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Abstract

Given a positive integer k, Conrey, Farmer, Keating, Rubinstein and Snaith conjectured

a formula for the asymptotics of the k-th moments of the central values of quadratic

Dirichlet L-functions. The conjectured formula for the moments is expressed as sum of a

k(k + 1)/2 degree polynomial in log |d|. In the sum, d varies over the set of fundamental

discriminants. This polynomial, called the moment polynomial, is given as a k-fold residue.

In Part I of this thesis, we derive explicit formulae for first k lower order terms of the

moment polynomial.

In Part II, we present a formula bounding the average of S(t, f), the remainder term

in the formula for the number of zeros of an L-function, L(s, f), where f is a newform of

weight k and level N . This is Turing’s method applied to cuspforms. We carry out the

improvements to Turing’s original method including using techniques of Booker and Trud-

gian. These improvements have application to the numerical verification of the Riemann

Hypothesis
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Chapter 1

Results

1.1 Moments of L(1
2, χd)

Let k be a positive integer. Let S0(X) be the set of fundamental discriminants d, with

|d| < X. Let

S+(X) = {d ∈ S0(X)|d > 0} , (1.1)

and

S−(X) = {d ∈ S0(X)|d < 0} . (1.2)

be the sets of positive and negative fundamental discriminants with |d| < X. Let χd(n) =Ä
d
n

ä
, be the Kronecker symbol, and L(s, χd) be the corresponding L-function. These L-

functions are described in Section 2.1. Conrey, Farmer, Keating, Rubinstein and Snaith

[CFK+05] conjectured an asymptotic expansion for the moments of L(1
2
, χd) as a sum of a

polynomial over fundamental discriminants, namely:

∑
d∈S±(X)

L(1
2
, χd)

k =
∑

d∈S±(X)

Q±k (log |d|)(1 +O(|d|−ε)). (1.3)
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The polynomial Q+
k (x) or Q−k (x) is used, depending upon whether the sum is over S+(x) or

S−(x). Both are polynomials of degree k(k+1)
2

, given implicitly as k-fold residues in (2.67).

In Part I, we develop an explicit formula, as a function of k, for the coefficients of the

polynomials Q±k (x). This formula can be used for analyzing the coefficients; for examples,

they can be used to see how the coefficients behave asymptotically as k increases. We can

also use these formulae in a computer program to numerically compute the coefficients.

To simplify the notation below, let Qk(x) stand for either of Q±k (x).

Theorem 1.1.1. Write

Qk(x) = c0(k)x
k(k+1)

2 + c1(k)x
k(k+1)

2
−1 + · · ·+ c k(k+1)

2

(k). (1.4)

Then the leading coefficient c0(k) of Qk(x) is

c0(k) =
ak
2k

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
, (1.5)

where

ak =
∏
p

Ç1− 1

p

å k(k+1)
2

Ñ
1

2

Ñ(
1− 1
√
p

)k
+

(
1 +

1
√
p

)ké
+

1

p

éÇ
1 +

1

p

å−1
 , (1.6)

and the coefficients c1(k), . . . , ck(k) of Qk(x) are given by

cr(k) = c0(k)
∑
|λ|=r

bλ(k)Nλ(k). (1.7)

The quantities Nλ(k) are polynomials in k of degree at most 2r2. The polynomials Nλ(k)

are determined by finding determinants of certain matrices whose entries are binomial

coefficients, and doing polynomial interpolation (Section 4.2). The values bλ, defined in

(3.7), are the Taylor coefficients of a multivariate holomorphic function.

The coefficients cr(k) and bλ are different for Q+
k (x) and Q−k (x).
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1.2 Upper and lower Bounds for
∫ t2
t1
S(t, f ) dt

In order to numerically check the Riemann hypothesis for an L-function in a certain portion

of the critical strip, we must find all the zeros of the L-function in that region and verify that

they indeed lie on the critical line. Once found, the data can also be used to corroborate

or refute predictions about the statistics of zeros of the L-function.

Finding zeros of an L-function on the critical line up to a height t is done in two steps.

The first step is to find zeros on the critical line. The next step is to verify that all the

zeros present in the interval of concern have been found. Part II of this thesis concerns

this second step for the zeros of L-functions associated to newforms.

Let L(s, f) be an L-function associated to a newform f of weight k and level N (A

standard reference for the theory of modular forms is [DS05]). Let Ω be the subset of

complex plane obtained by removing the horizontal lines {x+ itρ | x ∈ (−∞, 1]} for every

tρ which is an ordinate of a zero ρ of L(s, f): i.e.

Ω = C−
⋃
ρ

{x+ itρ | x ∈ (−∞, 1]}. (1.8)

Since L(s, f) does not have any zero in Ω, and Ω is contractible, logL(s, f) is an analytic

function defined in this domain. We choose the branch of log such that

lim
σ→∞

logL(σ + it, f) = 0. (1.9)

Then S(t, f) is defined as

S(t, f) =
1

π
= logL(1

2
+ it). (1.10)

Note that S(t, f) is not defined for any t which is an ordinate of a zero of L(s, f).

For t, which is not an ordinate of a zero of L(s, f), it is easy to see that S(t, f) is the

change in 1
π

argL(σ + it, f), as σ varies along the straight line from ∞+ it to 1
2

+ it. The

3



change in arg is measured by continuous variation on this line, starting with the value 0

at infinity.

Let ϑ(T, f) = arg Γ(1
2

+ it + k−1
2

) − t log
√
N

2π
. Let N(T, f) be the number of zeros of

L(s, f) in the critical strip up to height T . Using the argument principle, see for example

[Dav00, chapter 15], Lemma 1.2.1 gives a relationship between N(T, f) and S(T, f).

Lemma 1.2.1 (See also Lemma 5.2.1). Let f be a newform of weight k and level N . Let

L(s, f) be the L-function associated to this newform. Then

N(T, f) =
1

π
ϑ(T, f) + S(T, f)

=
k − 1

4
+
T

π
log

(
T
√
N

2π

)
− T

π
+ S(T, f) +O(

1

T
).

When we find the zeros of the L-function L(s, f) using a computer up to a height t

in the critical strip, we immediately obtain N(t, f). Using Lemma 1.2.1 we also obtain

S(t, f). We would like to detect the error when we miss any zero or find a spurious zero.

This is done by finding
∫ t2
t1
S(t, f) dt using the computationally determined S(t, f), and

checking whether this lies within the theoretical bound for
∫ t2
t1
S(t, f) dt.

In Part II of this thesis, we give the theoretical bounds for the integral
∫ t2
t1
S(t, f) dt.

Lemma 1.2.2 is first used to reduce the problem of finding bounds on
∫ t2
t1
S(t, f) dt to

finding bounds for
∫∞
1
2

log|L(σ + it, f)| dσ.

Lemma 1.2.2. [TH86, 9.9] If t1, t2 are not the ordinates of zeros of L(s, f), then writing

s = σ + it, the following equality holds:∫ t2

t1
S(t, f) dt =

1

π

∫ ∞
1
2

log|L(σ + it2, f)| dσ − 1

π

∫ ∞
1
2

log|L(σ + it1, f)| dσ. (1.11)

If we want to find an upper and a lower bound for
∫ t2
t1
S(t, f) dt, Lemma 1.2.2 shows

that it is enough to find an upper bound and a lower bound for
∫∞
1
2

log |L(σ + it, f)| dσ.

4



In Part II, we prove Theorems 1.2.3 and 1.2.4; these give an upper and lower bound for∫∞
1
2

log|L(σ + it, f)| dσ.

Theorem 1.2.3. Let L(s, f) be an L-function associated to a newform f of weight k and

level N , and t > 2 + k
2
. Then for s = σ + it,∫ ∞

1
2

log |L(s, f)| dσ ≤ a+ b log t+
c

t
, (1.12)

where,

a = 0.6× log(
√
N) + 2.70746797960673, (1.13)

b = 0.18, (1.14)

and c = 0.09× k + 1.02. (1.15)

Theorem 1.2.4. With the same assumptions as in Theorem 1.2.3,

−
∫ ∞

1
2

log |L(s, f)| dσ ≤ a+ b log t. (1.16)

Here

b = 0.36× (log 4− 1) = 0.13906597 . . . , (1.17)

and

a = −J(0.6) + 0.36 log 4

log

√
N

2π
+ 18.88207258−

∑
q|N

log q

q1.1 − 1


− 0.36 log

√
N

2π
+ 2εt,k, (1.18)

where

J(0.6) = −3.69607634894834 +
∑
q|N

1

log q

ñ
Li2

Ç−1

q1.7

å
− 2Li2

Ç−1

q1.1

åô
, (1.19)

and

εt,k =
2Å

t
k
2

+2

ã2

− 1
. (1.20)

The function Lim(x) is defined in (7.5).

5



Part I

Lower order Terms of Moments of

L(12, χd)
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Chapter 2

L-functions, Random Matrix Theory,

and other Background Information

In this chapter we introduce the basic definitions, the classical results, and more recent

results and conjectures upon which this thesis is built.

2.1 Dirichlet L-functions

This section presents a quick overview of the classical definitions and results in the theory

of Dirichlet L-functions. More details can be found in [IR90, Dav00, Rad73]. A Dirichlet

character is a map χ : Z→ C induced by a homomorphism ψ : (Z/NZ)× → C×;

χ(n) =


ψ(n) if gcd(n,N) = 1,

0 otherwise.

(2.1)
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The Dirichlet character χ is said to be primitive if the homomorphism ψ does not factor

through (Z/MZ)× for some M dividing N . The conductor of a character is the smallest

such M through which it factors.

Definition 2.1.1. Let χ be a Dirichlet character and s ∈ C. For <s > 1, the series

L(s, χ) =
∞∑
n=1

χ(n)

ns
(2.2)

defines the associated Dirichlet L-function.

A priori, this function is not defined on the whole complex plane. For non-trivial

characters, it is defined for <s > 0. Theorem 2.1.2 indicates that there is an analytic

continuation of Dirichlet L-functions to the whole complex plane.

Theorem 2.1.2 ([Dav00, Chapter 9]). Let χ be a primitive character modulo N . Let

Λ(s) = π−
s+q
2 N

s+a
2 Γ( s+a

2
)L(s, χ), (2.3)

where a = 1 if χ(−1) = −1 and 0 otherwise. Then

Λ(s) =
g(χ)

iaN
1
2

Λ(1− s̄). (2.4)

Here g(χ) is the Gauss sum
∑N
n=1 χ(n)e

2πin
N . The absolute value of g(χ) is

√
N .

Remark. Equation (2.4) is called the functional equation of the Dirichlet L-function L(s, χ).

The L-functions of concern in this Part of the thesis are those associated with primitive

quadratic characters. It is known [Dav00, Chap. 5] that all such quadratic characters are

of the form

χd(n) =
Ån
d

ã
. (2.5)

Here
Ä
a
b

ä
is the Kronecker symbol [IR90, p.202], and d is a fundamental discriminant, i.e.

for some square free D,

d =


D if D ≡ 1 mod 4,

4D if D ≡ 2, 3 mod 4.

(2.6)

8



The fundamental discriminants are products of distinct prime discriminants d′, where

d′ =


(−1)

p−1
2 p for p odd prime,

−4,±8 for p = 2.

(2.7)

The conductor of the character χd is |d|. If d < 0, the character is odd and if d > 0 then

the character is even, that is χd(−1) = sgn d.

There is another version of the functional equation (2.4). Let εd = g(χd)

ia
√
d
, γd(s) =Ä

π
d

ä− s
2 Γ( s+a

2
), and Xd(s) = γd(1−s)

γd(s)
. Then (2.4) can be rewritten as L(s, χd) = εdXd(s)L(1−

s, χd). For every primitive quadratic characters χd, the corresponding εd is always 1 [Ayo63,

p. 372]. Define

Z(s, χd) = X
− 1

2
d (s)L(s, χd). (2.8)

Then Z(s, χd) = Z(1− s, χd).

Note that Xd(
1
2
) =

γd(1− 1
2

)

γd( 1
2

)
= 1. Hence

L(1
2
, χd) = Z(1

2
, χd). (2.9)

Therefore finding the moments
∑
d∈S(X) L(1

2
, χd)

k is equivalent to finding the moments∑
d∈S(X) Z(1

2
, χd)

k.

2.2 Random matrix theory models

In this section, we shall assume the generalized Riemann hypothesis.

2.2.1 Riemann zeta function

The Riemann zeta function is the most studied of the L-functions. In their 1999 Bulletin

of the AMS paper, Katz and Sarnak [KS99b] presented theoretical evidence along with

9



numerics of Rubinstein [Rub98] for a possible relationship between spacing distributions

of zeros of an L-function and the spacing distributions of eigenvalues of members from

classical groups. The definition and properties of the classical groups can be found in

[Wey97].

Let γj be the imaginary part of the jth zero of the zeta function sorted by distance

from the real axis. Then #{γj|0 ≤ γj ≤ T} ∼ T log T
2π

. On average, the consecutive zeros

become closer to each other as we move up the critical line. Let γ̂j = γj log γj. Then the

average distance between the consecutive γ̂j is 1. The distances between the γ̂j are called

the normalized spacings between zeros.

Let φ be a Schwarz class test function (defined in [Rud91, p.149]), such that

φ̂(ξ) =
∫ ∞
−∞

φ(x)e−2πixξdx (2.10)

has support in (−1, 1). Montgomery [Mon73] showed that for such φ,

lim
N→∞

1

N

∑
1≤j 6=k≤N

φ(γ̂j − γ̂k) =
∫ ∞
−∞

φ(x)

(
1−

Ç
sin πx

πx

å2
)
dx. (2.11)

He conjectured that (2.11) holds for all Schwartz class test functions. If we take φ to be the

characteristic function of a small interval (α, β), then assuming the conjecture we expect

lim
N→∞

1

N

∑
1≤j 6=k≤N
α<γ̂j−γ̂k<β

1 =
∫ β

α

(
1−

Ç
sin πx

πx

å2
)
dx. (2.12)

If we take (α, β) to be a small interval, then the conjecture says

1

β − α
lim
N→∞

á
1

N

∑
1≤j 6=k≤N
α<γ̂j−γ̂k<β

1

ë
∼ 1−

Ç
sin πα

πα

å2

. (2.13)

We can see from Figure 2.1 that the experimental data confirms the conjectural prediction

very accurately. In Figure 2.1, the left hand side of (2.13) is plotted for several small

intervals.
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Figure 2.1: Pair correlation for zeros of Zeta function based on 108 zeros of the Zeta

function near 1020 versus 1−
Ä

sinπx
πx

ä2
.[Odl]
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The function
(
1−

Ä
sinπx
πx

ä2)
in (2.11) is called the pair correlation function of ζ(s).

It also happens to be the same as the pair correlation of the normalized eigenangles of

matrices in the unitary group U(N), as explained below.

Let A be an N ×N unitary matrix, and eiθ1 , . . . , eiθN be the eigenvalues of A. Here we

assume that 0 ≤ θ1 ≤ · · · ≤ θN < 2π are the eigenangles. We normalize the eigenangles so

that the expected difference is 1; so θ̂ := N
2π
θ is the normalized eigenangle. For a Schwartz

function f , the limit

lim
N→∞

1

N

∫
U(N)

∑
i 6=j

f(θ̂i − θ̂j) dA (2.14)

exists, and is equal to ∫ ∞
−∞

f(v)

(
1−

Ç
sin πv

πv

å2
)
dv. (2.15)

The measure dA is the Haar measure such that the measure of U(N) is 1.

2.2.2 Zeta function of smooth curves

Let C be a smooth projective curve over Fq of genus g. Let Nn be the number of fixed

points of the endomorphism of C which takes each ordinate to its qn power. The zeta

function of the smooth curve C is defined as

ζ(T,C) = exp

( ∞∑
n=0

NnT
n

n

)
. (2.16)

It is known [Del80] that the zeta function (2.16) can be written as

ζ(T,C) =
P (T,C)

(1− T )(1− qT )
, (2.17)

where numerator P (T,C) in the right hand side of (2.17) is a polynomial of degree g. The

Riemann hypothesis for curves says that the zeros of P (T ) lie on |T | = 1√
q
. It was proved

by Deligne [Del80]. The zeros ρj of P (T,C) are of the form

ρj =
1
√
q
eiθj , 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2g < 2π. (2.18)

12



They looked at the distribution of zeros for some families of curves, and showed that they

are distributed like the eigenangles of the matrices in classical compact groups. For each

of the classical compact groups, they found a family of algebraic curves, such that the

statistics of the zeros of the zeta function of these curves and the statistics of eigenangles

of the matrices in the corresponding group are the same. A more precise statement can be

found in [KS99a, Chapters 1 and 10] and [KS99b].

2.2.3 Other families of L-functions

Motivated by their own work on curves, Katz and Sarnak [KS99b] made predictions for

the zeros of L-functions associated to automorphic forms. To each automorphic form f in

a family F , let L(s, f) be its L-function, and cf its conductor. They made the assumption

that the set FX = {f : |cf | ≤ X} is finite for all positive real X. They studied various

statistics of FX as X →∞.

Assuming the generalized Riemann hypothesis, let the non trivial zeros of L(s, f) be

1

2
+ iγ

(j)
f . (2.19)

Order them as

· · · ≤ γ
(−1)
f ≤ 0 ≤ γ

(1)
f ≤ γ

(2)
f ≤ . . . (2.20)

Define the jth normalized zero of L(s, f) to be

γ
(j)
f log cf

2π
. (2.21)

The 1-level density for an L-function measures how many normalized zeros lie in a

prescribed interval (assuming the generalized Riemann hypothesis, GRH) on the critical

line. More generally, one can measure the density by summing the normalized zeros against

13



a Schwartz test function φ. The 1-level density of zeros for a given L-function L(s, f), with

respect to the weight function φ is defined to be:

S(f, φ) =
∑
j

φ

Ñ
γ

(j)
f log cf

2π

é
.

One can then ask, for a collection of L-functions, and a given φ, whether the average 1-level

density of zeros has a limiting behaviour, i.e. whether

lim
X→∞

∑
cf≤X S(f, φ)

#FX
(2.22)

exists. This quantity measures how dense the normalized zeros are.

Katz and Sarnak conjectured that for various naturally arising families of L-functions,

the limit does exist and, in each case, coincides with the average 1-level density for the

normalized eigenangles of large matrices from the various classical compact groups. By

average, we mean according to the Haar measure, and large means in the limit as the

matrix size tends to infinity.

The limit in each case was predicted by Katz and Sarnak to be given by a formula of

the form ∫ ∞
−∞

φ(x)G(x)dx, (2.23)

where G(x) is called the limiting 1-level density function, and depends on the specific

family.

Katz and Sarnak [KS99b] were able to check their prediction (2.23) theoretically for

several families, but with severe restrictions on the function φ. They assumed that the

Fourier transform of φ has support in a prescribed bounded interval. This interval was

different for each of the families that they studied. In their paper, they included numerics

from Rubinstein’s thesis [Rub98] which supported a connection to the classical compact

groups [Rub05]. They were able to exhibit families of L-functions for each of the classical

14



groups; the statistics of the normalized zeros of the family of L-functions are modelled

closely by the statistics of the normalized eigenangles of the matrices in the corresponding

compact classical group.

The family of L-functions consisting of quadratic Dirichlet L-functions L(s, χd) studied

in Part I of this thesis was one of the families examined by Katz and Sarnak. They predicted

and found evidence for an underlying unitary symplectic behaviour for this collection of

L-functions. In particular the statistics of the eigenvalues of matrices in USp(2N) :=

U(2N) ∩ Sp(2N) model those of zeros of this family of L-functions.

For example, averaging over fundamental discriminants d ∈ S(X), Katz and Sarnak

predict that

lim
X→∞

1

|S(X)|
∑

d∈S(X)

∞∑
j=

φ

Ñ
γ

(j)
d log |d|

2π

é
=
∫ ∞

0
φ(x)

Ç
1− sin(2πx)

2πx

å
dx. (2.24)

The function
(
1− sin(2πx)

2πx

)
is called the 1-level density of the family {L(s, χd)}. This

coincides with the 1-level density function for eigenangles of USp(2N) = U(2N)∩Sp(2N),

as N →∞; that is

lim
N→∞

1

N

∫
USp(2N)

N∑
j=1

φ(θ̂j) dA =
∫ ∞

0
φ(t)

Ç
1− sin 2πt

2πt

å
dt, (2.25)

where φ is a Schwartz function, and θ̂1, . . . , θ̂2N are the normalized eigenangles of matrices

in USp(2N). The eigenvalues of matrices in USp(2N) occur in conjugate pairs. The

eigenangles of the eigenvalues below the real axis are excluded from the sum in the left

hand side of (2.25). Assuming the GRH for L(1
2
, χd), Özlük and Snyder [OS93] proved

(2.24) for φ with support in (−2, 2).

We show two plots, courtesy of Rubinstein [Rub05], supporting the unitary symplectic

behaviour of L(s, χd). Figure 2.2 is a plot of the zeros up to height 30 for all |d| <

20000. We see the density of zeros fluctuating. One can also see secondary terms in the
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Figure 2.2: Plot of zeros of L(s, χd) vs. d. One sees that the density of zeros fluctuates

as the imaginary part increases. The bands are from the lower order terms. Courtesy of

Michael Rubinstein [Rub05].
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Figure 2.3: 1-level density of zeros of L(s, χd) for 7,000 values of |d| ≈ 1012. Compared

against the random matrix theory prediction, 1 − sin(2πx)/(2πx). Courtesy of Michael

Rubinstein [Rub98].

density appearing, for example, at around height 7. These secondary terms were studied

in the thesis of Duc Khiem Huynh [Huy09] and capture number theoretic information not

captured in the density at the level of the main term. Figure 2.3 depicts the one level

density plotted against the prediction for φ(x) the characteristic function of intervals of

length 1/10.

2.3 From densities to moments

In the previous section we described some of the similarities in the statistics of the eige-

nangles of matrices from the classical compact groups to the zeros of L-functions. These

were amongst the first connections made between random matrix theory and families of L-

functions. Keating and Snaith investigated these connections further, first for the Riemann
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Zeta function [KS00a] and then for other families of L-functions [KS00b]. They looked at

moments in random matrix theory and used their results to provide conjectures for the

moments of L-functions.

2.3.1 Moments of the zeta function

In [KS00b], Keating and Snaith calculate moments of

Z(U, θ) := det(eiθI − U). (2.26)

Let U ∈ U(N) and Z(U, θ), defined in (2.26) be its characteristic polynomial. Define

MU(N)(2k) :=
∫
U(N)
|Z(U, θ)|2k dU. (2.27)

For k > −1
2
, this happens to be independent of θ, but dependent on N . Weyl’s integration

formula for integrating class functions over U(N) [Wey97] gives

MU(N)(2k) =
1

N !(2π)N

∫
[0,2π]N

∏
1≤j<l≤N

|exp(iθl)− exp(iθj)|2

× |Z(U, θ)|2kdθ1 . . . dθN . (2.28)

Keating and Snaith applied Selberg’s integral to show that (2.28) equals

MU(N)(2k) =
N∏
j=1

Γ(j)Γ(2k + j)

Γ(k + j)2
. (2.29)

If 2k is a positive even integer then (2.29) simplifies to

MU(N)(2k) =
k−1∏
j=0

j!

(j + k)!

k−1∏
i=0

(N + i+ j + 1)

∼
k−1∏
j=0

j!

(j + k)!
Nk2 , as N →∞. (2.30)

Conrey and Ghosh [CG98] conjectured the following form for the moments of ζ(1
2

+ it).

We would like to emphasize that ak in this section is not the same as in (1.6).
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Conjecture 2.3.1 (Conrey and Ghosh).

∫ T

0
|ζ(1

2
+ it)|2kdt ∼ T

akgk
k2!

log(T )k
2

(2.31)

where gk ∈ Z and

ak =
∏
p

Ä
1− p−1

äk2 ∞∑
n=0

(
n+ k − 1

n

)2

p−n. (2.32)

The inner sum is 2F1(k, k; 1; 1/p), where 2F1 is the Gauss hypergeometric function [AAR99,

Chapter 2].

Comparing the above conjecture with formula (2.30) for the moments of Z(U, θ), Keat-

ing and Snaith [KS00b] conjectured that

1

T

∫ T

0
|ζ(1

2
+ it)|2kdt ∼ ak

k−1∏
j=0

j!

(j + k)!
log(T )k

2

; (2.33)

i.e.

gk = k2!
k−1∏
j=0

j!

(j + k)!
. (2.34)

This produces g1 = 1, g2 = 2, g3 = 42, and g4 = 24024. The asymptotic equality (2.33)

is a theorem of Hardy for k = 1, and a theorem of Ingham for k = 2 [TH86, chapter 7].

Conrey and Ghosh [CG98] used number theoretic heuristics to conjecture (2.33) for k = 3.

Conrey and Gonek used similar heuristics to conjecture (2.33) for k = 4.

Keating and Snaith’s heuristic justification for replacing N in (2.30) by log T in (2.33)

was based on an ad hoc comparison of the mean density of zeros: log T
2π

for ζ(s) in a unit

interval at height T versus N
2π

for unitary eigenangles in U(N).

After the work of Keating and Snaith, two new approaches to the moment conjecture for

the Riemann zeta function provided the same predictions as (2.33). The work of Conrey,

Farmer, Keating, Rubinstein and Snaith [CFK+05] uses number theoretic heuristics to

predict the full asymptotics for the moments of the zeta function. Their work was guided
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by corresponding results in random matrix theory. The work of Gonek, Hughes, and

Keating [GHK07] employs both number theoretic and random matrix theory statistics to

explain how ak and gk arise.

2.3.2 Moments of L(12 , χd)

Following their success in obtaining a plausible conjecture for the moments of ζ(s), Keating

and Snaith [KS00a] predicted that

1

|S0(X)|
∑

d∈S0(X)

L(1
2
, χd) ∼ gk

ak
Γ(1 + 1

2
k(k + 1))

(logX
1
2 )

1
2
k(k+1), (2.35)

where ak is defined in (1.6), and

gk = Γ

Ç
1 +

1

2
k(k + 1)

åÑ k∏
j=1

(2j − 1)!!

é−1

. (2.36)

Keating and Snaith proved that the kth moment of the characteristic polynomial Z(U, 0),

MUSp(N, k) :=
∫
USp(2N)

|Z(U, 0)|k dU, (2.37)

satisfies

MUSp(N, k) ∼

Ñ
k∏
j=1

(2j − 1)!!

é−1

N
1
2
k(k+1). (2.38)

To conjecture (2.35), they used a heuristic justification similar to the one in Section 2.3.1.

Subsequently Conrey, Farmer, Keating, Rubinstein, and Snaith [CFK+05] gave a more

precise prediction for the moments of L(1
2
, χd). Their prediction and the heuristics that

lead to it are described in Section 2.4.
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2.4 Recipe for conjecturing the full asymptotic of mo-

ments of L(1
2, χd)

This section provides an exposition of the procedure carried out in [CFK+05, section 4] for

conjecturing the full asymptotics for the moments
∑
d∈S(X) L(1

2
, χd)

k, where S(X) is either

S+(X) or S−(X) as defined in (1.1) and (1.2). Here Z(s, χd) is defined in (2.8). We prefer

to work with Z(s, χd), rather than L(s, χd), because its functional equation is symmetric,

namely:

Z(s, χd) = Z(1− s, χd). (2.39)

The following are the heuristic steps in the recipe for obtaining the moment conjecture as

applied to our moment problem.

1. Start with the product of shifted L-functions

∑
d∈S(X)

Z

Ç
1

2
+ α1, χd

å
. . . Z

Ç
1

2
+ αk, χd

å
, (2.40)

where all αj are distinct, and <αj > 0.

2. Then the approximate functional equation for Z(s, χd) takes the form,

Z(s, χd) = Xs(s)
− 1

2

∑
m<
√
d

χd(n)

ms
+Xd(1− s)

1
2

∑
n<
√
d

χd(n)

n1−s + remainder. (2.41)

3. Drop the remainder in (2.41), and substitute this approximation for Z(s, χd) into

(2.40). Multiply this out to obtain 2k products. Each term is of the form

product of Xd(
1
2
± αj)×

∑
n1...nk

summand, (2.42)

where summand is a product of some n
− 1

2
−αi

i and some n
− 1

2
+αj

j .
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4. Replace each summand by its expected value as d ranges over the fundamental dis-

criminants, and complete the sums by extending them to infinity. While most of

these sums diverge, one can use analytic continuation to give meaning to them.

5. Let the resulting sum over all 2k terms be Md(α1, . . . , αk). The conjecture is that

∑
d∈S(X)

(
k∏
i=1

Z(
1

2
+ αi, χd)

)
∼

∑
d∈S(X)

Md(α1, . . . , αk). (2.43)

In the rest of this section, we shall follow the recipe to obtain a formula forMd(α1, . . . , αk).

The third step of the recipe says that we should substitute (2.41) for each factor into

(2.40). This gives, as an approximation to (2.40) of

∑
d∈S(X)

k∏
j=1

Ç
Xd(

1
2

+ αj)
− 1

2

∑ χd(n)

n
1
2

+αj
+Xd(

1
2
− αj)−

1
2

∑ χd(n)

n
1
2
−αj

å
. (2.44)

As we shall see later, the shifted moments allow us to work with what would have been a

divergent sum. Let T = {1,−1}k. Multiplying out the right hand side of (2.44), we obtain

∑
d∈S(X)

∑
ε∈T

k∏
j=1

Ç
X
− 1

2
d (1

2
+ εjαj)

∑ χd(n)

n
1
2

+εjαj

å
. (2.45)

Exchanging the order of the inner most summation with the product in (2.45), we can

write expression (2.45) as

∑
d∈S(X)

∑
ε∈T

Ñ
k∏
j=1

X
−1

2
d (1

2
+ εjαj)

é ∑
n1,...,nk

χd(n1 . . . nk)

n
1
2

+ε1α1

1 . . . n
1
2

+εkαk
k

. (2.46)

In the inner most sum of (2.46), group the terms satisfying n1 . . . nk = m for each m ≥ 1

to get

∑
d∈S(X)

∑
ε∈T

Ñ
k∏
j=1

X
− 1

2
d (1

2
+ εjαj)

éÑ
∞∑
m=1

∑
n1...nk=m

χd(m)

n
1
2

+ε1α1

1 . . . n
1
2

+εkαk
k

é
. (2.47)

The heuristics say that we should replace χd(m) in (2.47) by its average value. This

average value is obtained in Lemma 2.4.1.
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Lemma 2.4.1 ([Jut81]). Let am =
∏
p|m (1 + p−1)

−1
. Then

lim
X→∞

1

|S(X)|
∑
d<X

χd(m) =


am if m is a square,

0 otherwise.

(2.48)

Following the recipe, we replace (2.47) by

∑
d

∑
ε∈T

Ñ
k∏
j=1

X
− 1

2
d (1

2
+ εjαj)

éÑ
∞∑
m=1

∑
n1...nk=m2

am2

n
1
2

+ε1α1

1 . . . n
1
2

+εkαk
k

é
. (2.49)

We wish to give meaning to the sum over m, as this sum actually diverges unless all εi = 1.

Recall that we are assuming <αj > 0.

Let

R(α1, . . . , αk) =
∞∑
m=1

∑
n1...nk=m2

am2

n
1
2

+α1

1 . . . n
1
2

+αk
k

. (2.50)

Then (2.49) can be written as

∑
d

∑
ε∈T

Ñ
k∏
j=1

X
− 1

2
d (1

2
+ εjαj)

é
R(ε1α1, . . . , εkαk). (2.51)

The sum (2.50) defining R(α1, . . . , αk) converges only when each <αi > 0. Therefore

to make sense of (2.51), we analytically extended the function defined by R(α1, . . . , αk)

in (2.50) as follows. For now, we assume all <αj are greater than 0. The function

R(α1, . . . , αk) has an Euler product given by

R(α1, . . . , αk) =
∏
p

Rp(α1, . . . , αk), (2.52)

where

Rp(α1, . . . , αk) = 1 +

Ç
1 +

1

p

å−1 ∞∑
j=1

∑
e1+···+ek=2j

k∏
i=1

1

pei(
1
2

+αi)
. (2.53)

For all <αj > 0, the right hand side of (2.53) is equal to

1 + (1 + p−1)−1

1

2

Ñ
k∏
j=1

(
1 +

1

p
1
2

+αj

)−1

+
k∏
j=1

(
1− 1

p
1
2

+αj

)−1
é
− 1

 . (2.54)

23



If we multiply (2.52) by ∏
p

∏
1≤i≤j≤k

Ç
1− 1

p1+αi+αj

å
, (2.55)

the resulting expression converges in a neighbourhood of (α1, . . . , αk) = (0, . . . , 0). The

product (2.55) is the reciprocal of the Euler product of a product of zeta functions; more

precisely  ∏
1≤i≤j≤k

ζ(1 + αi + αj)

×
∏
p

∏
1≤i≤j≤k

Ç
1− 1

p1+αi+αj

å = 1. (2.56)

Therefore,

R(α1, . . . , αk) =
∏

1≤i≤j≤k
ζ(1 + αi + αj)

∏
p

Ñ
Rp(α1, . . . , αk)

∏
1≤i≤j≤k

Ç
1− 1

p1+αi+αj

åé
.

(2.57)

is a meromorphic function defined in a neighbourhood of (α1, . . . , αk) = (0, . . . , 0).

Let

X(s, a) = πs−
1
2

Γ
Ä

1−s+a
2

ä
Γ(a+s

2
)
. (2.58)

Note that Xd(s) = X(s, a)|d| 12−s, where a = 1 for d < 0 and 0 otherwise. We have thus

arrived at the shifted moment conjecture in [CFK+05], namely,

∑
d∈S(X)

Z(1
2

+ α1, χd) . . . Z(1
2

+ αk, χd)

∼
∑
ε∈T

k∏
j=1

X(1
2

+ εjαj, a)
1
2

∑
d∈S(X)

R(ε1α1, . . . , εkαk)|d|
1
2

∑k
j=1 εαj

=
∑

d∈S(X)

Ñ∑
ε∈T

k∏
j=1

X(1
2

+ εjαj, a)
1
2R(ε1α1, . . . , εkαk)|d|

1
2

∑k
j=1

εαj

é
. (2.59)

Let Md(α1, . . . , αk) be denote the quantity in parenthesis in (2.59). Finally we invoke

Lemma 2.4.2 [CFK+05] to obtain an expression for Md(α1, . . . , αk). Let ∆(z1, . . . , zk) be
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the usual Vandermonde determinant,

∆(z1, . . . , zk) = det



1 z1 z2
1 . . zk−1

1

1 z2 z2
2 . . zk−1

2

...
...

1 zk z2
k . . zk−1

k


=

∏
1≤i<j≤k

(zj − zi). (2.60)

Lemma 2.4.2 ([CFK+05, Lemma 2.5.4]). Suppose F is a symmetric function of k vari-

ables, regular near (0, . . . , 0) and f(s) has a simple pole at 0, and let

K(a1, . . . , ak) = F (a1, . . . , ak)
∏

1≤i≤j≤k
f(ai + aj). (2.61)

Then

∑
εj=±1

K(ε1α1, . . . , εkαk) =

(−1)(
k
2)2k

(2πi)kk!

∮
. . .
∮
K(z1, . . . , zk)

∆(z2
1 , . . . , z

2
k)

2∏k
j=1 zj∏k

j=1

∏k
j=1(zi − αi)(zj − αj)

. (2.62)

Using Lemma 2.4.2 in conjunction with (2.59), gives the second form of the conjecture

of Conrey, Farmer, Keating, Rubinstein, and Snaith.

Conjecture 2.4.3. [CFK+05] The following holds

∑
d∈S(X)

Z(1
2

+ α1, χd) . . . Z(1
2

+ αk, χd)

∼
∑

d∈S(X)

(−1)(
k
2)2k

(2πi)kk!

∮
. . .
∮
K(z1, . . . , zk)

∆(z2
1 , . . . , z

2
k)

2∏k
j=1 zj∏k

j=1

∏k
j=1(zi − αi)(zj − αj)

dz1 . . . dzk, (2.63)

where

K(z1, . . . , zk) =
k∏
j=1

X(1
2

+ zj, a)
∏

1≤i≤j≤k
ζ(1 + zi + zj)

∏
p

Ñ
Rp(z1, . . . , zk)

∏
1≤i≤j≤k

Ç
1− 1

p1+zi+zj

åé
exp

Ñ
1

2
log |d|

k∑
j=1

zj

é
. (2.64)
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Specializing to αj = 0 gives

Conjecture 2.4.4. [CFK+05] Let S(X) be either S+(X) or S−(X), the set all positive or

all negative fundamental discriminants d such that |d| ≤ X, and Xd(s) = |d| 12−sX(s, a),

where X(s, a) is defined in (2.58). That is, Xd(s) is the factor in the functional equation

L(s, χd) = εdXd(s)L(1 − s, χd). Let Ak be the Euler product, absolutely convergent in

{(z1, . . . , zk) : |<zj| < 1
2
}, defined by

Ak(z1, . . . , zk) =
∏
p

∏
1≤i≤j≤k

Ç
1− 1

p1+zi+zj

å
×

Ñ
1

2

Ñ
k∏
j=1

(
1− 1

p
1
2

+zj

)−1

+
k∏
j=1

(
1 +

1

p
1
2

+zj

)−1
é

+
1

p

éÇ
1 +

1

p

å−1

. (2.65)

Let

G(z1, . . . , zk) = Ak(z1, . . . , zk)
k∏
j=1

X(1
2

+ zj, a)
−1
2

∏
1≤i≤j≤k

ζ(1 + zi + zj). (2.66)

Let Qk(x) be the polynomial given by the k-fold residue,

Qk(x) =
(−1)k(k−1)/22k

k!

1

(2πi)k

∮
· · ·

∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2∏k
j=1 z

2k−1
j

e
x
2

∑k
j=1

zj dz1 . . . dzk.

(2.67)

Then summing over fundamental discriminants d we have∑
d∈S(X)

L(1
2
, χd)

k =
∑

d∈S(X)

Qk(log |d|)(1 +O(|d|−ε)). (2.68)

The quantity Qk(x) in (2.67) is a polynomial of degree k(k+1)
2

. To evaluate (2.68), we use

the Taylor series of the exponential function to write e
x
2

∑k
j=1

zj =
∑∞
u=0

Ä
x
2

∑k
j=1 zj

äu
/u!.

We then integrate term by term. Only the first k(k+1)
2

+1 integrals will be non zero, proving

that Qk(x) is of degree k(k+1)
2

.

The residue picks up the coefficient of
∏k
j=1 z

2k−2
j of the numerator, which has degree

k(2k − 2). Now, the Vandermonde squared has degree 2k(k − 1) in z1, . . . , zk because

∆(z2
1 , . . . , z

2
k) =

∏
1≤i<j≤k

(z2
j − z2

i ). (2.69)
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However the product of zetas has poles which cancel k(k+1)
2

of the factors of the Vander-

monde determinants. This is because

ζ(1 + zi + zj) =
1

zi + zj
+ γ + γ1(zi + zj)

2 + . . . (2.70)

where γ, γ1, . . . are the generalized Euler constants. and each 1
zi+zj

cancels a factor of the

Vandermonde squared (see (3.5)).

Therefore, in the multivariate Taylor expansion of exp(x
2

∑k
j=1 zj), we need only take

terms up to degree k(k+1)
2

. Hence the highest power of x appearing is k(k+1)
2

and Qk(x) is

a polynomial of degree k(k+1)
2

in x.

Alderson and Rubinstein [AR] carried out extensive computations and checked how

the numerical values of the moments compare with the values predicted by the above

conjecture. Figure 2.4 shows the ratio of the predicted moments and computed moments

for k = 1, . . . , 4, and Figure 2.5 shows the same for k = 5, . . . , 8.

2.5 Moments from random matrix theory

While the heuristic derivation of the asymptotic formula for the moments of L(1
2
, χd) relies

on number theoretic tools, Conrey et al. [CFK+05] were guided by a similar formula in

random matrix theory.

For A, an N ×N matrix in the unitary group, let A∗ be the conjugate transpose of A.

From the definition of the unitary group we know that this is the inverse of A. We define

ΛA(s) =
N∑
n=0

ans
n := (−1)N detA∗ sN det(I − As−1). (2.71)

The following is true:
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Figure 2.4: Ratio of predicted moment and numerically determined moment
∑

d∈S±(X) L(
1
2 , χd)

k for

k = 5, . . . , 8 where d > 0 in the left column, and d < 0 in the right column. Courtesy: Matt Alderson and

Michael Rubinstein [AR]
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Figure 2.5: Ratio of predicted moment and numerically determined moment
∑

d∈S±(X) L(
1
2 , χd)

k for

k = 5, . . . , 8 where d > 0 in the left column, and d < 0 in the right column. Courtesy: Matt Alderson and

Michael Rubinstein [AR]
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• ΛA(s) satisfies the functional equation,

ΛA(s) = (−1)N detA∗ sNΛA∗(
1

s
). (2.72)

• All the eigenvalues lie on the unit circle |s| = 1. The unit circle is the random matrix

theory analogue of the critical line.

• There is an approximate functional equation for ΛA(s),

ΛA(s) =

N−1
2∑

m=0

ams
m + (−1)N detA∗sN

N−1
2∑

n=0

āns
−n. (2.73)

• The critical value for ΛA(s) is s = 1; it corresponds to s = 1
2

in the case of L-functions.

• Let ZA(s) = ((−1)N/ detA∗)−
1
2 s−

N
2 ΛA(s). Then

ZA(s) = ZA
Ç

1

s

å
. (2.74)

In this thesis we study the symplectic family of L-functions L(s, χd) where d ranges

within positive fundamental discriminants, or within negative fundamental discriminants.

Let G(N) be a closed subgroup of U(N). For α = (α1, . . . , αk), define

Jk(G(N), α) =
∫
G(N)
ZA(e−α1) . . .ZA(e−αk) dA. (2.75)

These are the shifted moment of Z. If we set αi = 0 for all i, then we obtain the usual

moments of ZA(1). Conrey et al. [CFK+05] prove the following formula for the moments

of ZA(1) averaged over USp(2N).

Theorem 2.5.1 ([CFK+05, Theorem 1.5.4]). Let USp(2N) = U(2N) ∩ Sp(2N), and

G(z1, . . . , zk) =
∏

1≤i≤j≤k
(1− e−zi−zj)−1. (2.76)
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Then

Jk(USp(N), α) =
(−1)k(k−1)/22k

k!

1

(2πi)k

×
∮
. . .
∮ G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2∏k
j=1 zj∏k

i=1

∏k
j=1(zi − αi)(zj + αj)

eN
∑k

j=1
zjdz1 . . . dzk. (2.77)

The contours of the above integral are small circles around 0 enclosing (α1, . . . , αk).

Specializing to (α1, . . . , αk) = (0, . . . , 0), the equation (2.77) is expressed in [KS00b]

using the Selberg integral in a closed form as a polynomial in N of degree k(k+1)
2

, namely,

Jk(USp(2N), 0) =

Ñ
2k(k+1)/2

k∏
j=1

Ç
j!

(2j)!

åé ∏
1≤i≤j≤k

Ç
N +

i+ j

2

å
. (2.78)

Note that there are certain similarities between the random matrix moments (2.77) and

the moments
∑
d∈S(X) L(1

2
, χd)

k in (2.67). The function (1 − e−zi−zj)−1 is the analogue of

the Riemann zeta function. Note that the same Vandermonde determinants occur in both

the formulae. However, there is no simple analogue of (2.78) for the polynomial Qk(x)

given implicitly by (2.67).

The arithmetic factor A(z1, . . . , zk) which occurs in (2.67) does not occur in (2.77).

In Chapters 3 and 4, we derive formulae for the coefficients of the moment polynomial

Qk(x) defined in (2.67).
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Chapter 3

Leading Coefficient of the Moment

Polynomial

In Section 3.1 we state the formulae for the first k+1 coefficients of the moment polynomial

Qk(x). In order to compute the coefficients of the moment polynomial, we reformulate the

problem in Section 3.2. In Section 3.3 we calculate the leading coefficient of the moment

polynomial, Qk(x), and show that it agrees with the leading coefficients as conjectured

by an alternate method (via the Selberg integral) by Keating and Snaith [KS00a]. The

reformulation in Section 3.2 will also be used to calculate the lower order terms in Chapter

4.

3.1 The main theorem

The goal of Chapters 3 and 4 is to find the coefficients of the polynomial Qk(x), defined

in (2.67). We would like to investigate the lower order terms which appear in Qk(x).
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Theorem 3.1.1. Let Qk(x) = Q±(x) be as in (2.67). Let

Qk(x) = c0(k)x
k(k+1)

2 + c1(k)x
k(k−1)

2
−1 + · · ·+ c k(k+1)

2

(k). (3.1)

The leading coefficient,

c0(k) =
ak
2k

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
, (3.2)

and for r = 1, . . . , k, we have

cr(k) = c0(k)
∑
|λ|=r

bλ(k)Nλ(k), (3.3)

where Nλ(k) is a polynomial in k of degree at most 2r2, ak = Ak(0, . . . , 0) is defined in

(2.65), and the bλs are the Taylor coefficients of a holomorphic function, defined precisely

in (3.7) and (3.8). The bλs and Nλ(k)’s, and hence cr(k) for r = 1, . . . , k, are different

for the sum over S+(X) and the sum over S−(X), the subsets of positive and negative

fundamental discriminants respectively.

Theorem 3.1.1 will be proved in Chapters 3 and 4. We shall prove the equality (3.2) in

Proposition 3.3.1, and the equality (3.3) in Section 4.2.

3.2 Reformulating the problem

We begin by rewriting the integrand on the right hand side of (2.67) as a ratio of a

holomorphic function and a monomial. The function G(z1, . . . , zk) in (2.66) has a pole

in each zj at (0, . . . , 0) coming from the product of the zeta functions. These poles are

eliminated by a portion of the Vandermonde determinants. Note that

∆(z2
1 , . . . , z

2
k)

2 =

Ñ ∏
1≤i≤j≤k

(zi + zj)

é
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2k
∏k
j=1 zj

. (3.4)
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Specifically each factor (zi+zj) occurring in the Vandermonde determinants cancels a pole

coming from ζ(1 + zi + zj). The equality (3.4) can be seen by the expanding one of the

factors on the left hand side of (3.4),

∆(z2
1 , . . . , z

2
k) =

∏
i>j

(z2
i − z2

j )

= ∆(z1, . . . , zk)
∏
i>j

(zi + zj)

= ∆(z1, . . . , zk)

∏
i≥j(zi + zj)

2k
∏k
j=1 zj

. (3.5)

Substituting (3.4) into (2.67), we obtain that Qk(x) equals

(−1)k(k−1)/22k

k!

1

(2πi)k

∮
· · ·

∮
Ak(z1, . . . , zk)

k∏
j=1

X(1
2

+ zj, a)−
1
2

∏
1≤i≤j≤k

(zi + zj)ζ(1 + zi + zj)

∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2k
∏k
j=1 z

2k−1
j

∏k
j=1 zj

exp

Ñ
x

2

k∑
j=1

zj

é
dz1 . . . dzk. (3.6)

Now the integrand is written as a ratio of a function which is holomorphic in a neighbour-

hood of (0, . . . , 0) and a monomial.

Our next step is to find the Taylor expansion of the arithmetic factors in (3.6). We

exploit the fact that the function is symmetric in its variables, and group together the

terms with the same exponents in the multivariate Taylor series. We explain this more

precisely below.

Let ak = Ak(0, . . . , 0), and τ = (τ1, . . . , τk) ∈ Zk+. Define |τ | =
∑
τi, and zτ =

zτ11 . . . zτkk . Let mλ be the monomial symmetric function [Mac95, chapter 1] corresponding

to a partition λ. A monomial symmetric function of a partition λ = λ1 ≥ λ2 ≥ . . . is a

polynomial in z1, . . . , zk consisting of all monomials of the form zλ1i1 z
λ2
i2 . . . . Let

∞∑
i=0

Ñ∑
|τ |=i

bτz
τ

é
=
∞∑
i=0

∑
|λ|=i

bλmλ(z) (3.7)
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be the power series expansion of

1

ak
Ak(z1, . . . , zk)

k∏
j=1

X(1
2

+ zj, a)−
1
2

∏
1≤i≤j≤k

(zi + zj)ζ(1 + zi + zj). (3.8)

We divide the expression by ak to ensure that the constant term in the power series is 1.

We shall calculate the Taylor series of (3.8) by calculating the Taylor series of its logarithm.

This calculation is simpler if the constant term is 1, i.e. b0 = 1 in (3.7). To calculate (2.67),

we calculate the sum of integrals,

(−1)k(k−1)/22k

k!

ak
(2πi)k

∞∑
i=0

∑
|λ|=i

bλ

∮
· · ·

∮
mλ(z1, . . . , zk)

∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2k
∏k
j=1 z

2k
j

exp

Ñ
x

2

k∑
j=1

zj

é
dz1 . . . dzk. (3.9)

Only finitely many integrals in the sum (3.9) are nonzero. Each of the integrals in (3.9)

pick up the coefficient of z2k−1
1 . . . z2k−1

k in the Taylor expansion of the numerator of the

corresponding integrand. If degmλ(z1, . . . , zk) + deg ∆(z1, . . . , zk) + deg ∆(z2
1 , . . . , z

2
k) >

deg(z2k−1
1 . . . z2k−1

k ), that is |λ| > k(k+1)
2

, then in the Taylor expansion of the numerator of

(3.9) the coefficient of z2k−1
1 . . . z2k−1

k will be 0.

The above discussion can also be used to see that the degree of the polynomial Qk(x)

is k(k+1)
2

. Given a λ in the sum (3.9), the coefficient of the monomial z2k−1
1 . . . z2k−1

k in the

Taylor expansion of the numerator of the integrand is a constant times x
k(k+1)

2
−|λ|.

3.3 The leading term

In this section, we shall calculate the leading coefficient of Qk(x), i.e. the coefficient c0(k)

of x
k(k+1)

2 . The calculation will also provide insight into how to calculate the lower order

terms of Qk(x).
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Proposition 3.3.1. The leading coefficient c0(k) of Qk(x) in (3.1) is

ak
2k

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
. (3.10)

The leading term in (3.1) corresponds to i = 0 in the sum (3.9). In this case there is

only one integral within the inner summation sign,

(−1)
k(k−1)

2 2k

k!(2πi)k
ak

∮
· · ·

∮
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2k
∏k
j=1 z

2k
j

exp(x
2

k∑
j=1

zj)dz1 . . . dzk. (3.11)

To find the above integral, we first use substitution to eliminate x from the integrand.

Then we introduce new variables x1, . . . , xk to calculate a more general integral. Making

the problem more general in fact allows us to simplify the integral.

Substituting 2
x
zj for zj in (3.11) we obtain

(−1)
k(k−1)

2

k!(2πi)k
ak

∮
· · ·

∮ ( 2
x
)
k(k−1)

2 ( 2
x
)k(k−1)∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

( 2
x
)2k2−k∏k

j=1 z
2k
j

exp(
k∑
j=1

zj) dz1 · · · dzk. (3.12)

We pull the x outside the integral, and obtain that the integral (3.11) is

(−1)
k(k−1)

2

k!(2πi)k
ak

Åx
2

ã k(k+1)
2

∮
· · ·

∮
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)∏k

j=1 z
2k
j

exp(
k∑
j=1

zj) dz1 · · · dzk. (3.13)

As mentioned earlier, we introduce new variables x1, . . . , xk and work with a more

general integral. Therefore, consider

(−1)
k(k−1)

2

k!(2πi)k
ak

Åx
2

ã k(k+1)
2

∮
· · ·

∮
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)∏k

j=1 z
2k
j

exp(
k∑
j=1

xjzj) dz1 · · · dzk. (3.14)

The expression (3.13) is equal to expression (3.14) evaluated at (x1, . . . , xk) = (1, . . . , 1).

The integral (3.14) is not easy to evaluate. We can see that if we somehow eliminated

the polynomial coming from the Vandermonde determinants, then we can write the rest
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of the integral as a product of integrals in one variable. We shall introduce a partial

differential operator which will help us move the Vandermonde determinants from inside

the integral to the outside. Note that for a polynomial P (x1, . . . , xk) in k variables,

P

Ç
∂

∂x1

, . . . ,
∂

∂x1

å
exp

Ñ
k∑
j=1

xjzj

é
= P (z1, . . . , zk) exp

Ñ
k∑
j=1

xjzj

é
. (3.15)

Let

q(z1, . . . , zk) = ∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k). (3.16)

Then (3.14) equals

(−1)
k(k−1)

2

k!(2πi)k
ak

Åx
2

ã k(k+1)
2

∮
· · ·

∮
q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å
exp(

∑k
j=1 xjzj)∏k

j=1 z
2k
j

dz1 · · · dzk. (3.17)

Pulling the differential operator outside the integral (Leibniz’s rule) we conclude that (3.17)

equals

(−1)
k(k−1)

2

k!(2πi)k
ak

Åx
2

ã k(k+1)
2

q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å ∮
· · ·

∮ exp(
∑k
j=1 xjzj)∏k

j=1 z
2k
j

dz1 · · · dzk. (3.18)

The integrand in (3.18) can be written as a product of integrals in one variable,

(−1)
k(k−1)

2 ak
k!(2πi)k

Åx
2

ã k(k+1)
2

q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
j=1

∮
exp(xjzj)

z2k
j

dzj. (3.19)

Each integral in the product of integrals appearing in (3.19) is easy to evaluate. By

expanding exp(xjzj) =
∑∞
n=0

(xjzj)
n

n!
; the residue is x2k−1

(2k−1)!
, the coefficient of z2k−1

j . We

obtain that (3.19) equals

(−1)
k(k−1)

2 ak
k!

Åx
2

ã k(k+1)
2

q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
j=1

x2k−1
j

(2k − 1)!
. (3.20)

For the leading term (3.12), an expression equal to (3.11), we have turned our residue

computation into the question of determining the result of applying q( ∂
∂x1
, . . . , ∂

∂xk
) to∏k

j=1
x2k−1

(2k−1)!
, and finding the value of the resulting polynomial at (1, . . . , 1). This calculation

is done in Lemma 3.3.5. The proof of Lemma 3.3.5 uses Lemmas 3.3.2, 3.3.3, and 3.3.4.
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Lemma 3.3.2, a variant of [CFK+08, Lemma 2.1], gives a formula for applying the

differential operator ∆
Å
∂2

∂x21
, . . . , ∂2

∂x2
k

ã
to a product of functions.

Lemma 3.3.2.

∆

Ç
∂2

∂x2
1

, . . . ,
∂2

∂x2
k

å k∏
i=1

fi(xi) =
∣∣∣f (2j−2)
i (xi)

∣∣∣
k×k

. (3.21)

Lemma 3.3.3 gives a formula for applying a product of differentials to a determinant of

functions.

Lemma 3.3.3. Let f1(x), . . . , fk(x) be smooth functions of one variable. Then

∂n1

∂xn1
1

. . .
∂nk

∂xnkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x1) . . . . . . . fk(x1)
...

. . .
...

...
. . .

...

f1(xk) . . . . . . . fk(xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(n1)
1 (x1) . . . . . . . f

(n1)
k (x1)

...
. . .

...
...

. . .
...

f
(nk)
1 (xk) . . . . . . . f

(nk)
k (xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.22)

Proof. It is easy to see if we first look at a simple case, say ∂
∂x1

applied to the determinant

on the left hand side of (3.22).

Lemma 3.3.4. The following equality holds:

det

Ñ(
k

2j − i− 1

)
1≤i,j≤k

é
= 2(k2). (3.23)

Proof. (I. P. Goulden) By reversing the rows and columns, we obtain

det

((
k

2j − i− 1

))
= det

((
k

k − 2j + i

))
(3.24)

which equals

det

((
k

λj − j + i

))
, (3.25)

where λj = k − j.
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Let en(x1, . . . , xk) be the elementary symmetric polynomials. It is the symmetric poly-

nomial consisting of all monomials xi1 · · ·xin with i1, . . . , in distinct. It is clear from the

definition that en(1, . . . , 1) =
Ä
k
n

ä
. Expression (3.25) equals

det
Ä
eλj−j+i(1, . . . , 1)

ä
ij
. (3.26)

The Jacobi-Trudi identity [Mac95, (3.5) p.41] is

det
Ä
eλj−j+i(x1, . . . , xk)

ä
= sλ′(x1, . . . , xk). (3.27)

Here λ is a partition, and λ′ is the conjugate partition [Mac95, p.2]. The polynomial sλ is

the Schur symmetric polynomial [Mac95]. The Schur symmetric polynomial of a partition

λ is defined as

sλ(x1, . . . , xk) =
det

(
x
λj+k−j
i

)
1≤i,j≤k

det
Ä
xk−ji

ä
1≤i,j≤k

. (3.28)

If λ = (k − 1, k − 2, . . . , 1, 0), then λ = λ′. Now we can see that the determinant (3.26) is

s(k−1,k−2,...,0)(1, . . . , 1). This equals 2(k2), since

s(k−1,...,0)(x1, . . . , xk) =
∆(x2

1, . . . , x
2
k)

∆(x1, . . . , xk)
=
∏
i<j

(xi + xj). (3.29)

Lemma 3.3.5. Let q(z1, . . . , zk) = ∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k), then

q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
i=1

x2k−1
j

(2k − 1)!
(3.30)

evaluated at (x1, . . . , xk) = (1, . . . , 1) is

(−1)
k(k−1)

2 × k!

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
2
k(k−1)

2 . (3.31)

Proof. To prove the Lemma, we relate the value of (3.30) evaluated at (x1, . . . , xk) =

(1, . . . , 1) to a determinant of a matrix whose entries are binomial coefficients. We then
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use an identity for binomial coefficients to rewrite the determinant as a product of two

determinants, and evaluate each of them separately.

Let f(x) = x2k−1

(2k−1)!
. Applying Lemma 3.3.2, we can deduce that

∆

Ç
∂

∂x1

, . . . ,
∂

∂xk

å
∆

Ç
∂2

∂2x2
1

, . . . ,
∂2

∂x2
k

å k∏
j=1

f(xj) (3.32)

equals

∆

Ç
∂

∂x1

, . . . ,
∂

∂xk

å ∣∣∣f (2(j−1))(xi)
∣∣∣
k×k

. (3.33)

Expanding the Vandermonde determinant of partial differential operators, we obtain

∑
µ∈Sk

sgn (µ)
∂µ1−1

∂xµ1−1
1

. . .
∂µk−1

∂xµk−1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x1) f (2)(x1) · · · f (2(k−1))(x1)

f(x2) f (2)(x2) · · · f (2(k−1))(x2)
...

...
. . .

...

f(xk) f (2)(xk) · · · f (2(k−1))(xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.34)

where µ1, . . . , µk is the image of the permutation µ of 1, . . . , k. Applying Lemma 3.3.3, we

can see that (3.34) equals

∑
µ∈Sk

sgn (µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (µ1−1)(x1) f (µ1+1)(x1) · · · f (µ1−1+2(k−1))(x1)

f (µ2−1)(x2) f (µ2+1)(x2) · · · f (µ2−1+2(k−1))(x2)
...

...
. . .

...

f (µk−1)(xk) f (µk+1)(xk) · · · f (µk−1+2(k−1))(xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.35)

Let f(x) = x2k−1

(2k−1)!
. Expression (3.35) evaluated at (x1, . . . , xk) = (1, . . . , 1) is

∑
µ∈Sn

sgn (µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2k−µ1)!

1
(2k−µ1−2)!

· · · 1
(−µ1+2)!

1
(2k−µ2)!

1
(2k−µ2−2)!

· · · 1
(−µ2+2)!

...
...

. . .
...

1
(2k−µk)!

1
(2k−µk−2)!

· · · 1
(−µk+2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.36)
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Rearranging the rows to cancel the effect of µ and evaluating at (x1, . . . , xk) = (1, . . . , 1),

we get (3.36) equals

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2k−1)!

1
(2k−3)!

· · · 1
1!

1
(2k−2)!

1
(2k−4)!

· · · 1
0!

...
...

. . .
...

1
k!

1
(k−1)!

· · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.37)

We can convert the determinant (3.37) into a determinant of matrices whose entries are

binomial coefficients. Multiply the jth column by 1
(2(j−1))!

and the ith row by (2k − i)! to

see that (3.37) equals

k!
0!2! · · · (2k − 2)!

(2k − 1)!(2k − 2)! · · · k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ä
2k−1

0

ä Ä
2k−1

2

ä
· · ·

Ä
2k−1
2k−2

äÄ
2k−2

0

ä Ä
2k−2

2

ä
· · ·

Ä
2k−2
2k−2

ä
...

...
. . .

...Ä
k
0

ä Ä
k
2

ä
· · ·

Ä
k

2k−2

ä
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.38)

The matrix in (3.38) is ((
2k − i

2(j − 1)

))
k×k

. (3.39)

We shall factor the matrix (3.39) into a product of two matrices. The determinant of the

first will be a power of −1, and the determinant of the second will be a power of 2. A

version of Chu-Vandermonde identity [Ask75, p. 69] says that for positive integers a and

b such that 0 ≤ b ≤ a− 1, (
a+ b

n

)
=

a∑
l=1

(
b

l − 1

)(
a

n− l + 1

)
. (3.40)

This can be seen by equating the coefficients of (1 + x)a+b and (1 + x)a(1 + x)b. Applying

the identity (3.40) to
Ä

2k−i
2(j−1)

ä
with a = k and b = k − i, we obtain

(
2k − i

2(j − 1)

)
=

k∑
l=1

(
k − i
l − 1

)(
k

2(j − 1)− l + 1

)
. (3.41)
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The identity (3.41) allows us to decompose (3.39) as a product of two matrices,



Ä
k−1

0

ä Ä
k−1

1

ä
. . . . . . . . .

Ä
k−1
k−1

äÄ
k−2

0

ä Ä
k−2

1

ä
. . .

Ä
k−2
k−2

ä
0

. .
.Ä

1
0

ä Ä
1
1

ä ...Ä
0
0

ä
0 . . . 0





Ä
k
0

ä Ä
k
2

ä Ä
k
4

ä
. . .

Ä
k

2k−2

ä
0

Ä
k
1

ä Ä
k
3

ä
. . . . . . . . . . .

0
Ä
k
0

ä
. . . . . . . . . . . . . . .

...
...

...
...

...Ä
k

−k+1

ä Ä
k

−k+3

ä
. . . . . . . .

Ä
k
k−1

ä


=

((
k − i
l − 1

))
(i,l)

((
k

2(j − 1)− l + 1

))
(l,j)

. (3.42)

The first factor of (3.42) is an lower triangular matrix with its rows reversed. Its determi-

nant (−1)k(k−1)/2. By Lemma 3.3.4 the second factor has determinant 2(k2).

Applying Lemma 3.3.5 to (3.20), we find that the leading coefficient is:

ak
k!

Åx
2

ã k(k+1)
2

Ç
k!

0!2! · · · (2k − 2)!

(2k − 1)! · · · k!

å
2
k(k−1)

2

=ak

Åx
2

ã k(k+1)
2

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
2
k(k−1)

2 . (3.43)

Hence the coefficient of the leading term is

ak
2k

Ñ
k−1∏
j=0

(2j)!

(k + j)!

é
. (3.44)

This proves Proposition 3.3.1.

In this chapter, the primary concern was calculating the leading term of Qk(x). In

Chapter 4, we shall investigate the other lower order terms.
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Chapter 4

Lower Order Terms of the Moment

Polynomial

In Chapter 3, we calculated the leading coefficient of Qk(x). We calculate the second

highest order coefficient of the moment polynomial Qk(x) in Section 4.1. In Section 4.2,

we prove (3.3) of Theorem 3.1.1. We initially obtain a formula given in terms of certain

k × k determinants of binomial coefficients. A large part of Section 4.2 is devoted to

showing that each such determinant can be expressed as a power of 2, depending on k,

times a polynomial in k. In Section 4.3, we state a conjecture concerning these polynomials

and present experimental evidence to support it.

4.1 Second term

The calculation of the second highest order term can be reduced to that of the leading

term, and it is therefore worthwhile to treat this case separately.
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The second highest order term in (3.9) has only one integral within the inner sum; there

is only one partition of 1. The corresponding monomial symmetric function is
∑k
i=1 zi. The

integral we will compute is

(−1)
k(k−1)

2 ak2
k

k!(2πi)k

∮
· · ·

∮
b(1)

k∑
i=1

zi
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2k
∏k
j=1 z

2k
j

exp

Ñ
x

2

k∑
j=1

zj

é
dz1 . . . dzk.

(4.1)

We use the subscript (1) on b to emphasize that this is the coefficient of the monomial

symmetric function corresponding to the partition (1) of 1. We can see that 1+ b(1)
∑k
i=1 zi

are the first two terms of the multivariate Taylor series for (3.8) as well as for exp(b(1)
∑
i zi).

The Taylor series of exp(b(1)
∑k
j=1 zj) and (3.8) have identical constant and linear terms,

hence the two leading terms of the polynomial given implicitly by (4.2) are identical to

those of Qk(x). We shall consider the integral

(−1)k(k−1)/2

k!

ak
(2πi)k

∮
· · ·

∮
exp(b(1)

k∑
j=1

zj)

∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)∏k

j=1 z
2k
j

exp(
x

2

k∑
j=1

zj)dz1 . . . dzk. (4.2)

The integral (4.2) is also a polynomial of degree k(k+1)
2

in x. This will be used to reduce

the problem of calculating the second highest order term to a problem similar to the

calculation of the leading order term done in Section 3.3, by absorbing the exp(b(1)
∑k
j=1 zj)

into exp(x
2

∑k
j=1 zj).

In the last paragraph we saw that the two leading terms of

(−1)k(k−1)/2

k!

ak
(2πi)k

∮
· · ·

∮
∆(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)∏k

j=1 z
2k
j

e(x
2

+b1)
∑k

j=1
zjdz1 . . . dzk (4.3)

are the same as the two leading terms of (3.9), hence (3.6) i.e. Qk(x), as a polynomial in

x. Substituting ui = (x/2 + b1)zi, we see that (4.3) is

(−1)k(k−1)/2

k!
ak

Åx
2

+ b(1)

ã k(k+1)
2 1

(2πi)k

∮
· · ·

∮
∆(u1, . . . , uk)∆(u2

1, . . . , u
2
k)∏k

j=1 u
2k
j

du1 . . . duk.

(4.4)
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The integral in (4.4) has already been evaluated since it is identical to the integral in (3.13),

which we calculated in Section 3.3. This is

ak

Åx
2

+ b(1)

ã k(k+1)
2 0!2! · · · (2k − 2)!

(2k − 1)!(2k − 2)! · · · k!
2k(k−1)/2. (4.5)

Here b(1) is the coefficient of the linear monomials in the Taylor expansion of

1

ak
Ak(z1, . . . , zk)

k∏
j=1

X(1
2

+ zj, a)−
1
2

∏
1≤i≤j≤k

((zi + zj)ζ(1 + zi + zj)) . (4.6)

The linear part of the Taylor expansion of (4.6) is also that of

logAk(z1, . . . , zk)− log ak − 1
2

k∑
j=1

logX(1
2

+ zj, a) +
∑

1≤i≤j≤k
log ((zi + zj)ζ(1 + zi + zj)) ,

(4.7)

as we see by comparing the Taylor expansion of (4.6), 1 + b(1)
∑
j zk + . . . , with that of

log(1 +w) = w−w2/2 + . . . . Since (4.6) is symmetric in zj, all the linear monomials have

the same coefficient.

Using maple, it is not hard to verify the following:

• The Taylor expansion of log(sζ(1 + s)) is

γ0s+ higher order terms. (4.8)

Here γ0 is Euler’s constant.

• The linear part in the Taylor expansion of Ak, defined in (2.65), is

∑
p

Ö
(k + 1) log p

p− 1
+

−1
2

(1−1/
√
p)−k√

p−1
+ 1

2

(1+1/
√
p)−k√

p+1

1
2

(1− 1/
√
p)−k + 1

2
(1 + 1/

√
p)−k + 1

p

log p

è
k∑
j=1

zn. (4.9)

• The Taylor expansion of −1
2

log
∏k
j=1X(1

2
+ zj, a) is

− 1

2

Ç
log π − ψ

Ç
1/2 + a

2

åå k∑
j=1

zj + higher order terms. (4.10)

The function ψ(x) is the digamma function; ψ(x) = d
dx

log Γ(x).
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The above list has everything to compute b(1);

b(1) = −1

2

Ç
log π − ψ

Ç
1/2 + a

2

åå
+ (k + 1)γ0

+
∑
p

Ö
(k + 1) log p

p− 1
+

−1
2

(1−1/
√
p)−k√

p−1
+ 1

2

(1+1/
√
p)−k√

p+1

1
2

(1− 1/
√
p)−k + 1

2
(1 + 1/

√
p)−k + 1

p

log p

è
. (4.11)

Therefore the second highest order term is

ak
0!2! · · · (2k − 2)!

(2k − 1)!(2k − 2)! · · · k!
2
k(k−1)

2 b(1)
k(k + 1)

2

Åx
2

ã k(k+1)
2
−1

=
ak
2k

Ñ
k−1∏
j=0

j!

(k + j)!

é
k(k + 1)b(1)x

k(k+1)
2
−1. (4.12)

4.2 Further lower order terms

In this section we calculate a general integral occurring in the sum of integrals (3.9). Let

λ be a partition. We shall calculate

(−1)k(k−1)/22k

k!

ak
(2πi)k

bλ

∮
· · ·

∮
mλ(z1, . . . , zk)

∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2k
∏k
j=1 z

2k
j

exp

Ñ
x

2

k∑
j=1

zj

é
dz1 . . . dzk. (4.13)

We first sketch the steps involved in calculating the leading coefficient of Qk(x). Recall

that when we calculated the leading coefficient in Section 3.3, we had to calculate the

integral ∮
. . .
∮
q0(z1, . . . , zk)∏k

j=1 z
2k
j

exp

Ñ
x

2

k∑
j=1

zj

é
dz1 . . . dzk, (4.14)

where

q0(z1, . . . , zk) = ∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k). (4.15)
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We made a substitution to pull x out of the integral. Then we introduced variables

x1, . . . , xk to calculate the more general integral

∮
. . .
∮
q0(z1, . . . , zk) exp

Ñ
k∑
j=1

xjzj

é
dz1 . . . dzk. (4.16)

The integral (4.16) was then calculated by introducing a differential operator

∮
. . .
∮
q0

Ç
∂

∂x1

, . . . ,
∂

∂xk

å
exp

Ñ
k∑
j=1

xjzj

é
dz1 . . . dzk. (4.17)

The integral (4.17) now becomes a product of integrals

q0

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
j=1

∮
exp (xjzj) dzj. (4.18)

This allowed us to separate integrals, and resulted when x1 = . . . = xk = 1 in Lemma 3.3.5

for the leading coefficient. The steps sketched in this paragraph are explained in more

detail between (3.11) and (3.20).

We now describe how to modify this approach with the addition of the monomial

mλ(z1, . . . , zk). Let

q(z1, . . . , zk) = mλ(z1, . . . , zk)∆(z1, . . . , zk)∆(z2
1 , . . . , z

2
k). (4.19)

Following the same steps as that of evaluation of the leading term, the expression (4.13)

becomes

(−1)
k(k−1)

2 akbλ
k!

Åx
2

ã k(k+1)
2
−|λ|
Ñ
q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
j=1

x2k−1
j

(2k − 1)!

é
evaluated at xj=1

. (4.20)

This section is devoted to calculating (4.20).

Let f(x) = x2k−1/(2k − 1)!. Let |λ| = ∑
i λi = l, and l(λ) = L, that is L is the number

of non zero elements of the partition λ. Let

λ = lml · · · 1m1 . (4.21)
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The integer mj is the number of j’s in the partition. We assume λj = 0 for j > L. There areÄ
k
L

äÄ
L

m1,m2,...

ä
monomials in mλ(x1, . . . , xk) [Sta99, 7.8]. Here

Ä
L

m1,m2,...

ä
is the multinomial

coefficient. Since we are working with symmetric functions, it is enough to compute (4.13),

i.e. (4.20), for one monomial of mλ

(
∂
∂x1
, . . . , ∂

∂xk

)
. Therefore,

q

Ç
∂

∂x1

, . . . ,
∂

∂xk

å k∏
j=1

f(xj)

∣∣∣∣∣∣
evaluated at xj=1

(4.22)

equals(
k

L

)(
L

m1,m2, . . .

)
∂l

∂xλ11 . . . ∂xλLL
∆

Ç
∂

∂x1

. . .
∂

∂xk

å
∆

Ç
∂2

∂x2
1

. . .
∂2

∂x2
k

å k∏
j=1

f(xj) (4.23)

evaluated at (x1, . . . , xk) = (1, . . . , 1). We already have the expression for the effect of

Vandermonde determinant operators in (3.35). Therefore by Lemma 3.3.3, the expression

(4.23) equals(
k

L

)(
L

m1,m2, . . .

)
∂l

∂xλ11 . . . ∂xλLL

∑
µ∈Sk

sgn (µ) det
Ä
f (µi−1)+2(j−1))(xi)

ä
. (4.24)

The expression (4.24) is equal to(
k

L

)(
L

m1,m2, . . .

) ∑
µ∈Sk

sgn (µ) det
Ä
f (µi−1+2(j−1)+λi)(1)

ä
. (4.25)

In each summand of (4.25), rearrange the rows so as to reverse the effect of µ. We get(
k

L

)(
L

m1,m2, . . .

) ∑
ν∈Sk

det
Ä
f (i−1+2(j−1)+λνi )(1)

ä
. (4.26)

Here ν is µ−1. The expression (4.26) is(
k

L

)(
L

m1,m2, . . .

) ∑
ν∈Sk

det

Ç
1

(2k − 1− (i− 1)− 2(j − 1)− λνi)!

å
ij

. (4.27)

In the sum (4.27), each determinant inside the sum is of the form

det

Ç
1

(2k − 1− (i− 1)− 2(j − 1)− di)!

å
ij

, (4.28)
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and
∑
di = l. In Proposition 4.2.1, we determine a necessary condition for the determinant

(4.28) to be non zero. This condition will imply that a large portion of terms in (4.27) are

zero.

Proposition 4.2.1. Consider the determinant

det

Ç
1

(2k − 1− (i− 1)− 2(j − 1)− di)!

å
ij

. (4.29)

Assume that
∑
i di = l, and l < k. The determinant (4.29) is zero if any of d1, . . . , dk−l is

non zero.

Proof. Let u be a number between 1 and k such that du is non zero. The uth row in the

matrix is Ç
1

(2k − 1− (u− 1)− 2(j − 1)− du)!

å
1≤j≤k

. (4.30)

Now look at the row which is du rows below the row u in the matrix (4.29). Let this be

row v where v = u+ du. Row v,Ç
1

(2k − 1− (v − 1)− 2(j − 1)− dv)!

å
1≤j≤k

, (4.31)

is identical to row u if dv is zero. We have a necessary condition for the matrix to have

a non zero determinant; for every u such that du 6= 0, either du+du is also non zero or

u + du > k. We look at this cascading process, and see that if we start at a row above

the row k − l, that is if du 6= 0 for some u ≤ k − l, then we cannot go down beyond row

k since all di add to l. Hence we will have two identical rows. We can then conclude that

we obtain non zero determinants in (4.29) only when du = 0 for 1 ≤ u ≤ k − l.

The number of possible non zero terms in the sum of determinants (4.27) is therefore

l!× (k − l)!. Let (a1, . . . , al) be a permutation (λσ1 , . . . , λσl) of λ1, . . . , λl for σ ∈ Sl. We
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shall assume ai = 0 for i > l. Then the expression (4.27) can be written as

(
k

L

)(
L

m1,m2, . . .

)
(k − l)!

∑
(a1,...,al)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2k−1)!

1
(2k−3)!

. . . . 1
1!

1
(2k−2)!

1
(2k−4)!

. . . . 1
0!

...
...

...

1
(k+l)!

1
(k−l−2)!

...

1
(k+l−1−al)!

1
(k+l−3−al)!

...
...

...
...

1
(k−a1)!

1
(k−a1−2)!

. . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.32)

In the expression (4.32), there are k − l rows above the horizontal dashed line and l rows

below the dotted line. Now consider one specific term in the sum (4.32). As in the

calculation of the leading coefficient, multiply its ith row by (2k − i)! and its jth column

by 1
(2(j−1))!

. This enables us to write the determinant in a term of (4.32) as a product of a

known quantity and a determinant of binomial coefficients,

∏k
j=1(2(j − 1))!∏k
i=1(2k − i)!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ä
2k−1

0

ä Ä
2k−1

2

ä
. . . . . . .

Ä
2k−1
2k−2

äÄ
2k−2

0

ä Ä
2k−2

2

ä
. . . . . . .

Ä
2k−2
2k−2

ä
...

...
. . .

...Ä
k+l

0

ä Ä
k+l

2

ä . . .
Ä
k+l

2k−2

äÄ
k+l−1−al

0

ä Ä
k+l−1−al

2

ä
. . . . . . .

Ä
k+l−1−al

2k−2

ä
...

...
. . .

...Ä
k−a1

0

ä Ä
k−a1

2

ä
. . . . . . .

Ä
k−a1
2k−2

ä

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (k + l − 1)al(k + l − 2)al−1

· · · (k)a1 . (4.33)

Here (x)n is the falling factorial x(x − 1) . . . (x − n + 1). The last factor, the product of

falling factorials, is a polynomial of degree l in k. The expression (4.33) is the analogue
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of (3.38) for the leading coefficient. Here the difference is the presence of the product of

falling factorials and a1, . . . , al in the determinant. These are accounted for by the fact

that the (2k− i)! is not entirely cancelled by the numerator of the binomial coefficients in

the last l rows.

We calculate the determinant occurring as a factor in (4.33) in Proposition 4.2.2. We

show that the determinant is 2(k2) times a polynomial in k of degree at most 2l2− l. Hence

(4.33) equals∏k
j=1(2(j − 1))!∏k
i=1(2k − i)!

× 2(k2) × {polynomial in k of degree at most 2l2}. (4.34)

Recall that (4.34) is the value of a term inside the summation in (4.32), and (4.32) is

the value of the factor involving partial differential operators in (4.20). Thus (4.20) is

(−1)
k(k−1)

2 akbλ
k!

Åx
2

ã k(k+1)
2
−|λ|

(
k

m0, . . . ,ml

)
(k − l)!

(
k−1∏
i=0

(2i)!

(k + i)!

)

× 2(k2) × {polynomial in k of degree at most 2l2}. (4.35)

Recall that c0(k) = ak
2k

(∏k−1
j=0

(2j)!
(k+j)!

)
. Observing that c0(k) occurs as a factor in (4.35), we

see that (4.35) equals

c0(k)
bλ2
|λ|∏l

j=1mj!
× {polynomial in k of degree 2l2}. (4.36)

This proves Theorem 3.1.1 provided we prove Proposition 4.2.2.

Proposition 4.2.2. Let ε = (ε1, . . . , εk) be a partition padded with 0s if needed. Let the

weight of ε be r; that is |ε| = r. We assume that r is less than or equal to k. Let m = r+l(ε)

where l(ε) is the number of non zero εi. Let M be a k × k matrix,

M =



Ä
2k−1−εk

0

ä Ä
2k−1−εk

2

ä
. .

Ä
2k−1−εk

2k−2

äÄ
2k−2−εk−1

0

ä Ä
2k−2−εk−1

2

ä
. .
Ä

2k−2−εk−1

2k−2

ä
...

...
...Ä

2k−k−ε1
0

ä Ä
2k−k−ε1

2

ä
. .

Ä
2k−k−ε1

2k−2

ä

. (4.37)
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Then

detM = 2(k2) × { polynomial in k of degree at most r(m− 1)}. (4.38)

Remark. At the end of the chapter, we conjecture that the degree is in fact at most 2r.

Proof of Proposition 4.2.2. To calculate the determinant of (4.37), we use the same under-

lying idea as in the calculation of the determinant of the matrix (3.39), which arose when

we computed the leading coefficient. In this case, recall we used the Chu-Vandermonde

identity (3.40) to split the matrix (3.39) as a product of two matrices: the determinant

of the first being a power of −1, and the second being a power of 2. The identity (3.40)

cannot be applied to M as we did when computing the leading coefficient. If we try to do

the same with M , b will go out of the range in which the identity is valid. To circumvent

this, we extend the k × k matrix M to a (k + r)× (k + r) matrix of the following type:

›M =



(
2k − 1− εk

0

) (
2k − 1− εk

2

) (
2k − 1− εk

2k − 2

)
(

2k − 2− εk−1

0

) (
2k − 2− εk−1

2

) (
2k − 2− εk−1

2k − 2

)
...

...(
2k − k − ε1

0

) (
2k − k − ε1

2

) (
2k − k − ε1

2k − 2

)
∗

0

1 ∗
. . .

0 1



.

(4.39)

There are k rows above the dashed horizontal line, and k columns before the dashed vertical

line. Notice that the top left corner of ›M is M , and we can put any quantity in the positions

represented by ∗ in ›M . In particular,

detM = det›M. (4.40)
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With a = k + r − i− εk−i+1 and b = k − r in (3.40),we obtain(
2k − i− εk−i+1

2j − 2

)
=

k+r∑
l=1

(
k + r − i− εk−i+1

l − 1

)(
k − r

2j − 2− (l − 1)

)
, (4.41)

We had to extend the matrix to ensure that a = k+ r− i− εk−i+1 and b = k− r are always

positive. We shall use (4.41) to write ›M as a product of matrices A and B, which are shown

in (4.42) and (4.44). The first k rows of A and the first k columns of B are determined

by the identity (4.41). The first factor on the right hand side of (4.41) for 1 ≤ l ≤ k + r

are the elements of the ith row of A. The second factor of (4.41) for 1 ≤ l ≤ k + r are the

elements of jth column of B. The rest of the entries of A and B will be chosen to ensure

that the product AB is of the form as given in (4.39). There is no unique choice to achieve

this. Our choice for A and B is given in (4.42) and (4.44).

Let

A =



Ä
k+r−1−εk

0

ä Ä
k+r−1−εk

1

ä
. . . . . . . . . . . . . . . . . . . . . . . .

Ä
k+r−1−εk
k+r−1

äÄ
k+r−2−εk−1

0

ä Ä
k+r−2−εk−1

1

ä
. . . . . . . . . . . . . . . . . . . . . . . .

Ä
k+r−2−εk−1

k+r−1

ä
...

...Ä
k+r−k−ε1

0

ä Ä
k+r−k−ε1

1

ä
. . . . . . . . . . . . . . . . . . . . . . . .

Ä
k+r−k−ε1
k+r−1

ä
0

Ä
k−r

0

ä
−
Ä
k−r

1

ä
. . . . . . . . . . . . . . . 0

0 0 0
Ä
k−r

0

ä
−
Ä
k−r

1

ä
0

...
...

0 0 . . . . . . . . . . . . . . . . . . . . . . (−1)k−r
Ä
k−r
k−r

ä



. (4.42)

There are k rows above the dashed line and r rows below the dashed line. We can write

the above matrix concisely as

A =



(
k − i− εk−i+1

j − 1

)
1≤i≤k

1≤j≤k+r

(−1)j
(

k − r
j − 2(i− k)

)
k+1≤i≤k+r

1≤j≤k+r

 . (4.43)
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Let B be a (k + r)× (k + r) matrix,

B =



Ä
k−r

0

ä Ä
k−r

2

ä
. . . . . . .

Ä
k−r
2k−2

äÄ
k−r
−1

ä Ä
k−r

1

ä Ä
k−r

3

ä Ä
k−r
2k−3

ä
...

...
...

...

0 0 . . . . . . .
Ä
k−r
k−r−1

ä
0 0 0

1 0 0

0 0 0

0 1 0
...

...

0 0 0


. (4.44)

Let C be the submatrix consisting of the r right most columns of B. In each of the columns

of C, there is exactly one 1 and the rest are 0. The 1s are in the first r even rows, that is

in the (2i, i) position of C for 1 ≤ i ≤ r. We can summarize the matrix as

B =

Ñ (
k − r

2j − 2− (i− 1)

)
1≤i≤k+r

1≤j≤k

C

é
. (4.45)

By (4.41), we have ›M = AB. (4.46)

To calculate the determinant of A we shall perform a series of row operations on A,

which do not change the determinant. After this we shall multiply the resulting matrix on

the right by another matrix of determinant 1 to obtain a matrix of the form:

0

0 1

. ..

1 0

U V


. (4.47)

The upper right submatrix of (4.47) has 1s on its back-diagonal, and 0s elsewhere. The

matrix (4.47) has the same determinant as A. We will then show that the determinant of

U is a power of 2 times a polynomial in k.
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Notice that most of the rows in (4.42) are of the form
(Ä

k+r−i
j−1

ä)
1≤j≤k+r

, since all but

l(ε) rows in the top portion of (4.42) have εk−i+1 = 0. These rows are consecutive rows of

Pascal’s triangle, and we can simplify them without changing the determinant by subtract-

ing rowi+1 from rowi in the first k − l(ε) − 1 rows, and repeating it. On each repetition

we use one fewer row.

More precisely, we express the sequence of row operations mentioned above as a product

of matrices applied to A. In the next paragraph, Da,b is introduced as a shorthand for this

sequence of row operations.

For a ≥ 2 and b ≤ a − 1, let Da,b be the a × a matrix with diagonal entries 1 and the

first b entries above the diagonal entries −1.

Da,b =



1 −1

1 −1

. . .

1 −1

1 0

. . . 0

1



. (4.48)

If S is another a × a matrix, then Da,bS is an operation on S in which rowi becomes

rowi− rowi+1 for 1 ≤ i ≤ b. This operation leaves any row beyond the bth row unchanged.

Recall m = r + l(ε) and let K = k + r, then multiplying A on the left by

K−m∏
i=1

DK,i, (4.49)

that is performing a sequence of row operations on A as explained in the last paragraph,
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we see that
Ä∏K−m

i=1 DK,i

ä
A equals
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ä
. . . . . . . . . . . . . . . . . . .

Ä
m
m

ä
Ä
r+l(ε)−εl(ε)

0

ä
. . .

Ä
r+l(ε)−εl(ε)

2j−2

ä
. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ä
r−ε1

0

ä
. . .

Ä
r−ε1
2j−2

ä
. . . . . . . . . . . .

0
Ä
k−r

0

ä
−
Ä
k−r

1

ä
. . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 0
Ä
k−r

0

ä
−
Ä
k−r

1

ä
. . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



. (4.50)

There are k− l(ε) rows in the top segment. There are l(ε) rows in the middle segment.

There are r rows in the bottom segment.

The top k − l(ε) rows of (4.50) are identical, though each is shifted by one column.

They contain the coefficients of (1+x)m. We shall use the fact the (1+x)m×(1+x)−m = 1.

We shall multiply (4.50) on the right by a lower triangular matrix with entries which are

coefficients of (1+x)−m. This operation will not change the determinant but result in only
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one non zero entry in the top k − l(ε) rows. Let

Hm =



1

1

1Ä−m
i−j

ä . . .

1


. (4.51)

Note that Hm is the mth power of H = H1. If we multiply the matrix (4.50) by Hm on

the right, we obtain the matrix

(
K−m∏
i=1

DK,i

)
AHm =



0

0 1

. ..

1 0

U V


, (4.52)

where U is a m ×m matrix whose top l(ε) rows are independent of k and each entry in

the bottom k rows, as we shall see shortly, is a product of 2k−r and a polynomial in k of

degree m− 1.

The last r rows of A, defined in (4.42), have entries which are binomial coefficients in

the expansion of (x − 1)k−r. Up to sign, the entries of the bottom r rows of A are the

coefficients of decreasing powers of x in (x−1)k−r. Note that all coefficients of the binomial

expansion occur in all of the bottom r rows of A, hence of (4.50). Because the Dk,i’s in

(4.52) leave the bottom r rows untouched, only the entries of Hm affect the bottom r rows

of A.

The ij entry in the bottom r rows of (4.52), i.e. with k+ 1 ≤ i ≤ k+ r, and 1 ≤ j ≤ r,

is equal to

k+r∑
l=j

(−1)l
(

k − r
l − 2(i− k)

)(
−m
l − j

)
= (−1)l+j

k+r−j∑
l=0

(
k − r

l + j − 2(i− k)

)(
−m
l

)
. (4.53)
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Now (
−m
l

)
= (−1)l

(
m− 1 + l

l

)
. (4.54)

Let a = j − 2(i− k). Therefore −2r + 1 ≤ a ≤ r − 2, and (4.53) equals

(−1)j
∞∑
l=0

(
k − r
a+ l

)(
m− 1 + l

l

)
. (4.55)

Notice that both sums in (4.53) and (4.55) terminate when l = k − r − a (and that

k − r − a < k + r − j since j ≤ r < 2r), since
Ä
k−r
a+l

ä
is 0 when l > k − r − a′.

Also notice that, when a ≤ 0, the sum in (4.55) can be written as

(−1)j
∞∑
l=0

(
k − r
l

)(
m− 1 + l − a

l − a

)
. (4.56)

We therefore distinguish the two cases a ≥ 0 and a ≤ 0.

Assume a ≥ 0. Let T = k−r, (x)n = x(x−1) . . . (x−n+1) and [x]n = x(x+1) . . . (x+

n− 1), then (4.55) is

∞∑
l=0

(T )a+l

(a+ l)!

(m+ l − 1) + l

l!
=

(T )a
a!

∞∑
l=0

(T − a)l
(a+ l)l

× (m+ l − 1)l
l!

=

(
T

a

) ∞∑
l=0

[a− T ]l
[a+ 1]l

× [m]l
l!

(−1)l, (4.57)

which is equal to (
T

a

)
2F1(m, a− T ; a+ 1;−1). (4.58)

For a ≤ 0, we get that (4.56) equals(
m+ |a| − 1

|a|

)
2F1(m+ |a|,−T ; |a|+ 1;−1). (4.59)

We know that 2F1(α, β;α; z) = 1
(1−z)β . We use the identity [AS64, 15.2.26],

γ(z−1) 2F1(α, β+1; γ; z) = ((γ−α)z−β) 2F1(α, β+1; γ+1; z)+(β−α) 2F1(α, β; γ+1; z).

(4.60)
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By repeated application of (4.60) to (4.58) to increment a+ 1 until it equals m (note that

a ≤ r− 1, and m = r+ l(ε), hence a+ 1 < m), and of (4.60) to (4.59) to increment |a|+ 1

until it equals |a| + m, we see that (4.58) is 2T times a polynomial of degree m − 1 and

(4.59) is 2T times a polynomial of degree m− 1.

In the submatrix U of (4.52) there are r rows with these entries. These are the entries

ij with k + 1 ≤ i ≤ k + r, 1 ≤ j ≤ r. Now recall that T = k − r, −2r + 1 ≤ a =

j − 2(i − k) ≤ r − 2. So we can conclude that the determinant of A is a polynomial in k

of degree r(m− 1) times 2rT = 2r(k−r);

detA = {Polynomial in k of degree r(m− 1)} × 2r(k−r). (4.61)

The determinant of B (4.44) can be simplified by expanding along the sparse sub matrix

in the right r columns. This gives the determinant of the k × k matrix,



1 ∗
. . .

1

∗

0

Ä
k−r

0

ä Ä
k−r

2

ä
. . . .

Ä
k−r

2k−2r−2

äÄ
k−r
−1

ä Ä
k−r

1

ä Ä
k−r

2k−2r−3

ä
...

. . .
...Ä

k−r
−k+r+1

ä Ä
k−r

−k+r+2

ä
. . . .

Ä
k−r
k−r−1

ä



. (4.62)

We have already computed this determinant in Lemma 3.3.4; the determinant is 2(k−r2 ).

Combining the information in the last two paragraphs, we conclude that (4.37) is

{Polynomial in k of degree r(m− 1)} × 2(k2), (4.63)
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where m is always less than or equal to 2r since it is less than or equal to r plus the length

of a partition of r, m = r + l(ε).

4.3 A conjecture

We conclude this chapter with a conjecture we mentioned in a remark following Proposition

4.2.2.

Conjecture 4.3.1. Given a partition λ of weight w, then for k ≥ w the determinant of

the matrix 

Ä
k−λ1

0

ä Ä
k−λ1

2

ä
. .

Ä
k−λ1
2k−2

äÄ
k+1−λ2

0

ä Ä
k+1−λ2

2

ä
. .

Ä
k+1−λ2

2k−2

ä
...

...Ä
2k−1−λk

0

ä Ä
2k−1−λk
k+1

ä
. .
Ä

2k−1−λk
2k−2

ä


(4.64)

is

2(k2)−w × p(k). (4.65)

Here p(k) is an integer valued polynomial of degree w; that is, it is integer linear combi-

nation of binomial coefficients,
∑
i αi
Ä
k
ri

ä
, for some integers αi and non negative integers

ri.

Table 4.1 gives a list of polynomial p(k) for some partitions. It is known that any

integer valued polynomial can be written as an integer linear combinations of the set of

binomial coefficients, {(
k

n

)
| 0 ≤ n <∞

}
. (4.66)
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Partition Polynomial Coefficients

(1) k + 1 [1, 1]

(2) 1
2
k2 + 3

2
k + 1 [1, 2, 1]

(1, 1) 1
2
k2 + 1

2
k − 1 [−1, 1, 1]

(3) k3 + k2 + 11
6
k + 1 [1, 3, 3, 1]

(2, 1) 1
3
k3 + k2 − 1

3
k − 2 [−2, 1, 4, 2]

(1, 1, 1) 1
6
k3 − 7

6
k + 1 [−1, 1, 1, 1]

(4) 1
24
k4 + 5

12
k3 + 35

24
k2 + 25

12
k + 1 [1, 4, 6, 4, 1]

(3, 1) 1
8
k4 + 3

4
k3 + 7

8
k2 − 7

4
k − 3 [−3, 0, 8, 9, 1]

(2, 2) 1
12
k4 + 1

3
k3 − 1

12
k2 − 4

3
k − 1 [−1,−1, 3, 5, 2]

(2, 1, 1) 1
8
k4 + 1

4
k3 − 9

8
k2 − 5

4
k + 3 [3,−2, 1, 6, 3]

(1, 1, 1, 1) 1
24
k4 − 1

12
k3 − 13

24
k2 + 19

12
k − 1 [−1, 1,−1, 1, 1]

Table 4.1: Polynomials p(k) for partitions up to partition of 4.

The polynomials in the middle column of of Table 4.1 can be written as integer linear

combinations of (4.66). The third column gives this representation. For example, the

polynomial corresponding to the partition (2, 1) is 1
3
k3 + k2− 1

3
k− 2. The third column of

Table 4.1 says that

1

3
k3 + k2 − 1

3
k − 2 = −2

(
k

0

)
+

(
k

1

)
+ 4

(
k

2

)
+ 2

(
k

3

)
. (4.67)

We have numerically verified the conjecture for all 271 partitions of weight up to 12.

We present more evidence in the Appendix for weights up to 8.
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Part II

Upper and Lower bounds for
∫ t2
t1 S(t) dt
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Chapter 5

Introduction to Turing’s method

Numerically finding zeros of an L-function in an interval on the critical line involves two

steps. The first step is to search for a list of zeros of the L-function in the critical strip.

This is done by looking for changes in sign of the Hardy Z-function on the critical line.

Once we have a list of zeros, the second step is to verify that we have found all of them. In

this thesis we are concerned with this second step for modular form L-functions. All of the

current methods for verification are generalizations of Turing’s method for the Riemann

zeta function [Tur53]. In Section 5.1, we discuss the history of Turing’s method. In

Section 5.2, we introduce newforms and their L-functions; and in Chapters 6 and 7, we

extend Turing’s method to these L-functions.

5.1 History of Turing’s method

In his work on computing the zeros of the Riemann Zeta function in an interval on the

critical line, Turing devised a way to prove, given a set of zeros in an interval, that all
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the zeros of the Riemann zeta function in this interval have been found. We need some

background information to describe this method. Let N(T ) be the number of zeros of

ζ(σ + it) for 0 < σ < 1, 0 < t < T . For any t which is not an ordinate of a zero of ζ(s),

define

S(t) =
1

π
arg ζ(1

2
+ it). (5.1)

The arg in (5.1) is measured by continuous variation along the line from ∞ + it to 1
2

+ it

starting with the value 0. Define

ϑ(t) = arg Γ(1
2

+ it)− t

2
log π + 1. (5.2)

Then the argument principle combined with the functional equation gives (see [Dav00,

p.98])

N(T ) =
1

π
ϑ(t) + S(t). (5.3)

Using Stirling’s approximation of log Γ(z) we can deduce that

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) +O(T−1). (5.4)

Turing used a result of Littlewood [Lit24, Theorem7] in order to verify that all the zeros

have been found. Littlewood showed that
∫ T

0 S(t) dt = O(log T ). Turing proved an explicit

version of Littlewood’s result. Lehman [Leh70] later corrected a few mistakes in Turing’s

work. It is his version which we have reproduced here.

Theorem 5.1.1 ( [Leh70]). If t2 > t1 > 168π, then∣∣∣∣∣
∫ t2

t1
S(t) dt

∣∣∣∣∣ ≤ 1.91 + 0.114 log
t2
2π

(5.5)

When we are computing zeros of ζ(s), we can easily obtain N(T ) by counting the

number of zeros we have found up to a height T . This gives a way of computing S(T ),

S(T ) = N(T )− 1

π
ϑ(t).
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If we miss a zero say at 1
2

+ it0 while computing zeros between t1 and t2, i.e. N(t) is wrong

after t0, then, for t > t0, the computed value of S(t) will be off the actual value by at least

a non zero integer. If we use this erroneous S(t) to numerically compute
∫ x
t1
S(t) dt, it will

deviate from the real integral by a non zero integer multiple of x−t0 for x > t0. The bound

for
∫ x
t1
S(t) dt given by (5.5) is a linear function of log x. The error grows exponentially

faster as a function of x than the bound (5.5) on
∫ x
t1
S(t) dt. We can show that we have

found all the zeros in the interval (t1, t2), if we verify that the inequality on
∫ x
t1
S(t) dt given

by (5.5) up to x = t2 + 1.91 + 0.114 log t2
2π

. Note that to verify that we have found all the

zeros up to t2, we have to compute S(t) up to x = t2 + 1.91 + 0.114 log t2
2π

. To compute

S(t), we have to find zeros up to t2 + 1.91 + 0.114 log t2
2π

.

When computing zeros of the Hardy Z-function, one looks for sign changes in the Z-

function by advancing along the critical line in small increments. Skipping over a sign

change misses two zeros. Hence an even number of consecutive zeros are missed. That

makes it twice as easy to detect violations of (5.5).

The proof of Theorem 5.1.1 uses the following lemma by Titchmarsh. In fact, the proof

of Turing’s method for every L-function uses this lemma.

Lemma 5.1.2 ([TH86, Theorem 9.9]). Let S(t) = 1
π

argL(1
2

+ it). Then∫ t2

t1
S(t) dt =

∫ ∞
1
2

log|L(σ + it1)|dσ −
∫ ∞

1
2

log|L(σ + it2)|dσ

If we can find upper and lower bounds for
∫∞
1
2

log |L(σ+it)| dσ, this lemma immediately

gives us an upper and lower bound for
∫ t2
t1
S(t) dt. Theorem 5.1.1 is proved by finding these

bounds.

The zeros of the Riemann zeta function have been numerically studied for over 100 years.

For Dirichlet L-functions, Rumely [Rum93] verified the generalized Riemann hypothesis

numerically up to a certain height on the critical line. He verified the Riemann hypothesis
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up to t = 10000 for Dirichlet characters with conductors up to 13. He also verified the

generalized Riemann hypothesis for a few other Dirichlet L-functions up to lower heights.

Tollis [Tol97] verified the generalized Riemann hypothesis for Dedekind zeta functions ζK

of number fields K. Their Turing type results are stated below.

Theorem 5.1.3 ([Rum93, Theorem 3]). Let L(s, χ) be a Dirichlet L-function, and χ be a

primitive Dirichlet character modulo Q. Then for t > 50,

−3.4507− 0.24 log

Ç
Qt

2π

å
≤
∫ ∞

1
2

log |L(σ + it, χ)| dσ ≤ 2.3288 + 0.15 log

Ç
Qt

2π

å
.

Theorem 5.1.4 ([Tol97]). Let K be a number field of degree N and discriminant DK. If

t > 40, then

− 3.4489N − 0.24 log

ñ
|DK |

Å t

2π

ãNô
≤
∫ ∞

1
2

log |ζK(s)| ds

≤ 0.8252 + 2.329N + 0.1407 log

ñ
|DK |

Å t

2π

ãNô
.

Trudgian [Tru09] improved the bounds for the Riemann zeta function, Dirichlet L-

function, and Dedekind zeta function.

Theorem 5.1.5 ([Tru09]).

• Let S(t) = 1
π

arg ζ(1/2 + it) then for t2 > t1 > t0 > 168π∣∣∣∣∣
∫ t2

t1
S(t) dt

∣∣∣∣∣ ≤ 2.066 + 0.0585 log t2

• Let Sχ(t) = 1
π

argLχ(1
2

+ it), where χ is a Dirichlet character modulo Q, and Lχ is

the Dirichlet L-function then∣∣∣∣∣
∫ t2

t1
Sχ(t) dt

∣∣∣∣∣ ≤ 1.9744 + 0.0833 log
Qt2
2π
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• Let SK(t) = 1
π

arg ζK(1
2

+ it), where K is a number field of degree N , then∣∣∣∣∣
∫ t2

t1
SK(t) dt

∣∣∣∣∣ ≤ a+ bN + g log

Ç
|DK |

Å t2
2π

ãNå
DK is the discriminant. Here a, b, g are to be found by optimization. The optimized

a, b, and g depend on the number field and the region on the critical line where the

computations are being carried out.

5.2 Definitions and notations

Define

Γ0(N) =


Ö
a b

c d

è
∈ SL(2,Z) : c ≡ 0 mod N

 . (5.6)

Let f be a newform [AL70, p.145] (see also [DS05, p.187]) of weight k and level N ; that

is, f ∈ Sk(Γ0(N)) [DS05], then f can be written as

f(z) =
∑
n≥1

ane
2πinz. (5.7)

Recall that f is also an eigenfunction of the Atkin-Lehner involution ωN , where

ωN =

Ö
−1

N

è
. (5.8)

We further assume that a1 = 1. Define an L-function associated to the modular form,

L̃(s, f) =
∑
n≥1

an
ns
. (5.9)

This Dirichlet series converges absolutely in the half plane <s > k+1
2

. Deligne [Del80]

showed that the coefficients above satisfy ap ≤ 2p
k−1
2 . It is known [Li75, Theorem 3] that

this L-function has analytic continuation to C. It has an Euler product representation,

L̃(s, f) =
∏
p|N

(1− app−s)−1
∏
p-N

Ä
1− app−s + pk−1p−2s

ä−1
. (5.10)
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Let F (s, f) = N s/2(2π)−sΓ(s)L̃(s, f). Then F (s, f) satisfies the functional equation

F (s, f) = εF (k − s, f), (5.11)

where ε is a root of unity. More precisely ε is (−1)
k
2 times the eigenvalue of the Atkin-

Lehner involution. In this thesis, we will only use the fact that it is a root of unity. More

generally if given a character ψ modulo N and f a newform in Sk(Γ0(N), ψ) [Li75], then

F (s, f) = εF̄ (k − s, f) (5.12)

where Ḡ(s) = G(s̄). Let Λ(s, f) = F (s+ k−1
2
, f). Then Λ satisfies

Λ(s, f) = εΛ̄(1− s, f) (5.13)

Define L(s, f) = L̃(s + k−1
2
, f). This L-function has <s = 1/2 as its critical line, and

the Dirichlet series converges absolutely for <s > 1. This L-function satisfies the product

formula

L(s, f) =
∏
p|N

(1− App−s)−1
∏
p-N

(1− App−s + p−2s), where Ap =
ap

p
k−1
2

. (5.14)

Let S(t, f) be as defined in page 3. We can write S(t, f) as

S(t, f) = − 1

π
=
Ç∫ ∞

1
2

L′(σ + it, f)

L(σ + it, f)
dσ

å
for s = σ + it. (5.15)

For t2 > t1 > 0 we shall find the upper and lower bounds for∫ t2

t1
S(t, f) dt. (5.16)

Recall that the verification of Riemann hypothesis for an L-function requires a rela-

tionship between N(T, f), the number of zeros up to height T , ϑ(T, f) = arg Γ(1
2

+ it +

k−1
2

) − t log
√
N

2π
and S(T, f) = 1

π
argL(1

2
+ iT, f). The following lemma gives the needed

modular form analogue of (5.4).
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Lemma 5.2.1. Let f be a newform of weight k and level N . Let L(s, f) be the L-function

associated to this newform. Then

N(T, f) =
1

π
ϑ(T, f) + S(T, f)

=
k − 1

4
+
T

π
log

(
T
√
N

2π

)
− T

π
+ S(T, f) +O(

1

T
).

Reference for proof. The proof of this statement is exactly the same as that of (5.4), which

can be found in [Dav00, Chapter 15].

By Lemma 5.1.2, to find an upper and lower bound for
∫ t2
t1
S(t, f)dt, it is enough to

find the upper and lower bounds for
∫∞
1
2

log |L(σ + it, f)| dσ. In the next two chapters we

shall find an upper bound and a lower bound for this integral.

5.3 Results

Let s = σ + it. Proposition 5.3.1 gives an upper bound for
∫∞
1
2

log |L(s, f)| dσ. Proposi-

tion 5.3.2 gives a lower bound for
∫∞
1
2

log |L(s, f)| dσ.

Proposition 5.3.1. Let η be a real number between 0 and 0.5. Then

∫ 1+η

1/2
log|L(s, f)|dσ ≤ (η + 1/2)

[
log

(√
N

2π

)
+ 2 log(ζ(1 + η))

]

+
1

t

[
(1 + k)

2
(1 + η)(η +

1

2
) + (1 + η − k + 1

2
)(

(1 + η)2 − 1
4

2
) +

(
(η + 1)3 − 1

8

3

)]

+
(η + 1

2
)2

2
log t+ 2I(1 + η). (5.17)

Proposition 5.3.2. Let 0 < d < 0.5. Let J(d) be as in (7.10), and εt,k be as in (7.23).

Then for t > k
2

+ 2,

−
∫ ∞

1
2

log |L(s, f)| ds ≤ a+ b log t, (5.18)
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where

a = −J(d) + d2 log 4

log

√
N

2π
− 2

ζ ′(d+ 1
2
)

ζ(d+ 1
2
)
−
∑
q|N

log q

qd+ 1
2 − 1

− d2 log

√
N

2π
+ 3εt,k, (5.19)

and

b = d2(log 4− 1). (5.20)

Proposition 5.3.1 is proved in Chapter 6, and Proposition 5.3.2 is proved in Chapter 7.

5.4 Discrete version of Turing’s inequality

In this section, we explain the application of Turing’s inequality to verify that all zeros up

to a given height of an L-function have been found, and in which only computations on the

critical line are needed. In order to make the exposition easy we assume that L(1
2
, f) 6= 0.

We shall use the inequality developed in earlier chapters and Turing’s method as explained

in Edward’s book [Edw01, p.173]. We assume that we have a sequence of numbers hm

satisfying certain conditions which will be clarified below.

Let gm be the Gram points of L(s, f), i.e values of t such that ϑ(t, f) = mπ. At these

points S(t, f) has integral values. Let hm be real numbers such that (−1)mZ(gm+hm) ≥ 0)

and gm + hm is an increasing sequence. One should think of this as small adjustments to

the Gram points needed to identify sign changes in Z(t, f). When we have a Gram point

gm such that N(gm, f) = m (i.e. S(gm, f) = 0), we always choose hm to be 0.

Fix an m such that hm is 0. Recall that N(T, f) = 1
π
ϑ(T, f) + S(T, f). Let C(t) be

an increasing step function which is 0 at gm + hm and i at gm+i + hm+i for i > 0; i.e.

C(t) = i for gm+i + hm+i ≤ t < gm+i+1 + hm+i+1. The Hardy Z-function Z(t, f) changes
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sign between these points. In other words, Z(t, f) has a zero between these points. N(t, f)

must increase by one between these points, hence

N(t, f) ≥ N(gm, f) + C(t). (5.21)

Let

C1(t) =

ú
1

π
ϑ(t, f)

ü
. (5.22)

Clearly C1(t)+1 > 1
π
ϑ(t, f) ≥ C1(t). Note that 1

π
ϑ(gm, f) = m. Substituting S(gm, f)+m

for N(gm, f), and S(t, f) + 1
π
ϑ(t, f) for N(t, f) in (5.21), we obtain

S(gm, f) ≤ S(t, f) +
1

π
ϑ(t, f)−m− C(t) (5.23)

≤ S(t, f) + C1(t) + 1−m− C(t). (5.24)

Integrating this from gm to gm+k we obtain

S(gm, f)(gm+k − gm) ≤
∫ gm+k

gm
S(t, f) + 1 dt+

k−1∑
i=1

hm+i, (5.25)

giving the upper bound

S(gm, f) ≤ 1 +

∫ gm+k
gm

S(t, f) dt+
∑k−1
i=1 hm+i

gm+k − gm
. (5.26)

If the last sum does not increase very fast, we get an upper bound on S(gm, f) which will

be violated if any zero is missed.

Similarly we can find a lower bound for S(gm, f). Recall that we have fixed gm such that

S(gm, f) = 0. Analogous to C(t), define R(t) for gm−k + hm−k ≤ t ≤ gm as a decreasing

step function which is 0 at gm:

R(t) = s, for gm−s−1 + hm−s−1 < t ≤ gm−s + hm−s, (5.27)

where s is an integer greater than or equal to 0. It is easy to see that

N(t, f) ≤ N(gm, f)−R(t), (5.28)
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for t between gm−k and gm. Similar to C1(t), we define R1(t) between gm−k and gm. It is

a decreasing step function which takes the value 0 at gm; more precisely

R1(t) = u, for gm−u−1 < t ≤ gm−u, (5.29)

where u is an integer greater than or equal to 0. From the definition of R(t), it is easy to

verify that ú
1

π
ϑ(t, f)

ü
= m−R1(t)− 1. (5.30)

Using the fact that N(t, f) = 1
π
ϑ(t, f) + S(t, f), and substituting (5.30) in (5.28), we

see

S(t, f) +m−R1(t)− 1 ≤ S(gm, f) +m−R(t). (5.31)

Hence

S(t, f) +R(t)−R1(t)− 1 ≤ S(gm, f). (5.32)

Integrating (5.32) between gm−k and gm, we obtain

∫ gm

gm−k
S(t, f)− 1 dt−

k−1∑
j=1

hm−j ≤ (gm − gm−k)S(gm). (5.33)

Hence

S(gm) ≥ −1 +

∫ gm
gm−k

S(t, f)−∑k−1
j=1 hm−j

gm − gm−k
. (5.34)

Proposition 5.4.1. Equations (5.26) and (5.34) give the upper and lower bounds for

S(t) at the Gram points gm. The bounds for the integral in the numerator are given by

Proposition 5.3.1 and Proposition 5.3.2.

The discrete version of Turing’s inequality can be used to find Gram points gm such

that S(gm, f) = 0. We choose a Gram point such that S(gm, f) is an even integer, i.e.

(−1)mZ(gm, f) ≥ 0. We find a few zeros on either side of this Gram point, which is then

used to find the hjs. If we can show, using (5.26) and (5.34), that −2 < S(gm, f) < 2,
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then we immediately obtain the required Gram point. Otherwise start with another Gram

point where S(t, f) is an even integer.

The ability to find Gram points such that S(gm, f) = 0 can be used to find N(T, f) for

any T . We know that N(gm, f) = m when gm is a Gram point such that S(gm, f) = 0. To

find N(T, f), we find two Gram points gm and gn such that gm ≤ T ≤ gn, and S(gm, f) =

S(gn, f) = 0. We just have to find all n−m zeros between gm and gn to determine N(T, f).
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Chapter 6

Upper Bound for
∫∞
1
2

log |L(σ + it, f )| dσ

The upper bound for the integral
∫∞
1
2

log |L(σ + it, f)| dσ is found by dividing the integral

into two parts, an integral from 1
2

+ it to 1+c+ it, and an integral from 1+c+ it to∞+ it,

for some positive real c,∫ ∞
1
2

log |L(σ + it, f)| dσ =
∫ 1+c

1
2

log |L(σ + it, f)| dσ +
∫ ∞

1+c
log |L(σ + it, f)| dσ. (6.1)

The number c is left as an unknown which is to be calculated during computation. It will

be determined by where on the critical line one is performing the computation, so that we

have a tight bound.

We find an upper bound for each of the integrals on the right hand side of (6.1). For

the first integral, we will find an upper bound for |L(s, f)| in a vertical strip containing

1
2
≤ <s ≤ 1 + c. For the second integral, we find an upper bound in terms of a similar

integral for the Riemann zeta function.

In Section 6.1, we find an upper bound for |L(s, f)| in a vertical strip containing the

strip 1
2
≤ <s ≤ 1 + c. In Section 6.2, we use the bound found in Section 6.1 to find an

upper bound for
∫∞
1
2

log |L(σ + it, f)| dσ.
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6.1 Bound for L(s, f ) in critical strip

To find an upper bound for |L(s, f)| in a vertical strip containing the critical strip, we will

use a theorem of Rademacher, a variant of the Phrägmen-Lindelöf theorem. Theorem 6.1.1

states that for analytic functions satisfying certain growth conditions, we can find an upper

bound for its absolute value inside a vertical strip if we know its behaviour on the left and

right edges of the vertical strip.

Theorem 6.1.1 ([Rad59, Theorem 1]). Let f(s) be a regular analytic function in the strip

S(a, b) = {s| a ≤ <s ≤ b} and satisfy for certain positive constants e and C

|f(s)| < Ce|t|
e

. (6.2)

Suppose moreover that 
|f(a+ it)| ≤ A|Q+ a+ it|α

|f(b+ it)| ≤ B|Q+ b+ it|β
(6.3)

with

Q+ a > 0, (6.4)

α ≥ β. (6.5)

Then inside the strip S(a, b)

|f(s)| ≤ (A|Q+ s|α)
b−σ
b−a
Ä
B|Q+ s|β

äσ−a
b−a . (6.6)

Lemma 6.1.2 is an analogue of Lemma 1 of [Rad59], which gives an upper bound for∣∣∣∣Γ( 1−s
2

)

Γ( s
2

)

∣∣∣∣ in the strip |<s| ≤ 1
2
. In Lemma 6.1.2, we find a similar bound for the function

Γ(1− s+ k−1
2

)/Γ(s+ k−1
2

).

Lemma 6.1.2. For k > 1, −1
2
≤ σ ≤ 1

2
we have∣∣∣∣∣∣Γ

Ä
1− s+ k−1

2

ä
Γ
Ä
s+ k−1

2

ä ∣∣∣∣∣∣ ≤
∣∣∣∣∣k + 1

2
+ s

∣∣∣∣∣
1−2σ

. (6.7)
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Proof. We use Theorem 6.1.1 with a = −1
2
, b = 3

2
, and

f(s) =
Γ
Ä
1− s+ k−1

2

ä
Γ
Ä
s+ k−1

2

ä . (6.8)

On the line s = −1
2

+ it,

∣∣∣∣∣Γ(1− s+ k−1
2

)

Γ(s+ k−1
2

)

∣∣∣∣∣ =

∣∣∣∣∣∣ Γ
Ä

3
2
− it+ k−1

2

ä
Γ
Ä
−1

2
+ it+ k−1

2

ä ∣∣∣∣∣∣
=

∣∣∣∣∣(
k
2
− it)(k

2
− 1− it)Γ(k

2
− 1− it)

Γ(k
2
− 1 + it)

∣∣∣∣∣
=

∣∣∣∣∣
Ç
k

2
− it

åÇ
k

2
− 1− it

å∣∣∣∣∣
≤
∣∣∣∣∣k2 + it

∣∣∣∣∣
2

.

(6.9)

The second equality in (6.9) uses the identity, sΓ(s) = Γ(s+ 1). On the line s = 1/2 + it,

we can check that ∣∣∣∣∣Γ(1− s+ k−1
2

)

Γ(s+ k−1
2

)

∣∣∣∣∣ =

∣∣∣∣∣∣Γ
Ä

1
2
− it+ k−1

2

ä
Γ
Ä

1
2

+ it+ k−1
2

ä ∣∣∣∣∣∣ = 1. (6.10)

Applying Theorem 6.1.1, with A = B = 1, Q = k
2

+ 1
2
, α = 2, and β = 0, we get the

result.

In Lemma 6.1.3 we shall find a bound for L(s, f) in the critical strip by finding a bound

for the left and right edges of a slightly wider strip, and use the log convexity bound of

Theorem 6.1.1.

Lemma 6.1.3. If 0 < η < 1
2
, s = σ + it and −η < σ < 1 + η, then we have

|L(s, f)| ≤
(√

N

2π

∣∣∣∣∣k + 1

2
+ s

∣∣∣∣∣
)1+η−σ

ζ(1 + η)2. (6.11)

Proof. To find an upper bound for |L(s, f)| in the vertical strip −η ≤ <s ≤ 1 + η, we shall

find an upper bound for the left and right edges of the vertical strip, and use Theorem 6.1.1.
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For 0 < η, let s = 1 + η + it be a point the right edge of the vertical strip, then we have

|L(1 + η + it, f)| =
∣∣∣∣∣∣∏p-N
Ä
1− App−s + p−2s

ä−1 ∏
q|N

Ä
1− Aqq−s

ä−1

∣∣∣∣∣∣
≤
∏
p-N

Ä
1− p−1−ηä−2 ∏

q|N

Ä
1− q−1−ηä−1

= ζ(1 + η)2
∏
q|N

Ä
1− q−1−ηä < ζ(1 + η)2.

(6.12)

The first inequality in (6.12) makes use of Deligne’s bound |Ap| < 2 for p - N and |Aq| ≤ 1

if q | N . We have found an upper bound for L(s, f) on the right edge of the vertical strip

−η < σ < 1 + η.

For the left edge, we use the functional equation satisfied by L(s, f),

N
s+ k−1

2
2 (2π)−(s+ k−1

2
)Γ

Ç
s+

k − 1

2

å
L(s, f)

= εN
(1−s)+ k−1

2
2 (2π)−(1−s+ k−1

2
)Γ

Ç
1− s+

k − 1

2

å
L(1− s, f). (6.13)

Using (6.13), we get

|L(s, f)| =
∣∣∣∣∣N 1

2
−s(2π)2s−1 Γ(1− s+ k−1

2
)

Γ(s+ k−1
2

)
L(1− s, f)

∣∣∣∣∣ . (6.14)

For s = −η + it, using (6.12) and Lemma 6.1.2, we get

|L(−η + it, f)| ≤ N
1
2

+η(2π)−2η−1

∣∣∣∣∣k + 1

2
+ (−η + it)

∣∣∣∣∣
1+2η

ζ(1 + η)2. (6.15)

An application of Theorem 6.1.1 gives us: for −η < σ < 1 + η,

|L(s, f)| ≤
(√

N

2π

∣∣∣∣∣k + 1

2
+ s

∣∣∣∣∣
)1+η−σ

ζ(1 + η)2. (6.16)
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6.2 Upper bound for
∫∞
1
2
log |L(σ + it)|dσ

In this section we use the bound for |L(s, f)| found in the Section 6.1 to obtain a bound

for
∫∞
1
2

log |L(σ + it, f)|dσ.

In the following theorem, we state the bound in terms of several parameters. Introduc-

tion of these parameters gives us a more complicated looking expression, but the advantage

is that we can optimize the bound depending upon the region in which we are computing.

The bound has the form a+b log t. Ideally we would like both a and b to be small, but there

is always a trade off. If we try to decrease one, the other increases. When t is large, we

would like b to be small, and when t is small we would like a to be small. Trudgian [Tru09]

introduced similar parameters to improve on earlier results for ζ(s), Dirichlet L-functions

and Dedekind zeta functions

Theorem 6.2.1. Let k be an even integer greater than 1. Let c and η be real numbers

satisfying 0 < c ≤ η ≤ 1
2
. Then for t > k

2
+ 2 (See Figure 6.1) the following inequality

holds

∫ ∞
1
2

log |L(σ + it, f)|dσ ≤ (c+
1

2
)

[
log

(√
N

2π

)
+ 2 log(ζ(1 + η))

]

+
1

t

[
k + 1

2
(1 + η)(c+

1

2
) + (1 + η − k + 1

2
)

(
(1 + c)2 − 1

4

2

)]

+ log t

[
(η + 1

2
)2 − (η − c)2

2

]
+ 2I(1 + c), (6.17)

where

I(α) =
∫ ∞
α

log ζ(σ)dσ. (6.18)

Proof. Outside the critical strip, L(s, f) tends quickly to 1 as <s increases. We therefore

split the integral on the left hand side of (6.17). We separate the part inside the critical
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1
+
c

+
it

1
+
η

+
it

it

1
2 1

Figure 6.1: Path of integration

strip from the part outside the critical strip,

∫ ∞
1
2

log |L(σ + it, f)|dσ =
∫ 1+c

1
2

log |L(σ + it, f)|dσ +
∫ ∞

1+c
log |L(σ + it, f)|dσ. (6.19)

In the second integral on the right hand side of (6.19), we are integrating in the region

outside the critical strip. This is the simpler part. By (6.12), the second integral is bounded

above by 2I(1 + c). The first integral will be bounded above using the bound for L(s, f)

given by (6.11). In the interval 1
2
< σ < 1 + c

log |L(s, f)| ≤ log

(√
N

2π

)
+ (1 + η − σ) log

∣∣∣∣∣k + 1

2
+ σ + it

∣∣∣∣∣+ 2 log ζ(1 + η). (6.20)

The first and last terms do not depend on σ. We can simplify the expression slightly by

using the inequality log(1 + x) ≤ x for x ≥ 0. The logarithm in the middle term of the

right hand side of (6.20) can be simplified a little more;

(1 + η − σ) log

∣∣∣∣∣k + 1

2
+ σ + it

∣∣∣∣∣ ≤ (1 + η − σ)

[
log t+ log

(
1 +

k+1
2

+ σ

t

)]
. (6.21)

In the inequality (6.21), log
Å

1 +
k+1
2

+σ

t

ã
≤

k+1
2

+σ

t
. Integrating (6.20) and using the in-
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equality (6.21), we obtain

∫ 1+c

1/2
log|L(σ + it, f)|dσ ≤ (c+ 1/2)

[
log

(√
N

2π

)
+ 2 log(ζ(1 + η))

]

+ log t

[
(η + 1

2
)2

2
− (η − c)2

2

]

+
1

t

[
(1 + k)

2
(1 + η)(c+

1

2
) + (1 + η − k + 1

2
)(

(1 + c)2 − 1
4

2
) +

(
(c+ 1)3 − 1

8

3

)]
. (6.22)

Hence the upper bound of
∫∞
1
2

log |L(σ+it, f)| dσ is the sum of the right hand side of (6.22)

and 2I(1 + c),

(c+ 1/2)

[
log

(√
N

2π

)
+ 2 log(ζ(1 + η))

]
+ log t

[
(η + 1

2
)2

2
− (η − c)2

2

]

+
1

t

[
(1 + k)

2
(1 + η)(c+

1

2
) + (1 + η − k + 1

2
)(

(1 + c)2 − 1
4

2
) +

(
(c+ 1)3 − 1

8

3

)]

+ 2I(1 + c). (6.23)

In the following corollary, we let η = c and obtain a slightly simpler expression.

Corollary 6.2.2. If we take c = η in the above then we have the following inequality

∫ 1+η

1/2
log|L(σ + it, f)|dσ ≤ (η + 1/2)

[
log

(√
N

2π

)
+ 2 log(ζ(1 + η))

]

+
1

t

[
(1 + k)

2
(1 + η)(η +

1

2
) + (1 + η − k + 1

2
)(

(1 + η)2 − 1
4

2
) +

(
(η + 1)3 − 1

8

3

)]

+
(η + 1

2
)2

2
log t+ 2I(1 + η). (6.24)
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Chapter 7

Lower Bound for
∫∞
1
2

log |L(σ + it, f )| dσ

In this chapter we derive a lower bound for
∫∞
1
2

log |L(σ+it, f)| ds of the form a+b log t, and

give formulae for a and b in terms of a parameter d that we will introduce. In Chapter 8,

we make a specific choice for d. The purpose of this chapter is to find a and b. To calculate

the lower bound for ∫ ∞
1
2

log |L(σ + it, f)|dσ, (7.1)

we rewrite the integral as

∫ ∞
1
2

log|L(σ + it, f)| dσ =
∫ 1

2
+d

1
2

log

∣∣∣∣∣ L(σ + it, f)

L(σ + d+ it, f)

∣∣∣∣∣ dσ
+
∫ ∞

1
2

+d
log|L(σ + it, f)| dσ +

∫ 1
2

+2d

1
2

+d
log|L(σ + it, f)| dσ. (7.2)

We shall assume that d > 1
2
. As in [Tru09], d will be determined later. A lower bound for

the second and the third integral on the right hand side can be found using Lemma 7.1.2.

A lower bound for the sum of the second and the third integrals is given by J(d) defined

in (7.10). The lower bound for the first integral on the right hand side of (7.2), the only

integral whose path crosses the critical strip, is found in Section 7.2.
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7.1 Bound for the integral over a path lying outside

the critical strip

Let f be a newform of weight k and level N . We know that L(s, f) has an Euler product

valid for <s > 1, namely,

L(s, f) =
∏
q|N

Ç
1− αq

qs

å−1 ∏
p-N

Ç
1− αp,1

ps

å−1 Ç
1− αp,2

ps

å−1

. (7.3)

Here αq and αp,i have absolute value less than or equal to 1. From this we can easily

conclude:

Lemma 7.1.1. For σ > 1,

|L(σ + it, f)| ≥ ζ(2σ)2

ζ(σ)2

∏
q|N

Ç
1 +

1

qσ

å
(7.4)

Proof. Starting with (7.3), we have

|L(σ + it, f)| ≥
∏
q|N

Ç
1 +

1

qσ

å−1 ∏
p-N

Ç
1 +

1

qσ

å−2

=
ζ(2σ)2

ζ(σ)2

∏
q|N

Ç
1 +

1

qσ

å
.

In Lemma 7.1.2, for a < b, we find a lower bound for
∫ b
a log |L(σ + it, f)| dσ. Note that

the path of integration is completely outside the critical strip. For |z| < 1, the function

Lim(z) is defined to be

Lim(z) =
∑
n=1

zn

nm
. (7.5)

Lemma 7.1.2. For 1 < σ1 < σ2,∫ σ2

σ1
log|L(σ + it, f)| dσ ≥ 2

∫ σ2

σ1
log ζ(2σ)− log ζ(σ) dσ

+
∑
q|N

1

log q

ñ
Li2

Ç
− 1

qσ2

å
− Li2

Ç
− 1

qσ1

åô
. (7.6)
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Proof. The inequality (7.4) gives us

log|L(σ + it, f)| ≥ 2 log ζ(2σ)− 2 log ζ(σ) +
∑
q|N

log

Ç
1 +

1

qσ

å
. (7.7)

Recall that when |z| ≤ 1, log(1 + z) =
∑
n≥1

(−1)n−1zn

n
. For σ > 0 and q > 1,

log

Ç
1 +

1

qσ

å
=
∑
n≥1

(−1)n−1

qnσ
. (7.8)

Using equation (7.8), and integrating term by term we obtain

∫ σ2

σ1
log

Ç
1 +

1

qσ

å
dσ =

 1

log q

∑
n≥1

(−1)n

n2qnd

σ2
σ1

=

ñ
1

log q
Li2

Ç−1

qσ

åôσ2
σ1

. (7.9)

This proves the lemma.

A straight forward application of Lemma 7.1.2 to each of the second and third integrals

of (7.2) tells us that their sum is greater than or equal to J(d), where

J(d) =
∫ ∞

2d+1
log ζ(σ)dσ − 2

∫ ∞
d+ 1

2

log ζ(σ)dσ −
∑
q|N

1

log q
Li2

(
−1

qd+ 1
2

)

+
∫ 4d+1

2d+1
log ζ(σ)dσ − 2

∫ 2d+ 1
2

d+ 1
2

2 log ζ(σ)dσ +
∑
q|N

1

log q
Li2

(
−1

q2d+ 1
2

)

−
∑
q|N

1

log q
Li2

(
−1

qd+ 1
2

)
. (7.10)

In the I(α) notation of (6.18), the right hand side of (7.10) can be written as

I(2d+ 1)− 4I(d+
1

2
) + I(2d+ 1)− I(4d+ 1) + I(2d+

1

2
)

−
∑
q|N

1

log q
Li2

(
−1

qd+ 1
2

)
+
∑
q|N

1

log q
Li2

(
−1

q2d+ 1
2

)
−
∑
q|N

1

log q
Li2

(
−1

qd+ 1
2

)
. (7.11)
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7.2 Bound for the integral over a path crossing the

critical strip

We now come to the problem of finding a lower bound for the integral whose path crosses

into the critical strip, i.e the first integral in (7.2). For the first integral in (7.2), we use

the Weierstrass product formula for Λ(s, f),

Λ(s, f) = eAs+B
∏
ρ

Ç
1− s

ρ

å
e
s
ρ . (7.12)

Equation (7.12) and the definition of Λ(s, f) in Section 5.2 gives

L(s, f) =

Ç
2π√
N

ås+ k−1
2 1

Γ
Ä
s+ k−1

2

ä eAs+B∏
ρ

Ç
1− s

ρ

å
e
s
ρ . (7.13)

Let s = σ + it, then

∫ 1
2

+d

1
2

log

∣∣∣∣∣ L(s, f)

L(s+ d, f)

∣∣∣∣∣ dσ =−
∫ 1

2
+d

1
2

log

∣∣∣∣∣ Γ(s+ k−1
2

)

Γ(s+ d+ k−1
2

)

∣∣∣∣∣ dσ
+
∫ 1

2
+d

1
2

∑
ρ

log

∣∣∣∣∣ s− ρ
s+ d− ρ

∣∣∣∣∣ dσ
+
∫ 1

2
+d

1
2

d log

√
N

2π
dσ

=I1 + I2 + d2 log

√
N

2π
. (7.14)

We will find lower bounds for I1 and I2. To obtain a lower bound for I1 of (7.14), we will

use Lemma 7.2.1. To obtain a lower bound for I2, we will use Lemma 7.2.2.

Lemma 7.2.1 ( [Leh70, Lemma 8, p.308] ). If <z > 0, then

Γ′(z)

Γ(z)
= log z − 1

2z
+ Θ

Ç
2

π2|(=z)2 − (<z)2|

å
(7.15)

where f(x) = Θ(g(x)) means that |f(x)| ≤ g(x).
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For s = σ + it, the fundamental theorem of calculus gives

−
∫ 1

2
+d

1
2

log

∣∣∣∣∣ Γ(s+ k−1
2

)

Γ(s+ d+ k−1
2

)

∣∣∣∣∣ dσ = −
∫ 1

2
+d

1
2

∫ d

o
<

Γ′(s+ k−1
2

+ ξ)

Γ(s+ k−1
2

+ ξ)
dξdσ. (7.16)

Similar to the integrals involved in the upper bound, we limit d to be in (1
2
, 1]. The mean

value theorem of differential calculus tells us that the integral on the right hand side of

(7.16) is

− d2 Γ′(σ + it)

Γ(σ + it)
, (7.17)

for some σ such that k
2
< σ < k

2
+ 2d. Since we are assuming that 1

2
< d ≤ 1, σ satisfies

k
2
< σ < k

2
+ 2. We shall estimate the value of (7.17) for t > k

2
+ 2. This is one of the

reasons we introduced this condition in the statements of Theorems 1.2.3 and 1.2.4. Using

Lemma 7.2.1, we see that

<Γ′(σ + it)

Γ(σ + it)
= < log(σ + it)−< 1

2(σ + it)
+ Θ

Ç
2

π2|t2 − σ2|

å
. (7.18)

For t > σ, the right hand side of (7.18) is

log t+ Θ

Ç
σ2

2t2

å
− σ

2(σ2 + t2)
+ Θ

Ç
2

π2|t2 − σ2|

å
. (7.19)

Let C = t
k
2

+2
, then (7.19) equals

log t+ Θ

Ç
1

2C2
+

1

k(C2 + 1)
+

8

π2k2(C2 − 1)

å
, (7.20)

which simplifies to

log t+ Θ

Ç
1

2C2
+

1

k(C2 + 1)
+

8

π2k2(C2 − 1)

å
. (7.21)

We know that the weight of the newform, k, is at least 2, and 1
C2+1

< 1
C2 <

1
C2−1

. We can

simplify (7.21) further and obtain

<Γ′(σ + it)

Γ(σ + it)
= log t+ Θ

Ç
2

C2 − 1

å
. (7.22)
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Using (7.22) in (7.16), we see that (7.16) is greater than

− d2 log t− d2εt,k, where εt,k =
2Å

t
k
2

+2

ã2

− 1
, (7.23)

giving a lower bound for I1 defined in (7.14).

To obtain a lower bound for I2 we use a lemma by Booker [Boo06, Lemma 4.4]. The

following form is from [Tru09, Lemma 2.10].

Lemma 7.2.2 ([Tru09, Lemma 2.10]). Let w be a complex number such that <w ≤ 1
2
.

Then for 1
2
< d ≤ 1 ,

∫ d

0
log

∣∣∣∣∣(x+ d+ w)(x+ d− w̄)

(x+ w)(x− w̄)

∣∣∣∣∣ dx ≤ d2(log 4)<
Ç

1

d+ w
+

1

d− w̄

å
. (7.24)

Recall I2 defined in (7.14):

I2 =
∫ 1

2
+d

1
2

∑
ρ

log

∣∣∣∣∣ s− ρ
s+ d− ρ

∣∣∣∣∣ dσ =
∫ d

0

∑
ρ

log

∣∣∣∣∣ σ + 1
2

+ it− ρ
σ + d+ 1

2
+ it− ρ

∣∣∣∣∣ dσ. (7.25)

Using Lemma 7.2.2, we can find a lower bound for
∫ d

0 log
∣∣∣∣ σ+ 1

2
+it−ρ

σ+d+ 1
2

+it−ρ

∣∣∣∣ dσ if the root is on

the critical line, and the sum of integrals corresponding to ρ and 1− ρ̄ if ρ is off the critical

line. If ρ = 1
2

+ ir is on the critical line,

∫ d

0
log

∣∣∣∣∣ σ + 1
2

+ it− ρ
σ + d+ 1

2
+ it− ρ

∣∣∣∣∣ dσ =
∫ d

0
log

∣∣∣∣∣ σ + i(t− r)
σ + d+ i(t− r)

∣∣∣∣∣ dσ. (7.26)

Using w = i(t− r) in (7.24), we obtain a lower bound for the left hand side of (7.26),

∫ d

0
log

∣∣∣∣∣ σ + 1
2

+ it− ρ
σ + d+ 1

2
+ it− ρ

∣∣∣∣∣ dσ =
∫ d

0
log

∣∣∣∣∣ σ + i(t− r)
σ + d+ i(t− r)

∣∣∣∣∣ dσ
≥ −d2 log 4 < 1

d+ i(t− r)
= −d2 log 4 < 1

d+ 1
2

+ it− ρ
. (7.27)
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If ρ = u+ iv is off the critical line, then 1− ρ̄ is also a zero. Using w = u− 1
2

+ i(t− v) in

(7.24), we get

∫ d

0
log

∣∣∣∣∣ σ + 1
2

+ it− ρ
σ + d+ 1

2
+ it− ρ

∣∣∣∣∣ dσ +
∫ d

0
log

∣∣∣∣∣ σ + 1
2

+ it− (1− ρ̄)

σ + d+ 1
2

+ it− (1− ρ̄)

∣∣∣∣∣ dσ
≥ −d2 log 4 <

(
1

d+ 1
2

+ it− ρ
+

1

d+ 1
2

+ it− (1− ρ̄)

)
. (7.28)

From inequalities (7.27) and (7.28), we conclude

∑
ρ

∫ d

0
log

∣∣∣∣∣ σ + 1
2
− ρ

σ + 1
2

+ d− ρ

∣∣∣∣∣ dσ ≥ −d2 log 4
∑
ρ

< 1

d+ 1
2

+ it− ρ
. (7.29)

Hence

− I2 ≤ d2 log 4
∑
ρ

< 1

d+ 1
2

+ it− ρ
. (7.30)

To obtain a lower bound for I2, it is enough to find and upper bound for the right hand

side of (7.30). We calculate an upper bound of (7.30) in the rest of this section.

Taking the real part of the logarithmic derivative of the equation

Λ(s, f) =

(√
N

2π

)s+ k−1
2

Γ

Ç
s+

k − 1

2

å
L(s, f) = eA+Bs

∏
ρ

Ç
1− s

ρ

å
e
s
ρ , (7.31)

we obtain

<
∑
ρ

1

s− ρ
= log

√
N

2π
+ <

Γ′(s+ k−1
2

)

Γ(s+ k−1
2

)
+ <L

′(s, f)

L(s, f)
. (7.32)

Note that the left hand side of (7.32) evaluated at d + 1
2

+ it is present in the right hand

side of (7.30). We can find an upper bound for −I2 if we find an upper bound for each

of the terms in the right hand side of (7.32). The first term is just a constant. An upper

bound for the second term is found using Lemma 7.2.1. For the last term, we use the Euler

product (7.3) for L(s, f). If we take the real part of the logarithmic derivative of the Euler

product, we obtain

<L
′(s, f)

L(s, f)
≤ −2

ζ ′(σ)

ζ(σ)
−
∑
q|N

log q

qσ − 1
. (7.33)
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Equation (7.23) provides an upper bound on Γ′(σ+it)
Γ(σ+it)

appearing in the right hand side of

(7.32), and (7.33) provides an upper bound on L′(σ+it,f)
L(σ+it,f)

. Using these upper bounds in

(7.30), we obtain

− I2 ≤ d2 log 4

log

√
N

2π
+ log t+ εt,k − 2

ζ ′(d+ 1
2
)

ζ(d+ 1
2
)
−
∑
q|N

log q

qd+ 1
2 − 1

 . (7.34)

7.3 The lower bound

Lemma 7.3.1. Let J(d) be as in (7.10), and εt,k be as in (7.23). Then for t > k
2

+ 2,

−
∫ ∞

1
2

log |L(σ + it, f)| dσ ≤ a+ b log t, (7.35)

where

a = −J(d) + d2 log 4

log

√
N

2π
− 2

ζ ′(d+ 1
2
)

ζ(d+ 1
2
)
−
∑
q|N

log q

qd+ 1
2 − 1

− d2 log

√
N

2π
+ 3εt,k, (7.36)

and

b = d2(log 4− 1). (7.37)

In Chapter 8, we make a specific choice for d.
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Chapter 8

Numerical Values

8.1 Upper bound

The right hand side of (6.24) is of the form

a+ b log t+
c

t
. (8.1)

To compute numerical values of a, b, and c, we have to find an upper bound and a lower

bound for I(α) =
∫∞
α log ζ(σ)dσ for α > 1. Note that for σ > 1, log ζ(σ) is a convex

function, so using the trapezoidal rule for integrating gives an upper bound. For α < β <

∞, ∫ ∞
α

log ζ(σ)dσ =
∫ β

α
log ζ(σ)dσ +

∫ ∞
β

log ζ(σ)dσ. (8.2)

We use the trapezoidal rule to compute an upper bound for the first integral on the right

hand side of (4.8). For an upper bound on the second integral, we use the inequality
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derived from the Euler product:

∫ ∞
β

log ζ(σ)dσ =
∑
p

∑
n

∫ ∞
β

1

npnσ
dσ (8.3)

=
∑
n≥1

∑
p

1

n2pnβ log p
(8.4)

≤
∑
n≥2

1

nβ
= ζ(β)− 1. (8.5)

If we choose β = 20, then
∫∞

20 log ζ(σ) < 10−6. If we choose η = 0.1 in Corollary 6.2.2, then

we find an upper bound for the integral
∫∞
1
2

log |L(s, f)|dσ for t > k
2

+ 2 of

a+ b log t+
c

t
, (8.6)

where

a = 0.6× log(
√
N) + 2.70746797960673 (8.7)

b = 0.18 (8.8)

c = 0.09× k + 1.02. (8.9)

8.2 Lower bound

For the lower bound we use d = .6 in (7.35) – (7.37), and get the following values for a

and b in the lower bound:

a = J(0.6) + 0.36 log 4

log

√
N

2π
+ 2× 9.441036290−

∑
q|N

log q

q1.1 − 1


− 0.36 log

√
N

2π
+ 2εt,k, (8.10)

b = 0.36× (log 4− 1), (8.11)
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where

J(0.6) = −3.69607634894834 +
∑
q|N

1

log q

ñ
Li2

Ç−1

q1.7

å
− 2Li2

Ç−1

q1.1

åô
, (8.12)

ζ ′(1.1)

ζ(1.1)
= −9.441036390, (8.13)

and εt,k is given in (7.23).

8.3 Example

Let E be the elliptic curve of conductor 11 given by the equation y2 − y = x3 − x2. From

Wiles’ work we know that the L-function of this elliptic curve is the same as that of a

modular form of weight k = 2 and level N = 11. Then

∫ ∞
1
2

log |L(σ + it)|dσ ≤ 3.42683658183951 + 0.18 log t, (8.14)

and

−
∫ ∞

1
2

log |L(σ + it)|dσ ≤ 12.888062 + 0.139066 log t+ 2εt,2. (8.15)
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Appendix

In Section 4.3, we provided evidence that the polynomial in p(k) in (4.65) is of degree

w = |λ|. In this Appendix, we provide more evidence for the conjecture.

In the following tables there are two columns. The first column is a partition, and

the second column is a representation of the polynomial p(k) for that partition. The

polynomial p(k) is an integer valued polynomial. It can be uniquely written as an integer

linear combination of polynomials from the set{(
k

n

)
: n ∈ Z, and n ≥ 0

}
. (A-1)

The right column of the tables give the coefficients when p(k) is written as an integer linear

combination of the basis (A-1). For example, p(k) for partition (3, 1, 1) is

6

(
k

0

)
− 2

(
k

1

)
−
(
k

2

)
+ 15

(
k

3

)
+ 18

(
k

4

)
+ 6

(
k

5

)
. (A-2)

Table 1 tells us that the coefficients are [6,−2,−1, 15, 18, 6]. This is used to create the

polynomial (A-2).
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Table 1: Partitions of 5

Partition Polynomial

(5) [1, 5, 10, 10, 5, 1]

(4, 1) [-4, -2, 12, 23, 16, 4]

(3, 2) [-2, -4, 5, 19, 17, 5]

(3, 1, 1) [6, -2, -1, 15, 18, 6]

(2, 2, 1) [2, 0, -2, 8, 13, 5]

(2, 1, 1, 1) [-4, 3, -2, 1, 8, 4]

(1, 1, 1, 1, 1) [1, -1, 1, -1, 1, 1]

Table 2: Partitions of 6

Partition Polynomial

(6) [1, 6, 15, 20, 15, 6, 1]

(5, 1) [-5, -5, 15, 45, 49, 25, 5]

(4, 2) [-3, -9, 3, 42, 63, 39, 9]

(4, 1, 1) [10, 0, -5, 26, 56, 40, 10]

(3, 3) [-1, -4, -1, 16, 29, 20, 5]

(3, 2, 1) [5, 3, -8, 18, 64, 56, 16]

(3, 1, 1, 1) [-10, 5, -1, -2, 24, 30, 10]

(2, 2, 2) [-1, 1, -1, 1, 13, 15, 5]

(2, 2, 1, 1) [-3, 1, 1, -3, 15, 24, 9]

(2, 1, 1, 1, 1) [5, -4, 3, -2, 1, 10, 5]

(1, 1, 1, 1, 1, 1) [-1, 1, -1, 1, -1, 1, 1]
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Table 3: Partitions of 7

Partition Polynomial

(7) [1, 7, 21, 35, 35, 21, 7, 1]

(6, 1) [-6, -9, 16, 75, 114, 89, 36, 6]

(5, 2) [-4, -16, -6, 70, 160, 156, 74, 14]

(5, 1, 1) [15, 5, -10, 36, 127, 145, 75, 15]

(4, 3) [-2, -11, -12, 36, 114, 129, 68, 14]

(4, 2, 1) [9, 11, -16, 20, 173, 255, 155, 35]

(4, 1, 1, 1) [-20, 5, 4, -8, 48, 110, 80, 20]

(3, 3, 1) [3, 5, -7, 3, 77, 131, 87, 21]

(3, 2, 2) [-3, 3, -1, -3, 51, 109, 81, 21]

(3, 2, 1, 1) [-9, -1, 8, -12, 43, 145, 125, 35]

(3, 1, 1, 1, 1) [15, -9, 4, 0, -3, 35, 45, 15]

(2, 2, 2, 1) [2, -2, 2, -2, 6, 41, 44, 14]

(2, 2, 1, 1, 1) [4, -2, 0, 2, -4, 24, 38, 14]

(2, 1, 1, 1, 1, 1) [-6, 5, -4, 3, -2, 1, 12, 6]

(1, 1, 1, 1, 1, 1, 1) [1, -1, 1, -1, 1, -1, 1, 1]
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Table 4: Partitions of 8

Partition Polynomial

(8) [1, 8, 28, 56, 70, 56, 28, 8, 1]

(7, 1) [-7, -14, 14, 112, 224, 238, 146, 49, 7]

(6, 2) [-5, -25, -25, 95, 325, 445, 325, 125, 20]

(6, 1, 1) [21, 14, -14, 42, 238, 386, 309, 126, 21]

(5, 3) [-3, -21, -39, 43, 275, 457, 379, 161, 28]

(5, 2, 1) [14, 26, -21, 3, 344, 764, 736, 344, 64]

(5, 1, 1, 1) [-35, 0, 14, -14, 76, 285, 335, 175, 35]

(4, 4) [-1, -8, -18, 9, 105, 194, 172, 77, 14]

(4, 3, 1) [7, 18, -13, -22, 227, 630, 685, 350, 70]

(4, 2, 2) [-6, 6, 4, -17, 110, 396, 484, 266, 56]

(4, 2, 1, 1) [-19, -11, 23, -21, 69, 465, 675, 405, 90]

(4, 1, 1, 1, 1) [35, -14, 0, 8, -11, 80, 190, 140, 35]

(3, 3, 2) [-3, 2, 3, -12, 53, 238, 321, 189, 42]

(3, 3, 1, 1) [-6, -5, 10, -9, 22, 226, 368, 238, 56]

(3, 2, 2, 1) [7, -7, 5, -1, 7, 205, 395, 280, 70]

(3, 2, 1, 1, 1) [14, -2, -7, 13, -16, 84, 272, 232, 64]

(3, 1, 1, 1, 1, 1) [-21, 14, -8, 3, 1, -4, 48, 63, 21]

(2, 2, 2, 2) [-1, 1, -1, 1, -1, 19, 56, 49, 14]

(2, 2, 2, 1, 1) [-3, 3, -3, 3, -3, 17, 89, 91, 28]

(2, 2, 1, 1, 1, 1) [-5, 3, -1, -1, 3, -5, 35, 55, 20]

(2, 1, 1, 1, 1, 1, 1) [7, -6, 5, -4, 3, -2, 1, 14, 7]

(1, 1, 1, 1, 1, 1, 1, 1) [-1, 1, -1, 1, -1, 1, -1, 1, 1]
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1-level density, 13, 15

conductor, 8

Dirichlet character, 7

eigenangles, 12
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