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Abstract 

Some fish populations are able to adapt and thrive in contaminated habitats. Survival of 

populations depends on the ability of the organism to elicit resistance, either due to genetic 

adaptation or physiological acclimations. Brown Bullheads (Ameiurus nebulosus) are able to 

survive in very contaminated areas and their benthic and philopatric characteristics make them a 

model organism to study chronic exposure. This research assesses the immune function of brown 

bullhead collected at four pre-determined sites along the Detroit River, which are characterized 

by high or low concentrations of environmental toxicants. Clean and contaminated sediment 

used for contaminant exposure was collected by ponar at designated sites of the river. The 

bullheads were vaccinated with heat-killed V. anguillarum in order to induce an immune 

response, before the vaccinated bullheads were randomly divided into corresponding 

contaminant exposure tanks. Respiratory burst assays to assess innate oxygen radical production 

24hrs post vaccination and sediment exposure identified an inhibition of neutrophil oxidative 

activity in adult 6 month cleared of contaminant bullheads collected from a clean (Peche Island) 

site exposed to contaminated sediment, and of F1 raised populations from a contaminated 

(Trenton Channel) site. Results also showed overall inhibition on contaminated sediment in both 

PI and TC recently captured fish.  Enzyme linked immunosorbant assay (ELISA) to assess 

antibody production revealed no difference between those fish exposed to either sediment. 

Results did show a lower expression of total antibody in chronically contaminant exposed 

bullheads (acute adults). Real time PCR to assess immune gene expression was conducted using 

cloned Major Histocompatibility Class II Beta (MHIIB), Interleukin-8 (IL-8) and Interleukin-1 

Beta (IL-1B) 24hr post vaccination and sediment exposure. No contaminant induced 

immunosuppression of MHIIB was observed, while a reduction in IL-8 and IL-1B in acute adults 

may signify a delayed response due to chronic sediment exposure or of a normal functioning 

delayed response in wild bullheads. Results of the present study indicate negative environmental 

impacts on the innate immune response, leading to physiological adaptations in the brown 

bullhead, which can be reversed upon removal of the contaminants.  
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 1 

General Introduction 

1.1 Aquatic Pollution and Toxicity 

Aquatic pollution from dumping and aerial fallout has contaminated numerous aquatic 

ecosystems such as rivers, lakes and oceans (Zelikoff, 1993). In recent history, it has been 

documented that exposure to aquatic contaminants can have detrimental effects on the growth 

and development of aquatic organisms. It has also been shown that these contaminants can 

interfere with the proper functioning of a healthy immune response (Sweet & Zelikoff, 2001). 

These contaminants include metals, polycyclic aromatic hydrocarbons (PAH), and chlorinated 

synthetic organics (Zelikoff, 1993). PAHs are immunotoxic and carcinogenic environmental 

pollutants entering the environment through incomplete combustion of fossil fuels and release of 

petroleum, which have contaminated both marine and freshwater systems (Reynaud & 

Deschaux, 2006; Reviewed in Bols et al, 2001). The best studied of these contaminants are 7,12-

dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (BaP) and 3-methylcholanthrene (3-MC) 

(Reynaud & Deschaux, 2006). Halogenated aromatic hydrocarbons (HAHs) include dioxins and 

furans (by-products of industrial usage), bipheyls and naphthalenes (Regala et al, 2001). 

Polychlorinated biphenyls (PCBs) which were manufactured for industrial purposes are the most 

widespread of the HAHs, are resistant to degradation, and bioaccumulate with ease (Rice et al, 

1998; Reviewed in Bols et el, 2001). Heavy metals can originate from many sources including 

industrial discharge, municipal wastes and surface runoff (Reviewed in Bols et al, 2001). 
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1.2 Detroit River 

The Detroit River is located along the southernmost tip of Ontario Canada, bisecting the 

border between Canada and USA. The 51km long river runs from Lake St. Clair south to Lake 

Erie, contains 12 islands and is the busiest commercial waterway of the Great Lakes (USGS, 

2002; Manny & Kenaga, 1991). The river is an important migration route for fish, birds, and 

insects, and provides a habitat for 27 species of waterfowl, 65 species of fish, 300 species of 

macrozoobenthos, 31 species of aquatic macrophytes and at least 82 species of phytoplankton 

(USGS, 2002; Manny et al, 1988). For many years the Detroit River was a dumping ground for 

the disposal of toxic wastes, and in 1985 was designated as an Area of Concern (AOC) by the 

International Joint Commission (USGS, 2002). Power plants, steel mills, and petroleum 

refineries among other industries, along with effluent outputs have greatly contaminated the 

river.  Aquatic habitats have been destroyed by both toxic contaminants and shoreline and 

channel modifications (Manny & Kenaga, 1991). More than 200 different chemical compounds 

have been identified in the river (Arcand-Hoy & Metcalfe, 1999), with many persistent organic 

pollutants, including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls 

(PCBs) highly contaminating the sediments (Drouillard et al, 2006).  

 

1.3 Mode of action of Contaminants 

1.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are a class of hydrophobic organic chemicals 

containing three or more fused benzene rings, and include more than 10,000 possible individual 

compounds (Cerniglia, 1992; Logan, 2007). PAHs often occur as complex mixtures that can vary 
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in physical and chemical properties, affecting their movement and fate in the environment. Four 

different classes of PAH mixtures exist, based on their environmental source; pyrogenic are 

formed by combustion of organic matter, petrogenic are formed in the earth by geological 

processes, diagenic are formed in sediments from biogenic compounds, and biogenic are formed 

by animals, plants, fungi and bacteria (Logan, 2007). PAHs are one of the major environmental 

pollutants and occur in automobile exhaust, cigarette smoke, cooking of foods, and by-products 

of industrial processes (Cerniglia, 1992; Tauchi et al, 2005). Due to their hydrophobic nature and 

low water solubility, PAHs rapidly enter sediments and persist within ecosystems until they are 

degraded, resuspended, bioaccumulated or removed by dredging (Cerniglia, 1992). Fish in 

particular are constantly exposed to either PAH-contaminated sediment for benthic species, 

contaminated prey for top predator fish species, and suspended water particles, due to their 

behaviour, life cycles and habitat. Exposure can occur through respiration (uptake by the gills), 

ingestion (uptake by the gut from contaminated food or sediment) or through the integument 

(absorption by the skin) (Reviewed in van der Oost et al, 2003; Logan, 2007). Once absorbed, 

PAHs are carried through the bloodstream to the most lipid-rich tissues such as the liver and bile 

(Logan, 2007).  

PAHs are known to be both carcinogenic and immunotoxic to fish (Reynaud & 

Deschaux, 2006). Narcosis, mortality in all life stages, decrease in growth, edema, cardiac 

dysfunction, lesions and tumors of the skin and liver, cataracts, and compromised immunity have 

all been attributed to PAH exposure. Most fish species biotransform PAHs through enzymatic 

systems, metabolizing and detoxifying PAHs mainly in the liver (Reviewed in van der Oost et al, 

2003; Logan, 2007). The metabolism of PAHs in fish can induce phase I enzymes, while most 
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PAHs induce the cytochrome P4501A (CYP1A) gene (Reviewed in Reynaud & Deschaux, 2006, 

Reviewed in van der Oost et al, 2003). Phase I enzyme induction results in the addition or 

removal of reactive functional groups through oxidation, reduction or hydrolysis by microbial 

monooxygenase (MO) enzymes, ultimately transforming lipophilic xenobiotics to more water 

soluble compounds (Reviewed in van der Oost et al, 2003). Phase I enzymes are a membrane 

bound family of heme proteins located in the endoplasmic reticulum of the liver. Phase I 

enzymes metabolize certain PAHs to hyrdrophilic products like phenols, dihydrodiols, quinines 

and epoxides that are excreted as polar metabolites in bile (Reviewed in van der Oost et al, 

2003). Most PAHs induce phase II enzymes, including CYP1A1, before being excreted through 

the bile. CYP1A1 protein induction is initiated by the binding of PAHs to the intracellular aryl 

hydrocarbon receptor (Ah-R) as shown in Figure 1.1 (Reviewed in Reynaud & Deschaux, 2006). 

The AhR is a member of the steroid-hormone receptor family, and increases or decreases levels 

of gene products through gene induction due to contaminant exposure (Carpenter, 2006; 

Reviewed in Reynaud & Deschaux, 2006). Ah-Rs are most often located in the liver but can also 

be found in extra-hepatic tissues. The Ah-R receptor is located within the cytoplasm of cells, and 

in inactive form is in a complex with molecular chaperone proteins; heat shock protein 90 

(hsp90), immunophilin XAP2 and cochaperone P23. Once bound to a PAH ligand, the receptor 

detaches from the chaperone proteins, and translocates to the nucleus where it dimerizes with 

AhR nuclear translocator (arnt). The Ah-R–arnt heterodimer can then freely bind to xenobiotic 

response elements (XRE) in target genes (CYP1A1) (Reviewed in Reynaud & Deschaux, 2006). 

Transcription factors are now able to freely bind, increasing the mRNA and protein expression of 

CYP1A1.  
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Figure 1.1 Induction of CYP1A1 expression induced by PAH ligand binding (Modified from 

Reynaud & Deshaux, 2006) 

Although both phase I and phase II enzymes are essential in the detoxification of PAHs, 

these processes also create reactive intermediates that are highly toxic, mutagenic or 

carcinogenic to the fish. The highly toxic products include certain oxides that can bind to cellular 

DNA, RNA and proteins resulting in increased DNA adduct formation or enhanced oxidative 

DNA damage (Reviewed in van der Oost et al, 2003).  In mammals, immunosuppression by 

PAHs depends on metabolic activation. However, the mechanism that elicits immunosuppression 

in fish is still unknown (Reviewed in Reynaud & Deschaux, 2006). It appears with increasing 

reports that PAHs have varying effects in different species of fish, at different life stages of the 

fish, as well as different PAHs may elicit different effects in the same fish species (Logan, 2007).  

 

(ENZYMES) 
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1.3.2 Polychlorinated Biphenyls (PCBs) 

Polychlorinated biphenyls (PCBs) are synthetic chlorinated organic chemicals, made 

from the biphenyl molecule and two six-carbon rings linked by a single carbon-carbon bond 

(Beyer & Biziuk, 2009; Carpenter, 2006).  They are widespread throughout the environment and 

are found in air, water, sediments, and soils. The molecule is made of 12 carbon atoms bound to 

chlorine atoms which substitute hydrogen atoms at any of the possible 10 positions (Carpenter, 

2006) and encompass 209 different possible structures (See Figure 1.2). 

 

Figure 1.2 Structure of polychlorinated biphenyls (Modified from Beyer & Biziuk, 2009)  

 

PCBs are used for many industrial applications due to their low reactivity and chemical 

stability. They have been used as fluid insulators in high-voltage electric transformers,  in high-

capacity condensers, as heat exchangers, pesticide extenders, adhesives, dedusting agents, 

components of cutting oils, flame retardants, hydraulic lubricants, and components of plasticizers 

in paints, inks, toners, and printing inks (Reviewed in Beyer & Biziuk, 2009; Erickson 1997) . 

The qualities that make PCBs ideal for industrial purposes also make them less environmentally 

favourable. The high lipid solubility prevents PCBs from being degraded, resulting in 

bioaccumulation throughout the environment and food chain (Duffy et al, 2002). The only source 

Cl 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Beyer%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Biziuk%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


 

 7 

of PCB production is through the activities of humans, leading to highly contaminated sites 

located in industrialized areas. PCBs bind to organic particles in the water, atmosphere and 

sediment, and those that are present in water or sediments are filtered by fish, crustaceans, or 

mollusks via their gills. Due to their lipophilic properties, PCBs are absorbed into the fatty 

tissues of these animals (Reviewed in Beyer & Biziuk, 2009; Larson, 2006).  PCBs’ persistence, 

resistance to metabolism and bioaccumulation in aquatic organisms are an increasing concern to 

the impact of PCB exposure on fish populations (Duffy et al, 2003). 

 Recently it has been discovered that PCBs can be dehalogenated in freshwater and in 

estuarine sediments, resulting in detoxification. Volatilization and colloidal absorption of PCBs 

to dissolved organic matter are important pathways to reduce its bioavailability (Reviewed in 

Beyer & Biziuk, 2009; Bedard & Van Dort 1997). The only known process of PCB 

biodegradation in aquatic environments occurs through the action of bacteria or other 

microorganisms by either aerobic oxidative dechlorination or hydrolytic dehalogenation, and 

anaerobic reductive dechlorination. The degradation of PCBs occurs by the removal of chlorine 

from the biphenyl ring, ring cleavage, and oxidation of the compound resulting in the production 

of CO2, chlorine, and water (Reviewed in Beyer & Biziuk, 2009).  

PCBs, like PAHs also induce the CP1A1 genes through the Ah-R receptor as described 

above. In mammals, different PCB congeners induce different CYP1A isoenzymes. These 

isoenzymes are responsible for the oxidative metabolism (Phase I activation) of many drugs, 

steroids, and carcinogens. Dioxins and coplanar PCBs induce the activity of CYP 1A1, 1A2, 

2A1, and 1B1. These gene inductions result in the proliferation of endoplasmic reticulum in the 

liver, resulting in an increase in liver size and an alteration in many aspects of liver function 
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(Carpenter, 2006). As with PAHs discussed above, studies identifying the role of immune 

function in correspondence with CYP1A activity are limited, with most research focussed on 

dioxin-like coplanar PCB congeners due to their affinity for Ah-R and CYP1A-induction.  

1.3.3 Metals  

Heavy metals are a source of contamination that has affected the aquatic environment for 

many years. Heavy metal contamination is a result of industrial and mineral mining sources, 

municipal wastes and surface runoffs (Zelikoff, 1993). Metals at low concentrations are essential 

for biological processes, but in excess elicit toxicity. Metals such as copper, zinc, iron, cobalt, 

selenium, and manganese are essential for the health of most organisms. These metals form 

important components of proteins that are involved in biological functions (Bury et al, 2003) 

such as the participation in the control of metabolic and signalling pathways (Valko et al, 2005), 

cellular respiration, oxygen transport, protein stability, free radical scavenging, action of many 

cellular enzymes, and DNA transcription (Bury et al, 2003). The breakdown of any of these 

mechanisms or excess exposure to these metals, can result in metals inappropriately binding to 

protein sites or forming dangerous free radicals (Bury et al, 2003) that can result in DNA 

damage, lipid peroxidation, or depletion of protein (Valko et al, 2005). Most vertebrate species 

have mechanisms that reduce the damaging effect of excess metals. Proteins that are capable of 

binding metals within the organism include the metallothioneins (Monserrat et al, 2007). 

Metallothioneins are a cystiene rich metal binding family of proteins that are essential for the 

intracellular processing of metal ions (Sweet and Zelikoff, 2001). Metallothioneins can limit the 

availability of toxic cations at undesirable sites, decreasing the sensitivity of the organism to 

metal exposure (Monserrat et al, 2007).  
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Metals have also been found to have adverse effects on the immune system of fish 

exposed to high levels. Metals directly bind or readjust the tertiary structure of active molecules, 

or act as stressors and modify corticosteroid levels in the fish (Zelikoff, 1994). Metals can also 

have major impacts on the structure and function of the immune response at sublethal doses 

during disease outbreaks (Arunkumar, 2000). Metals depress the humoral immune system by 

inducing DNA strand breaks and altering lymphocyte proliferation (Arunkumar, 2000). Metal 

toxicity appears to depend on many environmental factors. It has been identified that metals 

induce greater toxicity at low dissolved oxygen, are less toxic in hard water due to competitive 

binding from other ions, and leach different metals to become more bioavailable in acidic 

environments (Witeska & Jezierska, 2003). Macrophage activity, cell number and humoral 

immunity have been shown to be suppressed as a result of metal toxicity, ultimately leading to an 

increased susceptibility to disease (Zelikoff, 1994). The primary routes of metal exposure in fish 

are uptake from the gills, dermal absorption and ingestion (Sweet & Zelikoff, 2001).  

1.3.4 Pesticides  

Pesticides are toxic chemicals that are released into the environment, used to control pest 

species such as insects, weeds or fungi.  They contaminate aquatic habitats mainly through aerial 

drift, accidental release and surface runoff (Zelikoff, 1994). Organochlorine pesticides are 

persistent in the environment and their use has been banned since the 1970’s, when DDT and 

their metabolites were found to bioaccumulate and cause adverse health effects (Galloway & 

Handy, 2003).  DDT is carcinogenic, and is associated with tumour formation (Zelikoff, 1994). 

Organochlorine pesticides were replaced with organophosphorous pesticides due to their low 

persistence but high acute toxicity (Galloway & Hardy, 2003). Recent studies have shown that 
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the exposure of organophosphorous pesticides modulate the immune function by altering 

lymphocyte proliferation, affecting disease resistance, reduction in oxidative burst and resulting 

in histopathological changes to immune tissues and organs (Galloway & Handy, 2003; Albert et 

al, 2007; Gilbertson et al, 2003). Organophosphorus and carbamates, are known to inhibit 

cholinesterase (ChE) activity (Monserrat et al, 2007), but also act through non-choligenic 

pathways (Galloway & Hardy, 2003). Organophosphous pesticides are neurotoxic agents and act 

by inhibiting acetylcholinesterase leading to an increase in acytlcholine that disturbs 

transmission across synapses. They can also inhibit serine hydrolase enzymes that are vital to 

immune function (i.e. complement) (Galloway & Handy, 2003). Organochlorines have been 

found to induce CYP1A expression (Quirós et al, 2007) through the Ah-R receptor, as discussed 

above.   

1.4 Adaptations in aquatic wildlife to contaminants  

Despite the contaminated habitat, aquatic species populations are still able to thrive. 

Survival of populations depends on the ability of the organism to elicit resistance, either due to 

genetic adaptation or physiological acclimations (Wirgin and Waldman, 2004). Fish can be one 

of the most significant aquatic species  affected by contaminated waters, due to both their 

ecological role in the aquatic food web and the fact that they can be found almost everywhere in 

the aquatic environment (Reviewed in Van der Oost et al, 2003). Studies demonstrating such 

adaptations in fish species exposed to toxicants have previously identified that the enzyme 

CYP1A (induced by and catalyses the metabolism of organic contaminants), attains resistance to 

induction after chronic exposure to PCB compounds in the mummichogs, (Fundulus 

heteroclitus) (Elskus et al, 1999) and in rainbow trout (Oncorhynchus mykiss) (Celander & 
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Forlin, 1995). Mummichogs collected from dioxin-contaminated and from PAH contaminated 

waters have been less sensitive to toxicological chemical challenges compared to reference site 

collected fish (Reviewed in Nacci et al, 1999, Prince and Cooper 1995; Elskus et al. 1999). It has 

also been shown that perch (Perca fluviatilis) obtained from waters containing high levels of 

PCBs had decreased P450 1A and enzyme activity (Förlin & Celander, 1995). Genetic 

adaptation has been recently identified in Atlantic tomcod (Microgadus tomcod) showing a high 

frequency of the AHR receptor allele consisting of a 6bp deletion resulting in impaired binding 

to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (Wirgin et al, 2011).   

 

1.5 Immune Function in Fish 

The immune system is essential for defending the host against pathogenic bacteria, 

viruses and parasites, and is pivotal for survival. It is a highly complex defence mechanism that 

can be organized into innate and adaptive or acquired responses that collectively work to prevent 

disease and infection (Bowden, 2008). The innate immune response precedes the adaptive, and is 

non specific against foreign particles. It recognizes proteins and receptors of microbes by 

identifying the molecular patterns by the variety of pattern recognition receptors (Purcell et al, 

2006; Reviewed in Magnadottir, 2006). Phagocytic cells such as granulocytes (neutropihls), 

monocytes and macrophages, along with non-specific cytotoxic cells, epithelial and dendritic 

cells are all involved in the innate response (Shen et al, 2002; Neumann et al, 2001). Innate 

immunity is the first line of defence, and fish scales, mucous surfaces and the epidermis are all 

the initial barriers preventing infection in fish (Aoki et al, 2008; Ellis, 2001). Innate immune 

cells provide mechanisms to remove the invading pathogen internally and can also aid in the 
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initiation of the adaptive immune response.  Respiratory burst is an innate defence mechanism 

used by macrophages, esonophils and neutrophils against bacterial infections by producing a 

series of reactive oxygen species (ROS) (Lilius and Marnila, 1992; Serada et al, 2005). When 

activated through a phagocytic or soluble stimulus, there is an increase in oxygen consumption 

and glucose metabolism by the cell. Phagocytes contain the enzyme NADPH-oxidase that will 

reduce oxygen molecules to superoxide molecules, which in turn can form hydrogen peroxide, 

catalyzed by the enzyme superoxide dimutase within the cell. Hydrogen peroxide is the substrate 

for the myeloperoxidase reaction, in which different toxic metabolites are formed. Phagocytes 

use the generated oxygen radicals to cause oxidation of the microorganisms surface and 

decarboxylation of cell membranes to elicit bacterial injury (Reviewed in Fantone, J., 1982). 

Phagocytic innate immune cells are also capable of presenting portions of the pathogen to 

adaptive immune cells, specifically lymphocytes, through the Major Histocompatibility (MH) 

peptide grooves (Cuesta et al, 2006; Nath et al, 2006). MH class I presents peptides to cytotoxic 

T lymphocytes when confronted with intracellular pathogens (Dijkstra et al, 2007), while MH 

class II presents peptides to helper T cells dealing with extracellular pathogens (Cuesta et al, 

2006).  Innate responses are mediated by the secretion of many different cytokines. Cytokines act 

to both attract and activate initial innate immune cells in response to infection or injury 

(Magnadottir, 2006). Interleukin 1-beta (IL-1β) is part of the IL-1 gene family and is an early 

response pro-inflammatory cytokine, and plays a role in both the innate and adaptive immune 

response by stimulating the release of inflamatory and chemotactic eicosanoids (Wang et al, 

2006, Ellis, 2001).  IL-1β is secreted by a variety of cells including neutrophils and both T and B 

lymphocytes, but is mainly secreted by monocytes and macrophages (reviewed by Bird et al, 
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2002). Interleukin 8 (IL-8) is also an early response cytokine, attracting and activating migratory 

neutrophils to sites of damage or inflammation (Zhang et al, 2002). Interferons (IFNs) are 

proteins secreted by a variety of cells and have anti-viral activity. Type 1 IFNs (α and β) are 

secreted by innate immune cells (i.e macrophages; reviewed in Pestka et al, 2004), and have been 

linked to both innate and adaptive immunity in response to viral activity, and specifically 

activates T-lymphocytes (reviewed in Pestka et al, 2004).  

Innate immunity is also influential in both activating and determining the nature of the 

adaptive response (Fearon and Locksley, 1996).  Adaptive immunity consists of T, B, and 

antigen presenting cells. It is stimulated through the activation of innate phagocytes, increases in 

cytokine and chemokine production, and also the activation of the complement system (Shen et 

al, 2002; Klesius, 1992; Aoki et al, 2008). Antibody producing cells (analogous to mammalian B 

cells and plasma cells) express the immunoglobulin on the cell surface, and their proliferation 

can be induced by the mitogen lipopolysaccharide (Zelikoff, 1994). Fish B cells secrete IgM that 

can opsonize and induce complement activation (Sakai, 1984). Fish T cells can be induced by 

phytohemagglutin and concanavalin A. These T cells are involved in the cell mediated immunity 

in fish (Zelikoff, 1994). 

1.6 Immunotoxicity  

1.6.1 Immune Function in Response to PAH Exposure  

Several studies identifying the relationship between several immune functions and PAHs 

have been conducted, with varying results. These differences may be due to the different 

compound mixtures of PAHs or to the ability of the fish to metabolize them (Logan, 2007). 

Kennedy and Farrell (2008) measured the respiratory burst of activity in fish macrophages 
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exposed to high and low concentrations of hydrocarbons for short and long term durations, 

identifying that short term exposure at the highest concentrations enhanced macrophage ROS 

production. Activated macrophages in mummichog collected from contaminated sites were also 

found to have elevated COX-2 levels. The increased COX-2 levels may be a result of enhanced 

metabolism of PAHs through cooxidation-peroxidase pathways (Frederick et al, 2007). On the 

other hand, oxidative burst was inhibited by creosote exposure in rainbow trout, returning to near 

control levels on day 28 exposure (Karrow et al, 2001). Sub-chronic exposure to hydrocarbons 

was also shown to reduce the respiratory burst of Pacific herring, (Clupea pallasi) (Kennedy & 

Farrell, 2008). Plasma lysozyme concentrations were reduced in short term exposure to high 

hydrocarbon concentrations (Kennedy & Farrell, 2008), but were also elevated in mummichog 

collected from a contaminated site compared to a reference site along the Elisabeth River, 

Virginia (Frederick et al, 2007). Phagocytic activity was elevated before returning to near control 

levels by day 28 of creosote exposure in rainbow trout (Karrow et al, 2001). Mummichog 

collected from a contaminated site compared to reference site showed a decrease in plasma IgM 

compared to those of a reference site (Frederick et al, 2007). Short term exposure to high 

hydrocarbon concentrations increased the resistance to V. anguillarum, but sub-chronic exposure 

increased the susceptibility (Kennedy & Farrell, 2008). To date, there are only a limited number 

of studies reporting the effects of PAHs on the immune response by the induction of cytochrome 

P450 (CYP1A). These studies mainly focussed on the response to two known PAHs, 3-

methylcholanthrene (3-MC) and benzo[a]pyrene (BaP).  

 It has been demonstrated that in vivo exposure of both 3-methylcholanthrene and 

benzo[a]pyrene significantly depress both innate and humoral immunity (Carlson et al, 2004; 



 

 15 

Reynaud et al, 2002). Benzo[a]pyrene suppressed lymphocyte proliferation in medaka (Oryzias 

latipes) at concentrations below those that activated CYP1A expression (Carlson et al, 2002). At 

higher concentrations, exposed medaka significantly induced CYP1A expression or activity 

within lymphoid tissue. The induction was observed specifically within distinct sub-populations 

of kidney mononuclear cells (Carlson et al, 2004). CYP1A and EROD expression in the head 

kidney and liver of rainbow trout was also elevated in response to injection of BaP (Nakayama et 

al, 2008). BaP also suppressed antibody-forming cell numbers, superoxide production by 

phagocytes and host resistance against bacteria when exposed to higher concentrations (Carlson, 

2002). 3-MC, on the contrary, caused a rapid increase in the macrophage respiratory burst that 

was also shown to coincide with the induction of CYP1A and EROD activity in liver and head-

kidney of carp (Cyprinus carpio)(Reynaud et al, 2002). In a separate study, carp head kidney 

macrophages incubated with 3-methylcholanthrene were also shown to increase respiratory burst 

when stimulated with PMA (Reynaud et al, 2001). However, similar to BaP, 3-

methylcholanthrene also inhibited both B- and T-lymphocyte proliferation in carp (Reynaud & 

Deschaux, 2005). When stimulated with α-naphthoflavone (AhR antagonist and CYP1A 

inhibitor), the suppression of antibody forming cells was decreased (Carlson, 2002), the 

inhibition of renal EROD activity was observed (Carlson et al, 2004) and the reversal of 3-

methylcholanthrene effect on respiratory burst activity was shown (Reynaud et al, 2002). 

However, the reversal of suppressed T and B cell proliferation was not identified (Reynaud and 

Deschaux, 2003), indicating that BaP and 3- methylcholanthrene may act on different cells or 

influenced by different metabolic metabolites. It was also identified that inhibition of CYPlA-

mediated metabolism also reverses the immunotoxicity induced by benzo[a]pyrene-7,8-
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dihydrodiol, but not benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE)(Carlson et al, 2004). 

BaP induced DNA-adducts have also been localized to the kidney, liver and spleen of the 

mummichog (Rose et al, 2001). B lymphocytes and granulocytes expressing inducible
 
CYP1A 

protein have recently been identified as likely sites of BaP metabolism in
 
the head kidney 

(Nakayama et al, 2008). Results of the work correlating BaP induced CYP1A expression and 

immune function have indicated that BaP suppression of medaka humoral immunity is dependent 

on the CYP1A production of BaP metabolites (Carlson et al, 2004).  

1.6.2 Immune Function in Response to PCBs  

PCB 126 exposure at high doses increased unstimulated production of superoxide anions 

in both juvenile (4-6 month old) and adult (12 -15 month old)  Japanese medaka, but after 

stimulation decreased superoxide production in juvenile animals after 3 days exposure, and 

increased production after 14 days exposure. The exposure to PCB 126 had no impact on 

stimulated adult medaka phagocytic cells (Duffy et al, 2003). Non-specific cytotoxic cell activity 

was reduced at high doses of PCB 126, and respiratory burst by phagocytes was also reduced at 

both low and high concentrations in the channel catfish (Ictalurus punctarus) (Rice & Schlenk, 

1995).  These results were obtained with the induction of CYP1A expression in fish treated with 

high exposure concentrations (Duffy et al, 2003).  Japanese medaka also showed an initial 

suppression in respiratory burst in stimulated phagocytes after PCB 126 exposure at day 3, 

before recovering and increasing respiratory burst at day 7 (Duffy et al, 2002). At low doses of 

PCB 126, antibody forming cell production increased in the channel catfish, but was unaffected 

at higher doses (Rice and Shlenk, 1995). PCB 153 exposure in bluegill sunfish (Lepomis 

macrochirus) increased the production of superoxide radicals while suppressing lymphocyte 



 

 17 

proliferation (Duffy & Zelikoff, 2006). These results were obtained in the absence of CYP1A 

induction, identifying a second mechanism, in addition to the Ah-R pathway, that elicits 

immunotoxicity in fish exposed to PCBs. 

1.6.3 Immune Function in Response to Metals  

Chromium (Cr) is a heavy metal that is found in the effluent of many industries. It has 

been found to react with lymphocyte surface proteins and alter the response to stimuli, as well as 

reacting with replication proteins within the cell (Arunkumar, 2000). Exposure of carp 

leukocytes to chromium decreased both lymphocyte activation and phagocytic function of 

neutrophils. Changes in cell shape and depressed respiratory burst were also demonstrated in 

exposed neutrophils (Steinhagen et al, 2004). It was also shown that the antibody response to 

chromium is suppressed in the African mouth breeder (Oreochromis mossambicus) exposed to 

two forms of chromium. Spleen weight, splenocyte number and blood lymphocytes were also 

reduced in chromium exposed fish (Arunkumar, 2000). 

 Copper (Cu) has important roles in vertebrate neuro-endocrine functions, but can also act 

as an endocrine disrupting metal in the aquatic environment (Handy, 2003). Copper accumulates 

in the haemopoietic and lymphoid tissue in fish, inhibiting their growth, metabolic activity, 

fecundity, gonadal development and immune function (Sayer et al. 1992; Reviewed in Shariff et 

al, 2001). Acute exposure of copper to fish affects the gills, as well as respiratory and ion 

regulation functions (Handy, 2003). Sub-lethal concentrations of copper were found to increase 

oxidative activity of phagocytes and total immunoglobulin levels in carp (Dautremepuits et al, 

2004), but were also found to produce no significant difference at low concentrations in a 

separate study (Shariff et al, 2001). Carp were also found to have increased white blood cell 
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counts and total immunoglobulin levels at higher concentrations, but a decrease in oxidative 

phagocyte activity (Shariff et al, 2001). 

 Mercury (Hg) is present in normal geochemical cycles such as erosion from soils or 

rocks, volcanic activity, flooding, and ocean sources. It is also found as an additive to dental 

amalgams, industrial emissions, electrical sources, mining and many other sources. It has been 

used for pigments in paint, pesticide and pulp and paper manufacturing, battery production and 

therapeutic medicines (Sweet & Zelikoff, 2001). Hg has been found in the lysosomes of kidney 

and liver cells as well as in the basal lamina of kidney proximal tubules in exposed fish (Sweet & 

Zelikoff, 2001). It has been shown that Hg affects serum C-reactive proteins, which may alter 

opsonization and complement activation. Hg also inhibits acetylcholinesterase activity through 

altering membrane permeability (Sweet & Zelikoff, 2001). 

Zinc (Zn) is an essential nutrient to fish (Clearwater, 2002), and has been identified as an 

inducer of carp lymphocyte proliferation (Reviewed in Secombes et al, 1996) It has been known 

to reduce the toxicity of cadmium and mercury by increasing the production of metallothionein. 

When present in high concentrations however, Zn can cause growth retardation, 

histopathological alterations and death (Sanchez-Dardon et al, 1999). Carp exposed to zinc 

demonstrated an initial increase in leukocyte count, before decreasing in number due to reduction 

in lymphocyte and neutrophil numbers. A reduced phagocytic activity was also evident (Witeska 

& Kosciuk, 2003). Rainbow trout exposed to ZnCl showed inhibited phagocytosis of head 

kidney macrophages, and lymphocyte stimulation, but increased lysozyme activity (Sanchez-

Dardon et al, 1999). Cytotoxic cell activity and lymphocyte cell counts were reduced, but 
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macrophage activity was enhanced by the exposure of Zn to Zebrafish (Brachydanio rerio) 

(Rougier et al, 1994).     

Arsenic (Ar) is naturally found in soil, air and water. It can also be formed through the 

combustion of fossil fuels, metal smelting and from glass industries. Arsenic is also used in 

wood preservatives, insecticides, herbicides and different pigments (Reviewed in Lage at al, 

2006). Arsenic has been implicated in the apoptosis of fin cells, liver inflammation, hyperplasia 

and necrosis, gall bladder inflammation and edema, abnormal lysosomes in fish hepatocytes and 

inactivation of the JAK-STAT pathway (Reviewed in Lage at al, 2006). Chronic exposure to 

arsenic has also been demonstrated to suppress B cell proliferation and reduce immunoglobulin 

levels in the Philippine catfish (Clarias batrachus) (Ghosh et al, 2007). 

1.6.4 Immune Function in Response to Pesticides  

Japanese medaka exposed to sublethal concentrations of the organophosphorous pesticide 

malathion, showed no significant effect on leukocyte count or T cell proliferation, but 

significantly decreased antibody plaque forming cell numbers in a dose-dependent manor 

(Beaman et al, 1999). At high concentration of organophosphate chlorpyrifos and insecticide 

esfenvalerate exposure in chinook salmon (Oncorhynchus tshawytscha) led to complete 

mortality, but high survival rate at low exposure concentrations (Eder et al, 2004). Exposure to 

naphthalene (main constituent of moth balls) increased respiratory burst in short term exposure, 

but decreased upon longer term exposure in European eel (Anguilla anguilla L). Lipid 

peroxidation as a result of respiratory burst was also significantly increased in both short and 

long term exposures of the same study (Ahmad et al, 2003). The main metabolite of 
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organchlorine DDT, p,p′-DDE, reduced cell viability and proliferation, as well as increasing 

apoptosis in exposed Chinook salmon (Misumi et al, 2005). 

1.7 Brown Bullhead (Ameiurus nebulosus) 

The brown bullhead is native to North America, common to the lower Great Lakes, and is 

abundant in Lake Erie and connecting rivers (DNR, 2010; Yang & Bauman, 2006). Brown 

bullheads spawn in the late spring and early summer in the months of May and June (Blumer, 

1985). They are benthic fish and their diet consists of insects, plants, algae and molluscs, and can 

be found in ponds, swamps, lakes and rivers (Haws & Goodnight, 1962; DFO, 2010). These fish 

have been shown to tolerate polluted waters better than most other fish species, and as a result 

have been widely used as indicator species when studying effects of toxicants on fish and their 

sensitivity to contaminated sediment (Steyermark et al, 1999; Yang & Bauman, 2006; Arcand-

Hoy & Metcalfe, 1999). The philopatric and benthic nature of the brown bullhead results in 

direct physical contact with sediment contaminants, making this fish a model for toxicant 

exposure.   

 

1.8 Objectives of the Research  

This research project is based on the hypothesis that fish populations exposed to high 

contaminant levels will attain resistance through acclimatization, tolerance or the ability to adapt 

to contaminant induced effects to survive.  Acclimatization is becoming more resistant in 

response to earlier exposure at the individual level (Wirgin and Waldman, 2004), adaptation is a 

result of selection against individuals with lowest tolerance to contaminants (Ownby et al, 2002). 
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 Immune responses were assessed in Brown bullhead (Ameiurus nebulosus) either 

chronically exposed or not exposed to high levels of sediment containing environmental 

toxicants. Brown bullheads were collected from various pre-determined locations along the 

Detroit River, prior to transport and sediment exposure at the University of Waterloo. This 

project can provide an understanding of genetic adaptations or physiological acclimatizations of 

the brown bullhead immune function to prolonged contaminant exposure. The project will also 

provide an understanding of the impacts of chronic exposure to contaminants on the ability of the 

immune function to recover when removed from contaminant exposure. This information can be 

used in the understanding of remediation projects and the effects on currently affected 

populations of aquatic species, along with providing essential information concerning the critical 

levels of contaminants requiring clean up measures.   
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Chapter 2Materials and Methods 

2.1 Cloning of Brown Bullhead (Ameiurus nebulosus) Immune Related Genes  

2.1.1 Initial Tissue Extraction  

Brown Bullhead purchased from the commercial fishery Kendall Dewey in Bay of Quinte 

(Picton, Ontario) were housed at University of Guelph Aquatic Facility (Guelph, Ontario). Two 

bullheads were euthanized in an overdose of 2mL/L 2-phenoxyethanol (Sigma, #P1126, Oakville 

Ontario). The spleen, head kidney, liver and gill were removed from each fish and placed in 

RNA later (2.5mM Na citrate, 5.3M (NH4)2SO4, 0.01M EDTA, pH 5.2) in 1.5mL large cap 

graduated microtubes (Diamed, #AD151-N500, Mississauga Ontario) on ice. Two millilitres of 

blood was drawn from the caudal sinus using 5mL syringes (BD, #309602, Mississauga Ontario) 

and 23 gauge needles (BD, #305193, Mississauga Ontario) with a final concentration of 30U/mL 

of ammonium heparin (Sigma, #H6279, Oakville Ontario). Blood was transferred to sterile 

15mL falcon tubes (BD, #352096, Mississauga Ontario) and stored on ice. Samples were stored 

on ice during transport back to University of Waterloo before long term storage at -80
o
C.  

 

2.1.2 Peripheral Blood Leukocytes (PBL) Extraction from Blood  

Whole blood in 15mL conical centrifuge tubes (BD, #352096, Mississauga Ontario) was 

centrifuged at 200xg for 10 minutes at room temperature in an Eppendorf swing-bucket rotor 

5810R (Eppendorf, Mississauga Ontario). The white buffy coat containing blood leukocytes was 

removed using a sterile Pasteur pipette (VWR, 14672-380, Mississauga Ontario) and transferred 

to a 50mL sterile falcon tube (BD #352070, Mississauga Ontario). The volume was brought to 

45mL with collection media Leibovitz-15(L-15) (Sigma, #L1518, Oakville) and the cell 
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suspension was split equally into 6 sterile 15mL falcon tubes (BD, #352096, Mississauga 

Ontario). Three milliliters of Histopaque 1077 (Sigma, #10771, Oakville) was added to the 

bottom of each tube, and centrifuged for 30 minutes at 400xg at room temperature in swing-

bucket rotor 5810R centrifuge (Eppendorf, Mississauga Ontario). The white leukocyte layer 

located at the media:histopaque interface was collected from each 15mL falcon tube using sterile 

Pasteur pipettes and pooled into a new sterile 15mL falcon tube. Equal volume of L-15 media 

was added to the collected leukocyte layer, and cells were pelleted by centrifugation at 400xg for 

5 minutes at room temperature. The supernatant was aspirated and the pellet was washed using 

1mL of 1X phosphate buffered saline (PBS) (137mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4. 

7H2O, and 1.4 mM KH2PO4; pH 7.4) followed by centrifugation again at 400xg for 5 minutes at 

room temperature. The PBS was aspirated and the pellet was stored at -80
o
C or used for RNA 

extraction. 

 

2.1.3 RNA Extraction and cDNA Synthesis   

Extraction of RNA followed a revised procedure of (Chomczynski and Sacchi, 1987). A 

maximum of 80mg tissue sample or cell pellet was weighed and quickly placed into 500uL of 

Trizol (Invitrogen #15596-018, Burlington) contained in a 1.5mL large cap graduated microtube 

(Diamed #AD151-N500, Mississauga Ont.). Using a plastic pellet pestle the tissues were 

homogenized before the addition of another 500uL of Trizol (Invitrogen #15596-018, Burlington 

Ontario). DNA and proteins were removed from the mixture through the addition of 200uL 

chloroform (Fisher Scientific #C574-1, Ottawa Ontario) and subsequent vigorous vortex 

followed by centrifugation at 12000xg for 15min at room temperature. The supernatant of the 
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suspension was collected and transferred to a new 1.5mL microcentrifuge tube and placed on ice. 

Total RNA was precipitated by the addition of 500uL isopropanol (EMD Chemicals #PX1835-2, 

USA) to the supernatant, mixed by inversion and allowed to stand for 10 minutes on ice before 

centrifugation at 12000xg for 10 minutes at room temperature.  The supernatant was removed 

and the pellet was rinsed with 1mL of 75% Ethyl alcohol (Commercial Alcohols Inc, Brampton 

Ontario) made with diethyl pyrocarbonate (DEPC) (Sigma #D5758, Oakville Ontario) treated 

water. The pellet was centrifuged at 7500xg for 5 minutes at room temperature, the ethanol was 

aspirated and the pellet was allowed to dry at room temperature in the fume hood for 30 minutes. 

Thirty microliters of DEPC treated water was added to re-suspend the pellet and placed in a 

heating block incubator at 70
o
C for 10 minutes. The RNA solution was mixed by pipetting and 

the concentration measured on a NanoDrop spectrophotometer ND 1000 (NanoDrop 

Technologies Inc, Wilmington Delaware). RNA samples were diluted to a final concentration of 

0.5ug/mL in DEPC treated water and used for first strand cDNA synthesis using Fermentas 

RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas, #K1632, Burlington Ontario), 

following the manufacturer’s instructions.   

2.1.4 Sequence Alignment and Primer Design  

Channel catfish immune related gene sequences were obtained through NCBI database. 

Species-specific primers were designed for Channel catfish gene sequences in anticipation of 

sequence similarity to Brown bullhead. Each primer was based on a specific gene region of 

interest, and primer specifications were determined using Integrated DNA Technologies Oligo 

Analyzer 3.1. Specific immune related genes are listed in Table 2.1. Primers were obtained 

through Sigma Aldrich (Oakville, Ontario). 
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Table 2.1: Primer Design for Channel Catfish Immune Related Gene Sequences 

Primer Name Forward Primer (5’-3’) Reverse Primer (5’-3’) Region of 

Interest 

Template 

RNA 

Elongation 

Factor 1 alpha 

(Ef1a) 

GGAGGTATTGGAACTGTACC

C 

GAGAAT TCACTTGGTCTTGGC EST CB940917 

Nucleotide 64-

689 of coding 

region 

PBL cDNA 

Beta 2 

microglobulin 

(B2M) 

CAGGTTTACAGTCGTAACCC

TGG 

TTCAGGTGTCTGACTCTGCAG

G 
gi:3779214 

nucleotide 79-

314 of coding 

region 

Liver cDNA 

Interleukin 8 

(IL-8) 

ATGAAGGCTGCAACTCTCAC

AG 

GGCAGACCTTCATTCCTTGC gi: 24496449 

nucleotide 1 to 

240 of coding 

region 

PBL cDNA 

Interleukin 1 

Beta type b 

(IL-1Bb) 

AATGTTGTAATCGCTTTGCA

GAG 

CTGACTCGAAGGTGTTAAGGG gi:78707324 

nucleotide 196-

761 in coding 

sequence 

PBL cDNA 

Interleukin 1 

Beta type a 

(IL-1Ba) 

CAATGTCTTCATTGAGAATG

TG 

CCTCTGCACCAAAGCCCT DQ157743.1 

Nucleotide 78-

217 in coding 

sequence 

SPLEEN 

cDNA 

Major 

Histocompati

bility Class 1 

alpha  

(MHIA) 

CTCTGGAGAGGAAAGTTCCT

CC 

TGTGTTTCTGCAGATCCTCAG gi:2995928 

The α3 domain 

starts at 

nucleotide 549 – 

846. 

Liver cDNA 

Major 

Histocompati

bility Class II 

Alpha  

(MHIIA) 

GAACACACTTATCTGCCACT GTGCAGGTGTACACGTCTCCT

TC 
gi:7831247 

α2 domain 

(exon 3) starts at 

nucleotide 270 

to534. Used 

DAA allele. 

Liver cDNA 

Major 

Histocompati

bility Class II 

Beta  

(MHIIB) 

GTTGGGAATTACTACAGCGG

C 

GATCTCCTCTCCAGATTCAGG gi:1763554 

beta-2 domain 

to cytoplasmic 

tail is from 

nucleotide 279 –

558. 

PBL cDNA 

Immunoglobu

lin Mu (IgM) 

TTGAGAGAGAGCTCCATGC

ATC 

GGTTCTTCTGCTGGAATTCGC 

 
X52617 

Catfish Igh for 

immunoglobulin 

heavy chain 

(mu) CH2  

PBL cDNA 
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2.1.5 Polymerase Chain Reaction (PCR) 

Amplification of partial Brown bullhead gene sequences was accomplished by PCR. 

Briefly, 17.7uL autoclaved milliQ water, 1.5uL of 25mM MgCl2 (MP Biomedicals, #EPMG, 

Solon Ohio), 2.5uL Incubation mix T.pol without MgCl2 (MP, EPXMG), 0.5uL 10mM dNTP 

mix (Fermentas, #R0192, Burlington Ontario), 0.1uL 5U Taq (MP Biomedicals, #EPTQA025, 

Solon Ohio), 1uL for each 10nmol primer (Sigma, Oakville Ontario) and between 25-50ng 

template DNA were mixed on ice in 0.2mL flat-cap PCR tubes (Thermo Scientific, #AB-0620, 

Rochester New York). PCR amplifications were performed with a single annealing temperature 

on the BioRad DNA Engine thermocycler (Biorad, Mississauga Ontario), or varying annealing 

temperatures on the Mastercycler gradient (Eppendorf, Mississauga Ontario) using the profile of 

95
o
C for 5 minutes followed by 35 cycles of 95

o
C for 40 seconds, annealing temperature for 30 

seconds, and 72
o
C for 30 seconds, ending with 72

o
C for 15 minutes. Amplified products were 

run on 1-1.5% agarose gel (Bioshop, #AGA001, Burlington) and visualized using GelRed 

nucleic acid gel stain (Biotium, #41003, Hayward California). Sigma GenElute Agarose Spin 

Columns (#5-6500, Oakville) were used to purify DNA following manufactures protocol. DNA 

was eluted with autoclaved milliQ water and stored at -20
o
C.  

 

2.1.6 Ligation and Transformation  

PCR fragments were cloned using the pGEM-T easy vector kit (Promega, #A1360, 

Madison Wisconsin). On ice, 3uL of the purified PCR product was combined in a 1.5mL 

centrifuge tubes on ice with 1uL pGEM-T Easy vector (50ng/uL), 5uL 2X ligation buffer 

(Promega, #C671A, Madison Wisconsin), and 1uL T4 DNA ligase (Promega, #M180A, Madison 
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Wisconsin). The ligation mixture was incubated for 1 hr at room temperature. XL1-Blue MRF 

competent cells were thawed on ice and 45uL were added to the ligation product and left on ice 

for 30 minutes. The cells were heat-shocked by placing the tubes into a water bath at 42
o
C for 55 

seconds before quickly returning them to ice for 3 minutes. Two hundred and fifty microliters of 

SOC media (2% yeast extract, 0.5% tryptone, 8.5 mM sodium chloride, 2M magnesium chloride, 

2.5 mM potassium chloride  and 2M glucose) was added and the mixture was placed in a shaking 

water bath at 37
o
C, shaking at 225rpm for 1 hour. Luria Bertani (LB) (0.1% bacto tryptone, 0.5% 

bacto yeast extract, 0.15% bacto agar and 0.17M NaCl) media coated plates containing an 

ampicillin (Amp) concentration of 100ug/mL  were prepared by the addition of 20ul of 4% 

XGAL(Fermentas,#R0401, Burlington Ontario) and 100uL 0.1M IPTG (Fermentas, #R0391, 

Burlington Ontario). Transformed products were transferred to prepared LB/Amp plates and 

spread in volumes of 10% and 90% of total volume. LB/AMP plates were left for 15 minutes to 

allow absorption of transformed cells before incubation overnight at 37
o
C.  

 

2.1.7 Colony selection and Alkaline Lysis Mini-Prep  

Blue-white selection was used to pick inserts containing ampicillin resistant colonies 

before inoculating 4mL LB media (0.1% bacto tryptone, 0.5% bacto yeast extract, 0.17M NaCl 

pH 7) containing a concentration of ampicillin of 100ug/mL. Media was incubated overnight for 

14-18 hours in a 37
o
C shaking incubator. Plasmid DNA was collected using a modification of 

Daniel’s modified alkaline miniprep (Sambrook et. al. 1989). Briefly, 1.5mL of overnight culture 

was transferred to a new 1.5mL large cap graduated microtubes (Diamed #AD151-N500, 

Mississauga Ont) and centrifuged at 15,000xg for 5 minutes at room temperature in an IEC 
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Micromax bench top microcentrifuge (International Equipment Company, Needham 

Massachusetts). With the supernatant decanted, 200uL of Solution 1 (100mM Tris-HCl pH 8, 

10mM EDTA, 400ug.mL RNase A) was added and the bacterial pellet completely re-suspended. 

Lysis of the bacterial cells was accomplished by the addition of 200uL of Solution 2 (200mM 

NaOH, 1%SDS) with gentle inversion of the tubes. The cells were neutralized by the addition of 

200uL of Solution 3 (3M K-Acetate, 5M Acetic Acid), mixed and incubated on ice for 5 

minutes. Tubes were centrifuged at 15,000xg for 5 minutes at room temperature to remove 

cellular proteins. Supernatant containing plasmid DNA was transferred to a new 1.5mL 

microcentrifuge tube and precipitated by the addition of 420uL isopropanol alcohol (EMD 

Chemicals #PX1835-2, USA) and incubated for 10 minutes at room temperature. Precipitated 

plasmid DNA was centrifuged for 10 minutes at 15,000xg at room temperature, supernatant 

decanted and pellet was washed by the addition of 500uL 70% Ethyl alcohol (Commercial 

Alcohols Inc, Brampton Ont.). Tubes were centrifuged for 5 minutes at 15,000xg at room 

temperature, ethanol completely removed before the addition of 18uL autoclaved milliQ water to 

re-suspend the DNA. DNA quantity and quality was measured on a NanoDrop 

spectrophotometer ND 1000. 

2.1.8 Sample Digest and Sequencing  

Upon completion of alkaline lysis mini-prep, a digest was conducted to confirm the 

presence of a DNA insert within pGEM T easy plasmid vector.  One microliter of either EcoRI 

(Fermentas, #FD0274, Burlington Ontario) or NOTI (Fermentas, #FD0614, Burlington Ontario) 

Fast Digest enzymes were added to 2uL 10X Fast Digest Buffer (Fermentas, Burlington Ontario) 

and 0.5ug/uL plasmid DNA, incubated at 37
o
C for 1 hour before running on 1-1.5% agarose 
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(Bioshop, #AGA001, Burlington Ontario) gel with 1-1.5uL GelRed nucleic acid stain (Biotium 

#41003, Hayward California) for insert confirmation. Plasmid DNA containing brown bullhead 

DNA insert were sent to TCAG Sequencing Facility (Toronto, Ontario) to determine gene 

sequence. Plasmid DNA was diluted to a total of 250-300ng in a total volume of 7uL in 

autoclaved milliQ water. Once DNA clones were sequenced, an NCBI BLAST was conducted to 

determine identity of sequence. Sequences were aligned with channel catfish related sequences 

to determine species differences using default settings of Clustal W as a function in BioEdit 

software. 

2.2 Field Collection and Sediment Exposure Study  

2.2.1 Collection and Transportation  

Brown bullheads were collected from pre-designated sites along the Detroit River (Windsor, 

Ontario) by boat electrofishing. Two sites represented ―clean‖ sites; Belle River and Peche 

Island, and two represented contaminated sites; Trenton Channel and Belle Island. Map of 

designated sites can be seen below in Figure 2.1.  

 



 

 30 

 

Figure 2.1 Map of pre-determined sites along the Detroit River. Trenton Channel (bottom left circled in 

red), Belle Island (top left circled in red) and Peche Island (top middle circled in green).  

 

Bullheads were captured and injected with a Passive Integrated Transponder (PIT tag) in spring 

2008 and held in clay ponds at Leadley Environmental Inc. (Essex, Ontario) for 1 year to 

generate an F1 population. Bullheads were captured from the designated sites in spring 2009 to 

be held for 4 months again in clay ponds at Leadley Environmental Inc (Essex, Ontario). These 

fish were identified as ―Cleared Adults‖ and were each PIT-tagged for identification. In Fall 

2009, the capture of bullheads from each site was attempted with limited success. Bullhead 

capture in Fall 2009 were identified as ―Acute Adults‖. Spring 2010 Acute Adults were collected 
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from each site and held at Leadley Environmental Inc. for 2 weeks. In November of 2009, 20 F1 

bullheads were tagged with coloured fishing line sewn into their gill plates from each population 

of Belle Island (clear), Trenton channel (green), Peche Island (blue) and Belle River (black) and 

were transported back to the University of Waterloo along with 20 Cleared Adults from each 

population from Belle Island, Trenton channel and Peche Island.  Bullheads were transported via 

an aerator equipped wet tank.  Due to the number of fish delivered, bullheads were divided into 

two holding tanks (4ft long X 4ft wide X 4ft deep and 6ft long X 6ft wide X 3ft deep), with 

constant flow, aeration and 12
o
C water temperature. Bullheads were maintained in holding tanks 

to acclimate for a one week period with standard daylight savings time. Holding tanks were 

covered with insulation to provide protection for bullheads. 

Spring 2010 Acute adults were held for 2 weeks prior to transportation back to the University 

due to requirements to complete the field sampling. Twenty acute bullheads from Peche Island 

and 19 acute bullheads from Trenton Channel were delivered to Waterloo in coolers with 

portable aerators (MengJin, #AP-1502, China). 

2.2.2 Vaccination  

Brown bullheads were removed from holding tanks upon completion of one week 

acclimatization and anesthetised in 1mL/L 2-phenoxyethanol (Sigma #P1126, Oakville Ontario). 

At which point 200ul blood was withdrawn from the caudal sinus of the F1 bullheads, and 500ul 

was withdrawn from the adults into a 1mL syringe (BD, #309602, Mississauga) with a 23 gauge 

needle (BD, #305193, Mississauga Ontario). Blood was transferred to 1.5mL large cap graduated 

microtubes (Diamed #AD151-N500, Mississauga Ontario) and allowed to clot overnight at 4
o
C. 

Clotted blood was centrifuged at 1000xg for 10 minutes and serum was collected into new 
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labeled 1.5mL large cap graduated microtubes (Diamed #AD151-N500, Mississauga) and stored 

at -20
o
C. One hundred microliters of Vibrio anguillarum-ordalii bacterin, Vibrogen 2 (Novartis 

Animal Health Canada, Ser 011540, Charlottetown PEI) was intraperitoneal injected into 

bullheads directly after blood removal. Bullheads from each population were divided and placed 

onto either sediment collected from PI representing a clean environment or contaminated 

collected from Trenton channel representing contaminated sediment for the exposure study. 

2.2.3 Exposure Study  

Two 4ft x 4ft x 4ft plastic tanks were equipped with sediment collected from Peche Island in 

Fall 2009 (―clean‖) or sediment collected from Trenton Channel in spring 2008 

(―contaminated‖), a slow flow through, water temperature of 12
o
C, aeration, and insulation for 

cover protection. Bullheads were maintained for 24 days in each exposure tank, fed 5mm trout 

floating chow (Martin Mills, Elmira Ontario) at 3% body weight every third day. Bullheads were 

sampled for tissue extraction at 24 hours, 96 hours and 24 day time points, collected for 

respiratory burst assay at the 24 hour time point and bled for serum collection at the 14 and 21 

day time points.   

2.2.4 Respiratory Burst Assay  

In order to determine neutrophil activity in whole blood, a luminol-enhanced 

chemiluminescence assay was used. Briefly, 90ul whole blood was removed from the caudal 

sinus of each bullhead into 1mL syringes (BD, #309602, Mississauga Ontario) using 23 gauge 

needles (BD, #305193, Mississauga) with a final concentration of ammonium heparin (Sigma, 

#H6279, Oakville Ontario) of 20 units/mL and placed on ice. Each well of the 96 well plates 

(Fisher Scientific, #3917, Ottawa Ontario) was pre-filled with 110ul Hanks balance salt solution 
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(Sigma, #H9394 Oakville Ontario), 10ul of whole blood from each individual bullhead was 

added in triplicates and to each well, and 60ul of 1mM working stock of luminol (Sigma, 

#A8511, Oakville Ontario) diluted in HBSS was added. Luminol stock was made at a 

concentration of 100mM by dissolving 17.7mg in 1mL cell culture grade dimethyl sulfoxide 

DMSO (Sigma, #D2650, Oakville Ontario). Finally, to each test well 20ul of 20mg/mL zymosan 

A (Sigma, #Z4250 Oakville Ontario) was added, and 20ul HBSS added to each control well. 

Zymosan A was prepared by first boiling 100mg zymosan A in 5mL HBSS for 30 minutes 

before centrifugation at 3000rpm for 10 minutes. The zymosan pellet was washed with 5mL 

HBSS and again centrifuged at 3,000 rpm for 10 minutes. The pellet was washed a second time 

before re-suspension in 5mL HBSS and storage at 4
o
C.  The wells of the plate were mixed by 

pipetting and the emissions were determined using a Victor3V 1420 Multilabel Counter (Perkin 

Elmer, Woodbridge Ontario). The program used had 99 repeated readings, 115 seconds between 

readings, and 5 second shaking of the plate directly before reading. No filter was used , and the 

emission readings were recorded in counts per second (CPS).  Each well was measured for 0.1 

seconds, and each bullhead test and control was done in triplicate. For each bullhead, the 

difference between the control and the test wells was determined, and the peak emission reading 

was used for comparison studies. 

 

2.2.5 Enzyme Linked Immunosorbant Assay (ELISA)  

In order to determine increases in antibody titre to the Vibrogen 2 vaccine administration, 

serum samples collected at time 0 prior to vaccination, and at Day 14 and 21 post-vaccination 

were used in an enzyme linked immunosorbant assay. Vibrio anguillarum-ordalii bacterin, 
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Vibrogen 2 (Novartis Animal Health Canada, Ser 011540, Charlottetown PEI) was placed in 

autoclaved 2mL screw cap microcentrifuge tubes (Diamed, #2340-00, Mississauga Ontario) 

along with 0.8mL of 0.1mm zirconia/silica beads (BioSpec Products, #11079101z, Bartlesville 

Oklahoma). The vaccine/bead mixture was used to disrupt the bacterial cell wall upon vigorous 

mixing at full speed using a mini bead-beater (BioSpec Products, Bartlesville Oklahoma) for 45 

seconds before returning to ice for 1 minute incubations. The procedure was repeated 5 times for 

each tube of vaccine. Bead-beated vaccine was diluted 30% in coating buffer (35 mM NaHCO3, 

15 mM Na2CO3, and 3 mM NaN3, pH 9.6) and 100uL was added to each well of NUNC 96 

microwell plates (VWR, #62409-068, Mississauga Ontario) and allowed to incubate overnight at 

4
o
C. A 1/1000 dilution of Keyhole limpet hemocyanin (KLH) (Sigma, #H7017, Oakville 

Ontario) in coating buffer was added to positive control wells. One hundred microliters of 

coating buffer was added to one set of negative control wells to reflect non-specific binding of 

serum. Other control wells contained vaccine coated with serum, no secondary but tertiary and 

substrate to indicate tertiary non-specific binding (Goat anti-mouse IgG), and vaccine coated 

with no serum, secondary, tertiary and substrate to indicate non-specific binding of secondary 

antibody (11A2). Plates were blocked in 300ul of 5% skim milk powder in T-TBS (0.14 M 

NaCl, 2.7 mM KCL, 25 mM Tris, 0.5% Tween 20, pH 8) for 1 hour at 37
o
C. Wells were washed 

3 times in TBS-T before the addition of 100uL of serum diluted 1/50 in 1% BSA made in TBS-T 

and incubated for 1 hour at room temperature. Each serum sample was plated in triplicate. The 

monoclonal antibody 11A2 specific for the light chain of catfish IgM was added at a volume of 

100uL and dilution of 1/100 in 1% BSA in TBS-T and incubated for 1 hour at room temperature 

after washing the wells with TBS-T. Goat anti-mouse IgG (whole molecule) Alkaline 
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Phosphatase conjugate antibody (Sigma, #A3562, Oakville) was added to probe each well at a 

dilution of 1/500 and incubated for additional 1 hour at room temperature. The plate was washed 

3 times with TBS-T before the addition of 100uL of Sigma Fast p-nitrophenyl phosphate (p-

NPP) tablet set (Sigma, #N2770, Mississauga Ontario) and incubated in the dark for 30 minutes. 

The reaction was stopped by the addition of 0.03M NaOH and the absorbance was measured at 

405nm using Versamax microplate reader (Molecular Device, California USA). For each plate 

the wells containing only coating buffer to identify non specific binding of serum were averaged 

and subtracted from each reading to account for background, and the average of the triplicate 

absorbance were used to create a plot bar graph. 

2.2.6 Tissue collection and RNA Extraction   

Tissue extraction was completed at 24 hours, 96 hours and 24 days post vaccination and 

sediment exposure. Bullheads were euthanized in an overdose of 2mL/L 2-phenoxyethanol 

(Sigma, #P1126, Oakville Ontario). The spleen, gill, liver, head kidney, muscle and blood were 

removed and placed in RNA later (2.5mM Na citrate, 5.3M (NH4)2SO4, 0.01M EDTA, pH 5.2). 

Tissue samples were stored in -20
o
C for 1 month before being transferred to -80

o
C. RNA 

extraction followed the same protocol listed above in section 2.1.3 RNA Extraction and cDNA 

Synthesis. RNA quantity and quality was measured in combination by NanoDrop 

spectrophotometer ND 1000 (NanoDrop Technologies Inc, Wilmington Delaware) and RNA 

agarose gels. Agarose gels were made with 110uL DEPC treated water, 16uL formaldehyde 

(Fisher Scientific, BP531, Ottawa Ontario) and 24mL 10x MOPS (0.2M MOPS pH 7.0, 20mM 

Sodium Acetate, 10mM EDTA pH 8). Running buffer consisted of 1X MOPS in milliQ water, 
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and gel was run for 3 hours at 60 volts using Owl B2 EasyCast Mini Gel System (Thermo 

Scientific, Rochester New York).  

2.2.7 DNase Treatment and First Strand cDNA Synthesis  

All RNA samples were treated with DNase for the removal of any genomic DNA 

contamination using Fermenatas DNase I, RNase-free kit (Fermentas, #EN0521, Burlington 

Ontario). A total of 2ug of extracted RNA was combined with 2uL of 10X reaction buffer with 

MgCl2, 2uL DNase I RNase free (#EN0521), and DEPC-treated water (#R0601) to a total 

volume of 20uL in 0.2mL flat-cap PCR tubes (Thermo Scientific, #AB-0620, USA). The 

reaction was mixed by pipetting and incubated at 37
o
C for 30 min. DNase treated RNA was 

transferred onto ice prior to the addition of 2uL 50mM EDTA, before incubating at 65
o
C for 10 

minutes. DNase-treated RNA preparation quantity and quality was measured again on a 

NanoDrop spectrophotometer ND 1000 (NanoDrop Technologies, Wilmington Delaware), and 

0.5ug was used for first strand cDNA synthesis using Fermentas RevertAid H Minus First Strand 

cDNA Synthesis Kit (Fermentas, #K1632, Burlington Ontario). Five hundred nanograms of 

template RNA was combined with 1uL oligo (dT)18 primer in a total volume of 12uL in 200uL 

PCR tubes (Thermo Scientific, #AB-0620, USA). The mixture was incubated at 65
o
C for 5 

minutes before returning to ice. To the mixture 4uL 5X Reaction Buffer, 1uL RiboLock RNase 

Inhibitor (20U/uL), 2uL 10mM dNTP Mix and 1uL RevertAid H Minus M-MuLV Reverse 

Transcriptase (200U/uL) were added to a total volume of 20uL. Mixtures were incubated for 60 

min at 42
o
C using the BioRad DNA Engine thermocycler (Biorad, Mississauga Ontario).   
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2.2.8 Brown Bullhead Real Time PCR Primer Design  

Gene specific primers and probes for the cloned brown bullhead genes were developed 

using Primer Express 3.0 software. The primers can be found in Table 2.2. 

Table 2.2 qRT-PCR Primer design including forward, reverse and probe sequences, and fragment size. 

Gene 

Name 

Forward Primer (5’-3’) Reverse Primer (5’-3’) Probe (5’-3’) Fragment 

Size 

EF1a  GTTCCTGGCAAGCCCATGT AGCAACGGTCTGCCTCATGT CTACCTATCCTCCTCTTGG 89 

IL-8 TCTCACAGTGCTGCCCTTGA TGGTACAAACAACGCACTGCT CATCTTTGCACTGACTGC 90 

IL-1B GCTTTGGTGCAGAGGGAAAA TAGGCCGAAAGGTTGAACCAT CTGGCCTTTACTCTGAAGG 95 

MHIa TTCTTCCCCAAAACAGTGATG CCATCCTGGTTGGGTAACGT AGGACGTGCATGAGG 95 

MHIIA CGGTGTGGATGTGACGGATA GTGAAGGTCAGGTGGGAGAA TCAGTATTATCCGAATGAGG 89 

MHIIB GATGTGCAGCGCTTACAGATT GTGGACGTCACACCTCCTTTA ACCATCTCGGTGACCTG 90 

IgM TGAAAACGTGGACCTCAATAA TTCACCGGCGCTGAGTTC CCAGAATAAAGGTAACTTC 99 

B2M CCACCCCCCAGACATTACAA ACTTCCAGCCCTTCTCAAAGG CGCGGTGATTCCA 94 

 

2.2.9 Brown Bullhead Real Time qPCR  

Real time PCR 6,000 pmol Taqman probes (Applied Biosystems, Carlsbad California) 

for MHIIB, IL-8, IL-1B and EF1a as identified in Table 2 were custom ordered.  Probes were 

MGB, all 5’ labeled with VIC dye, with the exception of EF1a labeled with 6FAM dye. Probes 

were diluted 1:50 with RNAse/DNAse free water (Qiagen, Mississauga Ontario). Primers from 

Table 2 (Sigma, Oakville Ontario) were diluted to 10mmol. Each qPCR reaction contained 

endogenous control EF1a and one target gene primers and probe. One microliter of each EF1a 

primer (10mmol) and probe (1:50) were added to the qPCR master mix along with 1uL of the 

target gene primers (10mmol) and probe (1:50). Twelve and a half microlitres of IQ Supermix 

(BioRad, #170-8862, Mississauga Ontario), 0.4uL ROX (BioRad, #172-5858, Mississauga 

Ontario), and 1uL of cDNA template transcribed as stated in section 2.2.7 were added to the 

qPCR reaction to a final reaction volume of 20uL. MicroAmp Optical ninety six well clear PCR 
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plates (#N8010560, Applied Biosystems, Carlsbad California) were used, sealed using 

MicroAmp Optical adhesive film (#4360954, Applied Biosystems, Carlsbad California). Relative 

quantification qPCR program followed had initial cycles of 2 minutes at 50
o
C and 10 minutes at 

95
o
C, followed by 40 cycles of 15 seconds at 95

o
C and 1 minute at 60

o
C using the Applied 

Biosystems 7300 qPCR machine. Each plate contained a positive control for plate normalization 

containing a cDNA template of fish 133 gill, and normalized to EF1a to allow for comparative 

studies between populations. 

2.2.10 Relative Quantification (RQ) Study  

RQ studies were completed for each gene of interest through the normalization of each 

target gene Ct to the Ct of Ef1a.  Using the Applied Biosystem 7300 software, automatic Ct and  

average dCt were calculated before exported to Microsoft Excel. Target gene threshold cycles 

were normalized to elongation factor-1 alpha threshold cycle (dCt), and sample means were 

calculated before the creation of a clustered column bar graph. 

2.2.11 Statistical Analysis  

Statistical analysis was conducted using SPSS Statistics 17.0. Statistical outliers were 

removed by performing a linear regression and calculated by Cooks Distance outside of 2 

standard deviations. The effects of age, sediment exposure and site for each assay were 

determined using a univariate full factorial ANOVA, corrected using Bonferroni post hoc tests. 

Data was split at the level of sediment, age or site to determine specific interactions.  Normality 

was assessed by the Shapiro-Wilk test, and homogeneity of variance between groups was 

assessed by Levene's test.  
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Chapter 3Results 

3.1 Cloning of Brown Bullhead (Ameiurus nebulosus) Immune Related Genes 

3.1.1 Major Histocompatibility Class I Beta 

Cloning of brown bullhead immune genes was accomplished using cDNA created from 

RNA isolated from spleen, gill or peripheral blood leukocytes (PBLs). The PCR reaction using 

primers specific for channel catfish Major Histocompatibility class II beta chain, flanking exon 2 

(Beta 2 region) is outlined in Figure 1.4. The PCR products were separated on 1.5% agarose gel 

before visualization using Fluorochem 8000 imager, which uses Alpha Innotech imaging 

software (San Leandro California). Upon ligation into pGEM T-easy vector, transformation into 

E. coli XL1-Blue competent cells and miniprep sequencing of PCR DNA, the brown bullhead 

sequence was first subjected to a BLAST search using NCBI database. The BLAST search 

reviled a 98% identity to Ictalurus punctatus MHC class II beta chain (IcpuDAB*01 allele) 

(U77597.1) [e value 1e-131]. A sequence alignment of the brown bullhead partial clone of 

MHIIB and the coding region of channel catfish MHIIB (U77597.1) was created using Clustal W 

Alignment with default settings on the Bioedit software. The alignment is shown in Figure 3.2.  

 

Figure 3.1 PCR amplification of brown bullhead MH II beta exon 2 amplicon of 267bp. 

http://www.ncbi.nlm.nih.gov/nucleotide/1763554?report=genbank&log$=nucltop&blast_rank=1&RID=J7GJK03B01S
http://www.ncbi.nlm.nih.gov/nucleotide/1763554?report=genbank&log$=nucltop&blast_rank=1&RID=J7GJK03B01S
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Figure 3.2 Nucleotide sequence alignment of cloned brown bullhead MH class II beta partial clone with 

the channel catfish MH class II sequence (U77597.1).  

3.1.2 Major Histocompatibility Class II alpha 

Figure 3.3 shows the PCR amplification of a brown bullhead MHII alpha chain fragment. 

The sequence alignment of Ictalurus punctatus isolate GASC2 MHC class IIA antigen (Icpu-

DAA) gene, Icpu-DAA*10 allele, partial coding sequence (DQ811108.1)[e value 8e-73] and 

Ameiurus nebulosus isolate FLEBR4 MHC class IIA antigen (Amne-DAA) gene, Amne-DAA*08 

allele, partial coding sequence (DQ811106.1)[e value 8e-68] showed 98% and 96% sequence 

identity respectively (figure 3.4).  

http://www.ncbi.nlm.nih.gov/nucleotide/111550207?report=genbank&log$=nucltop&blast_rank=5&RID=J8XV71AT014
http://www.ncbi.nlm.nih.gov/nucleotide/111550203?report=genbank&log$=nucltop&blast_rank=8&RID=J8XV71AT014
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Figure 3.3 MH class II alpha PCR gradient amplification. Amplicon size is 186bp. 

 

Figure 3.4 Sequence alignment of brown bullhead (B.B) partial clone, brown bullhead allele 

(DQ811106.1) and channel catfish MHIIa (DQ811106.1). 

3.1.3 Major Histocompatibility Class I Alpha 

The amplification of major histocompatibility class I alpha chain, specifically the alpha 3 

region, is shown in figure 3.5. A BLAST search revealed a 97% identity to Ictalurus punctatus 

MHC class I alpha chain Icpu-UBA mRNA (AF053548.1) [e value 1e-106], and the sequence 

alignment is depicted in figure 3.6.  

 

http://www.ncbi.nlm.nih.gov/nucleotide/2995928?report=genbank&log$=nucltop&blast_rank=2&RID=J7GYHG0Z01S
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Figure 3.5 PCR amplification of a 231bp fragment of the brown bullhead MHIa gene. 

  

Figure 3.6 Sequence alignment of brown bullhead cloned MHIa alpha 3 region and channel catfish MHIa 

gene (AF053549). 
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3.1.4 Interleukin 8 (IL-8) 

PCR amplification of the brown bullhead partial Interleukin 8 (IL-8) gene is shown in 

figure 3.7. A BLAST search indicated 93% identity to channel catfish interleukin 8 variant 3 

(AY140804.1). Alternative splicing has been observed in channel catfish IL-8 sequence (Chen et 

al, 2005), but this was not identified in the brown bullhead. A ClustalW alignment was 

performed within the Bioedit program for the sequenced brown bullhead and channel catfish IL-

8 genes as seen in Figure 3.8. The alignment identifies the 3 known alternative splicing variants 

of channel catfish IL-8, the only identified brown bullhead IL-8 partial sequence, and the qPCR 

amplicon for brown bullhead IL-8.  

 

 

Figure 3.7 The 226bp brown bullhead fragment of interleukin-8 amplicon. 

http://www.ncbi.nlm.nih.gov/nucleotide/24209770?report=genbank&log$=nucltop&blast_rank=2&RID=V1N75NW701N
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Figure 3.8 Sequence alignment of brown bullhead (B.B) partial interleukin 8 sequences and channel 

catfish Interleukin-8 alternative splicing variants. 

 

3.1.5 Beta 2 Microglobluin (B2M) 

The brown bullhead beta 2 microglobluin (B2M) PCR product can be viewed in figure 

3.9, showing amplicons from the gill, liver and spleen in respective wells. The cloning of brown 

bullhead B2M revealed an 89% identity, which may in part be due to ambiguous sequence data 

to Ictalurus punctatus beta-2 microglobulin precursor mRNA (AF016041.1) [e value 4e-77] and 

the sequence alignment is graphically shown in figure 3.10.  

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/3779214?report=genbank&log$=nucltop&blast_rank=3&RID=J7H7FPED01S
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Figure 3.9 PCR amplification of the 234bp brown bullhead partial B2M fragment from gill, liver and 

spleen.  

 

 

Figure 3.10 Sequence alignment of cloned brown bullhead partial B2M and channel catfish (CC) B2M 

gene.  
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3.1.6 Immunoglobulin mu (IgM) 

PCR amplification of immunoglobulin mu (IgM) constant region 2 (Exon 2) is shown in 

figure 3.11. The resulting partial cloned sequence shared 95% identity to catfish Igh DNA for 

immunoglobulin heavy chain (mu) (X52617.1) [e value 7e-120] and the sequence alignment can 

be seen in figure 3.12.  

 

Figure 3.11 PCR amplification of brown bullhead IgM constant region 2. Amplicon size is 279bp.  

 

 

Figure 3.12 sequence alignment of brown bullhead (B.B) CH2 region and channel catfish CH2 

region of IgM heavy chain (X52617.1). 

http://www.ncbi.nlm.nih.gov/nucleotide/64014?report=genbank&log$=nucltop&blast_rank=6&RID=J7G1H11T01S
http://www.ncbi.nlm.nih.gov/nucleotide/64014?report=genbank&log$=nucltop&blast_rank=6&RID=J7G1H11T01S
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3.1.7 Interleukin 1 beta (IL-1B) 

The brown bullhead interleukin 1 beta (IL-1B) gene fragment amplified by PCR is shown 

in figure 3.13. A BLAST search indicated a 96% identity to Ictalurus punctatus interleukin 1 

beta type a mRNA, complete cds (DQ157741.1)[e value 0] and 96% to Ictalurus punctatus 

interleukin 1 beta type b mRNA, complete cds (DQ157742.1)[e value 0].  Re-design of the 

primers allowed for the cloning of both type a and type b interleukin 1 beta genes. Amino acid 

sequence alignments and cNDA sequence alignments of brown bullhead b and partial channel 

catfish type a IL-1B can be seen in figure 3.14 and 3.15 respectively.  

 

Figure 3.13 PCR amplification of brown bullhead interleukin 1 beta gene. Amplicon size is 523 bp.  

 

http://www.ncbi.nlm.nih.gov/nucleotide/78707324?report=genbank&log$=nucltop&blast_rank=1&RID=J8XEADNY01S
http://www.ncbi.nlm.nih.gov/nucleotide/78707326?report=genbank&log$=nucltop&blast_rank=3&RID=J8XEADNY01S
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Figure 3.14 Amino acid sequence alignment of cloned brown bullhead partial IL-1B type b gene (B.B 

Type b full), brown bullhead partial IL-1B type a gene (B.B Type a partial), a longer fragment of type a 

(B.B Type a full)  and channel catfish IL-1B type a (I.P type a: DQ157741.1) and type b (I.P type b: 

DQ157742.1). Also included in the alignment are the brown bullhead IL-1B type a and b qPCR 

sequences. 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/78707324?report=genbank&log$=nucltop&blast_rank=1&RID=J8XEADNY01S
http://www.ncbi.nlm.nih.gov/nucleotide/78707326?report=genbank&log$=nucltop&blast_rank=3&RID=J8XEADNY01S
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Figure 3.15. cDNA sequence alignment of cloned brown bullhead partial IL-1B type b gene (B.B Type b 

full), brown bullhead partial IL-1B type a gene (B.B Type a partial), a longer fragment of type a (B.B 

Type a full)  and channel catfish IL-1B type a (I.P type a: DQ157741.1) and type b (I.P type b: 

DQ157742.1). Also included in the alignment are the brown bullhead IL-1B type a and b qPCR 

sequences. 

http://www.ncbi.nlm.nih.gov/nucleotide/78707324?report=genbank&log$=nucltop&blast_rank=1&RID=J8XEADNY01S
http://www.ncbi.nlm.nih.gov/nucleotide/78707326?report=genbank&log$=nucltop&blast_rank=3&RID=J8XEADNY01S
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3.1.8 Elongation Factor -1 Alpha (EF1a) 

Lastly, housekeeping gene elongation factor -1 alpha (EF1a) was cloned in the brown 

bullhead and is depicted in figure 3.16. A BLAST search indicated 99% identity to Ictalurus 

punctatus isolate C94SB10 elongation factor 1-alpha mRNA (DQ353797.1), [e value 0] and the 

resulting sequence alignment can be viewed in figure 3.17. 

 

Figure 3.16 PCR amplification of Brown bullhead EF1a partial sequence. Amplicon size 627bp. 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/85720038?report=genbank&log$=nucltop&blast_rank=6&RID=J7HJ67CE01S
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Figure 3.17 Nucleotide sequence alignment of partial cloned brown bullhead EF1a sequence and channel 

catfish partial CDS (DQ353797) and EST (CB940917). 
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3.2 Luminol Enhanced Zymosan induced Whole Blood Chemiluminescence 

The ability of blood leukocytes to perform the innate immune function respiratory burst was 

determined using luminol enhanced chemiluminescence. For each bullhead the peak 

chemiluminescence reading was determined and used for comparison studies. Statistical analysis 

was conducted using SPSS, outliers removed using Cook’s Distance testing. 

Table 3.1 Statistical outliers removed from data based on linear regression at the level of Site, Sediment 

and Age, using case wise diagnostics of 2 standard deviations. 

Fish ID Site Sediment Age 
Chemiluminescence 

(cps) 

39 PI Clean F1 177 

62 PI Clean F1 2997 

50 BI Clean F1 323 

55 BI Clean F1 363 

59 TC Clean F1 3410 

16 PI Clean Cl. Ad. 2417 

25 BI Clean Cl. Ad. 2630 

67 BI Contaminated F1 2457 

 

 

Table 3.2 Sample sizes for the respiratory burst assay conducted 24hr post vaccination and 

post sediment exposure upon outlier removal. 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 6 9 10 8 10 7 5 9 

Contaminated 

Sed. 
6 6 10 6 8 8 6 8 
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Figure 3.18 identifies the mean peak chemiluminescence for each group, at each site. In 

order to determine effects of age, sediment exposure and site on the chemiluminescence, a 

univariate full factorial ANOVA was conducted. Chemiluminescence emission was determined 

to be normally distributed within each site exposed to either sediment as assessed by the Shapiro-

Wilk test. There was homogeneity of variance between groups as assessed by Levene's test for 

equality of error variances. Chemiluminescence results are demonstrated in figures 3.18 to figure 

3.21. 

A significant interaction between the effects of site and age on the chemiluminescence 

emission, F(2,106)= 4.99, P=.009 was identified. A significant difference in sites on 

chemiluminescence is demonstrated (P=.001), as is a significant difference in sediment 

(P<0.001) and age (P<0.001). Simple interactions show a decrease in chemiluminescence on 

contaminated sediment (P=<0.001). Site specific sediment interactions identified a reduction in 

chemiluminescence on contaminated sediment within each site, showing a 36% decrease of PI 

(P=.023), a 31% decrease in TC (P=.025), and a 28% decrease in BI (P=.044).  

Age specific interactions were identified within each site, as acute adults of both PI and 

TC had reduced chemiluminescence compared to that of the F1 and cleared adults of each site 

(P<0.001). Acute adults of PI demonstrated a 74% decrease in chemiluminescence compared to 

F1, and a 68% decrease compared to cleared adults.TC acute adults showed a 77% reduction 

compared to F1 and a 74% decrease in chemiluminescence compared to cleared adults of TC.  

No difference was observed between the F1 and cleared adults of any site, PI (P=.829), 

BI (P=.412), TC (P=1.00). Acute adults of TC were identified to have a reduced 

chemiluminescence response when exposed to both clean and contaminated sediment (P<0.001) 
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compared to that of the F1 and cleared adults. The acute adults of PI showed a reduction in 

chemiluminescence on clean sediment to both F1 and cleared adults (P <0.001), but only 

compared to F1 when exposed to contaminated sediment (P=.011) and not cleared adults 

(P=0.159). BI identified no interaction between age and chemiluminescence when exposed to 

clean sediment (P=0.859) or contaminated sediment (P=0.386).  

 Site specific interactions between age and sediment identify a reduction of 55% in 

chemiluminescence of cleared adults of PI exposed to contaminated sediment to that of the 

cleared adults of PI exposed to clean sediment (P<0.001). F1 of TC exposed to contaminated 

sediment also had a 44% reduction in chemiluminescence compared to F1 exposed to clean 

sediment (P=0.013). Site interactions also identified a reduced chemiluminescence of F1 and 

cleared adults of BI compared to F1 and cleared adults of PI (P=0.004 and P=0.011 respectively) 

and TC (P<0.001 and P=0.039 respectively). 
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Figure 3.18 Whole Blood Chemiluminescence showing each group from each site on either clean (PI) or 

contaminated sediment (TC). First generation bullheads (F1), adult bullheads captured from the wild and 

allowed to clear contaminants in clean environment (Cl. Ad) and adult bullheads captured from the wild 

with limited time to remove contaminants (Ac. Ad) collected from Peche Island (PI), Trenton Channel 

(TC) and Belle Isle (BI) are shown. 

 

Figure 3.19 Whole Blood Chemiluminescence in F1 populations from each site placed on either clean (PI) 

or contaminated (TC) sediment.  
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Figure 3.20 Whole Blood Chemiluminescence in cleared adult populations from each site placed on either 

clean (PI) or contaminated (TC) sediment.  

 

Figure 3.21 Whole Blood Chemiluminescence in acute adult populations from each site placed on either 

clean (PI) or contaminated (TC) sediment.  

A A 

B 
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3.3 Enzyme Linked Immunosorbant Assay (ELISA) 

The increases in antibody titre in response to Vibrogen 2 vaccine administration was 

measured to examine the adaptive immune response. Plate variation was accounted for by 

normalizing each plate to the KLH positive control on plate 6. The mean of the triplicate 

absorbances were organized into each group, and used to create a plot bar graph as demonstrated 

in figure 3.21. Statistical analysis was conducted using SPSS, outliers removed using Cook’s 

Distance testing. 

 

Table 3.3 Statistical outliers removed from data based on linear regression at the level of Site, Sediment 

and Age, using case wise diagnostics of 2 standard deviations. 

Fish ID Site Sediment Age 
Time-

Point 
Absorbance (405nm) 

Juv 2 TC Clean F1 Day 0 0.704 

Juv 2 PI Clean F1 Day 21 1.204 

Juv 3 TC Contaminated F1 Day 21 1.146 
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Table 3.4 Sample sizes for ELISA assay conducted 0, 14 and 21 day post vaccination and post 

sediment exposure upon outlier removal. 

  PI 

  F1 Cl. Ad. Ac. Ad 

  D0 D14 D21 D0 D14 D21 D0 D14 D21 

Clean Sed. 3 2 1 3 3 3 4 4 4 

Contaminated Sed 3 2 5 4 4 4 2 2 2 

  TC 

  F1 Cl. Ad. Ac. Ad 

  D0 D14 D21 D0 D14 D21 D0 D14 D21 

Clean Sed. 2 3 3 4 4 4 2 2 2 

Contaminated Sed 3 4 3 4 4 4 1 1 1 

  BI       

  F1 Cl. Ad.   

  D0 D14 D21 D0 D14 D21   

  Clean Sed. 3 3 2 4 4 4   

  Contaminated Sed 3 5 4 4 4 4   

   

To determine effects of age, sediment exposure, time-point and site on the antibody 

production measured by absorbance, a univariate full factorial ANOVA was conducted using 

logarithm (base 10) transformation data. Absorbance at 405nm was determined to be normally 

distributed within each time-point at the level of sediment as assessed by the Shapiro-Wilk test. 

There was homogeneity of variance between groups as assessed by Levene's test for equality of 

error variances. Results of the ELISA can be seen in figure 3.22. 

A significant interaction between the effects of age and time-point on the absorbance 

values, F(4,102)= 3.13, P=.018, is identified. There are also significant differences in age and 

absorbance (P<0.001), and in time-point and absorbance (P<0.001). Simple interactions identify 

no difference in sediment exposure on absorbance (P=0.328), no differences between sites 
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(P=801), a reduction in antibody titre in acute adults compared to F1 and cleared adults (P=0.001 

and P<0.001 respectively), and an increase in antibody titre from day 0 to day 21 (P<0.001). 

 Site specific interactions show increased antibody titre of both PI and TC cleared adults 

exposed to contaminated sediment (P=0.013 and P=0.040 respectively). Acute adults of both PI 

and TC had reduction in antibody titre compared to F1 (P=0.028 and P=0.021 respectively) and 

cleared adults (P<0.001 and P=0.001 respectively). Antibody titre also increased from day 0 to 

day 21 at all sites, PI (P<0.001), BI (P=0.033) and TC (P=0.010). Antibody titre of PI exposed to 

clean sediment and contaminated sediment increased from day 0 to day 21 (P=0.007 and 

P=0.002 respectively). The same increase was observed in TC exposed to clean sediment 

(P=0.032) but no increase was observed on contaminated sediment (P=0.069). There was no 

increase in titre from day 0 to day 21 of BI exposed to either clean (P=0.325) or contaminated 

P=0.201) sediment. Within each site, age specific interactions identified only an increase of PI 

and TC F1 from day 0 to day 21 (P=0.003 and P=0.018 respectively). It was also determined that 

at day 0 prior to vaccination, the antibody titre of cleared adults was higher than that of both the 

F1 and the acute adults (P=0.001 and P=0.004 respectively). 

Site specific interactions of sediment exposure identify increased antibody titre in cleared 

adults compared to F1 of PI (P=0.019) exposed to clean sediment, reduced antibody titre of acute 

adults compared to F1 (P=0.013) and cleared adults (P=0.001) of PI exposed to contaminated 

sediment. TC acute adults exposed to clean sediment had a reduced titre compared to F1 (P= 

0.007) and cleared adults (P=0.033), the acute adults of TC exposed to contaminated sediment 

had a reduced titre compared to the cleared adults (P=0.044).  
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Figure 3.22: Antibody titre against v. anguillarum, collected at day 0, 14 and 21 post vaccination exposed 

to clean (PI) or contaminated (TC) sediment. Cl.Ad refers to cleared adults, Ac. Ad refers to acute adults. 

^ refers to n=1. TC cont ―J‖ identifies a significant reduction in acute adults compared to cleared adults. 

PI cont ―E‖ and TC clean ―H‖ indicate a significant reduction in acute adults compared to both cleared 

adults and F1.  

 

> 

> 
> 

> 

Absorbance (405nm) 
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3.4 Quantitative Real Time PCR 

3.4.1 Major Histocompatibility Class II Beta (MHIIB) Gene Expression in both Gill and 

spleen normalized to housekeeping gene Elongation factor-1 alpha (EF1A). 

In order to determine effects of age, sediment exposure and site on the expression level of 

major histocompatibility class II beta (MHIIB) in gill and spleen tissue, a univariate full factorial 

ANOVA was conducted using inverse of square root transformation data for gill and using 

logarithm (base 10) transformed data for spleen. Expression levels relative to endogenous control 

elongation factor-1 alpha (EF1A) was determined to be normally distributed for gill tissue within 

each site as assessed by the Shapiro-Wilk test. Spleen transformed data was determined to be 

normally distributed by the combined effects of age, site and sediment as also assessed by the 

Shapiro-Wilk test. There was homogeneity of variance between groups as assessed by Levene's 

test for equality of error variances. Expression levels of MHIIB normalized to EF1a can be seen 

in figures 3.23 and figure 3.24.  

 

Table 3.5 Statistical outliers removed from data based on linear regression at the level of Site, Sediment 

and Age, using case wise diagnostics of 2 standard deviations. 

Fish ID Tissue Site Sediment Age dCt 

31 Gill BI Clean Cl. Ad. 14.52 

136 Gill TC Clean Ac. Ad. 14.41 

141 Gill TC Contaminated Ac. Ad. 13.22 

136 Spleen TC Clean Ac. Ad. 13.48 

141 Spleen TC Contaminated Ac. Ad. 16.05 
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Table 3.6 Sample sizes for the expression levels of MHIIB conducted 24hr post vaccination and post 

sediment exposure upon outlier removal. 

Gill 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 3 2 2 2 

Contaminated 

Sed. 
2 3 3 2 3 2 3 3 

Spleen 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 3 2 2 3 

Contaminated 

Sed. 
2 3 3 2 3 2 3 3 

 

A significant interaction between the combined effects of age, sediment exposure and site 

on the expression levels of MHIIB in gill tissue was identified F(3,25)= 3.56, P=.026. Simple 

interactions identify no difference in sediment exposure on expression (P=0.914), no differences 

between sites (P=0.494), and no differences between age (P=0.425).Within site interactions 

identified F1 of TC had an increased expression compared to cleared adults of TC on clean 

sediment (P=0.023). F1 of TC also had increased expression when exposed to clean sediment 

then exposed to contaminated sediment (P=0.018). Cleared adults of TC also showed higher 

expression of MHIIB in the gill exposed to contaminated sediment compared to clean sediment 

(P=0.035). 
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Figure 3.23 Gene Expression of MHIIB 24hr and 96hr after vaccination and sediment exposure of 

either clean or contaminated sediment in gill tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults. ―A‖ represents significantly higher expression of TC F1 on 

clean then cleared adults exposed to clean, and F1 exposed to contaminated sediment of TC.  

 

A significant interaction between the effect of age on the expression levels of MHIIB in 

spleen was observed F(2,25)= 4.79, P=.017. No interaction between sediment (P=0.531), site 

(P=0.906), or the combined effect (P=0.211) were identified. F1 had increased expression levels 

of MHIIB relative to both cleared adults (P=0.04) and acute adults (P=0.012). Within site 

interactions identified an increased expression level in F1 of TC compared to cleared and acute 

adults (P=0.039 and P=0.021 respectively). TC cleared adults were also found to have increased 

expression levels on contaminated sediment compared to clean sediment (P=0.015).  

A 

B 
B 
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Figure 3.24 Gene Expression of MHIIB 24hr and 96hr after vaccination and sediment exposure of either 

clean or contaminated sediment in spleen tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults. ―A‖ represents significantly hihger expression of F! of TC 

exposed to clean sediment compared to both cleared adults and acute adults of TC exposed to clean 

sediment. 

3.4.2 Interleukin-8 like cytokine (IL-8) gene expression in gill and spleen normalized to 

housekeeping gene Elongation factor-1 alpha (EF1A). 

In order to determine effects of age, sediment exposure and site on the expression level of 

the cytokine interleukin-8 (IL-8) in gill and spleen tissue, a univariate full factorial ANOVA was 

A 

B 

B 
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conducted using logarithm (base 10) transformed data for gill and untransformed data for spleen. 

Expression levels relative to endogenous control elongation factor-1 alpha (EF1A) was 

determined to be normally distributed for gill tissue within each site at levels of sediment and age 

as assessed by the Shapiro-Wilk test. Spleen untransformed data was determined to be normally 

distributed within each site at the level of sediment also as assessed by the Shapiro-Wilk test. 

There was homogeneity of variance between groups as assessed by Levene's test for equality of 

error variances. Expression levels of IL-8 normalized to EF1a can be seen for gill in figure 3.25 

and for spleen in figure 3.26. 

 

Table 3.7 Statistical outliers removed from data based on linear regression at the level of Site, Sediment 

and Age, using case wise diagnostics of 2 standard deviations. 

Fish ID Tissue Site Sediment Age dCt 

35 Gill TC Clean Cl. Ad 11.61 
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Table 3.8 Sample sizes for the expression levels of IL-8 conducted 24hr post vaccination and post 

sediment exposure upon outlier removal. 

Gill 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 2 3 2 3 

Contaminated 

Sed. 
2 3 3 2 3 3 3 3 

Spleen 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 3 3 2 3 

Contaminated 

Sed. 
2 3 3 2 3 3 3 3 

 

 

A significant interaction between the effect of age on the expression levels of IL-8 in gill 

was observed F(2,25)= 6.50, P=.005, but not observed in the spleen F(2,28)=.096, P=.908. No 

interaction between sediment in gill (P=0.701) or spleen (P=0.449), site in gill (P=0.907) or 

spleen (P=0.227), or the combined effect in either tissue (P=0.923 and P=0.963) were identified. 

Simple interactions identified lower expression of IL-8 in gill tissue in Acute adults compared to 

F1 (P=0.004) and cleared adults (P=0.016).  

Within site interactions, PI acute adults displayed a reduced expression of IL-8 in gill 

tissue than seen in both F1 and cleared adults (P<0.001). F1 of PI exposed to contaminated 

sediment had increased expression levels of IL-8 in spleen tissue relative to both cleared adults 

and acute adults (P=0.008 and P=0.015 respectively).  
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Figure 3.25: Gene Expression of IL-8 24hr and 96hr after vaccination and sediment exposure of either 

clean or contaminated sediment in spleen tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults. ―B‖ respresents a reduced expression level in acute adults 

of PI compared to F1 and cleared adults of PI. 

A A A A 

B 
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Figure 3.26: Gene Expression of IL-8 24hr and 96hr after vaccination and sediment exposure of either 

clean or contaminated sediment in spleen tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults.‖A‖ represents significantly higher expression levels of F1 

of PI exposed to contaminated sediment then both cleared adults and actue adutls of the same site and 

sediment exposure. 
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3.4.3 Interleukin 1 Beta (IL-1B) type b Gene Expression in both Gill and Spleen 

normalized to housekeeping gene Elongation factor-1 alpha (EF1A) 

The effects of age, sediment exposure and site on the expression level of the pro-

inflammatory cytokine interleukin-1B (IL-1B) in gill and spleen tissue were determined using a 

univariate full factorial ANOVA. Untransformed data was used for both gill and for spleen 

analysis. Expression levels relative to endogenous control elongation factor-1 alpha (EF1A) was 

determined to be normally distributed for gill tissue within each site at levels of sediment and age 

as assessed by the Shapiro-Wilk test. Spleen untransformed data was determined to be normally 

distributed at the levels sediment, site and age also as assessed by the Shapiro-Wilk test. There 

was homogeneity of variance between groups as assessed by Levene's test for equality of error 

variances. Expression levels of IL-1B normalized to EF1a can be seen for gill in figure 3.27, and 

for spleen in figure 3.28. 

Table 3.9 Sample sizes for the expression levels of IL-1B conducted 24hr post vaccination and post 

sediment exposure. 

Gill 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 3 3 2 3 

Contaminated 

Sed. 
2 3 3 2 3 3 3 3 

Spleen 

  

PI TC BI 

F1 Cl. Ad Ac. Ad F1 Cl. Ad. 
Ac. 

Ad. 
F1 Cl. Ad. 

Clean Sed. 3 3 3 2 3 3 2 3 

Contaminated 

Sed. 
2 3 3 2 3 3 3 3 
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For both the gill and spleen tissues a significant interaction was observed between the 

expression of IL-1B and age F(2,28)= 31.43, P<0.001 for gill and F(2,28)= 21.27, P<0.001 for 

spleen. No effects of sediment exposure on IL-1B expression for either gill or spleen (P=0.049 

and P=0.686 respectively), and no effect of the interaction of site on expression for either tissue 

(P=0.303 and P=0.427 respectively) was observed. Simple interactions identified acute adults 

having lower expression in both tissues compared to both F1 and cleared adults (P<0.001 in all 

cases). In gill tissue, there is a 36% decrease in expression of acute adults compared to F1 and a 

30% decrease compared to cleared adults. Spleen tissue has a higher decrease of expression in 

acute adults of 49% compared to F1 and a 47% decrease compared to cleared adults. 

Site specific interactions identified an increase in IL-1B expression in both gill and 

spleen tissues of BI compared to PI (P=0.001 and P=0.005 respectively), and to TC (P=0.008 

and P=0.030). Interactions of age and site identified a lower expression of acute adults compared 

to F1 and cleared adults of both PI (P=0.001) and P=0.002) and TC (P=0.003 and P=0.030) in 

gill tissue. The same combined age and site interactions were shown for the spleen tissue, in 

which acute adults had a lower expression compared to F1 and cleared adults (P=0.016 and 

P=0.034) of PI and of TC (P=0.003 and P=0.002).  
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Figure 3.27 Gene Expression of IL-1B 24hr and 96hr after vaccination and sediment exposure of either 

clean or contaminated sediment in gill tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults. ―B‖ respresents a reduced expression level in acute adults 

compared to F1 and cleared adults of both PI and TC. ―*‖ represents increased expression level of BI 

compared to that of PI and TC. Note BI do not have acute adults. 
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Figure 3.28 Gene Expression of IL-1B 24hr and 96hr after vaccination and sediment exposure of either 

clean or contaminated sediment in spleen tissue. *note 96hr samples for cleared adults exposed to 

contaminated sediment are not available for analysis. PI Clean refers to fish captured from PI and placed 

on clean sediment, PI cont refers to bullheads captured from PI and exposed to contaminated sediment. 

Cl.Ad= Cleared adults, Ac.Ad= Acute Adults. ―B‖ respresents a reduced expression level in acute adults 

compared to F1 and cleared adults of both PI and TC. ―*‖ represents increased expression level of BI 

compared to that of PI and TC. Note BI do not have acute adults. 
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Chapter 4Discussion 

4.1 Cloning of immune related genes 

The cloning of brown bullhead immune related genes resulted in the acquisition of cDNA 

sequence for partial fragments of 8 different genes (Section 3.1). The sequences obtained were 

verified through the BLAST program of the NCBI database. Species differences were observed 

within each sequence when compared to channel catfish (Ictalurus punctatus), and splice 

variants were also examined. Channel catfish are known to possess different splice variants of 

IL-8, resulting in larger and smaller mRNAs. It has been noted in previous RT-PCR studies that 

the shorter channel catfish alternatively spliced fragment of IL-8 was more abundant than the 

larger fragment (Chen et al, 2005). The larger fragment was not identified in brown bullhead 

cloning (seen in figures 3.5 and 3.6), allowing for related comparisons only between the smaller 

alternatively spliced fragment in channel catfish and the cloned fragment of brown bullhead. 

There appears to be a higher expression levels of IL-8 in channel catfish spleen compared to gill 

(Chen et al, 2005), also corresponding to the present research (Figures 3.24 and 3.25). Further 

studies should be initiated to locate an alternatively spliced form of bullhead IL-8, but to date 

this has been unsuccessful.  IL-1B in channel catfish has been identified to have 2 forms, type a 

(DQ157741.1) and type b (DQ157742.1). In an attempt to identify and clone each type in brown 

bullhead, multiple primer pairs were created. An aspartic acid (D) substitution at amino acid 94 

instead of glutamic acid (E) and a lysine (K) instead of arginine (R)  at amino acid 134 (Figure 

3.11) are indicative of type a  IL-8 in channel catfish and these are found in the cloned brown 

bullhead sequence, so it was designated type a. It was not possible to isolate a full length clone of 

http://www.ncbi.nlm.nih.gov/nucleotide/78707324?report=genbank&log$=nucltop&blast_rank=1&RID=J8XEADNY01S
http://www.ncbi.nlm.nih.gov/nucleotide/78707326?report=genbank&log$=nucltop&blast_rank=3&RID=J8XEADNY01S
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type a in the brown bullhead, and further studies will need to be undertaken to completely 

characterize both the sequence and expression of bullhead IL-8. 

 

4.2 Respiratory Burst Assay 

 A decrease in chemiluminescence signifies a decreased ability of circulating blood 

phagocytes to mount an immune response when stimulated in vitro by zymosan. The successful 

aerobic destruction of microbes by phagocytic capable cells depends on the consumption of 

oxygen to form reactive metabolites in a process known as respiratory burst (Secombes & 

Fletcher, 1992). Many different possible explanations may account for this observed decrease, as 

many studies have demonstrated the immunosuppressive ability of contaminants (Iwanowicz et 

al, 2009; Rice et al, 1996; Chaves-Pozo, 2005; Zelikoff, 1993). Results of chemiluminescence 

studies in teleosts have not conclusively shown acute environmental impacts on the ability of 

phagocytes to create ROS. The studies have demonstrated increases, decreases and even no 

impact on the production of ROS.  

In agreement with the results obtained from the sediment exposure of brown bullhead 

(see Figure 3.18), channel catfish (Ictalurus punctatus) exposed to IP injected doses of tributylin 

(TBT) showed a reduction in non-specific cytotoxic cell (NCC) activity at high doses and in 

phagocyte oxidative burst activity when challenged with Edwardsiella ictaluri (Rice et al, 1995). 

Channel catfish also showed a moderate decrease in oxidative burst in response to Vibrio 

anguillarum challenge after IP injection exposure to a PCB mixture (Regala et al, 2001). Carlson 

et al (2002) also verified suppression of superoxide production by kidney phagocytes at high 

doses of IP injected benzo[a]pyrene in Japanese medaka (Oryzias latipes). Tilapia (Oreochromis 
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mossambicus) showed decreased phagocytic cell counts and decreased chemiluminescene at high 

doses of IP injected DMBA (Hart et al, 1998). Although these studies indicate an effect of 

injected contaminants, few studies have reported the immune impact of contaminated sediment 

exposure, or chronic exposure.  

Hutchinson et al (2003) was able to identify a reduction in hydrogen peroxide production 

of fish in short term exposures to PCB and PAH spiked sediments. A chronic exposure study 

conducted by Rice et al (1996) using red-breasted sunfish from a contaminated stream, showed 

that the oxidative burst activity was suppressed in the fish collected closer to the head waters 

which contained the highest concentrations of contaminants, and was relatively normal 

downstream. The data from these two studies correlate with the results of the present research, 

indicating a combination of contaminants contained in sediment, and chronic exposure to 

contaminants do have immunosuppressive capabilities. This immunosuppression may account 

for the reduced chemiluminescence identified in the PI cleared adults and TC F1 on 

contaminated sediment, as those bullheads exposed to clean sediment did not show inhibition of 

the respiratory burst defence by the contaminants.  

Alternatively, Rice et al (1998) demonstrated an increase in channel catfish (Ictalurus 

punctatus) phagocytic oxidative burst after 14 days of exposure to low levels of PCB in feed   

and also after 21 days exposure to low levels of PCB mixed with nonyl-phenyl in feed. A study 

conducted by Kelly-Reay and Weeks-Perkins (1994), also identified an increase in macrophage 

bactericidal oxygen free radicals in common mummichog (Fundulus heteroclitus) upon chronic 

exposure in the Elizabeth River, Virginia, suggesting low levels of contaminants will provide 

enough stimulatory effects to increase immune function. However, brown bullheads receiving an 
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intraperitoneal injection of the PCB mixture Aroclor 1248 were shown to have no effect on the 

production of ROS when stimulated with LPS, but the bactericidal activity was decreased 

(Iwanowicz et al, 2009). Although several studies suggest respiratory burst in fish is elevated due 

to stimulatory effects of contaminants, the results of the present research correlate with the ample 

studies indicating immunosuppression effects.  

The data for the BI bullheads indicates that not only the fish exposed to contaminated 

sediment, but also those exposed to clean sediment were significantly reduced compared to F1 

and cleared adults from TC and PI exposed to clean sediment. A possible explanation of the 

reduction in BI chemiluminescence in both F1 and cleared adults is that the immune response of 

these fish may be slightly delayed compared to PI or TC, and may not be reduced in 

effectiveness. A simple explanation of the timing of the assay may account for this observable 

and significant difference. It has been shown that within 24hr after infection with v.anguillarum 

in the gilthead seabream (Sparus aurata) results in the significant increase in acidophilic 

granulocytes but does not alter the chemiluminescence. The significant increase in 

chemiluminescence was observed after 48hr infection and lasted until 72hr post infection 

(Chaves-Pozo, 2005). These results may indicate a priming effect of gilt seabream granulocytes, 

and may also provide an insight into the response of not only the bullheads of BI, but of the acute 

adults. Acute adults may also undergo a priming effect that in some way may be delayed, 

resulting in the observable significant decrease in respiratory burst. If this assay was conducted 

at further time points, a clearer indication of innate immunosuppression may have been 

identified.  



 

 77 

The current research may also indicate that although sediment collected around Belle Isle 

has been shown to contain reduced levels of contaminants compared to TC (Kannan et al, 2001; 

Leadley et al, 1998), updated studies indicate continual turnover of contaminants results in 

elevated levels in this area (Drouillard et al, 2006). Prevention of increased deposition of 

contaminants of BI surrounding area can be attributed to the fast flowing waters of the shipping 

channels (Tsanis et al. 1996). As a result, bullheads collected at BI could potentially have a 

greater uptake of contaminants than expected from sediment concentrations, resulting in the 

observed lower respiratory burst levels than seen other groups. It has been shown in previous 

work that bullheads collected from PI had higher muscle contaminant levels than expected from 

the levels of contaminant in the sediment (Leadley et al, 1998), supporting this possibility. 

Further evidence could also be high levels of PAHs and PCBs in the sediments surrounding BI 

(Drouillard et al, 2006) resulting from the point source of Connor’s Creek just upstream (Kannan 

et al. (2001).  

Along with increases in sediment contaminants in the surrounding area of BI, the habitat 

in which the bullheads were collected was quite different from that of PI and TC. BI bullheads 

were captured within and surrounding two marinas, one abandoned and one active, whereas TC 

were captured from an open channel, and PI bullheads within an isolated natural habitat around 

the island. It has been suggested that shoreline development for the construction and function of 

marinas may alter water circulation and increase contaminant accumulation (Hinkey et al, 2005). 

Elevated levels of contaminants have been reported as a result of marina activities (Reviewed in 

Turner et al, 1997; Hinkey et al, 2005). Increases in trace metals such as copper due to leaching 

of antifouling paints, has also been shown to increase toxicity in marinas (Schiff et al, 2007). 
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Although sediment collection within certain areas of the marina in combination with muscle 

contaminant concentrations would be needed to provide further evidence, it may be a reasonable 

explanation of the reduced respiratory burst activity seen in the bullheads collected at BI. Further 

investigations into the contamination of both the site and fish of Belle Isle will need to be 

conducted.  

Figure 3.18 identifies a decrease in respiratory burst activity in acute adults. These fish 

were removed directly from the wild, held in holding tanks for a total of 16 days before the 

exposure study. These bullheads were only removed from chronic exposure to natural sediment 

contaminants for a short period of time, thereby limiting the amount of acquired contaminants 

able to be excreted or cleared. It has been identified that a period of 3 weeks significantly 

reduces the acute effects of stress due to contaminants as well as being sufficient time to clear 

certain pesticides, some heavy metals, and certain PAHs and PCBs (Reviewed in Breckles and 

Neff, 2010). It should also be noted that there may be many other contaminants within the 

sediment of the Detroit River with unknown clearing times. This theory may also help to support 

the much higher levels of respiratory burst seen in F1 and cleared adults exposed to clean 

sediment. 

Theoretically, these TC acute fish should be least affected by contaminated sediment 

exposure, as they have been chronically exposed without a clearing interval. Bullheads collected 

from TC were expected to have a reduced immune function as a result of contaminant exposure, 

which correlates to the observed results of the present research (Figure 3.18). Alternatively, acute 

fish collected from PI were expected to produce a response representing a ―clean‖ environment, 

allowing for normal immune function when placed on clean sediment. This however was not 
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observed. These bullheads showed the same trend as those of TC, a decrease in 

chemiluminescence when exposed to both clean and contaminated sediment. It has been shown 

previously that fish collected from Peche Island had much higher muscle contaminants than 

found in the sediments (Leadley et al, 1998). This may explain the observed immunosuppression, 

as these bullheads may have been exposed to higher levels of contaminants than expected, and in 

a short period of acclimatization in holding tanks were not able to overcome the 

immunosuppressive effects. The results therefore may indicate a delayed and or a reduced 

immune response of the blood granulocytes that can be a result of either direct of indirect 

contaminant exposure.   

The F1 and cleared adults respiratory burst response from PI and TC also seem to 

indicate an environmental impact of exposure to contaminants, since they showed a reduction in 

respiratory burst when exposed to contaminated sediments. This environmental impact may also 

be indicative of physiological adaptation that these fish undergo when exposed to contaminants 

in the wild (Meyer et al, 2002). Due to the decreased respiratory burst of the acute fish, the 

results indicate that once contaminants are cleared, immune function can increase. Conversely, 

while an environmental physiological adaptation may account for bullheads of PI and TC, the F1 

and cleared bullheads from BI may seem to exhibit a form of genetic adaptation. BI bullheads 

exhibit the same trend of mild immunosuppression regardless of sediment, indicating a possible 

genetic factor carried through the generations. Such genetic adaptations to contaminants have 

been proposed in bullheads collected from the Detroit River in locomotion and aggressive 

behaviours, as no difference was exhibited between cleared or F1 populations (Breckles and 

Neff, 2010).  However, before a claim of genetic resistance can be made, it is essential to note 
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the small population sizes used in this research (Table 3.2). This sample size may not be 

indicative of the wild population, and will need to be further analyzed.  

   Contaminants have been identified to not only suppress immune function directly, but 

impair other responses such as metabolic, hormonal, and behavioural, that can ultimately affect 

the species survival (Reviewed in Couillard et al, 2008). An alternative explanation to the 

immunosuppression of the fish placed on contaminated sediment is that the contaminants had an 

indirect affect on their immune function. The contaminants may have increased energetic costs 

within the individuals, placing more of a demand on the detoxification and elimination of the 

acute exposure, therefore increasing individual stress (Reviewed in Couillard et al, 2008). It has 

been shown that contaminants directly affect aerobic processes and respiration (Couture and 

Rajotte 2003), hormonal control (Hontela et al, 1992; Liney et al, 2006), and metabolic processes 

(Reviewed in Couillard et al, 2008). There appears to be well documented evidence supporting 

that increase stress results in immunosuppression in fish (Wang and Belosevic, 1995; Reviewed 

in Harris and Bird, 2000). Supporting the idea of chronic stress inducing suppression of 

respiratory burst of acute adults and those exposed to contaminated sediment are studies 

identifying reduction in respiratory burst in stressed fish (Angelidis et al, 1987), and cortisol 

suppressing nitric oxide production in phagocytes (Watanuki et al, 2002; Wang and Belosevic, 

1995). 

Another possible indirect effect of contaminants is tissue related damage. Non-specific 

tissue damage due to pollutant induced oxidative stress has been well documented (Farombi et 

al, 2007, Sanchez et al, 2005). A study of exposure to naphthalene indicated increased lipid 

peroxidation as a result of respiratory burst activation, potentially leading to increased membrane 
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damage of vital immune organs (Ahmad et al, 2003). Cell viability can be directly related to cell 

membrane viability (Darzynkiewicz and Robinson, 1994), and is therefore essential to the proper 

functioning of immune cells. Lipid peroxidation is also a characteristic of apoptosis 

(Darzynkiewicz and Robinson, 1994), which may indicate another possible effect of 

contaminants. The acute fish could potentially be exhibiting the chronic effects of membrane 

damage, and this may account for the decrease in immune function.   

The immunosuppression seen in acute adults may also be reflective of the gender of the 

fish and season in which they were captured. The acute adult fish were captured during June 

2010, nearing the end of the bullhead breeding season of May to June (Blumer, 1985). The 

immunocompetence handicap hypothesis states that the production of testosterone in males 

during breeding may contribute to the reduction of male immune defences (Folstad & Karter, 

1992), allowing only certain individuals with the best immune genes to maintain immunity 

during this process. This has been well demonstrated in birds, but to date has been unclear in fish 

(Reviewed in Kurtz et al, 2007). It has been shown that innate immunity in male sticklebacks is 

reduced with the injection of 11-ketotestosterone (11-kT) which mimics naturally increased 

androgen expression and allows increased expression of secondary sexual characteristics (Kurtz 

et al, 2007). It may be plausible that this interaction between 11-kT and immune function was 

occurring within the acute male bullheads, explaining the immunosuppression. It has also been 

suggested that increases in the female hormone estradiol during the breeding season may 

suppress phagocytic capability of phagocytes (Yamaguchi et al, 2001). Both Β- estradiol and 11-

kT have been shown to specifically suppress components of the respiratory burst superoxide 

anion and nitric oxide in carp (Watanuki et al, 2002). It could therefore be proposed that this 
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evidence may support the reasons behind the acute adult immunosuppression. However, the 

gender of the bullheads was not determined for the present research, and the involvement of sex 

as a determining factor of immunosuppression can therefore only be hypothetical. 

Not only may the sex have an impact on the results presented here, but the breeding 

period itself may have the ability to cause physiological stress, indirectly suppressing the 

immune function (Reviewed in Buchanan, 2000). This down regulation of the immune function 

in the reproductive period has been identified in captive fish studies (reviewed in Kortet et al, 

2003). An increase in parasitic infections in spawning fish compared to non-spawning fish in 

both Artic charr and Roach species have been identified (Skarstein et al., 2001, Kortet et al, 

2003), and may also provide further evidence for immunosuppression during breeding seasons. 

Spleen size in roach (Rutilus rutilus) decreased in both male and female sexes during breeding, 

and the migratory ability of head kidney granulocytes decreased in both sexes shortly after 

breeding (Kortet et al, 2003). The spleen is a vital major lymphoid organ in fish (Press and 

Evensen, 1999), capable of storing immune cells (Kocabas et al, 2002). Spleen size has also been 

shown to decrease in Actic charr during breeding periods (Reviewed in Kortet et al, 2003). The 

spleen size of the brown bullheads were not measured, therefore this is only speculation of a 

plausible reason behind the acute adult immunosuppression.   

 The results of the respiratory burst as shown in Figure 3.18 clearly indicate an 

environmental response to contaminant exposure in both F1 and cleared adults collected from 

TC and PI. The immunosuppressive effects identified in bullheads collected at BI may be 

indicative of a genetic response to chronic contaminant exposure. Further evidence supporting a 

reduction in immune function as a result of chronic contaminant exposure is the reduced 
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respiratory burst response identified in acute adults. The immunosuppressive effects of 

contaminants has been well documented, the results obtained in the present research indicate the 

detrimental effects of chronic exposure, and the ability for immune function recovery when 

removed from contaminated environments.  

4.3 Enzyme Linked Immunosorbant Assay (ELISA) 

Contrary to what was observed for the respiratory burst assay (Figure 3.18), the ELISA 

data does not reveal differences in antibody production between sites, or a reduction in antibody 

production when exposed to contaminated sediment. A study conducted by Powell et al, (2003) 

seemed to correlate with these results showing that juvenile Chinook salmon (Oncorhynchus 

tshawytscha) orally dosed with various concentrations of a PCB mixture did not significantly 

alter disease resistance or innate immune response when challenged with Vibrio anguillarum. 

Rice et al (1998) also demonstrated no effect on the channel catfish humoral immune system 21 

days after oral injection with a PCB.  

However, the acute adults of TC and PI were shown to have a reduced antibody titre to 

that of the cleared adults and the F1 correlating with the respiratory burst data, indicating an 

immunosuppressive environmental effect on acute adults. Immunosuppressive effects due to 

acute exposure to contaminants have been demonstrated in channel catfish IP injected with PCB 

mixture when assessed by Vibrio anguillarum challenge (Regala et al, 2001), and to IP injected 

TBT when challenged with Edwardsiella ictaluri (Rice et al, 1995). It has also been 

demonstrated that the IP injection exposure to a mixture of PCB and TBT did not suppress 

antibody production beyond the effect of TBT alone in the channel catfish (Regala et al, 2001), 

indicating a lack of synergistic effects. Secondary antibody production was suppressed in 



 

 84 

juvenile Chinook salmon (Oncorhynchus tshawytscha) when injected with DMBA and a PCB 

mixture (Arkoosh et al, 1994). Japanese medaka (Oryzias latipes) exposed to IP injected 

benzo[a]pyrene at low doses also suppressed T and B lymphocyte proliferation (Carlson et al, 

2002). Tilapia have also shown suppressed B cell production in response to BaP injection (Smith 

et al, 1999), and carp have shown similar results after exposure to 3-MC (Reynaud et al, 2003). 

Aroclor 1248 exposure also led to suppression in antibody titres at both low and high doses in 

the brown bullhead (Iwanowicz et al, 2009). Along with the reduction in the respiratory burst 

seen in acute adults stated above, the acute bullheads reduced antibody titres may be a direct 

result of chronic exposure and stress due to contaminant exposure in the wild with a limited 

clearing interval. They may also be in part due to sex, age and seasonal effects.  

The cleared adults and the acute adults did not show a significant increase in antibody 

production from day 0 to day 21 regardless of the sediment exposure or site (Figure 3.22). This 

may be indicative of antibodies remaining from previous exposures. Although V.anguillarum has 

been primarily associated as a salmonid affecting bacterium, it has been reported as the causative 

agent in channel catfish disease in the past (Lewis, 1985). The vaccination may not have been 

strong enough to elicit a large antibody response, as the existing antibodies may have functioned 

to opsonize the bacteria, eliminating the pathogen without the need for adaptive immunity. 

Supporting this hypothesis is the high levels of antibody seen at day 0, in cleared adults 

compared to that of the F1 and the acute adults. This may indicate a lack of pre-exposure in the 

F1 population to the bacteria, and the demands of contaminant exposure placed on the acute 

bullheads reduced the ability to produce antibodies. The cleared adults on the other hand may 
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have been pre-exposed to the bacteria in the wild, and upon clearing the contaminants in the clay 

ponds they may have been able to again increase energy demands to immune function.  

Similar to what was demonstrated in the respiratory burst assay (Figure 3.18), bullheads 

collected from BI did not significantly differ in antibody response at day 21 regardless of the 

type of sediment exposure. As stated above, it may be a result of the natural habitat from which 

they were collected or it may be due to an increased level of contaminant exposure, all resulting 

in the suggested genetic adaptations carried on to the F1 population. As with the respiratory 

burst, sample size and the lack of acute adults limits testing of the validity of this proposed 

theory. Further investigation will be required.  

The results of the ELISA may be indicative of acclimatization to the contaminants over a 

21 day period, whereas the respiratory burst assay may signify acute environmental impacts to 

certain individuals (Reviewed in Brekles and Neff, 2010). It may be plausible that the bullheads 

showed a reduction in immune function after 24hr exposure due to increased acute stress, but 

upon the completion of 21 days post exposure the bullheads acclimatized and therefore no 

observable difference in antibody titre could be detected. Recent research has demonstrated in 

Atlantic salmon an increase in cortisol levels reduces innate immune responses but has no 

suppressive effect on antibody titres after vaccination (Skinner et al, 2010).  

In conclusion, the same trend of acute adult immunosuppression as demonstrated in the 

respiratory burst was also evident in the ELISA data. These results indicate chronic contaminant 

exposure have immunosuppressive effects. Due to limited numbers of bullheads for the sediment 

exposure study, a very small number of bullheads were used for antibody determination as 



 

 86 

demonstrated in table 3.4 and therefore limiting the variance between groups. Further research 

should employ a larger sample size, accounting for variability between groups.  

 

4.4 Reverse transcriptase Real time PCR expression analysis 

4.4.1 Major Histocompatibility Class II Beta expression in gill and spleen tissues 

The results of the expression study of MHIIB indicate a lack of a contaminant effect after 

24hr exposure. The reduced expression levels of MHIIB in bullheads exposed to contaminant 

sediment was only evident in F1 and cleared adults of TC, and was not observed within any other 

age groups of other sites. Down regulation of MHII genes have been identified in flounder 

exposed for 3 days to high levels of oil (Nakayama et al, 2008), correlating with an expected 

down regulation to contaminant exposure. However, this was only evident in one site of the 

presented research. 

An increase in expression within the F1 of TC in spleen tissue, and the increase in cleared 

adults of TC in gill tissue may be indicative of different immune responses. The increased levels 

of MHIIB in the spleen of F1 may represent more circulating MHIIB presenting cells within the 

blood, and an increased ability to develop an antibody response. This data correlates with the 

results of the ELISA, showing the increase in antibody titre from day 0 to day 21 in F1. The 

increased expression observed in the gill of TC cleared adults may be a result of previous 

exposure to a higher level of bacteria in the wild, leading to an increased ability of phagocytes to 

ingest and express antigens within the MHII groove. It may also be a result of other bacteria or 

pathogens remaining from previous exposure or a response to possible pathogens within the 

sediment.  
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Previous studies have identified mRNA expression of MHIIB in both the spleen and gill 

of the gilthead seabream (Sparus aurata) (Cuesta et al, 2006), correlating with the expression 

observed in the present research. Relative expression levels in comparison to baseline expression 

levels would have allowed for a more thorough analysis, as the response to the vaccination could 

have been monitored. Increased expression of MHII has previously been identified at the site of 

vaccine administration (Reviewed in Tonheim et al, 2008) as it is required for the activation of 

other essential immune cells. It has also been identified that an increase expression is not always 

apparent in response to immunizations in fish (Reviewed in Nakayama et al, 2008). 

 

4.4.2 Interleukin-8 (IL-8) gene expression in gill and spleen tissues 

The present research identified an increase in IL-8 expression in the gill compared to that 

of the spleen, but an immunotoxicological effect upon exposure was not shown (figure 3.25 and 

figure 3.26). There was no observable difference between sites or of those exposed to 

contaminated sediment, correlating with the results of the ELISA. However, the reduced 

expression of gill IL-8 in acute adults identified an environmental effect of contaminant 

exposure, and also correlated with what was identified in the respiratory burst and ELISA.    

An increase in expression of IL-8 has been shown in flounder exposed to oil in seawater 

(Nakayama et al, 2008), suggesting the importance for IL-8 in combating bacterial infection even 

in contaminated waters. It therefore may not be surprising that IL-8 may not have been affected 

by acute contaminant exposure in the case of the cleared adults and the F1. It may also be 

plausible that IL-8 expression is not inhibited by acute stress inducing events or acute 
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contaminant exposure, as also demonstrated in the present research. Further studies involving 

stress related design may be able to account for such a claim.  

The immunosuppressive effects of IL-8 in acute adults may signify a normal response, as 

it has been identified that a significant increase in spleen IL-8 expression in rainbow trout was 

evident 4 day post infection (Sigh et al, 2004). However, in vitro stimulation indicated a much 

faster response to LPS stimulation of RTS-11 cell line of IL-8 after only 2 hours, and increasing 

after 4 hr (Laing et al, 2002). It has also been identified that acidophilic granulocytes accumulate 

in the spleen 2hr post infection and peak at 4 hr post infection (Reviewed in Chavez-Pozo et al, 

2005). Due to the importance of IL-8 in attracting acidophilic granulocytes to inflammatory sites 

(Chen et al, 2005), it would appear that the observed decrease in IL-8 expression in acute adults 

may more strongly be a result of chronic contaminant exposure. 

 

4.4.3 Interleukin 1 Beta (IL-1B) expression in gill and spleen tissues 

Figures 3.27 and 3.28 identify a decrease in interleukin 1B expression in acute adults in 

both the gill and the spleen at 24hrs, correlating with the results of the respiratory burst, ELISA 

and interleukin-8 expression suggesting environmental effects of chronic contaminant exposure 

leads to immunosuppressive effects.  

It has been observed that the expression of IL-1B is significantly increased 24hr post 

infection  in rainbow trout (Sigh et al, 2004) and zebrafish (Rojo et al, 2007), and after 2 days in 

Atlantic salmon (Haugland et al, 2005). Studies have also indicated the expression of IL-1B by 

leukocytes within 1-2 hours post stimulation (Zou et al, 2000). The results of the present research 

may be indicative of a strong early innate response in the F1 and the cleared adults. The 
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bullheads may have expressed IL-1B early after vaccination, leading to the involvement of other 

innate cells and cytokines, and the subsequent return of IL-1B to relatively normal levels. The 

decreased expression in the acute adults at 24 hr may signify a delayed innate response in 

affected bullheads. IL-1B is known to be an early inflammatory cytokine (Wang et al, 2006), and 

the decreased expression in acute adults compared to that of the F1 and cleared adults may be 

indicative of chronic contamination exposure, or even stress inducing properties of living in the 

contaminated habitats.  

IL-1B was increased after a 20 day exposure to the insecticide esfenvalerate in juvenile 

Chinook salmon, after first being down regulated at 4 days exposure (Eder et al, 2008), 

identifying a direct contaminant effect. A similar trend of the over expression of IL-1B was 

demonstrated by Perez-Casanova et al (2008) in cod exposed to the stress of increased 

temperature, increasing significantly at 45 days.  The same study identified an initial increase in 

plasma cortisol before a reduction to control levels at day 30, prior to the observed increase in 

IL-1B. An increased IL-1B expression has also been identified in Atlantic salmon up to 9 days 

post infection when IL-1B inhibitor Prostaglandin E2 was also significantly expressed (Fast et al, 

2006). These studies may suggest the delayed immune response of IL-1B due to stress inducting 

events leading to the secretion of the stress response hormones. The present research has 

identified a reduced expression level in acute adults chronically exposed to contaminated study, 

that correlate with previous work identifying a delayed expression in response to stressful 

conditions. Plasma cortisol levels were not measured in this present study, limiting the ability to 

correlate stress induced immunosuppression. 
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The results indicate that no significant difference was observed in IL-1B type b 

expression when exposed to either clean or contaminated sediment. Contrary to what was 

observed after 24 hour vaccination in the respiratory burst, no contaminant induced suppression 

of IL-1B expression was observed. Statistical analysis also revealed an increased expression 

level in BI compared to that of TC and PI. However, the results of the respiratory burst showed a 

reduced ability of BI granulocytes to produce ROS. Taken together, the results may lead to an 

adaptation of the BI bullheads, limiting the number of available cells to respond to cytokines, or 

a limited ability of the activated cells to respond. The bullheads of BI may therefore have to 

increase expression of essential early response cytokines in order to activate the immune 

response, whereas the bullheads of TC and PI do not have to express higher levels as their innate 

immune system may respond to fewer signals.  

Taken together with the results of the immunosuppression in the respiratory burst and the 

ELISA, the results of the gene expression may indicate that the immune response appears to be 

reduced upon chronic exposure to contaminated sediment or habitats. Results of the gene 

expression study do indicate contaminant related effects, varying between sites and age groups. 

The study also identified reduced levels of IL-1B type b and IL-8 of acute adults. These reduced 

cytokines may be a direct cause of chronic exposure to contaminants in the wild, or a delayed 

immune response influenced by stress induction. Further analysis of other immune related genes, 

specifically adaptive immune system genes, may provide insight into a physiological adaptation 

to contaminants.   
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Chapter 5General Conclusions 

5.1 Conclusions 

The exposure study conducted clearly demonstrates an environmental effect of 

contaminants on the immune system of the brown bullhead captured from three locations along 

the Detroit River. The results of the respiratory burst, along with the gene expression of IL-1B 

and IL-8 indicate a significantly reduced activity of blood phagocytic cells capable of performing 

the respiratory burst and a decreased production of IL-1B and IL-8 in acute adults 24hr post 

vaccination and sediment exposure. The ELISA data indicates the same acute adult 

immunosuppression. Further investigation into other immune aspects will provide more 

information regarding the impact of the contaminants, but the present sediment exposure study 

suggests chronic exposure to environmental contaminants has immunosuppressive effects on the 

brown bullhead innate immune response which reverses when the contaminants are removed. 

 

5.2 Future directions 

In order to gain a better understanding of the contaminant induced immunosuppression 

observed in the respiratory burst assay (Figure 3.18), it may be important to collect and test 

individuals directly from the river in order to better assess ―normal‖ physiological respiratory 

burst responses to compare to the affected populations. A determination of ―normal‖ and what it 

considered reduced may also provide insight, and can be accomplished through the collection of 

bullheads from an alternative clean site (potentially Belle River). Respiratory burst data is 

difficult to compare between studies due to variability in reagents, measurements and techniques. 

If the same assay employed here was to be conducted on fish collected directly from the wild, a 
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better understanding of the effects due to captivity stress versus natural environment stress may 

be demonstrated. The artificial environment in the present study supplied constant water, food, 

shelter and other fish for company. Collecting baseline levels may show variable responses 

depending on food intake, stress, among other factors, but would give a better indication of the 

natural immune response of these fish from the collected sites. It would provide more 

information and a comparison to the collected data to determine if what we found is correlated to 

the wild. 

 It may also be beneficial to conduct the respiratory burst at different time points after 

vaccination and sediment exposure to try to identify the peak time of chemiluminscence. It may 

be plausible that the acute adults exhibited the same chemiluminescence response, but may have 

been delayed. Using a control of non-vaccinated bullheads may also provide insight into normal 

circulating levels of blood neutrophils. A direct impact of this can also be focused on by looking 

at cell counts, performing leukocyte cell smear and determining leukocyte cell numbers. 

  In order to determine the uptake of contaminants upon 24, 96 and 24 day sediment 

exposure, it may be of interest to determine contaminant levels within the muscle tissue. This 

process was undertaken, but the results to this date have not been completed. This information 

could potentially help explain any impact of the immunosuppression on contaminated sediment, 

as the levels of contaminants may be shown to be much higher. If this is not the case, the reason 

behind the difference is unknown and may have to deal with other factors. Muscle contaminant 

levels may act as a covariate, providing insight into the amount of contaminants the fish contain 

and explaining the immunosuppression and delayed response of the acute bullheads.  
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 To look at the potential effects of the marina on the BI fish leading to the proposed 

genetic adaptation, sediment within different sites of the marina should be collected and 

analyzed. This information may provide insight into a difference between certain chemicals or 

contaminants that may be found in greater quantity there than at TC, which was believed to be 

the highly contaminated site. 

 Future studies into obtaining the full length cDNA sequence of bullhead IL-1B type a and 

type b, and identifying the distinct difference between these two in bullheads as seen in channel 

catfish is of importance. Once these studies are conducted, and two different types are identified, 

expression studies could also be conducted to determine expression levels of each transcript in 

different tissues. qPCR analysis can also be conducted, as sequence differences were identified 

in the qPCR amplicon for type a (Figure 3.11). 

5.3 Concluding Remarks 

The present study is the first to look at the immune function of different generations of 

brown bullhead catfish chronically exposed to contaminated sediment. This study clearly 

indicated a significant reduction in immune function of bullheads collected from the wild, and 

the subsequent improvement of the immune functioning when the bullheads are removed from 

contaminated habitats. The reduction in immune function will impact the fitness of any species, 

and the present data indicates with increased effort towards clean up measures, the fitness of the 

brown bullhead may increase. This data signifies the importance of chronic contaminant 

exposure in fish species, and their ability to elicit some form of resistance. The brown bullhead 

serves little economic importance to the aquaculture industry, but the ability of this species to 

evolve ways to withstand contaminant exposure can impact the aquatic ecosystem. The evolved 
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ability of the brown bullhead to increase contaminant loads and remain unaffected can have 

detrimental consequences through biomagnification of contaminants up the food chain. The 

ability of the brown bullhead to recover immune function when removed from contaminants may 

also have implications to other fish species, as the fitness to not only the brown bullhead, but 

other aquatic species may also increase in the absence of contaminants. The data presented can 

be of significant use to those managing fish stocks in contaminated waters, and to those of 

aquatic regulatory agencies creating policies concerning industrial and urban allowable 

contaminant discharge.  
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