
I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Reuse of software designs, experience and components is essential to making sub-

stantial improvements in software productivity, development cost, and quality.

However, the many facets of reuse are still rarely used in the various phases of the

software development lifecycle because of a lack of adequate theories, processes,

and tools to support consistent application of reuse concepts. There is a need for

approaches including de�nitions, models and properties of reuse that would provide

explicit guidance to a software development team in applying reuse. In particular

there is a need to provide abstractions that clearly separate the various functional

concerns addressed in a software system. Separating concerns simpli�es the iden-

ti�cation of the software components that can bene�t from reuse and can provide

guidance on how reuse may be applied.

In this thesis we present an extended model related to the separation of concerns

in object-oriented design. The model, called views, indicates how an object-oriented

design can be clearly separated into objects and their corresponding interfaces. In

this model objects can be designed so that they are independent of their environ-

ment, because adaptation to the environment is the responsibility of the interface

or view. The view can be seen as expressing the semantics for the \glue" that joins

components or objects together to create a software system. Informal versions of

the views model have already been successfully applied to operational and commer-

cial software systems. The objective of this thesis is to provide the views notion

with a theoretical foundation to address reuse and separation of concerns.

ii

After clearly de�ning the views model we show the formal approach to com-

bining the objects, interfaces (views), and their interconnection into a complete

software system. The objects and interfaces are de�ned using an object calculus

based on temporal logic, while the interconnections among object and views are

speci�ed using category theory. This formal framework provides the mathematical

foundation to support the veri�cation of the properties of both the components and

the composite software system. We then show how veri�cation can be mechanized

by converting the formal version of the views model into higher-order logic and

using PVS to support mechanical proofs.

iii

Acknowledgements

To my wife, Karin, for her love, patience, and support.

To my children, Amanda and Daniel, for their love and for giving me reasons to

persevere.

To my parents, Joaquim and Enilze, for their boundless support throughout my

academic life.

To my supervisor, Professor Donald D. Cowan, for his constant encouragement and

enduring patience.

To Professor Paulo Alencar for his precious guidance and advice.

To all the members of my dissertation committee for agreeing to serve as examiners.

To Daniel German, for his friendship throughout my graduate studies.

To all my friends at the University, who served as a source of encouragement

throughout the years.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Reuse . 2

1.1.2 Object-Oriented Modeling 3

1.1.3 Formal Methods . 3

1.2 Problem Statement . 5

1.2.1 Expressiveness of Modeling Constructs 5

1.2.2 Representation of Object Models 7

1.3 Proposed Solution . 9

1.3.1 Extending the Set of Modeling Constructs 9

1.3.2 Formal Speci�cation of Object Models 11

1.4 Contributions . 12

1.5 Related Work . 12

1.6 Thesis Overview . 17

v

2 The Views Approach in Modeling 18

2.1 Separation of Concerns . 19

2.1.1 The ADV Modeling Approach 21

2.1.2 Applications of the ADV Model 22

2.2 Modeling with Views . 22

2.2.1 Properties of a Views Relationship 25

2.2.2 Reuse . 27

2.2.3 Examples of Views Usage 28

2.3 UML Relationships . 30

2.4 Extending the UML Notation . 32

3 A Formal Theory for the Views Relationship 34

3.1 An Introduction to Categories . 36

3.2 Object Calculus Theories . 41

3.3 An Interpretation Theory for a Class 43

3.4 Combining Object Theories with Morphisms 46

3.5 An Interpretation Theory for a Relationship 49

3.6 Formalization of UML Relationships 52

3.6.1 Association . 53

3.6.2 Aggregation . 61

3.6.3 Generalization . 63

3.7 Properties of the Views Relationship 64

3.7.1 Self Dependencies . 64

vi

3.7.2 Acyclic Structural Dependencies 65

3.7.3 Cardinality Constraints . 66

3.7.4 Creation/Destruction of Objects and Relationship 69

3.7.5 Viewed Singularity and Viewer Multiplicity 72

3.7.6 Viewer and Viewed Visibility 75

3.7.7 Attributes Consistency . 76

3.7.8 Action Mappings . 80

3.8 Case Study: Dual Interface Clock 82

4 Veri�cation 94

4.1 Formal Speci�cation of Object Models 95

4.1.1 Semi-Formal Speci�cations 95

4.1.2 Formal Speci�cation of the Views-Based Application 97

4.1.3 Related Work . 98

4.2 Using a Veri�cation System . 98

4.2.1 The PVS Speci�cation Language 99

4.2.2 The PVS Prover . 101

4.3 Object Theories . 103

4.3.1 A Generic Class Theory . 104

4.3.2 Speci�cation of Object-Oriented Theories 107

4.4 Relationship Theories . 114

4.4.1 Formalization of an Association 115

4.4.2 Inheritance and Subtyping 124

vii

4.4.3 Views . 125

4.4.4 Using Views to Relate Object Theories 128

4.5 Colimit Theories . 131

4.5.1 A General Colimit Theory 132

4.5.2 The Colimit of the Whole 134

4.6 Proving System Properties . 135

4.6.1 Framework Properties . 138

4.6.2 Views-Related Properties . 140

4.6.3 UML-Related Properties . 147

4.6.4 Domain-Speci�c Properties 148

4.7 Other Views-Based Systems . 152

5 Conclusion 154

5.1 Summary . 154

5.2 Future Work . 155

A The PVS Environment 157

A.1 The PVS Language . 157

A.2 PVS Prover Commands . 159

A.2.1 Veri�cation Commands . 160

A.2.2 Control and Structural Commands 162

Bibliography 163

viii

List of Tables

3.1 Binary relation conditions . 59

3.2 Di�erent forms of aggregation relationship 62

3.3 Conditions on actions of object and relationship instances 72

ix

List of Figures

1.1 Stack models . 6

1.2 Yet another stack model . 11

2.1 A multi-interface stack model . 25

2.2 A simple interfacing model . 28

2.3 An interface model for distinct concerns 29

2.4 Metamodel for UML relationships 31

2.5 The extended metamodel for the Core subpackage 32

3.1 Categories 2 and 3 . 38

3.2 (a) A cone and (b) a cocone for a diagram 40

3.3 The pullback categorical construct 41

3.4 Morphisms between instances, class manager and class theories . . . 48

3.5 Morphisms forming a composite of two object theories 49

3.6 A general relationship . 50

3.7 The colimit of object and relationship theories 52

3.8 A multiple viewers example . 74

3.9 Views consistencies in a clock application 77

x

3.10 Vertical consistency through attribute morphisms 79

3.11 A multiple viewers example . 81

3.12 Interconnection between clock system theories 83

3.13 Speci�cation of the Viewed Counter object 84

3.14 Speci�cation of the Analog Clock Viewer object 85

3.15 Speci�cation of the Digital Clock Viewer object 88

3.16 Speci�cation of the Views relationship 90

3.17 Speci�cation of MAR class manager signature 91

3.18 A morphism between the Analog Viewer and a class manager theory 92

3.19 A morphism between Views and a class manager theory 93

4.1 Model of a banking application . 95

4.2 A model for the composition of theories 104

xi

Chapter 1

Introduction

1.1 Motivation

The sophistication level of current software systems requires the involvement of

people with variable knowledge levels throughout development. Interface design,

requirement analysis, speci�cation, software architecture and programming are ex-

amples of tasks usually performed by di�erent personnel. Yet, results of each phase

of the development process should, ideally, be reliable, understandable and resilient

to changes. The attainment of these characteristics, however, is time consuming,

expensive, and requires experienced developers.

Reuse is one current approach capable of making substantial improvements in

software productivity, development cost, and quality. It contributes to the improve-

ment of the software development process in several ways. Reliability is increased,

as reusable assets are usually tested and assessed before available. Understand-

ability and adaptability are enhanced, as working with components provides higher

degrees of abstraction. In addition, dealing with software components, rather than

1

CHAPTER 1. INTRODUCTION 2

programming code, diminishes the complexity of construction processes and deci-

sions. However, e�ective reuse requires more than locating assets, assessing their

relevance, and adapting them to particular needs. Reuse e�ectiveness depends on

building software assets that are reusable by design.

Despite being recognized as a viable solution for the urgent needs of the software

industry, the many facets of reuse are still rarely used in the various phases of the

software development lifecycle because of a lack of adequate theories, processes,

and tools to support consistent application of reuse concepts. There is a need for

approaches including de�nitions, models and properties that would provide explicit

guidance in the application of reuse.

In the following subsections of this motivation, we interrelate three research

areas contributing to this thesis: reuse, object-orientation, and formal methods.

1.1.1 Reuse

In an extensive research, Mili, Mili, and Mili state that after decades of research,

software reuse seems to be the only realistic approach to achieve a much needed

improvement in software quality and production [MMM95]. Reusable components

provide levels of abstraction that can be e�ectively applied in the development of

increasingly complex software [Pen93]. However, e�ective software reuse involves

software that is reusable by construction. Higher levels of reuse are obtained with

the careful design of reusable architectures, and with the introduction and institu-

tionalization of reuse in the development organization [Wen94].

Software reuse should not be limited to the implementation artifacts. In fact,

reuse can be achieved in any stage of the software development and at di�erent levels

of abstraction. Reusable elements include architectures, design patterns, domain

CHAPTER 1. INTRODUCTION 3

models, development processes and decisions, and many other aspects involved with

a software system. Our current interests are related to reuse in earlier stages of the

software lifecycle.

1.1.2 Object-Oriented Modeling

Since SIMULA was introduced by Dahl and Nygaard [DN70], object-orientation has

continuously grown. In the past decade, the growth pace has noticeably intensi�ed

and several object-oriented modeling and programming languages have become one

major target for software engineering research. Developers view object-orientation

as the answer to improve software understandability, quality, and reusability. This

perspective is basically supported by the concept of information hiding.

However, achieving quality and reuse cannot be guaranteed by a simple switch

of development paradigm. In this sense, Wasmund argues that reuse is a soft-

ware engineering discipline rather than a technology [Was94]. In other words, this

author advocates that more than programming paradigms and tools are needed

to achieve high degrees of reusability. In addition, some characteristics of object-

oriented technologies may introduce the false idea that systems developed according

to object-oriented paradigms have the intrinsic property of being reusable. This is

a myth that holds only in cases where reuse is explicitly planned as a goal.

1.1.3 Formal Methods

Currently, most uses of formal methods are in safety and security critical systems

where formal methods are a possible way to achieve the needed high level of as-

surance [Rus95a]. The reason being that, despite several attempts to simplify for-

malization activities, formal speci�cation is still considered a complex and intricate

CHAPTER 1. INTRODUCTION 4

task. However, as formal methods popularity grows, tools are expected to simplify

and integrate to mainstream development methodologies some of the tasks which

keep users away from using formal methods.

Meyer [Mey99] argues that the formal methods reputation of being complex is

not entirely justi�ed, and formal methods have already achieved a number of suc-

cesses. He adds that the use of formal techniques may surprise many doubters in the

future. One of the reasons for this foreseeable success is its connection with reuse.

As Meyer says, reusable components need strong warranties, and formal-methods

costs can be justi�ed economically by the economies of scale permitted by reuse

[Mey99]. Complementary, Biggersta� and Richter write that the four fundamental

processes of reusability are �nding, understanding, modifying, and composing com-

ponents [BR87]. In order to engineer automated support for reusability and provide

a high level of assurance, these four processes have to be formalized [BR87, Pen93].

Formalization is also important to the development of the object oriented para-

digm. Many authors [LB98b, DH99, BC95, WRC97, EFLR98] work to add rigour

to currently popular object-oriented modeling language in an attempt to overcome

its limitations. However, the purpose of these attempts are sometimes misunder-

stood. One of several myths on formal methods [Hal90, BH94] is that formal

speci�cations replace the need for other informal techniques, such as natural lan-

guage requirements and testing. The reality is that formal speci�cations are an

important complement to other informal or semi-formal techniques. There might

be cases when formal methods are in a sense \over-kill", while in other situations

they might be crucial. In addition, the formal speci�cation phase of the software

lifecycle is aimed at the early detection of errors, when they are less expensive to

�x [Boe87].

CHAPTER 1. INTRODUCTION 5

1.2 Problem Statement

Within current analysis and/or design methods a single type of modeling construct

can be used with several di�erent purposes that a�ect their semantics. More speci�-

cally, relationships between classes and/or objects are being applied without a clear

representation of its semantical meaning. This situation will inevitably result in

concept miscommunications, which may prove costly throughout the development

process.

The problem is twofold. First, the variety of purposes and semantics required

in the modeling of speci�c domains is usually not supported by object-oriented

methods. Distinct concepts are often represented under a single notational con-

struct. Second, most of the popular modeling languages do not provide precise and

unambiguous de�nitions for the modeling constructs supported. As a result, later

interpretations of the model may be incomplete or incorrect.

1.2.1 Expressiveness of Modeling Constructs

In related works [AM94, Civ93, WdJS95], the authors acknowledge the problem

of di�erent semantic uses and misuses of widely accepted object-oriented relation-

ships. For instance, specialization, which is often confused with the inheritance

implementation mechanism, is considered too
exible and general to encourage a

disciplined employment, as discussed by Armstrong and Mitchell [AM94]. These

authors also compared inheritance to the goto construct, whose lack of expressive

power created problems for developers and maintainers.

Specialization is a class relationship in which the behavior of a superclass is

shared by all of its subclasses. In a proper specialization, an operation of the

subclass that corresponds to an operation in the superclass has the responsibility

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Stack models

to provide equivalent services, and possibly more. However, in a typical misuse of

this relationship, specialization is used as a technique to reuse behavior partially,

even when the related classes are inherently di�erent. This can lead to all sorts of

problems, including a deterioration in understandability.

Rumbaugh et al. [RBP+91] use the implementation of a Stack class based on

an already existing List class to illustrate one bad usage of inheritance. An object

model based on the Object Modeling Technique (OMT) describes such an exam-

ple in Figure 1.1. The �gure shows two models of a Stack using specialization

and aggregation relationships. In the model of Figure 1.1(a), the Stack class in-

herits both desirable (e.g., adding or removing elements from the top of the list)

and undesirable (e.g., adding or removing elements from arbitrary positions in the

list) operations. The desirable operations are used, while the undesirable ones are

masked or just ignored. This may lead to serious misconceptions and possibly

unexpected behavior.

An alternative implementation model, which is shown in Figure 1.1(b), is also

proposed by Rumbaugh. In this second model, the two classes involved are in-

stantiated as distinct objects, with Stack delegating its behavior to appropriate

operations of List. This model guarantees that a push operation requested to Stack

is delegated to List and properly executed. Undesirable operations of List are not

accessible through the Stack interface.

CHAPTER 1. INTRODUCTION 7

Despite aggregation providing an apparent reasonable solution, the semantic in-

terpretation of this model goes beyond delegation, which was the original purpose

of the relationship construct used. As shown in Figure 1.1(b), the model indicates

that a stack object is composed of a list, which is not an accurate representation

for this particular de�nition of a list. Composition usually implies dynamic depen-

dencies which may not be convenient for this particular speci�cation of a stack.

Understandability and reusability of this model are considerably a�ected.

We think that a more expressive modeling language would help to remediate

circumstances like the one just mentioned. A language that provides an exten-

sive set of abstraction mechanisms o�ers more options to convey the desired ideas

properly. However, the creation of a complex and cumbersome notation would not

help developers at all. So, this trade-o� situation instigates the analysis of a few

questions, such as what are the most important and used concepts that should be

supported by a language? How to extend modeling languages with these concepts?

What is the signi�cance of these concepts in each development phase? As of today,

researchers have not found clear answers to these questions, as di�erent problems

have di�erent needs.

1.2.2 Representation of Object Models

Meyer identi�es several categories of de�ciencies commonly found in informal rep-

resentations [Mey85]. The author uses these representation pitfalls in the argument

that formal speci�cations constitute an important step between requirements and

design phases of the software development regardless of the size of the system. In

fact, the author uses a small editor speci�cation to illustrate his points. In a sim-

ilar fashion, we identify pitfalls in the small semi-formal stack example shown in

Figure 1.1.

CHAPTER 1. INTRODUCTION 8

One of the most common pitfalls identi�ed by Meyer is ambiguity, which allows

di�erent interpretations for a single model. Ambiguity results from the lack of

a complete and precise de�nition for all the constructs supported by a modeling

language. Another common pitfall is called silence, which indicates the absence of

speci�cation for a feature. For instance, the whole-part relationship in OMT (i.e.

aggregation) sometimes implies a lifetime dependency of the parts on the whole.

Other times, however, it does not. The representation of this information is not

supported by the OMT graphical notation.

The Uni�ed Modeling Language (UML) is another semi-formal language that

attempts to overcome some of the limitations of OMT. However, as most of the se-

mantics of this language is de�ned in natural language, there are several topics for

which the de�nition is ambiguous. For example, UML de�nes a composite aggrega-

tion as a relation in which the deletion/copy of the whole implies the deletion/copy

of the parts. However, the language is not clear whether a part may exist prior to

the whole.

In Figure 1.1(b), instances of the List class represent the parts, while wholes are

instances of the Stack class. With the information provided in the diagram, very

little can be assumed about existence dependencies among the objects involved.

While other semi-formal notations, such as UML, may describe models with an im-

proved rigour, only formal languages used carefully are able to assure unambiguity

in speci�cations. This is an essential factor to the development of speci�cation and

veri�cation tools.

CHAPTER 1. INTRODUCTION 9

1.3 Proposed Solution

The object-oriented paradigm has matured for a few decades. However, object-

oriented development methods are still relatively recent [Boo91, CY91, CD94,

JCJO92, RBP+91, WBWW90]. New or extended methods are still expected to

improve the support to software modeling with better abstraction techniques, eval-

uation mechanisms, and management. In current modeling techniques, we verify

that each of the widely used relationships, such as specialization, aggregation, and

association, is general enough to cover a few di�erent concepts. Some of these se-

mantic uses may even lead to equivocate interpretations, as previously indicated in

the Stack example of Figure 1.1. We consider this as an indication that software

speci�cation could bene�t from additional primitive constructs and concepts which

are not supported by most methods yet. The addition of these new modeling ele-

ments should extend the basis to represent abstractions and, consequently, improve

the quality of speci�cations.

1.3.1 Extending the Set of Modeling Constructs

While there is a wide consensus that software reuse potentially enables signi�cant

software productivity, quality, and cost improvement [Lim94, McC97, Rei97], most

software development methods do not include support for reuse [McC97]. Thus,

there is a need for explicit de�nitions about how to practice reuse as part of the

development process. These de�nitions include models and properties of reuse

mechanisms that can clarify and provide guidance for the software developers that

want to adopt reuse.

In this thesis we deal with a reuse technique called separation of concerns

[Aks96] that can be applied in object-oriented design. Separation of concerns is

CHAPTER 1. INTRODUCTION 10

a well-established principle in software engineering that attempts to hide complex-

ity through abstractions [Par72b, Pre92] that carefully segregate di�erent aspects of

a set of related algorithms such as those encompassed in an object. Abstraction is

the object-oriented technique adopted by humans to overcome its limited capacity

to deal with complexity. As software complexity grows, so does the need for more

powerful abstractions.

Specialization through inheritance is an approach that is suggested to achieve

separation of concerns. However, inheritance forces all the concerns to be embed-

ded somewhere in the class structure, and unless very carefully used, does not allow

the object to be distinguished from all of its related special conditions. In addition,

aggregations and associations are two other types of relationship which are not

suitable to represent separation of concerns. While aggregations are characterized

as strong relationships with tight coupling between the whole and its parts, asso-

ciations are too
exible and do not provide mechanisms to guarantee consistency

among related concerns.

The views modeling approach was created to promote a disciplined intercon-

nection of modules representing di�erent concerns [ACLN98a, ACLN98b]. The

basic construct of this model is the views relationship, which de�nes the pattern

of interaction between objects representing distinct concerns. The views relation-

ship provides a framework for interface modeling which is not supported by any

other language. It establishes a connection between interface and application that

guarantees consistency while allowing a loose coupling between those parts.

Figure 1.2 indicates a stack model based on a views relationship. As detailed

in the following chapters, such diagram indicates that a stack object is an interface

or a view for a list object. This interpretation re
ects a more accurate meaning for

the stack application.

CHAPTER 1. INTRODUCTION 11

Figure 1.2: Yet another stack model

1.3.2 Formal Speci�cation of Object Models

While Figure 1.2 uses a di�erent relationship for the stack example, it is still prone

to ambiguous interpretations. The reason being that this extended UML graphical

notation is not formal. Several researchers promote the use of a formal textual

notation to complement the information provided by graphical semi-formal nota-

tions. While semi-formal notations support the easy communication of concepts to

users, formal notations provide the precise speci�cations which is often important

to convey information unambiguously.

We use object calculus theories based on logic in conjunction with a categorical

framework to describe the properties of the object constructs supporting our mod-

eling approach. This formal framework was chosen because of the availability of

tools to develop and verify formal speci�cations, such as logic-based environments.

In addition, these formalisms are not dependent on any particular speci�cation lan-

guage. Thus, other formal speci�cation languages or similar approaches can bene�t

from the theories presented in this thesis.

CHAPTER 1. INTRODUCTION 12

1.4 Contributions

The thesis of this work is that augmenting the accuracy of abstractions

supported by extended modeling methods allows the de�nition of a for-

mal framework that supports the speci�cation and veri�cation of properties

characterizing object-oriented relationship constructs.

As part of the process of attaining the above described goal, a number of con-

tributions can be identi�ed from this thesis. These contributions are succinctly

described as follows:

� de�nition of an object-oriented modeling approach that promotes a disciplined

interconnection of modules representing di�erent concerns in a software sys-

tem;

� extension of the core concepts and notation of a modeling language to support

the representation of the views-related constructs;

� description and use of a formal framework in the speci�cation of relationship

properties in object models; and

� use of a formal veri�cation environment based on logic to mechanize the

validation of di�erent types of properties used in object system speci�cations.

1.5 Related Work

With the concepts of information hiding [Par72b] and the notion of module speci-

�cation [Par72a], Parnas introduced some cornerstones of modern software design.

In a sense, the work of Parnas established the roots of our current work. Other

CHAPTER 1. INTRODUCTION 13

early precursors of our ideas were De Remer and Kron [DK76], which de�ned a

module interconnection language to support programming-in-the-large.

In the past few years, a number of architectural models and programming ap-

proaches have investigated the support to the separation of di�erent concerns in

distinct speci�cation modules in order to achieve higher degrees of reuse. Goguen

investigated the general interface concept together with the reuse and intercon-

nection of software components [Gog86]. Similar to the views approach, he uses

formal languages and mappings of types and operations to interconnect and main-

tain consistency among objects. He also used category theory to put object the-

ories together [Gog89]. However, Goguen does not de�ne a relationship theory

among object speci�cations, thus making the properties of his design mechanism

quite di�erent from our approach. The Common Object Request Broker Architec-

ture (CORBA), which is supported by the Object Management Group, de�ned an

open standard for application interoperability [Dig91]. This standard is based on

a client/server interaction model that separates application interfaces from their

implementations. These interfaces are speci�ed in a neutral Interface De�nition

Language. More recently, Kiczales et al. [KLM+97] described a new programming

paradigm called Aspect-Oriented Programming (AOP). AOP provides the basis for

the identi�cation, isolation, composition and reuse of the several concerns, which

are known as aspects, contained in the programs.

The MVC model [KP88] was one of the �rst implementations to address sepa-

ration of concern issues speci�cally. Currently, several visual development environ-

ments [IBM94, Dig92, Syb96] simplify the programming task by making available

a library of reusable interface (visual) and application speci�c (non-visual) objects.

The interface objects are interconnected to the application by mechanisms which

are speci�c to the particular programming paradigm supported by the environment.

CHAPTER 1. INTRODUCTION 14

In addition, the separation of concerns allowed by these mechanisms is mostly di-

rected at the user interface part of the system.

Currently, the Java programming language represents one of the popular par-

adigms to the development of user interfaces. The Java interface mechanism is

event-driven. The event handling model of Java 1.1 is based on the concept of an

event listener. An object interested in receiving certain events is called an event

listener, while the one generating events is called an event source. This event source

object keeps a list of all the listener objects interested in being noti�ed when certain

events occur. Such a concept may be very useful in the implementation of a mecha-

nism that maintains the consistency between interface objects and their respective

applications. In addition, the AWT class library of Java provides an implementa-

tion of the Observer design pattern [GHJV95], which describes a mechanism for

maintaining the consistency between interface and application objects.

Modeling of user interface concepts has been one of the research topics address-

ing the need for additional and rigorous modeling elements. Other researchers,

however, try to improve the expressiveness of modeling languages in other ways.

Civello separates roles and meanings of whole-part associations in distinct con-

structs [Civ93]. He argues that the resulting models are easier to understand and

maintain with the additional semantics represented. In another attempt to add

semantics to modeling elements, Steyaert et al. [SLMD96] de�ne reuse contracts

based on specialization. These contracts document the way an asset is related to

its superclass, thus allowing a better understanding of the circumstances in which

an object is specialized.

In yet another attempt to add rigour to modeling languages, Snoeck and Dedene

formally de�ne a new relationship called existence dependency [SD98]. Such a

relationship captures some of the semantics usually associated with aggregation

CHAPTER 1. INTRODUCTION 15

relationships. While the authors argue that the semantics of whole-part relations

are usually insu�ciently de�ned, the new relationship is simple, unambiguous, and

enables checking for semantic integrity and consistency between structural and

behavioral aspects of object models.

While some authors add new elements to modeling languages, other researchers

focus on the precise de�nition of the semantics of already popular modeling con-

cepts. Bourdeau and Cheng describe a method for deriving algebraic speci�cations

directly from diagrams de�ned with the object model notation of OMT [BC95].

Wang et al. present a formal model for both the object and dynamic models of

OMT [WRC97]. They also integrate the two models, which enables to check for

inter- and intra-model consistency.

UML is emerging as a de-facto standard for object-oriented modeling [Par97].

As a result, one current research focus is on the speci�cation of a more rigorous

semantics of its notations. This is, however, a very di�cult task, as the UML

language is very large. Evans et al. use Z [Dil90] to de�ne the abstract syntax of

a subset of the UML static model notation formally [EFLR98]. In another related

work, Lano and Bicarregui describe part of structural and dynamic notations of

UML using temporal logic theories [LB98b, LB98a].

Views-based mechanisms represent an extension to typical modeling languages.

In addition, views properties can also be customized and extended with properties

suitable to particular applications. As UML supports the extension of the core

concepts of the language, it is being used as the basis for the views approach de-

velopment. Thus, similar to the formalization provided by Lano and Bicarregui

[LB98b, LB98a], we also formalize some of the UML relationship constructs. This

formalization allows the subsequent veri�cation of properties based on UML con-

cepts.

CHAPTER 1. INTRODUCTION 16

The adopted formal system for the views approach includes the use of a categor-

ical framework together with object calculus theories based on logic. This frame-

work is based on an approach developed by Fiadeiro and Maibaum [FM91, FM92],

which use a framework based on temporal logic [MP91, Bar87]. While object cal-

culus theories model the object theories of the system, the interconnection of the

components is achieved with category theory.

The work of Bicarregui, Lano and Maibaum [BLM97a, BLM97b] also inspired

the formalism adopted for the views constructs. Based on the formal framework

structured by Fiadeiro and Maibaum [FM91], these authors de�ned interpretation

theories for object instances, classes, and associations according to the concepts of

an object-oriented methodology called Syntropy [CD94]. The formal notion of asso-

ciation relationships and its properties provided the foundation for the speci�cation

of the properties of views relationships.

DeLoach and Hartrum use an object-oriented algebraic speci�cation language

called O-SLANG to specify theories for the concepts introduced by OMT [DH99].

In such work, the authors specify association, aggregation, and inheritance theories

using algebraic speci�cations that connect class theories. This approach also uses

category theory to map elements of the theories, as it was also inspired by the

work of Goguen. Note that the banking system case study formally described in

Chapter 4 using the PVS speci�cation language was initially based on the algebraic

speci�cation presented by the aforementioned authors [DH99].

While the formalism introduced in Chapter 3 of this thesis was based on the ob-

ject calculus described by Fiadeiro and Maibaum, the availability of a speci�cation

and veri�cation environment compelled us to translate the temporal logic based

formulae into the higher-order logic language of PVS. In fact, an identical problem

motivated the work of Maharaj and Bicarregui [MB97]. These authors describe the

CHAPTER 1. INTRODUCTION 17

translation of a VDM-SL speci�cation into the PVS language using the methods

described by Agerholm [Age96].

1.6 Thesis Overview

In this thesis we develop of a formal framework to support a precise speci�cation

and extension of object-oriented modeling languages. Among several modeling

constructs being explored, the interface interconnection mechanism called views is

given particular attention throughout this thesis. The properties associated with

this mechanism are formally de�ned and veri�ed to support reuse by means of a

disciplined separation of the distinct concerns contained in a software system.

In Chapter 2, the basic concepts of the views approach of modeling are intro-

duced. The set of relationships supported by UML is extended to support the

representation of views relationship constructs, which represent the basic concept

of the views approach.

Chapter 3 introduces formal interpretation theories for objects and relationships.

The formalization of the set of relationships supported by UML extended with views

is the goal of the chapter. Particular focus is on the views relationship construct.

Chapter 4 focuses on the mechanization of a logic-based system that uses formal

concepts introduced in Chapter 3. The speci�cation is developed in a formal en-

vironment, which provides typechecking tools for a higher-order logic speci�cation

language and a powerful proof checker that allows the veri�cation of properties of

the formal speci�cations. A number of views and UML relationship properties are

formally stated and veri�ed in this chapter.

In Chapter 5, the major contributions of this thesis are discussed, and topics

for future related research are suggested.

Chapter 2

The Views Approach in Modeling

Despite a recent e�ort to create a standard notation for object-oriented model-

ing, several other notations are still commonly used in the speci�cation of object

systems. These notations, however, do not agree on a basic set of concepts, in-

cluding relationships. Some of the most popular types of relationship supported

by object-oriented modeling languages are known as specialization1, association,

and aggregation. These relationships are part of methods such as OMT [Rum88],

Object-Oriented Design [Boo91], Syntropy [CD94], and the relatively recent Uni�ed

Modeling Language (UML).2

While these previously mentioned relationships are capable of representing most

object-oriented systems, they may not be expressive in particular situations. For

instance, note that the speci�cation of interconnections between loosely coupled

modules in a software model is not explicitly addressed by any of these modeling

relationships. While association does not have the expressive power to characterize

particular types of relationships explicitly, specialization is a re�nement relation-

1This construct is also referenced as generalization.
2UML was accepted by OMG as the standard notation for software architecture.

18

CHAPTER 2. THE VIEWS APPROACH IN MODELING 19

ship between classes and aggregation interconnects objects which are often tightly

related.

Separating objects with di�erent concerns has been the focus of a number of

authors [Aks96, HL95, CL95]. Some of them propose implementation models that

separate user interface concerns from application-speci�c objects [KP88]. Other

authors investigate pattern mechanisms of interaction among modules implement-

ing di�erent concerns [GHJV95]. Alternatively, our contribution is focused on a

methodical study of the semantic properties of a modeling relationship that allows

the separation of objects of di�erent concerns in a software model.

2.1 Separation of Concerns

Separation of concerns is a well-established principle in software engineering that

hides complexity by means of abstraction mechanisms [FSJ99]. According to the

Oxford English Dictionary, a concern is a relation of connection or active interest

in an act or a�air. Alternatively, Czarnecki et al. de�nes a concern as a do-

main used as a decomposition criterion for a system or another domain with that

concern [CES97].

The term concern has di�erent meanings across software engineering. In some

of its connotations, a concern may refer to elements of design that cross-cut the

basic functionality of the system. For instance, memory access patterns may be

considered in some cases as one speci�c concern [KLM+97]. Other notions of con-

cern might be related to more general concepts such as performance and quality.

However, in this thesis we will be using the same connotation of a concern as the one

given by Fayad et al. [FSJ99]. These authors mention that current frameworks in-

volve a basic concern and a number of special-purpose concerns. The basic concern

CHAPTER 2. THE VIEWS APPROACH IN MODELING 20

is represented by [...] algorithms that provide the essential functionality relevant

to an application domain, and the special purpose concerns relate to other soft-

ware issues, such as user interface presentation, control, timing, synchronization,

distribution, and fault tolerance.

Di�erent concerns can be identi�ed during analysis, design, implementation,

and refactoring. Objects with similar concerns are connected by a common interest

on a particular domain of the problem description, which may be of structural,

functional, or behavioral nature. Distinct concerns should be loosely coupled and

as orthogonal as possible. While there are guidelines for the distinction of concerns,

the identi�cation of the boundaries of a concern is still an arbitrary task. As

Dijkstra states: The crucial choice is, of course, what aspects to study in isolation,

how to disentangle the original amorphous knot of obligations, constraints and goals

into a set of concerns that admit a reasonably e�ective separation [Dij76].

A signi�cant barrier to the reuse of both designs and implementations of soft-

ware objects and modules is the fact that they internalize knowledge about their

surrounding environment. For example, a typical module or object of an application

often knows about its user interface, speci�cally details of how its data structures

will be displayed, how the user will interact with the application, or what objects

on the screen correspond to activations of components of the module. Similarly, a

module or object knows too much about the services required from other objects

or modules. For example, a module will know too much about naming conventions

in a �le system, or about the names of modules or functions from which it acquires

services. Such depth of specialized knowledge seems counter not only to reuse but

to good engineering practice in general [CL95].

One of the �rst models to address the separation of concerns in object-oriented

technology was the Model-View-Controller (MVC) [KP88]. This is a programming

CHAPTER 2. THE VIEWS APPROACH IN MODELING 21

paradigm which was originally developed for use in Smalltalk-80 systems. The

decomposition of interface behavior implemented by this model has also inspired

many other models [BC91, Dig91, Hil92, Mye91]. Even though these are excellent

implementation models, it is often di�cult to map these strategies into other pro-

gramming environments, or to make them applicable to other software development

phases.

2.1.1 The ADV Modeling Approach

The Abstract Data View3 approach [CILS93a, CL95, ACLN95] was developed in an

attempt to overcome the limitations inherent in the separation of concern models

which are based on speci�c programming paradigms. This approach is an object-

oriented design model which bridges the gap between the internal world of applica-

tion objects and its requirement for knowledge of the external world [CL95]. The

basic constructs of the ADV approach are the Abstract Data View (ADV) and the

Abstract Data Object (ADO), which represent, respectively, interface objects (views

and interactions) and application objects which are independent of the interface.

These types of object support a disciplined approach to design which attempts to

separate concerns.

The separation of concerns introduced by the ADV approach divides the \world"

into two types of objects. These types are the ADVs and ADOs, and they charac-

terize the concern of an object in a software model as either interface or application.

Although we can �nd many structural similarities in both object concepts, it is im-

portant to observe that there is a clear separation between capabilities of ADOs and

ADVs. An ADO has no knowledge of its surrounding environment (ADVs), thus

3The modeling approach was later renamed to Abstract Design View

CHAPTER 2. THE VIEWS APPROACH IN MODELING 22

ensuring independence of the application from its interface. On the other hand,

an ADV does know about its associated ADO and can query or modify its state

by means of its public interface or a mapping between the ADV and related ADO

[ACLN95].

2.1.2 Applications of the ADV Model

Initially ADVs were used to capture the user interface concern of interactive soft-

ware systems. Later, the model was extended to general interfaces that could

capture other external concerns such as a timer or a network. A further extension

captured other special purpose concerns such as control, timing, and distribution.

ADVs have been used in various software system designs to support user in-

terfaces for games and a graph editor [CBI+92], to interconnect modules in a user

interface design system (UIDS) [LCP92], to support concurrency in a cooperative

drawing tool, to design and implement both a ray-tracer in a distributed envi-

ronment [PLC93], and to design a scienti�c visualization system for the Riemann

problem. A research prototype of the VX�REXX [Wat93] system was motivated

by the idea of composing applications in the ADV/ADO style. In addition, we

have shown in [CILS93b] and [CLV93] how ADVs can be used to compose complex

applications from simpler ones in a style which is similar to some approaches to

component-oriented software development and megaprogramming [WWC92].

2.2 Modeling with Views

In this thesis we present a di�erent approach for the separation of concerns which

was inspired by the ADV model. This new approach, which is called views, is

CHAPTER 2. THE VIEWS APPROACH IN MODELING 23

centered on an object-oriented modeling relationship which is identi�ed by the same

name. The views approach attempts to address most of the important contributions

of the ADV model. While it promotes a disciplined interconnection of objects with

distinct concerns, it does not characterize the \worlds" of concern according to

di�erent types of objects. This means that objects representing one kind of concern

are conceptually identical to the objects representing other concerns. Alternatively,

the ADV approach uses ADOs and ADVs to characterize the type of concern of a

given object.

In the views modeling approach, the disciplined separation of concerns is sup-

ported by the properties of the interconnecting relationship theory. This theory

is external to the objects being interconnected and does not directly change their

speci�cations. This approach is closer to concepts used in currently popular model-

ing languages, and we believe it makes a smoother transition from these traditional

languages to the views-based ones. In fact, a views-based modeling language may

be developed as an extension of some of the current languages in an attempt to

improve their expressiveness.

As already mentioned, views aims the interconnection of modules representing

di�erent concerns [ACLN98a, ACLN98b]. The basic construct of this model is the

views relationship, which de�nes the pattern of interaction among objects of dif-

ferent concerns. These objects are usually referenced as viewer and viewed objects,

depending on the roles they perform in the relationship. Viewer roles are often

assigned to objects characterizing an interface part of the model. Alternatively,

viewed roles are usually performed by objects with domain speci�c concerns.

Note, however, that the \viewer" and \viewed" terms do not characterize intrin-

sic properties of the objects. Rather, they represent roles performed by an object

in one particular views relationship. Thus, an object could be assigned a viewer

CHAPTER 2. THE VIEWS APPROACH IN MODELING 24

role with respect to one relationship at the same time it performs a viewed role for

another views relationship. Nonetheless, constraints on the number of views-related

roles performed by a single object exist. For instance, an object cannot perform

more than one viewer role in the whole system.

A disciplined separation of responsibilities should lead to wide and consistent

reuse of speci�cations for both viewer and viewed components. However, promoting

reuse is not the only major issue related to separation of concerns. Modi�cations

on software often have dangerous and costly consequences on quality, coherence or

knowledge of entities that depend on a modi�ed entity [BR94]. Separating concerns

into independent modules decreases the danger of such changes.

A viewer object is conceived to represent either a user interface or an adaptation

of the public interface of a viewed object that modi�es the way this object is accessed

by others. Thus, a viewer should have elements inside its speci�cation to access and

monitor the current viewed properties. These elements are connected to the viewed

object by means of a mapping mechanism. Such a mechanism associates actions

and attributes of the viewer object with the corresponding actions and attributes

in the viewed object. Mapping is used here only as a modeling concept. It may be

implemented in several di�erent ways.

Note that, by construction, a viewer object is aware of the public interface of the

viewed object, and so preserves encapsulation. The viewed object, however, should

have no knowledge about any internal property of a viewer object. Moreover, the

state of these two objects should be consistent at all times by means of the mapping

mechanism. Thus, a change in the state of a viewed object will e�ect corresponding

changes in the state of viewer objects related to that object.

The separation of concerns provided by the views approach allows the speci�-

cation of several viewers for a single viewed object. For example, the stack model

CHAPTER 2. THE VIEWS APPROACH IN MODELING 25

Figure 2.1: A multi-interface stack model

illustrated in Figure 1.2 is being accessed by a single viewer, which is the Stack

class. An extension of this model could add another interface to the data reposi-

tory represented by the List class. For instance, Figure 2.1 illustrates a model in

which the data contained in List objects are accessed either through Stack or Queue

interfaces. The state of related instances of all three classes will be kept consistent

by means of the views relationship properties.

2.2.1 Properties of a Views Relationship

While the process of separating concerns still depends on arbitrary decisions of the

developer, views provide mechanisms and directions which disciplines modeling. In

this section, we focus on the characteristics of the relationship construct on which

the modeling approach is based.

The term relationship will be used throughout this thesis as a theory which

interconnects classes. Interconnections among objects will be explicitly referred to

as relationship instances. An instance of a views relationship is a binary construct

that associates exactly one viewer object with one other object instance that plays a

viewed role in this relationship instance. A relationship, however, may have several

instances interconnecting several viewer and viewed objects.

We start the characterization of the relationship with constraints on the iden-

tity and type of the objects being interconnected. Such constraints de�ne views as

CHAPTER 2. THE VIEWS APPROACH IN MODELING 26

a relationship between di�erent objects of di�erent classes. The rationale for this

property is that the construct was conceived to model the interaction among dis-

tinct concerns, and distinct concerns are invariably represented by distinct classes.

Additional reasons for the preceding characteristic are presented in the next chapter

when the property is formally stated.

The purpose of a viewer object is to observe and, if necessary, change the state

of a viewed object. A viewer should always have its state consistent with the object

it views. Consequently, a viewer depends on the existence of another viewed object

to perform its responsibilities e�ectively. This dependency leads to a property

constraining the lifetime of viewer objects. Such property states that an object

playing a viewer role in a views relationship is always views-related to another object

playing a viewed role. In other words, the lifetime of a viewer will be contained in

the lifetime of the viewed object.

This previous property also a�ects the possibility of creating views-cycles in a

model. The lifetime dependency between viewer and viewed objects would have to

be respected by every object in the cycle. As a consequence, all of the objects in

this cycle would have to be created and destroyed at the same time, thus creating

a circular prerequisite problem. Therefore, views-cycles are not allowed in a model.

The cardinality of a views relationship is another important property de�ned by

this approach. As mentioned in the previous section, the views relationship allows

the association of zero, one, or many viewer objects of one particular class for each

viewed object instance. Conversely, we de�ne that for each object instance playing

a viewer role in a views relationship there is exactly one related object playing

a viewed role. Such constraints eliminates potential consistency problems of one

viewer monitoring multiple objects states. In addition, this rule does not impose

any limitation to the modeling process, as a set of viewers may always be composed

CHAPTER 2. THE VIEWS APPROACH IN MODELING 27

into more complex views.

The property that constrains the number of objects related to a viewer object

to one is also extended for the system as a whole, and not only for the relationships

independently. This means that an object will be allowed to play a viewer role in

at most one views relationship in the whole system. This same object, however,

may play as many viewed roles as allowed by the system speci�cation.

All of the properties described in this section will be formally stated in the next

chapter by temporal logic axioms. In addition, theorems derived from those axioms

will complement the set of properties.

2.2.2 Reuse

Improvements of an order of magnitude are still needed to extricate the software

industry from the well-known software crisis [HSL91]. Boehm argues that instead

of �nding ways of writing code faster, we need to write less hand-crafted software

[Boe87]. While automatic programming is still a promise, reuse appears to be the

only realistic solution for software quality and productivity improvements. Was-

mund characterizes reuse as a software engineering discipline rather than a tech-

nology [Was94]. As stated by the author, the object-oriented technology does not

automatically yield high reuse rates, but it is an enabling platform for high degrees

of reuse if explicitly planned for and appropriate actions taken [Was94].

In particular, the views approach is related to reuse because it can be used to

separate the user interface from the application part of a system or act as an inter-

face for distinct modules of a system. In both cases, reusability is a consequence of

the separation of concerns developed in the structure of the system. By preventing

modules of the application from knowing about the surrounding environment, the

approach eliminates a drawback for reuse.

CHAPTER 2. THE VIEWS APPROACH IN MODELING 28

2.2.3 Examples of Views Usage

The views-based modeling of a general interface may take several forms. Each of

these forms relies on the properties of the views relationship construct and describe

a pattern of interaction among di�erent parts of the system. The most intuitive of

the interfacing models characterizes the interaction between the user interface and

domain-speci�c parts of a system. However, a set of views constructs can also be

used to model the interaction among two or more di�erent modules of the system.

These interaction mechanisms will be illustrated in this section.

As mentioned in previous sections, one of the barriers for reuse is that objects

of the application domain sometimes internalize environment knowledge. In many

cases, separation of concerns can be achieved with mechanisms as simple as a single

object-oriented relationship construct. The basic idea is to interconnect interface

and application, in such a way that the application object can be \viewed" or

\monitored" by di�erent objects without ever knowing about the identity or the

internal structure of these objects.

Figure 2.2: A simple interfacing model

One simple interfacing example is illustrated in Figure 2.2, where the viewers

represent two distinct user interfaces, a viewed object represents the domain-speci�c

part of the application, and the arrow indicates the existing views relationship

between the objects. Note that the represented mechanism describes modeling

concepts, and it does not indicate any direction for the implementation phase of

the software lifecycle.

CHAPTER 2. THE VIEWS APPROACH IN MODELING 29

Another typical application of views relationships is used to characterize the

interaction among distinct modules of the system. In such models, both source

and target modules in the interaction are described by viewed objects. Alterna-

tively, viewers represent all the interface properties among the interacting modules.

The communication
ow between the two interacting modules in this model is bi-

directional, even though these (viewed) objects do not need a direct reference for

each other. All the required information about the target object is hidden by the

viewer objects in the interface. This views-based model is represented in Figure 2.3.

Figure 2.3: An interface model for distinct concerns

Similarly to examples described for the ADV theory [CL95], the model in Fig-

ure 2.3 may be used for several interfacing purposes, including domain transforma-

tions and synchronization. For instance, in a case where Viewed Object 2 corre-

sponds to a double-ended queue while Viewed Object 1 is an object that requires

interaction with a stack structure, the viewer objects should act as an interface

which transforms an existing domain (i.e. the double-ended queue) into the re-

quired domain (i.e. the stack). In such case, the views approach relates to reuse by

adapting an existing domain into a required one.

CHAPTER 2. THE VIEWS APPROACH IN MODELING 30

2.3 UML Relationships

UML is currently the most popular language for specifying the artifacts of a soft-

ware system. The language integrates a number of notations and guidelines, and

it represents a standard for object-oriented modeling. UML is independent of pro-

gramming languages and development processes.

Currently, the semantics of UML are mostly de�ned as a combination of class

diagrams and natural language. No formal speci�cation of the UML semantics

has been derived yet, as the UML authors claim that such formalization would

add signi�cant complexity without a clear bene�t. However, we argue that formal

methods could help to identify and represent some unclear concepts we found in the

current UML speci�cation. Some of these unclear concepts are mentioned in the

following chapter. In addition, some researchers [Mey85, DBH95] consider formal

speci�cations as an important complement, rather than a replacement, to informal

or semi-formal speci�cations.

Despite providing extensive documentation on the semantics of UML, the cur-

rent de�nition of the language concepts still allows ambiguous interpretations, as

will be shown in the next chapter. Thus, we believe that UML may bene�t from

the use of formal languages by means of precise and concise de�nitions of modeling

concepts. However, the complete UML is too large, and its formalization is not the

major objective of this thesis. The metamodel describing the semantics of the lan-

guage contains approximately 90 metaclasses and 100 meta-associations divided in

several logical packages. Therefore, we will limit our focus to some of the concepts

which are more closely related to the properties of the views approach.

The views modeling concepts are basically centered on a relationship construct.

Thus, in accordance to the views approach goals, our main interest in UML is on

CHAPTER 2. THE VIEWS APPROACH IN MODELING 31

the characteristics of the relationships constructs supported. These relationships

are described in the Core subpackage. Core is considered the most fundamental

of the subpackages composing the Foundation package, which provides the infras-

tructure for UML [Rat97]. The Core subpackage de�nes the basic constructs for

the development of structural models. The semi-formal metamodel describing the

semantics of this subpackage is shown in Figure 2.4.

Figure 2.4: Metamodel for UML relationships

Despite some of the metaclasses in the metamodel under consideration not be-

ing explicitly considered in our formalization e�ort, the most important concepts

de�ned in the Core subpackage will be rigorously treated in the following chapters.

Most notably, the metaclasses to be formally investigated include Class, Generaliza-

tion, Association, AssociationClass, and AssociationEnd. Note that the attributes

CHAPTER 2. THE VIEWS APPROACH IN MODELING 32

in this latter metaclass represent the semantics for every association relationship in

UML models (aggregations included). The only other UML relationship construct

is called generalization.

2.4 Extending the UML Notation

One of the goals of UML is to support the extensibility and specialization mecha-

nisms to extend the core concepts of the language. In fact, UML authors expect

that UML will be tailored as new needs are discovered. This perception represents

a nice �t for the objectives of the views approach, which aims to augment the

expressiveness of an already existing core of modeling concepts.

To support the extension of UML with the views construct, we create a graphical

representation that is compatible with the other graphical elements of the UML

notations. This relationship representation was already illustrated by the arrows in

Figure 2.2. The tail of the arrows are connected to classes/objects performing the

viewer role in the relationships. Alternatively, the head of the arrows are connected

to a class/object performing a viewed role.

Figure 2.5: The extended metamodel for the Core subpackage

The extension of the UML Core subpackage metamodel resulting from the ad-

dition of views relationship constructs to the modeling language is shown in Fig-

CHAPTER 2. THE VIEWS APPROACH IN MODELING 33

ure 2.5. This metamodel de�nes two associations between the Classi�er4 and the

Views metaclasses: one for the viewed and another for the viewer objects. The for-

mer indicates that one viewed object may be \monitored" by several viewers. The

second meta-association indicates that for each viewer instance there is exactly one

corresponding views relationship instance. Note that this meta-association does not

limit the number of views relationship (or viewer) instances.

The extended structural notation for UML models will be used throughout this

thesis in conjunction with the other graphical constructs supported by the modeling

language.

4A classi�er is an element describing behavioral and structural features. Common classi�ers

are classes, data types, and interfaces

Chapter 3

A Formal Theory for the Views

Relationship

In this chapter we introduce formal interpretation theories for the views relationship,

which is modeled between a viewer and a viewed object [ACN98], and for some

UML constructs. We also introduce interpretation theories for the objects being

interconnected by the relationship. Each of these theories may be seen as a set of

statements we want to make about something. However, as most theories contain

too many facts for them to be explicitly listed, in practice, only a subset of these

statements are described by means of axioms. The remainder of the facts may

be inferred using a deductive system. While the set of all statements is normally

referred to as theory, the speci�cation with the explicitly listed axioms is termed

theory presentation.

The objects and the views relationship are presented as smaller and separate

theories which should be combined to form a composite (system) theory. As argued

by Burstall and Goguen [BG77], the structure of a speci�cation is more connected

to the way a speci�cation as a theory can be expressed as a combination of smaller,

34

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 35

more tractable theories. Therefore, the purpose of a speci�cation language is to

provide tools for putting small theories together to make larger speci�cations. Cat-

egory theory is used to combine object and relationship theories in the same way

that given a category of widgets, the operation of putting a system of widgets to-

gether to form some super-widget corresponds to taking the co-limit of the diagram

of widgets that shows how to interconnect them [Gog89].

The adopted formal system includes the use of a categorical framework together

with object calculus theories based on logic. The categorical framework illustrates

how the characteristics of interface objects and their relationship with other objects

in the system can be combined into a logic-based formalism. The object calculus

theories model the components of the system in terms of signatures and logic ax-

ioms. This framework was chosen as the formal underlying description because

of the availability of tools to develop and analyze formal speci�cations, such as

logic-based environments. These formalisms are not dependent on any particu-

lar speci�cation language. Thus, other formal speci�cation languages or similar

approaches can include the theory of interfaces of objects.

Following an approach developed by Fiadeiro and Maibaum [FM91, FM92], we

use a categorical framework based on temporal logic [MP91, Bar87] to de�ne the-

ories for the system objects which are involved in a relationship. The relationship

itself is another component of the system which is described as a separate theory

that interconnects two objects. This theory is �rst introduced in general terms,

and later re�ned with the addition of new axioms which characterize the views re-

lationship in particular. While object calculus theories model the components of a

system, the whole system (or a composite component) results from the interconnec-

tion of the components by means of morphisms. These interconnected components

form a category.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 36

In the �rst few sections of this chapter we outline the principles of the formal

framework adopted. Nevertheless, we limit our discussion of this framework to the

basic principles required to support our theory of objects and interfaces. The latter

sections of the chapter characterize the views approach and illustrate the related

concepts with a case study.

3.1 An Introduction to Categories

Before we go any further with the description of object theories and how they are

interconnected, we introduce a few basic concepts necessary to the understanding

of the framework adopted in the views formalization process. While the following

sections introduce the object calculus theory for object and relationship speci�ca-

tions, this section is intended to present concepts that give us the ability to de�ne

interconnections among a number of theories, and reason about the combination of

these theories as a single composite theory (or the whole system). These concepts

are de�ned by the category theory.

Category theory is an abstract mathematical theory used to describe the ex-

ternal structure of various mathematical systems [Sri90]. Our use of the category

theory is to de�ne interconnections among theory presentations. A category [BW90]

is a graph with rules for composing arrows and nodes in order to generate another

composite node. Moreover, this composite node may be used as a component node

of a yet more complex system. In our speci�cation framework, the arrows in a

category represent morphisms, while nodes represent the object theories.

The rules for object composition are given by four functions. But before we

describe these functions, we present a few de�nitions which are used in the speci�-

cation of the properties of these four functions.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 37

De�nition 1 The domain of a function f is the set of all elements which are

mapped to something by f . If f is de�ned by f : S ! T its domain is represented

by the set S.

De�nition 2 The codomain of a function f is the set of all elements which have

something mapped to them by f . If f is de�ned by f : S ! T its codomain is

represented by the set T .

The �rst two functions of a category speci�cation associate with each morphism

f of the category its domain dom(f) and codomain cod(f), both of which are

objects of the category. The expression f : S �! T is used to indicate that f

is a morphism with domain S and codomain T . The collection of all arrows with

domain S and codomain T in a category C is written C(S; T).

De�nition 3 If f : S ! T and g : T ! U are two functions, then the composite

function g � f : S ! U is de�ned to be the unique function with domain S and

codomain U for which (g � f)(x) = g(f(x)) for all x 2 S.

De�nition 4 We call identity the function id : S ! S for which id(x) = x for

all x 2 S.

The next two functions associate with each object C of a category a morphism

idC called the identity morphism and a function of composition. This composi-

tion function associates another morphism f � g with any pair (f; g) of morphisms

such that dom(f) = cod(g). These four functions are required to satisfy the follow-

ing axioms:

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 38

dom(f � g) = dom(g)

cod(f � g) = cod(f)

(f � g) � h = f � (g � h) (associative law)

dom(idA) = cod(idA)

idA � f = f (identity law)

f � idA = f (identity law)

Pierce describes a number of illustrative examples of categories [Pie91]. Cate-

gory 0 has no nodes and no arrows. The identity and associativity laws are trivially

satis�ed. Category 1 has one node and the identity arrow. The composition of this

arrow with itself can only be itself, thus satisfying the category axioms. Cate-

gory 1+1 is composed of two nodes and two identity arrows. Category 2 has two

nodes, two identity arrows, and another arrow connecting the nodes, as shown in

Figure 3.1. It is easy to verify that the six category axioms are satis�ed. Cate-

gory 3 is the other example shown in Figure 3.1, where f , g, and h are the only

non-identity arrows in that category.

Figure 3.1: Categories 2 and 3

In the previous paragraphs we characterized a category. However, another im-

portant use of category theory in our formalism is in the representation of the

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 39

composition of a number of theories into a more complex theory. In this respect,

pushouts and colimits are two concepts of the category theory which will be of

signi�cant importance in this chapter. But, before we describe these concepts, a

few other de�nitions need to be introduced.

According to Pierce, a diagram in a category C is a collection of vertices and

directed edges consistently labeled with nodes and arrows of C [Pie91]. In other

words, if an arrow f has domain A and codomain B, the edge in the diagram must

be labeled as f and its endpoints labeled as A and B.

De�nition 5 A diagram in a category C is said to commute if all the paths from

a vertex A to another vertex B in the diagram are equal. For instance, the diagram

labeled as Category 3 which was shown in Figure 3.1, commutes if f � g = h, as

f � g and h are the only two paths between vertices A and C.

De�nition 6 A cone for a diagram D in a category C is a C-node A and arrows

fi : A ! Di, where Di represents vertices of D, such that for each arrow g in D,

the diagram commutes.

Figure 3.2(a) illustrates a cone A. The notation f fi : A! Di g is used to refer

to that cone.

De�nition 7 A cone for a diagram D is called universal if every other cone of

the same diagram has a unique arrow to it. This universal cone is called the limit

of the diagram D.

The dual of a category C is represented by Cop, where Cop is a category with

the same nodes of C, but the arrows are reversed. As a consequence, most of

the categorical concepts are described in pairs, e.g. limit/colimit, cone/cocone,

pullback/pushout, product/coproduct, etc.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 40

Figure 3.2: (a) A cone and (b) a cocone for a diagram

De�nition 8 The dual of a cone, i.e., a cocone, in a category C is a C-object A

and a collection of arrows f fi : Di ! A g such that fi � g = fi for each g in the

category diagram. A colimit for this diagram is the universal cocone, such that

every other cocone in the diagram has a unique arrow to it.

Figure 3.2(b) shows the dual of the cone in Figure 3.2(a), which is the cocone

f fi : Di ! A g.

Having de�ned the general notions of limit and colimit of a diagram, we now

describe some speci�c instances of these notions. More speci�cally, we introduce

the example of universal/co-universal construction1 called pullback/pushout. Other

important examples of universal constructions, such as products/coproducts and

equalizers/coequalizers, are described in related publications [Pie91, BW90, Mit65].

The pullback of a pair of arrows f : A ! C and g : B ! C is a node P and

the pair of arrows f 0 : P ! B and g0 : P ! A such that the diagram commutes, i.e.

f � g0 = g � f 0. In addition, if a node X and two arrows i : X ! A and j : X ! B

form another cone of the diagram, then there is a unique arrow k : X ! P that

1A universal construction describes a class of nodes and arrows that share a common

property.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 41

Figure 3.3: The pullback categorical construct

can be added to this diagram such that the diagram still commutes, i.e. i = g0 � k

and j = f 0 � k. Figure 3.3 illustrates this pullback diagram.

Pushouts represent the dual notion of pullbacks. Thus, a pushout is obtained

by reversing the direction of all arrows in a pullback diagram. To spell this de�nition

out, we use the category diagram illustrated in Figure 3.5. In such diagram, node

C and arrows h and k represent a cocone. In addition, this cocone will represent

a pushout diagram if for any other cocone diagram with node E and arrows h0 :

A! E and k0 : B ! E, there is a unique arrow j : C ! E such that the diagram

commutes. Barr and Wells [BW90] calls this pushout as an amalgamated sum of

the objects A and B. Pushouts are the way you identify part of one node with a

part of another [BW90].

3.2 Object Calculus Theories

An object theory describing a component of the system consists of a pair (�;�),

where � is the component signature, and � is a set of �-formulae. The component

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 42

signature de�nes the speci�c vocabulary symbols which are useful to describe com-

ponents, while the �-formulae represent the set of axioms used in the component

description.

An object (or relationship) signature � consists of three distinct parts. S is

a set of constant symbols, A is a set of attribute symbols and G represents a

set of action symbols. The set of constant symbols is composed by sorts and

functions and contains the information that is state independent. An object can

use, for example, booleans, natural numbers, or sequences of characters as constant

symbols. If a natural number is to be included as a sort that belongs to S, then a

set of functions that operate on them is also provided. The attributes represent the

state-dependent information of an object. They describe the data that can change

as time passes through the actions of the objects. Attributes are the observable

properties of an object. Finally, the set of actions accounts for changes in attribute

values and interaction with other objects. These sets de�ne the boundaries of an

object description and are complemented by axioms which specify the behavior of

the object.

From a given signature � of an object A, we can inductively construct the set �

of well-formed �-formulae relative to the component A. A �-formula is a term built

from �-terms, the quanti�ers 8 and 9, and some temporal logic operators. Thus,

for any signature, we �rst construct the �-terms, and later the �-formulae.

�-Terms and �-Formulae. Given an object signature � =< S;A;G >, for every

sort s 2 S, terms, atomic formulae and well-formed formulae are, respectively,

de�ned as follows:

ts ::= c j xs j a(ts1; : : : ; tsn) j f(ts1; : : : ; tsn) j
ts

�atom ::= (ts =s ts) j g(ts1; : : : ; tsn) j BEG

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 43

� ::= �atom j (:�) j (�! �) j (
�) j (��) j (��) j

(�U�) j (8xs�) j (9xs�).

where the symbols c, xs, a, f , and g denote constants, variables of sort s, at-

tributes, functions, and actions, respectively.

The special temporal logic operators used previously are BEG denoting \a

predicate that is true exactly at the �rst moment",
 denoting \at the next method

initiation time" (
� holds in a state when � holds in the next state), � denoting

\sometime in the future" (�� holds when � holds in some future state), � denoting

\always in the future", and U denoting \until" (�U holds when will hold

sometime in the future and � holds between now and then).

The future operators � and � may also be derived from U as:

�� = trueU�

�� = :�:�

3.3 An Interpretation Theory for a Class

In this section, we introduce an interpretation theory for a generic class based on

an object calculus described by Bicarregui, Lano, and Maibaum [BLM97a]. Such

authors describe an object class as an interpretation theory in temporal logic: a

signature � and a set of axioms �. The theory of a class A is given by a combination

of two distinct theories: class instances and class manager. A typical class instance

theory Ai represents the theory for every object of this class. This theory introduces

sorts for the type of each attribute (S), the attributes (A), and the actions (G).

The following is an example of signature of a theory for a generic instance of A:

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 44

S = fType1; T ype2g

A = fattr1 : Type1; attr2 : Type2g

G = fact1; act2g

Note that one important constraint to be satis�ed by each object description in

the object-oriented approach is given by the locality axiom. This axiom guarantees

the encapsulation of attributes in an object. In other words, the attributes (state)

of an action may be modi�ed only by actions which are local to the object. Such

locality requirement is speci�ed by the following axiom.

For every signature � =< S;A;G >

Locus� : ((
_

g2G

(9xg)g(xg)) _ (
^

a2A

(8xa)(
a(xa) = a(xa))))

where for each symbol u, xu is a tuple of distinct variables of the appropriate sorts.

This axiom means that either one of the actions acti 2 G of the object is

performed, or else all the attributes attri 2 A will remain invariant. As an example,

the locality requirement for an object of class A, whose signature was previously

de�ned, is given by:

act1 _ act2 _ (
attr1 = attr1 ^
attr2 = attr2)

The second theory for the speci�cation of a class is called class manager. A

class manager theory M controls the creation and destruction of instances of a

class. For a general class type X, the theory introduces a sort for identi�ers of

objects called @X. The @X sort is a set of identi�ers for any possible instance of

X, which includes currently existing and non-existing { which are unborn or dead

{ instances of X. The set of currently existing instances is de�ned by an attribute

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 45

X of M . The class manager theory also speci�es actions to create and kill objects

of X. The following is the signature for M :

S = f@Xg

A = fX : F@Xg

G = fcreate : @X; kill : @Xg

According to the theory M , a class instance can only be added or removed

from the list of existing objects by means of execution of the create or kill actions.

Objects will be added or removed from X if pre-conditions to the execution of

corresponding actions are met. These pre-conditions should avoid the creation of

already existing objects, as well as the deletion of non-existing objects. The pre-

and post-conditions to the actions in theory M are summarized in the following

temporal logic axioms

create(x), x 62 X ^ x 2
X (3.1)

kill(x), x 2 X ^ x 62
X (3.2)

In addition to these axioms, an initialization rule states that the initial set of

existing instances of X is empty. This is formalized by:

BEG) X = ; (3.3)

While the previous axioms describe the e�ects of the occurrence of kill and

create actions on the attributes, they also indicate that these two actions interfere

with each other. As a consequence, the axioms restrict their ability to occur con-

currently. This may be proved by deriving :(create ^ kill) as a theorem of the

description of objects.

Theorem 1 create and kill do not occur concurrently.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 46

From Axioms 3.1 and 3.2 we have

create(x)) x 62 X

kill(x)) x 2 X

Consequently, from the above rules and a propositional calculus axiom we derive

:(create(x) ^ kill(x))

Following the formal object theory in [BLM97a], we use morphisms to combine

the class manager and class instance theories with the theory of the class, as illus-

trated in Figure 3.4. As a result, a self identi�er | which is the name an object

refers to itself | is mapped by the morphisms to global identi�ers, such as xi, in-

side the class theory. In addition, each attribute and action symbol of an instance

will have an extra parameter for identi�cation. For example, an attribute attr of

a class instance xi is conveniently identi�ed as xi:attr. A rigorous speci�cation for

the combination of every two object theories is shown in the next section.

3.4 Combining Object Theories with Morphisms

As previously described, a category describing a complex system is composed of

object theories and morphisms to interconnect these theories. While in the previous

section we described some temporal logic axioms for the speci�cation of typical

object theories, we now concentrate on the concepts of morphisms as a means to

synchronize objects in a category.

Morphism Between Theory Presentations. A morphism of object theory

presentations � : < �1;�1 >�!< �2;�2 > is an object signature morphism � :

�1 �! �2 such that every axiom in < �1;�1 > is translated as a theorem of

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 47

< �2;�2 >. In addition, the locality axiom of the �rst should also be a theorem of

the second. These two conditions are stated as

(�2)�2 �(�)) holds for every � 2 �1;

(�2)�2 �(Locus�1)),

where the formula on the right-hand side of the second rule is the translation of

the locality requirement.

A signature morphism is used in the previous de�nition to relate the language

of two di�erent object signatures. Essentially, this morphism identi�es the data,

the attributes, and the actions of the two di�erent signatures.

Signature Morphism. A morphism between signatures � :< S;A;G >�!<

S 0;A0;G0 > is de�ned by a trio of the total functions �S : S �! S
0, �A : A �! A0,

�G : G �! G0. However, for brevity, we can state that a morphism is given by

� : � �! �0.

A morphism between theory presentations (or a description morphism) is a

signature morphism that de�nes a theorem-preserving translation between the two

theory presentations, and also preserves the translation of the locality axiom. These

morphisms can be used to express a system as an interconnection of its parts, that

is, as a diagram. This diagram is a directed multigraph in which the nodes are

labeled by theory speci�cations, and the edges by the speci�cation morphisms.

Figure 3.4 illustrates an initial diagram that shows the morphisms between each

object instance Ai of a class theory A and the class theory A itself, which was

described in the previous section. This diagram will be later complemented with

the addition of other theories, thus composing a more complex system.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 48

Figure 3.4: Morphisms between instances, class manager and class theories

A diagram of speci�cations can be collapsed to a single speci�cation theory by

taking the colimit of a diagram. This colimit may be then used to infer properties of

the system as a whole. Informally, the colimit of a diagram is the disjoint union of

all speci�cations (attributes, actions and axioms), together with the identi�cation

of some attributes and action symbols that receive the same name. For example,

if two attributes attrA and attrB, have been identi�ed they receive the same name

attr in the resulting colimit.

We now show how combinations of object theories can be achieved with cate-

gories. As previously described, morphisms are used to express relationships be-

tween the component objects, and the composite object is obtained by constructing

the colimit of the diagram that represents the interaction among the objects. We

illustrate the construction of the colimit with a case in which we synchronize two

object theories A and B. These two theories interact through a common subcom-

ponent S which synchronizes the interaction. Synchronization in this case identi�es

actions in A with actions in B. We create an object theory S and two morphisms f

and g such that f : S �! A and g : S �! B. This combination is represented by

the following diagram:

A �f S �!g B:

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 49

Figure 3.5: Morphisms forming a composite of two object theories

In order to obtain the object describing the combination of A and B, we build

the colimit of this diagram. In this particular case, as we are only dealing with

two elements, the colimit is called a pushout. Pushouts are just examples of the

combination of object theories by assembling them in a diagram and connecting

them through the appropriate interfaces. The pushout of such a diagram consists

of another theory C of the category together with two morphisms represented by

A �!h C �k B:

where h and k are morphisms such that:

(a) h � f = k � g (i.e. only one copy of S is in C), and

(b) C is minimal in the sense that for an arbitrary object E, such that h0 : A �! E

and k0 : B �! E, there is an unique morphism j : C �! E such that j � h = h0

and j � k = k0.

Figure 3.5 illustrates a complete diagram of the combination of two object the-

ories to generate a composite object C.

3.5 An Interpretation Theory for a Relationship

As previously de�ned, an interpretation theory for a class combines class instances

and class management theories. In this section, we build an object calculus theory

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 50

Figure 3.6: A general relationship

that relates objects de�ned by two class theories, namely R and D. Such a rela-

tionship theory may be described as a \middle theory" whose purpose is to identify

subcomponents of the two given class theories that need to be synchronized.

An object relationship theory is also expected to be dependent on the structure

(domain) of the class theories it relates. In fact, a relationship theory will contain

parts of the speci�cation of each of the theories it is synchronizing. Nevertheless, the

only purpose of this section is to characterize the properties of a general relationship

theory which is independent of the structure of the objects it relates. Thus, for

more complex and complete relationships, such as the views relationship, additional

properties will have to be speci�ed, including the domain-speci�c ones.

We now describe a general theory for a relationship between objects of classes

R and D, as illustrated in Figure 3.6. The identi�ers of objects in these classes

are, respectively, in @R and @D. A signature for this general relationship theory

follows.

S = f@R;@Dg

A = frd : F(@R �@D)g

G = flink : @R �@D;unlink : @R�@Dg

Note that rd is an attribute that represents the set of currently existing rela-

tionship instances, and link and unlink are the only actions capable of creating

or removing an instance of a relationship. Similarly to the axioms for the creation

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 51

and deletion of objects, the pre- and post-conditions for link and unlink are

link(r; d), (r; d) 62 rd ^ (r; d) 2
rd (3.4)

unlink(r; d), (r; d) 2 rd ^ (r; d) 62
rd (3.5)

BEG) rd = ; (3.6)

The previous axioms do not assume any condition on the state of the related

objects. However, one condition for the existence of a relationship is that the

objects involved are currently alive. This is stated by:

8r 2 @R; d 2 @D � (r; d) 2 rd) r 2 R ^ d 2 D (3.7)

which, together with Axioms 3.4 and 3.5, yields the following post- and pre-

conditions for the relationship theory actions:

link(r; d)) r 2
R ^ d 2
D (3.8)

unlink(r; d)) r 2 R ^ d 2 D (3.9)

In addition, Axioms 3.4 and 3.5 also yield concurrency restrictions which are

similar to the one presented in Theorem 1. This restriction is presented in Theorem

2 and the proof, which is omitted, is identical to the one presented for Theorem 1.

Theorem 2 link and unlink do not occur concurrently.

Combining object and relationship theories. In the previous section we de-

scribed the formal approach to the combination of object theories. In Figure 3.5

we showed a simple example where two object theories A and B are combined to

form a composite object C, which contains the theory of both A and B. Now, some

complexity is added to the subsystem as we introduce the theory of a relationship.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 52

Figure 3.7: The colimit of object and relationship theories

Figure 3.7 shows the diagram where two object class theories R and D and one

relationship theory V are interconnected by morphisms to derive the composite

theory C. C is interpreted as the colimit of theories R, D, and V . Note that

the theories responsible for synchronizing both class theories R and D with the

relationship theory V are the class manager theories MR and MD. These class

manager theories may also be interpreted as the \glue" that combines objects and

relationship theories. The generic structure of a class manager was described in

Section 3.3.

We now investigate some of the UML modeling properties and derive formal

theories for the supported relationships. We follow these theories with an inter-

pretation theory for the views relationship, which relates viewer (@R) and viewed

(@D) objects.

3.6 Formalization of UML Relationships

Currently, there is not a formal speci�cation of the UML semantics. As the UML

authors claim, the current description is not a completely formal speci�cation of

the language, because to do so would have added signi�cant complexity without clear

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 53

bene�t [Rat97]. Thus, the semantics of the language is mostly de�ned in a com-

bination of UML class diagrams and natural language. A formal language (Object

Constraint Language) is only used to de�ne some well-formedness rules for the UML

constructs.

The current semantics speci�cation of UML (as in [Rat97]) is certainly more

detailed than the previous modeling languages from which it originated. However,

their use of natural language in the de�nition of semantics still allows ambiguous

interpretations from developers [LB98a]. As we show in this section, UML may

bene�t from the use of formal languages by means of precise and concise de�nitions

of modeling concepts.

The complete UML is large. The metamodel describing the semantics of the

language contains approximately 90 metaclasses and 100 metaassociations divided

in several logical packages. These metaclasses and metaassociations specify seman-

tics for both the structural and behavioral object models. Because of the size and

complexity of the language, it is not among our goals to specify all the modeling

concepts in UML formally. In fact, only a small portion of the relationship concepts

contained in the UML structural model are formally speci�ed in this section.

3.6.1 Association

In UML, an association represents a semantic relationship among classi�ers. Clas-

si�ers are the elements of UML that represent behavioral and structural features

of a system. Among others, the classi�er concept includes classes, data types, and

interfaces. While all of these classi�er types may be de�ned as logic theories, we

will concentrate only on the concept of classi�ers as classes. We will use both terms

interchangeably.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 54

An association is composed of two or more association ends. An association end

is the endpoint of an association that is attached to a single classi�er. The typical

association relationship is called binary and has two association ends. While the

attribute properties we will de�ne next may be easily extended for associations with

more than two ends, we will restrict our formalization e�ort to binary associations.

In this section, we will formalize the properties related to the association of

a given class A with a class B.2 The association theory between A and B will

be called ab. The instance of an association theory ab that interconnects class

instances ai and bi is represented as (ai; bi) and it is called a link. Note also that

all the properties de�ned in the previous section for the general relationship still

apply to association theories.

We now investigate the six attributes de�ned in the UML metamodel for the

AssociationEnd metaclass, which composes an association relationship.

The Aggregation Attribute

Aggregation is the object-oriented concept that represents a \whole-part" relation-

ship. Some authors consider aggregation as a relationship type distinct of associ-

ation [DBH95, Lan95]. UML, however, de�nes aggregation as an attribute of the

association end that may assume three di�erent values: none, aggregate, and com-

posite. For simplicity, we represent the aggregation attribute of the end of the asso-

ciation instance (ai; bi) that is attached to the class instance ai as aggregation(ai).

Thus, a binary association theory will contain one attribute for each end of the

association:

aggregation : A! fnone; aggregate; compositeg

2We renamed classes R and D from Section 3.5 to A and B, respectively, to avoid confusion

with the views properties de�ned in the next section.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 55

aggregation : B ! fnone; aggregate; compositeg

Whenever the attribute value of one end of the association di�ers from none, it

means that the relationship is an aggregation and the object at that end represents

the \whole". Consequently, the object at the other end of the relationship instance

represents the \part". By de�nition, the attribute value of the \part" end of the

relationship should be none. This constraint is de�ned by the following UML well-

formedness rule:

(a; b) 2 ab ^ aggregation(a) 6= none) aggregation(b) = none (3.10)

UML de�nes aggregation as a special form of a binary association that speci�es

a whole-part relationship. A composite aggregation implies a strong form of a

relationship where a \part" is included in at most one composite object (i.e. the

\whole") at a time, even though the owner may be changed over time. Alternatively,

the aggregate attribute value implies a weaker type of aggregation. In such a case,

the \part" may be shared among several \wholes". These \whole" objects may also

change over time.

The above de�nition of aggregation is presented in the UML Semantics manual

in natural language [Rat97]. While the authors provide a detailed description of

the concept, there is still margin for ambiguous interpretations. For instance, the

distinction between a common association relationship (i.e. aggregation attribute

value is none) and a \shared" aggregation relationship (i.e. aggregation value is

aggregate) is not completely clear with respect to binding. For instance, we do not

have a precise de�nition whether a \part" may exist without being associated to

a \whole". Therefore, we assume that being always bound is a characteristic of

both the composite and the aggregate relationships. Such a binding concept assures

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 56

that a \part" object can only exist if interconnected to a \whole" object. This is

formally stated as:

8a 2 A � aggregation(a) 6= none) �(b 2 B () 9a1 2 A � (a1; b) 2 ab) (3.11)

Note that the above formula allows the \whole" object to change over time.

Thus, a \part" may be bound to distinct \wholes" at di�erent stages of its lifetime.

Note also that the antecedent of the previous formula (i.e. 8a 2 A�aggregation(a) 6=

none) is just a condition on the aggregation attribute of the association end attached

to class A. The value of aggregation(a) should not vary for every a 2 A.

The previous property de�nes the di�erence between the two forms of aggre-

gation and a typical association. In addition, the two following rules will formally

distinguish the aggregate form of aggregation from the composite form. The �rst

formula guarantees that there will be at most one \whole" object associated with

each \part" in a composite aggregation. It is stated as:

8a 2 A � aggregation(a) = composite^ (a1; b) 2 ab^ (a2; b) 2 ab) a1 = a2 (3.12)

The second formula assures that, in a composite aggregation, whenever the

\whole" is killed, then so are its aggregated parts. It is shown as:

8a 2 A � aggregation(a) = composite ^ (a; b) 2 ab ^ kill(a)) kill(b)

Similarly to the axiomatization of aggregation properties described in this sec-

tion, Lano and Bicarregui also use temporal logic axioms to specify the semantics

of UML aggregation relationships [LB98a]. However, these authors assume that in

a composite aggregation \parts" cannot be deleted whilst the \whole" continues to

exist. Furthermore, their work is not extended to the other association attributes.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 57

The Changeable Attribute

This attribute speci�es constraints to the creation and removal of association in-

stances for an object after such an object is created. Similarly to the aggregation

attribute, an association theory contains one changeable attribute for each end of

the association. Therefore, a binary association theory will have the following at-

tributes:

changeable : A! fnone; frozen; addOnlyg

changeable : B ! fnone; frozen; addOnlyg

When the changeable attribute associated with one end of the relationship has

value none, it implies that there are no constraints to the creation or removal of

association instances which involve the objects at that end. In other words, if

changeable(a) = none for any a 2 A then instances of an association ab, such as

(a; bi), may be created and removed at any time of the lifespan of object a.

Alternatively, if the changeable attribute of one end has value frozen then no

association instance may be added to an object at that end of the association after

its creation. So, an object a 2 A will never be associated with another object b 2 B

if this association link was not created at the same time as a. This property may

be formally stated as:

changeable(a) = frozen ^ link(a; b)) create(a) (3.13)

or, alternatively, as:

changeable(a) = frozen ^ a 2 A ^ (a; b) 62 ab) (a; b) 62
ab

We believe that whenever the attribute changeable(a) has value frozen, all links

involving an object a 2 A will be, not only created, but also destroyed together with

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 58

one of the objects in the link. In other words, a will be alive until one of its links is

destroyed. UML, however, does not state this destruction property explicitly, even

though we believe this is the intended semantics. So, in case this freezing property

holds both for creation and destruction, we have to add the following rule to the

association theory:

changeable(a) = frozen ^ unlink(a; b)) kill(a)

AddOnly is the other possible value for the changeable attribute. In this case,

association instances may be added at any time to an object, but once created, this

link will only be destroyed together with the object with changeable attribute set to

addOnly in this relationship instance. The semantics associated with the addOnly

value is the same as the semantics de�ned in the previous rule for the frozen case.

Thus, the constraint rule for the addOnly value is de�ned as:

changeable(a) = addOnly ^ unlink(a; b)) kill(a) (3.14)

Remember that U is the temporal logic operator \until".

The IsOrdered Attribute

The order in which instances of an association interconnect an object to others

may be relevant to model some characteristics of a system. While the speci�c order

of the association links is determined only by the operations creating these rela-

tionship instances, UML associations provide a Boolean attribute which speci�es

whether ordering is relevant in one particular association end. IsOrdered is such

an attribute, and it indicates that partial ordering relations exist on the set of

association instances.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 59

Re
exivity 8s 2 ab � (s; s) 2 R

Irre
exivity 8s 2 ab � (s; s) 62 R

Symmetry 8s1; s2 2 ab � (s1; s2) 2 R) (s2; s1) 2 R

Asymmetry 8s1; s2 2 ab � (s1; s2) 2 R) (s2; s1) 62 R

Antisymmetry 8s1; s2 2 ab � (s1; s2) 2 R ^ (s2; s1) 2 R) s1 = s2

Transitivity 8s1; s2; s3 2 ab � (s1; s2) 2 R ^ (s2; s3) 2 R) (s1; s3) 2 R

Table 3.1: Binary relation conditions

A partial order relation on the set of links ab is a set of pairs (si; sj), where

si; sj 2 ab, that follow some of the conditions de�ned in Table 3.1. The symbol

\<" is commonly used to represent partial orderings which are irre
exive, asym-

metric, and transitive relations. Alternatively, the symbol \�" is commonly used to

represent partial orderings which are re
exive, antisymmetric, and transitive rela-

tions [Sah81]. We shall use R(a) to denote a partial ordering on the links involving

the object instance a, where a 2 A. R(a) should respect the same set of conditions

de�ned for the \<" or \�" type of partial ordering.

To specify the constraints introduced by the isOrdered attribute formally, we

�rst de�ne the set SP(a) of all association instance pairs as:

SP (a) = f((a; b1); (a; b2)) j (a; b1) and (a; b2) 2 ab ^ b1 6= b2g

So, for the cases where the isOrdered attribute at one end of the relationship is

set to true, we de�ne the following rule:

isOrdered(a) = true) 9R(a)�R(a) � SP (a)^R(a) is a partial ordering relation

The Multiplicity Attribute

Multiplicity is the association end attribute that speci�es constraints on the number

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 60

of object instances that may be associated with one single object at the other end

of the relationship. The value of this attribute speci�es a range of non-negative

integers. The size of this range may vary from one integer to an in�nite number of

integers.

Formally, we de�ne the attribute multiplicity(a) as being an element of sort

RANGE, where RANGE is the powerset of the set of integers in the interval

[0;1). In addition, we de�ne the set S(a) of all association instances in ab which

involve the object a, where a 2 A, as:

S(a) = f(a; bi) j (a; bi) 2 ab g

Hence, the constraint rule to be added to the association theory is de�ned as:

8a 2 A � sizeof(S(a)) 2 multiplicity(a)

where sizeof is a function that returns a nonnegative integer denoting the size of a

set. RANGE is the domain of this function.

The IsNavigable Attribute

When placed at one end of the association, this attribute indicates whether the

object at the other end of the relationship will be granted access to the data of the

object connected at this end. The object will be accessible (i.e. isNavigable value

is true) if the objects associated contain references to elements of that object.

IsNavigable is de�ned as a Boolean attribute in the relationship theory. In ad-

dition, as this attribute indicates directions to be followed at implementation time,

no additional constraints will be speci�ed in the formal theory for the isNavigable

attribute.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 61

The TargetScope Attribute

The targetScope attribute is an extension from UML 1.0 [Cor97] incorporated in

the language in Version 1.1 of UML [Rat97]. It represents a form to store meta-

information. If the value of the targetScope attribute is instance, then a normal

association is being represented. However, if the value of targetScope is classi�er,

it means that the association is a relationship involving a class itself, rather then

the instance of the class.

This attribute allows the representation of features supported by certain pro-

gramming languages (e.g. Java), which provide mechanisms to access meta-infor-

mation at runtime. However, our formal framework does not support the represen-

tation of meta-information. Therefore, we de�ne targetScope as an attribute of the

theory without adding any speci�c constraints to the theory. This information may

still be available at implementation time.

targetScope : A! finstance; classifierg

targetScope : B ! finstance; classifierg

3.6.2 Aggregation

The concept of aggregation has a variety of meanings in object-oriented methods.

Sometimes, this meanings are not even precisely de�ned inside a particular method.

While the UML semantics for aggregation was de�ned in the previous section by

means of an association end attribute, we now illustrate a few other types of ag-

gregation according to a classi�cation mechanism de�ned by Lano [Lan95].

Lano used three attributes to generate di�erent types of aggregation. Binding

is the attribute de�ning whether a \part" can exist without being contained by one

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 62

Unbound Replaceable Shareable aggregation(a) changeable(a) changeable(b)

No No No composite frozen frozen

No No Yes aggregate frozen frozen

No Yes No composite none frozen

No Yes Yes aggregate none frozen

Yes No No none frozen none

Yes No Yes none frozen none

Yes Yes No none none none

Yes Yes Yes none none none

Table 3.2: Di�erent forms of aggregation relationship

speci�c \whole". Replaceability speci�es whether the \whole" can exist without

having one speci�c value as a \part." Finally, sharing de�nes whether two or more

\wholes" can share a common part.

Table 3.2 presents the results of distinct combinations of value for the three

attributes analyzed by Lano. While the three columns on the left side of the

table represents Lano's attributes, the three columns on the right are UML at-

tribute values used to create equivalent relationships. For instance, one of Lano's

aggregation which is not unbound, replaceable, or shareable is equivalent to a

UML association with aggregation(a) = composite, changeable(a) = frozen, and

changeable(b) = frozen.

Note that the last four rows of the table represent associations which are not

aggregations. Furthermore, the last two relationships are called exclusive associa-

tion and general association, respectively. While the di�erence between these two

relationships is not shown in the UML attributes of the table, such a di�erence

would be noticeable if the multiplicity attribute of UML was also illustrated.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 63

3.6.3 Generalization

Inheritance is another type of object-oriented relationship which is presented in

many forms among di�erent methods. Some formal languages provide \ad-hoc" in-

heritance in which methods and attributes of the inherited class may be rede�ned,

or even removed by the class inheriting a speci�cation. In UML, the mechanism

of inheritance is characterized by a generalization relationship between two Gen-

eralizableElements. In our formalization e�ort, classes will be the only Generaliz-

ableElements addressed.

The authors of UML characterize generalization as a taxonomic relationship

connecting a generalized version of a class (i.e. a supertype) to a more specialized

version of that class (i.e. a subtype). Since generalization is a subtyping relation-

ship, an object instance of a supertype may be substituted by an object instance

of the subtype without changing the expected behavior of the system. This desired

e�ect is called substitution property, and is de�ned by Liskov [Lis88].

One immediate interpretation of the substitution property for a relationship

between a superclass A (i.e. a supertype) and a subclass B (i.e. a subtype) is that

every instance of the subclass is also an instance of the superclass. This is formally

stated as:

B � A

We formally de�ne inheritance of a class B from a class A by means of a mor-

phism from A to B such that the class sort of B is a subsort of the class sort of A.

Such a morphism guarantees that all sorts, attributes, actions, and axioms of the

superclass A are embedded in the subclass B. Thus, all operations and attributes

that apply to A also apply to B.

The multiple inheritance concept may be de�ned by means of colimit operations,

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 64

as shown in [DBH95]. For example, if a class B multiply inherits properties from

classes A1 to An, then a theory for a class Acol may be created as the colimit of

the theories for A1 to An extended with the class sort Acol. Thus, when B inherits

from Acol, it is actually inheriting the properties of all Ai classes, where 0 < i � n.

3.7 Properties of the Views Relationship

Each di�erent kind of object-oriented relationship \glues" objects together in a

particular way. The semantic properties of these relationships introduce static and

dynamic constraints which characterize the type of interaction between the related

objects. These constraints determine how one action occurring in the object in one

end of the relationship a�ects the object in the other end. Our current interest is to

specify the properties and constraints over a views relationship theory V between

viewer and viewed objects. Note that V = fSV ;AV ;GV g. The signature of theory

V is equivalent to the signature of the general relationship described in the previous

section.

3.7.1 Self Dependencies

One simple rule for the views relationship is that viewer and viewed objects should

have di�erent identities. In the context of object-oriented analysis the represen-

tation of relationships among di�erent objects is the point of interest. It is not

relevant to say that one object views itself. This implies that viewer actions and

attributes will not be mapped to elements inside an object's own structure. This

trivial constraint is formally stated by:

link(r; d)) r 6= d (3.15)

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 65

Property 1 The views relationship is irre
exive.

While Property 1 establishes a constraint for an individual object, it does not

constrain an object to view another object of the same class. In this regard, lets

assume that an object class X views itself. Thus, every object instance of X would

view another object instance of this same class X. As viewer objects cannot exist

without having an already existing viewed object to reference, as will be formally

stated in later sections, this relationship would create a circular prerequisite which

would be cumbersome to ful�ll. All the objects in this circular dependency structure

would have to be created and destroyed at the same time. Hence, we state that an

object class cannot have a views relationship to itself. This is formalized as:

link(r; d)) R 6= D (3.16)

where R and D are the class types of the viewer object r and viewed object d,

respectively.

Property 2 Views is a relationship between objects of di�erent classes.

Note that Property 1 is always valid when Property 2 holds. As the latter

property requires that objects related by views relationships belong to di�erent

classes, consequently, these same objects will have di�erent identities.

3.7.2 Acyclic Structural Dependencies

For reasons similar to the ones stated in the previous subsection, views-cycles in the

static structure of models will also create circular prerequisites which are di�cult

to ful�ll and limit the bene�ts of using the relationship. Thus, we require the views

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 66

dependencies in a model to be acyclic. Based on a de�nition given by Partsch

[Par90], this property is stated as:

:9C � C �

n[

i=1

X i ^ C 6= ; ^ (8r � r 2 C) 9d � d 2 C ^ (r; d) 2 rd)

where X i is an attribute that represents the set of currently existing instances of a

class Xi, and
Sn

i=1X i is the union of all instances of the n classes in the model.

Property 3 The structural dependencies of a given model have no views-cycles.

3.7.3 Cardinality Constraints

Cardinality is a constraint over the number of instances of a class during the exe-

cution of a system. As an example, for a typical association, the cardinality of the

class in one end of the relationship may be either �xed at any positive integer, or

variable inside a non-negative range. The cardinality of a class is a design decision

to be taken during the development of a system.

While the cardinality at both ends of an association could be over many possible

ranges, other object relationships may establish more rigorous constraints. Views

is one of these relationships with more stringent cardinality constraints, and some

of the allowed types of this relationship are described next.

Optional Unary Viewer ().

In this type of relationship, the viewed object d may be related to zero or one

viewer objects. However, when the viewer object is alive, i.e. r 2 R, it must be

related to d. These constraints, in addition to the Axioms 3.8 and 3.9, result in the

following conditions on the actions of V :

link(r1; d) ^ link(r2; d)) r1 = r2 (3.17)

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 67

link(r; d1) ^ link(r; d2)) d1 = d2 (3.18)

link(r; d), r:createR (3.19)

unlink(r; d), r:killR (3.20)

The optional unary viewer relationship may be seen as an injective function

f : R� D, as for every r in R there is one single related d in D.

Multiple Viewers ().

At one time during execution, there may be several viewers attached to one

viewed object in a multiple viewer relationship. However, in this case a viewed

object d cannot exist without a viewer. This is stated as

8d 2 D � (9r 2 R � (r; d) 2 rd)

In terms of conditions on the actions of V , we have that Axioms 3.18, 3.19, 3.20

are also valid, together with

link(r; d) ^ rd = ;) d:createD (3.21)

unlink(r; d))
rd 6= ; _ d:killD (3.22)

This kind of relationship may be seen as a surjective function f : R� D.

One-to-one View ().

This is a combination of the two previously de�ned types of views. Consequently,

the pre- and post-conditions may be obtained by combining the two previously

de�ned sets of axioms. In addition, the one-to-one view is both injective and

surjective, thus making it a bijective function.

The General Views Relationship ().

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 68

The three previously described types of views relationship represent modeling

constructs that may be common during development. These types represent par-

ticular cases of a general views relationship that we now describe.

In the general views case, the cardinality of a viewed class is exactly one, meaning

that one viewed object exist for each related viewer object. Alternatively, the

cardinality associated with the viewer class is in a range [n;m], where n and m are

integers so that 0 � n � m � 1. This means that, depending on the relationship

speci�cation, any natural number of viewers may be related to each instance of a

viewed object. The cardinality requirements for the actions of V are expressed by

Axioms 3.8 and 3.9 and Axioms 3.18, 3.19, 3.20.

Property 4 For each object instance playing a viewer role in a views relationship

there is exactly one related object playing a viewed role in this relationship.

We also infer from Axioms 3.18 and 3.19 that rd, which represents the set of

currently existing instances of V , may be seen as a function from R to D. With

the addition of Axiom 3.20, we may actually infer that rd is a total funtion from

R to D.

From this statement, we identify one lifetime constraint between the related

objects. This constraint is that an instance of a viewer class R will only exist if

related to some object of a viewed class D, which is formally stated by

8r 2 R � (9d 2 D � (r; d) 2 rd)

Property 5 An object playing a viewer role in a views relationship is always views-

related to another object playing a viewed role.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 69

3.7.4 Creation/Destruction of Objects and Relationship

In a system, objects do not exist in isolation. They interact and cooperate among

themselves to accomplish more complex tasks. In some cases, an object will be

meaningless without others. For instance, if an object is created to monitor changes

in a given subsystem, this object will be unable to ful�ll its responsibilities if the

mentioned subsystem is not active.

Views is a relationship that creates a unidirectional dependency between objects.

Such a dependency is illustrated by the lifetime pre- and post-conditions for the

related objects.

Viewer Object Lifetime Conditions. From the cardinality constraints pre-

viously speci�ed, we can infer that the creation of a viewer object implies the

creation of an instance of the views relationship in which this object participates,

and vice-versa. Additionally, a lifetime constraint implies that if a viewer object

is killed then the instance of the views relationship associated with this object is

also destroyed. The inverse is also true, i.e. if an instance of a views relationship

is destroyed, the viewer object in this relation is killed. These four conditions are

stated in Axioms 3.19 and 3.20.

The above conditions yield the two following properties:

Property 6 An instance of a views relationship associates exactly one viewer ob-

ject with one other object instance that plays a viewed role in this relationship

instance.

Property 7 The destruction of a views relationship instance implies the destruc-

tion of the viewer object it was relating, and vice-versa.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 70

Note that Property 4 di�ers from Property 6 in the sense that the �rst one

refers to views as a relationship theory, while the latter refers to single instances of

the views relationship.

While there is a strong correlation between the existence of a views relationship

and its viewer elements, the same is not true for the viewed elements. In this regard,

the only condition for the creation or destruction of a views relationship at a certain

time is the existence of the viewed object at this time and, consequently, during

the existence of the relationship. These conditions are de�ned in Axioms 3.8 and

3.9.

Note that, as views and the viewer objects are strongly correlated, the conditions

on the viewed object lifetime which result from the creation/destruction of a views

relationship are also valid for the creation/destruction of a viewer object. Thus, for

any (r; d) 2 rd, we have:

r:createR) d 2
D

r:killR) d 2 D

These two axioms are consistent with what was said in Property 5, that is, a

viewer is always related to a viewed object.

Viewed Object Lifetime Conditions. As viewer objects may be modeled

as optional (see Section 3.7.3), a viewed object may exist for a period of time

without being related to any viewer. Therefore, the creation of a viewed object

does not require any pre-condition related to the existence of the corresponding

views relationship or the viewers.

On the other hand, the destruction of a viewed object implies the destruction of

every related viewer object. For instance, suppose that a viewed object d, which is

part of a views relationship (r; d), is killed. The previous assertion, which involves

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 71

elements of theories that are combined by the category theory approach, is expressed

as the following theorem:

Theorem 3 ` 8r 2 R; d 2 D � (r; d) 2 rd ^ d:killD) r:killR.

Our proof starts with the inference from rule 3.2 that:

d:killD) d 62
D

and the contrapositive of Axiom 3.7, which is:

r 62
R _ d 62
D) (r; d) 62
rd

From these 2 previous axioms, we infer that:

d:killD) (r; d) 62
rd

Combining this result and the hypothesis (r; d) 2 rd, from Axiom 3.5 we have:

unlink(r; d)

Axiom 3.20 implies:

r:killR

Property 8 The destruction of an object playing a viewed role in a views relation-

ship implies the destruction of the relationship itself and the viewer object partici-

pating in this relationship.

The above conditions are expressed in Table 3.3, which describes the lifetime-

related conditions for the occurrence of each of the actions speci�ed in the object

and relationship theories.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 72

pre-conditions post-conditions

Views Viewer Viewed Views Viewer Viewed

Views created 62 rd created none 2 rd none exists

destructed 2 rd killed exists 62 rd none none

Viewer created created 62 R none none 2 R exists

killed killed 2 R exists none 62 R none

Viewed created none none 62 D none none 2 D

killed killed killed 2 D none none 62 D

Table 3.3: Conditions on actions of object and relationship instances

3.7.5 Viewed Singularity and Viewer Multiplicity

So far, we have analyzed the views relationship as an interconnection mechanism

between two distinct classes. A complete system, however, is usually composed of

several classes connected by several relationships of di�erent types and semantics.

In fact, it is usual that one single class is related to other classes in the system by

means of a few di�erent relationships. Sometimes, there are di�erent occurrences

of the same type of relationship. For instance, one class A may be related in an

association with another class B. At the same time, class A may be associated with

class C. In this case, we have two occurrences | namely ab and ac | of the same

type of relationship (i.e., association).

While there is an unlimited number of associations for which a given class may

take part, other relationships may have di�erent constraints at one or both ends of

the relationship. For instance, in many speci�cation languages [Lan95, RBP+91],

the de�nition of aggregation3 implies that one object will not play the contained

3Aggregation relates one container object to a contained one. It is also known as the whole/part

relationship.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 73

role for aggregation relationships more than once. In other words, an object will

be contained in at most one container object. In a vehicle speci�cation system, for

example, a wheel object is contained in at most one car object, even though wheel

may be the container of tire and bolt objects. The views relationship de�nes similar

constraints on the objects being related.

As previously mentioned, it is a responsibility of the viewer object to monitor

the behavior of a viewed object according to rules de�ned by a views relationship.

Such a monitored behavior is speci�ed by properties and constraints de�ned in the

relationship theory. Thus, the behavior monitoring performed by a viewer object

depends, not only on the attribute values of the object being viewed, but also on

the rules speci�ed by the relationship theory. Now, suppose that an object r of

a class R views an object d according to a views theory Vrd. In case r would be

allowed to view another object e of a di�erent class, r would also be constrained by

another views theory Vre. In such case, the views theories Vrd and Vre may impose

incompatible constraints to the theory of R. Hence, to guarantee the semantic

integrity of the theories involved, an additional constraint on the views modeling

approach is that an object r will play the role of a viewer for at most one views

relationship theory. This property is rigorously stated by:

8r; d; e � (r; d) 2 rd ^ (r; e) 2 re) rd = re

or, using the relationship actions, by the axiom:

link(r; d) ^ link(r; e)) rd = re (3.23)

The above rule implies that, if the premises are true, then the relationships rd

and re are the same, which also implies that d is an object of the same class as

e. Putting this rule together with Axiom 3.18 (or Property 4), we also have that

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 74

Figure 3.8: A multiple viewers example

d = e. The additional meaning is that an object r is limited to view, not only a

single class of viewed objects, but also a single instance of objects playing a viewed

role. These rules characterize the property that we call viewed singularity.

Property 9 An object is allowed to play a viewer role for at most one views rela-

tionship.

The previously stated property, de�ned by Axiom 3.23, also generates conse-

quences that may be stated similarly to the cardinality constraint (i.e., Axiom 3.18).

The di�erence of the current result is that, in the hypothesis { which is stated in

the left-hand side of Axiom 3.18, { d1 and d2 are not necessarily objects of the same

class. Thus, for our current purposes, d1 and d2 are replaced by d and e, which

yields:

link(r; d) ^ link(r; e)) d = e (3.24)

Alternatively, at the other end of the relationship, a viewed object d may have

several viewers referring to it. There may be not only viewer objects of the same

class, but also viewers from di�erent class structures, which implies the existence

of di�erent views relationship theories. This property is called viewer multiplicity

and is illustrated in Figure 3.8.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 75

3.7.6 Viewer and Viewed Visibility

In the categorical approach described in this chapter, morphisms provide the for-

mal basis to express interconnections among objects in a system, as explained in

Section 3.4. Fiadeiro and Maibaum [FM92] state that two objects of the system

interact by sharing some other object, i.e. by having a common sub-component in

which they synchronize through morphisms. Similarly, the views interconnection

between viewer and viewed objects is also speci�ed by sharing object signatures.

The identi�cation of these shared signatures should be founded on the visibility

rules characterizing the views approach to modeling. These rules determine which

part of an object is \visible" or \shared" by both objects.

The signatures in the speci�cation structure of a class may be informally sep-

arated according to their speci�c responsibilities. For instance, while part of an

object signature deals with attributes and actions determining speci�c object be-

havior, other elements of the signature will be used to model the interaction activ-

ities with other objects.

In a subsystem composed of two object classes interconnected by a views re-

lationship, the speci�cation structure of a viewed class has only signatures which

are relevant to the application being de�ned. In other words, it has no attribute

or action which was speci�cally intended to access any kind of information main-

tained by the viewer object. For instance, in a situation where the viewer is a user

interface object, the viewed object should not have attributes notifying it about

the viewer's interface-related information. On the other hand, viewer class speci-

�cations have not only application-speci�c signatures (behavior speci�c), but also

have signatures that allow the viewer object to monitor or change the state of a

viewed object (interconnection signatures).

We say that each viewer has a sub-object that is identi�ed, or interconnected,

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 76

with all or part of the viewed object properties to which it is related. As a conse-

quence, this sub-object imposes upon the viewer a pattern of behavior that mimics

the behavior of a corresponding viewed object.

Such identi�cation is formalized as shown in Figure 3.7, which describes the

combination of relationship (V), viewer (R), and viewed object (D) theories. From

this diagram, we observe that the class manager theory MD synchronizes D and V

by means of morphisms. We say that MD contains a sub-object which is \shared"

by both D and V , as it contains a theory that is identi�ed with parts of D and

V . On the other side of the relationship, MR synchronizes V and the viewer class

R. Thus, V is synchronized to both the viewer R and the viewed object D. This

relationship theory allows the identi�cation of the signatures of related objects and

the speci�cation of new axioms based on these signatures.

3.7.7 Attributes Consistency

Another characteristic of the views relationship is that it supports the speci�cation

of axioms that constrain the values of the attributes in the related objects. This

property will guarantee that the states of the objects involved are always consistent

among themselves.

Two levels of consistency must be expected when several viewer objects are re-

lated to one single viewed object. First, consistency must always exist between each

viewer and its related viewed object to assure that the viewer correctly represents

the state of a viewed object. A second level of consistency is achieved as a conse-

quence of the �rst one, that is, all viewers of the same object should be consistent

among themselves. Consistency between the viewer object and its related viewed

part is called vertical consistency, while consistency among the di�erent viewers

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 77

Viewed

Attributes

AttributesAttributes

ViewsVertical
Consistencies

Consistency
Horizontal

Views

Viewer
Digital ClockAnalog Clock

Viewer

12:15PM

Counter

Figure 3.9: Views consistencies in a clock application

is called horizontal consistency. These consistency properties must be guaranteed

by the speci�cation of the views relationships being de�ned among the involved

objects.

Figure 3.9 illustrates these consistency properties using a clock application

model which contains a counter object with two distinct viewers: a digital clock

viewer and an analog clock viewer. In this example, vertical consistency ensures

that each viewer object shows the values speci�ed in the attributes of the corre-

sponding viewed object, while horizontal consistency guarantees that the di�erent

viewers, i.e., the analog and digital clocks, always show the same time.

Vertical Consistency

We say that two related objects are vertically consistent if their states are coherent

with respect to the type of views relationship established among them. These

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 78

states are represented by the attribute values of the viewer and viewed objects. For

instance, the analog clock viewer of Figure 3.9 is consistent with the viewed counter

only if the attributes associated by means of the views relationship hold consistent

values at any time. In other words, the viewed counter attribute that is mapped by

views to the analog clock viewer should have equivalent value as the time shown,

which is 12:15.

Figure 3.10 shows some attribute mappings between the Analog Viewer and

Viewed Counter objects (see also Figure 3.9). Such a diagram is a simpli�ed in-

stance of the general case shown in Figure 3.7, where objects and relationship

theories are combined into a subsystem theory. In this particular case, the theories

of the viewer and viewed objects are interconnected by a views relationship theory.

The class manager theories MAR and MD are used to synchronize the relationship

theory with the viewer and viewed object theories, respectively. Note also that

a similar diagram may be obtained for the Digital Viewer and Viewed Counter

objects.

In this diagram, two attribute morphisms from the class manager theory MD,

which are tD ! timeD and tD ! time, specify the consistency between the viewed

object (timeD) and the relationship (time) attributes. In addition, two attribute

morphisms from the class manager theory MR, which are tAR ! timeAR and

tAR ! time, de�ne the consistency between the viewer object and the relation-

ship attributes. These four morphisms guarantee that timeAR and timeD will have

consistent values at all times.

It is important to mention that consistency between related object states is

a constraint property represented by attribute morphisms, as illustrated in Fig-

ure 3.10. These morphisms specify that two attributes of related objects (viewer

and viewed) always hold the same value. However, the attribute morphisms do

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 79

Figure 3.10: Vertical consistency through attribute morphisms

not describe how attribute timeAR, which is shown in the analog clock viewer, is

updated as consequence of a change in the value of attribute timeD. In the next

subsection, we show how such consistency is achieved by describing how attributes

that are modi�ed by actions remain consistent.

Horizontal Consistency

This kind of consistency is among viewers of one viewed object. We say that two

viewer objects are horizontally consistent if each of them have attributes that are

mapped to one or more common attributes of the same viewed object. In fact,

horizontal consistency is a direct consequence of the vertical consistency between

each viewer and viewed object.

Still using the application of Figure 3.9 as example, we see that the analog clock

viewer is vertically consistent with the viewed counter state, as the morphisms

between the time-related attributes timeD and timeAR have shown. For identical

reasons, the digital viewer should be vertically consistent with the viewed counter.

Consequently, the time-related attributes of both the analog and the digital viewers

will be consistent among themselves.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 80

3.7.8 Action Mappings

In the previous subsection we used morphisms to obtain attribute (state) consis-

tency between viewer and viewed objects. However, morphism of attributes only

is forbidden by the category of theory presentations, because if we isolate a set

of attributes as a sub-object there will be no action to modify their values. This

property is a consequence of the locality requirement described in Section 3.3. As

shown in [FM92], the locality property implies that attributes cannot be separated

from the actions that update them, thus imposing a discipline in the way we can

interconnect the object theories by means of morphisms.

These conditions imply that the morphism MD �! D, which was represented

in Figure 3.10, will consist not only of the attribute morphism tD ! timeD, but

also of a set of action morphisms involving all the actions of D which modify the

value of the attribute timeD. In addition, the speci�cation of the viewer object R

should also contain actions that will be identi�ed through morphisms with those

actions of D which are synchronized by the morphism MD �! D. Consequently,

when an action actD of D modi�es a given attribute attD of this same object, each

viewer object R that is monitoring the object D will also execute an action actR,

which is identi�ed with the action actD, and the corresponding attribute attR in

viewer R will also be modi�ed.

Concurrency Constraints

The formalism we adopt for the speci�cation of the views modeling approach sup-

ports concurrency of actions. This concurrency allows us to specify that the viewed

and the corresponding viewer attributes are consistent at all times, as we illustrated

in Figure 3.10 using the timeD and timeAR attributes. In that case, an action of the

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 81

Figure 3.11: A multiple viewers example

object D would modify the attribute timeD at the same time another synchronized

action of the object R would update the attribute timeAR.

While this kind of action concurrency keeps the attribute values of the objects

consistent, con
icting behavior may also result from simultaneous execution of ac-

tions. For instance, suppose that while an action of a digital viewer object tries to

set the time attribute of the viewed counter, another action of the analog viewer

object also tries to set the same time attribute to a di�erent value. This kind of

con
ict may be resolved by adding some conditions to the relationship theories

connecting the di�erent objects.

Our approach to address concurrency con
icts among di�erent viewer objects

viewing one common part { i.e. a subset of the attributes { of a viewed object is to

de�ne the interactions of all the possibly con
icting objects with a viewed object

in a single relationship theory. As this relationship theory contains actions which

are synchronized with the potentially con
icting actions in related object theories,

it is then responsible for de�ning axioms that constrain the concurrent execution of

these con
icting actions. Figure 3.11 illustrates this approach by interconnecting

several viewers Ri with a viewed object D by means of a single views relationship

theory V .

Note that the object model of Figure 3.8 is very similar to the diagram shown

in Figure 3.11. The di�erence is that the former had several views relationship

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 82

theories, each connecting a pair of objects. Such an approach is suitable when

there are no potential con
icts among actions of the di�erent viewers. For example,

there may be cases where there are no common attributes in the attribute sets being

\monitored" by the distinct viewers. Alternatively, the latter approach uses one

single relationship theory for all the objects involved. This approach is generally

suitable when the same viewed attributed may be modi�ed by several viewers.

The single relationship and several viewers approach of Figure 3.11 does not

introduce any limitation to the modeling process. All the previously speci�ed prop-

erties relating to the viewed class are valid in both modeling approaches.

In the case study presented in Section 3.8 we illustrate action mappings and the

elimination of potential con
icts by means of axioms constraining the concurrent

execution of some viewer actions.

3.8 Case Study: Dual Interface Clock

In the previous sections we have provided a formal description of the concepts

inherent in the views approach to modeling. While the relationship properties were

de�ned, not much emphasis was given to the actual speci�cation of systems which

are based on the views approach. We speci�ed part of a modeling language, but the

actual use of such language was not of immediate concern. Therefore, our current

objective is to complement the modeling language de�nitions with the speci�cation

of a case study composed of a few objects interconnected by views relationships.

The case study to be formally speci�ed is the dual interface clock which was used

and brie
y described in previous sections. This simple system has an application

object (Viewed Counter) which is responsible for keeping the correct time of the

day, and two di�erent types of user interface for this application. The �rst interface

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 83

Figure 3.12: Interconnection between clock system theories

is an analog time display (Analog Clock Viewer) which has two hands moving on

a dial that is divided in twelve sections. This interface does not di�erentiate the

period of the day { i.e. AM or PM, { and with a double mouse click it resets the

application counter to 12:00 AM. The second interface is a digital time display that

shows the time and period of the day according to the values in the Counter object.

Besides the three object class theories, the system formalization involves a few

other object theories and morphisms. The system speci�cation, which is presented

in the following paragraphs, starts with the viewed object description, and then

introduces the two viewer (interface) theories. The relationship and class manager

theories, which formalize how objects are put together, are described in sequence.

Finally, a few morphisms interconnecting theories are speci�ed. Figure 3.12 depicts

all the theories in the system, which includes the viewer and viewed objects, the

class managers, the relationship V , as well as some morphisms. The colimit of this

diagram returns a new composite object description, which we call CLOCK-SYSTEM.

Note that this diagram is an instance of the general diagram shown in Figure 3.7,

which illustrated the colimit of object and relationship theories.

The speci�cation language structure we will be using in the case study for-

malization is based on schemas and temporal logic, as described earlier. The �rst

schema is shown in Figure 3.13. Such schema shows the signatures and axioms

of the theory description D of the viewed counter object. Note that the state of

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 84

Object D

Sorts/Functions

TIME : [1..12] � [0..59];

AM-PM : f AM, PM g;

Attributes

time : TIME;

period : AM-PM;

Actions

set-time : TIME;

set-period : AM-PM;

reset;

Axioms

BEG) reset;

set-time(t))
 time = t;

set-period(p))
 period = p;

reset)
 time = (12, 0) ^
 period = AM;

: (set-time(t) ^ reset);

: (set-period(p) ^ reset);

End

Figure 3.13: Speci�cation of the Viewed Counter object

D is represented by attributes time (which keeps number of hours and minutes in

the day) and period (which determines whether the time is AM or PM). These

attributes are only modi�ed by the actions set-time(t), set-period(p) and reset.

The e�ects of the execution of these actions on the attribute values are shown by

the axioms of the theory.

The axioms of a theory may be used to specify constraints, or pre- and post-

conditions on the execution of the actions. The �rst axiom in the speci�cation of

theoryD speci�es an initialization condition on the object, while the following three

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 85

Object RA

Sorts/Functions

TIMEAR : [1..12] � [0..59];

ANGLE : [0..359];

CHECK-HOURS : TIMEAR ! ANGLE;

CHECK-MINUTES : TIMEAR ! ANGLE;

Attributes

timeAR : TIMEAR;

angleh : ANGLE;

anglem : ANGLE;

Actions

set-timeAR : TIMEAR;

resetAR ;

change-angle : TIMEAR;

double-mouseclick;

Axioms

BEG) resetAR ;

set-timeAR(t))
 timeAR = t;

set-timeAR(t)) change-angle(t);

resetAR)
 timeAR = (12, 0);

resetAR) change-angle((12,0));

change-angle(t))
 angleh = CHECK-HOURS(t);

change-angle(t))
 anglem = CHECK-MINUTES(t);

double-mouseclick) resetAR ;

: (set-timeAR(t) ^ resetAR);

End

Figure 3.14: Speci�cation of the Analog Clock Viewer object

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 86

de�ne post-conditions on the occurrence of the actions, set-time(t), set-period(p),

and reset. The last two axioms in D, however, deserve particular attention. For in-

stance, axiom :(set-time(t)^ reset) implies that the actions set-time(t) and reset

cannot be executed simultaneously. This mutual exclusion axiom guarantees that

these two actions within the two distinct viewers of D must not be executed con-

currently if they lead to any kind of inconsistent behavior. Note that within D,

the execution of set-time(t) modi�es the value of the attribute time to a value,

while the execution of reset will modify time to a di�erent value. This poten-

tial inconsistent behavior is eliminated with the addition of the mutual exclusion

axioms.

A second object speci�cation is shown in Figure 3.14. In this schema, the analog

viewer theory RA is an interface for the application. Note that part of the structure

of RA, more speci�cally the signature elements with subscript AR (e.g., timeAR),

is responsible for maintaining the consistency between the states of RA and D.

Such signature elements will be mapped by morphisms which allow the viewer

to \observe" the viewed counter object. In addition, the axioms of D involving

signatures of the morphism are also preserved in RA, as this is a requirement of the

morphism de�nition. Some of the system morphisms will be speci�ed later in this

section.

The other signature elements of RA are responsible for user interface activities.

The change-angle action is called to update the angles of the hands in the analog

clock display every time an action changes the attribute timeAR, which is the only

attribute of D being \observed" by the viewer object RA. This action uses functions

CHECK-HOURS(t) and CHECK-MINUTES(t) to calculate the new values of the angle-

related attributes. The other action of the interface RA, which is named double-

mouseclick, triggers the resetAR action, whenever it is called. As a consequence,

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 87

resetAR will not only modify the time values in RA, but it will also trigger the

action reset in the object D by means of morphisms. Then, reset will modify the

time values of D, thus keeping both viewer and viewed object states consistent.

The third object in the system is the digital viewer object, for which a speci�-

cation is given in Figure 3.15. This viewer object is responsible only for monitoring

and displaying the time, even though user input events in other interface objects

could trigger actions such as resetDR to modify the counter object attribute values.

Every time set-timeDR(t), set-periodDR(p), or resetDR is triggered, the display up-

date changes the time values in accordance with the axioms. The other axioms in

the speci�cation are intended to preserve the properties of the viewed object D.

Note that RD, in contrast to RA, monitors and displays not only the time attribute

value in D, but also the attribute value of period.

In the same way as before (for the Analog Clock Viewer - see Figure 3.14), part

of the structure of RD, the signature elements with subscript DR (e.g., timeDR),

is responsible for maintaining the consistency between the states of RD and D.

The other signature elements of RD are responsible for user interface activities.

For example, in the previous case (Figure 3.14) the attribute timeAR was used for

monitoring and the attributes angleh and anglem were used for user interfaces pur-

poses. Now, for the second viewer, we use the attributes timeDR and periodDR

for monitoring and the attributes timed and periodd for displaying purposes (Fig-

ure 3.15). The actions update-display-time(t) and update-display-period(p) are

called to update the time and period values of the digital clock displays timed and

periodd.

Having described all the viewed and viewer objects, we now determine the pat-

tern of interaction between these objects. Such pattern, as speci�ed during the

software modeling process, should conform to the properties of the views relation-

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 88

Object RD

Sorts/Functions

TIMEDR : [1..12] � [0..59];

AM-PMDR : f AM, PM g;

Attributes

timeDR : TIMEDR;

periodDR : AM-PMDR;

timed : TIMEDR;

periodd : AM-PMDR;

Actions

set-timeDR : TIMEDR;

set-periodDR : AM-PMDR;

resetDR ;

update-display-time : TIMEDR;

update-display-period : AM-PMDR;

Axioms

BEG) resetDR ;

set-timeDR(t))
 timeDR = t;

set-timeDR(t)) update-display-time(t);

set-periodDR(p))
 periodDR = p;

set-periodDR(p)) update-display-period(p);

resetDR)
 timeDR = (12, 0) ^
 periodDR = AM;

resetDR) update-display-time((12,0)) ^ update-display-period(AM);

update-display-time(t))
 timed = t;

update-display-period(p))
 periodd = p;

: (set-timeDR(t) ^ resetDR);

: (set-periodDR(p) ^ resetDR);

End

Figure 3.15: Speci�cation of the Digital Clock Viewer object

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 89

ship. This means that all the axioms characterizing a general views relationship

should hold together with additional properties to be speci�ed for this particular

case of the clock system.

Figure 3.16 shows the relationship theory V for our clock system. Parts of the

theory de�ned in Section 3.7 for the general views relationship, such as the link and

unlink actions, are now omitted for simplicity. Nevertheless, they are still part of

the relationship theory, and so are the views properties introduced by their related

axioms. The purpose of the signatures and axioms shown in the schema V is to

synchronize the system objects.

The relationship theory V has two sets of actions: one indexed as V 1 and the

other as V 2. Both sets act as a cable that connects the viewer objects with the

relationship theory. The �rst cable is connected to the analog viewer theory, while

the second one is connected to the digital viewer theory. The distinction between

both cables allows the identi�cation of the origin of the triggering of an action and,

consequently, the speci�cation of constraints about their execution.

The last axiom in the speci�cation schema V represents a constraint established

for the concurrent execution of viewer actions. Such an axiom states that when-

ever set-timeV1, which is connected to set-timeAR by morphisms, and set-timeV2,

which is connected to set-timeDR, occur simultaneously, their parameters must

have equal values. This constraint guarantees that no two distinct viewers will

concurrently try to set the same counter object to di�erent times, thus generating

inconsistent behavior. Note also that there is no concurrency constraint established

for set-period(p) as the viewer object RA does not \monitor" the period attribute

of D. For a di�erent reason, no concurrency constraint was established for resetV 1

and resetV 2, as these actions have no parameters and their concurrent execution

generates a consistent modi�cation of the attribute values.

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 90

Relationship V

Sorts/Functions

TIMEV : [1..12] � [0..59];

AM-PMV : f AM, PM g;

Attributes

timeV : TIMEV ;

periodV : AM-PMV ;

Actions

set-timeV 1 : TIMEV ; set-timeV 2 : TIMEV ;

resetV 1; set-periodV 2 : AM-PMV ;

resetV 2;

Axioms

BEG) resetV ;

set-timeV 1(t))
 timeV = t;

set-timeV 2(t))
 timeV = t;

set-periodV 2(p))
 periodV = p;

resetV 1)
 timeV = (12, 0) ^
 periodV = AM;

resetV 2)
 timeV = (12, 0) ^
 periodV = AM;

set-timeV 1(t1) ^ set-timeV 2(t2)) t1 = t2;

End

Figure 3.16: Speci�cation of the Views relationship

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 91

Object Signature MAR

Sorts/Functions

@RA;

TIM : [1..12] � [0..59];

Attributes

RA : F @RA;

tim : TIM;

Actions

create : @RA;

kill : @RA;

sttm : TIM;

rst;

End

Figure 3.17: Speci�cation of MAR class manager signature

The class manager theories have two distinct purposes. One �rst part contains

all the signatures and axioms which controls creation and destruction of all object

instances of a class theory. These signatures and axioms were described in Section

3.3. A second part of these theories work as synchronization channels between

the class theories and the relationship theory V by using signatures and axioms

to maintain consistency between viewers and viewed objects. For example, in the

class manager theory MAR which is illustrated in Figure 3.17, action rst acts as

a port that interconnects actions resetAR and resetV 1 by means of morphisms.

Consequently, all actions resetAR of RA class instances4 are synchronized with both

resetV 1 and the reset action of D.

Note that only the signature of the class manager speci�cation is presented in

Figure 3.17. The axioms for this class manager may be obtained by translations

4There is only one instance of RA in this particular example

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 92

Morphism MAR �! RA

Sorts/Functions

TIM ! TIMEAR;

Attributes

tim! timeAR;

Actions

sttm(t) ! set-timeAR(t);

rst ! resetAR ;

End

Figure 3.18: A morphism between the Analog Viewer and a class manager theory

(according to the morphism property preservation requirement) from other object

theories in the system, and from axioms de�ned for class manager theories in Sec-

tion 3.3.

The dual interface clock speci�cation also has a few morphisms interconnecting

its di�erent theories, as Figure 3.12 shows. One �rst morphism interconnects a class

manager theoryMD to the viewed objectD. Two other morphisms interconnect the

viewer objects RA and RD to class manager theories. For instance, the morphism

speci�ed in Figure 3.18 connects the class manager theoryMAR to the viewer object

RA. There are also three other morphisms interconnecting class manager theories to

the relationship theory V . The �rst of these three morphisms is illustrated in Figure

3.19 and connects V with the class managerMAR. This morphism synchronizes the

actions of \cable" V 1 in theory V with actions in MAR. Note that attributes do

not need distinct \cables" to be connected, as no additional constraint is required.

The second morphism, MDR �! V , connects \cable" V 2 with theory MDR. The

third morphism is MD �! V . It synchronizes both cables V 1 and V 2 to the same

actions of D (e.g., resetV 1 and resetV 2 are both synchronized to reset).

CHAPTER 3. A FORMAL THEORY FOR THE VIEWS RELATIONSHIP 93

Morphism MAR �! V

Sorts/Functions

TIM ! TIMEV ;

Attributes

tim! timeV ;

Actions

sttm(t) ! set-timeV 1(t);

rst ! resetV 1;

End

Figure 3.19: A morphism between Views and a class manager theory

Chapter 4

Veri�cation

In this chapter we focus on a logic-based speci�cation using the formal concepts

previously introduced. This process is illustrated with the de�nition of a num-

ber of object and relationship properties derived from a small UML model. The

speci�cation and veri�cation of the model are developed in a formal speci�cation

environment which provides typechecking tools for a higher-order logic speci�cation

language and a powerful proof checker that allows the veri�cation of properties of

the formal speci�cations.

A veri�cation process supports the proof of correctness of domain-speci�c prop-

erties de�ned within object theories, as well as properties of the relationships in-

terconnecting these object theories. Our particular interest is on the de�nition and

veri�cation of the relationship properties characterizing a software model. These

relationships are de�ned by separate theories which map elements of the objects

being related, thus specifying a pattern of interaction among these objects. In this

chapter we investigate some of the most popular types of object-oriented relation-

ship, but we invest particular attention in the speci�cation of the views relationship

properties and its validation.

94

CHAPTER 4. VERIFICATION 95

4.1 Formal Speci�cation of Object Models

Despite extensive development over many years, formal methods remain poorly

accepted by industrial practitioners [KDGN97]. There are researchers who attempt

to alleviate this problem by introducing a graphical semi-formal notation together

with a formal textual notation [BC95, WRC97, LB98a]. While the purpose of

the semi-formal notation is the correct communication of concepts to users with

little mathematical background, the formal notation supports precise speci�cations

which may be used as an instrument to represent information unambiguously.

4.1.1 Semi-Formal Speci�cations

In general, semi-formal graphical representations are helpful in portraying prop-

erties and relationships of object-oriented models. However, it is not among the

major objectives in this dissertation to improve or extend these graphical nota-

tions. Rather, we use a simple extension of a structural modeling notation for UML

[Rat97] as described in Section 2.4. This notation is intended to convey clearly and

informally some of the static object-oriented concepts we will be formally describing

in this chapter.

Figure 4.1: Model of a banking application

Figure 4.1 depicts an object model of a simple banking system and it is a good

illustration of the limited use we make of semi-formal notations. This graphic

CHAPTER 4. VERIFICATION 96

informally represents the object classes and relationships of a banking application

that we will be using throughout this chapter.

The application is a simpli�ed model of the convenience card issued to a bank's

client for simple transactions using an automatic teller machine (ATM). In our

model, we consider a logical card to be uniquely identi�ed by a card number,

and personal cards as physical objects that enable access to a logical card. Each

convenience card number may correspond to several personal cards. A personal

card may be issued to each member of a joint banking account, and all the account

tenants will share the same card number (i.e. a logical card) and operate over the

banking accounts as a single entity.

Each account is associated with at most one logical card. On the other hand,

a logical card may be associated with at most two accounts. In case exactly two

accounts are associated with a card number they will be of di�erent types, i.e. one

of the accounts will be of checking type, while the other account will be of savings

type. Transactions executed from a logical card will trigger corresponding events

in either a checking or a savings account.

As shown in Figure 4.1, we represent accounts as objects of Acct class, logical

cards as objects of Card class, and personal cards as objects of Personal Card class.

Acct is related to the Card class by means of a two-to-one association relationship,

and the Personal Card class is related to Card by means of a views relationship.

Our banking model uses only two kinds of object-oriented relationships. How-

ever, in later sections we will formally approach some of the other popular types

of relationship supported by the UML notations, including aggregation and inher-

itance.

CHAPTER 4. VERIFICATION 97

4.1.2 Formal Speci�cation of the Views-Based Application

The object-oriented concepts of our banking application will be translated and re-

�ned into a theory-based formal speci�cation. Consistent with the previous chapter,

when the views concepts were formally introduced, the formal system adopted here

consists of an object calculus theory based on logic and a categorical framework

that combines the smaller theories into a composite system.

Our formal speci�cations will be developed and analyzed using the integrated

veri�cation environment called PVS.1 The formal language supported by PVS is

based on a higher-order logic (HOL) with a rich type system. Thus, we are using

HOL to model the behavior of the objects in the banking application, instead of

the temporal operators as used in the previous chapter. HOL formulae are also

used to express the properties to be validated.

Another di�erentiation we use from the formal framework previously used is

the way in which theories are connected. In the previous chapter, category theory

provided the mathematical basis to interconnect the elements in distinct object

speci�cations. The PVS language, however, does not directly support the cate-

gorical constructs. Nevertheless, the PVS language provides an import and export

mechanism which allows names declared in one theory to be made available to an-

other theory importing the �rst one. Thus, while PVS does not use morphisms

to make names of one theory known to another, it does use an import/export

mechanism that is as e�ective for representing access to elements in other theories.

1In particular, PVS Version 2.2, September 1998 - http://www.csl.sri.com/pvs.html

CHAPTER 4. VERIFICATION 98

4.1.3 Related Work

Several publications incorporate object-oriented concepts into formal speci�cation

languages. Bicarregui et al. [BLM97a] use an object calculus based on temporal

logic to describe formally the elements of Syntropy [CD94], which is an object-

oriented analysis and design methodology similar to OMT [RBP+91]. The ob-

ject theories in this approach are connected using category theory. DeLoach,

Bailor and Hartrum [DBH95] use an algebraic formalism to specify theories for

the classes de�ned in OMT. This approach also uses category theory to connect

the object theories in the formal speci�cation. In addition, there are Z extensions

[MC92, AG94, LH94, C+90] which provide enhanced structuring techniques for

object speci�cation.

4.2 Using a Veri�cation System

For the current banking application being investigated, formal speci�cation and

reasoning is done in the context of the PVS integrated environment [SORSC98c].

Thus, the semantics of the objects composing the application are initially speci�ed

in HOL, and later analyzed using the tools available in the PVS system.

The analysis process consists of parsing the theories for syntactic consistency,

typechecking the formal speci�cation with the PVS typechecker, and reasoning

about the model with the theorem prover tool. While the �rst two steps check

the speci�cation for syntactic and semantic consistency, reasoning supports proof

of semantic correctness.

As mentioned by Lamport, the correctness of an algorithm means that the

program satis�es the desired property [Lam91]. In our framework, logic is the

CHAPTER 4. VERIFICATION 99

formal language used to de�ne programs or properties. Thus, the correctness of

our speci�cation means that the formulae de�ning an object theory in the system

speci�cation logically implies the formula specifying the property to be veri�ed.

The PVS environment provides several tools to support the formal development

of models. However, we will limit ourselves to the discussion of the elements es-

sential to our application. In this section we introduce a few characteristics of the

PVS language [SORSC98a] and the prover facility [SORSC98b] and describe their

use in our framework system.

4.2.1 The PVS Speci�cation Language

PVS speci�cations are built from theories. Each of these theories is identi�ed by

a name that can be used to reference declarations inside the theory. However, as

in our formal framework system each class de�nition is represented by a distinct

theory presentation, we will need not only to reference the elements inside the

theory speci�cation, but we should also be able to say that, for example, an object

instance is of a given class sort. As the theory identi�ers do not represent a sort,

we will de�ne a class sort declaration with the same name as the theory for every

theory presentation describing a class. For example, together with the Card theory

we will also declare a sort named Card, so that we are able to refer to the elements

of the theory, as well as de�ne objects of a class sort Card.

As mentioned in Section 3.2, an object theory consists of a signature and set of

axioms that specify the semantics of the signature operations. The theory signature

is composed of a class sort (as de�ned in the previous paragraph), other sorts for

the types referenced in the theory, functions, attributes, methods, and events.

Most of the types used in our theory speci�cation are declared as nonempty

types. We require the existence of at least one element of a type to avoid the burden

CHAPTER 4. VERIFICATION 100

of proving additional conditions on the speci�cations. Empty types are tolerated as

long as only variables range over them. However, declaring a constant of an empty

type leads to an inconsistent speci�cation. Thus, if we do not constrain a given

type to be nonempty and, in addition, declare a constant of such type, PVS will

generate an existence type-correctness condition (TCC) [SORSC98a] to guarantee

that the type is nonempty. All TCCs should be proved correct before reasoning

about any other theory property. PVS, nevertheless, is able to prove automatically

many of the TCCs generated.

In each of the theory speci�cations, an attribute is represented as a function that

returns the value of the data held by an object. These functions cannot modify

those values in any way. Methods are also de�ned as functions that may modify the

values of an attribute. Events, together with the attributes, represent the interface

of the class. They usually invoke internal methods of the class or represent some

condition to an external object. In most of our class speci�cations, we do not

di�erentiate the concepts of methods and events. They are both comprehended by

the action concept.

We use axioms inside a class sort speci�cation to de�ne the semantics of op-

erations. However, the axiomatic style of speci�cation can be rather dangerous,

as inconsistent axioms may allow us to prove that, for instance, true = false. A

di�erent style of specifying semantics is to state the values of an operation as a def-

inition rather than using axioms. The advantage of this style is that PVS is able to

check for possible inconsistencies in the function de�nitions. Nevertheless, axioms

will be needed whenever it is necessary to constrain function values. Since in our

case study we frequently need to specify constraints on the values of a function, we

opted to use the axiomatic style of speci�cation uniformly.

Another feature of the PVS language often employed is the use of free variables

CHAPTER 4. VERIFICATION 101

in axioms. PVS automatically interprets free variables that have been previously

de�ned with the \VAR" construct as universally quanti�ed at the outermost level.

Thus, when using a name previously de�ned as a variable of a given type, we do

not need to use the \FORALL" quanti�er.

While the axioms of an object speci�cation allow us to reason about the internal

structure and of an object class, it does not provide the elements to reason about

the relationship between the object classes. In order to specify and reason about

properties of a relationship between distinct objects, the elements of these objects

should be visible to the relationship theory. While in the framework used in the

previous chapter category theory provided the formal basis to access elements in the

object speci�cations, in our PVS speci�cations the import and export mechanisms

will provide the access to names speci�ed outside the relationship theory.

An \EXPORTING" clause speci�es all the names in the theory presentation

that are to be made visible to the outside. This clause is optional, which means

that, if omitted, every element inside the theory aside from the variables will be

made visible to other theories importing it. An \IMPORTING" clause imports all

the visible names of another theory. In our case study, only a few of the theory

elements will have to be referenced from outside the theory. But, for simplicity,

we omit the exporting clause from all theory presentations. Thus, every element of

every theory, variables excepted, will be visible from the importing theories.

4.2.2 The PVS Prover

Among the major advantages of the use of formal speci�cations is that we can ana-

lyze and reason about them. Veri�cation systems, such as PVS, provide mechanical

support to the formal analysis of design speci�cations which are still in the early

CHAPTER 4. VERIFICATION 102

stages of development. In such early stages, attempted proofs of desirable proper-

ties on the speci�cation may reveal subtle errors in design that are often very costly

to detect and �x in later stages of development.

The desirable properties of the speci�cation are introduced in the theory speci�-

cation as conjectures or theorems. In a theory presentation, conjectures are de�ned

by formulae with syntax similar to the axiom formulae. In PVS, conjecture for-

mulae may be introduced with a number of keywords. In our case study we will

use the \CONJECTURE" keyword to identify a property that needs to be proved.

The free variables in conjecture formulae, identically as with axiom formulae, are

universally quanti�ed.

The use of a veri�cation system in the reasoning process has a number of advan-

tages if compared to manual proofs. These systems provide more readable proofs by

means of commands that have well de�ned syntax and semantics. Such proofs can

be easily saved or partially saved for future replications of the proving process. The

automated system is also able to perform mechanical tasks quickly that are usually

tedious and prone to errors if performed manually. Such reliability is particularly

important for long proofs, where small errors may be very hard to �nd.

The PVS veri�cation environment provides a large collection of proof commands

that simpli�es the whole proving process. These commands are classi�ed in several

groups of rules, with some of them being propositional rules, induction rules, equal-

ity rules, quanti�er rules,
ow control rules, help, and many others [SORSC98b].

These commands are also combined by PVS to form a large variety of proof strate-

gies. Such strategies aim an e�ective automation of common sequences of proof

steps. In our proofs we only use a small subset of all the proof commands and

strategies supported by PVS.

CHAPTER 4. VERIFICATION 103

4.3 Object Theories

In this section we begin the formalization of our small banking application by

describing object theories. As already mentioned, some of the speci�cation mecha-

nisms used in the formal framework described in the previous chapter are adapted

to a better use of the PVS environment. These changes were adopted because of

the di�erent characteristics of the PVS speci�cation language and also as an e�ort

to keep the speci�cation from escalating. As we will see throughout this chapter,

the changes in the formal framework are not substantial, and the formalization pro-

cess will remain consistent with the tools and concepts introduced in the previous

chapter.

In the previous chapter, a class theory was speci�ed as a composition of all

the class instance theories and a class manager theory, as shown in Figure 3.4.

While the former specify theories for the objects of the class, the latter creates and

destroys instances of the class and it also represents the synchronization mechanism

with other object theories. In our case study, all of these theories are combined

and shown as a single class theory. The reason for this combination is to avoid an

increase in the number of theories with little contribution to our purposes. This

procedure is better shown in Figure 4.2, which is an adaptation of Figure 3.7.

A class theory presentation contains type declarations, attributes, actions, and

axioms. Some of these elements are domain speci�c, while others are characteristic

of every class theory. For instance, every class theory should have an action that

creates an object instance of that class. Thus, to avoid repeated declarations of

semantically identical elements, we de�ne a generic class theory with elements that

should be contained in every class speci�cation. In other words, the generic class

theory will be imported by every class theory presentation.

CHAPTER 4. VERIFICATION 104

Figure 4.2: A model for the composition of theories

At this point, it is important to mention that the generic class theory should

not be confused with the class manager theory concept, which was presented in

the previous chapter. The generic class theory is just an arti�ce to avoid repeated

declarations, while the class manager theory creates and destroys object instances,

and also synchronizes the class theory with other class or relationship theories. The

generic class theory is presented next.

4.3.1 A Generic Class Theory

The intent of the generic class theory is to specify the basic elements to support

creation and destruction of object instances of a given class. As mentioned in

Section 3.3, if X is a class type, then the @X sort represents the set of all identi�ers

for instances ofX, and X represents the set containing the identi�ers of all currently

existing (i.e. alive) instances of X. Thus, whenever an object instance of X is killed,

it also means that its identi�er has been removed from the setX . Similarly, creating

an object also means that one of the identi�ers in @X is now also a member of the

X set. Such properties are stated in axioms 3.1 and 3.2.

In our PVS class speci�cations, an attribute named status identi�es the current

CHAPTER 4. VERIFICATION 105

condition of every object. An instance of a class X has the value of attribute

status equal to alive only if the object identi�er belongs to X . Alternatively, if

such attribute value is dead, it means that the object identi�er is not in X. Alive

and dead are the only possible values of the status attribute, as de�ned in the

speci�cation of the enumerated type Obj Status, shown in the theory of Schema 1

that follows.

The axioms specifying the semantics of the create object and kill object actions

of a class re
ect the attribute properties mentioned in the previous paragraph.

Thus, if an object o is the result obtained from the action create object(o1), it

means that the status of o is alive and the status of o1 is dead. Note that while

axioms 3.1 and 3.2 use temporal logic operators to represent object creation and

destruction properties, they are semantically consistent to the axioms de�ned in

the generic class theory in Schema 1. As already mentioned earlier in this chapter,

some adjustments in the formal framework will be made to adapt our theories to

the PVS speci�cation style.

CHAPTER 4. VERIFICATION 106

Schema 1Object[Obj : nonempty type] : theory

begin

Obj Status : type = falive; deadg

%% Theory Attributes

status : [Obj! Obj Status]

%% Theory Actions

create object : [Obj! Obj]

kill object : [Obj! Obj]

%% Theory Axioms

o; o1 : var Obj

OAx1 : axiom

o = create object(o1)) status(o1) = dead ^ status(o) = alive

OAx2 : axiom o = kill object(o1)) status(o) = dead ^ status(o1) = alive

end Object
Schema 1

Another characteristic of the Schema 1 speci�cation is the use of theory param-

eters. These parameters may be types, subtypes, or constants, and they provide

support for universal polymorphism [SORSC98a]. In this particular case, the pa-

rameter is used to support polymorphism for the attribute and action speci�cations

that will be imported by distinct class theories. In each of these theories the value

returned by the imported action (e.g. create object) will be of a di�erent type. As

seen on the theory presented on Schema 1, the returned value is the polymorphic

object being created or killed.

Note also that commenting in PVS speci�cations is done by placing a \%"

character in front of a comment string. The comment is terminated by the end of

the line. In our schemas, a comment such as \% ..." indicates that the speci�cation

is complemented in the next (or previous) page.

CHAPTER 4. VERIFICATION 107

4.3.2 Speci�cation of Object-Oriented Theories

Before we introduce some of the theories of our banking system speci�cation, we de-

�ne a few types that will be used in most of the class and relationship speci�cations

henceforth. These types are speci�ed within the PVS theory called BasicTypes,

which is shown in Schema 2.

Schema 2BasicTypes : theory

begin

Amnt : type = int

Date : nonempty type

Life Status : type = falive; deadg

%% Class Types

Acct : nonempty type

Card : nonempty type

Personal Card : nonempty type

end BasicTypes
Schema 2

Amnt is declared as an alternative name for the type of integers. Because

PVS uses structural equivalence, rather than name equivalence, the int type is

actually equivalent to the Amnt type. Date is an uninterpreted type declaration,

as no assumptions other than being non-empty and disjoint from any other type

are made on this type. The abstraction power provided by uninterpreted types is

very important in the veri�cation of the type consistency of a system. In addition,

by allowing the speci�er to omit details on the types, this technique avoids early

commitments on implementation strategies. Life Status is the enumerated type

used to represent the current status of a relationship instance. This type is actually

equivalent to the Obj Status type which was previously de�ned.

Acct, Card, and Personal Card are names of classes that are used whenever

we need to declare the type of an object. These three class names declared in

CHAPTER 4. VERIFICATION 108

the BasicTypes theory will be used again to name the theories in which the class

properties are actually speci�ed. By allowing theories to have the same name

as types, PVS avoids naming confusion for the object-oriented de�nitions in our

system speci�cation.

The speci�cation of the Acct class is the �rst of three classes in our banking

system. Objects of this class represent bank accounts with only some of the ele-

mentary characteristics, such as a balance information and deposit or withdrawal

operations. The theory presentation of the Acct class is shown in Schema 3.

An account object has four attributes. The attribute bal records the current

balance of a client, while date stores the date of creation of an account. An attribute

called acct type speci�es whether the account mode is checking, savings, or other.

Other objects interacting with an account object may use this attribute to allow

or disallow certain types of banking operations. Acct status is an attribute derived

from bal. The constraints on the values of acct status are de�ned in the axioms of

the theory.

Earlier in this chapter (Section 4.2.1) we mentioned that the action concept

would comprehend both methods and events. However, for the Acct class speci�ca-

tion only, we distinguish events from methods. Incoming events are the elements of

an object triggered from the outside to invoke a method. However, only methods

are capable of modifying attribute values. Deposit and withdrawal are the events

of an account object, while credit and debit are the methods. Among the reasons

for separating the two concepts is that the triggering of an withdrawal request will

not always incur in the invocation of debit. For instance, debit will not be triggered

whenever the account balance is negative.

With the higher-order logic speci�cation style of PVS, the representation of state

transitions is not as easy and evident as with the temporal logic style. An action

CHAPTER 4. VERIFICATION 109

speci�cation is a function that takes the \old" identity of an object as a parameter

and, as the result, returns the object with a \new" identity and new attribute

values. Therefore, we use the equivalent? predicate in the Acct class speci�cation

to represent the invocation of a method by an event. This predicate guarantees

that, whenever appropriate, the attribute values of the new object returned by the

event (e.g. deposit) are equivalent to the attribute values of the object returned by

the method (e.g. credit). Axiom AAx1 in Schema 3 de�nes the properties of the

equivalent? predicate.

Axioms AAx2 to AAx4 de�ne additional constraints on the creation of Acct

objects. These constraints are speci�ed over the method create object that was

imported from the Object theory. Axioms AAx5 to AAx8 de�ne how the methods

of the theory modify (or not) the values of attributes bal and date. Axioms AAx9

and AAx10 specify how the value of the derived attribute acct status is obtained

from the attribute bal. Finally, Axioms AAx11 to AAx16 de�ne the pattern of

invocation between events and methods of the theory.

While the set of axioms in the Acct theory presentation is not complete2, it does

represent a meaningful subset of a simple banking account class. As will be seen

later in this chapter, these axioms allow us to prove a few important properties

about the theory.

2A design speci�cation does not have to be complete. The speci�cation can be incomplete and

meaningful, as opposed to implementation.

CHAPTER 4. VERIFICATION 110

Schema 3Acct : theory

begin

importing BasicTypes; Object[Acct]

Acct Type : type = fchecking; savingsg
Acct Status : type = fok; overdrawng

%% Theory Functions and Attributes

equivalent? : [Acct;Acct! bool]

date : [Acct! Date]

bal : [Acct! Amnt]

acct type : [Acct! Acct Type]

acct status : [Acct! Acct Status]

%% Theory Actions

credit : [Acct;Amnt! Acct]

debit : [Acct;Amnt! Acct]

deposit : [Acct;Amnt! Acct]

withdrawal : [Acct;Amnt! Acct]

%% Theory Axioms

a; a1 : var Acct

x : var Amnt

AAx1 : axiom

equivalent?(a; a1) = (date(a) = date(a1)) ^ (bal(a) = bal(a1)) ^
(acct type(a) = acct type(a1)) ^ (acct status(a) = acct status(a1))

AAx2 : axiom 9 (d : Date) : date(create object(a)) = d

AAx3 : axiom bal(create object(a)) = 0

AAx4 : axiom acct status(create object(a)) = ok

AAx5 : axiom bal(credit(a; x)) = bal(a) + x

AAx6 : axiom bal(debit(a; x)) = bal(a) � x

% ...
Schema 3

CHAPTER 4. VERIFICATION 111

Schema 3% ...

AAx7 : axiom date(credit(a; x)) = date(a)

AAx8 : axiom date(debit(a; x)) = date(a)

AAx9 : axiom (acct status(a) = ok), bal(a) � 0

AAx10 : axiom (acct status(a) = overdrawn), bal(a) < 0

AAx11 : axiom

acct status(a) = ok)
acct status(deposit(a; x)) = ok ^
equivalent?(deposit(a; x); credit(a; x))

AAx12 : axiom

acct status(a) = overdrawn^ bal(a) + x � 0)
acct status(deposit(a; x)) = ok ^

equivalent?(deposit(a; x); credit(a; x))

AAx13 : axiom

acct status(a) = overdrawn^ (bal(a) + x) < 0)

acct status(deposit(a; x)) = overdrawn ^
equivalent?(deposit(a; x); credit(a; x))

AAx14 : axiom

acct status(a) = ok ^ bal(a) � x)

acct status(withdrawal(a; x)) = ok ^
equivalent?(withdrawal(a; x); debit(a; x))

AAx15 : axiom

acct status(a) = ok ^ bal(a) < x)
acct status(withdrawal(a; x)) = overdrawn ^

equivalent?(withdrawal(a; x); debit(a; x))

AAx16 : axiom

acct status(a) = overdrawn)
acct status(withdrawal(a; x)) = overdrawn ^

equivalent?(withdrawal(a; x); a)

end Acct
Schema 3

CHAPTER 4. VERIFICATION 112

A second class theory of our banking system is called Card. This theory for-

malizes a few properties available in a typical convenience card used to perform

banking transactions in automated teller machines (ATMs). Each Card object may

perform transactions over up to two distinct banking accounts. These two accounts

are identi�ed inside the card object by the attributes chk and svg.

Four di�erent transaction types are supported by the Card class. These types

range from Withdraw From Checking (WFC) to Deposit In Savings (DIS) as spec-

i�ed in the enumerated type TransactionType. For simplicity, in the Card theory

presentation shown in Schema 4, we only specify the semantics of transaction types

WFC and DIS. The semantics of the other transaction types may be easily inferred

from those two de�ned types.

Card holders are allowed to withdraw up to a certain amount from all of their

banking accounts daily. This amount is identi�ed by the constant DAILY MAX.

The transaction will fail (i.e. no attributes are changed) whenever this daily amount

is exceeded. The date of the last transaction is used to verify whether previous

withdrawals were performed within the same day or the transaction is the �rst of

the day. In case the former is true, the current withdrawal limit will be updated

from the current limit attribute. In the latter case, the current limit will be updated

from DAILY MAX. These withdrawal properties are de�ned by Axioms CAx2 and

CAx3.

The semantics of the DIS transactions are speci�ed in Axiom CAx4. In this

type of transactions, the put action is triggered to store an amount x in the savings

account. It will be shown later, in a relationship theory, how actions put (Card class)

and deposit (Acct class) interact to modify the balance attribute of an account as a

result of a card transaction.

CHAPTER 4. VERIFICATION 113

Schema 4Card : theory

begin

importing BasicTypes; Object[Card]

TransactionType : type = fWFC;WFS;DIC;DISg
DAILY MAX : Amnt

%% Theory Functions and Attributes

equivalent? : [Card;Card! bool]

chk : [Card! Acct]

svg : [Card! Acct]

current limit : [Card! Amnt]

last transaction : [Card! Date]

%% Theory Actions

transaction : [TransactionType;Date;Amnt;Card! Card]

put : [Acct;Amnt! Acct]

get : [Acct;Amnt! Acct]

notify balance : [Acct! Amnt]

%% Theory Axioms

c; c1 : var Card

d : var Date

x : var Amnt

CAx1 : axiom

equivalent?(c; c1) = (chk(c) = chk(c1)) ^
(svg(c) = svg(c1)) ^ (current limit(c) = current limit(c1)) ^

(last transaction(c) = last transaction(c1))

CAx2 : axiom

c1 = transaction(WFC; d; x; c)^ d = last transaction(c))

if x � current limit(c) then

chk(c1) = get(chk(c); x) ^
svg(c1) = svg(c) ^

current limit(c1) = current limit(c) � x ^
last transaction(c1) = last transaction(c)

else equivalent?(c; c1)

endif

% ...
Schema 4

CHAPTER 4. VERIFICATION 114

Schema 4% ...

CAx3 : axiom

c1 = transaction(WFC; d; x; c)^ :(d = last transaction(c)))
if x � DAILY MAX then

chk(c1) = get(chk(c); x) ^
svg(c1) = svg(c) ^

current limit(c1) = DAILY MAX � x ^
last transaction(c1) = d

else equivalent?(c; c1)

endif

CAx4 : axiom

c1 = transaction(DIS; d; x; c))

chk(c1) = chk(c) ^
svg(c1) = put(svg(c); x) ^

last transaction(c1) = d ^
if d = last transaction(c) then current limit(c1) = current limit(c)

else current limit(c1) = DAILY MAX

endif

end Card
Schema 4

Note that the action notify balance could be used in the Axioms CAx2 and

CAx3 to produce a di�erent behavior for withdrawal transactions over accounts

with balance lower than zero. Also, we could decrease the withdrawal limit by the

di�erence in balance between accounts chk(c) and chk(c1) instead of decreasing it by

x. These modi�cations would provide unchanged withdrawal limits for unsuccessful

withdrawal transactions. However, we opted for the current speci�cation to avoid

additional complexity in the theory presentation.

4.4 Relationship Theories

Relationships between class theories are represented as middle theories that syn-

chronize the behavior of the objects of those classes. In this section we use PVS

CHAPTER 4. VERIFICATION 115

to describe formally some of the properties associated with the di�erent kinds of

object-oriented relationship. While di�erent methods and notations do not converge

on a standard set of relationship types, we use the UML semi-formal relationship

types as the basis to our formalization e�ort. To this small UML set of relationship

types we add the views relationship, the formalization of which was one of the foci

of the previous chapter.

UML de�nes semantics for both structural and behavioral object models. While

the structural model represents the static aspects of a system, the behavioral model

de�nes the dynamic properties of such system. Behavioral properties in UML are

mostly represented by means of collaboration diagrams and state machines. The

translation of these two behavioral notations into the PVS-based theories should

not be a complicated task. In fact, Lano and Bicarregui [LB98b, LB98a] formally

describe part of dynamic notations of UML using temporal theories. In addition,

DeLoach and Hartrum [DH99] describe some transformations of statecharts into

an algebraic formalism. However, our focus will be on the speci�cation of the

structural properties of a model, even though some of the behavioral properties of

the system are also speci�ed in the theories.

4.4.1 Formalization of an Association

The semantics of an association relationship varies among objet-oriented methods.

Each of these methods use a number of properties to characterize di�erent types

of association. In this section we present a simple association relationship the-

ory which connects the Acct and Card object theories. The name of the theory

is Association and it is presented in the Schema 5 shown next. In addition, we

also mechanize the formal use of UML association attributes which were formally

presented in the previous chapter.

CHAPTER 4. VERIFICATION 116

Schema 5Association : theory

begin

importing BasicTypes;Acct;Card

Association : nonempty type

%% Theory Attributes

status : [Association! Life Status]

image : [Association;Card! Acct]

image : [Association;Acct! Card]

%% Theory Actions

create assoc : [Card;Acct! Association]

kill assoc : [Association! Association]

%% Theory Axioms

s; s1 : var Association

a; a1 : var Acct

c; c1 : var Card

x : var Amnt

SAx1 : axiom a = image(create assoc(c; a); c)

SAx2 : axiom a = image(s; c), image(s; a) = c

SAx3 : axiom

a = image(s; c)^ status(s) = alive)
status(a) = alive^ status(c) = alive

SAx4 : axiom s = create assoc(c; a)) status(s) = alive

SAx5 : axiom s1 = kill assoc(s)) status(s) = alive^ status(s1) = dead

SAx6 : axiom

chk(c) = a _ svg(c) = a)

(9 (s : Association) : image(s; a) = c)

SAx7 : axiom chk(c) = a) acct type(a) = checking

SAx8 : axiom svg(c) = a) acct type(a) = savings

% ...
Schema 5

CHAPTER 4. VERIFICATION 117

Schema 5% ...

SAx9 : axiom chk(c) = a _ svg(c) = a) bal(a) = notify balance(a)

SAx10 : axiom chk(c) = a _ svg(c) = a) deposit(a; x) = put(a; x)

SAx11 : axiom chk(c) = a _ svg(c) = a) withdrawal(a; x) = get(a; x)

SAx12 : axiom

a = image(s; c)^ a1 = image(s1; c))
a = a1 _ acct type(a) 6= acct type(a1)

SAx13 : axiom

a = image(s; c)^ a = image(s1; c1)) s = s1 ^ c = c1

end Card
Schema 5

The Association theory de�nes additional constraints over the attributes and

actions of the Acct and Card theories. Each instance of the association (i.e. a link)

connects a single instance of Acct to another instance of Card. Within every link,

each object instance is said to be the image of the other object being connected. The

image attributes identify the image of every object participating in an association.

The status attribute assists in the de�nition of semantics for the creation and

destruction of each association link. Like a typical object instance, the status of a

link may be either alive or dead. The value of this attribute may be changed only

by the create assoc and kill assoc actions.

A number of axioms de�nes the semantics for the Association theory. Axioms

SAx1, SAx2, and SAx3 specify constraints over the image attributes. One of the

constraints, de�ned by Axiom SAx3, is that the objects interconnected by an ac-

tive association instance should be alive too. Axiom SAx2 states that the image

attributes represent a symmetric relation between objects of Acct and Card. Ad-

CHAPTER 4. VERIFICATION 118

ditionally, SAx4 and SAx5 are axioms de�ning pre- and post-conditions for the

occurrence of actions create assoc and kill assoc.

The last eight axioms de�ned in this interpretation theory represent domain-

speci�c constraints. Most of these axioms also use elements of the object theories

being interconnected to specify constraints over the association. SAx6 de�nes con-

ditions on two attributes of the Card class. SAx7 and SAx8 associate values of

attributes in Card with attributes in Acct. Axioms SAx9, SAx10 and SAx11 inter-

connect actions of instances of both classes. In other words, the triggering of an

action in one object will imply the triggering of another action in the associated ob-

ject. Axiom SAx12 specify conditions on the types of accounts associated with the

same Card object. Finally, SAx13 de�nes that an account object will be connected

to at most one card object.

There are several properties which may be inferred from the set of Association

axioms in Schema 5. Such properties are useful to check whether the speci�cation

represents the association correctly. For instance, the system requires that the

savings account in a given card be di�erent from the checking account of that same

card. Formally, this is stated as:

chk(c) = a ^ svg(c) = a1) a 6= a1

The above property can be easily veri�ed from axioms SAx7 and SAx8. How-

ever, details on the proof of the banking system properties will be considered only

later in this chapter. Now, we turn our attention to the mechanization in PVS of

the properties represented by UML associations attributes. These properties were

formally introduced in Section 3.6.1 by means of temporal logic axioms.

CHAPTER 4. VERIFICATION 119

Schema 6AssociationEnd : type = fAcctEnd;CardEndg

AggregationKind : type = fnone; aggregate; compositeg

aggregation : [AssociationEnd! AggregationKind]

s; s1 : var Association

a : var Acct

c; c1 : var Card

ESAx1 : axiom aggregation(CardEnd) 6= none) aggregation(AcctEnd) = none

ESAx2 : axiom

aggregation(CardEnd) 6= none) status(a) = alive,
(9 (c : Card) : a = image(s; c)^ status(s) = alive)

ESAx3 : axiom

aggregation(CardEnd) = composite ^
a = image(s; c)^ a = image(s1; c1)) c = c1 ^ s = s1

Schema 6

Aggregation

Note that the Association theory shown in Schema 5 formalizes a corresponding

UML binary association where the aggregation attribute values of both ends of the

association are equal to none. Consequently, that relationship theory represents a

regular association with no additional constraints needed to specify. However, in

this section we want to illustrate the speci�cation of an aggregation form of asso-

ciation. Hence, we extend Schema 5 with additional constraints that characterize

the aggregation relationship.

According to the UMLmeta-model illustrated in Figure 2.4, a binary association

is composed of two association ends. In our mechanization, we de�ne the attributes

and properties of both of these association ends as an extension to the Association

theory presented in Schema 5. The association theory extensions pertinent to the

aggregation attribute are presented in Schema 6. Theory extensions related to the

CHAPTER 4. VERIFICATION 120

other UML association end attributes follow.

Aggregation is de�ned as an attribute with three possible values: none, aggre-

gate, and composite. In Schema 6, aggregation is speci�ed as an AggregationKind

type of attribute, where AggregationKind is an enumerated type containing those

three values. Note that the aggregation attribute declaration has no parameter to

identify a relationship instance. Alternatively, all of the previous attribute speci�-

cations of the theory (see Schema 5) have a parameter of type Association which

identi�es di�erent attribute values for di�erent relationship instances. The reason

for omitting an Association parameter in the current case is that the value of the

aggregation attribute is the same for every instance of the association theory. This

will also be the case for every other UML-related attribute de�ned in this chapter.

The three PVS-based Axioms ESAx1, ESAx2, and ESAx3 specify additional

constraints which are e�ective whenever the aggregation value of the Card end of

the association is di�erent than none. These axioms represent properties which are

equivalent to the ones de�ned in Chapter 3 by means of Axioms 3.10, 3.11, and

3.12, respectively. To avoid the repetition of properties, we do not consider the case

where the Acct end of the association is an aggregation.

Changeable

The attribute changeable speci�es rules for the creation and removal of association

instances related to an object. Like the UML aggregation attribute, changeable also

had its semantics formally de�ned in the previous chapter. The enumerated type

ChangeableKind de�nes the possible values for such attribute, and Schema 7 shows

the PVS axioms constraining its values.

Axiom ESAx4 de�nes the extended relationship semantics of our system for

cases where the CardEnd side of the association has value frozen. This axiom is the

CHAPTER 4. VERIFICATION 121

Schema 7AssociationEnd : type = fAcctEnd;CardEndg

ChangeableKind : type = fnone; frozen; addOnlyg

changeable : [AssociationEnd! ChangeableKind]

s; s1 : var Association

a; a1 : var Acct

c; c1 : var Card

ESAx4 : axiom

changeable(CardEnd) = frozen ^ s = create assoc(c; a))

9(c1 : Card) : c = create object(c1)

ESAx5 : axiom

changeable(CardEnd) = addOnly ^ a = image(s; c))
(status(s) = dead) status(a) = dead _ status(c) = dead)

Schema 7

PVS correspondent for Axiom 3.13, de�ned back in Chapter 3. Note, however, that

Axiom 3.13 uses temporal logic concepts to specify that every association instance

related to one particular object has to be created together with that same object.

In PVS, we use the less intuitive arti�ce in which every change of the object's

state is represented by a change in the name used to reference the object. Thus,

if an association instance s : Association is created between objects c : Card and

a : Acct, we require the status of this instance to be the same as the status of c.

Axiom ESAx5 is the other rule constraining the changeable attribute, and it is

e�ective when the CardEnd side of the association has value addOnly. Axiom 3.14

uses temporal operators to state the semantics of the addOnly associations. It

formally says that a link will not be removed until one of the objects being connected

is killed. Axiom ESAx5 de�nes equivalent semantics using PVS logic.

CHAPTER 4. VERIFICATION 122

Schema 8importing orders[Association]

� : var (partial order?)

s; s1 : var Association

a; a1 : var Acct

c : var Card

ESAx6 : axiom

a = image(s; c)^ a1 = image(s1; c)^ bal(a) � bal(a1)) s � s1
Schema 8

IsOrdered

The isOrdered attribute of UML works as a
ag which indicates the existence or not

of an ordering relation for the instances of an association. PVS libraries de�ne a

partial order over a type T as being a set of pairs of elements of type T . Such a set

should respect the re
exivity, antisymmetry, and transitivity conditions de�ned in

Table 3.1. In our example, which is illustrated in Schema 8, type T is substituted

by the Association type, and the partial order conditions are imported from theory

orders[Association]. The partial ordering relation is represented by the symbol

\�".

Axiom ESAx6 illustrates some ordering constraints for an association example

with attribute isOrdered(CardEnd) = true. According to this axiom, if an object

c : Card is connected to two di�erent accounts a; a1 : Acct by means of Association

instances s and s1, and the balance attribute value of account a is less or equal to

the balance of account a1 (i.e. bal(a) � bal(a1)), then we say that s precedes or

equals s1 (i.e. s � s1). The precedence of one link over another de�nes an ordering

element over the instances of an association. The set of these elements form an

ordering relation.

CHAPTER 4. VERIFICATION 123

Multiplicity

This attribute constrains the number of instances of an object theory that may

be attached by an association link to one single object at the other end of the

relationship. In UML,multiplicity is de�ned as a range of integers inside the interval

[0,1). In PVS, this range is represented by means of logic axioms de�ned inside

the association theory.

In the Association theory of Schema 5, Axioms SAx12 and SAx13 de�ne a one-

to-two multiplicity constraint for the association theory. Axiom SAx12 speci�es

that each card object will be associated with at most two account objects. Note

that the axiom states that a card object cannot be associated with two or more

accounts of the same type (i.e. savings). Consequently, as only two types of account

exist, a single card object will not be connected to more than two accounts at the

same time. Alternatively, Axiom SAx13 states that one account object will not be

connected to more than one card object at a time.

IsNavigable and TargetScope

In Section 3.6.1, no additional constraints were introduced in the association theory

for both the IsNavigable and TargetScope attributes. For reasons similar to those in-

dicated in that section, we do not extend the Association theory in Schema 5 with

new axioms. Thus, the information introduced by these concepts may be repre-

sented as theory attributes, which values will be regarded during later development

stages.

CHAPTER 4. VERIFICATION 124

4.4.2 Inheritance and Subtyping

Subtyping is the mechanism we use to describe inheritance. A class theory B is

said to inherit from A, if the class type of B is a subtype of the class type of A,

and all the elements of A are also elements of B. A is then called a superclass,

while B is called a subclass. In this section, we illustrate the mechanization of the

subtyping mechanism in a PVS theory by means of a SavingsAcct subclass theory.

Such theory is shown in Schema 9.

Schema 9SavingsAcct : theory

begin

importing Acct

SavingsAcct : type from Acct

Percentage : type = real

creditInterest : [Acct;Percentage! Acct]

a : var Acct

p : var Percentage

CAAx1 : axiom bal(creditInterest(a; p)) = bal(a) + (p� bal(a))

CAAx2 : axiom date(creditInterest(a; p)) = date(a)

end SavingsAcct
Schema 9

PVS supports subtyping by means of the syntactic construct \TYPE FROM".

In our example, the SavingsAcct class type is declared as a subtype of Acct. In

addition, while morphisms were used in the previous chapter to embed the elements

of the superclass inside the subclass, we now use the importingmechanism to obtain

equivalent results inside PVS. Consequently, all the attributes and actions de�ned

in theory Acct are also part of the SavingsAcct theory.

As shown in Schema 9, SavingsAcct also extends the properties of its superclass

CHAPTER 4. VERIFICATION 125

by means of the creditInterest action. Such action allows a periodic addition of

savings interest to the balance of an account. All other properties inherited from

Acct remain unchanged.

4.4.3 Views

In this section we use the higher-order logic language of PVS to describe the views

concepts. These concepts are shown in Schema 10, and they de�ne a theory contain-

ing some of the properties that should be common to every di�erent speci�cation

of a views relationship. In the following section, an application of a views theory

is created and it imports all the basic views properties de�ned in the PVS-based

Views theory.

Properties 1 and 2 establish that views is a relationship between di�erent class

types. PVS, however, does not allow the speci�cation of type comparison expres-

sions. Therefore, the constraints de�ned in those properties should be enforced by

each distinct application of a views relationship. Such application, which is later

illustrated by the PC Views C theory, will be responsible for identifying which two

classes are connected by the views relationship. We need to assure that those two

classes are not the same.

Property 3 precludes any views-cycles in the system. As this property concerns

the system as a whole, it should be guaranteed by the colimit of all the theories

in the system, and not only within a views theory. Our PVS formalism, however,

does not support the speci�cation of a general axiom that guarantees the absence

of views-cycles. Thus, we will only indicate the absence of cycles in our case study.

Another rule to be veri�ed in the colimit of the theories is stated by Property 9.

This rule is an extension of Property 4 which states that a viewer cannot participate

CHAPTER 4. VERIFICATION 126

Schema 10

Views [R : nonempty type; D : nonempty type; V : nonempty type] : theory

begin

importing BasicTypes; Object[D]; Object[R]

%% Theory Attributes

status : [V ! Life Status]

viewer : [V;D! R]

viewed : [V;R! D]

%% Theory Actions

create view : [D;R! V]

remove view : [V ! V]

%% Theory Axioms

r; r1 : var R

d; d1 : var D

v; v1 : var V

VAx1 : axiom d = viewed(v; r), r = viewer(v; d)

VAx2 : axiom

d = viewed(v; r)^ status(v) = alive)
status(r) = alive^ status(d) = alive

VAx3 : axiom

v = create view(d; r)) r = viewer(v; d)^ status(v) = alive

VAx4 : axiom

v = remove view(v1)) status(v1) = alive ^ status(v) = dead

Property4 : axiom

d = viewed(v; r)^ d1 = viewed(v1; r)) d = d1 ^ v = v1

Property5 : axiom

status(r) = alive)
9(v : V; d : D) : (d = viewed(v; r)^ status(v) = alive)

Property6a : axiom

d = viewed(v; r)^ d1 = viewed(v; r1)) d = d1 ^ r = r1

% ...
Schema 10

CHAPTER 4. VERIFICATION 127

Schema 10% ...

Property6b : axiom status(v) = alive) 9 (r : R; d : D) : d = viewed(v; r)

Property7 : theorem

d = viewed(v; r)) (status(r) = dead, status(v) = dead)

Property8 : theorem

d = kill object(d1) ^ d = viewed(v; r))

status(r) = dead ^ status(v) = dead

end Views
Schema 10

in more than one instance of a relationship theory. Alternatively, Property 9 states

that a viewer object cannot view more than one viewed object in the whole system.

Later in this chapter, this property will be formally stated in one of the colimit

theories which contain more than one views relationship.

The �rst four axioms of the Views theory de�ne some basic semantics which are

similar to the semantics introduced by the �rst �ve axioms of the Association theory,

which was previously speci�ed in Schema 5. Axiom VAx1 de�nes a symmetry

between the viewer and viewed attributes. For instance, if r is the viewer of an

object d within a relationship, then d is viewed by the object r. Axiom VAx2 de�nes

that the objects interconnected by an active views relationship instance should be

alive too. VAx3 and VAx4 are the axioms de�ning pre- and post-conditions for the

occurrence of actions create view and remove view.

The other axioms in the theory presentation specify the views relationship prop-

erties previously described in Section 3.7. Axiom Property4 uses the PVS formalism

to specify a cardinality constraint which was previously de�ned in Axiom 3.18. Ac-

cording to such rule, a viewer object will be related to at most one viewed object.

Axiom Property5 complements such rule by stating that a viewer object will be

CHAPTER 4. VERIFICATION 128

interconnected to at least one viewed object. These two axioms together de�ne the

cardinality of the viewed end of the relationship as being exactly one. The viewer

end of the views relationship has no inherent constraint.

The sixth views property states that each relationship instance interconnects

exactly one viewer to one viewed object. Axiom Property6b guarantees that for

every views instance there is a pair of viewer and viewed objects which the rela-

tionship interconnects. Using Axiom VAx2, we also have that both objects in the

pair are alive. Axiom Property6a establishes that a single views instance will not

involve more than one viewer and one viewed object. A similar property could also

be stated for the Association relationship.

Property7 is de�ned as a theorem, as it may be derived from other axioms of

the Views theory. The actual proof of the theorem, however, will only be described

later in this chapter. The semantics associated with the Property7 theorem is that a

relationship instance v will be dead if and only if the viewer object r it interconnects

is also dead. In other words, the life time of v and r should be identical.

Property8 is another theorem of the Views theory. The semantics of such a

theorem is a constraint over the life time of the interconnected objects. More

speci�cally, the theorem states that the destruction of a viewed object implies the

destruction of all the interconnected viewer objects and, consequently, its relation-

ship instances. In the previous chapter, Property 8 was formally described and

proved by Theorem 3. Later in this chapter, we develop a similar proof for the

corresponding theorem, but this time using the PVS environment resources.

4.4.4 Using Views to Relate Object Theories

In Section 4.4.1, an association theory interconnecting classes Acct and Card was

speci�ed. In this section, we de�ne the other relationship theory of the system,

CHAPTER 4. VERIFICATION 129

which is called PC Views C. This relationship illustrates the application of the views

concepts between classes Card, which was de�ned in Schema 4, and Personal Card,

which is here de�ned in Schema 11. While the former represents the viewed class,

the latter is a viewer class representing an interface of the system to the bank

customer.

Schema 11Personal Card : theory

begin

importing BasicTypes; Object[Personal Card]

%% Theory Attributes

personal limit : [Personal Card! Amnt]

personal LTday : [Personal Card! Date]

%% Theory Actions

instant cash : [Personal Card;Date;Amnt! Personal Card]

transfer2savings : [Personal Card;Date;Amnt! Personal Card]

end Personal Card
Schema 11

Schema 12 introduces the simple Personal Card theory. This class has an at-

tribute personal limit, which de�nes a withdrawal limit to the card, and an at-

tribute personal LTday, which stores the date of the last transaction performed by

the card object being viewed. In addition, two actions characterize the interface

of the class. Action instant cash allows the customer to withdraw money from the

checking account, while action transfer2savings allows this customer to move funds

between accounts. All of the attribute values and actions of the Personal Card ob-

jects will be constrained by the attributes and actions of the viewed objects. These

constraints will be speci�ed in the axioms of the relationship theory.

An application of the views concepts is illustrated by the PC Views C relation-

ship theory described in Schema 12. As stated in the theory, PC Views C imports

CHAPTER 4. VERIFICATION 130

Schema 12PC Views C : theory

begin

PC Views C : nonempty type

importing BasicTypes; Card; Personal Card;

Views[Personal Card;Card;PC Views C]

%% Theory Axioms

c : var Card

x : var Amnt

d : var Date

t : var TransactionType

pc; pc1 : var Personal Card

v : var PC Views C

DAx1 : axiom c = viewed(v; pc)) current limit(c) = personal limit(pc)

DAx2 : axiom c = viewed(v; pc)) last transaction(c) = personal LTday(pc)

DAx3 : axiom

c = viewed(v; pc) ^ pc1 = instant cash(pc; d; x))

9(v1 : PC Views C) : viewed(v1; pc1) = transaction(WFC; d; x; c)

DAx4 : axiom

c = viewed(v; pc) ^ pc1 = transfer2savings(pc; d; x))
9(v1 : PC Views C) :

viewed(v1; pc1) = transaction(DIS; d; x; transaction(WFC; d; x; c))

end PC Views C
Schema 12

CHAPTER 4. VERIFICATION 131

all the attributes, actions, and axioms speci�ed in the Views schema. Note that

the IMPORTING clause uses Personal Card as the viewer class type, Card as the

viewed class type, and PC Views C as the relationship type. This means that the

Views theory parameters R, D, and V will be replaced during the import by Card,

Personal Card, and PC Views C, respectively.

Note also that views Property 2 is respected during the import. As in PVS,

types which do not have a supertype in common are assumed to be disjoint, Card

and Personal Card are, consequently, di�erent classes.

Four axioms represent the interaction between viewer and viewed objects. Ax-

ioms DAx1 and DAx2 guarantee the consistency between the attributes of the re-

lated objects. These two axioms constrain the values of the viewer attributes and

allow the viewer object to maintain a state consistent with the corresponding viewed

object. Axioms DAx3 and DAx4 provide semantics for the Personal Card actions.

DAx3 establishes that an instant cash operation at the viewer end of the relation-

ship will trigger a withdrawal transaction from the checking account associated

with the viewed object. Finally, DAx4 de�nes that a transfer2savings operation in

a Personal Card object is equivalent to a pair of transactions at the viewed end of

the relationship. This pair of transactions moves a speci�ed amount of funds from

a checking account to a savings account.

4.5 Colimit Theories

In Section 3.1, a few concepts of category theory were introduced. Among those

concepts, the colimit of a number of theories was described as the amalgamated

sum of those theories. In this section, we use the notion of a colimit, which is the

disjoint union of all speci�cations, to represent a whole system as a single theory.

CHAPTER 4. VERIFICATION 132

In other words, the colimit theory will contain the attributes, actions, and axioms

of all the object classes speci�ed in the system.

4.5.1 A General Colimit Theory

The PVS-based formalism used in the de�nition of object theories does not allow the

speci�cation of some of the views concepts, as already mentioned in Section 4.4.3.

The reason is that, in our mechanization formalism, each class is represented by a

di�erent type. For instance, the Acct class type is disjoint from the Card type. As

a consequence, we cannot refer to the objects of these types in general terms. In

other words, if a is an object of a certain class and c is an object of another class

with no superclass in common, then a and c cannot be used together in expressions

that require compatibility, e.g. the typechecking of an expression (a 6= c) would

fail.

While specifying a Class supertype for every de�nition of a class seems to be the

reasonable choice, this solution would add complexity to all the previously de�ned

theories. Just as an example of the complexity introduced, several of the theory

axioms would require additional coercion statements to indicate explicitly the Class

subtype expected in the axiomatic expressions. Therefore, we opted not to sacri�ce

the readability of the theories, and, instead, illustrate the mechanization of some

properties using a general colimit theory that refers to all the objects of the system

as instances of a Class type.

Schema 13 shows a general colimit theory which speci�es some of the views

properties that were not de�ned in the Views theory of Schema 10. Note that,

for example, the Acct class in this alternative mechanization formalism would be

declared as a subtype of the Class supertype.3 This is inconsistent with what was

3The declaration syntax would be: Acct: TYPE FROM Class

CHAPTER 4. VERIFICATION 133

Schema 13GeneralColimit : theory

begin

Class : nonempty type

VRelationship : nonempty type

importing Views[Class;Class;VRelationship]

viewerset : [Class! setof[Class]]

o1; o2; o3 : var Class

v1; v2 : var VRelationship

VSetAxiom : axiom

9 (v : VRelationship) :

o1 = viewed(v; o2))

o2 2 viewerset(o1) ^ (o3 2 viewerset(o2)) o3 2 viewerset(o1))

Property1 : axiom o1 = viewed(v1; o2)) o1 6= o2

Property3 : axiom : (o1 2 viewerset(o1))

Property9 : axiom

o1 = viewed(v1; o3) ^ o2 = viewed(v2; o3))
o1 = o2 ^ v1 = v2

end GeneralColimit
Schema 13

CHAPTER 4. VERIFICATION 134

actually stated in the class type declarations de�ned in the BasicTypes theory.

However, the general colimit theory is being described here independently from the

banking system case study.

In this general theory, VRelationship represents all the di�erent types of views re-

lationship in the system. The IMPORTING statement associates all the properties

of the Views theory with the VRelationship type. Note also, from this statement,

that all views relationships of the theory are between two Class types, even though

each particular application of this type of relationship relates two di�erent classes.

The viewerset attribute in this general theory represents the set of all the objects

which are direct or indirect viewers of a certain object. The semantics associated

with this attribute is recursively de�ned by Axiom VSetAxiom. According to such

a speci�cation, an object belongs to the set viewerset(o1) if either it directly views

the object o1 or it belongs to the viewerset of another object that views o1.

The three other axioms of the theory represent views properties. Axiom Prop-

erty1 de�nes that an object cannot view itself. Axiom Property3 speci�es that an

object cannot belong to its own viewerset. In other words, this property assures

that there are no views-cycles inside the system. Finally, Axiom Property9 indicates

that each viewer object cannot be related to more than one viewed object.

4.5.2 The Colimit of the Whole

We now de�ne the colimit of the whole application as the composite of all the

object and relationship theories of the system. Alternatively, we could have de-

�ned the composite of the system as the colimit of a subsystem, which is another

colimit theory, and the other objects and relationships of the system. For exam-

ple, a subsystem of the banking application could be described as the colimit of

CHAPTER 4. VERIFICATION 135

the Acct, Card, and Association4 theories. We could use this smaller subsystem

theory to prove properties about some speci�c part of the whole. Personal Card

and PC Views C theories would later be added to that subsystem to represent the

complete application.

Schema 14Colimit : theory

begin

importing BasicTypes;Acct;Card;Personal Card;Association;PC Views C

end Colimit
Schema 14

Schema 14 shows the composite theory for our case study. While we do not

de�ne any additional axioms in such theory, in the following section we use this

Colimit theory to prove several properties about the complete system speci�cation.

Some of these properties are useful in the veri�cation of correctness of the views

properties speci�ed in Schema 10.

4.6 Proving System Properties

Validation represents one major step in a software lifecycle. Currently, testing is

commonly used as the validation technique, as formal techniques remain complex

and expensive for the typical developer [KDGN97]. However, many critics argue

that the only acceptable way of validating a software is to prove mathematical

properties of the system. The reason is that testing covers only a limited number

of cases. According to E. W. Dijkstra, Testing can be a very e�ective way to show

the presence of bugs, but it is hopelessly inadequate for showing their absence [Dij72].

4The three ExtendedAssoc theories could also be added, if necessary.

CHAPTER 4. VERIFICATION 136

In this section, we validate the speci�cation of the banking system by prov-

ing the correctness of its properties. Such validation is achieved by mathemati-

cally proving that the formulae de�ned in the object theories of the banking sys-

tem speci�cation logically imply the formulae specifying the validation properties.

These validation properties represent the desired characteristics of a system. They

are here referred as conjectures. In PVS, the keywords CONJECTURE, THEOREM,

COROLLARY, CHALLENGE, PROPOSITION, CLAIM, and a few others have the same

associated semantics.

We start the veri�cation of our speci�cation with a simple conjecture on the

Acct theory. The semantics associated with this conjecture is that the balance of

an account should remain unchanged after the credit of zero units of currency. The

PVS construct for this conjecture is:

Conjecture1 : conjecture 8 (a : Acct) : bal(credit(a; 0)) = bal(a)

Schema 15 describes in detail all the steps required in the proof of this �rst

conjecture. Note that each proof step is graphically represented by a sequent. The

formulae above sequent line are called antecedents, while the ones below the line

are called consequents. In the PVS prover environment, each antecedent formula

is numbered with a negative integer. Alternatively, each consequent is uniquely

identi�ed by a positive integer. Schema 15 shows �ve sequents with exactly one

consequent each. The last three sequents also have one antecedent each. The

logical meaning of a sequent is that the conjunction of antecedents implies the

disjunction of consequents. Therefore, a sequent is true if any antecedent is false,

any consequent is true, or any antecedent is equivalent to any consequent.

The evolution in the sequents of Schema 15 re
ect the application of PVS prover

commands. Each of these commands performs one or more veri�cation tasks. The

CHAPTER 4. VERIFICATION 137

Schema 15

Verbose proof for Conjecture1.
Conjecture1:

f1g (8 (a : Acct) : bal(credit(a; 0)) = bal(a))

Skolemizing,

f1g bal(credit(a0; 0)) = bal(a0)

Applying Axiom AAx5

f-1g (8 (a : Acct; x : Amnt) : bal(credit(a; x)) = bal(a) + x)

f1g bal(credit(a0; 0)) = bal(a0)

Instantiating the top quanti�er in formula -1 with the terms: a!1, and 0

f-1g bal(credit(a0; 0)) = bal(a0) + 0

f1g bal(credit(a0; 0)) = bal(a0)

Simplifying with decision procedures,

f-1g bal(credit(a0; 0)) = bal(a0)

f1g bal(credit(a0; 0)) = bal(a0)

which is trivially true.
This completes the proof of Conjecture1.

Q.E.D.
Schema 15

CHAPTER 4. VERIFICATION 138

combination of a number of commands is called a proof strategy. The semantics of

some of the PVS prover commands are described in Appendix A.

Another useful representation of the proof of a conjecture is shown in a Lisp-

like representation. This abbreviated form of proof representation is semantically

equivalent to the extended sequent-based representation. While compact, this rep-

resentation requires some understanding of the PVS prover commands. For exam-

ple, the abbreviated representation for the sequent transformations of Schema 15

is described by the following sequence of PVS commands:

("" (SKOLEM!) (LEMMA "AAx5") (INST -1 "a!1" "0") (SIMPLIFY) (PROPAX))

In this section, most of our proofs are presented in this abbreviated form. We

found it unnecessary to present extended representations for each of our proofs,

as the extended form can be automatically generated from the abbreviated form.

Nevertheless, the sequent-based form is used a few times to illustrate the corre-

spondence between both forms.

We also categorized the veri�cation formulae according to the type of speci�-

cation properties it validates. These properties were divided into four categories:

framework, views, UML, and domain speci�c. Property proofs on each of those

groups are described next.

4.6.1 Framework Properties

We call framework properties the formulae specifying characteristics of the sup-

porting formalisms, such as the object calculus. These properties were speci�ed as

axioms and theorems of the general interpretation theories for objects or relation-

ships. Such a general object and relationship theories were previously described in

Sections 3.3 and 3.5, respectively.

CHAPTER 4. VERIFICATION 139

Our �rst PVS proof of a framework property refers to Theorem 1, which was

also proved in Section 3.3 using temporal logic axioms. The theorem states that an

object cannot be created and killed at the same time. This is now stated as follows:

Theorem1 : theorem

8 (o : Obj; o1 : Obj; o2 : Obj) :

:(o = create object(o1) ^ o = kill object(o2))

The proof starts with the skolemization of the above formula. Next, each of

the Axioms OAx1 and OAx2, de�ned in the Object theory, is applied and later

instantiated with the skolem constants (i.e. \oh!1", \o1!1", and \o2!1"). Finally,

the BASH5 command performs some propositional simpli�cations to end the proof.

Note that the basis for this simple proof is speci�ed within the Object theory. The

PVS representation of this sequence of commands is:

(""

(SKOLEM!)

(LEMMA "OAx1") (INST -1 "oh!1" "o1!1")

(LEMMA "OAx2") (INST -1 "oh!1" "o2!1")

(BASH))

Another framework property was previously speci�ed by Theorem 2. Similarly

to Theorem1, this property constrains the creation and destruction of relationship

instances. More speci�cally, Theorem2 speci�es that the association methods cre-

ate assoc and kill assoc cannot return the same association instance identi�er. In

PVS, this property is stated by:

Theorem2 : theorem

8 (a : Acct; c : Card; s : Association; s1 : Association) :

:(s = create assoc(c; a)^ s = kill assoc(s1))

5This composite command executes a number of simpler commands, as shown in Appendix A.

CHAPTER 4. VERIFICATION 140

The axioms used in the proof of Theorem2 are de�ned in the Association theory.

The proof of the property is very similar to the Theorem1 proof that was just

described. However, instead of using Axioms OAx1 and OAx2, we now use their

equivalents in the association theory, which are Axioms SAx4 and SAx5.

(""

(SKOLEM!)

(LEMMA "SAx4") (INST -1 "a!1" "c!1" "s!1")

(LEMMA "SAx5") (INST -1 "s1!1" "s!1")

(BDDSIMP)

(PROPAX))

Note that while Theorem1 proof was completed with the BASH command, the

current proof was �nalized with the BDDSIMP and PROPAX commands. BDDSIMP

is a relatively simple prover command that performs propositional simpli�cations

to the sequent. Alternatively, BASH is a more complex command which tries to

apply a number of di�erent commands, BDDSIMP included. The proof strategies

here described are not unique, and may not always be the shortest. In fact, any of

the two proof strategies are suitable for both of the theorem proofs. Our change of

strategy was just for illustrative purposes.

4.6.2 Views-Related Properties

We call views validation properties the theorems and conjectures derived from the

axioms characterizing the relationship. Theory Views, described in Schema 10,

shows some of the PVS axioms characterizing the relationship, as well as two other

theorems which are referred to as properties of the relationship. The proof of these

properties is shown in the next subsection. The other subsection is used to illustrate

derived properties.

CHAPTER 4. VERIFICATION 141

Proof of Properties

In Section 4.4.3, it was mentioned that the views Properties 7 and 8 could be

inferred from the other axioms of the relationship. In this section we con�rm that

statement by actually showing the theorem proofs.

As already speci�ed in the Theory Views, Property 7 is stated by:

Property7 : theorem

8 (r : R; d : D; v : V) :

d = viewed(v; r)) (status(r) = dead, status(v) = dead)

The proof of the Property7 theorem is more complex than the proofs presented

so far. Three axioms of the Views theory { \VAx2", \Property4", and \Property5"

{ are used as proof lemmas. In addition, this proof is split in two subgoals after

the skolemization and
attening of the initial formula. More speci�cally, the proof

of the IFF clause { also represented by \," { is subdivided in the proof of \)"

and \(" clauses by the SPLIT command.

(""

(SKOLEM!)

(FLATTEN)

(SPLIT 1)

(("1"

(LEMMA "VAx2") (INST -1 "d!1" "r!1" "v!1")

(BDDSIMP) (PROPAX))

("2"

(FLATTEN)

(LEMMA "Property5") (INST -1 "r!1")

(GRIND)

(LEMMA "Property4") (INST -1 "d!1" "d!2" "r!1" "v!1" "v!2")

(ASSERT))))

The verbose description corresponding to the above Lisp-like representation of

the Property7 theorem proof is shown next.

CHAPTER 4. VERIFICATION 142

Schema 16Property7:

f1g (8 (d : D; r : R; v : V) :

d = viewed(v; r)) (status(r) = dead, status(v) = dead))

Skolemization of the above consequent leads to:

f1g d
0 = viewed(v0; r0)) (status(r0) = dead, status(v0) = dead)

After applying disjunctive simpli�cation to
atten the sequent, we have:

f-1g d
0 = viewed(v0; r0)

f1g (status(r0) = dead, status(v0) = dead)

Splitting conjunctions (i.e. the \," clause) in the previous sequent leads to 2 subgoals.
The sequent describing the Property7.1 subgoal is represented by:

f-1g d
0 = viewed(v0; r0)

f1g status(r0) = dead) status(v0) = dead

Applying Axiom VAx2:

f-1g (8 (d : D; r : R; v : V) :

d = viewed(v; r)^ status(v) = alive)
status(r) = alive^ status(d) = alive)

f-2g d
0 = viewed(v0; r0)

f1g status(r0) = dead) status(v0) = dead

Instantiating the quanti�er in antecedent formula f-1g with the term d
0, r0, v0:

f-1g d
0 = viewed(v0; r0) ^ status(v0) = alive)

status(r0) = alive^ status(d0) = alive

f-2g d
0 = viewed(v0; r0)

f1g status(r0) = dead) status(v0) = dead
Schema 16

CHAPTER 4. VERIFICATION 143

Schema 16Applying the BDDSIMP command, leads to the trivially true sequent:

f-1g false

This completes the proof of the subgoal called Property7.1.

The other sequent resulting from the SPLIT command is given by the
Property7.2 subgoal:

f-1g d
0 = viewed(v0; r0)

f1g status(v0) = dead) status(r0) = dead

Applying disjunctive simpli�cation to
atten sequent:

f-1g status(v0) = dead

f-2g d
0 = viewed(v0; r0)

f1g status(r0) = dead

Applying Axiom Property5:

f-1g (8 (r : R) : status(r) = alive)

9(v : V; d : D) : (d = viewed(v; r)^ status(v) = alive))

f-2g status(v0) = dead

f-3g d
0 = viewed(v0; r0)

f1g status(r0) = dead

Instantiating the quanti�er in formula f-1g with the term r
0:

f-1g status(r0) = alive)

9(v : V; d : D) : (d = viewed(v; r0)^ status(v) = alive)

f-2g status(v0) = dead

f-3g d
0 = viewed(v0; r0)

f1g status(r0) = dead
Schema 16

CHAPTER 4. VERIFICATION 144

Schema 16Trying repeated skolemization, instantiation, and if-lifting (i.e. GRIND):

f-1g alive?(status(r0))

f-2g d
00 = viewed(v00; r0)

f-3g alive?(status(v00))

f-4g dead?(status(v0))

f-5g d
0 = viewed(v0; r0)

Applying Axiom Property4:

f-1g (8 (d : D; d1 : D; r : R; v : V; v1 : V) :

d = viewed(v; r)^ d1 = viewed(v1; r)) d = d1 ^ v = v1)

f-2g alive?(status(r0))

f-3g d
00 = viewed(v00; r0)

f-4g alive?(status(v00))

f-5g dead?(status(v0))

f-6g d
0 = viewed(v0; r0)

Instantiating the quanti�er in formula f-1g with the terms d0, d00, r0, v0, v00:

f-1g d
0 = viewed(v0; r0) ^ d

00 = viewed(v00; r0)) d
0 = d

00 ^ v
0 = v

00

f-2g alive?(status(r0))

f-3g d
00 = viewed(v00; r0)

f-4g alive?(status(v00))

f-5g dead?(status(v0))

f-6g d
0 = viewed(v0; r0)

Simplifying, rewriting, and recording with decision procedures (i.e. ASSERT)
completes the proof of the subgoal Property7.2. Q.E.D.

Schema 16

CHAPTER 4. VERIFICATION 145

Property 8 is the other views concept to be proved in this section. It involves

elements of distinct theories of the system. This property was previously proved in

Section 3.7.4 using temporal logic axioms. In that section, the equivalent theorem

was referred to as Theorem 3. The PVS speci�cation of the property is represented

by:

Property8 : theorem

8 (r : R; d : D; d1 : D; v : V) :

d = kill object(d1) ^ d = viewed(v; r))
status(r) = dead ^ status(v) = dead

The proof of the Property8 theorem is also split in two subgoals. Each of the

subgoals correspond to one of the terms in the conjunction sentence at the right

side of the \)" symbol in the above formula. Note that the proof of the subgoal

corresponding to the \status(v) = dead" term of the conjunction is identi�ed by a

\1" label in the abbreviated proof description shown next. Alternatively, the proof

corresponding to the \status(r) = dead" term is labeled as \2".

(""

(SKOLEM! 1)

(LEMMA "OAx2[D]") (INST -1 "d!1" "d1!1")

(BASH)

(("1"

(LEMMA "VAx2") (INST -1 "d!1" "r!1" "v!1")

(GROUND))

("2"

(LEMMA "Property7") (INST -1 "d!1" "r!1" "v!1")

(LEMMA "VAx2") (INST -1 "d!1" "r!1" "v!1")

(GROUND))))

An interesting remark from the above proof description is that the Lemma OAx2

is used with a parameter D. In fact, such parameter is used to identify which of the

two OAx2 axioms imported by the Views theory from the Object theory is being

CHAPTER 4. VERIFICATION 146

referenced. Those could be either OAx2[D] or OAx2[R]. Note from the IMPORTING

de�nition of the Views theory in Schema 10, that the elements of the Object theory

are imported twice. First, the importing statement associates object properties

with the viewed class (i.e. IMPORTING Object[D]). Second, this same statement

associates object properties with the viewer class R. Therefore, one copy of all the

attributes, actions and axioms of the Object theory exist for each of the D and R

classes de�ned in the Views theory.

Veri�cation of Properties

Veri�cation properties are used as a di�erent form to express concepts of the Views

theory. These alternative speci�cations represent the con�rmation that the original

properties hold the desired semantics. In this section, we illustrate these type of

properties with a derived concept that was veri�ed within the scope of the colimit

theory.

The DerivedP4 conjecture de�nes an alternative formula to state that a viewer

instance { i.e. a Personal Card object { cannot be related to more than one viewed

object. Such conjecture is de�ned as:

DerivedP4 : conjecture

8 (c : Card; pc : Personal Card; v : PC Views C) :

c = viewed(v; pc))
:9 (c1 : Card; v1 : PC Views C) : (c1 = viewed(v1; pc) ^ c 6= c1)

As expected, the proof of DerivedP4 needs only one lemma, which is the Prop-

erty4 axiom. Such proof is performed as follows.

(""

(SKOLEM!)

(LEMMA "Property4")

(BASH)

(INST -1 "c1!1" "v1!1")

(BDDSIMP) (PROPAX))

CHAPTER 4. VERIFICATION 147

4.6.3 UML-Related Properties

In Section 4.4.1, a few axioms are used to specify the semantics of the di�erent

types of association supported by UML. The relevance of each of those axioms to

the speci�cation of an association depends on the value of the attributes de�ning

what type of relationship is being modeled. For example, if the aggregation attribute

of the relationship theory has the value aggregate, axioms in the theory { in this

particular case ESAx1 and ESAx2 6 { will de�ne speci�c semantics for this type of

relationship.

We now use the formula UMLConjecture1 to verify the properties of a com-

posite type of association. The semantics associated with this formula is that if

the \whole" object in a composite association is dead, then all the \part" objects

related to such \whole" should also be dead. This conjecture is formally stated as:

UMLConjecture1 : conjecture

8 (a : Acct; c : Card; s : Association) :

aggregation(CardEnd) = composite ^
a = image(s; c)^ status(c) = dead) status(a) = dead

The proof of the above formula is based on two axioms related to the aggregation

attribute of UML relationships (i.e. ESAx2 and ESAx3), and another axiom from

the Association theory (i.e. SAx3). The sequence of prover commands is shown

next.

(""

(SKOLEM!)

(LEMMA "ESAx2") (INST -1 "a!1" "s!1")

(LEMMA "ESAx3") (INST -1 "a!1" "c!1" "_" "s!1" "_")

(LEMMA "SAx3") (INST -1 "a!1" "c!1" "s!1")

(GRIND))

6These axioms are de�ned in Schema 6.

CHAPTER 4. VERIFICATION 148

Another property of the UML theory is de�ned by formula UMLConjecture2.

Such validation property describes the semantics for relationships with changeable

attribute with an addOnly value. In addition, the current formula represents an

alternative form to specify the constraints previously introduced by Axiom ESAx5.

The PVS syntax for the conjecture is stated by:

UMLConjecture2 : conjecture

8 (a : Acct; c : Card; s : Association) :

changeable(CardEnd) = addOnly ^

status(c) = alive ^ status(a) = alive)
(a = image(s; c)) status(s) = alive)

The proof for the above conjecture is simple. It only uses Axiom ESAx5 as a

lemma. Such axiom was described in theory ExtendedAssoc2 of Schema 7.

(""

(SKOLEM!)

(LEMMA "ESAx5") (INST -1 "a!1" "c!1" "s!1")

(BASH))

4.6.4 Domain-Speci�c Properties

Another group of validation properties is called domain speci�c. In our case study,

the domain is represented by the properties modeling concepts speci�c to a banking

application. These concepts may be presented inside a class theory, a relationship

theory, or as part of the colimit of all theories of the system. We illustrate all of

these cases.

The Acct Theory

The Acct theory represent the typical elements of a banking account, such as bal-

ance information and deposit or withdrawal operations. In this case, validation

CHAPTER 4. VERIFICATION 149

properties provides a con�rmation that both methods and events behave as ex-

pected.

An initial conjecture, called AcctConj1, de�nes an expected behavior for the

two methods of the class. More speci�cally, the formula states that the balance of

an account should remain unchanged if you perform sequentially debit and credit

operations of the same value. This behavior is formally stated as:

AcctConj1 : conjecture

8 (a : Acct; x : Amnt) : bal(debit(credit(a; x); x)) = bal(a)

The proof of this �rst Acct conjecture is based on the axioms de�ning the se-

mantics of the two methods of the theory, which are Axioms AAx5 and AAx6.

("" (LEMMA "AAx5") (LEMMA "AAx6") (REDUCE))

The following conjecture relates the behavior of the debit method with the with-

drawal event. Note that the formula is e�ective whenever the balance of the account

object is greater or equal to zero. Otherwise, a withdrawal event does not trigger

any method, as stated in Axiom AAx16 in Schema 3. The conjecture is de�ned as:

AcctConj2 : conjecture

8 (a : Acct; x : Amnt) : bal(a) � 0) bal(withdrawal(a; x)) = bal(debit(a; x))

The proof of the AcctConj2 conjecture uses four Acct axioms to be completed.

The proof process is described next.

(""

(SKOLEM!)

(FLATTEN)

(LEMMA "AAx9") (INST -1 "a!1")

(LEMMA "AAx14") (INST -1 "a!1" "x!1")

(LEMMA "AAx15") (INST -1 "a!1" "x!1")

(LEMMA "AAx1")

(GRIND))

CHAPTER 4. VERIFICATION 150

Finally, the AcctConj3 conjecture associates the behavior of the two events of

the Acct theory. Note that, similar to the previous conjecture, the withdrawal event

will be e�ective only if the account status is not overdrawn. This explains the

precedent expression in the conjecture formula, which is given by:

AcctConj3 : conjecture

8 (a : Acct; x : Amnt) :

(acct status(a) = ok)) bal(withdrawal(deposit(a; x); x)) = bal(a)

Several axioms of the Acct theory are used in the proof of the above formula.

While no complex proving strategy was used in the process, the selection of lemmas

and the values used to instantiate its quanti�cation variables should be carefully

considered. The adopted PVS proof strategy follows.

(""

(SKOLEM!)

(FLATTEN)

(LEMMA "AAx14") (INST -1 "deposit(a!1, x!1)" "x!1")

(LEMMA "AAx15") (INST -1 "deposit(a!1, x!1)" "x!1")

(LEMMA "AAx11") (INST -1 "a!1" "x!1")

(LEMMA "AAx1") (INST -1 "withdrawal(deposit(a!1, x!1), x!1)"

"debit(deposit(a!1, x!1), x!1)")

(LEMMA "AAx1") (INST -1 "deposit(a!1, x!1)" "credit(a!1, x!1)")

(LEMMA "AAx5")

(LEMMA "AAx6")

(REDUCE))

Other Properties

So far, all of the domain-speci�c properties described were based on the axioms of

the Acct theory. We now introduce validation properties based on concepts de�ned

in the association and colimit theories of the banking system speci�cation.

CHAPTER 4. VERIFICATION 151

First, note that each Card object has two attributes, called chk and svg, that

identify the account objects with which such object is associated. According to the

Association theory interconnecting the Acct and Card objects, the chk attribute has

to indicate the value of an account object of type checking. Alternatively, the svg

attribute indicates the existence of a link to an account object of type savings. The

AssocConj conjecture uses these constraints to state that the chk and svg attributes

hold di�erent Acct object identities. Formally, this is stated as:

AssocConj : conjecture

8 (a : Acct; a1 : Acct; c : Card) : chk(c) = a ^ svg(c) = a1) a 6= a1

The proof of the above conjecture is based on Axioms SAx7 and SAx8, which use

the PVS language to formalize the association properties described in the previous

paragraph. The used sequence of prover commands is:

(""

(SKOLEM!)

(LEMMA "SAx7") (INST -1 "a!1" "c!1")

(LEMMA "SAx8") (INST -1 "a!1" "c!1")

(REDUCE))

Conjecture ColimitConj is a property based on a few di�erent speci�cation the-

ories of the banking system (i.e. Acct, Card, and Association). This conjecture

de�nes the expected semantics for a withdrawal operation started from a banking

card under certain circumstances. More speci�cally, the formula states the post-

condition for a \Withdraw From Checking" (WFC) type of transaction whenever

no other transaction was performed within the same day, the amount requested is

less then the daily withdrawal limit, and the balance of the associated account is

greater or equal to zero. These conditions are all stated in the following formula:

CHAPTER 4. VERIFICATION 152

ColimitConj : conjecture

8 (a : Acct; c : Card; c1 : Card; d : Date; x : Amnt) :

a = chk(c) ^ c1 = transaction(WFC; d; x; c) ^ d 6= last transaction(c) ^

x � DAILY MAX ^ notify balance(a) � 0)
bal(chk(c1)) = bal(a) � x

Note that the proof of the ColimitConj formula uses axioms de�ned in three

theories. CAx3 is an axiom of the Card theory, SAx9 and SAx11 are properties of

the Association theory, AAx6 is an axiom of Acct, and AcctConj2 is a conjecture

de�ned within the Acct theory that was proved true earlier in this section. These

properties were introduced in the proof process which is shown next in an order

that was relevant to the adopted strategy.

(""

(SKOLEM!)

(FLATTEN)

(LEMMA "CAx3") (INST -1 "c!1" "c1!1" "d!1" "x!1")

(ASSERT)

(LEMMA "SAx9") (INST -1 "a!1" "c!1")

(LEMMA "SAx11") (INST -1 "a!1" "c!1" "x!1")

(BASH)

(LEMMA "AcctConj2")

(LEMMA "AAx6")

(GRIND))

4.7 Other Views-Based Systems

The banking system speci�ed in this chapter illustrates the application of some of

the most important characteristics of the views relationship. While larger and more

realistic systems could be used as case studies, we believe the additional complexity

would only hinder the focus of the underlying chapter, which is the mechanization

of the veri�cation of formal relationship properties.

CHAPTER 4. VERIFICATION 153

One of the drawbacks of the adopted example is that it contains only a single

speci�cation of a views relationship. Therefore, properties such as horizontal consis-

tency, de�ned in Section 3.7.7, were not formally stated or proved. However, these

kind of properties may be easily veri�ed in systems with multiple views relation-

ships by means of the consistency axioms de�ned within each particular relationship

theory. For instance, Axioms DAx1 and DAx2, de�ned in the PC Views C theory,

represent what is called vertical consistency between a viewer and a viewed object.

As mentioned in an earlier chapter, this type of consistency is su�cient to infer the

horizontal consistency among attribute values of distinct viewer objects.

Chapter 5

Conclusion

5.1 Summary

In this thesis we developed a model called views. This model de�nes a mechanism

that disciplines the separation of an object-oriented design into a basic concern,

representing the application domain, and special concerns, representing other soft-

ware issues such as user interfaces. In this model objects can be designed so that

they are independent of their environment, because adaptation to the environment

is the responsibility of the interface or view.

The basic construct of the model is the views relationship, which de�nes the

pattern of interaction among objects representing distinct concerns. This views

relationship provides a framework for interface modeling which is not supported by

other modeling languages. It is characterized by a number of properties which aims

to support a disciplined separation of concerns. These properties were described

by means of a formal framework that consisted on object calculus theories based

on logic and a categorical framework to interconnect those theories. This formal

154

CHAPTER 5. CONCLUSION 155

framework provides the mathematical foundation to support the veri�cation of the

properties of both the components and the composite software system.

Finally, we worked on a logic-based speci�cation and reasoning about the object

theories of a small banking system. As argued by Rushby, the mechanization of the

reasoning process creates opportunities for using formal methods as an exploratory

tool [Rus95b]. In our particular case, the main focus of exploration was related

to the formal constraints de�ned for the relationship theories. The mechanization

process was based on the PVS formal veri�cation environment, which supported

the speci�cation and veri�cation of properties characterizing the object-oriented

constructs.

5.2 Future Work

There are di�erent ways to extend the research described in this thesis. These

extensions fall in two general categories. First, the modeling approach could be

extended and compared to existing implementation mechanisms that support the

development of interfaces. Second, larger applications could be developed to assess

the importance of each of the speci�ed properties in di�erent situations.

The only stage of development addressed in this thesis was speci�cation. How-

ever, it would be valuable to know how the properties identi�ed in the approach

would translate into other phases of the software lifecycle. For instance, there are

some design patterns [GHJV95] which are currently very popular to the de�nition

of interfacing mechanisms. However, no complete analysis was performed to verify

which of their properties are ful�lled by the modeling constructs here presented.

Note that such an analysis would �rst require a formal representation of the pat-

terns.

CHAPTER 5. CONCLUSION 156

Other valuable contributions would be based on the assessment of the impor-

tance of the properties in solutions. Similarly, to the association attributes in the

UML, views could have a set of core properties that identi�es the semantics of

the approach and another set of attributes to identify properties which may be

applicable in certain situations. This kind of framework preserves the expressive-

ness of the relationship construct, while sustaining the
exibility to adapt certain

characteristics of the approach according to particular needs.

Another result attainable from the speci�cation of more complex systems is

the identi�cation of new relationships and properties. The speci�cation framework

described in this thesis together with the mechanization based on the PVS logic

is expected to provide the building blocks to the de�nition of new object-oriented

constructs.

Appendix A

The PVS Environment

The PVS environment1 consists of several tools that are integrated to support the

speci�cation of systems or subsystems. A PVS speci�cation, which is based on a

higher order logic formalism, can be parsed and typechecked by environment tools.

Theorems raised by the typechecker or by the user can be interactively proved with

the assistance of the proof checker. Such a tool partially automates the proving

process with a number of built-in strategies.

A.1 The PVS Language

The speci�cation language supported by PVS is based on a classical higher-order

logic. This logic allows quanti�cation over functions, sets and properties. The PVS

language is also based on a rich type system.

In this section, we summarize the PVS language used in this thesis. In the

following de�nitions, we use P , Q and R to denote predicates, S to denote sets,

1PVS is a Prototype Veri�cation System developed by SRI International.

157

APPENDIX A. THE PVS ENVIRONMENT 158

and X and Y to denote arbitrary types. A complete speci�cation of the language

can be found in [SORSC98a].

Declarations

The syntax of a theory declaration is given by the following rule:

name [theory formals] : THEORY

[exportings]

BEGIN

[assuming part]

[theory part]

END name

where theory formals represents a list of formal parameters, exportings de�nes the

list of elements made available by the theory, and assuming part allows the def-

inition of constraints on the use of the theory by means of assumptions. The

theory part section typically contains the main body of the theory.

A few other declarations usually de�ned within the theory part section of a the-

ory are listed next.

IMPORTING theorynames Importation of elements from other theories

X, Y : TYPE Uninterpreted types

X, Y : NONEMPTY TYPE Uninterpreted nonempty types

X, Y : TYPE = type expression Type declarations

x, y : VAR type expression Variable declarations

x, y : type expression [= expression] Constant declarations

names : AXIOM expression Speci�cation of theory axioms

names : CONJECTURE expression Speci�cation of conjectures

APPENDIX A. THE PVS ENVIRONMENT 159

Logic

:P Negation

P ^Q Conjunction

P _Q Disjunction

P) Q Implication

P , Q Equivalence (if and only if)

if P then Q else R Conditional statement

9(x : S) : P There exists at least one element of S that satis�es P

8(x : S) : P All elements of S satisfy P

Set Theory

fx1; x2; :::; xng Set ennumeration

x 2 S Membership

x =2 S Non-membership

; Empty set

Functions

X ! Y The set of all total functions from X to Y

f(a) Function application

A.2 PVS Prover Commands

The PVS documentation organizes the large number of available commands in

categories. PVS supports a collection of proof commands to carry out propositional,

equality, and arithmetic reasoning. There are also structural rules which allow, for

example, to copy, delete, or hide selected formulae, �quanti�er rules which allow

APPENDIX A. THE PVS ENVIRONMENT 160

to generalize, instantiate, or skolemize formulae, and control rules which allow to

postpone, quit, undo, or skip partial or complete proof attempts. There is also

support to the use of de�nitions and lemmas, induction, simpli�cation procedures,

and other types. The environment also supports the combination of a number of

proof commands into a strategy.

This section describes some of the commands available in the PVS proof checker,

which is one of the tools available in the PVS veri�cation environment. It is not

our goal to make a complete or detailed description of the commands, which can

be found in the PVS prover guide [SORSC98b]. Rather, we give a brief description

of the applicability of some of the commands used during the research associated

with this thesis. To this small set we add a few other commands which we consider

relevant.

A.2.1 Veri�cation Commands

ASSERT - This command represents a combination of rules to perform simpli-

�cation using decision procedures. These procedures are invoked to prove trivial

theorems, to simplify complex expressions, and to perform matching.

BASH - This command consists in the ordered execution of a number of simpli�-

cation and instantiation commands.

BDDSIMP - Performs propositional simpli�cations by means of an external pack-

age based on binary decision diagrams (BDDs).

CASE (use: case \expression1" \expression2") - The CASE command allows the

splitting of the current sequent in a number of subgoals. These subgoals are derived

from the parameters speci�ed in the proof command. If n parameters are given,

n + 1 subgoals are generated.

APPENDIX A. THE PVS ENVIRONMENT 161

FLATTEN - Disjunctively simpli�es sequent formulae containing disjuncts. A

disjunct is an antecedent formula of the form :A or A^B, or a consequent formula

of the form :A, A! B or A _B.

GRIND - This strategy is commonly used to automatically complete a proof

branch or to apply the obvious simpli�cations. PVS calls it a \catch-all" strat-

egy.

GROUND - This command invokes propositional simpli�cations followed by an

ASSERT command.

LEMMA (use: lemma \lemma name") - This rule introduces in the sequent an

instance of the lemma called lemma name. All of the lemmas used in our proofs

were de�ned as axioms of a theory.

INDUCT (use: induct \variable") - This command automatically employs an

induction scheme. The variable name variable must be quanti�ed at the outermost

level of a universally quanti�ed consequent formula.

INST (use: inst formula number \term1" \term2") - The universally quanti�ed

formulae in the antecedent and the existentially quanti�ed formulae in the conse-

quent are reduced by instantiating the quanti�ed variables.

PROPAX - This command proves trivial sequents such as \TRUE ! �". It is

automatically applied by the prover to conclude the proving process.

REDUCE - This command is the main workhorse of the GRIND command. It

repeatedly uses the BASH command to perform simpli�cation with decision proce-

dures.

SKOLEM! - The bound variables of the sequent are replaced with Skolem con-

stants.

SPLIT - The conjuntive formulae in the current goal sequent are split.

APPENDIX A. THE PVS ENVIRONMENT 162

A.2.2 Control and Structural Commands

DELETE (use: delete formula number) - This command yields the subgoal where

the formulae identi�ed by formula number in the current goal sequent have been

deleted.

POSTPONE - This is used to mark the current goal as pending to be proved and

to shift the focus to the next pending proof.

QUIT - It terminates the current proof attempt.

UNDO - This command is used to undo the proof until a certain previous step.

Bibliography

[ACLN95] P.S.C. Alencar, D. Cowan, C.J.P. Lucena, and L.C.M. Nova. Formal

Speci�cation of Reusable Interface Objects. ACM SIGSOFT Software

Engineering Notes, 20(SI):88{96, August 1995.

[ACLN98a] P.S.C. Alencar, D.D. Cowan, C.J.P. Lucena, and L.C.M. Nova. Glu-

ing components together. In Proceedings of ECOOP'98 Workshop

Reader, Brussels, Belgium, July 1998.

[ACLN98b] P.S.C. Alencar, D.D. Cowan, C.J.P. Lucena, and L.C.M. Nova. A

model for gluing components. In Proceedings of the Third Interna-

tional Workshop on Component-Oriented Programming, TUCS Gen-

eral Publication No 10, pages 101{108, Brussels, Belgium, October

1998.

[ACN98] P.S.C. Alencar, D.D. Cowan, and L.C.M. Nova. A formal theory for

the views-a relationship. In Proceedings of the Third Northern Formal

Methods Workshop, Ilkley, UK, September 1998.

[AG94] Antonio Alencar and Joseph Goguen. Speci�cation in OOZE with

Examples. In K. Lano and H. Houghton, editors, Object-Oriented

Speci�cation Case Studies, pages 158{183. Prentice-Hall, 1994.

163

BIBLIOGRAPHY 164

[Age96] S. Agerholm. Translating Speci�cations in VDM-SL to PVS. In Pro-

ceedings of the Ninth International Conference on Theorem Proving

in Higher Order Logics (TPHOL'96), 1996.

[Aks96] Mehmet Aksit. Separation and Composition of Concerns. In ACM

Workshop on Strategic Direction in Computing Research, USA, June

1996.

[AM94] J. Armstrong and R. Mitchell. Uses and Abuses of Inheritance. Soft-

ware Engineering Journal, pages 19{26, January 1994.

[Bar87] H. Barringer. The Use of Temporal Logic in the Compositional Spec-

i�cation of Concurrent Systems. In A. Galton, editor, Temporal Logic

and Their Applications. Academic Press, 1987.

[BC91] Len Bass and Jo�elle Coutaz. Developing Software for the User Inter-

face. The SEI Series in Software Engineering. Addison-Wesley, 1991.

[BC95] R.H. Bourdeau and B.H.C. Cheng. A Formal Semantics for Ob-

ject Model Diagrams. IEEE Transactions on Software Engineering,

21(10), October 1995.

[BG77] R. Burstall and J. Goguen. Putting Theories Together to Make Spec-

i�cations. In R. Reddy, editor, Proceedings of the Fifth International

Joint Conference on Arti�cial Intelligence, pages 1045{1058, 1977.

[BH94] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths on

Formal Methods. Technical Report PRG-TR-7-94, Oxford University

Computing Laboratory, 1994.

BIBLIOGRAPHY 165

[BLM97a] J.C. Bicarregui, K.C. Lano, and T.S.E. Maibaum. Objects, Associa-

tions and Subsystems: A Hierarchical Approach to Encapsulation. In

Proceedings of ECOOP, Finland, 1997.

[BLM97b] J.C. Bicarregui, K.C. Lano, and T.S.E. Maibaum. Towards a Com-

positional Interpretation of Object Diagrams. In Proceedings of

IFIP TC2 Working Conference on Algorthmic Languages and Cal-

culi, Strasbourg, February 1997.

[Boe87] Barry W. Boehm. Improving Software Productivity. Computer,

20(9):43{57, September 1987.

[Boo91] Grady Booch. Object Oriented Design with Applications. The Ben-

jamin/Cummings Publishing Company, Inc., Redwood City, CA,

1991.

[BR87] Ted J. Biggersta� and Charles Richter. Reusability Framework, As-

sessment, and Directions. IEEE Software, 4(2), March 1987.

[BR94] P. Brassi and R. Rousseau. Irec: An Object Oriented Abstract Repre-

sentation to Handle Software Components. In Proceedings of ACFAS,

Montreal, Canada, May 1994.

[BW90] Michael Barr and Charles Wells. Category Theory for Computing

Science. Prentice-Hall, 1990.

[C+90] D. Carrington et al. Object-Z: An Object-Oriented Extension to Z. In

Proceedings of Formal Description Techniques, II (FORTE'89), pages

281{296, North-Holland, December 1990.

BIBLIOGRAPHY 166

[CBI+92] D.D. Cowan, L.F. Barbosa, R. Ierusalimschy, C.J.P. Lucena, and S.B.

Oliveira. Program Design Using Abstract Data Views{An Illustrative

Example. Technical Report 92{54, Computer Science Department,

University of Waterloo, Waterloo, Ontario, Canada, December 1992.

[CD94] S. Cook and J. Daniels. Designing Object-Oriented Systems: Object-

Oriented Modeling with Syntropy. Prentice-Hall, 1994.

[CES97] Krzysztof Czarnecki, Ulrich Eisenecker, and Patrick Steyaert. Beyond

Objects: Generative Programming. In Proceedings of Aspect-Oriented

Programming Workshop at ECOOP, Finland, June 1997. Springer-

Verlag.

[CILS93a] D.D. Cowan, R. Ierusalimschy, C.J.P. Lucena, and T.M. Stepien.

Abstract Data Views. Structured Programming, 14(1):1{13, January

1993.

[CILS93b] D.D. Cowan, R. Ierusalimschy, C.J.P. Lucena, and T.M. Stepien. Ap-

plication Integration: Constructing Composite Applications from In-

teractive Components. Software Practice and Experience, 23(3):255{

276, March 1993.

[Civ93] Franco Civello. Roles for Composite Objects in Object-Oriented Anal-

ysisand Design. In Proceedings of OOPSLA, pages 376{393, 1993.

[CL95] D.D. Cowan and C.J.P. Lucena. Abstract Data Views: An Inter-

face Speci�cation Concept to Enhance Design. IEEE Transactions

on Software Engineering, 21(3):229{243, March 1995.

[CLV93] D.D. Cowan, C.J.P. Lucena, and R.G. Veitch. Towards CAAI: Com-

puter Assisted Application Integration. Technical Report 93{17,

BIBLIOGRAPHY 167

Computer Science Department and Computer Systems Group, Uni-

versity of Waterloo, Waterloo, Ontario, Canada, January 1993.

[Cor97] Rational Software Corporation. UML Semantics - version 1.0. Jan-

uary 1997. Available at http://www.rational.com/uml/.

[CY91] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon

Press/Prentice-Hall, 1991.

[DBH95] Scott DeLoach, Paul Bailor, and Thomas Hartrum. Representing

Object Models as Theories. In Proceedings of the Tenth Knowledge-

Based Software Engineering Conference, pages 28{35, Boston, MA,

November 1995.

[DH99] Scott DeLoach and Thomas Hartrum. A Theory-Based Representa-

tion for Object-Oriented Domain Models. accepted for publication in

IEEE Transactions on Software Engineering, 1999.

[Dig91] Digital Equipment Corporation, Hewlett-Packard Company, Hyper-

Desk Corporation, NCR Corporation, Object Design Inc., and Sun-

Soft, Inc. The Common Object Reqest Broker: Architecture and Spec-

i�cation, OMG document number 91.12.1, revision 1.1 edition, De-

cember 1991.

[Dig92] Digitalk. PARTS Workbench User's Guide. Digitalk, 1992.

[Dij72] Edsger W. Dijkstra. The Humble Programmer. Communications of

the ACM, 15(10):859{866, October 1972.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

BIBLIOGRAPHY 168

[Dil90] Antoni Diller. Z An Introduction to Formal Methods. John Wiley

and Sons, 1990.

[DK76] F. DeRemer and H. Kron. Programming-in-the-large Versus

Programming-in-the-small. IEEE Transactions on Software Engineer-

ing, 2(2):80{86, June 1976.

[DN70] M.B. Dahl and K. Nygaard. SIMULA Common Base Language. Tech-

nical Report S-22, Norvegian Computing Center, 1970.

[EFLR98] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. De-

veloping the UML as a formal modelling notation. In Pierre-Alain

Muller and Jean B�ezivin, editors, Proceedings of UML'98 Interna-

tional Workshop, Mulhouse, France, June 3 - 4, 1998, pages 297{307.

ESSAIM, Mulhouse, France, 1998.

[FM91] J. Fiadeiro and T. Maibaum. Describing, Structuring, and Imple-

menting Objects, volume 489 of Lecture Notes in Computer Science.

Springer-Verlag, 1991.

[FM92] J. Fiadeiro and T. Maibaum. Temporal Theories as Modularisation

Units for Concurrent System Speci�cation. Formal Aspects of Com-

puting, 4(3):239{272, 1992.

[FSJ99] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson.

Building Application Frameworks. John Wiley and Sons, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns. Addison-Wesley, Reading, Massachusetts, 1995.

BIBLIOGRAPHY 169

[Gog86] Joseph A. Goguen. Reusing and Interconnecting Software Compo-

nents. IEEE Computer, 19(2), February 1986.

[Gog89] J. Goguen. A Categorical Manifesto. Technical Report PRG-72, Pro-

gramming Research Groupo, University of Oxford, March 1989.

[Hal90] J.A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11{

19, September 1990.

[Hil92] Ralph D. Hill. The Abstraction-Link-View Paradigm: Using Con-

straints to Connect User Interfaces to Applications. In CHI '92, pages

335{342. ACM, May 1992.

[HL95] W. Hursch and C. Lopes. Separation of Concerns. Technical report,

Northeasten University, February 1995.

[HSL91] R.C. Holt, T. Stanhope, and G. Lausman. Object-Oriented Com-

puting: Looking Ahead to the Year 2000. Technical Report ITRC

TR-9101, Information Technology Research Center, Univ. of Toronto,

April 1991.

[IBM94] IBM. Visual Age: Concepts & Features. IBM, 1994.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-

Oriented Software Engineering: a Use Case Driven Approach. ACM

Press, 1992.

[KDGN97] John Knight, Colleen DeJong, Matthew Gibble, and Lu��s Nakano.

Why Are Formal Methods Not Used More Widely? In

C. Michael Holloway and Kelly J. Hayhurst, editors, LFM' 97:

BIBLIOGRAPHY 170

Fourth NASA Langley Formal Methods Workshop, NASA Con-

ference Publication 3356, pages 1{12, Hampton, VA, September

1997. NASA Langley Research Center. Available at http://atb-

www.larc.nasa.gov/Lfm97/proceedings/.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

Oriented Programming. In Proceedings of European Conference on

Object-Oriented Programming (ECOOP), Finland, June 1997.

[KP88] Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using

the Model-View-Controller User Interface Paradigm in Smalltalk-

80. Journal of Object-Oriented Programming, 3(1):26{49, August

September 1988.

[Lam91] Leslie Lamport. The Temporal Logic of Actions. Technical Report 79,

Digital Equipment Corporation, Systems Research Center, December

1991.

[Lan95] Kevin Lano. Formal Object-Oriented Development. Springer-Verlag,

1995.

[LB98a] Kevin Lano and Juan Bicarregui. Formalising the UML in structured

temporal theories. In Haim Kilov and Bernhard Rumpe, editors,

Proceedings of the Second ECOOP Workshop on Precise Behavioral

Semantics (with an Emphasis on OO Business Speci�cations), pages

105{121. Technische Universit�at M�unchen, TUM-I9813, 1998.

[LB98b] Kevin Lano and Juan Bicarregui. Semantics and transformations

for UML models. In Pierre-Alain Muller and Jean B�ezivin, editors,

BIBLIOGRAPHY 171

Proceedings of UML'98 International Workshop, Mulhouse, France,

June 3 - 4, 1998, pages 97{106. ESSAIM, Mulhouse, France, 1998.

[LCP92] C.J.P. Lucena, D.D. Cowan, and A.B. Potengy. A Programming

Model for User Interface Compositions. In Anais do V Simp�osio

Brasileiro de Computa�c~ao Gr�a�ca e Processamento de Imagens, SIB-

GRAPI'92, Aguas de Lind�oia, SP, Brazil, November 1992.

[LH94] K. Lano and H. Houghton. Speci�ying a Concept-Recognition Sys-

tem in Z++. In K. Lano and H. Houghton, editors, Object-Oriented

Speci�cation Case Studies, pages 137{157. Prentice-Hall, 1994.

[Lim94] Wayne C. Lim. E�ects of Reuse on Quality, Productividy, and Eco-

nomics. IEEE Software, September 1994.

[Lis88] Barbara Liskov. Data Abstraction and Hierarchy. SIGPLAN Notices,

23(5):17{34, May 1988.

[MB97] Savi Maharaj and Juan Bicarregui. On Veri�cation of VDM Spec-

i�cation and Re�nement with PVS. In Proceedings of the Twelfth

IEEE International Conference in Automated Software Engineering

(ASE'97), 1997.

[MC92] Silvio Meira and Ana Cavalcanti. The MooZ Speci�cation Language.

Technical report, Departamento de Informatica, Universidade Federal

de Pernambuco, Recife, PE, Brazil, 1992.

[McC97] Carma McClure. Software Reuse Techniques. Prentice Hall, 1997.

[Mey85] Bertrand Meyer. On Formalisms in Speci�cations. IEEE Software,

pages 6{26, January 1985.

BIBLIOGRAPHY 172

[Mey99] Bertrand Meyer. Every Little Bit Counts: Toward More Reliable

Software. IEEE Computer, pages 131{135, November 1999.

[Mit65] Barry Mitchell. Theory of Categories. Academic Press, 1965.

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues and Research

Directions. IEEE Transactions on Software Engineering, 21(6):528{

561, June 1995.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-

current Systems. Springer-Verlag, 1991.

[Mye91] Brad A. Myers. Separating Application Code from Toolkits: Elimi-

nating the Spaghetti of Call-Backs. In UIST{Fourth Annual Sympo-

sium on User Interface Software Technology, pages 211{220, 1991.

[Par72a] D. Parnas. A Technique for Software Module Speci�cation with Ex-

amples. CACM, 15(5), 1972.

[Par72b] D.L. Parnas. On the Criteria to be Used in Decomposing Systems

into Modules. CACM, 15(12), December 1972.

[Par90] H.A. Partsch. Speci�cation and Transformation of Programs.

Springer-Verlag, 1990.

[Par97] Rational Partners. UML Notation Guide. Object Man-

agement Group (OMG), September 1997. Available at

http://www.rational.com/uml/.

[Pen93] John J. Penix. Automated Component Retrieval and Adaptation Us-

ing Formal Speci�cations. PhD thesis, Department of Electrical and

BIBLIOGRAPHY 173

Computer Engineering and Computer Science, University of Cincin-

nati, Cincinnati, Ohio, 1993.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists.

The MIT Press, 1991.

[PLC93] A.B. Potengy, C.J.P. Lucena, and D.D. Cowan. A Programming Ap-

proach for Parallel Rendering Applications. Technical Report 93{62,

Computer Science Department and Computer Systems Group, Uni-

versity of Waterloo, Waterloo, Ontario, Canada, March 1993.

[Pre92] Roger S. Pressman. Software Engineering: A Practitioner's Approach.

McGraw-Hill, 1992.

[Rat97] Rational Partners (Rational, HP, IBM, MCI, Microsoft, Ob-

jecTime, Oracle, Unisys, etc.). UML Semantics. Object

Management Group (OMG), September 1997. Available at

http://www.rational.com/uml/.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick

Eddy, and William Lorenson. Object-Oriented Modeling and Design.

Prentice Hall, 1991.

[Rei97] D.J. Reifer. Practical Software Reuse. John Wiley and Sons, 1997.

[Rum88] James Rumbaugh. Relational Database Design Using an Object-

Oriented Methodology. Communications of the ACM, 31(4):417, April

1988.

BIBLIOGRAPHY 174

[Rus95a] John Rushby. Formal Methods and Their Role in Certi�cation of

Critical Systems. Technical Report SRI-CSL-95-1, Computer Science

Laboratory, SRI International, Menlo Park, CA, March 1995.

[Rus95b] John Rushby. Mechanizing Formal Methods: Opportunities and Chal-

lenges. In Jonathan P. Bowen and Michael G. Hinchey, editors, ZUM

'95: The Z Formal Speci�cation Notation; 9th International Confer-

ence of Z Users, volume 967 of Lecture Notes in Computer Science,

pages 105{113, Limerick, Ireland, September 1995. Springer-Verlag.

[Sah81] Sartaj Sahni. Concepts in Discrete Mathematics. The Camelot Pub-

lishing Company, 1981.

[SD98] Monique Snoeck and Guido Dedene. Existence Dependency: The Key

to Semantic Integrty Between Structural and Behavioral Aspects of

Object Types. IEEE Transaction on Software Engineering, pages

233{251, April 1998.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse Contracts:

Managing the Evolution of Reusable Assets. In Proceedings of OOP-

SLA, San Jose, California, 1996.

[SORSC98a] N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert.

PVS Language Reference. Computer Science Laboratory, SRI Inter-

national, Menlo Park, CA, September 1998.

[SORSC98b] N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert.

PVS Prover Guide. Computer Science Laboratory, SRI International,

Menlo Park, CA, September 1998.

BIBLIOGRAPHY 175

[SORSC98c] N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert.

PVS System Guide. Computer Science Laboratory, SRI International,

Menlo Park, CA, September 1998.

[Sri90] Y.V. Srinivas. Category Theory De�nitions and Examples. Technical

Report TR-90-14, Department of Information and Computer Science,

University of California, Irvine, CA, February 1990.

[Syb96] Sybase. Optima++. Sybase, 1996.

[Was94] Michael Wasmund. Reuse Facts and Myths. In Proceedings of IEEE

International Conference on Software Engineering, pages 273{274,

1994.

[Wat93] Watcom International Corporation, Waterloo, Ontario, Canada.

WATCOM VX�REXX for OS/2 Programmer's Guide and Reference,

1993.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-

Oriented Software. Prentice-Hall, 1990.

[WdJS95] Roel Wieringa, Wiebren de Jonge, and Paul Spruit. Using Dynamic

Classes and Role Classes to Model Object Migration. Theory and

Practice of Object Systems, 1(1):61{83, 1995.

[Wen94] Kevin D. Wentzel. Software Reuse - Facts and Myths. In Proceedings

of IEEE International Conference on Software Engineering, pages

267{268, 1994.

[WRC97] Enoch Y. Wang, Heather A. Richter, and Betty C. Cheng. Formaliz-

ing and Integrating the Dynamic Model within OMT. In Proceedings

BIBLIOGRAPHY 176

of IEEE International Conference on Software Engineering, pages 45{

55, Boston, Massachusetts, May 1997.

[WWC92] G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming.

CACM, 35(11), November 1992.

	CanadaNQ-56678.pdf
	

