calculation of the drive cycle.  During the optimization process, only the drive cycle energy 

calculation is repeated when changing the optimization variables, thus eliminating the need to 

perform Simulink vehicle simulation and reducing the simulation run-time significantly.  Additionally, 

there exists some research work aiming to construct a comprehensive drive cycle utilizing statistical 
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real world driving data collected over a period of time.  The collected data is then used to generate a 

driving cycle that can be used to perform a full vehicle simulation [40].  However, by utilizing the 

feature-based approach, real world statistical driving data can be used directly to perform vehicle 

simulation without any additional effort, thereby eliminating the need to generate a specific driving 

cycle, further improving the process efficiency of the vehicle’s design cycle.  The following sections 

describe the process in details.  

4.3.1 Drive Cycle Decomposition 

A typical drive cycle consists of a desired vehicle velocity time history as defined by the user.  

Additionally, there are standard drive cycles available and are used worldwide.  In this research, 

standard city and highway drive cycles developed by the US Environmental Protection Agency (EPA) 

are used.  Further information is provided in Appendix B.  Typical city and highway drive cycles are 

shown in Figures 4-3 and 4-4.  

 

Figure 4-3: Standard EPA UDDS City Cycle 
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Figure 4-4: Standard EPA HWFET Highway Cycle 

The first step in extracting the features of the drive cycle is to analyze the velocity and acceleration 

time history data using the 3D histogram (hist3) command in MATLAB, where it will automatically 

determine the range of the velocity and the acceleration of the drive cycle and generate an occurrence 

count based on a user defined interval.  As an example, Figures 4-5 and 4-6, respectively, show a 3D 

histogram of the city and highway drive cycles, where the velocity and acceleration range are divided 

into 15 intervals.  
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Figure 4-5: 3D Histogram of the UDDS City Cycle 

 

 

Figure 4-6: 3D Histogram of the HWFET Highway Cycle 

As shown in the above figures, the histogram command automatically determined the velocity and 

acceleration intervals based on the range of the drive cycle and the user desired interval count.  Each 

combination of the velocity and acceleration is called a bin, and each bin contains the number of 

occurrence of a specific combination of velocity and acceleration over the drive cycle.  Naturally, 

Figure 4-5 indicated the most occurrences at low speed for the city cycle, while Figure 4-6 showed 

more occurrences at higher speeds for the highway cycle.  The actual values of the velocity and 

accelerations intervals are stored in the vectors vfea and afea, respectively, where the sizes of both 

vectors are determined by the size of the user-defined bin size.  Additionally, the time interval of each 

data point from the drive cycle time history data is defined as the time step of the drive cycle, and is 

stored in the variable ts.  The variables are subsequently used to generate the energy map as described 

in the next section.  

4.3.2 Energy Map Generation 

Once the velocity and the acceleration intervals were determined using the histogram command, 

simulations are performed using the vehicle model in Simulink to determine the energy consumption 
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of each bin to generate an energy map, defined by an i × j vector Emap.  For each i and j location of the 

energy map, the corresponding velocity (vfea,i) and acceleration (afea,j) are used as the initial velocity 

and acceleration of the Simulink vehicle model, which is simulated for a duration equal to the drive 

cycle time step (ts).  The energy value is taken as the consumed or generated energy of the electrical 

energy storage system, thereby taking into account the efficiencies of the power components.  As an 

example, Figures 4-7 and 4-8 depict the energy maps of the city and highway cycles using the same 

velocity and acceleration intervals as determined from the previous section.  

 

Figure 4-7: Energy Map of the UDDS City Cycle 
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Figure 4-8: Energy Map of the HWFET Highway Cycle 

It should be noted that negative acceleration denotes braking, and subsequently negative energy 

indicates a regenerated energy from regenerative braking.  Once the energy map of the drive cycle is 

created, it is used to calculate the vehicle’s energy consumption due to the drive cycle.  

4.3.3 Drive Cycle Energy Calculation 

The feature-based simulation approach determines only the total amount of energy that is required to 

complete the drive cycle while taking into account the friction, aerodynamics drag, and power 

component efficiency losses.  This energy consumption could be electrical (battery or ultracapacitor) 

or chemical (IC engine), and in the case of a hybrid electric vehicle a combination of both.  

Furthermore, it does not consider the power capability and the capacity of the electrical energy 

storage components.  In order to compensate for the lack of time dependence information, it is 

necessary to keep track of the state of charge (SOC) of the electrical energy storage system 

throughout the drive cycle.  This is achieved by dividing the drive cycle to m segments and 

performing energy calculation for each section.  As an example, the HWFET highway drive cycle 

shown in Figure 4-4 is divided into 50-second intervals (m=16), as illustrated in Figure 4-9.  
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Figure 4-9: HWFET Highway Drive Cycle in Multiple Sections 

To calculate the energy consumption of the drive cycle while taking into account the state of charge 

(SOC) of the electrical energy storage components, the energy consumption of each section is 

calculated sequentially starting with the first section at initial time.  During energy calculation at each 

section m, a histogram (Hsec) indexed by the previously defined velocity (vfea) and acceleration (afea) 

range is generated for that particular section as shown in Figure 4-9.  Each section’s histogram is then 

multiplied to the energy map to determine the total energy consumption of that section.  The state of 

charge of the electrical energy storage components is then updated to reflect the energy consumption 

for that particular section, and is subsequently used as the initial state of charge for the next section.  

Depending on the power management’s algorithm, the genset may be activated during each section 

(m) to provide additional energy to the system, and thus the fuel consumption (Cf,sec,m) is subsequently 

calculated using the IC engine formulation as described in Subsection 3.2.1.  The energy calculation 

is repeated for each of the section of the drive cycle, and the total energy consumption (Etot) of the 

drive cycle is defined by 

. . . . . .
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 (4.5) 

while the total fuel consumption (Cf,tot) of the drive cycle is simply 

௙,௧௢௧ܥ ൌ෍ܥ௙,௦௘௖,௠

௠

ଵ

 (4.6) 

Using the previously described formulation the total energy and fuel consumption of the drive 

cycle can be determined while taking into account of the power capacity of the electrical energy 

storage devices.  The next subsection will provide discussion of using the feature-based simulation for 

concurrent optimization of the vehicle system.  

4.3.4 Optimization 

The motivation behind feature-based optimization is to reduce the simulation run-time by avoiding 

the repetition of full Simulink vehicle model simulations during optimization.  During a typical 

simulation using conventional method, a full simulation of the Simulink vehicle model is performed 

whenever an optimization variable is changed.  This results in thousands of Simulink vehicle 

simulation which requires hours of simulation time.  By utilizing the feature-based simulation as 

outlined previously, Simulink vehicle simulation occurs only when generating the energy map, while 

optimization utilizes only the drive cycle energy calculation as described in Subsection 4.3.3 to 

determine its objective function.  Since performing energy calculation in MATLAB utilizes only a 

fraction of the time compared to what is required in Simulink, significant amount of time can be 

reduced.  Figure 4-10 illustrates the flow diagram of the feature-based optimization method.  
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Figure 4-10: Feature-Based Optimization Flow Diagram 
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when the optimization variables are changed by the optimizer, it is necessary to apply the 

performance constraints prior to calculating the energy consumption of the drive cycle, where the 

maximum electrical energy storage power needs to exceed the maximum required power of the drive 

cycle while taking into account the traction motor efficiency.  Additionally, since the sizing of the 

power components are changed during the optimization, thereby affecting the mass of each new 

configuration, it is necessary to apply a scaling factor to the energy map to accurately capture the 
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effects of component sizing.  The new energy map (Emap,ite) at each of the iterations due to a different 

mass can be defined as follows 

௠௔௣,௜௧௘ܧ ൌ ܭ ൈ  ௠௔௣ (4.7)ܧ

where K is the scaling factor due to the changing mass at each iteration and Emap is generated by the 

Simulink vehicle model as described in Subsection 4.3.2 using the initial configuration.  By relating 

energy map to the desired vehicle power and the drive cycle time step, Equation (4.7) can be 

rearranged as 

ܭ ൌ
௠௔௣,௜௧௘ܧ
௠௔௣ܧ

ൌ ௠ܲ௔௣,௜௧௘ ൈ ௣௧ߟ ൈ ௦ݐ
௠ܲ௔௣ ൈ ௣௧ߟ ൈ ௦ݐ

 (4.8) 

where Pmap,ite is the power map of each iteration during the optimization, and Pmap is the power map 

generated using the initial configuration.  Additionally ηpt is the efficiency of the powertrain 

components and ts is the time step of the drive cycle.  It should be noted that both Pmap,ite and Pmap are  

i × j vectors corresponding to the velocity (vfea) and acceleration (afea) range as defined in Subsection 

4.3.2.  For each ith and jth component, Pmap,ite,ij can be determined using the derivations discussed in 

Subsection 3.1.2 as  

௠ܲ௔௣,௜௧௘,௜௝ ൌ ݉௩௘௛,௜௧௘ܽ௙௘௔,௝ ൅
1
2
௙௘௔,௜ݒ௔௜௥ߩ஽ܥ

ଶ ܣ ൅  ோோ݉௩௘௛,௜௧௘݃ (4.9)ܥ

where mveh,ite is the vehicle mass at each iteration, and respectively vfea,i and afea,j are the corresponding 

velocity and acceleration at the ith and jth component.  The vehicle drag and tire rolling resistance 

parameters were as described in Subsection 3.1.1.  Similarly, Pmap,ij can be expressed as 

௠ܲ௔௣,௜௝ ൌ ݉௩௘௛ܽ௙௘௔,௝ ൅
1
2
௙௘௔,௜ݒ௔௜௥ߩ஽ܥ

ଶ ܣ ൅ ோோ݉௩௘௛݃ (4.10)ܥ

where mveh is the vehicle mass of the initial configuration.  Substituting Equations (4.9) and (4.10) 

into Equation (4.8) while cancelling the common terms in the numerator and denominator, the scaling 

map K can be calculated based on the configuration at each of the iterations during optimization.  

Finally, applying K to the energy calculation of the drive cycle as described by Equation (4.5), the 

total energy consumption (Etot,ite) at each of the iteration can be expressed as 

௧௢௧,௜௧௘ܧ ൌ෍෍෍ܧ௠௔௣,௜௝ ൈ ௦௘௖,௠ܪ ൈ ܭ

௝

ଵ

௜

ଵ

௠

ଵ

 (4.11)
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Using the above derivation, the energy consumption can be accurately calculated while reflecting the 

change in vehicle mass during each iteration.  Finally, the energy consumption is used to determine 

the cost function of the objective function to determine the optimal solution. 

4.4 Summary 

The key contribution of the research is to perform concurrent optimization on a hybrid electric 

vehicle’s powertrain components and power management logic.  Multidisciplinary Design 

Optimization methodology is utilized to perform concurrent optimization of the vehicle system.  The 

vehicle simulation and optimization is implemented in the MATLAB/Simulink environment, where 

the vehicle component properties are defined using m-files, while the vehicle model is created in 

Simulink.  Vehicle system optimization is achieved by using the built-in library of MATLAB’s 

optimization algorithms, and is executed using the MATLAB command.  Due to the large number of 

simulations required during a typical optimization process, a feature-based optimization is developed 

with the objective of reducing simulation time.  Feature-based optimization utilized statistical 

approach to extract drive cycle information, where it is used by the Simulink vehicle model to create 

an energy map.  The energy map is subsequently used to perform vehicle energy calculation during 

the optimization process.  Since Simulink simulations are avoided during optimization, simulation 

run-time can be reduced considerably.  The comparison between various optimization algorithms, 

along with the performance and results of the feature-based optimization will be discussed in the next 

Chapter.  
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Chapter 5 

 

Case Study 1: Series Hybrid Electric Vehicle 

A series hybrid electric vehicle (SHEV) is created in MATLAB/Simulink to demonstrate the 

effectiveness of the proposed concurrent optimization approach, where the component sizing and 

power management logic of the vehicle are to be optimized simultaneously.  The advantage of a 

series hybrid electric vehicle configuration is that the power management logic is relatively simple, 

where the genset (engine and generator) will only operate in the most efficient region to recharge the 

battery and supplement traction power.  This chapter will discuss the series hybrid electric vehicle 

model in detail and provide simulation and optimization results.  

5.1 Background and Objective 

The design challenge of a series hybrid electric vehicle is in balancing the size of the battery against 

the engine’s fuel consumption.  By increasing the battery size, the electric range of the vehicle is 

increased, thereby reducing the fuel consumption of the engine required to recharge the battery.  

However, due to the high cost of batteries, having a large battery pack to increase the electrical 

capacity may not be financially effective.  Therefore, the design objective is to determine a system 

configuration where fuel consumption is minimized while utilizing a reasonably-sized battery pack.  

Of all hybrid electric vehicles launched recently, General Motors’ Chevrolet Volt has perhaps 

received the most media attention.  It is designed as an electric vehicle with a range extender, where 

an internal combustion (IC) engine is coupled with a generator to provide additional electric energy 

when the battery is depleted.  Additionally, the battery can also be recharged by plugging into a 

standard household electric receptacle.  Furthermore, the Volt is capable of operating in electric mode 

for 64km (based on standard city cycle) before operating the engine to recharge the 16kWh lithium-

ion battery pack [41].  Upon inspection, the system architecture of an electric vehicle with a range 

extender is identical to that of a series hybrid electric vehicle, and therefore it is used interchangeably 

in this thesis.  

This Chapter contains a two-part case study.  In the first part, similar powertrain component 

(engine, generator, traction motor, etc.) sizes as those of the Chevrolet Volt are used, except for the 

battery whose size will be determined by the optimizer.  In the second part of the case study, the 
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electrical energy storage (EES) system of the series hybrid electric vehicle will be modified to include 

an ultracapacitor, while the optimization of the vehicle system will be extended to include the power 

distributing function (PDF) of the EES system and the rest of the powertrain components.  In both 

cases, the same drive cycle and similar objective functions will be applied.  

The stated achievable electric range of the Volt is based on 64km of standard city cycle, which may 

not accurately reflect the actual driving behavior of most commuters.  It is therefore decided that the 

drive cycle for the design optimization will include both city and highway drive cycles for a total of 

64km.  Furthermore, it is assumed that the EES system is fully charged at the beginning of each 

commuting day, and that at the end of the commute the user returns home and fully recharges the EES 

using the household electrical outlet.  The goal of the optimizer is minimizing the financial amount 

that the consumer will be paying, consisting of the initial cost of the EES system (battery and/or 

ultracapacitor pack), and the combined cost of purchasing gasoline and household electricity to 

recharge the battery over a period of five years.  Due to the lack of information, the maintenance cost 

of the EES system and the power components is not being considered.  Based on the life cycle of 

lithium-ion batteries [42] and ultracapacitors [43], it is assumed that the EES system pack will last for 

a period of five years without significant degradation in performance, and therefore a five-year period 

is used in the objective function of the optimizer.  Finally, carbon tax is added to the total cost as a 

social impact penalty function to take into account the effect of harmful emissions resulting from 

burning fossil fuels. 

5.2 Software Model 

The MATLAB/Simulink vehicle model utilizes a backward-looking architecture as described in 

Chapter 3.  The vehicle model consists of a series electric hybrid powertrain architecture, where the 

electric motor is the sole tractive power source, and the internal combustion (IC) engine is connected 

to a generator to generate electric power to either charge the battery or to supplement the tractive 

motor.  In addition, the electric motor also acts as a generator during regenerative braking to recapture 

the otherwise lost vehicle kinetic energy.  During a typical simulation, the electric motor delivers the 

required tractive power to achieve the drive cycle using electrical power primarily from the battery.  

Once the battery state of charge (SOC) falls below a preset value, the IC engine will drive the 

generator to recharge the Electric Energy Storage (EES) devices, and in the case where the electric 

motor requires more electric power than the battery can supply, the genset will also supply the 



 

 68 

additional required electric power.  Figure 5-1 illustrates the overall schematic of the series hybrid 

electric vehicle model with the optimizer.  

  

Figure 5-1: Series Hybrid Electric Vehicle Overall Schematic with Optimizer 

In Figure 5-1, XD represents a vector containing the design variables, while U(XD) is the output 

variable vector from the vehicle model for the optimizer to evaluate the objective function.  The 

modeling details of each of the vehicle components are discussed in detail in the subsequent 

subsections. 

5.2.1 Drive Cycle 

The purpose of the drive cycle for the vehicle model optimization is to simulate the driving speed 

profile of a typical commuting day.  The drive cycle is designed to represent a combined city and 

highway drive cycle with a total distance of approximately 64km derived from the new test 

methodology developed by the US Environmental Protection Agency (EPA), introduced in Appendix 

B.  Due to the fact that the vehicle model does not take into consideration the thermal effects of the 

powertrain components or the presence of air conditioning, it is not possible to simulate the SC03 and 

cold FTP 75 cycles.  It was therefore decided that the drive cycle consists of the US06 cycle in 

addition to FTP 75 and HWFET, to include high-speed driving and aggressive acceleration and 

deceleration.  Figure 5-2 depicts the speed profile of the combined drive cycle. 
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Figure 5-2: Combined City and Highway Drive Cycle 

5.2.2 Vehicle Model 

The vehicle model utilizes the backward-looking method as described in Subsection 3.1.2, where the 

desired power is calculated using the speed and acceleration from the drive cycle, while taking the 

aerodynamic drag and tire rolling resistance into consideration.  It should be noted that the base 

chassis (sprung) mass does not contain the final total mass of the electrical energy storage (EES) 

devices.  Since the size of the EES system is an optimization parameter, the mass will vary according 

to the optimization results.  The final vehicle mass for desired power calculations is therefore the sum 

of chassis, tire, and EES system masses.  The vehicle model parameters are given in Appendix C.  

5.2.3 Powertrain Components 

5.2.3.1 Transmission 

As previously mentioned in Subsection 3.2.4, due to the difference between the locations of the 

maximum torque regions of an IC engine and the electric motor, the transmission will differ if an IC 

engine or an electric motor is the primary power source to the wheel.  In the case of a series hybrid 

electric vehicle, where the electric motor is the sole power source, a transmission with a small number 
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of gears will suffice.  In this case study, a transmission with 3 gear ratios is selected, and the 

corresponding operating vehicle speed range is given in Appendix C.  

5.2.3.2 Motor 

The tractive motor in a series hybrid electric vehicle is the sole power source to the wheels, and also 

acts as a generator during regenerative braking to capture the otherwise lost vehicle kinetic energy.  

The motor is created with the same size as in the Chevrolet Volt, i.e., 112kW (150hp) electric motor 

with a maximum torque of 370Nm [44].  However, since there is no technical information available 

on the actual motor, the scalable electric motor described in Subsection 3.2.2 was modified to achieve 

output power and torque similar to that of the Volt.  Using the scalable lookup table of the electric 

motor from the QSS toolbox [33] and applying a scale factor of 7 to the torque index, an electric 

motor with maximum torque of 375Nm and peak power of 112kW was created. 

5.2.3.3 Genset 

The genset includes an engine and a generator, which is used to recharge the battery and to supply 

electrical power to the motor when necessary.  In such a configuration, the sole purpose of the IC 

engine is to drive the generator to produce electricity, and therefore can be operated in its most 

efficient region.  Similar to the electric motor, the generator is modeled using the scalable look-up 

table described in Subsection 3.2.3 with a scaling factor of 3 to the torque index, yielding a maximum 

torque of 161Nm and a peak power of 48kW.  An engine similar to the GM’s family 0 1.4L engine is 

created using the Willans line modeling approach as illustrated in Subsection 3.2.1, where the 

parameters of the engine cylinders are defined.  Again, due to the lack of technical information on the 

genset components, the genset model can only be created to have specifications as close as possible to 

those of the Volt’s [44].   

Due to the difference in nature between the engine and the electric generator, the high efficiency 

regions of the two units lie in different locations.  One solution is to use a gear set such that both units 

can be operated in their respective peak efficiency regions.  Figure 5-3 illustrates the maximum 

torque and peak efficiency of the engine and the generator without the added gear set.  



 

 71 

 

Figure 5-3: Maximum Torque and Peak Efficiency Regions of the Engine and the Generator 

It can be seen from Figure 5-3 that there is minimal overlapping between the peak efficiency 

regions of the two components.  By adding a gear set to increase the engine speed while decreasing 

the engine torque, it is possible to overlay the peak efficiency of both units.  Figure 5-4 depicts the 

torque and efficiency curves of the engine and generator after a gear set with the ratio of 1.35 is 

added, as well as the combined peak efficiency region of the genset for optimization. 

0 100 200 300 400 500 600 700
20

40

60

80

100

120

140

160

180

Speed [rad/s]

T
or

qu
e 

[N
m

]

 

 
Engine Torque

Engine Efficiency > 35%
Generator Torque

Generator Efficiency > 88%

>35%

>88%

Max Torque and Peak Efficiency Regions of Engine and Generator



 

 72 

 

Figure 5-4: Maximum Torque and Peak Efficiency Regions of the Genset with Gear Set Ratio 

5.2.3.4 Battery 

The battery component used in the series hybrid electric vehicle model is based on the A123System’s 

lithium-ion batteries where each cell has a capacity of 2.3Ah and a nominal voltage of 3.3V [45].  

Due to the large capacity of the battery that the vehicle requires, a parallel-series combination of 

battery cells is used to satisfy the required capacity of the vehicle, while maintaining a reasonable 

terminal voltage for the system.  It was assumed that each battery bank will contain 100 battery cells 

in series, producing a nominal voltage of 330V.  When a larger battery capacity is necessary, 

additional battery banks will be added in parallel to increase the overall capacity while maintaining 

the nominal voltage; thus, the number of battery banks will be used as an optimization variable to size 

the battery.  In addition to affecting the overall capacity of the battery, the number of battery banks 

also changes the charging and discharging power limits of the battery system. 

5.2.3.5 Ultracapacitor 

The ultracapacitor utilized in the series hybrid electric vehicle model is the Maxwell Boostcap 16 

Volt Modules with a rated capacitance of 110F [43].  The rational of selecting the 16 volt module is 

that its maximum instantaneous power (80kW) is similar to and slightly higher than the approximate 

maximum power requirement (76kW) of the drive cycle.  When a larger capacitance is required, 

0 100 200 300 400 500 600 700 800 900
20

40

60

80

100

120

140

160

180

Speed [rad/s]

T
or

qu
e 

[N
m

]

 

 

Engine Torque

Engine Efficiency > 35%

Generator Torque

Generator Efficiency > 88%

>35%

>88%

Max Torque and Peak Efficiency Regions of Engine and Generator 
with 1.35 Gear Set Ratio

Combined Peak Efficiency Region



 

 73 

additional ultracapacitors will be added in parallel to increase the overall capacitance while 

maintaining the nominal voltage; thus, the number of ultracapacitors in parallel will be used as an 

optimization variable to size the ultracapacitor pack.  Since the vehicle modeling approach is based 

on a backward-looking model, where only power consumption and generation are of interest, the 

voltage difference between the battery and the ultracapacitor is not being considered.  In reality, a 

DC-DC converter is required to interface the two systems with different voltage levels.  However, 

since the dynamic behaviour and the power electronics of the electrical components are not within the 

scope of this research, the powertrain model only considers the power transfer between the battery-

ultracapacitor combination and the electric motor and generator.  Finally, it is assumed that the 

efficiency of the DC-DC converter is close to ideal; hence, no power losses were modeled for the 

DC/DC conversion.   

It should be noted that currently the cost of an ultracapacitor is considerably higher than that of the 

battery.  However, due to its high power output characteristic, its inclusion is desired to improve the 

performance during acceleration and efficiency during regenerative braking.  With the continuing 

decrease in the cost of ultracapacitors, there is no doubt that they will play an increasingly important 

role in the design of electric vehicles’ electric energy storage systems in the future. 

5.2.4 Power Management Logic 

The role of the power management logic is to activate the genset to charge the battery when required.  

Additionally, the power management logic controls the operating point of the engine, specifically the 

engine speed and torque, and the total output power of the genset.  When the battery state of charge 

(SOC) falls below a preset threshold value, the power management logic activates the genset to 

charge the battery until the SOC reaches a predetermined percentage increase before being turned off.  

This is to avoid having the engine turn on and off frequently when the battery SOC remains around 

the threshold value, and also reflects real world operation of a genset.  Ideally, it is desired that the 

genset operates in the most efficient region as described in the previous section.  However, in the case 

where the vehicle is performing regenerative braking, with the addition of the power output of the 

genset at its peak efficiency, the total charging power may be higher than the charging limit of the 

battery.  To ensure that the battery is not overcharged, it is desired that the genset’s output power be 

regulated accordingly.  The following rules describe the genset output power (Pgen) during various 

modes of vehicle operation.  
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௚ܲ௘௡ ൌ ቊ
ܽௗ௘௦ ൒ 0, ݉݅݊ ൫ ௚ܲ௘௡,௘௙௙ , ௠ܲ,௥௘௤ ൅ ௕ܲ௔௧௧,௖௛௚൯

ܽௗ௘௦ ൏ 0, ݉݅݊ ൫ ௚ܲ௘௡,௘௙௙ , ௕ܲ௔௧௧,௖௛௚ െ ௥ܲ௘௚௘௡൯
 (5.1) 

where ades  = desired acceleration of the vehicle 

 Pgen,eff  = genset power output determined by the optimizer 

 Pm,req  = electric power required by the motor  

 Pregen  = electric power generated by the motor during regenerative braking 

 Pbatt,chg  = battery charging power limit 

Equation (5.1) depicts that when the vehicle is cruising or accelerating, the genset output power is 

the sum of the battery’s charging power limit and the required discharge power to the traction motor, 

up to the genset output power determined by the optimizer.  Similarly, during deceleration, the genset 

power output is the difference between the battery’s charging power limit and the regenerated electric 

power from the motor, up to the optimizer-determined output power.  This ensures that the genset 

operates in the most efficient point while not over charging the battery.   

5.3 Battery-Only Series Hybrid Electric Vehicle 

The battery-only hybrid electric vehicle’s architecture is identical to that of the Chevrolet Volt, where 

the electrical energy storage (EES) system consists of only the battery pack.  In addition, the IC 

engine, generator, and traction motor are in the same way as the corresponding components in the 

Volt.  The optimization effort will focus on determining the battery size and the power management 

logic.  The battery-only series hybrid electric vehicle’s Simulink model is given in Appendix D. 

5.3.1 Optimization Problem 

The optimization procedure employs the optimizer to determine the battery size and the power 

management logic to obtain the minimal objective function.  The optimization problem is  

Minimize J(XD, U(XD)) w.r.t. XD 
Subject to c(XD)  

where the optimization parameters (XD) are the SOC threshold, engine torque, and engine speed for 

the power management logic, and the number of battery banks to determine the size of the battery 

system.  U(XD) are the fuel and the electricity consumption of the vehicle, while c(XD) are the 

equality and inequality constraints of the problem.  The Simulink vehicle model as shown in 

Appendix D defines the number of equations and the constraints of the optimization problem, which 

is a mixed integer nonlinear problem in nature.  Finally, the size of the optimization problem reported 
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in Table 5-1 is the number of variables at each time step multiplied by the number of time steps that 

the drive cycle is divided into and is calculated as 

݁ݖ݅ܵ݊݋݅ݐܽݖ݅݉݅ݐ݌ܱ ൌ
௡௨௠௕௘௥݈ܾ݁ܽ݅ݎܸܽ ൈ ܶ

௦ݐ
 

(5.2)

where T is the total time of the drive cycle, and ts is time step used during simulation.   

Table 5-1: Summary of the Battery-Only Series Hybrid Electric Vehicle Optimization Problem 

Drive Cycle Duration [s] 5,114 
Time Step [s] 0.5 
Number of Variables 15 
Size of Optimization Problem 153,420 
Number of Constraints (c(XD)) 8 

 

 Additionally, Table 5-2 depicts the numerical range of the optimization parameters (XD), where the 

engine torque and speed ranges are determined from the most efficient region of the genset as 

described in Subsection 5.2.3.3.  

Table 5-2: Battery-Only Series Hybrid Electric Vehicle Optimization Variables 

Variables Lower Bound Upper Bound 
SOC Threshold [%] 10 95 
Engine Torque [Nm] 88 116 
Engine Speed [rad/s] 222 278 
Number of Battery Banks 1 9 

 

The objective function (J) is the total financial amount consisting of the initial cost of the battery, 

the cost of gasoline and household electricity consumption over a period of five years, and the 

equivalent carbon tax cost due to fossil fuel consumption, as given by the following equation.  

ܬ ൌ ൥෍݈݁ݑܨ஼௢௡௦௨௠௘ௗ	

்

௧ୀ଴

ൈ ሺ݈݁ݑܨ஼௢௦௧ ൅ ݊݋ܾݎܽܥ ்௔௫ሻ ൅෍ݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ஼௢௡௦௨௠௘ௗ

்

௧ୀ଴

ൈ ஼௢௦௧൩ݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ ൈ ݏݕܽܦ ൈ ݏݎܻܽ݁ ൅ ஼௘௟௟ݕݎ݁ݐݐܽܤ ൈ ஼௢௦௧ݕݎ݁ݐݐܽܤ

൅  ݀݁ݕ݈ܽ݁ܦ_ݎ݋ݎݎܧ

(5.3)

where T is the total time of the drive cycle.  The costs of fuel and electricity were determined based 

on the typical gasoline and household hydro cost in Ontario in 2008.  The cost of battery includes the 
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battery cell itself and packaging cost determined from the A123 systems’ website [45].  The number 

of days is based on a 260-day work year as reported from statistic Canada [46], while the carbon tax 

is the average expert consensus indicated in the climate change 2007 report by the Intergovernmental 

Panel on Climate Change (IPCC) [47].  It should be noted that due to the wide variety of electricity 

generation methods (i.e., coal, hydro, wind farm, nuclear) [48], it is difficult to affix a precise carbon 

tax cost to the generation of electricity, and this item is therefore not included in the objective 

function evaluation.  Finally, an error function is included in the objective function evaluation for the 

case when the vehicle cannot complete the drive cycle without a time delay; therefore, the optimizer 

will only consider the vehicle settings where powertrain is capable of delivering the required power of 

the drive cycle.  Table 5-3 summarizes the values of the cost function parameters used in the 

optimization.  

Table 5-3: Parameters for the Battery SHEV Objective Function Evaluation 

Cost Function Parameters Values 
Cost of Gasoline [$/L] 0.9 
Cost of Electricity [$/kW·h] 0.12 
Carbon Tax [$/L of Gasoline] 0.034 
Cost of A123 Li-Ion Battery [$/cell] 18.33 
Number of Working Days per Year 260 
Number of Years 5 

 

5.3.2 Optimization Results 

Optimization on the battery-only series hybrid electric vehicle was performed using the procedure 

described in Subsection 4.2.3 along with the algorithms mentioned in Subsection 4.2.4.  The 

algorithms’ MATLAB commands were used for the optimization procedure, and the algorithm 

specific parameters were left at their default values.  The m-files containing the MATLAB built-in 

optimization commands are included in Appendix E.  Additionally, feature-based optimization was 

also performed on the battery-only series hybrid electric vehicle, and its MATLAB code is given in 

Appendix F.  The optimization results of various algorithms and the feature-based optimization are 

summarized in Table 5-4. 
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Table 5-4: Battery SHEV Optimization Results of Various Algorithms 

 Full Optimization Feature-
Based 

using GA Algorithm 
Genetic 

Algorithm 
Simulated 
Annealing 

Pattern 
Search 

Nelder-
Mead 

SOC Threshold [%] 12 15 12 7 11 
Engine Torque [Nm] 116 116 114 170 116 
Engine Speed [rad/s] 225 222 222 164 222 
Number of Battery Banks 3 3 3 3 3 
Gasoline Consumption [L/day] 2.277 2.279 2.280 2.079 2.273 
Electricity Consumption [kWh/day] 1.961 1.885 1.965 2.071 1.980 
Battery Cost [$] 5,499 5,499 5,499 5,499 5,499 
Fuel Cost [$] 2,664 2,666 2,667 2,433 2,660 
Electricity Cost [$] 285 274 286 302 288 
Carbon Tax [$] 101 101 101 92 100 
Total Cost [$] 8,549 8,540 8,553 8,326 8,547 
Simulation run-time [s] 6,147 13,165 701 575 467 

 

Table 5-4 shows that out of the four MATLAB optimization algorithms, the solution found by the 

Nelder-Mead method is out of bound, and therefore is deemed meaningless.  Genetic algorithm, 

simulated annealing, and pattern search all found solutions that yielded approximately the same cost 

function, where simulated annealing resulted in the lowest cost and the total cost found by pattern 

search was the largest.  However, it took simulated annealing the longest time to reach the solution, 

while pattern search utilized the least amount of time.  This is not surprising since pattern search is a 

not a global optimization method in nature, and therefore require less time to reach the solution.  

Furthermore, it should be noted that pattern search method was able to reach the solution regardless 

of the starting point.  Finally, the result found by the feature-based optimization was in between that 

of genetic algorithm and simulated annealing, demonstrating the accuracy of the feature-based 

optimization approach.  Additionally, it took feature-based optimization significantly less simulation 

time to reach the solution, further confirming the validity of the proposed methodology.  

5.3.3 Design Study 

A design study was conducted on various vehicle settings, by varying the size of the battery and the 

SOC threshold to investigate their effects on gasoline and electricity consumptions, and validate that 

the optimized parameters indeed yield the optimal results.  A series of simulations were conducted 

with the battery size varying from 1 to 22 battery banks, while the entire range of the SOC threshold 

(0-100%) was swept at the resolution of 5%.  Throughout the simulation, the engine was assumed to 
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be operating at 222rad/s and 116Nm.  Figure 5-5 shows the gasoline consumption versus the number 

of battery banks and SOC threshold.  

 

Figure 5-5: Gasoline Consumption versus Number of Battery Banks and SOC Threshold 

It can be seen from Figure 5-5 that, as expected, the gasoline consumption of the engine increases 

with a higher SOC threshold setting.  Furthermore, lowering the capacity of the battery will result in 

an increase in the gasoline consumption due to the genset supplying more power to the traction motor 

to complete the drive cycle.  Figure 5-5 also indicates the region of vehicle parameter settings where 

pure electric mode can achieve the combined drive cycle without consuming any gasoline.  The 

electricity consumption over varying battery banks and SOC threshold is illustrated in Figure 5-6. 
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Figure 5-6: Electricity Consumption with Varying Battery Banks and SOC Threshold 

As expected, with less gasoline consumed, the more electricity is required for the vehicle to 

complete the cycle.  In addition to the energy consumptions, the effects of varying the battery banks 

and SOC threshold on the final cost function are shown in Figure 5-7.  

 

Figure 5-7: Battery-Only SHEV Cost Function with Battery Banks and SOC Threshold 
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It can be seen from Figure 5-7 that the most prominent factor affecting the final cost function was 

the number of battery banks, which is in consensus with the industry that the cost of battery remains 

the main obstacle in popularizing hybrid electric vehicles on the consumer market.  The optimized 

vehicle configuration as determined by the simulated annealing along with its cost function value was 

shown in a blue diamond in Figure 5-7.  It was also found that the cost function monotonically 

decreases towards the optimal point; hence, the solutions found by the local optimization will be 

fairly close to that of the global optimization techniques, as indicated in Table 5-6.  In addition to 

indicating the cost function for each combination of the battery size and SOC threshold setting, the 

parameters for which the powertrain cannot complete the drive cycle without a time delay are shown 

in Figure 5-7.  It was found that the smaller the battery pack, the larger the amount of additional time 

required to complete the cycle.  Since the battery banks are arranged in parallel, the maximum 

discharge power decreases as the number of battery banks is reduced, thereby increasing the amount 

of time required to complete the drive cycle.  Finally, based on the published battery size and a 

guesstimate of the engine operating range, the configurations of the Honda Insight, Toyota Prius, 

Chevrolet Volt, and Tesla Roadster are also indicated in Figure 5-7.  It is worth noting that the 

location of each of the aforementioned vehicles on the cost function map reflects the order of the list 

price on the market, where the Honda Insight is marketed as the most affordable hybrid electric 

vehicle available, and the Tesla Roadster is branded as an ultra premium roadster.  

5.4 Combined Battery and Ultracapacitor Series Hybrid Electric Vehicle 

To further demonstrate the concurrent optimization approach, the battery-only series hybrid electric 

vehicle model in the previous section is modified to include the ultracapacitor in the electrical energy 

storage (EES) system.  In order to distribute the charging and discharging power between the batteries 

and the ultracapacitors, the power distributing function (PDF) described in Section 3.3 is 

implemented as part of the power management controller logic.  Furthermore, the sizing of the 

powertrain has been extended to include the rest of the power components.  The following 

subsections present the optimization parameters and results of the combined vehicle model.  The 

Simulink models of the ultracapacitor and the power distributing function are given in Appendix G.   
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5.4.1 Optimization Problem 

The optimization problem for the combined vehicle model is formulated as: 

Minimize J(XD, U(XD)) w.r.t. XD 
Subject to c(XD)  

where the optimization parameters (XD) are the sizes of the powertrain components such the EES 

system including battery and ultracapacitor, the IC engine, and the traction motor, along with the 

power management logic of the genset and the power distributing function (PDF) of the EES system.  

U(XD) are again the fuel and the electricity consumption of the vehicle, while c(XD) are the equality 

and inequality constraints of the problem.  The Simulink vehicle model as shown in Appendix G 

defines the number of equations and the constraints of the optimization problem, which is a mixed 

integer nonlinear problem in nature. Table 5-5 summarizes the size of the optimization problem as 

determined by Equation (5.2), while Table 5-6 describes the upper and lower bounds of the 

optimization parameters used in the combined optimization. 

Table 5-5: Summary of the Combined Series Hybrid Electric Vehicle Optimization Problem 

Drive Cycle Duration [s] 5,114 
Time Step [s] 0.5 
Number of Variables 19 
Size of Optimization Problem 194,332 
Number of Constraints (c(XD)) 14 
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Table 5-6: Optimization Variables of the Combined Series Hybrid Electric Vehicle 

Variables Lower Bound Upper Bound 
SOC Threshold [%] 10 95 
Genset Active Duration [%] 5 25 
Engine Torque [Nm] 88 116 
Engine Speed [rad/s] 222 278 
Number of Battery Banks 1 9 
Number of Ultra-capacitors 1 9 
Engine Stroke [mm] 50 120 
Traction Motor Scale 5 14 

Power Distributing Function   
Discharge SOCbatt(t) (cdis) [%] 1 150 
Discharge SOCUC(t) (edis) [%] 1 150 
Discharge dPdes(t)/dt (idis) [kW/s] 1 150 
Charge SOCbatt(t) (cch) [%] 1 150 
Charge SOCUC(t) (ech) [%] 1 150 
Charge dPdes(t)/dt (ich) [kW/s] 1 150 

 

In addition to determining the SOC threshold to turn on the genset, the power management logic 

includes the duration of time that the genset remains activated.  The engine sizing is achieved by 

changing the engine bore, thereby changing the engine displacement.  For the purpose of a series 

hybrid electric vehicle, it is decided that the engine will remain a four-cylinder engine, since a six- or 

eight-cylinder engine will be unnecessarily large to be used in a genset.  The range of the engine bore 

is determined by a quick survey of the existing 4-cylinder engines, where the lower limit corresponds 

to a large motorcycle engine, and the upper limit is a typical 2.0L car engine.  The scaling range of 

the traction motor corresponds to a minimum power of 80kW and a maximum of 224kW electric 

motor, where the minimum size is to satisfy the power requirement of the drive cycle and the 

maximum size is similar to that of the Tesla roadster [49].  Finally, for the power distributing function 

(PDF), it is decided to optimize only the sigmoid function’s inflection point of each of the monitored 

variables, since the inflection point affects the behaviour of the PDF much more significantly than the 

slope.  It should be noted that the inflection points of the desired power (Pdes(t)) described in 

Subsection 3.3.1 corresponds to the charging and discharging limits of the battery; therefore, the 

parameters gdis in Equation (3.30) and gch in Equation (3.31) are not part of the optimization variables.  

Similar to the battery-only series hybrid electric vehicle, the objective function (J) includes the total 

financial amount of the initial cost of the EES system (battery and the ultracapacitor), the cost of 

gasoline and household electricity consumptions over a period of five years, and the equivalent 
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carbon tax cost due to fossil fuel consumption.  Furthermore, cost functions are included to take into 

account the effects of the IC engine and traction motor sizing, and the objective function (J) is given 

as follows.  

ܬ ൌ ൥෍݈݁ݑܨ஼௢௡௦௨௠௘ௗ	

்

௧ୀ଴

ൈ ሺ݈݁ݑܨ஼௢௦௧ ൅ ݊݋ܾݎܽܥ ்௔௫ሻ ൅෍ݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ஼௢௡௦௨௠௘ௗ

்

௧ୀ଴

ൈ ஼௢௦௧൩ݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ ൈ ݏݕܽܦ ൈ ݏݎܻܽ݁ ൅ ஼௘௟௟ݕݎ݁ݐݐܽܤ ൈ ஼௢௦௧ݕݎ݁ݐݐܽܤ ൅ ௎௡௜௧ܥܷ

ൈ ஼௢௦௧ܥܷ ൅ ௖௢௦௧ܧܥܫ ൅ ௖௢௦௧ݎ݋ݐ݋ܯ ൅  ݀݁ݕ݈ܽ݁ܦ_ݎ݋ݎݎܧ

(5.4)

The costs of fuel and electricity were again determined based on the typical gasoline and household 

hydro cost in Ontario in 2008, and the same objective function parameters described in Subsection 

5.3.1 were used.  The cost of the ultracapacitor is obtained through a retailer [50] which offers a pre-

packaged unit.  On the other hand, the costs of the IC engine and traction motor were not readily 

available from the manufacturers; thus, an interpolation function is utilized to capture the effects of 

their sizing.  The following equation describes the interpolation function of the IC engine.  

௖௢௦௧ܧܥܫ ൌ ௕௔௦௘ܧܥܫ ൅ ሺܵ െ ௟ܵ௕ሻ ൈ ௜௡௖ (5.5)ݐݏ݋ܥ

where ICEbase is the base cost of the IC engine at the minimum engine size corresponding to the lower 

bound of the engine stroke (Slb), and S is the optimization variable determined by the optimizer during 

each iteration.  Costinc is a constant value that interpolates the cost increase of the unit corresponding 

to the unit size.  Similarly, the interpolation function of the traction motor is given as follows.  

௖௢௦௧ݎ݋ݐ݋ܯ ൌ ௕௔௦௘ݎ݋ݐ݋ܯ ൅ ൫ܯܧ௦௖௔௟௘ െ ௦௖௔௟௘,௟௕൯ܯܧ ൈ ௜௡௖ݐݏ݋ܥ  (5.6)

Again,  Motorbase is the base cost of the traction motor at the minimum motor size corresponding to 

the lower bound of the traction motor’s scaling factor (EMscale,lb), while EMscale is the optimization 

variable determined by the optimizer during each iteration.  Due to the lack of manufacturer’s cost 

information for the electric motor, the same Costinc used for the IC engine is used for the traction 

motor.  The cost values of ICEbase, Motorbase, and Costinc are assumed for this case study, and can be 

updated if information from the manufacturers is available.  Finally, an error function is included in 

the objective function evaluation for the case when the vehicle cannot complete the drive cycle 

without a time delay; thus, the optimizer will only consider the vehicle settings where the powertrain 
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is capable of delivering the required power of the drive cycle.  Table 5-7 summarizes the values of the 

objective function parameters used in the optimization.  

Table 5-7: Parameters for the Combined SHEV Objective Function Evaluation 

Cost Function Parameters Values 
Cost of Gasoline [$/L] 0.9 
Cost of Electricity [$/kW·h] 0.12 
Carbon Tax [$/L of Gasoline] 0.034 
Cost of A123 Li-Ion Battery [$/cell] 18.33 
Cost of Maxwell Ultra-capacitor [$/unit] 694.29 
Cost of Base Engine [$] 2,000 
Cost of Base Traction Motor [$] 5,000 
Cost Increase [$/unit_increment] 28.57 
Number of Working Days per Year 260 
Number of Years 5 

 

5.4.2 Optimization Results 

Optimization on the combined series hybrid electric vehicle was again performed using the procedure 

described in Subsection 4.2.3 with the algorithms mentioned in Subsection 4.2.4, along with the 

feature-based optimization.  Based on the results shown in the previous Section, Nelder-Mead 

algorithm was not able to find any meaningful solution, and was therefore not included to perform 

optimization for the combined vehicle model.  Table 5-8 summarizes the optimization results of 

various algorithms and the feature-based optimization.  
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Table 5-8: Combined SHEV Optimization Results of Various Algorithms 

 Full Optimization Feature-
Based 

using GA Algorithm 
Genetic 

Algorithm 
Simulated 
Annealing 

Pattern 
Search 

SOC Threshold [%] 41 85 60 44 
Genset Active Duration [%] 5 23 19 5 
Engine Torque [Nm] 114 110 88 115 
Engine Speed [rad/s] 224 226 243 251 
Number of Battery Banks 2 2 2 2 
Number of Ultra-capacitor 1 1 1 2 
Engine Stroke [mm] 51 51 59 53 
Traction Motor Scale 6 6 5 5 

Power Distributing Function     
Discharge SOCbatt(t) (cdis) [%] 9.68 103.5 106.68 92.51 
Discharge SOCUC(t) (edis) [%] 107.68 7.5 87.02 47.15 
Discharge dPdes(t)/dt (idis) [kW/s] 116.19 149.5 132.44 n/a 
Charge SOCbatt(t) (cch) [%] 130.83 107.5 121.37 60.23 
Charge SOCUC(t) (ech) [%] 108.57 75.5 100.00 23.55 
Charge dPdes(t)/dt (ich) [kW/s] 144.09 147.5 113.39 n/a 
Incomplete Time Delay [s] 0 23.61 16.01 14.18 
Simulation run-time [s] 25,576 99,6841 122,8751 621 
 

Table 5-8 describes the values of the optimization variables found by the optimizer, the time delay 

to complete the drive cycle, and the simulation run-time required by the optimizer.  A time delay 

value greater than zero indicated that the solution found by the optimizer cannot complete the drive 

cycle, since appropriate PDF parameters are required to ensure proper power management of the EES 

components.  Table 5-8 shows that only genetic algorithm was able to find a solution without any 

time delay.  Furthermore, both the simulated annealing and the pattern search optimizations were 

terminated manually, since both processes took over 24 hours and were still not able to converge to a 

solution.  This further demonstrates that out of the available optimization algorithms in the MATLAB 

library, genetic algorithm is the most suitable method to perform concurrent optimization of the series 

hybrid electric vehicle.  Finally, due to the nature of the feature-based simulation which lacks the time 

history information of the drive cycle, it is not possible to obtain the rate change of desired power 

(dPdes(t)/dt); therefore, the PDF used during the feature-based optimization does not contain the 

sigmoid function for dPdes(t)/dt and its parameters idis and ich.  Hence, the lack of time information 

causes the inaccuracy of the PDF parameters, thereby contributing to the time delay.  However, upon 

                                                      
1 Simulation manually terminated 
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inspection of the results for feature-based and genetic algorithm, it was found that both algorithms 

found similar solutions for the vehicle powertrain sizing and genset activation threshold.  To further 

improve the solution of the feature-based method, a secondary optimization using the initially found 

powertrain parameters was performed to optimize only the power distributing function parameters.  

Based on the optimization comparison made in Subsection 5.3.2, where simulated annealing did not 

offer significant improvement over genetic algorithm, it was decided to only use genetic algorithm 

and pattern search as the optimizers to perform the secondary simulation.  Table 5-9 describes the 

results of the secondary simulation.  

Table 5-9: PDF Parameters of the Secondary Optimization 

Algorithm 
Genetic 

Algorithm 
Pattern 
Search2 

Discharge SOCbatt(t) (cdis) [%] 8.4 19.54 
Discharge SOCUC(t) (edis) [%] 140.23 116.19 
Discharge dPdes(t)/dt (idis) [kW/s] 107.54 143.15 
Charge SOCbatt(t) (cch) [%] 45.58 92.23 
Charge SOCUC(t) (ech) [%] 46.85 23.23 
Charge dPdes(t)/dt (ich) [kW/s] 122.37 80.09 
Incomplete Time Delay [s] 0 0 
Simulation run-time [s] 1,967 1,666 

 

Table 5-9 showed that both genetic algorithm and pattern search were able to obtain a solution 

where the power distributing function was able to properly manage the EES to complete the drive 

cycle.  However, it should be noted that the pattern search method is highly sensitive to its initial 

conditions, where solutions can only be reached if the initial PDF values first found by feature-based 

from Table 5-9 are used as the initial values in the secondary optimization.  Any other initial values 

such as random numbers or midpoint of the upper and lower bound will result in an incomplete 

solution.  On the other hand, genetic algorithm did not require an initial condition and was able to 

find a solution at the first attempt.  The simulation results of the solution found by the full genetic 

algorithm optimization and feature-based with secondary optimization are summarized in Table 5-10. 

 

 

 

                                                      
2 Solution highly sensitive to the initial condition 
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Table 5-10:  Simulation Results of the Optimized Solution 

 
GA Full 

Optimization 

Feature-Based 
with 

Secondary GA 

Feature-Based 
with 

Secondary PS
Gasoline Consumption [L/day] 2.80 3.05 3.05 
Electricity Consumption [kWh/day] 0.77 0.72 0.73 
Battery Cost [$] 3,666 3,666 3,666 
Ultra-capacitor Cost [$] 694.29 1,388.58 1,388.58 
Engine Cost [$] 2,028.57 2,085.71 2085.71 
Motor Cost [$] 5,028.57 5,000 5,000 
Fuel Cost [$] 3,271.95 3,568.72 3,566.04 
Electricity Cost [$] 112.25 105.2 105.73 
Carbon Tax [$] 123.61 134.82 134.72 
Total Cost [$] 14,925 15,949 15,947 
Total Simulation run-time [s] 25,576 2,588 2,287 

 

Table 5-10 showed that the results of genetic algorithm’s full optimization produced the lowest cost 

function, while the cost found by feature-based method with secondary optimizations is higher due to 

the extra ultracapacitor unit.  However, the most significant advantage of the feature-based method 

with secondary optimization is that the combined simulation time was ten times less than that of 

genetic algorithm full optimization, reducing the required simulation run-time from over 7 hours 

down to less than 45 minutes.  Even though the feature-based optimization approach may not provide 

the optimal solution, the significant reduction in simulation time warrants the proposed method a 

powerful tool for vehicle design. 

5.4.3 Design Study 

The solutions of the full genetic algorithm optimization and feature-based method with secondary 

optimization are further investigated to examine the behaviour of the electrical energy storage (EES) 

components and the power distributing function (PDF) during the drive cycle.  The simulation results 

of the genetic algorithm full optimization are first presented, followed by those of the feature-based 

method with a secondary GA optimization.  Figure 5-8 shows the state of charge of the EES 

components corresponding to the drive cycle from the solution of full genetic algorithm optimization.  
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Figure 5-8: Drive Cycle and EES SOC Behaviour of the Full GA Solution 

Figure 5-8 showed that the genset was activated to maintain charge while providing traction power 

once the battery SOC reached the threshold value.  Furthermore, during higher acceleration periods, 

the ultracapacitor provided additional power to achieve the acceleration demand.  During the 

deceleration period, the ultracapacitor was recharged to its upper threshold (95%), indicating the 

recovering of kinetic energy during regenerative braking.  Additionally, it can be seen that during the 

2,000 to 3,000 second period, the battery was steadily discharged to provide power in addition to the 

genset to achieve the higher vehicle speeds.  This again confirms that given the current high price of 

the battery and ultracapacitor, it is still more cost effective to utilize fossil fuel as a primary source of 

traction energy while minimizing the size of the EES system.  To further observe the behaviour of the 

EES, the period between 2,500 and 3,500 seconds is illustrated in Figure 5-9.  
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Figure 5-9: Drive Cycle and EES SOC Behaviour of the Full GA Solution [2500-3500s] 

Figure 5-9 illustrated that the system behaved correctly during the acceleration and the braking of 

the vehicle.  Upon further inspection, it can be seen that there is a slight lag to the recharging of the 

ultracapacitor when regenerative braking begins.  This is due to the fact that the charging PDF 

described in Equation (3.31) ensures the charging power is first used to charge the battery, and any 

additional power beyond the battery’s charging limit is subsequently used to charge the 

ultracapacitor.  Similar observation can be made in several instances where the ultracapacitor is only 

discharged once the required power reaches over the discharging limit of the battery.  Finally, the 

power distributing function and its dependent variables are illustrated in Figure 5-10.  
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Figure 5-10: Power Distributing Function of Full GA Solution 

It is observed from Figure 5-10 that the PDF corresponded to the state of charge of the EES 

components accurately.  When the ultracapacitor is full, the PDF is indicating 100% operation from 

the battery.  During the period when the ultracapacitor’s SOC is around 50% and when the battery’s 

SOC is low, the PDF is operating primarily from the ultracapacitor.  Additionally, the desired power 

and the rate change of power were also affecting the PDF, where higher Pdes(t) and dPdes(t)/dt 
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indicated operation primarily from the ultracapacitor.  These observations demonstrated the 

effectiveness of the PDF as the power management of the EES.  Finally, it should be noted that the 

drive cycles obtained from the EPA have a relatively coarse time step compared to that used to 

perform the Simulink simulations, thus causing the jaggedness of the desired power’s signal.  

Similarly, the state of charge of the EES components corresponding to the drive cycle from the 

solution of feature-based method with secondary GA optimization is illustrated in Figure 5-11.  

 

Figure 5-11: Drive Cycle and EES SOC Behaviour of the FB with Secondary GA Solution 

Comparing Figure 5-11 and Figure 5-8, one can see that the solution of feature-based optimization 

with GA secondary optimization exhibited almost identical behaviour as the solution of the full GA 

optimization, demonstrating the same characteristic of utilizing the genset during the majority of the 

drive cycle.  The time period between 2,500 and 3,500 seconds of Figure 5-11 is illustrated in Figure 

5-12. 
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Figure 5-12: Drive Cycle and EES SOC Behaviour of the FB with Secondary GA Solution 

[2500-3500s] 

As expected, Figure 5-12 again showed very similar behaviour as those illustrated by the full 

genetic algorithm optimization.  Finally, the power distributing function and its dependent variables 

are illustrated in Figure 5-13. 
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Figure 5-13: Power Distributing Function of FB Method with Secondary GA Optimization 

Again, Figure 5-13 showed that the PDF determined by the feature-based method with secondary 

GA optimization illustrated the same characteristic as the solution found by the full GA optimization.  
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This further demonstrates that appropriate PDF parameters were found to properly manage the EES 

components using the feature-based method with secondary optimization.  

Finally, to show the location of the optimal solution found by the full genetic algorithm 

optimization, a design study was performed where the cost function was evaluated by varying the 

battery size and SOC threshold.  Additionally, it can be seen from Table 5-7 that the single most 

expensive function parameter for the objective function evaluation is the cost of the ultracapacitor; 

hence, for the design study, the number of ultracapacitors is set to one unit.  Throughout the design 

study, the engine is assumed to be operating at 224rad/s and 114Nm, and the power distributing 

function remained unchanged.  Figure 5-14 illustrates the cost function map indexed by battery size 

and SOC threshold.  

 

Figure 5-14: Combined SHEV Cost Function with Battery Banks and SOC Threshold 
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genetic algorithm optimization along with its cost function value was shown in Figure 5-14.  It was 

also observed that the cost function monotonically decreases towards the overall optimal point.  

However, unlike the case in the battery-only SHEV, local optimization technique was not able to 

converge to any results, while only the full genetic algorithm optimization and the feature-based 

method with secondary optimization were able to obtain solutions.  Finally, the area where the vehicle 

was not able to complete a drive cycle without a time delay is shown as a shaded area in Figure 5-14.  

It should be noted that the PDF was optimized for a SOC threshold of 41%, and remained the same 

when performing the design study.  Therefore the lower left region where the SOC threshold is less 

than 10% and up to 11 battery banks were used, the PDF was not able to manage the EES system 

power properly to complete the drive cycle.  Once the battery pack contained up to 12 battery banks, 

the vehicle can operate in pure electric mode, therefore no time delay will occur when completing the 

drive cycle.  

In conclusion, the combined SHEV optimization demonstrated the capability of performing 

optimization on the vehicle powertrain sizing and the power management logic simultaneously.  

Furthermore, it was observed that when performing full simulation, genetic algorithm was the most 

suitable method to solve a large optimization problem due to its capability of converging to an 

optimal solution.  Finally, it was shown that although the feature-based optimization was not able to 

obtain a complete solution by itself, when combined with a secondary optimization the proposed 

methodology can obtain a reasonable solution while reducing simulation time by approximately 90%.  

This significant reduction in simulation time demonstrates that the feature-based methodology is a 

powerful and capable tool for vehicle design and optimization.  

5.5 Benchmarking against the Chevrolet Volt 

The optimization of battery-only and combined battery and ultracapacitor series hybrid electric has 

demonstrated the effectiveness of the concurrent optimization methodology, along with the 

computational efficiency of the feature-based optimization approach.  To validate the accuracy of the 

proposed method, it is desired to benchmark the developed software platform against an existing 

vehicle, namely the Chevrolet Volt.  In order to satisfy the performance constraints of the Chevrolet 

Volt, two more requirements are added to the series hybrid electric vehicle model: 1) minimum pure-

electric range, and 2) battery degradation function. 
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One performance requirement for the Chevrolet Volt as a range extender is to have a pure-electric 

range of 40 miles (64km), before the genset is activated to provide additional electric energy to the 

powertrain.  To implement such constraint during optimization, it is desired to have the minimum 

battery pack to contain adequate energy to traverse the aforementioned distance before utilizing the 

genset to sustain the charge of the battery.  Therefore, the lower bound of the battery size is defined to 

ensure that the optimized vehicle model has a minimum pure-electric range of the aforementioned 

distance.    

Secondly, in order to capture the effect of battery depth of discharge on the battery life, a battery 

degradation function (α) is applied to the cost of the battery, and is defined as follows.  

ߙ ൌ ݁൫
஽ை஽

௞ൗ ൯ (5.7)

where DOD is the depth of discharge threshold of the battery, which is the difference between 100% 

and the SOC threshold as determined by the optimizer.  k is the scaling parameter to define the battery 

degradation function over the period of operation.  The battery degradation function represents a 

weighting factor to capture the degradation of the battery over the period of operation.  For example, 

if the depth of discharge is 0%, which indicates no battery usage, α will equals to 1 as calculated by 

Equation (5.7), thereby having no effect on the cost function of the battery.  On the other hand, by 

adjusting the scaling parameter (k), the desired amount of increase on the cost function of the battery 

can be obtained.  During each iteration of the optimization process, the depth of discharge threshold 

as determined by the optimizer is used to calculate the battery degradation function and applied to the 

cost of battery to evaluate the overall objective function.  Therefore, the deeper the discharge of the 

battery, the higher the cost function of the battery will be, thereby capturing the degradation of the 

battery over the life cycle.  Again due to the lack of manufacturers’ information, a scaling parameter 

is assumed and can be adjusted based on the type and the specification of the actual battery pack. 

5.5.1 Optimization Problem 

The optimization problem is again defined as: 

Minimize J(XD, U(XD)) w.r.t. XD 
Subject to c(XD)  

where the optimization parameters (XD) are the SOC threshold, genset activation duration, engine 

torque, and engine speed for the power management logic, and the sizes of the battery banks, IC 

engine, and electric traction motor.  U(XD) are the fuel and the electricity consumption of the vehicle, 
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while c(XD) are the equality and inequality constraints of the problem.  The Simulink vehicle model 

as shown in Appendix D defines the number of equations and the constraints of the optimization 

problem, and is a mixed integer nonlinear problem in nature.  Finally, it has been stated that the 

Chevrolet Volt has an electric range of 40 miles (65km) and will reach a SOC of 30% before the 

genset is activated.  A quick calculation determined that a minimum of 17 battery banks was required 

to achieve such performance constraints, and therefore, was used as the lower bound for the battery 

size during optimization.  Tables 5-11 and 5-12 depict the size of the optimization problem and the 

numerical range of the optimization parameters, respectively.  

Table 5-11: Summary of the Battery-Only Series Hybrid Electric Vehicle Optimization Problem 

Drive Cycle Duration [s] 10,228 
Time Step [s] 0.5 
Number of Variables 15 
Size of Optimization Problem 306,840 
Number of Constraints (c(XD)) 8 

 

Table 5-12: Optimization Variables for Benchmarking Battery-only SHEV 

Variables Lower Bound Upper Bound 
SOC Threshold [%] 10 95 
Genset Active Duration [%] 5 25 
Engine Torque [Nm] 88 116 
Engine Speed [rad/s] 222 278 
Number of Battery Banks 17 28 
Engine Stroke [mm] 50 120 
Traction Motor Scale 5 14 

 

The objective function (J) is again the total financial amount consisting of the initial cost of the 

battery, the cost effect of the IC engine and traction motor sizing, the cost of gasoline and household 

electricity consumption over a period of five years, and the equivalent carbon tax cost due to fossil 

fuel consumption, as given by the following equation.  
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൅ ௖௢௦௧ܧܥܫ ൅ ௖௢௦௧ݎ݋ݐ݋ܯ ൅  ݀݁ݕ݈ܽ݁ܦ_ݎ݋ݎݎܧ

(5.8)

where T is the total time of the drive cycle.  The costs of fuel and electricity were again determined 

based on the typical gasoline and household hydro cost in Ontario in 2008, and the same objective 

function parameters described in Subsection 5.3.1 were used.  Furthermore, the cost effect of sizing 

the IC engine and the traction motor were included as described in Subsection 5.4.1.  Table 5-13 

summarizes the values of the cost function parameters used in the optimization.  

Table 5-13: Parameters for the Benchmarking SHEV Cost Function Evaluation 

Cost Function Parameters Values 
Cost of Gasoline [$/L] 0.9 
Cost of Electricity [$/kW·h] 0.12 
Carbon Tax [$/L of Gasoline] 0.034 
Cost of A123 Li-Ion Battery [$/cell] 18.33 
Battery Degradation Function (α) 145 
Cost of Base Engine [$] 2,000 
Cost of Base Traction Motor [$] 5,000 
Cost Increase [$/unit_increment] 28.57 
Number of Working Days per Year 260 
Number of Years 5 

 

5.5.2 Optimization Results 

Optimization on the benchmarking battery-only series hybrid electric vehicle was performed using 

the procedure described in Subsection 4.2.3 utilizing genetic algorithm.  It should be noted that due to 

the lack of manufacturers’ data, the degradation function (α) is assumed to be one during the 

comparison.  Table 5-14compares the optimization results against the specification of the Chevrolet 

Volt.  
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Table 5-14: Optimization Results of the Benchmarking SHEV and the Chevrolet Volt 

Algorithm 
Full 

Optimization 
using GA 

Feature-
Based  

Using GA 

Chevrolet 
Volt 

Specifications 
SOC Threshold [%] 10 10 30 
Genset Active Duration [%] 19 5 5 
Engine Torque [Nm] 116 88 116 
Engine Speed [rad/s] 222 222 222 
Number of Battery Banks 17 17 21 
Engine Stroke [mm] 50 50 80.6 
Traction Motor Scale 5 5 7 
Gasoline Consumption [L/day] 1.87 2.04 2.40 
Electricity Consumption [kWh/day] 10.73 10.49 9.63 
Battery Cost [$] 31,161 31,161 38,493 
Engine Cost [$] 2,000 2,000  2,874 
Motor Cost [$] 5,000 5,000 5,057 
Fuel Cost [$] 2,187 2,386 2,803 
Electricity Cost [$] 1,562 1,527 1,403 
Carbon Tax [$] 83 90 106 
Total Cost [$] 41,993 42,164 50,736 
Simulation run-time [s] 3,889 589 n/a 

 

Table 5-14 compares the values of the optimization variables and results found by the optimizer, 

using both full optimization and feature-based approaches, against the specifications of the Chevrolet 

Volt.  Due to the lack of information on the power management logic of the Chevrolet Volt, the 

genset activation duration is assumed to be the minimum value, while the IC engine’s most efficient 

operating point are used.  It was found that the optimizer in both cases of the full optimization and the 

feature-based approaches determined the minimum SOC threshold and the smallest allowable 

powertrain sizes; hence, the total cost is less than the Chevrolet Volt.  This is expected since the 

battery degradation and the possibly additional performance constraints were not included.  

Additionally, the optimization case study only considered satisfying the predefined drive cycle and 

did not contain performance requirements such as top speed and maximum acceleration.  However, 

with accurate manufacturers’ component data and by implementing the appropriate performance 

constraints, the developed concurrent optimization software platform will be able to accurately 

predict a solution similar to that of the Volt.  
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Chapter 6 

Case Study 2: Anti-Idling System 

In this study the optimization of an anti-idling system for police vehicles is considered.  The 

developed generic vehicle model was modified to represent the power generation and consumption of 

a conventional vehicle, specifically an idling engine running an alternator to power the auxiliary 

consumption and recharge the battery.  This chapter will discuss the modeling details and present the 

simulation and optimization results of the anti-idling system based on a 2009 Chevrolet Impala police 

vehicle.  

6.1 Background and Objective 

Emergency service vehicles, such as police vehicles, fire trucks, and ambulances generally have 

higher auxiliary power consumption than conventional vehicles due to the additional electrical 

equipments, such as the roof top light bar, take down lights, communication equipments, and laptop 

computers.  In addition, these vehicles usually have an unconventional drive cycle where majority of 

the operation time are spent idling.  During the idling period, the engine is usually left running in 

order to power the aforementioned electrical equipment.  In recent years, anti-idling has been 

receiving a lot of attention in the automotive industry as a method to further improve the fuel 

economy while reducing harmful emissions.  It has been shown that the implementation of anti-idling 

on a standard urban drive cycle can improve the fuel efficiency by as much as 8% [51,52], and 

manufacturers are gradually introducing the anti-idling feature to their existing vehicle line-up 

[53,54]. 

Using the concept of anti-idling, the objective of the case study is to reduce the engine idling time, 

by installing an additional (secondary) battery to power the on board electrical equipments during the 

idling period while minimizing design changes to the original vehicle.  The Original Equipment 

Manufacturer (OEM) battery will not be supplying electrical power to the auxiliary equipments, since 

it is necessary for the OEM battery to remain fully charged for the vehicle operator to start the engine 

whenever necessary.  The current approach in the anti-idling system is to turn on the engine to 

recharge the battery at the factory default engine idling speed when the battery state of charge falls 

below a predetermined threshold value.  The goal of the optimization is to determine the battery’s 

state of charge (SOC) threshold below which the engine shall be activated to charge the battery, 

leading to minimum overall cost.  Additionally, the effect of the engine speed during the recharging 
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of the battery will be investigated.  Finally, in addition to the specific lead-acid batteries suggested by 

the industry partner, optimization will also be performed using lithium-ion batteries for the 

comparison of results with those of the lead-acid batteries.  

6.2 System Model 

Similar to the series hybrid electric vehicle model described in the previous chapter, the anti-idling 

system model was created in MATLAB/Simulink utilizing a backward-looking architecture.  The 

battery is discharged as determined by the load cycle, and an IC engine model calculates the fuel 

consumption required to drive the alternator to charge the battery.  During a typical simulation, the 

battery delivers the required power to run the auxiliary components, and once the battery state of 

charge (SOC) falls below a preset value, the IC engine will be turned on to drive the alternator to 

recharge the battery.  Figure 6-1 depicts the overall schematic of the anti-idling system with the 

optimizer.  

  

Figure 6-1: Anti-Idling System Overall Schematic with Optimizer 

In Figure 6-1, ωe represents the engine speed, SOC is the battery’s state of charge (SOC) threshold 

below which the engine is activated, and B# is the number of battery cells in the battery pack.  The 

details of each of the vehicle components are presented in the subsequent sections.   

Power Management Controller
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Engine Alternator Battery
Load 
Cycle

Optimizer

ωe, SOC, B#
Fuel Consumption
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6.2.1 Load Cycle 

The load of the anti-idling system includes the consumptions of all electrical components of the 

vehicle.  In reality, the electrical equipments may not be running at a constant power; therefore, the 

load cycle time history for the anti-idling system Simulink model was created using a random number 

generator producing an average load power given in Table 6-1.   

Table 6-1: Anti-Idling System Power Load Summary 

Vehicle System 1.8 A 

Light Bar with LED, Take Down Lights, 
Flashing Front and Rear Lights 

30.5 A 

Night Time Head and Tail Lights 10.9 A 

Laptop Computer 8 A 

Total Load 51.2 

System Voltage 12V 

Total Power 614.4W 

 

Furthermore, the idling pattern of the police vehicles is not known at this time; therefore, for the 

simulation purposes, it is assumed that the vehicle idles one hour at a time before driving off.  Figure 

6-2 shows the electrical power load cycle time history for the Simulink model during one-hour 

vehicle idle time.  
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Figure 6-2: Electrical Equipment Power Load Cycle Time History 

6.2.2 System Components 

6.2.2.1 Battery 

The battery model represents the additional (secondary) battery to power the electrical components 

while the engine is turned off.  Since the goal is to prevent using the OEM battery, it is not being 

considered during the system modeling and optimization; hence, only the secondary battery is 

modeled.  Three battery types were considered for the optimization: two Discover dry cell batteries 

with different capacities, and the A123 Lithium-Ion battery used in the series hybrid electric vehicle 

optimization.  The specifications of the Discover batteries (EV12-180X and EV12-140X) and the 

A123 Lithium-Ion battery were obtained from their respective websites [42,45].  It should be noted 

the Discover dry cell batteries are prepackaged to match the vehicle’s electrical system (12V) along 

with a sufficiently large capacity; therefore, the battery size is not a design variable during 

optimization.  On the other hand, similar to the case of the series hybrid electric vehicle battery 

system, a parallel-series configuration is necessary when using the A123 Li-Ion batteries, where 4 

cells are connected in series to match the electrical system’s voltage.  The optimization procedure will 

therefore determine the number of battery banks required when using the A123 Li-Ion batteries.  The 

same Simulink battery model used for the series hybrid electric vehicle is implemented for the anti-

idling system.  
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6.2.2.2 Alternator 

A simple alternator model was used for the anti-idling system, where a look-up table was used to 

model the output current of the alternator indexed by the engine speed.  The alternator is modeled 

after Denso SC2 as indicated by the GM Impala 9C1/9C3 police package specification [55].  The 

information is given in Appendix I.  In addition to the factory default idling speed, it is desired to 

study the effect of increasing the alternator output power during the optimization.  Therefore, the 

range of engine speed for optimization starts at 650RPM and is increased up to the engine speed 

corresponding to the alternator’s maximum output current (1800RPM).  Finally, since the alternator 

efficiency was not available, it was assumed to be 90%. 

6.2.2.3 Engine 

The engine model using the Willans line modeling approach was created using the engine parameters 

of the 3.9L V6 (LGD) engine as specified by the Impala police package [55].  The engine module 

calculates fuel consumption based on the engine idling speed and the desired power output of the 

alternator, while taking into consideration the alternator’s efficiency.   

6.2.3 Power Management Logic 

The role of the power management logic is to activate the engine to charge the battery when required.  

In addition, the power management logic controls the idling speed of the engine and the output torque 

based on the alternator output power.  When the battery state of charge (SOC) falls below a preset 

threshold value, the power management logic activates the engine until the battery is fully charged 

before being turned off.   

As previously mentioned, the police vehicles idles 80% of the time; hence, the vehicle is only in 

motion for 20% of the time.  It is only this time that the alternator is outputting maximum current to 

run the auxiliary components and to charge the battery.  However a quick calculation shows that 

when the vehicle is in motion, the difference between the maximum current output and the auxiliary 

system’s consumption is 98.8A, which may not be enough to fully charge the batteries in the short 

period of time while the vehicle is in motion.  It is therefore necessary to ensure that the batteries are 

charged up to a certain level at the end of the drive cycle in order to fully charge the battery when the 

vehicle is in motion.  The final battery SOC required at the end of the idling cycle is described by 

Equation (6.1).  
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௙௜௡௔௟ܥܱܵ ൌ
௖௔௣ݐݐܽܤ െ ൫ܫ௔௟௧,௠௔௫ െ ௔௨௫൯ܫ ൈ ܶ/3600 ൈ%ௗ௥௜௩௜௡௚

௖௔௣ݐݐܽܤ
 (6.1) 

where SOCfinal = required final battery SOC 

Battcap = battery capacity [Ah] 

 Ialt,max  = alternator maximum current output [A] 

 Iaux  = current consumption of the auxiliary components [A] 

 T  = total cycle time including idling and driving [s] 

 %driving  = percent of total cycle time when vehicle is driving 

6.2.4 Optimization Problem 

The goal of the optimization procedure is to determine the power management logic that will result in 

the minimal objective function.  In addition, the optimization will determine the battery size in the 

case of the A123 batteries.  The optimization problem is formulated as 

Minimize J(XD, U(XD)) w.r.t. XD 
Subject to c(XD)  

where the optimization parameters (XD) are the SOC threshold and engine speed for all three 

batteries, as well as the number of battery banks for the A123 battery system.  U(XD) is the fuel 

consumption of the engine, while c(XD) are the equality and inequality constraints of the problem.  

The Simulink vehicle model as shown in Appendix H defines the number of equations and the 

constraints of the optimization problem, which is a mixed integer nonlinear problem in nature.  Table 

6-2 summarizes the size of the optimization problem.  

Table 6-2: Summary of the Anti-Idling Optimization Problem 

Drive Cycle Duration [s] 3,600 
Time Step [s] 0.5 
Number of Variables 8 
Size of Optimization Problem 57,600 
Number of Constraints (c(XD)) 5 

 

Additionally, it should be noted that the optimization range of the A123’s battery bank is determined 

as the equivalent capacity as compared to the Discover EV12-180X battery.  Table 6-3 depicts the 

numerical range of the optimization variables.  
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Table 6-3: Anti-Idling Optimization Variables 

Variables Range 
SOC Threshold 1-95 
Engine Speed [rad/s, RPM] 68-189, 650-1800 
Number of Battery Banks (A123 only) 1-20 

 

The objective function (J) is the financial amount of the total cost of the batteries, the operating 

cost over a period of five years, and the equivalent carbon tax due to fuel consumption, as given by:  

ܬ ൌ 	஼௢௡௦௨௠௘ௗ݈݁ݑܨ ൈ ሺ݈݁ݑܨ஼௢௦௧ ൅ ݊݋ܾݎܽܥ ்௔௫ሻ ൈ ௣௘௥ݏ݈݁ܿݕܥ ௗ௔௬ ൈ ݏݕܽܦ ൈ ݏݎܻܽ݁

൅ ௡௨௠௕௘௥ݕݎ݁ݐݐܽܤ ൈ ஼௢௦௧ݕݎ݁ݐݐܽܤ ൅  ݈݂ܽ݊݅_ܥܱܵ_ݎ݋ݎݎܧ

(6.2)

The cost of the Discover dry cell batteries were obtained from the Ontario distributer, while the 

cost of A123 was determined from the manufacture’s website [45].  The rest of the cost function 

parameters were determined from the same source introduced in Subsection 5.3.1.  Due to the lack of 

idling pattern information at the current stage, it was assumed that a police vehicle idles 

approximately 6 times a day.  Finally, an error function is included in the objective function 

evaluation for the case where the battery SOC does not meet the required level at the end of the idling 

cycle as defined in Equation (6.1).  Table 6-4 summarizes the values of the cost function parameters 

used in the optimization.  

Table 6-4: Parameters for the Anti-Idling Objective Function Evaluation 

Cost Function Parameters Values 
Cost of Gasoline [$/L] 0.9 
Carbon Tax [$/L of Gasoline] 0.034 
Discover EV12-180X [$/unit] 550.51 
Discover EV12-140X [$/unit] 458.37 
Cost of A123 Li-Ion Battery [$/cell] 18.33 
Number of Idling Cycles per Day 6 
Number of Working Days per Year 260 
Number of Years 5 

 

Finally, due to the high number of discharge cycles over the five-year period, it is necessary to 

consider the degradation of the battery after reaching its useful life cycle.  In addition, since the life 

cycle of the lead acid battery is dependent on its depth of discharge, its useful life cycle will be 
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determined by the minimal battery SOC that is reached during the idling cycle.  The objective 

function described by Equation (6.2) includes the number of replacement batteries needed throughout 

the five year period.  The number of replacement batteries needed is determined using the following 

relation. 

ݕݎ݁ݐݐܽܤ	ݐ݈݊݁݉݁ܿܽ݌ܴ݁	݂݋	#

ൌ
ௗ௔௬	௣௘௥ݏ݈݁ܿݕܥ	݈݃݊݅݀ܫ ൈ ݏݕܽܦ ൈ ݏݎܻܽ݁ ൈ ௣௘௥௜௢ௗ	௜ௗ௟௘	௣௘௥݈݁ܿݕܥ

ݕݎ݁ݐݐܽܤ ݈݁ܿݕܥ ݂݁݅ܮ
 

(6.3)

When the number of A123 Li-Ion battery banks is one, it was observed that the battery system was 

fully discharged twice per idling period due to its relative small capacity.  Hence it is important to 

include the number of cycles per idle period in such a scenario.  The cycle lives of the batteries are 

given in Appendix I. 

6.3 Simulation Results 

Optimization was first conducted on the anti-idling system using genetic algorithm for the three 

different battery types.  In addition, optimizations were performed with the algorithms outlined in 

Subsection 4.2.3 to compare the differences among different optimization algorithms.  Finally, design 

studies were conducted by varying the design parameters.  The following sections report the 

simulation results and discuss the effectiveness of the optimization.  

6.3.1 Optimization Results 

Genetic algorithm optimization was first performed on the anti idling system using the procedure 

described in Subsection 4.2.3 using parameters introduced in Subsection 6.2.4.  The values of genetic 

operators used in the optimization process are summarized in Table 6-5.  

Table 6-5: Values of Genetic Algorithm Operators 

Population 80 
Maximum Generation 50 
Crossover Probability 0.9 
Mutation Probability 0.05 

 

The fitness function of each population was evaluated using the cost function parameters 

summarized in Table 6-4.  Due to the fact that the battery may not be fully charged at the end of the 

idling cycle, it is necessary to account for the additional gasoline required to fully recharge the 
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battery.  Since the drive cycle of the vehicle in motion is not known, the concept of equivalent 

gasoline consumption based on the additional energy required to fully charge the battery is 

introduced.  The equivalent gasoline (Ceqv,gas) is calculated by:  

௘௤௩,௚௔௦ܥ ൌ
൫100% െ ௙௜௡௔௟൯ܥܱܵ ൈ ௖௔௣ݐݐܽܤ ൈ ௖ܸ௛௚ ൈ 3600

௚௔௦ߩ ൈ ௟ܪ ൈ ௔௟௧ߟ ൈ ௘ߟ
 (6.4) 

where SOCfinal = battery final SOC 

Battcap = battery capacity [Ah] 

 Vchg  = battery charging voltage [V] 

 ρgas  = volume density of gasoline [g/L] 

Hl  = lower heating value of gasoline [kJ/g] 

ηalt  = alternator efficiency 

ηe  = engine efficiency  

The equivalent fuel consumption is then the sum of the actual gasoline consumed during idling and 

the equivalent gasoline consumption to fully charge the battery when the vehicle is in motion, where 

the engine efficiency is assumed to be 30%.  The best individuals, the required final SOC, the number 

of battery replacement, and the cost function of each of the battery types and the system without the 

anti-idling are summarized in Table 6-6.  

Table 6-6: Optimized Vehicle Configuration and Final Cost Function 

 
Discover 

EV12-140X 
Discover 

EV12-180X 
A123 System 
ANR26650 

Without  
Anti-Idling3

SOC Threshold [%] 73 80 30 n/a 
Engine Speed [rad/s] 70 68 68 68 
Battery Banks (A123 only) n/a n/a 2 n/a 
Final SOC Required 82.4 86.4 10 n/a 
# of Replacement Batteries 3 3 8 0 
Equiv. Fuel Consumption [L/day] 0.3996 0.4069 0.8119 0.7995 
Battery Cost [$] 1,375 1,652 1,173 0 
Fuel Cost [$] 2,805 2,857 5,700 5,612 
Carbon Tax [$] 106 108 215 212 
Total Cost [$] 4,286 4,616 7,088 5,825 

 

It can be seen from the above results that the Discover EV12-140X battery induced the lowest cost 

over the operating period, where it resulted in a slightly less fuel consumption in addition to a lower 

                                                      
3 Engine operating at the idle torque (10Nm). 



 

 109 

cost per battery unit when compared to the larger-capacity battery (EV12-180X) of the same type.  

On the other hand, the deciding factor of the A123 battery was again the cost of the battery, and thus, 

by reducing the battery size the gasoline consumption at idle speed increased significantly when 

compared to the Discover lead acid batteries.  It can be concluded that the Discover batteries were the 

obvious choice for the anti-idling system, while utilizing the EV12-140X battery will cost slightly 

less than the larger capacity battery (EV12-180X) over the operating period.   

The same optimization procedure was performed with the EV12-140X battery while utilizing 

different optimization algorithms.  Table 6-7 compares the results of the various optimization 

methods.  

Table 6-7: Optimization Results of Various Algorithms 

Algorithm 
Genetic 

Algorithm 
Simulated 
Annealing 

Pattern 
Search 

Nelder-
Mead 

SOC Threshold [%] 73 72 87 59 
Engine Speed [rad/s] 70 76 76 94 
# of Replacement Batteries 3 3 3 7 
Equivalent Fuel Consumption [L/day] 0.3996 0.3981 0.4168 0.3148 
Battery Cost [$] 1,375 1,375 1,375 3,209 
Fuel Cost [$] 2,805 2,795 2,926 2,210 
Carbon Tax [$] 106 106 111 83 
Total Cost [$] 4,286 4,276 4,412 5,502 
Simulation run-time [s] 1,252 1,744 116 76 

 

Table 6-7 shows that the simulated annealing (SA) algorithm found the lowest total cost while 

requiring the longest simulation run-time.  The result of genetic algorithm (GA) was slightly higher 

than that of SA while using approximately 28% less simulation time.  Pattern search utilized 

significantly less simulation time; however, it did not find the minimal solution.  Finally, it was found 

that the solution of the unconstrained Nelder-Mead method was lower than the required final SOC, 

and therefore was not capable of reaching any meaningful solution.  The comparison between the 

optimization algorithms showed once again that genetic algorithm is the most practical method to 

solve the optimization problem.  

6.3.2 Design Study 

A design study was conducted using the Discover EV12-140X battery, where a series of simulations 

were performed with various engine speeds and SOC thresholds.  The engine speed ranged from 
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68.07 rad/s (650RPM) to 188.5 rad/s (1800RPM), while the SOC threshold varied between 71% and 

98%.  It was found that when the SOC threshold is below 70%, the battery was not able to return to 

the desired final SOC, and therefore is not included in the design study.  Figure 6-3 illustrates the cost 

function of the EV12-140X battery with different engine speeds and SOC thresholds.  

 

Figure 6-3: Anti-Idling System Cost Function of EV12-140X Battery 

It is noticed in Figure 6-3 that the battery was not able to return to the required final SOC level in 

the lower left corner region.  Additionally, there is a local minimum occurring between 85% and 90% 

SOC threshold, which is where the pattern search algorithm found its solution.  Based on the 

locations of the solutions found by the various optimization algorithms, Figure 6-3 confirmed that 

classical optimization methods are more susceptible of being trapped in a local minimum, while 

global optimization algorithm are capable of finding a global solution.  To better understand the 

system’s behavior, the equivalent fuel consumption is plotted in Figure 6-4 versus the SOC threshold 

when the engine is operating at the speed of 78rad/s.   
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Figure 6-4: Equivalent Fuel Consumption of Anti-Idling System at 78rad/s Engine Speed 

Upon further inspection of the model, it was noticed that the local minima and maxima correspond 

to the period during which the engine is activated.  For example, when the SOC threshold is at 86%, 

the battery is first discharged to 86%, then recharged by the engine to full capacity, and finally 

discharged back down to exactly 86% at the end of the idling cycle.  On the other hand, when the 

SOC threshold is set at 80%, the battery was fully charged back to 100% at the end of the idling 

cycle.  Even though equivalent gasoline is added to fully recharge the battery at the end of the drive 

cycle, the engine efficiency is much lower at idling speed than that during normal operation.  

Therefore, when the SOC threshold is varied, the period of time during which the engine is operating 

at idle speed is different, thus contributing to the difference in the final equivalent fuel consumption.  

The design study confirmed that the global optimization algorithms were able to search for the global 

optimal point while avoiding being trapped in the local minima, and at the same time disregarding the 

regions where the required final SOC level was not met.  Finally, it was found that for the anti-idling 

system, it was more efficient from the financial cost perspective to operate at a lower engine speed.  

By utilizing the anti-idling system using the Discover EV12-140X battery, significant cost reduction 

can be realized when compared to one without the anti-idling system.   
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Chapter 7 

Conclusions 

7.1 Summary 

The key contribution of the research was the development of a Multidisciplinary Design Optimization 

(MDO) approach to perform concurrent optimization of a hybrid electric vehicle, where the system’s 

component sizing and power management logic were optimized simultaneously based on the design 

objectives of the system.  Furthermore, a feature-based optimization technique was developed to 

reduce simulation run-time of the optimization process.  To demonstrate the capability of the 

proposed methodology, two optimization case studies were undertaken: (i) battery-only and combined 

battery-ultracapacitor series hybrid electric vehicle and (ii) police vehicle anti-idling system.  For 

both case studies, results of various optimization algorithms were compared and discussed.  

A plug-in battery-only series hybrid electric vehicle (SHEV) with power components similar to 

those of Chevrolet Volt was created as part of the first case study using the backward-looking 

architecture.  To demonstrate the effectiveness of the proposed concurrent optimization, the battery 

size and power management logic were simultaneously optimized.  The parameters for the power 

management logic included the battery’s state of charge (SOC) threshold, the SOC below which 

engine should be turned on to recharge the battery, and the engine speed and torque, for which the 

genset should be operating at the most efficient point.  The objective function of the optimizer was 

defined from the financial cost perspective, where the objective was to minimize the sum of the initial 

cost of batteries, fuel and electricity consumption over a period of five years, and the carbon tax as a 

penalty function for harmful emissions.  A drive cycle consisting of standard urban and highway 

speed profiles with a total distance of 65km was used.  The minimum battery size, while still large 

enough to successfully complete the drive cycle, was found by the optimizer.  A comparison between 

different optimization algorithms found that feature-based technique required the smallest amount of 

simulation run-time, while simulated annealing required the largest.  Furthermore, since the objective 

function map monotonically decreased towards the optimal solution, local optimization method such 

as pattern search was able to find the solution in a relatively short time.  Finally, the optimized 

configuration was compared with the Honda Insight, Toyota Prius, Chevrolet Volt, and Tesla Roaster 

on a cost function map.  It was observed that the optimized configuration indeed resulted in the most 
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cost effective battery-only SHEV.  In addition, the location of the aforementioned hybrid electric 

vehicles on the cost function map accurately reflected the order of the vehicles’ respective list prices.   

In the second part of the case study, ultracapacitors were added to the electrical energy storage 

(EES) system of the SHEV. The optimization parameters were expanded to size the EES components, 

the IC engine, and the electric traction motor.  Additionally, the power management logic included 

the duration of time that the genset remained activated and the power distributing function (PDF) that 

managed the combined operation of the batteries and the ultracapacitors within the EES system.  The 

drive cycle of the vehicle model remained the same as the battery-only SHEV, while the objective 

function included the cost of the ultracapacitor and the interpolated cost due to the sizing of the IC 

engine and the electric traction motor.  A comparison of the optimization algorithms found that only 

genetic algorithm was capable of finding the optimal solution during a full optimization, while 

simulated annealing and pattern search were not able to converge to any solution after a 24-hour 

period.  Due to the nature of the feature-based (FB) optimization technique, it was not capable of 

solving the time sensitive parameters such as the power distributing function.  A secondary 

optimization was conducted using the powertrain configuration initially determined by FB, and the 

solutions of the PDF parameters were obtained.  A comparison between the full genetic algorithm 

optimization and the feature-based method with secondary optimization found that although the final 

cost function of the FB methodology was higher than that of the full GA optimization, the total 

simulation run-time was significantly decreased using the FB method.  The required simulation run-

time was reduced to less than 45 minutes using the feature-based technique from over 7 hours as 

required by the full genetic algorithm optimization.  Finally, time history behaviour of the EES 

system and the PDF in the solutions found by both methods exhibited almost identical characteristics, 

further confirming the validity of the feature-based method with secondary optimization.  Finally, a 

benchmarking comparison against Chevrolet Volt found that with more accurate manufacturers’ 

component data and by implementing the appropriate performance constraints, the developed 

concurrent optimization software platform will be able to accurately predict a solution similar to that 

of the Volt. 

The second case study involved optimizing an anti-idling system for the police vehicles using the 

same optimization algorithm and generic vehicle model.  It was estimated that in average for 80% of 

the time a police vehicle will remain parked while idling with the engine on, in order to power the 

onboard electrical equipment.  The goal was to select and size an additional battery, and determine 
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the power management logic indicating when the engine should be operated to recharge the battery.  

Two Discover lead-acid batteries with different capacities and a lithium-ion battery were used during 

the optimization study.  It was found that depending on the SOC threshold, the period of time during 

which the engine was activated varied in a non-linear fashion, where local minima and maxima 

existed.  A comparison of different optimization algorithms demonstrated that only global 

optimization methods such as genetic algorithm and simulated annealing were capable of reaching at 

the optimal solution, while the pattern search algorithm was stuck in a local minimum.   

The optimizers used in the simulation platform were derivative-free methods that were available 

within the MATLAB library.  Two global and two local optimization methods were chosen to 

demonstrate the characteristic of the algorithms and to determine the most suitable method of choice 

for conducting the concurrent vehicle optimization.  Additionally, the results of the developed 

feature-based optimization were compared to those of the existing optimization algorithms.  It was 

found that the Nelder-Mead method could not reach any meaningful solution in all cases, and was 

therefore disregarded throughout the discussion.  Table 7-1 summarizes the characteristic and the 

performances of various optimization algorithms used in this research.  

Table 7-1: Performances of Various Optimization Algorithms used in the Case Studies 

 
Genetic 

Algorithm 
Simulated 
Annealing 

Pattern 
Search 

Feature- 
Based 

 Global Global Local Custom 

Battery SHEV 
Optimization Variables = 4 

$8,549 $8,540 $8,553 $8,547 

6,147s 13,165s 701s 467s 

Combined SHEV 
Optimization Variables = 14 

$14,925 incomplete incomplete $15,949 

25,576s > 24hrs > 24hrs 2,588s 

Anti-Idling System 
Optimization Variables = 2 

$4,286 $4,276 $4,412 n/a 

1,252s 1,744s 116s n/a 

 

Table 7-1 showed that in the case when simulated annealing was able to complete the optimization, 

it found the lowest cost function while utilizing the largest amount of time.  On the other hand, even 

though the solutions of genetic algorithm were slightly higher than that of simulated annealing in the 

case of the battery-only SHEV, it was able to converge to a solution for the combined SHEV while 

simulated annealing could not.  Pattern search was able to reach a solution fairly quickly; it was, 
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however, susceptible to be stuck in a local minimum.  Similar to the simulated annealing, it was not 

capable of reaching a solution for the combined SHEV.  Additionally, the developed feature-based 

optimization demonstrated its capability of reaching a reasonable solution while utilizing significantly 

less simulation run-time.  It should be noted that since the drive cycle of the anti-idling system was 

assumed to be of random nature, feature-based optimization was not conducted for the anti-idling 

case study.  The comparison between the various optimization algorithms found that the genetic 

algorithm could reach an optimal solution regardless of the complexity of the system.  Furthermore, it 

was shown that the feature-based optimization could obtain a relatively accurate solution while 

reducing simulation time by approximately 90%.  This significant reduction in simulation time 

warrants the feature-based optimization technique a powerful tool for vehicle design and 

optimization.  

It was observed that the due to the high cost of the electrical energy storage components, it was 

currently still more cost effective to use the fossil fuel as the primary method of energy transportation 

for automobiles.  However, given the rise of fuel cost and the advancement in the EES technology, it 

is inevitable that the cost of the electrical and chemical energy storage methods will reach a balance 

point.  The proposed optimization platform provides the user with the capability and flexibility to 

obtain the optimal vehicle solution with ease at any given time in the future. 

7.2 Thesis Contributions 

 A complete multidisciplinary vehicle optimization software platform was developed to perform 

concurrent optimization on powertrain sizing and power management logic.  A modular and 

flexible backward-looking vehicle model was created to perform vehicle energy consumption 

calculations.  Series hybrid electric vehicles and an anti-idling system for police vehicles were 

created and used as case studies to conduct concurrent optimization using the developed software 

platform, and demonstrate the usefulness of the developed software solution.  

 A power distributing function was created to manage the charging and discharging power 

between the battery and the ultracapacitor.  The power distributing function demonstrated the 

capability of managing the power flow between the electric energy storage devices and the power 

components, and also the flexibility to fine tune the behaviour of the EES system using the 

optimizer.  
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 A survey and comparison of different optimization algorithms was conducted and implemented in 

the case studies.  The advantages and the shortcoming of the different algorithms were discussed, 

and it was found that the genetic algorithm was not only capable of finding the global optimal 

solution in a reasonable time frame, but was also able to converge to a solution in all cases. 

 During a full vehicle optimization, simulations in Simulink were performed hundreds and 

thousands of times to evaluate the objective function, resulting in hours of simulation time.  A 

feature-based optimization methodology was developed with the motivation of reducing the total 

simulation time.  It was shown that the feature-based technique was capable of reducing the total 

simulation time by up to 90% while maintaining reasonable accuracy of the final solution.  

7.3 Future Work 

 Currently, to determine the power consumptions of IC engines and electric motor-generators, 

only efficiency calculations are performed.  It is desired that further work be performed on 

increasing the fidelity of these energy conversion models to improve the accuracy of the fuel and 

electricity consumptions.  Similarly, additional improvements on the battery and ultracapacitor 

models will provide an improved accuracy when determining the power transfer efficiencies.  A 

more realistic battery model can be realized by considering the internal resistance of the battery 

as a function of the battery’s state of charge. 

 The developed optimization platform had only conducted optimization on a series hybrid electric 

vehicle configuration.  To fully utilize the capability of the proposed concurrent optimization 

approach, it is desirable to expand the case studies to parallel hybrid electric vehicles and battery 

electric vehicles.  

 Due to the lack of OEM information on the powertrain components, assumptions were made on 

the specification and costs of the IC engine and electric motor-generator.  With the wealth of 

information on power component specifications, manufacturers can utilize the developed 

software platform with accurate component parameters for their vehicle design and optimization, 

achieving the full potential of cost and time savings during the vehicle design cycle.  
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Appendix A 

Experimental Parameters of the IC Engine and Motor-Generator 

Table A-1 gives the Willans Line engine model k parameters used to describe the Otto and Diesel 

cycles.  

Table A-1: Parameters of the Mean Effective Pressure Losses due to Friction [34] 

Parameter Otto Cycle Diesel Cycle 
k1 1.44E5 [Pa] 1.44E5 [Pa] 
k2 0.46 0.50 
k3 9.1E-4 [s2/m2] 1.1E-3 [s2/m2] 
k4 0.075 [m] 0.075 [m] 

 

Figure A-1 illustrates the experimentally determined efficiency map of the scalable motor-

generator provided in the QSS toolbox.  Note that the upper quadrant depicts the efficiency during 

motor mode, while the lower quadrant shows the generator efficiency.  For ease of calculation in the 

backward modeling approach, the numerical value of the motor efficiency is higher than one when 

using Equation (3.19) 

 

Figure A-1: Efficiency Map of the QSS Toolbox Electric Motor-Generator [33] 
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Appendix B 

New EPA Fuel Economy Test Method 

Prior to the 2008 model year, fuel economy estimate performed by the US Environmental Protection 

Agency (EPA) was based on two drive cycles: (i) Federal Test Procedure (FTP) 75, derived from 

Urban Dynamometer Driving Schedule (UDDS), for city driving, and (ii) Highway Fuel Economy 

Test (HWFET) for highway fuel consumption estimates.  However, such methodology lacked several 

important factors that affected fuel economy in the real world, namely high speed, aggressive 

accelerations and decelerations, the use of air conditioning, and cold temperature operations.  

Therefore, starting with the 2008 model year, a new 5-cycle method was adopted by the US EPA in 

order to provide a more realistic fuel economy estimate.  The test results from each of the test cycles 

are substituted into a series of equations to determine the city, highway, and combined fuel 

consumption estimates. Table B-1 summarizes the characteristics of the 5-cycle methodology. [56] 

 

Table B-1:  Fuel Economy 5-Cycle Testing Method 

Test Description 
Average Speed 

(mph) 
Max Speed 

(mph) 
Max Acceleration 

(mph/sec) 
Ambient 

Condition 

FTP 75 
Urban Stop-and-
go driving from 
1970’s 

21 58 3.3 75°F 

HWFET Rural Driving 48 60 3.3 75°F 

US06 
High Speed and 
aggressive 
driving 

48 80 8.5 75°F 

SC03 
Air conditioner 
operation 

22 55 5.1 
95°F & 40% 

relative 
humidity 

Cold FTP 75 
Cold 
temperature 
operation 

21 58 3.3 20°F 
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Appendix C 

Series Hybrid Electric Vehicle Model Parameters 

Table C-1: Vehicle Model Parameters 

Parameters Values 
Chassis (sprung) Mass [kg]4 1200 
Tire (unsprung) Mass [kg] 25 
Tire Radius [m] 0.31 
Air Density ρ [kg/m3] 1.2 
Frontal Area A [m2] 2.26 
Drag Coefficient Cd 0.32 

 

Table C-2: Series Hybrid Transmission Gear Ratio and Operating Vehicle Speed 

Vehicle Speed [km/h] Gear Ratio 
0 – 50 5 
50-120 3.5 
>120 1 

 

 

  

                                                      
4 Not including battery mass 
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Appendix D 

Battery-Only Series Hybrid Electric Vehicle Simulink Model 

 

Figure D-1: Battery-Only Series Hybrid Electric Vehicle Model in MATLAB/Simulink 
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Figure D-2: Battery-Only SHEV Backward-Looking MATLAB/Simulink Vehicle Model 

 

 

 

Figure D-3: Battery-Only SHEV MATLAB/Simulink Transmission Model 
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Figure D-4: Battery-Only SHEV MATLAB/Simulink Motor Model 

 

 

 

Figure D-5: Battery-Only SHEV MATLAB/Simulink IC Engine Model 
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Figure D-6: Battery-Only SHEV MATLAB/Simulink Generator Model 

 

 

 

Figure D-7: Battery-Only SHEV MATLAB/Simulink Battery Model 
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Figure D-8: Battery-Only SHEV MATLAB/Simulink Power Management Logic Model 
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Appendix E 

MATLAB Optimization m-file 

vehicle_optimize.m 

% Vehicle Optimization 
%  
% This file defines the optimization parameters and execute the MATLAB  
% built-in genetic algorithm command 
  
clear 
clc 
  
matlabpool open 3 
  
tic 
  
% Define lower and upper bound of the GA variables 
% [Batt_SOC_threshold, Batt_SOC_duration_percent, genset_torque, genset_speed,  
%  battery_bank, ultracap_bank, PD_disch_c, PD_disch_i, PD_disch_e, PD_ch_c,  
%  PD_ch_i, PD_ch_e, Engine Stroke (S), scale_EM ] 
  
lb=[10  5  88 222 1 1   1   1   1   1   1   1  50  5]; 
ub=[95 25 116 278 9 9 150 150 150 150 150 150 120 14]; 
  
options=gaoptimset('PopulationSize',560,... 
    'plotfcns',{@gaplotbestf,@gaplotbestindiv},... 
    'UseParallel','always','StallGenLimit',1); 
  
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]=ga(@vehopti,14,[],[],[],[],lb,ub,[],options); 
  
results(1,1)=round(X(1)); 
results(2,1)=round(X(2)); 
results(3,1)=round(X(3)); 
results(4,1)=round(X(4)); 
results(5,1)=round(X(5)); 
results(6,1)=round(X(6)); 
results(7,1)=X(7); 
results(8,1)=X(8); 
results(9,1)=X(9); 
results(10,1)=X(10); 
results(11,1)=X(11); 
results(12,1)=X(12); 
results(13,1)=round(X(13)); 
results(14,1)=round(X(14)); 
  
toc 
  
sim('bw_vehicle_batt_UC_plot.mdl') 
  
matlabpool close 
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vehopti.m 

function [J]=vehopti(x) 
  
vehicle_opt; 
  
Batt_SOC_threshold=round(x(1)); 
Batt_SOC_duration_percent=round(x(2)); 
genset_torque=round(x(3)); 
genset_speed=round(x(4)); 
battery_bank=round(x(5)); 
ultracap_bank=round(x(6)); 
PD_disch_c=x(7); 
PD_disch_i=x(8); 
PD_disch_e=x(9); 
PD_ch_c=x(10); 
PD_ch_i=x(11); 
PD_ch_e=x(12); 
S=round(x(13))*1e-3; 
scale_EM=round(x(14)); 
  
% Fitness function parameters 
years = 5; 
days = 260; 
cost_electric = 0.112; 
cost_fuel = 0.9; 
cost_battery = 18.33; 
cost_ultracap = 694.29; % 2851.2;  
cost_carbon = 0.034; 
cost_engine_base = 2000; 
cost_motor_base = 5000; 
cost_increase = 2000/70; 
  
cost_engine_final = cost_engine_base + (S*1e3 - 50)*cost_increase; 
cost_motor_final = cost_motor_base + (scale_EM - 5)*cost_increase; 
  
sim('bw_vehicle_batt_UC_opt.mdl',[],simset('SrcWorkspace','current','DstWorkspace','current')
); 
  
J=((fuel_consumption.signals.values(size(fuel_consumption.signals.values,1))*cost_fuel... 
    +fuel_consumption.signals.values(size(fuel_consumption.signals.values,1))*cost_carbon... 
    -battery_consumption.signals.values(size(battery_consumption.signals.values,1))... 
    *cost_electric... 
    -ultracap_consumption.signals.values(size(ultracap_consumption.signals.values,1))... 
    *cost_electric)*days*years+max(error_SOC_Batt.signals.values)... 
    +max(error_generator.signals.values)+max(error_motor.signals.values)... 
    +max(error_incomplete.signals.values)+battery_bank*battery_cell_per_bank*cost_battery... 
    +ultracap_bank*ultracap_cell_per_bank*cost_ultracap)+cost_engine_final+cost_motor_final; 
end 
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Appendix F 

Feature-Based Optimization m-file 

Feature_extraction.m 

% Nov 27, 2010 
% 
% Brian Fan 
% 
% This m-file performs the feature based extraction using the specified 
% drive cycle. The script first reads the drive cycle data points and 
% calculates the acceleration between each points. Based on the specified 
% resolution, it takes the average acceleration of all point from the 
% current point to the next.  
% 
% The range of the velocity and the acceleration was first determined by 
% the 3D histogram of the entire data range. The electrical energy 
% consumption map was then determined by running simulation of each of bin 
% indexed by the velocity and acceleration range of the histogram.  
% 
% The drive cycle was divided into sections, where a histogram of each of 
% the sections was determined, and dot multiply by the energy map to 
% calculate the energy consumption of each section. The battery SOC was 
% subsequently calculated based on the energy consumption of each of the 
% sections, and if SOC falls bellow the desired threshold, the genset is 
% activated throughout the next section, where the SOC is recalculated. The 
% process is repeated until the end of the drive cycle.  
% 
  
clc 
clear all 
  
tic 
  
%Drive Cycle 
% load HWFET.mat;  % 765 Sec 
% load UDDS.mat;  % 1369 Sec 
% load US06.mat;  % 600 Sec 
% load NYCC.mat;  % 598 Sec 
load combined_65k.mat;  % 5114 Sec 
% load UDDS64k.mat;  % 7330 Sec 
% load ramp20mph.mat;  % 150 Sec 
% load ramp40mph.mat;  % 193 Sec 
% load ramp60mph.mat;  % 225 Sec 
% load constant40mph.mat;  % 99 Sec 
  
% Create Velocity and Acceleration dataset for histogram 
feature.res = 1; % resolution 
feature.sec = 101; % No. of sections to divide the drive cycle 
feature.binsize = 30; 
  
drive_cycle(:,2)=drive_cycle(:,2)*1.6/3.6; % converting MPH to m/s 
  
%% 
% Generate m by 1 vector of velocity and acceleration values 
if size(drive_cycle,1)/feature.res > floor(size(drive_cycle,1)/feature.res) 
    feature.m=ceil(size(drive_cycle,1)/feature.res); 
else 
    feature.m=size(drive_cycle,1)/feature.res; 
end 
  
for i=1:feature.m 
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    feature.v_ext(i,1)=drive_cycle(i+(i-1)*(feature.res-1),2); 
end 
  
for i=1:feature.m-1 
    feature.a_ext(i,1)=0; 
    for j=1:feature.res 
        feature.a(j)=drive_cycle(i+(i-1)*(feature.res-1)+j,2)-drive_cycle(i+(i-
1)*(feature.res-1)+j-1,2); 
        feature.a_ext(i,1)=feature.a_ext(i,1)+feature.a(j); 
    end 
    feature.a_ext(i,1)=feature.a_ext(i,1)/feature.res; 
end 
  
feature.a_ext(feature.m,1)=0; 
for j=1:size(drive_cycle,1)-(feature.m-1)*feature.res-1 
    feature.a(j)=drive_cycle(feature.m+(feature.m-1)*(feature.res-1)+j,2)-
drive_cycle(feature.m+(feature.m-1)*(feature.res-1)+j-1,2); 
    feature.a_ext(feature.m,1)=feature.a_ext(feature.m,1)+feature.a(j); 
end 
feature.a_ext(feature.m,1)=feature.a_ext(feature.m,1)/feature.res; 
  
feature.ext_init(:,1)=feature.v_ext; 
feature.ext_init(:,2)=feature.a_ext; 
  
[feature.Z,feature.C]=hist3(feature.ext_init,[feature.binsize feature.binsize]); 
%% 
  
% Define velocity and acceleration range from overall histogram 
feature.v_range.start = min(feature.C{1,1}); 
feature.v_range.end = max(feature.C{1,1}); 
feature.a_range.start = min(feature.C{1,2}); 
feature.a_range.end = max(feature.C{1,2}); 
feature.v_range = feature.v_range.start:((feature.v_range.end-
feature.v_range.start)/(feature.binsize-1)):feature.v_range.end; % velocity range of the 
histogram 
feature.a_range = feature.a_range.start:(feature.a_range.end-
feature.a_range.start)/(feature.binsize-1):feature.a_range.end; % acceleration range of the 
histogram 
  
if size(drive_cycle,1)/feature.sec/feature.res > 
floor(size(drive_cycle,1)/feature.sec/feature.res) 
    feature.n=ceil(size(drive_cycle,1)/feature.sec/feature.res); 
else 
    feature.n=size(drive_cycle,1)/feature.sec/feature.res; 
end 
  
% Generate n by sec table of velocity 
for j=1:feature.sec-1 
    for i=1:feature.n 
        feature.v_ext_sec(i,j)=drive_cycle(feature.n*(j-1)+i+(i-1)*(feature.res-1),2); 
    end 
end 
  
for i=1:size(drive_cycle,1)-feature.n*(feature.sec-1); 
    feature.v_ext_sec(i,feature.sec)=drive_cycle(feature.n*(feature.sec-1)+i,2); 
end 
  
% Generate n by sec table of acceceleration values 
for j=1:feature.sec-1 
    for i=1:feature.n 
        feature.a_ext_sec(i,j)=feature.a_ext(feature.n*(j-1)+i+(i-1)*(feature.res-1)); 
    end 
end 
  
for i=1:size(drive_cycle,1)-feature.n*(feature.sec-1) 
    feature.a_ext_sec(i,feature.sec)=feature.a_ext(feature.n*(feature.sec-1)+i); 
end 
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%% 
% Generate Energy map of the histogram range (v_range & a_range) 
vehicle_feature 
  
for i=1:size(feature.v_range,2) 
    for j=1:size(feature.a_range,2) 
        feature.v_init=feature.v_range(i); 
        feature.a_avg=feature.a_range(j); 
        sim('bw_vehicle_2011_04.mdl',feature.res);         
        feature.energy_map(i,j)=(-
battery_consumption.signals.values(size(battery_consumption.signals.values,1))-... 
ultracap_consumption.signals.values(size(ultracap_consumption.signals.values,1)))*3600; 
    end 
end 
%% 
  
toc 
% pause 
  
matlabpool open 3 
  
tic 
  
feature_variables; 
  
% GA Optimization starts here 
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES,feature]=vehopti_fea_UC(feature); 
  
results(1,1)=round(X(1)); 
results(2,1)=round(X(2)); 
results(3,1)=round(X(3)); 
results(4,1)=round(X(4)); 
results(5,1)=round(X(5)); 
results(6,1)=round(X(6)); 
results(7,1)=X(7); 
results(8,1)=X(8); 
results(9,1)=X(9); 
results(10,1)=X(10); 
results(11,1)=round(X(11)); 
results(12,1)=round(X(12)); 
  
toc 
  
matlabpool close 
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vehopti_fea_UC.m 

function [X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES, feature]=vehopti_fea_UC(feature) 
  
% Define lower and upper bound of the GA variables 
% [Batt_SOC_threshold, genset_torque, genset_speed, battery_bank, ultracap_bank,  
%  PD_disch_c, PD_disch_g, PD_disch_i, PD_ch_c, PD_ch_g, PD_ch_i, Batt_SOC_duration_percent, 
%  Engine Stroke (S), scale_EM ] 
  
lb=[10  5  88 222 1 1   1   1   1   1  50  5]; 
ub=[95 25 116 278 9 9 150 150 150 150 120 14]; 
  
options=gaoptimset('PopulationSize',560,'StallGenLimit',10,... 
    'plotfcns',{@gaplotbestf,@gaplotbestindiv},'TolFun',1,'UseParallel','always'); 
  
% Figure out passing variables 
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]=ga(@vehopti_feat,12,[],[],[],[],lb,ub,[],options); 
results=round(X); 
  
   function [J]=vehopti_feat(x) 
         
% Note: not optimizaing dP/dt parameter (charge/discharge i), since dP/dt 
% not used in feature based PDF 
  
feature.Batt_SOC_threshold=round(x(1)); 
feature.Batt_SOC_duration_percent=round(x(2)); 
feature.genset_torque=round(x(3)); 
feature.genset_speed=round(x(4)); 
feature.battery_bank=round(x(5)); 
feature.ultracap_bank=round(x(6)); 
feature.PD_disch_c=x(7); 
feature.PD_disch_e=x(8); 
feature.PD_ch_c=x(9); 
feature.PD_ch_e=x(10); 
feature.S=round(x(11))*1e-3; 
feature.scale_EM=round(x(12)); 
  
% Battery Energy [kJ] 
feature.batt_capacity_init=feature.battery_capacity*feature.battery_nominal_voltage... 
*feature.battery_cell_per_bank*feature.battery_bank/1000*feature.battery_init_SOC/100*3600;  
  
feature.batt_capacity=feature.battery_capacity*feature.battery_nominal_voltage... 
    *feature.battery_cell_per_bank*feature.battery_bank/1000*3600; 
  
% Ultra-capacitor Energy [kJ] 
feature.UC_Q=(feature.ultracap_capacitance/feature.ultracap_cell_per_bank... 
*feature.ultracap_bank)*(feature.ultracap_nominal_voltage*feature.ultracap_cell_per_bank); 
  
feature.UC_Q_init=feature.UC_Q*feature.ultracap_init_SOC/100; 
  
feature.UC_C = 
feature.ultracap_capacitance/feature.ultracap_cell_per_bank*feature.ultracap_bank; 
  
feature.UC_capacity_init=(feature.UC_Q_init)^2/feature.UC_C/2/1000; 
feature.UC_capacity=(feature.UC_Q)^2/feature.UC_C/2/1000; 
  
% Calculate energy consumption per section 
feature.genset_flag=0; 
  
i=1; 
repeat=0; 
feature.energy_section=0; 
  
% Power Available 
feature.mass_new=feature.M+feature.battery_cell_mass*feature.battery_cell_per_bank*... 
    feature.battery_bank+feature.ultracap_cell_mass*feature.ultracap_cell_per_bank*... 
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    feature.ultracap_bank+4*feature.m_T; 
  
feature.power_batt=feature.battery_discharge_peak*feature.battery_bank*... 
    feature.battery_nominal_voltage*feature.battery_cell_per_bank; 
  
feature.power_UC=feature.ultracap_discharge_peak*feature.ultracap_bank*... 
    feature.ultracap_nominal_voltage*feature.ultracap_cell_per_bank; 
  
% Max Power of Section 
feature.power_desired=(feature.mass_new.*feature.a_ext + (feature.Cd*feature.rho.*... 
   (feature.v_ext).^2*feature.A)/2 + feature.Crr*feature.mass_new*9.81).*feature.v_ext; 
  
% Calculate Performance Constraints 
if max(feature.power_desired)/feature.motor_traction_eta>feature.power_batt+feature.power_UC 
    feature.error_incomplete(i) = 100000; 
else 
    feature.error_incomplete(i) = 0; 
end 
  
  
% Calculate energy map increase based on new mass 
for n=1:size(feature.v_range,2) 
    for m=1:size(feature.a_range,2) 
        feature.energy_map_scale(n,m)=(feature.mass_new*feature.a_range(m)+... 
            (feature.Cd*feature.rho.*(feature.v_range(n)).^2*feature.A)/2 +... 
            feature.Crr*feature.mass_new*9.81)/(feature.mass_base*feature.a_range(m)+... 
            (feature.Cd*feature.rho.*(feature.v_range(n)).^2*feature.A)/2 +... 
            feature.Crr*feature.mass_base*9.81); 
    end 
end 
  
% Energy calculation of sections 
while i<=feature.sec 
    feature.ext(:,1)=feature.v_ext_sec(:,i); 
    feature.ext(:,2)=feature.a_ext_sec(:,i); 
    feature.Z=hist3(feature.ext,{feature.v_range feature.a_range}); 
    feature.energy(i)=sum(sum(feature.Z.*feature.energy_map)); 
    feature.energy_section=feature.Z+feature.energy_section; 
     
    % Power Distributing Function  
    if i==1 
        % Use SOC init 
        feature.PDF_ch(i)=(1/((1+exp(feature.PD_ch_b*(feature.battery_init_SOC-

feature.PD_ch_c)))... 
            *(1+exp(feature.PD_ch_d*(feature.ultracap_init_SOC-feature.PD_ch_e)))))... 
            *(feature.PD_ch_g/(feature.energy(i)/feature.n)); 
         
        feature.PDF_dis(i)=1/((1+exp(feature.PD_disch_b.*(feature.battery_init_SOC-

feature.PD_disch_c)))... 
            *(1+exp(feature.PD_disch_f*((feature.energy(i)/feature.n)-

feature.PD_disch_g)))... 
            *(1+exp(feature.PD_disch_d*(feature.ultracap_init_SOC-feature.PD_disch_e)))); 
    else 
        % Use SOC(i-1) 
        feature.PDF_ch(i)=(1/((1+exp(feature.PD_ch_b*(feature.batt_SOC(i-1)-

feature.PD_ch_c)))... 
            *(1+exp(feature.PD_ch_d*(feature.UC_SOC(i-1)-feature.PD_ch_e)))))... 
            *(feature.PD_ch_g/feature.energy(i)/feature.n); 
  
        feature.PDF_dis(i)=1/((1+exp(feature.PD_disch_b.*(feature.batt_SOC(i-1)-

feature.PD_disch_c)))... 
            *(1+exp(feature.PD_disch_f*((feature.energy(i)/feature.n)-

feature.PD_disch_g)))... 
            *(1+exp(feature.PD_disch_d*(feature.UC_SOC(i-1)-feature.PD_disch_e)))); 
    end 
    
    % Genset 
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    if feature.genset_flag==1; 
        % Calculate genset power 
        feature.eta_g=interp2(feature.T_EM_col_genset, feature.w_EM_row, feature.eta_EM_map, 

-feature.genset_torque/feature.genset_gear, 
feature.genset_speed*feature.genset_gear); 

        
feature.genset(i)=feature.genset_torque*feature.genset_speed*feature.eta_g/1000*(featu
re.n-1); 

         
        % Calculate fuel consumption 
        feature.p_me=feature.N*pi*feature.genset_torque/feature.V_d; 

  
feature.p_loss_f=feature.k1*(feature.k2+feature.k3*(feature.S^2)*(feature.genset_speed
^2))*feature.PI*sqrt(feature.k4/feature.B); 
        
feature.eta_e=feature.p_me/((feature.p_loss_f+feature.p_me+feature.p_loss_g)/feature.e
); 

        feature.P_fuel=feature.genset_torque*feature.genset_speed/feature.eta_e; 
        feature.mf_dot=feature.P_fuel/(feature.gas_energy_density*1000); %[g/s] 
        feature.mf=feature.mf_dot/feature.gas_vol_density; % [L] 
        feature.fuel(i)=feature.mf*(feature.n-1); 
    else 
        feature.genset(i)=0; 
        feature.fuel(i)=0; 
    end 
     
    % Assign charging or discharging PDF based on energy of the section 
    if feature.energy(i)>0 
        feature.PDF(i)=feature.PDF_dis(i); 
    else 
        feature.PDF(i)=feature.PDF_ch(i); 
    end 
     
    feature.batt_SOC(i)=min(100,(feature.batt_capacity_init-(sum(feature.energy))... 
        *feature.PDF(i)+(sum(feature.genset))*feature.PDF_ch(i))/feature.batt_capacity*100); 
     
    feature.UC_SOC(i)=min(100,(feature.UC_capacity_init-(sum(feature.energy))*(1-

feature.PDF(i))+(sum(feature.genset))*(1-
feature.PDF_ch(i)))/feature.UC_capacity*100); 

     
    % Calculate EES SOC error function 
    if feature.batt_SOC(i)<=0 
        feature.error_SOC_Batt = 1000000; 
    else 
        feature.error_SOC_Batt = 0; 
    end 
     
    if feature.UC_SOC(i)<=0 
        feature.error_SOC_UC = 1000000; 
    else 
        feature.error_SOC_UC = 0; 
    end 
         
    if (feature.batt_SOC(i) <= feature.Batt_SOC_threshold)&&(repeat==0) %check if SOC < 

threshold, and whether section repeated 
        feature.genset_flag=1; 
        i=i; 
        repeat=1; 
    elseif (feature.batt_SOC(i) <= feature.Batt_SOC_threshold)&&(repeat==1) %check if SOC < 

threshold, after section repeated 
        feature.genset_flag=1; 
        i=i+1; 
        repeat=0; 
    else 
        feature.genset_flag=0; 
        i=i+1; 
        repeat=0; 
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    end 
end 
  
  
  
feature.results(:,1)=feature.energy'; 
feature.results(:,2)=feature.genset'; 
feature.results(:,3)=feature.fuel'; 
feature.results(:,4)=feature.batt_SOC'; 
  
feature.results_sum(1,1)=sum(feature.energy); % [kJ] 
feature.results_sum(2,1)=sum(feature.genset); % [kJ] 
feature.results_sum(3,1)=sum(feature.fuel); 
  
% fuel_total=sum(feature.fuel) 
% energy_total=sum(feature.energy) 
  
% Fitness function parameters 
years = 5; 
days = 260; 
cost_electric = 0.112; 
cost_fuel = 0.9; 
cost_battery = 18.33; 
cost_ultracap = 694.29; %2851.2; 
cost_carbon = 0.034; 
cost_engine_base = 2000; 
cost_motor_base = 5000; 
cost_increase = 2000/70; 
  
feature.cost_engine_final = cost_engine_base + (feature.S*1e3 - 50)*cost_increase; 
feature.cost_motor_final = cost_motor_base + (feature.scale_EM - 5)*cost_increase; 
  
J=((sum(feature.fuel)*cost_fuel+sum(feature.fuel)*cost_carbon... 
    +(sum(feature.energy)-sum(feature.genset))/3600*cost_electric)*days*years... 
    +feature.error_SOC_Batt+feature.error_SOC_UC+max(feature.error_incomplete)... 
    +feature.battery_bank*feature.battery_cell_per_bank*cost_battery... 
    +feature.ultracap_bank*feature.ultracap_cell_per_bank*cost_ultracap)... 
    +feature.cost_engine_final+feature.cost_motor_final; 
  
   end 
  
end 
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Appendix G 

Ultracapacitor and Power Distributing Function Simulink Model 

 

Figure G-1: Combined SHEV MATLAB/Simulink Vehicle Model 
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Figure G-2: Combined SHEV MATLAB/Simulink Ultracapacitor Model 
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Figure G-3: Combined SHEV MATLAB/Simulink Power Management Controller Model 
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Figure G-4: Combined SHEV MATLAB/Simulink Charge Power Distributing Function 
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Figure G-5: Combined SHEV MATLAB/Simulink Discharge Power Distributing Function 
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Appendix H 

Anti-Idling System Simulink Model 

 

Figure H-1: Anti-Idling System Model in MATLAB/Simulink 

 

 

 

Figure H-2: Anti-Idling MATLAB/Simulink IC Engine Model 
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Figure H-3: Anti-Idling MATLAB/Simulink Battery Model 

 

 

Figure H-4: Anti-Idling MATLAB/Simulink Power Management Logic Model 
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Appendix I 

Anti-Idling System Model Parameters 

 

 

Figure I-1: Anti-Idling Alternator Current Output 

 

Table I-1: Cycle Life of the Batteries 

Discover (Lead-Acid) A123 (Lithium-Ion) 
Depth of Discharge Cycle Life Depth of Discharge Cycle Life 

>80% 300 

100% 1000 
>50% 700 
>30% 1200 
<30% 3000 

 


