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Abstract 

Accommodation and vergence are two interacting ocular motor systems that 

function to maintain clear and single vision across a wide range of distances. Sustained 

fixation results in the adaptation of these ocular motor systems and has been widely 

investigated in adults but not in children. Moreover, limited reports have measured 

adaptation to disparities induced by ophthalmic lenses. This thesis used near addition 

lenses as a means to investigate binocular adaptation in children. The specific aims of this 

thesis were three-fold. First, the thesis aimed to gain insight into the mechanism of 

changes to accommodation and vergence during binocular adaptation in children. The 

second objective was to determine the role of vergence-bias category (eso/exo/normals) 

on adaptation. Lastly, this thesis evaluated the influence of myopia on binocular 

adaptation.   

 

Thirty- eight myopic and 38 emmetropic children between 7-14 years of age were 

examined for the purpose of this thesis. A series of studies were performed  to evaluate 

adaptation using varying demands for accommodation and vergence, stimulated by 

binocular fixation at near (33 cm), through the addition of +2D and -2D over corrective 

lenses (closed loop accommodation) and using 10 base-out prisms (open-loop 

accommodation at 4M). In each closed-loop condition, measures of binocular and 

monocular accommodation (PowerRefractor, Multichannel systems) and near phoria 
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(modified Thorington technique) were recorded at frequent intervals when children 

binocularly fixated a high contrast near target (33 cm) for 20 min. For the open-loop 

condition (obtained using 0.5 mm pinhole pupils), binocular accommodation and tonic 

vergence (distance heterophoria through pinhole pupils) were determined at frequent 

intervals when binocular fixation was sustained at 4M for 20 min. For all conditions, 

tonic accommodation was measured before and after the near task to measure 

accommodative adaptation.  

 

The results of this thesis make three major contributions to the literature. First, it 

outlines that the addition of +2D and -2D lenses alters both accommodation and near 

phoria during sustained binocular fixation, which can be explained based on the models 

of accommodation and vergence. Second, it shows that the direction of phoria influences 

the pattern of binocular vs. monocular accommodation in closed-loop conditions and 

alters the degree of vergence adaptation in both closed and open-loop accommodation. 

These changes have been primarily attributed to the varying demands on fusional 

vergence. Lastly, this thesis demonstrates that myopic children show reduced vergence 

adaptation when fusional convergence was initiated through plus adds or base-out prisms 

but not when fusional divergence was initiated through minus addition lenses. Further, 

myopic children also showed variations in other ocular motor parameters such as higher 

accommodative lags, greater variability of accommodative response, larger 

accommodative after-effects, and higher AV/A ratios compared to emmetropes.  
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Consistent with the models of accommodation and vergence, the thesis highlights 

that it is necessary to measure changes to both accommodation and vergence when 

evaluating the response of the ocular motor system. The direction of phoria and type of 

refractive error play a significant role in determining binocular adaptation in children. 

Future studies should differentiate these parameters when evaluating adaptation of the 

ocular motor system. 
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1 Literature review 

1.1 Fundamentals of accommodation, vergence and their interactions 

When binocular fixation is transferred from one distance to another, changes in 

the refractive power of the eye and in the relative position of visual axes are required to 

maintain clear and single vision. The synkinetic association of accommodation, 

convergence and pupillary constriction has been termed the “near triad” 
1-3

. The 

subsequent sections of this chapter will outline the fundamentals of human 

accommodation and vergence (horizontal) in the context of this thesis.  

 

1.1.1 Accommodation 

Ocular accommodation can be defined as the ability of the eye to change its 

dioptric power to bring an object of regard coincident with the retina. Human 

accommodation is achieved by altering the curvature of the crystalline lens with the aid 

of the ciliary muscle and the suspensory zonules. Together these structures form the 

accommodative apparatus. The classical theory or the Helmholtz theory of 

accommodation 
4
 (later modified by Fincham 

5
) is the most widely accepted theory that 

describes the mechanism of accommodation and has been empirically supported in 

primates 
6
.  In the unaccommodated state (i.e. far fixation), the fibers of the ciliary 

muscle relax causing increased tension on the zonules, which flattens the lens and holds it 

in its conoid shape. When viewing a near object, the ciliary muscle contracts and releases 

the tension on the zonular fibers allowing the elastic forces of the crystalline lens to mold 
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it into a spherical shape.  Along with these changes, there is a decrease in the lens 

equatorial diameter, an increase in lens axial thickness, and the lens anterior and posterior 

central surfaces undergo an increase in curvature resulting in an increase in the refractive 

power.  

 

Accommodation is primarily stimulated by a blurred retinal image 
7-10

. The 

afferent pathway commences with the stimulation of the retinal receptors by this retinal 

defocus. The blur signals pass through the visual pathway (optic nerve- chiasm-optic 

tract- lateral geniculate body) and are transmitted to area V1 (visual cortex) for further 

processing. The neural signal is then transformed into a motor command at the Edinger-

Westphal nucleus in the midbrain 
11

. Input to the Edinger-Westphal nucleus could be 

derived from several areas in the cortex, midbrain and cerebellum, which have been 

identified to control both accommodation and vergence movements (reviewed by Gamlin 

2002
12

). Evidence from neurophysiological studies on monkeys indicate that near 

response cells in the mesencephalic reticular formation, located dorsal to the oculomotor 

nucleus, may provide commands to Edinger-Westphal and the medial rectus moto-

neurons for ocular accommodation and vergence respectively 
11-14

. Although several 

studies provide valuable information about the neural pathways of accommodation, there 

are still unanswered questions relating to the functional role of neural innervations in 

controlling accommodation, and how sensory signals (like blur, disparity, proximal cues) 

are precisely processed and transformed into a motor output.  

 



3 

 

The efferent pathway of accommodation involves transmission of the motor 

commands via the oculomotor nerve, the ciliary ganglion and the short ciliary nerves.  

Anatomical evidence for the synapse in ciliary ganglion is controversial with some 

studies showing no synapse 
15

 and others showing evidence for a possible synapse in the 

ciliary ganglion 
16

. The efferent pathway ends at the ciliary muscle wherein a change in 

the state of contraction alters the refractive power of the crystalline lens and facilitates an 

in-focus image on the retina.  

 

Accommodation is composed of mutually-antagonistic, dual innervations from 

the autonomic nervous system. The motor innervation is composed primarily of a 

parasympathetic component but also receives innervation from the sympathetic system 
17, 

18
. The parasympathetic system is mediated by the muscaranic receptors, whose 

stimulation results in increased accommodation, while the sympathetic system is 

mediated by the β- adrenergic receptors, characterized to be primarily inhibitory and 

provides relatively small response magnitude (less than 2D) 
17, 19, 20

.  

 

1.1.1.1 Stimulus-response properties of accommodation 

Accommodation is measured in diopters (D), which is defined as the reciprocal of 

the linear value of the viewing distance in meters. The stimulus to accommodation (AS) 

is the theoretical amount of accommodation required at a particular distance while 

accommodative response (AR) refers to the actual amount of accommodation exerted by 

the eye at that target distance. The difference between the stimulus and response 
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accommodation is called the accommodative error. Focusing errors that result from 

insufficient accommodation (AR<AS) are termed lag of accommodation and place the 

conjugate focus behind the retina. In contrast, errors that result from excessive 

accommodation (AR>AS) are termed lead of accommodation and place the conjugate 

focus in front of the retina.  

 

The relationship between stimulus of accommodation and its response is often 

represented by the stimulus–response curve 
2, 21, 22

. This can be generated by altering 

optical vergence of the target either by varying target distance in physical space, varying 

target position (for e.g. within a Badal optical system) or with spherical lenses placed in 

front of the eyes. Figure 1-1 shows a typical stimulus- response curve with the dashed 

line indicating a perfect (1:1) relationship between the stimulus and the response. 

Empirical measures (solid line) typically show a pattern that can be divided into three 

different zones 
22

. 
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Figure 1-1: Accommodative Stimulus-response curve (adapted from Ciuffreda & Kenyon., 1983) 
22

 

Zone (1) represents the region exhibiting a lead in accommodation for lower 

stimulus levels. This response reflects the bias induced by the tonicity of the ciliary 

muscle (tonic accommodation) 
22

.  Zone (2) indicates a lag of accommodation for 

intermediate stimulus levels with progressively increasing lags for higher stimulus 

demands. The slope of the stimulus-response curve at the intermediate stimulus levels is 

less than unity in young adults 
23

.  With further increase in the stimulus to 

accommodation, the accommodative response saturates (Zone 3) due to age related 

changes in the crystalline lens, indicating that the maximum amplitude of accommodation 

has been reached. 
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1.1.1.2 Components of accommodation  

Heath 
8
 proposed the total accommodative response to be composed of 

contributions from tonic, reflex, vergence, and proximal accommodation, similar to the 

classification proposed by Maddox 
24

.  

1.1.1.2.1  Tonic accommodation 

In the absence of an adequate accommodative (blur) stimulus, the accommodative 

response adopts an intermediate resting position, which is believed to reflect the tonicity 

of the ciliary muscle 
10, 18, 25

. The terms dark focus, resting state of accommodation and 

tonic accommodation, have all been used to describe this refractive state of the eye when 

visual feedback has been rendered ineffective 
26

. Toates 
18

 suggested that this resting 

position represents the balance in tonicity between the sympathetic and parasympathetic 

innervations. Measurements of tonic accommodation in stimulus-free conditions (such as 

bright empty field 
27, 28

, darkened room 
28-30

,  low spatial frequency difference of 

Gaussian target 
31

 or 0.5 mm pinhole pupils 
28, 32

) reveals a mean value of 1.5D in adults 

8, 10, 25
. Several factors such as the method used to open the accommodative loop  

28, 33-35
, 

refractive type 
33, 36-38

, cognitive demand and surround proximity 
30

 influence the 

magnitude of TA 
39

.  

 

1.1.1.2.2  Reflex (blur-driven) accommodation 

Blur-driven accommodation, as the name suggests is a component of the 

accommodative response that occurs in response to a defocused retinal image. Blur or 
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retinal defocus is considered a primary stimulus to drive the accommodative response in 

adults 
7-9

. Reflex accommodation is responsive to relatively smaller amounts of blur, up 

to approximately 2.0D 
9
. This component of accommodation is constrained by the depth 

of focus of the eye, which represents the dioptric extent to which an image may be 

focused away from the retina and still be perceived clearly. Typical values range around 

0.3D for a 3mm pupil 
40

. Several parameters such as the pupil size, target luminance and 

target spectral composition influence the magnitude of the depth of focus 
40

.  

 

1.1.1.2.3  Vergence accommodation 

Convergence (or vergence) driven accommodation is the synkinetic change in 

accommodation driven by disparity vergence 
1, 31, 41, 42

. VA/V (commonly CA/C) ratio 

quantifies the strength of the vergence accommodation cross-link and describes the 

change in accommodation produced by a unit change in vergence. This cross-link is 

measured by using a non-accommodative target (to eliminate input from blur-driven 

accommodation) while vergence changes are induced through changes in disparity such 

as the addition of prisms. The cross-link ratio can be represented as a “response” ratio, 

where the denominator or the unit change in vergence is quantified along with the 

measurement of accommodation or as a “stimulus” ratio, where the unit change in 

vergence is not measured and is assumed to represent the stimulus demand. In adults, the 

VA/V ratio ranges between 0.02 – 0.16D/∆ 
1, 31, 41-43

. The difference between the stimulus 

and response VA/V is small because the error in the vergence response is small (5 to 10 

minutes of an arc) 
44

. 
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1.1.1.2.4  Proximal accommodation 

Proximal accommodation is a term used to define the input of higher centers such 

as perceived distance or knowledge of the apparent nearness of an object 
45-47

. Cues such 

as apparent size and distance 
48, 49

, voluntary effort  
50

, awareness of surround 
30

  have 

been used to determine the perceptual higher order influence on accommodation, 

typically under the absence of dioptric stimulus to accommodation. Cognition (i.e. testing 

instructions or mental effort needed to focus the targets) has also been found to influence 

the magnitude of accommodative response 
51, 52

. Further, the role of perceived distance 

(proximal) on the cross-coupling interactions suggested that accommodation is directly 

controlled through voluntary effort while the vergence response is driven through the 

accommodative vergence cross-link 
50

.  

 

1.1.2 Vergence  

Vergence refers to the disjunctive (opposite) movement of the two eyes, which 

brings the images of a target onto corresponding retinal points of each eye thereby 

providing single binocular vision 
53

. Generally, vergence responses can be described 

selectively with respect to foveal imagery.  Convergence occurs in response to a crossed 

retinal disparity. In this case the object of regard lies in front of the intersection of the 

primary lines of sight and its image lies on the temporal retina of each eye. A 

convergence response rotates the primary lines of sights to intersect at the object of 

regard which is now imaged approximately bifoveally. On the other hand, divergence 
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responds to the presence of uncrossed disparities resulting from an object set beyond 

point of fixation such that it is imaged on the nasal retina.   

 

Neuro-physiological observations in primates provide evidence for the presence 

of disparity sensitive cells in the primary visual cortex (area V1), extra-striate areas, V3 

& V4, middle temporal area and medial superior temporal area 
54

.  A precise vergence 

center for humans is still under investigation. Research from non-human primates 

(monkey) has found evidence of such a loci in the midbrain 
12, 13, 55, 56

. These mid brain 

neurons are located in the mesencephalic reticular formation, close to the oculomotor 

nucleus, in a region called the supraoculomotor area 
55, 56

. Three types of neural cells, the 

vergence burst neurons, vergence tonic neurons and vergence burst-tonic neurons have 

been identified to play an important role in overall vergence control 
55, 56

. The neural 

control of vergence eye movements is believed to follow the pulse-step design as is found 

in the more highly investigated saccades.  The magnitude of the vergence response is 

coded in a pulse of innervation which is then integrated to a “step” reflecting increased 

tonic activity needed to hold the eyes in the new position of gaze 
56

.  

 

1.1.2.1 Units of measurement of vergence 

Vergence can be expressed in two units: Meter angle (MA) and prism diopters 

(∆D). A meter angle is numerically the reciprocal of the fixation distance in meters and 

analogous to the diopter. For example, a target at 33 cm would require 3MA of 

convergence just as it would require 3D of accommodation. Meter angles allows a rapid 
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comparison between accommodative and vergence responses. The prism diopter on the 

other hand defines the actual rotation of the eyes and thus is a function of the individuals’ 

interpupillary distance in cm in addition to the fixation distance in meters. It can be 

calculated by multiplying MA of convergence with the pupillary distance of the 

individual. For example, the stimulus to convergence for an adult with an interocular 

separation of 6 cm viewing a target at 33cm would be 18 ∆D. The prism diopter is 

conventionally used when prism powers are defined.    

 

1.1.2.2 Inaccuracies of the vergence system: Fixation disparity and 

heterophoria 

When both eyes fixate a target, small vergence errors may occur without causing 

diplopia if they fall within the Panum’s fusional area. These vergence errors have been 

referred by terms such as retinal slip, fixation disparity or micro-strabismus 
57

. Schor 

proposed that the vergence system is operated by a “leaky integrator” where fixation 

disparity acts as a purposeful steady state-error 
58

 that stimulates continued vergence and 

maintains binocular alignment 
57-59

.  

 

Heterophoria is a vergence position observed when fusional vergence is 

suspended, for example by occluding one eye or by presenting dissimilar targets. The 

dictionary of visual science 
60

 defines heterophoria as “the tendency of the lines of sight 

to deviate from the relative positions necessary to maintain single binocular vision for a 

given distance of fixation”. Heterophoria is commonly abbreviated to phoria or 
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sometimes referred as a latent deviation of the eye, since the deviation becomes manifest 

only during dissociation of the two eyes. This latent deviation is corrected by the fusional 

vergence mechanism such that visual axes return to the appropriate relative positions 

upon regaining sensory fusion. 

 

Horizontal heterophoria can be classified based on the direction of the deviation 

as follows 
61

: Orthophoria is a situation where the visual axes cross at the object of regard 

in the absence of fusional stimuli. Esophoria is present when the visual axis cross in front 

of the object of regard and exophoria is present when the visual axes intersect beyond the 

object of regard. The magnitude of phoria is expressed in prism diopters (∆). Further, 

heterophoria can also be classified based on its magnitude for distance or near fixation 
62

 

or the whether the deviation is compensated (resulting in no symptoms) or symptomatic 

and decompensated   
61, 63

.   

1.1.2.3 Components of vergence  

Maddox 
24

 proposed the aggregate vergence response to be composed of 

contributions from tonic, accommodative, proximal and disparity components (similar to 

the format described in section 1.1.1.2).  

1.1.2.3.1 Tonic vergence 

Similar to tonic accommodation, the vergence system assumes a convergent eye 

position in the absence of an adequate stimulus, which reflects the level of baseline 

neural innervation to the extraocular muscles 
64, 65

 . Tonic vergence can be measured in 

the absence of retinal disparity, achieved by monocular occlusion or darkness. Pinhole 
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apertures 
66

, low spatial frequency difference of Gaussian targets 
67

 have been used to 

reduce blur information.  The magnitude of tonic vergence ranges between 0.25 to 0.75 

MA 
64, 65

. 

 

1.1.2.3.2  Accommodative vergence 

Accommodative vergence refers to the change in vergence initiated by changes to 

accommodation 
68, 69

. It is quantified as the AV/A ratio (commonly AC/A), which is the 

amount of convergence resulting from a unit change in accommodation. AV/A cross-

links are relatively easier to study than VA/V because it only requires the measurement of 

binocular alignment under monocular viewing conditions (to avoid any input from 

disparity vergence). Similar to VA/V (previous sections), this ratio can be expressed as a 

stimulus or response measure with the latter involving measurement of both 

accommodation and vergence. In normal adults, the stimulus AV/A ratio is known to 4 ± 

2∆D /1D while the response measures are usually higher than the stimulus ratios by 

approximately 8% due to the lag of accommodation 
69

. The AC/A ratio is linear for 

intermediate stimuli ranging between +1 to 5D but can exhibit non-linearity at lower and 

higher stimulus levels 
68

.  

 

1.1.2.3.3  Proximal vergence 

This type of vergence is elicited by stimuli that provide the impression of being 

nearer in the absence of input from accommodation/disparity. Cues such as apparent size 

46
, apparent distance 

71-73 
and voluntary fixation of imaginary near targets in dark 

50
 evoke 
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a change in vergence. Past studies have shown that proximal cues contribute 

approximately 50-70% of the stimulus demand in the absence of disparity and 

accommodative cues 
46, 74

.  

 

1.1.2.3.4  Disparity vergence  

Disparity (reflex) vergence is stimulated by retinal disparity (i.e. images falling on 

non-corresponding points outside Panum’s area) and has been considered to be a primary 

stimulus for vergence in adults 
53, 75

. Since the objective of disparity vergence is to obtain 

retinal correspondence and subsequently fuse the images seen by two eyes, this type of 

vergence is also called fusional vergence. Disparity vergence is typically measured by 

recording changes to eye movements using a scaled, non-accommodative target to avoid 

accommodative and proximity cues. Disparity is then induced either by moving the target 

in space or by the addition of prisms. Similar to depth of focus for reflex accommodation, 

reflex vergence is initiated when the binocular disparity exceeds its threshold - Panum’s 

fusional area. The reflex vergence has been hypothesized to consist of two components: a 

rapid disparity driven component responds to the disparity and a slow sustained fusional 

component functions to maintain the fused percept 
59

 (discussed below). 

 

1.1.3 Adaptation of accommodation and vergence 

When the stimulus for accommodation or vergence becomes sustained over a 

period of time (60 sec or more), both ocular motor systems exhibit adaptation such that 
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the initial response is directionally biased for a substantial period of time depending on 

the duration and magnitude of the stimulus 
76-82

.   

 

The occurrence of vergence adaptation was reported as early as 1893 in Maddox’s 

classical experiments 
24

 that described the components of vergence. Maddox 
24

 reported 

an increase in tonic convergence after prolonged exposure to base-out prisms. He 

suggested that these changes were adaptive and served to relieve the stress on the fusional 

vergence. Initial evidence for prism adaptation was based on changes in residual tonicity 

after forced duction (vergence amplitude) tests 
76, 83, 84

. These alterations to the fusion-

free (phoria) position persisted for long durations even after the removal of the adaptive 

stimulus 
76, 85

. Schor 
59 

attributed this phenomenon to adaptive changes in tonic vergence 

in response to prolonged output of reflex vergence. The fusional (disparity) vergence was 

believed to be composed of two components: First, a fast (reflex) fusional component 

which aligns the eyes within 1 sec in response to retinal image disparity and has a short 

time constant. This is then followed and by a second, a slow fusional component that 

receives input from the fast and acts to maintain the alignment 
59

. The slow component 

has a long decay time constant and it is this prolonged rate of decay that causes vergence 

adaptation (discussed further in sections 1.1.4). An analogous system was suggested for 

accommodation, such that reflex (blur-driven) accommodation provides a stimulus for 

the slow component of accommodation (accommodative adaptation) 
78, 79

.  In the 

accommodation system, factors such as the  magnitude or duration of the adapting 

stimulus 
78, 86-88

, method used to open the accommodative loop 
28

 dioptric distance 
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between baseline tonic level & the steady state accommodative response 
89

 and refractive 

state 
36, 38, 90

, influence the degree of accommodative adaptation.   

 

Vergence adaptation has been reported to occur to horizontal, vertical and 

torsional disparities 
44, 59, 77, 85, 91-96

. This thesis primarily deals with horizontal vergence 

adaptation which is further discussed below.  

 

1.1.4 Vergence adaptation  

1.1.4.1 Adaptation to prism-induced disparities 

Vergence adaptation is used synonymously with prism adaptation or phoria 

adaptation. Vergence adaptation to prism induced disparities has been extensively 

reported in the literature
59, 77, 81, 85, 91, 92, 97-102

. These studies show that the prism- induced 

inaccuracies in vergence (phoria/fixation disparity) gradually reduce upon binocular 

fixation through the prism 
76, 91, 92, 99

. Adaptive nature of the horizontal vergence system 

has been demonstrated with prism values up to 10 base-in and 32 base-out 
85, 97

. A 

subsequent study by Sethi & North 
100

 indicated that the magnitude of prism adaptation is 

influenced by fusional reserves such that adaptation increased with an increase in prism 

value until the fusional vergence limit, after which the amount of adaptation decreased. 

These results agree with the models of adaptation 
59, 103, 104

, where slow fusional vergence 

(or adaptive element) receives its input from the fast vergence. Thus, an increase in the 

demand on the fast controller by means of larger prisms, results in greater amount of 

adaptation.  
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The magnitude of adaptation to horizontal prisms has often been reported to be 

asymmetrical, being greater in one base direction than the other 
77, 85, 92, 101, 105

.  Maximum 

vergence adaptation matched with the direction of lowest prism-induced fixation 

disparities 
59, 105

, suggesting that the mechanism of vergence adaptation minimizes the 

binocular errors of vergence and stress on the fast vergence. Schor and Horner 
106

 showed 

that binocular disorders such as convergence excess and convergence insufficiency were 

associated with adaptive disorders of accommodation and vergence. Reduced adaptive 

ability in symptomatic patients has also been demonstrated by other studies 
77, 97, 99, 107-109

 

but orthoptic training usually improves the ability to adapt to prism-induced disparities  

102, 110, 111
.     

 

Further, asymmetrical adaptation to horizontal prisms was also seen as a function 

of testing distance 
85, 92, 101

. Henson & North 
92

, North et al 
101

 showed faster adaptation to 

base-out compared to base-in when viewing a distant target but almost symmetrical 

adaptation for base-in and base-out stimulus for near fixation 
92, 101

. Mitchell and 

Ellerbrock 
85

 showed better adaptation to base-in prisms at near fixation compared to 

base-out prisms. The frequency with which the ocular motor system deals with a type of 

disparity was viewed as one possible explanation for dissimilarities in adaptation as a 

function of viewing distance 
92

.  

 

Factors such as magnitude 
85, 100

 and duration of the adapting stimulus  
76, 85, 112

 

have been found to be related to vergence adaptation.  The amount of vergence 
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adaptation to prism-induced disparities was directly proportional to the magnitude of the 

adapting stimulus 
100

 and the rate of decay of adaptation was inversely related with the 

stimulus duration 
76, 85, 112

.  

 

1.1.4.2 Vergence adaptation to near addition lenses  

Compared to prism induced disparities, limited reports exist on vergence 

adaptation to near addition lenses in pre-presbyopic subjects 
59, 113, 114

. Ophthalmic lenses 

alter vergence through the accommodation vergence (AV) cross-link 
69

 such that plus / 

minus  lenses reduce or increase the accommodative response, inducing exophoria / 

esophoria respectively, based on the strength of AV/A cross-link. Schor 
59 

monitored 

adaptation to plus lenses under binocular viewing conditions by recording vergence eye 

movements using an infrared monitor under conditions of closed loop accommodation 

and vergence. Three subjects were instructed to view a vertical line target at a distance of 

50 cm through +2.00D lenses and eye movements were recorded after 5s and 60 s of 

binocular viewing.  These lenses were reported to induce exophoria but no phoria 

adaptation was seen after 5 s of binocular viewing. However, after 60s of binocular 

viewing, the exophoria had either partly or totally reduced. The author concluded that 

plus lenses demonstrate partial or total vergence after-effects if they are worn during 

binocular viewing conditions.   

 

North and Henson 
113

 measured vergence adaptation to +2D and -2D adds (placed 

over spectacle lenses as a bifocal) at 40 cm in four adult participants (with mixed 
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refractive errors). Heterophoria was measured every 15 sec for the first 3.5 minutes, after 

33.5 min and 66.5 minutes of binocular viewing. The most rapid reduction in lens-

induced phoria occurred within 3.5 minutes of binocular viewing (Mean adaptation: 

+2D= 46.3%; -2D=39%) with further gradual reduction to 70% and 60% through plus 

and minus adds, respectively during an hour of binocular viewing. However, the authors 

measured changes to phoria alone and did not evaluate changes to the accommodation 

system which initiated the vergence adaptation through the AV cross link.  

  

Sreenivasan, Irving & Bobier 
114

 evaluated the coincident time course of changes 

to accommodative response and near phoria when emmetropic adults with normal near 

phoria sustained fixation (33 cm) through +2D lenses. Plus addition lenses initially 

induced an exophoric shift, accompanied by a significant increase in binocular 

accommodation over that of monocular accommodation. This difference, (attributed to 

convergence accommodation), was believed to be a result of the lens-induced exophoria 

triggering an increase in fast reflex convergence and subsequently an increase in the 

output of convergence driven accommodation 
103

. After several minutes of prolonged 

viewing, vergence adaptation occurred, concurrently reducing the exophoria and the 

binocular levels of accommodation while monocular levels remained constant. The 

reduction in the binocular accommodation was attributed to the reduced activity of VA 

cross-link activity upon vergence adaptation 
78, 103, 115

. The constant accommodation 

response under monocular viewing condition indicated that the AV cross link was not 

significantly altered during the process. 
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1.1.4.3 Vergence adaptation to sustained near task 

In addition to prism-induced and near addition- lens induced disparities, vergence 

adaptation has also been reported to prolonged viewing of a near stimulus. Ehrlich 
116

 

reported a mean esophoric shift of 1.6 ∆ and a significant correlation between pre-task 

phoria and adaptation after 2 hour visual search task with binocular fixation at 20 cm.  

However, the sample consisted primarily of exophores and the author did not measure 

accommodative adaptation (changes to dark focus), given the demanding near task used 

to induce adaptation. Differences in accommodative adaptation may influence vergence 

system by means of the accommodative-vergence cross-link 
78, 117

.   

 

Similar convergent shifts in tonic vergence following prolonged near activity was 

also reported in other studies 
80, 112

. None of these reports differentiated participants based 

on refractive error or phoria category (called vergence-bias category in this thesis). The 

direction of phoria may influence vergence adaptation due to varying demands on 

fusional vergence (discussed in section 1.1.5.2) Further, refractive error may influence 

vergence adaptation due to the differences observed in the attributes of accommodation 

and vergence in myopes compared to emmetropes (sections 1.2.3&1.2.4).  

1.1.5 Factors influencing vergence adaptation to lens-induced disparities  

1.1.5.1 Magnitude of adapting stimulus  

The effect of varying magnitudes of prism induced disparities have been studied 

by researchers who report prolonged rates of adaptive decay but greater magnitudes of 

adaptation with larger adapting stimuli 
76, 85, 100

. However, the disparity induced by the 
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introduction of a prism is different from that induced by the addition of a near addition 

lens because the latter is influenced by the individuals AV/A ratio. For example, 

introduction of +2D lenses would result in an exophoria of 10∆D in one individual with 

5:1 AV/A ratio and only 6∆D in a different individual with a ratio of 3:1, despite the 

same magnitude of lens addition. 

  

North and Henson 
113

 reported an inverse relationship between the rate of 

adaptation and the amount of induced phoria. Individuals with larger induced phorias did 

not show complete adaptation even after 1 hour of binocular viewing. Similar results 

were also reported by Sreenivasan et al 
114

 where higher ratios were associated with 

greater magnitudes of adaptation but the lens-induced exophoria did not return to its 

habitual level indicating less-than complete vergence adaptation.  

 

1.1.5.2 Relationship between heterophoria and vergence adaptation 

Previous studies that measured vergence adaptation to lens-induced disparities 
113, 

114
 were performed in participants with normal near phoria (between 0 to 4 exo) or were 

neutralized so that baseline position did not affect adaptation 
59

. Under natural viewing 

conditions, the presence of large heterophoria may influence the degree of vergence 

adaptation. Heterophoria, observed under fusion-free state is compensated during 

binocular viewing by the fusional vergence mechanism. The degree and type of fusional 

vergence required for binocular viewing (convergence/divergence) varies in proportion to 

the size and the direction of phoria (exo/eso).  Larger phorias would produce greater 
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stress on the fast fusional vergence system, which may also affect the slow vergence 

adaptive mechanism. An individual with a large baseline (habitual) divergent phoria 

would require increased fusional convergence demand (increased phasic activity) through 

plus adds (since the habitual exophoria would be increased in response to the near add). 

Model of accommodation and vergence 
103 

suggest that the tonic element receives input 

from phasic controller, indicating a directly proportional relationship between the 

magnitude of vergence adaptation and the demand on the phasic controller. Several 

empirical studies have also confirmed this prediction by showing larger amounts of 

adaptation to higher prismatic disparities 
85, 100

.  

 

Following these suggestions, an exophoric individual would be expected to show 

increased adaptation to plus adds. Similarly, esophores may experience less fusional 

vergence stress and reduced adaptation to plus adds compared to exophores. An opposite 

scenario could occur for fixation through minus addition lenses where exophores may 

show less adaptation and esophores may experience greater fusional vergence stress and 

greater adaptation. The role of baseline vergence-bias category on the degree of vergence 

adaptation to plus/minus addition lenses has not been identified. 

 

1.1.6 Control theory- Models of accommodation and vergence 

Control theory plays a unique explanatory and predictive role in analyzing 

biological systems 
18

. A control system consists of subsystems (e.g. controllers) and 

processes (plants) assembled for the purpose of obtaining a desired output from a 
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specified input 
118

.  The difference between the input and the output is called the error. 

There are two major configurations of control systems: closed loop and open-loop, 

differentiated by the presence or absence of feedback. Closed-loop systems are 

characterized by the presence of feedback, where the output is compared with the input to 

maintain the accuracy of the system.  Several control theory models have been used to 

describe the static and dynamic responses of accommodation and vergence. A simplified 

schematic of static accommodation and vergence is shown in Fig 1-2 
78, 119, 120

.  

 

Figure 1-2: Simplified static model of accommodation and vergence showing negative feedback and 

cross-link interactions between accommodation and vergence 

 

 

 

In the above model, accommodation and vergence are represented as two negative 

feedback driven parallel systems that interact with each other through cross-links (AV/A 

and VA/V).  Retinal blur and disparity are the inputs to the accommodation and vergence 
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system respectively. The inputs are neurologically processed by the controller, which 

responds as a reflex to the stimulus and also feeds in as an input to the cross-links AV 

and VA.  The responses produced by the controller and the crosslinks are summed up in 

the summing junction where the tonic input feeds in. The combined response of each 

system is finally fed into the plant (crystalline lens for accommodation and extra ocular 

muscles for vergence) for eliciting the total accommodative or vergence responses. The 

error (stimulus-response) is fed back into the respective systems through the negative 

feedback loop in order to keep the system functioning over a prolonged period of time 
58

. 

The responses obtained from the ocular motor systems in the presence of visual feedback 

(blur or retinal disparity) are termed as closed-loop accommodative/vergence response. 

On the other hand, the responses that are independent of visual feedback (feedback loop 

non-operational) are termed as open-loop accommodation / vergence responses. 

 

Several dynamic models have been proposed to describe the adaptive patterns 

observed in the accommodation and vergence systems during sustained fixation 
103, 104, 121, 

122
. The current quantitative models 

103, 104
 differ in their approach of defining the process 

of adaptation and in identifying the effect of controller adaptation on their respective 

cross-links.  Figure 1-3 shows the dynamic model of accommodation and vergence 

proposed by Schor 
78, 103

. Two parallel leaky integrators were used to represent the fast 

(phasic) and the slow (tonic) component with short and long time constants respectively. 

The phasic component is responsible for the initial response to a change in 

accommodation/ vergence stimulus and its output feeds into the tonic component (Fig 1-

4). The tonic element is in a parallel feed-forward loop such that the total system 
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response equals the sum of activity of phasic and tonic components. When 

accommodative or vergence stimuli are viewed for an extended period of time, the tonic 

component with a longer decay time constant takes over the majority of the response. 

Opening the feedback loop at this point would exhibit directionally biased responses that 

demonstrate the adaptation effects of either system.   

 

Figure 1-3: Simplified dynamic model of accommodation and vergence that suggests reduction of 

cross-link activity with adaptation  

(Reprinted with permission from Schor (1992) 
103

; A dynamic model of cross-coupling between 

accommodation and convergence: Simulations of step and frequency responses. Optom Vis Sci Apr 

1992;69(4):258-69 © Wolters Kluwer Health). 
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Figure 1-4: Illustration of complete prism adaptation and the relationship between fast and slow 

components 

The above figure shows the respective outputs of fast and slow fusional components over time.  

The output of slow fusional component can be seen to increase over time with a subsequent reduction in the 

output of fast fusional component yet maintaining a constant aggregate response. (Reprinted with 

permission from Schor (1979a)
59

; Relationship between vergence eye movements and fixation disparity, 

Vision Research 19(12} 1979 © Elsevier). 

 

 

 

The other quantitative model of accommodation and vergence adaptation 

proposed by Hung 
104

 was an extension of the static dual-interactive feedback model 
119

. 

This model (Fig 1-5) has an accommodative/vergence controller in the forward loop 

whose output drives the adaptive component. The distinctive feature of this model is that 

the time constant of the controller is modified by the output of the adaptive component. 

Thus, with increased effort or sustained fixation, the output of the controller increases the 

output of the adaptive element, which in turn increases the time constant of the controller. 

When the feedback loop is opened at this point, the controller response will take a longer 

time to decay and becomes manifest as accommodative/vergence adaptation.  
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Figure 1-5: Simplified adaptation model of accommodation and vergence that suggests constancy of 

cross-link interactions  

(Reprinted with permission from Hung 
104

. Adaptation model of accommodation and vergence. 

Ophthal Physiol Opt 1992;12(July):319-26© John Wiley and Sons). 

 

 

 

Although the two models discussed above 
103, 104

 differ in their approach of 

defining adaptation, they agree that the tonic (or adaptive) element receives input from 

phasic (or accommodative/vergence) controller, and suggest a directly proportional 

relationship between the magnitude of vergence adaptation and the demand on the phasic 

controller.  

 

It is the position of the cross-links (AV and VA) or the effect of 

accommodative/vergence adaptation on their respective cross-link outputs that differs 

between the two models. Schor’s adaptation model 
79, 103

 places the cross-links in-

between the two leaky integrators (Fig 1-3) such that the phasic (fast) element provides 
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input for the cross-links interactions. Adaptation of either system will increase the output 

of the tonic component and decrease the phasic output, thereby reducing the output of 

their respective cross-link interactions. On the other hand, in Hung’s model of 

accommodative and vergence adaptation 
104

, the cross-link interactions AV and VA 

receive inputs from their respective controllers (Fig 1-5) whose output remains constant 

during sustained closed-loop conditions. Thus, this model suggests constancy of cross-

link interactions after adaptation of either system. Similar constancy of cross-link with 

adaptation was previously suggested by Ebenholtz and Fisher 
122

. This model of 

accommodation and vergence consisted of two components:  a reflex (fast fusional 

component) and adaptive (slow fusional component) but differed from Schor’s model 
79, 

103
 with respect to the position of cross-links. In this model 

122
, both reflex and adaptive 

components contribute to the cross-link input in such a way that the output of CA 

remains constant even after vergence adaptation. 

 

Evidence for the placement of cross-link between the phasic and tonic controllers 

79, 103
comes from studies which indicate that accommodation and vergence can be 

adapted to stimuli from opposite cross-link despite the absence of direct stimulation (i.e) 

accommodation can be adapted through vergence accommodation in the absence of blur, 

and vergence can be adapted through AV cross-link in the absence of disparity. Jiang 
117

 

confirmed this finding by demonstrating an exophoric shift with accommodation 

adaptation in the absence of disparity. Hence the author concluded that cross-links 

(AV/A) must be placed between the fast and the slow controllers.  
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On the other hand, empirical investigation by Rosenfield and Gilmartin 
123

 

measured the pre and post task heterophoria and vergence-accommodation over a period 

of 3 minutes of viewing through 0 & 6 ∆ under open-looped accommodation. Their 

results showed a change in phoria indicative of vergence adaptation but showed no 

significant change in the output of VA after prism adaptation. This investigation 

supported the Ebenholtz and Fisher model of accommodation and vergence 
122

. However, 

the authors did not measure accommodative adaptation , which could have resulted in the 

constancy of VA observed in their study
124

. 

 

In light of these mixed results, experiments designed in this thesis measured 

changes to both accommodation and vergence during sustained activity to enhance our 

understanding of the model that best supports experimental data.  

 

1.2 Myopia 

Myopia is a form of refractive error, where parallel rays of light from a distant 

target are focused in front of the retina when accommodation is at rest. The word 

“myopia” was derived from the Greek word mūopia, signifying “closing” or “contracting 

the eyes”, attributes which describe the typical facial behavior of a myope 
125

. Among 

refractive errors, myopia has attracted considerable attention over the last century. For 

instance, a keyword search for refractive errors in Pubmed database from the year 1900 

shows the highest citations for myopia (14595), followed by astigmatism (7517), and the 

least for hyperopia (3142). Myopia can be classified based upon refractive error (low = -
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0.5D to -3D; moderate= -3D to -6D; high>-6 D), based on the age of onset (early or 

juvenile onset between 6-15 years and late onset >15 years), congenital vs. acquired or 

based on pathology (simple or pathological) 
126

. 

 

The VISION 2020 (Right to Sight) initiative by the World Health Organization 

included refractive error (with myopia) as one of its top priorities to eliminate 

preventable blindness in the world by the year 2020 
127

.  Myopia is a vastly researched 

area compared to other refractive errors, probably due to the enormous cost to the society 

for eye examinations and correction procedures (spectacles, contact lenses, refractive 

surgery) 
128

 and the increasing prevalence of the refractive condition 
129

. Further, high 

myopia is associated with a higher incidence of sight-threatening complications such as 

chorioretinal degeneration, retinal detachment, open-angle glaucoma and cataracts 
130-132

.  

 

The prevalence of myopia has been increasing over the recent decades such that 

41.6% of individuals in the United States between the ages of 12-54 were myopic during 

1999-2004, compared to a previous estimate of 25% during 1971-1972 
129

. In school-

aged children, the prevalence of myopia reached approximately 60-70% in Chinese and 

Canadian-Chinese children between 12-15 years 
133

, compared to 40% in Caucasian 

population between 12-17 years 
129

. Higher percentages have been reported in Taiwanese 

children with the prevalence of myopia increasing from 20% at 7 years to 84% at the age 

of 16 
134

.  Further, studies have shown that the myopia is often a progressive condition at 

least in school age years (until 15 years of age) with mean rate of yearly progression 

ranging between 0.40D to 0.6 D 
135, 136

. Higher rates of myopia progression were 
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associated with earlier onset age 
137, 138

, near work variables such as time spent on reading 

and shorter reading distance 
139-142

, less time spent outdoors 
141

 and esophoria at near 
143, 

144
.  

1.2.1 Etiology of myopia 

The nature versus nurture question of myopia development has been studied for 

centuries; however, the exact nature and the relative contributions of environmental 

factors or the precise genes that play a role remain unanswered questions. Support for 

genetic predisposition comes from studies that show greater myopic prevalence in 

individuals with myopic parents 
145-147

. The prevalence of myopia in children with two 

myopic parents is 30% to 40%, decreasing to 20% to 25% in children with one myopic 

parent to less than 10% in children with no myopic parents 
145-147

. Further, Pacella and 

colleagues 
148

, showed that children with two myopic parents were 6.42 times more likely 

to become myopic compared to children with one or no myopia parents. However, the 

increasing prevalence of myopia 
134, 129, 149, 150 

over the last few decades cannot be solely 

attributed to genes since the genetic pool would not be expected to have changed 

dramatically during this period. Most likely myopia should not be seen as a nature or 

nurture issue but rather one in which environmental factors act upon genetically defined 

susceptibility 
151

. 

 

1.2.1.1 Environmental risk-factors (associations) for myopia 

Near work has been linked to myopia for more than a century. Evidence for 

environmental influence on myopia comes from epidemiological studies that show 
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associations between attributes of near work and myopia 
139-142, 152, 153

.  The prevalence of 

myopia is high in occupations demanding near work such as 70% in British microscopists 

154
, 80% in orthodox Jewish school boys who underwent extensive training 

155
 and 90% 

in Singaporean medical students 
156

. Myopes show increased intelligence quotient and 

higher scholastic success 
139, 157-159

, greater amount of hours spent studying 
140

 / reading 

for pleasure 
159

 and closer reading distance 
160

 compared to non-myopes.  

 

Another environmental factor studied of late is outdoor activity. Several studies of 

different ethnic groups found that the time spent outdoor may be an important risk factor 

for the onset of myopia since myopic children (or those who become myopic) spend less 

time outdoors compared to emmetropes 
161-163

. Higher myopic refraction were observed 

in children who combined high levels of near work with low levels of outdoor activity 
141

.  

 

1.2.2 Theories of myopia development 

1.2.2.1  Older theories 

The biological-statistical theory and the use-abuse theory were two major (older) 

theories proposed for the development of myopia 
164

 Sorsby’s biological theory (cited in 

164
 postulated that refractive errors were genetically determined and were due to the 

abnormal correlation between refractive components (axial length, corneal power, lens 

power and anterior chamber depth).  

 



32 

 

The use-abuse theory suggests that myopia develops due to the abuse of eye 

during prolonged near work (attributed to Cohn, 1886 cited by 
164

). The theory is based 

on epidemiological evidence that suggests greater prevalence of myopia in occupations 

demanding near work. Young (1977) 
165

 postulated that myopia developed due to the 

inability of the eyes to relax accommodation to the far point after excessive near work. 

Since near work increases accommodation and convergence, various mechanisms for the 

near-work induced development of myopia were proposed. These include myopia 

development due to an increase in intra-ocular pressure with increased accommodation 

(Ware 1813, cited in 
125

), increase in vitreous chamber depth producing myopia with 

increase in accommodation and tension in extraocular muscles leading to increased intra 

ocular pressure and myopia development 
166

. However, recent evidence strongly suggests 

that myopia arises from growth of the vitreal chamber which exceeds the focal length of 

the eye. Experiments on a wide range of species has given insight into a possible 

mechanism 
167, 168

 whereby reduced retinal imagery leads to uncontrolled axial growth.
  

1.2.2.2 Ocular response to visual input: Animal models of myopia 

According to this theory, reduced retinal imagery is the key environmental factor 

that underlies the mechanism of refractive development 
125

. Several animal models have 

been used to study the evidence for an active vision guided growth of the eye 
167, 168

. Two 

major approaches have been used to study development of myopia in animals: form-

deprivation myopia and spectacle-lens compensation. Form-deprivation myopia is 

produced by suturing the eye-lid 
169

 or by placing a translucent diffuser over the eye, all 

of these serve to reduce the contrast of the retinal image.  
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Furthermore, the direction of defocused retinal imagery created by plus or minus 

lenses was found to dictate the direction of axial growth 
170-172

. Concave lenses shift the 

plane of focus behind the retina, producing a hyperopic defocus on the retina (for an 

emmetropic eye). Similarly, positive lenses shift the plane of focus in front of the retina, 

resulting in markedly decreased rates of eye growth in animals. Compensatory axial 

elongation has been observed in many animal species such as monkeys 
172

, chicks 
170, 171

, 

tree-shrews 
173

, fish 
174

. The effect is limited by a critical period where the effects can be 

somewhat reversed by the removal of the lens. Myopic defocus may be stronger than 

hyperopic defocus since brief periods of myopic defocus through positive lenses, 

prevented the daylong effect produced by minus lenses 
175

. The ability of the eye to grow 

in both directions indicates that the visual system is capable of detecting the sign of 

defocus and adjusts the rate of eye growth accordingly. However, efforts to determine 

how the eye responds to the sign of the inducing lens have shown that compensation can 

still occur if potential cues such as accommodation, chromatic aberration, and image 

magnification/minification are eliminated 
176

. Visual deprivation leads to myopia even 

when the optic nerve is sectioned 
177

, after the destruction of Edinger-Westphal nucleus 

178
 or when the ganglion cell action potentials are blocked 

179
. The precise mechanism for 

detection of the sign of defocus is still unresolved.  

 

Based on the results of animal studies, the analogy for human myopia 

development would be presence of hyperopic defocus on the retina. Researchers 
180, 181

 

have hypothesized that excessive accommodative lags may produce hyperopic defocus on 
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the retina, similar to the effect of negative lenses in animal studies, inducing axial 

elongation.  

 

1.2.3 Myopia, accommodation and retinal defocus 

  Ever since near work was believed to be associated with myopia, the mechanism 

of accommodation was suspected to be a possible link (Kepler – cited in Curtin 
182

/Duke 

and elder
183

). Several features of accommodation such as the overall static 

accommodative response and individual components of accommodation (section 1.1.1.1) 

have been examined in an attempt to elucidate the association between accommodation 

and myopia development.  

 

1.2.3.1 Static accommodative response 

A number of investigators have showed that accommodative response is reduced 

in myopic individuals compared to emmetropes 
23, 180, 181, 184

. Reduced accommodation 

(greater accommodative lags) has been reported in myopic individuals when 

accommodation was stimulated through negative lenses 
180, 181, 184

, with monocular real 

targets 
185 

or under binocular viewing condition through full refractive correction 
186

.  

Based on evidence from animal models of myopia 
170-172

, the hyperopic retinal defocus 

produced by excessive accommodative lags has been proposed as a cause of myopia 

progression in humans. However studies that measured accommodative lag before and 

after the onset of myopia show conflicting results. Few studies suggest that 

accommodative lag is higher in children who became myopic prior to onset of myopia 
187-



35 

 

189 
while another report 

185
 shows no evidence for increased lag before myopia onset, 

instead suggested that myopes show larger lags after the onset of myopia. The 

relationship between accommodative lag and myopic progression has also been 

inconsistent with few studies suggesting larger accommodative lag during progression 
184

 

while others suggest no relation between lag and myopia progression 
190, 191

. As 

suggested by Seidemann and Schaefffel 
192

, studies on the magnitude of accommodative 

lag shows large variability even among emmetropic individuals. Several reasons may 

contribute to this variability. Foremost, the contribution of disparity/proximal cues to the 

viewing stimulus, differences in the experimental design/ instrument used to measure 

accommodative lags, and age of participants may be confounding factors.  

 

1.2.3.2 Myopia and the components of accommodation 

Blur driven accommodation: Myopic individuals show poor accommodative response 

when monocular accommodation was measured through negative lenses but not when the 

stimulus was altered by physically changing the target distance 
180, 184

.  The negative lens 

series was performed when participants fixated a distant target through a set of negative 

lenses under monocular viewing condition. In such a case, the predominant stimulus for 

accommodation is blur (proximal cues kept minimal and disparity eliminated) compared 

to the changing distance series, where proximal cues are also present. Poor 

accommodative response to negative lenses has been attributed to reduced blur sensitivity 

in myopes 
193

. Adult myopes are less sensitive to defocus signals that drive 
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accommodation compared to emmetropes 
193, 194

, although a study in children suggested 

similar blur detection thresholds in myopes compared to age matched emmetropes 
195

.  

 

Vergence accommodation: The strength of synkinetic cross-link from disparity 

vergence measured under open-loop accommodation has been found to be similar 

between myopes and emmetropes 
196-198

. 
 

 

 Tonic accommodation: Tonic accommodation has been widely studied as a function of 

refractive error. Majority of the studies indicate that tonic accommodation is lowest in 

adult-onset or early-onset myopes and highest in hyperopia 
33, 34, 38, 90

. Few longitudinal 

studies that attempted to investigate the relationship between tonic accommodation and 

the development of myopia have provided conflicting results. Some studies show no 

difference in baseline tonic accommodation with the onset of myopia 
33, 199

, or higher 

baseline tonic accommodation in emmetropes who later became myopic compared to 

those remained that emmetropic 
197

 or report a correlation between reduced tonic 

accommodation and higher myopia progression 
200

.  

Comparative studies on accommodative adaptation among refractive groups 

reveal differences in the magnitude and rate of decay of adaptation. Late-onset myopes 
36, 

37
, and early onset myopic children 

38
 show greater magnitude of accommodative 

adaptation after sustained near task compared to emmetropes or hyperopes.  Myopes of 

recent onset show increased adaptation compared to individuals with long term myopia 

38
. The rate of decay (regression) of adaptation has been found to be slower in late-onset 

myopes compared to emmetropes 
201-204

. The slower rate of decay in myopes has partially 



37 

 

be attributed to the larger accommodative after-effects in this group 
201

 or may reflect a 

deficit in the sympathetic innervation 
37, 205

.  

 

Model predictions have attempted to simulate how cross-links interact with the 

distance heterophoria and refractive error on accommodative lag 
206

.  These simulations 

indicate that uncorrected hyperopia and esophoria increase the accommodative lag while 

uncorrected myopia and exophoria decrease the lag. These effects were exaggerated 

when AV/A and VA/V ratios were both increased or reduced but not when they were 

altered reciprocally. The author concluded that lag of accommodation cannot be predicted 

by a single factor but depends upon a combination of factors such as AV/A ratio, 

heterophoria, refractive error or adaptability of accommodation system 
206

.  

 

1.2.4 Myopia and vergence 

Von-Grafe (cited in Curtin 
182

) was the earliest to postulate that the role of 

vergence (activity of extraocular muscles) could be myopigenic due to the compression 

of the eyes during periods of near work.  The association between near work and myopia 

led several investigators to examine the role of accommodation, but vergence has been 

examined to a much lesser extent compared to accommodation.  Uncorrected myopia is 

associated with exophoria 
182

, presumably due to the reduced output of accommodative 

vergence. However, several reports in corrected myopes indicate that the onset and 

progression of myopia is associated with a more convergent near phoria 
144, 188, 189

.   
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Accommodative vergence and myopia: Several studies have shown refractive group 

differences in the strength of the synkinetic cross-link from accommodation. Response 

AV/A ratios, which employs measures of accommodative vergence and the actual change 

in accommodation, were observed to be higher in myopes compared to non-myopes 
197, 

207-209
.  These elevated ratios were observed when accommodation was altered using 

positive/negative lenses or due to change in fixation distance 
207

 and has been observed in 

early-onset (onset before 15 years of age-i.e. children) 
207, 208 

and late onset myopes (>15 

years of age -usually adults) 
197

.  Accommodative-vergence cross link has been identified 

as a risk factor for the development of myopia since several studies found higher 

response AV/A ratios in those emmetropes that became myopic compared to those who 

remained emmetropic 
197, 207, 208

. The greater ratios have been attributed to both reduced 

accommodation and enhanced accommodative vergence 
207

. 

 

1.2.4.1 Vergence adaptation and myopia 

Flom and Takahashi 
210 

measured distance and near phorias (and AV/A ratios) in 

28 previously uncorrected/undercorrected myopes immediately and one week after the 

prescription of a new correction. The authors observed esophoria through the full 

refractive correction, which reduced by 2-3Δ after one week. This reduction was 

attributed to vergence adaptation. The authors postulated that before correction, the 

stimulus to accommodation was reduced by the magnitude of under correction, resulting 

in exophoria. In an effort to maintain binocular vision, the children may have used their 
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reflex convergence, which may have stimulated vergence adaptation after prolonged 

fixation.   

 

So far, only one investigation has experimentally evaluated vergence adaptation 

as a function of refractive error. North and colleagues 
211

 compared adaptation to 6 ∆ 

base-in and base-out in adult groups of emmetropes, early onset and late onset myopes. 

Vergence adaptation was measured at distance and near. The authors reported no 

significant difference in the magnitude of prism adaptation between the three groups for 

base-in/base-out prisms 
211

.  However, it must be noted that this investigation was 

performed under closed-loop accommodation, which is controlled by an interactive 

negative feedback mechanism (section 1.14). Thus, any changes to accommodation (such 

as accommodative adaptation) may alter the fast controller, thereby influencing the 

vergence system through the accommodative-vergence cross-link 
79, 117

. Progressing 

myopes show higher AV/A ratios 
197, 207, 208

, and greater susceptibility to accommodative 

adaptation 
36, 38 

which may produce larger changes in the vergence system compared to 

emmetropes. Thus, it is still unclear whether school aged myopic children (who often 

show greater progression of myopia
134

) exhibit differing vergence adaptive ability 

compared to emmetropes.  

 

1.2.4.2 Possible link between vergence and myopia 

As mentioned in the previous section, a convergent vergence posture has been 

found to be associated with the onset 
144, 188, 189

, progression 
143

 and higher amounts of 
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myopia in children
212

. Two possible explanations were proposed for this esophoric 

deviation 
213

. Firstly, esophoria could be secondary to an increased accommodative 

response and thereby excessive accommodative vergence. This hypothesis may not be 

true because myopic esophores show larger accommodative lags (or reduced 

accommodative response) under binocular viewing conditions compared to orthophores 

or exophores 
213, 214

. The second hypothesis was attributed to vergence adaptation, based 

on studies that showed a convergent shift in phoria in response to a sustained near task 

116, 215
. Goss and Rosenfield 

216 
speculated that esophoria due to vergence adaptation may 

cause increased accommodative lags under binocular conditions due to the need for reflex 

divergence, which may then produce hyperopic defocus on the retina and induce axial 

elongation. 
170-172

. However, as noted earlier, there is a paucity of information regarding 

the role of near work on the vergence adaptive ability of myopic children. 

 

1.2.5 Control options for myopia  

The fundamental aim of myopia research lies in understanding the mechanism 

that leads to its development or progression so that treatment strategies can be developed 

to prevent or control its progression. The major control procedures for myopia include 

spectacle intervention using single vision or plus addition lenses 
217-221

, contact lenses 

that alter the physical shape of the cornea (orthokeratology) 
222, 223

 or recently, to control 

peripheral refractive errors 
224

, and pharmaceutical agents (atropine 
225

 or pirenzepine 

226
). The majority of these studies show small treatment effects that last for a short period 

of time or have significant side-effects.   
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1.3 Common applications of near addition lenses 

One of the primary applications of added plus and minus lenses in pre-presbyopic 

individuals includes the treatment of accommodative and binocular disorders since near 

addition lenses are capable of altering the demand of both accommodation and vergence 

systems 
227

. Plus addition lenses are commonly prescribed to pre-presbyopic individuals 

for the treatment of convergence excess 
227

 and accommodative insufficiency 
228-230 

or 

also considered a form of treatment for myopia due to its relation with near work 
217-221

. 

On the other hand, minus addition lenses have been investigated as a treatment option for 

strabismic divergent deviation (intermittent exotropia) 
231, 232

. The role of near addition 

lenses as a control procedure for myopia progression will be discussed further below.  

1.3.1 Near addition lenses for myopia 

  Plus addition lenses have been prescribed as a treatment option for several 

decades with the aim of inhibiting myopia progression. While the original basis for 

prescribing plus adds was to reduce the demand for accommodation 
233-236

, the recent 

rationale has been to eliminate the excessive accommodative lags that creates hyperopic 

retinal defocus 
217

, which may lead to axial elongation of the eye 
170-172

 (section 1.2.2).    

 

The initial literature concerning the use of plus adds for myopia were in the form 

of case reports or retrospective studies. Oft cited retrospective studies include Roberts 

and Banford 
236

 & Oakley and Young 
235

, which included data obtained from patients in 

private practice. Both studies showed reduction in the myopic progression through 

bifocal lenses, but the study by Oakley and Young 
235

 showed a reduction of almost 
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0.5D/year in Caucasian children. The study has been critiqued for possible selection and 

examiner bias due to its retrospective nature.  Later, several prospective clinical trials 

were conducted in order to evaluate the ability of near addition lenses 

(bifocals/progressive addition lenses) in slowing myopia progression. The overall results 

of these studies have not been consistent ranging from no success 
218

, limited success 
217, 

220, 237
 and successful reduction of myopia 

219
.  

 

The largest multi-center randomized, double-masked correction of myopia 

evaluation trail (COMET) 
217

 enrolled 469 children aged 6 to 11 years with baseline 

myopia between 1.25 and 4.50 D. The rate of progression of myopia was compared 

between progressive addition lenses (+2D) and single vision lenses for 3 years.  The 

authors reported an overall adjusted 3-year treatment effect of 0.20D, which was 

statically significant but not clinically meaningful.  However, additional analyses showed 

significant treatment effects in children with large lags of accommodation in combination 

with near esophoria, shorter reading distances (<31.2 cm), or lower baseline myopia (>-

2.25D). Similar results of a modest overall effect but larger reduction in myopic 

esophores and children with high accommodative lags were shown by a Japanese group 

220
. Several other investigators also showed that children with a convergent vergence 

profile (esophoria) 
221, 233

 display greater reduction of myopic progression through 

addition lenses compared to children with exo/orthophoria. Recently, the COMET 
237

 

group performed a second investigation that only included children with large 

accommodative lags (<1.0D at 33 cm) and near esophoria (<2PD). The overall success 

rates were similar to the original COMET with 0.28D reduction in myopia through near 
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adds compared to single vision lenses over three years. However, inspection of their data 

(table 3) indicates that children with larger esophoria (>5PD) and large accommodative 

lag (>1.50D) demonstrated greater treatment rates than the mean, similar to previous 

reports 
238

. Given that plus addition lenses are prescribed to reduce accommodative lags 

and are used at near viewing distances which require accurate accommodation and 

vergence, it is unfortunate that clinical trials did not measure changes to accommodative 

lag/phoria through the plus adds. Thus, it is difficult to identify whether the elimination 

of accommodation/ vergence error influenced the successful reduction of myopia 

progression in children.  It is also important to note that in majority of the clinical trials, 

the same add power (ranging between 1D to 2.0D) was prescribed to all children. The 

same add power may produce different accommodative/vergence errors through the 

addition lenses depending on an individual’s ocular motor profile (for e.g. baseline 

vergence posture/strength of cross-links) and adaptation effects.  

 

1.4 Oculomotor response to near addition lenses  

1.4.1 Effect on Accommodation 

A number of individual reports evaluated the accommodative response through 

plus addition lenses in emmetropic adults 
114,192,239-241

, myopic adults 
241, 242

 and myopic 

children 
243, 244

.  In adults, these investigations consistently showed that plus lens 

additions are capable of reducing the lag of accommodation at low dioptric powers (+1D) 

192, 239
 and even resulted in a small amount of over-focus or lead of accommodation with 

higher dioptric powers (+2 and +3D) 
114, 192, 240

. A few of these investigations measured 
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accommodation under both binocular and monocular viewing conditions 
114, 192

 and 

reported a greater binocular compared to monocular response through the plus addition 

lens. This increased binocular response may be the result of lens-induced exophoria 

triggering an increase in fast reflex convergence and subsequently an increase in the 

output of vergence driven accommodation 
103, 119

. The reduction in accommodative lag 

through plus adds were maintained in emmetropic adults after 20 min 
114 

or 30 min 
240

 

sustained fixation in monocular viewing conditions but showed small reduction (~0.25D) 

under binocular viewing conditions 
114

, which was attributed to the reduction in VA 

cross-link activity due to vergence adaptation 
79, 115

.  

 

Two studies measured the monocular accommodative response through plus adds 

in myopic children 
243, 244

. Both studies report reduction of accommodative lag through 

plus addition lenses but these studies did not evaluate the effect of sustained viewing on 

the accommodative response. Since myopic individuals show greater susceptibility for 

accommodative adaptation 
36, 38 

it may be possible that the reduction is not maintained in 

myopic children unlike emmetropic adults who showed no accommodative adaptation 

through plus addition lenses 
114

.  

 

Compared to plus additions lenses that were evaluated for a therapeutic basis in 

non-strabismic myopes, minus addition lenses have primarily been employed in scientific 

studies as a means to estimate the accommodative stimulus-response function in myopes 

180, 181, 184
. As a result, the majority of the investigations were performed under monocular 

viewing conditions only 
181, 184, 245

. Results indicated that myopic individuals show 
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greater accommodative lags 
181, 184

, possibly due to their reduced blur-sensitivity 

compared to emmetropes 
193

. However, the results do not depict the performance of the 

ocular motor system under natural viewing conditions, which would include the input 

from disparity vergence in addition to other cues. Based on models of accommodation 

and vergence, 
79, 103

 one would predict that initial and sustained changes in vergence 

through minus adds would also alter binocular accommodation through vergence-

accommodation cross-link (VA). The binocular response to minus addition lenses, 

especially in myopic individuals with reduced blur-driven accommodation needs more 

investigation.  

 

1.4.2 Effect on Vergence  

Although near addition lenses primarily alter the demand on accommodation, 

these lenses also change the vergence response through the accommodative-vergence 

(AV) cross-link, inducing a relative shift in near phoria 
24, 68

. The effect of plus adds on 

the vergence system has been evaluated immediately after the addition of lenses in 

emmetropic adults 
114

, myopic adults 
239

 and myopic children 
241

 or with sustained 

fixation 
59, 113, 114

.  Adult investigations showed that sustained binocular fixation through 

plus adds reduced the lens-induced exophoria, which was concluded to be due to 

vergence adaptation 
59, 113, 114

.  Vergence adaptation to plus addition lenses was dependent 

on AV/A ratio such that larger ratios resulted in higher magnitudes but incomplete return 

to the baseline in emmetropic adults 
114

 and adults with mixed refractive error 
113

.  

 



46 

 

Vergence adaptation to lens-induced phorias has not been investigated as a 

function of refractive error. Myopic individuals, especially during progression show 

elevated response AV/A ratios 
197, 207-209

, which would result in greater lens-induced 

phorias and increased fusional vergence demand compared to emmetropes. This 

increased vergence stress may require greater levels of vergence adaptation, if the lens-

induced phoria has to return to its original level. Another important reason to study 

vergence adaptation in myopes relates to the differential effect of vergence posture on the 

success of myopia prevention through plus adds. Several studies report that myopic 

progression was reduced to a greater extent in myopic esophores compared to myopic 

exophores/orthophores 
217, 218, 221, 233

. Based on the models of accommodation and 

vergence 
103

 and common clinical practice 
227

, it would be expected that plus adds will 

reduce the binocular vergence stress in esophores. However, the completeness of 

vergence adaptation may reduce the efficacy of this correction. As mentioned earlier, the 

role of phoria (vergence-bias category) on vergence adaptation to near addition lens 

needs further investigation, in myopic children as well as emmetropes.  
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2 Rationale and thesis objectives 

Based on the literature reviewed, it is evident that binocular adaptive changes to 

near adds have been not been investigated to the same extent as compared to prism-

induced disparity. Although myopia is one of the most frequently researched applications 

for near (plus) addition lenses, there is still a clear need to improve our understanding of 

the binocular adaptive mechanism to these lenses, especially because greater treatment 

effects were reported in children with esophoria and higher accommodative lags.  Do the 

adds actually show a greater reduction of accommodative lag in the above cases or do 

they provide greater binocular comfort, which perhaps increases compliance? Would the 

adaptive processes relieve ocular motor stress in some but not all groups?  Do these 

factors play a role in explaining why the effect of plus adds are typically small except in 

those with esophoria?  

 

Unfortunately, clinical trials that evaluated the efficacy of plus adds for myopia 

did not measure the changes to accommodation and vergence through the addition lenses. 

Individual studies that measured ocular motor response through near adds only measured 

response from one system (accommodation/vergence) or did not measure the effect of 

sustained fixation through near adds. Due to the presence of tight cross-coupling between 

accommodation and vergence under natural viewing conditions, it is essential to evaluate 

changes to both accommodation and vergence during prolonged binocular viewing 

conditions. Investigation of binocular motor changes to minus addition lenses, which 

increases the accommodative demand and necessitates fusional divergence, would further 
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enhance the understanding of adaptive changes that occur when fixating through near 

addition lenses in children.  

 

Accordingly, this thesis employed plus and minus near-addition lenses as a tool to 

investigate binocular adaptation in children. The major aims of this thesis were three-

fold: 

(1) To gain insight into the mechanism of changes to accommodation and vergence 

through near addition lenses in children 

(2) To evaluate the effect of phoria (vergence-bias) category on adaptation  

(3)  To evaluate the effect of myopia on binocular adaptation  

 

The following questions and hypotheses were proposed based on the literature 

reviewed:   

1. Will myopic children with normal near phoria exhibit reduced adaptation to plus 

addition lenses compared to emmetropes?  

a. Based on the results from a previous study in emmetropic adults that showed 

reduced vergence adaptation in individuals with larger AV/A ratios, it was 

hypothesized that myopes may show reduced adaptive behavior due to the 

greater AV/A ratios in myopic children compared to emmetropes.    

 

2. Will the pattern of adaptation in myopes vs. emmetropes differ through minus 

addition lenses?  
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a. Since minus adds increase the demand on accommodation, it was proposed 

that adaptation to these lenses may be different compared to emmetropes, 

given the greater accommodative lags observed through minus lenses in 

myopes. 

 

3. Will the category of vergence-bias (eso/exo) influence binocular adaptation to plus/ 

minus addition lenses in emmetropic vs. myopic children?  

a. Based on the model of accommodation and vergence, it was hypothesized that 

esophores may exhibit reduced adaptation to plus adds, compared to 

exophores as a result of reduced fusional vergence demand. On the other 

hand, the reversal of fusional vergence demand for minus adds may produce 

opposite patterns of adaptation in children with eso and exo misalignment. 

 

4. Will myopes continue to show reduced adaptation to disparities necessitating reflex 

convergence (base-out prism) when accommodative feedback loop is open? 

a. The majority of studies reviewed in the previous sections indicate that myopes 

show differences in the characteristics of accommodative behavior compared 

to emmetropes. If accommodation is one of the important causes for 

differences in the binocular adaptive behavior to near adds, then myopes may 

not show reduced adaptation when accommodation is not directly stimulated 

under open-loop accommodation.  
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3 Methods and instrumentation 

3.1 Study protocol 

To test the hypotheses formulated in the previous section (Chapter 2), 

accommodation and vergence were measured under three stimulus conditions during 

sustained binocular viewing in a group of myopic and emmetropic children between 7-15 

years of age.  

 Stimulus condition # 1: Binocular fixation with habitual corrective lenses at 33 

cm, where stimulus for accommodation = 3D (Chapter 5) 

 Stimulus condition # 2: Binocular fixation through +2D only (Chapter 4) and +2D 

and -2D add over correction, where stimulus for accommodation = 1D and 5D 

respectively (Chapter 6) 

 Stimulus condition #  3:  Binocular fixation through 10Δ BO (open-loop 

accommodation) at 4M, where stimulus for accommodation=0  (Chapter 7) 

 

3.2 Study participants 

Participants were recruited from the clinic database at the School of Optometry, 

University of Waterloo. Informed consent (parents) and assent (children) were obtained 

after verbal and written explanation of the procedures involved in the study. This work 

received approval from the Office of Research Ethics at the University of Waterloo (ORE 

#14817). All subjects were treated in accordance with the tenets of the Declaration of 

Helsinki.  



51 

 

 

A total of 78 participants were recruited for the purpose of this thesis. Twenty-

three children were enrolled in an initial study (Chapter 4) and a different set of 55 

children participated in all subsequent studies (Chapters 5-8). Two out of 55 children 

discontinued from the study due to lack of time. Table 3-1 shows the number of 

emmetropes and myopes recruited. It must be noted that the total number of children 

included for analysis in each study was dependent on the specific criteria/type of protocol 

and are listed in the relevant chapter.  

 

Table 3-1: List of participants in the various studies.  

Study Number of emmetropes 

recruited 

Number of myopes recruited 

Preliminary study- Chapter 4 13 10 

Chapter 5- Habitual lenses 25 28 

Chapter 6- Add condition 25 28 

Chapter 7- Prism condition 25 28 

Chapter 8-Variability study 25 28 

 

3.3 Measurement of Accommodation  

3.3.1 PowerRefractor and its operating principle 

In the current investigation, accommodative responses were measured using an 

eccentric infra-red (IR) photorefractor, (PowerRefractor, MultiChannelSystems, 
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Reutlingen, Germany) as shown in Figure 3-1) 
1, 2

. The PowerRefractor is an infra-red 

optometer that works on the principal of eccentric photorefraction 
3-6

. The advantages of 

this technique over most autorefractors is its ability to obtain measurements 

simultaneously from the two eyes, provide information about pupil size, faster sampling 

rate - 25 Hz (25 measurements per second) and a remote testing distance (1 Meter) due to 

its photographic nature.
1
 

 

 

Figure 3-1: Picture of the PowerRefractor (Multichannel Co, Reutlingen, Germany)  

 

The Power Refractor (Figure 3-1a) consists of a triangular array of six light 

emitting diodes (LED) segments (Figure 3-1c) each containing nine infra-red LED’s 

arranged around a closed circuit device (CCD) camera (Figure 3-1b), connected to a 

portable personal computer.  This extended source arrangement of LED’s has been 
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shown to increase the working range of the instrument (between +4D to -6D with respect 

to infinity) 
1
. In this technique, infra-red light from the eccentric light source returns back 

to the CCD camera after reflection from the eye. The estimate of optical defocus is 

determined from the intensity profile across the pupil obtained in the image of the camera 

3
. The slope of the intensity profile across the pupil varies with the eye’s defocus and this 

information is converted into refractive error or accommodation based on an inbuilt 

calibration equation 
1,6

. However, both relative and absolute measures of individual 

response require calibration due to inbuilt adjustment for tonic accommodation 
7
 and 

variations in fundal reflectance 
6
.  In the PowerRefractor, the favorable signal-noise ratios 

are achieved for pupil szies greater than 4 mm. Smaller pupil sizes reduces the signal-

noise ratio and affects its precision due to the loss of individual pixel values required to 

accurately calculate the slope 
1
.   

 

3.3.2 Measurement modes of the Power Refractor 

The PowerRefractor has a sampling rate of 25 Hz (can measure accommodation 

every 0.04sec) and functions in five different measurement modes: binocular, monocular, 

fast-screening, complete refraction and 3D reconstruction. Continuous measures of 

accommodation are possible through the binocular and monocular test modes. Both 

settings provide information on the accommodative response along the vertical ocular 

meridian coupled with measures of pupil diameter and gaze deviation. Measurements of 

pupil size and estimates of gaze position are made using a contrast detection algorithm to 

locate the pupils and the first Purkinje image (Hirschberg ratio).  Deviations in gaze 
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position are identified using a Hirschberg ratio of 11.82 (i.e. 1 mm displacement of 

corneal reflex is produced when the eye rotates by 11.82 degrees) 
1
.  

In the current study, monocular mode was used to measure accommodation in all 

participants. A screen dump of the “monocular mode” is shown in Figure 3-2. This mode 

was preferred over the binocular mode because it provides the advantage of tracking the 

participants gaze while recording the measurements (Figure 3-2-Section 1). The 

binocular mode provides the same information about gaze deviation, but only after data 

collection. This feature of the monocular mode is extremely useful to ensure proper 

fixation at the target especially in children due to their limited attention span. The 

sensitivity of PowerRefractor to detect binocular gaze misalignment was tested by 

Suryakumar and Bobier 
8
 using varying magnitudes of prism. The authors reported that 

the sensitivity of PowerRefractor to detect binocular misalignment was 5Δ (2.85 

degrees).  

 

Figure 3-2: PowerRefractor interface using a Monocular measurement mode. 

 Section 1 (outlined on top right corner) represents the gaze tracker which identifies deviation in gaze 

positions up to 30 degrees with 5 deg separation. Section 2 shows the measured pupillary region whose 

intensity profile is converted into accommodation response. Section 3 illustrates the accommodation 

response measured along the vertical ocular meridian coupled with measures of pupil diameter over a 10 

sec period. 

12

3

12

3
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3.3.3 Calibration of PowerRefractor 

As mentioned earlier, the PowerRefractor converts the slope of the intensity 

profile into refractive information based on an inbuilt calibration equation obtained from 

adult participants 
1, 2

. However individual calibration from each participant is necessary 

because the individual differences in fundal reflectance characteristics affect the gradient 

of light distribution in the retina, thus producing variability between individuals 
6
.  

 

A two-step calibration process was conducted, similar to previous studies 
7, 9, 10

 to 

ensure accuracy of accommodative response obtained from the PowerRefractor: 

 Relative accuracy to calibrate the gradient of a series of photorefractive outputs 

with known changes in ocular focus to estimate whether PowerRefractor provides 

a 1:1 relationship when the magnitude of stimulus is changed.   

 Absolute ocular calibration where photorefractor output is calibrated to a specific 

dioptric amount. The former allow accurate measures of accommodative change 

while the latter ensures accurate measures of accommodative error.  

 

Step 1: Relative Calibration  

Since photorefractive measures are dependent upon pupil size, calibrations had to 

be conducted with natural pupils and nullified the use of cycloplegics. Participants wore 

corrective lenses (determined using retinoscopy and subjective refraction) that provided a 

visual acuity of at least 6/6 in each eye and were instructed to view a high contrast target 
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(placed at 4m) with their left eye. An infrared (IR) filter (Kodak 87B, IR filter, Rochester, 

NY) was placed in front of the right eye which blocked visible light but permitted the IR 

light source of the PowerRefractor to obtain measurement. The accommodative response 

of the unfiltered eye was stabilized to a high contrast target set at 4M, viewed through the 

participants’ corrective lenses. A series of positive and negative ophthalmic lenses (+5D 

to -1D in 1D step) were then added over the IR filter to induce refractive errors 

(accommodative responses)  ranging from -5 to +1D. This range was chosen upon 

consideration of the stimulus demands (maximum =5D stimulated by minus add) tested 

in this thesis.   The resulting PowerRefractor measure (Y) was assessed for each lens and 

was plotted as a function of induced refractive error (X ranging from -5 to +1D induced 

by lenses ranging from +5D to -1D). Linear regression analysis was performed to 

estimate the relationship between induced and measured refraction obtained using the 

PowerRefractor.   

 

Step 2: Absolute Calibration  

In order to evaluate the absolute accuracy of PowerRefractor, accommodative 

responses obtained with the PowerRefractor were compared with those obtained with 

dynamic retinoscopy (vertical meridian) 
7, 11 

at two stimulus conditions (3D and 2D), 

created by viewing a near target at 33 cm with and without +1D lenses.  

 

Accommodative responses were calibrated using individual calibration functions 

for all participants. The results of the individual functions are shown in Appendix A.  
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3.3.4 Targets for measuring and sustaining closed loop accommodation 

Two high contrast and colorful targets near targets were used to sustain and 

measure closed-loop accommodation. The latter, termed the measuring target (presented 

using a laptop computer) was a color cartoon slide, chosen because it can sustain the 

attention of the young participants better than a standard high contrast text. All 

accommodative measures were taken from this cartoon slide as it was necessary to 

maintain the same stimulus characteristics for each accommodative measure. The target 

measured approximately 5.5 mm with good contrast (85%) and a target luminance of 15 

cd/m
2
. In a previous publication from the group 

10
, this target was compared to high 

contrast (92%) text in 11 participants, and showed non-significant differences in the 

accommodative response between the two targets (Cartoon: -2.24 ± 0.22D; Text: -2.35 

±0.32D; P>0.05).  Similar cartoon targets have been used to measure accommodation in 

infants 
12, 13

.  

 

The current study protocol necessitated repeated measurements of 

accommodation in the same participants on three different days for the no add/plus 

add/minus add conditions (Chapters 5, 6, 7). Thus, repeatability of accommodation was 

assessed by comparing monocular responses obtained through habitual corrective lenses 

on the various days. Pooled data for all participants (both refractive groups) showed 

similar monocular responses on all three days (Figure 3-3 (a) RM-ANOVA; P=0.38) and 

the co-efficient of repeatability between visits (Fig 3-3 -b) was found to 0.8D.  
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Figure 3-3 (A) Comparison of monocular accommodative response through habitual corrective lenses 

on three different days. (B)Bland-Altman plot showing the average and mean differences in AR 

determined on different visits .The COR was found to be ±0.8D. Error bars indicate mean ± SEM 

 

The “sustaining target” was a cartoon movie displayed using a digital video disc 

(DVD). Again, this target was preferred to a high contrast reading text in view of the 

shorter attention span anticipated in young children. Similar near fixation tasks other than 

high contrast text have been used in previous studies to test the effects of near work on 

accommodation (for e.g. video game-
14

) 

 

Information from the two near displays (DVD player and Laptop computer) were 

sent to a custom-designed control box (Control Box, Fig. 3.6) whose output consisted of 

a miniature liquid crystal display (LCD) monitor (Model No: LT-V18 U; Victor company 

of Japan) mounted onto an optical bench (Fig 3.5). The LCD monitor was 1.77″ wide and 

subtended 3.5 deg x 2.3 deg (H x V) which enabled the gaze deviations to be kept within 

5 degrees of fixation and thus prevented any significant off axis measurements 
15, 16

. The 

presentation of near targets (movie or cartoon slide) to the LCD monitor was controlled 

using a toggle-key. The synchronization of both the near targets into the control box 
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helped maintain a constant screen size and facilitated rapid change between the targets to 

enable quicker measurements. The image from the monitor was then projected at a 

distance of 33cms through a semi-silvered mirror (SM, Fig. 1).  

 

3.3.4.1 DOG for measurement of open-loop accommodation 

A difference of Gaussian target (DOG) of center 0.2cpd spatial frequency was 

used to measure open loop accommodation. Lower spatial frequency DOG targets (less 

than 0.5 cpd) have been shown to be an insufficient stimulus to drive reflex 

accommodation 
17

. The target was projected on a 17 inch cathode ray tube (CRT) monitor 

with its edges covered using a black cloth to avoid any contour information.  The DOG 

target used in the current investigation does not stimulate accommodation when viewed 

through a series of negative lenses and has been used in several other studies in the 

laboratory 
8, 10

.   

 

3.4 Measurement of Phoria – Modified Thorington Technique (MTT)  

Horizontal near heterophoria was measured using the modified Thorington 

technique – MTT 
18

 and the magnitude of the phoria was quantified using a custom 

designed tangent scale (TS, Fig 3-5) placed at 33cm. The tangent scale consisted of a 

small central aperture to accommodate the light source and a horizontal row of 

letters/numbers on either side. The letters/numbers on scale were 3 to 4 mm high, 

equivalent to a Snellen fraction of approximately 6/15 (at that distance) and each 

letter/number was separated by 3.3 mm (1∆ apart at a distance of 33cm). The scale was 
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illuminated using three white light emitting diodes (LED) housed inside a rectangular box 

providing a background luminance of 10 cd/m
2
. The TS was also connected to the control 

box (Fig 3-6) which facilitated the measurement of the phoria by illuminating the scale 

and simultaneously turning off the LCD monitor to avoid stray light affecting the 

visibility of the tangent scale.   

 

This technique showed good validity and repeatability in previous studies 
19-21

, 

which was also confirmed for the current apparatus in adult participants. The 95% limits 

of agreement with cover-test were ±1.02∆ and the co-efficient of repeatability 

(1.96*standard deviation of difference) between measures taken on two different days 

was observed to be 1.98∆ 
10

.  This thesis measured phoria response in children only. 

Considering the subjective nature of the test and necessity for repeated measurements in 

the same participants’ (for Chapters 5, 6, 7), measures of repeatability was re-assessed for 

this group. Fig 3.4(A) shows the comparison of mean habitual near phoria averaged 

across all participants’ for the three closed-loop accommodation conditions. RM-

ANOVA shows non-significant difference in habitual near phoria measured on the three 

different days. The co-efficient of repeatability was found to be 2.8 ∆ for the entire group 

of children. The standard deviation of difference which was used to assess the co-

efficient repeatability was non-significant between refractive groups (P=0.23).   
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Figure 3-4: (A) Comparison of near phoria responses on three different days in children. (B) Bland-

Altman plot shows a plot of average and mean differences in phoria determined on separate sessions. 

The coefficient of repeatability was found to be ±2.8∆. Error bars indicate mean ± SEM 
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3.5 Experimental setup  

 

Figure 3-5:  Schematic of the experimental set-up.  

The participant (P) was seated at a distance of 1M from the PowerRefractor (PR). The near targets (NT) for 

accommodation were displayed on a miniature LCD monitor (M) that was projected at a distance of 33 cm 

using a semi-silvered mirror (SM). The monitor received input from either the laptop (Cartoon slide) or the 

DVD player (movie) and the presentation of targets were controlled using a custom designed control box. 

The tangent scale (TS) for the measurement of phoria was also connected to the control box for syncing 

with the other accommodative targets.  A difference of Gaussian (DOG) target was placed at 4 M for 

opening the loop of accommodation.  
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Figure 3-6: The different inputs and the output of the control box.  

(A): Near fixation target- Movie played from a DVD player; (B): Tangent scale to measure near phoria; 

(C): Near measuring target- Coloured picture target loaded on a laptop. The output from the sources is 

displayed on a miniature LCD monitor. 

 

A schematic of the experimental setup is shown in Figure 3-5. The outputs of the 

two near targets as well as the tangent scale were fed into the custom designed control 

box (Figure 3-6). This arrangement was necessary because the current investigation 

evaluates influence of changes in accommodation on vergence and vice-versa and it is 

imperative to be able to change targets for measurement of either parameter quickly. The 

control box was designed with a toggle key which facilitated the rapid change of targets. 

The order of the presentation of targets is summarized below: 

 

INPUTS 

CONTROL BOX OUTPUT (A) 

(C) 

(B) 
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By default, the LCD monitor received its input from the fixating target (movie) 

 Toggle 1: The display on the LCD monitor is turned off and the tangent scale 

would be illuminated for measurement of heterophoria.  

 Toggle 2: LCD display changed to the measuring target (colored cartoon slide) for 

measurement of accommodative response.  

 Toggle 3: Display changed back to fixating target (movie) for sustaining 

accommodation under binocular viewing condition.  

 

The time taken for one complete measurement block (measurement of phoria, 

binocular and monocular accommodation) ranged between 60 and 80 sec.   
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4 Binocular adaptation to +2D lenses in myopic and 

emmetropic children 

 

 

This chapter is published as follows: 

Vidhyapriya Sreenivasan, Elizabeth L Irving, William R Bobier. Binocular adaptation to 

+2D lenses in myopic and emmetropic children Optom Vis Sci. 2009 Jun; 86(6):731-40. 

 

Reprinted with permission © Wolters Kluwer Health 
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This study was performed as an initial investigation to determine if refractive 

error (myopia) shows any differential effect on binocular adaptation.  Since phoria 

(vergence-bias) category was predicted to be an influential variable, only myopic and 

emmetropic children with normal near phoria were included in this study.  

4.1 Summary 

Purpose: To compare vergence adaptation to +2D addition lenses in myopic and 

emmetropic children and to evaluate the influence of the accommodative-vergence cross 

link (AV/A ratio) on this adaptation.  

 

Methods: 9 myopic and 11 emmetropic children fixated a near target at a distance of 33 

cm. Measures of binocular and monocular accommodation and phoria were obtained 

during a 20 minute near task with and without +2D lenses. Response AV/A ratios were 

determined from the experimental results. Vergence adaptation was quantified by the 

magnitude of phoria reduction and the completeness (return of adapted phoria to habitual 

level) after the near task.  

 

Results: Myopic children showed significantly higher AV/A ratios which led to greater 

lens-induced exophoria and a greater demand for vergence adaptation. Both refractive 

groups showed significant vergence adaptation; however, myopes exhibited significantly 

reduced (P=0.010) magnitudes compared to emmetropes (Myopes= 3.95±0.15∆, 

Emmetropes =4.41±0.08∆). The mean completeness was also significantly (P< 0.001) 

reduced in myopes (61.02±1.57) compared to emmetropes (76.6±2.10). There was a 
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significant correlation between magnitude of adaptation and AV/A in both the refractive 

groups; however, myopes consistently showed reduced magnitudes compared to 

emmetropes. AV/A ratio influenced completeness in emmetropic but not myopic 

children. In the accommodation system, +2D lenses eliminated the accommodative lags 

observed in myopic children during natural viewing conditions. These lenses resulted in a 

small over-focus (-0.24±0.27D) at the onset of near work, which decreased during 

sustained viewing through the near add.  

 

Conclusion: Myopic children demonstrate reduced magnitude and completeness of 

vergence adaptation to +2D lenses. The magnitude of vergence adaptation varied with 

AV/A in both refractive groups; however, the presence of myopia differentiated the size 

of adaptation. On the other hand, degree of completeness appears to be primarily 

associated with the type of refractive error.   
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4.2 Introduction 

Near (plus) addition lenses have been prescribed to myopic children in an attempt 

to slow the progression of myopia attributed to near work 
1-5.

  The current basis for 

prescribing near (plus) adds to myopic children is to eliminate the large accommodative 

lags 
6
 that might create a hyperopic retinal defocus and possibly trigger axial elongation 

of the eye 
7-9

.   Clinical trials that evaluated the ability of these lenses to slow myopic 

progression provided varying results ranging from no success, 
10, 11

  limited success 
12, 13

 

to clinically significant reduction of myopia 
14, 15

. Several studies have shown that 

myopic children with esophoria display greater benefit (i.e. less progression of myopia) 

from wearing near adds compared to children with exo or orthophoria 
13, 16, 17

.   In 

addition, accommodative responses seemed to influence myopia progression through the 

plus add, with the greatest reduction of myopic progression observed in children with 

larger accommodative lags 
13,16

 and in esophoric children with higher lags of 

accommodation 
18

. These findings suggest that the accommodative and phoria status of 

the child might play a significant role in the mechanism of reduction of myopic 

progression with plus lenses. 

 

Several studies have evaluated the effect of near adds on the accommodative 

responses of emmetropic 
19-22

 and myopic adults 
23

.  These investigations consistently 

show that plus lens additions are capable of reducing the lag of accommodation at low 

dioptric powers (+1D) 
19,20 

and result in a small amount of over-focus or lead of 

accommodation with higher dioptric powers (+2 and +3D) 
20- 22

  Past research show 
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evidence for greater accommodative lags in myopic children under negative-lens induced 

monocular viewing conditions, 
6, 24

 with monocular real targets 
25 

or under binocular 

viewing condition through full refractive correction 
26

. However, relatively few 

investigations have evaluated the ability of near adds to reduce or eliminate the 

accommodative lags observed in myopic children.  

 

In the vergence system, studies have evaluated the effect of near adds on adult 

participants, either immediately upon the addition of lenses 
23 

or with sustained fixation 

27,28, 29
. It is known that near adds affect both accommodation and vergence through the 

accommodative vergence (AV) (Mueller 1826, cited in Alpern
30

) and vergence-

accommodation (VA) 
31 

cross links. However, earlier investigations did not measure 

coincident changes to both systems but measured changes to either accommodation or 

vergence alone 
19-21, 29

.
 
A recent study from our group evaluated the coincident time 

course of changes to accommodative response and near phoria when emmetropic adults’ 

sustained fixation (33 cm) through +2D lenses 
22

.   A consistent pattern of change was 

observed. Introduction of near addition lenses produced an exophoric shift, accompanied 

by a significant increase in binocular accommodation over that of monocular 

accommodation. This difference, (attributed to convergence accommodation), was 

believed to be a result of the lens-induced exophoria triggering an increase in fast reflex 

convergence and subsequently an increase in the output of convergence driven 

accommodation 
32-34

. After several minutes of prolonged viewing, vergence adaptation 

occurred, concurrently reducing the exophoria and the binocular levels of 

accommodation while monocular levels remained constant. The degree of vergence 
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adaptation was quantified using two parameters. The first parameter, magnitude of 

adaptation, represents the absolute change in phoria through +2D adds before and after 

the near task. The second parameter, completeness of adaptation describes the degree to 

which the phoria has returned to its original level prior to viewing through the near add. 

Past studies on prism adaptation commonly quantified adaptation as a change in induced 

phoria only 
35-40

 similar to our first parameter, the magnitude of adaptation. We found 

that a second term, completeness was necessary because the lens induced change in 

phoria was not the same for each subject but rather it depended on their AV/A. Therefore, 

any two individuals showing the same magnitudes of adaptation will not exhibit the same 

completeness of adaptation if they have different AV/A ratios.  In our previous study, 

both magnitude and completeness of vergence adaptation were dependent on an 

individual’s AV/A ratio 
22

.  Higher AV/A ratios were associated with greater magnitudes 

of adaptation but the lens-induced exophoria did not return to its habitual level indicating 

less-than complete vergence adaptation.  

 

Past studies show higher response AV/A ratios in myopic children compared to 

emmetropes 
41,42

.  Based on the results from our adult study 
22 

 it can be hypothesized that 

plus addition lenses will produce greater exophoric shift that would increase the fusional 

vergence demand in myopic children. This increased vergence demand requires greater 

levels of vergence adaptation, if the lens-induced phoria is to return to its original level.  

In addition, myopic children might not exhibit the same magnitude of accommodative 

lead seen in emmetropic adults due to the larger accommodative lags observed under 

binocular 
26

 or monocular viewing conditions 
6, 24, 25

.  Relatively few investigations have 
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evaluated the changes to both accommodation and vergence response when myopic 

children perform near task through plus addition lenses. Recently, Cheng and co-workers 

evaluated the effect of various combinations of positive lens additions and base-in prisms 

on the accommodative lag and near phoria of progressive myopic children
 43

. The authors 

measured the responses immediately after the addition of lenses / prisms and concluded 

that the combination of +2.25D lens and 6 
∆
 base-in resulted in minimal accommodative 

lag and exophoria. However, as acknowledged by the authors, this investigation did not 

measure changes to accommodation and phoria during sustained near activity. Thus, the 

possibility of vergence adaptation to lenses and prisms cannot be excluded and the 

beneficial effect of reduced phoria and accommodative lag may not be maintained over a 

period of prolonged spectacle wear. 

 

 To our knowledge, vergence adaptation to near addition lenses has not been 

investigated in myopic children. North and colleagues compared adaptation to 6 
∆
 base-in 

and base-out in adult groups of emmetropes, early onset and late onset myopes 
37

.  They 

reported no difference in the magnitude of prism adaptation between the three refractive 

groups. On the other hand, Rosenfield suggested that late onset myopes might have 

reduced vergence adaptive ability compared to emmetropes
 44

.
  

Therefore, it is still not 

clear whether the adaptive ability of young myopes is any different from that of 

emmetropes. Thus, aim of this study was to investigate the time course of changes to 

accommodation and vergence when myopic children perform sustained near work (20 

min) through +2 D addition lenses. Based on the results of our adult study 
22 

and the 

higher AV/A ratios expected in myopic children 
41, 42

 we hypothesize that myopic 
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children may show less complete adaptation to near adds compared to emmetropes. We 

will explore the extent to which the AV/A ratio accounts for the differences in adaptation.  

 

4.3 Methods 

4.3.1 Study participants 

Twenty-three children (ten myopic and thirteen emmetropic) between the ages of 

7 and 15 years were recruited from the clinic database at the School of Optometry, 

University of Waterloo. The protocol followed the tenets of the Declaration of Helsinki 

and received approval from institutional review board. Informed consent (parents) and 

assent (children) were obtained after verbal and written explanation of the nature and 

possible consequences of the study. 

 

Participants with normal general and ocular health (determined from their clinical 

records) underwent preliminary examination to ensure the following: myopic refractive 

error between -0.75 and -6 D or emmetropic refractive error between +0.5 and +1.5 D 

determined using cycloplegic refraction; astigmatism < 1D; anisometropia <  0.5D; best 

corrected visual acuity of at least 6/6 in each eye; normal binocular vision status ensured 

through normal distance and near phorias 
45

 by prism neutralized cover test; normal 

amplitudes of accommodation; and that participants were not taking any medications that 

might influence the accommodation and vergence systems 
46

.  Table 4-1 lists the age and 

critical visual parameters of the two study groups. 
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Table 4-1: Critical visual parameters of myopic and emmetropic children 

PARAMETER 

(MEAN ± SEM; AND RANGE 

WHERE APPLICABLE) 
EMMETROPES MYOPES 

No of participants 13 11 

Age 
11 ± 0.65 yrs 

(7-14) 

11 ± 0.58 yrs 

(7 -14 ) 

Refractive error 
0.6 ± 0.12D 

(0.5 to 1D) 

-2.04 ± 0.48D 

(-0.75 to -3.75D) 

Near phoria 
-2.80 ± 0.87 ∆ 

(-0.5 to -8 ∆ ) 

-2.88 ± 0.96 

(Ortho to -8 ∆) 

Distance phoria 
-0.45 ± 0.40 ∆ 

(0.5 to -1 ∆) 

-0.44 ± 0.43 ∆ 

(0 to -2 ∆) 

 

Phoria measures: Negative sign denotes exophoria 

 

4.3.2 Instrumentation and experimental procedure 

The instrumentation and the experimental setup used in this study have been 

described in detail elsewhere 
22

 (Section 3.3-3.5).  Briefly, accommodative responses 

were obtained when children fixated a single high contrast (85%) color cartoon frame at a 

distance of 33cm. This target was chosen as it was expected to be more successful than 

conventional reading material in holding the participants’ attention. Accommodative 

responses with and without +2D lenses were obtained using the monocular mode of an 

eccentric infra-red (IR) photorefractor (PowerRefractor, MultiChannelSystems, 

Reutlingen, Germany for description see 
47, 48

) at a sampling rate of 25 Hz for a period of 

10 sec. When tested with near addition lenses, the PowerRefractor recorded 

accommodative measures as a sum of the near addition lens and the accommodative 
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response. This combination, conjugate with the participants’ retina was termed “plane of 

focus”. 
22

 Thus, in the no add condition; the plane of focus approximates the participants’ 

accommodative response given that myopes were corrected for their distance vision. 

When viewing through the near add the plane of focus would correspond to the 

combination of +2D lens and accommodative response through the lens. “Binocular plane 

of focus” was measured while both eyes fixated the target; however, responses were 

recorded from the right eye alone. For the measurement of “monocular plane of focus”, 

the left eye was occluded. During the 10 sec measurement period, the accuracy of 

fixation was assessed using the gaze control function displayed on the PowerRefractor 

interface. Additionally, care was taken to ensure that the child was fixating the near target 

at the correct fixation distance (33 cm) while measurements were recorded. A volunteer 

constantly monitored the head position of the child and ensured they did not move away 

from the chin rest during measurement. If unsteady fixation was noticed during 

measurement, or when the examiner (VS) observed off axis gaze errors exceeding 5 

degrees, the measures were flagged using keyboard inputs and discarded given the 

possibility of under or over estimation of accommodation 
49-52

.  In these cases, recordings 

were obtained for an additional 5 sec period to ensure equal data sets across subjects.   

Measures of open loop accommodation (tonic accommodation) were taken by 

instructing participants to monocularly fixate (left eye occluded) a low spatial frequency 

(0.2 cpd) difference of Gaussian target placed at a distance of 3.5 meters.   

Accommodative measures obtained from the PowerRefractor were calibrated 

using a protocol similar to previous studies 
20, 22, 53

.  Briefly, the output of the 

photorefractor was compared to actual levels of refractive error induced on each 
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participant by the addition of ophthalmic trial lenses (-1D to +6D). From this procedure, 

calibration formulae were defined for each of the two groups. The absolute precision of 

accommodative response was then determined by comparing the PowerRefractor 

response with dynamic retinoscopy when participants viewed a near target (33cm). Based 

on the results of the calibration study all Power Refractor responses (PR) from both 

refractive groups were adjusted using calibration equations (see below) to define actual 

plane of focus response (PF)  

Myopes: PF = (PR /1.12) - 0.22 (1) 

Emmetropes: PF = (PR/1.07)-0.25 (2) 

 

Though the two equations show slightly different slopes, this difference was small 

and was not found to be statistically significant (P>0.2). Moreover, the accommodative 

responses did not differ significantly when individual calibration equations were used 

instead of group equations in both refractive groups (Margin of error <0.10D; P >0.6).   

 

Horizontal near heterophoria (33cm) was measured using the modified 

Thorington technique (MTT) and the magnitude of the phoria was quantified using a 

custom designed tangent scale. This technique showed good validity and repeatability in 

previous studies 
54-57

.
   

The efficacy
 
was also confirmed from our own experience where 

we have found the 95% limits of agreement with cover-test to be ±1.02∆. The co-efficient 

of repeatability between measures taken on two different days was observed to be 1.98∆ 

(1.96*standard deviation of difference) 
22

.  The tangent scale used to quantify phoria 
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consisted of a small central aperture for the light source and a horizontal row of 

letters/numbers on either side with each letter/number separated by 3.3 mm (1∆ apart at a 

distance of 33cms). A red Maddox rod was placed before the right eye and phoria was 

measured using a “flashing technique” similar to previous studies 
22, 29

.  The participants 

verbally reported the number/letter that was closest to the red line. The same technique 

was repeated thrice and near heterophoria was defined as the average of the three 

responses. Considering the possibility of higher variability in this age group, all children 

received a training session with the MTT prior to the experimental session. During the 

training session, picture cards were shown to facilitate better understanding of the test. 

Near phoria was measured 5 times and all children were able to achieve standard 

deviation of less than 1.5 ∆ (range 0-1.25 ∆; mean = 0.51 ± 0.43). The variability of 

phoria response within the experimental session (i.e. the variability between the three 

trials obtained during a particular time point) was also determined at each time point 

tested in the study. The highest mean (±SD) variability was observed to be 0.50±0.53∆ in 

our study group.  

 

The experimental procedure consisted of two study sessions; one session was 

performed with the children wearing their corrective lenses if any in a trial frame 

(referred to as “no add condition”) and the other involved measurements with +2D 

lenses (referred to as “add condition”) added over their correction (if applicable). The 

+2D lenses were inserted at a distance of 12 mm from the participants’ eyes and the trial 

frame was adjusted for the participants near pupillary distance so as to reduce any 

prismatic effect. The two study sessions were performed on different days (separated by 
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at least by 24hrs) and the order of testing was randomized to avoid bias. Prior to the start 

of the study sessions, all participants were dark adapted for 3 minutes to avoid effects of 

previous near work 
58

. The lighting in the examination room was then reduced to 

approximately 10 lux to obtain sufficiently large pupil sizes (greater than 4mm as 

recommended by the manufacturer of PowerRefractor) for the measurement of 

accommodation. Each session involved measurement of pre-task tonic accommodation 

(open loop accommodation immediately after dark adaptation), followed by baseline 

measurement of phoria (vergence open loop), binocular and monocular plane of focus 

(closed loop accommodation). The approximate time taken for one complete 

measurement block (measurement of phoria, binocular and monocular focus) ranged 

between 1 and 1.5 min. Following the baseline measurement, participants were instructed 

to watch a cartoon movie that was played at a distance of 33 cm. This target was chosen 

to avoid boredom and to ensure sustained near fixation for the scheduled duration of the 

study (20 min). Subsequent measures of phoria, binocular and monocular plane of focus 

were then recorded after 3, 6, 9, 15 and 20 minutes of near fixation. Plane of focus 

measures were taken at the above mentioned time points by replacing the movie clip with 

the single frame (cartoon slide) used in the baseline measurement in an attempt to keep 

the illuminance of the target constant. Post-task tonic accommodation was finally 

measured after the 20 minute near task. 
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4.3.3 Data Analysis  

The plane of focus response at each time point was estimated by averaging the 

data points obtained over the measurement period (normally 10 sec) similar to the 

method described in our previous study 
22

.  Briefly, each data point was screened and 

accepted if the following criteria were met: the pupil size was above 4mm (as per 

PowerRefractor manufacturer guidelines); the horizontal and vertical deviations in gaze 

were less than 5 degrees from the center of the camera; and the responses were free of 

blinks (blink artifacts removed by a method similar to our previous study 
22

). To be 

considered for averaging and further analysis, each participant needed to have at least 200 

rows of acceptable data after satisfying all of the above criteria. If the participants had 

more than 200 eligible data points, only the first 200 points were taken for further 

analysis. The data retained were averaged to obtain the plane of focus response for a 

particular time point. Three study participants were excluded from the averaging process 

since they failed to provide the minimum levels of acceptable data as a result of pupil 

diameters less than 4mm (1 emmetrope and 1 myope) and excessive gaze deviation (1 

emmetrope). Thus the data of 11 emmetropes and 9 myopes were considered for further 

analysis. 

 

In order to quantify the effect of the accommodative-vergence cross link (AV/A) 

on the vergence response with +2D lenses, stimulus and response AV/A ratios of all 

participants (N = 20) were determined from the experimental results (with +2D lenses) 
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using the Gradient AV/A method. The change in phoria responses were then studied 

based on the magnitude of AV/A ratio. 

Repeated measures analyses of variance (RM-ANOVA) was used to determine 

the effect of lens condition and time on plane of focus and vergence. In all cases, 

statistically significant main effects were further examined using Tukey Honestly 

significant differences (HSD) post-hoc tests to determine the precise time point that 

showed the significant difference. Differences were considered statistically significant 

when the likelihood of type-I error was <0.05. Data analysis was performed using 

STATISTICA 6.0 (StatSoft, Inc, USA). Exponential curve fitting and analysis were 

performed using Graphpad software (Graphpad Inc, USA) to investigate the changes in 

near phorias through +2D lenses. 

 

 

 



80 

 

4.4 Results 

4.4.1 Changes to plane of focus measures without near add and with +2D 

lenses  

The dotted lines in Fig. 4-1 shows the plane of focus measures during the no add 

condition from emmetropic (Fig. 4-1A) and myopic (Fig. 4-1B) children. Myopic 

children exhibited significantly greater accommodative lags (denoted by negative sign) 

compared to emmetropes under binocular and monocular viewing conditions (binocular 

viewing: Emmetropes = -0.60 ±0.06D; Myopes = -1.10 ± 0.08D, monocular viewing: 

Emmetropes = -0.81±0.07; Myopes = -1.29±0.09, P<0.001). In both groups, the initial 

accommodative lags significantly reduced with sustained near activity (mean reduction in 

lag after 20 minutes of near work, binocular: Emmetropes = 0.21 ± 0.07 D:  Myopes = 

0.32 ± 0.08 D; monocular: Emmetropes = 0.19 ± 0.08D: Myopes = 0.28 ± 0.07D; all 

P<0.050). The binocular plane of focus showed consistently greater (i.e. more negative) 

response compared to the monocular plane of focus and the pattern of change in focus 

was similar under both viewing conditions. This pattern was also similar to previous 

studies with adult participants 
20, 22

. 
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Figure 4-1 A and B: Mean plane of focus measures with and without +2D lenses in the emmetropic (Fig 

1A) and myopic groups (Fig 1B).  

Solid lines indicate responses with add and dotted lines represent responses without +2D lenses  at 33cm 

(STA= 3D, dashed line in Fig) . Under both conditions, filled triangles represent binocular responses and 

filled squares represent monocular responses. Error bars indicate mean ± SEM 
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Plane of focus measures through +2D lenses (add condition) are illustrated using 

solid lines in Fig. 4-1 A (emmetropic) and 1B (myopic group). Addition of +2D lenses 

shifted the plane of focus in a myopic direction (P <0.001) compared to the no add 

condition under both binocular and monocular viewing states. However, the mean 

binocular and monocular plane of focus varied in terms of the initial response and the 

pattern of change over time between the two refractive conditions. In the binocular 

viewing condition, introduction of +2D lenses resulted in greater “over-focus” (term used 

in this study to describe lead of accommodation and denoted by a positive sign) in 

emmetropes (0.60 ± 0.09 D, Fig. 4-1A) compared to myopes (0.24± 0.09 D, Fig. 1B) at 

the onset of near work. The mean monocular plane of focus with add was close to the 

position of the target (33cm, dashed line in Figs.4-1 A and B) in the emmetropic group 

(small over-focus of 0.05 ± 0.08D, Fig 4-1A) and exhibited a small amount of 

accommodative lag in the myopic group (-0.15± 0.10 D; Fig. 1B). The difference in plane 

of focus between the binocular and monocular viewing conditions was statistically 

significant in both refractive groups at the onset of near work (Emmetropes = 0.48 ± 

0.08D, P=0.008; Myopes= 0.44± 0.10D; P=0.005). However, this difference was not 

significantly different between the two refractive groups (P=0.100).  

 

During sustained near fixation with the addition lenses, the binocular measures 

alone showed a significant reduction in focus after 3 minutes of near work in both 

refractive groups (Reduction in emmetropes = 0.30±0.09D, P=0.005, Myopes = 0.19 

±0.09D, P=0.010; Fig 4-1A and B). With continued fixation, there was no significant 

reduction in binocular focus in either refractive group. The reduction in binocular focus 
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placed the mean plane of focus closer to the accommodative demand (dashed line at 3D) 

in the myopic group in such a way that the near target was almost exactly conjugate with 

the retina. The monocular plane of focus measures remained quite stable in both the 

groups with no significant changes throughout the 20 minute fixation period (Fig.4-1 A 

and B: solid line with squares; all post-hoc tests: P<0.050). The difference between 

binocular and monocular focus was not found to be statistically significant after 3 

minutes of sustained viewing. 

 

The accommodative errors (AE) through +2D lenses were compared with respect 

to a zero difference (relative to 3D) at all-time points in both refractive groups. The 

binocular AE showed significantly greater over-focus at time point 0 in both refractive 

groups (Emmetropes, AE = 0.60 ± 0.09D; P<0.001; Myopes, AE= 0.24± 0.09 D, 

P<0.050). After 3 minutes of sustained fixation, the AE in myopic group did not differ 

from a zero error (P=0.70) but emmetropes still showed significantly (P<0.05) greater AE 

(0.28± 0.09D). The monocular accommodative errors were not observed to be 

significantly different from zero at all-time points in both refractive groups (Emmetropes, 

P=0.80; Myopes, P>0.1). 

 

4.4.2 Tonic accommodation 

Fig.4-2 illustrates the differences in tonic accommodative responses (measured 

with the DOG target) before and after the 20 minute near task in the refractive groups 

during the “no add” and “the add” viewing conditions. Both refractive groups showed a 
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significant (P<0.050) myopic shift in tonic accommodation after near work 

(Accommodative adaptation; Emmetropes = - 0.41 ± 0.07 D; Myopes= -0.56 ±0.15 D) in 

the no lens condition; however, the difference between the refractive groups was not 

significant (P=0.80). In the add condition, the tonic changes after prolonged fixation were 

not significantly different (P =0.60) from the pre-task measurements in either refractive 

group (Emmetropes: 0.13± 0.07D; Myopes: 0.07 ± 0.07D). Furthermore, the magnitude 

of accommodative adaptation with +2D lenses was significantly lower than the amount of 

adaptation without +2D lenses in both the refractive groups (both groups P<0.050).  

 

Figure 4-2: Mean tonic accommodative change (Pre task – post task) after 20 minutes of near work. Error 

bars indicate mean ± SE 
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4.4.3 Changes in near phoria without and with +2D lenses during near work 

in the two refractive groups 

The average habitual near phoria of the emmetropic and the myopic groups were 

observed to be -2.80 ± 0.87∆ and -2.88 ± 0.96 ∆ respectively (ranged between ortho and -

8∆ in both groups with the negative sign indicating exophoria: P=0.90, Fig 4-3 and Table 

4-1). Fig.4-3 compares the changes in the mean phoria when participants performed 

prolonged near work through their habitual correction. The mean changes in near phoria 

without near addition lenses were observed to be similar in both refractive groups until 9 

minutes of near work. Beyond that time, the emmetropic group showed a drift towards 

esophoria that was statistically significant at the end of the near activity (Fig. 4-3, dashed 

line; difference between 9 and 20 minute time points: 1.01 ± 0.74∆; P=0.02). The myopic 

group did not show any significant change in near phoria even after 20 minutes of near 

work through their habitual corrective lenses (Fig. 4-3, solid line; P=0.85). 

 

Figure 4-3: Mean phoria responses in both refractive groups in the no lens condition during 20 minutes of 

near fixation. Error bars indicate mean ± SEM 
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Fig. 4-4(A and B) shows the changes in near phoria with +2D lenses over time in 

the two refractive groups. Introduction of +2D lenses (Fig. 4-4 A and B, solid lines) 

significantly increased the mean near exophoria by 5.65 ± 0.85 ∆ in the emmetropic 

group and 6.45 ± 0.55 ∆ in the myopic group. Continued fixation resulted in a significant 

reduction (P<0.001) in phoria following 3 minutes of near viewing in both groups 

(Emmetropes=3.79 ± 0.65 ∆; Myopes= 3.03 ± 0.88 ∆). With extended binocular fixation, 

the mean exophoria in the myopic group showed a further small reduction that was 

approaching significance (Fig. 4-4B: Difference between 3 & 20 min time points: 1.12 ± 

0.99∆; P = 0.059). In both refractive groups, the pattern of reduction in exophoria 

significantly correlated with the reduction in the binocular plane of focus during 

sustained viewing through the near add (Pearson r >0.9; P=0.005).  
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Figure 4-4 A and B: Mean phoria responses with (solid line) and without (dotted line) +2D lenses in 

emmetropic (Fig 4A) and myopic group (Fig 4B).  

Exponential decay function for the add condition is shown as dashed line in Fig 4A (emmetropic) and 4B 

(myopic). Error bars indicate mean ± SEM 

 

The changes in near phorias with +2D lenses were fit using an exponential decay 

function (dashed line in 4-4A and B) to compare the magnitude and percentage of 

completeness of adaptation between the two refractive groups. Magnitude (∆V) refers to 

the total reduction in near phoria through +2D lenses upon saturation and was determined 

from the asymptote of the exponential function. The completeness of adaptation was 
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calculated by dividing the amount of phoria reduced over time through +2D lenses by the 

initial change in phoria induced by the plus lens. We observed the completeness to be 

significantly lower in the myopic group (61.02 ± 1.57%) compared to emmetropes (76.6± 

2.10 %; P<0.001) after 20 minutes of near viewing.  The mean magnitude of the change 

in adaptive vergence was also significantly less in myopic (3.95 ± 0.15 ∆) compared to 

emmetropic children (4.41 ± 0.08 ∆; P=0.010). However, the time constant of phoria 

reduction (defined as the time taken to reach 63% of total reduction in exophoria) did not 

show any significant difference between the two refractive groups (emmetropes =1.69± 

0.07 min; myopes=2.12 ± 0.08 min; P=0.35).  

 

4.4.4 Effect of AV/A ratio on the reduction of exophoria 

Myopic children showed significantly higher response AV/A (RAV/A) ratios 

compared to the group with emmetropic children (Emmetropes: 5.61 ± 0.61∆; Myopes: 

7.08 ± 0.9∆, P =0.010). The stimulus AV/A measures were not significantly different 

between the groups. 

 

Fig. 4-5 shows the relation between RAV/A ratio, magnitude of phoria change 

and completeness of adaptation in both refractive groups in the add condition. Both 

myopes and emmetropes showed significant positive correlations between RAV/A and 

magnitude of adaptation (Pearson r, Emmetropes = 0.64, P<0.05; Myopes, = 0.87, 

P=0.008). When magnitude was analyzed as a function of AV/A ratio, both refractive 

groups showed similar slopes (Bivariate regression analysis, Emmetropes = 0.41; 
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Myopes = 0.32; P=0.70) indicating no interaction between refractive error and AV/A 

ratio. However, the myopic group showed a significant offset (P<0.001) compared to 

emmetropes reflecting the reduced magnitude of adaptation observed in this group.  

 

With regards to completeness of adaptation, Fig 4-5 allows comparison between 

the actual magnitude of adaptation through near adds (thick lines with symbols) with a 

reference level (thin lines and no symbols) showing complete adaptation in either 

refractive group. In comparison with their respective slopes of complete adaptation, the 

slope of actual adaptation obtained from emmetropes showed significant difference 

(P=0.002) as a function of AV/A ratio. Emmetropic children with low AV/A ratios 

showed near complete adaptation but the degree of completeness reduced with an 

increase in AV/A ratio (Fig 4-5). On the contrary, the slope of actual adaptation did not 

differ (P=0.45) from that of complete adaptation in myopes; however, the actual 

adaptation was significantly offset (P<0.0001; Fig 4-5) with respect to the complete 

adaptation, indicating less complete adaptation throughout the range of AV/A ratios 

observed in the study.  
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Figure 4-5: Plot showing the relation between RAV/A ratio, magnitude of phoria change and degree of 

completeness of adaptation in both refractive groups in the add condition.  

Responses from emmetropes are shown as open squares and dashed lines while myopes are represented 

through solid lines and filled circles. In both refractive groups, thick lines indicate actual state of adaptation 

and thin lines denote complete adaptation (magnitude equivalent to the return of adapted phoria towards 

habitual level).  
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4.5 Discussion  

This is the first investigation that measured changes to both accommodation and 

vergence responses when myopic school aged children performed sustained near activity 

through +2D addition lenses. The main finding of this study was that children with 

myopia exhibit reduced vergence adaptation to near addition lenses, both in terms of 

absolute change (magnitude of adaptation) and in terms of proportional change 

(completeness towards their habitual phoria) compared to emmetropes. 

 

4.5.1 Influence of AV/A ratio on vergence adaptation to lenses in myopes  

 Irrespective of the refractive error, we observed that the magnitude of phoria 

adaptation increases with increasing demand of exophoria imposed by higher AV/A 

ratios; however, myopic children consistently showed reduced magnitudes compared to 

emmetropes. On the other hand, AV/A ratio influenced the completeness of adaptation in 

emmetropic children alone. In emmetropes, adaptation was less complete for individuals 

with higher AV/A ratios, similar to the results of our adult study 
22

.
   

Conversely, in the 

myopic group, children showed less complete adaptation at all AV/A ratios.  

 

 The higher response AV/A ratio observed in myopes (similar to previous studies 

41, 42
) might be viewed as a cause for the reduced magnitude of adaptation observed in 

this group of children. If their AV/A ratios were the sole cause of the difference in 

adaptation, we would expect the absolute change in phoria to be greater in the myopic 

group since higher AV/A ratios result in greater amounts of induced exophoria, which 
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would drive greater reflex convergence, and greater magnitudes of vergence adaptation  

22, 29, 59
. This was not the case. In fact, the average amplitudes of adaptation were greater 

in our emmetropic group compared to myopes. In addition, results from this investigation 

indicate that myopes show deficient completeness of adaptation even at low AV/A ratios 

and the degree of completeness was independent of AV/A. These results suggest that the 

decreased adaptation found in the myopes is not solely the  product of AV/A ratio, 

supporting the hypothesis proposed by Rosenfield 
44

  that the vergence adaptive property 

itself might be reduced in myopes. 

 

Additionally, vergence adaptation to near addition lenses in myopes could appear 

incomplete if changes occurred to the AV cross-link because of accommodative 

adaptation 
60

.  The accommodative aftereffects through +2D lenses demonstrate a small 

positive shift indicating further accommodative relaxation; however, this change is 

extremely small in our sample of myopes (less than 0.1D). Furthermore, the monocular 

focus measures with +2D lenses was steady over time suggesting that the accommodative 

convergence cross link was not significantly altered during vergence adaptation. 

 

4.5.2 Differences in vergence adaptation to sustained near work 

The pattern of change in phoria following sustained near task differed between the 

two refractive groups when viewing through habitual corrective lenses. Emmetropic 

children showed a shift towards esophoria while myopes showed no change in phoria 

with sustained near fixation.  The magnitude of esophoric shift in emmetropes 
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(1.01±0.74∆), although small, is similar to previous studies. 
58, 61

  Ehrlich 
61

 reported an 

esophoric shift of only 1.62 ∆ after sustained near fixation despite using a longer task 

duration (2 hour) and closer fixation distance (20 cm) compared to the current study. This 

smaller (1.01±0.34∆) magnitude of adaptation compared to the add condition (4.41 ± 

0.08∆) could be attributed to the variable demand (high/low) on fusional vergence system 

in either (add/no add) conditions 
28

.  The lack of adaptive change after sustained 

binocular viewing through habitual lenses in myopes seems to provide additional 

evidence towards reduced vergence adaptive ability in this group. However, this reduced 

adaptation can be considered beneficial since a shift towards esophoria might further 

reduce the accommodative response (due to reduced output from vergence 

accommodation due to reflex divergence) in an eye with previously large accommodative 

lag. 

 

4.5.3 Near add, vergence adaptation and accommodation 

The general patterns of changes to accommodation and near phoria in both 

refractive groups were similar to our adult study 
22

 , with the emmetropic children 

exhibiting similar time course of adaptation compared to emmetropic adults. More 

specifically, the introduction of near adds eliminated the excessive lags of 

accommodation observed in our myopic group comparable to previous studies with 

myopic children 
43

 and myopic adults 
23

. At the onset of near work, these lenses resulted 

in a small degree of binocular over-focus in both refractive groups similar to 

investigations in adults 
19-22

.   This over-focus was smaller in the myopes compared to 
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emmetropes, presumably due to the large accommodative lags seen during natural 

viewing conditions in myopic children. Convergence accommodation, which was 

calculated from the difference between monocular and binocular focus through near add, 

was greatest at the reading onset in both the groups. This could be attributed to the lens-

induced exophoria triggering an increase in reflex convergence, resulting in an immediate 

increase in binocular focus through the convergence accommodation crosslink 
22, 31-34

.
  

During sustained near fixation, vergence adaptation occurred in both refractive groups; 

however myopic children showed lower magnitude and completeness of adaptation 

compared to the emmetropes. Vergence adaptation resulted in reduced binocular over-

focus in both refractive groups, which resulted in a plane of focus closer to the fixation 

target in the myopic group and a small over-focus in the emmetropic group. This position 

of the binocular focus appears to be a product of the monocular accommodative lags, 

high AV/A ratio and reduced vergence adaptation (leading to a reduced output of 

convergence accommodation). Based on the results of our study, it appears that +2D lens 

additions are beneficial for myopic children with large accommodative lags, provided 

vergence adaptation occurs to minimize accommodative error (over-focus). These results 

seem to support the findings of a recent clinical trial 
13

 that show greater treatment effect 

(i.e. reduced progression of myopia) in children with larger lags of accommodation. 

Additionally, based on our study results, we extrapolate that lower magnitude plus 

additions (such as +1D) might not be as beneficial in reducing myopic progression as 

+2D lenses, at least in a group of myopic children similar to our study. Though earlier 

studies 
20

 with emmetropic adults (and smaller accommodative lags) observed a best 

match between accommodative demand and response through +1D lenses, this magnitude 
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might not work in our myopic study group as these children experienced large 

accommodative lags. Furthermore, the presence of vergence adaptation to the near 

addition lens might result in further reduction in the binocular accommodative response 

resulting in greater lag of accommodation. This increased lag through the low powered 

near add might possibly explain why a previous longitudinal study 
14

  showed better 

treatment effect with +2D lenses compared to +1.50D lenses. 

 

It appears from the results of this study that differences in vergence adaptation do 

exist between myopes and emmetropes, at least in response to viewing through near adds 

for 20 minutes. Possibly this adaptation difference may decline after a longer duration of 

wear. We did not consider longer study durations considering the age of study 

participants and their shorter attention span. However, it seems unlikely that the 

adaptation response becomes complete after longer durations, since the phoria response 

appears to saturate after 9 minutes of binocular fixation through +2D lenses. The reduced 

vergence adaptive ability observed in myopic children might be a function of their 

refractive error or due to the nature of their ocular motor parameters (like accommodative 

response, AV/A ratio). Previous investigations reported no significant difference in prism 

adaptation in individuals with early onset myopia, late onset myopia and emmetropia 
37

.
 
 

Comparison of prism adaptation was based on results from adult participants (even for 

the early onset group) whose refractive condition might have become stabilized and 

furthermore they did not measure accommodative response or response AV/A ratio to 

investigate the influence of these parameters on vergence adaptation. 
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The results of this investigation suggest that reduced vergence adaptation is an 

important factor in prescribing near adds to young myopes in addition to increased 

accommodative lags and high AV/A ratios. There are two clinical caveats that result. 

Based on our study we predict that myopic individuals with near esophoria would 

respond well to the add since the near add would both reduce the lag of accommodation 

and act to lessen the esophoria towards orthophoria thereby placing less demand upon 

reflex convergence. The reduced vergence adaptation would be beneficial in avoiding a 

return to esophoria. However, such adds may not be well tolerated in myopes with a high 

exophoria, where the reduced vergence adaptation leads to increased exophoria and hence 

a greater stress on the vergence system. 

 

4.6 Conclusions 

The results of this investigation demonstrate that myopic children exhibit reduced 

vergence adaptive ability such that higher amounts of exophoria will remain for myopes 

compared to emmetropes following adaptation to the lenses. The reduced magnitude of 

vergence adaptation in myopic children seems to be a product of both the AV/A ratio and 

the refractive error; however, the degree of completeness appears to be primarily 

associated with the type of refractive error. In the accommodation system, near adds 

seem to reduce the excessive accommodative lag observed in myopic children and the 

presence of vergence adaptation helps minimize errors of both accommodation and 

vergence systems during sustained near fixation. 
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5 Effect of heterophoria and refractive state on 

accommodative and vergence responses during sustained near 

activity in children 
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The previous chapter (# 4) showed reduced vergence adaptation to plus addition 

lenses in myopic children with normal near phoria compared to their emmetropic peers. 

The present chapter deals with the first experiment in the series of studies performed (on 

the same participants) to understand the role of vergence-bias category and refractive 

type on binocular adaptation in children. In addition to a different pool of study 

participants, this series (Chapters 5-7) also had a minor modification in the time course of 

measurement of phoria and accommodation. Accommodation and phoria were taken at 2 

minute intervals (instead of 3 minute intervals in Chapter 4) for the first ten minutes and 

then after 15 and 20 minutes of sustained viewing.  

Here (Chapter 5), accommodative (binocular and monocular) and phoria 

responses were determined when children with different habitual vergence-bias 

(eso/exo/normal) and refractive categories (myopia/emmetropia) sustained binocular 

fixation at a near task through corrective lenses (if any). 

5.1 Summary 

Purpose:  Horizontal heterophoria requires the activation of fusional vergence to 

maintain binocular vision. This may alter the accommodation and vergence response 

during sustained near task depending on the type of vergence-bias (phoria). Here, we 

examined the influence of vergence-bias and myopia on changes to accommodation and 

vergence during prolonged near-task in children.  

 

Methods:  27 myopic (SE:-1.9±0.1D) and 25 emmetropic children (SE: 0.5±01) between 

7-15 years participated in the study. The children were divided into phoria-normals; 
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exophores or esophores based on their near phoria. Measures of phoria, binocular (BA) 

and monocular accommodation (MA) were obtained before and during a 20 min near-

task when participants binocularly fixated a high-contrast target at 33 cm. Tonic 

accommodation was also measured before and after the near-task. 

 

Results:  Binocular but not monocular accommodation was significantly different 

between vergence-bias categories (P<0.001) in both refractive groups. While BA was 

significantly greater than MA in exophores (P<0.001) and phoria normals (P=0.030), in 

esophores, MA exceeded the binocular response (P=0.003). Both refractive groups 

showed similar pattern of BA vs. MA in the phoria groups; but, myopic children showed 

larger lags compared to emmetropes (P=0.010). This pattern was not altered by prolonged 

binocular fixation in both refractive groups.  Tonic accommodative adaptation was higher 

in myopes (P=0.010) but did not demonstrate a significant effect of phoria (P=0.4). In the 

vergence system, the type of vergence-bias category (eso/exo) altered the direction and 

magnitude of phoria adaptation (P<0.001) with exophores and esophores displaying 

convergent and divergent shifts respectively in phoria upon prolonged fixation.  Myopic 

children showed increased divergent (less convergent) shift (P<0.001) in vergence 

adaptation compared to emmetropes in all phoria groups.  

 

Conclusion: Myopia is associated with increased accommodative lags (monocular and 

binocular) and increased accommodative adaptation.  The direction of near phoria 

influences the pattern of vergence adaptation and the difference between binocular and 

monocular levels of accommodation.  The differences primarily appear to relate to the 



100 

 

varying fusional vergence demands created by the direction of phoria and also due to the 

interaction between the accommodation and vergence system. 

5.2 Introduction 

5.2.1 Adaptation effects to sustained near task 

Sustained near fixation induces adaptation of the accommodation and vergence 

systems (
1-7

 see 
8, 9 

for review).  This adaptation was attributed to the prolonged rate of 

decay of the slow controller of vergence/accommodation, which replaces the fast 

controller and exhibits a shift in the tonic levels of accommodation/vergence. In the 

accommodation system, factors such as magnitude of adapting stimulus 
1
, dioptric 

distance between TA and the steady state accommodative response 
10

 , and refractive 

state 
11-13

 influence the degree of accommodative adaptation.  In the vergence system, 

past studies

 

show convergent (eso) shifts in phoria or tonic vergence after a period of 

sustained near work 
4-6

. 

Heterophoria (phoria) is a misalignment of the visual axes that occurs in the 

absence of fusion, and compensated during binocular viewing by the fusional vergence 

mechanism 
14

. The degree and type of fusional vergence required for binocular viewing 

(convergence/divergence) varies in proportion to the size and the direction of phoria 

(exo/eso). The presence of exophoria relative to the dioptric demand necessitates an 

increase in fusional convergence while an esophoric deviation requires an increase in 

fusional divergence in order to attain binocular single vision. These differing vergence 

postures (esophoria/exophoria) may produce asymmetries in phoria adaptation since the 

adaptive magnitude appears to depend upon the degree of fusional stress 
5
 and the length 
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of time it must be sustained 
6
. 

 

 Ehrlich 
5
 measured changes to near phoria before and after 

a two hour near task at 20 cm in adult participants with mixed refractive errors. A mean 

convergent shift of 1.62Δ and a significant relationship between pre-task near phoria and 

vergence adaptation was reported. However, it must be noted that the sample consisted of 

only one esophore (others ranged from ortho to 16 exo) and a closer inspection of the 

report (Fig 3 of the paper) shows that only individuals with exophoria greater than 5Δ 

demonstrated a convergent shift similar to the mean. Individuals with low exo/ortho 

showed a divergent shift in phoria, which may not be readily explained by their fusional 

demand. The author did not measure accommodative adaptation (changes to dark focus) 

but reported 0.29D change in distant refraction (transient myopia in closed loop 

accommodation) after the near task. Differences in accommodative adaptation, combined 

with varying strength of accommodative-vergence cross-link may explain the divergent 

shift in vergence adaptation seen in low exo/orthophores.  

Most of the above-cited works on accommodative and vergence adaptation were 

performed in adults; relatively limited studies have measured adaptation in children 
12, 13, 

15, 16
.  Wong et al 

16
 compared vergence adaptation in children (mean age=9.8 years) and 

young adults (mean age=25.8 years) by measuring tonic vergence before and after a 

prolonged near task (reading at a distance of 15 cm for 5 minutes- closed loop 

accommodation and vergence). Children showed significantly greater vergence 

adaptation (0.45MA) compared to adults (0.11 MA). However, this study also did not 

report critical parameters like accommodative adaptation, AV/A ratio which may alter the 

vergence response and hence, its adaptation. Given that the accommodation and vergence 

are tightly coupled systems, it becomes crucial to measure changes to both systems, 
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especially when the adapting stimulus involves dual closed-loop conditions. To date, no 

study has measured adaptation of both accommodation and vergence in response to a 

sustained near task in children and there is a paucity of information on the role of 

childhood phoria levels on adaptation to a near task. 

5.2.2 Effect of vergence-bias category on the accommodative response 

The compensation of phoria, in addition to altering the vergence response, also 

produces a simultaneous change in accommodation due to the presence of the vergence-

accommodation cross-linkage 
17, 18

. Consequently, under binocular viewing conditions, 

the accommodative response receives contributions from disparity vergence in addition to 

blur, proximal cues and tonic accommodation 
19

.
  
The vergence contribution is removed 

from the aggregate accommodative response under monocular conditions. Thus, it would 

be expected that binocular and monocular levels of accommodation differ in the presence 

of a large phoria. Clinical observations using binocular dynamic retinoscopy suggest that 

esophores have greater lags of accommodation compared to exophores 
20, 21

. Scientific 

reports have confirmed this observation in retrospective clinic-based studies 
22

 and in a 

prospective study that included only myopic children 
23

.  These studies did not measure 

monocular accommodation, which would be necessary to confirm that the differences 

seen in binocular viewing conditions were related to the fusional vergence demand and 

thus, vergence accommodation.  Based on an interaction model of accommodation and 

vergence, Schor 
24

 showed that uncorrected hyperopia and esophoria increased the 

accommodative lag while uncorrected myopia and exophoria decreased the lag or 

produced a lead in accommodation in response to a near target. Hasebe et al 
25

 tested this 
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interaction model of accommodation and vergence 
24

 in individuals with intermittent 

exotropia/decompensated phorias (range of phoria =23 eso to 50 exo; some of whom 

underwent surgery for correction of strabismus) and measured both binocular and 

monocular accommodation in the phoria groups. The authors reported a significant 

correlation between distance phoria and the difference between binocular and monocular 

accommodative response 
25

. However, the study did not identify the relation between 

phoria and accommodation at the target distance where accommodation was measured 

(2.5D). Given that near phoria is largely influenced by the strength of the accommodative 

vergence cross-link under conditions of closed-loop accommodation, large variations in 

AV/A ratios would be expected to produce different distance and near phorias. The study 

by Hasebe et al 
25

 reported a wide range of AV/A ratios (0-14PD/D). Thus, it is unclear 

whether phoria at the target distance (where accommodation was measured) correlated 

with the difference between binocular and monocular levels of accommodative response. 

In addition, the study included participants with habitual refractive errors ranging from 

+6.8 to -7 D (some had under correction as high as 3.5D) and did not differentiate 

accommodative responses based on refractive error.  

5.2.3 Myopia and adaptation to sustained near task in children 

Near work requires the activation of accommodation and vergence systems. The 

question of refractive error is important because of the association between near work 

attributes and myopia 
26-29

. Myopic individuals exhibit greater accommodative lags when 

accommodation is stimulated through negative lenses 
30-32

, with monocular real targets, 

or under binocular viewing condition through full refractive correction 
33

 but not always 
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under naturalistic binocular viewing conditions 
34, 35

. Several studies that measured 

binocular accommodation as a function of refractive error did not differentiate their 

sample based on phoria, which may alter the response through vergence accommodation. 

Although few studies measured the effect of phoria on binocular accommodation in 

myopes, they did not measure monocular accommodative response to understand the role 

of vergence accommodation.  

Gwiazda et al 
13

 showed that myopic children show greater accommodative after 

effects to a near task compared to emmetropes. Thus, even small refractive differences in 

the accommodative system may produce larger changes in the vergence system if myopes 

show higher response AV/A ratio, as demonstrated by past studies 
36, 37

.  Esophoria 

(convergent shift) is associated with the onset/progression 
38, 39

 and higher amounts of 

myopia. Goss and Rosenfield 
40

 speculate that vergence adaptation to a prolonged near 

task may be a source for this convergent shift and possibly a risk factor for myopic 

development/progression. However, to date, no study has measured vergence adaptation 

to near task in myopic children.  

Accordingly, this chapter evaluated the influence of vergence-bias (i.e. type of 

habitual phoria) and refractive error on both accommodative and vergence adaptation by 

measuring changes to binocular and monocular accommodation and near phoria when 

children binocularly sustained near task at 33 cm. It was hypothesized that esophores 

would exhibit larger binocular accommodative lags and a divergent (less convergent) 

shift in vergence adaptation compared to exophores. Myopic children would demonstrate 

differences in binocular adaptation to near task due to the variations in ocular motor 

parameters compared to emmetropes. 
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5.3 Methods 

5.3.1 Study participants 

Fifty three children (28 myopic and 25 emmetropic; 58% female) between the 

ages of 7 and 15 years were recruited from the clinic database at the School of 

Optometry, University of Waterloo. Informed consent (parents) and assent (children) 

were obtained after verbal and written explanation of the nature of the study. The 

protocol followed the tenets of Declaration of Helsinki and received approval from the 

University of Waterloo ethics review board.  

 

Participants with normal general and ocular health (determined from their clinical 

records and confirmed during a screening visit) underwent preliminary examination to 

ensure the following: myopic refractive error between -0.75 and -6 D or emmetropic 

refractive error between +0.25 and +1.5 D determined using cycloplegic refraction (two 

drops of 1% tropicamide added to both eyes, similar to a previous study 
41

);  astigmatism 

< 1D; anisometropia <  1D; best corrected visual acuity of at least 6/6 in each eye; non-

strabismic; normal amplitudes of accommodation. Further, participants were not taking 

any medications that might influence the accommodation and vergence systems.   

 

 

 

 



106 

 

5.3.2 Instrumentation  

Heterophoria was measured using the modified Thorington technique (MTT) 

(described in Chapter 3). This technique showed good validity and repeatability in adults, 

which has also been confirmed in children 
42-45

. The same technique was repeated thrice 

and near heterophoria was defined as the average of the three responses.  

 

All children were classified into one of three phoria categories (normo-phores, 

exophores or esophores) based on their near phoria (33 cm). Participants were divided 

into “normophores” if their mean near phoria was between 0-4 exo, exophores (>6 exo) 

or esophores (>2 eso). Table 5-1 lists the number of children in each vergence-bias 

category and other critical visual parameters of the study groups.  

 

Table 5-1: Critical visual parameters of myopic and emmetropic children 

 

PARAMETER 

(Mean ± SEM; 

and range 

where 

applicable) 

EMMETROPES MYOPES 
 

Normophores Exophores Esophores Normophores Exophores Esophores 

No of 

participants 

11 7 7 10 7 11 

Age (7-14) in yrs 10.8 ± 0.43 12.2 ± 0.63 11.9 ± 0.43 10.43 ± 0.53 11.2 ± 0.8 11.8 ± 0.63 

Refractive error 

(D) 

0.59 ± 0.09D 0.4± 0.09D 0.3± 0.09D -2.0 ± 0.3D -2.5 ± 0.2D -1.7 ±0.3D 

Near phoria (Δ) -2.15 ± 0.49 

(0 to 4 exo ∆) 

-6.72 ± 0.36 

(6 to 10 exo 

∆) 

2.83± 0.58 

( 2 eso to 5 

eso ∆ ) 

-1.24 ± 0.94 

(0 to 4 exo ∆) 

-9.7 ± 1.5 ∆ 

(6 to 14 exo 

∆) 

4.09 ± 0.5 

(2 eso to 8 

exo ∆) 
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Accommodative responses were obtained using the monocular mode of an 

eccentric infra-red (IR) photorefractor, the PowerRefractor (Multichannel Co, 

Reutlingen, Germany). 
46

  This setting of the instrument determined refraction along the 

vertical meridian of the participants’ eye, sampling at a rate of 25 Hz, coupled with 

measures of gaze deviations and pupillary diameter.   The responses obtained from the 

PowerRefractor were calibrated using a two-step protocol to ensure relative and absolute 

accuracy of accommodation similar to previous studies 
45, 47, 48

. While the slope of 

calibration function matched with the instruments default for some participants, others 

needed separate calibrations functions, possibly due to differences in fundal reflectance 

49, 50
 In all cases, accommodative responses were calibrated based on individual 

calibration equations.   
  

 

A high contrast colour cartoon (contrast =85%; target luminance =15 cd/m
2
) was 

used to measure accommodation in children. This target was chosen as it was expected to 

be more successful than conventional reading material in holding the participants’ 

attention and has been verified to be an effective stimulus for accommodation 
45

.
  

The 

image of the cartoon was displayed on a 1.77″ wide liquid crystal display monitor (Model 

No: LT-V18 U; Victor company of Japan) and projected at a distance of 33cms through a 

semi-silvered mirror. The mirror set 10 cm from the right eye, and angled at 45 degrees 

allowed the photorefractor to simultaneously record accommodation from the right eye 

during target viewing. The method has been described elsewhere in detail 
45

 (Chapter 3).    
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Binocular accommodation (BA) and monocular accommodation (MA) were 

recorded continuously for a period of 5sec after confirming steady fixation using the gaze 

control function displayed on the PowerRefractor interface.  For the binocular response, 

accommodation was recorded from the right eye alone, although both eyes fixated at the 

target. For measurement of MA, the left eye was occluded. During the 5 sec measurement 

period, the accuracy of fixation was assessed using the gaze control function displayed on 

the PowerRefractor interface. Additionally, care was taken to ensure that the child was 

fixating the near target at the correct fixation distance (33 cm) while measurements were 

recorded. A volunteer constantly monitored the head position of the child and ensured 

they did not move away from the chin rest during measurement. If any unsteady fixation 

was noticed during measurement, or when the examiner (VS) observed off axis gaze 

errors exceeding 10 degrees, the measures were flagged using keyboard inputs and 

discarded given the possibility of under or over estimation of accommodation 
51, 52

. In 

these cases, recordings were obtained for an additional 5 sec period to ensure equal data 

sets across subjects.   

 

5.3.3 Experimental procedure 

Prior to the start of the study session, participants sat in total darkness for 3 

minutes to dissipate any effects of previous near work and allow the accommodation and 

vergence system to return to their resting states 
6
.   Following this, pre-task measures of 

tonic accommodation were taken when participants’ monocularly fixated a 0.2 cpd 

difference of Gaussian target at 4m in an otherwise dark room. Baseline measures of 
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phoria, binocular and monocular accommodation was then taken at 33 cm prior to 

sustaining fixation at the near-task. The time taken for one complete measurement block 

(measurement of phoria, binocular and monocular accommodation) ranged between 60 

and 80 sec.  

 

Near task:  The “sustaining target” was a cartoon movie, also played at a distance 

of 33 cm. This target has been used in previous studies 
45, 48

 and was chosen after 

considering the age of the participants’ to avoid boredom and ensure prolonged near 

fixation for the scheduled duration of the study (20 min). Measures of phoria, binocular 

and monocular were repeated after 2, 4, 6, 8, 10, 15 and 20 min to determine the time 

course of changes in accommodation and vergence. Immediately after the near task 

(within 30-40 sec) tonic accommodation was recorded to calculate accommodative 

adaptation.  

 

5.3.4 Data Analysis  

Measurement of accommodative response at 25 Hz for 5 sec provided a total of 

125 data points. Each data point was screened and accepted if the following criteria were 

met: the pupil size was above 4mm; the ocular alignment was less than 10 degrees and 5 

degrees from the optical axis of the photorefractor in the horizontal and vertical axes 

respectively (as recommended by the manufacturer 
46

) and the responses were free of 

blinks. Blink artefacts, if any were removed using a method similar to previous studies 
45, 

53
. Each participant needed to have at least 100 rows of acceptable data after satisfying all 
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of the above criteria in order to be considered for averaging and further analysis. If the 

participants had more than 100 eligible data points, only the first 100 points were taken 

for further analysis. The data retained were averaged to obtain the mean accommodative 

response. Data from one myopic participant was excluded from the averaging process 

since she failed to provide the minimum levels of acceptable data as a result of pupil 

diameters less than 4mm.  

 

Repeated measures analysis of variance (ANOVA) was used to compare the mean 

changes in accommodation and phoria with sustained fixation. In all cases, statistically 

significant main effects were further examined using Tukey Honestly significant 

differences (HSD) post-hoc tests to determine the group that showed the significant 

difference. Differences were considered statistically significant when the likelihood of 

type-I error was <0.05. Data analysis was performed using STATISTICA 6.0 (StatSoft, 

Inc, USA). Exponential curve fitting analysis was performed using Graphpad software 

(Graphpad Inc, USA) to compare the absolute magnitude and time course of adaptation in 

different groups.  Pearson correlations were conducted to look for relationships between 

phoria and accommodation. 
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5.4 Results 

5.4.1 Pattern of binocular vs. monocular accommodative response in the 

different vergence-bias categories 

Fig 5-1 shows the mean binocular and monocular accommodative responses for 

each vergence-bias category averaged from the first time point (0 min) in all children 

(irrespective of their refractive classification).  Binocular accommodation significantly 

(P=0.003) differed across vergence-bias categories but, the monocular measures 

remained similar between the groups (P=0.90).  While BA is significantly greater than 

MA in exophores (P<0.001) and phoria normals (P=0.030), MA is significantly greater 

(P=0.003) than BA in esophores. Furthermore, the accuracy of the accommodative 

response varied as a function of vergence-bias category in the binocular condition such 

that exophores displayed significantly (P=0.020) larger and more accurate 

accommodative response compared to esophoric children with larger lags and less 

accurate accommodative response.   
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Figure 5-1: Effect of vergence category on the pattern of binocular and monocular accommodation, 

irrespective of refractive error 

 

The effect of phoria on the difference between binocular and monocular 

accommodative response (attributed to the output of VA) was quantified using Pearson 

correlation coefficient.  Both refractive groups showed significant correlation between 

the two variables (Fig 5-2: Emm; r
2
=0.54; r= -0.74; P<0.001; Myo; r

2
=0.49; r= -0.69; 

P<0.001) such that exophores showed higher convergence accommodation compared to 

esophores. Linear regression analysis of the two variables showed similar slope (Emm= -

0.04; Myo= -0.03; P=0.32) and intercept (Emm=0.007; Myo=0.01; P=0.87) for both 

refractive groups, suggesting similar VA/V ratios in the two refractive groups.  
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Figure 5-2: Relation between phoria and differences between binocular and monocular accommodation 

(VA) 

 

Refractive type showed a significant main effect (P=0.010) such that myopes 

displayed greater accommodative lags compared to emmetropes.  However, the presence 

of a myopic refractive error did not significantly alter the pattern of accommodative 

response (BA<MA for exophores & phoria normals, and MA<BA for esophores; 

interaction between phoria and refractive error: P=0.60) in each vergence-bias category 

but only shifted the overall response towards increased accommodative lag (Fig 5-3).  
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Figure 5-3: Mean changes to the binocular and monocular accommodation over 20 min fixation at 33cm 
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5.4.2 Time course of changes to accommodation during sustained binocular 

fixation  

The type of phoria (Exo/Eso) continued to have a significant effect (P<0.0001) on 

the pattern of binocular vs. monocular accommodative response over time (Fig 5-3) such 

that exophores showed larger binocular accommodative response while esophores 

showed higher monocular response, similar to pre-near task. During the prolonged near 

task, all myopic phoria groups showed a small but significant increase (0.2-0.3D) in 

accommodative response (all P<0.05) after 4 min of near fixation. Emmetropic children 

also showed similar small (0.15-0.3) but significant changes after 6 min of viewing. The 

changes in accommodative response over time for each phoria and refractive category 

were fit with an exponential function to compare the magnitude of change in closed-loop 

accommodation and its time constant between groups. The total magnitude of change in 

accommodation did not show any significant effect of refractive type (Myo =0.28±0.05D; 

Emm= 0.22±0.04D; P=0.50), type of vergence-bias (Exo=0.16±0.06D; Eso=0.27±0.05D; 

PN=0.21 ± 0.05D; P=0.60) or viewing condition (Bino=0.24±0.05D; Mono=0.21±0.03D; 

P=0.80). Similarly, the time constant (ranged between 4-6 min) also did not show any 

significant difference (all P<0.50) between the type of vergence-bias and refractive group 

in this study sample. It is important to note that accommodation was not adapted 

monocularly since the prolonged viewing was performed under binocular viewing 

conditions.  
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5.4.3 Changes to open-loop accommodative response 

Accommodative adaptation was defined as the difference between pre and post 

TA measures.  All phoria categories in each refractive type showed significant myopic 

shift in TA (all P<0.05) after the near task (Fig 5-4). While myopes showed higher 

accommodative adaptation compared to emmetropes (P=0.010), the magnitude of 

accommodative adaptation did not differ between the phoria categories in each refractive 

group (P=0.40) and interaction between vergence-bias category and refractive error was 

also not significant (P=0.99).  
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Figure 5-4: Effect of vergence category and refractive type on accommodative adaptation 
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5.4.4 Time course of changes to near phoria during sustained binocular 

fixation  

The mean baseline phoria for each vergence posture and refractive category is 

given in table 5-1. One-way ANOVA comparing the baseline phorias between various 

groups showed that each category of vergence-bias significantly differed (P<0.001) from 

the others in both refractive groups. However, the baseline near phoria for a given 

vergence category was not significantly different between myopes and emmetropes (all 

P>0.050).  Figs 5-5 (a, b and c) show the time course of changes to near phoria during 20 

minutes of sustained fixation with respect to the vergence-bias categories in the two 

refractive groups. In the phoria normal category, emmetropes (EN) showed a small and 

significant convergent shift (P=0.010) that saturated following 2 min of fixation. This 

convergent shift was non-significant (P=0.10) in myopic phoria-normals (MN), and their 

phoria responses showed a small but significant divergent shift after 20 min of sustained 

fixation (time point 0 vs.20 min: P=0.010). In the exophoria category, both emmetropes 

(EX) and myopes (MX) showed significant convergent shifts (P=0.030) after 4 min of 

near fixation; however EX displayed larger (P<0.001) shifts compared to MX.  Both 

esophoric groups (EE&ME) showed a different direction of shift in phoria compared to 

exophores and phoria normals. Sustained fixation in EE and ME resulted in a significant 

divergent shift (P=0.050) with greater adaptation in ME compared to EE.  

 

In order to analyze the global effect of vergence-bias category and refractive type 

on the magnitude of vergence adaptation to near task, total adaptation (change in phoria 
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after 20 min) was computed from each participant using an exponential function. 

Statistical analysis showed a main effect of vergence-bias (P<0.001) and refractive type 

(P<0.001) but no interaction between vergence-bias and refractive group (P=0.80; Fig 5-

6). In all vergence categories, myopes showed more divergent (or less convergent) shift 

in vergence adaptation.  
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Figure 5-5: Comparison of mean phoria responses between emmetropes and myopes in each vergence bias 

category during sustained fixation 
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Figure 5-6: Comparison of the total magnitude of adaptation between the various vergence-bias and 

refractive groups  
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5.5 Discussion 

5.5.1 Vergence-bias category and refractive type on phoria adaptation to 

near task 

Our results indicate that phoria adaptation to a sustained near task does not shift in 

a convergent direction in all children. The type of vergence-bias and refractive error 

influence the magnitude and direction of phoria adaptation to a near task.  In both 

refractive groups, exophores showed a convergent shift while esophores showed a 

divergent shift in near phoria. These differences may be explained based on to the 

contrasting fusional vergence demands produced by the two phoria groups. The presence 

of exophoria relative to the dioptric demand of the target necessitates an increase in 

fusional convergence while an esophoric deviation requires an increase in fusional 

divergence in order to attain binocular single vision. Since phoria adaptation is related to 

the demand on the fusional vergence 
54

, the opposite directions of adaptation seen in 

esophores and exophores can be attributed to the differing fusional vergence demands.  

These results are similar to previous studies 
4, 5

 that also showed significant relationships 

between pre-task resting state or phoria and the magnitude of adaptation. However, it 

must be noted that previous studies did not differentiate subjects based on refractive error 

or measure accommodative adaptation.  

 

This is the first study to show an influence of refractive type on phoria adaptation 

to near task. For all phoria categories, myopic children show a greater divergent (or less 

convergent) shift in phoria adaptation compared to emmetropes. One possible 
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explanation could be related to the increased tonic accommodative after effects observed 

in myopic children 
13

. Accommodative adaptation may reduce the output of 

accommodative vergence cross-link, resulting in an exophoric or divergent shift 
55, 56

. 

This suggestion is consistent with studies that show an exo (divergent) shift in the phoria 

system due to accommodative adaptation 
57

 and a reduction in the VA cross-link activity 

with vergence adaptation 
55, 56, 58

. Furthermore, the higher AV/A ratio seen in myopic 

children 
36, 37

 may exaggerate the divergent shift due to accommodative adaptation 

compared to emmetropes.  

 

Near esophoria is believed to be associated with the development 
59

 and increased 

rates of progression of myopia 
60

. While the phoria categories other than esophores 

showed a convergent shift in vergence adaptation, esophores, especially myopes showed 

greater divergent shifts in near phoria with sustained fixation. Goss and Rosenfield 
40

 

speculated that the esophoria induced by vergence adaptation may cause increased 

accommodative lags under binocular condition, which may produce hyperopic defocus 

on the retina and induce axial elongation 
61, 62

. Based on this hypothesis, we may suspect 

the convergent shift in phoria normals/exophores to be a risk factor that could induce 

myopia development. However, the divergent shift in vergence adaptation seen in 

esophores does not appear to be crucial in the progression or development of myopia.  
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5.5.2 Type of vergence category and the pattern of binocular vs. monocular 

accommodative response  

Another key finding of this study is the reversal of the binocular vs. monocular 

accommodative response in children with exophoria and esophoria in both refractive 

groups. Heterophoria is overcome by fusional vergence, which in addition to maintaining 

single vision, also alters the binocular accommodative response through the VA/V cross-

link. Accordingly, the differences between binocular and monocular viewing conditions 

observed in the vergence categories were attributed to the activation of vergence 

accommodation. Exophores employ increased convergence to maintain bifoveal fixation, 

which enhances convergence accommodation such that binocular measures are greater 

than monocular levels. On the other hand, esophores exert fusional divergence to 

maintain single vision, which may result in a reduced output of vergence accommodation 

and greater monocular compared to binocular accommodation.  The findings of this study 

are consistent with the model predictions 
24

 that propose changes to binocular 

accommodation (BA) alone with changes in phoria. The monocular accommodative 

response (MA) remained unaffected, presumably due to the absence of disparity vergence 

input. The relationship between binocular accommodative response and phoria seen in 

this study is consistent with clinical observations 
20, 21

 and previous reports from 

retrospective 
22

 and prospective studies 
23

.   

 

Clinical tests 
20, 21

 suggest that greater or smaller binocular lags of 

accommodation observed in eso or exophoria respectively, may occur because the patient 
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is trying to alter accommodation (and AV)  to reduce the phoria and subsequently the 

demand on the fusional vergence system. In this study, we observed that exophores 

continued to show smaller binocular lags and esophores showed larger lags during the 

entire 20 minutes near fixation period. Although all groups showed a small increase in 

the accuracy of accommodation response, similar to previous studies 
63, 64

, this increase 

was not different between the viewing conditions and thus, did not alter the pattern of BA 

vs. MA observed in the phoria groups. If exophores continually exerted more blur-driven 

accommodation under binocular viewing condition to compensate their phoria, we may 

expect them to show larger tonic after effects (accommodative adaptation), since the 

magnitude of adaptation is proportional to demand on the phasic controller 
56

. Similarly, 

esophores may be expected to show a reduced amount of accommodative adaptation after 

the near task. Our results show no difference in accommodative adaptation between 

phoria groups in either refractive type. Consequently, we attribute the relationship 

between phoria and binocular measures to the activity of VA cross-link modulated by the 

fusional vergence system. 

 

The presence of myopia did not alter the pattern of binocular vs. monocular 

accommodative response but resulted in larger lags in all phoria groups under both 

binocular and monocular conditions. While previous studies showed larger 

accommodative lags in myopic children under monocular viewing conditions 
31, 65

, this 

was not seen when both eyes observed the target 
34, 35

.  It is important to note that latter 

studies that showed no refractive group differences under binocular viewing conditions 

did not differentiate their participant based on vergence-bias category. In addition, past 
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studies indicate that progressive myopic children show larger lags compared to stable 

myopes 
30, 32

. Though this study did not measure progression prospectively, review of 

past clinical records indicate that 18 out of 27 myopes progressed by at least 0.25-

0.50D/yr. Six participants did not have more than one exam at the School of Optometry 

to determine the amount of progression and 3 had stable refraction. The larger 

accommodative lags may be due to the relatively progressive nature of the refractive 

error in this study population. 

 

Our results show that vergence-bias does not influence the monocular 

accommodation response for the range tested. Previously, Gwiazda et al 
36

 showed a 

moderate correlation (their Fig 3b; r= -0.35; P=0.040) between near phoria and 

monocular accommodation in myopes but not emmetropes. Visual inspection of their 

data shows similar accommodative responses across most phoria magnitudes except for a 

few myopic children with extremely high eso and exophoria (±15Δ). Several studies 

record monocular accommodation in an attempt to study the contribution of phoria. For 

instance, few 
66, 67

 studies that measured the effect of progressive addition lenses in 

reducing myopic progression measured monocular accommodation and quantified the 

effect of monocular lags in different phoria groups. Based on the results of this study, it 

appears that studies including individuals with a wide range of phoria should also include 

the measurement of binocular accommodation as it incorporates the fusional vergence 

response to overcome phoria.  
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5.5.3 Vergence category and refractive type on accommodative adaptation to 

a near task 

Sustained fixation of the near task increased the tonic accommodative levels in 

both myopic and emmetropic children, but myopes showed greater accommodative 

adaptation to the near task compared to emmetropes. This is consistent with studies that 

tested the shifts in tonic accommodation in myopic children 
13

  and  late onset myopes, 

but not with adults who had been early onset myopes 
11

. The difference could be related 

to the duration of myopia since children and adults with recent onset show greater shifts 

than individuals with long-term myopia 
13

. The larger shifts in myopic children are also 

consistent with reports that show greater NITM (near work induced transient myopia) in 

myopic children 
68

, where again the myopic (tonic) shift represents the output of the slow 

blur-driven accommodative response.  

 

The category of vergence-bias did not influence accommodative adaptation in 

either refractive group. Accommodative adaptation is the result of prolonged rate of 

decay of the slow accommodative controller, which receives input from the phasic 

controller 
56

. In this study, a 3D stimulus produced similar monocular blur-driven 

accommodation response (phasic) in all phoria groups, which may explain the similarity 

in accommodative adaptation between the phoria groups. Past reports have shown that 

convergence accommodation is capable of inducing accommodative adaptation under 

open loop conditions, which would suggest greater adaptation in exophores 
55, 63

. 
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However, vergence adaptation in exophores (Fig 5-6) may have reduced the VA cross-

link activity and eliminated these differences.  

5.5.4 Conclusion 

The primary findings of this study are that the type of vergence-bias category and 

myopia altered the behavior of accommodative and vergence parameters during near 

fixation in children. In the accommodative system, the type of vergence-bias modified the 

binocular but not monocular steady-state accommodative response to a near target such 

that exophores and phoria normals displayed larger binocular measures while esophores 

demonstrated larger monocular measures. In the vergence system, the category of 

vergence-bias (eso/exo) altered the direction and magnitude of phoria adaptation with 

exophores and esophores displaying convergent and divergent shifts respectively upon 

prolonged fixation. The presence of myopia did not alter the pattern of changes produced 

by the type of phoria, but only resulted in an overall shift in the responses. In all phoria 

groups, myopic children showed greater lag of accommodation and a divergent (or less 

convergent) shift in vergence adaptation compared to emmetropes.  
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6 The role of vergence-bias category and myopia on binocular 

adaptation to near addition lenses in children 
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6.1 Summary 

Purpose: Near adds are prescribed for various reasons including the treatment of 

binocular anomalies and myopia control. Little empirical information is available on how 

the binocular motor system adapts to near adds in children. This study examined the 

effect of habitual vergence-bias category and refractive error on vergence adaptation to 

+2D and -2D adds.  

 

Methods: 25 myopic and 25emmetropic children between 7-14 years of age participated 

in the study. The children were divided into emmetropic and myopic phoria-normals (EN 

& MN; 0-4∆exo); emmetropic and myopic exophores (EX & MX; > 6 exo) or 

emmetropic and myopic esophores (EE & ME; >2 eso) based on their near phoria.  

Measures of accommodation and near phoria were taken at frequent intervals when 

children sustained near task through +2D and -2D adds over corrective lenses at 33 cm. 

Vergence adaptation was quantified using an exponential decay function. In addition, 

tonic accommodation was measured pre and post near task.  

 

Results: AV/A ratios (and the lens induced phorias) significantly differed as a function 

of vergence-bias category (P=0.02) and refractive error (P=0.01) such that esophores and 

myopic children showed higher response AV/A ratios compared to other groups. 

Vergence adaptation to lens-induced exo and esophorias significantly differed as a 

function of add condition (P<0.0001), type of vergence-bias category in each add 

condition (P<0.001), and type of refractive error in +2D (P<0.0001) but not -2D add 
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condition (P=0.14).  In the emmetropic group, the pattern of vergence adaptation was 

opposite in the phoria categories for the +2D (EX>EN>EE) and -2D add (EE>EN>EX). 

In the myopic groups, only esophores showed significantly less and greater adaptation 

compared to other phoria categories to the opposite add conditions (+2D: MX=MN>ME; 

-2D: ME>MN=MX). Nevertheless, vergence adaptation significantly correlated with the 

demand of fusional vergence in both refractive groups (Emm r
2
=0.83; Myo; r

2
=0.72; 

P<0.0001). All myopic vergence-bias categories showed significantly reduced adaptation 

(P<0.001) through plus adds compared to their respective emmetropic groups. The 

reduced adaptation appears beneficial for the ME as it resulted in a mean phoria closer to 

orthophoria than that found for the other phoria groups (MN & MX).  Vergence 

adaptation did not significantly differ between the refractive groups when children 

sustained fixation through minus adds. Further, adaptation of tonic accommodation was 

significantly greater in the -2D add condition compared to +2D add condition. Myopic 

children showed significantly (P=0.01) greater accommodative magnitude compared to 

emmetropes in the minus add condition only.  

 

Conclusion: The differing demand on fusional vergence appears to explain the 

asymmetrical pattern of vergence adaptation between +2D and -2D adds observed in the 

emmetropic phoria groups. However, the demand on fusional vergence only partly 

describes the pattern of adaptation seen in the myopic phoria groups. The asymmetry in 

the effect of refractive error on vergence adaptation to +2D and -2D adds may be related 

to higher accommodative adaptation seen in myopic children. Vergence adaptation to 
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plus adds appears most compromised in MN & MX, which could lead to a greater 

vergence stress in this group wearing high plus adds for myopia control. 

6.2 Introduction 

A previous study (chapter 4) showed that myopic children with normal near 

phoria exhibit reduced vergence adaptation to +2D adds compared to emmetropes. The 

decreased adaptation was also seen in myopes with  low AV/A ratios, suggesting that the 

higher AV/A ratios seen in young myopes 
1, 2

  (at least),  does not necessarily correlate 

with high levels of vergence adaptation as found in adult populations
3, 4

.  It is unclear 

whether myopic children with habitual near exophoria or esophoria also show decreased 

adaptive behavior compared to emmetropes. Several clinical studies on myopic children 

have shown that esophores display greater myopia reduction through plus adds compared 

to exophores 
5-7

. Due to the interaction between accommodation and vergence 
8, 9

 , it is 

common clinical practice to expect that plus adds will reduce the binocular vergence 

stress in an esophoric child 
10

. However, in the case of esophores, where plus adds reduce 

the stress of over convergence, vergence adaptation would reduce the efficacy of the 

correction.  

                                                                                                                                     

Previous studies have not identified the role of habitual vergence-bias category on 

the degree of vergence adaptation to near addition lenses. Models of accommodation and 

vergence 
11-13 

suggest that the adaptive (tonic) element receives input from phasic 

controller, indicating a directly proportional relationship between the magnitude of 

vergence adaptation and the demand on the phasic controller. Several empirical studies 
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have also confirmed this prediction by showing larger amounts of adaptation to higher 

prismatic disparities 
14-16

. Following these suggestions to lens-induced conditions, we 

would expect a child with habitual divergent phoria to experience increased fusional 

convergence demand (increased phasic activity) and therefore increased adaptation to 

plus adds.  Similarly, esophores may experience less fusional vergence stress and reduced 

adaptation to plus adds compared to exophores. If vergence adaptation depends on the 

demand on fusional vergence, opposite pattern of adaptation would be expected for 

exophoric and esophoric children when they sustain fixation through minus adds, which 

increase the stimulus for accommodation and induce esophoria.  

 

The broader objective of this study was to use near addition lenses as a means to 

understand the mechanism of binocular adaptation in children. The specific goals were 

two-fold. First, to assess the role of baseline vergence-bias category on adaptation to near 

addition lenses in children. Here, we hypothesize that the degree of adaptation will be 

proportional to the demand on the fusional vergence and would thus expect opposite 

patterns of adaptation to plus and minus adds. The second objective was to evaluate the 

influence of myopia on vergence adaptation to plus and minus adds in children.  Since 

myopic children exhibit differing ocular motor characteristics such as higher 

accommodative lags, 
17, 18

, greater accommodative adaptation 
19

 and larger response 

AV/A ratios 
1, 2

, they may exhibit dissimilar adaptive behavior compared to emmetropes.  
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6.3 Methods 

The study protocol was approved by the University of Waterloo ethics review 

board and adhered to the tenets of the Declaration of Helsinki. Participants were recruited 

from the clinic database at the School of Optometry, University of Waterloo. Informed 

consent (parents) and assent (children) were obtained after verbal and written explanation 

of the procedures involved in the study. 

 

6.3.1 Participants 

A total of 53 children (28 myopic and 25 emmetropic; 57.5% female) between the 

ages of 7 and 15 years were examined. Participants underwent preliminary examination 

to ensure the following: myopic refractive error between -0.75 and -6 D or emmetropic; 

refractive error between +0.5 and +1.5 D determined using cycloplegic refraction 

(performed using 1% Tropicamide
20

); astigmatism < 1D; anisometropia < 1D; best 

corrected visual acuity of at least 6/6 in each eye; non-strabismic; normal amplitudes of 

accommodation and had no history of bifocal/PAL use in the past. Participants had no 

systemic or ocular disease (determined from their clinical records) and were not taking 

any medications (parental report) that may influence the accommodation or vergence 

system.  
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6.3.2 Instrumentation and targets  

The overall study design involved prolonged binocular viewing through the near 

addition lenses for 20 min with periodic measurements of accommodation and phoria, to 

quantify the time course of changes in either system.  The instrumentation used for 

obtaining phoria and accommodative responses have been described in Chapter 3. 
 

Briefly, horizontal near phoria (33cm) was measured using the modified Thorington 

technique (MTT) 
21

. A red Maddox rod was placed before the right eye and the resulting 

phoria was measured using a “flashing technique” similar to previous studies. 
22, 23

 Near 

phoria was defined as the average of the three responses. Children were divided into 

“normophores” (mean near phoria between 0-4 exo), exophores (>6 exo) or esophores 

(>2 eso) based on their phoria measures through distance-corrective lenses at 33cm. 

Table 6-1 lists the number of children in each vergence-bias category and other critical 

visual parameters of the study groups.  
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Table 6-1Critical visual parameters of myopic and emmetropic children 

PARAMETER Emmetropes Myopes 

Normophores Exophores Esophores Normophores Exophores Esophores 

No of 

participants 

11 8 7 10 7 11 

Age (7-14) in 

yrs 

10.8 ± 0.43 12.2 ± 

0.63 

11.9 ± 

0.43 

10.43 ± 0.53 11.2 ± 0.8 11.8 ± 

0.63 

Refractive 

error (D) 

0.59 ± 0.09D 0.4± 

0.09D 

0.3± 

0.09D 

-2.0 ± 0.3D -2.5 ± 

0.2D 

-1.7 ±0.3D 

Near phoria 

(Δ) 

 

-2.15 ± 0.49 

(0 to 4 exo ∆) 

-6.72 ± 

0.36 

(6 to 10 

exo ∆) 

2.83± 0.58 

( 2 eso to 

5 eso ∆ ) 

-1.24 ± 0.94 

(0 to 4 exo ∆) 

-9.7 ± 1.5 

∆(6 to 14 

exo ∆) 

4.09 ± 0.5 

(2 eso to 8 

exo ∆) 

        

Accommodative responses were obtained using the monocular mode of an 

eccentric infra-red (IR) photorefractor, the PowerRefractor (Multichannel Co, 

Reutlingen, Germany). 
24, 25

 This setting determined refraction along the vertical 

meridian, coupled with measures of gaze deviations and pupillary diameter at a sampling 

rate of 25 Hz. Two high contrast accommodative targets were used to measure and 

sustain closed-loop accommodation. The accommodative (measuring) stimulus was a 

fixed high contrast (85%) color cartoon frame (target luminance = 15 cd/m
2
), which 

allowed a constant level of retinal illumination during the photorefractive measures of 

accommodation. Children viewed a looping cartoon movie at a plane 33 cm from the eye 

to sustain prolonged fixation for 20 min.  This format has been used previously where the 

cartoon frame has been confirmed to be an effective stimulus for accommodation. 
23

   The 



136 

 

targets were displayed on a 1.77″ wide liquid crystal display monitor (Model No: LT-

V18 U; Victor company of Japan) and projected at a distance of 33cms through a semi-

silvered mirror. The mirror, set 10 cm from the right eye, and angled at 45 degrees 

allowed the photorefractor to simultaneously record accommodation from the right eye 

during target viewing. The method has been described elsewhere in detail. 
23 

 

Binocular accommodation (BA) and monocular accommodation (MA) were 

recorded continuously for a period of 5sec after confirming steady fixation using the gaze 

control function displayed on the PowerRefractor interface. For the binocular response, 

accommodation was recorded from the right eye alone, although both eyes fixated at the 

target. For measurement of MA, the left eye was occluded. During the 5 sec measurement 

period for each of BA and MA, the accuracy of fixation was assessed using the gaze 

control function displayed on the PowerRefractor interface. Additionally, care was taken 

to ensure that the child was fixating the near target at the correct fixation distance (33 cm) 

while measurements were recorded. A volunteer constantly monitored the head position 

of the child and ensured they did not move away from the chin rest during measurement. 

If any unsteady fixation was noticed during measurement, or when the examiner (VS) 

observed off axis gaze errors exceeding about 10 degrees, the measures were flagged 

using keyboard inputs and discarded given the possibility of under or over estimation of 

accommodation. 
26, 27 

In these cases, recordings were obtained for an additional 5 sec 

period to ensure equal data sets across subjects.   
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In addition to closed-loop accommodation, tonic accommodation was measured 

by instructing participants to monocularly (left eye occluded) fixate a low spatial 

frequency (0.2 cpd) difference of Gaussian target’ at 4m. This target has been considered 

to be effective stimulus to open the accommodative feedback loop.    

 

6.3.3 Experimental procedure 

The experimental procedure consisted of two study sessions performed on 

different days (separated by at least by 24hrs) with the order of testing randomized to 

avoid bias. One session was performed with the children wearing +2D lenses 

mathematically added over their corrective lenses (if any) in a trial frame (referred to as 

“plus add condition”) and the other involved measurements through -2D lenses (referred 

to as “minus add condition”) added over their correction. The addition lenses were 

inserted at a distance of 12 mm from the participants’ eyes and the trial frame was 

adjusted for the participants near pupillary distance so as to reduce any prismatic effect.  

 

Prior to the start of the study session, participants sat in total darkness for 3 

minutes to dissipate any effects of previous near work and allow the accommodation and 

vergence system to return to their resting states 
28

. Pre-task measures of tonic 

accommodation were taken in an otherwise dark room. The lighting in the examination 

room was then reduced to approximately 10 lux to obtain sufficiently large pupil sizes for 

the measurement of accommodation. Following this, measures of phoria, binocular and 

monocular accommodation were taken at 33 cm through best corrective lenses to 
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establish the baseline response without adds. Subsequently, participants were instructed 

to close their eyes and +2D or -2D lenses were binocularly added over the corrective 

lenses. The examiner confirmed clear vision through the adds when fixation was 

monocular (right eye occluded) and performed a measure of phoria before permitting any 

binocular viewing through the addition lenses. This response was defined as the lens-

induced phoria for which adaptation was to be quantified. Phoria measures were followed 

by binocular and monocular accommodation. The time taken for one complete 

measurement block (measurement of phoria, binocular and monocular accommodation) 

ranged between 60 and 80 sec.   

 

Participants were then instructed to watch a cartoon movie that was played at a 

distance of 33 cm and subsequent measures of phoria, binocular and monocular 

accommodation were repeated after 2, 4, 6, 8, 10, 15 and 20 minutes of near fixation. 

Participants were instructed to report any blurriness of vision anytime during the session. 

Immediately after the near task (within 40-50 sec) tonic accommodation was recorded to 

calculate accommodative adaptation.  

 

6.3.4 Data Analysis  

Each measurement of the accommodative response lasted for 5 sec, which at the 

Power Refractor sampling rate of 25 Hz provided a total of 125 data points. Each data 

point was screened and accepted according to criteria outlined in earlier reports. 
23, 25, 

29
All measures obtained from the PowerRefractor were calibrated based on individual 
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calibration equations using a two-step protocol similar to previous studies. 
23, 30

. The 

calibrated PowerRefractor responses represented the plane of focus of the eye
23

. The 

actual accommodative responses were then adjusted for the effective power of the near 

adds because lens manipulations were conducted at the spectacle plane in all cases. All 

data were analyzed such that the stimulus to accommodation and the accommodative 

responses were adjusted for lens effectivity using equations described in previous 

reports
2, 31

.  

 

Data from three participants were excluded from analysis. Of these, two were 

myopic esophores who complained of blurred vision through adds 
1 (see footnote)

  and one 

(myopic exophore) showed pupil diameters less than 3 mm which prevented reliable 

Power Refractor measures. Thus the data of 25 myopic and 25 emmetropic children were 

considered for further analysis. 

 

Repeated measures analyses of variance (RM-ANOVA) was used to determine 

the effect of lens add condition and time on accommodation and phoria response. In all 

cases, statistically significant main effects were further examined using Tukey Honestly 

significant differences (HSD) post-hoc tests to determine the precise time point that 

showed the significant difference. Differences were considered statistically significant 

when the likelihood of type-I error was <0.05. Data analysis was performed using 

STATISTICA 6.0 (StatSoft, Inc, USA). Phoria adaptation was quantified using two 

parameters derived using an exponential decay function similar to a previous study 

(Chapter 4).  The ”magnitude” of adaptation was defined as the overall change in phoria 
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after 20 min fixation through the near adds while the ”completeness” of adaptation, was 

defined as the return of adapted phoria to the habitual level. Curve fitting and analysis 

were performed using Graphpad software (Graphpad Inc, USA).  

 

1: Testing was conducted with a low powered add (1D) in the two children and the pattern of adaptation was 

similar to 2D add. The results were not included for analysis due to a different magnitude of near add 



141 

 

6.4 Results 

6.4.1 Changes to near phoria through plus and minus addition lenses 

The mean habitual near phorias (Table 6-1) in each vergence-bias category and 

refractive category were similar between the plus add and the minus add sessions 

(P>0.9). However, in both add sessions each type of vergence-bias category significantly 

differed (P<0.001) from the others in myopes and emmetropes. Furthermore, the habitual 

near phoria for any given vergence-bias category was not significantly different between 

the two refractive groups (P>0.1).  Plus and minus addition lenses induced exophoria and 

esophoria respectively in all children, based on their AV/A ratios (Table 6-2). The AV/A 

ratios and lens-induced phorias were similar between the two add conditions (AV/A: 

P=0.22; Lens-induced phoria: P=0.75) but differed between the phoria categories (AV/A: 

P=0.02; Lens-induced phoria: P<0.001) and refractive groups (AV/A: P=0.01; Lens-

induced phoria: P=0.005) such that myopes and esophores showed higher AV/A ratios 

and lens-induced phorias compared to emmetropes and exophores.  
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Table 6-2: Parameters of adaptation for the plus add (dark grey) and minus add (light grey) conditions in all study groups. 

 

Negative sign denotes exophoria and positive sign denotes esophoria 

 

 

Refractive 

error 

Parameters 

Emmetropes Myopes Emmetropes Myopes 

 EX EN EE MX MN ME EX EN EE MX MN ME 

Induced 

exophoria 

-4.0±0.4 -5.2±0.4 -6.8±0.3 -5.5±1.5 -6.9±0.6 -7.9±0.6 4.7±0.3 5.0±0.5 7.2±1.0 4.6±0.7 6.0±0.8 9.2±0.8 

RAV/A 4.3±0.6 4.5±0.3 5.9±0.4 4.8±1.5 6.8±0.8 8.4±1.2 4.2±0.6 4.1±0.8 5.6±0.4 4.5±0.9 6.4±1.2 8.1±0.8 

Magnitude of 

adaptation 

4.7±0.3 4.6±0.5 3.8±0.4 2.6±0.5 3.9±0.5 2.8±0.5 -0.6±0.5 -2.0±0.5 -5.0±1.1 1.1±0.2 2.8±0.6 7.4±0.7 

Time constant 1.7±0.5 0.8±0.1 1.2±0.5 2.0±1.5 1.2±0.3 1.2±0.2 2.5±1.2 1.3±1.0 3.0±1.0 3.3±0.6 1.8±0.5 3.5±0.6 

Completeness 

 

121.7±10.7 86.1±4 55±5.3 54.3±7.5 56.0±6.7 36.5±7.1 13.5±11 41±8.6 66.1±8.5 24.1±11.9 42.6±6.3 78.2±7.6 
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6.4.1.1 Time course of changes to phoria through plus adds 

Sustained binocular fixation through +2D adds resulted in a significant reduction 

of lens-induced exophoria (P<0.0001) in all vergence-bias and refractive categories.  In 

EN and EE groups, the entire reduction of exophoria occurred within 2 minutes (Fig 6-1, 

P<0.001) of binocular fixation while EX continued to decrease beyond 2 minutes (time 

point: 2 min vs. other time points:  P<0.05, Fig 6-1) but reached saturation (no significant 

change) at the 4 minute time-point. In the myopic groups, although majority of the 

change in phoria occurred within the first two minutes, all myopic groups showed further 

small and significant reductions with sustained fixation (2min vs. 20 min: reduction 

=0.75-1Δ: P<0.05, Fig 6-1).  



 144 

EN

0 2 4 6 8 10 12 14 16 18 20
-10

-8

-6

-4

-2

0

2

4

6

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

MN

0 2 4 6 8 10 12 14 16 18 20

-10

-8

-6

-4

-2

0

2

4

6

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

EX

0 2 4 6 8 10 12 14 16 18 20

-20

-15

-10

-5

0
Habitual phoria

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

MX

0 2 4 6 8 10 12 14 16 18 20

-20

-15

-10

-5

0
-2D +2D Habitual phoria

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

EE

0 2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2

4

6

8

10

12

14

16

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

ME

0 2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2

4
6

8

10
12

14

16

Time(mins)

P
h

o
ri

a
 p

o
s
it

io
n

 (
P

D
)

 

Figure 6-1: Comparison of mean phoria adaptation responses through +2D and -2D add .  

Grey solid line represents responses in emmetropes (E) and myopes (M)  in each vergence bias category(X, 

N, E) during sustained fixation. Dashed line represents the position of habitual phoria prior to lens addition. 

Error bars indicate mean ± SEM 
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 In order to analyze the global effect of vergence-bias category and refractive type 

on phoria adaptation to plus adds, each participant’s phoria response was fit using an 

exponential decay function in order to derive the magnitude and completeness of 

adaptation.  Both these parameters of phoria adaptation were then subjected to ANOVA 

with phoria categories (3 types) and refractive error (2 types) as factors. The main effect 

of vergence-bias category was significant (Fig 6-2 A; Main effect P<0.0001), where 

exophores displayed significantly higher completeness compared to phoria normals 

(P=0.01) and esophores (P<0.001).  However, post-hoc analysis only showed significant 

differences in completeness between emmetropic vergence-bias category groups (EX vs. 

EN:P=0.001; EX vs. EE:P<0.0001; Table 6-2). Myopic exophores do not show 

significantly greater completeness compared to MN (P=0.86) and ME (P=0.06). Myopic 

esophores showed significantly less adaptation compared to myopic phoria normals 

(P=0.02). Furthermore, the interaction between vergence-bias category and refractive 

type was also significant (Fig 6-2, P=0.006), demonstrating that the type of vergence-bias 

category had a greater effect on emmetropes compared to myopes. Completeness of 

adaptation significantly differed as a function of refractive type (Fig 6-2B , P<0.0001), 

indicating that the mean completeness of adaptation to plus adds was less in myopes 

compared to emmetropes. Post-hoc analysis indicated that for each vergence-bias 

category, myopic children showed significantly lower completeness of adaptation (EX 

vs.MX: P<0.0001; EN vs.MN: P=0.001; EE vs.ME: P=0.006; Table 6-2) compared to 

emmetropic children.  
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Figure 6-2: (A) Comparison of the total completeness of adaptation between the phoria categories for 

emmetropes and myopes. (B) Total completeness of adaptation compared between myopes and 

emmetropes in each add condition. Error bars indicate mean ± SEM 

 

 

  

A: Comparison between add condition in each refractive group 

B: Comparison between refractive groups in each add condition 
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Statistical analysis comparing the magnitude of adaptation indicated significant 

main effect of refractive error (Table 6-2; P=0.002) such that myopic groups showed less 

magnitude of adaptation compared to emmetropes (MX vs EX; P<0.005; MN vs EN: 

P=0.09; ME vs EE: P<0.005). The main effect of vergence-bias category (P=0.37) and 

interaction effect were not significant (P=0.36).  

6.4.1.2 Time course of changes to near phoria through minus adds 

Minus add induced esophoria showed a significant decrease with sustained 

binocular fixation in all groups (Main effect of time: P<0.05) except emmetropic 

exophores (Fig 6-1; P=0.33). In the phoria normal category, emmetropes and myopes 

showed the majority of the reduction in esophoria within 2 minutes of fixation (EN & 

MN: P<0.0001), although further small but significant changes occurred with sustained 

fixation (Fig 6-1: time point 2 min compared to 20 min: EN: P= 0.03; MN: P=0.02). EE 

and ME reached saturation at 8 minutes (0, 2, 4, 6 min compared to 20 min: P<0.05) and 

10 minutes (0, 2, 4, 6, min vs. 20: P<0.05; 8 min vs 20 min: P=0.05) respectively.  MX 

showed very small change (0 vs 20 min=1.1Δ; P=0.04; Fig 6-2) with sustained fixation.  

 

The overall effect of the vergence-bias category and refractive type were 

determined by comparing the magnitude and completeness of adaptation derived using 

exponential decay function similar to plus adds. Factorial ANOVA showed a significant 

main effect of vergence-bias category on phoria adaptation to minus adds as a function of 

magnitude (Table 6-2, P<0.0001) and completeness (P<0.001; Fig 6-2A and Table 6-2). 

Esophores showed significantly higher magnitudes and completeness of adaptation 

compared to phoria normals (P<0.001) and exophores (P<0.0001) in both refractive 
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groups (Fig 6-2A). The main effect of refractive type was non-significant for both 

parameters of adaptation (P=0.08 for magnitude and P=0.14 for completeness- Fig 6-2B). 

Additionally, the interaction between vergence bias category and refractive error was also 

non-significant (Fig 6-2, P<0.7).  

Since myopic children showed larger AV/A ratios, we determined the relationship 

between the AV/A ratio and adaptation to plus and minus adds in myopes and 

emmetropes (Fig 6-3) in each add condition. Myopes showed significantly (P<0.0001) 

less completeness in their adaptation to adds both plus and minus compared to 

emmetropes (Plus add: Emm= -11.07±3.2; Myo= -1.34±1.54; Minus add: 

Emm=15.01±3.4; Myo=2.72±2.0). Further, it is interesting to note significant reversal of 

slopes between plus and minus adds in emmetropes (P<0.001) but not myopes (P=0.11) 

such that in emmetropes the completeness of adaptation is inversely related to AV/A for 

plus adds but directly proportional to the AV/A through the minus adds.  
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Figure 6-3: Plot showing  the degree of completeness of adaptation in both refractive groups in each add 

condition as a function of the Response AV/A ratio.  

Individual symbols have been excluded for the sake of clarity 
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6.4.1.3 Comparison of vergence adaptation between plus and minus add 

conditions 

Repeated measures ANOVA was performed to compare the completeness of 

phoria adaptation between the plus and minus add conditions in all groups. Statistical 

analysis showed a highly significant main effect of add condition (P<0.0001), interaction 

between add condition and type of vergence-bias category (P<0.0001), and a significant 

interaction between add condition and refractive type (P<0.0001). These results indicate 

that the asymmetry in phoria adaptation between the plus and the minus add conditions is 

dependent on the type of vergence-bias category and refractive group (Fig 6-2). 

Emmetropic exophores (P<0.0001; Difference in completeness=108%; Fig 6-2A) and 

myopic esophores (P<0.0001; Difference in completeness=42%; Fig 2A) showed the 

greatest asymmetry in adaptation between the add conditions. However, the other groups 

MX (P=0.06) and EE (P=0.40) did not show statistically significant differences in the 

completeness of adaptation between the +2D/-2D add conditions (Fig 6-2A).   

 

In an effort to understand the asymmetric adaptation pattern to near adds, we 

determined the fusional vergence demand (This value was calculated by determining the 

amount of divergence or convergence required to overcome the resulting eso or exo 

phoria respectively) required for each subject upon the onset of viewing through either 

the + or –ve near add. For both parameters of adaptation (magnitude and completeness; 

Figs 6-4A&B) we found a significant correlation (P<0.05) between the demand on 

fusional vergence and adaptation (Magnitude of adaptation:  Emm: +2D and -2D 

combined: P<0.0001; overall r=-0.91; r
2
=0.83; Myo: P<0.0001; r=-0.85; r

2
=0.72 ). This 
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relationship was also evident when groups were classified based on vergence bias 

category (r
2
 ranging from 0.5-0.8).  

 

 

 

  

Figure 6-4: Plot showing the relationship between the magnitude of adaptation and demand of fusional 

vergence (A) and the completeness of adaptation and the demand on fusional vergence (B) in all study 

groups.  
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6.4.2 Changes to accommodative responses through plus and minus addition 

lenses 

The mean accommodative responses through corrective lenses i.e. no add (Fig 6-

5) were statistically similar between the two add sessions under both binocular (P=0.9) 

and monocular viewing conditions (P=0.3) across all groups. Viewing condition (BA vs. 

MA), type of vergence-bias category and refractive state, significantly influenced the 

magnitude of accommodative response, similar to the results reported in Chapter 5. 

Myopic children displayed significantly lower accommodative response compared to 

emmetropes (P=0.01). In both refractive groups, exophores showed significantly higher 

BA compared to MA (P<0.01), whereas esophores displayed higher MA compared to BA 

(P<0.05).   

Introduction of plus and minus adds significantly (P<0.0001) reduced and 

increased the accommodative response respectively in all groups (Fig 6-5). Fixation 

through plus adds (Fig 6-5 black lines) altered the pattern of BA vs. MA (main effect of 

viewing condition: P<0.05 except MX: P=0.13) such that, BA was significantly higher 

than MA (P<0.05) in all groups, especially at the onset of near work (time point 0). In 

both refractive groups, sustained fixation reduced the BA alone (main effect of time: BA: 

P<0.05; MA: P>0.3) in exophoric (EX: P=0.005; MX:P=0.05) and phoria normals (EN: 

P<0.0001; MN: P=0.01). Both esophoric groups (ME and EE) displayed a non-significant 

effect of time on BA (P>0.2); however, ME showed a small and statistically significant 

(P<0.005) increase in monocular accommodation with sustained fixation. Only the 

exophores and phoria normals showed significant interaction between viewing condition 
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and time (P<0.005) suggesting greater effect of time on BA compared to MA when 

viewing through plus adds.  

 

Compared to the plus add condition, fixation through minus adds reversed the 

pattern of BA vs. MA in some groups (In EE, ME and MN: MA>BA) and reduced the 

difference between BA and MA in others. Immediately after the addition of -2D lenses, 

BA vs. MA was significantly different in esophores (Fig 6-5; EE & ME: P<0.0001) and 

exophores (P=0.01) but not phoria normals (P>0.5). Sustained fixation significantly 

increased the accommodative response in both binocular and monocular viewing 

conditions in all groups (P<0.05) except MX (P=0.18). Interaction between viewing 

condition and time was significant only in the esophoric groups (EE &ME; P<0.05) such 

that BA changed more than MA in both groups within the first 4 minutes of fixation.  

Changes to BA and phoria during sustained fixation through minus adds was significantly 

correlated (P<0.05) in EE & ME but not the other groups (P>0.4).  
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Figure 6-5: Mean changes to the binocular and monocular accommodative responses through +2Dand -2D 

add adds  at 33cm.   

Grey lines indicate responses for the minus add condition, while black lines indicate responses from + add 

condition. The thick solid black line (binocular) and thick dashed black line (monocular) represent the 

mean accommodative responses through distance corrective lenses (no add) in all the refractive and 

vergence bias groups.  Error bars indicate mean ± SEM 
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6.4.2.1 Accommodative adaptation through plus and minus adds in the groups 

Accommodative adaptation was defined as the difference between pre and post-

task tonic accommodation. Fig 6-6 shows the pattern of accommodative adaptation 

through plus and minus adds in the refractive and phoria categories. All groups except 

myopic esophores show non-significant accommodative adaptation (i.e post task TA 

similar to pre-task TA; P>0.2; ME: P=0.01) through plus adds. On the other hand, all 

groups but exophores (MX: P=0.5; EX:P=0.06;) show significant accommodative 

adaptation to minus adds (P<0.001). The magnitudes of accommodative adaptation 

between the add condition, refractive type and phoria categories were compared using 

RM-ANOVA.  The overall effect of refractive type was approaching significance 

(P=0.08), however, post hoc tests indicated that myopic children showed significantly 

greater accommodative adaptation to minus adds compared to emmetropic children 

(P=0.01).  

The type of add condition significantly influenced the amount of accommodative 

adaptation (P<0.0001) such that greater adaptation was seen through minus adds 

compared to plus adds. Post-hoc tests revealed that all groups except EX showed this 

pattern of greater accommodative adaptation to minus adds compared to plus adds 

(P<0.05). Although the main effect of vergence-bias category was significant (P<0.005) 

statistically significant differences were not observed between all vergence-bias category 

categories in the two add conditions. In the plus add condition, only ME showed 

significantly higher accommodative adaptation compared to other groups (P<0.01). In the 

minus add condition, exophores showed significantly lower accommodative adaptation 

compared to esophores in both refractive groups (EX vs. EE: P=0.01; MX vs. ME: 
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P=0.002) but only compared to phoria normals in myopic category (MX vs. MN: P=0.01; 

EX vs. EN=0.09).   
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Figure 6-6: Mean tonic accommodative change (Pre task – post task) in myopic and emmetropic children 

with +2D and -2D adds after 20 minutes of near activity. Error bars indicate mean ± SEM  
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6.5 Discussion 

This study employed near addition lenses as a means to investigate vergence 

adaptation in children. The primary findings of this study were that both the category of 

phoria and refractive error influence the pattern of vergence adaptation to near adds in 

children.  

 

6.5.1 Role of habitual vergence-bias category on vergence adaptation to near 

adds 

Introduction of positive and negative addition lenses reduced and increased the 

accommodative response relative to the near target (3D), inducing exophoria and 

esophoria respectively in all study groups, in accordance with their AV/A ratios. The 

lens-induced shifts in phoria are consistent with previous reports 
23, 32-34 

and models of 

accommodation and vergence. 
12, 13

 All groups showed an ability to adapt to adds with 

prolonged fixation, similar to previous studies. 
23, 33, 35

 However, the pattern of vergence 

adaptation differed between groups depending on the type of add, direction of baseline 

vergence-bias category, and refractive type.  

 

In emmetropic children, prolonged fixation through plus and minus adds 

produced opposite patterns of vergence adaptation (Fig 6-2A), consistent with our 

hypothesis.  Exophores showed more than 100% vergence adaptation to plus adds but 

displayed no vergence adaptation to minus adds.  On the other hand, esophores showed 

the least adaptation of the three vergence categories through plus adds (EX>EN>EE) but 
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showed the highest adaptation through minus adds (EE>EN>EX).  The contrasting 

vergence adaptation to plus/minus adds could be explained to a large extent by the 

significant correlation between differing fusional vergence demands produced by the 

addition lenses. For an EX, the presence of exophoria relative to the dioptric demand 

necessitates an increase in fusional convergence to compensate for the deviation and 

achieve binocular single vision. The addition of positive lenses further increases the 

exophoria, which in-turn increases the demand on fusional convergence. On the other 

hand, binocular viewing through negative lenses reduces the exophoria and hence 

fusional vergence demand relative to no addition lenses (i.e. habitual exophoria). Since 

phoria adaptation is related to the demand on the fusional vergence, 
14, 15, 36

 we postulate 

that the reversal of vergence adaptation to plus and minus adds seen in EX is related to 

the differing fusional vergence demands. Similarly, the pattern of adaptation to +2D vs. -

2D lenses observed in emmetropic esophores may also be explained based on the fusional 

demand theory. The high correlation between the demand on fusional vergence and the 

degree of adaptation (r
2
=0.83) further confirmed our hypothesis indicating that 83% of 

variability in the adaptation can be explained by the demand on fusional vergence in 

emmetropic children.   

 

Though this is the first study to show the effect of vergence-bias category on 

adaptation to near adds, previous studies have shown a similar dependence of vergence-

bias category on the magnitude of adaptation. 
37-39

 Nevertheless, it should also be noted 

that few other studies have reported no significant relationship between baseline phoria 

and adaptation 
40, 41

. Of these, one study measured prism adaptation in esophoric and 
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exophoric participants with abnormal binocular vision or asthenopia 
40

 and in the other 

study, the majority of the participants were exophoric (only one esophore). 
41

 Thus 

differences in these studies can likely be attributed to attenuated adaptive processes found 

in individuals with binocular anomalies 
40

 in the former case and a lack of full spectrum 

of vergence bias in the latter 
41

. 

 

In the present study, it is fascinating to observe that vergence adaptation was 

consistently less when the lens-induced phorias reduced rather than increased the baseline 

vergence-bias category. Of particular interest is the adapted phoria position in 

emmetropic and myopic esophores fixating through +2D adds. In both groups, the mean 

adapted phoria position was close to orthophoria through plus adds and the small error 

bars indicate that this pattern was seen in majority of the children.  The current study 

findings seem to support the view that vergence adaptation is a mechanism that operates 

to reduce the demand on the fusional vergence system 
11, 15, 36

. It can be seen that these 

adaptive processes underlie orthophorization of heterophoria 
42-44

. 

 

6.5.2 Role of refractive state on vergence adaptation to near adds 

Myopic children regardless of vergence-bias category showed reduced vergence 

adaptation to lens-induced exophoria when accommodation was relaxed beyond the 

target through positive adds but not when accommodation was increased through minus 

addition lenses. A previous chapter (#4) showed reduced adaptation to +2D adds in a 

different sample of myopic children with normal near phoria 
33

.  The current study, in 

addition to confirming previous results, shows that other myopic groups (MX and ME) 
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also exhibit reduced vergence adaptation to plus adds compared to their respective 

emmetropic groups. On the other hand, myopic children showed either similar (MN and 

MX) or higher (ME) vergence adaptation to minus adds compared to their respective 

emmetropic groups.  

 

Past studies show a reciprocal relationship between the degree of vergence 

adaptation and AV/A ratio (or induced phoria) to plus adds such that larger AV/A ratios 

are associated with reduced completeness of adaptation. 
23, 33, 35

 The larger response 

AV/A ratios observed in myopic vs. emmetropes groups 
1, 2

 may be considered to be a 

cause for the reduced adaptation (to plus adds) in myopic groups. However, our results 

indicate that AV/A ratio has little relation to the adaptive behavior seen in myopic 

children (Fig 3) since even children with low AV/A ratios show-reduced adaptation to 

plus adds. These findings are consistent with the hypothesis proposed by Rosenfield 
45 

that the vergence adaptive property itself might be reduced in myopes.  North and 

colleagues 
46 

compared adaptation to 6 
∆
 base-in and base-out in adult groups of 

emmetropes, early onset and late onset myopes and reported no significant difference in 

the magnitude of prism adaptation between the three groups. However, they reported that 

the time course of adaptation response was significantly different between late-onset 

myopes compared to early-onset myopes. The authors do not mention the progression of 

the refractive groups. Since the study was performed on adults, it may be possible that the 

early-onset myopes achieved stability in their refractive state while the late-onset myopes 

were still progressing. The current study was performed on early-onset myopic children 

where most children showed progression based on retrospective clinical records. 
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 The reversal of vergence adaptation observed in the emmetropic vergence-bias category 

categories (+2D: EX>EN>EE; -2D = EE>EN>EX) was only seen in myopic esophores 

but not myopic exophores (+2D: MX=MN>ME; -2D = ME>MN=MX), who show non-

significant adaptation compared to children with normal near phoria. This may have 

occurred if the two groups (MN & MX) had similar habitual and lens-induced phorias. 

Table 6-1 & 6-2 clearly indicate that this was not the case. The non-significant difference 

could be due to the lower number of participants (MX; N=6) and more variable data 

(wide error bars in Fig 1) in myopic exo group compared to myopic esophores (nine) 

However, the demand on fusional vergence significantly correlated with the magnitude of 

adaptation even in myopic children (r 
2
= 0.72).  

 

The asymmetry in the effect of myopia on vergence adaptation to plus vs. minus 

adds could be due to differences within the vergence system or may be related to the 

influence of accommodation on the vergence system. In the vergence system, it may be 

possible that myopic children deal better with stimuli that require divergence (produced 

by minus adds) than stimuli that require convergence (produced by plus adds). Previous 

studies have suggested that the rate of adaptation may be related to the frequency with 

which the ocular motor system deals with the type of disparity. 
16, 22

 Myopic children 

show less exo  or more convergent distribution of near phoria (requiring divergence) 

compared to emmetropic children, which could explain the better adaptive response 

through minus adds compared to plus adds. Furthermore, children with myopia are 

habitually accustomed to wearing negative lenses for distance and near fixation. Since 

their corrective lenses are centered for distance pupillary distance, this may induce a 
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small amount of base-in prism when viewing is shifted from distance to near 

(approximately 2Δ based on the mean refractive error), resulting in exposure to additional 

disparities that require divergence.  

 

The other possible explanation for the asymmetric refractive group differences 

between plus and minus adds may be related to the influence of accommodative 

parameters on the vergence system.  

 

6.5.3 Influence of accommodation on vergence adaptation to plus/minus 

adds 

Under binocular viewing conditions, near addition lenses alter both blur driven 

and disparity driven accommodation (Fig 6-5). Plus and minus addition lenses reduced 

and increased both the binocular and monocular accommodative responses respectively 

in all groups, with respect to the 3D near target. It is this change in accommodative 

response that resulted in the lens-induced phorias, for which adaptation was quantified. 

However, it is important to note that any subsequent changes to the blur-driven 

(monocular) accommodative response may also alter the vergence response through the 

AV cross-link and thus impact vergence adaptation. Likewise, any changes to vergence 

system may modify the binocular accommodative response through VA cross-link.   

 

When plus adds are added to all groups the stimulus and hence the response to 

blur driven accommodation is reduced. Due to the reduced activity of the accommodative 

phasic controller, which provides input for adaptation and the cross-links
12, 47

, there is 
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less chance for accommodative vergence or accommodative adaptation to play on 

vergence adaptation during binocular fixation through plus adds. The unchanged 

monocular accommodative responses and absence of accommodative after-effects trough 

plus adds confirm this suggestion (Fig 6-5 and Fig 6-6). 

 However, when negative adds are set before the eyes, the stimulus to blur driven 

accommodation becomes significant as does the accommodative convergence. Thus 

when groups (myopes in this study) show differences in AV/A ratios and adaptation of 

accommodation these differences will affect accommodation and vergence responses 
4, 48

 

through AV/A cross-link. Thus, during dual closed loop conditions, patterns of vergence 

adaptation may be influenced by accommodative as well as vergence adaptation. The 

steep phoria adaptation curve for the myopic esophores who had high accommodative 

adaptation could be a product of both vergence and accommodative adaptation.  

 

Vergence adaptation to near adds have important clinical implications, 

particularly because plus adds are a widely researched treatment option to reduce the 

progression of myopia 
5, 7, 49-56

. The results of this study indicate that all myopic children 

show reduced vergence adaptation to plus addition lenses. For myopic children with 

esophoria, the plus addition lens decreased the lag of accommodation and placed the 

baseline convergent position towards orthophoria thereby placing less demand upon 

reflex vergence and accommodation system. The reduced vergence adaptation in ME 

would be beneficial in avoiding a return to esophoria. However, such adds may not be 

well tolerated in myopes with a high exophoria, where the reduced vergence adaptation 

leads to increased exophoria and hence a greater stress on the vergence system. 
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7 Vergence adaptation in myopic and emmetropic children 

under open-loop accommodation 
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7.1 Summary 

Purpose: In previous studies we have shown that myopic children exhibit reduced 

vergence adaptation to +2D addition lenses under closed-loop accommodation. Here, we 

have extended the work by comparing vergence adaptation to 10Δ base-out under 

conditions of open-loop accommodation in myopic (M) and emmetropic (E) children.  

 

Methods: 20 emmetropic and 24 myopic children between 7 and 15 years were 

examined. Habitual tonic vergence (TV, distance phoria through 0.5mm pupils) and 

open-loop accommodative response (0.2 cpd difference of Gaussian target) were first 

measured through best corrective lenses. Following this, 10 Δ base-out (BO) was added 

in front of the left eye and measures were repeated at frequent intervals (after ensuring 

fusion) when children sustained binocular fixation (4M) through 0.5mm infra-red pupils. 

Vergence adaptation was quantified by the overall TV change (magnitude) as well as the 

percentage return to the habitual level (completeness) derived using an exponential decay 

function. Tonic accommodation was also measured before and after the sustained task.  

 

Results: Habitual TV and binocular open-loop accommodative responses were similar 

between the two refractive groups.  10BOΔ induced significant exo shift and increased 

convergence accommodation, which were non-significant between the refractive groups. 

With sustained fixation, both refractive groups showed significant (P<0.001) reduction in 

induced TV but the magnitude (E=6.3±0.3; M=5.0±0.4; P=0.030) and completeness of 

prism adaptation were reduced in myopes compared to emmetropes (E=70.7±3.2; 

M=58.0±4.4; P=0.040). When children with varied baseline tonic vergence were pooled 
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together, the degree of adaptation significantly correlated with the demand on fusional 

vergence in both refractive groups (Emm: P=0.010; Myo: P=0.030). Thus, a second 

analysis was performed including children with normal TV alone in either refractive 

group. Nevertheless, myopic children continued to show significantly (P=0.010) reduced 

prism adaptation compared to emmetropes. In the accommodative system, prolonged 

fixation reduced the binocular open-loop accommodative response, which significantly 

correlated with the reduction in prism-induced exo-shift in emmetropic TV normals 

(R
2
=0.8; P=0.003) but not in myopes (R

2
=0.01; P=0.80). Myopic children with normal 

TV showed significant increase in open-loop accommodation with sustained fixation, 

which was also evident in the increased post-task tonic accommodative shift (E=0.07± 

0.1D; M= -0.41± 0.1D; P=0.030).   

 

Conclusion: Myopic children show reduced vergence adaptation to BO prism under 

open-loop accommodation. This behavior suggests that myopic children show reduced 

vergence adaptive ability irrespective of the nature of accommodative influence when 

fusional convergence is stimulated either through BO prisms or binocular viewing 

through plus adds.  
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7.2 Introduction 

In our previous studies 
1
  (Chapters 4 & 6) we have shown that myopic children 

exhibit reduced vergence adaptation compared to emmetropes when reflex convergence 

is stimulated through plus addition lenses but not when reflex divergence is stimulated 

through minus addition lenses . The magnitude of disparity induced by an ophthalmic 

lens depends on the strength of the AV/A ratio. On the other hand, the disparity created 

by a prism is constant. Several researchers have investigated vergence adaptation to 

prismatic disparities 
2-10

. A consistent pattern is found where the phoria induced by a 

prism returns to the original baseline value after sustained binocular fixation. 
2-6

 Factors 

such as the magnitude and duration of the adapting stimulus 
7, 8

, presence of asthenopic 

symptoms and abnormal binocular vision 
9
, influenced the degree of vergence adaptation 

to prism. Limited evidence exists concerning the effect of myopia on vergence adaptation 

to prisms.  

 

North and colleagues 
10 

compared adaptation to 6 
∆
 base-in and base-out in adult 

groups of emmetropes, early onset and late onset myopes at 4M and 0.4M. The authors 

reported no significant difference in the magnitude of prism adaptation at either testing 

distances between the three groups. It should be noted however, that these adults had 

reached an age where their myopia has possibly stabilized (no details on progression 

provided in the paper). Further, this investigation was performed under closed-loop 

accommodation, which is controlled by an interactive negative feedback mechanism. 

Thus, any changes to accommodation (such as accommodative adaptation) may alter the 

fast controller, thereby influencing the vergence system through the accommodative-
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vergence cross-link. 
11, 12

 Evidence suggests that myopes are susceptible to greater 

accommodative after-effects 
13, 14

 and also show higher response AV/A ratios 
1, 15, 16

, 

which may produce larger changes in the vergence system compared to emmetropes.   

 

In our previous reports that measured vergence adaptation to lens-induced 

disparities, accommodation was measured under closed-loop conditions to a near target at 

0.33M (Chapter 6). We found that accommodative adaptation differed between refractive 

groups when the stimulus to accommodation was increased relative to the near target 

through minus addition lenses but not when the stimulus was reduced through +2D 

addition lenses. But there would be very little accommodation in play for any group 

through plus adds because they reduce the stimulus for (reflex) accommodation, leaving 

little opportunity for adaptation 
12, 17

.  Vergence adaptation, on the other hand, was 

significantly reduced in myopic children through plus adds but not minus adds. Two 

possibilities exist. First, vergence adaptation in myopes may only be attenuated in the 

case of stimuli that require convergent activity compared to divergent activity. Second 

the results may show the influence of the greater accommodative adaptation.  Adaptation 

of accommodation reduces the activity of the accommodative vergence cross-link, 

resulting in a divergent shift in the vergence system 
12, 18, 19

. Thus, it may be possible that 

myopic children have poor vergence adaptive ability but the influence from 

accommodation system concealed it in the case of fixation through minus addition lenses. 

Due to the interaction between accommodation and vergence 
20, 21

, accurate estimation of 

vergence adaptive ability requires the elimination of cues for accommodation so that 

adaptation may primarily be determined by the vergence controller. Accordingly, this 
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study measured vergence adaptation to a prismatic stimulus (10 Δ base-out) under open-

loop accommodation at a testing distance of 4M (to reduce the effect of knowledge of 

nearness or proximity) in myopic and emmetropic children.   

 

7.3 Methods 

7.3.1 Study participants 

The children enrolled in this study were a part of a larger study that measured 

ocular alignment and closed-loop accommodation through plus and minus addition lenses 

(Chapter 6). For the add studies, children were recruited based on their near phorias 

(normo-phores: 0-4 exo, exophores: >6 exo or esophores: >2 eso). It is important to note 

that the current (prism) protocol was only performed in children who were eligible and 

completed the add studies based on their near phoria.  

 

The study sample consisted of 53 children (Table 7-1; 25 emmetropic and 28 

myopic; 30 females) between the ages of 7 and 15 years, recruited from the clinic 

database at the School of Optometry, University of Waterloo. The protocol followed the 

tenets of the Declaration of Helsinki and received approval from institutional review 

board. Informed consent (parents) and assent (children) were obtained after verbal and 

written explanation of the nature and possible consequences of the study.  

 

Participants had normal general and ocular health (determined from their clinical 

records and confirmed during a screening visit), myopic refractive error between -0.75 
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and -6 D or emmetropic refractive error between +0.25 and +1.5 D determined using 

cycloplegic refraction (two drops of 1% tropicamide added to both eyes, similar to a 

previous study
23

 );  astigmatism < 1D; anisometropia <  1D; best corrected visual acuity 

of at least 6/6 in each eye; non-strabismic; and were not taking any medications that 

might influence the accommodation and vergence systems.   

 

Table 7-1: Critical visual parameters of myopic and emmetropic children 

Parameter 

(Mean ± SEM; and range where 

applicable) 

Emmetropes 

 

Myopes 

 

No of participants 25 28 

Age 
10.8 ± 0.43 yrs 

(7-15) 

11 ± 0.31 yrs 

(7 -15 ) 

Refractive error 
0.5 ± 0.12D 

(0.5 to 1D) 

-2.06 ± 0.3D 

(-0.75 to -3.75D) 

AV/A ratio (Δ/D) 4.3±0.3 6.7±0.6 

VA/Vratio (D/ Δ) 0.05D±0.01 0.04D±0.01 

 

 

7.3.2 Instrumentation  

Tonic vergence (TV) was determined by measuring horizontal heterophoria 

(modified Thorington technique) at 4M through 0.5 mm pinhole pupils. Measurements 

were performed using a flashing technique similar to previous studies 
4, 22

.  TV was 

defined as the average of the three responses.  

 



 170 

Accommodative responses were obtained using the monocular mode of an 

eccentric infra-red (IR) photorefractor, the PowerRefractor (Multichannel Co, 

Reutlingen, Germany) 
23, 24

. This setting of the instrument determined refraction along the 

vertical meridian of the participants’ eyes, sampling at a rate of 25 Hz, coupled with 

measures of gaze deviations and pupil diameter. The Power Refractor was positioned 1M 

away from the participant and the infra-red light source has been established to be safe 

for use in children.  All accommodative measures obtained from the PowerRefractor 

were calibrated using a protocol similar to previous studies (Appendix A) 
1, 22, 25

.  

 

7.3.3 Experimental procedure 

This experiment was conducted under conditions of open-loop accommodation, 

achieved by adding 0.5mm infra-red pinhole pupils over corrective lenses (if applicable) 

in a trial frame. Sufficient care was taken to ensure that the pinholes were centered within 

the participant’s pupil. Prior to the start of the study session, participants sat in total 

darkness for 3 minutes to dissipate any effects of previous near work and allow the 

accommodation and vergence system to return to their resting states. 
26

 
 
Following this, a 

baseline measure of tonic vergence was taken when children wore their corrective lenses. 

Participants then fixated a 0.2 cpd difference of Gaussian (doG) target in an otherwise 

dark room and baseline open-loop binocular and monocular (pre-task tonic 

accommodation) accommodation were recorded for 5 sec. The doG target was generated 

on a laptop and projected on a 20-inch television monitor (Panasonic PV-C2080) at 4M. 
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Subsequently, a 10 BO prism was added in front of the occluded left eye. Tonic 

vergence was measured prior to any binocular viewing through the prism and this 

represented the induced TV for which adaptation was to be quantified. Binocular 

fusion/suppression through the prism was then evaluated by presenting monocular nonius 

lines using polarizing glasses. Participants with suppression/diplopia through the prisms 

were excluded from the study. Measures of binocular open-loop accommodation were 

then taken through the prism and the induced change in accommodation was considered 

as convergence-accommodation (because other components of accommodation were 

either eliminated {blur} or kept constant {proximity}). 

 

Sustaining task:  The “sustaining target” was a cartoon movie, also displayed at a 

distance of 4M on the CRT monitor. This target has been used in previous studies 
1, 22 

and 

was chosen after considering the age of the participants to avoid boredom and to ensure 

prolonged near fixation for the scheduled duration of the study (20 min). Measures of TV 

and binocular open-loop accommodation were repeated after 2, 4, 6, 8, 10, 15 and 20 min 

of binocular fixation through the prism.  Participants were instructed to report if they 

experienced diplopia anytime during the session. Additionally, the examiner ensured that 

the infra-red pinholes were within participant’s pupils for the entire duration of the near 

task through the PowerRefractor (infra-red) interface. Immediately after the sustained 

task (within 20-30 sec) tonic accommodation was recorded to calculate accommodative 

adaptation.  
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7.3.4 Data Analysis  

Measurement of the sustained accommodative response for 5 sec at 25 Hz 

provided a total of 125 data points. Each data point was screened and accepted according 

to criteria outlined in earlier reports (Chapters 4-6 and published reports 
1, 22, 27

). The data 

retained were averaged to obtain the mean accommodative response.  

 

Repeated measures analyses of variance (RM-ANOVA) was used to determine 

the effect of binocular fixation on tonic vergence and binocular open-loop 

accommodative responses.  In all cases, statistically significant main effects were further 

examined using post-hoc tests to determine the group that showed the significant 

difference. Differences were considered statistically significant when the likelihood of 

type-I error was <0.05. Data analysis was performed using STATISTICA 6.0 (StatSoft, 

Inc, USA). Vergence adaptation was quantified using two parameters derived using an 

exponential decay function similar to a previous studies. 
1, 22

  Magnitude was defined as 

the overall change in phoria after 20 min fixation through the prism. Completeness as the 

name suggests, was defined as the return of adapted phoria to the habitual level. Curve 

fitting and analysis were performed using Graphpad software (Graphpad Inc, USA). 
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7.4 Results 

Of the 53 children enrolled into the study, data from 44 children were included for 

the analysis. Nine children did not complete the study for the following reasons:  diplopia 

reported when viewing through the prism (E=1; M=2); suppression of either eye (E=2; 

M=1); difficulty in viewing through pinholes (E=1);  or the prism induced disparity was 

out of the measuring range of the tangent scale i.e. beyond ± 15 Δ (E=1; M=1). Thus, 

data from 20 emmetropic and 24 myopic children were included for analysis.  

 

Figs 7-1A&B show the mean changes to tonic vergence and binocular open-loop 

accommodative response, respectively through 10 Δ BO in the emmetropic and myopic 

groups.  Differences in the baseline tonic vergence through corrective lenses (Fig 1A) 

was non-significant between the refractive groups (P=0.15). The addition of 10 Δ BO 

significantly increased exophoria (P<0.001) whose magnitude was also similar between 

the two refractive groups (E=8.9±0.2; M=8.7±0.3; P=0.50). Prolonged binocular fixation 

significantly reduced the prism-induced exophoria (P<0.001) in myopic and emmetropic 

children. This is taken to be indicative of a change in tonic vergence to a more 

convergent position reflecting vergence adaptation. The exponential decay curves in the 

myopic children showed a significantly reduced magnitude (E=6.3±0.3; M=5.0±0.4; 

P=0.030) and completeness of vergence adaptation (E=70.7±3.2; M=58.0±4.4; P=0.040) 

in myopic children compared to emmetropes.  

 

Differences in the binocular open loop accommodative responses prior to the 

addition of prisms (Fig 7-1B) was non-significant between the refractive groups 
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(P=0.48). Introduction of 10 Δ BO significantly increased the binocular open loop 

accommodative response in both refractive groups (P<0.005). Statistical analysis showed 

a significant effect of time (P<0.0001) such that the binocular accommodative response 

reduced concurrent with the reduction in prism-induced exophoria (Pearson r=0.9, 

r
2
=0.83; P=0.001) in emmetropic children alone. Myopes showed a non-significant effect 

of time (P=0.36) on the binocular-open-loop accommodative response, despite significant 

changes to prism-induced exophoria (correlation: Pearson r=0.2, r
2
=0.08; P=0.49).  
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Figure 7-1 A&B: Comparison of mean changes to tonic vergence (Fig 1A) and binocular open-loop 

accommodation  (Fig 1B) during sustained binocular fixation through 10 Δ base-out in all myopic (black) 

vs. emmetropic children (grey).  

Solid straight lines represents the position of baseline tonic vergence/binocular accommodative response in 

each refractive category. Error bars indicate mean ± SE.  

 

 In both refractive groups, the magnitude of vergence adaptation significantly 

correlated with the fusional vergence demand created by the prism and their habitual 

tonic vergence position (Fig 7-2: Emmetropes: Pearson r= -0.58, r
2
=0.34; P=0.010; 

Myopes: r=-0.43, r
2
=0.19; P=0.030). This suggests that the starting position (i.e. baseline 

tonic vergence) influences the degree of vergence adaptation such that a lower demand 
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created by a convergent vergence posture resulted in a smaller degree of adaptation 

compared to a divergent vergence posture. Linear regression analysis showed statistically 

similar slopes (P=0.54) for the refractive groups but significantly lower intercept for the 

myopic group, indicating reduced adaptation compared to emmetropes (P=0.010).  
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Figure 7-2: Plot showing the relationship between the magnitude of adaptation and the demand of fusional 

vergence .  

Myopic children are represented by black line and triangle symbol and emmetropic  are indicated as grey 

line and circle symbol.  

 

 Given this relationship between fusional vergence demand (attributed to habitual 

tonic vergence posture) and the degree of adaptation (Fig 7-2), the reduced magnitude 

and completeness of adaptation observed in myopic group (Fig 7-1A) could be seen if 

this group consisted of more children with baseline convergent vergence posture 

compared to emmetropes.  To test this, we divided children into different vergence-bias 

categories based on their distance tonic vergence position: eso (TV=>4Δ eso), exo 

(TV=<1Δ Exo) or normal (TV=1Δ eso to 3Δ eso). This classification was based on 

normative values for distance heterophoria in children, 
28 

which were converted to tonic 
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vergence using the formulae proposed by Rosenfield and Cuiffreda. 
29

 Based on this 

grouping schema, we had 28 children with normal tonic vergence (E=14; M=14), 11 

children with convergent TV (Emm=5; Myo=6) and 4 with divergent TV (E=1; M=3).  

This classification indicates that the pooled myopic group (Fig 7-1A) had almost equal 

number of children with convergent vergence position compared to emmetropes.  

 

Nevertheless, Fig 7-3A confirms that myopic children show significantly reduced 

amount (EN=6.8±0.4; MN=5.2±0.4; P=0.010) and completeness of vergence adaptation 

(EN=74.3±2.6; MN=58.9±4.8; P=0.010) even with normal baseline TV position. This 

pattern was seen despite showing the same levels of induced tonic vergence through the 

prism compared to emmetropes (EN=8.9±0.4; MN=8.98±0.3; P=0.90).  
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Figure 7-3 A&B: show comparison of mean changes to tonic vergence and binocular open-loop 

accommodation in children with habitually normal tonic vergence position (1 eso to 3 eso). 

 Solid straight lines represent the position of baseline tonic vergence/binocular accommodative response in 

each refractive category. Error bars indicate mean ± SE. 
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The binocular open-loop accommodative response revealed a different pattern in 

myopic children with normal tonic vergence. The open-loop accommodative response 

varied significantly over time in these groups (Fig 7-3B; P=0.004) unlike the pooled data 

(Fig 7-1B). Post-hoc analysis show a significant reduction in open-loop accommodative 

response after 2 min (P=0.03) but an increase thereafter, which reaches statistical 

significance at time points 10, 15 and 20 (all P<0.05). Accommodative adaptation 

(difference between monocular pre and post task tonic accommodation) was significantly 

greater in myopic children compared to emmetropes for both the pooled data 

(Emm=0.1±0.1; Myo= -0.35±0.05; Fig 7-4A; P=0.007) and for children with normal 

tonic vergence alone (Emm= 0.07± 0.1; Myo= -0.4±0.03; P=0.030; Fig 7-4B).  
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Figure 7-4 A &B: Mean tonic accommodative change (Pre task – post task) in all myopic and emmetropic 

children (Fig 4A) and only in children with normal tonic vergence (Fig 4B) after 20 minutes of sustained 

activity. Error bars indicate mean ± SEM  

 

Fig 7-5A&B shows the exponential decay of the prism-induced TV in the various 

categories of vergence bias in emmetropic and myopic children, respectively. Despite 

unequal sample sizes, the pattern of vergence adaptation suggests similarity to the pattern 

seen through plus addition lenses (Chapter 6) such that children with convergent 
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vergence position adapt less to a 10 Δ BO compared to children with a divergent 

vergence posture. Further, the exponential decay curves of myopic groups showed 

significantly less adaptation compared to their respective emmetropic group (all phoria 

groups P<0.05).  
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Figure 7-5: Comparison of the prism-induced exponential TV decay functions in emmetropic (Fig 7-5A) 

and myopic (Fig 7-5B) children divided into three categories (Normal/eso/exo) based on the direction and 

magnitude of their baseline TV position.  
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7.5 Discussion 

The primary finding of this study is that myopic children show reduced magnitude 

and completeness of vergence adaptation to base-out prism despite the absence of an 

active feedback from the accommodation system. Given the significant relationship 

between fusional vergence demand and the magnitude of adaptation, the reduced 

adaptation observed in the pooled myopic group (Fig 7-1A) (i.e. including varied baseline 

tonic vergence positions) may be seen if the myopic sample (N=24) consisted of a greater 

number of children with  baseline convergent TV positions compared to emmetropes. 

However, this was not the case, because both refractive groups had almost equal number 

of children with convergent baseline vergence position (E= 5; M=6). Further, the 

decreased prism adaptation was evident in myopic children despite including children 

with normal TV alone in either refractive group (Fig 7-3A).  

 

It appears that, only one previous investigation studied the effect of refractive 

error on vergence adaptation to prisms. North and colleagues 
10 

compared adaptation to 6 

∆
 base-in and base-out at 4m and 0.4m in adult groups of emmetropes, early onset and 

late onset myopes and reported no significant difference in the magnitude of prism 

adaptation between the three groups. Several differences, such as the size of the adapting 

stimulus, age of the participants, and nature of accommodative influence (closed vs. 

open-loop) may explain the dissimilarity between the two studies. The current 

investigation used a larger adapting stimulus (10 ∆ base-out) compared to 6∆ base-out 

used by North and Colleagues
 10

, which may have facilitated a better distinction between 

the refractive groups. The age of participants could influence the ocular motor parameters 
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depending on the progressive nature of myopia. Evidence in both early onset 
16, 30-32

 and 

late-onset myopes 
33, 34

 suggest greater accommodative lags, convergent vergence posture 

and larger AV/A ratios when the myopia is actively progressing compared to a stable 

refractive condition. Since the present study enrolled school aged myopic children, it may 

be possible that they show more progression 
32, 35

 compared to adult participants.  

Furthermore, the investigation by North et al 
10

 was performed under closed-loop 

accommodation in contrast to the current study, which used pinholes to open the loop of 

accommodation. The characteristic feature of a closed-loop system is the feedback 

mechanism that allows the response to be compared with the stimulus to improve the 

accuracy of the system. 
36 

Moreover, sustained fixation under closed loop condition 

initiates adaptation of the motor system, which reduces the demand on the fast controller 

and decreases the cross-link activity. 
12

 Thus, any changes to accommodative response 

(such as accommodative adaptation) may initiate a change in the fast controller, thereby 

influencing the vergence system depending on the strength of the AV cross-link. In North 

et al’s study 
10

 prism adaptation was induced under closed-loop accommodation, thus, 

there is a possibility that myopes exhibited larger accommodative adaptation 
13, 14 

which 

produced greater changes in vergence in myopes compared to emmetropes due to their 

higher AV/A ratios. 
15, 16, 33

 

 

Our results show accommodative adaptation to the base-out prisms in myopic but 

not emmetropic children despite eliminating any stimulus for accommodation (Fig 7-5). 

This difference in accommodative adaptation is also manifest in the binocular open loop 

accommodation response (Fig 7-3B), which includes contribution from convergence 
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accommodation and tonic accommodation. Both refractive groups exhibited an increased 

accommodative response immediately after the addition of 10 base-out prisms, which can 

be attributed to convergence accommodation. In the emmetropic group, sustained 

binocular fixation reduced the binocular open-loop accommodative response that 

significantly correlated with the reduction in exo TV, similar to previous reports. 
1, 12, 22, 37

 

The absence of accommodative adaptation in emmetropes confirms that the reduction in 

binocular open-loop response is due to the reduction in VA cross-link activity associated 

with vergence adaptation. On the other hand, myopic children with normal TV showed a 

small but significant increase in accommodative adaptation following 10 minutes of 

sustained viewing through the prism (Fig 7-3B), This suggests that accommodative 

adaptation is more easily activated by convergence adaptation. Previous studies 
17

and 

models of accommodation and vergence 
12

 suggest that cross-links are capable of 

inducing adaptation of the opposite system (i.e. VA inducing accommodative adaptation). 

While the present study supports these findings in myopic children, emmetropic children 

do not show any significant shift in post-task tonic accommodative measures after 

sustained binocular fixation through the base-out prism. Several possibilities may explain 

this difference. First, since adaptation is related to the magnitude of the stimulus 
17

, the 

larger accommodative adaptation observed in myopes may be due to a greater output 

from convergence accommodation as a result of reduced vergence adaptation. Second, 

this discrepancy may also be possible if myopic children showed larger VA/V ratios, as a 

result of reduced vergence adaptation, which may initiate greater accommodative 

adaptation compared to emmetropes. However, the present study (table 7-1) and previous 

studies 
33, 38

 show similar VA/V ratios between the two refractive groups. Lastly, the 
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greater accommodative adaptation may be a function of a higher gain /lower threshold of 

accommodative adaptation in myopes similar to the results of past reports that show 

greater accommodative after-effects in myopes compared to emmetropes. 
13, 14

. 

Importantly, this lower threshold is present for both reflex accommodation (Chapter 6) 

and VA (Fig 7-4). 

 

The pattern of vergence adaptation to base-out prisms in myopic children is 

similar to the plus add condition (Chapter 6) This behaviour suggests that myopic 

children show reduced vergence adaptive ability when fusional convergence is stimulated 

either through BO prisms or binocular viewing through plus adds. It is important to note 

that refractive error did not show significant effect on accommodative adaptation through 

+2D adds (Chapter 6 and published reports 
1, 22

), suggesting little/no influence on the 

reduced pattern of vergence adaptation seen in myopic children. On the other hand, 

sustained binocular fixation through -2D adds showed greater accommodative adaptation 

in myopes, which may have resulted in the non-significant differences in vergence 

adaptation between myopes and emmetropes (Chapter 6). Binocular fixation through 10 

BO prisms under open-loop accommodation resulted in greater accommodative 

adaptation in myopes compared to emmetropes, but due to the absence of negative 

feedback and no input to the phasic accommodative controller (which provides input to 

the AV cross-link) it is unlikely that accommodative adaptation influenced the reduced 

vergence adaptation seen in myopic children. Thus, these results appear to suggest that 

the decreased vergence adaptive ability in myopic children is associated with the different 

parameter settings of accommodation and vergence in the myopic eye. A lower threshold 
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to stimulate accommodative adaptation seems to accompany a higher threshold to 

stimulate vergence adaptation. However, their AV/A and VA/V findings are not readily 

explained from these models. It appears that the high AV/A ratio in myopes cannot be 

explained by the interactions of phasic and adaptive accommodative responses. These 

interactions in fact would argue for a smaller not greater AV/A ratio. It is evident that the 

etiology of the increased AV/A in myopes requires other variables perhaps not unlike 

those which define an independent gain regulation of the AV (and VA) ratio 
39

. 
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8 Effect of near adds on the variability of accommodative 
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The analysis of closed-loop accommodative behaviour through habitual lenses 

and near addition lenses at 33 cm (Chapters 5 and 6) revealed interesting differences with 

regards to the variability of accommodative response in myopic and emmetropic children. 

The following chapter discusses the effect of near adds on the variability of 

accommodative response as a function of vergence-bias category and refractive type.   

 

8.1 Summary 

Purpose:   Higher variability of accommodative response (VAR) has been reported in 

myopes and speculated to be a possible risk factor for the progression of myopia. We 

investigated whether near (+2D and -2D) adds are capable of altering accommodative 

variability and also determine the influence of near phoria and viewing condition 

(binocular vs. monocular) on the VAR in myopic and emmetropic children.  

 

Methods:  27 myopic and 25 emmetropic children between 7 and 14 years were 

examined. All children were classified into “normophores” (0 to 4 exo), exophores (>6 

exo) or esophores (>2 eso) based on their near phoria. Binocular and monocular steady-

state measures of accommodation were obtained for 5 sec using a PowerRefractor 

(Multichannel Co) while children fixated a high contrast target (33 cm) with distance 

correction, and then with +2D add and -2D add over the corrective lenses. The variation 

in accommodative responses (VAR) was defined as the standard deviation of the 

accommodative response during the 5 sec period.   
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Results:  Myopic children showed higher VAR through their distance spectacle 

corrections compared to emmetropes (Emm=0.23± 0.03D; Myo=0.37± 0.07D; P<0.001). 

Plus adds significantly reduced the VAR in myopic children to the level of emmetropes 

(Emm=0.2± 0.03D; Myo=0.19± 0.02D; P=0.98).  Introduction of a -2D add significantly 

increased the VAR in both refractive groups; however, myopes showed greater VAR 

compared to emmetropes (Emm=0.39± 0.03D; Myo=0.53± 0.07D; P<0.001). Near phoria 

or binocular viewing did not alter the magnitude of fluctuations in either refractive group. 

VAR significantly correlated with the monocular accommodative error in both refractive 

groups (Emm r
2
=0.34; p<0.0001; Myo: r

2
=0.35; p<0.001). Pupil size while varying with 

add type, did not confound the VAR.   

 

Conclusion:  The near steady state accommodative response of young myopes shows 

greater variability than non-myopes. This difference is maintained when accommodative 

responses are increased beyond the vergence plane using - 2D adds. However, 

accommodative fluctuations were reduced to emmetropic levels when the stimulus to 

accommodation is reduced using a +2D add. The resulting VAR through adds appear to 

follow that expected from variations in accommodative demands and hence properties of 

the accommodative controller. Vergence-bias categories (eso and exo) do not appear to 

influence the VAR with and without near adds.  
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8.2 Introduction 

When focusing a stationary target the accommodative response exhibits small 

variations in refractive power (around 0.1D-0.5D) termed microfluctuations  
1-5

  (see 
6
 for 

review). This variation has been expressed as the root mean square value (RMS) 
7-10

 or 

the standard deviation (SD) of the accommodative response 
11,12 

 in the time domain and 

as the amplitude of low, middle and high frequency components in the frequency domain 

2,3,7,10,11,13,14
.  Power spectrum analysis of the fluctuation waveform reveals two dominant 

frequency bands: a wider low frequency component (LFC at <0.5 Hz) and a narrower 

high frequency component (HFC between 1.3-2.2 Hz) 
3,6  

The HFC is believed to result 

from noise in the accommodative plant and correlates with the systemic arterial pulse 

6,13,15
.
  
The LFC, on the other hand, appears to be an integral part of the accommodative 

controller system and varies with factors that modulate the depth of focus of the eye 
6
. 

Small pupil size,
 7

 low target luminance 
8
 and low spatial frequency content of the target 

16-18
 increase the ocular depth of focus, resulting in an increased magnitude of 

microfluctuations. Several studies also report a significant association between the 

microfluctuations and stimulus to accommodation such that the magnitude of fluctuations 

increases with an increase in accommodation. 
4,5,19 

The majority of these studies were 

performed under monocular viewing conditions (i.e. absence of disparity cues to 

accommodation). However, earlier reports do not report any substantial improvement in 

the stability of accommodative response under binocular viewing conditions 
20,21

. 

 

Recently, numerous studies have reported refractive group differences in the 

magnitude and power of accommodative fluctuations. Most of these studies show 
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increased microfluctuations in myopes 
9,11,12,22

 ; however, a few other studies found no 

relationship between myopia and the variability of accommodative response 
14,23

.  This 

discrepancy may reflect differences in the experimental protocols used to measure 

accommodation, the age of participants and the pattern of their myopic progression. 

Increased fluctuations have been reported in late-onset myopes, 
9,22

 adult early-onset 

myopes tested during progression, 
22  

in stable myopic adults 
11  

and in myopic children 

(progression not defined) 
12

.
 

This larger variability has been reported when 

accommodation was tested under monocular 
9,22 

or binocular viewing conditions. 
11,12  

Studies show that myopic individuals demonstrate the greatest variability and largest 

refractive group differences at the closest testing distance 
11,12.  

Since myopic children 

perform near work at closer reading distances, 
24-26 

 they might constantly experience 

larger accommodative demands and greater variability of accommodation compared to 

emmetropes. 
 
This may result in hyperopic retinal defocus, which might trigger axial 

elongation and myopia 
27-29

. 

 

Plus adds have been considered as a possible optical treatment in an effort to 

reduce the progression of myopia. These lenses have been prescribed to reduce 

accommodation, with the recent rationale of eliminating the large accommodative lags 

that might trigger axial elongation 
30,31

. Studies that measured accommodative lag 

through the plus adds show that these lenses are capable of reducing the accommodative 

lags in myopic adults 
32

 and children 
33-35

. Yet, clinical trials indicate that plus adds have 

been more successful in slowing myopic progression only in some groups such as 

children with esophoria, 
36-38

 combined with larger lags of accommodation 
30, 31, 37

. 
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Phoria, particularly esophoria has been found to be associated with larger 

accommodative lags, 
39

 greater myopia progression,
 40

 higher amounts of myopia
41

 and 

better prognosis of reduction of myopia with near adds 
26,31,37

.  It is not clear if increased 

VAR is found in myopic esophores compared to other phoria groups. Further, it is not 

known whether near adds have a differential effect on phoria groups. While it would be 

expected that plus adds would reduce the stimulus to accommodation, it is not clear if 

like accommodative lag, the plus adds would reduce the variability observed in myopic 

children.  On the contrary, since minus lenses increase the demand for accommodation 

and result in greater lags of accommodation, (more so in myopes compared to 

emmetropes) 
42-44

  they may exaggerate the variability of accommodative response to a 

greater extent in myopic children.  Though several studies have investigated the effect of 

plus adds on the accommodative response of myopes,
 33-35

 to date, no study has measured 

the influence of plus and minus adds on the variability of accommodative response 

(VAR) in myopic children. Thus, the aim of this paper is to determine the effect of near 

adds on the VAR under both binocular and monocular viewing conditions in myopic and 

emmetropic children with varying degrees and directions of near phorias. 

Accommodative responses were analysed in the time domain and VAR was expressed as 

the standard deviation of accommodative response. 
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8.3 Methods 

This study is a part of a larger study that measured ocular alignment and 

accommodation in children. Measures of accommodation only are presented in this study. 

 

8.3.1 Study participants 

Fifty three children (28 myopic and 25 emmetropic; 58% female) between the 

ages of 7 and 14 years were recruited from the clinic database at the School of 

Optometry, University of Waterloo. Informed consent (parents) and assent (children) 

were obtained after verbal and written explanation of the nature of the study. The 

protocol followed the tenets of Declaration of Helsinki and received approval from the 

University of Waterloo ethics review board.  

 

Participants with normal general and ocular health (determined from their clinical 

records and confirmed during a screening visit) underwent preliminary examination to 

ensure the following: myopic refractive error between -0.75 and -6 D or emmetropic 

refractive error between +0.25 and +1.5 D determined using cycloplegic refraction (two 

drops of 1% tropicamide added to both eyes, similar to a previous study
45

 ); astigmatism 

< 1D; anisometropia <  1D; best corrected visual acuity of at least 6/6 in each eye; non-

strabismic; normal amplitudes of accommodation; and that participants were not taking 

any medications that might influence the accommodation and vergence systems.  All 

participants were further divided into “normophores” (0-4 exo), exophores (>6 exo) or 

esophores (>2 eso) based on their near phoria measured using the modified Thorington 
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technique (MTT) 
46

 at 33cm. Table 8-1 lists the age and critical visual parameters of the 

study groups.  

 

Table 8-1: Critical visual parameters of myopic and emmetropic children 

PARAMETER 

(Mean ± SEM; 

and range where 

applicable) 

EMMETROPES MYOPES 

Normophores Exophores Esophores Normophores Exophores Esophores 

No of 

participants 
11 7 7 10 7 11 

Age (7-14) in yrs 10.8 ± 0.43 12.2 ± 0.63 11.9 ± 0.43 10.43 ± 0.53 11.2 ± 0.8 11.8 ± 0.63 

Refractive error 

in spherical 

equivalent (D) 

0.59 ± 0.09D 0.4± 0.09D 0.3± 0.09D -2.0 ± 0.3D -2.5 ± 0.2D -1.7 ±0.3D 

Near phoria (Δ) 
-2.15 ± 0.49 

(0 to 4 exo ∆) 

-6.72 ± 0.36 

(6 to 10 exo 

∆) 

2.83± 0.58 

( 2 eso to 5 

eso ∆ ) 

-1.24 ± 0.94 

(0 to 4 exo ∆) 

-9.7 ± 1.5 ∆ 

(6 to 14 exo 

∆) 

4.09 ± 0.5 

(2 eso to 8 

exo ∆) 

 

 

8.3.2 Instrumentation and experimental procedure 

Accommodative responses were obtained using the monocular mode of an 

eccentric infra-red (IR) photorefractor, the PowerRefractor (Multichannel Co, 

Reutlingen, Germany) 
47

.
 
 This setting of the instrument determined refraction along the 

vertical meridian of the participants’ eye, sampling at a rate of 25 Hz, coupled with 

measures of gaze deviations and pupillary diameter.   The responses obtained from the 

PowerRefractor were calibrated using a two-step protocol to ensure relative and absolute 

accuracy of accommodation similar to previous studies 
48-50

. While the slope of 

calibration function matched with the instruments default for some participants, others 

needed separate calibrations functions, possibly due to differences in fundal reflectance 
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51,52
. In all cases, accommodative responses were calibrated based on individual 

calibration equations.   
  

 

A high contrast colour cartoon (contrast =85%; target luminance =15 cd/m
2
) was 

used to measure accommodation in children. This target was chosen as it was expected to 

be more successful than conventional reading material in holding the participants’ 

attention and has been verified to be an effective stimulus for accommodation 
49

.
  

The 

image of the cartoon was displayed on a 1.77″ wide liquid crystal display monitor (Model 

No: LT-V18 U; Victor company of Japan) and projected at a distance of 33cms through a 

semi-silvered mirror. The mirror set 10 cm from the right eye and angled at 45 degrees 

allowed the photorefractor to simultaneously record accommodation from the right eye 

during target viewing. The method has been described elsewhere in detail 
49

.   

 

The study design consisted of three experimental sessions that were performed on 

separate days with the order of sessions randomized to avoid bias; one session was 

performed with the children wearing their corrective lenses (referred to as “no add 

condition”) and the other two involved measurements with +2D/-2D lenses (referred to 

as “plus and minus add condition”) added over their correction (if applicable).  A trial 

frame set 12 mm from the eye housed ophthalmic lenses, which provided the distance 

correction and near add. The frame was adjusted for the participants’ near pupillary 

distances to reduce any prismatic effect.  
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Prior to the start of each study session, participants were dark adapted for 3 

minutes to avoid effects of previous near work 
53

. The lighting in the examination room 

was then reduced to obtain sufficiently large pupil sizes (greater than 4mm as 

recommended by the manufacturer of PowerRefractor) for the measurement of 

accommodation.  Binocular and monocular measures of accommodation were recorded 

continuously for a period of 5sec after confirming steady fixation using the gaze control 

function displayed on the PowerRefractor interface. For the binocular response, 

accommodation was recorded from the right eye alone, although both eyes fixated at the 

target. For measurement of monocular accommodation, the left eye was occluded. During 

the 5 sec measurement period, the accuracy of fixation was assessed using the gaze 

control function displayed on the PowerRefractor interface. Additionally, care was taken 

to ensure that the child was fixating the near target at the correct fixation distance (33 cm) 

while measurements were recorded. A volunteer constantly monitored the head position 

of the child and ensured they did not move away from the chin rest during measurement. 

If any unsteady fixation was noticed during measurement, or when the examiner (VS) 

observed off axis gaze errors exceeding 10 degrees, the measures were flagged using 

keyboard inputs and discarded given the possibility of under or over estimation of 

accommodation 
54,55

.  In these cases, recordings were obtained for an additional 5 sec 

period to ensure equal data sets across subjects.   
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8.3.3 Data Analysis  

VAR was defined as the standard deviation of the accommodative response across 

the 5 sec period.  Each data point was screened and accepted if the following criteria 

were met: the pupil size was above 4mm; the ocular alignment was less than 10 degrees 

and 5 degrees from the optical axis of the photorefractor in the horizontal and vertical 

axes respectively (as recommended by the manufacturer 
47

) and the responses were free 

of blinks. Blink artefacts, if any were removed using a method similar to previous studies 

49,56
. Each participant needed to have at least 100 rows of acceptable data after satisfying 

all of the above criteria in order to be considered for averaging and further analysis. If the 

participants had more than 100 eligible data points, only the first 100 points were taken 

for further analysis. The data retained were averaged to obtain the VAR. Data from one 

myopic participant was excluded from the averaging process since she failed to provide 

the minimum levels of acceptable data as a result of pupil diameters less than 4mm.  

Repeated measures analysis of variance (ANOVA) was used to determine the effect 

of +2D/-2D add condition on VAR. In all cases, statistically significant main effects were 

further examined using Tukey Honestly significant differences (HSD) post-hoc tests to 

determine the group that showed the significant difference. Differences were considered 

statistically significant when the likelihood of type-I error was <0.05. Data analysis was 

performed using STATISTICA 6.0 (StatSoft, Inc, USA). Pearson correlations were 

conducted to look for relationships between variables like pupil size, accommodative 

error and VAR. Analysis of co-variance (ANCOVA) was performed to ensure that pupil 

size did not confound the main findings. 
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8.4 Results 

8.4.1 VAR through best corrective lenses (no add condition) 

Fig. 8-1 B (middle) shows representative raw data from a myopic and emmetropic 

child when fixating a high contrast near target over 5 sec in the no add condition.  Visual 

inspection shows that the myopic child exhibits greater fluctuations in the 

accommodative response compared to the emmetrope. This pattern (i.e. larger 

fluctuations in myopes compared to emmetropes- p<0.001) was found when the mean 

values were compared in binocular (Fig. 8-2 A) and monocular viewing condition (Fig 8-

2B) in all three phoria groups. The findings were independent of the direction of near 

phoria P=0.94) or viewing condition (P=0.49).   
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Figure 8-1: Example of VAR in the no add, plus add and minus add conditions from a myopic child (left) 

and an emmetropic child (right).  

Compared to the no add condition (middle), the plus add (top) reduces the VAR in the myopic child while 

the VAR of the emmetropic child is unchanged. The minus add (bottom) however, increases the VAR for 

both the myopic and emmetropic child, but the myopic child shows greater variability than the emmetrope.  
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Figure 8-2 A and B: Box plot showing VAR in myopic and emmetropic children with different near phoria 

and add conditions in the binocular (8-2A) and monocular viewing condition (8-2B).  

In both viewing conditions, myopes showed significantly larger variability compared to emmetropes in the 

no add and minus add condition. The VAR through plus adds were similar in the two refractive groups.  

B 

A 
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8.4.2 Variability of accommodative response through +2D/-2D near adds 

Fig 8-1 A and C (top and bottom graphs) shows that near adds differentially alters 

the pattern of VAR in the myopic and the emmetropic child. The plus add reduces the 

VAR in the myopic child while the normal VAR of the emmetropic child is unchanged. 

The minus add however, increases the VAR for both the myopic and emmetropic child, 

but the myopic child shows greater variability than the emmetrope. The mean VAR 

through plus and minus adds follows the same pattern as the representative raw data. Figs 

8-2A and B shows the VAR in children with different near phorias under binocular and 

monocular viewing conditions respectively. Statistical analysis showed a significant main 

effect of add type (P<0.0001), refractive error (P=0.002) and a presence of refractive 

group* add interaction (P<0.0001) but no main effect of phoria (P=0.73) and no main 

effect of viewing condition (binocular vs. monocular) (P=0.18). Post-hoc results revealed 

that plus adds significantly reduced the VAR in all phoria groups (all P<0.05) of myopic 

children to a level equal to that of emmetropes (Grouped mean: Emm=0.2± 0.03D; 

Myo=0.19± 0.02D; P=0.98).  However, emmetropic controls did not show any significant 

change in VAR through the plus adds.  On the other hand, minus adds significantly 

increased (P<0.001) the VAR in both emmetropes and myopes compared to the +2D and 

the no add conditions but myopic groups exhibited significantly higher VAR (P<0.001) 

compared to emmetropic children (Grouped mean: Emm=0.4± 0.03D; Myo=0.53± 

0.07D; P=0.001). For both add types, near phoria or binocular vs. monocular viewing did 

not alter the pattern of VAR in either refractive groups.  
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8.4.3 Effect of pupil size on the VAR 

Evidence has shown that VAR increases as pupil size decreases. 
3,7

 Hence it is 

important to investigate whether changes in pupil size contributed to the differences in 

VAR observed between the add conditions and the refractive groups. For the purpose of 

this analysis, data from all phoria groups were combined together as near phoria did not 

influence the VAR in any of the add conditions. ANOVA showed a significant main 

effect of add type (P<0.001) but not refractive group (P=0.22) and no significant 

interaction between add type and refractive group (P=0.67). Post-hoc comparisons show 

that the mean pupil size was significantly (P=0.005) decreased through the minus add 

(Emm=5.2± 0.2D; Myo=4.9± 0.07D) compared to the plus add (Emm=5.8± 0.2D; 

Myo=5.6± 0.15D) as expected in both refractive groups. However, the diameter of the 

pupil did not significantly differ between refractive groups in any of the add conditions. 

Furthermore, to ensure that decreased pupil size was not the only cause for increased 

variability observed through the minus add, an analysis of co-variance was performed 

with pupil diameter as a co-variate. ANCOVA confirmed a significant effect of add type 

and refractive error on the VAR with a constant pupil size.  

 

8.4.4 Effect of accommodative error on the VAR 

Fig 8-3 shows the mean monocular accommodative response in the two refractive 

groups (with phoria groups collapsed) through the three test conditions. Myopic children 

show significantly less accommodative response compared to emmetropes in the no add 

(Myo=2.08±0.12D; Emm=2.34±0.07D; P=0.020) and minus add conditions 
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(Myo=3.27±0.15D; Emm=3.63±0.09D; P=0.01) but not when viewing through plus 

addition lenses (Myo=0.98±0.11D; Emm=1.12±0.1D; P=0.3). Moreover, accommodative 

error (calculated as the difference between accommodative stimulus and accommodative 

response where positive number denotes lag and negative number denotes lead of 

accommodation) correlated significantly with the VAR such that larger accommodative 

errors were associated with greater variability of accommodative response in both 

refractive groups (Fig 8-4, MYO: r
2
=0.34; p<0.001; EMM r

2
=0.35; p<0.0001). Linear 

regression analysis of accommodative error and VAR (Fig 8-4) shows similar slopes 

(Myo=0.09±0.01D; Emm=0.06±0.01D) significantly different intercepts between the 

refractive groups (Myo=0.30±0.02D; Emm=0.24±0.01D). This suggests that both 

refractive groups show similar rate of increase/decrease in VAR with increase/decrease in 

lag respectively but myopes show greater VAR than emmetropes. 
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Figure 8-3: Mean monocular accommodative responses in the myopic and emmetropic groups in the 

different add conditions.  

Dashed line represents the accommodative demand through the respective add condition. Myopes show 

significantly reduced responses compared to emmetropes in the no add and the minus add conditions 

(*P<0.05). Error bars indicate ± SE. 
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Figure 8-4: Correlation between accommodative error and VAR in the two refractive groups. In both 

groups, accommodative error significantly correlated with the VAR.   

Linear regression analysis showed similar slopes but significantly higher VAR (intercept) in myopes 

compared to emmetropes. 

 



 202 

8.5 Discussion  

The primary finding of this study is that plus and minus adds have a differential 

effect on the VAR in myopic and emmetropic children. Plus adds reduced the VAR for 

myopic but not for emmetropic children such that myopes exhibit fluctuations that are 

reduced to a level equal to emmetropes.  Minus adds, on the other hand, increased the 

VAR in both refractive groups; however, the increased variation found in myopic 

children through best corrective lenses were maintained with the negative add. Vergence 

posture (eso or exo) did not alter the pattern of VAR to plus/minus adds in either myopic 

or emmetropic group. Further, the fluctuations through near adds were not significantly 

modified whether accommodation was driven monocularly or binocularly. The VAR 

significantly correlated with the accommodative error in both refractive groups, 

suggesting that the change in accommodative demand induced by the adds would explain 

their effect on the VAR. 

 

It is well known that near adds alter the accommodative demand depending on the 

magnitude and direction of the add. In this study, the accommodative target was placed at 

33 cm (accommodative demand=3D), thus fixation through +2D and -2D adds changed 

the accommodative demand to 1D and 5D respectively. Past studies show that the 

accommodative response becomes more variable with an increase in accommodative 

demand 
4,5,9,11,12,19

.
  
This finding is partly supported in our emmetropic sample since the 

VAR increased when the accommodative response increased through a minus add (mean 

increase=0.17±0.03D) but did not show a significant reduction when accommodation was 

relaxed through a +2D add (mean decrease=0.04±0.03D).  This may be because 
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emmetropes exhibited small fluctuations to a 3D stimulus (Mean = 0.23±0.07D) and it is 

possible that there is a floor effect such that VAR cannot decrease considerably beyond a 

certain extent due to the mechanical and elastic properties of the accommodative plant. 
5,6

 

Further, these results are similar to a previous study, which also showed no significant 

change in the stability of accommodation for similar stimuli (1.25 and 3D) in emmetropic 

adults  
10

.  Myopic individuals showed the expected 
4,5,9,11,12,19 

 decrease and increase in 

VAR when accommodative demand was changed to 1D and 5D through the plus and 

minus adds respectively. Refractive group differences in VAR were only observed for the 

higher accommodative demands (3D and 5D) consistent with previous studies 
11,12

. 

 

An important outcome of this study is the presence of a significant association 

between accommodative error and VAR in both refractive groups (Fig 8-4). It is known 

that accommodative error varies with the stimulus to accommodation such that greater 

accommodative lags are seen through minus lenses 
42-44

 and reduced accommodative lags 

are observed through plus adds 
32,34,35,49,57,58

.  While our results agree with these findings 

in both myopes and emmetropes, it is also interesting to note that the refractive group 

differences in the accommodative response closely match the pattern of VAR seen in the 

three add conditions. Myopic children show larger accommodative lags compared to 

emmetropes in the no add and minus add conditions but not through the plus add. 

However, past studies do not show refractive differences in the accommodative response 

(through corrective lenses) or a correlation between accommodative error and VAR 

under binocular viewing conditions 
11,12

. Harb et al 
11

 showed a linear relationship 

between the accommodative response and VAR and also reported that lags increased with 
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closer reading distance in stable adult myopes. But, it is not clear whether past studies 

find any association between accommodative error and variability. The increased VAR in 

myopes has been attributed to reduced blur sensitivity 
9,11,12

.
 
Adult myopes are less 

sensitive to defocus signals that drive accommodation compared to emmetropes, 
59

    

although a similar study in children suggest myopes may have similar blur detection 

thresholds compared to age matched emmetropes 
60

.  If myopes have elevated blur 

thresholds, then the accommodative response of a myopic eye could also be reduced 

since these individuals may not perceive the blur that is required to drive any changes in 

the accommodative system. However, in some of the past studies, increased VAR was 

found in myopes who did not show greater lags compared to emmetropes even at higher 

stimulus levels 
11,12

. Larger lags have been reported when myopia is progressing but the 

response improves as the refractive error stabilizes 
43,44

. Though this study did not 

measure progression prospectively, review of past clinical records indicate that 18 out of 

27 myopes progressed by at least 0.25-0.50D/yr. Six participants did not have more than 

one exam at the School of Optometry to determine the amount of progression and 3 had 

stable refraction. The larger accommodative lags may be due to the progressive nature of 

the refractive error in this study population.  Nevertheless, past evidence indicates that 

the increase in hyperopic defocus/ more blurred target associated with larger 

accommodative errors may contribute to the change in accommodative microfluctuation 

17
.  

The differential effect of plus and minus adds on the two refractive groups may be 

attributed to factors such as small pupil diameter 
3,7,19,61

 or low target luminance 
8,61 

 that 

alter the depth of focus thereby increasing the microfluctuations. However, these factors 
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were either controlled or did not change between the refractive groups and therefore are 

not likely responsible for the observed pattern of VAR through near adds. In this study, 

pupil diameter did show small and significant reductions when accommodation was 

increased through -2D add.  Yet, this decrease cannot completely explain the higher VAR 

seen through minus adds since analysis of covariance showed a significant effect of the 

add despite holding pupil size constant. Moreover, it is unlikely that this reduction can 

explain the changes in VAR between the add conditions since pupil diameter was always 

greater than 4mm (as recommended by the manufacturer) for both the add conditions in 

all children. Previous work suggests that depth of focus is not significantly increased until 

pupil diameter becomes <2mm or <3 mm. 
3,7,61

  In addition, there were no refractive 

group differences in the pupil diameter in any of the add conditions, similar to previous 

studies 
62

,  suggesting that pupil size did not influence the refractive differences observed 

in the current study. Other factors such as low target luminance also cannot explain the 

results because the target luminance was much higher (15 cd/m
2
) 

 
than the levels that 

increase the depth of focus (0.004-0.002 cd/m
2
)
8
 and kept constant between add 

conditions and refractive groups.  

 

Esophoria is associated with higher amounts 
41

 or progression of myopia 
40

. 
 
In the 

present study,
 
myopic esophores did not show larger VAR compared to exophores or 

phoria normals.  These findings could be attributed to the similarity in refractive error 

between the phoria groups (Table 8-1). On the other hand, it could be argued that the 

similarity in refractive error provides a means to conclusively show that the direction of 

phoria does not influence the stability of accommodative response in a myopic eye. 
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Clinical trials that measured the efficacy of near adds show that only some groups such as 

esophores 
36-38

 or esophores combined with higher accommodative lags show a 

meaningful reduction in progression of myopia 
26,31

. It would appear that VAR is not a 

critical factor in this effect as the present study shows that myopes in all phoria groups 

show a reduction in VAR through plus adds. Further longitudinal studies in progressive 

myopic children may be helpful in determining the role of VAR and plus adds in the 

development and progression of myopia. 
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9 General discussion and conclusions 

Under natural viewing conditions, accommodation and vergence systems 

mutually interact through cross-links, AV and VA, such that variations in one system 

alter the response of the other. Previous investigations have measured vergence 

adaptation using designs of prism adaptation 
1-12

. None of these studies measured 

adaptation in children. Measurements described changes to the vergence system alone, 

and did not investigate the role of refractive error or vergence-bias category. Limited 

reports have measured adaptation to disparities induced by ophthalmic lenses 
7, 13, 14

. To 

date, no study has measured adaptation to lens-induced disparities created by near 

addition lenses in children with myopia.  

  

This thesis used near addition lenses as a means to investigate binocular 

adaptation in children. using varying demands for accommodation and vergence, 

stimulated by binocular fixation at near, through the addition of plus and minus lenses 

(closed loop accommodation) and using base-out prisms (open-loop accommodation).  

 

Overall, this thesis makes three major contributions to the literature: first, it 

outlines the mechanism The specific aims of this thesis were three-fold: first, to gain 

insight into the mechanism of changes to accommodation and vergence through near 

addition lenses in children; second, to determine the role of vergence-bias category on 

adaptation and lastly to evaluate the influence of myopia on adaptation.  A battery of 

studies were designed  to evaluate adaptation of accommodation and vergence during 

sustained (over a 20 minute period) binocular adaptation in children; second, it shows 
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that the direction of the phoria and the compensating fusional vergence directly 

influences vergence adaptation which in turn varies the output of binocular vs. monocular 

accommodation through the binocularly driven CA cross link and lastly,  the work 

demonstrates that myopic children show reduced vergence adaptation when fusional 

convergence was initiated through plus adds, or base-out prisms but not when fusional 

divergence was initiated through minus addition lenses. Overall, it appears that myopic 

children exhibit a reciprocal relationship in adaptive gains of accommodation and 

vergence such that vergence adaptation is reduced (to stimuli that require convergence) 

but accommodative adaptation is greater under conditions of closed and open-loop 

accommodation. 

It should be noted that the model of  reflex ( phasic) and adaptive mechanisms for 

accommodation and vergence and their cross links as defined by Schor 
15

 was found to be 

consistent in providing the appropriate structure for the interpretation of most of these 

results. The model is shown in Fig 1-3 in the thesis.  

 

9.1 Mechanism underlying changes to the ocular motor system during 

sustained binocular fixation 

Under closed-loop accommodation, the introduction of plus /minus addition 

lenses significantly altered the accommodative response (Chapter 4 & 6; Figs 4-1 & 6-5); 

increased lens-induced phorias (Chapter 4 & 6; Figs 4-4 & 6-1); and resulted in a greater 

mismatch between the binocular and monocular accommodative responses (Chapter 4 & 

6; Figs 4-1& 6-5). These changes to the ocular motor system are consistent with the 

current models of accommodation and vergence 
15, 16

 (discussed in Chapter 1) and can be 
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explained as follows: Under binocular viewing conditions, the lens-induced phoria would 

trigger the fusional vergence system to produce an increase in reflex vergence through 

the negative feedback mechanism. The increased fusional vergence, in-turn drives an 

immediate change in binocular accommodation through the vergence accommodation 

crosslink (Chapter 4 & 6: Figs 4-1 & 6-5). This then leads to a greater discrepancy 

between the binocular and monocular accommodative responses (Chapter 4 & 6: Figs 4-1 

& 6-5).  

 

Sustained binocular fixation through the plus/minus addition lenses decreased the 

lens-induced phorias (Chapter 4 & 6; Figs 4-4 & 6-1). This reduction was attributed to 

vergence adaptation based on Schor’s model of adaptation 
7, 17

. The fast component 

would mediate the initial increase in fusional vergence required to overcome the lens-

induced phorias. With sustained binocular viewing, the fast fusional vergence provides 

input to the slow fusional component, which is characterized by long decay time constant 

and termed vergence adaptation 
15, 17

.   The reduction in lens-induced phorias were 

accompanied by an adjustment of the binocular accommodation through plus adds 

(Chapter 4 & 6; Figs 4-1 & 6-5; EX, EN and MN) and minus adds (Chapter 6; Fig 6-5; 

EE&ME) in all groups that showed substantial vergence adaptation. Reduction of VA 

cross-link activity was also seen when vergence adaptation was initiated through base-out 

prism (Chapter 7; Fig 7-3). These results are consistent with the model of accommodation 

and vergence 
15, 17

 that places the cross-link (AV and VA) in between phasic and tonic 

controllers such that adaptation of the motor system reduces the activity of its respective 

cross-link.   
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Sreenivasan, Bobier, Irving & Lakshminarayanan 
18

 compared the simulation 

results of two adaptation models 
15, 19, 20

 that differ in identifying the effect of controller 

adaptation on their respective cross-links between vergence and accommodative systems. 

Model simulations were compared with empirical data (phoria and accommodation) 

obtained from emmetropic adults when near fixation was sustained through +2D lens 

addition 
14

. Both models 
19, 20

 showed good agreement with the empirical measures of 

vergence adaptation. However, only one model 
19

  predicted the experimental time-course 

of reduction in vergence accommodation. The pattern of empirical results seem to be best 

described by the adaptation model that indicates the total vergence response to be a sum 

of two controllers, phasic and tonic, with the output of phasic controller providing input 

to the cross-link interactions 
19

. A similar reduction of the vergence-accommodation 

cross-link with vergence adaptation was observed when using wedge prisms 
21

. 

Analogous results were also seen in the accommodative system where accommodative 

adaptation reduced the output of accommodative-vergence 
22

.  

 

9.2 Role of vergence-bias category on accommodation and vergence 

responses 

Heterophoria is overcome by fusional vergence, which in addition to maintaining 

single vision, also alters the binocular accommodative response through the VA/V cross-

link. The direction of the near phoria consistently altered the pattern of binocular vs. 

monocular accommodative response in experiments that measured accommodation and 

vergence under dual-closed loop conditions in the various phoria categories (Chapter 5, 

Fig 5-1 and Chapter 6-5). The differences between binocular and monocular responses 
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(attributed to vergence accommodation) correlated with the direction of near phoria 

(Chapter 5, Fig 5-2). The influence of vergence-bias category on the pattern of binocular 

vs. monocular accommodation was evident in exophores viewing through plus adds 

(BA>MA; chapter 6, Fig 6-5: EX & MX) and esophores viewing through minus adds 

(MA>BA chapter 6, Fig 6-5: EE & ME).  These differences are consistent with model 

predictions 
15, 19

 and can be attributed to the variations in the direction and magnitude of 

the resulting fusional vergence, required to overcome a given phoria. Fusional vergence 

will then dictate the output of vergence accommodation thereby changing binocular 

accommodation. Other cues such as  proximity were not believed to influence the pattern 

of adaptation or changes to accommodation over time since the testing distance was 

constant for both add conditions. 

 

Furthermore, the direction of the phoria influenced the degree of vergence 

adaptation. This relationship was constantly observed whether adaptation was stimulated 

by binocular fixation at near through corrective lenses (Chapter 5; Fig 5-6), addition of 

plus and minus lenses (Chapter 6; Fig 6-2), or prism viewing (Chapter 7; Fig 7-5). The 

most plausible explanation would again be attributed to be the differing fusional vergence 

demands produced by the vergence-bias category for each stimulus condition (Chapter 6 

& 7; Figs 6-4 & 7-2). These results agree with the model of adaptation 
7, 19

, where the 

slow (tonic) element receives input from the phasic controller, such that the strength of 

adaptation directly proportional the output of the phasic controller.  
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Further, vergence adaptation was consistently less when near adds acted to reduce 

phorias and hence fusional vergence (Chapter 6; Fig 6-1). Of particular interest is the 

adapted phoria position in emmetropic and myopic esophores fixating through +2D adds. 

In both groups, the mean adapted phoria position was close to orthophoria through plus 

adds.  The findings from this thesis seem to support the view that vergence adaptation is a 

mechanism that operates to reduce the demand on the fusional vergence system 
6, 7

. It can 

be seen that these adaptive processes underlie orthophorization of heterophoria 
8, 23-25

. 

9.3 Influence of myopia on the accommodation and vergence response 

The effect of myopia, on binocular adaptation was evaluated for two reasons.  

First, several attributes of near-work have been identified to be different in myopic 

individuals compared to emmetropes. However, limited information is available about the 

differences in adaptation of accommodation and vergence during a prolonged near task in 

these groups. Second, although plus addition lenses have been investigated as a treatment 

option to reduce myopic progression studies have not measured simultaneous changes to 

accommodation and vergence output, which are key elements of near viewing.  

 

9.3.1 Effect of myopia on ocular motor parameters in children 

This thesis confirms previous reports that showed variations in several near-work 

attributes in myopic children 
26-30

 such as larger accommodative lags (Chapters 4, 5 & 6-

minus add), higher variability of accommodative response (Chapter 8- no add condition), 

greater accommodative after-effects (Chapters 5 & 6-minus add) and elevated AV/A 
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ratios (Chapters 4 & 6) compared  to emmetropes.  VA/V ratios were similar between the 

refractive groups, comparable to past studies 
31, 32

.  

 

An unique but consistent outcome of this thesis is the reduced vergence adaptive 

ability observed in myopic children when fusional convergence was stimulated through 

binocular viewing of plus adds (Chapters 4 & 6; Fig 4-4 & Fig 6-2) or base-out prism 

(Chapter 7, Fig 7-1). It is interesting to note that this reduced vergence adaptation was 

observed irrespective of the nature of accommodative influence (plus adds- closed loop 

vs. prism condition- open loop). However, vergence adaptation was similar in myopes 

and emmetropes upon binocular viewing through minus adds (Chapter 6; Fig 6-2-b).  

 

Accommodative adaptation was higher in myopes than emmetropes when the 

accommodative stimulus was higher (chapter 5: 3D for the near task; Chapter 6: 5D with 

the minus add) but not when the stimulus was reduced through plus adds (1D- Chapter 6, 

Fig 6-6). Based on the model of accommodation and vergence 
15, 19

, and supported by 

these empirical measures, accommodative adaptation will reduce the activity of the 

phasic controller, and thereby the AV cross-link, inducing a divergent shift in the overall 

vergence response 
17, 22

.  The higher accommodative adaptation, combined with the larger 

AV/A ratios seen in myopes (Chapter 6, Table 6-2), might explain the asymmetric pattern 

of vergence adaptation to plus and minus adds found in myopes. Further, myopic children 

also showed increased accommodative adaptation when fusional convergence was 

stimulated through base-out prism under open-loop accommodation (Chapter 7, Fig 7-4). 

This suggests that accommodative adaptation in myopes is more easily activated by 
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convergence in accordance with models 
15, 17

 that suggest the capability of cross-links to 

induce adaptation of the opposite system.  Clearly, the reciprocal difference between 

vergence and accommodative adaptation in myopes occurs specifically in the case of 

convergence and positive accommodation.  However, their AV/A and VA/V findings are 

not readily explained from these models and the interactions of phasic and adaptive 

responses 
15, 17

. These interactions in fact would argue for a smaller not greater AV/A 

ratio. It is evident that the etiology of the increased AV/A in myopes requires other 

variables perhaps not unlike those which define an independent gain regulation of the AV 

(and VA) ratio 
33

.  

 

9.3.2 Implications for the control of myopia through plus addition lenses  

The current rationale for prescribing plus adds for myopia is to reduce the large 

accommodative lags that may create hyperopic retinal defocus and possibly trigger axial 

elongation of the eye. Several studies that evaluated the ability of the bifocals/progressive 

addition lenses in reducing myopic progression found that children with specific ocular 

motor profiles such as large baseline accommodative lags 
34, 35

 and esophoria 
34-36 

manifested less myopic progression through near addition lenses compared to children 

with low accommodative lag or exo/orthophoria. However, these clinical trials did not 

measure changes to accommodative lag/phoria through the plus adds to identify whether 

the elimination of accommodation/ vergence error influenced the successful reduction of 

myopia progression in children.   
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This thesis indicated that plus addition lenses are capable of reducing the 

excessive accommodative lag and maintaining the reduction in all groups of myopic 

children, for the duration of binocular viewing tested in the current study (Chapter 6). 

Further, the higher accommodative variability observed in this group with corrective 

lenses were also reduced to the level of emmetropes through plus adds (Chapter 8). If 

increased accommodative lags and large variability of accommodation were indeed risk 

factors for the development of myopia, then one would expect that myopic progression 

would be eliminated / reduced through progressive/bifocal lenses. The modest treatment 

effect in clinical trials suggests that these parameters may not be critical to the 

development of myopia, presuming good compliance in children who receive these near 

addition lenses. Compliance is a challenging aspect of prescribing near adds to children.  

It is important to recognize that young myopes may not always look through the addition 

lenses, which may reduce efficacy unlike presbyopes who receive an instant feedback of 

clear vision when looking through the plus add. Furthermore, it is possible that some 

groups of myopic children (e.g.myopic exophores) may chose not to look through the add 

section to avoid stress on their vergence system based on the result of this thesis. All 

myopic children show reduced vergence adaptation to plus addition lenses.  However, for 

myopic children with esophoria, the plus addition lens decreased the lag of 

accommodation and placed the baseline convergent position towards orthophoria, thereby 

placing less demand upon reflex vergence system. The reduced vergence adaptation in 

myopic esophores would be beneficial in avoiding a return to esophoria. On the contrary, 

myopic exophores culminated with a larger exophoria compared to their habitual level 

after prolonged binocular fixation through plus adds and this group would be expected to 
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experience a greater stress on the vergence system. It may be possible that successful 

reduction of myopic progression occurs only if errors of both accommodation and 

vergence are minimized during prolonged fixation, highlighting the importance of 

evaluating binocular adaptation before prescribing plus adds to myopic children.   

 

In a broader perspective, the overall results of this thesis provide further insights 

into the causative or consequential role of accommodative lag (blur hypothesis) in 

myopia development.  The blur hypothesis postulates that excessive accommodative lags 

produce hyperopic retinal defocus that may signal axial elongation, based on evidence 

from animal models 
37-40-

 The results of this thesis suggests that accommodative lags may 

not be crucial for myopia development because plus adds reduced/eliminated 

accommodative lags in all myopic children. These results are in agreement with recent 

longitudinal studies that showed no association between myopic progression and large 

accommodative lags 
41, 42

. The results appear to suggest that the higher accommodative 

lags seen in myopic children may likely be a consequence of parameters within the 

myopic eye or varying innervation patterns to it such as an increased AV/A ratio 
29, 32, 43

. 

It may be possible that myopic individuals display higher accommodative lags to avoid 

over convergence due to high AV/A ratios in order to preserve single binocular vision. 

The etiology of the elevated response AV/A ratios in progressing myopes has not been 

determined. Investigators have attributed its high gain to motor, sensory or mechanical 

characteristics 
29, 32, 43

. However based on their empirical investigations, Schor and 

Horner 
43

 showed evidence for high AV/A cross link to be associated with weak 

accommodative adaptation and strong vergence adaptation. The results of this thesis 
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show the opposite relationship between the accommodative and vergence adaptive 

components in myopic children. Thus the high AV/A cannot be attributed to the adaptive 

parameters in myopic children.  Few researchers 
45, 46

 suggest that myopic individuals 

have reduced sensory perception (increased threshold) for blur. Reduced sensitivity to 

blur has been modelled in infant studies as an increased depth of focus
47, 48

. Models of 

accommodation unanimously place depth of focus element prior to the accommodative 

controller. A high depth of focus would certainly reduce accommodation (and 

accommodative lags) but it should also reduce not increase accommodative vergence as 

observed in myopes.  

The most parsimonious explanation at this point would be that the 

accommodative plant of the myopic eye (lens, ciliary body and zonules requires greater 

levels of accommodation to effect a given dioptric change in comparison to an 

emmetropic eye. This increased innervation would lead to the high AV/A due to 

increased accommodative effort, which may then lead to the high accommodative lag.  

Longitudinal evaluation of these factors may merit consideration as possible explanations 

for the development of myopia.  
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10 Future work 

This thesis used plus and minus adds to study adaptation under closed-loop 

accommodation but only employed base-out prisms to study adaptation under conditions 

of open-loop accommodation.  The asymmetric adaptive pattern between add conditions 

in myopes may be related to the accommodative influence (i.e. higher accommodative 

adaptation through minus adds) or due to the type of reflex vergence initiated, such that 

myopic children show reduced vergence adaptation only to fusional convergence but not 

fusional divergence. It may be worthwhile to measure binocular adaptation to base-in 

prisms under open-loop accommodation to understand if variations are produced by 

accommodative influence (closed vs open loop), or type of disparity (convergence vs. 

divergence) or purely related to the refractive error . For instance, if myopes show less 

adaptation compared to emmetropes through base-in prism, it may be concluded that the 

myopic eye is associated with poor vergence adaptive ability whether adaptation is 

induced by divergence or convergence stimulus. It may follow that the equal vergence 

adaptive behavior in myopes and emmetropes to minus adds was due to the greater 

accommodative adaptation in myopes. On the other hand, equal or greater adaptation to 

base-in prism in myopes compared to emmetropes, may indicate that myopic children are 

able to deal better with stimuli that require divergence compared to those that require 

fusional convergence.  

 

The pattern of vergence and accommodative adaptation to near addition lenses 

were obtained when accommodation (and thereby vergence) demands were altered with 

respect to a 3D (33 cm) target. It would be logical to look at how accommodation and 
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vergence adaptation act at other test distances. For instance, a near target at 20 cm (5D 

accommodative demand) through +2D lenses may create a relaxation of accommodation 

while still providing sufficient levels of reflex accommodation so accommodative 

adaptation can occur 
1, 2

. If myopes show different accommodative adaptation to such 

stimulus condition, they may exhibit greater shifts in vergence compared to emmetropes, 

at least in a population similar to the current study.  

 

In this thesis, characteristics of accommodation and vergence were measured at 

two-minute intervals for the first ten minutes of binocular fixation. This time interval was 

chosen after considering the subjective nature of the phoria evaluation, time taken for one 

measurement block of binocular, monocular accommodation and phoria (approximately 

60-80 sec) and the age of participants. However, inspection of  changes to near phoria 

through adds (Chapter 6, Fig 6-1)  or tonic vergence through prism (Chapter 7, Fig 7-1) 

indicates that more frequent measures within the first 4-6 minutes of adaptation might 

provide a better estimate of time constants of vergence and accommodative adaptation.   

 

Several differences in ocular motor parameters were observed in the myopic child 

compared to emmetropes.  Some parameters (like accommodative lag, AV/A ratio, tonic 

accommodation) were examined in longitudinal designs by previous authors in order to 

determine their ability to predict the onset of myopia 
3-7

. Goss & Rosenfield 
8
 suggested 

that vergence adaptation to near task may produce convergent shifts, which may lead to 

axial elongation due to the increased accommodative lags associated with esophoria. This 

thesis found a less convergent (or more divergent) shift in vergence adaptation to near 
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task compared to emmetropes (Chapter 5), presumably related to their higher 

accommodative adaptation. However, these children were already myopic and it is 

unclear whether vergence adaptive ability plays any role in predicting the onset of 

myopia. It may be beneficial to longitudinally evaluate the role of other ocular motor 

parameters including accommodative/ vergence adaptation in pre-school children prior to 

the development of myopia.  Nevertheless, given the uncertain role of accommodative 

lags in the development of myopia (as discussed in Chapter 9), it is unclear whether other 

ocular motor factors such as adaptation play a major role in myopia development. Other 

factors (such as mechanical reasons –involving accommodative apparatus) may merit 

further consideration as possible explanations for the development of myopia.  
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Appendices 

Appendix A: Results of calibration of PowerRefractor responses 

Calibration of the PowerRefractor was done in a two-step process to ensure both 

relative and absolute accuracy of accommodation response (description in Methods 

section 3.1.3). 

 

Relative accuracy 

This experiment verified that the PowerRefractor provided accurate changes 

within a certain stimulus range. The following table (Table A1) shows the slopes for the 

individual calibration function in all study participants.  

Table A1: Slopes for the individual calibration function in all study participants 

Participant initials Slope of the calibration R squared 

CC 1.03 0.99 

LC 0.9 0.98 

RL 0.81 0.99 

NG 1.18 0.99 

KG 1.1 0.93 

DL 1.01 0.99 

LM 1.05 0.99 

WA 1.15 0.99 

MR 1.05 0.99 

SW 1.05 0.98 
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Participant initials Slope of the calibration R squared 

TH 0.89 0.98 

MV 0.98 0.98 

GK 1.06 0.99 

DM 1.11 0.98 

SM 0.92 0.87 

FA 0.90 0.97 

DS 1.10 0.99 

HC 1.80 0.99 

KS 0.91 0.99 

EP 0.93 0.99 

AV 0.89 0.98 

MK 1.08 0.98 

EC 1.17 0.99 

AD 1.15 0.99 

KD 1.09 0.99 

SC 0.83 0.99 

RC 0.94 0.99 

AA 1.4 0.94 

EB 0.96 0.98 

MS 1.28 0.99 
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Participant initials Slope of the calibration R squared 

ZS 1.12 0.99 

MT 1.06 0.99 

TA 1.14 0.99 

KH 0.99 0.94 

JL 1.03 0.99 

TC 1.29 0.99 

IR 1.49 0.96 

GP 1.02 0.99 

RF 0.96 0.98 

CG 1.0 0.97 

CAB 1.19 0.97 

CLB 1.10 0.98 

MX 1.23 0.98 

AM 1.06 0.99 

CN 1.13 0.99 

JM 1.04 0.94 
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FK 1.1 0.98 

MG 1.28 0.99 

IB 1.2 0.99 

EN 1.05 0.99 

KT 1.06 0.99 

JB 0.90 0.99 

 

 

Absolute accuracy 

The accuracy of the accommodative responses obtained with the PowerRefractor 

was determined by comparing the photorefractor responses with those obtained with 

dynamic retinoscopy (vertical meridian) at two stimulus conditions (3D and 2D), created 

by viewing a near target at 33 cm with and without +1D lenses. This measurement was 

performed on 20 children (emmetropes=10 and myopes=10). The order of testing method 

and stimulus condition were randomized to avoid bias.  Fig A1 shows the mean 

accommodative response obtained using the two techniques pooled across refractive 

groups. It can be seen that the PowerRefractor, on average showed a more hyperopic 

response at both viewing distances compared to retinoscopy (Fig A1; Bias = 0.39±0.2D 

at 3D and 0.41±0.3D at 2D through +1D lens; P<0.05 between two distances; range = +0 

to 1.1D). This difference was non-significant between refractive groups tested in this 
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study (P>0.05). Based on these findings, a correction factor of 0.4D was added to all 

accommodative measures obtained using the PowerRefractor.   
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Fig A1: Comparison of accommodative response measured using PowerRefractor and retinoscopy.  
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