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Abstract

As technological advances allow us to peer into and beyond microscopic phenomena,
new theoretical developments are necessary to facilitate this exploration. In particular, the
potential afforded by utilizing quantum resources promises to dramatically affect scientific
research, communications, computation, and material science.

Control theory is the field dedicated to the manipulation of systems, and quantum
control theory pertains to the manoeuvring of quantum systems. Due to the inherent
sensitivity of quantum ensembles to their environment, time-optimal solutions should be
found in order to minimize exposure to external sources. Furthermore, the complexity of
the Schrodinger equation in describing the evolution of a unitary operator makes the ana-
lytical discovery of time-optimal solutions rare, motivating the development of numerical
algorithms.

The seminal result of classical control is the Pontryagin Maximum Principle, which
implies that a restriction to bounded control amplitudes admits two classifications of tra-
jectories: bang-bang and singular. Extensions of this result to generalized control problems
yield the same classification and hence arise in the study of quantum dynamics. While sin-
gular trajectories are often avoided in both classical and quantum literature, a full optimal
synthesis requires that we analyze the possibility of their existence.

With this in mind, this treatise will examine the issue of time-optimal quantum control.
In particular, we examine the results of existing numerical algorithms, including Gradient
Ascent Pulse Engineering and the Kaya-Huneault method. We elaborate on the ideas of
the Kaya-Huneault algorithm and present an alternative algorithm that we title the Real-
Embedding algorithm. These methods are then compared when used to simulate unitary
evolution.

This is followed by a brief examination on the conditions for the existence of singular
controls, as well possible ideas and developments in creating geometry based numerical
algorithms.
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Chapter 1

Introduction and Motivation

As science continues to rapidly develop, so too does our ability to analyze and manipu-
late the environment in which we inhabit. Whether this growth results in the ability to
manoeuvre the incredibly large or the incredibly small, as we push the envelope of the
classical description of physics we will need to change our theoretical models. Quantum
mechanics is one of those theoretical changes, and is a celebrated theory that describes how
microscopic systems interact. It has a rich mathematical background that is amenable to
abstract analysis and we will exploit this in our studies.

Recent research into quantum mechanics, especially with regards to entanglement and
superposition, has produced insight into physical resources from which radical new tech-
nologies may be discovered. Examples of such theoretical research come from the pioneer-
ing efforts of Shor[69] and Grover[32] in finding quantum algorithms that yield dramatic
improvements over their classical counterparts. Conversely, experimental researchers are
pursuing ideas in diverse fields such as nuclear magnetic resonance, super-conducting quan-
tum interference devices, and ion trap quantum computers.

Proposals for applying these new quantum resources have been made in communica-
tions, information processing, and nanotechnology. Perhaps the most prominent of these
relates to the construction of a quantum computer. With advances in computational hard-
ware following the exponential tendencies of Moore’s law, the steady increase in integrated-
circuit transistor counts has similarly resulted in the drastic miniaturization of electronic
components. Following this trend, fabrication processes will leave engineers unable to ig-
nore the laws of quantum mechanics, as quantum effects will begin to play a radical role in
system dynamics. Rather than circumvent these effects, the study of quantum computing
hopes to exploit foundational quantum mechanical principles to create a computational



framework that exceeds anything that can be classically obtained.

There are many obstacles that still need to be faced in order for any of these technologies
to become a reality. Active research fields include the theoretical description and design of
quantum devices, and the physical implementation of quantum systems. The final element
is to construct the bridge between these two fields which analyzes how to use physical
technologies to implement the abstract procedures described theoretically. This is done
by examining how to affect the physical environment in order to establish a prescribed
configuration and is known as quantum control theory.

Quantum mechanical systems are intrinsically difficult to control due to their sensitivity
to the environment and perturbation. Work with quantum systems would be ideally per-
formed in perfectly isolated environments which are impossible to attain. An interaction
between a quantum system and its environment may cause it to lose coherence, becoming
classical in nature and forfeiting the advantage afforded by quantum resources. Alterna-
tively, the system may become entangled with the environment in an undesirable way;,
resulting the unexpected behaviour. One of the greatest challenges in quantum computing
is to derive solutions that minimize such interactions.

Traditionally, one can resolve the issue of noisy external systems by implementing a
feedback controller. Such a controller measures how the system is varies from its ideal
description and adjusts the controls accordingly. Unfortunately, feedback control of a
physical system requires an output measurement to determine the appropriate reaction.
This very measurement itself represents an interaction with an external system, ironically
implying that in order to combat noise, we must induce noise.

It may be more prudent to instead analyze an open-loop control implementation. It
has been suggested in [45] that while we cannot avoid the effects of external systems, we
can mitigate their influence by minimizing the amount of time allowed for undesirable
interactions. This motivates us to examine time-optimal controls in quantum synthesis
and is the principle goal of this treatise.

One of the major interests of quantum control theory is the implementation of opera-
tors on quantum bits (qubits). Such operators act analogously to circuit gates in classical
computing and are often referred to as quantum gates by comparison. Operators on iso-
lated, finite dimensional quantum mechanical systems are represented via unitary matrices
and undergo an evolution as directed by the Schrodinger equation. While quantum states
also evolve under the Schrodinger equation, the power of using the Heisenberg picture of
time evolving operators lies in the ability to disregard state-to-state transitions and instead
consider the more general picture of how a system acts on arbitrary preparations.



This thesis will consider all of these results and present our efforts to implement time-
optimal controls. The remainder of this thesis is organized as follows: Chapter |3 will
present an introduction to the field of quantum control in general, so as to familiarize the
reader with active research. This will be followed by a brief review of classical control in
Chapter [2] and will include a development of the tools necessary to our research. We follow
this with a description of two existing numerical methods given formulated in [37] and
[48] in Chapter |4 and a comparison of these methods with those of our own design. We
conclude by considering the existence of singular controls and the special role they play in
operator synthesis in Chapter [5}



Chapter 2

Introduction to Control Theory

The history of optimal control can trace its roots to the study of variational calculus, and
is the manipulation of system dynamics to achieve a desired goal. In particular optimal
control seeks to construct state trajectories that are the extrema of a functional known as
the cost function.

Our goal throughout this section will be to introduce the reader to the general theory
and mathematics of optimal control, with a specialization to a time-optimal cost function
in a quantum mechanical formalism. We will begin by reviewing some fundamental notions
in classical control before extending these results to a more appropriate setting.

2.1 Pontryagin’s Principle and Control in R”

We begin by introducing the general framework of optimal control theory. Much of the
definitions here are a combination of the results from Sontag’s book [70], Jurdjevic’s book
[39], and the foundational work of Pontryagin [61].

Definition 2.1.1. Let n,m € N, [ty,t;] C R, X C R™ be an open set and &/ C R™ be a
metric space. Define the function f : X xU — \" such that for any fixed ¢ € [to, 1], u € U,
f is continuously differentiable over all X. Let z : R — R", u : R — R™ and consider the
differential system defined by

dx(t)

= f@®),u),  alt) =m0 X (2.1)



We say that (2.1) is a control system for the control set U if f is continuously differen-
tiable, its integral curves x(t) are an absolutely continuous function, and u(t) is essentially
bounded and measurable. Further, u is said to be admissible if it satisfies all of the above
criteria.

Definition 2.1.2. Let x,u, f be as defined in Definition [2.1.1, Take z; € X and let
fo: X xU — R. An optimal control problem is to find a control u(t) € U such that
the evolution of z(t) as determined by satisfies z(ty) = zo and z(t;) = x; and the
functional

J () / folw(t), u(t)) dt (2.2)

is minimal amongst all such control laws u(t). The system is a time-optimal control problem
whenever we take fo(x(t),u(t)) = 1.

Controllability is an important topic in the study of control systems. It can be simply
stated without worrying about technical details, but is sufficiently fundamental that it
should not be overlooked.

Definition 2.1.3. For all T" > 0 and each zy € X, we define the accessible or reachable
set from o in time T, A(xo,T), as the set of all points in X for which there exists an
admissible control that drives x(y to that point in time 7" under the evolution . In a
more mathematically precise sense,

Ao, T) = {xf ex | Ju € U, 2(T) = xy, dz—f) — f(x(t),u(t))} (2.3)

The accessible set A(xo) from xq is the set of all points reachable in arbitrary time 7', or
more precisely

o) = | J Al T). (2.4)

>0

Definition 2.1.4. A control system is completely controllable if A(xg) = X for every
xo € X; that is, every point is reachable from every other point.

It will turn out that in the case of quantum mechanical systems the notion of control-
lability from the viewpoint of accessible sets can be simplified even further. However, we
defer that discussion until section 2.4

Now that we have established the structure of the general problem we must consider
the issue of actually finding solutions. While special techniques may be employed for very
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specific systems, it would be far better to have an all encompassing theorem from which
solutions may be derived. Indeed, the seminal work of Pontryagin [61] is considered by
many to be the origin of contemporary optimal control theory, and within this tome is
arguably the most fundamental result in the entire field.

Theorem 2.1.5 (Pontryagin Maximum Principle (PMP), Pontryagin [61]). Consider the
optimal control problem given by Definition . Furthermore, let u(t),to <t <t; be an
admissible control such that the corresponding trajectory x(t) begins at the point xq at time
to and passes through x1 at time ty, where the terminal time t1 is free to vary. In order
that u(t) and x(t) be optimal it is necessary that there exist a nonzero continuous vector
function A\(t) = (Ao(t), ..., A\u(t)) called the costate, such that defining

H<>‘7 I?”) - >‘Of0<x7u) + </\(t)7 f(x,u)) (25)

results in the following conditions:

1. For everyt € [to, 1] the function H(\, z,v) in the variable v € U attains its mazimum
at u(t):
HA(), 2(t), u(t)) = sup H(A(t), z(t), v), (2.6)

veU

2. at the terminal time ty it is necessary that \o(t) < 0 and

sup H(A(t1), z(t1),v) =0, (2.7)

vel

3. the state and costate satisfy Hamilton’s equations

de oM dN O

dt — oxT  dt Or
Furthermore, it turns out that if z(t), \(t) and u(t) satisfy [2.8) and Condition[d] the time

functions Ao(t) and H(A(t),z(t),u(t)) are constant, so that Condition[d may be verified at
any time t, tg <t <ty and not just at t;.

(2.8)

Here, (-,-) is the standard Euclidean inner-product on R™ and H(\, z,u) defined in
(2.5)) is referred to as the Pontryagin Hamiltonian.

Definition 2.1.6. Consider the optimal control problem given by Definition [2.1.2| and let
u(t) = (ui(t),...,un(t)) be a coordinate-wise expression for the control variable u(t) C
U C R™. If for each ¢ there exists m;, M; € R satisfying —oo < m; < M; < oo such
that Vt € [to, t1],m; < w;(t) < My, i = 1,...,m then we say that the system has bounded
controls. Otherwise, we say that the system has unbounded controls.

6



In the case of bounded controls, we often assume for simplicity that the control are
normalized 0 < w;(t) < 1 or symmetrically bounded —M < u;(t) < M for some M > 0.

For the following argument, assume that the controls have symmetric bounds |u;(t)| <
M;. If we choose a vector representation of the control dynamics f = (fi,..., f,) and
assume that each is affine in the control variable, we can write

m

Filw(t),u(t)) = hij(w(t))u; (D) (2.9)

=1

for some appropriately chosen functions h;;(z(t)). By exploiting the definition of the
standard Euclidean inner product, the Pontryagin Hamiltonian will then become

HA(), 2(t), ut)) = Ao + Z Ai(t) fi(x(t), u(t))

= Ao+ D> Ay ((t))uy (D)

=M+ |3 Ai<t>hij<x<t>>] (1)

HA®), 2(t), u(t)) = Ao + Z by (t)u; (1) (2.10)

where 1;(t) = Z)\i(t)hij(x(t)). These are referred to as the switching functions for a
i=1

reason that will become clear shortly. Now by applying the PMP and specifically the
condition specified by we get that an optimal control must maximize in the
control variable. With bounded control we see that if 1;(¢) > 0 we need to make wu;(t) as
large as possible and vice-versa in the case where ¢;(t) < 0. In particular, we get that the
control law is governed by wu;(t) = sgn(¢;(¢t))M;. This leads us to the following definition:

Definition 2.1.7. Consider the time-optimal problem given in Definition with sym-
metric, bounded controls. Given that the control law is subject to u;(t) = sgn(;(t))M;
for some appropriately defined switching function ;(¢), we say that the control u;(t) is
bang-bang if the roots of 1;(¢) have zero measure. Conversely, if there exists a non-null
subset I C [t,?1] such that ¢,(t) = 0 for almost every ¢ € I then the control u;(t) is said
to be singular on I. If there is a non-null subset I C [to,t;] on which ;(t) = 0 almost
everywhere, 7 = 1,...,m then we say that the controls are totally singular on I.

7



In the case of non-singular bang-bang control laws, a complete knowledge of the switch-
ing functions is sufficient to completely resolve the problem. However, we notice that the
switching functions depend on the costate \;(¢) which can greatly complicate matters; fur-
thermore, there is no a priori way to rule out the existence of singular controls. Singular
controls are often neglected in the literature, possibly owing to the fact that such controls
are rarely optimal in linear regimes.

There is one more level of classification that is important to affine, bounded-control
systems pertaining to the value of )\g. In the event that Ay # 0 we often choose to
normalize it so that \g = —1. However, it may be possible that A\g = 0. The PMP only
dictates that the pair (A, A(f)) not vanish at any point, but it may be possible that Ag(t)
is almost everywhere 0.

Definition 2.1.8. Consider the time-optimal problem given in Definition|2.1.2|with bounded
controls. In the event that Ao(t) = 0 for almost every ¢ € [ty,t;] we say that the controls
and corresponding trajectories are abnormal, otherwise they are normal.

Working with R™ however is not always appropriate, necessitating some level of general-
ization. One such candidate for generalization is the Complex Matrix Maximum Principle
(CMMP) which is essentially a restatement of the PMP with matrices in lieu of vectors.
The proof of the CMMP is not particularly complex, done by embedding n x n complex
valued matrices into 2n?-dimensional real space and then applying the PMP[37]. While
we will make little use of this theorem, we include it here for completeness.

Theorem 2.1.9 (Athans [7] and Huneault [37]). Let M, (C) denote the set of all n X n
matrices with complex valued entries. Consider a dynamical system given by %X(t) =
F(X(t),u(t)) where X : [to,t1] — M, (C),u : [to,t1] — U for some admissible control set
UCR?, and F : M,(C) x R™ — M, (C). Let ty, X (to), and X (t1) be prescribed quantities
with ty free to vary, and u(t) be a control that drives X (ty) to X (t1). If Fo : M,,(C) xR™ —
R is a cost function then for u(t) to minimize ftzl Fo(X(t),u(t)) dt it is necessary that there
exists Ao € R and a curve A : [to, t1] — M, (C) such that if

H(X (1), A1), Ao, u(t)) = Ao Fo(X (1), u(t)) + R (A(), F(X (1), u(t)))
where (A, B) = Tr[ATB], then
1. It is not the case that A(t) is the zero matriz and Xg is zero.

2. (X(t),A(t)) evolve according to Hamilton’s equations

d oH d oH
SX(1) = S, A0, N ult), ZAD) = =5 (X (), M), Ao, u(t)



3. X <0
4. u(t) = argmax H (X (t), A(t), Ao, v)

vel

This theorem was initially introduced by [7] for the case of matrices over R. It was
extended into the complex domain in [37], requiring a greater deal of algebra but keeping
to the general spirit of the original proof. We note that this choice of inner-product is not
arbitrary. The Hilbert-Schmidt inner product makes M, (C) as a space isomorphic to a
normed vector space. This allows us to embed the matrix space into C" via an invertible
vectorization argument, apply the traditional PMP, and then translate back into matrix
space.

The PMP only gives necessary conditions for optimality, often generating a large set
of candidate solutions from which the optimal ones must be picked. There are some
limiting cases in which The Maximum Principle also gives sufficient criteria for optimality,
though these only occur in real, linear systems [50]. Furthermore, while all smooth, finite-
dimensional manifolds can be embedded into R™ for sufficiently large m, it is not always
prudent to examine the properties of those embeddings. Results discovered in one regime
can be made extremely complicated by translating across the embedding map, implying
that it is often more useful to consider spaces in a natural, embedding free context [19]. In
this sense, the CMMP is just an embedding of matrix space into a sufficiently large real
space, wherein we have ignored the rich and complicated structure afforded to us had we
instead considered the state space as a manifold.

2.2 Geometric Control Theory

We will present here an introduction to some of the basic concepts of geometric control
theory that will prove useful in our analysis of geometric control algorithms (Appendix @
and singular controls (Chapter [5).

In the previous section we began by defining a control system in terms of a differential
equation. We hope to do the same thing here, but in working with general manifolds we
need to be more rigorous and formal. There are many subtle changes that need to be made
that are not evident in the case of R" or C", which occurs as a result of these fields being
identical to geometric constructs that do not generalize well.



2.2.1 Differential Geometry

Definition 2.2.1. Let M be a set endowed with a topology. For n € N we say that M
is a topological n-manifold if it is Hausdorff, second countable and locally n-Euclidean.
Hausdorff implies that any two distinct points in M can be separated by disjoint open
sets. Second countable implies that the there exists a countable basis for the topology
on M, and locally Euclidean implies that for any point p € M there exists U an open
neighbourhood of p such that there is a mapping ¢ : U — R” which is a homeomorphism
onto its image. The collection of all (U, ¢) as p spans over M is called a (coordinate) chart
for p.

Topological manifolds appear to be Euclidean spaces if one takes sufficiently small
neighbourhoods of points. In order to be able to extend any notion of calculus to these
spaces, it will be necessary to define a smooth structure on the manifold. Intuitively, we
use coordinate charts (U, ¢) to move functions on manifolds to functions on R. This allows
us to apply standard calculus techniques to these functions before casting them back into a
manifold framework. However, for this to work properly we need to ensure that coordinate
charts are compatible with one another.

Definition 2.2.2. Let M be a topological space. Two charts (U, ¢) and (V1)) are said to
be smoothly compatible if whenever U NV # (), the map

Yoo l:ip(UNV)—=yp(UNV) (2.11)

is a diffeomorphism. An atlas is a collection of charts whose domain covers M, and a
smooth atlas is an atlas of smoothly compatible charts.

Every smooth atlas can be extended to a unique maximal atlas [19] which is an atlas
that is not strictly contained in any other atlas. We define a smooth structure to be a
maximal smooth atlas. A smooth manifold is thus a topological manifold endowed with
a choice of smooth structure. As mentioned before, these charts are necessary to perform
calculus on manifolds.

Definition 2.2.3. Let M, N be two smooth manifolds of dimension m and n respectively,
and take F : M — N. For a chart (U, ) of M define ¢(U) = U C R™ and similarly for
charts of N. We say that F' is a smooth function between M and N if for any chart (U, ¢)
of M and (V,%) of N the function

YpoFog¢ ' : VU (2.12)

is smooth.

10



Fundamental to our study will be the notion of curves on a smooth manifold. These
are simply real-parameterizations of paths along the manifold. Alternatively, curves are
manifold functions whose domain is a subset of R. We will use these when we solve
differential equations on manifolds, so that solutions are actually given by curves.

Definition 2.2.4. Let I C R be a connected interval. A curve on a smooth manifold M
is any continuous mapping vy : [ — M.

Next we introduce the notion of tangent spaces, for which there are many coordinate-
independent constructions. In the following, we will define the derivation definition of
tangent vectors. This is motivated by the bijective correspondence between tangent spaces
on R and directional derivatives, that can be seen in Appendix [A ]

Definition 2.2.5. Let M be a smooth manifold. A linear map X : C*(M) — R is a
derivation at the point p € M if

X(fg)=f(p)X(9) +9(p)X[f,  VfgeC(M)

that is, derivations are linear functionals on smooth functions that satisfy the Leibniz rule.
We then define the tangent space at p € M to be

T,M = {X C¥(M)—=R|Xisa derivation}.

Definition 2.2.6. Let M, N be smooth manifolds and F': M — N be a smooth function.
For a fixed p € M we define the pushforward of F' at p as the function (F), : T,M —
Tr@p) N that acts as

(Fo)pXp(f) = Xp(fo F) (2.13)

for X, € T,M and f € C°°(N). Note that this is well defined since f o F' : M — R and
X, : C=(M) = R.

The above definition of the tangent space is very restrictive since it requires that we
specify a point in the manifold. In order to properly consider all possible tangent vectors
and ways of moving between tangent spaces, it will be necessary to introduce the fibre
bundle.

Definition 2.2.7. Consider three topological spaces F/, B and F' with a projective mapping
7 : FF — B a continuous surjection. Then

Vz € B,3U 5 n(x),3f 7 {U) > U x F

11



with f a homeomorphism satisfying
proj,o f=m (2.14)

where proj, : UX F — U is the projection of the Cartesian product onto its first component,
then we say that m-admits a local-trivialization of F over F and 7 : E — B is said to be a
fibre bundle. Alternatively, we will say that E is a fibre-bundle of B over F'.

Essentially, this definition is dictating that E appear locally to be the Cartesian product
of the base space B with a space F'. This is equivalent to locally “gluing” together spaces
of F' adjoined to points on B, and can be easily visualized in the following definition.

Definition 2.2.8. Let M be a smooth n-manifold and define the tangent bundle T M as
T™ = | | T,M (2.15)

peEM

where | | denotes the disjoint union. To be more precise, we specify a choice of disjoint
union as
TM = | J {p} x {T,M} (2.16)
peEM
so that tangent vectors are associated to the tangent space in which they lie. T'M is a
fibre-bundle of M over R" and a typical element of T'M can be written as (p, X,,) for p € M
and X, € T,M. The projection mapping is given by m(p, X) = p.

Our tangent bundle is the union of all the tangent spaces on M and it can be shown
[52] that if M is a smooth n-manifold that 7'M is a smooth 2n-manifold. Notice that we
can extend our definition of the pushforward to exploit this new structure. If F': M — N
for smooth manifolds M and N, we can then define F, : TM — TN where (F}), : T,M —
TN is the normal pushforward given in definition . This sort of generalization can
be applied to many different tangent space definitions.

The tangent bundle will give us a way of defining vector-fields on M. Since the pro-
jection mapping is a mapping between smooth manifolds, we will be able to assign an
interpretation to the meaning of a smooth vector field. Vector fields will be essential to
interpreting and defining the meaning of differential equations.

Definition 2.2.9. Let M be a smooth manifold and 7 : E — M be a fibre bundle on M.
We define a section of m to be any function f : M — E such that mo f = id,; where id,, is
the identity mapping idy; : M — M, idy(p) = p. We denote the set of all smooth sections
by

['(E) = {f M — E ‘ f is a smooth section of E} : (2.17)

12



Definition 2.2.10. A smooth vector field X on a smooth manifold M is a smooth section
of the tangent-bundle; that is, X € I'(T'M).

If one unravels the definition of a smooth vector field, it is clear that X € I'(T'M) acts
precisely as we expect Euclidean vector fields to act. In particular, since X : M — T'M
then X takes each point on the manifold to a tangent vector, and small variations around
the point p € M result in smooth variations of the tangent vector. Interestingly, the
properties that we have given to vector fields means that I'(T'M) can be realized as a
C°°(M)-module [52], a topological space under the C*°-Whitney topology [22], or as an
algebra [39] as will be demonstrated shorty.

Definition 2.2.11. Let M be a smooth manifold. A Lie bracket on T'(T'M) is a binary
operator [-,:] : [(TM) x T(TM) — T'(TM) defined by [V,W]f = VW f — WV f for all
felC>(M).

This definition of a Lie bracket is done in a coordinate-free manner, necessitating the
use of a function to characterize its action. If instead we were to choose a coordinate basis
(z') so that we could express V = V2 W = W'l

oxt)
of 0 Of
7 7 7 1
VW =V oz’ (W 83:3) W o ol (V (99(;2')

0w af iooi O3 SOV af o OF
_Vaxi% VWaxixa‘_Waxa‘%_WVaxa’xi

c‘)WJ of SOV Of

oxi Oz - Oxi Oxt’ (2.18)

where in the last line we used the fact that f being smooth results in Commuting second
derivatives. Since f was arbitrary, we find that [V, W] = (Vz 682/1] wi %‘;f ) =2 which will
be used in Chapter [5

It can be shown [19] that the Lie bracket of two smooth vector fields is a smooth vector

field, assuring us that the Lie bracket is indeed a binary operator on I'(T'M). Hence I'(T' M)
is an algebra under addition and Lie-bracket multiplication.

Now that we have analyzed aspects of the tangent space, it is a natural algebraic
question to consider the corresponding dual space of the constructed vector spaces. We
recall that for V' a finite dimensional real vector space, the set of all (continuous) linear
functionals on V' forms the (continuous) dual space V*. More precisely,

:{f:V%R)fislinear}.
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Definition 2.2.12. Let V and W be finite dimensional real vector spaces and A:V — W
a linear map between them. We define the transpose or pullback of A as A* : W* — V*
defined by (A*w)(X) = w(AX) withw € W* and X € V.

Since tangent spaces can be realized as vector spaces, we can similarly consider their
dual spaces.

Definition 2.2.13. Let M be a smooth n-manifold. For each fixed p € M we define
the cotangent space at p as TyM = (1,M)*; that is, the cotangent space is the set of all
continuous linear functionals on the tangent space. This implies that if ¢ € T;M and
X € T,M then ¢(X) € R. Correspondingly, we define the cotangent bundle T*M as

"M = | | ;M (2.19)

pEM

which is a fibre-bundle of M over R™ with a typical element given by (p, »). The projective
mapping is given by 7(p, ®) = p.

The results that we commented on after defining the tangent bundle also apply to the
cotangent bundle. In particular, T*M is a smooth 2 dim (M) dimensional smooth manifold
whenever M is smooth, and in this case the projection 7 : T*M — M is smooth. We can
also define smooth covector fields as smooth sections of 7, and denote the set of all smooth
covector fields as I'(T*M).

We have defined the pushforward mapping which takes tangent vectors between tangent
spaces as determined by a smooth manifold mapping. With the cotangent bundle defined,
we are now in a position to consider the pullback mapping, which maps covectors between
cotangent spaces.

Definition 2.2.14. Let F': M — N be a smooth function on smooth manifolds M and
N, and take p € M. The pushforward F, : T,M — Ty, N yields a transpose mapping
(F)" : ThyN — Ty M which will be denoted by F* and will be referred to as the pullback.
It is defined as

(F*w)(X) = w(F.X), w € Tp, N, X € T,M

It turns out that elements of the cotangent bundle are the most natural for describing
“derivatives” for functions in C*°(M). We will go into more detail on why this is the case
after the following definition:

14



Definition 2.2.15. Let f € C*°(M) be a function. We define the differential 1-form of f
as
dfp(Xp) = Xp f- (2.20)

The choice of calling df a differential 1-form follows from the generic definition of k-forms
given in Appendix [A.2]

The determination of whether the tangent or cotangent bundle is the natural space for
expressing derivatives comes from whether the function is a curve (R — M) or the function
maps onto the reals (M — R). Perhaps this is best seen via an example with the functions
f:R —R"”and g : R* — R. By considering f, we see that it is parameterized by a single
real variable, in which case the derivative % represents a linear approximation to f in R™;
that is, it represents a vector tangent to the curve f(¢) and hence exists as an element of
the tangent space. Conversely, when we take the gradient of g,we often write it as

"L 9g 0
— ozt Oz’

Vg = (2.21)

though this requires a specification of a coordinate frame. It is easy to show that different
coordinates can yield different gradients and so this does not give a good method for
describing a generalized derivative on a manifold. We can instead consider the derivative
as a one form so that it acts on tangent vectors (which are coordinate independent) hence
yielding a coordinate independent representation itself. In the case of real-valued functions,
if we are given a vector v we define the 1-form as dg(v) = (Vg) -v. Hence both the tangent
and cotangent spaces are natural for defining derivatives depending on the specifics of the
function.

2.2.2 Flow Theory

Flow theory is the consideration of trajectories induced by vector fields. Namely, if X is
a local vector field, the goal is to find curves v : I — M such that ¥(t) = X, for some
connected open neighbourhood I C R. If one restricts this idea to a Euclidean space we
see that solving integral curves is equivalent to solving a system of first order differential
equations, and will put us in a position to extend the notion of control systems to manifolds.
In order to make sense of this equation, we must first evaluate what it means to take the
derivative of a path.
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Definition 2.2.16. Let 7 : [tg,t;] — M be a smooth curve on smooth manifold M. Then
the tangent vector at ¢’ € [ty, ;] is defined as

i) = (5

is the standard basis vector for T, R.

) € TyanM
t/
d

where 5

tl

Notice that the equality defined by the equation §(t) = V) now makes sense as both
4(t) and V) are elements of the tangent space T ) M.

Definition 2.2.17. Let M be a smooth manifold and V' € I'(T'M). An integral curve of
V' is mapping 7 : [a,b] — M such that 4(t) = Vi), Vt € [a,b]. Additionally, if 0 € [a, b]
then we say that v(0) = p € M is the initial condition on ~.

As mentioned earlier, solving integral curves reduces to solving systems of differential
equations. This can be seen by fixing an initial condition p € M and a coordinate repre-
sentation (x;)"; in a neighbourhood of p. Assume that () is an integral curve satisfying

Y(t) = Vi, 7(0) =p (2.22)

for some smooth vector field V' € T'(TM). If we write v in the coordinate system as
v(t) = (YH(t),...,y™(t)), then (2.22)) implies that

0 - 0

Yt a5 =VI0O0) 53 (2.23)
0" |4y 0" |4y

which, when equating basis coefficients yields the system of differential equations

() = Vi), ...,y (1)), i=1,...,n. (2.24)

We note that by the Existence and Uniqueness Theorem of Differential Equations[T9] we
are guaranteed that a local solution, and hence a local integral curve, exists. Thus the
notion of integral curves is inherently bounded to within neighbourhoods of the initial
condition. In the special event that a vector field admits an integral curve for all initial
conditions, we give it a special name.

Definition 2.2.18. A vector field V' € I'(T'M) is complete if ¥p € M there is a unique
integral curve ” : R — M of V. We say that 6° is the flow of V' through p.
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The initial condition may dramatically change the solution to the integral curve, justi-
fying why we have explicitly included the dependency of 8 on the point p. By considering a
new function that varies with respect to both the initial condition and the time-parameter
generated by the integral curve, we get the function 6 : M xR — M that takes (p,t) — 6P(t)
where 6P is defined as in Definition We refer to 6 as the global flow of V.

Definition 2.2.19. The vector field associated to a global flow @ is called the infinitesimal
generator of 6.

This allows us to state the following fundamental theorem which is critical to the study
of flows.

Theorem 2.2.20 (Fundamental Theorem of Flows, Lee [52]). Let M be a smooth manifold
and V € T'(TM), not necessarily complete. Take D C M x R to be the mazimal subset
on which a global flow may be well defined. Then 30 : D — M a maximal smooth flow
defined on D whose infinitesimal generator is V', and satisfies

1. Vpe M,0P : R — M is the unique maximal integral curve through p.

2. Y(t,p) € D,(0:).V, = Viep); that is, the vector field is invariant under the flow that
it generates.

3. Vt € R the set M; = {p eM ) (t,p) € D} is open in M and 0,(p) = 6(p,t) : M; —
M_; is a diffeomorpism.

In working with quantum mechanics, we are fortunate that the unitary group has some
incredibly powerful properties. One such property is that it is compact, which yields the
following useful theorem.

Theorem 2.2.21 (Lee [52]). All smooth vector fields on compact manifolds are complete.

We will conclude this section with the following definition which allows us to consider
the directional derivative of one vector field with respect to another. While it is immensely
important in differential geometry and can prove very useful in computational problems,
we will consider it primarily as an alternative tool for calculating Lie brackets.

Definition 2.2.22. Let M be a smooth manifold, V' € T'(T'M),p € M and let 6 denote
the flow of V. We define the vector (LyW), called the Lie derivative of W with respect
to V at p by

d . (0-)Wo, ) — W,
(»CVW)p = (G—t)*WGt(p) = lim ( t) 0:(p) p'

dt|,_, t—0 t

(2.25)
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This definition can be quite cumbersome, and so we present the following theorem that
will make computations far more simple.

Theorem 2.2.23. If V,W, X € I(TM) and f € C=(M) then (CyW) € T(TM) and
1. LyW = [V, W].

Lyf=Vf

LyW = —LyV

Ly[W, X] = [LyW, X] + [W, Ly X]

Loy X = LyLwX — Ly Ly X

Ly(fW)=VHW + fLW

S T e e

2.2.3 Specialization to Lie Groups

As mentioned previously, working in a quantum mechanical atmosphere affords many pow-
erful tools. Another such property is that the unitary group is indeed a Lie group, a special
kind of group on which a great deal of research has been performed.

Definition 2.2.24 (Baker [§]). Let G be a smooth manifold which is also a topological
group with multiplication map mult : G x G — G and inverse map inv : G — G and take
G x G to be the product manifold. Then G is a Lie group if mult and inv are smooth
maps.

There are three actions of the group on itself that play a crucial role in Lie theory. In
particular, they are

Ly:G—=G Ly(z)=gx Left Translation
R,:G—= G Ry(r)=uxg Right Translation
Xg:G—= G xy(x) =gag! Conjugation
Ultimately, the set of right- and left-invariant vector fields (Definition [2.2.25)) will equiv-

alently and symmetrically define what is called a Lie algebra, while the conjugation map
will give us the adjoint representations (Definition [2.2.33]).

Definition 2.2.25. A vector field X € ['(T'M) is left-invariant if it is invariant under the
action of Lg, Vg € G. That is, it is Ly-related to itself

(L) Xy = Xgg, (Lg)eX = X.
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Proposition 2.2.26 (Sastry [60]). The Lie-bracket of two left-invariant vector fields is
also a left-invariant vector field.

Since (L,). is a linear operator, the set of all left-invariant vector fields is a linear
subspace of I'(T'M). Furthermore, since the Lie-bracket preserves left-invariance we can
view the set of all left-invariant vector fields as an algebra.

Definition 2.2.27. A Lie algebra is a couple (g, [,-]) with [-,] : g X g — g a binary
operator that is bilinear, antisymmetric, and satisfies the Jacobi identity

VW, X]) + W, [X, V] + X[V, W] =0, WV, X eg. (2.26)

From our previous discussion and this definition of a Lie-algebra, it is then easy to see
that the left-invariant vector fields form a Lie algebra. Lie algebras can be studied in their
own right, though they originally arose in the study of Lie groups [28]. When the group
is explicitly specified we say that this set is the Lie-algebra and write Lie(G). We further
note that our specification of left-invariance can be switched to right-invariance and the
same arguments still hold. In fact, the two Lie-algebras generated are anti-isomorphic, as
shown in Appendix Consequently, there is no loss of generality by considering one
construction over the other. In a remarkable and well known theorem, the relationship
between a Lie group and its Lie algebra can be concretely stated as follows:

Theorem 2.2.28 (Lee [52]). Let G be a Lie group with identity e € G. The evaluation
map ¢ : Lie(G) — T.G given by €(X) = X, is a vector space isomorphism. In particular,
Lie(G) is a finite dimensional vector space, dim Lie(G) = dim(G) and Lie(G) = T.G.

Let us take a moment to consider the implications of this theorem. For our purposes,
let us consider the Lie group generated by the left-invariant vector fields of the group G.
By definition, left-invariance allows us to translate a tangent vector from one tangent space
to any other tangent space. Since the tangent space at the group identity is isomorphic
to the Lie algebra, knowledge of the Lie algebra corresponds to knowledge of the tangent
space at any point in G. More precisely, if g € G then T,G = (L,).T.G.

We next move on to an examination of how flow theory can be specialized in the
formalism of Lie groups.

Definition 2.2.29. Let G be a Lie group. A one-parameter subgroup of G is a Lie-group
homomorphism F' : R — G. More information on group homomorphisms are given in

Appendix B.1]
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Note that the one-parameter subgroup is the mapping itself, and hence is not truly a
subgroup of G. However, the choice of nomenclature is still reasonable as it can be shown
that the image of one-parameter subgroups is subgroup, the proof for which is given in

Appendix B.2]

Theorem 2.2.30 (Lee [52]). Let G be a Lie group. The one-parameter subgroups of G are
precisely (bijectively) the integral curves of left-invariant vector fields at the group identity.
In particular, a one-parameter subgroup is uniquely determined by its initial tangent vector

X eT.G.

Since all integral curves, and hence flows, are one-parameter subgroups, this theorem
implies that they are all generated by elements of the Lie-algebra. A natural question
arises regarding the movement between an element of a Lie algebra and the corresponding
group. The previous theorem regarding the relationship between integral curves and the
Lie algebra will be crucial to defining the desired transformation between the group and
its algebra.

Definition 2.2.31. Given a Lie group G with identity e € G, consider its Lie algebra
g = Lie(G). We define the exponential mapping exp : g — G which acts as exp X = F(e)
where F'is the one parameter subgroup generated by X.

Proposition 2.2.32 (Lee [52]). Let G be a Lie group with Lie algebra g. Then

1. The exponential map exp : g — G s smooth.
2. VX € g the mapping F(t) = exptX is the one-parameter subgroup generated by X .

3. VX € g we have that exp(s +t)X = expsX exptX.

The exponential map now gives us an explicit method of combining all of the abstract
details mentioned earlier. We see that it is the exponential map which creates the flow of
the left-invariant vector fields at identity, which are member of the Lie-algebra.

We shall conclude this section with a mention of some representation theory which are
important from a theoretical standpoint.

Definition 2.2.33. Let G be a Lie group and denote by ¥ : G — Inn(G) the operator that
takes ¢ to its corresponding inner-automorphism; that is, ¥(g) = x, where x,(h) = ghg™*
is the conjugation group action we alluded to earlier. Consider the pushforward of this map
at the group identity e € G, noting that ¥ (e) = x,(e) = e so that d(V,). : T.G — T.G.
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Since T.G = Lie(G) we choose to move to a Lie-algebraic framework by defining the map
Ad, = d(¥,). : Lie(G) — Lie(G). Taken as a mapping over all of G we then define the
adjoint representation as

Ad : G — Aut(g), g — Ad,

There is a very similar and related representation on Lie algebras. It is given as follows:

Definition 2.2.34. Given a Lie algebra g and X € g we define the adjoint representation
of g as the endomorphism adx : g — g such that adx(Y) = [X,Y] with the usual Lie
bracket. Considered as a mapping over all of g we then have that ad : g — End(g).

These choices of representation and their correspondingly related notation are not an
accident. It turns out that the adjoint representations of groups and algebras arise nat-
urally and frequently in the study of Lie theory, and the relationship between the two is
demonstrated in the following two propositions:

Proposition 2.2.35 (Fulton [30] and Sastry [66]). Let G be a Lie group and g its Lie
algebra. Then for any X € g we have Adeyp, x Y = exp(adx)Y.

Proposition 2.2.36 (Fulton [30]). The mapping Ad and ad are related via ad = Ad, =
d Ad.

2.2.4 Geometric Control Theory

In order to properly introduce the previous concepts, we have been forced to maintain a
high level of abstraction. However, in order to perform computations it will be necessary
to examine what some of these constructs look like if we fix a particular coordinate system.
Let {z;}_, be a smooth, local coordinate representation in a neighbourhood of p € R™. It

is shown in Appendix |A.1| that T,R" = R" and so the partial derivative operator % is
p
n
in fact a derivation at p. By considering the full spectrum of such operators { a?:i p} ,
i=1

we can create a basis for T,R" for any choice of p. Since the motivation for much of
the definitions used in differential geometry is to transfer properties of R to manifolds via
coordinate charts, we can use this basis to define a basis for tangent spaces on the manifold.

Definition 2.2.37. Let M be a smooth manifold, p € M, and (U, ¢) be a coordinate chart
for p. The pushforward of =1 is (¢71), : T,,R™ — T,R™ and so gives us a way to push
basis vectors from R™ onto M. Define the tangent basis vectors as
0 _ 0
=(¥™)

ox’ ) * Ot

(2.27)

©(p)
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The function (¢ '), : R* — T,M is a linear map since pushforwards are always linear,
and invertible since ¢ is a diffeomorphism. This makes (¢~'), a basis preserving bijection

J

defines a basis set for 7,M. We can compute the action of these basis vectors on elements
of C*°(M) by

2l
Oxt

and so our choice of definition for the tangent vectors of T,,M guarantees that {

0 0
| f=e e 52| S (2.28)
Oz P dx »(p)
0
= | (Foe™. (2.29)
O »(p)

Given any basis {E;};_, for T,M we can define a dual basis {¢'};_; on T;M by de-
manding that ' ‘
e'(Ej) = 6 (2.30)

where 5; is the Kronecker delta function. In the special case where we have prescribed a

coordinate basis {2'};_, at p € M we define the dual basis to { 2 p} as {dz'|,};_, where

dz'], (% p) = 0}

We are now in a position to give an example as to why the real case of the PMP
(Theorem can subtly hide the geometric details of the system. When we introduce
the general Pontryagin Principle (Theorem , we will show that the costate variable is
actually a smooth covector field in I'(T* M) mapping G — T*G, acting as a linear functional
on the smooth vector field that defines the system dynamics. This is not evident in the real
case because R is algebraically self-dual. More precisely, T*R"” = TR" = R?" and so one
cannot tell the difference between elements of the tangent, cotangent, and system space.

With the tools of integrals curves, flows, and differential geometry, we can generalize
our notion of control systems given in ({2.1)). In particular, we have the following:

Definition 2.2.38 (Jurdjevic [39]). Let G be a smooth manifold and m € N with &/ C R™
a metric space. Consider a mapping given by F': G x U — T'G such that for every fixed
u € U the map F(-,u) is a smooth vector field on G. If u: G x R — U is an essentially

bounded and measurable function, then the the time-varying differential system
dXx

is a control system on G.
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This definition is still very general and is not yet amenable to the structure of integral
curves. In particular, we cannot say that F' determines a vector field, since its value
depends on both the control w(X,t) and the state X € G. In order to fix this caveat,
we consider the vector fields generated by fixing a particular control and then consider all
uel }

where F,,(X) = F(X,u). Certainly the set D now represents every possible admissible
vector field as determined by our control set.

possible controls. Hence we define a family of vector fields as the set D = {Fu

Definition 2.2.39. Consider a fibre bundle 7 : £ — B with a local trivialization of F
over F. If F'is a vector space then we say that 7 : E — B is a vector bundle. In particular,
if dimg F' = k then 7 : E — B is a rank-k vector bundle.

Via this definition, if G is a n-manifold the tangent bundle is a rank-n vector bundle.
Since our set D consists of vector fields, it is a subbundle of the tangent bundle T'G. It is
possible that D changes in rank as it varies over G, as different neighbourhoods of G might
give rise to different linear independence relations on the elements F,, € D. In this case it
is hard to describe the general geometric structure that D imposes on the manifold since
we must specify the rank of the the vector field family. However, for our purposes we will
assume that rank D is constant everywhere so that it defines a distribution on GG. This will
allow us to use the tools of sub-Riemannian geometry to aid our study. Alternatively, if

we define D|x = {Fu(X) ‘ u € L{} the set of vector fields at X, then we can write ([2.31))
as a differential inclusion
& e Dy (2.32)

Recall the definition of reachable sets given in Definition [2.1.3] By assuming that the
vector fields in D are all complete, we can give an explicit structure to A(Xjy). In fact,
each X € A(Xj) can be written as [39]

nx
X = (H exp [tH]) Xo, nx €N, t€R, H; €D (2.33)
=1

where nx depends on the choice of X. We can also use the distribution to characterize the
controllability of the system.

Definition 2.2.40. Let F,G be distributions on a smooth manifold G. Define the Lie
bracket on these distributions as

[fag]:span{[f,g] ‘fef,geg}. (2.34)
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Furthermore, take F' = F so that we can recursively define F'™! = F'+[F, F]. By doing
this we generate a flag of subsheaves on T'G [55]

FlCcFrCcFcCc...CTG. (2.35)

If these subsheaves satisfy the ascending chain condition and eventually generate the entire
bundle, we say that F is bracket generating. More precisely, F is bracket generating if
Jk € N such that F** = FF = TG,

Equivalently, we see that if a distribution D is bracket generating then by fixing a
local frame {H;} for D at p € G, one finds that every element of T'G in a neighbourhood
of p lies in the linear span of some collection of elements from the set of all iterated Lie
brackets of {H;}. This is a generalization of Hormander’s condition in R™ to the case of
smooth manifolds. The next theorem will allows us to use the notion of bracket generating
distributions to reflect on the controllability of such systems.

Theorem 2.2.41 (Chow’s Theorem, Calin [20]). Let G be a connected manifold and D C
TG be a bracket generating distribution. Then any two points of G' can be connected by a
horizontal curve; that s, a curve whose tangent lies in D at every point.

If we consider the problem of minimizing a cost function fo(z(t), u(t)) via fOT folx(t),u(t)) dt
then we can entirely recast an optimal control problem as a sub-Riemannian problem.

Definition 2.2.42. A generalized, sub-Riemannian, optimal control problem (GSOCP) is
a couple (f, F) where f is an objective function and F is a horizontal distribution. The
goal is then to transfer some point xzy € M to another point zy € M via a horizontal
curve xz(t) such that &(t) € F,Vt € [0,7] and fOT fo(z(t),u(t)) dt is minimal amongst all
horizontal paths.

We have mentioned previously that from a sub-Riemannian point of view, our differen-
tial equation (2.31)) could instead be viewed as a differential inclusion. 1t is then a simple
application of Chow’s theorem to say that if our control fields are bracket generating as a
distribution and our manifold is connected, our system is controllable.

Next we want to consider the difference between holonomic and non-holonomic systems.
Intuitively, let us consider a ball on a flat table which rolls without slipping or twisting. If
we consider the entire configuration space of both the ball and the table, we can represent
our space as the product manifold M = R? x S?, which is four dimensional. Note that our
distribution is only two dimensional by our restriction to non-slipping and non-twisting
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movement. Consider any two configurations in M. Our question is whether or not we can
drive one configuration to another only using rolling. Alternatively, is there a horizontal
path on R? x S? that connects any two points? It turns out that the answer is affirmative
[38], and the reason for this is non-holonomy.

Definition 2.2.43. Let D be a distribution. We say that D is holonomic if D is integrable,
and non-holonomic otherwise.

Historically, the reason why we term the constraint set as holonomic is that if a distri-
bution was defined as the kernel of a one-form then that one form could be written in terms
of holonomic functions. However, there is a more intuitive way to visualize the notion of
holonomy. From our rolling ball example, choose an initial configuration in R? x S?. Given
a fixed perspective, it is simple to see that the action of rolling in the ball “forward” then
“right” leaves the sphere in a different configuration than if we had rolled the ball “right”
then “forward.” This is because the tangent vectors that define rolling in these two inde-
pendent directions do not commute. This non-commutativity allows us to generate every
possibly configuration, and is made mathematically precise by the Frobenius Theorem [52].

2.2.5 Translation Invariant Systems

We will see shortly that the evolution of closed quantum systems is privy to right-invariance.
Such translation invariant systems are well studied in dynamics and we will briefly intro-
duce some pertinent points here. We note immediately that the use of right or left in all
of the following information is essentially arbitrary and can easily be interchanged.

Recall that if Ry is the group action of right-translation on G, then we define a right-
invariant vector field (Definition [2.2.25) F' € I'(T'G) to be one in which

(Rx).F = F, or alternatively (Rx).Fy = Fyx,VY € G.

In essence, a right-invariant vector field simply means that right-translation by a group
element simply results in the corresponding vector field at that element. We recall that
the left-invariant vector fields define a Lie algebra, and since they are isomorphic to the
right-invariant vector fields the Lie algebra can be defined in terms of either translation.
This might cause one to wonder what the implications of considering a dynamical system
under invariant vector fields might be.

Let F' € I'(T'G) be a right invariant vector field, or equivalently let Fy = F(id) € g.
Let exp|[tFpy] be the flow of F' with initial condition at the identity id. Then VX € G if we
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define X (t) = exp[tFp] X we get that

dX

This motivates the following definition:

Definition 2.2.44. Let GG be a Lie group and consider a differential system given by

d
X (t) = F(X(1) (2.37)

for some some smooth vector field F' € T'(T'G). We say that (2.37) is a right-invariant
system if VY € G the curve Y (t) = X (¢)Y also satisfies ([2.37)).

We would immediately like to point out an important difference between and
(2.37). Namely, the former is the product of a Lie-algebraic element with the state, while
the latter is a vector field evaluated at the state. In the case of matrix Lie groups, the
relationship between these two can be made explicit by considering the following lemma:

Lemma 2.2.45. Let G be a matriz Lie group of dimension n. Then the pushforward of
the right translation operator Rx(Y) =Y X acts on tangent vectors F' € T}aG as

(Rx).(F) = FX. (2.38)

Before we can prove this, we will need another lemma, stated as follows:

Lemma 2.2.46 (Lee [52]). Let F' : M — N be a smooth map and let v : J — M be a
smooth curve. For any ty € J, it follows that

a
dt

(Fon)=F (Z—Z(m)) (2.39)

to

Proof. By applying the definition of tangent vectors, we get

a =E (Z—Z(to))

dt

d

(Froy)=(Fony) 7

t=to

"t

to
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Proof of Lemma[2.2.45 Let Ry : M — M be the right-translation group action, and
v :J — M be any smooth curve such that v(ty) = id and 7/(tp) = F. Via Lemma [2.2.46|it
follows that we can calculate (Rx)«(F') by computing (Rx o)’ (ty). This is done as follows:

d d
— R, = — ) X
7 to( °7) o tov()
=7/ (to) X
= FX.

And so (Rx)«(F) = FX as required.
[

Now let Fy € Lie(G) be some Lie-algebraic element, and define F'(X(t)) = (Rx).F. By
substituting this into (2.37)) and using we get precisely the expression ‘Z—"f = FpX ()
as described by . We would also like to state how crucially important it is that Fj
be a Lie-algebraic element. In particular, since Fj is then guaranteed to be right-invariant
it follows that FoX(t) = (Rx())«F € TxG which keeps the equation consistent.

Now we need to be somewhat careful in translating our notion of right-invariant systems
to a control setting. In particular, the vector field is usually expressed as F/(X, u(X, 1))
and consequently is not a vector field, but instead represents a family of vector fields.

Definition 2.2.47. Let G be a Lie group and U C R™ a set of admissible controls.
Consider a differential control system given by

% X(t) = F(X(8), u(X(1),1)) (2.40)

for some smooth function F': G x U — T'G. We say that (2.40)) is a right-invariant control
system if VY € G,dRy F(X,u) = F(Ry X, u).

Notice that this definition encapsulates the same information prescribed in Definition
[2.2.44]but accounts for the existence of the control functions. In such right-invariant control
systems, the notion of controllability through accessible sets becomes very simple. Indeed,
if we take Xy € G \ {id} and the differential system is given by

dX

=L =F(Xu(X1),  X(t)=id
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then defining Y(¢) = X (¢) X, means that Y (t) satisfies

ay

—r = F(u(Y.1), (o) =X (2.41)

and the accessible set through X, can be written as A(X,) = A(id)X,. Since X, was
arbitrary, controllability for every element of the group can be determined by analyzing
the controllability from the identity.

We have examined the very basics of geometric control theory in this section, hoping to
provide a more rigorous view of the topics introduced in section With these techniques
in mind we are now more comfortable with extending control systems to general manifolds
using geometric techniques. Our next ambition will be to introduce the Maximum Principle
in this manifold framework so that it can facilitate our study in quantum control.

2.3 The Generalized Pontryagin Principle

To consider the extension of the PMP to general manifolds, we will need to consider the
natural symplectic nature of the cotangent bundle. Borrowing from the mathematical
development of classical mechanics, we take the state space and “lift” the dynamical equa-
tions to a state-momentum or phase-configuration space. The momentum operator is given
by a linear functional and hence the combined state lives in the cotangent bundle.

Definition 2.3.1. Let G be a smooth manifold and A?G be the set of alternating two
tensors, of which smooth sections are differential 2-forms. Then w € A%G is closed if
dw = 0, and non-degenerate it VF € [(TG), w(F, F) = 0 implies that F' is the zero section.
A symplectic structure is a closed, non-degenerate differential 2-form, and a symplectic
manifold is a manifold with a symplectic structure.

Analogous to the construction of intrinsic Riemannian structures on the tangent bundles
of smooth manifolds, the cotangent bundle has a natural symplectic structure.

Definition 2.3.2. Let G be a smooth manifold. We define the canonical 1-form at (X, \) €
T*G by 7(x = 7*A where m : T"G — G is the canonical fibre projection. Since this is a
one form, it maps (X, \) to a covariant 1-tensor which is a linear functional on T(T*G). If
¢ € T(T*M) then

(<) = TAQ) = Am.Q). (2.42)
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Proposition 2.3.3 (Bonnard [12]). Let G be a smooth manifold. Define w = —dr (there
is no canonical value for the sign) where T is the canonical 1-form on T*G. As defined, w
is a symplectic form on T*G.

There is a much celebrated result by Darboux which gives us a local expression for w
in terms of local coordinates.

Theorem 2.3.4 (Darboux). Let (G,w) be a 2n-dimensional symplectic manifold. Then
VX € G,3(zY y1,..., 2" yn) smooth coordinates such that in a neighbourhood around X
the symplectic form has the structure

w:i:d:ci/\dyi

=1

In particular, the “state-momentum” representation (X, ) on the cotangent bundle

implies that locally we can write w = Z dX"Ad)\;. Our next challenge will then be trans-
i=1

lating the problem of finding integral curves for X (¢) = F(X(t)) to one that is consistent

on the cotangent bundle. This is done as follows:

Definition 2.3.5. Let GG be a smooth manifold and consider a smooth vector field F' €
['(TG). We can uniquely lift this vector field to a function on the cotangent bundle, called
the Hamiltonian of F', and denote it by Hp : T*G — R. If £ = (X, \) € T*G then the
action of this Hamiltonian is defined as Hp(§) = A(F(X)).

Definition 2.3.6. Let G be a smooth manifold and H : G — R be a smooth function.

Then we can uniquely lift this function to a vector field on G, called gle Hamiltonian vector
field. This is done by associating it with the unique vector field ‘H € I'(T'G) satisfying
LW = —dH.

Notice that we can combine these two definitions to lift vector fields on a manifold G, to
vector fields on the cotangent bundle 7*G. In particular, if F' € I'(T'G) then we define the

%
Hamiltonian i}F as Hp € C(T*G), then lift this to the vector field Hp € I'(T(T*QG)).
We say that Hp is the Hamiltonian lift of F.

This notion of Hamiltonian lift will allow us to consider the more natural setting of
“state-momentum space,” on which the solution to our optimal control problem will be
projections of lifted trajectories. However, the definition above is very obscure and it may
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not be immediately evident why it would give the desired results. By discovering the form
of the Hamiltonian vector field in terms of the Darboux coordinates, we will find that
Hamilton’s equations are satisfied. Let us specify some arbitrary point in T*G so that we
have a Darboux coordinate system (X7, \;). Keeping Hp as general as possible, we can
write it in terms of a Darboux basis as

—  — 0 0
= A’ -+ B;— 2.43
Hr ; ( X " 8)\1-) (243)
. —
for a series of coefficients A, B; that have yet to be determined. By Definition , Hr
must satisfy LW = —dHp. Since Hp is a function on T*G, dHp is just a 1-form and can

easily be comthed in the Darboux basis as

dHp = Z (g’;f adX' + %71{’ d)\i) , (2.44)

i=1

For notational simplicity, we will resort to the contraction notation for interior-products
as they are more desirable than operating on a cotangent element. Thus take (xw = X _w

and calculate Hp_w to be [5]

n

o & .0 0 ;

j—l i=1

7 8 %
—ZZ [Aﬂa (dX* A dN) + ja—AjJ (dx /\dAi)}

=1 j5=1

Tl e ()
e () ())

=> ) [A5id\; — B;6ldX] (2.45)

=1 j=1

Hiow =3 (Ald); — Bdx') . (2.46)

i=1
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In order to arrive at (2.45)) we have used the orthonormality of the Darboux basis so that

0 — 8
dAi<a_Aj>_5i
dX (a j>:5j

i( 9 _
o (2) o

By equating (2.46) with the negative of (2.44]) we see that A® =
that locally, the Hamiltonian vector field has the form

fr= z; ( N 0X'  OX a_AZ-) ' (247)

OHr
O\

M

B’i - 3
’ 0X?

SO

: —
The new system given by £(t) = Hp(£(t)) for £(t) = (X, \) € T*G will then have integral
curves satisfying Hamilton’s equations.

dXi . G”HF d)\,' 8HF

) VT ) Ch (248)

Alternatively, if we specialize to the case where our manifold is a Lie-group we can
further infer information about the structure of some of these elements. Let G be a Lie
group with a Lie algebra g. We first recall that the pushforward of the right-translation
action maps dRy : TxG — TxyG, and hence the pullback acts as (dRy)* : TG — T%G.
By a particular choice of Y = X! then (dRx-1)* : TG — T%G, and acts as

(dRx-1)*(\)(H) = A (dRX_l(H)> . VAETHG, H e TxG. (2.49)

This implies that for every A € T}G = g* and X € G we have an element (dRx-1)()\) €
T%G. Since X and A\ were chosen arbitrarily, we can consider the identification (X, \) <>
(dRx-1)*(\) which allows us to write

T"G =G x g (2.50)

As we have seen, there are times when it is prudent to work with 7'(7*G). Since T*G =
G x g* then
T(T'G)=T(Gxg")=TGaTg" (2.51)
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By applying the same analysis that resulted in we can write TG = G x g and
Tg* = g" x g* yielding

T(T"G) = Gxgxg xg (2.52)
Just as we associate to a tangent bundle T'G the pair (x, V) of a point 2 € G and the tangent
vector V', we may choose to write this decomposition as T(T*G) = (G x g*) x (g x g*) so
that the base point is given by (G x g*) and the “tangent vector” is given by g X g*, with a
typical element denoted as ((X,\), (H, J*)). When the base point is implied, we may just
represent this as (H, J*).

Given a function f € C*(T*G) and a vector field V = (H, J*) € I'(T(T*Q)) it can be
shown [39] that

(V)(X,\) = (deg)f( (X, A)) (H(X, A)) (XN (gﬁ(x /\)) (2.53)

Consequently, if 77; = (H(X,\),J"(X,\)) € I(T(T*G)) is the Hamiltonian vector field of
the Hamiltonian Hp € C*(T*G) we get that

OH . . (OH x
H(X,\) = B\ — (X, \), J*(X,\) = —dRY% (aX(X )\)) —ad" H(\) (2.54)
which results in the generalized Hamilton’s equations
dX OH dx oH . OH
dt dRX(aA) dt dRX(EX) (d 8A)A (2:55)

We are now in a position to examine the generalized Pontryagin principle. Let G be a
smooth manifold and D be a distribution T'G. Let fy be a cost criterion so that (D, fy)
defines a generalized optimal control problem. If we assume that D is given by a set of
vector fields F,, then we have a system that can be represented by . We define a new

variable X which satisfies

dX—fo( X(1), U(X.1)) (2.56)

and define an extended control system on (X, X) € M x R given by

d d
X)) = FX (), u(X(®)1), X)) = fo(X(), UX(?),1)) (2.57)

which is equivalent to (D, fo). For a fixed control u, we can then extend the vector field
to F, = (F(X,u), fo(X,u)) € T*(R x G). Since T*R = R? it follows that

T"RxG)2T'ROTG=R*PT*G. (2.58)
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Hence we can write £ € T*(R x G) as = ((XO, o), (X, )\)) and the Hamiltonian of F,
can then be written as

Horo (6, 1u) = Ao fo(X (), u) + AF(X(t), u)) (2.59)
allowing us to state the following theorem:

Theorem 2.3.7 (The Maximum Principle, Jurdjevic [39]). Suppose that X (t) is an optimal
trajectory of the generalized optimal control problem (D, fo) defined on [0,T]. Let F be any
control section of D that contains X (t) and u(t) be the control that generates X (t). Then
I < 0 and an integral curve £(t) of ??,\()(, u(t)) where Hy, is given by ([2.59), defined on
all of [0, T, such that

1. X(t) is the projection of £(t),Vt € [0,T]; that is, if m : T*G — G then X (t) = w(&(1)).
2. For any t € [0,T] such that Ay = 0 it follows that £(t) # 0.
3. u(t) satisfies Hay(€(0), ul(t)) = sup Hay (€(2), 0)

veU

4. HAO(&Q)?“@)) =0,Vt € [OvT]

We would like to point out the structural similarities between Theorem and Theo-
rem [2.1.5] This is largely due to the fact that most proofs of a manifold Maximum Principle
follow from the proof of the original principle. A notable alternative to these traditional

methods is given in [2I] which uses a combination of the Whitney Embedding Theorem
mentioned earlier, the Tubular Neighbourhood Theorem[52] and the PMP in R".

The advantage of using the Maximum Principle as extended to smooth manifolds is
that we have utilized the tools of differential geometry; a set of additional resources with
which to analyze our problem. All the results given by the CMMP (Theorem and the
PMP still hold in the special case that our manifold is some subset of R, but we can now
avoid large dimensional embeddings into R and the resulting cumbersome computations
by exploiting the inherent properties of the manifold.

Let us take an additional step and examine the same set of calculations given in section
that ultimately led to the definition of singular controls in Definition 2.1.7] Let G be a
smooth manifold and assume that the function F(X,u) is an m-input, control affine func-
tion that can be expressed as the right-translation of Lie-algebraic elements. Furthermore,
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assume that the control amplitudes are symmetrically bounded |u;(t)| < M;. Consider a
time-optimal cost function and assume that Hy, H; € Lie(G),i = 1,...,m so that

Notice that since Lie(G) is an algebra it is closed under arbitrary sums ensuring that
equation (2.60)) is well-defined. Equation (2.31)) can be written as

d m
ZX(0) = (HO + Zl ui(t)Hz) X(1). (2.61)

By applying Theorem [2.3.7, we are guaranteed the existence of A € T*G which acts as a
linear functional, giving the Pontryagin Hamiltonian ([2.59))

7'[)\0(5,10 = )‘0 + A

By applying condition |3| of Theorem we see that our control is still governed by
w;(t) = sgn(w;(t)) M; whenever sgn is well-defined. Precisely the same definition of singular,
normal, and abnormal controls from Definition 2.1.7] and [2.1.§] still applies.

2.4 Casting Quantum Mechanics into a Control Frame-
work

With the control theoretical part established, we can now move to casting quantum me-
chanics into a formalism that permits control techniques to be used. We will begin by
introducing some of the more fundamental concepts of quantum theory and how the geo-
metric framework can be built around these ideas. Afterwards, we will discuss the control
domain wherein the problem will be formalized and some results stated.
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2.4.1 Introduction to Quantum Mechanics

A large part of the power of quantum mechanics lies in the rigorous mathematical frame-
work which has been established around the physical observations. As a matter of fact,
once one axiomatically defines a few postulates of closed quantum systems, the rest of
the theory can be built. While the abstract formulation of quantum mechanics into a
purely mathematical framework might remove the physical implications of what is occur-
ring, it allows us to ignore the physical details and embed our problem purely in terms
of a differential geometric setting. We present below an abstract introduction to some of
the most fundamental results pertaining to quantum systems which will be relevant to our
discussion.

Definition 2.4.1. Let Z be a complex vector space and (-,-) : Z x Z — C a positive-
definite sesquilinear form. We shall refer to d(z,y) = \/{(z —y,z —y) as the induced
metric, which satisfies all of the properties of a metric under either formalism. The pair
(Z,(-,-)) is said to be a Hilbert space if (Z,d) is complete in d.

It is worth noting there is a degree of personal preference in choosing whether the first
or second argument is conjugate linear. In quantum mechanics, one often takes the second
argument to be linear and hence this is the definition we will use throughout the remainder
of this thesis.

While Hilbert spaces are used extensively in quantum mechanics, there is a subtle
difference in how the inner-product is used. In order to properly discuss why this is the
case, it is necessary to introduce the following theorem:

Theorem 2.4.2 (Riesz Theorem, Kreyszig [49]). Let (Z,(-,-)) be an inner-product space
and consider the dual space Z* of linear functionals on Z. FEvery bounded linear functional

f can be represented in terms of an inner-product; namely, there exists a unique z € Z
such that f(x) = (x,z) and ||z|| = ||f]|-

We note that the mapping & : Z* — Z sending &f = z is an anti-linear isometric
isomorphism between the Hilbert space and its dual . This allows us to move between an
inner-product and functional evaluation on Hilbert spaces.

The Dirac bra-ket notation is standard throughout quantum mechanics and so it is
introduced here. Given a state 1) € Z we denote this by the ket [i)). Alternatively, given
¢ € Z* we denote this by the bra (¢|. It is here that Riesz’s theorem becomes valuable.
Let ¢ = ®¢, and notice that

(9lY) = {p,¥) (2.62)
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where the left-hand-side is the evaluation of a linear functional on an element of a Hilbert
space, and the right-hand-side is an inner-product. In an abuse of notation, we associate
the image of a bra under ® to its corresponding ket. More precisely, we define

@ (] = [9)

so that (¢[Y) = (¢, ). Note that if U is an operator on H, then the notation (¢ |U| ) is
taken to mean (¢, U).

The unitary group is an important algebraic structure in quantum mechanics, and will
be very crucial to this thesis.

Definition 2.4.3. Let (Z, (-, -)) be a complex Hilbert space. A unitary transformation on
Z is a surjective linear isometry. More precisely, if u,v € Z then U : Z — Z is unitary if

(u,v) = (Uu,Uv) . (2.63)
In the event that Z = C” for some n € N, we define the unitary group as
Un) = {U € M,(C) ‘ UlU = UU" = id, } (2.64)
We define the special unitary group Si(n) as the subset of L(n) with unit determinant
Sii(n) = {v € 4(n) ’det V= 1} . (2.65)

For Lie algebraic reasons that will be discussed in the future, we define the space of skew-
Hermitian matrices

u(n) = {U € M,(C)

U+U' = 0} (2.66)
and the subset of traceless skew-Hermitian matrices

su(n) = {U € u(n) ‘ Ti[U] = o} . (2.67)

Definition 2.4.4. Let (Z,(-,-)) be a complex Hilbert space. A phase factor is an element
of the circle group T = 4(1) in C.

The group (1) corresponds to the circle group, or equivalently the set of all complex
numbers with modulus 1. We can represent elements of (1) as e for some 6 € [0, 27),

which informs us that the induced norm ||¢|| = \/{(¥|t¢) is invariant under global phase

since

lell” = () = e (1) = (Wl = 4. (2.68)
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In the mathematical formulation of the theory of quantum mechanics, one axiomatically
assumes that every closed quantum system can be described as existing in an ambient,
separable, complex Hilbert space. Furthermore, we have seen that the concept of global
phases play no part in the mathematical formalism (though we note that relative phases are
important and observable). For this reason, we can instead consider the equivalence class
of elements modulo a phase-factor which is equivalent to working with the the projective

Hilbert space P(Z2).

As the primary focus of this treatise will be to examine applications to quantum com-
puting, we will restrict ourselves to the case where Z is finite dimensional. It is shown in
Appendix that two Hilbert spaces are isomorphic if and only if they have the same
Hilbert dimension. As a consequence, one may assume for the remainder of this thesis that
Z = C" and P(Z) = PC" ' unless stated otherwise. We note the particular instance when
n = 2 in which case PC' is the Bloch Sphere.

Definition 2.4.5. Let (Z, (-|-)) be a Hilbert space and [¢y) € Z. Let H(t) be an operator
that describes the quantization of the system energy. The Schrodinger equation is a dy-

namical equation that governs the evolution of the state [iy) in the closed system described
by both Z and H(t) and is given by

d
ih— [W(t)) = H(t) [4(1)) [U(to)) = |t0) (2.69)
where A is the reduced Planck’s constant and i2 = —1.

In the case where H = H(t) is time-independent, this can be solved using an exponential
function. Unfortunately, it is often not suitable to assume a time-independent Hamiltonian
(as will be the case in control theory) which necessitates the introduction of the time-
ordering operator T which allows us to keep the exponential notation. By applying the
theory of differential equations, we can write the general solution to as

po) = Tex [ /t:mt) it 1. (270)

Defining X (t,t9) = T exp [—% ft'; H dt} we get that we can propagate any initial state |¢g)
to its final state simply by left-multiplication [iy) — X(¢,%o) |to). For this reason, we
often refer to X (t,ty) as the time-propagation operator from tq to t. We notice that the
choice of |¢)g) was arbitrary and that the particular form of X(¢,¢y) depends only on the
choice of Hamiltonian H (). Consequently, instead of considering a different problem for
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each choice of initial condition |¢)g), it is more prudent to instead examine the operator
X(t,t) itself.

To deduce the differential equation for X(¢,ty) it is a simple matter to substitute

[(t)) = X(t,to) [tho) into to get

. d

X (1 10) ) = H()X (1 1) o). 2.71)
Since |t)g) is constant in time, we can remove it from the differential equation. Furthermore,
in order to ensure that |¢(t)) = |¢o) we demand that X (to, o) = id, the identity operator.
Summarizing, we see that equation (2.69)) is equivalent to

d
ih—X(t,to) = H()X(t,t0),  X(to,to) =id. (2.72)
We often assume that g is fixed and often even 0. This allows us to remove the dependency
of X on t( instead writing X (t) = X (¢, o).

Our first thought might be to consider the control of pure quantum states subject to a
specific Hamiltonian. If one chooses to be even more general, permitting the existence of
mixed states, then we might consider evolution in the space of density matrices. However,
in the closed-quantum formalism, we benefit from two interpretations of time-evolution:
the Schrodinger and Heisenberg pictures. The Schrodinger picture views states as dynamic
variables with static operators, whilst the Heisenberg picture allows operators to progress
through time instead. By utilizing the Heisenberg picture, we do not need to worry about
whether we are dealing with pure or mixed states, since by explicitly giving an expression
for X(t,tp) we can characterize both instances.

Physically, we require that energy levels of quantum systems be given by real numbers.
Since the measurement of such levels corresponds to eigenvalues of the matrix representa-
tion, this puts a restriction on the system Hamiltonian H.

We note that the quantum Hamiltonian is necessarily Hermitian. The expectation value
of a measurement of energy given that our ensemble is prepared in the state [¢) is given by
(¢ |H| ). Physically, we demand that such measurements yield real results. This means
that

(WH|p) = (W |H|¢)" . (2.73)
However, by conjugate symmetry, (¢ |H| )" = (Hy)) giving
(Hiplyp) = (| Hp). (2.74)
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It follows that H = H' and so H is Hermitian.

We denote the set of N x N Hermitian matrices as iu(N). Lie algebraic methods
then allow us to conclude that the trajectory X (¢) must be unitary for all time, since the
Schrédinger equation implies that ¢H is in the Lie-algebra for X, so X € $(N).

The rest of this thesis will focus on the Lie groups LU(NN) or its subgroup GU(N). It
is important to note that these Lie groups are also complex Hilbert spaces under the
Hilbert-Schmidt norm given by

(X,Y) =Tr [XTY] (2.75)

which is derived by embedding (&)4U(N) as a C-vector space under the standard Euclidean
inner-product. As mentioned before, this inner product is proportional to the Killing form

on (G)U(N).
Proposition 2.4.6. If we are given the inner-product
(X,Y) =Tr [XTY]
then (U(N), (-,)) is a Hilbert space.
Proof. 1t is well known that the unitary group (V) is compact when viewed as a subspace
of RY under the standard Euclidean inner-product. Since is equivalent to the

Euclidean inner-product, it follows that ${(N) is compact under the induced metric of
(X,Y). It is then complete since all compact spaces are complete. O

Corollary 2.4.7. The special unitary group SU(N) is also a Hilbert space under (X,Y).

Proof. Tt suffices to show that the special unitary group is a closed subset of $4(N), since
closed subsets of compact sets are compact. It is trivially a subset by definition, so it
remains to show that it is closed. By [§], we know that the determinant mapping

det : My(C) = R (2.76)

is a continuous mapping. We can define GLU(N) = det™" {1} N LU(N). Since det is con-
tinuous, det™ {1} is closed. Since U(N) is compact it is also closed. Thus we have that
GU(N) is the intersection of two closed sets and hence is closed. O

Proposition 2.4.8. With the inner-product (X,Y') as defined in (2.75)), the induced metric
1S given by

d(X,Y) = /2N — 2R (X,Y). (2.77)
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Proof. 1t is well known that all inner-products induce norms and all norms induced metrics.
By transitivity, the squared-metric is then given by

AX, Y2 =X -Y|P=(X-Y,X -Y). (2.78)
Expanding the right-hand side, we get

(X =Y, X =Y) = (X, X)+(Y,Y) = (X,Y) = (V, X)
= [IXIP+ 1Y ]* = (X, 7) = (X, Y)

= | X|*+[Y]* - 2R (X,Y). (2.79)
By definition of the norm, for any X € (N)
X = (X, X) = Te[XTX] = Te[id] = N (2.80)
and so we conclude that
d(X,Y)* =2N — 2R (X,Y) (2.81)
which gives the desired result. O]

It is important to note here that the inner-product defined by the Killing form is natural
when viewing L(N) as a subspace of R. However, this is not the only way of measuring
distances between unitary operators. Another commonly used function is the diamond
norm. In fact, there are many different metrics which can be used, and so our choice of
using a trace inner-product is not unique.

2.4.2 Quantum Control

Since the Schrodinger equation describes the evolution of closed quantum systems, we focus
our attention on describing its properties and enforcing our control through its dynamics.
The first thing that we note is that (2.72)) is right-invariant.

Proposition 2.4.9. The Schrédinger equation is right-invariant on $4(n).

Proof. Let X (t) be a solution to (2.72)) and choose an arbitrary constant matrix M €
M, (C). By defining Y (t) = X (¢)M it follows that

d dX
ihEY(t) = zhg(t)M =HX(t)M = HY (t) (2.82)
which is precisely what is required. 0
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As discussed in Section controllability is now easy to verify as controllability from
the identity characterizes controllability over the entire space.

We further wish to be able to control the system in a coherent fashion; that is, by
modifying properties of the system rather than the state itself. This can be done by
manipulating the system Hamiltonian. We can write it in terms of its internal and external
contributions

H = Hipy + Heyg (283)

whose explicit expression often takes the form of an m-input, affine control system

j=1

where H; € ${(N) for each ¢t = 0,..., m. Physically, Hy = Hj,; describes the drift Hamilto-
nian that governs the system dynamics in the absence of control, u;(¢) € R describes the
control amplitudes, and H; are the control Hamiltonians describing how we are physically
exerting our presence the system. Note that in the event that Hy = 0 we say that the
system is driftless.

Demanding that the system obey an affine structure is a natural consequence arising
from the additive nature of energy functions. In particular, introducing an additional
source of energy to a system results in an additive change in the system Hamiltonian.
Since we have chosen to exercise our control by manipulating external energy sources, the
affine restriction further allows us to benefit from the extensive work previously done in
affine control theory. Additionally, it is important to note that we have taken the H; to be
time-independent, which we are permitted to do from a design perspective and corresponds
to keeping the direction of the fields constant.

In the following, we will quickly review some of the work done by [37] in reviewing the
specialization of affine control systems to the unitary group.

Consider the differential system given by (2.72)) and write H = H(u) to denote the
explicit dependence of the Hamiltonian on the control variables. Furthermore, let us spe-
cialize to a time-optimal problem and choose units such that A~ = 1. By Theorem [2.3.7] it

follows that £ A(t) = —a;{—XH where

(X, M), 1) = Ao + RAE) (—iH (w) X (1)) (2.85)

In [5, 37] the authors choose to represent the functional action of A as in inner-product,
writing A(X) = (A, X). We note that even when this inner-product is not explicit, this
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notation is still acceptable as it represents a bilinear mapping that preserves the duality
shared by A and X. This allows us to write

Hir((X, ), 1) = Ao + R(N(E), —iH(u)X (1)) . (2.86)

By utilizing Hamilton’s equations given in (2.48), one can show [37] that A(t) satisfies
A(t) = —iH(t)A\(t) with solution given by A(t) = X (¢£)A(0). By making use of the adjoint
of X (t), we can write ([2.86) as

Hu (X, A),u) = A + R (N0), —iXT(t)H(w)X(t)) (2.87)
from which the author claims that A(0) can be replaced by an element M € su(N) giving

Hu (X, A),u) = Ao+ R (M, —iXT(t)H(u)X(1)). (2.88)

We note that when the inner-product is taken to be the trace inner-product, we can
drop the real-argument from (12.88)) since the trace of the product of two elements in u(n)
is guaranteed to be real.

The ability to convert the Hamiltonian into the form given by allowed the author
of [37] to consider a partial treatment of optimal extremals. However, the general argument
used to claim the existence of the matrix M was purely existential and it is not yet known
how to construct it explicitly. Without further information regarding the structure of M,
we are unable to exploit this simplification to help in our computational or analytical
analysis.
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Chapter 3

Literature Review

While the focus of this thesis pertains to time-optimal, bounded control of unitary oper-
ators, we will survey some of the prominent results in closely related fields. Such results
will be important to our study as they operate through fundamental assumptions, provide
similar techniques, or pose potential for future development. This treatment will be fol-
lowed by a more detailed presentation of literature relevant to the thesis, before moving to
an introduction of the mathematical theory we will be using.

3.1 General Optimal Quantum Control

The purpose of optimal control is to minimize a cost function while driving an initial
system configuration to a terminal configuration. Optimal quantum control is an incipient
field whose results stem from only a few decades of serious research. The burgeoning of
technological advances that have allowed experimentalists to manipulate the intricacies of
microscopic systems has flourished activity in quantum control research. The breadth of
the field precludes a comprehensive examination despite its nascence, though we hope to
explore some interesting results that pertain, although indirectly, to this thesis.

This section contains a summary of the literature in fields that are tangentially related
to the thesis topic. Much of the mathematical details will be omitted in order to keep
the presentation cogent and to limit the amount of unnecessary background information
required. The reader interested in the tedium is referred to the papers themselves, as well
as the appendix whenever more complex mathematics is unavoidable.
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3.1.1 Controllability

We shall start by discussing the issue of controllability; that is, whether any state is acces-
sible from any other state. This topic has received a great deal of consideration because of
how fundamentally important it is to the study of any control system, though a plethora of
results has made the problem manageable. Controllability determines our ability to access
particular states within the system. In ideal situations, a system is completely controllable
which tells us that any state can be driven to any other.

As it pertains to our study, we refer to the seminal paper by Jurdejevic and Sussman
[40] who aimed to establish controllability results on general Lie groups. This paper is
very important to studying controllability on Lie groups and established the foundations
of such a study.

The authors consider multiple sets of admissible controls for a right-invariant control-
affine system with drift. To be more explicit, let G be a Lie group and X (¢) € G describe
a time varying state. Assume further that the state obeys the system dynamics given by

d m

ZX(8) = Ho(X(9) + Z wi(t) Hi (X (1)) (3.1)

where {H;}!" is a set of prescribed right-invariant vector fields. Theorem [2.2.28 tell us
that the Lie algebra g can be identified with the tangent space at identity, so we can write

g = 71.G and {H;};", C T.G.

We say that {H,},", generates the Lie algebra if the distribution spanned by {H;}",
is bracket generating. More precisely, if D = span {H;};" | then

DCD*C...CD =TG

for some r € N. Jurdjevic and Sussman show that if G is connected and {H;};", is bracket
generating then (3.1]) is controllable. Furthermore, if G is compact or driftless the converse
also holds.

The paper also gives a structure argument in that VX € G we can write X as a finite
product of elements of the form exp[rH;(X(t))], and that whenever G is connected and
(3.1]) is reduced to a driftless, two-input system

%X(t) = uy (t) Hy (X (1)) + ua(t) Hy (X (1)), (3.2)
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almost any pair of control fields will generate the entire Lie algebra. This means that almost
any two right-invariant vector fields give rise to a controllable system. Mathematically, the
precise statement is that

{(Hl,Hg) € g X g | Hy, Hy generates g} (3.3)

is open and dense in g X g.

The previous paper truly encapsulates the pertinent results required for application to
control of operators on closed quantum systems. Such operators evolve on the unitary or
special unitary groups, which are themselves connected and compact. The property of the
control fields be bracket generating is known as the Lie Algebra Rank Condition (LARC)
and remains the primary method for testing controllability.

It should be noted that despite being revered for its simplicity, the LARC can be a
computationally expensive proposition. From Definition [2.2.40] determining whether a
distribution is bracket generating requires computing many Lie brackets. The number of
computations that need to be calculated can be reduced by realizing that if F and G are
two distributions with bases {f;}7", , {g;}i-; then

[F,g]:span{[f,g] ‘fe}“,geg}:span{[fj,gk] ’jzl,...,ml,kzl,...,mg}.

One needs to iteratively apply this computation to D while maintaining knowledge
of the basis vectors[67]. Without an a priori knowledge of whether the set is bracket
generating, it is uncertain whether this algorithm will even terminate. This is exacerbated
by the fact that dimg $4(d) = 4¢, and so as we consider multi-particle systems, the number
of basis elements needed to span T'G' grows exponentially. For this reason, Altafini[6] has
worked on alternate methods to test controllability without computing Lie brackets.

Altafini’s method relies heavily on the root-space decomposition of the manifold and
properties of the graphical representation of the control field, a tool which we will also see
implemented in the time-optimal considerations of [4]. Since Altafini’s primary interest is
the application to quantum control, he considers the compact Lie group GU(N) and the
single-input affine control system

%X(t) = (Ho + u(t)H\) X (t) (3.4)

where Hy, Hy € su(N), the real Lie algebra of traceless skew-Hermitian operators. Let
su(N)® denote the complexification of su(N), and take h € su(N)®. We say that h is
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regular if dim(kerady) = N — 1 where ady = [H, -] is the adjoint representation of H. The
element h is strongly regular if all non-zero eigenvalues of ady have unit multiplicity. For
the interested reader, we note that eigenvalues of the linear operator ady are also known
as weights of the representation.

Fix an h € su(N)®. The Cartan subalgebra corresponding to h is then the zero
eigenspace of ady given by

go(h) = {k € su(N)C ’ ady, k = o} . (3.5)

The roots of su(N)® under h are then the set of functionals « : go(h) — C such that
ad, k = a(h)k; that is, they are the functional eigenvalues. Hence we can decompose
su(N)C as

su(N)® = go(h) + @ga, 0o = {k € su(N)© ‘ ady k = a(h)k;} (3.6)

acA
where A denotes the set of all roots under h. Altafini claims that the roots have a physical
interpretation, and correspond to transitions between different energy levels of the system.

Now assume that C' is a square matrix and associate to it the graph Go = (N¢,Ce)
consisting of nodes N¢ and oriented paths Cc determined by using C' as an adjacency
matrix. The graph Gp is said to be strongly connected if for every two nodes there is an
oriented path connecting them.

The primary results of Altafini’s paper are as follows: using this root-space decompo-
sition, if Hy, Hy are as in ({3.4) with Gp strongly connected and Hj strongly regular then
the system is controllable. There are further developments in the paper that allow these
conditions to be relaxed to a notion of relative regularity called H;-strong regularity, as
well a treatment of a few special cases that arise; however, these arguments are beyond
the scope of this thesis. Ultimately, the author presents a different characterization for
controllability on quantum mechanical systems that completely avoids the computation
of Lie brackets. The theoretical description given by Altafini is more complicated than
the LARC, but makes use of analytical techniques to give a result that is easier to verify
numerically.

3.1.2 Control Landscapes and Geometry

Next we would like to consider some of the work done on control landscapes. The ob-
jective here is to discover the general topological properties of quantum control systems
irrespective of any particular form of the system Hamiltonian.
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A collection of two papers written by Nielsen et al. [58, [59] aim to relate the notion of
quantum circuit complexity to geometric objects on Riemannian manifolds. The authors
show that one can obtain bounds on circuit complexity by considering trajectories derived
from related problems in optimal control. In particular, by using a time-optimal control
problem, one can show that the implementation time and gate complexity are related by
a polynomial which scales in the number of qubits.

The first of these two papers [59] does not explicitly consider the relationship between
control theory and gate complexity, but instead lays the foundation that will be used in the
second paper. The motivation is to impose a cost function on the Hamiltonian that, when
considered as a decomposition into the Pauli basis, penalizes 3-or-more qubit operators.
From this a Riemannian metric is constructed for which the gate complexity is polynomial
in the induced length metric distance between the gate and identity. More precisely, if we
have an n-qubit system, let

1

a1.X) = it [@I D= {35005 X0 = 1A = X} (1)
X Jo

be the induced length metric between the identity I and another other X € &(2"). The

authors show that it requires only O(n°d(I, X)?) one- and two-body gates to synthesize

an operator X, such that || X — X.|| < ¢ for any constant ¢ > 0, where ||-|| is the operator

norm.

The second paper [58] exploits the lack of generality of the first. In particular, while a
very specific metric was used in the first paper, it was found that many other metrics could
also be used. Consider a two level, n-qubit system occupying G(2"). Let X € GLU(2")
and denote by G(X) the number of one- and two-qubit gates required to exactly synthesize
X. Let G(X,¢) denote the number of one- and two-qubit gates required to approximately
synthesize X up to an error €. Next, consider the operator Schrodinger equation

Cg_ltf = —iHOX(E):  H) = ult)H, (38)

Jj=1

for control fields @(t) = (ui(t),...,uy(t)) and H; € su(2"), assumed to be controllable.
Define the cost function ¢ : R™ — R parameterized in terms of the control fields given in
(3.8) over some admissible set 2 € R™. We then say that the cost of the unitary Xy is
given by

C(X) =  inf /Oc(a’(t)) dt (3.9)

T>O:a€QXd,T
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where Qx, 7 = {E €Q ‘ X(T) = Xd} is the set of control fields that drive the system (3.8
to X, in time T

The results of the paper are very general and can be applied to many metrics. We
focus our attention on the case of time-optimal control where ¢(u(t)) = 1, and use this
to define a relationship between C'(X) and G(X). Consider again the single-input, affine
control system with drift given by with |u(t)| < 1 and {Hy, Hy} chosen such that the
system is controllable. Note that C'(X) now represents the optimal time to implement X
with bounded controls. The authors show that there exists a polynomial ¢(n) such that
C(X) < q(n)G(X); that is, C(X) and G(X) differ by at most a multiplicative factor that
scales polynomially in n.

The authors use their general results to find other relationships using a sub-Riemannian
metric and the same Riemannian metric used in [59]. While no other examples of control
systems are given, the theorems provided in the paper provides a framework in which
other bounds could be found by applying different cost functions. These same authors
have continued their work in this area, though the connection to control theory once again
becomes vague. The interested reader is referred to [20] for further reading.

There is another collection of works published annually by a series of authors concerning
optimal control transition landscapes [33], 34], 35, [62], [63], 64 [74]. These papers consider
a general landscape topology without referring to the form of the Hamiltonian. This is
done by parameterizing the cost function purely in terms of the control fields, known as
the kinematic approach. In particular, the goal of the first two papers is to analyze the
possibility of sub-optimal local extrema when maximizing state transition probabilities [64]
or gate synthesis [63]. This result is of particular importance to the study of the numerics
of high-fidelity controls, and was introduced as an attempt to explain why experimental
and numerical results often found good candidate solutions while avoiding local traps. We
would like to emphasize here that the results found below do not apply directly to time-
optimal control, since the objective is simply to synthesize the final state regardless of the
time taken for implementation.

Consider an N-level system and let X be the desired unitary with X giving the best
approximation to X . Since the exponential function is surjective, there must exist matrices
A and B such that X; = exp[iB] and X = exp[iA]. Let {b;, |5}, {ai,|a;)} denote the
eigen-sets of B and A respectively. We want to optimize the transition from X to X, which
is done by considering the cost

C(X) = 2N — 2RTr[ X X] (3.10)

which is derived from the Frobenius norm in Section [2.4.1l However, the evolution of
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X depends on the state of the Hamiltonian. By taking wu(t) as the control vector and
reparameterizing X purely in terms of u(t), we can write the cost function in terms of
the controls as Clu(t)], allowing us to examine how changes in u(t) affect C' without any
explicit knowledge of the Hamiltonian.

The authors are able to show that the infinitesimal generators A and B commute so that
they share a set of eigenvalues. Furthermore, the difference between any pair of ordered
eigenvalues is an integer multiple of 7. This means that for a fixed set of eigenvalues a,
and b,,3n, € N such that a, — b, = n,m. By expanding the trace operator in in
terms of the eigenbasis of B the authors are able to shown that

C=2N-2> (-1)". (3.11)

Hence, depending on the overall parity of the n,, it follows that C' can only attain a discrete
set of values corresponding to C' = 0,...,4N. The case where C' = 0 corresponds to a
perfect but out-of-phase control X, = —X and C' = 4N is perfect in-phase control Xy = X.

The next step is to analyze the Hessian of C' with respect to u(t) to see if any results
can be found concerning the existence of suboptimal extrema. It is shown that the Hessian
is positive definite when C' = 4N, negative definite when C' = 0 and indefinite for all other
values of C'. This implies that all sub-optimal states correspond to “saddle points” and
should not impede the ability of local search algorithms.

The fifth paper in the series [34] reiterates and extends the results found in [63] while
taking a more geometric point of view. Once again the author considers a kinematic
parameterization of the unitary propagators so that the particular form of the system
Hamiltonian does not affect the analysis.

Consider the unitary group $(N) and the group action G : U(N) x U(N) — U(N)
defined by conjugation G(W, V) = WVWT. The orbit of an element V under G is given by

Orbg(V) = {g(S, V) ‘ S e u(N)} (3.12)
and the stabilizer of V' is given by
Stabg(V) = {5 € u(N) | g(s,v) =V} (3.13)

The stabilizer and the orbit of a group element are related by the well known Orbit-
Stabilizer Theorem from the theory of group actions[68]. It states that the orbit of an
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element is isomorphic to the set of left cosets of the stabilizer, or in our case this can be
more succinctly expressed as

Orbg(V) 2 $U(N)/ Stabg (V). (3.14)

Let X4 be the desired unitary and consider the cost function as a measure of fidelity so
that C[V] = RTr[X!V]. Noting that left-multiplication X — X! X is an automorphism of
the group, the landscape defined by the automorphism does not change. For this reason
it is sufficient to replace X1V by V and hence consider the cost function C[V] = RTr(V).
Our goal is to characterize the critical submanifolds of this cost function, and by [63]
there are only a discrete set of critical values. Let {V},,} describe the critical values, with
an index ordering induced by the ordering of the values of C[V,,]. Using our arguments
above and using the cyclic invariance of the trace, the critical submanifolds are Orbg(V;,,)
and hence are isomorphic to (N)/ Stabg(V;,,). The authors then show that Stabg(V},) =
U(m) x U(N — m) and hence the critical submanifolds are precisely the Grasmannian
manifolds

U(N)
U(m) x YN —m)’

Of interest is that the authors then compute an abstract “volume” of these Grasmannians.
We note that this abstract volume is only used to compare the relative size of volumes
on the manifold and does not correspond to a physical volume. Nonetheless, it describes
the relative size of these submanifolds with respect to all of L(N). The authors are able
to show that as N increases, these volumes decrease and play a less significant role in the
landscape topology. Further, it should be clear that out-of-phase perfect controls m = 0
and in-phase perfect controls m = N reduce the critical submanifolds to isolated points.
The authors then move on to a familiar Hessian analysis which indicates that all other
critical points correspond to saddle points.

(3.15)

Finally, [35] mimics much of the techniques and results of the previous paper, but with
different constraint assumptions. We recognize that a common and important theme of the
previous papers was using a kinematic point of view so as to avoid dealing with the specifics
of the Hamiltonian. In particular, the only assumption made was that the Hamiltonian
was Hermitian. This paper examines the landscape topology when the Hamiltonian is
assumed to be real-symmetric or symplectic, which arise naturally when considering special
symmetries in the system. The authors once again show that the only extrema correspond
to prefect controls modulo a phase, and that all other critical points are non-optimal.

It is worth mentioning that the details of several papers originally listed have been
omitted from this discussion, notably [33], 162, 64 [74]. While interesting and still pertaining
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to quantum control, these papers tend to focus more on state transitions. Some of the
techniques, justifications, and motivation are similar and may be of use to help understand
the reasoning of the other landscape papers.

3.1.3 Finite Generation

Next we consider the finite generation of Lie groups, with particular attention paid to the
Lie groups U(N), GU(N) and how it can be directly exploited for the controlling quantum
systems. These papers describe how we can “fill in the gaps” of a distribution using
similarity transforms. For example, if GG is a Lie group and D is a strict sub-bundle of TG,
we can write elements of TG'\ D in terms of exponentials of D. Such similarity transforms
are preserved by exponentiation and give a simple method of computing a control.

The paper [24] makes use of the structure theorem of Section presented in [40],
and adapts further results to the quantum control case. In particular let G be a Lie group
and g its Lie algebra. We recall that given a set {H;}!", which generates g, we can write
any X € G as

¢
X =][]explt:Hi), ki €{0,...,m} t; €R. (3.16)
i=1
In particular, it can be shown that a uniform bound can be put on the order of generation
¢ so long as GG is compact and the image of connected one-parameter subgroups of H; are
compact as submanifolds of G. The purpose of [24] is to relax the conditions on {H;}.",
in a manner that will allow [25] to apply the results to quantum control theory.

Theorem 3.1.1. Let G be a Lie group and {H,};-, denote a set of linearly independent
elements of the Lie algebra g which generate but do not necessarily span g. If the set does
not span g, it is necessary that Ik, L with k # ¢ such that [Hy., Hy| # 0. Furthermore, there
exists a ty,y1 € R such that {H;}!" U {H,,1} is linearly independent where

Hm+1 - Adexp[fm+1Hg] Hk (317)
The proof is simple and enlightening and so we include it here.

Proof. Since {H,};", generate but do not span g, we know that there exists k, ¢ such that
[Hy, Hy) # 0 and {H,};~, U {[Hg, H¢]} is linearly independent. Let H,,1 = [Hy, Hy).
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For the sake of contradiction, assume that for all ¢ € R we have that Adeppm,)(Hy) is
linearly dependent on {H;}" . In particular, we can write H,,;; as a linear combination
of the {H;}!", say

Hm+1 = Zaj(t)Hj (318)
=0
where we have noted the explicit dependency of each a; on the time parameter ¢t. By
applying the differential operator at t = 0, (3.17) yields

d d
S Hp = | Adepny (H
at|,_ A= | pitr,) (Hi)
= [ He Adupinn () = Adesgien (O He|
= [HoHy — HyHy|
= [Hy, Hy).

On the other hand, using the hypothesis of (3.18) we get

d d

—| Hpi1=— (t)H,;

dt|,_, +H = tzoj;aj( )H;
" daj

=2 g OH;
7=0
By equating our expressions above we find that
T daj
[He, Hy) = Z:; i O (3.19)

but since %(0) is simply a number, this implies [Hy, Hy] is linearly dependent on {H;}!"

which is a contradiction. L]

By iteratively applying this technique, we can create an full basis B = {HZ}Z(ilén H-1
for the Lie algebra. The procedure from here is a very simple one. Let X; be the desired
element and write this as Xy = exp[V] for some appropriate V' € g. Our goal is to apply

the inverse function theorem[52] (IFT) in order to express X, in terms of B. By choosing
1

M e N sufficiently large we can ensure that X is in a sufficiently small neighbourhood
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of the group identity and apply the IFT to find that

¢
1
=1

1
and we can write X, = (X 7). The important step comes in noticing that this expression
of X, can then be translated to one exclusively using the original set { H;}." . In particular,
we note that for Hy, 1 = Adeyy,., ) Hr then

expltmi1Hmi1) = expltmi1 Hel expltim1 Hi] exp|—tmi1 Hy. (3.21)

A similar procedure can be applied, recursively if necessary, to each Hy for k > m.

We can begin to see how this could be applied to open-loop quantum control theory.
Our control fields are precisely the set {H,}.",, and by applying this technique we can
create any objective unitary in terms of exponentials of the control fields. This only works
for driftless systems. Further, there is an obstacle in that the synthesis does not restrict
the choice of t;, so that we could in fact have negative propagation times. The second
paper of D’Alessandro [25] deals with this issue. By considering the operator Schrédinger
equation without drift and assuming controllability, the generating set { H;}!" is precisely
the set of control fields. In order to deal with the problem of negative time, the author
shows for if exp[—B|t|] is an element of the Lie group, then Ve > 0,3¢ > 0 such that

<e (3.22)

HB—BM _ B

where [|-|| is the Frobenius norm. This says that the negative propagation of a flow can be
arbitrarily approximated by some positive propagation.

However, if one attempts to implement this method computationally, a large slow-
down occurs when trying to apply the inverse function theorem. Attempting to find the
the appropriate decomposition near the identity results in a series of non-linear algebraic
equations which can be both time consuming and difficult to solve. Consequently, the
author provides an alternate method for arbitrarily precise control, and concludes the
paper with an example of this technique on a low dimensional problem.

The use of similarity transformations to preserve the exponential is an interesting tech-
nique, and may be applicable to the implementation of numerical algorithms for solving
time-optimal control. Unfortunately, while the results presented in these last two papers
are interesting and pose a great deal of potential, they have yet to be fully exploited. A
large part of this may be due to the lack of scalability of the methods provided above.
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Indeed, since the dimension of two-level, n-particle spaces grows as 4", so too does the
dimension of the Lie algebra. Numerically computing the full basis using the similarity
transformation is akin to exhaustively exercising the LARC, but even more demanding as
we need to retain information about which elements were used to create each new basis
element.

3.1.4 Gradient Ascent Pulse Engineering

Let us conclude this section by considering numerical algorithms designed to construct
quantum controls. In particular, we will examine the Gradient Ascent Pulse Engineering
(GRAPE) algorithm presented by Khaneja et al. [48], which has received a great deal of
attention and has been widely implemented. The purpose of this algorithm is to drive
an initial state to a final state while maximizing the corresponding fidelity between the
objective and the time-evolved state. While initially presented as a method for comput-
ing controls on density matrices, it can be generalized to unitary matrices using a small
adaptation of the general technique. The derivation of this result given in [4§] is only done
in detail for control over density matrices. We will present a more thorough argument as
it pertains to unitary evolution, though the argument is similar to that done for density
matrices.

Consider the affine-controlled operator Schrodinger equation with drift

d . -
ZX(0)=—iHOX(1),  H(t)=Ho+ ;uj(t)xj (3.23)

for X(t) € U(N) and {H,};", C u(N). Define by P(t) the propagator

P(t) =T exp {—i /O tH (t) dt} (3.24)

where 7 is the time-ordering operator, so that the solution to (3.23)) is given by

X(t) = P()X(0). (3.25)

Our goal is to derive an algorithm to drive the initial operator X (0) to some target
operator Xy in time T'. For numerical reasons, let us then consider a uniform discretization
of [0, T] into M subintervals. It is not difficult to see then that the associated mesh space is
precisely At = T/M and the mesh points are given by ¢t; = jAt for j =0,..., M. We are
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then content to find a solution to the control vector that is constant on each subinterval;
that iS, ﬁ(t]) = (Ul(tj), R ,Um(t])) for tj,1 <t< tj.

Under this assumption, we can then approximate the continuous propagator P(t) via
a finite multiplicative set of time-independent propagators on each subinterval, P(t) =
Py Py_q... PP To discover the form of each P;, we note that since the control Hamil-
tonians {H,};", are time-independent and the control fields have been taken as constant
on each subinterval [t;_;,t;], we can find a propagator for fixed j given by

_ ) .
Pj = exXp —i/ Hg + Zuk(tj)Hk dt
| Jyea Pt
= exp | —1At (Ho + Z Uk(tj)Hk’)]
i k=1

Under this control action, the actual evolution of X (0) in time 7" can be given by
X(T) = Py --- P X(0). (3.26)
The cost function is the distance between the operators in the induced Frobenius norm,
1Xa — X ()| = 2N — 2R (X, X(T)) (3.27)

so that minimizing || Xy — X (T)]| is equivalent to maximizing C'(X (7T")) = R (X4|X(T)). By
exploiting the definition of the adjoint operator, we notice that for any fixed j € {1,..., M}
we can write

C(X(T)) = (Xa| X(T)) = (Xa| Py - - - P1X(0)) (3.28)
= (P}, Py Xq | P PX(0) ) (3.29)

N

R]’ Sj

Physically, R; is the piece-wise constant backwards propagation of X, from 7' to t;, and
S; is the piece-wise constant forward propagation of X (0) from 0 to ¢;.

As we aim to implement gradient methods, we will need a way of determining a step
direction in which to update. This is done by calculating the gradient of C'(X (7)) with
respect to each control function. It is important to note that C(X (7)) is implicitly a
function of each wy(t) through the action of each propagator P;, and by making each
control field constant on subintervals of time we can consider C(X (7)) as a function of
m x M variables uy;, where wu(t) = ug; on [t;,t;41]. Hence our goal of finding an update
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step is equivalent to computing %. Let dug; be an infinitesimal perturbation of uy;, and
J

denote the associated perturbation in P; by P; +dP;. Since F; is given by the exponential
of a smooth function, it is necessarily smooth. We can deduce its derivative quite easily as

oP, 0 . S
= exp | —iAt | Hy + upi H 3.30
Ou;  Oug, P ( 0 ; “ Z)] ( )
= —iAtH,P; (3.31)

This will allow us to conclude the essential part of the paper, which is that we can simplify
the gradient calculation as

aC aP;
Dur, = <R]’8ukjpjl PlX(O)> (3.32)
— (Rj\(~iAtHP)) Py y -+ Pip(0) P} - ) (3.33)

This gives us the direction of steepest ascent for the cost function with respect to each
control, and motivates the following algorithm.

GRAPE Algorithm

1. Make an initial guess as to the control vector components ;.
2. For each time interval ¢;, calculate the partial forward propagator S; = P;--- P,.X(0).

3. For each time interval ¢;, calculate the partial backwards propagator ?; = PjT IPEEE PIX,.

4. Compute 8‘1—2, and update the control vectors according to ug; — wu; + eaau—f_ for
J J
some appropriately chosen stepsize e.

5. If the change in 8‘1—3 is less than a given tolerance, stop.
J

6. Return to step 2.

One can further improve upon this by utilizing a conjugate gradient scheme instead of
merely steepest ascent [48].

This algorithm has been largely successful in computing controls, though one can see
that it caters specifically to finding a control that optimizes the fidelity. In particular,
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GRAPE was not designed for finding time-optimal controls, since the time length is ini-
tially fixed in order to discretize the control variables. We can attempt to approximate
a time-optimal solution by continuously running this algorithm for successively smaller
time lengths, stopping when the algorithm is no longer able to converge. This adaptation
actually gives us a method for computing time-optimal controls that are not bang-bang,
since the update scheme given in step [4] allows the controls to take values on the interior
of their domain.

This thesis will analyze some methods of computational time-optimal algorithms in
response to this void of appropriate methods, and a comparison to a modified time-optimal
GRAPE will be made in Section 4l

3.2 Time-Optimal Control

Despite the advantages of considering time-optimal trajectories, this objective of quantum
control has not received a great deal of attention, especially in the case of bounded control
amplitudes. Indeed, most work has been done in considering the minimal time to access
states under the hard-pulse assumption that the field magnitudes can be made arbitrarily
large. Nonetheless, the geometric techniques explored in such a milieu are formidable and
provide insight into the quantum landscape and as such are presented here. The similarity
between sections here will allow us to go into more mathematical depth and provide a
detailed examination of the results.

3.2.1 Coset Spaces

Our goal here will be to examine the work done by Khaneja et al. [45], [47] in calculating
the minimal time for unitary transfer on an unbounded affine-control system. It is an
application of the work done by Brockett [I7] in geometric control theory to the domain of
quantum mechanics. The focus of these papers is particularly limited to one- and two-qubit
systems in order to take advantage of geodesic symmetry.

Let G be a Lie group with associated Lie algebra g. Consider the controllable system
given by where we allow the controls w;(t) to be unbounded. Intuitively, we will
define an equivalence class of spaces in which we can move arbitrarily fast and then project
onto an appropriately defined quotient space. The authors then show that the minimal
time to move on this quotient space is, in fact, the minimal time to synthesize a unitary
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operator. This stems from the fact that movement within an equivalence class can occur
arbitrarily quickly and hence does not contribute to the overall time.

Consider first the Lie algebra € = Lie ({H,}.-,), and let K = exp[¢]. The Killing Form
B : g x g — gis defined by
B(X, Y) =Tr [adX ady] (335)

and is negative definite on compact Lie algebras. Since it is sign-definite, its negation can
be used to define a Riemannian metric tensor on G, which is a non-degenerate, positive
definite tensor field. This in turn can be used to define an inner product (-,-)5 on g. In
fact, it can be shown that when G is either U(N) or GU(N) the negative Killing form is
proportional to the standard trace inner product (X,Y), = Tr [X TY}.

We can use such an inner product to define the orthogonal complement of € relative to

gt = {x €g ‘ (x,y) =0,Vy € E} (3.36)

giving us the ability to decompose g into orthogonal components g = £ @ £+. Such decom-
positions are not uncommon in Lie theory, and in the special case where the elements €, ¢+
satisfy the relations

&, €] C &, [, ¢ &, [ : (3.37)
we say that (g,€) is a Cartan decomposition of g.

Now K < (G is a subgroup of the Lie group of G, and in particular we can define the
group action of K on G by left-translation as

G:KxG— G, (k,g9) — kg (3.38)

so that the orbit of ¢ € G under K is just the left-coset K¢g. From a control theoretical
perspective, we note that by using unbounded controls we can move between any two
elements of K¢ arbitrarily quickly.

Now we want to consider how to examine the system modulo these spaces in which we
can move arbitrarily quickly. Indeed, we recall that the quotient space G/K is a differen-
tiable manifold (though not necessarily a Lie group unless K <G is normal). Furthermore,
in the case where G/K is globally Riemannian symmetric, it follows that exp[t'] = G/K.
The authors are then able to show that the adjoint action of the drift term Hj is what
generates the set of directions on this quotient space. More precisely, if X € K then in
time At, X evolves under the drift Hamiltonian as exp [—iAtHy] X. This can be rewritten
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as
exp [—iAtH) X = X (XT exp [—iAtHy] X)
= X (exp [-iAtXTHoX]),

and so evolution under the drift is an element of the coset given by the effective Hamiltonian
XTHyX. Letting X vary through all K, we get the adjoint action of K on Hj, denoted
Adg (Hp) C &, which give the possible directions of movement in G/K.

In the case of time-optimal control, the authors argue that any time-optimal geodesic on
G /K must have tangent vectors which always commute. Hence time-optimal trajectories
will have their directions restricted to an abelian subalgebra h C €. In the event that b is
maximal amongst all abelian subalgebra, we say that § is a Cartan subalgebra. Important
to this study and section [3.2.2] is the fact that if b is a Cartan subalgebra of a Cartan
decomposition (g, €) then we can write G = K exp [h] K.

With the mathematics established, we want to specialize our consideration to time-
optimal synthesis. Let A(X,T) denote the accessibility set of X € G in time at most
T > 0. Then VY € A(X,T) let {(Y) denote the minimal time to drive X to Y. Next the
authors define what they call an “adjoint control system” on G given by

% P(t)=XPt), X e€Adg(Xy). (3.39)

We advise the reader to be wary of this terminology, as there is an alternative notion of
adjoint systems in control theory which does not agree with this definition. Define the
set B(X,T) to be the set K - R(X,T); that is, the orbit of the reachable set of X under
K. We define VY € B(X,Y) the number £(Y) to be the minimal time to drive X to Y.
Alternatively, if Y € R(X,T) then #(Y) is the minimal time to drive X to the coset KY.

Let I € G denote the identity element. The main result of this paper is that given
a desired unitary Xy € R(I,T), the minimal time #(X4) to drive I to the coset KX, as
governed by is identical to the minimal time f(Xd) to drive I directly to Xy under
(13.23). Hereafter we are justified to move to a quotient space of cosets in order to calculate
the infimum time to synthesize X.

The general techniques of [45] are then directly applied to particular unitary operators
in [47]. Combined with the PMP, the authors consider a specific class of operators impor-
tant to the study of nuclear magnetic resonance (NMR) and establishes the time-optimal
solutions for a three-spin system.

These papers work to exploit the differential geometric nature of the control manifold
to establish results regarding time-optimal trajectories, applying many results of Cartan’s
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work combined with the assumption of Riemannian symmetry. Unfortunately, the symmet-
ric assumption very quickly breaks down for more than two-body systems, and necessitates
an alternate treatment presented in the following section.

3.2.2 Cartan Decompositions

Using the notion of Cartan decompositions introduced in [45], this section hopes to illumi-
nate the results of [46]. The Euler-angle decomposition of GO(3) and consequently Gi(2)
are well known and give the ability express any element of the aforementioned Lie groups
in terms of simple rotations. The purpose of [46] is to extend this idea to SL(2") so that
arbitrary n-qubit operators can be recursively decomposed into two-qubit gates.

The Euler angle decomposition of G(2) states that, given the Pauli basis {1,, I, I, }

I, = % ((1) (1]) (3.40)
I, = % ((Z) _é) (3.41)

1/1 0

it o

we can write any X € G(2) as
X = exp[—10,1,| exp|—if,I,] exp[—if.L,]. (3.43)
Again let G be a Lie group, g its Lie algebra, and controllable system dynamics given by
(3.23) with u;(¢) unbounded. The work of [45] was to show that for a globally Riemannian
symmetric Lie group G with a Cartan decomposition g = £ @ £+ and a Cartan subalgebra
g C €' containing Hy, we can write G = K exp[h]K. We will now turn our attention to

the specific case where G = GL(2") is not necessarily Riemannian symmetric and give a
similar decomposition.

For brevity, consider GL(2") for some n > 2 and keep the same notation as that given
in Section [3.2.1] The authors are able to show that we can decompose G(2") as

GUR ) @ U1) C BUE2" ) ® GU(2) C BU2"). (3.44)
In particular, define

sue(2") = span {A ®L,Boid,il,.

A, B¢ 511(2”’1)} (3.45)

51130(2”) = Span {A X [:m anz

Ae 5u(2”_1)} . (3.46)
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If we let h be a Cartan subalgebra of (su(2"),su;(2")) and f be a Cartan subalgebra of
(su(2"), s10(2")) then for any U € GLU(2™) we can write

U = K; exp|Z1] K5 explY| K3 exp[Zs] K4 (3.47)
where K1, Ky, K3, K, € GU(2" Y @U(1) , Y € b, and Z,, Z, € §.

We first notice that while this may be useful from a control theoretic point, as it stands
we cannot directly apply it to any problem. In particular, the choice of the Cartan sub-
algebra needs to be specified by the Hamiltonian drift, and we cannot be guaranteed that
our control fields generate a Cartan decomposition. Nonetheless, this may provide some
insight into the internal mechanics of certain systems, and provide a tool for computation
when the aforementioned caveats are satisfied.

It can also be quite technical to compute some of the desired quantities listed above,
especially as the size of the system grows exponentially in the number of qubits: given
an n-body system, G(2") has dimension 4" — 1. There has been some work to create
constructive algorithms for the Cartan decomposition using this scheme as motivation,
and in particular we refer the reader to [27] for more information. The details are quite
technical and do not promise to scale well with the number of qubits, but give a starting
point for computation.

3.2.3 Other Results

Herein we briefly mention other results in time-optimal control. In all cases, the papers
mentioned below are either beyond the scope of this thesis, are computationally intensive
without providing a great deal of theoretical insight, or present results for which only
indirect manipulation of solutions yields relevant information.

In a fascinating but very complex paper by Agrachev and Chambrion [4], the issue of
controllability for general compact Lie groups is considered. In particular, the case wherein
the Lie algebra of control fields is not a part of the Cartan decomposition is considered.
The authors restrict their attention to single-input systems of dimension greater than three.
Such systems cannot be part of the Cartan decomposition for dimensional reasons. The
paper uses many of the ideas presented above in its formulation, especially the root-space
decomposition technique introduced in section The treatment is done for general
compact Lie groups though the authors make specific mention of the intent to treat optimal
quantum control objectives.

The paper [16] examines time minimal trajectories of a single particle in a magnetic
field, abstracted as a single-input affine system with normalized, bounded controls. While
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many other papers assume that the drift Hamiltonian can be eliminated, this paper deals
specifically in the instance where it is necessarily present. The authors consider the problem
comprehensively and are able to resolve the Spin—% case in its entirety. This is done by
breaking the Bloch sphere into eight open regions and specifying the control sequences
dependent on the region in which the initial state lies. The authors are able to show that

in some instances, not all solutions are bang-bang and some must indeed be bang-singular.

Despite the paper’s focus on optimal state transition, we include it here since it can be
connected to unitary synthesis. For example, two-level systems occupy the 3-sphere S3 C
C?, which is diffeomorphic to G4(2). Hence by associating desired states on S® to operators
on GY(2), the optimal trajectories between elements of S® can be diffeomorphically mapped
into G4U(2). One possible caveat is that most considerations of two-level systems are
projected from the three-sphere onto the Bloch sphere, and this paper is no exception.

In [76] the authors make use of theory of theoretical considerations described in [46]
to compute unitary transformations important to electron paramagnetic resonance experi-
ments wherein one qubit couples significantly faster than the other. Specifically, the authors
use Cartan decompositions to construct the time optimal synthesis of operators on &4l(4).
The paper is dedicated to computation based off of the work of Khaneja and Glaser, and
provides results for very specific objective unitaries. However, it does not further add to
the theory of time-optimal controls and so we have omitted any further discussion.

Finally, [13, 15, [51] consider time-optimal control of two-level dissipative systems and,
in particular, the existence of singular extremals. In [51], the authors are even able to show
that singular controls allow for a more optimal solution than the best known bang-bang
control. Inversion recovery is the intuitive technique used in NMR and is a bang-drift
trajectory, whereas it is shown that a bang-singular hybrid control yields better implemen-
tation times.

Having discussed the topic of control theory in general, we are now in a position to
examine the more specific goals of this thesis. The next section shall introduce numerical
algorithms whose purpose is to compute time-optimal controls. This will be followed by
an examination of conditions for singular controls.
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Chapter 4

Numerics

We are driven to consider numerical algorithms for several reasons. Omne possibility is
that analytical solutions are often very specific to the systems in which they are applied.
Changing the objective unitary, the drift term, or even one of the control fields may ne-
cessitate an entirely different analysis than similar setups. Another example is that some
systems fail to admit analytical solutions, or the solution may be too complicated to justify
computing. In these cases, we often defer to numerical computations to give results and
approximations.

One should not depend entirely on numerical results though, as analytical solutions can
often reveal subtle properties that numerics cannot always distinguish. We mention a par-
ticular instance where the analytical solution to an optimal control problem exceeded the
computational solution. In [65], Reeds and Shepp consider the optimal-length trajectories
for manipulating a car using “an impressive array of techniques especially developed for
the study of this particular problem,” including “the use of [a] computer [which] played
a fundamental role.” In a follow up by Sussman and Tang [72], the authors were able to
show that the intricate and complex solution posed by Reeds and Shepp could actually be
succinctly solved using geometric control theory. Furthermore, Sussman and Tang go on
to show that while Reeds and Shepp were able to describe optimal trajectories in terms of
the concatenation of 48 three-parameter families, the mathematically optimal procedure
only requires 46 such families and hence provides a more efficient characterization of the
controls through analytic treatment.

Nonetheless, the need for convergent and practical numerical algorithms cannot be
overlooked. It has been mentioned in Chapter that there is a particular void of
algorithms that compute time optimal controls. This chapter hopes to provide an overview
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of some of the work that has been done on such algorithms, as well as the our own work
with regards to the topic.

4.1 A Review of GRAPE

We begin our treatment by recalling Khaneja’s work on computing high-fidelity control
laws via the GRAPE algorithm, which was covered in detail in Section We refer the
reader to that section of this thesis as well as [48] for more details, though we re-iterate
the theory below.

The general procedure of GRAPE is to use a steepest ascent or conjugate gradient
method to optimize a cost function which measures the similarity between an objective
and the current state. In the case of unitary operators, this reduces to the fidelity measure
(13.27) using the Hilbert-Schmidt inner product. In particular, Khaneja examines how this
fidelity will change with respect to small variations in a discretized set of controls and
derives an algorithm based on gradient ascent. This technique is then used to update the
control fields until a sufficient tolerance is reached.

We note that the primary result of the paper was to re-express the component-wise
gradient calculation in terms of a much simpler expression. Explicitly, if C' denotes the
cost function, uy; is the k' control on the j time interval, and the final state X (¢) is
given by X (t) = Py --- PLX(0) we can write
oC <

ﬁukj

.|.
Pj+1 ’

_ - Py XgliAtHP; - - P1X(0)> .

This is very useful since derivative calculations are computationally expensive and unstable
actions. Naive approximations to differentials are done by subtracting two similar results
and dividing by a small number, both of which are operations that can substantially
contribute to error proliferation[I8]. This update scheme avoids both of these problems
and provides an expression of the gradient in terms of quantities that are already known.

However, as mentioned in Section this algorithm was not designed to deal with
time-optimal calculations. Since the terminal time is fixed via discretization, any attempt
to find time-optimal trajectories is the result of repeated application of the algorithm to
successively shorter time intervals. While the number of ways to successively shorten such
an interval are many, for our comparison we have implemented a bisection method by which
the time interval is halved at each iteration. Once the algorithm no longer converges, the
user assumes that this is because no smaller solution can be found and terminates the
search.
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4.2 The Kaya-Huneault Algorithm

4.2.1 Kaya-Huneault Method

The absence of explicit methods for time-optimal control heavily motivated the thesis [37],
which worked to adapt an existing algorithm from classical control into a quantum me-
chanical framework. It is from this body that the foundation of our own work is built, and
hence we offer a detailed consideration of the motivation and techniques that it introduces.

We quickly re-iterate the problem as stated in [37] so as to avoid any ambiguity that
might arise from the notation. Recall that our principle goal is to find an efficient way
of computing time-optimal controls for synthesizing unitary gates on quantum mechanical
systems. Let d € N represent the dimension of our system and let X € l(d) be an element
of unitary space with the condition Xy = X (to) at the time t,. If the energy Hamiltonian of
the system is H € iu(d), we can expect X to evolve according to the Schrodinger equation

d .
haX(t) = —iHX(t), X(to) = Xo. (4.1)
Carrying around the A term can by quite cumbersome and so we often choose to normalize
our units so that A = 1. After any solution is computed, for it to be physically interpreted
we must make appropriate transformations to revert to the standard value of A, but there
is no loss in generality in working with this simplified picture.

We choose to impose our presence on the system by affecting the nature of the energy
Hamiltonian directly. Assume that we have an m-input system for some m € N, writing
H as

where Hj is the drift Hamiltonian and represents evolution in the absence of control, the
H; are fixed Hamiltonians representing the effects of our physical influence over the system,
and the u;(t) represent the magnitude of each control Hamiltonian whose optimal values
are the primary objective of this treatise.

We have assumed that we are given an initial starting point X (t5) = X, and hope to
drive the unitary operator to a desired state X, € $4(d) in a time-optimal way. However, we
need a way of measuring how “close” we are to our objective X;. The notion of measuring
distances in a space requires the definition of a metric, or for our purposes a function
d : (d) x Y(d) — R acting on unitary elements. As unitary space is well known to be a
complex Hilbert space we can exploit the inner product to induce a norm, which in turn
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induces a metric. If our Hilbert space is (#, (-, )), then the inner product gives the metric

as
(X1 — X0, X1 — Xo) = || X1 — Xo|)* = d(Xy, Xu)2. (4.3)

We have already seen a way of simplifying this expression, given in Proposition 2.4.8] as

d(X1, X,)? = 2d — 2RTY[X] X]. (4.4)

Since a metric is always non-negative and non-degenerate, minimizing d(X;, X5)? is
equivalent to minimizing d(X7, X3) and so we will often consider the squared-metric in
order to avoid messy square-roots.

We notice here a relationship between our metric and the gate fidelity F(X;, X5) =
279Tr[X I Xy|. This is perhaps unsurprising as fidelity measures how well two gates overlap
(their closeness) whereas our metric measures how far they are apart (their distance).
With this metric at our disposal and a well-defined objective unitary X,, we can define an
objective function f : ${(d) — R by f(X) = d(X, X,)*

The PMP indicates that since our system is affine in the bounded control variables,
any non-singular time-optimal solutions should be of a bang-bang nature. The additional
assumption that our Hamiltonian is given by allows us to apply a normalization
condition. If the control u;(t) corresponding to the control amplitude of H; is restricted to
lie in the set u;(t) € [0, M], for some M > 0, we can redefine H; = M Hj so that @;(t) € [0, 1]
results in the same range of control. Without loss of generality, we will henceforth assume
that all controls are normalized. The assumption that there are no singular trajectories
then indicates that each control occupies the boundary of its domain and hence is either
at full capacity or off during a given time interval; mathematically, this corresponds to
u;(t) € {0,1}, for each i = 1,...,m.

With the theoretical background established, we can move to casting this into a com-
putational framework. Some of the procedures will look similar to those introduced by the
GRAPE algorithm in section [3.1.4] which occurs because these are standard discretization
techniques.

The form of (4.1) and its similarity to the exponential yields an analytic solution as

follows:
X(t) = T exp [—i / t (Ho +) ui(t)Hi> dt] (4.5)

i=1
where T is the time-ordering operator. If T is the total time required to drive Xy to Xy
we can partition the interval [0,7] as 0 = 79 < 74 < ... < 71 < 7, = T such that
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m

Hy + Z u;(t)H; is constant on each interval 7;_; <t < 7; for j =1,...,¢. For simplicity
i=1

of notation, define

]:Ij = H() + Zuz(t)Hz Sj =T; — Tj-1, ] - 1a cee, M. (46)
i=1

Tj—1<t<Tj

This definition implies that H ; is the effective Hamiltonian when applied over the interval
(7j-1,7;), which is constant and is in effect for a length ;. Since each component of H; is
in iu(d), it follows that H; € iu(d). This allows us to remove the time-ordering from
and parameterize X (t) in terms of £ as

X (&) =exp [—iﬁgfg} exp [—zflg,l&,l] e exp [—z'[:[QfQ] exp [—iﬁ[lfl} (4.7)
= ﬁ exp [_iHé—iSK—i} : (4.8)
i=0

We would like to point out that we have assumed the convention that multiplication always
occurs to the right, and so our choice of indexing is to emphasize the decreasing order in
which the product is to be taken. The definition of & makes it clear that £ € R and
& > 0, for each ¢+ = 1,...,m. If we are given a collection of effective Hamiltonians
(Hy, ..., Hy) € (iu(d))’ and a vector € = (&y,...,&) € R’ , we can define an approximate
evolution function g, : RY x (iu(d))* — 4(d) that acts on the discretization by creating a
forward propagation operator

g (& (M, 1)) = ﬁexp il o] (4.9)
1=0

We are now in a position to introduce the motivation and techniques used in [37]. The
following algorithm is very complicated and uses subtle assumptions that have yet to be
verified. These assumptions and their possible shortcomings are discussed below in Section
[4.2.2] The original coded implementation contains errors and inefficient subroutines that
are a direct result of the intricacy of this algorithm. Despite the fact that much of our
work was to make it less complicated and theoretically sound, we nonetheless recapitulate
the original presentation below.

Kaya et al. have published a series of papers on implementing algorithms to calculate
time-optimal controls for non-linear systems [41], [42, 43]. The technique introduced in
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these algorithms is to reduce the problem to the subspace of all possible control techniques
that correctly implement the desired objective and then to minimize the total time of
implementation using a linearize-and-project technique. The work of Huneault in [37]
was to specialize this algorithm to unitary evolution so as to be applicable to quantum
mechanics, as well as to extend the result to a multiple-control regime.

Recall that if X, € $(d) is our desired output, then f : U(d) — R, is given by
f(X) = d(X,X4)?. Fix an ¢ € N and a control set (Hi,...,H,;) € (iu(d))*. In order

to consider the subspace of R! which generates X,; under this control set, we note that

we can write X (€) in (4.8) using (4.9) as X(¢) = g(£)X,. Define S : R* — M, (C) as
S(€) = X(§) — Xy so that the preimage of zero gives us a subspace which corresponds to
switching times that drive Xy to X;. We can be more precise by defining

Q= S740) (4.10)

where 0 is the zero matrix in M, (C). We refer to Q as the terminal surface. Our goal
is to minimize our implementation time while constraining ourselves to this space. Since
we have parameterized our controls in terms of switching intervals &, the total time of any
given implementation is then given by

l
t(€) = D _& (4.11)

which can alternatively be written as

tr(&)=cle, T =(1,...,1). (4.12)

ftimes

In linear programming, the objective function is given by f : R® — R where f(z) =
¢’z for some constant vector ¢ € R". Comparing this to we see that t;(§) is an
objective function for a linear programming problem. However, the condition that S(§) = 0
yields a non-linear constraint. In order to apply the techniques of linear programming, we
consider the tangent space at a point &, € ). This creates a linear space on which a linear
programming problem can then be solved. In particular, we change our constraint set to

V5(&) - (£ —&) =0 (4.13)
resulting in the linear programming problem
min ¢! ¢ subject to

e, (4.14)
ViS(&) - (€~ &) =0.
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Let &pp denote the solution to (4.14)), which need not lie in €2 and hence need not correspond
to a desirable control law. After solving for &£rp, we must then project this solution back
onto ). If the projection is successful, we re-iterate the process until a minimal change in
the time is seen. If we are unable to project back onto the surface or the projection does
not yield a better time, the midpoint between &, and & p is calculated and the projection
step is attempted again. After the procedure has been completed, one removes zero-length
arcs and merges arcs corresponding to identical controls.

To generalize this algorithm to the case of multiple controls, the author introduces a
series of constructs to keep track of which controls switch on a given interval. Given k
switching times {7;}_,, we can discretize the interval [0,T] as 0 =79 <7 < ... <7 = T.
Define the following:

C : A vector in N* whose i'" coordinate is the value j corresponding to which
control u;(t) switches at time 7;.

«® : A matrix of dimension at most k X m, whose element aj; is the length
between the i*" and (i + 1) switch of the j* control, or zero if the index
exceeds the number of switches for the j** control.

o : A vectorization of a* that omits the out-of-index zeros.

The variables o and o contain sufficient information to determine the evolution of
our initial operator in precisely the same manner as £. Consequently, we can consider a
reparameterization of X (€) as X () or X () which gives us the ability to consider several
different spaces over which we might choose to optimize. Huneault is able to construct a
transformation operator B that permits movement between the spaces designated by the
a, &, and o representations, with ¢ = B(o,C) and ¢ = B71(£,C). We omit the details
of the derivation of this transformation here, but we state that it is easily calculated by
considering the generalized Moore-Penrose inverse between the vector spaces in which &
and o occupy. The constraint space of the linear programming problem is then converted
from £ space to o space by reparameterizing the terminal surface as

S(0) = X(B(0,0)) — X = 0. (4.15)

Since £ = B(o, ('), equation (4.15)) and the constraints given by (4.10)) yield equivalent
representations of the terminal surface (2. However, this change of variables necessitates

a change in the objective function of the linear programming problem. While we had
previously considered the sum over each component of £, the summation over all o yields

dim o

Z o; =m X t;(£). (4.16)
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This occurs because o contains the complete set of switching intervals for each of the m
inputs. To ensure that we are adhering to the same minimization problem as that given by
(4.14), we need only extract the total time from a single control set since we demand that
all control intervals last precisely the same amount of time. To do this, consider the first
control uy(t) which we declare to have k; switching intervals. The corresponding change
of parameterization for ¢;(£) as (o) is given by by

ti(o) =¢élo, ' =(1,...,1,0...,0). 4.17
t(o) ( ) (4.17)

k1times

This choice of ¢ selectively withdraws only the information about the interval length for the
first control. However, since the dimension of ¢ is guaranteed to be at least as large as £, our
constraints given by are under-determined. This can be resolved by realizing that in
defining ¢, we discarded information about all controls other than the first. Imposing the
additional equality constraints that each control have the same duration, we can prescribe
a properly determined system.
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With this theory established, we present below a summary of the algorithm:

1.

Let Xy € U(d) be the objective unitary transformation. Let ¢ € N describe the num-
ber of discretized intervals, and prescribe a set (Hi, ..., Hy) of time-independent effective
Hamiltonians on each interval.

Find a point on the terminal surface ). Equivalently, calculate an initial set of
switching intervals &y that drives the initial point X, to Xj.

Linearize the terminal surface {2 about the point & and solve the linear programming

problem given by (4.12)) in the case of a single-input system, or (4.17)) in the multiple-
input case. Let {p be this solution. If § = &p then go to step [f

Given &pp, attempt to project back to the terminal surface. If it is not possible to
project back to £ or the projection yields a greater implementation time, find the
midpoint between &, and & p and try again.

If no appropriate point can be found, terminate the algorithm. Otherwise, set &, to
be the projection point and go to step [2|

If no intervals have collapsed we append a zero-length intervals to the beginning and
end of the control sequence and go to step [2

Remove collapsed intervals and merge similar intervals as necessary. Terminate the
algorithm.

4.2.2 Criticism

The actual implementation of this algorithm initially met with very limited success, essen-
tially only providing feasible results in the two-level single-particle case. This is the result
of the algorithm being based on subtle and unverifiable assumptions discussed below.

We begin by recalling the definition of the terminal surface, given in as ) =
S=1(0) where S : R® — My(C). Since 0 represents the zero-matrix in My(C), calculating
the pre-image can be difficult and time consuming. Indeed, numerically we make no at-
tempt to calculate the pre-image and instead satisfy ourselves to find a single point in €.
Furthermore, since S is a matrix valued function its gradient will be a 3-tensor. We will
need to be careful when evaluating the vector contraction to ensure that we are dimension-
ally consistent. We provide here a more rigorous treatment for calculating the terminal
surface than that provided in [37].
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Choose an arbitrary ¢ € R and let X = S(¢) € My(C). In particular, we choose a
tensorial representation of X as X = X}(&)e;®e’ where X}(€) € C and {e’} is the standard
basis in Rd with dual basis {e;}. To apply a “gradient” to X, we consider the operator

V= agke and apply it to X to get

' ' aXz:
VX :X]Z',k(€>€i®ej ®ek7 Xz ](f)

= e (4.18)

Our goal now is to contract VX with the vector £ = £"e,, which can be written as

(VX)E = Xj,6%; © ¢! @ " (e,)
= XZ kfkez ® el

It is important to note here that while X ;) contains two covariant components over which
a contraction could occur, only the k—component can actually admit a proper reduction in
the rank of the tensor since the dimension of the j component generally disagrees with the
k component.

Linearizing the terminal surface requires the computation of X; . and then performing
the contraction. Needless to say, calculating (1,2)-tensors is costly and can impair the
speed and efficiency of a numerical algorithm. This is further exacerbated by the fact that
linear programming problems are done in real space requiring that the (1, 1)-tensor X ¢ 8 K
be transformed from a d?-dimensional complex tensor to a 2d>-dimensional real tensor
The transformation from complex (1, 1)-tensors into (1, 1)-real tensors is something that is
normally requires an embedding of d*-dimensions into 4d-dimensional space[8], but as our
goal does not require the preservation of the ring-structure of My(C) it suffices to identify
C =~ R? giving the desired embedding.

In the context of the previous calculation, the derivative of the evolution mapping X (&)
as given by (4.7)) is particularly simple. By writing

X (&) =exp [—iﬁg&] exp [—zflg_l&_l} - exp [—z’I:IQ«SQ} exp [—iﬁlﬁ} (4.19)

the partial derivative 822(5) is given by

828(5(5) _ (f:ﬁlexp [—iﬁ[e_i&—z}) (—iHy) (H exp[ if[k_igk_i]>‘ (4.20)
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The projection algorithm is assumed given in [41] and is not greatly elaborated upon
in [37], wherein the author uses a conjugate gradient method. However, this projection
algorithm turns out to be one of the primary obstacles in implementing the Kaya-Huneault
algorithm. We will see that the projection step is especially ill-suited when we consider
more general topological issues in Section It is suggested in [37] that one should
search in orthogonal directions relative to the tangent hyperplane generated by the lin-
earization, though more work on an analytic expression of such directions is needed. This
evidence against projection techniques seems to suggest that any algorithm which requires
a projection step may be infeasible.

Finally, we comment on the unnecessary complexity involved in the transfer between
o and & spaces which only proves to make the problem more abstruse. In order to track
the pertinent information regarding the switches, the author created the variables o, o, o,
and C which are all defined on page [69| above, as well as another variable x whose elements
track the number of switchings for each control. As each control may have a different
number of unique switches, one often needs to pad matrices with extra zeros in order to
be dimensionally consistent. The constant addition and subtraction of unnecessary zeroes
requires cumbersome and time consuming checks in order to avoid dimension mismatch
errors in vector calculations. These issues propagate throughout the algorithm resulting
in an overly complicated coding scheme.

The variables o, a*, 0 and k carry a large amount of redundant information and results
in an excessive amount of accounting when implemented. This can be mitigated by main-
taining a array corresponding to the logical state of each control during each switching
interval; something that is done in the Kaya-Huneault code anyway.

The inability of this algorithm to work for even small numbers of particles may have
simply been a result of theoretical oversight or inefficient implementation. Consequently,
we have endured to fix as many of the problems as possible to see if the obstacle lay in the
construction of the algorithm, or in its foundation.

4.2.3 Modified Algorithm

Much of the work done on this project was direct modification to code: rewriting the ma-
jority of the subroutines to increase efficiency, and cleaning up unnecessary computations.
In particular, the complexities resulting in the transformation between ¢ and o were re-
moved and we transitioned to standardized optimization routines. These changes resulted
in the algorithm successful converging in systems with multiple particles.
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We begin by noting some of the simple changes made to the theoretical implementation
that allowed us to use faster and more general techniques for computation. Recall that we
require that the interval times ¢ € R be positive. If ® : R® — R is an objective function,
we are considering the problem

min ®(¢) subject to & >0, i=1,... /. (4.21)
£ER?

We may choose to write this in a more concise format as

min (&), Ri:{l’:(l‘l,...,l’g)ERZ x,->0,2':1,...,€}. (4.22)

¢eRY

Such a restriction forces one to use constrained optimization techniques. However, we can
instead cast the system in an equivalent unconstrained framework, which will allow us to
use faster and more general optimization algorithms.

Proposition 4.2.1. Consider the constrained optimization problem given by (4.22) and
define the function ® : R — R given by @(5) O (£%), where we define the notatzon that £2
is taken in a componentwise fashion. More precisely, if (&) = ®(&1,...,&) then we define
D(E2) = B(€2,...,€2). We claim that the set of minima of ® over all of R is equivalent
to the minima of ® over Rﬂ.

Proof. Fix an element &; for some i € {1,...,¢}. By taking the partial derivative with
respect to &, we find that

0

afz (51775@2)

o(¢) =

8&

Let £* be a critical point of ®. Since each component of £* is non-negative, we can uniquely
define € = (w/ 2 \/5;) which is in R’ Since £* is critical, we have V®(£*) = 0 which

implies that that 2% (52) = 0. By (4.23)) it follows that g—g(é) = 0 giving V() = 0 so

every critical pomt of ® corresponds to a critical point of P.

Conversely, if £* is a critical point of ® then Vi)(f ) =0so0 5z = 0. By (4.23 (1.23) we then
have that fjg—? (5*2) = ( but since & > 0 this implies gg (f* ) = 0 and hence Vo (5 ) 0

so all critical points of ® have corresponding critical points of ®.
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The above two implications imply there is a many-to-one surjective correspondence
between the critical points of d and the critical points of ®. We now want to show that the
minima are preserved. This is a simple matter since the constructions above indicate that
the mapping between critical points preserves the value of the function. The unsatisfied
reader can note that this follows from the universal property of quotient sets. If C’, C are
the sets of critical points of $ and @ respectively, we can define a relation ~ on C by a~b
if > = b%. Then C' = '/ ~ and furthermore a ~ b implies that ®(a) = ®(b). By the

universal property of quotients, if Z = CD(C') there exists a unique function f : C' — Z such
that ® = f o where 7 : C'— C'is the canonical quotient projection, 7(a) = [a]. = a®.
Since ®(§) = ®(w(€)) and f is unique it follows that f = & and so in fact all extrema

agree. O

The most significant computational improvement made to this algorithm was the im-
plementation of a one-time calculation for matrix exponentials. We assume that we are
given a prescribed set (Hy, ..., Hy) of effective Hamiltonians, so that the evolution of the

operator X is given by
-1

X&) = [ exp [—ng_i&_i] . (4.24)
i=0
Since each H; has a matrix representation, this expression is the composition of many
matrix exponentials. Such exponentials are not only very expensive from a computational
standpoint, but need to be re-derived each time there is an update to the switching times
&. As we are consistently varying the value of each &;, we would like to avoid needing to
recompute the exponential each time we update &.

The important thing to notice is that the H; are fixed and only & is free to vary. By
calculating the eigenvalue decomposition of H;, we can write

H, =UDU" (4.25)

for some diagonal matrix of eigenvalues D = diag(\i, . .., \g) and unitary matrix U € $4(d).
This decomposition is guaranteed to exist since H; € iu(d) is Hermitian and hence a normal
matrix, allowing us to apply the Spectral Theorem[23].

The reader may notice that the eigenvalue decomposition of a matrix is also a com-
putationally expensive operation. However, we cater to the fact that our algorithm will
require more computations of an exponential than the one-time eigenvalue decomposition,
and is a promising step to speed up the algorithm [53].
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Let r € R and notice that

exp [—irHi] = exp [—z’rUDUT}
= U exp [—irD] UT
= U (exp [—iD])" U

Since D is diagonal it follows that exp [—iD] = diag(e™™1, ..., e~*4) is also diagonal, and
more importantly ' '
(exp[—iD])" = diag(e™™1, ... e ). (4.26)

With a single eigendecomposition of each H;, we can easily compute the matrix exponential
exp [—z’rﬁ[l} for any time r € R. This allows us to quickly derive the forward propagator
X (&) for any vector of switching times &.

We note however that the unitary matrix U and the eigenvalues given in D need to be
stored for each effective Hamiltonian. This results in an exponential increase in the amount
of memory required, though this is often a preferred exchange in favour of decreased run-
times.

The efficiency of this exponential calculation is available because of the assumption
that the controls are bang-bang. While the act of calculating the matrix exponential does
not scale well as the size of the system increases, the fact that we need only compute it
once for each effective Hamiltonian could provide computational benefits. Nonetheless, it
seems as though there are some key theoretical reasons why the algorithm in its current
implementation is intractable. The following sections will preview some of the work done
to recast the problem into a more amenable framework.

4.3 Attempt to Embed the Problem in R’

With the the efficiency increase and changes made to the Kaya-Huneault algorithm above,
we were able to see excellent performance and convergence for as many as three-qubits.
However, as we extend to more dimensions the implementation times given by the solutions
became very large, suggesting that they might not be optimal. The issue with slow run-
times can attributed to doing much of our work with matrix-valued functions which result
in large dimensional calculations of the gradient for even a small number of states. We
hypothesized that if we could instead embed the problem into real space, not only could
we apply classical numerical methods but we might also be able to dramatically reduce the
dimension of the problem.
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4.3.1 The Real-Embedding Algorithm

Let Xy € U(d) describe our desired unitary transformation. Recall that our objective
function that measured distance was given by f(X) = d(X, X,)? with d(-,-) the metric
induced under the Hilbert-Schmidt inner product. We defined a forward propagation

operator from (4.9) as
g R x (u(d) = (d), (& (o ) o [Texp [—ifle i)
i=0

For a fixed, prescribed set of effective Hamiltonians (Hy, . .., Hy) we can define the function

g RS 8U(d), € g (5, (... ,Flg)) . (4.27)

By composing the functions f and g we are able to consider a mapping between real spaces
as

/—1
F=fog:RE5R,  F)=d (H exp [—@'Hg_i&_i} X, Xd) (4.28)

i=0
and from here we can apply standard Euclidean optimization techniques.

Our goal will be to create a numerical algorithm that is able to minimize the function
F (&) while taking into consideration the time of the synthesis. In order to define the
function F' as a purely real objective function, there was an implicit assumption about the
appropriate value for ¢ € N and the selection of a prescribed collection of H;. Once these
quantities are assumed, we can then focus on discovering the intervals &; that are optimal to
the unitary evolution. Unfortunately, the theoretical considerations thus far do not impart
any information about the structure of the optimal choice of effective Hamiltonians, nor
even how many switching intervals there should be. Properly deducing a time-optimal
solution necessitates considering all three conditions simultaneously. Since it is intractable
to consider such a simultaneous approach, we instead embrace the technique often employed
in numerics: the estimation of two of the parameters followed by a computational solution
of the remaining unknown parameter.

We attempt a numerical algorithm that involves setting a fixed value for £ € N and
guessing an initial set of controls H;. With these approximations, our problem is reduced
to one that looks like a standard constrained optimization problem:

¢
minZ@ subject to FI(§) =0 (4.29)
1

£ER! “—
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where F'(§) is given in (4.28]).

We shall use the same generic technique as described in section [4.2.1] Define a terminal
surface Q = F~1(0) € R? and attempt to find a point & € €. After such a point is found,
¢

attempt to minimize Z& via a continuous optimization method. This algorithm will be

i=1
known as the Real-Embedding algorithm and the pseudo-code is given below.

Let Xy € t(d) be the objective unitary transformation. Let ¢ € N describe the num-
ber of discretized intervals, and prescribe a set (Hy, ..., Hy) of time-independent effective
Hamiltonians on each interval. Define F'(£) as in (4.28]) and proceed as follows:

1. Find a point on the terminal surface & € F~1(0). Equivalently, calculate an initial
set of switching intervals &, such that X (&) = Xj.

2. Using &p as an initial point, solve the constrained optimization problem (4.29). Let
this point be &.

3. If é does not satisfy the constraints, a maximum iteration counter has been exceeded,
or the change in £ between iterations satisfies a lower bound, terminate the algorithm.
Remove collapsed intervals and merge similar intervals as necessary.

4. Set & = é and append zero-length intervals to the beginning and end of the control
sequence. Go to step [2|

We note that there may be topological problems shared by both the Real-Embedding
and Kaya-Huneault methods. We refer to Section [4.3.3] for more information.

This algorithm offers many improvements over the modified Kaya-Huneault algorithm.
The Real-Embedding problem converges more often and with lower run-times than Kaya-
Huneault, although at the cost of occasionally finding poor synthesis times. We will see in
Section [£.4] that the only case when the Kaya-Huneault algorithm truly outperforms the
Real-Embedding problem is in the single-particle case. Further, the theoretical description
of the problem is greatly simplified, with the complexity arising due to quantum mechanics
being hidden in the expression of the function F'(¢). We will consider a numerical com-
parison of this algorithm with Kaya-Huneault and GRAPE in the Section [£.4], but we first
wish to elaborate on an important but subtle feature of this technique that may result in
issues as we explore a greater number of particles and generalizations. This issue stems
from the general theory of constrained optimization via Lagrange multipliers.
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4.3.2 Problem with Constrained Optimization

In order to consider why the Real-Embedding problem might run into trouble, we need to
introduce a few definitions fundamental to the study of constrained optimization.

Definition 4.3.1 (Nocedal [60]). A real, constrained, optimization problem is any problem
formatted as follows:

cz(:(:):() ZEE

ci(r)>0 ieZ (4.30)

min s(x) subject to {
TER™

where £, 1 C N are index sets. We say that £ is the index set of equality constraints and
that Z is the index set of inequality constraints.

Definition 4.3.2. Given the constrained optimization problem from Definition we
define the feasible set as

Q:{xGR”

¢i(z) =0and ¢;(z) >0,i€&,j € I} (4.31)

so that €2 is the subset of R™ on which the optimization is to occur. Furthermore, given a
point x € Q) we define the active set of x as A(x) given by

ci(z) = 0} : (4.32)

The active set at x consists of all those constraints that are identically zero at x. This
motivates the statement that a constraint ¢; is active at z if ¢;(x) = 0. All equality
constraints are inherently active.

A(:v):SU{z'eI

Definition 4.3.3. Consider the constrained optimization problem (4.30). We say that &
is a local solution if there exists a neighbourhood N of & such that s(2) < s(z) for all

xreENNQ.

The following constraint qualification is the assumption most used in the design of
constrained optimization algorithms. We will see how crucially important it is in providing
first-order optimality conditions.

Definition 4.3.4 (Linear Independence Constraint Qualification, Nocedal [60]). Consider
the constrained optimization problem given in Definition[4.3.1 Given a point 2 € Q and its
active set A(x), we say that the Linear Independence Constraint Qualification(LICQ) holds
at x if the set of active constraint gradients {V¢;(x),i € A(z)} is linearly independent.
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This turns out to be a very important assumption in the proof of the following theorem
which describes the first order necessary conditions for optimality.

Theorem 4.3.5 (Nocedal [60]). Consider the constrained optimization problem given in
(4.30) and assume that f and c; are continuously differentiable functions i € ZTUE. Let 2
be the feasible set and & be a local solution to - If the LICQ holds at x, there exists a
Lagrange multiplier \ with components )\Z, 1 € EUTL such that if we define the Lagrangian
function

L(x,\) = > il (4.33)

1€EUT

then the following conditions are satisfied at (z, 5\)

V.L(,\) =0, (4.34a)
(i) =0, Vie&, (4.34b)
¢i(z) >0, VieZ, (4.34c¢)

N>0,  Yiel, (4.34d)
Nci(#) =0, ViefUuZ (4.34e)

The conditions given by (4.34)) are known as the Karush-Kuhn-Tucker (KKT) conditions.

If we now return to our problem (4.29), we can easily convert the Real-Embedding
problem into the generalized form by setting & = {1} ,Z = () and

l

s => &  al®)=F). (4.35)

i=1

Let us examine what happens if try to apply the KKT conditions to (4.35). Our
definition of the terminal surface Q = F~!(0) corresponds to the feasible set given in
Definition and so there is no ambiguity of notation. We notice that

F(&) = d(g(£)Xo, Xa)” (4.36)

and hence F'(£) > 0 since it is the square of a function. Even if one removes the square, the
function is still non-negative by definition of the metric. Furthermore, F'is a differentiable
function since it is the composition of differentiable functions, so that any point &, at which
F (&) = 0 must correspond to a minimum of F'. Interior minima of differentiable functions
are necessarily critical points, so

VF(E) =0, VYeq. (4.37)
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With our Lagrangian function given by L(x, \) = s(§) — AF(£), we see that since s(§)
is just a sum of the components of £ then V¢s(¢) will just be a vector of ones, which we
will denote by 1. If we apply the gradient to the Lagrangian we find that

VeL(E,A) = Ves(€) — AVeF(E)
= T4+ AV F(€). (4.38)

If £ € Qs a local solution to (4.29)), we can apply (4.34a) of Theorem to find that

(4.38) becomes ) )
VeL(EN) =T+ AVeF(€) =1 (4.39)

since VeF(€) = 0 by (4.37). On the other hand, implies that V¢£(€, ) = 0 which
yields a contradiction. Since VF(§) = 0 for every feasible point, certainly holds
when ¢ is replaced by the optimal solutions é . This occurs because the zero-vector is
vacuously linearly dependent so the LICQ is violated and we cannot apply Theorem {4.3.5|

An alternative approach may be to change the regularity conditions on solutions to
, though in most instances one will still be unable to apply the KKT conditions. This
occurs because most constraint qualifications require some level of linear independence of
the active constraint set [60]. Furthermore, using Lagrange multipliers is intractable as
indicated by the contradiction arrived at in (4.39)).

4.3.3 Topological Issues

We have discussed the Kaya-Huneault algorithm in Section and its shortcomings in
Section [4.2.2] This was followed by the Real-Embedding algorithm in Section and its
issues in Section [4.3.2] There is another obstacle that is shared by both of these methods,
which we discuss here.

A possible caveat occurs when one tries to examine the terminal landscape itself. We
have very little information about the basic topological structure of this subspace, such as
whether it is connected, open, or even has non-zero measure. Since the feasible set used
in our constrained optimization method is defined by the minima of the distance measure
function, we can analyze this function and hope to gain information about its structure.

Continuous optimization results require the feasible set to be continuous. For example,
simplex and interior point methods move in a continuous fashion on the boundary and
interior of the feasible set, respectively. Such algorithms will break down if the feasible set
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contains only isolated points. We suspect that this may be one of the problems that our
algorithm is facing.

We heuristically corroborate this hypothesis by computational simulation in the in-
stance of bounded controls. Figure 4.1] gives a small section of the distance measure as
it varies with respect to two switching intervals. We notice that it is highly oscillatory
and contains multiple minima. Figure [4.2| shows several level sets of Figure represent-
ing the points where the distance between the evolved state and the objective function
is equal to {0.01,0.05,0.1,0.2} . In the one particle case, this corresponds to fidelities of
{99.9975%, 99.9375%, 99.75%, 99.0%} .

Surface and Contour Plot of Distance v.s. Switching Intervals

Distance From Objective

Second Switching Time

First Switching Time

Figure 4.1: A surface and contour plot of the distance measure as a function of switching
intervals.

Using the information from Figure [4.2] and the fact that, as we decrease the value of the
level sets the area of these regions decreases, it seems likely that the terminal surface may
consist entirely of isolated points. In such a case, the continuous optimization subroutines
employed by the Kaya-Huneault and Real-Embedding algorithms would fail. Figure is
also included to support this hypothesis, and plots the one-dimensional cross sections of a
two-level, two-particle scenario.

If the feasible set can be shown to contain only isolated points, then the continued use
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Figure 4.2: A graph of level sets corresponding to Figure for small values.

of the ideas presented in these algorithms necessitates using combinatorial optimization.
This may still be intractable, as combinatorial optimization problems often assume that
the problem is presented in a manner in which we are given or can deduce the position of
all points in the feasible set. We do not have this ability for this problem.

Finally, finding an initial point on the terminal surface may also prove to be very
difficult, and this step is often required to initialize constrained optimization routines.
Simulations reveal that points of perfect control correspond to sharp peaks, resulting in
very steep gradients and small neighbourhoods of descent near points on the terminal
surface. This is again supported by Figure [£.3

4.4 Numerical Comparison

We are now ready to begin numerical simulation to test the suitability of these algorithms
in different environments. We begin by introducing the form of the problem, as well as the
individual systems themselves and a set of objective gates. The gates we will be considering
are all important in the theory of quantum information[9, 29, 44} [57]. This will be followed
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Figure 4.3: The one dimensional cross sections near

One Dimensional Cross Sections of the Distance Measure

in a two qubit system.

84

a

o 20 o 15 o 15 o 20 o 15

= = = = =

o © ® © ©

% % 10 % 10 % % 10

€D 10 1] [+F] €D 10 1]

= = 5 s 9 = = 5

i 0 50 4 42

o o b o o

o 0—= o o0 o 0 O 0% o 0
0 1 2 0 0.5 1 0 05 1 0 0.5 1 0 05 1
Variation in Variation in Variation in Variation in Variation in
1th switch 2th switch 3th swilch 4th switch 5th switch

e 15 o 20 o 20 e 15 e 15

=¥ =¥, 3 =3 =

o a a ® o

% 10 % % % 10 % 10

o > 10 > 10 =t g

e 9 = = e 5 e 5

L] L] A = S0

(%) [ %) L% (%)

o 0 o 0 o 0 o 0 o 0 -
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 1 2
Variation in Variation in Variation in Variation in Variation in
6th switch Tth switch 8th switch 9th switch 10th switch

¢ 15 ¢ 15 ¢ 20 e 15 ¢ 20

=3 3 =3 = 3

w w w0 w w

g 10 g 10 g g 10 g

o = o 10 < o 10

e 9 e 9 g e 5 o

it o B ) 3

Iz n n w w

o 0 o 0 i o 0 o o = o 0
0 05 1 0 1 2 0 0.5 1 0 1 2 0 05 1
Variation in Variation in Variation in Variation in Variation in
11th switch 12th switch 13th switch 14th switch 15th switch

minimum of the distance measure



by a brief discussion on the comparison of the methods for each system.

4.4.1 Numerical Setup

We begin by establishing the environment in which the simulations are done. We are
looking at evolution as dictated by the Schrodinger equation

%U(t) = —iH(u(t))U(t), Ul(ty) = Uy (4.40)
where from this point on we will assume that t5 = 0. We will test the algorithms on
very simple arrangements varying from single-particle systems to three-particle systems.
In each of these three cases, three different objective unitary operators will be tested. As
we have done before, assume that the Hamiltonian is determined by an affine, m-input
form described by

H(u(t)) = Hy + i wi(t)H, (4.41)

with normalized control amplitudes u;(t) € [0, 1]. As it will be useful in concisely defining
our Hamiltonians, we introduce here the Pauli matrices given by

1/0 1 1/0 —i 1/1 0
X_§(1 0)’ Y_§<z' 0)’ Z‘ﬁ(o —1)' (4.42)

By taking the 2-dimensional identity matrix I, it is shown in Appendix that {I, XY, Z}
is a basis for $(2) and {X,Y, Z} is a basis for G4(2). We can extend this basis to £(2")
and GU(2") by considering the Kronecker product of these basis elements, and will be
using these as the fundamental building blocks for most of our systems.

The GRAPE algorithm we are using has been modified from its original purpose to
serve as a time-optimal implementation. In particular, we have adapted GRAPE to take
a set of initial parameters describing the number of discretizations N of the time interval,
as well as the uniform size of each sub-interval At. By specifying these conditions, we see
that the overall time is fixed and given by NAt with partition

0 <At <2At<...<(N—-1)At < NAt. (4.43)

The time-optimal GRAPE algorithm then performs a bisection algorithm to reduce the
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total synthesis time. The pseudo-code is given as follows:

Given an initial specification of the discretization number N, a uniform sub-interval length
At, a fidelity lower bound €, and an objective unitary X, proceed as follows:

1. Initialize k = 1, Ny = N and apply GRAPE to find a pulse sequence that drives the
identity to Xy over time NyAt.

2. If GRAPE does not find a solution satisfying the fidelity tolerance ¢, STOP. Other-
wise, define N1 = Ny — %

3. Apply GRAPE to find a pulse sequence over time N,At.

4. If GRAPE finds a solution satisfying the fidelity €, set Ny 1 = Ny — Qk% Otherwise,
set Npi1 = N1+ % and update k =k + 1.

5. Check stopping criterion. Namely, if N,At is less that some tolerance or k£ has
exceeded the maximum number of halving, STOP.

6. GOTOB!

In order to read the tables, we define the shorthand notations: “GR” for GRAPE,
“KH” for the Kaya-Huneault algorithm, and “RE” for the algorithm used in solving the
Real-Embedding problem. We have used oo to denote instances in which the algorithm did
not converge and signifies that the data entry is not applicable as there is no information
to display. Furthermore, all tables include “CPU-time” and “Run Time” sections. The
CPU-time represents the amount of time each processor used when at full capacity. In such
a setting, 1 second of real-time at 50% capacity represents 0.5 CPU-seconds while 1 second
of real-time with four processors at 100% capacity represents 4 CPU-seconds. Conversely,
the run time category represents the real time of the computation. The purpose of giving
both numbers is to demonstrate the parallel computing abilities of each algorithm giving
real-time expectations for results, but at the same time give an overall example of the total
computational resources necessary to compute the problem. The KH and RE columns
represent an average over multiple runs, and so the reader should regard this information
with caution.

We note that GRAPE uses fidelity measure while KH and RE use distance measures.
If the distance measure is given by mg;s and the fidelity is given by mgq, the conversion
between the two for a system occupying U(2%) is given by the following equations:

myis = \/2d+1 (1 — mﬁd) (444)
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which can be derived from the calculations in section concerning equation (4.3)).

All simulations were coded in Matlab R2009b and run on a Sun x4600 server including
eight Opteron 8218 processors with 32 GB of RAM.

4.4.2 One-Particle System

Herein we consider a two-input system, m = 2, with drift Hamiltonian

Hy =27 L0y ArZ (4.45)
0 -1
and control Hamiltonians
0 1
Hy =27 (1 0) =4r X
0 —1i
HQ—Q']T(Z. 0) = 47nY.

The three objective special unitaries that we will be considering are as follows:

(1 1 (0 1 1—-2/1 0
XHad—E(l _1>, XNOT—Z<1 O)’ XQ_W(O z) (4.46)

all of which have important implications in the theory of quantum computation. The
convergence threshold was set at a fidelity of 99.95%.

Consider Table as it relates to the operator Xyaq2. The GRAPE algorithm took
significantly longer than KH or RE, but yielded much better results in terms of synthesis
time. Also, an appropriate choice of parameters for GRAPE made a dramatic difference in
run time, and KH and RE both found consistent solutions in terms of synthesis time. This
may imply that KH and RE found the time optimal solution as permitted by bang-bang
controls and that they were not able to access the solution afforded to GRAPE. Further,
KH was able to find these solutions very quickly compared to RE.

For Xyor we consider Table and notice precisely the same pattern as Xpaq2-
GRAPE provided the best synthesis times at the cost of being much slower than KH
and RE, and once again the appropriate choice of initial parameters caused GRAPE to
converge more than 4x faster than the original conditions. In this case, KH and RE found
similar results in a similar time-frame and so we judge that they were equal.
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Table 4.1: One-Particle Simulation: Xaq 2

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(gecgme 354.9724 | 0.7565 | 5.8751
Steps = 1000 Run Time
Length = 5 x 10~* 356.1582 | 0.7615 | 6.1410
KH/RE (secs)
Intervals — 2 Syn. Time | 4205 |1 0.4648 | 0.4655
(h-secs)
GRAPE Cp(gecgme 132.0911 | 0.2045 | 11.6384
Steps = 1000 R Time
Length = 5 x 10~3 131.9476 | 0.2098 | 11.7638
KH/RE (secs)
Intervals — 3 Syn. Time 0.1750 | 0.5250 | 0.5303
(h-secs)
GRAPE Cpgeg;;me 922.8217 | 2.8965 | 23.5641
Steps = 1000 Run Time
Length = 1 x 1073 922.7722 | 2.9000 | 23.6642
KH/RE (secs)
Intervals — 5 Syn. Time 0.1750 | 0.4645 | 0.4655
(h-secs)
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Table 4.2: One-Particle Simulation: Xyort

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(gecTs;me 359.7724 | 1.4585 | 1.0928
Steps = 1000 -
Length = 5 x 107 Ru(rslegsl)me 360.7575 | 1.4617 | 1.2139
KH/RE Syn. Time
Intervals = 2 (h—secs) 0.2915 00 00
SO
GRAPE C (SQCTS;me 175.5832 | 2.3845 | 1.1459
Steps = 1000 -
Length = 1 x 1073 R“(:eg)me 175.5410 | 0.1522 | 1.1596
KH/RE Syn. Time
Intervals = 3 (ﬁ—secs) 0.1910 00 00
GRAPE CP (geCngme 40.9474 | 14.3475 | 15.1635
Steps = 1000 -
Length = 5 x 1073 Ru(rsleg)me 40.9024 | 14.3475 | 15.3722
KH/RE Syn. Time
Intervals = 5 (ﬁ—secs) 0.1950 0.4499 0.5308
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Table 4.3: One-Particle Simulation: Xyort

Algorithm
Initial Parameters Property GR KH RE
GRAPE CP(SQCTS;me 1577.8026 | 0.8800 | 7.4751
Steps = 1000 .
Length = 5 x 10~ Ru(rslegsl)me 1580.4226 | 0.8836 | 7.4942
KH/RE Syn. Time
Intervals — 2 (hosocs) 0.2915 | 0.6579 | 0.6611
GRAPE Cp(gegme 584.4762 | 0.3295 | 29.4090
Steps = 1000 :
Length = 1 x 1073 Ru(:efsl)me 615.7718 | 0.3300 | 20.4772
KH/RE Syn. Time
Intervals — 3 (h-sccs) 0.2920 | 0.6580 | 0.1250
PU Ti
GRAPE C (gecs;me 18.8951 | 5.6020 | 12.1782
Steps = 1000 -
Length = 5 x 1073 Ru(rsleg)me 19.5961 | 5.6081 | 12.2044
KH/RE Syn. Time
Intervals = 5 (h—secs) 0.1350 0.1247 | 0.1250
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Finally, Table gives us the information for Xz. Here we notice a different trend.
Similar to our previous gates, the first set of initial conditions resulted in a slow running
GRAPE providing the best solution. However, the second set of conditions resulted in KH
and RE providing better overall optimal solutions, despite GRAPE running quickly. Here
KH is clearly the best algorithm, as it was able to find the best solution and do so in an
expedient manner.

4.4.3 Two-Particle System

We move on to a four-input system, m = 4, with drift Hamiltonian

Hy=2r2®Z (4.47)
and control Hamiltonians
H1 :27TX®IQ H3 :27T]2®X
HQ :27TY®_[2 H4 :27T]2®Y

The three objective unitaries that we will be considering are as follows:

1 000 1 1 1 1
I1+2{0 1 0 0 1 -1 1 -1
XCNOT - \/§ O O O 1 9 XHadA - 5 1 1 _1 _1 9
0010 1 -1 -1 1
1 000
oo _ltif0o 0 10
SWAPT "5 o1 0 0
0001

The convergence threshold was set at a fidelity of 99.98%.

Table Table [4.5] and Table 4.6 all exhibit similar properties, allowing us to discuss
them in general. We first notice that GRAPE has long run-times ranging from 2 to 4 times
the length of KH and 2 to 20 times as long as RE. As in the single-particle case, GRAPE
still provides the best synthesis time, though RE stays competitive providing solutions that
are approximately twice as long. KH in this instance is starting to fail, as its run time
exceeds RE and its solutions are significantly worse than either GRAPE or RE.
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Table 4.4: Two-Particle Simulation: Xcnor

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(geczl)me 2069.60 | 521.05 | 147.42
Steps = 1000 R Time
Length = 5 x 1073 (Secs) 2068.91 | 521.60 | 40.85
KH/RE Syn. Time
Intervals = 20 1.1500 | 21.1000 | 2.8466
(h-secs)
GRAPE CP(ISJGCTS;me 6424.23 | 400.47 | 292.95
Steps = 2000 Run Time
Length = 2.5 x 1073 (Secs) 6425.29 | 400.47 | 66.64
KH/RE Syn. Time
Intervals = 30 0.9350 | 14.7100 | 2.6873
(h-secs)
Table 4.5: Two-Particle Simulation: Xpaq.4
Algorithm
Initial Parameters Property GR KH RE
CRAPE CP(gecTsl)me 1018.92 | 461.63 | 114.34
Steps = 1000 Run Time
Length = 5 x 1073 (Secs) 1024.99 | 462.02 | 36.44
KH/RE Syn. Time
Intervals = 20 1.4900 | 31.1050 | 3.1940
(h-secs)
GRAPE Cp(geg;l)me 764.15 | 564.79 | 355.82
Steps = 2000 R Time
Length = 2.5 x 1073 (s005) 757.09 | 564.88 | 73.97
w Syn. Time
Intervals = 30 1.4850 | 19.1200 | 3.1083
(h-secs)
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Table 4.6: Two-Particle Simulation: Xgwap

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(geg;;me 1063.22 | 530.26 | 51.217
Steps = 1000 Run Time
Length = 5 x 1073 1073.68 | 530.57 | 27.28
KH/RE (secs)
— Syn. Time
Intervals = 20 (h-SeCs) 1.4900 31.32 2.1480
GRAPE Ciii?m 764.15 | 377.36 | 360.413
Steps = 2000 Run Time
Length = 2.5 % 103 757.09 | 377.47 | 74.95
KH/RE (secs)
Syn. Time
Intervals = 30 (A-secs) 1.4850 | 12.97 | 2.4198

4.4.4 Three-Particle System

Finally, we consider a six-input system m = 6, with drift Hamiltonian

Hy=2r(Z®@Z@ L+ 1L, ®7Z® %) (4.48)
and control Hamiltonians
H1 :27TX®]2®IQ H4 :27T]2®Y®]2
HQ :27TY®[2®[2 H5 :27T[2®[2®X
H3 :27T[2®X®12 H6 :27T[2®[2®Y

The three objective unitaries that we will be considering are as follows:

I - 0 1 0 I, 0
XFred =C 0 0 ) XTOH =C 01
10 0 10
0 0 1
1
XHad g = oV Had.4 ® XHad,a

where C' = % <\/ 2442 — \/ 2 — \/§> is a normalization constant. The convergence thresh-
old was set at a fidelity of 99.99%.
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Table 4.7: Three-Particle Simulation: Xyeq

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(gecgme 2457.02 | 663.56 | 506.13
Steps = 1000 Run Time
Length = 5 x 1073 2486.15 | 680.34 69.57
KH/RE (secs)
—— Syn. Time
Intervals = 70 2.9750 | 134.5566 | 43.1727
(h-secs)
GRAPE cr (geCngme 4705.32 | 1395.68 | 680.04
Steps = 2000 Run Time
Length = 2 x 1073 4681.20 | 1425.72 69.57
KH/RE (secs)
Syn. Time
Intervals = 80 2.3980 | 150.9300 | 56.9611
(h-secs)

Let us examine Tables [4.7] and [£.9] It can be seen that KH, while maintaining a
competitive run-time with RE, finds solutions that are on the order of 10? of those given
by GRAPE. RE on the other hand is giving solutions on the order of 10! longer compared
to GRAPE, and so again are not even approximate time-optimal solutions. GRAPE is
still yielding excellent times, albeit once again at extreme time cost. Compared to RE,
GRAPE is consistently on the order of 10! times longer in CPU-time and 10? in run-time.
There is a version of GRAPE which is made for parallel computing which would decrease
its run-time. However, Matlab R2009b does not natively support parallel processing for
any of the sub-routines used in our version of the code. We advise the reader to use the
CPU-time to determine the speed of such algorithms.

It can now be seen that RE is starting to have trouble finding candidate time-optimal
solutions and that KH is even further away than in the two-particle system. GRAPE is
still finding good solutions though the amount of computational resources remains high.

4.4.5 Discussion
The one-particle case proved to be interesting as there was a gate in which the bang-bang
algorithms provided the best control sequence. However, once the number of particles

started to increase, KH and RE were simply unable to find solutions that could compete
with GRAPE. However, the downside to a time-optimal GRAPE implementation arises
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Table 4.8: Three-Particle Simulation: Xyaq

Algorithm
Initial Parameters Property GR KH RE
GRAPE Cp(gei;me A760.61 | 663.56 | 468.47
Steps = 1000 R Time
Length = 5 x 1073 4831.66 680.34 50.56
KH/RE (secs)
e Syn. Time
Intervals = 70 1.8600 | 134.5566 | 32.4540
(h-secs)
GRAPE Cp(gegme 0689.31 | 1395.68 | 722.77
Steps = 2000 g Time
Length = 2 x 1073 9623.31 | 1425.72 73.09
KH/RE (secs)
— Syn. Time
Intervals = 80 1.2360 | 150.9348 | 46.0556
(h-secs)
Table 4.9: Three-Particle Simulation: Xog
Algorithm
Initial Parameters Property GR KH RE
GRAPE CP(SQ(TS;me 5158.90 | 673.32 | 509.134
Steps = 1000 Run Time
Length = 5 x 1073 5H282.34 682.41 54.81
KH/RE (secs)
Syn. Time
Intervals = 70 2.4250 | 136.5030 | 35.4780
(h-secs)
GRAPE cP (geCTS;me 4293.66 | 1134.85 | 707.67
Steps = 2000 Run Time
Length = 2 x 1073 4273.66 | 1135.78 74.24
KH/RE (secs)
Syn. Time
Intervals = 80 2.4640 | 150.7099 | 54.7661
(h-secs)
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in the amount of time it takes to compute solutions, which the tables indicate climbs
dramatically as the size of the system increases.

The inability of the KH and RE algorithms to find solutions poses an interesting ques-
tion. The KH and RE algorithms assume that time optimal solutions are bang-bang and
neglect the existence of singular controls: the GRAPE algorithm makes no such assump-
tion. It is possible that GRAPE’s ability to find better implementation times could be a
theoretical result rather than just a limitation of the numerical methods used to imple-
ment KH and RE. In particular, GRAPE may have access to solutions that bang-bang
algorithms simply cannot find.

Indeed, we posit that this may be the case. We recall from Section that [16] ana-
lyzed time-optimal controls for a single particle in a magnetic field. The authors were able
to relate the control laws discovered for state-transition to one of propagator evolution by
using the diffeomorphism between S® and GU(2). Certain time-optimal solutions required
the use of singular controls. It seems reasonable that this may also be the case as more par-
ticles are used. This would mean that bang-bang algorithms such as the Real-Embedding
algorithm and the Kaya-Huneault algorithm are not well suited to computing time-optimal
solutions.

Our results suggest that using bang-bang algorithms with real parameters may not be
the best method of approach. We recall that the Real-Embedding algorithm in particular
removed the geometric and structural information of the unitary group by considering the
real-valued cost of a real-parameterized curve on $(d). Instead of ignoring the intermediate
details, we may be able to exploit properties of the unitary group to facilitate the creation of
better algorithms. With this in mind, we have done some work with geometric algorithms
whose results can be found in Appendix [D]

The aforementioned geometric algorithms are a combination of the techniques and
theories used in the Real-Embedding and GRAPE methods. GRAPE assumes that the
pulse function is continuous and discretizes into piecewise constant intervals for numerical
reasons. Conversely, the Real-Embedding algorithm assumes the control is bang-bang
causing the evolution to be piecewise constant by construction. The geometric algorithms
that we have analyzed do not make the assumption that the control is either bang-bang
or continuous. Instead, these algorithms use piecewise constant fields but do not limit the
controls to occupy vertices of the admissible set as done in bang-bang theories. This will
result in fewer per-iteration calculations as in Real-Embedding, but allow the algorithm
access to the same solution set as GRAPE.

One of the most promising benefits to such algorithms would be a dramatic decrease
in the number of matrix exponentials that need to be calculated. As systems increase in
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size, matrix exponentials become incredibly costly and contribute to increased run-times.
Calculating the gradient on the tangent space minimizes the number of matrix exponentials
that need to be computed by discovering the direction of steepest descent before passing
through an exponential.

In summary, we have examined the topic of algorithms to calculate time-optimal control
in closed quantum systems. The existing GRAPE algorithm was designed only for fidelity
optimization and not temporal optimization. It can be modified to yield time-optimal
results, and generally gives good solutions in exchange for a high computational cost.
The work done on the Kaya-Huneault algorithm is promising for single-qubit cases, but
may be for naught in the domain of multiple particles. This is the result of the heuristic
evidence that the terminal surface on which the algorithm so crucially depends seems to be
totally disconnected. Embedding the problem into R’ results in a violation of the Linear
Independence Constraint Qualification which deprecates most contemporary constrained
optimization methods.
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Chapter 5

Singular Controls

We have already discussed how the Pontryagin Principle and its generalizations yield dif-
ferent classifications for extremals. While most of the attention thus far has been focused
on computing time-optimal bang-bang controls, a full analysis of optimality necessitates
examining the existence of singular extremals as well. We recall the results of Section
in which we found that Gradient Ascent Pulse Engineering was more successful in deriving
time-optimal trajectories than the corresponding bang-bang algorithms. This may suggest
that singular controls are an essential part of finding time-optimal solutions.

In affine systems with bounded control amplitudes, we have seen that all controls must
be bang-bang or singular. While this is a sufficient characterization from the point of view
of control theory, one can also approach the topic of singular controls from the perspective
of functional analysis and sub-Riemannian geometry.

The tools and techniques for analyzing singular trajectories using the PMP is often
very specific to the dynamics being considered, and the Maximum Principle does not offer
many general tools to aid in such a study. Consequently, the inclusion of functional and
geometric arguments is a necessary tool in order to create general statements concerning
singular controls, and allows us to explore properties of systems that may not be evident
by examining the problem from only a control-theoretical viewpoint.

We will begin with a review of some of the tools and techniques used in singular control
theory, after which we will examine such controls in the domain of propagator evolution in
closed quantum systems. This chapter relies heavily on the contents of Chapter [2 and in
particular the differential geometric components introduced therein.
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5.1 The Tools of Singular Control

Many of the techniques developed in sub-Riemannian geometry utilize a functional analytic
approach to study mappings between a curve and its parameterization. In our case, the
parameters will be controls and the corresponding curves are precisely evolution trajectories
on 4(d). In order to begin our exploration of singular control in quantum systems, it will
first be necessary to create a toolbox from which we may analyze our environment.

5.1.1 The Endpoint Mapping

The endpoint map plays a crucial role in the study of singular extremals and gives us the
ability to move between a point on a curve and its corresponding parameterization given
a fixed parameter domain. Depending on the context of its use there are many equivalent
ways to define the endpoint mapping. We will introduce it here both in its sub-Riemannian
and control theoretic framework.

Definition 5.1.1. Let (M, D, g) be a sub-Riemannian manifold and denote by W, ([to, t1])
the space of functions v such that both v and 7 are square integrable under the sub-
Riemannian metric g on the domain [tg,t;1]. We choose to use the notation W for the
relation of this space to Sobolev spaces.

From [54], the endpoint map at the point p € M is the map that takes each horizontal
curve beginning at p to its endpoint. If €,([to, 1], D) is the set of all horizontal curves
v @ [to,t1] — M such that v € W, ?([to,t1]), the endpoint mapping is the map E, :
Qy,([to, t1]) — M acting as E(vy) = v(t1).

In order to cast this into a control theoretical framework, let {H, ..., H,,} be a global
orthonormal frame for a set of complete vector fields H;. If v € W,*([to, t1]) then we can
write

= Z u'H; (5.1)

and the coordinates u’ give a parameterization of our curve .

Consider the geometric control system

dX

— = F(Xu(X,1)) (5.2)
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for X € M and admissible control set 4 € R™. If T" > 0, we define the endpoint
mapping[11]
E:-MxR,.xU —G
(Xo,T,0) — X(T) "’

where X (t) satisfies ((5.2]) with u(X,¢) = @ and X (0) = Xy. Let u(t) € L*>°([0,¢],R™) and
give an initial condition Xy, € M. Let ® denote the flow of (5.2). The flow through X,
parameterized by the control u is given by

(5.3)

t
B(t, Xo,u) = T exp { / FOX(#), u(X, 1) dt} X, (5.4)

0
and we can view E as a function taking a control to the endpoint of its associated flow by

B )
E:u— O(T, Xo,u) =T exp [/ F(X(t),u(X,t)) dt} (Xo). (5.5)
0

Let ®,°(+) = ®(t, Xy, -) and &, (-) = ®(t,-,u). Since each control uniquely defines a flow

curve ®;X° the sub-Riemannian endpoint mapping is equivalent to the control theoretical
one when curves are parameterized by their controls.

Critical points of differentials correspond to points at which the mapping is not surjec-
tive. We will show in Section that singular trajectories correspond to critical points
of the endpoint mapping. For this to make sense, we need to ensure that the differential
of the endpoint mapping is well defined.

Proposition 5.1.2 (Montgomery [56]). Let (M,D,g) be a sub-Riemannian manifold and
assume that X (t) € W*([to,t1]) is generated by a set of non-autonomous vector fields

H;(X) so that
=3 HX(0) (5.6)

with initial condition X (tg) = Xo. The differential of the endpoint mapping is given by

dEx (v) = d®y, ,(Xo) / tl(détu (X)) (Zv X(t)) ) dt (5.7)

to

Proof. Similar to many approaches in the calculus of variations, we first notice that X (t) =
®;°(u) and introduce a control perturbation in X (¢) by defining

X (t) = B (u + ev)

Ms

[ (8) + ev' ()] H(X (1)), (5.8)

=1
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Define 6 X (t) = <= and notice that (5.6 gives us that

Oe le=0

dXe -
= ) + ev'(t)] Hi(Xc(t)). (5.9)

=1
Defining a fixed but arbitrary set of coordinates x, we can use the fact that % and %

commute to differentiate (5.9)) as
0H;

——= = t)—=—0X(t)] . 5.10
] e =X [penee) s Gexe) .

This is an inhomogeneous, linear differential equation which we can solve by the method of
variation of parameters. Let WU(t) be the fundamental matrix solution of the homogeneous

equation, so that
- ., OH;
2 t ?
> v,

=1

U, Ut =id (5.11)

dt
and assume that the solution to (5.10)) is of the form § X (t) = W(¢t)w(t) where w(t) satisfies

U(t)—w(t) = Z ol (6 Hi (X (1)) (5.12)

This implies that

X () = U(t) ( /t t U(s)! (Z Ui(t)Hi(X(t))) ds) . (5.13)

Since ®;°(u) = X (t) we have Ex = ®,°(u) which gives

OB (u + ev)
Oe

X,

dEx(v) = 5

— 60X (t). (5.14)

e=0

e=0

Hence all that remains to be shown is that ¥(t) = d®;"°(v). This result follows almost
immediately. Since X (t) = ®;*°(u) equation (5.6) implies that

%q)txo( )= DUt Hilt, 7 (u)) (5.15)



and so

d Xo . & i aHl Xo
TN T P i

By comparing (5.11]) and ([5.16]) we see that they satisfy the same differential equation so
that W(t) = d®;°(u) and the result follows. O

5.1.2 Sub-Riemannian Geometry

Our goal will be to show why critical points of the endpoint mapping correspond to singular
trajectories. This will be the result of casting the sub-Riemannian structure into one that is
similar to classical Hamiltonian mechanics. Before we can relate the endpoint mapping to
control theory, it will be necessary to discuss some fundamental results in sub-Riemannian
geometry.

It is well know that any smooth manifold G can be endowed with a Riemannian struc-
ture which simply corresponds to a non-degenerate, positive-definite section of the vector
bundle X2T*G of symmetric 2-tensor fields on the cotangent bundle. In general, no such
structure can be defined on a sub-Riemannian geometry, though we can define a similar
concept.

Definition 5.1.3. A cometric is a section of the vector bundle ¥2T'G of symmetric 2-tensor
fields on the tangent bundle.

In order to define the analogous property to a metric on a sub-Riemannian manifold,
it is necessary to consider the dual space to that of the metric. To see how this relates to
sub-Riemannian geometry, note that just as a Riemannian metric defines an inner-product
on tangent space T'x GG, the cometric defines a fibre-bilinear form on cotangent spaces TxG.
Since there is no positive-definite condition, it would be incorrect to say “inner-product.”
If B € ¥2T% is a cometric, we define that bilinear form as

(¢, 0)x = Bx(¢,9), Vo, € TXG. (5.17)

Such a cometric can be used to define a dual-symmetric bundle map 5 : T*G — T'G such
that for all ¢, v € TYG, (¢,v)x = ¢(Bx(v)). This use of B to define both the cometric and
the bundle map is an obvious abuse of notation, though the context of its use should make
it clear as to which form we are referring. This is similar to the musical isomorphisms
of Riemannian geometry and give us the same bilinear versus dual-space inner-product
analogy as that discussed in Section [2.4.1]
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Lemma 5.1.4 (Montgomery [56]). Let G be a manifold.

If (G,D,g) is a sub-Riemannian manifold, we can define a unique bundle map f :
T*G — TG such that

1. The bundle map defines the distribution; that is, VX € G,Image(fx) = Dx.

2. The bundle map agrees with the sub-Riemannian metric; that is, VX € G,VH € Dx
and Yo € TG we have that ¢(H) = gx(Bx(¢), H).

Conversely, any constant-rank cometric 3 € X?T'G defines a sub-Riemannian geometry
of the same rank as B by the induced bundle map.

This proposition allows us to say something that has a profound meaning both math-
ematically and physically.

Definition 5.1.5. Let  be a cometric on G with the bilinear form (-,-)x on T%G.
The fibre-quadratic function defined by H(X, ¢) = %(qb, ¢)x is called the sub-Riemannian
Hamiltonian of G corresponding to the cometric 5.

Proposition 5.1.6 (Montgomery [56]). Every sub-Riemannian structure is uniquely de-
termined by its sub-Riemannian Hamiltonian. Conversely, any non-negative fibre-bilinear
Hamiltonian of constant fibre rank k gives rise to a sub-Riemannian structure whose un-
derlying distribution is rank k.

This result follows from Lemma [5.1.4, A Hamiltonian is defined by its cometric which
defines a sub-Riemannian structure and conversely, a sub-Riemannian structure uniquely
defines a cometric which gives rise to a Hamiltonian.

Similar to our discussion of symplectic geometry in Section [2.3] we can begin to see
the development of a state-momentum concept in which the sub-Riemannian Hamiltonian
plays the role of kinetic energy. In fact, this can be extended further via the following
definitions:

Definition 5.1.7. Let G be a smooth manifold and H € I'(T'G). The fibre-linear function
Py : T*G — R given by Py (X, ¢) = ¢(H(X)) is the momentum function for H.

Proposition 5.1.8. Let (G, D, g) be a sub-Riemannian geometry and {Hy, . .., Hy} a frame
for D. If we define the sub-Riemannian metric in terms of this frame as

9i5(X) = (Hi(X), H; (X)) x (5.18)
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then the sub-Riemannian Hamiltonian is described by

H(X,0) = 5 37 g9 (X)Pa (X, 6) P, (X, 0 (5.19)

where >, g gy; = 0%

The definition of g;; given in Proposition is nothing more than the sub-Riemannian
metric in local coordinates. Furthermore, the condition that )~, g*gy; = 0 states that we
have defined g% to be the inverse of g;;.

Proof. From Lemma we know there exists a bundle map § : T*G — T'G such that
¢(H) = (Bx(¢), H)x. Let (-,-) be the fibre-quadratic bilinear form induced by the bundle
map. By the definition of this map, it follows that (¢, 1) x = ¢(Sx(¥)). Combining these,
we see that

(¢, ¢)x = ¢(Bx(0)) = (Bx(9), Bx(0)) x - (5.20)
Since {H;}¥_ is a frame for D, we can write Sx(¢) in terms of the H; as
k
Bx(¢) =Y (X, ¢) Hi(X) (5.21)
i=1

for some set of coefficients ¢’ that have yet to be determined. Plugging (5.21)) into (5.20)
yields

(Bx(9), Bx(9)) x

<Zci<x, OV H(X),> (X, ¢>H1<X>>

i=1 i=1

) (Hi(X), H;(X))

k
> dX ) (X
3,7=1

k
> 9i(X) (X, 9)d (X, ¢) (5.22)
ij=1
We our focus to discovering the form of the coefficients ¢'(X, ¢). Realize that

(X, @) (Hi(X), H;(X))

W

<BX (Qb), Hj>X

1

(2

(X, 9)gi;(X) (5.23)

WE

1

(2
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but ([5.23]) simply corresponds to matrix-vector multiplication. By using the inverse matrix

g% we can thus write
k
(X, 0) =Y g7 (X) (Bx(0), Hy)
j=1
Furthermore, by Lemma

(Bx (), Hj)x = ¢(H;(X)) = Pr;(X, )

and so we get

Zg” )Py, (X, ).

Finally, we can substitute (5.26)) into ) to get
¢¢X—ng L9 (X, )

= g(X ( PHmX¢>(Z
= > gi;(X)g"™(X)g"™(X) Py, (X, ¢)Pp, (X, )

t,j=1
%,4,m,n

= ng" )Pr, (X, ¢) Py, (X, ¢)

ﬁMw

where in ((5.27) we have used the fact that

Z gjn <Z gijgim> = Z gjn(;;n — g™,
J i ;

The result then follows from the definition of H (X, ¢).

5.1.3 Critical Points are Singular

X)Pu, (X Cb))

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

We are very close to showing why the endpoint mapping is such a useful tool in singular
analysis. In order to proceed further, we will need to unite the previous topics into a

unified framework.
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Definition 5.1.9. Let (G, D, g) be a sub-Riemannian manifold. We define the annihilator
of D as

DL — {5 e T*M ‘f(v) — 0,0 € D} . (5.30)
D+ consists of all the covector fields for which the horizontal distribution is a subset of its
kernel.

Let w be the canonical symplectic form on T*M and @ = w‘ ) be the restriction of

D
this form to D+ and note that this restriction need not be symplectic [22].

Definition 5.1.10 (Chitour [22] and Montgomery [56]). Let D+ be as defined above.
A characteristic for D+ is an absolutely continuous curve v : [tg,t;] — D+ that never
intersects the zero-section of D+ and satisfies L@ = 0 on every t for which (1) is

defined. Alternatively, ¢(t) is characteristic for Dt if ¢)(t) € ker & (¢(t)).

Such curves are called characteristic in the study of sub-Riemannian geometry. In
the regime of control theory these are more commonly known as abnormal curves. The
original work of Pontryagin [61] and later the generalization by Hsu [36] gives the following
theorem:

Theorem 5.1.11. Let (G, D, g) be a sub-Riemannian geometry and denote by Qx, the
set of all horizontal curves on D that start at Xy € G. If D* is the annihilator of D, it
then follows that v € Qx, is a singular trajectory if and only if it is the projection of a
characteristic on D+. More precisely, ) : [to,t1] — D+ such that v(t) = w((t)).

This theorem gives us some computational leverage with discovering singular trajecto-
ries. It states that there is a bijective correspondence between characteristics of D+ and
singular trajectories so it is sufficient to calculate characteristics alone. We shall take a
look at how covectors in D+ interact with the endpoint mapping to discover why this is
true.

The following argument is proposed in Montgomery’s book [56], although we have filled
in the details. Let X : [to,t1] — M be a horizontal curve generated by a set of vector fields
u'(t)H; (X (t)) with X (ty) = Xp. Define the spatial flow of these vector fields for fixed
t € [to,t1] and control parameterization u* as ®;,, : G = G. Now d®,,, : TG — TG and
so the pullback acts as (d®;,)* : T*G — T*G. Let A, € 1% 1,)G be an arbitrary covector
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and define \g = (d®y, )%, (Ar, ). Using (5.7) we get

)
(Ay. dEx (0)) = <At1,<d<bh,u % / (@B 1)x (

)
(@05 0. [ (@) (fj <X<t>>) dt>
_ <>\t0, /mh(d@;;)_xo <ivi<t>Hi<X<t)>> dt>
:/: <)\(t),§;vi(t)Hi(X(t))> dt (5.31)

where we have defined A(t) = (d®; )%, (Xo)-

This tells us that the dual action of covectors on the endpoint differential gives a
covector A(t) that acts opposite the generating vector fields. Any such curve (X (¢), \(¢))
is the solution of a Hamiltonian system with initial condition (X, Ag) and Hamiltonian

(@0 t) = ui(t)Px,(q,p) (5.32)

v
Gs
v
&
~——

where Py, (q, p) is the usual momentum function given by Px,(q,p) = (p, Xi(q)) = p(X;(q))
is the momentum function.

We notice that (5.32) is precisely the Pontryagin Hamiltonian. Furthermore, let us
evaluate the integrand of ([5.31)) more thoroughly

<A(t),zvi(t)Hi(X(t))> = Zvi(t) A0, Hi(X (1)) = > v (1) Px, (X (1), A(t)). (5.33)

Putting this back into (5.31]) we get

(X, dEx (v /Z (t)Px, (X (), A(1)) (5.34)

so that the adjoint of the endpoint differential gives us
(dEXx)*(A) = (Pi(t), ..., Pn(t)) (5.35)
where P;(t) = Px, (X (%), A(t)).
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Assume that « is a critical point of the endpoint map E : Qx, ([to, t1]) = G, so that the
pushforward of E given by dE : TQx,([to,t1]) — TG is not surjective. For a fixed curve
X, this means that the image of dEx is a strict subset of the endpoint tangent space.
Mathematically, we have

Tmage(d(Ex)) € Tx(,)M. (5.36)

The lack of surjectivity implies that we can find a non-trivial covector in the annihi-
lator frame; that is, A € T%,)M such that Vw € Image(dEx), A(w) = 0. Since
w € Image(dEx) we can find an element in its preimage, say v € M, that satisfies
dEx(v) = w and so A(dEx(v)) = 0. We chose w arbitrarily which corresponds to an
arbitrary choice of preimage element v, so implies that the only way A(dEx(v)) =0
for all v is if Px,(X(t),\(t)) = 0 for each i = 1,...,m. In a control theoretical frame-
work, the switching functions are precisely the Px, (X (t), A(t)) and so we see that the two
definitions of singular curves are actually equivalent.

5.2 Singular Controls In Quantum Mechanics

The few papers that consider the existence of singular controls are primarily dedicated to
very specific systems and often include dissipative effects [13| 15, 51), [71]. Work done by
[73] has considered singular quantum control, though has not elaborated upon any results
beyond those found in the text [I2]. We present here a brief treatment of a general but
restricted class of singular controls in quantum mechanics, from which the techniques are
taken principally from [12].

5.2.1 Poisson Brackets and Manifolds

The Poisson bracket commonly appears in the study of classical mechanics and has a deep
relation to the Lie bracket. It allows us to define another natural Lie-algebra on any
smooth manifold, and is related to the usual Lie algebra whenever that manifold is also a
Lie group.

Definition 5.2.1. Let G be a smooth manifold, f,g € C*>(T*G). Denote by fthe
Hamiltonian vector field of f and let w be the natural symplectic form. We define the
Poisson bracket {f, g} in any one of the following equivalent ways

— - d
{f9y=Fo=dr.9)=w (f.9) = 2| Folexptg). (5.37)
t=0
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Proposition 5.2.2. Let G be a smooth manifold and fix a Darboux coordinate system
(2%, p;) in a neighbourhood of p € G. Then for f,g € C*(T*G) we have

N~ 9f 99 Of Oy
{f,9} = Z Tl s (5.38)

Proof. Let f,g € C°(T*G) and recall from (2.47)) that the Hamiltonian vector field of f
can be written in a neighbourhood of p in Darboux coordinates as

> ~~[(O0f 0 Of 0
/= 121 (axi dp:  Opi 81,”) (5:39)

Since the Poisson bracket can be defined as {f, g} = f g, the result follows immediately. [J

Proposition 5.2.3. Let G be a Lie group and X,Y € T'(TM) be smooth vector fields. If
Px, Py represent the corresponding momentum functions Px(q,p) = p(X,) then

{PX,Py} = Xy] (540)

Proof. We first need to examine what the momentum function looks like in local coordi-
nates. Let (z) be a local frame and write

X, = ZX (91'@ Y, = ZY W (5.41)
For (q,p) € T*G we have
Px(q,p) ZXZ 0)pilq pi(a) =P o] - (5.42)

The p; are simply coordinate momentum functions and in fact (z%,p;) are a Darboux
coordinate systems. Using [5.38| we get

{Px, Py} (¢,p) Z{XZ 0)pi(@), Y (0)p; (@)}

-V ) i) - X @) ), (5.43)
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Conversely, we recall from (2.18)) that

=3 (X0e Y 05 ) 5 (5.44)

so that ; ;
A, =% (v - X5 )@ (5.45)
Changing the dummy indices in and comparing to ([5.45)) shows that these are indeed
identical, as required. O

Proposition gives us a powerful tool for relating Lie bracket and Poisson brackets,
and is integral to the proof of the following theorem.

Theorem 5.2.4 (Properties of the Poisson Bracket, Agrachev [B]). Let f,g € C®(T*M).
Then

1.Af. 9y =—{9. 1}
2 {f.a) =7.q
5. {f.gt ht+{{g.ht f+{{h f}.g} =0
Proof. Let f,g,h € C°(T*M) and w be the canonical symplectic form.

1. Using the symplectic definition of the Poisson bracket, we have that
gt =w(5) =-w(3.F) =—19./}.

2. This is an exercise in applying the definition of Hamiltonian vector fields as well as
the properties of Lie derivatives to which we refer the reader to Theorem [2.2.23]

(o) s =—d{f.0} = ~d (Fg) = ~d (Ls9) = ~L;dg

= —Lp(fow) = - (cf-»g*)w — oL
=0

—

= (7, flow = [f, gl w.

Since w is non-degenerate, this implies that these two quantities are defined by their
action on the contraction and hence are equal, so {f, g} = —[f, g] as required.
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3. Here we make explicit use of the result proven in[2] Indeed

{f.g} 1} = (F.gbh = [F. G = fan— gin
= f{g.h} = G{f. 0} = {f.Ag. h}} — {g. {f. h}}
= _{{g>h}7f}_{{hvf}vg}

where in the last line we used the anti-symmetric property of the Poisson bracket.
m

This theorem tells us that we can endow the cotangent bundle with a Poisson bracket
to get a Lie algebra. Mathematically, if G is a smooth manifold then (C*(T*G),{-,-}) is a
Lie-algebra. The mapping given by Proposition is a Lie-algebra anti-homomorphism
between Lie(G) and (C°(T*G),{-,}).

There may be instances in which it is more natural to work with the Poisson bracket
instead of the Lie bracket, but the above corollary indicates that the two are related. In
the following analysis, we will provide characterizations in terms of both brackets.

5.2.2 Single-Input Affine Systems

Let us consider a single-input, affine control system with drift. The simplicity of this
system allows us to consider the singular controls in an abstract way without needing to
explicitly specify the space in which we are working. We shall first work in a very abstract
sense and then specialize to the case of quantum mechanics.

Let G be a smooth Lie group with Lie algebra g and consider a control system of the
form

X(t) = Ho(X (1)) + u(t)Hi (X (1)), (5.46)

where X : [tg,t;] = M and Hy, H; € I'(T'M). For simplicity of notation and calculation,
we shall denote by (p, H;) the evaluation p(H;). Consider a time-optimal cost function, so

that applying the maximum principle, we find that the Pontryagin Hamiltonian is given
by
Hypo (X, p,u) = po+ (p(t), Ho(X (1)) + u(t) (p(t), H1(X(1))) (5.47)
0.

for which a singular extremal must satisfy (p, H1(X)) =
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Proposition 5.2.5. The adjoint system for ((5.46|) evolves as

30) = =) ( G0 + ul G2 X0 (5.49
— - (0. G2 x0) + a0 G e ) (5.49)

Proof. The proof is trivial and follows from Hamilton’s equation

0H,,

Bl = -2

If we differentiate the mapping ¢ — (p(t), H1(X(t))) and use (5.48) we find that

% (p(t), Hi(X(1))) = (p, H1(X)) + < %[)?X>

= (o (G2 oS} o))+ (o S a0 + ()
- <p, —Hy(X) (% +U%>> + 8H1 +UH1(X))>

:<p,<%H(X) H(X)aa[;))—i— (%I;H(X) Hl(X)%)>

= (p, [H1, Ho|(X) + u[Hy, H1](X))

= (p(t), [H1, Ho](X(1))) (5.50)

Since (p(t), H1(X(t))) = 0 then certainly < (p(t), H;(X(t))) = 0. Substituting this into
(5.50) it follows that (p(t),[Hi, Ho](X(t))) = 0 as well. Proceeding in the same manner,
we differentiate the mapping ¢t — (p(t), [H1, Ho](X (t))) = 0 again to get

(p(t), [[H1, Ho|, Hol (X (2))) + u(t) (p(t), [[H1, Hol, Hi](X(#))) = 0 (5.51)

which allows us to solve for u(t) explicitly as

ey — — (20 ([, Fo], (X (1))
(o), [H, Hol, Hi)(X(2))

(5.52)
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We introduce a common notation that allows us to write this in a very succinct manner.
Define ad% Y = X and recursively define ad% Y = [ad% ', Y] for & > 2. Using the anti-
symmetry of the Lie bracket, we can write

[[H1, Ho), Ho] = [Ho, [Ho, Hi]] = ad%o H,
([Hy, Hol, Hi| = —[Hy, [Hy, Hol] = —adél H,

so that the control scheme given by (/5.52)) is

(p(t), adyy, Hi(X(1)))
(p(t), adjy, Ho(X (1))

It is now a very simple matter to cast this into the Hamiltonian formalism which makes
use of the Poisson brackets. Let define the “switching functions” as

HHO(X’p> = <p7 H0<X)> ) HH1(X7p) = <p7 HI(X)> : (554)

u(t) = (5.53)

Since Hy, H, are vector fields, these switching functions correspond to the Hamiltonians
on TG or equivalently, the conjugate momentum functions of Hy and H;. By applying

Proposition we see that (p, [Ho, H1](X)) = {Hn,, Hr, } (X, p) and (5.52)) becomes

_ _{{HH17HHO}7HH0} (X,p)
U(t) a {{HHIWHHO}’HHl}(X?p). (555>

What we notice here is that a finite number of differentiations eventually resulted in
the control term appearing linearly, allowing us to solve for it explicitly. This motivates
the following definition:

Definition 5.2.6. Consider the control system previously described. For any singular
trajectory (X, p,u) : [to,t1] = T*M x R define the set

R(X,p,u) = {t € [to, 1] ‘ ({Hy, Hy,}, Hy,} = o} (5.56)

This set is possibly empty and is always an open subset of [tg,t1]. Any singular extremal
for which R(X,p,u) is a dense in [tg, t1] is said to be of minimal order.

Intuitively speaking, minimal order singular trajectories only require a finite number
of differentiations on their switching functions before the control appears explicitly and
linearly[14]. This allows us to solve for the control function explicitly and define a feedback
controller.
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5.2.3 Propagator Evolution

We want to be able to determine when a control function yields a singular trajectory, and
if so whether that trajectory is optimal or not. We begin by specializing the generic results
found in Section to the case of quantum mechanics. In particular, our single-input
affine system is of the form

d

ZX(0) = —i(Hy+u(®H) X(0),  X(t) = id. (5.57)

In a temporary abuse of notation, if we compare this to (5.46|) we see that
Ho(X(t)) = —iHoX(t), H{(X(t)) =—iH X(t) (5.58)
and the control form of u(t) given by (5.53) is very similar, giving

<p(t), ad?{O H1>
<p(t), adfil H0>

Our issue is that we do not have an analytic form for p(¢) and hence cannot explicitly
describe u(t). On the other hand, knowing that p(t) satisfies Hamilton’s equation, we can
use numerics to establish a two-point boundary value problem and iteratively solve for a
singular control

u(t) =

X(). (5.59)

The endpoint mapping gives us another tool for characterizing when controls will be
singular. Recall that the differential of the endpoint mapping was given by

dEx(v) = d®;X (v) /t1 dd7 (v (Zm:v’ X(t)) ) dt. (5.60)

to =1

By comparing ([5.16|) to (5.57]) we see that
d®; (v) = T exp [—i(Hy + vH;)t] Xo = X(t) (5.61)

and so by simply substituting, ([5.60)) becomes

t1

4B, (v) = X(t) / o(B) X (0 L X (¢) . (5.62)
to

Given a fixed control function v(t), the quantity X (¢1) is constant, and so to determine

if v(t) is singular we need only check the that the integral is rank-deficient. Furthermore,
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since Hy; and X(t) are square and have matching dimensions, v(t) is a singular control if
and only if

det / " (X (1) X (1) di = 0. (5.63)

to

Unfortunately, ((5.63)) is not very amenable to analysis and future work needs to be done
to see if we can infer any information from this equation.
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Chapter 6

Concluding Remarks

6.1 Summary

The objective of this thesis was to examine the problem of finding time-optimal controls to
drive an initial unitary operator X, to an objective operator X; with dynamics governed
by the Schrédinger equation. In doing so, it was necessary to introduce a great deal
of foundational material in quantum mechanics, control theory, differential geometry, and
numerical analysis. We then analyzed how the theoretical work in each of these fields could
be consolidated in order to explore the objective of time-optimal control. We focused our
attention on the existence of singular controls and numerical algorithms for finding bang-
bang controls.

Chapter [2| recapitulated the important results in control theory, especially as it per-
tains to time-optimal synthesis. There we analyzed how the Pontryagin principle induced
a classification on extremals under bounded controls, and introduced the differential ge-
ometry necessary to extend the principle to general manifolds. Symplectic manifolds and
sub-Riemannian geometries were also discussed, as they play an important role in under-
standing not only how a control problem is generalized, but give insight as to some of
the more esoteric constructs given in the original maximum principle. These tools were
especially useful in the following chapters to construct numerical algorithms and analyze
the existence of singular controls.

Chapter [3| provided a brief description of the existing literature in quantum control, in-
cluding issues of controllability, Cartan decompositions, and landscape topology. Therein
it was found that much of the work already established in geometric control theory could be
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translated into a quantum framework, and that the additional structure afforded by con-
sidering quantum systems meant that researchers could strengthen many of those generic
results.

Our discussion in Chapter {4 focused on numerically computing time-optimal solutions
under the assumption that no singular control existed, permitting us to consider only
bang-bang solutions. We analyzed the theoretical framework and motivation established by
Huneault in his thesis [37], and created our own algorithm based off of this algorithm. These
algorithms were then computationally implemented and compared to a modified version of
the Gradient Ascent Pulse Engineering (GRAPE) algorithm designed to find time-optimal
solutions. GRAPE was able to find excellent solutions, but with extreme computational
costs. Our algorithm was competitive in low dimensions, providing good solutions relatively
quickly, but had trouble as the dimension of the problem started to grow. Ultimately,
GRAPE consistently yielded the best time, though with high computational times.

Finally, Chapter [5| discusses singular controls. Here we introduced the endpoint map-
ping often used in sub-Riemannian geometry and examined its properties as a functional.
We derived singular feedback control laws for single-input affine systems in terms of both
the Poisson and Lie bracket formalisms. After showing the critical points of the endpoint
mapping correspond to singular controls, we then used its differential to give a criterion
under which controls could be singular.

6.2 Future Work

We mentioned previously that the results of Chapter 4| indicate that while the bang-bang
algorithms are able to find competitive solutions to those given by GRAPE, an increase in
dimension can start to cause troubles.

We first consider the fact that the violation of the Linear Independence Constraint
Qualification caused the problem statement of the Real-Embedding algorithm to be de-
generate. Even by demanding that the constraint set only hold up to an e-tolerance, the
degeneracy could not be completely removed. Hence the real embedding algorithm might
perform better if it were formulated in a framework in which it is non-degenerate.

The terminal surface shared by both the Kaya-Huneault and Real-Embedding algo-
rithms needs to be examined more closely on a theoretical level. In particular, one would
like to show that the pre-image of the set of time-intervals which correspond to exact objec-
tive evolution correspond to a completely disconnected set. It would be sufficient to show
that the Hessian of the function d(X (£), X4)? is non-degenerate whenever ¢ drives X (€) to
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precisely Xy, since Morse’s Lemma would then imply all critical points are isolated. This
would imply that continuous optimization methods on the terminal surface are intractable
and the approaches of the Kaya-Huneault and Real-Embedding algorithms cannot be used.

Applying standard optimization algorithms in Euclidean space causes a great deal of
trouble in quantum control computations, with examples including the exponential growth
of classical representations of quantum systems, as well as the degeneracy of the constrained
optimization problem mentioned above. In Section we used a composition between
a manifold curve and a real-valued map to abstract away the intermediate details of the
system evolution. By instead considering how optimization processes can be performed on
this intermediate geometric space, we may be able to find better algorithms. Such geometric
algorithms can analytically exploit the natural structure of the space on which the evolution
is occuring, resulting in more efficient computations that avoid the computational overhead
of transfering between Euclidean spaces. Some theoretical foundations for this work are
provided in Appendix [D}

There is much work to be done in the area of singular controls. Typically, in order
to consider singular controls one examines the details of a specific system. In order to
generalize these results we are forced to use functional analysis and differential geometry.
We have given a condition on the controls for which a trajectory will be singular, but it
is not computationally friendly and needs to be worked with further. Possible avenues for
exploration are the use of higher-order necessary conditions to find restrictions on the form
of singular controls that might lead to more general results.
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Appendix A

Differential Geometry

A.1 Tangent Spaces

Herein we will note some of the important properties of the abstract definition of a tangent
space on a manifold and how it is equivalent to the case when our manifold is R. Recall
that we had defined tangent vectors as derivations as follows:

Definition A.1.1. Let M be a smooth manifold. A linear map X : C*(M) — R is a
derivation at p € M if

X(fg)=fXg+gp)Xf,  VfgeC?(M)

We note the set of all derivations at p by 7,,M and refer to this as the tangent manifold at
.

While this is the preferred way in much of the more modern differential geometry
literature, there are many other ways. The following is the definition using germs:

Definition A.1.2. Let M be a smooth manifold. A smooth function element is a couple
(f,U) with f € C*(M,R) and U C M such that f: U — real.

Let p € M and consider the set of smooth function elements (f,U) such that p € U,
and denote this set by G,. We define an equivalence relation on G, by saying that

(f,U)~ (g, V) it IWspVeeW fz)=g(x) (A1)
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Definition A.1.3. Let M be a smooth manifold and take p € M. If G, and ~ are defined
as above, and (f,U) € G, then the germ of f at p is the equivalence class

[(f,U)]~ € Gp/ ~ (A.2)
We will denote the set of all germs at p by C;° =G,/ ~.

We can define an R-algebra on C° by defining the following operations

[(f; U~ + (g, V)]~ = [(f +9), UNV]L (A.3)
f(f,U)]~ = (cf,U)]~,  ceR (A.4)
[(f; U)l~l(g: V)]~ = [(f9), UN V. (A.5)

Definition A.1.4. For a smooth manifold M and p € M define the tangent space at p as
LM = {X O R| X U]l V)] = F@)X[(9.V)) + 90X U} (A6)

This is very similar to our definition of derivations on functions of M, since we still
require that the tangent vectors satisfy the Leibniz rule.

However, since control theory is more interested in curves on manifolds and their tan-
gents, the following is an intuitive and alternate way of defining 7, M. Let M be a smooth
manifold and p € M. Consider the set of all smooth curves v : J, € R — M such that
7(0) = p. Then we define the following equivalence relation on this set as follows:

i~ Handonlyif VS e CR(M), (fomn)(0) = (forn)(0)  (AT)

That is, two curves are equivalent at p if their derivatives at p agree regardless of how we
map them onto R. Then the tangent space is the set of all equivalence classes under this
relation.

All of these definitions of the tangent space are equivalent, as is well known throughout
the field of differential geometry.

Proposition A.1.5. For any p € R" we have that T,R" = R".

Proof. Consider the set R} = {(p, x) ‘x € R"}. Clearly R} = R under the projection

T {p} x R* — R". Now for each (p,v) € R}, define the directional derivative mapping
D,|, : C*°(R") — R by

d
Dv|pf = E

f(p+tv) (A.8)

t=0
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We notice that D, |, corresponds to derivations using Definition and hence

TR" = {DJ,

Ve R”} (A.9)

Claim: The mapping (p,v) — D,|, is an isomorphism from R} — T, R™.

This result is proven in [52], and is long and unenlightening so we omit its proof.
Consequently, we have arrived at the desired result since R" = R} = T, R" as required. [

A.2 Differential Forms and Tensors

Definition A.2.1. Suppose that Vi,...,V, and W are complex vector spaces. A map
F:Vix...xV, — W is multilinear if it is linear in each component with the others held
constant.

This definition gives rise to two commonly used terms.

Definition A.2.2. If V and W are vector spaces and F': V x V — W, we say that F' is
bilinear if it is linear in both components. We say F'is sesquilinear if it is linear in one
component and conjugate linear in the other. More precisely, a sesquilinear function acts
on scalar multiplication as follows: If z,y € V and a,b € C then

F(az,by) = abF(z,y) (A.10)

Definition A.2.3. A covariant k-tensor 1" on a vector space V' is a real-valued multilinear
function of k-elements of V, T : V¥ — R. We say that the rank of T is k and write
rank T = k. The set of all k-tensors on V is denoted T%(V) and is a vector space under
the usual operations of pointwise addition and scalar multiplication.

Note that linear functionals 7' : V' — R are rank-1 covariant tensors, so we can identify
V* =T V). Our next goal is to define the set of contravariant k-tensors. This is normally
done via category theoretical devices involving free vector spaces and tensor product spaces.
Since these will not be useful to our study, we instead take them as given, referring the
interested reader to [31] for more details.

Definition A.2.4. The set of contravariant k-tensors is defined as Ty, (V) = V& . For
k,¢ € N, the space of mixed (k,{)-tensors is TF(V) = (V*)®k @ V&,
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Since we know that the tangent and cotangent spaces have a natural vector space
structure, we can extend these notions to differential geometry.

Definition A.2.5. Let M be a smooth manifold and define the mixed tensor bundle

TPM = | | TH(T,M). (A.11)

peEM

The smooth sections of tensor bundles are tensor fields, and we denote the set of all such
sections by T'(TFM).

There are two very important classes of tensors that exhibit particularly favorable
symmetries. First, let S denote the symmetric group on k-letters. For the sake of notation,
if 0 € §;, denote by ?T the action

(X1, X)) = T (X, s Xow). (A.12)

The choice to put the permutation to the left comes from the group composition, since we
observe that if 7 € Sy then 7(°T") =77 T.

Definition A.2.6. A covariant k-tensor T' is symmetric if its value is unchanged by per-
muting two elements. Since any permutation can be written as a product of transpositions,
T is symmetric if and only if Vo € S, T' = T'. We denote the set of all symmetric k-tensors
by $E(V).

Definition A.2.7. A covariant k-tensor is alternating if Vo € S; we have that T =
(sgno)?T. Note that equivalently, T"is alternating if it is always zero on a linearly depen-
dent, and switches signs on transpositions. We may call T" a k-covector and denote the set
of all alternating k-tensors as A¥(V).

Definition A.2.8. Define the alternating k-bundle of M as
AM = | | ANT,M)
peEM

A section of A¥M is called a differential k-form.

The use of k-forms in differential geometry is quite extensive, ranging from defining
volume forms to extending the notion of an exterior derivative. However, as this thesis
does not make extensive use of such forms, we will omit any further discussion of them
here.
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Appendix B

Group and Lie Group Theory

Here we will review some of the basics of group theory as they are used in this thesis.

B.1 Group Theory

Definition B.1.1. Let G be aset - : G X G — G be a binary operator. We say that (G, -)
is a group if

L. Ve,y,2€ G, (x-y)-z=x-(y-2).
2. dee G, Ve e G,z -e =ux.
3. VeeG, yeGr-y=e.

Definition B.1.2. Let (G,-) be a group and X a set. A left group action of G on X is a
binary function f: G x X — X such that

L flg-h,x) = f(g, f(h,2))
2. f(e,z) = x where e is the group identity.

A right group action is symmetrically defined.
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Definition B.1.3. Let (G, -¢) and (H, -i) be groups. A group homomorphism is a function
f: G — H such that Vp,q € G

fp-aq)=f) u flq) (B.1)

If f: G — H is a homomorphism, then f is an isomorphism. An isomorphism from G to
itself is an automorphism.

If p € G is a fixed element, then f,(x) = p~'zp is an automorphism, and is called an
inner-automorphism.

B.2 Lie Group Theory

Definition B.2.1. In the event that G and H are Lie groups, a Lie group homomorphism
is a function f : G — H that is a smooth group homomorphism. All subsequent terms
from Definition [B.1.3| follow with the added restriction of smoothness.

Proposition B.2.2. [39] The Lie algebra of left-invariant vector fields is anti-isomorphic
to the Lie algebra of right-invariant vector fields.

Proof. Let G be a Lie group and consider the Lie group automorphism ® : G — G given
by G(X) = X! Since the identity e € G is self-inverse, the pushforward of ® acts as
¢, :T.G—T.G.

Now, if Lx is the group action of left-translation by X € G, we see that
PRx 1P (Y)=PRx 1Y ' =dY !X ' = XY = Lx(Y) (B.2)

so we conclude that PRx-1® = Lx. Applying the pushforward to this equation, we get that
D, (Rx-1) = (Lx)+®,. Let Hg be a right-invariant vector field and define H;, = ®, Hro® L.
Then

(Lx).Hp(e) = (Lx)®.Hr® *(e) = ®,.(Rx-1)Hg(e)
= @, Hp(®~ (X)) = Hy(X)

This implies that Hj, is a left-invariant vector field, and so the relation
Xp— & Hpd! (B.3)

is the necessary anti-isomorphism. ]
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Proposition B.2.3. If G is a Lie group under juztaposition and F' : R — G is a one-
parameter subgroup, then Image(G) < G.

Proof. For brevity, denote H = Image(G). We first check that the binary operator is well
defined. Let hy, hy € H, so that by definition 3t¢;,t; € R such that F(t;) = h;,i = 1,2. But

F(ty +ts) = F(t))F(ts) = hihs (B.4)

and so hihy € H.

All other properties follow almost immediately from the fact that F' is a Lie-group
homomorphism. Indeed H has an identity element F'(0) since identity elements must map
to identity elements. If h; € H and t; € R such that F(t;) = h;,i =1,...,3 then

(hiha)hs = F(ty +ta)hs = F((t1 + t2) + t3) = F(t1 + (t2 + t3))
== th(tg —|— tg) - hl(hghg)

and finally if F'(t) = h then
F(t—t)=Ft)F@t) " =hh' = F(0) (B.5)

and so H < (G as required. O
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Appendix C

Quantum Mechanics And Hilbert
Space

C.1 Properties of Hilbert Space

Definition C.1.1. Let 1 < p < oo and X be a set under a counting measure on the sigma
algebra B of the power set of X. Then we define /*(X) as

(X)) = L'(X, B, ) (C.1)

Theorem C.1.2. Let H be a Hilbert space and {e;},.; be any orthonormal basis for H.
Then H is isometrically isomorphic to (*(I).

Proof. Define the function f : H — ¢*(I) by

[f(@)](i) = (z, e:) (C.2)
Using Parseval’s identity, we have that
lzll5, = Z | (2, e0) | = Z @@ = I1f @)l (C.3)

so f is an isometry. Furthermore, it is a fundamental result that isometric functions on
metric spaces are injective. Since all Hilbert spaces induce metric spaces, f must also be
injective. Hence all that remains to be shown is that f is surjective.
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Let g € (%(I) so that

S lg()P < oo (C.4)

i€l
By the Riesz-Fisher theorem[10], Zg(i)ei — h € H and
i€l
[f(W](F) = (h.€;) Zg (ei,€5) = 9(J). (C.5)
el
Since g € (*(I) was arbitrary, we conclude the f is surjective. ]

Theorem C.1.3. Two Hilbert spaces Hy and Hy are isometrically isomorphic if and only
iof they have the same dimension.

Proof. 1If the Hilbert spaces are isometrically isomorphic and {e;},.,; is a basis for H;
then {[f(e;)]},c; is a basis for Hy and hence they have the same dimension, namely the
cardinality of I.

Conversely, if two Hilbert spaces have the same dimension and one is indexed by I then
the other can also be indexed by I. Hence both Hy = ¢*(I) and Hy = (*(I) so Hy = Hy. [

Proposition C.1.4. The Pauli matrices

@) ()b ) e

form a basis for isu(2). If we include the identity matriz

I — ((1) ?) (C.7)

then {ox,0y,0z, s} is a basis for iu(2).

Proof. We first notice that By = {I5,0x, 0y, 0z} are all Hermitian, and that By = {ox,0y,07}
are all traceless Hermitian. Since isu(2) and u2 are real vector spaces under addition, we
can associate My(C) = C*. In this case,

1 0 0 1
0 1 1 0

[2 = O ) Ox = 1 I Oy = —Z 7UZ = 0 (C8)
1 0 0 —1

Now these vectors are all clearly linearly independent and dimg su(2) = 3, dimg u(2) = 4.
Thus B; is a subset of four linearly independent elements in a four dimensional space and
hence span 7u(2). Similarly for By in su(2). O
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Appendix D

Some Directions in Geometric
Algorithms

In casting our problem into a real framework, we have omitted a great deal of the geo-
metric interplay that is occurring within the function composition. Combined with the
intractability of the method of Lagrange multipliers, it seems that the treatment necessi-
tates a view on the evolution space itself. Herein the advantages and tools of differential
geometry may prove useful, and our attempt to use such techniques to create an algorithm
is what follows.

We offer some differential geometric techniques that begin to analyze the problem of
driving one unitary operator to another. In particular, we take advantage of the Rie-
mannian structure that can be defined on any smooth manifold and the sub-Riemannian
structure of control problems in order to define a gradient. This gradient will give us the
ability to analyze directions of steepest descent to find the desired control set.

D.1 Constructs on Riemmanian $(d)

Much of this work and theory was inspired by the papers [I}, 2] whose endeavors are based
in signal analysis. While there has been several works dedicated to solving optimization
problems on manifolds [3],[75], the work of Abruden et al. was to explicitly analyze problems
on unitary manifolds and to exploit the amenable properties of this structure. Abruden’s
goal was to minimize a real-valued objective function over {(d). We hope to be able to
adapt some of that author’s techniques to create an algorithm for determining a control
scheme.
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Definition D.1.1. Let (M, g) be a Riemannian manifold and f € C*°(M). The Rieman-
nian gradient of f is the vector field V f € I'(T'M) such that VX € I'(T'M) we have

g(Vf, X) =df(X) = X[. (D.1)

We note that in the event that (M,D,g) is a sub-Riemannian manifold that the same
definition holds for the sub-Riemannian gradient except that we add the restriction that

(D-1) hold VX € D.

We need to analyze some of the particular constructs of the unitary manifold $(d). In
particular, for any given X € $(d) we would like to characterize the tangent space T'x4(d)
to which we have previously alluded, but yet to calculate. First we recall that if id is the
identity element, it follows that Tiql(d) = Lie($(d)) = u(d). Let v(t) : [to, t1] — U(d) be a
curve with y(tg) = X and §(to) =Y € Tx4(d). Since y(t) is unitary for all time,

V() (1) = id. (D.2)

Differentiating (D.2)) with respect to its time parameter and evaluating at ¢ = t, we get

SL 00 = 30h0 +20h0)_, D.30)
_ =VIX 4+ XTY (D.3b)
=0 (D.3c)

We notice that Y was chosen arbitrarily and uniquely defines each geodesic through X so
that (D.3]) yields a characterization of the tangent space Tx(d) as

Txsl(d) = {Y e M,(C) ‘ YiX + Xty = 0.} (D.4)

Alternatively, the differential of the right translation action is an isomorphism [2] and so
(dRx-1)s« : TxM(d) — u(d). This means that if Y € Txi(d) then (dRx-1).(Y) € u(d)
and hence must be skew-Hermitian. From Lemma and the fact that X! = XT it
follows that (Y X 1) is skew-Hermitian which means

YXH+YXH =YX T+ XYT=0 (D.5)

which is an equivalent characterization as that given by ([D.4)).

Next we will need to describe a normal space, which cannot be done in an embedding
free way. In particular, we will need to consider {(d) as a subspace of My,(R). By
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keeping the same inner-product, although extended to the ambient real-matrix space, we
see that the orthogonal complement to T'xl(d) is given by the left translation of Hermitian
operators iu(d) by X, or[2]

Nxii(d) = {XH ‘ He iu(d)} . (D.6)

With these constructs explicitly defined, we can move to work on calculating the Rie-
mannian gradient. Let f € C*°(4(d)) be a smooth, real-valued function. The complex
matrix derivative is given by considering real and imaginary matrix derivatives as

of 1(af ,af)

ox- ) =2\ ax, Tiax,

0Xr  0X; (D-7)

where X and X; are the real and imaginary parts of X respectively. We can use this

to define Gx = %(X ) which represents the derivative of f in the ambient space. By

Definition [D.1.1} the Riemannian gradient of f is given by V f € ['(T4(d)) and satisfies
(VI(X),Yx)y =dfx(Yx), VY € T'(T(d)). (D.8)

The ambient inner-product is simply an extension of our intrinsic inner product, and so
we demand that they must agree in general,

<Vf<X), YX>X = <GX7 X>M2n(]R{) : (DQ)

Viewing (-, )y as a restriction in the ambient space, we can rewrite as
1
<FX — —Vf, Y> =0, VY € TXil(d) (DlO)
2 M3,(R)

Since this must hold for all points Y in the tangent space at X, I'x — %V f must inhabit
the orthogonal complement to the tangent, or more precisely,

1
Iy — §Vf € Nxi(d). (D.11)
This implies that 3H € iu(d) so that we can write I'x — 1V f = X H. We do not currently

have a characterization of H, but can arrive at one by recognizing that since Vf(X) €
T'x$4(d) it must follow that

(VX)X + XT(Vf(X)) =0. (D.12)
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By utilizing both (D-11)) and (D-12)) we can solve to find that H = £ | XTT'x + T\, X |. This
yields the final expression for the Riemannian gradient as

Vf=Tx - XT{X. (D.13)

A concern often considered in numerical analysis is to update parameters in a direction
on which the objective function decreases. In single variate analysis, one can calculate
whether the function is decreasing by calculating the sign of its derivative. Given an inner
product in multiple dimensions, this is normally done by projecting a given direction onto
the gradient and comparing sign of the projection. Negative signs corresponds to descent,
positive signs to ascent, and zeros to orthogonal directions.

Definition D.1.2. Let M be a smooth manifold and f € C*(M). Furthermore, take
X € M and 7 : [ty,t1] — M a curve in M with y(tg) = X so that 4(0) € TxM. Then
Y =4(0) is a descent direction for f at X if any of the following equivalent statements are
true

(V) =3(0)f = S700)| <0 (D.14)

t=0

These techniques can be applied to control problems if properly cast into a numerical
optimization framework. Though such attempts have met with limited success, we present
some of our ideas and methods in the following section.

D.2 Application to Control Methods

In section we analyzed the work of Abruden et al. in creating steepest-descent opti-
mization routines using the Riemannian gradient. Here we will discuss some of the future
work that will be done using the ideas developed in [I],2]. We note that additional theoreti-
cal results need to be established before one can properly discuss issues such as stability and
convergence of these algorithms. While we have implemented many of these procedures, we
have met with only very limited success, discussed below on page [133] Nonetheless, they
will be mentioned here due to their ability to potentially increase the speed with which
these algorithms can be run.

First, we choose to make use of the Riemannian gradient given by (D.13]). Consider
the normalized operator form of the Schrodinger equation given by (4.1)) and assume that
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H (u) takes the form of an affine-control system with drift.

d , - .
X () =i (Ho + izlui(t)HZ) X(),  X(0)=id. (D.15)

The surjectivity of the exponentiation operator guarantees that given any unitary operator
Xq € U(d), there exists Hy; € iu(d) such that X; = exp[—iH,. However, the skew-
Hermitian operator iH,; € u(d) will generally not be among the set of admissible controls
fields, preventing us from blindly applying this technique. Instead, by using a steepest
descent algorithm, we can iteratively create a path of local geodesics that drive any initial
state Xy to the final state X;. Consider the following algorithm given by Abruden et al.

1.

Given an initial state Xy € 4(d) and an objective function f € C*°(4(d)) to be minimized,
consider the following algorithm

1. Initialize £ = 0 and Y, = X.

. . . 3
2. Compute the gradient of the cost function on Euclidean space I'y, = %(Yk)
3. Compute the gradient direction on the Riemannian space G} = FkY,j — YkI‘L

4. Determine a value 1 > 0 such that P, = exp(—uGy) is a descent direction.

5. Update Y, 1 = P,Y, and k = k 4+ 1. Check a stopping criterion, otherwise re-iterate
steps 2 through 5.

In our case, the objective function is just f(X) = d(X, X4)?. Applying this algorithm to
this problem seems like a trivial exercise, as we know a prior: the objective function is
minimized by X;. However, the point is not that we are trying to find the element X that
minimizes f, but rather that the algorithm gives a construction of X, in the form

Xy = exp [—uxGr] exp [—pk—1Gr—1] X -+ X exp [—pu1G1] . (D.16)

In the limiting regime of bang-bang methods, a set of m controls yields only 2™ possible
control configurations. One can see that this is true by considering the number of m-
multisets of the logical on/off set {0, 1}, for which simple combinatorial arguments yield
that there are 2™ possibilities. Equivalently, if {H;}!", are the control fields, the set of
all possible control configurations is the powerset of {H;}" which has order 2™. Since
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this is a distinctly finite subset of a continuum, it naturally has zero measure and hence
is a null set amongst the set of all unitaries. Similarly, in the non bang-bang regime our
distribution of admissible controls often has non-zero codimension and consequently will
span a strict linear subspace of the tangent bundle T'4(d).

This implies that there may still be an issues with the G; of not representing
admissible controls. However, we have now turned our problem from a global one into a
local one, on which we may apply local optimization techniques. In order to exploit this
algorithm, one can examine the set of feasible controls to find which yields a direction of
greatest descent, or we can try to approximate the path given by the geodesics constructed
in the algorithm.

In the first approach, we analyze the control sets that give the direction of greatest
descent. We note that if X is a given point and Hy, € Tx,4U(d) is an element of the tangent
space, the geodesic emanating from Xj in the “direction” of Hy, is y(t) = exp [—tHx,] Xo.
Hence 4(0) = Hy, is a descent direction if and only if is satisfied, namely

50)f = Srem)| <o (D.17)
t=0

Two problems present themselves here. The first is that there may be a high-frequency
control that is not initially a descent direction but may yield a faster, higher-fidelity result.
This can be overcome by analyzing the high-end and low-end frequencies of each control; a
method which is discussed in [2] for almost-periodic elements of 4(d). One can then make
an appropriate decision as to the optimal control at that point. Secondly, this method
is very prone to finding local minima of the function f. In fact, the identity matrix is
itself a local minima of f on the manifold, requiring that we actually use a perturbed or
randomized initial unitary X, rather than the identity.

Implementations of this algorithm are at first very promising. We note that by using
the gradient calculation on the manifold we can remove many of the matrix exponential cal-
culations that appear in Kaya-Huneault, Real-Embedding, and GRAPE. We can improve
this further by realizing we can remove some of the matrix exponentials used in the line
search in the direction of the gradient. By exploiting the fact that exp (%A)m = exptA,
we can do an m-fold interpolation-based line search so that only one matrix exponential
needs to be calculated. Unfortunately, these steepest descent methods find local minima

frequently, meaning that convergence poses a serious issue.

Alternatively, we can completely avoid the computational algorithm and instead fo-
cus on analyzing steepest descent directions using the provided gradient. As mentioned
previously, the assumption that our control law occupies the bang-bang regime dictates
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a countable set of control laws. More precisely, given an m-input system there are 2™
possible control states. One might choose to individually examine the magnitude of each
control state the corresponds to a descent direction, implementing the one that drives us
closest to the objective and re-iterating. However, there is a much better alternative to
this method. Instead of finding a Riemannian gradient and trying to find the control for
which the best approximation is provided, we can instead calculate the sub-Riemannian
gradient which will immediately give us the controls that yield a descent direction.

D.3 Constructs on Sub-Riemannian $(d)

We now provide a calculation as to the sub-Riemannian gradient. Let f : (d) — R
be an objective function. We first recall the definition of a sub-Riemannian gradient as
commented upon in Definition [D.1.1]

Definition D.3.1. Let (M, D, g) be a sub-Riemannian manifold and f € C*°(M). The
sub-Riemannian gradient of f is the vector field V, f € I'(T'M) such that VX € D we have

9(Vnf, X) =df(X) = X f. (D.18)

We use here the notation Vj, instead of V to make clear the sub-Riemannian contribution.
The h stands for “horizontal.”

By using an orthonormal frame for the distribution, we can give a more computationally
friendly version of the sub-Riemannian gradient.

Proposition D.3.2 (Calin [20]). Let f € C*(M) and {E;,..., Ex} be an orthonormal

frame at p € M. Then
k

(Vif), =D (E)pf (Ei),. (D.19)

i=1

Proof. By definition of a frame, the {E}, ..., Ej} are linearly independent in 7, M for all
q in a sufficiently small neighbourhood of p. This implies that we can write the horizontal
gradient at T,M in terms of (E;), as

(Vif)y =D (@B, (D20

=1
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for some set of constants c’(q) that are yet to be determined. By applying the metric on

and some F; we get
k
9a((Vnf)g (Ej)g) = Zci(q) 9 (B g (E))y)

By the definition of the sub-Riemannian metric, this gives

q) = 9o(Vf)gr (Bj)g) B2 (), f. (D.21)

Given the m-input, affine Schrédinger equation

d . i :
%X(t) = (Ho + ;ui(t)HZ) X)),  X(0)=id. (D.22)

let us make the assumption that our vector fields (H1X, ..., H,X) are an orthonormal
frame in a neighbourhood of X. In order to compute the sub-Riemannian gradient at X,
it is sufficient to compute (H;X)f for each control field H;.

Proposition D.3.3 (Lee [52]). Suppose M is a smooth manifold, ~y : J — M is a smooth
curve and f : M — R is a smooth function. Then the derivative of the real-valued function
fov:R — R is given by

(f o)1) = dfy0) (7' (1))- (D.23)

Proof. This proof follows directly from the definition of all involved terms. Indeed for any
fixed ty € J we have

df (1) (V' (t0)) =
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Define () = ¢'#i X and notice that v(0) = X, v/(0) = H;X. By applying Proposition
[D.3.3 we have that

f (etHin) — dy f(H:X) = (HX)f. (D.24)

t=0

dt

For our purposes, we recall that if X; € 4(d) is the desired objective unitary operator, we
defined our function f(X) as

FX) = (X — X4, X — Xg) =2d — 2R (X, Xy) . (D.25)
This allows us to state the following:

Lemma D.3.4. Given that f(X) is defined as in (D.25)) it follows that

dt

f <etHiXi) = COR(H,X, X,). (D.26)

t=0

Proof. This is an exercise in applying definitions. Recall that by definition of the expo-
nential we have

X = (Z(tHi)k) X =X +tHX + 5HEX .- (D.27)

k=0

Substituting (D.27)) into f(X) yields

feiX) =2d — 2R ("X, Xg) = 2d — 2R Y " (H X, X) . (D.28)
k=0

The act of differentiating causes the constant term 2d and the term corresponding to k = 0
to disappear. Afterwards, setting t = 0 causes all terms corresponding to k£ > 1 disappear.
Consequently, we are left with only the £ = 1 term which implies that

d

(o) - —momxxg

t=0

which is precisely what we required. O

Theorem D.3.5. The sub-Riemannian gradient of the objective function f(X) as defined
(D.25|) corresponds to the control of steepest descent in an unbounded, driftless system.
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Proof. Applying Lemma to the definition of the sub-Riemannian gradient, we get
that the gradient at X € $U(d) is given by

(Vif)x = [ 2R (X, Xd>] HX. (D.29)
=1
Comparing to the driftless, affine, Schrodinger equation

—X(t) = Z w; (t) H; X (D.30)

we see that by setting u,(t) = 2R (H; X, X4) we get

.d
Z@X(t) = —(vhf)x, (D31)
the differential equation corresponding to steepest-descent. O

We would like to make two comments on this theorem. The first is that we assumed
that {H;X};", is orthonormal. In the event that they are not orthonormal, we can apply
a Gram-Schmidt orthonormalization procedure to find a sufficient basis for a fixed tangent
space. This will affect the statement of Theorem [D.3.5 but will not change the fact that the
control amplitudes can be found from the sub-Riemannian gradient. The second statement
is that the previous theorem requires that our system be driftless. Whether the case of
drift systems can be accommodated into this framework has yet to be determined and will
be analyzed in future work.
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