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Abstract

An n-tuple of operators V = (V1, . . . , Vn) acting on a Hilbert space H is said to be
isometric if the operator [V1 · · · Vn] : Hn → H is an isometry. A free semigroup
algebra is the weakly closed algebra W(V1, . . . , Vn) generated by an isometric n-tuple
V . e structure of the free semigroup algebra generated by V contains a great deal
of information about V . us it is natural to study this algebra in order to study V .

A free semigroup algebra is said to be analytic if it is isomorphic to the noncom-
mutative analytic Toeplitz algebra, which is a higher-dimensional generalization of the
classical algebra H∞ of bounded analytic functions on the complex unit disk. is
notion of analyticity is of central importance in the general theory of free semigroup
algebras. A vector x inH is said to be wandering for an isometric n-tuple V if the set

{x} ∪ {Vi1 · · ·Vikx | 1 ≤ i1, . . . , ik ≤ n and k ≥ 1}

is orthonormal. As in the classical case ofH∞, the analytic structure of the noncom-
mutative analytic Toeplitz algebra is determined by the existence of wandering vectors
for the generators of the algebra.

In the rst part of this thesis, we prove the following dichotomy: either an iso-
metric n-tuple V has a wandering vector, or the free semigroup algebra it generates
is a von Neumann algebra. is implies the existence of wandering vectors for every
analytic free semigroup algebra. As a consequence, it follows that every free semi-
group algebra is re exive, in the sense that it is completely determined by its invariant
subspace lattice.

In the second part of this thesis we prove a decomposition for an isometric tuple
of operators which generalizes the classical Lebesgue-von Neumann-Wold decompo-
sition of an isometry into the direct sum of a unilateral shift, an absolutely continuous
unitary and a singular unitary. e key result is an operator-algebraic characterization
of an absolutely continuous isometric tuple in terms of analyticity. We show that, as
in the classical case, this decomposition determines the weakly closed algebra and the
von Neumann algebra generated by the tuple.
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Chapter 1

Introduction

is thesis concerns the structure of an isometric tuple of operators, an object that
appears frequently in mathematics and mathematical physics. From the perspective of
an operator theorist, the notion of an isometric tuple is a natural higher-dimensional
generalization of the notion of an isometry.

An n-tuple of operators (V1, . . . , Vn) acting on a Hilbert space H is said to be
isometric if the row operator [V1 · · · Vn] : Hn → H is an isometry. is is equivalent
to requiring that the operators V1, . . . , Vn satisfy the algebraic relations

V ∗
i Vj =

I if i = j,

0 if i ̸= j.

ese relations are often referred to as the Cuntz relations.
e weakly closed (non-self-adjoint) algebra W(V1, . . . , Vn) generated by V is

called the free semigroup algebra generated by V . It turns out that the structure
of this algebra contains a great deal of information about V . us it is natural to
study this algebra in order to study V . is idea, along with the de nition of a free
semigroup algebra, was introduced by Davidson and Pitts in [DP99]. Free semigroup
algebras, and various generalizations, have subsequently been studied by a number of
authors, and many applications have been found (see for example [Dav01]).
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ework of Davidson, Katsoulis and Pitts in [DKP01] revealed that the notion of
analyticity is of central importance in the general theory of free semigroup algebras. A
free semigroup algebra is said to be analytic if it is isomorphic to the noncommutative
analytic Toeplitz algebra. is free semigroup algebra, introduced by Davidson and
Pitts in [DP98], is a higher-dimensional generalization of the algebraH∞ of bounded
analytic functions on the complex unit disk. We will also say that an isometric tuple
is analytic if the free semigroup algebra it generates is analytic. e general struc-
ture theorem for free semigroup algebras obtained in [DKP01] implies that every free
semigroup algebra can be decomposed as the sum of a slice of a von Neumann algebra
and an analytic free semigroup algebra.

e analytic structure of an operator algebra often reveals itself in the form of
wandering vectors. A vector x is said to be wandering for the isometric n-tuple V if
the set of vectors

{x} ∪ {Vi1 · · ·Vikx | 1 ≤ i1, . . . , ik ≤ n and k ≥ 1}

is orthonormal. In this case, we will also say that x is wandering for the free semigroup
algebra generated by V .

e main result in the rst part of this thesis is a proof of the existence of wan-
dering vectors for an analytic free semigroup algebra. In fact, we prove the following
stronger dichotomy: either a free semigroup algebra has a wandering vector, or it is
a von Neumann algebra. is result implies that every isometric tuple is re exive,
which means that the free semigroup algebra it generates is completely determined
by its invariant subspaces. As an application of this result, we show that every ana-
lytic free semigroup algebra satis es a very strong factorization property. is implies
that every anaytic free semigroup algebra is actually hyperre exive, which is a stronger
quantitative form of re exivity.

e existence of wandering vectors for an analytic free semigroup algebra was
conjectured by Davidson, Katsoulis and Pitts in [DKP01]. ey observed that it was
equivalent to the question of the re exivity of an arbitrary free semigroup algebra, and
more generally, to the invariant subspace problem for an isometric tuple.
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emain result in the second part of this thesis is a decomposition of an isometric
tuple that generalizes the classical Lebesgue-von Neumann-Wold decomposition of
an isometry into the direct sum of a unilateral shift, an absolutely continuous unitary
and a singular unitary. We show that, as in the classical case, this decomposition
determines the structure of the weakly closed algebra and the von Neumann algebra
generated by the tuple.

e existence of a higher-dimensional Lebesgue-von Neumann-Wold decompo-
sition was conjectured by Davidson, Li and Pitts in [DLP05]. ey observed that
the measure-theoretic de nition of an absolutely continuous operator was equivalent
to an operator-theoretic property of the functional calculus for that operator. Since
this property naturally extends to the higher-dimensional setting, this allowed them
to de ne the notion of an absolutely continuous isometric tuple.

To develop the technical portion of this thesis, we extend ideas from the commuta-
tive theory of dual algebras to the present noncommutative setting. e commutative
theory, based on Brown’s proof of the existence of invariant subspaces for subnormal
operators [Bro78], was developed and applied with great success by Bercovici, Brown,
Foias, Pearcy and many others (see for example [BFP85]). We were inspired to use
this approach by Bercovici’s results in [Ber98].

In Chapter 2 we prove the existence of wandering vectors for an analytic free
semigroup algebra, and obtain as a consequence the re exivity of an arbitrary free
semigroup algebra and the hyperre exivity of an analytic free semigroup algebra. In
Chapter 3 we prove the Lebesgue-von Neumann-Wold decomposition of an an iso-
metric tuple, and determine the structure of the free semigroup algebra and the von
Neumann algebra generated by an isometric tuple.

e content comprising Chapter 2 and Chapter 3 of this thesis was taken from
two different papers. While we have attempted to eliminate any inconsistencies in the
material, the reader may notice a small amount of overlap in the preliminary sections
of these chapters.
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Chapter 2

Wandering vectors and the re exivity
of free semigroup algebras

A free semigroup algebra S is the weak-operator-closed (non-self-adjoint) algebra
generated by n isometries S1, ..., Sn on a Hilbert space H which have pairwise or-
thogonal ranges, or equivalently, which satisfy

S∗
i Sj =

I if i = j,

0 otherwise.

Although n can be nite or in nite, for notational convenience we treat n as nite
and make note of any issues that arise. We say that the n-tuple S = (S1 ... Sn) is
isometric, since the row operator [V1 · · · Vn] : Hn → H is an isometry.

Isometric tuples appear throughout operator theory. A theorem of Frazho, Bunce,
and Popescu shows that n operators A1, ..., An which satisfy

∑
AkA

∗
k ≤ I can be

dilated to an isometric n-tuple S = (S1, . . . , Sn) such that each Sk is of the form

Sk =

(
Ak 0

∗ ∗

)
.

is is a noncommutative multivariable analogue of the Sz.-Nagy dilation theorem.
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Popescu [Pop96] showed that the norm-closed algebra generated by any row isom-
etry of size n is completely isometrically isomorphic to the noncommutative disk al-
gebraAn, and it is well known that the C*-algebra generated by a row isometry of size
n is isomorphic to the Cuntz algebra On if

∑
AkA

∗
k = I , and otherwise is isomor-

phic to the Cuntz-Toeplitz algebra En. By contrast, the weak-operator-closed algebras
generated by distinct isometric tuples can be dramatically different (see for example
[DKP01]).

In some sense then, it is natural to study an isometric tuple by looking at the
free semigroup algebra it generates. is idea, and with it the de nition of a free
semigroup algebra, was introduced by Davidson and Pitts [DP99]. ey observed
that free semigroup algebras often contain interesting information about the unitary
invariants of their generators.

e prototypical example of a free semigroup algebra is the noncommutative an-
alytic Toeplitz algebra generated by the left regular representation of the free semi-
group on n letters. is algebra, which we denote by Ln, was rst studied by Popescu
[Pop91] in the context of noncommutative multivariable dilation theory.

For n = 1, Ln is the familiar algebra of analytic Toeplitz operators, which is
singly generated by the unilateral shift. For n ≥ 2, Ln is no longer commutative, but
it turns out that a number of classical results about the analytic Toeplitz operators have
straightforward generalizations to this setting. is is a large part of the motivation
for the name “noncommutative analytic Toeplitz algebra.”

e role of Ln is of central importance in the general theory of free semigroup al-
gebras, and it turns out to be desirable to isolate “Ln-like” behavior. A free semigroup
algebra is said to be analytic if it is algebraically isomorphic to Ln. It is important to
emphasize the word “algebraically” here. Examples have been constructed (see for
example [DKP01]) of free semigroup algebras which are analytic, and so behave alge-
braically like Ln, but which have a very different spatial structure.

e general structure theorem for free semigroup algebras [DKP01] shows that
every free semigroup algebra can be decomposed into 2 × 2 block-lower-triangular
form, where the left column is a slice of a von Neumann algebra, and the bottom-
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right entry is an analytic free semigroup algebra. It is well known (see for example
[Wer52]) that the weak-operator-closed algebra generated by a single isometry can be
self-adjoint. Davidson, Katsoulis, and Pitts [DKP01] asked whether it was possible
for a free semigroup algebra on 2 or more generators to be self-adjoint, and some time
later Read [Read05] (see also [Dav06]) answered in the affirmative by showing that
B(H) was a free semigroup algebra.

A notion of fundamental importance is that of a wandering vector. A unit vector
x is said to be wandering for the free semigroup algebra generated by an isometric
n-tuple (S1, . . . , Sn) if the set of vectors

{x} ∪ {Si1 · · ·Sikx | 1 ≤ i1, . . . , ik ≤ n and k ≥ 1}

is orthonormal. It is known (see for example [DP99]) that the spatial structure of Ln

is completely determined by the existence of a large number of wandering vectors.
It is easy to see that the restriction of any free semigroup algebra to the cyclic

subspace generated by a wandering vector is unitarily equivalent to Ln, and so in
particular is analytic. It has been an open question for some time, however, whether
every analytic free semigroup algebra necessarily has a wandering vector. It turns
out that this question is equivalent to the question of whether every free semigroup
algebra is re exive. is can be shown using the general structure theorem for free
semigroup algebras: since every von Neumann algebra is re exive, the re exivity of a
free semigroup algebra depends on the re exivity of its analytic part.

e purpose of this chapter is to prove that every analytic free semigroup alge-
bra has wandering vectors, and hence to prove that every free semigroup algebra is
re exive.

Our approach is very much in the spirit of the “dual algebra arguments” which
have been used with great success by Bercovici, Foias, Pearcy and many others (see for
example [BFP85]), and which are based on Brown’s proof of the existence of invariant
subspaces for subnormal operators [Bro78]. e fundamental idea at the heart of these
arguments is that it is often possible to prove the existence of invariant subspaces for
a weak*-closed operator algebra by showing that, in an appropriate sense, the predual
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of the algebra is small.
Typically, these arguments are employed in a commutative setting, where certain

spectral and function-theoretic tools are available. In the present noncommutative
context, we rely instead on various operator-theoretic techniques.

A clue that it might be possible to attack the present problem using dual algebra
techniques came from a recent paper of Bercovici [Ber98], who used them to establish
the hyperre exivity of a class of algebras which includes the noncommutative analytic
Toeplitz algebra on two or more generators. e hyperre exivity of this algebra had
already been shown by Davidson and Pitts [DP99], with an upper bound of 51 on the
hyperre exivity constant, but Bercovici’s approach yielded a surprisingly low upper
bound of 3.

Motivated by Bercovici’s result, once we have shown that every analytic free semi-
group algebra has a wandering vector, we go further and show that every analytic free
semigroup algebra on two or more generators is hyperre exive with hyperre exivity
constant at most 3.

2.1 Background and preliminaries

Let F+
n denote the free semigroup in n noncommuting letters {1, ..., n}, including

the empty word ∅. For a word w in F+
n , let |w| denote its length, and let Fk

n denote
the set of all words in F+

n of length at most k.
Let F 2

n denote the “Fock” space F 2
n = ℓ2(F+

n ) with orthonormal basis {ξw : w ∈
F+
n } consisting of words in F+

n . For each v in F+
n , de ne an isometry Lv by

Lvξw = ξvw, w ∈ F+
n .

emap v → Lv gives a representation of F+
n , called the left regular representation.

e isometries L1, ..., Ln have pairwise orthogonal ranges. e free semigroup al-
gebra they generate, denoted by Ln, is called the noncommutative analytic Toeplitz
algebra. For n = 1, Ln is the classical analytic Toeplitz algebra, but for n ≥ 2, Ln is
no longer commutative.
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We require a result for Ln which generalizes a classical result about the analytic
Toeplitz operators. An element in Ln is said to be inner if it is an isometry, and outer
if it has dense range. It was shown in [DP99] that a nonzero element A in Ln can be
written as A = BC, where B is inner and C is outer. is generalizes the classical
inner-outer factorization for elements in the analytic Toeplitz algebra.

Every element A in Ln is completely determined by its Fourier series

A ∼
∑
w∈F+

n

awLw,

which is a formal power series with coefficients in Ln, where

Aξ∅ =
∑
w∈F+

n

awξw.

For k ≥ 1, de ne the k-th Cesàro sum of the Fourier series of A by

Γk(A) =
∑
|w|<k

(1− |w|
k

)awLw.

en the sequence Γk(A) is strongly convergent to A.
By symmetry, for each v in F+

n we can de ne an isometry Rv by

Rvξw = ξwv, w ∈ F+
n ,

and the map v → Rv gives an anti-representation (i.e. a multiplication-reversing rep-
resentation) ofF+

n , called the right regular representation. e isometriesR1, ..., Rn

also have orthogonal ranges, and the free semigroup algebra they generate, denoted by
Rn, is unitarily equivalent to Ln. It was shown in [DP99] thatRn is the commutant
of Ln.

A free semigroup algebra S is said to be analytic if it is algebraically isomorphic to
Ln. It was shown in [DKP01] that if S is analytic, then there is a completely isometric
isomorphism Φ from Ln to S which takes the generators of Ln to the generators of
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S . Moreover, Φ is a weak*-to-weak* homeomorphism, and the inverse map Φ−1 is
the dual of an isometric isomorphism ϕ from the predual of Ln to the predual of S .

For a free semigroup algebra S , let S0 denote the weak-operator-closed ideal gen-
erated by S1, ..., Sn. en either S0 = S, or S/S0

∼= C. In the latter case, the
general structure theorem for free semigroup algebras [DKP01] implies that S has an
analytic part. If S0 = S, then S is a von Neumann algebra.

e set of weak*-continuous linear functionals on B(H), i.e. the predual, can be
identi ed with the set of trace class operators C1(H), whereK in C1(H) corresponds
to the linear functional

T → tr(TK), T ∈ B(H).

With this identi cation, the set of weak-operator-continuous linear functionals on
B(H) corresponds to the set of nite rank operators. e predual of a weak*-closed
subspace S of B(H) can be identi ed with the quotient space C1(H)⧸⊥S , where
⊥S denotes the set of elements in C1(H) which annihilate S, i.e. the preannihilator.

It was shown in [DP99] that the weak* topology and the weak operator topology
coincide on Ln. is means that the equivalence class of every weak*-continuous
linear functional on Ln contains an element of nite rank.

Let S be a free semigroup algebra on a Hilbert space H . A unit vector x in H is
said to be wandering for S if the set {Swx : w ∈ F+

n } is orthonormal. e following
theorem from [DKP01] will be important for our results.

eorem 2.1.1. Let S be an analytic free semigroup algebra. en for somem ≥ 1, the
ampliation S(m) has a wandering vector.

Suppose that S is an analytic free semigroup algebra, and let π0 be the weak-
operator-continuous linear functional on S such that π0 annihilates S0 and π0(I) =
1. en the equivalence class in C1(H) corresponding to π0 contains an operator of
nite rank, say m ≥ 1. is m corresponds to the m in the statement of eorem

2.1.1. Since the restriction of S(m) to the cyclic subspace generated by a wandering
vector is unitarily equivalent to Ln, it follows that the weak* topology and the weak
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operator topology agree on S .
A subspace S of B(H) is said to be re exive if S contains every operator T in

B(H) with the property that Tx belongs to S[x] for every x inH . is de nition of
re exivity was introduced by Loginov and Shulman [LS75].

e notion of hyperre exivity, which was introduced by Arveson [Arv75], is a
quantitative analogue of re exivity. Let dS denote the distance seminorm

dS(T ) = inf{∥T − A∥ : A ∈ S}, T ∈ B(H),

and de ne another seminorm rS by

rS(T ) = sup{|(Tx, y)| : ∥x∥, ∥y∥ ≤ 1 and (Ax, y) = 0 for all A ∈ S}

for T inB(H). en the re exivity ofS is equivalent to the condition that dS(T ) = 0

if and only if rS(T ) = 0.
e equality rS(T ) ≤ dS(T ) always holds. We say that S is hyperre exive if

there is a constant C > 0 such that dS(T ) ≤ CrS(T ) for all T in B(H). e small-
est such C is called the hyperre exivity constant of S . Of course, hyperre exivity
implies re exivity.

Davidson [Dav87] showed that the analytic Toeplitz algebra is hyperre exive with
hyperre exivity constant at most 19. Davidson and Pitts [DP99] showed that for
n ≥ 2, Ln is hyperre exive with hyperre exivity constant at most 51. is was later
improved by Bercovici [Ber98], who showed that this hyperre exivity constant is at
most 3.

2.2 e noncommutative Toeplitz operators

eToeplitz operators are precisely the operatorsT inB(ℓ2(N))which satisfyS∗TS =

T , where S is the unilateral shift. is motivates the following de nition, which was
introduced by Popescu [Pop89b].

De nition 2.2.1. Let S=(S1, . . . , Sn) be an isometric tuple. We say that T is an
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S-Toeplitz operator if

S∗
i TSj =

T if i = j,

0 otherwise,

and we let TS denote the set of all S-Toeplitz operators.

If an S-Toeplitz operator T is strictly positive, then by eorem 4.3 of [Pop89b],
it can be factored as T = A∗A, for some A in the commutant of the free semigroup
algebra generated by S .

De ne isometric tuples L and R by L = (L1, . . . , Ln) and R = (R1, . . . , Rn).
e size, n, will always be clear from the context. In this section we will establish some
properties of the set TR of R-Toeplitz operators which we will need later. Note that
since Ln is unitarily equivalent toRn, the set TR of R-Toeplitz operators is unitarily
equivalent to the set TL of L-Toeplitz operators. is means that any properties of
TR will correspond in an obvious way to properties of TL.

e following Lemma is implied by Corollary 1.3 of [Pop09]. Here we give a
short direct proof.

Lemma 2.2.2. e set TR of R-Toeplitz operators is precisely the weak* closure of the
operator system L∗

n + Ln.

Proof. It is clear that the weak* closure of L∗
n + Ln is contained in TR, since

R∗
iLwRj = R∗

iRjLw =

Lw if i = j,

0 otherwise.

Suppose then that T belongs to TR. It’s clear that T ∗ also belongs to TR, and hence
that the real and imaginary parts of T belong to TR. Since the scalar operators also
belong to TR, it follows that we can write T as a nite linear combination of strictly
positive operators in TR. Hence we may suppose that T is strictly positive.

By eorem 4.3 of [Pop89b], we can write T = A∗A for some A in Ln. Note
that A∗Γk(A) belongs to Ln + L∗

n for k ≥ 1, where Γk(A) denotes the k-th Cesaro
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sum of the Fourier series for A. e sequence Γk(A) is weak*-convergent to A, so it
follows that A∗Γk(A) is weak*-convergent to A∗A = T , and hence that T belongs
to the weak* closure of Ln + L∗

n.

Note that based on the de nition of the set TR of R-Toeplitz operators, Lemma
2.2.2 implies that the weak* closure ofL∗

n+Ln is closed in the weak operator topology.

Lemma 2.2.3. For n ≥ 2, every R-Toeplitz operator T can be factored as T = B∗C

for some B and C in Ln. Moreover, B and C can be taken to be bounded below.

Proof. As in the proof of Lemma 2.2.2, we can write T as a nite linear combination
of strictly positive R-Toeplitz operators, say T =

∑m
i=1 ciTi for some c1, ..., cm in C

and strictly positive T1, ..., Tm in TR. Byeorem 4.3 of [Pop89b], we can factor each
Ti as Ti = A∗

iAi for someAi inLn. SetB =
∑m

i=1 L1i2Ai andC =
∑m

i=1 ciL1i2Ai.
en B and C both belong to Ln and T = B∗C.

To see that B and C can be taken to be bounded below, take B′ = B + L1m+12

and C ′ = C + L1m+22, where m is as above. en B′ and C ′ both belong to Ln.
Since the isometries L12, ..., L1m+22 have pairwise orthogonal ranges, B′ and C ′ are
bounded below, and T = (B′)∗C ′.

Lemma 2.2.3 provides another characterization of the R-Toeplitz operators for
n ≥ 2.

Corollary 2.2.4. For n ≥ 2, the set TR of R-Toeplitz operators is precisely L∗
nLn =

{B∗C : B,C ∈ Ln}.

Popescu [Pop09] showed that every R-Toeplitz operator T has a Fourier series

T ∼
∑
w∈F+

n

awLw +
∑

w∈F+
n \{∅}

bwL
∗
w,

which is a formal power series with coefficients in Ln and L∗
n. is completely deter-

mines T in the sense that for every word u in F+
n ,

Tξu =
∑
w∈F+

n

awLwξu +
∑

w∈F+
n \{∅}

bwL
∗
wξu.
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Let S be an analytic free semigroup algebra. By eorem 1.1 of [DKP01], the
canonical map from Ln to S is a complete isometry and a weak*-to-weak* homeo-
morphism. Our goal for the remainder of this section is to show that this map extends
in a natural way to a map from the weak* closure of Ln +L∗

n (i.e. from the set TR of
R-Toeplitz operators) to the weak* closure of S + S∗, and that this extension is also
a complete isometry and a weak*-to-weak* homeomorphism.

Lemma 2.2.5. Let S be an analytic free semigroup algebra with n ≥ 2 generators , and
let Φ be the canonical map from Ln to S . en Φ−1 maps isometries in S to isometries
in Ln.

Proof. Byeorem 2.1.1, S(m) has a wandering vectorw for somem, and the restric-
tion of S(m) to S(m)[w] is unitarily equivalent to Ln. e map Φ−1 from S to Ln is
given by taking S to S(m) , restricting to S(m)[w], and applying this equivalence. If
G is an isometry in S, thenG(m) is an isometry in S(m), and so clearly the restriction
of G(m) to S(m)[w] is an isometry.

eorem 2.2.6. Let S be an analytic free semigroup algebra with n ≥ 2 generators on a
Hilbert spaceH . en the canonical mapΦ fromLn toS extends to a completely isometric
weak*-to-weak* homeomorphism from the weak* closure of Ln+L∗

n to the weak* closure
of S + S∗.

Proof. Applying Arveson’s extension theorem [Arv69] gives a completely positive map
Ψ from C∗(Ln) to B(H) which extends Φ. Since Ψ extends Φ, we have ∥Ψ∥ =

∥Ψ(I)∥ = ∥Φ(I)∥ = 1. Let Z = {A ∈ C∗(Ln) : Ψ(A)∗Ψ(A) = Ψ(A∗A)}. By
[Cho74], we have

Z = {A ∈ C∗(Ln) : Ψ(B)Ψ(A) = Ψ(BA) for all B in C∗(Ln)}.

By eorem 4.1 of [DKP01], Φ maps isometries in Ln to isometries in S , so every
isometry in Ln belongs to Z . Since, by eorem 4.5 of [DKP01], every element in
Ln can be written as a nite linear combination of isometries in Ln, this implies that
Z contains all of Ln. Hence forA inLn,Ψ(TA) = Ψ(T )Ψ(A) for all T inC∗(Ln).
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Note that by Corollary 2.2.4, C∗(Ln) contains TR. For the remainder of the proof,
we restrict Ψ to TR.

Let T be a self-adjoint element in TR such that Ψ(T ) = 0. For sufficiently large
λ > 0, T + λI is strictly positive, so by eorem 4.3 of [Pop89b], we can write
T + λI = B∗B for some B in Ln. Let V = λ−1/2B. en

Φ(V )∗Φ(V )− I = Ψ(V ∗V − I)

= Ψ(λ−1B∗B − I)

= Ψ(λ−1(T + λI)− I)

= λ−1Ψ(T )

= 0,

which shows that Φ(V ) is an isometry in S . By Lemma 2.2.5, this implies that V is
an isometry in Ln. Hence

T = λ(V ∗V − I) = 0.

Since, for arbitrary T in TR, re(T ) and im(T ) are self-adjoint, and since

Ψ(T ) = Ψ(re(T ) + im(T )) = re(Ψ(T )) + im(Ψ(T )) = 0

if and only if ψ(re(T )) = 0 and ψ(im(T )) = 0, it follows that Ψ is injective.
Arguing exactly as above, the canonical map Φ−1 from S to Ln also has a com-

pletely positive extension Ω from C∗(S) to B(F 2
n), and for G in S , Ω(HG) =

Ω(H)Ω(G) for all H in C∗(S). Since Ω extends Φ−1, we have ∥Ω∥ = ∥Ω(I)∥ =

∥Φ−1(I)∥ = 1. For the remainder of the proof we restrict Ω to the intersection of
C∗(S) and the range of Ψ.

Note that the range of Ψ is contained in the weak* closure of S + S∗. Indeed,
by Lemma 2.2.4, every element in the range of Ψ can be written as Ψ(B∗C) =

Ψ(B∗)Ψ(C) = Φ(B)∗Φ(C) for some B and C in Ln. e sequence Γk(C) is
weak operator convergent to C, so by the weak operator continuity of Φ, the se-
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quence Φ(Γk(C)) is weak operator convergent to Φ(C), and hence the sequence
Φ(B)∗Φ(Γk(C)) is weak operator convergent to Φ(B)∗Φ(C), which implies that
Φ(B)∗Φ(C) is contained in the weak* closure of S + S∗.

We claim that Ω(Ψ(T )) = T for all T in TR. Indeed, apply Lemma 2.2.4 to
write T = B∗C for some B and C in Ln, and let G = Φ(B) andH = Φ(C). en
we have

Ψ(T ) = Ψ(B∗C)

= Φ(B)∗Φ(C)

= G∗H,

which gives

Ω(Φ(T )) = Ω(G∗H)

= (Φ−1(G))∗Φ−1(H)

= B∗C

= T.

en
∥T∥

∥Ψ(T )∥
=

∥Ω(Ψ(T ))∥
∥Ψ(T )∥

≤ 1,

which gives
∥T∥ ≤ ∥Ψ(T )∥ ≤ ∥T∥,

and shows that Ψ maps TR isometrically onto its range.
We now show that Ψ is weak*-to-weak* continuous. Since the predual of TR is

separable, by an application of the Krein-Smulian theorem it suffices to show that
if Tn is a sequence in TR which is weak*-convergent to zero, then Ψ(Tn) is weak*
convergent to zero.

Let A = {A ⊕ Φ(A) : A ∈ Ln}, and note that A is the free semigroup algebra
generated by the isometries L1 ⊕ S1, ..., Ln ⊕ Sn. Fix u in H . By eorem 1.6 of
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[DKP01], there exists a vector x inF 2
n such that the restriction ofA toW = A[x⊕u]

is unitarily equivalent to Ln. Letting P denote the projection of F ⊕ H onto W ,
and letting K denote the weak* closure of the restriction of P (A + A∗)P to W , it
follows thatK is unitarily equivalent to TR. By Lemma 2.2.4, every element ofK can
be written as the restriction to W of an element of the form

P (B∗ ⊕ Φ(B)∗)(C ⊕ Φ(C))P = P (B∗C ⊕Ψ(B∗C))P.

Hence K is the restriction to W of {T ⊕ ψ(T ) : T ∈ TR}.
If Tn is weak* convergent to zero in TR, the unitary equivalence between TR and

K implies the restriction of the sequence Tn ⊕ Ψ(Tn) to W is weak*-convergent to
zero in K. Hence

((Tn ⊕Ψ(Tn))(x⊕ u), x⊕ u) = (Tnx, x) + (Ψ(Tn)u, u) → 0,

and since (Tnx, x) → 0, this implies that (Ψ(Tn)u, u) → 0. Since u was chosen
arbitrarily, we deduce that (Ψ(Tn)u, u) → 0 for all u in H . By the polarization
identity, we get that Ψ(Tn) is weak operator convergent to zero. By the uniform
boundedness principle, the sequence Ψ(Tn) is bounded. It follows that Ψ(Tn) is
weak* convergent to zero. We therefore conclude that Ψ is weak* continuous.

It now follows by another application of the Krein-Smulian theorem that Ψ has
weak* closed range, and that Ψ is a weak*-to-weak* homeomorphism onto its range.
But it’s clear that the range of Ψ is weak* dense in the weak* closure of S + S∗, so
Ψ maps TR weak*-to-weak* homeomorphically onto the weak* closure of S + S∗.
From above, Ψ is a completely positive isometry, with completely positive inverse Ω.
Hence Ψ is completely isometric.

2.3 Wandering vectors

Let S be a weak*-closed subspace of B(H), and let x and y be vectors in H . en
[x⊗y]S denotes the weak-operator-continuous linear functional on S which is given
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by the equivalence class of the rank one tensor x⊗ y. In other words,

(A, [x⊗ y]S) = (Ax, y), A ∈ S.

De nition 2.3.1. A weak*-closed subspace S of B(H) is said to have propertyA1(1)

if, for every weak*-continuous linear functional π on S and every ε > 0, there are
vectors x and y in H with ∥x∥∥y∥ < (1 + ϵ)∥π∥ such that π(A) = (Ax, y) for all
A in S.

It was shown in [DP99] that Ln has property A1(1), and it is well known (see for
example Proposition B of [Dav87]) that a singly generated analytic free semigroup
algebra has property A1(1). In this section, we will use dual algebra techniques to
show that every analytic free semigroup algebra with n ≥ 2 generators has property
A1(1). From this result, it will follow easily that every analytic free semigroup algebra
has a wandering vector.

For the remainder of this section we x an analytic free semigroup algebra S with
n ≥ 2 generators acting on a Hilbert space H . e general outline of our approach
is as follows. Let π be a weak*-continuous linear functional on S. We will show that
we can construct convergent sequences (xk) and (yk) such that

lim
k→∞

∥π − [xk ⊗ yk]S∥ = 0.

is will then give π = [x⊗ y]S , where x = limk xk and y = limk yk.
e following idea will allow us to iteratively construct the sequences (xk) and

(yk). Fix xk and yk. Suppose we can nd vectors x′ and y′ such that

1. [x′ ⊗ y′]S approximates the error π − [xk ⊗ yk]S arbitrarily closely,

2. ∥[xk ⊗ y′]S∥ and ∥[x′ ⊗ yk]S∥ are arbitrarily small,

3. ∥x′∥ and ∥y′∥ are arbitrarily close to ∥π − [xk ⊗ yk]S∥.

Set xk+1 = xk + x′ and yk+1 = yk + y′. en

∥π− [xk+1⊗yk+1]S∥ ≤ ∥π− [xk⊗yk]S− [x′⊗y′]S∥+∥[x′⊗yk]S∥+∥[xk⊗y′]S∥,
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so [xk+1 ⊗ yk+1]S is an arbitrarily good approximation to π, and the sequences (xk)
and (yk) can be made Cauchy. Of course, the main difficulty will be in showing that
it is possible to nd x′ and y′ as above.

De nition 2.3.2. An operator X : F 2
n → H is said to intertwine Ln and S if

XLi = SiX for 1 ≤ i ≤ n.

Letx = (x1, ..., xm) be a wandering vector forS(m). Byeorem 1.3 of [Pop89a],
we know that the restriction of S(m) to S(m)[x] is unitarily equivalent to Ln. Let
X : F 2

n → H denote the map which follows this equivalence with the projection
onto the rst coordinate. en X intertwines Ln and S. It was shown in [DLP05]
that every vector in H is in the range of some intertwining operator of this form.

e following result shows that every intertwining operator gives rise to an L-
Toeplitz operator. is allows us to use the results of section 2.2 to work with inter-
twining operators.

Lemma 2.3.3. Suppose X : F 2
n → H intertwines Ln and S . en X∗X is an L-

Toeplitz operator.

Proof. is follows immediately from the identity

L∗
iX

∗XLj = X∗S∗
i SjX

=

X∗X if i = j,

0 otherwise.

We require several technical results about L-Toeplitz operators.

Lemma 2.3.4. Let T be an L-Toeplitz operator with Fourier series

T ∼
∑
w∈F+

n

awRw +
∑

w∈F+
n \{∅}

bwR
∗
w.
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en for any word u in F+
n ,∥∥∥∥∥∥
∑

w∈F+
n \{∅}

bwR
∗
wξu

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑

w∈F+
n \{∅}

bwRwξu

∥∥∥∥∥∥ .
Proof. We have ∥∥∥∥∥∥

∑
w∈F+

n \{∅}

bwR
∗
wξu

∥∥∥∥∥∥
2

=
∑

w∈F+
n \{∅}

w=w′u

|bw|2

≤
∑

w∈F+
n \{∅}

|bw|2

=

∥∥∥∥∥∥
∑

w∈F+
n \{∅}

bwRwξu

∥∥∥∥∥∥
2

.

Lemma 2.3.5. Let T be an L-Toeplitz operator with Fourier series

T ∼
∑
w∈F+

n

awRw +
∑

w∈F+
n \{∅}

bwR
∗
w.

en given p ≥ 1 and ϵ > 0, there is a word v in F+
n such that

∥R∗
vTRvξu − a∅ξu∥ < ϵ

for any word u ∈ Fp
n.

Proof. For k ≥ 1, let vk be the word vk = 12k. en for any word w in F+
n ,

R∗
vk
RwRvk =


I if w = ∅,

Rvkw′ if w = w′vk for w′ ∈ F+
n ,

0 otherwise.
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is implies the Fourier series for R∗
vk
TRvk is given by

R∗
vk
TRvk ∼ a∅I +

∑
w∈F+

n \{∅}
w=w′vk

awRvkw′ +
∑

w∈F+
n \{∅}

w=w′vk

bwR
∗
vkw′ .

Hence for u in F+
n ,

R∗
vk
TRvkξu ∼ a∅ξu +

∑
w∈F+

n \{∅}
w=w′vk

awRvkw′ξu +
∑

w∈F+
n \{∅}

w=w′vk

bwR
∗
vkw′ξu.

is gives

∥R∗
vk
TRvkξu − a∅ξu∥ =

∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

awRvkw′ξu +
∑

w∈F+
n \{∅}

w=w′vk

bwR
∗
vkw′ξu

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

awRvkw′ξu

∥∥∥∥∥∥∥∥+
∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

bwR
∗
vkw′ξu

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

awRvkw′ξu

∥∥∥∥∥∥∥∥+
∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

bwRvkw′ξu

∥∥∥∥∥∥∥∥ ,
where the last inequality follows from Lemma 2.3.4. Now∥∥∥∥∥∥∥∥

∑
w∈F+

n \{∅}
w=w′vk

awRvkw′ξu

∥∥∥∥∥∥∥∥
2

=
∑

w∈F+
n \{∅}

w=w′vk

|aw|2 = ∥R∗
vk
Tξ∅∥2,
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and similarly,∥∥∥∥∥∥∥∥
∑

w∈F+
n \{∅}

w=w′vk

bwRvkw′ξu

∥∥∥∥∥∥∥∥
2

=
∑

w∈F+
n \{∅}

w=w′vk

|bw|2 = ∥R∗
vk
T ∗ξ∅∥2,

e result follows from the fact that for all ξ in F 2
n , ∥R∗

vξ∥ → 0 as |v| → ∞.

Recall that ϕ : (Ln)∗ → S∗ is the predual of the map Φ−1 : S → Ln.

Lemma 2.3.6. LetX : F 2
n → H be an intertwining operator, and let x = Xξ∅. en

given p ≥ 1 and ϵ > 0, there exists a word v in F+
n such that

∥∥[Su1vx⊗ Su2vx]S − ∥x∥2ϕ([ξu1 ⊗ ξu2 ]Ln)
∥∥ < ϵ

for all words u1 and u2 in Fp
n.

Proof. By scalingX if necessary, we can suppose that ∥x∥ = 1. Let T = X∗X . en
T is an L-Toeplitz operator by Lemma 2.3.3. Writing the Fourier series for T as

T ∼
∑
w∈F+

n

awRw +
∑

w∈F+
n \{0}

bwR
∗
w,

it follows that a∅ = ∥x∥2 = 1. Hence by Lemma 2.3.5, there exists a word v in F+
n

such that ∥R∗
vTRvξu2 − ξu2∥ < ϵ for any word u2 in Fp

n. en for A in S ,

(A, [Su1vx⊗ Su2vx]S) = (ASu1vx, Su2vx)

= (ASu1vXξ∅, Su2vXξ∅)

= (XΦ−1(A)Lu1vξ∅, XLu2vξ∅)

= (XΦ−1(A)Rvξu1 , XRvξu2)

= (XRvΦ
−1(A)ξu1 , XRvξu2)

= (Φ−1(A)ξu1 , R
∗
vTRvξu2)
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for all words u1 and u2 in Fp
n. is gives

|(A, [Su1vx⊗ Su2vx]S − [ξu1 ⊗ ξu2 ]Ln)| =
∣∣(Φ−1(A)ξu1 , R

∗
vTRvξu2 − ξu2)

∣∣
≤ ∥Φ−1(A)ξu1∥∥R∗

vTRvξu2 − ξu2∥

< ϵ∥A∥.

erefore,
∥[Su1vx⊗ Su2vx]S − ϕ([ξu1 ⊗ ξu2 ]Ln)∥ < ϵ.

Lemma 2.3.7. Let M ≥ 2 be minimal such that S(M) has a wandering vector w =

(w1, ..., wM). en given ϵ ∈ (0, 1) there exists a unit vector x = (x1, ..., xM) in
S(M)[w] such that x1 = Xξ∅ for some intertwining operator X : F 2

n → H , and
∥x1∥ > 1− ϵ.

Proof. Let P denote the projection map from S(M)[w] to H(M−1) which takes x =

(x1, ..., xM) to (x2, ..., xM). en P intertwines the restriction of S(M) to S(M)[w]

and S(M−1). e restriction of S(M) to S(M)[w] is unitarily equivalent to Ln. Let U
be a unitary implementing this equivalence. en setting Y = PU , Y intertwines
Ln and S(M−1). Suppose that for all x in S(M)[w], ∥x1∥ ≤ (1− ϵ)∥x∥. en

∥x∥2 =
M∑
i=1

∥xi∥2 ≤ (1− ϵ)2∥x∥2 +
M∑
i=2

∥xi∥2,

which gives
mM∑
i=2

∥xi∥2 ≥ (1− (1− ϵ)2)∥x∥2,

implying that P is bounded below, and hence that Y is bounded below. By e-
orem 2.8 of [DLP05], this implies that the range of Y is a wandering subspace for
S(M−1), contradicting the minimality ofM . Hence there must be some unit vector
x in S(M)[w] such that ∥x1∥ > 1− ϵ.

LetQ denote the projectionmap fromS(M)[w] toH which takes y = (y1, ..., yM)

to y1, and let Z = QU . Note that x1 is contained in the range of Z. For every R
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in Rn, the operator ZR intertwines Ln and S . Moreover, since the set of vectors
{Rξ∅ : R ∈ Rn} is dense in F 2

n , the set {ZRξ∅ : R ∈ Rn} is dense in the clo-
sure of the range of Z. It follows that we can choose the vector x as above such that
x1 = Xξ∅ for some intertwining operator X : F 2

n → H .

LetM ≥ 1 be minimal such that the ampliation S(M) has a wandering vector x.
SuchM exists by eorem 2.1.1. en H(M) contains an in nite family of pairwise
orthogonal subspaces Wk, for k ≥ 1, which are wandering for S(M). For example,
we can take Wk = S(m)[S

(m)
vk x], where vk = 12k. For k ≥ 1, let Mk denote the

linear manifold in H given by

Mk = {z ∈ H : z = z1 for some z = (z1, ..., zM) in Wk}.

Let W denote the algebraic span of the Wk, and let M denote the algebraic span of
the Mk.

Lemma 2.3.8. Given h1, ..., hq inM and ϵ > 0, there exists a unit vector y inM such
that y = Y ξ∅ for some intertwining operator Y : F 2

n → H , and such that ∥[Suy ⊗
hj]S∥ < ϵ and ∥[hj ⊗ Suy]S∥ < ϵ for any word u ∈ F+

n and 1 ≤ j ≤ q.

Proof. For each j, there exists h(j) = (h
(j)
1 , ..., h

(j)
M ) in W such that hj = h

(j)
1 .

Choose ϵ0 ∈ (0, 1) such that ϵ0/(1− ϵ0) < ϵ and ϵ0/∥h(j)∥ < 1 for 1 ≤ j ≤ q, and
choose r sufficiently large that h(j) is orthogonal to Wr for 1 ≤ j ≤ q.

By Lemma 2.3.7, there exists a unit vector x = (x1, ..., xM) in Mr such that
x1 = Xξ∅ for some intertwining operator X : F 2

n → H , and such that

∥x1∥ > max

1− ϵ0,

(
1− ϵ20

∥h(j)∥2

)1/2

: 1 ≤ j ≤ q

 .

is gives 1/∥x1∥ < 1/(1− ϵ0) and

M∑
i=2

∥xi∥2 = 1− ∥x1∥2 <
ϵ20

∥h(j)∥2
, 1 ≤ j ≤ q.
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For any word u in F+
n ,

∥[Sux1 ⊗ h
(j)
1 ]S∥ ≤

∥∥∥∥∥
M∑
i=1

[Suxi ⊗ h
(j)
i ]S

∥∥∥∥∥+
∥∥∥∥∥

M∑
i=2

[Suxi ⊗ h
(j)
i ]S

∥∥∥∥∥
=

∥∥∥[S(M)
u x⊗ h

(j)
]S

∥∥∥+ ∥∥∥∥∥
M∑
i=2

[Suxi ⊗ h
(j)
i ]S

∥∥∥∥∥
=

∥∥∥∥∥
M∑
i=2

[Suxi ⊗ h
(j)
i ]S

∥∥∥∥∥
≤

(
M∑
i=2

∥Suxi∥2
)1/2( M∑

i=2

∥h(j)i ∥2
)1/2

=

(
M∑
i=2

∥xi∥2
)1/2( M∑

i=2

∥h(j)i ∥2
)1/2

<
ϵ0

∥h(j)∥

(
M∑
i=2

∥h(j)i ∥2
)1/2

≤ ϵ0,

where we have used the fact that x and h(j) belong to orthogonal S(M)-invariant
subspaces, which implies that ∥[S(M)

u x⊗h
(j)
]S∥ = 0. Multiplying this inequality by

1/∥x1∥ = 1/∥Sux1∥ then gives

∥[Su(x1/∥x1∥)⊗ hj]∥ < ϵ0/(1− ϵ0)

for 1 ≤ j ≤ q. In the same way we get

∥hj ⊗ Su(x1/∥x1∥)]∥ < ϵ0/(1− ϵ0)

for 1 ≤ j ≤ q. Hence we can take y = x1/∥x1∥ and Y = X/∥x1∥.

Lemma 2.3.9. Given vectors h1, ..., hq in M, p ≥ 1, and ϵ > 0, there exists a unit
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vector z inM such that

∥[Su1z ⊗ Su2z]S − ϕ([ξu1 ⊗ ξu2 ]Ln)∥ < ϵ

for all u1 and u2 in Fp
n, and such that ∥[Swz ⊗ hj]S∥ < ϵ and ∥[hj ⊗ Swz]S∥ < ϵ for

all w ∈ F+
n and 1 ≤ j ≤ q.

Proof. By Lemma 2.3.8, there exists a unit vector y in M such that y = Y ξ∅ for
some intertwining operator Y : F 2

n → H , and such that for any word w in F+
n ,

∥[Swy ⊗ hj]S∥ < ϵ and ∥[hj ⊗ Swy]S∥ < ϵ for 1 ≤ j ≤ q. By Lemma 2.3.6, there
exists a word v in F+

n such that ∥[Su1Svy ⊗ Su2Svy]S − ϕ([ξu1 ⊗ ξu2 ]Ln)∥ < ϵ for
any words u1 and u2 in Fp

n. en ∥[SwSvy ⊗ hj]S∥ = ∥[Swvy ⊗ hj]S∥ < ϵ and
∥[hj ⊗ SwSvy]S∥ = ∥[hj ⊗ Swvy]S∥ < ϵ, so we can take z = Svy.

Lemma 2.3.10. Given a weak*-continuous linear functional π on S , h1, ..., hq inM,
and ϵ > 0, there are vectors x and y inM such that

1. ∥π − [x⊗ y]S∥ < ϵ,

2. ∥x∥ < (1 + ϵ)∥π∥1/2 and ∥y∥ < (1 + ϵ)∥π∥1/2,

3. ∥[x⊗ hj]S∥ < ϵ and ∥[hj ⊗ y]S∥ < ϵ for 1 ≤ j ≤ q.

Proof. By scaling π and ϵ if necessary, we can assume that ∥π∥ = 1. Choose ϵ0 > 0

such that 2ϵ0 + 3ϵ20 < ϵ/2 and 4ϵ0 + 4ϵ20 < ϵ+ ϵ2/2. Since Ln has property A1(1),
there are vectors ξ and η in F 2

n such that [ξ ⊗ η]Ln = ϕ−1(π), with ∥ξ∥ < 1 + ϵ0

and ∥η∥ < 1 + ϵ0.
Since ξ∅ is cyclic forLn, there is p ≥1 andC andD in the span of {Lu : u ∈ Fp

n}
such that ∥Cξ∅ − ξ∥ < ϵ0 and ∥Dξ∅ − η∥ < ϵ0. en

∥Cξ∅∥ ≤ ∥Cξ∅ − ξ∥+ ∥ξ∥ < 1 + 2ϵ0,
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so ∥Cξ∅∥2 < 1 + ϵ+ ϵ2/2, and similarly, ∥Dξ∅∥2 < 1 + ϵ+ ϵ2/2. Also,

∥π − ϕ([Cξ∅ ⊗Dξ∅]Ln)∥ = ∥[ξ ⊗ η]Ln − [Cξ∅ ⊗Dξ∅]Ln∥

≤ ∥[(ξ − Cξ∅)⊗ η]Ln∥+ ∥[(Cξ∅ − ξ)⊗ (η −Dξ∅)]Ln∥+

∥[ξ ⊗ (η −Dξ∅)]Ln∥

≤ ∥ξ − Cξ∅∥∥η∥+ ∥ξ − Cξ∅∥∥η −Dξ∅∥+

∥ξ∥∥η −Dξ∅∥

< 2ϵ0 + 3ϵ20

< ϵ/2.

Set A = Φ(C) and B = Φ(D). If we expand C and D as

C =
∑
u∈Fp

n

cuLu and D =
∑
u∈Fp

n

duLu,

then
A =

∑
u∈Fp

n

cuSu and B =
∑
u∈Fp

n

duSu.

Choose ϵ1 > 0 such that

ϵ1
∑
u∈Fp

n

|cu| < ϵ, ϵ1
∑
u∈Fp

n

∣∣du∣∣ < ϵ, ϵ1
∑
u∈Fp

n

∑
v∈Fp

n

∣∣cudv∣∣ < ϵ/2,

ϵ1
∑
u∈FN

n

∑
v∈FN

n

|cucv| < ϵ+ ϵ2/2, ϵ1
∑
u∈FN

n

∑
v∈FN

n

∣∣dudv∣∣ < ϵ+ ϵ2/2.

By Lemma 2.3.9, there exists a unit vector z in M such that

∥[Suz ⊗ Svz]S − ϕ([ξu ⊗ ξv]Ln)∥ < ϵ1

for any words u and v in Fp
n, and such that ∥[Suz⊗hj]S∥ < ϵ1 and ∥[hj⊗Suz]S∥ <

ϵ1 for any word u in F+
n and 1 ≤ j ≤ q. en
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∥[Az ⊗Bz]S −ϕ([Cξ∅ ⊗Dξ∅]Ln)∥

=

∥∥∥∥∥∥
∑
u∈Fp

n

∑
v∈Fp

n

cudv([Suz ⊗ Svz]S − ϕ([Luξ∅ ⊗ Lvξ∅]Ln))

∥∥∥∥∥∥
≤
∑
u∈Fp

n

∑
v∈Fp

n

∣∣cudv∣∣ ∥[Suz ⊗ Svz]S − ϕ([Luξ∅ ⊗ Lvξ∅]Ln))∥

< ϵ1
∑
u∈Fp

n

∑
v∈Fp

n

∣∣cudv∣∣
< ϵ/2.

Hence from above,

∥π−[Az⊗Bz]S∥ ≤ ∥π−ϕ([Cξ∅⊗Dξ∅]Ln)∥+∥ϕ([Cξ∅⊗Dξ∅]Ln)−[Az⊗Bz]S∥ < ϵ.

By a similar estimation,

∥[Az ⊗ Az]S − ϕ([Cξ∅ ⊗ Cξ∅]Ln)∥ < ϵ1
∑
u∈Fp

n

∑
v∈Fp

n

|cucv| < ϵ+ ϵ2/2.

Evaluation of these functionals at the identity then implies

ϵ+ ϵ2/2 > ∥Az∥2 − ∥Cξ∅∥2 ≥ ∥Az∥2 − (1 + ϵ+ ϵ2/2),

and hence that ∥Az∥ < 1 + ϵ. In the same way we get ∥Bz∥ < 1 + ϵ.
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Finally,

∥[Az ⊗ hj]S∥ = ∥
∑
u∈Fp

n

cu[Suz ⊗ hj]S∥

≤
∑
u∈Fp

n

|cu| ∥[Suz ⊗ hj]S∥

< ϵ1
∑
u∈Fp

n

|cu|

< ϵ,

and in the same way we get

∥[hj ⊗Bz]S∥ < ϵ1
∑
u∈Fp

n

∣∣du∣∣ < ϵ.

Hence we can take x = Az and y = Bz.

e next result follows from Lemma 2.3.10 by a standard iterative argument from
the theory of dual algebras. We include the details for the convenience of the reader.

eorem 2.3.11. Given a weak*-continuous linear functional π on S and ϵ > 0, there
are vectors x and y in H such that π = [x ⊗ y]S , ∥x∥ < (1 + ϵ)∥π∥1/2, and ∥y∥ <
(1 + ϵ)∥π∥1/2. In other words, S has property A1(1).

Proof. By scaling π if necessary, we can assume that ∥π∥ = 1. Choose α > 0 such
that (1 + α)/(1 − α) < 1 + ϵ. Note that αk → 0 as k → ∞. We claim that for
k ≥ 1, we can nd xk and yk in M such that

1. ∥π − [xk ⊗ yk]S∥ < α2k,

2. ∥xk∥ < (1+α)(1+α+ ...+αk−1) and ∥yk∥ < (1+α)(1+α+ ...+αk−1),

3. ∥xk − xk−1∥ < (1 + α)αk−1 and ∥yk − yk−1∥ < (1 + α)αk−1 for k ≥ 2.

Setting x0 = 0 and y0 = 0, Lemma 2.3.10 easily implies this is true for k = 1.
Proceeding by induction, suppose that we have found xk and yk satisfying these con-
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ditions. Choose ϵ0 > 0 such that ϵ0 < α and ϵ0 < α2(k+1)/3. By Lemma 2.3.10,
there are x′ and y′ in M such that

1. ∥π − [xk ⊗ yk]S − [x′ ⊗ y′]S∥ < ϵ0,

2. ∥x′∥ < (1 + ϵ0)∥π − [xk ⊗ yk]S∥1/2 and
∥y′∥ < (1 + ϵ0)∥π − [xk ⊗ yk]S∥1/2,

3. ∥[x′ ⊗ yk]S∥ < ϵ0 and ∥[xk ⊗ y′]S∥ < ϵ0.

Set xk+1 = xk + x′, and yk+1 = yk + y′. en

∥π − [xk+1 ⊗ yk+1]S∥ = ∥π − [(xk + x′)⊗ (yk + y′)]S∥

≤ ∥π − [xk ⊗ yk]S − [x′ ⊗ y′]S∥+ ∥[xk ⊗ y′]S∥+

∥[x′ ⊗ yk]S∥

< 3ϵ0

< α2(k+1).

Also,
∥x′∥ < (1 + ϵ0)∥π − [xk ⊗ yk]S∥1/2 < (1 + α)αk,

which gives

∥xk+1∥ = ∥xk + x′∥ ≤ ∥xk∥+ ∥x′∥ < (1 + α)(1 + α + ...+ αk)

and
∥xk+1 − xk∥ = ∥x′∥ < (1 + α)αk.

Symmetrically, ∥yk+1∥ < (1+α)(1+α+ ...+αk) and ∥yk+1 − yk∥ < (1+α)αk,
which establishes the claim.
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Now for l > k,

∥xl − xk∥ ≤ ∥xl − xl−1∥+ ...+ ∥xk+1 − xk∥

< (1 + α)(αl−1 + ...+ αk)

≤ αl−1(1 + α)/(1− α),

so the sequence (xk) is Cauchy. Let x = limk xk. en

∥x∥ = lim
k

∥xk∥ ≤ lim
k
(1 + α)(1 + α + ...+ αk−1) = (1 + α)/(1− α) < 1 + ϵ.

Similarly, the sequence {yk} is Cauchy. Letting y = limk yk be its limit, ∥y∥ < 1+ϵ.
Finally, we have

∥π − [x⊗ y]S∥ = lim ∥π − [xk ⊗ yk]S∥ ≤ limα2k = 0,

so π = [x⊗ y]S .

eorem 2.3.12. Every analytic free semigroup algebra has a wandering vector.

Proof. Let S be an analytic free semigroup algebra, and let S0 denote the weak-
operator-closed ideal generated by S1, ..., Sn. Since S is analytic, S0 is proper, and in
particular doesn’t contain the identity. Let π0 denote the weak-operator continuous
linear functional which annihilates S0 and satis es π(I) = 1.

Since S has property A1(1), there are vectors x and y in H such that π0(A) =
(Ax, y) for all A in S. is implies (Swx, y) = 0 for all w ∈ F+

n \{∅}, so y is or-
thogonal to the subspace S0[x]. However, (x, y) = π(I) = 1, so y is not orthogonal
to the subspace S[x]. Hence S[x]⊖ S0[x] is nonempty.

Let z be a unit vector in S[x] ⊖ S0[x]. en the subspace S0[z] is contained in
the subspace S0[x], and in particular, is orthogonal to z. Hence (Swz, z) = 0 for all
w ∈ F+

n \{∅}. Let u and v be distinct words in F+
n such that |u| ≤ |v|. en S∗

uSv is
in S0, so (Suz, Svz) = (z, S∗

uSvz) = 0. By symmetry, it follows that (Suz, Svz) = 0

for every pair of distinct words u and v in F+
n . us z is a wandering vector for S.
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Corollary 2.3.13. A free semigroup algebra is either a von Neumann algebra, or it has
a wandering vector.

Proof. Let S be a free semigroup algebra. By the general structure theorem for free
semigroup algebras [DKP01], S is either a von Neumann algebra, or it has an analytic
part. In the latter case, by eorem 2.3.12, S has a wandering vector.

Byeorem 4.1 of [DLP05], every free semigroup algebra which has a wandering
vector is re exive. us we have established the following result.

Corollary 2.3.14. Every free semigroup algebra is re exive.

eorem 4.2 of [DLP05] shows that every analytic free semigroup algebra which
has a wandering vector is hyperre exive with hyperre exivity constant at most 55.
is gives the following result, which we will re ne in section 2.4.

Corollary 2.3.15. Every analytic free semigroup algebra is hyperre exive with hyper-
re exivity constant at most 55.

2.4 e hyperre exivity of free semigroup algebras

In Section 2.3, we established that every analytic free semigroup algebra has a wan-
dering vector. In this section, we will build on this result to show that the predual of
every analytic free semigroup algebra with n ≥ 2 generators satis es a very strong fac-
torization property. By a result of Bercovici [Ber98], we will obtain as a consequence
that every such algebra is hyperre exive with hyperre exivity constant at most 3.

De nition 2.4.1. A weak*-closed subspace S of B(H) is said to have property X0,1

if given a weak*-continuous linear functional π on S with ∥π∥ ≤ 1, h1, ..., hq in H ,
and ϵ > 0, there are vectors x and y in H such that

1. ∥π − [x⊗ y]S∥ < ϵ,

2. ∥x∥ ≤ 1 and ∥y∥ ≤ 1,
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3. ∥[x⊗ hj]S∥ < ϵ and ∥[hj ⊗ y]S∥ < ϵ for 1 ≤ j ≤ q.

Bercovici [Ber98] showed that any weak*-closed algebra whose commutant con-
tains two isometries with pairwise orthogonal ranges has property X0,1, and showed
that any weak*-closed algebra with propetyX0,1 is hyperre exive with hyperre exivity
constant at most 3. For n ≥ 2, this includes Ln. We will show that every analytic
free semigroup algebra with n ≥ 2 generators has property X0,1.

We require the following result which is implied by Lemma 1.2 in [Kri01].

Lemma 2.4.2. Given a proper isometry V in Rn, vectors ν1, ..., νq in F 2
n , and ϵ > 0,

there existsm such that ∥(V ∗)mνj∥ < ϵ for 1 ≤ j ≤ q.

For the remainder of this section we x an analytic free semigroup algebra S with
n ≥ 2 generators acting on a Hilbert spaceH , and we let Z denote the weak* closure
of S+S∗. Let Φ denote the canonical map from Ln to S . Byeorem 2.2.6, we can
extend Φ to a map from the set TR of R-Toeplitz operators to Z , and this extension
is a complete isometry and a weak*-to-weak* homeomorphism.

For x and y in H , we will need to take care to distinguish between the weak-
operator-continuous vector functional [x⊗y]S de ned on S, and the weak-operator-
continuous vector functional [x⊗ y]Z de ned on Z .

e following lemma is a variation of an argument of Bercovici [Ber98]. It was
kindly provided by Ken Davidson.

Lemma 2.4.3. Given isometries U and V in Rn with orthogonal ranges, vectors ξ and
ν in F 2

n with ν in the kernel of U∗, and ϵ > 0, de ne

ηk =
1√
k

k∑
i=1

U iV ξ.

en limk ∥[ν ⊗ ηk]TR∥ = 0.

Proof. LetH2 denote the Hardy-Hilbert space with orthonormal basis {ek : k ≥ 0}.
For k ≥ 0, de ne Y : H2 → F 2

n by Y ek = UkV ξ andZ : H2 → F 2
n byZek = Ukν
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for k ≥ 0. Note that Y and Z are isometries. For T in TR, by Lemma 2.2.3 we can
factor T as T = A∗B, for A and B in Ln. en

(Y ∗TZej, ei) = (A∗BU jν, U iV ξ)

= (A∗V ∗(U∗)iU jBν, ξ)

=

0 if i < j

ci−j if i ≥ j
,

where ci−j = (A∗Bν,U i−jV ξ) = (Tν, U i−jV ξ). is implies that Y ∗TZ is an
analytic Toeplitz operator with symbol f , for some f in H∞. Note that ∥f∥∞ =

∥Y ∗TZ∥ ≤ ∥T∥. Hence

|(T, [ν ⊗ ηk]TR)| =

∣∣∣∣∣(Tν, 1√
k

k∑
i=1

U iV ξ)

∣∣∣∣∣
=

1√
k

∣∣∣∣∣
k∑

i=1

(Tν, U iV ξ)

∣∣∣∣∣
=

1√
k

∣∣∣∣∣
k∑

i=1

ci

∣∣∣∣∣
≤ 1√

k
∥Dk∥1∥f∥∞

≤ 1√
k
∥Dk∥1∥T∥,

where ∥Dk∥1 denotes the L1-norm of the Dirichlet kernel. Using the well-known
fact that ∥Dk∥1 grows logarithmically as k → ∞ gives limk ∥[ν ⊗ ηk]TR∥ = 0.

Lemma 2.4.4. Given vectors h1, ..., hq in H and ϵ > 0, there exists an intertwining
operator Y : F 2

n → H such that ∥Y ξ∅∥ = 1 and ∥[Y ξ∅ ⊗ hi]Z∥ < ϵ for 1 ≤ i ≤ q.

Proof. For 1 ≤ i ≤ q, let Hi : F 2
n → H be an intertwining operator such that

∥Hiξ∅ − hi∥ < ϵ/2. Since S is analytic, by eorem 2.3.12 there is an isometric
intertwining operatorX : F 2

n → H . en eachH∗
iX is an L-Toeplitz operator, so by
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Lemma 2.2.3, we can write H∗
iX = A∗

iBi, for some Ai and Bi in Rn such that Ai

and Bi are bounded below. Let Ci = R1i2Bi, and letD =
∑k

i=1R1i2Ai. enD is
bounded below and H∗

iX = C∗
iD. Using inner-outer factorization, write D = UF

for U and F inRn, where U is inner and F is outer. en F is bounded below since
D is, and hence is invertible.

By Lemma 2.4.2, there exists m such that ∥(U∗)mCiξ∅∥ < ϵ/(8∥F∥) for 1 ≤
i ≤ q. Write Ciξ∅ = νi + ωi, where ∥ωi∥ < ϵ/(8∥F∥), and νi is in the kernel of
(U∗)m. Set V = UmR1 andW = UmR2. en V andW are isometries inRn with
pairwise orthogonal ranges. Note that νi is in the kernel of V ∗. For k ≥ 1, de ne
intertwining operators Yk : F 2

n → H by

Yk = XF−1 1√
k + 1

k∑
j=0

Um−1R1V
jW,

and de ne

ηk =
1√
k

k∑
j=1

V jWξ∅.

Note that ηk is a unit vector.
Using the fact that V = DF−1Um−1R1, we compute

H∗
i Yk = H∗

iXF
−1 1√

k + 1

k∑
j=0

Um−1R1V
jW

= C∗
iDF

−1 1√
k + 1

k∑
j=0

Um−1R1V
jW

= C∗
i

1√
k + 1

k+1∑
j=1

V jW.
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en for T in TR,

(THiξ∅, Ykξ∅) = (Φ−1(T )Ciξ∅,
1√
k + 1

k+1∑
j=1

V jWξ∅)

= (Φ−1(T )Ciξ∅, ηk+1),

Hence ∥[Hiξ∅ ⊗ Ykξ∅]Z∥ = ∥[Ciξ∅ ⊗ ηk+1]TR∥. By Lemma 2.4.3, we can choose r
sufficiently large that ∥[νi ⊗ ηr+1]TR∥ < ϵ/(8∥F∥). is gives

∥[Ciξ∅ ⊗ ηr+1]TR∥ ≤ ∥[νi ⊗ ηr+1]TR∥+ ∥[ωi ⊗ ηr+1]TR∥

≤ ∥[νi ⊗ ηr+1]TR ]∥+ ∥ωi∥∥ηr+1∥

< ϵ/(4∥F∥).

us ∥[Hiξ∅ ⊗ Ykξ∅]Z∥ < ϵ/(4∥F∥) for 1 ≤ i ≤ q.
Now,

∥Yrξ∅∥2 = ∥XF−1 1√
r + 1

r∑
j=0

Um−1R1V
jWξ∅∥2

≥ 1

(r + 1)∥F∥2
∥

r∑
j=0

Um−1R1V
jWξ∅∥2

=
r

(r + 1)∥F∥2
,

which implies

∥Yrξ∅∥ ≥ 1

2∥F∥
.

Setting Y = Yr/∥Yrξ∅∥, it follows that

∥[Hiξ∅ ⊗ Y ξ∅]Z∥ =
1

∥Ypξ∅∥
∥[Hiξ∅ ⊗ Ypξ∅]Z∥

≤ 2∥F∥∥[Hiξ∅ ⊗ Ykξ∅]Z∥

< ϵ/2.
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us

∥[hjξ∅ ⊗ Y ξ∅]Z∥ ≤ ∥[(hj −Hjξ∅)⊗ Y ξ∅]Z∥+ ∥[Hjξ∅ ⊗ Y ξ∅]Z∥

≤ ∥hj −Hjξ∅∥∥Y ξ∅∥+ ∥[Hjξ∅ ⊗ Y ξ∅]Z∥

< ϵ.

Lemma 2.4.5. Given vectors h1, ..., hq in H , p ≥ 1, and ϵ > 0, there exists a unit
vector z in H such that

∥[Su1z ⊗ Su2z]S − ϕ([ξu1 ⊗ ξu2 ]Ln)∥ < ϵ

for all u1 and u2 in Fp
n, and such that ∥[Swz ⊗ hi]S∥ < ϵ and ∥[hi ⊗ Swz]S∥ < ϵ for

all w ∈ F+
n and 1 ≤ i ≤ q.

Proof. By Lemma 2.4.4, there is an intertwining operator Y : F 2
n → H such that

∥Y ξ∅∥ = 1 and ∥[Y ξ∅⊗hi]Z∥ < ϵ for 1 ≤ i ≤ q. By Lemma 2.3.6, there is a word
v in F+

n such that ∥[Su1vY ξ∅ ⊗ Su2vY ξ∅]S − ϕ([ξu1 ⊗ ξu2 ]Ln)∥ < ϵ for all words
u1and u2 in Fp

n. Set z = SvY ξ∅.
For T in Z and w ∈ F+

n ,

|(T, [Swz ⊗ hj]Z)| = |(TSw, [z ⊗ hj]Z)|

≤ ∥TSw∥∥[z ⊗ hj]Z∥

≤ ∥T∥∥[z ⊗ hJ ]Z∥.

Hence ∥[Swz ⊗ hi]Z∥ ≤ ∥[z ⊗ hi]Z∥ < ϵ and similarly, ∥[hi ⊗ Swz]Z∥ ≤ ∥[hi ⊗
z]Z∥ < ϵ. In particular, restricting toS gives ∥[Swz⊗hi]S∥ < ϵ and ∥[hi⊗Swz]S∥ <
ϵ.

Lemma 2.4.5 is essentially a strengthened version of Lemma 2.3.9, in the sense
that the hi’s in the hypothesis can be completely arbitrary.

36



Lemma 2.4.6. Given a weak*-continuous linear functional π on S , h1, ..., hq in H ,
and ϵ > 0, there are vectors x and y in H such that

1. ∥π − [x⊗ y]S∥ < ϵ,

2. ∥x∥ < (1 + ϵ)∥π∥1/2 and ∥y∥ < (1 + ϵ)∥π∥1/2,

3. ∥[x⊗ hj]S∥ < ϵ and ∥[hj ⊗ y]S∥ < ϵ for 1 ≤ j ≤ q.

Proof. e proof follows exactly as in the proof of Lemma 2.3.10, using Lemma 2.4.5
in place of Lemma 2.3.9.

Lemma 2.4.6 clearly implies the desired result.

eorem2.4.7. Every analytic free semigroup algebra with n ≥ 2 generators has property
X0,1.

Corollary 2.4.8. Every analytic free semigroup algebra with n ≥ 2 generators is hyper-
re exive with hyperre exivity constant at most 3.
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Chapter 3

e structure of an isometric tuple

is chapter concerns the structure of an isometric tuple of operators, an object that
appears frequently in mathematics and mathematical physics. From the perspective of
an operator theorist, the notion of an isometric tuple is a natural higher-dimensional
generalization of the notion of an isometry.

An n-tuple of operators (V1, . . . , Vn) acting on a Hilbert space H is said to be
isometric if the row operator [V1 · · · Vn] : Hn → H is an isometry. is is equivalent
to requiring that the operators V1, . . . , Vn satisfy the algebraic relations

V ∗
i Vj =

I if i = j,

0 if i ̸= j.

ese relations are often referred to as the Cuntz relations.
emain result in this chapter is a decomposition of an isometric tuple that gener-

alizes the classical Lebesgue-von Neumann-Wold decomposition of an isometry into
the direct sum of a unilateral shift, an absolutely continuous unitary and a singular
unitary. We show that, as in the classical case, this decomposition determines the
structure of the weakly closed algebra and the von Neumann algebra generated by the
tuple.

e existence of a higher-dimensional Lebesgue-von Neumann-Wold decompo-
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sition was conjectured by Davidson, Li and Pitts in [DLP05]. ey observed that
the measure-theoretic de nition of an absolutely continuous operator was equivalent
to an operator-theoretic property of the functional calculus for that operator. Since
this property naturally extends to the higher-dimensional setting, this allowed them
to de ne the notion an absolutely continuous isometric tuple.

e key technical result in this chapter is a more effective operator-algebraic char-
acterization of an absolutely continuous isometric tuple. e lack of such a charac-
terization had been identi ed as the biggest obstruction to establishing the conjecture
in [DLP05] (see also [DY08]). As we will see, the difficulty here can be attributed to
the lack of a higher-dimensional analogue of the spectral theorem.

In this chapter, we overcome this difficulty by extending ideas from the commu-
tative theory of dual algebras to the noncommutative setting. A similar approach
was used in Chapter 2 to prove that certain isometric tuples are hyperre exive. In
the present chapter, our assumptions on the isometric tuples we consider are much
weaker, and the problem is substantially more difficult. e idea to use this approach
was inspired by results of Bercovici in [Ber98].

In Section 3.1, we review the Lebesgue-von Neumann-Wold decomposition of
a single isometry that is the motivation for our results. In Section 3.2, we provide
a brief review of the requisite background material on higher-dimensional operator
theory, and we introduce the notions of absolute continuity and singularity. In Sec-
tion 3.3, we prove an operator-algebraic characterization of an absolutely continuous
isometric tuple. In Section 3.4, we prove an operator-algebraic characterization of a
singular isometric tuple. In Section 3.5, we prove the Lebesgue-von Neumann-Wold
decomposition of an isometric tuple, and we obtain some consequences of this result.
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3.1 Motivation

e structure of a single isometry V is well understood. By the Wold decomposition
of an isometry, V can be decomposed as

V = Vu ⊕ U,

where Vu is a unilateral shift of some multiplicity, and U is a unitary. By the Lebesgue
decomposition of a measure applied to the spectral measure of U , we can decompose
U as

U = Va ⊕ Vs,

where Va is an absolutely continuous unitary and Vs is a singular unitary, in the sense
that their spectral measures are absolutely continuous and singular respectively with
respect to Lebesgue measure. is allows us to further decompose V as

V = Vu ⊕ Va ⊕ Vs.

We will refer to this as the Lebesgue-von Neumann-Wold decomposition of an
isometry.

It will be convenient to consider the above notions of absolute continuity and
singularity from a different perspective. Let A(D) denote the classical disk algebra
of analytic functions on the complex unit disk D with continuous extension to the
boundary. An isometry V induces a contractive representation of A(D), namely the
A(D) functional calculus for V , given by

f → f(V ), f ∈ A(D).

Recall that the algebra A(D) is a weak-* dense subalgebra of the algebra H∞ of
bounded analytic functions on the complex unit disk. In certain cases, the representa-
tion ofA(D) induced by V is actually the restriction toA(D) of a weak-* continuous
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representation of H∞, namely the H∞ functional calculus for V , given by

f → f(V ), f ∈ H∞.

It follows from eorem III.2.1 and eorem III.2.3 of [SF70] that this occurs if
and only if Vs = 0 in the Lebesgue-von Neumann-Wold decomposition of V . is
motivates the following de nitions.

De nition 3.1.1. Let V be an isometry. We will say that V is absolutely contin-
uous if the representation of A(D) induced by V extends to a weak-* continuous
representation of H∞. If V has no absolutely continuous restriction to an invariant
subspace, then we will say that V is singular.

e importance of the Lebesgue-von Neumann-Wold decomposition of an isom-
etry V is that it determines the structure of the weakly closed algebra W(V ) and the
von Neumann algebra W∗(V ) generated by V . Recall that W(V ) is the weak closure
of the polynomials in V , and W∗(V ) is the weak closure of the polynomials in V and
V ∗.

Let α denote the multiplicity of Vu as a unilateral shift, and let µa and µs be
scalar measures equivalent to the spectral measures of Va and Vs respectively. Since a
unilateral shift of multiplicity one is irreducible, W∗(V ) is given by

W∗(V ) ≃ B(ℓ2)α ⊕ L∞(Va)⊕ L∞(µs)(Vs).

It was established by Wermer in [Wer52] that W(V ) can be self-adjoint, depending
on α and µa. If α ̸= 0 or if Lebesgue measure is absolutely continuous with respect
to µa, then W(V ) is given by

W(V ) ≃ H∞(Vu ⊕ Va)⊕ L∞(µs)(Vs).

Otherwise, if neither of these conditions holds, then W(V ) = W∗(V ).
e following example shows that it is possible for the weakly closed algebra gen-

erated by an absolutely continuous isometry to be self-adjoint. We will see later that
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there is no higher-dimensional analogue of this phenomenon.

Example 3.1.2. Let U denote the operator of multiplication by the coordinate func-
tion on L2(T,m), where m denotes Lebesgue measure. Let m1 and m2 denote
Lebesgue measure on the upper and lower half of the unit circle respectively, and
let U1and U2 denote the operator of multiplication by the coordinate function on
L2(T,m1) and L2(T,m2) respectively.

Since the spectral measure of U ≃ U1 ⊕ U2 is equivalent to Lebesgue measure,
U is absolutely continuous. us U1 and U2 are also absolutely continuous. From
above,

W∗(U) ≃ L∞(U), W(U) ≃ H∞(U).

However, since Lebesgue measure is not absolutely continuous with respect tom1 or
m2,

W(Ui) = W∗(Ui) = L∞(Ui), i = 1, 2.

In particular, the weakly closed algebras W(U1) and W(U2) generated by U1 and U2

respectively are self-adjoint.

3.2 Background and preliminaries

3.2.1 e noncommutative function algebras

e noncommutative Hardy space F 2
n is de ned to be the full Fock-Hilbert space

over Cn, i.e.
F 2
n = ⊕∞

k=0(Cn)⊗k,

where we will write ξ∅ to denote the vacuum vector, so that (Cn)⊗0 = Cξ∅. Let
ξ1, . . . , ξn be an orthonormal basis of Cn and let F∗

n denote the unital free semigroup
on n generators {1, . . . , n} with unit ∅. For a word w = w1 · · ·wk in F∗

n, it will be
convenient to write ξw = ξw1 ⊗ · · · ⊗ ξwk

. We can identify F 2
n with the set of power
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series in n noncommuting variables ξ1, . . . , ξn with square-summable coefficients, i.e.

F 2
n =

∑
w∈F∗

n

awξw :
∑
w∈F∗

n

|aw|2 <∞

 .

In particular, we can identify the noncommutative Hardy space F 2
1 with the classical

Hardy space H2 of analytic functions having power series expansions with square-
summable coefficients.

e left multiplication operators L1, . . . , Ln are de ned on F 2
n by

Liξw = ξi ⊗ ξw = ξiw, w ∈ F∗
n.

It is clear that the n-tupleL = (L1, . . . , Ln) is isometric. We will call it the unilateral
n-shift since, for n = 1, L1 can be identi ed with the unilateral shift on H2. For a
word w = w1 · · ·wk in F∗

n, it will be convenient to write Lw = Lw1 · · ·Lwk
.

e noncommutative disk algebra An is the norm closed unital algebra gen-
erated by L1, . . . , Ln and the noncommutative analytic Toeplitz algebra Ln is the
weakly closed unital algebra generated byL1, . . . , Ln. ese algebras were introduced
by Popescu in [Pop96], and have subsequently been studied by a number of authors
(see for example [DP98] and [DP99]).

e noncommutative disk algebraAn and the noncommutative analytic Toeplitz
algebra Ln are higher-dimensional analogues of the classical disk algebra A(D) and
the classical algebraH∞ of bounded analytic functions. In particular, the algebraAn

is a proper weak-* dense subalgebra of the algebraLn. If we agree to identify functions
inH∞ with the corresponding multiplication operators onH2, then we can identify
A(D) with A1 and H∞ with L1.

As in the classical case, an element A in Ln is uniquely determined by its Fourier
series

A ∼
∑
w∈F∗

n

awLw,

where aw = (Aξ∅, ξw) for w in F∗
n. e Cesaro sums of this series converge strongly
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to A, and it is often useful heuristically to work directly with this representation.
We will also need to work with the right multiplication operators R1, . . . , Rn

de ned on F 2
n by

Riξw = ξw ⊗ ξi = ξwi, w ∈ F∗
n.

en-tupleR = (R1, . . . , Rn) is unitarily equivalent toL = (L1, . . . , Ln). e uni-
tary equivalence is implemented by the “unitary ip” on F 2

n that, for a wordw1 · · ·wk

in F∗
n, takes ξw1···wk

to ξwk···w1 . We will letRn denote the weakly closed algebra gen-
erated by R1, . . . , Rn.

3.2.2 Free semigroup algebras

Let V = (V1, . . . , Vn) be an isometric n-tuple. e weakly closed unital algebra
W(V ) generated by V1, . . . , Vn is called the free semigroup algebra generated by V .
As in Section 3.2.1, for a word w = w1 · · ·wk in the unital free semigroup F∗

n, it will
be convenient to write Vw = Vw1 · · ·Vwk

.

Example 3.2.1. enoncommutative analytic Toeplitz algebraLn introduced in Sec-
tion 3.2.1 is a fundamental example of a free semigroup algebra. We will see that it
plays an important role in the general theory of free semigroup algebras.

e study of free semigroup algebras was initiated byDavidson and Pitts in [DP99].
ey observed that information about the unitary invariants of an isometric tuple can
be detected in the algebraic structure of the free semigroup algebra it generates, and
used this fact to classify a large family of representations of the Cuntz algebra. Free
semigroup algebras have subsequently received a great deal of interest (see for example
[Dav01]).

It was shown in [DP98] that Ln has a great deal of structure that is analogous to
the analytic structure of H∞. is motivates the following de nition.

De nition 3.2.2. An isometric n-tuple V = (V1, . . . , Vn) is said to be analytic if the
free semigroup algebra generated by V is isomorphic to the noncommutative analytic
Toeplitz algebra Ln.
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e notion of analyticity is of central importance in the theory of free semigroup
algebras. is is apparent from the work of Davidson, Katsoulis and Pitts in [DKP01].
ey proved the following general structure theorem.

eorem 3.2.3 (Structure theorem for free semigroup algebras). Let V = W(V ) be
a free semigroup algebra. en there is a projection P in V with range invariant under V
such that

1. if P ̸= 0, then the restriction of V to the range of P is an analytic free semigroup
algebra,

2. the compression of V to the range of P⊥ is a von Neumann algebra,

3. V = PVP + (W∗(V ))P⊥.

e analytic structure of a free semigroup algebra reveals itself in the form of
wandering vectors. Let V = (V1, . . . , Vn) be an isometric n-tuple acting on a Hilbert
space H . A vector x in H is said to be wandering for V if the set of vectors {Vwx :

w ∈ F∗
n} is orthonormal. In this case we will also say that x is wandering for the free

semigroup algebra generated by V .
e existence of wandering vectors for an analytic free semigroup algebra was es-

tablished in Chapter 2, settling a conjecture rst made in [DKP01] (see also [DLP05]
and [DY08]). Examples show that the structure of an analytic free semigroup algebra
can be quite complicated, making this result far from obvious.

3.2.3 Dilation theory

Recall that an operator T is said to be contractive if ∥T∥ ≤ 1. An n-tuple of operators
T = (T1, . . . , Tn) acting on a Hilbert space H is said to be contractive if the row
operator [T1 · · · Tn] : Hn → H is contractive.

Sz.-Nagy showed that every contractive operator T acting on a Hilbert space H
has a unique minimal dilation to an isometry V , acting on a bigger Hilbert space K
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(see for example [SF70]). is means that H ⊆ K, H is cyclic for V and

T k = PHV
k |H , k ≥ 1.

Sz.-Nagy’s dilation theorem was generalized in the work of Bunce, Frazho and
Popescu in [Bun84], [Fra82] and [Pop89a] respectively. ey showed that every con-
tractive n-tuple of operators T = (T1, . . . , Tn) acting on a Hilbert space H has a
unique minimal dilation to an isometric n-tuple V = (V1, . . . , Vn), acting on a big-
ger Hilbert space K. is means that H ⊆ K, H is cyclic for V1, . . . , Vn and

PHVi1 · · ·Vik |H= Ti1 · · ·Tik , i1, . . . , ik ∈ {1, . . . , n} and k ≥ 1.

3.2.4 e Wold decomposition

e classical Wold decomposition decomposes a single isometry into the direct sum
of a unilateral shift of some multiplicity and a unitary. In order to state the Wold
decomposition of an isometric tuple, we need to generalize these notions.

In Section 3.2.1, we introduced the unilateral n-shift L = (L1, . . . , Ln), and we
saw that it is the natural higher-dimensional generalization of the classical unilateral
shift. An isometric n-tuple is said to be a unilateral shift of multiplicity α if it is
unitarily equivalent to the ampliation L(α) = (L

(α)
1 , . . . , L

(α)
n ), for some positive

integer α.
e higher-dimensional generalization of a unitary is based on the fact that a

unitary is the same thing as a surjective isometry. An n-tuple of operators U =

(U1, . . . , Un) is said to be unitary if the operator [U1 · · · Un] : H
n → H is a sur-

jective isometry. is is equivalent to requiring that the operators U1, . . . , Un satisfy

n∑
i=1

UiU
∗
i = I.

Note that a unilateral shift is not unitary. is is because the “vacuum” vector ξ∅ in
F 2
n is not contained in the range of the unilateral n-shift L = (L1, . . . , Ln).
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In [DP99], Davidson and Pitts studied a family of “atomic” isometric tuples that
arise from certain in nite directed trees. As the following example shows, this family
contains a large number of unitary tuples.

Example 3.2.4. Fix an in nite directed n-ary tree B with vertex set V such that
every vertex has a parent. For a vertex v in V , let ci(v) denote the i-th child of v.
Let H = ℓ2(V ), so that the set {ev : v ∈ V } is an orthonormal basis for H . De ne
operators S1, . . . , Sn on H by

Siev = eci(v), 1 ≤ i ≤ n.

It’s clear that S1, . . . , Sn are isometries, and the fact that B is an in nite directed
n-ary tree implies that the range of Si and the range of Sj are orthogonal for i ̸= j.
us S = (S1, . . . , Sn) is an isometric n-tuple. e fact that every vertex has a parent
implies that every basis vector is in the range of some Si. us S is a unitary n-tuple.

Let V = (V1, . . . , Vn) be an arbitrary isometric n-tuple. If V is unitary, then
the C∗-algebra C∗(V1, . . . , Vn) generated by V is isomorphic to the Cuntz algebra
On. Otherwise, it is isomorphic to the extended Cuntz algebra En, the extension of
the compacts by On. Since the only irreducible *-representation of the compacts is
the identity representation, and since On is simple, a *-representation of En can be
decomposed into a multiple of the identity representation and a representation ofOn.
e Wold decomposition of an isometric n-tuple, which was proved by Popescu in
[Pop89a], can be obtained as a consequence of these C∗-algebraic facts, based on the
observation that the C∗-algebra generated by a unilateral n-shift is isomorphic to En.

Proposition 3.2.5 (eWold decomposition). Let V = (V1, . . . , Vn) be an isometric
n-tuple. en we can decompose V as

V = Vu ⊕ U,

where Vu is a unilateral n-shift and U is a unitary n-tuple.
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3.2.5 Absolutely continuous and singular isometric tuples

As in the classical case, an isometric n-tuple V = (V1, . . . , Vn) induces a contrac-
tive representation of the noncommutative disk algebraAn, called theAn functional
calculus for V , determined by

Li1 · · ·Lik → Vi1 · · ·Vik , i1, . . . , ik ∈ {1, . . . , n} and k ≥ 1.

is is a consequence of Popescu’s generalization of von Neumann’s inequality in
[Pop91].

Recall from Section 3.2.1 that An is a proper weak-* dense subalgebra of the
noncommutative analytic Toeplitz algebra Ln. e following de nition is the natural
generalization of De nition 3.1.1.

De nition 3.2.6. Let V = (V1, . . . , Vn) be an isometric n-tuple. We will say that V
is absolutely continuous if the representation of An induced by V is the restriction
to An of a weak-* continuous representation of Ln. We will say that V is singular if
V has no absolutely continuous restriction to an invariant subspace.

It is clear from De nition 3.2.2 and De nition 3.2.6 that an analytic isometric
tuple is absolutely continuous. In order to obtain the Lebesgue-von Neumann-Wold
decomposition of an isometric tuple, we will prove the converse result that an abso-
lutely continuous isometric tuple is analytic.

3.3 Absolutely continuous isometric tuples

e main result in this section is an operator-algebraic characterization of an abso-
lutely continuous isometric tuple. Speci cally, we will show that for n ≥ 2, every
absolutely continuous isometric n-tuple is analytic.

For n ≥ 2, x an absolutely continuous isometric n-tuple S = (S1, . . . , Sn)

acting on a Hilbert space H . Let Φ denote the corresponding representation of the
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noncommutative disk algebra An, given by

Φ(Lw) = Sw, w ∈ F∗
n.

Since S is absolutely continuous, Φ extends to a representation of Ln that is weak-*
continuous.

It was shown in Corollary 1.2 of [DY08] that Φ is actually a completely isometric
isomorphism and a weak-* homeomorphism from Ln to the weak-* closed algebra
generated by S1, . . . , Sn. is is equivalent to the fact that an in nite ampliation of
S is an analytic isometric tuple. Evidently, it is much more difficult to show that S
is analytic. As an explanation, we offer the aphorism that things are generally much
nicer in the presence of in nite multiplicity.

Showing that S is analytic amounts to showing that the free semigroup algebra
(i.e. the weakly closed algebra) W(S) generated by S1, . . . , Sn is isomorphic to the
noncommutative analytic Toeplitz algebra Ln. Since we know from above that the
weak-* closed algebra generated by S1, . . . , Sn is isomorphic to Ln, our strategy will
be to show that this algebra is actually equal to W(S).

3.3.1 e noncommutative Toeplitz operators

Let S denote the weak-* closed algebra generated by S1, . . . , Sn. e map Φ intro-
duced at the beginning of this section is a completely isometric isomorphism and a
weak-* homeomorphism from Ln to S . It will be useful for what follows to extend Φ
even further. LetMn denote the weak-* closure of the operator system Ln+L∗

n. We
will call the elements ofMn the noncommutative Toeplitz operators, because they
are a natural higher-dimensional generalization of the classical Toeplitz operators.

e noncommutative Toeplitz operators were introduced by Popescu in [Pop89b].
It was shown in Corollary 1.3 of [Pop09] that A belongs to Mn if and only if

R∗
iARj =

A if i = j,

0 otherwise,
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where R1, . . . , Rn are the right multiplication operators introduced in Section 3.2.1.
A short proof of this fact was also given in Lemma 2.2.2 of Chapter 2. It follows from
this characterization that Mn is weakly closed.

Let T denote the weak-* closure of the operator system S +S∗. e proof of the
following proposition is nearly identical to the proof of eorem 2.2.6 of Chapter 2.

Proposition 3.3.1. Let S = (S1, . . . , Sn) be an absolutely continuous isometric n-
tuple. e representation Φ of Ln induced by S extends to a completely isometric and
weak-* homeomorphic *-map fromMn to T .

We will need to exploit the fact that Mn and T are dual spaces. Let T∗ denote
the predual of T , i.e. the set of weak-* continuous linear functionals on T . Similarly,
letMn∗ denote the predual ofMn. Basic functional analysis implies that the inverse
mapΦ−1 is the dual of an isometric isomorphism ϕ fromMn∗ to T∗. Moreover, since
Φ−1 is isometric, so is ϕ.

We can identify the predual of B(F 2
n), i.e. the set of weak-* continuous linear

functionals on B(F 2
n), with the set of trace class operators C1(F 2

n) on F 2
n , where K

in C1(F 2
n) corresponds to the linear functional

(T,K) = tr(TK), T ∈ B(F 2
n).

If we let (Mn)⊥ denote the preannihilator of Mn, i.e.

(Mn)⊥ = {K ∈ C1(F 2
n) : tr(AK) = 0, ∀A ∈ Mn},

then we can identify the predual (Mn)∗ with the quotient space C1(F 2
n)/(Mn)⊥.

Similarly, we can identify the predual T∗ with the quotient space C1(H)/T⊥.
For ξ and η in F 2

n , it will be convenient to let [ξ ⊗ η]Mn denote the weak-*
continuous linear functional on Mn given by

(A, [ξ ⊗ η]Mn) = (Aξ, η), A ∈ Mn.

In other words, [ξ⊗ η]Mn denotes the equivalence class of the rank one tensor x⊗ y

50



in (Mn)∗. Similarly, for x and y in H , let [x ⊗ y]T denote the weak-* continuous
linear functional on T given by

(T, [x⊗ y]T ) = (Tx, y), T ∈ T .

3.3.2 Intertwining operators

An operatorX : F 2
n → H is said to intertwine the isometricn-tupleS = (S1, . . . , Sn)

and the unilateral n-shift L = (L1, . . . , Ln) if it satis es

XLi = SiX, 1 ≤ i ≤ n.

Observe that ifX intertwines S and L, then the operator JX∗XJ is a noncommuta-
tive Toeplitz operator, where J is the unitary ip introduced in Section 3.2.1. Indeed,
using the fact that JRi = LiJ for 1 ≤ i ≤ n, we compute

R∗
i JX

∗XJRj = JL∗
iX

∗XLjJ

= JX∗S∗
i SjXJ

=

JX∗XJ if i = j,

0 otherwise.

Since S is absolutely continuous, it follows fromeorem 2.7 of [DLP05] that every
vector x in H is in the range of an operator that intertwines S and L.

3.3.3 Dual algebra theory

Recall that to prove the isometric n-tuple S = (S1, . . . , Sn) is analytic, our strategy
is to show that the weak-* closed algebra S = W∗(S1, . . . , Sn) is actually equal to
the weakly closed algebra W(S1, . . . , Sn). is amounts to showing that S is already
weakly closed. However, instead of working directly with S , it will be necessary to
work with the operator system T . In fact, we will need to consider the general struc-
ture of the predual of T .
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In Section 3.3.1, we saw that an element in the predual T∗ of the operator system
T can be identi ed with an equivalence class of trace class operators. We will show
that T satis es a very powerful predual “factorization” property, in the sense that the
equivalence class of an element in the predual T∗ always contains “nice” representa-
tives. We will see that S inherits this property from T , and that this will imply the
desired result.

e idea of studying factorization in the predual of an operator algebra is the
central idea in dual algebra theory, which has been applied with great success to a
number of problems in the commutative setting (see for example [BFP85]). As we
will see, many of the factorization properties that were introduced in the commutative
setting make sense even in the present noncommutative setting.

De nition 3.3.2. A weak-* closed subspaceA of operators acting on a Hilbert space
H is said to have property A1(1) if, given a weak-* continuous linear functional τ on
Awith ∥τ∥ ≤ 1 and ϵ > 0, there are vectors x and y inH such that ∥x∥ ≤ (1+ϵ)1/2,
∥y∥ ≤ (1 + ϵ)1/2 and τ = [x⊗ y]A.

If a weak-* closed subspace of B(H) has property A1(1), then the equivalence
class of any weak-* continuous linear functional on the subspace contains an operator
of rank one. Note that in this case, every weak-* continuous linear functional on the
subspace is actually weakly continuous. It was shown in [DP99] that Ln has property
A1(1), and the same proof also shows that Mn has property A1(1).

Of course, the main difficulty with a predual factorization property like property
A1(1) is that it is often extremely difficult to show that it holds. e next factorization
property turns out to bemuch stronger than propertyA1(1), but it is sometimes easier
to show that it holds due to its approximate nature.

De nition 3.3.3. A weak-* closed subspaceA of operators acting on a Hilbert space
H is said to have property X0,1 if, given a weak-* continuous linear functional τ on
A with ∥τ∥ ≤ 1, z1, ..., zq in H and ϵ > 0, there are vectors x and y in H such that

1. ∥x∥ ≤ 1 and ∥y∥ ≤ 1,
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2. ∥[x⊗ zj]A∥ < ϵ and ∥[zj ⊗ y]A∥ < ϵ for 1 ≤ j ≤ q,

3. ∥τ − [x⊗ y]A∥ < ϵ.

It’s easy to see that the in nite ampliation of a weak-* closed subspace ofB(H) has
property X0,1. us, intuitively, a weak-* closed subspace of B(H) that has property
X0,1 can be thought of as having “approximately in nite” multiplicity. It was shown
in [BFP85] that property X0,1 implies property A1(1).

We will show that T has property X0,1. Since this property is inherited by weak-*
closed subspaces, it will follow thatS has propertyX0,1, and hence thatS has property
A1(1). It is easy to show that any weak-* closed subspace of operators with property
A1(1) is weakly closed (see for example Proposition 59.2 of [Con00]). us this will
imply the desired result that S is weakly closed.

3.3.4 Approximate factorization

Lemma 3.3.4. Given unit vectors x, z1, ..., zq in H and ϵ > 0, there are vectors
ξ, ζ1, ..., ζq in F 2

n such that

1. ∥ξ∥ < √
q(1 + ϵ)1/2,

2. ∥ζi∥ < (1 + ϵ)1/2 for 1 ≤ i ≤ q,

3. [x⊗ zi]T = ϕ([ξ ⊗ ζi]Mn) for 1 ≤ i ≤ q.

Proof. SinceMn has propertyA1(1), there are vectors υ′1, ..., υ′q, ζ ′1, ..., ζ ′q in F 2
n such

that ∥υ′i∥ < (1 + ϵ)1/2, ∥ζ ′i∥ < (1 + ϵ)1/2 and [x ⊗ zi]T = ϕ([υ′i ⊗ ζ ′i]Mn) for
1 ≤ i ≤ q.

Let Vi = R12k for 1 ≤ i ≤ q, so that V1, ..., Vq are isometries in Rn with
pairwise orthogonal ranges. Set ξ =

∑q
i=1 Viυ

′
i and ζi = Viζ

′
i for 1 ≤ i ≤ q. en
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∥ξ∥ < √
q(1 + ϵ)1/2, ∥ζi∥ < (1 + ϵ)1/2 and for T in T ,

(ϕ([ξ ⊗ ζi]Mn), T ) = (Φ−1(T )ξ, ζi)

= (Φ−1(T )

q∑
j=1

Vjυ
′
j, Viζ

′
i)

= (Φ−1(T )υ′i, ζ
′
i)

= (ϕ([υ′i ⊗ ζ ′i]Mn), T )

= ([x⊗ zi]T , T ).

Hence [x⊗ zi]T = ϕ([ξ ⊗ ζi]Mn).

Lemma 3.3.5. Let η be a unit vector contained in the algebraic span of {ξw : w ∈ F∗
n}.

en there are words u and v in F∗
n such that

LuRvη = Lξ∅ = Rξ∅,

where L is an isometry in Ln, and R is an isometry in Rn with range orthogonal to the
range of R1.

Proof. Expand η as η =
∑

|w|≤m awξw for some m ≥ 0. Let u = 12m and let
v = 1m2. en LuRvη =

∑
|w|≤m awξuwv. Set L =

∑
|w|≤m awLuwv and R =∑

|w|≤m awRuwv. en LuRvη = Lξ∅ = Rξ∅, and it’s clear that the range of R is
orthogonal to the range of R1.

It remains to show thatL andR are isometries. Forw andw′ in F+
n with |w| ≤ m

and |w′| ≤ m,

L∗
vL

∗
wLw′Lv =

I if w = w′,

0 otherwise.
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is gives

L∗L =
∑
|w|≤m

∑
|w′|≤m

awaw′L∗
uwvLuw′v

=
∑
|w|≤m

∑
|w′|≤m

awaw′L∗
vL

∗
wLw′Lv

=
∑
|w|≤m

|aw|2I

= I,

where the last equality follows from the fact that η is a unit vector. us L is an
isometry, and it follows from a similar computation that R is an isometry.

Lemma 3.3.6. Given unit vectors z1, ..., zq inH and ϵ > 0, there exists a unit vector x
in H and vectors ξ, ζ1, ..., ζq in F 2

n such that

1. ∥ξ∥ < √
q(1 + ϵ)1/2,

2. ∥ζi∥ < (1 + ϵ)1/2 for 1 ≤ i ≤ q,

3. ξ = ∥ξ∥Lξ∅ = ∥ξ∥Rξ∅, where L is an isometry in Ln, and R is an isometry in
Rn with range orthogonal to the range of R1,

4. ∥[x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥ < ϵ for 1 ≤ i ≤ q.

Proof. Let x′ be any unit vector inH . By Lemma 3.3.4, there are vectors ξ′, ζ ′1, ..., ζ ′q
in F 2

n such that

1. ∥ξ′∥ < √
q(1 + ϵ)1/2,

2. ∥ζ ′i∥ < (1 + ϵ)1/2 for 1 ≤ i ≤ q,

3. [x′ ⊗ zi]T = ϕ([ξ′ ⊗ ζ ′i]Mn) for 1 ≤ i ≤ q.
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Let η be a vector contained in the algebraic span of {ξw : w ∈ F∗
n} such that ∥η∥ <

√
q(1 + ϵ)1/2 and ∥ξ′ − η∥ < ϵ/(1 + ϵ)1/2. en

∥[x′ ⊗ zi]T − ϕ([η ⊗ ζ ′i]Mn)∥ ≤ ∥[x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζ ′i]Mn)∥

+∥[(ξ′ − η)⊗ ζ ′i]Mn∥

≤ ∥ξ′ − η∥∥ζ ′i∥

< ϵ

for 1 ≤ i ≤ q.
By Lemma 3.3.5, there are words u and v in F+

n such that

LuRvη = ∥η∥Lξ∅ = ∥η∥Rξ∅,

where L is an isometry in Ln, and R is an isometry in Rn with range orthogonal to
the range of R1. Set x = Sux

′, ξ = LuRvη and ζi = Rvζ
′
i for 1 ≤ i ≤ q. en for

T in T ,

|([x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn), T )| = |([Sux
′ ⊗ zi]T − ϕ([η ⊗ ζ ′i]Mn), T )|

= |([x′ ⊗ zi]T − ϕ([η ⊗ ζ ′i]Mn), TSu)|

≤ ∥[x′ ⊗ zi]T − ϕ([η ⊗ ζ ′i]Mn)∥∥TSu∥

< ϵ∥T∥.

Hence ∥[x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥ < ϵ.

e following result is implied by Lemma 1.2 in [Kri01].

Lemma 3.3.7. Given a proper isometry R in Rn, vectors ζ1, ..., ζq in F 2
n and ϵ > 0,

there exists k ≥ 1 such that ∥(R∗)kζi∥ < ϵ for 1 ≤ i ≤ q.

Lemma 3.3.8. Given a proper isometry S in S, vectors u and v in H and ϵ > 0, there
exists k ≥ 1 such that ∥[u⊗ (S∗)kv]S∥ < ϵ.
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Proof. SinceLn has propertyA1, there are vectors µ and ν in F 2
n such that [u⊗v]S =

ϕ([µ⊗ ν]Ln). us for A in S,

|([u⊗ (S∗)kv]S , A)| = |([µ⊗ (Φ−1(S)∗)kν]Ln ,Φ
−1(A))|

= |(Φ−1(A)µ, (Φ−1(S)∗)kν)|

≤ ∥A∥∥µ∥∥(Φ−1(S)∗)kν∥,

which gives ∥[u ⊗ (S∗)kv]S∥ ≤ ∥µ∥∥(Φ−1(S)∗)kν∥. Since Φ−1(S) is a a proper
isometry in Ln, and since Ln andRn are unitarily equivalent, the result now follows
by Lemma 3.3.7.

Lemma 3.3.9. Given unit vectors z1, ..., zq inH and ϵ > 0, there exists a unit vector x
in H and vectors ξ, ζ1, ..., ζq in F 2

n such that

1. ∥ξ∥ < √
q(1 + ϵ)1/2,

2. ∥ζi∥ < (1 + ϵ)1/2 for 1 ≤ i ≤ q,

3. ξ = ∥ξ∥Lξ∅ = ∥ξ∥Rξ∅, where L is an isometry in Ln, and R is an isometry in
Rn with range orthogonal to the range of R1,

4. ∥R∗ζi∥ < ϵ for 1 ≤ i ≤ q,

5. |(Φ(L)kx, x)| < ϵ for k ≥ 1,

6. ∥[x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥ < ϵ for 1 ≤ i ≤ q.

Proof. By Lemma 3.3.6, there exists a unit vector x′ in H and vectors ξ′, ζ1, ..., ζq in
F 2
n such that

1. ∥ξ′∥ < √
q(1 + ϵ)1/2,

2. ∥ζi∥ < (1 + ϵ)1/2 for 1 ≤ i ≤ q,

3. ξ′ = ∥ξ′∥L′ξ∅ = ∥ξ′∥R′ξ∅, where L′ is an isometry in Ln and R′ is an
isometry in Rnwith the range of R′ orthogonal to the range of R1,
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4. ∥[x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn)∥ < ϵ for 1 ≤ i ≤ q.

By Lemma 3.3.7 and Lemma 3.3.8, there existsm ≥ 1 such that ∥(R∗
1)

m(R′)∗ζi∥ <
ϵ for 1 ≤ i ≤ q and ∥[x′ ⊗ (S∗

1)
mΦ(L′)∗x′]S∥ < ϵ. Set ξ = Lm

1 ξ
′, L = Lm

1 L
′ and

R = R′Rm
1 . en ξ = ∥ξ∥Lξ∅ = ∥ξ∥Rξ∅, L is an isometry in Ln, and R is an

isometry in Rn with range orthogonal to the range of R1. For 1 ≤ i ≤ q, this gives
∥R∗ζi∥ = ∥(R∗

1)
m(R′)∗ζi∥ < ϵ.

Let x = Sm
1 x

′. en for k ≥ 1, we compute

|(Φ(L)kx, x)| = |(Φ(Lm
1 L

′)kSm
1 x

′, Sm
1 x

′)|

= |(Sm
1 Φ(L′Lm

1 )
kx′, Sm

1 x
′)|

= |(Φ(L′Lm
1 )

kx′, x′)|

= |(Φ(L′Lm
1 )

k−1x′, (S∗
1)

mΦ(L′)∗x′)|

= |([x′ ⊗ (S∗
1)

mΦ(L′)∗x′]S ,Φ(L
′Lm

1 )
k−1)|

≤ ∥[x′ ⊗ (S∗
1)

mΦ(L′)∗x′]S∥∥(L′Lm
1 )

k−1∥

< ϵ.

Finally, for T in T we have

|([x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn), T )| = |([x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn), TS
m
1 )|

≤ ∥[x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn∥∥TSm
1 ∥

< ϵ∥T∥.

us ∥[x⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥ < ϵ.

3.3.5 Approximately orthogonal vectors

e following lemma is extracted from the proof of eorem 4.3 in [Ber98].

Lemma 3.3.10. Given two isometries R and R′ in Rn with orthogonal ranges and
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vectors ξ and µ in F 2
n with µ in the kernel of R∗, de ne

µk =
1√
k

k∑
j=1

RjR′µ.

en
∥[ξ ⊗ µk]Mn∥ ≤ 1√

k
∥µ∥∥Dk − 1∥1,

where Dk denotes the k-th Dirichlet kernel and ∥ · ∥1 denotes the L1 norm.

Lemma 3.3.11. Given unit vectors z1, ..., zq in H and ϵ > 0, there exists a unit vector
x in H such that ∥[x⊗ zi]T ∥ < ϵ for 1 ≤ i ≤ q.

Proof. We may suppose that ϵ < 1. Using the fact that lim k−1/2∥Dk∥1 = 0, where
Dk denotes the k-th Dirichlet kernel and ∥ · ∥1 denotes the L1 norm, choose k ≥ 1

such that 2(q/k)−1/2∥Dk − 1∥1 < ϵ/(3(1 + ϵ)). Next choose ϵ′ > 0 such that

ϵ′ < min
{
1,
ϵ(1− ϵ)

3
√
k

,
ϵ(1− ϵ)

6
√
q

,
kϵ

k2 − k

}
.

By Lemma 3.3.9, there exists a unit vector x′ inH and vectors ξ′, ζ1, ..., ζq in F 2
n such

that

1. ∥ξ′∥ < √
q(1 + ϵ′)1/2,

2. ∥ζi∥ < (1 + ϵ′)1/2 for 1 ≤ i ≤ q,

3. ξ′ = ∥ξ′∥Lξ∅ = ∥ξ′∥Rξ∅, where L is an isometry in Ln, andR is an isometry
in Rn with range orthogonal to the range of R1,

4. ∥R∗ζi∥ < ϵ′ for 1 ≤ i ≤ q,

5. |(Φ(L)kx′, x′)| < ϵ′ for k ≥ 1,

6. ∥[x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn)∥ < ϵ′ for 1 ≤ i ≤ q.
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By (4) we can write ζi = µi + νi, where µi is in the kernel of R∗ and ∥νi∥ < ϵ′.
Let ξ = k−1/2

∑k−1
j=0 L1L

jξ′. en by (3) we can write ξ as

ξ =
1√
k

k−1∑
j=0

L1L
jξ′

=
∥ξ′∥√
k

k−1∑
j=0

L1L
j+1ξ∅

=
∥ξ′∥√
k

k∑
j=1

L1L
jξ∅,

which implies ∥ξ∥ = ∥ξ′∥. Applying (3) again, we can also write ξ as

ξ =
1√
k

k−1∑
j=0

L1L
jξ′

=
∥ξ′∥√
k

k−1∑
j=0

L1L
jRξ∅

=
∥ξ′∥√
k

k−1∑
j=0

Rj+1R1ξ∅

=
∥ξ′∥√
k

k∑
j=1

RjR1ξ∅.

By Lemma 3.3.10 and the choice of k, this gives

∥[ξ ⊗ µi]Mn∥ ≤ 1√
k
∥ξ∥∥µi∥∥Dk − 1∥1

≤
√
q

k
(1 + ϵ′)1/2∥µi∥∥Dk − 1∥1

< ϵ(1− ϵ)/3.

Let y = Sx′, where S = k−1/2
∑k−1

j=0 Φ(L1L
j). en ∥S∥ ≤

√
k, so for T in
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T ,

|([y ⊗ zi]T − ϕ([ξ ⊗ ζi]Mn), T )| = |([x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn), TS)|

≤ ∥[x′ ⊗ zi]T − ϕ([ξ′ ⊗ ζi]Mn)∥∥TS∥

< ϵ′
√
k∥T∥

< (ϵ(1− ϵ)/3)∥T∥,

which gives ∥[y ⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥ < ϵ(1− ϵ)/3. Since

∥[ξ ⊗ νi]Mn∥ ≤ ∥ξ∥∥νi∥ <
√
q(1 + ϵ′)1/2ϵ′ < ϵ(1− ϵ)/3,

this gives

∥[y ⊗ zi]T ∥ ≤ ∥[y ⊗ zi]T − ϕ([ξ ⊗ ζi]Mn)∥+ ∥[ξ ⊗ µi]Mn∥+ ∥[ξ ⊗ νi]Mn∥

< ϵ(1− ϵ).

Finally, we compute

∥y∥2 = ∥Sx′∥2

=

∥∥∥∥∥ 1√
k

k−1∑
j=0

Φ(L1L
j)x′

∥∥∥∥∥
2

= ∥x′∥2 + 1

k

∑
0≤i<j≤k−1

(x′,Φ(L)j−ix′) +
1

k

∑
0≤j<i≤k−1

(Φ(L)i−jx′, x′)

≥ 1− 1

k

∑
0≤i<j≤k−1

|(x′,Φ(L)j−ix′)| − 1

k

∑
0≤j<i≤k−1

|(Φ(L)i−jx′, x′)|

≥ 1− k2 − k

k
ϵ′.

> 1− ϵ.

Hence taking x = (1− ϵ)−1y, ∥x∥ ≥ 1 and ∥[x⊗ zi]T ∥ < ϵ for 1 ≤ i ≤ q.
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Lemma 3.3.12. Given unit vectors z1, ..., zq in H and ϵ > 0, there exists an inter-
twining operator X : F 2

n → H such that ∥Xξ∅∥ = 1 and ∥[Xξ∅ ⊗ zi]T ∥ < ϵ for
1 ≤ i ≤ q.

Proof. By Lemma 3.3.11, there exists a unit vector x inH such that ∥[x⊗ zi]T ∥ < ϵ

for 1 ≤ i ≤ q. By eorem 2.7 of [DLP05], x is in the range of an intertwining
operator X ′ : F 2

n → H . Hence there is a vector ξ in F 2
n such that X ′ξ = x. e

result now follows from the fact that the set of vectors {Rξ∅ : R ∈ Rn} is dense in
F 2
n , and the fact that for R in Rn, the operator X ′R is intertwining.

Lemma 3.3.13. Let X : F 2
n → H be an intertwining operator with ∥Xξ∅∥ = 1.

en given ϵ > 0, there is a word v in F∗
n such that

∥[XRvξ∅ ⊗XRvξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥ < ϵ.

Proof. Since X∗X is an L-Toeplitz operator, by Lemma 2.4.5 of Chapter 2, there is
a word v in F∗

n such that ∥R∗
vX

∗XRvξ∅ − ξ∅∥ < ϵ/2. Note that R∗
vX

∗XRv is also
an L-Toeplitz operator. Let ξ = (R∗

vX
∗XRv − I)ξ∅, so that ∥ξ∥ < ϵ/2. For w in

F∗
n, since (Lwξ, ξ∅) = 0 we can write

(SwXRvξ∅, XRvξ∅) = (Lwξ∅, R
∗
vX

∗XRvξ∅)

= (Lwξ∅, ξ∅) + (Lwξ∅, ξ) + (Lwξ, ξ∅).

Similarly,

(S∗
wXRvξ∅, XRvξ∅) = (L∗

wR
∗
vX

∗XRvξ∅, ξ∅)

= (L∗
wξ∅, ξ∅) + (L∗

wξ∅, ξ) + (L∗
wξ, ξ∅).

is gives

[XRvξ∅ ⊗XRvξ∅]T = ϕ([ξ∅ ⊗ ξ∅]Mn + [ξ ⊗ ξ∅]Mn + [ξ∅ ⊗ ξ]Mn),
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so we conclude that

∥[XRvξ∅ ⊗XRvξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥ ≤ ∥[ξ ⊗ ξ∅]Mn + [ξ∅ ⊗ ξ]Mn∥

≤ 2∥ξ∥∥ξ∅∥

< ϵ,

as required.

Lemma 3.3.14. Given unit vectors z1, ..., zq inH and ϵ > 0, there exists an intertwin-
ing operator X : F 2

n → H such that ∥Xξ∅∥ = 1, ∥[Xξ∅ ⊗ zi]T ∥ < ϵ for 1 ≤ i ≤ q

and
∥[Xξ∅ ⊗Xξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥ < ϵ.

Proof. By Lemma 3.3.12, there exists an intertwining operator X ′ : F 2
n → H such

that ∥X ′ξ∅∥ = 1 and ∥[X ′ξ∅ ⊗ zi]T ∥ < ϵ for 1 ≤ i ≤ q. By Lemma 3.3.13, there
is a word v in F∗

n such that

∥[X ′Rvξ∅ ⊗X ′Rvξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥ < ϵ.

Let X = X ′Rv. en

∥Xξ∅∥ = ∥X ′Rvξ∅∥ = ∥X ′Lvξ∅∥ = ∥SvX
′ξ∅∥ = ∥X ′ξ∅∥ = 1.

For T in T ,

|([Xξ∅ ⊗ zi]T , T )| = |([X ′Rvξ∅ ⊗ zi]T , T )|

= |([X ′Lvξ∅ ⊗ zi]T , T )|

= |([SvX
′ξ∅ ⊗ zi]T , T )|

= |([X ′ξ∅ ⊗ zi]T , TSv)|

≤ ∥[X ′ξ∅ ⊗ zi]T ∥∥T∥.

Hence ∥[Xξ∅ ⊗ zi]T ∥ < ϵ for 1 ≤ i ≤ q.
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3.3.6 e strong factorization property

eorem 3.3.15. Given a weak-* continuous linear functional τ on T with ∥τ∥ ≤ 1,
unit vectors z1, ..., zq in H and ϵ > 0, there are vectors x and y in H such that

1. ∥x∥ ≤ 1 and ∥y∥ ≤ 1,

2. ∥τ − [x⊗ y]T ∥ < ϵ,

3. ∥[x⊗ zi]T ∥ < ϵ and ∥[zi ⊗ y]T ∥ < ϵ for 1 ≤ i ≤ q.

In other words, T has property X0,1.

Proof. Choose ϵ′ > 0 such that ϵ′ < ϵ and 1 − (1 + 2ϵ′)−2(1 − ϵ′) < ϵ. Since
Mn has property A1(1), there are vectors ξ and υ in F 2

n with ∥ξ∥ ≤ 1 + ϵ′/2 and
∥υ∥ ≤ 1 + ϵ′/2 such that τ = ϕ([ξ ⊗ υ]Mn). Since ξ∅ is cyclic for Ln, there are A
andB in Ln such that ∥Aξ∅−ξ∥ < ϵ′/(4(1+ϵ′)) and ∥Bξ∅−υ∥ < ϵ′/(4(1+ϵ′)).
en

∥Aξ∅∥ ≤ ∥Aξ∅ − ξ∥+ ∥ξ∥ < 1 + ϵ′,

and similarly ∥Bξ∅∥ < 1 + ϵ′. is gives

∥[Aξ∅ ⊗Bξ∅]Mn − [ξ ⊗ υ]Mn∥ ≤ ∥[(Aξ∅ − ξ)⊗Bξ∅]∥

+∥[ξ ⊗ (Bξ∅ − υ)]Mn∥

≤ ∥Aξ∅ − ξ∥∥Bξ∅∥+ ∥ξ∥∥Bξ∅ − υ∥

< ϵ′/2.

By Lemma 3.3.14, there is an intertwining operator X : F 2
n → H such that

∥Xξ∅∥ = 1, ∥[Xξ∅ ⊗ zi]T ∥ < ϵ′/(∥A∥ + ∥B∥) for 1 ≤ i ≤ q and ∥[Xξ∅ ⊗
Xξ∅]T −ϕ([ξ∅⊗ξ∅]Mn)∥ < ϵ′/(2(∥A∥+∥B∥)2).Note that since T is self-adjoint,
we also have ∥[zi ⊗Xξ∅]T ∥ < ϵ′/(∥A∥+ ∥B∥) for 1 ≤ i ≤ q.
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De ne vectors x′ and y′ in H by x′ = Φ(A)Xξ∅ and y′ = Φ(B)Xξ∅. en

∥x′∥2 = ∥Φ(A)Xξ∅∥2

= ∥Φ(A)Xξ∅∥2 − ∥Aξ∅∥2 + ∥Aξ∅∥2

= |([Xξ∅ ⊗Xξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn),Φ(A
∗A))|+ ∥Aξ∅∥2

≤ ∥[Xξ∅ ⊗Xξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥∥A∥2 + ∥Aξ∅∥2

< 1 + 2ϵ′,

and similarly, ∥y′∥2 < 1 + 2ϵ′. For T in T ,

|([x′ ⊗ y′]T − ϕ([Aξ∅ ⊗Bξ∅]Mn), T )|

= |([Φ(A)Xξ∅ ⊗ Φ(B)Xξ∅]T − ϕ([Aξ∅ ⊗Bξ∅]Mn), T )|

= |([Xξ∅ ⊗Xξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn),Φ(A)
∗TΦ(B))|

≤ ∥[Xξ∅ ⊗Xξ∅]T − ϕ([ξ∅ ⊗ ξ∅]Mn)∥∥A∥∥B∥∥T∥

<
ϵ′

2
∥T∥,

which implies ∥[x′ ⊗ y′]T − ϕ([Aξ∅ ⊗Bξ∅]Mn)∥ < ϵ′/2. us

∥[x′ ⊗ y′]T − τ∥ = ∥[x′ ⊗ y′]T − ϕ([ξ ⊗ υ]Mn)∥

≤ ∥[x′ ⊗ y′]T − ϕ([Aξ∅ ⊗Bξ∅]Mn)∥

+∥[Aξ∅ ⊗Bξ∅]Mn − [ξ ⊗ υ]Mn∥

< ϵ′.

For 1 ≤ i ≤ q,

∥[x′ ⊗ zi]T ∥ = ∥[AXξ∅ ⊗ zi]T ∥ ≤ ∥A∥∥[Xξ∅ ⊗ zi]T ∥ < ϵ′,

and similarly, ∥[zi ⊗ y′]T ∥ < ϵ′.
Now take x = (1 + 2ϵ′)−1x′ and y = (1 + 2ϵ′)−1y′. en by choice of ϵ′ we
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get ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Similarly, ∥[x ⊗ zi]T ∥ < ϵ and ∥[zi ⊗ y]T ∥ < ϵ for
1 ≤ i ≤ q. Finally, we have

∥[x⊗ y]T − τ∥ ≤ (1 + 2ϵ′)−2∥[x′ ⊗ y′]T − τ∥+ (1− (1 + 2ϵ′)−2)∥τ∥

< 1− (1 + 2ϵ′)−2(1− ϵ′)

< ϵ,

as required.

3.3.7 Absolute continuity and analyticity

eorem 3.3.16. For n ≥ 2, every absolutely continuous isometric n-tuple is analytic.

Proof. For n ≥ 2, let S = (S1, . . . , Sn) be an absolutely continuous isometric n-
tuple, and let S denote the weak-* closed unital algebra generated by S1, . . . , Sn. By
Corollary 1.2 of [DY08], S is isomorphic to the noncommutative analytic Toeplitz
algebra Ln. By eorem 3.3.15, S has property X0,1, and hence has property A1(1).
erefore, by the discussion in Section 3.3.3, S is weakly closed, and hence S is
actually the free semigroup algebra (i.e. the weakly closed algebra) generated by
S1, . . . , Sn. Since S is isomorphic to Ln, this implies that S is analytic.

e next result follow fromeorem 2.3.12 of Chapter 2.

Corollary 3.3.17. For n ≥ 2, let S = (S1, . . . , Sn) be an absolutely continuous
isometric n-tuple acting on a Hilbert spaceH . en the wandering vectors for S spanH .

It was shown in Corollary 2.4.8 of Chapter 2 that every analytic isometric tuple
is hyperre exive with hyperre exivity constant at most 3, but the next result can also
be proved directly using eorem 3.3.15 of the present paper and eorem 3.1 of
[Ber98].

Corollary 3.3.18. Absolutely continuous row isometries are hyperre exive with hyper-
re exivity constant at most 3.
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3.4 Singular isometric tuples

In eorem 3.3.16, we showed that for n ≥ 2, an isometric n-tuple is absolutely
continuous if and only if it is analytic. With this operator-algebraic characterization
of an absolutely continuous isometric tuple, we are now able to give an operator-
algebraic characterization of a singular isometric tuple.

eorem 3.4.1. For n ≥ 2, an isometric n-tuple is singular if and only if the free
semigroup algebra it generates is a von Neumann algebra.

Proof. Let V = (V1, . . . , Vn) be an isometric n-tuple, and let V denote the free
semigroup algebra (i.e. the weakly closed algebra) generated by V . If V is a von Neu-
mann algebra, then V has no absolutely continuous part since, byeorem 3.3.16, an
absolutely continuous isometric tuple is analytic, and the noncommutative analytic
Toeplitz algebra Ln is not self-adjoint by Corollary 1.5 of [DP99].

Conversely, if V is singular then it has no analytic restriction to an invariant sub-
space since, by eorem 3.3.16, an absolutely continuous isometric tuple is analytic.
us by eorem 3.2.3, V is a von Neumann algebra.

Example 3.1.2 showed that it is possible for an absolutely continuous unitary to
generate a von Neumann algebra. eorem 3.4.1 implies that there is no higher-
dimensional analogue of this phenomenon.

Recall that a family of operators is said to be reductive if every subspace invariant
for the family is also coinvariant.

Corollary 3.4.2. For n ≥ 2, every reductive unitary n-tuple is singular.

Proof. Let V = (V1, . . . , Vn) be a reductive isometric n-tuple, and let V denote
the free semigroup algebra generated by V . By the dichotomy for free semigroup
algebras, Corollary 2.3.12 of Chapter 2, if V is not a von Neumann algebra, then
there is a vector x that is wandering for V . Let V[x] denote the cyclic invariant
subspace generated by x. en the subspace

∑n
i=1 ViV [x] is invariant for V but not

coinvariant, which would contradict that V is reductive. us V is a von Neumann
algebra and V is singular by eorem 3.4.1.
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Example 3.4.3. By eorem 3.4.1, for n ≥ 2 an isometric n-tuple is singular if and
only if the free semigroup algebra it generates is a vonNeumann algebra. e existence
of a self-adjoint free semigroup algebra on two or more generators was conjectured in
[DKP01], but it took some time for the rst example to be constructed. In [Read05],
Read showed that B(ℓ2) is generated as a free semigroup algebra on two generators.
In [Dav06], Davidson gave an exposition of Read’s construction and showed that it
could be generalized to show that B(ℓ2) is generated as a free semigroup algebra on
n generators for every n ≥ 2. By our characterization of singularity, this gives an
example of a singular isometric n-tuple for every n ≥ 2.

3.5 e Lebesgue-vonNeumann-Wold decomposition

In eorem 3.3.16, we showed that for n ≥ 2, an isometric n-tuple is absolutely
continuous if and only if it is analytic. In eorem 3.4.1, we showed that for n ≥ 2,
an isometric n-tuple is singular if and only if the free semigroup algebra (i.e. the
weakly closed algebra) it generates is a von Neumann algebra. With these operator-
algebraic characterizations of absolute continuity and singularity, we will be able to
prove the Lebesgue-von Neumann-Wold decomposition of an isometric tuple.

In the classical case, the Lebesgue decomposition of a measure guarantees that
every unitary splits into absolutely continuous and singular parts. For n ≥ 2, it turns
out that it is possible for a unitary n-tuple to be irreducible and neither absolutely
continuous nor singular.

De nition 3.5.1. An isometric n-tuple V = (V1, . . . , Vn) is said to be of dilation
type if it has no summand that is absolutely continuous or singular.

Note that by the Wold decomposition of an isometric tuple, Proposition 3.2.5,
an isometric n-tuple of dilation type is necessarily unitary. e next result provides
a characterization of an isometric tuple of dilation type as a minimal dilation, in the
sense of Section 3.2.3.

Proposition 3.5.2. Let V = (V1, . . . , Vn) be an isometric n-tuple of dilation type. en
there is a subspaceH coinvariant under V such thatH is cyclic for V and the compression
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of V toH⊥ is a unilateral n-shift. In other words, V is the minimal isometric dilation of
its compression to H .

Proof. Note that since V has no summand that is absolutely continuous, by Proposi-
tion 3.2.5 V is necessarily a unitary n-tuple. Let V denote the free semigroup algebra
generated by V , and let P be the projection from eorem 3.2.3 applied to V . Let
H be the range of P , so that H is coinvariant under V .

LetK = (H+
∑n

i=1 ViH)⊖H . enK is wandering for the compression of V
toH⊥. IfK = 0, then by eorem 3.2.3, V can be decomposed into the direct sum
of a self-adjoint free semigroup algebra and an analytic free semigroup algebra. By the
characterization of singular isometric tuples, Corollary 3.4.1, this would contradict
that V is of dilation type. us K ̸= 0. e fact that K is cyclic follows from the
fact that H is cyclic.

Example 3.5.3 (Irreducible isometric tuple of dilation type). It was shown in Corol-
lary 6.6 of [DKS01] that the minimal isometric dilation of a contractive n-tuple
A = (A1, . . . , An) acting on a nite-dimensional space is an irreducible unitary
n-tuple if and only if both

∑n
i=1AiA

∗
i = I and C∗(A) has a minimal coinvariant

subspace that is cyclic for C∗(A). ese conditions are satis ed by the contractive
tuple A = (A1, A2), where

A1 =

(
0 1

0 0

)
, A2 =

(
0 0

1 0

)
.

us the minimal isometric dilation of A is an example of an irreducible isometric
tuple of dilation type. A similar construction can be carried out for all n ≥ 2.

eorem3.5.4 (Lebesgue-vonNeumann-WoldDecomposition). LetV = (V1, . . . , Vn)

be an isometric n-tuple. en V decomposes as

V = Vu ⊕ Va ⊕ Vs ⊕ Vd,

where Vu is a unilateral n-shift, Va is an absolutely continuous unitary n-tuple, Vs is a
singular unitary n-tuple, and Vd is a unitary n-tuple of dilation type.
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Proof. e case for n = 1 follows by the discussion in Section 3.1. us we can
suppose that n ≥ 2. By the Wold decomposition of an isometric tuple, Proposition
3.2.5, we can decompose V as

V = Vu ⊕ U,

where Vu is a unilateral n-shift and U is a unitary n-tuple.
By the characterization of an absolutely continuous isometric n-tuple as analytic,

eorem 3.3.16, and the characterization of a singular isometric n-tuple, Corollary
3.4.1, an isometric n-tuple cannot be both absolutely continuous and singular. ere-
fore, we can decompose U as

U = Va ⊕ Vs ⊕ Vd,

where Va is an absolutely continuous isometric n-tuple, Vs is a singular isometric
n-tuple, and Vd is of dilation type. us we can further decompose V as

V = Vu ⊕ Va ⊕ Vs ⊕ Vd,

as required.

e next result follows from combining Proposition 3.5.2 and eorem 3.2.3.

Proposition 3.5.5. Let V = (V1, . . . , Vn) be an isometric n-tuple of dilation type acting
on a Hilbert space H . en there is a projection P and α ≥ 1 and such that the weakly
closed algebraW(V ) generated by V is of the form

W(V1, . . . , Vn) = W∗(V )P + P⊥W(V )P⊥,

where P⊥W(V1, . . . , Vn) |P⊥H≃ L(α)
n .

e next result follows from the Lebesgue-von Neumann-Wold decomposition of
an isometric tuple, Proposition 3.2.5, and Proposition 3.5.5.
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eorem 3.5.6. Let V = (V1, . . . , Vn) be an isometric n-tuple acting on a Hilbert space
H , and let V = Vu⊕Va⊕Vs⊕Vd be the Lebesgue-von Neumann-Wold decomposition
of V as ineorem 3.5.4. en there is a projection P and α, β ≥ 0 such that the weakly
closed algebraW(V ) generated by V is

W(V ) ≃ (Ln(Vu ⊕ Va))
(α) ⊕W∗(Vs)⊕

(
W∗(Vd)P + P⊥W(Vd)P

⊥) ,
where P⊥W(V1, . . . , Vn) |P⊥H≃ L(β)

n . e von Neumann algebra W∗(V1, . . . , Vn)

generated by V is

W∗(V ) ≃ (B(ℓ2))(α) ⊕W∗(Vs)⊕W∗(Vd).
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