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Abstract

An n-tuple of operators V' = (V, ..., V},) acting on a Hilbert space H is said to be
isometric if the operator [V} --- V,] : H" — H is an isometry. A free semigroup
algebra is the weakly closed algebra W(V7, ..., V},) generated by an isometric n-tuple
V. 'The structure of the free semigroup algebra generated by V' contains a great deal
of information about V. Thus it is natural to study this algebra in order to study V.

A free semigroup algebra is said to be analytic if it is isomorphic to the noncom-
mutative analytic Toeplitz algebra, which is a higher-dimensional generalization of the
classical algebra H*° of bounded analytic functions on the complex unit disk. This
notion of analyticity is of central importance in the general theory of free semigroup

algebras. A vector = in H is said to be wandering for an isometric n-tuple V' if the set
{z}U{Viy, -~ Vix |1 <iy,...,0 <nand k > 1}

is orthonormal. As in the classical case of H°, the analytic structure of the noncom-
mutative analytic Toeplitz algebra is determined by the existence of wandering vectors
for the generators of the algebra.

In the first part of this thesis, we prove the following dichotomy: either an iso-
metric n-tuple V' has a wandering vector, or the free semigroup algebra it generates
is a von Neumann algebra. This implies the existence of wandering vectors for every
analytic free semigroup algebra. As a consequence, it follows that every free semi-
group algebra is reflexive, in the sense that it is completely determined by its invariant
subspace lattice.

In the second part of this thesis we prove a decomposition for an isometric tuple
of operators which generalizes the classical Lebesgue-von Neumann-Wold decompo-
sition of an isometry into the direct sum of a unilateral shift, an absolutely continuous
unitary and a singular unitary. The key result is an operator-algebraic characterization
of an absolutely continuous isometric tuple in terms of analyticity. We show that, as
in the classical case, this decomposition determines the weakly closed algebra and the

von Neumann algebra generated by the tuple.
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Chapter 1
Introduction

This thesis concerns the structure of an isometric tuple of operators, an object that
appears frequently in mathematics and mathematical physics. From the perspective of
an operator theorist, the notion of an isometric tuple is a natural higher-dimensional

generalization of the notion of an isometry.

An n-tuple of operators (V1,...,V},) acting on a Hilbert space H is said to be
isometric if the row operator [V} - -+ V},] : H" — H isan isometry. This is equivalent
to requiring that the operators V1, . . ., V,, satisfy the algebraic relations

I ifi=jy,
Vv =
0 ifi ]

These relations are often referred to as the Cuntz relations.

The weakly closed (non-self-adjoint) algebra W(V,...,V},) generated by V is
called the free semigroup algebra generated by V. It turns out that the structure
of this algebra contains a great deal of information about V. Thus it is natural to
study this algebra in order to study V. This idea, along with the definition of a free
semigroup algebra, was introduced by Davidson and Pitts in [DP99]. Free semigroup
algebras, and various generalizations, have subsequently been studied by a number of

authors, and many applications have been found (see for example [Dav01]]).



The work of Davidson, Katsoulis and Pitts in [DKPO01] revealed that the notion of
analyticity is of central importance in the general theory of free semigroup algebras. A
free semigroup algebra is said to be analytic if it is isomorphic to the noncommutative
analytic Toeplitz algebra. This free semigroup algebra, introduced by Davidson and
Pitts in [DP98], is a higher-dimensional generalization of the algebra H°° of bounded
analytic functions on the complex unit disk. We will also say that an isometric tuple
is analytic if the free semigroup algebra it generates is analytic. The general struc-
ture theorem for free semigroup algebras obtained in [DKPOT] implies that every free
semigroup algebra can be decomposed as the sum of a slice of a von Neumann algebra
and an analytic free semigroup algebra.

The analytic structure of an operator algebra often reveals itself in the form of
wandering vectors. A vector x is said to be wandering for the isometric n-tuple V' if

the set of vectors
{z} UV, - Vix |1 <iy,...,ig <nmand k > 1}

is orthonormal. In this case, we will also say that « is wandering for the free semigroup
algebra generated by V.

The main result in the first part of this thesis is a proof of the existence of wan-
dering vectors for an analytic free semigroup algebra. In fact, we prove the following
stronger dichotomy: either a free semigroup algebra has a wandering vector, or it is
a von Neumann algebra. This result implies that every isometric tuple is reflexive,
which means that the free semigroup algebra it generates is completely determined
by its invariant subspaces. As an application of this result, we show that every ana-
lytic free semigroup algebra satisfies a very strong factorization property. This implies
that every anaytic free semigroup algebra is actually hyperreflexive, which is a stronger
quantitative form of reflexivity.

The existence of wandering vectors for an analytic free semigroup algebra was
conjectured by Davidson, Katsoulis and Pitts in [DKPOT]]. They observed that it was
equivalent to the question of the reflexivity of an arbitrary free semigroup algebra, and

more generally, to the invariant subspace problem for an isometric tuple.



The main result in the second part of this thesis is a decomposition of an isometric
tuple that generalizes the classical Lebesgue-von Neumann-Wold decomposition of
an isometry into the direct sum of a unilateral shift, an absolutely continuous unitary
and a singular unitary. We show that, as in the classical case, this decomposition
determines the structure of the weakly closed algebra and the von Neumann algebra
generated by the tuple.

The existence of a higher-dimensional Lebesgue-von Neumann-Wold decompo-
sition was conjectured by Davidson, Li and Pitts in [DLP03]. They observed that
the measure-theoretic definition of an absolutely continuous operator was equivalent
to an operator-theoretic property of the functional calculus for that operator. Since
this property naturally extends to the higher-dimensional setting, this allowed them
to define the notion of an absolutely continuous isometric tuple.

To develop the technical portion of this thesis, we extend ideas from the commuta-
tive theory of dual algebras to the present noncommutative setting. The commutative
theory, based on Brown’s proof of the existence of invariant subspaces for subnormal
operators [Bro78], was developed and applied with great success by Bercovici, Brown,
Foias, Pearcy and many others (see for example [BFP85]). We were inspired to use
this approach by Bercovici’s results in [Ber98].

In Chapter 2 we prove the existence of wandering vectors for an analytic free
semigroup algebra, and obtain as a consequence the reflexivity of an arbitrary free
semigroup algebra and the hyperreflexivity of an analytic free semigroup algebra. In
Chapter 3 we prove the Lebesgue-von Neumann-Wold decomposition of an an iso-
metric tuple, and determine the structure of the free semigroup algebra and the von
Neumann algebra generated by an isometric tuple.

The content comprising Chapter 2 and Chapter 3 of this thesis was taken from
two different papers. While we have attempted to eliminate any inconsistencies in the
material, the reader may notice a small amount of overlap in the preliminary sections

of these chapters.



Chapter 2

Wandering vectors and the reflexivity

of free semigroup algebras

A free semigroup algebra S is the weak-operator-closed (non-self-adjoint) algebra
generated by n isometries S, ..., .S,, on a Hilbert space H which have pairwise or-
thogonal ranges, or equivalently, which satisty
I ifi =7,
S:S; = !

0 otherwise.

Although 7 can be finite or infinite, for notational convenience we treat n as finite
and make note of any issues that arise. We say that the n-tuple S = (S; ... S,) is
isometric, since the row operator [V} --- V| : H" — H is an isometry.

I[sometric tuples appear throughout operator theory. A theorem of Frazho, Bunce,
and Popescu shows that n operators Ay, ..., A, which satisfy > Ay A; < I can be
dilated to an isometric n-tuple S = (51, ..., .S, ) such that each S, is of the form

A, 0
Sk:< F >
* *k

This is a noncommutative multivariable analogue of the Sz.-Nagy dilation theorem.



Popescu [Pop96] showed that the norm-closed algebra generated by any row isom-
etry of size n is completely isometrically isomorphic to the noncommutative disk al-
gebra A,,, and it is well known that the C*-algebra generated by a row isometry of size
n is isomorphic to the Cuntz algebra O, if > | Ay A} = I, and otherwise is isomor-
phic to the Cuntz-Toeplitz algebra &,,. By contrast, the weak-operator-closed algebras
generated by distinct isometric tuples can be dramatically different (see for example
[DKPOT]).

In some sense then, it is natural to study an isometric tuple by looking at the
free semigroup algebra it generates. This idea, and with it the definition of a free
semigroup algebra, was introduced by Davidson and Pitts [DP99]. They observed
that free semigroup algebras often contain interesting information about the unitary
invariants of their generators.

The prototypical example of a free semigroup algebra is the noncommutative an-
alytic Toeplitz algebra generated by the left regular representation of the free semi-
group on 1 letters. This algebra, which we denote by £,,, was first studied by Popescu
[Pop91] in the context of noncommutative multivariable dilation theory.

For n = 1, £, is the familiar algebra of analytic Toeplitz operators, which is
singly generated by the unilateral shift. Forn > 2, £,, is no longer commutative, but
it turns out that a number of classical results about the analytic Toeplitz operators have
straightforward generalizations to this setting. This is a large part of the motivation
for the name “noncommutative analytic Toeplitz algebra.”

The role of £, is of central importance in the general theory of free semigroup al-
gebras, and it turns out to be desirable to isolate “L,,-like” behavior. A free semigroup
algebra is said to be analytic if it is algebraically isomorphic to £,,. It is important to
emphasize the word “algebraically” here. Examples have been constructed (see for
example [DKPOT]]) of free semigroup algebras which are analytic, and so behave alge-
braically like £,,, but which have a very different spatial structure.

The general structure theorem for free semigroup algebras [DKPOT|] shows that
every free semigroup algebra can be decomposed into 2 X 2 block-lower-triangular

form, where the left column is a slice of a von Neumann algebra, and the bottom-



right entry is an analytic free semigroup algebra. It is well known (see for example
[Wer52]) that the weak-operator-closed algebra generated by a single isometry can be
self-adjoint. Davidson, Katsoulis, and Pitts [DKPOT] asked whether it was possible
for a free semigroup algebra on 2 or more generators to be self-adjoint, and some time
later Read [Read03] (see also [Dav0@]) answered in the affirmative by showing that
B(H) was a free semigroup algebra.

A notion of fundamental importance is that of a wandering vector. A unit vector
x is said to be wandering for the free semigroup algebra generated by an isometric

n-tuple (S, . ..,S,) if the set of vectors

is orthonormal. It is known (see for example [DP99]) that the spatial structure of £,,
is completely determined by the existence of a large number of wandering vectors.

It is easy to see that the restriction of any free semigroup algebra to the cyclic
subspace generated by a wandering vector is unitarily equivalent to £,,, and so in
particular is analytic. It has been an open question for some time, however, whether
every analytic free semigroup algebra necessarily has a wandering vector. It turns
out that this question is equivalent to the question of whether every free semigroup
algebra is reflexive. This can be shown using the general structure theorem for free
semigroup algebras: since every von Neumann algebra is reflexive, the reflexivity of a
free semigroup algebra depends on the reflexivity of its analytic part.

The purpose of this chapter is to prove that every analytic free semigroup alge-
bra has wandering vectors, and hence to prove that every free semigroup algebra is
reflexive.

Our approach is very much in the spirit of the “dual algebra arguments” which
have been used with great success by Bercovici, Foias, Pearcy and many others (see for
example [BFP85]), and which are based on Brown’s proof of the existence of invariant
subspaces for subnormal operators [Bro78]. The fundamental idea at the heart of these
arguments is that it is often possible to prove the existence of invariant subspaces for

a weak*-closed operator algebra by showing that, in an appropriate sense, the predual



of the algebra is small.

Typically, these arguments are employed in a commutative setting, where certain
spectral and function-theoretic tools are available. In the present noncommutative
context, we rely instead on various operator-theoretic techniques.

A clue that it might be possible to attack the present problem using dual algebra
techniques came from a recent paper of Bercovici [Ber98], who used them to establish
the hyperreflexivity of a class of algebras which includes the noncommutative analytic
Toeplitz algebra on two or more generators. The hyperreflexivity of this algebra had
already been shown by Davidson and Pitts [DP99], with an upper bound of 51 on the
hyperreflexivity constant, but Bercovici’s approach yielded a surprisingly low upper
bound of 3.

Motivated by Bercovici’s result, once we have shown that every analytic free semi-
group algebra has a wandering vector, we go further and show that every analytic free
semigroup algebra on two or more generators is hyperreflexive with hyperreflexivity

constant at most 3.

2.1 Background and preliminaries

Let F\" denote the free semigroup in n noncommuting letters {1, ..., n}, including
the empty word @. For a word w in ', let |w| denote its length, and let F% denote
the set of all words in I} of length at most k.

Let F? denote the “Fock” space F? = (*(FF,") with orthonormal basis {&,, : w €

"} consisting of words in IF;\. For each v in IF;}, define an isometry L, by
L&y =&, weTF!.

The map v — L, gives a representation of I\, called the left regular representation.

The isometries L, ..., L;, have pairwise orthogonal ranges. The free semigroup al-
gebra they generate, denoted by £,,, is called the noncommutative analytic Toeplitz
algebra. Forn = 1, £, is the classical analytic Toeplitz algebra, but for n > 2, £,, is

no longer commutative.



We require a result for £,, which generalizes a classical result about the analytic
Toeplitz operators. An element in £,, is said to be inner if it is an isometry, and outer
if it has dense range. It was shown in [DP99] that a nonzero element A in £,, can be
written as A = BC, where B is inner and C' is outer. This generalizes the classical
inner-outer factorization for elements in the analytic Toeplitz algebra.

Every element A in £,, is completely determined by its Fourier series

A~ Z oy Ly,

wel;h

which is a formal power series with coefficients in £,,, where

Ay =) awbur

wEIE‘;f

For k > 1, define the k-th Cesaro sum of the Fourier series of A by

|w| <k

Then the sequence I';(A) is strongly convergent to A.

By symmetry, for each v in F;} we can define an isometry R, by
vaw = nga w e Fjl_v

and the map v — R, gives an anti-representation (i.e. a multiplication-reversing rep-
resentation) of 7, called the right regular representation. The isometries Ry, ..., R,
also have orthogonal ranges, and the free semigroup algebra they generate, denoted by
R, is unitarily equivalent to £,,. It was shown in [DP99] that R, is the commutant
of L,,.

A free semigroup algebra § is said to be analytic if it is algebraically isomorphic to
L,,. It was shown in [DKPO1]] that if S is analytic, then there is a completely isometric

isomorphism ® from £,, to S which takes the generators of £,, to the generators of



S. Moreover, @ is a weak*-to-weak* homeomorphism, and the inverse map 1 s
the dual of an isometric isomorphism ¢ from the predual of £,, to the predual of S.

For a free semigroup algebra S, let Sy denote the weak-operator-closed ideal gen-
erated by Sy, ..., Sp. Then either Sy = S, or §/Sy = C. In the latter case, the
general structure theorem for free semigroup algebras [DKPO1]] implies that S has an
analytic part. If S = S, then § is a von Neumann algebra.

The set of weak*-continuous linear functionals on B(H), i.e. the predual, can be
identified with the set of trace class operators C* (H ), where K in C'(H) corresponds

to the linear functional
T—u(TK), Te€B(H).

With this identification, the set of weak-operator-continuous linear functionals on
B(H) corresponds to the set of finite rank operators. The predual of a weak*-closed
subspace S of B(H) can be identified with the quotient space C*(H),/*S, where
1S denotes the set of elements in C'(H) which annihilate S, i.e. the preannihilator.

It was shown in [DP99] that the weak* topology and the weak operator topology
coincide on L,,. This means that the equivalence class of every weak*-continuous
linear functional on £,, contains an element of finite rank.

Let S be a free semigroup algebra on a Hilbert space H. A unit vector = in H is
said to be wandering for S if the set {S,,@ : w € F''} is orthonormal. The following

theorem from [DKPO1]] will be important for our results.

Theorem 2.1.1. Let S be an analytic free semigroup algebra. Then for some m > 1, the

ampliation S (™) has a wandering vector.

Suppose that S is an analytic free semigroup algebra, and let 7y be the weak-
operator-continuous linear functional on S such that 7y annihilates Sy and 7y (1) =
1. Then the equivalence class in C*(H) corresponding to 7y contains an operator of
finite rank, say m > 1. This m corresponds to the m in the statement of Theorem
B.1.1). Since the restriction of S™) to the cyclic subspace generated by a wandering

vector is unitarily equivalent to £,,, it follows that the weak* topology and the weak



operator topology agree on S.

A subspace S of B(H) is said to be reflexive if S contains every operator 1" in
B(H ) with the property that 7'z belongs to S[z]| for every = in H. This definition of
reflexivity was introduced by Loginov and Shulman [LS75].

The notion of hyperreflexivity, which was introduced by Arveson [Arv75], is a

quantitative analogue of reflexivity. Let ds denote the distance seminorm
ds(T) =inf{||T — A||: A S}, T eB(H),
and define another seminorm 7s by
rs(T) = sup{[(Tz,y)| : [[z[l, [yl <1and (Az,y) =0 forall A € S}

for T in B(H). Then the reflexivity of S is equivalent to the condition that ds(7") = 0
if and only if r5(7) = 0.

The equality rs(7T") < ds(T') always holds. We say that S is hyperreflexive if
there is a constant C' > 0 such that ds(T") < Crs(T) forall T in B(H). The small-
est such C' is called the hyperreflexivity constant of S. Of course, hyperreflexivity
implies reflexivity.

Davidson [Dav87] showed that the analytic Toeplitz algebra is hyperreflexive with
hyperreflexivity constant at most 19. Davidson and Pitts [DP99] showed that for
n > 2, L, is hyperreflexive with hyperreflexivity constant at most 51. This was later
improved by Bercovici [Ber98], who showed that this hyperreflexivity constant is at

most 3.

2.2 The noncommutative Toeplitz operators

The Toeplitz operators are precisely the operators T' in B(¢*(N)) which satisfy S*T'S =
T, where S is the unilateral shift. This motivates the following definition, which was

introduced by Popescu [Pop89b].

Definition 2.2.1. Let S=(51,...,5,) be an isometric tuple. We say that 7" is an

10



S-Toeplitz operator if

T ifi=j
SITS; =

0 otherwise,

and we let Tg denote the set of all S-Toeplitz operators.

If an S-Toeplitz operator 7' is strictly positive, then by Theorem 4.3 of [Pop89b],
it can be factored as T' = A* A, for some A in the commutant of the free semigroup
algebra generated by S.

Define isometric tuples L and Rby L = (Ly,...,L,) and R = (Ry,..., R,).
The size, n, will always be clear from the context. In this section we will establish some
properties of the set T of R-Toeplitz operators which we will need later. Note that
since L,, is unitarily equivalent to R,,, the set T of R-Toeplitz operators is unitarily
equivalent to the set 77, of L-Toeplitz operators. This means that any properties of
Tr will correspond in an obvious way to properties of 7y,.

The following Lemma is implied by Corollary 1.3 of [Pop09]. Here we give a

short direct proof.

Lemma 2.2.2. 7he set Tr of R-Toeplitz operators is precisely the weak* closure of the
operator system L + L,,.

Proof. Tt is clear that the weak* closure of £, + L,, is contained in 7, since

L, ifi=j
RfLy,R; = RiR;L, =

0 otherwise.

Suppose then that T" belongs to 7. It’s clear that T also belongs to Tg, and hence
that the real and imaginary parts of 1" belong to Tg. Since the scalar operators also
belong to Tk, it follows that we can write 7" as a finite linear combination of strictly
positive operators in 7z. Hence we may suppose that 7' is strictly positive.

By Theorem 4.3 of [Pop89b], we can write I' = A*A for some A in £,,. Note
that A*I';(A) belongs to £,, + L for k > 1, where I';(A) denotes the k-th Cesaro

11



sum of the Fourier series for A. The sequence I';(A) is weak*-convergent to A4, so it

follows that A*I';(A) is weak*-convergent to A*A = T, and hence that 7" belongs
to the weak* closure of £,, + L. N

Note that based on the definition of the set T of R-Toeplitz operators, Lemma

2.2.7 implies that the weak* closure of £} +L,, is closed in the weak operator topology.

Lemma 2.2.3. Forn > 2, every R-Toeplitz operator T' can be factored as T = B*C
for some B and C' in L,,. Moreover, B and C' can be taken to be bounded below.

Proof. As in the proof of Lemma [2.2.2), we can write 1" as a finite linear combination
of strictly positive R-Toeplitz operators, say T = Y " | ¢;T; for some ¢y, ..., ¢, in C
and strictly positive 71, ..., T}, in Tr. By Theorem 4.3 of [Pop89b], we can factor each
TiasT; = AfA; forsome A;in L,,. Set B =" LyigA;jand C' = > ¢;LyinA;.
Then B and C both belong to £,, and T' = B*C.

To see that B and C' can be taken to be bounded below, take B’ = B + Lim+15
and C" = C + Lym+29, where m is as above. Then B’ and C’ both belong to L,,.
Since the isometries L3, ..., Lym+29 have pairwise orthogonal ranges, B’ and C” are

bounded below, and T = (B’)*C". O

Lemma provides another characterization of the R-Toeplitz operators for
n > 2.

Corollary 2.2.4. For n > 2, the set Tr of R-Toeplitz operators is precisely L L,, =
{B*C : B,C € L,}.

Popescu [Pop09] showed that every R-Toeplitz operator T" has a Fourier series

T ~ > aLot+ Y buL,

weF weFi\{2}

which is a formal power series with coefficients in £,, and £ . This completely deter-

mines 7 in the sense that for every word u in F;f,

weR; weF\ {2}

12



Let S be an analytic free semigroup algebra. By Theorem 1.1 of [DKPOT]], the
canonical map from £,, to S is a complete isometry and a weak*-to-weak* homeo-
morphism. Our goal for the remainder of this section is to show that this map extends
in a natural way to a map from the weak* closure of £,, + £ (i.e. from the set T of
R-Toeplitz operators) to the weak* closure of S + &*, and that this extension is also

a complete isometry and a weak*-to-weak® homeomorphism.

Lemma 2.2.5. Let S be an analytic free semigroup algebra with n > 2 generators , and
let © be the canonical map from L, to S. Then o1 maps isometries in S to isometries

in L,

Proof. By Theorem P.1.1], S"™ has a wandering vector w for some m, and the restric-
tion of S to SU™[w] is unitarily equivalent to £,,. The map ®~* from S to L,, is
given by taking S to 8™, restricting to S™ [w], and applying this equivalence. If
G is an isometry in S, then G™ is an isometry in S™), and so clearly the restriction

of G to S(™[w] is an isometry. ]

Theorem 2.2.6. Let S be an analytic free semigroup algebra with n > 2 generators on a
Hilbert space H. Then the canonical map ® from L,, to S extends to a completely isometric
weak*-to-weak ™ homeomorphism from the weak* closure of L, + L}, to the weak* closure

of S + S

Proof. Applying Arveson’s extension theorem [Arv69] gives a completely positive map
U from C*(L,) to B(H) which extends ®. Since ¥ extends ®, we have || V|| =
V()] = [|[@(I)]| =1. Let 2 = {A € C*(L,,) : Y(A)*V(A) = V(A*A)}. By
[Cho74], we have

Z = {AeC* L) W(B)U(A) = U(BA) for all Bin C*(L,)}.

By Theorem 4.1 of [DKPO1]], ® maps isometries in £,, to isometries in S, so every
isometry in £,, belongs to Z. Since, by Theorem 4.5 of [DKPOT], every element in
L,, can be written as a finite linear combination of isometries in £,,, this implies that

Z contains all of £,,. Hence for Ain L,,, U(T'A) = W(T)V(A) forall T in C*(L,).

13



Note that by Corollary .24, C*(L,,) contains 7. For the remainder of the proof,
we restrict ¥ to Tg.

Let T be a self-adjoint element in Tg such that U(7") = 0. For sufficiently large
A > 0, T + A is strictly positive, so by Theorem 4.3 of [Pop89b], we can write
T + M\ = B*B for some B in £,,. Let V.= A\"'/2B. Then

SV)B(V)—1 = W(VV 1)

= U(\'B*B-1I)

= U\ T+ A)-1T)
= A'(T)

= 0,

which shows that ®(V') is an isometry in S. By Lemma .2.3, this implies that V' is

an isometry in £,,. Hence
T =AV*V —1I)=0.
Since, for arbitrary T in T, re(T') and im(T") are self-adjoint, and since
U(T) = V(re(T) +im(7T")) = re(¥(T)) + im(V(T)) =0

if and only if ¥)(re(7")) = 0 and ¥ (im(7")) = 0, it follows that U is injective.

Arguing exactly as above, the canonical map ®~* from S to £,, also has a com-
pletely positive extension 2 from C*(S) to B(F?), and for G in S, Q(HG) =
Q(H)Q(G) for all H in C*(S). Since € extends &, we have ||Q| = [|Q(])|| =
|®~1(I)|| = 1. For the remainder of the proof we restrict € to the intersection of
C*(S) and the range of V.

Note that the range of W is contained in the weak* closure of S + S*. Indeed,
by Lemma 2.2.4, every element in the range of ¥ can be written as U(B*C) =
V(B )Y (C) = &(B)*®(C) for some B and C in L,. The sequence I'y(C) is

weak operator convergent to C, so by the weak operator continuity of ®, the se-

14



quence ®(I';(C)) is weak operator convergent to ®(C'), and hence the sequence
O(B)*P(I'x(C)) is weak operator convergent to ®(B)*®(C'), which implies that
®(B)*®(C) is contained in the weak* closure of S + S*.

We claim that Q(W(T")) = T for all T in Tg. Indeed, apply Lemma to
write T' = B*C for some B and C'in £,,, and let G = ®(B) and H = ®(C'). Then

we have

W(T) = U(BO)
— ®(B)*®(C)
~- G'H,

which gives

QB(T)) = QGH)
= (e7H (@)~ '(H)

= B*C
= T
Then
1T [ ()]l
(D) [NZCHT —

which gives

171 < () < 171,

and shows that ¥ maps 7Tr isometrically onto its range.

We now show that ¥ is weak*-to-weak* continuous. Since the predual of Tp is
separable, by an application of the Krein-Smulian theorem it suffices to show that
if T}, is a sequence in T which is weak*-convergent to zero, then W(T},) is weak*
convergent to zero.

Let A= {A® ®(A): A€ L,}, and note that A is the free semigroup algebra
generated by the isometries Ly & Sy, ..., L, & S,. Fix v in H. By Theorem 1.6 of
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[DKPOT]], there exists a vector  in F'> such that the restriction of Ato W = A[zDu]
is unitarily equivalent to £,,. Letting P denote the projection of 7 @& H onto W,
and letting K denote the weak* closure of the restriction of P(A + A*)P to W, it
follows that K is unitarily equivalent to 7. By Lemma2.2.4, every element of K can

be written as the restriction to YV of an element of the form
P(B*® ®(B)")(C @ ®(C))P=P(B*CoV(B*C))P.

Hence K is the restriction to W of {T @ ¢(T') : T € Tg}.
If T, is weak* convergent to zero in Tg, the unitary equivalence between 75 and
K implies the restriction of the sequence 7;, & V(7},) to W is weak*-convergent to

zero in KC. Hence
(T, ®Y(T))(zdu),zdu) =Tz, x)+ (V(T,)u,u) — 0,

and since (T, z,2) — 0, this implies that (V(7},)u,u) — 0. Since u was chosen
arbitrarily, we deduce that (¥(7},)u,u) — O for all uw in H. By the polarization
identity, we get that W(7},) is weak operator convergent to zero. By the uniform
boundedness principle, the sequence W(7},) is bounded. It follows that W(T},) is
weak™® convergent to zero. We therefore conclude that W is weak* continuous.

It now follows by another application of the Krein-Smulian theorem that U has
weak* closed range, and that ¥ is a weak*-to-weak® homeomorphism onto its range.
But it’s clear that the range of U is weak* dense in the weak* closure of S + &%, so
U maps Tr weak*-to-weak* homeomorphically onto the weak* closure of S + S*.
From above, ¥ is a completely positive isometry, with completely positive inverse €.

Hence V is completely isometric. O

2.3 Wandering vectors

Let S be a weak*-closed subspace of B(H), and let « and y be vectors in H. Then

[z ® y|s denotes the weak-operator-continuous linear functional on S which is given

16



by the equivalence class of the rank one tensor + ® y. In other words,
(A, [r®yls) = (Az,y), AE€S.

Definition 2.3.1. A weak*-closed subspace S of B(H ) is said to have property A; (1)
if, for every weak*-continuous linear functional 7 on § and every € > 0, there are
vectors « and y in H with ||z||||y|| < (1 + €)||7]| such that 7(A) = (Az,y) for all
AinS.

It was shown in [DP99] that £,, has property A;(1), and it is well known (see for
example Proposition B of [[Dav87]) that a singly generated analytic free semigroup
algebra has property A;(1). In this section, we will use dual algebra techniques to
show that every analytic free semigroup algebra with n > 2 generators has property
Ay (1). From this result, it will follow easily that every analytic free semigroup algebra
has a wandering vector.

For the remainder of this section we fix an analytic free semigroup algebra S with
n > 2 generators acting on a Hilbert space H. The general outline of our approach
is as follows. Let 7 be a weak*-continuous linear functional on §. We will show that

We can Construct convergent sequences (x)) and (yx) such that
lim |7 — [z ® yi]s|| = 0.
k—o00

This will then give 7 = [z ® yls, where © = limy, 24, and y = limy, yy.
The following idea will allow us to iteratively construct the sequences () and

(yr). Fix x5 and yi. Suppose we can find vectors 2’ and 3’ such that

1. [¢' ® y|s approximates the error m — [z} ® yx]s arbitrarily closely,
2. ||z ® ¥]s]| and ||[z" ® ys]|| are arbitrarily small,

3. ||2'|| and ||| are arbitrarily close to |7 — [zx @ yk]s||-

Set 41 = 2 + 2" and yp11 = yx + ¥'. Then

|7 = [2e41 @ yrsalsl| < 7= [z @yrls — [2' @y |s |+ 12" @yl sl 4 I|[zx @y ]s

17



$0 [Tk4+1 @ Yk+1]s is an arbitrarily good approximation to 7, and the sequences ()
and (yi) can be made Cauchy. Of course, the main difficulty will be in showing that

it is possible to find 2" and ¥’ as above.

Definition 2.3.2. An operator X : F? — H is said to intertwine £, and S if

LetZT = (1, ..., T, ) be a wandering vector for Sm), By Theorem 1.3 of [Pop894],
we know that the restriction of S™) to S(™[7] is unitarily equivalent to £,,. Let
X : F? — H denote the map which follows this equivalence with the projection
onto the first coordinate. Then X intertwines £,, and S. It was shown in [DLP03]
that every vector in H is in the range of some intertwining operator of this form.

The following result shows that every intertwining operator gives rise to an L-
Toeplitz operator. This allows us to use the results of section 2.7 to work with inter-

twining operators.

Lemma 2.3.3. Suppose X : F? — H intertwines L,, and S. Then X*X is an L-
Toeplitz operator.

Proof. 'This follows immediately from the identity
LiX*XL; = X*"S;S;X
X*X ifi = j,

0 otherwise.

We require several technical results about L-Toeplitz operators.

Lemma 2.3.4. LetT" be an L-Toeplitz operator with Fourier series

T~ Y awRu+ Y bR,

wel; weF\ {2}
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o
Then for any word w in F,

> buRE, > buRuby

weF\{2} weFf\{z}

IN

Proof. We have

Z %R:ugu = Z |bw|2

weF\ {2} weFi\{z}

w=w'u

S P

weF\{2}

= Z wawgu

weF\{2}

IN

Lemma 2.3.5. LetT" be an L-Toeplitz operator with Fourier series

T~ Y awRu+ Y bR,

weF; weF\{2}

Then given p > 1 and € > 0, there is a word v in ¥ such that
||R;TRU§U - CLQ&LH <€

for any word v € FP.

Proof. For k > 1, let vy, be the word vy, = 12*. Then for any word w in IF;

n?

1 ifw=0,
R; R,R,, = Ry ifw=wvyforw € F/,
0 otherwise.
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ES

This implies the Fourier series for I,

TR, is given by

R:kTRvk ~ CL@I + Z avakw’ + Z ER:kw/'
weF\{o} weF\{a}

w=w'vy w=w'vy,

Hence for u in F}',

Ry TRy &~ agbu+ Y auBRywlut Y buRpbu

weF;\{2} weF;\{2}
w=w'vy, w=w'v},
This gives
IR, TRybu—as&all = || D awRuwéa+ D, buRjb
weF\{o} weF\{o}
w=w'vg w=w'vg

< Z avakw’fu + Z %Rzkw’&i
weF; \{o} weF; \{2}
w=w'vy w=w'vy,
< Z avakw’fu + Z wavkw’gu
weF\{o} weF \{2}
w=w'vy, w=w'vy,

where the last inequality follows from Lemma [.3.4. Now

2
Z avakw’fu = Z ‘a’w|2 = |’R;kT€®|l27
weF\{o} weF\{o}
w=w'vy, w=w'vy,

20




and similarly,

2

Z wavkw’gu = Z |bw‘2 = ||Rsz*§®”27

weF\{o} weF\{o}
w=w'vy, w=w'vy,
The result follows from the fact that for all £ in F2, ||R5¢|| — 0 as |v] — oc. ]

Recall that ¢ : (£,,). — S, is the predual of the map &' : S — L,,.

Lemma 2.3.6. Let X : F> — H be an intertwining operator, and let v = X&y. Then

givenp > 1 and ¢ > 0, there exists a word v in ¥} such that

H[Sulvx ® SupTls qu P([Eur ® Eus) e H

Jfor all words uy and uy in F?.

Proof- By scaling X if necessary, we can suppose that ||z|| = 1. Let 7' = X*X. Then
T is an L-Toeplitz operator by Lemma .3.3. Writing the Fourier series for 7" as

T~ ayRu+ Y bR,

weF; weF,\{0}

it follows that ay, = ||z]|*> = 1. Hence by Lemma P.3.5, there exists a word v in F;"
such that ||R:TR,&u, — &u,|| < € for any word us in F?. Then for A in S,

(A, [SupoT @ Supwrls) = (ASuwT, Susw)
(ASuvX &g, SupvXEs)
(X (A) Luyvéo, X Lupnéo)

= (XOT'(A) R, XRokur)
(XR, @™ (A)&uys X Rur)
(

7 (A)ur, RIT Robuy)
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for all words u; and us in 2. This gives

(A, [Suro® @ Suzols — [§ur @ Eusli,)]

‘((I)il(A)gmv R:TRvéuz - ém)‘

< O (A N BT Ry — Eusll
< €lA].
Therefore,
[[Su10® ® Suzo]s — ([§uy ® Eusle,)ll <€ O

Lemma 2.3.7. Let M > 2 be minimal such that S™) has a wandering vector W =
(Wi, ...ywpr). Then given € € (0,1) there exists a unit vector T = (T1,...,Tp1) in
StM) [@] such that x1 = XE&u for some intertwining operator X F? — H, and
lzi|| > 1 —e

Proof Let P denote the projection map from SM)[w] to H™ =) which takes T =
(21, ..., 2as) to (22, ..., w7). Then P intertwines the restriction of S™) to SM)[w]
and SM=1, The restriction of SM) to SM) [w] is unitarily equivalent to £,,. Let U

be a unitary implementing this equivalence. Then setting Y = PU, Y intertwines
L, and SM=1_ Suppose that for all Z in SM[w], ||z1|| < (1 — €)||Z||. Then

M M
IZ0* =D aall® < (L= |7l + ) llall?,
i=1 1=2

which gives
mM
D il > (1= (1 - )z
i=2

implying that P is bounded below, and hence that Y is bounded below. By The-
orem 2.8 of [DLP05], this implies that the range of Y is a wandering subspace for
SM=1) contradicting the minimality of M. Hence there must be some unit vector
7 in SM)[w] such that ||z, ]| > 1 —e.

Let ( denote the projection map from S [w)] to H which takes§ = (y1, ..., yar)

to ¥y, and let Z = QU. Note that 2 is contained in the range of Z. For every R
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in R, the operator ZR intertwines £,, and S. Moreover, since the set of vectors
{R¢y : R € Ry} is dense in F2, the set {ZREy, : R € R, } is dense in the clo-
sure of the range of Z. It follows that we can choose the vector T as above such that

x1 = Xy for some intertwining operator X : F? - H. ]

Let M > 1 be minimal such that the ampliation S has a wandering vector Z.
Such M exists by Theorem E.1.1]. Then H™) contains an infinite family of pairwise
orthogonal subspaces W, for k& > 1, which are wandering for S (M) For example,
we can take W, = S(™) [Sq()zn)f], where v, = 12F. For k > 1, let M}, denote the

linear manifold in H given by
My ={z€ H:z=7% forsomeZ = (Z1,...,Zp) in Wy}.

Let WV denote the algebraic span of the W, and let M denote the algebraic span of
the Mk

Lemma 2.3.8. Given hy, ..., hy in M and e > 0, there exists a unit vector y in M such
that y = Y &y for some intertwining operator Y : F? — H, and such that ||[S,y &
hilsll < € and ||[h; ® Suyls|| < € for any wordu € F} and1 < j < gq.

Proof. For each j, there exists = (hgj), o hg\j}) in W such that h; = hgj).
Choose €y € (0,1) such that €5/(1 — ¢p) < eand eo/||hY)]| < 1for1 < j < g, and
choose r sufficiently large that Y s orthogonal to W, for1 < j <gq.

By Lemma .37, there exists a unit vector T = (21, ...,2p) in M, such that

r1 = X &, for some intertwining operator X : F? — H, and such that

1/2
2
|z1]| > max ¢ 1 —ep, | 1 — _6(.) 1<j<q
12

This gives 1/||z1]| < 1/(1 — €) and

M 62
Sl = 1— ol < =2, 1<j<q
i—2 112
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For any word u in IF;f,

M M
115wz @ B Jsll < || 18wz @ b s || + || [Suz: @ hY)s
=1 =2

= |[isnz @ RY H + 1318w © WP

=2

[Su; @ B

) ‘
S
/2 , 1/2
1. mr?) (Z ||h§”||2>
2 =2
/2 , 1/2
||xi||2> (Z ||h£”||2)

1/2
< (Z” & "2)
607

<

Il
.Mg

-
Il
)

M=

i

|
.ME

I
N

7

where we have used the fact that E and E G) belong to orthogonal & (M) _invariant
subspaces, which implies that ||[55"'T 7Y ] || = 0. Multiplying this inequality by
1/[|z1]] = 1/||Suzx1|| then gives

I[Su(@1/llza]]) @ hylll < €0/ (1 = €o)

for 1 < j < gq. In the same way we get

1h; @ Sl /[lz2 DI < €0/ (1 = €o)

for 1 < j < q. Hence we can take y = z1/||z1|| and Y = X /||z1]|. O

Lemma 2.3.9. Given vectors hy,...,hg in M, p > 1, and € > 0, there exists a unit
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vector z in M such that

1[Su12 © Sus2ls = ([ ® Gusle, )|l <€

Jor all uy and sy in FE, and such that ||[Syz ® hjls|| < € and ||[h; ® Syz]s|| < € for
allw e Frandl < j <q.

Proof. By Lemma P.3.8, there exists a unit vector y in M such that y = Y, for
some intertwining operator Y : F? — H, and such that for any word w in F;,
I[Swy @ hyls|| < €and ||[h; ® Syyls|| < eforl < j < q. By LemmaP.3.G, there
exists a word v in F}" such that ||[S,, Syy ® Suy Seyls — O([Euy @ Euyle,)|| < € for
any words u; and us in F2. Then ||[S,S,y @ hjls|| = ||[[Swy ® hjls|| < € and
I[h; @ SwSuyls|l = |l[h; @ Swwyls|| < € so we can take z = S,y. [

Lemma 2.3.10. Given a weak*-continuous linear functional w on S, hy, ..., hy in M,

and € > 0, there are vectors x and y in M such that
Ll =lz@ylsl| <e
2 |zl < X+ 72 and |yl < 1+ €)|I7]2,
5. o @ hylsl < e and |l @yl < e fir 1 < <

Proof. By scaling 7 and e if necessary, we can assume that ||7|| = 1. Choose ¢y > 0
such that 2¢y + 3¢Z < €/2 and 4¢p + 4€3 < € + €2/2. Since L,, has property A; (1),
there are vectors € and 7 in F? such that [§ ® ]z, = ¢~ (7), with ||€]| < 1 + €
and ||n|| <1+ €.

Since &4 is cyclic for £, thereis p >1and C and D in the span of {L,, : u € F}
such that ||C¢y — ]| < €p and || D&y — 7| < €o. Then

1Call < [|C&e — &Il + [1€]] < 1+ 26,
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so ||C&s]12 <1+ €+ €2/2, and similarly, || DE||? < 1+ € + €2/2. Also,

Im = ¢([Cée @ Dol )l = N[€ @ nle, —[Ce ® Déole, |
(€ = Ce) @l |l + [[(CEe = ) © (n — D&o)le, || +
I[€ @ (n — D&a)lc, |l

IN

< €= Céellllnll + 11§ = Céalllln — Déa |l +
1€1[1ln — D& |l
260 + 3€;
€/2.

Set A= ®(C') and B = ®(D). If we expand C' and D as

C=> cl, and D= d,L,

u€lFy uelFh

then

A= Z ¢S, and B= Z dyS,,.

ueF? u€Fh

Choose €; > 0 such that

€ Z leu| <€, € Z |d_u‘ <€ € Z Z ’cud_v| < €/2,

u€Fy u€lFy, ucFh, veFh
€1 5 g leuGo] < e+ €22, & g E ‘dudv} <e+é2.
u€FN veFY u€FN veFY

By Lemma [2.3.9, there exists a unit vector z in M such that

[[Suz ® Suz]s — d([§u @ &l )| < &

for any words v and v in F?, and such that ||[S,2 @ hj]s|| < €1 and ||[h; ® Sy2]s|| <
€1 for any word w in F; and 1 < j < ¢. Then
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[[Az ® Bz]s — #([C¢ ® D], )|

Z Z culy([Suz ® Sp2)s — ¢([Lués ® Lu&slr,))

u€F? veF?

< ST e 1180z @ Suzls — O((Lubo © Luéole,))]

w€F? veF?

<e > Y |euds|

u€F? veF?

< €/2.
Hence from above,
|m—[A2®Bz]s|| < [[7=¢([CE®DE] ., ) ||+ ¢([CEe®DEs e, ) —[A2@B2]s|| <.

By a similar estimation,

[[42 ® Asls — 9((C © Cale)| < 0 3 3 leaul < e+ €2/2.

u€F? veF?

Evaluation of these functionals at the identity then implies
e+€/2> | Az|* — [|C&|* = [|A2[* — (1 + €+ €/2),

and hence that ||Az|| < 1 + €. In the same way we get || Bz|| < 1 + €.
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Finally,

Az @ hylsll = 1D culSuz @ hyls|
ucFh
< S Je 1Sz @ Als
u€eF?
< € EE: ‘Cu‘
ucFh,
< €,

and in the same way we get

I[h; ® Bzlsll < e ) |du| <e.

u€F?
Hence we can take t = Az and y = Bz. [

The next result follows from Lemma .3.10 by a standard iterative argument from

the theory of dual algebras. We include the details for the convenience of the reader.

Theorem 2.3.11. Given a weak*-continuous linear functional ™ on S and € > 0, there

are vectors T and y in H such that = [x @ yls, ||z|| < (1 + €)||7||*/?, and ||y|| <
(1 + )7 ||*2. In other words, S has property Ay (1).
Proof. By scaling 7 if necessary, we can assume that ||7|| = 1. Choose @ > 0 such

that (1 + a)/(1 — a) < 1+ ¢. Note that of — 0 as k — oco. We claim that for
k > 1, we can find x}, and g, in M such that

Lo lm = [ze ® ylsll < o,
2. ||zl < T+ a)(IT4+a+...+aF ) and ||yl < (1+a)(1+a+...+a* 1),
3. ||lzp — el < (1 +)a® L and |lyr — yr_1]| < (1 + a)a*~t for k > 2.

Setting 9 = 0 and yy = 0, Lemma .3.1( easily implies this is true for & = 1.

Proceeding by induction, suppose that we have found z, and y;, satisfying these con-
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ditions. Choose ¢y > 0 such that ¢y < a and €y < a?*+1) /3. By Lemma 2.3.10,

there are 2’ and ¢’ in M such that
L — [z ® yls — [2' @ y']s]| < €o,

2. 'l < (1 + €o)|I7 — [ @ i)s|/? and
/[ < (1 + eo)llm = [ ® yels]|'72,

3. ||[*' @ yrls|| < €0 and |||z, @ ¥/]s]| < €o.

Set Tyl = Tg + .CL',, and Yk+1 = Y + y’. Then

I = [(zx + ) @ (g + 3]s

I = [zx @ yils — [v" @ y]s| + [ze @ y]s] +
I[z" @ yels]|

3€0

o2k +1)

17— [Zh41 @ Yraa]s]|

IA

Also,
2| < (1+€o)|lm — [z @ yils||'? < (1 + @),

which gives
[2hiall = Nlon + 2] < [l + 12 < T+ ) A+ + ... + )

and

s — zill = [l2']] < (1 + @)at.

Yl < T +a)(I+a+...+a*) and [|yes1 — el| < (1 +a)ak,

which establishes the claim.

Symmetrically,
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Now for [ > &,

< o=zl 4 A 2w — @]
< (I+a) (™t +.. +ab
< a1 4a)/(1-a),

|21 — x|

so the sequence () is Cauchy. Let = limy, . Then
||| = lién lzk]| < li11€n(1 +a)l4+a+ ..+ H=1+a)/(l—a)<1l+e

Similarly, the sequence {yy} is Cauchy. Letting y = limy, y; be its limi, ||y|] < 1+e.

Finally, we have
7 — [ @ yls| = lim |7 — [z © yi]s|| < lima® =0,

som =[x ®Yls. O
Theorem 2.3.12. Every analytic free semigroup algebra has a wandering vector.

Proof. Let S be an analytic free semigroup algebra, and let Sy denote the weak-
operator-closed ideal generated by S, ..., S,. Since S is analytic, Sy is proper, and in
particular doesn’t contain the identity. Let 7y denote the weak-operator continuous
linear functional which annihilates Sy and satisfies 7(1) = 1.

Since S has property A;(1), there are vectors  and y in H such that mo(A) =
(Az,y) for all A in S. This implies (S,z,y) = 0 for all w € F}\{2&}, so y is or-
thogonal to the subspace Sy[z]. However, (x,y) = 7(/) = 1, so y is not orthogonal
to the subspace S[z]. Hence S[z] © Spx] is nonempty.

Let 2z be a unit vector in S[x] © Sp[z]. Then the subspace Sp[z] is contained in
the subspace Sy[x], and in particular, is orthogonal to z. Hence (S,,2, z) = 0 for all
w € F\{@}. Let uand v be distinct words in IF;\ such that |u| < |v|. Then S:S, is
in Sp, so (Syz, Syz) = (2, 5:S,2) = 0. By symmetry, it follows that (5,2, S,2) = 0

for every pair of distinct words « and v in IF;}. Thus 2 is a wandering vector for S. [
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Corollary 2.3.13. A free semigroup algebra is either a von Neumann algebra, or it has

a wandering vector.

Proof. Let S be a free semigroup algebra. By the general structure theorem for free
semigroup algebras [DKPOT]], S is either a von Neumann algebra, or it has an analytic

part. In the latter case, by Theorem .3.12, S has a wandering vector. ]

By Theorem 4.1 of [DLP03], every free semigroup algebra which has a wandering

vector is reflexive. Thus we have established the following result.
Corollary 2.3.14. Every free semigroup algebra is reflexive.

Theorem 4.2 of [DLP05] shows that every analytic free semigroup algebra which
has a wandering vector is hyperreflexive with hyperreflexivity constant at most 55.

This gives the following result, which we will refine in section 2.4.

Corollary 2.3.15. Every analytic free semigroup algebra is hyperreflexive with hyper-

reflexivity constant at most 55.

2.4 'The hyperreflexivity of free semigroup algebras

In Section .3, we established that every analytic free semigroup algebra has a wan-
dering vector. In this section, we will build on this result to show that the predual of
every analytic free semigroup algebra with n > 2 generators satisfies a very strong fac-
torization property. By a result of Bercovici [Ber98], we will obtain as a consequence

that every such algebra is hyperreflexive with hyperreflexivity constant at most 3.

Definition 2.4.1. A weak*-closed subspace S of B(H) is said to have property Xj
if given a weak*-continuous linear functional 7 on S with ||7|| < 1, hy, ..., hy in H,

and € > 0, there are vectors x and y in H such that
L |[r—[z®yls| <e

2. Jlefl < Land [lyl] < 1,
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3. Il @ hylsl| < eand [|[h; @ yls|| < efor1 < j <gq.

Bercovici [Ber98] showed that any weak*-closed algebra whose commutant con-
tains two isometries with pairwise orthogonal ranges has property &} 1, and showed
that any weak*-closed algebra with propety &} ; is hyperreflexive with hyperreflexivity
constant at most 3. For n > 2, this includes £,,. We will show that every analytic
free semigroup algebra with n > 2 generators has property Xj ;.

We require the following result which is implied by Lemma 1.2 in [KriOT]].

Lemma 2.4.2. Given a proper isometry V' in Ry, vectors vy, ..., Vq in F?, and e > 0,

there exists m such that ||(V*)"v;|| < efor1 < j <q.

For the remainder of this section we fix an analytic free semigroup algebra S with
n > 2 generators acting on a Hilbert space H, and we let Z denote the weak* closure
of § +&§*. Let ® denote the canonical map from £,, to S. By Theorem P.2.4, we can
extend @ to a map from the set 75 of R-Toeplitz operators to Z, and this extension
is a complete isometry and a weak*-to-weak* homeomorphism.

For  and y in H, we will need to take care to distinguish between the weak-
operator-continuous vector functional [z ® y|s defined on S, and the weak-operator-
continuous vector functional [z ® y|z defined on Z.

The following lemma is a variation of an argument of Bercovici [Ber98]. It was

kindly provided by Ken Davidson.

Lemma 2.4.3. Given isometries U and V' in R, with orthogonal ranges, vectors & and
v in 2 with v in the kernel of U*, and ¢ > 0, define

k
1 .
= UVE
vk S

Then limy, ||[v ® ni) 7] = 0.

Proof Let H? denote the Hardy-Hilbert space with orthonormal basis {ey, : k& > 0}.
Fork > 0,defineY : H? — F2byYe, = U*Véand Z : H> — F?by Ze, = Urv
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for kK > 0. Note that Y and Z are isometries. For T" in T, by Lemma we can
factor T as T = A*B, for A and B in L,,. Then

(Y*TZej,e)) = (A'BUw,U'VE)
0 ifi <j

)
Ci—j if i Z ]

where ¢;_; = (A*Br,U"9V¢) = (Tv,UIVE). 'This implies that Y*T'Z is an
analytic Toeplitz operator with symbol f, for some f in H*. Note that || || =
WY*TZ|| < ||T||- Hence

(T, [v @ mi) 73|

1 <N
(Tv, — UZVﬁ)‘
k

_ % (v, Uivg)|
1 k
— ﬁ Zci

i=1

1
< —|Db -
AN
1
< ——|IDullLIITI,
< —ZIDdIT

where || Di||; denotes the L'-norm of the Dirichlet kernel. Using the well-known

fact that || Dy |1 grows logarithmically as k — oo gives limg, ||[v @ m| 7, = 0. O

Lemma 2.4.4. Given vectors hy, ..., hy in H and € > 0, there exists an intertwining
operatorY : F2 — H such that |Yés|| = 1 and ||[Y s @ hy]z|] < efor1 <i < q.

Proof. For1 < i < g, let H; : F? — H be an intertwining operator such that
|Hiés — hi|| < €/2. Since S is analytic, by Theorem there is an isometric
intertwining operator X : F? — H. Then each H; X is an L-Toeplitz operator, so by
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Lemma 2.2.3, we can write H X = A} DB, for some A; and B; in R,, such that A;
and B; are bounded below. Let C; = R,y B;, and let D = Zle RyisA;. Then D is
bounded below and H} X = C; D. Using inner-outer factorization, write D = UF'
for U and F' in R, where U is inner and F is outer. Then F' is bounded below since
D is, and hence is invertible.

By Lemma [.4.7}, there exists m such that ||(U*)"Ciéz|| < ¢/(8]|F]) for 1 <
i < q. Write Ciéy = v; + w;, where [|w;|| < €/(8]|F|), and v; is in the kernel of
(U*)™. Set V. =U"R;and W = U™Rs. Then V and W are isometries in R, with
pairwise orthogonal ranges. Note that ; is in the kernel of V*. For k > 1, define

intertwining operators Y}, : F2 — H by

1
Vk+1

k
Y, = XF! Z U™ 'R VIW,
=0

and define
LI
= — E VIW E.
77k \/E j:1 5@

Note that 7y, is a unit vector.
Using the fact that V' = DF-YU™ 'R, we compute

1
vVk+1

1
vVE+1

k+1

= G k+1zww

Jj=1

H'Y, = HXF!

k
Z U R VIW
§=0

= C;DF!

k
> UM RVIW
=0
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Then for T in Tg,

k+1

(THéo Viéo) = (27 /(T)Cike. f—Z W)
= (cbil(T)Cié.@ankJrl)a

Hence ||[Hiéz @ Yiés)z]l = ||[Ci€s @ Mkt1]73||- By Lemma 2.4.3, we can choose 7
sufficiently large that ||[v; ® 7y41] 7, || < €/(8]|F|). This gives

[Cike @l rll < (v @tz || + [llwi @ 0ega] 73|
< v @ el 7l il -4l
< ¢/(4[F]).

Thus [[[Hi€e ® Yi&olz| < e/(4[|F[|) for 1 <@ <g.

Now,
1 " )
V&7 = |XF > UM RVIWE|?
vr+1 =
1 T

> oy DU R
7=0

r
(r+ DIFIP?
which implies

1
1Yoboll > 5o
I

Setting Y = Y,./||Y;-€z ||, it follows that

1
Hi@ Y@ = T~ Hz’@ Y};@
I[Hie ® Yz | HYp&aH”[ o ® Ypéolz|
< 2|F||I[Hife @ Yiéoz||
< €/2.
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Thus

176 @ Yzl < [[[(h; — Hi§o) @ Ygzl| + |[[H;ée @ Vg z|
1 — Hio|| 1Y Eall + [[[Hiée @ Yg] 2]

€.

IN

A\

]

Lemma 2.4.5. Given vectors hy,...,h, in H, p > 1, and € > 0, there exists a unit

vector z in H such that

||[SU1Z & SUQZ]S - ¢([§U1 ® §U2]Cn)|| <€

Jor all uy and uy in B, and such that ||[Swz & hils|| < € and ||[h; ® Swz]s|| < € for
alw e Flandl <i<q.

Proof. By Lemma .44, there is an intertwining operator Y : F2? — H such that
IYEs|| = Land ||[YEs @ hi]z|| < efor 1 <i < q. By Lemma[2.3.0, there is a word
v in F} such that ||[Su,0Y€s ® SupY &sls — 0([Euy @ Eusle,)|| < € for all words
ujand ug in F2. Set z = S, Y &p.

For T in Z and w € F},

(T, [Swz @ hj]z)|

(TS, [z @ hyl2)|
ITSulllllz @ hylz]]
< Tz @ hslzll-

IA

Hence ||[Swz ® hilz|| < ||[z ® hi]z|| < € and similatly, ||[h; @ Swz]z]| < ||k @
z)z|| < €. In particular, restricting to S gives ||[S,2®h;]s|| < €and [|[h;®S,2]s| <
€. O

Lemma 4.5 is essentially a strengthened version of Lemma 2.3.9, in the sense

that the /;’s in the hypothesis can be completely arbitrary.
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Lemma 2.4.6. Given a weak*-continuous linear functional ™ on' S, hq, ..., hy in H,

and € > 0, there are vectors x and y in H such that
L =lz®ylsl| <e
2 |zl < @+ )72 and |yl < (1+ €)',
3. [z @ hylsl| < eand||[h; @ yls|| < efor1 <j<q.

Proof. 'The proof follows exactly as in the proof of Lemma 2.3.10], using Lemma 2.4.5
in place of Lemma P2.3.9. [

Lemma [.4.4 clearly implies the desired result.

Theorem 2.4.7. Every analytic free semigroup algebra withn > 2 generators has property
Xo1.

Corollary 2.4.8. Every analytic free semigroup algebra with n > 2 generators is hyper-

reflexive with hyperreflexivity constant at most 3.
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Chapter 3
The structure of an isometric tuple

This chapter concerns the structure of an isometric tuple of operators, an object that
appears frequently in mathematics and mathematical physics. From the perspective of
an operator theorist, the notion of an isometric tuple is a natural higher-dimensional

generalization of the notion of an isometry.

An n-tuple of operators (V1,...,V},) acting on a Hilbert space H is said to be
isometric if the row operator [V} - -+ V| : H® — H isanisometry. This is equivalent
to requiring that the operators V1, . . ., V,, satisfy the algebraic relations

I ifi=jy,
Vv =
0 ifi ]

These relations are often referred to as the Cuntz relations.

The main result in this chapter is a decomposition of an isometric tuple that gener-
alizes the classical Lebesgue-von Neumann-Wold decomposition of an isometry into
the direct sum of a unilateral shift, an absolutely continuous unitary and a singular
unitary. We show that, as in the classical case, this decomposition determines the
structure of the weakly closed algebra and the von Neumann algebra generated by the
tuple.

The existence of a higher-dimensional Lebesgue-von Neumann-Wold decompo-
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sition was conjectured by Davidson, Li and Pitts in [DLP03]. They observed that
the measure-theoretic definition of an absolutely continuous operator was equivalent
to an operator-theoretic property of the functional calculus for that operator. Since
this property naturally extends to the higher-dimensional setting, this allowed them
to define the notion an absolutely continuous isometric tuple.

The key technical result in this chapter is a more effective operator-algebraic char-
acterization of an absolutely continuous isometric tuple. The lack of such a charac-
terization had been identified as the biggest obstruction to establishing the conjecture
in [DLP05] (see also [DYO08]). As we will see, the difficulty here can be attributed to
the lack of a higher-dimensional analogue of the spectral theorem.

In this chapter, we overcome this difficulty by extending ideas from the commu-
tative theory of dual algebras to the noncommutative setting. A similar approach
was used in Chapter P to prove that certain isometric tuples are hyperreflexive. In
the present chapter, our assumptions on the isometric tuples we consider are much
weaker, and the problem is substantially more difficult. The idea to use this approach
was inspired by results of Bercovici in [Ber98].

In Section B.T], we review the Lebesgue-von Neumann-Wold decomposition of
a single isometry that is the motivation for our results. In Section B.2, we provide
a brief review of the requisite background material on higher-dimensional operator
theory, and we introduce the notions of absolute continuity and singularity. In Sec-
tion B.3, we prove an operator-algebraic characterization of an absolutely continuous
isometric tuple. In Section B.4, we prove an operator-algebraic characterization of a
singular isometric tuple. In Section B.5, we prove the Lebesgue-von Neumann-Wold

decomposition of an isometric tuple, and we obtain some consequences of this result.
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3.1 Motivation

The structure of a single isometry V' is well understood. By the Wold decomposition

of an isometry, V' can be decomposed as
V=V,eU,

where V,, is a unilateral shift of some multiplicity, and U is a unitary. By the Lebesgue

decomposition of a measure applied to the spectral measure of U, we can decompose
U as
U=Ve®V,,

where V, is an absolutely continuous unitary and Vj is a singular unitary, in the sense
that their spectral measures are absolutely continuous and singular respectively with

respect to Lebesgue measure. This allows us to further decompose V' as
V=V.oV,®V.

We will refer to this as the Lebesgue-von Neumann-Wold decomposition of an
isometry.

It will be convenient to consider the above notions of absolute continuity and
singularity from a different perspective. Let A(ID) denote the classical disk algebra
of analytic functions on the complex unit disk D with continuous extension to the
boundary. An isometry V' induces a contractive representation of A(ID), namely the

A(DD) functional calculus for V, given by

f=fV), feAD).

Recall that the algebra A(ID) is a weak-* dense subalgebra of the algebra H> of
bounded analytic functions on the complex unit disk. In certain cases, the representa-

tion of A(ID) induced by V' is actually the restriction to A(DD) of a weak-* continuous
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representation of H*°, namely the H* functional calculus for V, given by
f=fV), [feH™

It follows from Theorem III.2.1 and Theorem III1.2.3 of [SF/0] that this occurs if
and only if V; = 0 in the Lebesgue-von Neumann-Wold decomposition of V. This

motivates the following definitions.

Definition 3.1.1. Let V' be an isometry. We will say that V' is absolutely contin-
uous if the representation of A(D) induced by V' extends to a weak-* continuous
representation of H>°. If V' has no absolutely continuous restriction to an invariant

subspace, then we will say that V' is singular.

The importance of the Lebesgue-von Neumann-Wold decomposition of an isom-
etry V is that it determines the structure of the weakly closed algebra W(1') and the
von Neumann algebra W* (V') generated by V. Recall that W(V') is the weak closure
of the polynomials in V', and W* (V') is the weak closure of the polynomials in V" and
V.

Let @ denote the multiplicity of V,, as a unilateral shift, and let y1, and f5 be
scalar measures equivalent to the spectral measures of V,, and V respectively. Since a

unilateral shift of multiplicity one is irreducible, W* (V) is given by
W (V) = B(£*)* @ L®(V,) & L™ () (Vs).

It was established by Wermer in [Wer52] that W(1) can be self-adjoint, depending
on o and fi,. If @ # 0 or if Lebesgue measure is absolutely continuous with respect

to fiq, then W(V') is given by
W(V) o H*(V, ® Vo) & L>(s) (Ve).

Otherwise, if neither of these conditions holds, then W (V') = W*(V').
The following example shows that it is possible for the weakly closed algebra gen-

erated by an absolutely continuous isometry to be self-adjoint. We will see later that
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there is no higher-dimensional analogue of this phenomenon.

Example 3.1.2. Let U denote the operator of multiplication by the coordinate func-
tion on L?*(T,m), where m denotes Lebesgue measure. Let m; and my denote
Lebesgue measure on the upper and lower half of the unit circle respectively, and
let Ujand U, denote the operator of multiplication by the coordinate function on
L*(T,my) and L*(T, my) respectively.

Since the spectral measure of U ~ U; @ U, is equivalent to Lebesgue measure,
U is absolutely continuous. Thus U; and U, are also absolutely continuous. From

above,

WAU) ~ L¥(U),  W(U) ~ H(U).

However, since Lebesgue measure is not absolutely continuous with respect to m4 or
ma,

W(U;) = WH(U;) = L®(U;), i=1,2.

In particular, the weakly closed algebras W(U; ) and W(U,) generated by U; and Uy

respectively are self-adjoint.

3.2 Background and preliminaries

3.2.1 The noncommutative function algebras

The noncommutative Hardy space F)? is defined to be the full Fock-Hilbert space

over C", i.e.

Fr% - @zio(cn)®kv

where we will write &5 to denote the vacuum vector, so that (C")®Y = C&;. Let
&1, .., &, be an orthonormal basis of C" and let IF}, denote the unital free semigroup
on n generators {1, ..., n} with unit @. Fora word w = wy - - - wy, in I, it will be

convenient to write &, = &, @ - - ® &, . We can identify F2 with the set of power
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series in n noncommuting variables &1, . . ., &, with square-summable coefficients, i.e.

F? = Z A Z |aw|? < oo

wel, wekFy,

In particular, we can identify the noncommutative Hardy space F} with the classical
Hardy space H? of analytic functions having power series expansions with square-
summable coefficients.

The left multiplication operators Ly, . . ., L, are defined on F> by
Li§w =& ® & = &iw, wEF,.

It is clear that the n-tuple L = (L, ..., L,,) is isometric. We will call it the unilateral
n-shift since, for n = 1, Ly can be identified with the unilateral shift on H?. For a
word w = wy - - - wy, in F}, it will be convenient to write Ly, = Ly, - -+ Ly, -

The noncommutative disk algebra A, is the norm closed unital algebra gen-
erated by Ly, ..., L, and the noncommutative analytic Toeplitz algebra L, is the
weakly closed unital algebra generated by L4, . . ., L,,. These algebras were introduced
by Popescu in [Pop9§], and have subsequently been studied by a number of authors
(see for example [DP98] and [DP99)]).

The noncommutative disk algebra A,, and the noncommutative analytic Toeplitz
algebra £,, are higher-dimensional analogues of the classical disk algebra A(D) and
the classical algebra H* of bounded analytic functions. In particular, the algebra A,
is a proper weak-* dense subalgebra of the algebra £,,. If we agree to identify functions
in H* with the corresponding multiplication operators on H?, then we can identify
A(D) with A; and H* with £;.

As in the classical case, an element A in £,, is uniquely determined by its Fourier

A~ Z Qo Ly,

wel?

series

where a,, = (Ay, &) for w in IF. The Cesaro sums of this series converge strongly
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to A, and it is often useful heuristically to work directly with this representation.
We will also need to work with the right multiplication operators Ry, ..., R,
defined on F? by

Ri&w = gw ®€z = gwh w e ]F;

Then-tuple R = (Ry, ..., R,) is unitarily equivalentto L = (Lq, ..., L,). The uni-
tary equivalence is implemented by the “unitary flip” on F'? that, for a word wy - - - wy,

in F}, takes &y .oy, 10 Eppypoony - We will let R, denote the weakly closed algebra gen-
erated by Ry, ..., R,,.

3.2.2 Free semigroup algebras

Let V. = (V4,...,V,) be an isometric n-tuple. The weakly closed unital algebra
W(V') generated by Vi, ..., V,, is called the free semigroup algebra generated by V.
As in Section B.2.1], for a word w = wy - - - wy, in the unital free semigroup F7, it will

be convenient to write V,, = V,, -V, .

Example 3.2.1. The noncommutative analytic Toeplitz algebra £,, introduced in Sec-
tion B.2.1] is a fundamental example of a free semigroup algebra. We will see that it

plays an important role in the general theory of free semigroup algebras.

The study of free semigroup algebras was initiated by Davidson and Pitts in [DP99].
They observed that information about the unitary invariants of an isometric tuple can
be detected in the algebraic structure of the free semigroup algebra it generates, and
used this fact to classify a large family of representations of the Cuntz algebra. Free
semigroup algebras have subsequently received a great deal of interest (see for example
[Dav01]).

It was shown in [DP98] that £,, has a great deal of structure that is analogous to

the analytic structure of /. This motivates the following definition.

Definition 3.2.2. An isometric n-tuple V' = (V4,...,V,,) is said to be analytic if the
free semigroup algebra generated by V' is isomorphic to the noncommutative analytic

Toeplitz algebra L,,.
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The notion of analyticity is of central importance in the theory of free semigroup
algebras. This is apparent from the work of Davidson, Katsoulis and Pitts in [DKPOT].

They proved the following general structure theorem.

Theorem 3.2.3 (Structure theorem for free semigroup algebras). LetV = W(V') be
a free semigroup algebra. Then there is a projection P inV with range invariant under V

such that

1. if P # 0, then the restriction of V to the range of P is an analytic free semigroup
algebra,

2. the compression of V to the range of P* is a von Neumann algebra,
3.V =PVP+ (W V))P-.

The analytic structure of a free semigroup algebra reveals itself in the form of
wandering vectors. Let V' = (V4 ..., V) be an isometric n-tuple acting on a Hilbert
space H. A vector x in H is said to be wandering for V" if the set of vectors {V,,z :
w € F!} is orthonormal. In this case we will also say that = is wandering for the free
semigroup algebra generated by V.

The existence of wandering vectors for an analytic free semigroup algebra was es-
tablished in Chapter [, settling a conjecture first made in [DKPO1] (see also [DLP03]
and [DY08]). Examples show that the structure of an analytic free semigroup algebra

can be quite complicated, making this result far from obvious.

3.2.3 Dilation theory

Recall that an operator 7 is said to be contractive if ||T'|| < 1. An n-tuple of operators
T = (11,...,T,) acting on a Hilbert space H is said to be contractive if the row
operator [17 --- T,] : H"™ — H is contractive.

Sz.-Nagy showed that every contractive operator 7" acting on a Hilbert space H

has a unique minimal dilation to an isometry V, acting on a bigger Hilbert space K
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(see for example [SF70]). This means that H C K, H is cyclic for V and
T" = PuVF* |y, k> 1.

Sz.-Nagy’s dilation theorem was generalized in the work of Bunce, Frazho and
Popescu in [Bun84], [Fra82] and [Pop894] respectively. They showed that every con-
tractive n-tuple of operators 7' = (17,...,T,,) acting on a Hilbert space H has a
unique minimal dilation to an isometric n-tuple V= (V4, ..., V},), acting on a big-
ger Hilbert space K. This means that H C K, H is cyclic for V4, ..., V,, and

PyV;

11

Vi lg=Ts - Ty, i1y...ip€{l,...,ntand k> 1.

3.2.4 'The Wold decomposition

The classical Wold decomposition decomposes a single isometry into the direct sum
of a unilateral shift of some multiplicity and a unitary. In order to state the Wold
decomposition of an isometric tuple, we need to generalize these notions.

In Section B.2.1], we introduced the unilateral n-shift L = (L, ..., L,), and we
saw that it is the natural higher-dimensional generalization of the classical unilateral
shift. An isometric n-tuple is said to be a unilateral shift of multiplicity « if it is
unitarily equivalent to the ampliation L(®) = (Lga), . ,Lﬁf‘)), for some positive
integer av.

The higher-dimensional generalization of a unitary is based on the fact that a
unitary is the same thing as a surjective isometry. An n-tuple of operators U =
(Ui, ...,U,) is said to be unitary if the operator [U; --- U,| : H" — H is a sur-

jective isometry. This is equivalent to requiring that the operators Uy, . . ., U, satisfy

zn: UUr =1
=1

Note that a unilateral shift is not unitary. This is because the “vacuum” vector &5 in

F? is not contained in the range of the unilateral n-shift L = (L1, ..., L,).
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In [DP99], Davidson and Pitts studied a family of “atomic” isometric tuples that
arise from certain infinite directed trees. As the following example shows, this family

contains a large number of unitary tuples.

Example 3.2.4. Fix an infinite directed n-ary tree B with vertex set V' such that
every vertex has a parent. For a vertex v in V/, let ¢;(v) denote the i-th child of v.
Let H = (*(V), so that the set {e, : v € V'} is an orthonormal basis for H. Define
operators S1, ..., S, on H by

Siev = €¢i(v)s 1 S 1 § n.

It’s clear that S1, ..., S, are isometries, and the fact that B is an infinite directed
n-ary tree implies that the range of S; and the range of S; are orthogonal for i # j.
Thus S = (54, ...,5,) isan isometric n-tuple. The fact that every vertex has a parent

implies that every basis vector is in the range of some S;. Thus S is a unitary n-tuple.

Let V = (V4,...,V,) be an arbitrary isometric n-tuple. If V' is unitary, then
the C*-algebra C*(V4,...,V},) generated by V' is isomorphic to the Cuntz algebra
O,,. Otherwise, it is isomorphic to the extended Cuntz algebra &, the extension of
the compacts by O,,. Since the only irreducible *-representation of the compacts is
the identity representation, and since O, is simple, a *-representation of &,, can be
decomposed into a multiple of the identity representation and a representation of O,,.
The Wold decomposition of an isometric n-tuple, which was proved by Popescu in
[Pop894], can be obtained as a consequence of these C*-algebraic facts, based on the

observation that the C*-algebra generated by a unilateral n-shift is isomorphic to &,.

Proposition 3.2.5 (The Wold decomposition). LetV = (Vi,..., V},) be an isometric

n-tuple. Then we can decompose V' as
V=V,aeU,

where V., is a unilateral n-shift and U is a unitary n-tuple.
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3.2.5 Absolutely continuous and singular isometric tuples

As in the classical case, an isometric n-tuple V' = (V4,...,V},) induces a contrac-
tive representation of the noncommutative disk algebra A,,, called the A,, functional
calculus for V, determined by

L -

1

L.

ik

_)‘/;‘/Z Z1,7/Lk€{1,,n}and.k21

PR

This is a consequence of Popescu’s generalization of von Neumann’s inequality in
[Pop91]].

Recall from Section B.2.]] that A,, is a proper weak-* dense subalgebra of the
noncommutative analytic Toeplitz algebra £,,. The following definition is the natural
generalization of Definition B.1.1].

Definition 3.2.6. Let V' = (V4, ..., V) be an isometric n-tuple. We will say that V'
is absolutely continuous if the representation of A,, induced by V' is the restriction
to A,, of a weak-* continuous representation of £,,. We will say that V' is singular if

V' has no absolutely continuous restriction to an invariant subspace.

It is clear from Definition and Definition that an analytic isometric
tuple is absolutely continuous. In order to obtain the Lebesgue-von Neumann-Wold
decomposition of an isometric tuple, we will prove the converse result that an abso-

lutely continuous isometric tuple is analytic.

3.3 Absolutely continuous isometric tuples

The main result in this section is an operator-algebraic characterization of an abso-
lutely continuous isometric tuple. Specifically, we will show that for n > 2, every
absolutely continuous isometric n-tuple is analytic.

For n > 2, fix an absolutely continuous isometric n-tuple S = (S1,...,S,)

acting on a Hilbert space H. Let ® denote the corresponding representation of the
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noncommutative disk algebra A,,, given by
®(Ly) = Sw, weTF;.

Since S is absolutely continuous, ® extends to a representation of £,, that is weak-*
continuous.

It was shown in Corollary 1.2 of [DYO08] that ® is actually a completely isometric
isomorphism and a weak-* homeomorphism from £,, to the weak-* closed algebra
generated by S, ..., .S,. This is equivalent to the fact that an infinite ampliation of
S'is an analytic isometric tuple. Evidently, it is much more difficult to show that S
is analytic. As an explanation, we offer the aphorism that things are generally much
nicer in the presence of infinite multiplicity.

Showing that S’ is analytic amounts to showing that the free semigroup algebra
(i.e. the weakly closed algebra) W(S) generated by Sy, . .., S, is isomorphic to the
noncommutative analytic Toeplitz algebra £,,. Since we know from above that the
weak-* closed algebra generated by 51, .. ., .S, is isomorphic to £,,, our strategy will

be to show that this algebra is actually equal to W(5).

3.3.1 The noncommutative Toeplitz operators

Let S denote the weak-* closed algebra generated by S, .. ., .S,. The map ® intro-
duced at the beginning of this section is a completely isometric isomorphism and a
weak-* homeomorphism from £,, to S. It will be useful for what follows to extend ®
even further. Let M,, denote the weak-* closure of the operator system £,, + L. We
will call the elements of M,, the noncommutative Toeplitz operators, because they
are a natural higher-dimensional generalization of the classical Toeplitz operators.
The noncommutative Toeplitz operators were introduced by Popescu in [Pop89H].

It was shown in Corollary 1.3 of [Pop09] that A belongs to M,, if and only if

A ifi=j,

0  otherwise,
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where Ry, ..., R, are the right multiplication operators introduced in Section B.2.1].
A short proof of this fact was also given in Lemma of Chapter . It follows from
this characterization that M,, is weakly closed.

Let 7 denote the weak-* closure of the operator system S + S*. The proof of the
following proposition is nearly identical to the proof of Theorem 2.2.G of Chapter [|.

Proposition 3.3.1. Let S = (S1,...,S5) be an absolutely continuous isometric n-
tuple.  The representation © of L,, induced by S extends to a completely isometric and
weak-* homeomorphic *-map from M, to T.

We will need to exploit the fact that M,, and T are dual spaces. Let 7, denote
the predual of T, i.e. the set of weak-* continuous linear functionals on 7. Similarly,
let M., denote the predual of M,,. Basic functional analysis implies that the inverse
map &1 is the dual of an isometric isomorphism ¢ from M,,, to 7.. Moreover, since
®~! is isometric, so is .

We can identify the predual of B(F?), i.e. the set of weak-* continuous linear
functionals on B(Fﬁ ), with the set of trace class operators C' 1 (Fﬁ ) on Ffb, where K

in C*(F?) corresponds to the linear functional
(T,K) =u(TK), T¢€ B(F?).
If we let (M,,) 1 denote the preannihilator of M, i.c.
(M) ={K € CY(F?) : u(AK) =0, VAcM,},

then we can identify the predual (M.,,). with the quotient space C'(F?)/(M,,) .
Similarly, we can identify the predual 7, with the quotient space C*(H) /7.
For £ and 7 in F?, it will be convenient to let [¢ ® 1|, denote the weak-*

continuous linear functional on M,, given by

In other words, [£ ® 1] a4, denotes the equivalence class of the rank one tensor z @ y
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in (M,,).. Similarly, for z and y in H, let [z ® y|7 denote the weak-* continuous

linear functional on 7 given by

(T, [z ®@yly) = (Tz,y), TeT.

3.3.2 Intertwining operators

Anoperator X : F2 — H issaid to intertwine the isometric n-tuple S = (S, ..., S,)

and the unilateral n-shift L = (L, ..., L,) if it satisfies

Observe that if X intertwines S and L, then the operator JX* X J is a noncommuta-
tive Toeplitz operator, where J is the unitary flip introduced in Section B.2.1]. Indeed,
using the fact that JR; = L;J for 1 < i < n, we compute

RIJX*XJR; = JLIX*XL;J
— JX'SrS;XJ
JX*XJ ifi=],

0 otherwise.

Since S is absolutely continuous, it follows from Theorem 2.7 of [DLP05] that every

vector = in H is in the range of an operator that intertwines S and L.

3.3.3 Dual algebra theory

Recall that to prove the isometric n-tuple S = (S, . .., Sy) is analytic, our strategy
is to show that the weak-* closed algebra S = W*(Sy,...,5,) is actually equal to
the weakly closed algebra W(S1, ..., S,,). This amounts to showing that S is already
weakly closed. However, instead of working directly with S, it will be necessary to
work with the operator system 7. In fact, we will need to consider the general struc-

ture of the predual of 7.
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In Section B.3.T], we saw that an element in the predual 7. of the operator system
T can be identified with an equivalence class of trace class operators. We will show
that 7 satisfies a very powerful predual “factorization” property, in the sense that the
equivalence class of an element in the predual 7, always contains “nice” representa-
tives. We will see that S inherits this property from 7, and that this will imply the
desired result.

The idea of studying factorization in the predual of an operator algebra is the
central idea in dual algebra theory, which has been applied with great success to a
number of problems in the commutative setting (see for example [BFP85]). As we
will see, many of the factorization properties that were introduced in the commutative

setting make sense even in the present noncommutative setting.

Definition 3.3.2. A weak-* closed subspace A of operators acting on a Hilbert space
H is said to have property A (1) if, given a weak-* continuous linear functional 7 on
Awith ||7]| < 1and € > 0, there are vectors z and y in H such that ||z|| < (1+¢)'/2,
lyll < (1 +e)?and 7 = [z ® y]a.

If a weak-* closed subspace of B(H) has property A;(1), then the equivalence
class of any weak-* continuous linear functional on the subspace contains an operator
of rank one. Note that in this case, every weak-* continuous linear functional on the
subspace is actually weakly continuous. It was shown in [DP99] that £,, has property
A (1), and the same proof also shows that M,, has property A;(1).

Of course, the main difficulty with a predual factorization property like property
A; (1) is that it is often extremely difficult to show that it holds. The next factorization
property turns out to be much stronger than property A (1), but it is sometimes easier

to show that it holds due to its approximate nature.

Definition 3.3.3. A weak-* closed subspace A of operators acting on a Hilbert space
H is said to have property Xj ; if, given a weak-* continuous linear functional 7 on

Awith ||7]] <1, 21, ..., 2, in H and € > 0, there are vectors = and y in H such that

L o]l < Land ly] < 1.
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2. |l[r ® zjlall < eand [|[z; @ ylul| < efor1 <j <gq,
3. |7 = [z @yl <e

It’s easy to see that the infinite ampliation of a weak-* closed subspace of B( H ) has
property Xp 1. Thus, intuitively, a weak-* closed subspace of B(H) that has property
Xb.1 can be thought of as having “approximately infinite” multiplicity. It was shown
in [BFP85] that property Xy 1 implies property A;(1).

We will show that 7 has property & ;. Since this property is inherited by weak-*
closed subspaces, it will follow that S has property & 1, and hence that S has property
A4 (1). It is easy to show that any weak-* closed subspace of operators with property
A1 (1) is weakly closed (see for example Proposition 59.2 of [Con00]). Thus this will
imply the desired result that S is weakly closed.

3.3.4 Approximate factorization

Lemma 3.3.4. Given unit vectors x,21, ..., 2, in H and € > 0, there are vectors

£,C1y e, Cq in B2 such that

L€l < va(l +e)'7?,

201Gl < (T+e) 2 for1 <i<gq,

3. 2@zl = o[ @ Glm,) for 1 <i < g

Proof. Since M., has property A (1), there are vectors 1, ..., v}, (1, ..., ¢} in F}} such
that vf]| < (1+ )2 [ < (1+ )" and [z ® 27 = ¢([v; @ ([lm,) for
1< <q.

Let V; = Ryoe for 1 < @ < g, so that Vi, ...,V are isometries in R,, with

pairwise orthogonal ranges. Set £ = Y7 | Viv} and (; = V;(/ for 1 < i < q. Then

53



||€|| < \/5(1 + 6)1/2, ||C1,|| < (1 + 6)1/2 and for T in 7,

(0([6 ® Glm,), T) = (21T G)
= (<I>‘1<T>Zm;,m;>

= (27 H(T)v},¢))

= (0([vi ® (Im,), T)
= ([ZE ® Zi]TvT)'

Hence [z ® z]7 = ¢([§ @ Gi]m,,)- =

Lemma 3.3.5. Let 1) be a unit vector contained in the algebraic span of {&, : w € Fr 1.

Then there are words w and v in I, such that
LuRvn = L& = Ry,

where L is an isometry in L,,, and R is an isometry in R, with range orthogonal to the

range of R;.

Proof. Expand 1 as n = Z\w\gm aw€y for some m > 0. Let u = 12™ and let
v = 1m2. Thel’l LuRvT} - Z"U)'Sm awfuwv. Set L - Z|w|§m (IwLqu and R -
Z‘w‘ <m QwRuywy. Then L,Ryn = L = R&y, and it’s clear that the range of R is
orthogonal to the range of R;.

It remains to show that L and R are isometries. For w and w’ in F;" with |w| < m
and |w'| < m,

I ifw=u,
L)L Ly L, =

0 otherwise.
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This gives

L'L o= ) > @tw Ly, Luw

[w]<m |w'|<m

= Z Z gy Qyy? L: LZ, Lw’ Lv

[w|<m |w'|[<m

= Z |aw|21

[w|<m

= I

where the last equality follows from the fact that 7 is a unit vector. Thus L is an

isometry, and it follows from a similar computation that R is an isometry. H

Lemma 3.3.6. Given unit vectors 21, ..., 2, in H and € > 0, there exists a unit vector x

in H and vectors €, (1, ..., (g in F2 such that
LoJell < va(l +e)',
216Gl < T+ for1 <i<gq,

3. & = ||El|LEs = ||E|| REw, where L is an isometry in L., and R is an isometry in
R, with range orthogonal to the range of Ry,

4. [z @zl — o€ @ Glm,)|| < eforl <i<q.

Proof. Let 2’ be any unit vector in H. By Lemma B.3.4, there are vectors &', (7, ..., (;

in F/ 3 such that

L gl < val+e'2,

2. ¢ <1+ for1 <i<gq,

3. [v' @ zilr = o([§' @ (lm,) for 1 <i < q.
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Let 17 be a vector contained in the algebraic span of {£,, : w € F}} such that ||n|| <
Va1 +€)/?and || — n|| < €/(1+ €)'/ Then

lle' @ 27 = o @ Gl < 2" @ 27 — o([§ @ Gl
HE =) @ Gl
I1€" = nlllIGll

< €

IA

for1 <i<gq.
By Lemma B.3.3, there are words w and v in F;}" such that

LuRyn = |[nl|L&s = [Inl| RS,

where L is an isometry in £,,, and R is an isometry in R,, with range orthogonal to
the range of R;. Setx = S,2/, £ = L,R,nand (; = R,( for 1 <i < g. Then for
TinT,

[z @ 2zil7 = ¢([€ @ Glm,). T = [([Sur” @ zil7 = &([n @ Glam,), T)
= ([ ® zilr — o([n ® il ), TS
< " @ zilr — é(In @ Gl HITSu|

€[I7]]-

A

Hence ||[z ® zi]1T — ¢([§ ® Glm, )| < e O

The following result is implied by Lemma 1.2 in [KriO1].

Lemma 3.3.7. Given a proper isometry R in R, vectors (1, ...,(, in F2 and € > 0,
there exists k > 1 such that ||(R*)*¢;|| < e for 1 <i < q.

Lemma 3.3.8. Given a proper isometry S in S, vectors w and v in H and e > 0, there
exists k > 1 such that ||[u @ (S*)*v]s|| < e.
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Proof Since L,, has property Ay, there are vectors p and v in F? such that [u®v]s =
o([n®v]z,). Thus for Ain S,

(@ (5) s, A = |([n@ (27(5)) V]e,, 27 (A))]
= (@7 (A, (@71(9)") )|
LAl (@78 v,

IA

which gives ||[u @ (S*)v]s|| < [|ulll|(@71(S)*)*v|. Since ®71(S) is a a proper
isometry in £,,, and since £,, and R,, are unitarily equivalent, the result now follows

by Lemma B.3.7. O]

Lemma 3.3.9. Given unit vectors 21, ..., zq in H and € > 0, there exists a unit vector x

in H and vectors €, (..., Cq in F}; such that
L |lEl < va(l +e)'2,
2 Gl <@+ 2 for1<i<gq

3. € =||&||Lés = ||&|| REs, where L is an isometry in L,,, and R is an isometry in
R, with range orthogonal to the range of Ry,

4. |R*G|| <eforl1 <i<g,
5. (®(L)Yrx,z)| < efork > 1,
6 |z ® 2l — (€ ® Gm,) | <eforl<i<q

Proof. By Lemma B.3.G, there exists a unit vector 2’ in H and vectors £, (1, ..., {; in
F? such that

LolE] < va(t +e)'2,
2. 1G] < (1 4+ )2 for1 <i < g,

3. ¢ = ||€|IL¢s = ||€||R'€y, where L is an isometry in £,, and R’ is an

isometry in R,,with the range of R’ orthogonal to the range of R,
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4. |[[2" @ zlr — o([€' ® Gl )| < eforl <i<gq.
By Lemma B-3.7 and Lemma B.3-8, there exists m > 1 such that || (R})™(R')*¢|| <
eforl <i<gand|[z/ ® (S))"P(L)2']s|| < e Set&{ = L7¢, L = L"L and
R = R'R". Then & = ||¢||L¢y = ||€||REs, L is an isometry in L, and R is an
isometry in R,, with range orthogonal to the range of R;. For 1 < i < ¢, this gives
IRGll = l[(RD)™(R)"Gll < e.

Let x = S7"2’. Then for k > 1, we compute

(@10 = [(BLPL)EST, 7|
SPB(L'IY), SPa)

(
(
(@(L'LT)* !, o)
| (( s (
It

(LI, (ST (L) )|
[ (S5 B(L)"4)s, B(LIPV)

< Il @ (S (L) ] sl I|(L L)

A\

€.

Finally, for T" in 7 we have

|([z @ zi]7 = o([€ @ Gilm, ), T) ([ ® zi]7 = &([€' @ Gilaa,), ST
< ' @ zil7 — o([€' @ Gl TSPl

€l

A

Thus [|[z @ zi]7 — ¢([§ @ Gi]m,)

3.3.5 Approximately orthogonal vectors

The following lemma is extracted from the proof of Theorem 4.3 in [Ber98].

Lemma 3.3.10. Given two isometries R and R' in R, with orthogonal ranges and
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vectors & and p in F2 with 1 in the kernel of R*, define

k
1 .

- YRR

& vk = s

Then .
® < — Dy — 1|1,
1€ MWJ_V@WWk 1

where Dy, denotes the k-th Dirichlet kernel and || - ||, denotes the L' norm.

Lemma 3.3.11. Given unit vectors 21, ..., 2y in H and € > 0, there exists a unit vector

x in H such that ||[x @ z;|7|| < efor1 <i<q.

Proof. We may suppose that ¢ < 1. Using the fact that lim k~/2||Dy||; = 0, where
Dy, denotes the k-th Dirichlet kernel and || - ||; denotes the L' norm, choose & > 1
such that 2(q/k)~Y2|| Dy, — 1||1 < €/(3(1 + ¢€)). Next choose ¢’ > 0 such that

e(l1—€) e(l—¢) ke }
sk 6yg R—kJ

By Lemma B.3.9, there exists a unit vector 2’ in H and vectors &', (1, ..., (, in F? such

that

¢ < min {1,

L€ < va(l+ €)'z,
2. Gl < (1 + €)% for1 <i < g,

3. & = ||€|| L&y = ||€'|| REw, where L is an isometry in £,,, and R is an isometry

in R, with range orthogonal to the range of Ry,
4. ||R*G|| < € for1 <i<gq,
5. (®(L)*a!, 2')| < € for k > 1,

6. [[[z' ® z]r — ([ ® Gilm,)

| <€ forl<i<uq.
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By (@) we can write (; = p; + 14, where (; is in the kernel of R* and ||| < €.
Let £ = k—1/2 Zf;é Ly L€' Then by (B) we can write £ as

k—1
1 .
§ = =) L€
i k—1
— Hf H LlL‘j+1£@

S

.
Il

Llegﬁa

I
Sz
W

.
Il
_

which implies ||€|| = [|£’]|. Applying (B) again, we can also write £ as

T
L

L Li¢

Il
-
N

o,
()
-

L L' R¢,

<=
(]

I
= O

™

= R Ry

=

<.
I

R R

<
M»

<.
Il
_

By Lemma B.3.10 and the choice of k, this gives

1€ @ pilam, || < %Ilﬁllllmlllll)k =1

q
\/%(1 + &) 2wl Dr — 11

< €(1—¢)/3.

Let y = Sa', where S = k~1/2 Zf;é ®(LyL7). Then ||S|| < Vk, so for T in
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(ly @ zilr — (€@ Glm,), T = ([ @ zil7 = &([§' @ G, ), TI))
< " @ zilr — o(1€' @ Gl ) ITS|]
¢VE(T|

<
< (e(T=e)/T,
which gives ||[y ® zi]7 — ([ ® Gilm,) || < €(1 —€)/3. Since

IlE @ vilaa, | < lIEllllvll < V(1 + €)' 2 < e(1 —€)/3,

this gives

Iy @ zlrll < |y ® zilr — &([€ @ Gla) Il + I @ pel | + 1€ @ vilm, |
< €(1—ce).

Finally, we compute

lyl* = [1Sa'|?
= 2
N AT
| o
1 . 1 o
= 2P+ Y @y e Y (@)
0<i<j<k—1 0<j<i<k—1

1 . 1 o

z 1-+ > @ oLy )| - z > @@y,
0<i<j<k—1 0<j<i<h—1

k* —k
> 1- ’ €.
> 1—e

Hence taking z = (1 — €)'y, ||z]] > 1and ||[z ® 2] 7| < efor1 <i < gq. O
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Lemma 3.3.12. Given unit vectors 21, ..., 2y in H and € > 0, there exists an inter-
twining operator X : F2 — H such that | X&y|| = 1 and ||[X&s @ 27| < € for
1<1<q.

Proof. By Lemma B.3.11], there exists a unit vector = in H such that ||[z ® z;] || < €
for 1 < ¢ < q. By Theorem 2.7 of [DLPO05], x is in the range of an intertwining
operator X' : F? — H. Hence there is a vector ¢ in F? such that X’¢ = z. The
result now follows from the fact that the set of vectors { R{s : R € R,,} is dense in

F?2, and the fact that for R in R,,, the operator X'R is intertwining. [

Lemma 3.3.13. Let X : F? — H be an intertwining operator with | X&g|| = 1.

Then given € > 0, there is a word v in ¥}, such that

I[XRvéo ® XRoéolr — ¢([€0 @ &olm, )| <€

Proof. Since X*X is an L-Toeplitz operator, by Lemma 2.4.5 of Chapter [, there is
aword v in F} such that | RI X* X R, — &5|| < €/2. Note that R X* X R, is also
an L-Toeplitz operator. Let { = (RIX*X R, — I){z, so that ||£]| < €/2. For w in

F*, since (L&, x) = 0 we can write

(SwX Rz, XREy) = (Lués, Ry X" XR,Ep)
- (ngg,f@) + (nggag) + (Lw£75!3>~

Similarly,

(SZ;XRUS%XRUS@) - (L;R;X*Xvag,fg)
= (L;kl]g@?g@) + (L;kuf@af) + (L;kufafz)

This gives

(X Ruéo @ XRuéolT = ¢([€o @ €olm,, + £ ® &alm, + o ® EIMm,),
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so we conclude that

I[X Ruo ® XRubolr — ¢([€0 @ Solm )l < M€ ® Eolm, + [§0 @ €l |

< 2flll€ll

<
as required. ]
Lemma 3.3.14. Given unit vectors 21, ..., 2, in H and € > 0, there exists an intertwin-

ing operator X : F? — H such that | X¢g|| = 1,
and

[(X& @ 27| <eforl <i<gq

11X¢0 ® Xalr — ¢([€e ® &alm,)l| < e

Proof By Lemma B.3.12, there exists an intertwining operator X’ : F> — H such
that || X'éyz]| = 1 and ||[X'és ® 2i]7]| < e for 1 <i < q. By Lemma B.3.13, there

is a word v in F such that
[[X'Ruée @ X'Ryéalr — 0([€o @ Ealm,)|| < e
Let X = X'R,. Then

1 X&a|l = | X Ruéoll = [ X Lol = |50 X ¢all = [ X Eal = 1.

ForT in T,
([(Xéo @ 2], T)| = [([X'Rubo ® z]7,T)
= [([(X'Lv&o ® zi]7, T)|
= |([5:X'¢e @ 2i]7,T)|
= |((X'ée @ 2i]7, T'S,)|
< |[X'¢e @zl T
Hence ||[X&p ® zi]7|| < eforl <i <gq. O
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3.3.6 'The strong factorization property

Theorem 3.3.15. Given a weak-* continuous linear functional T on T with ||T|| < 1,

unit vecrors 21, ..., 2q in H and € > 0, there are vectors x and y in H such that
I el < Land Iyl < 1
2. lr=lreylrl <e
3 [z @zi)rll < e€and |||z @y]7|| < eforl <i<gq.

In other words, T has property X, 1.

Proof Choose € > 0 such that ¢ < eand 1 — (1 + 2¢/)7%(1 — €’) < €. Since
M., has property A;(1), there are vectors £ and v in F? with [[£|| < 1+ ¢//2 and
lv|| <1+ €/2such that 7 = ¢([§ @ v|p,). Since &y is cyclic for L,,, there are A
and B in £, such that || Az —&|| < €//(4(1+€')) and || Béy —v|| < € /(4(1+€)).
Then

[A&o]l < [[Afe — &l + 1€l < 1+ €,

and similarly || B{s|| < 1 + €. This gives

I[A¢s ® Béo]m, — €@ vm, [ < [[(A&s — &) ® B&||
+[I[§ ® (B — v)la, |
< A& — &l B& | + lIEN BEs — v
< €/2.

By Lemma B.3.T4, there is an intertwining operator X : F? — H such that
IX&ll = 1, (X6 @ zlrl < €/(JAN + |B) for 1 < i < g and [[ X6, ©
X&)l —0([€o @&, || < €/(2(J|All+ || B]|)?). Note that since 7 is self-adjoint,
we also have ||[z; @ X&]7|| < €/(|A]| + || B|]) for 1 <i <gq.
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Define vectors 2’ and ¢/ in H by 2/ = ®(A) X &y and i = $(B)X&y. Then

Il = [le(A)XE |
= [|2(A)XE&|* — (| A& |I* + | A& I?
= [([Xé ® X&l1 — ¢([€0 ® Eo)m, ), P(AA))| + [ Ao ]I
< |[Xés ® Xolr — 9([€5 ® Ealan) AN + [ A |12
< 1+2€,

and similarly, ||3/||> < 1+ 2¢. For T'in T,

([2" @ y']7 — ¢([Ale ® BEo]u,), T)]
= [([®(A)XEe @ B(B) X &l — ¢([ALs @ Béo|um,), T)|
= |([X&o ® X&o]7 — 0([€e @ &l ), P(A)TR(B)))
< |[[Xée © X&o]1 — o([60 @ Eolu ) A BT

E/
<.
which implies ||[2' ® ¥']7 — ¢([Als ® Béz]m, )| < € /2. Thus

Iz @y]r -7 = 2@yl — o([§ @ v]am,)ll
< 2 @yl — #([Aés @ Bés|m,)ll
+[[[Aés ® Béglm, — [€ @ v]am, ||

€.

A\

Forl <1 <ygq,
I[z" @ zil7]| = [I[AXEe @ zi] 7| < JANN[XEe @ 27| < €,

and similarly, ||[z; ® ¢'] 7| < €.
Now take = (1 + 2¢')7'2’ and y = (1 + 2€¢')~'y/. Then by choice of ¢ we
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get ||z|| < 1and |ly|| < 1. Similarly, ||[z ® z]7|| < €and ||[z; ® y]7| < € for
1 <4 < q. Finally, we have

llz®@ylr—7ll < 1+2) 22" @y]r — 7l + (1= (1+2€) )7
< 1-(1+2)2(1—¢)

< €,

as required. OJ

3.3.7 Absolute continuity and analyticity

Theorem 3.3.16. Forn > 2, every absolutely continuous isometric n-tuple is analytic.

Proof. Forn > 2,let S = (S1,...,S,) be an absolutely continuous isometric n-
tuple, and let S denote the weak-* closed unital algebra generated by Sy, . .., S,. By
Corollary 1.2 of [DYO08], S is isomorphic to the noncommutative analytic Toeplitz
algebra £,,. By Theorem B.3.15, S has property X 1, and hence has property A;(1).
Therefore, by the discussion in Section B.3.3, S is weakly closed, and hence S is
actually the free semigroup algebra (i.e. the weakly closed algebra) generated by
S1, ..., 5. Since S is isomorphic to £, this implies that S' is analytic. O

The next result follow from Theorem of Chapter .

Corollary 3.3.17. Forn > 2, let S = (S1,...,Sn) be an absolutely continuous
isometric n-tuple acting on a Hilbert space H. Then the wandering vectors for S span H.

It was shown in Corollary 2.4.§ of Chapter P that every analytic isometric tuple
is hyperreflexive with hyperreflexivity constant at most 3, but the next result can also
be proved directly using Theorem B.3.T9 of the present paper and Theorem 3.1 of
[Ber98].

Corollary 3.3.18. Absolutely continuous row isometries are hyperreflexive with hyper-

reflexivity constant at most 3.
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3.4 Singular isometric tuples

In Theorem B.3.10, we showed that for n > 2, an isometric n-tuple is absolutely
continuous if and only if it is analytic. With this operator-algebraic characterization
of an absolutely continuous isometric tuple, we are now able to give an operator-

algebraic characterization of a singular isometric tuple.

Theorem 3.4.1. For n > 2, an isometric n-tuple is singular if and only if the free

semigroup algebra it generates is a von Neumann algebra.

Proof. Let V. = (Vi,...,V,,) be an isometric n-tuple, and let V denote the free
semigroup algebra (i.e. the weakly closed algebra) generated by V. If VV is a von Neu-
mann algebra, then V' has no absolutely continuous part since, by Theorem B.3.16, an
absolutely continuous isometric tuple is analytic, and the noncommutative analytic
Toeplitz algebra £,, is not self-adjoint by Corollary 1.5 of [DP99].

Conversely, if V' is singular then it has no analytic restriction to an invariant sub-
space since, by Theorem B.3.10, an absolutely continuous isometric tuple is analytic.

Thus by Theorem B.2.3, V is a von Neumann algebra. N

Example showed that it is possible for an absolutely continuous unitary to
generate a von Neumann algebra. Theorem B.4.1] implies that there is no higher-
dimensional analogue of this phenomenon.

Recall that a family of operators is said to be reductive if every subspace invariant

for the family is also coinvariant.
Corollary 3.4.2. Forn > 2, every reductive unitary n-tuple is singular.

Proof- Let V. = (V4,...,V,) be a reductive isometric n-tuple, and let V denote
the free semigroup algebra generated by V. By the dichotomy for free semigroup
algebras, Corollary of Chapter [, if V is not a von Neumann algebra, then
there is a vector x that is wandering for V. Let V[z] denote the cyclic invariant
subspace generated by x. Then the subspace Y | V;V[x] is invariant for V' but not

coinvariant, which would contradict that V' is reductive. Thus V is a von Neumann

algebra and V' is singular by Theorem B.4.1]. N
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Example 3.4.3. By Theorem B.4.1], for n > 2 an isometric n-tuple is singular if and
only if the free semigroup algebra it generates is a von Neumann algebra. The existence
of a self-adjoint free semigroup algebra on two or more generators was conjectured in
[DKPOT], but it took some time for the first example to be constructed. In [Read05],
Read showed that B(¢?) is generated as a free semigroup algebra on two generators.
In [Dav0d], Davidson gave an exposition of Read’s construction and showed that it
could be generalized to show that B(¢?) is generated as a free semigroup algebra on
n generators for every n > 2. By our characterization of singularity, this gives an

example of a singular isometric n-tuple for every n > 2.

3.5 The Lebesgue-von Neumann-Wold decomposition

In Theorem B.3.1G, we showed that for n > 2, an isometric n-tuple is absolutely
continuous if and only if it is analytic. In Theorem B.4.1], we showed that for n > 2,
an isometric n-tuple is singular if and only if the free semigroup algebra (i.e. the
weakly closed algebra) it generates is a von Neumann algebra. With these operator-
algebraic characterizations of absolute continuity and singularity, we will be able to
prove the Lebesgue-von Neumann-Wold decomposition of an isometric tuple.

In the classical case, the Lebesgue decomposition of a measure guarantees that
every unitary splits into absolutely continuous and singular parts. For n > 2, it turns
out that it is possible for a unitary n-tuple to be irreducible and neither absolutely

continuous nor singular.

Definition 3.5.1. An isometric n-tuple V' = (Vi,...,V},) is said to be of dilation
type if it has no summand that is absolutely continuous or singular.

Note that by the Wold decomposition of an isometric tuple, Proposition B.2.5,
an isometric n-tuple of dilation type is necessarily unitary. The next result provides

a characterization of an isometric tuple of dilation type as a minimal dilation, in the

sense of Section B.2.3.
Proposition 3.5.2. LetV = (V1,. .., V},) be an isometric n-tuple of dilation type. Then

there is a subspace H coinvariant under V' such that H is cyclic for V' and the compression
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of V to H* is a unilateral n-shift. In other words, V' is the minimal isometric dilation of

its compression to H.

Proof. Note that since V' has no summand that is absolutely continuous, by Proposi-
tion V is necessarily a unitary n-tuple. Let V denote the free semigroup algebra
generated by V, and let P be the projection from Theorem applied to V. Let
H be the range of P, so that H is coinvariant under V.

Let K = (H+) ", V;H)© H. Then K is wandering for the compression of V'
to HL. If K = 0, then by Theorem B.2.3, V can be decomposed into the direct sum
of a self-adjoint free semigroup algebra and an analytic free semigroup algebra. By the
characterization of singular isometric tuples, Corollary B.4.1, this would contradict
that V' is of dilation type. Thus K # 0. The fact that K is cyclic follows from the
fact that H is cyclic. O

Example 3.5.3 (Irreducible isometric tuple of dilation type). It was shown in Corol-
lary 6.6 of [DKSOT] that the minimal isometric dilation of a contractive n-tuple
A = (Ai,..., A,) acting on a finite-dimensional space is an irreducible unitary
n-tuple if and only if both > | A;A* = I and C*(A) has a minimal coinvariant
subspace that is cyclic for C*(A). These conditions are satisfied by the contractive
tuple A = (A1, Ay), where

A12017 4o [00)
00 10

Thus the minimal isometric dilation of A is an example of an irreducible isometric

tuple of dilation type. A similar construction can be carried out for all n > 2.

Theorem 3.5.4 (Lebesgue-von Neumann-Wold Decomposition). LetV = (V4,...,V,)

be an isometric n-tuple. Then' V' decomposes as
V:Vu@va@v;@‘/m

where V,, is a unilateral n-shift, V,, is an absolutely continuous unitary n-tuple, Vs is a

singular unitary n-tuple, and Vy is a unitary n-tuple of dilation type.
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Proof. The case for n = 1 follows by the discussion in Section B.1. Thus we can
suppose that n > 2. By the Wold decomposition of an isometric tuple, Proposition

B.2.3, we can decompose V' as
V=V,eU,

where V,, is a unilateral n-shift and U is a unitary n-tuple.

By the characterization of an absolutely continuous isometric n-tuple as analytic,
Theorem B.3.1G, and the characterization of a singular isometric n-tuple, Corollary
B.4.1), an isometric n-tuple cannot be both absolutely continuous and singular. There-

fore, we can decompose U as
U=V, ®Vs® Vg,

where V;, is an absolutely continuous isometric n-tuple, Vj is a singular isometric

n-tuple, and V is of dilation type. Thus we can further decompose V" as
V:Vu@va@‘/s@v;lv

as required. ]
The next result follows from combining Proposition B.5.2 and Theorem B.2.3.

Proposition 3.5.5. LetV = (V1,. .., V},) be an isometric n-tuple of dilation type acting
on a Hilbert space H. Then there is a projection P and o > 1 and such that the weakly
closed algebra W (V') generated by V' is of the form

W(Vi,..., V) = W*(V)P + PXW(V)P+,

where PP (Vi ..., V) |pru~ Lo,

The next result follows from the Lebesgue-von Neumann-Wold decomposition of

an isometric tuple, Proposition B.2.5, and Proposition .
p p p
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Theorem 3.5.6. LetV = (V4, ..., V,,) be an isometric n-tuple acting on a Hilbert space
H, and let V =V, ®V, ®V, ® Vy be the Lebesgue-von Neumann-Wold decomposition
of V' as in Theorem Then there is a projection P and o, B > 0 such that the weakly
closed algebra W (V') generated by V' is

W(V) = (L,(V, ® Vo)™ @ W (Vi) & (W (V) P+ PEW(Vy) PH),

where PEW(Vy, ..., V,) |pip=~ L. The von Newmann algebra W*(Vy, ..., V)
generated by V' is

W (V) = (B(%)'™ @ W*(Va) & W*(Va).
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