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Abstract

The success of modern networked systems has led to an increased reliance and greater

demand of their services. To ensure that the next generation of networks meet these

demands, it is critical that the behaviour and performance of these networks can be reliably

predicted prior to deployment. Analytical modeling is an important step in the design

phase to achieve both a qualitative and quantitative understanding of the system. This

thesis contributes towards understanding the behaviour of such systems by providing new

results for two fluid network models: The stochastic fluid network model and the flow level

model.

The stochastic fluid network model is a simple but powerful modeling paradigm. Unfor-

tunately, except for simple cases, the steady state distribution which is vital for many

performance calculations, can not be computed analytically. A common technique to al-

leviate this problem is to use the so-called Heavy Traffic Approximation (HTA) to obtain

a tractable approximation of the workload process, for which the steady state distribution

can be computed. Though this begs the question: Does the steady-state distribution from

the HTA correspond to the steady-state distribution of the original network model? It is

shown that the answer to this question is yes. Additionally, new results for this model

concerning the sample-path properties of the workload are obtained.

File transfers compose much of the traffic of the current Internet. They typically use

the transmission control protocol (TCP) and adapt their transmission rate to the available

bandwidth. When congestion occurs, users experience delays, packet losses and low transfer

rates. Thus it is essential to use congestion control algorithms that minimize the probability

of occurrence of such congestion periods. Flow level models hide the complex underlying

packet-level mechanisms and simply represent congestion control algorithms as bandwidth

sharing policies between flows. Balanced Fairness is a key bandwidth sharing policy that is

efficient, tractable and insensitive. Unlike the stochastic fluid network model, an analytical

formula for the steady-state distribution is known. Unfortunately, performance calculations

for realistic systems are extremely time consuming. Efficient and tight approximations for

performance calculations involving congestion are obtained.
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3.2.2 Properties of Reflected Lévy Processes . . . . . . . . . . . . . . . . 31

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 The Stochastic Fluid Network . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Heavy Traffic Approximation . . . . . . . . . . . . . . . . . . . . . 34

3.4 Results: Fixed Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Convergence to Reflected Brownian Motion . . . . . . . . . . . . . 36

3.4.2 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Results: State Dependent Routing . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 The Skorokhod Problem and the Stochastic Fluid Network Model . 39

3.5.2 Heavy Traffic Approximation . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Interchange of Limits for State-dependent Routing . . . . . . . . . 44

4 Balanced Fairness 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Assumptions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



4.3.1 Multi-rate Erlang Loss Systems . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Large Multi-rate Erlang Loss Systems . . . . . . . . . . . . . . . . . 53

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Flow-Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Insensitive Bandwidth Sharing Policies . . . . . . . . . . . . . . . . 56

4.4.3 Balanced Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.4 Congestion Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Single Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Congestion Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Probability of Congestion . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Time-Average Congestion Rates . . . . . . . . . . . . . . . . . . . . 68

4.6 Parking Lot Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.1 Balanced Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.2 Probability of congestion . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.3 Time-Average Congestion Rates . . . . . . . . . . . . . . . . . . . . 95

4.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusion and Future Work 101

5.1 Pathwise Results for Stochastic Fluid Networks . . . . . . . . . . . . . . . 101

5.2 Interchange of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Balanced Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References 110

viii



List of Tables

4.1 Probability of Congestion - Single Link . . . . . . . . . . . . . . . . . . . . 98

4.2 Probability of Congestion - Parking Lot Network . . . . . . . . . . . . . . 100

ix



List of Figures

2.1 Stochastic Fluid Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Parking Lot Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



Chapter 1

Introduction

The success of modern networked systems has led to an increased reliance and greater

demand of their services. To ensure that the next generation of networks meet these

demands reliably and within budget, it is critical that the behaviour and performance

of these networks can be reliably predicted prior to deployment. Analytical modeling

is an important step in the design phase to achieve both a qualitative and quantitative

understanding of the system. This introduction provides some background and motivation

for the researched questions investigated in this thesis.

A probabilistic approach, e.g. Queueing Theory, has been widely used to analyze and design

communication, manufacturing and transportation systems. Probability theory provides a

natural and powerful framework to capture the inherent uncertainty in many of the system

parameters. Though, except for only the simplest network models, often a sacrifice between

realistic assumptions and tractable analysis must be made.

A complementary deterministic approach, such as Network Calculus [45] for instance,

has appeared in recent years. This approach has yielded bounds on system performance

under minimal assumptions, but at the cost of precision. One of the recurring themes

throughout this thesis is the use of deterministic bounds to simplify the analysis for many

of the probabilistic results.
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1.1 Fluid Inputs and Models

A critical part of network analysis is in choosing how to model the arrival process. This

is often determined by the physical nature of the system and by the relevant time-scale.

Most of the research focus has been on the traditional ”‘discrete”’ queueing systems where

arriving jobs are modeled as point processes.

Alternatively, one may model the arriving traffic as a continuous time process known as a

fluid input. For example, consider a data network. The incoming traffic can be modeled at

the bit level which is fundamentally discrete. But at coarser timescales, the input process

can be approximated by a continuous time or fluid representation which is often suitable

for performance calculations. In this thesis, only fluid inputs will be considered.

Irrespective of the type of the input model chosen, knowledge of the stationary distribution

is critical to most performance calculations. For discrete queueing systems, little is known

about the analytical form of the stationary distribution outside of the Markovian context.

One must often resort to approximations or simulation.

For the two fluid models that will be studied in this thesis, the stochastic fluid network

model and the flow level model, the situations are on different ends of the spectrum. For

stochastic fluid networks, little is known about the structure of the stationary distribution,

while for the specific flow level fluid network model studied, the exact form is explicitly

known but unusable for realistic computations. It is the goal of this thesis to justify

approximation techniques to help overcome these deficiencies.

1.1.1 Stochastic Fluid Network

Consider the problem of modeling the workload at each link in a packet network. Though

packet arrivals are inherently discrete, the cumulative arrivals can be modeled as a fluid

[49] (pg. 4). If the servers are reliable and can service the packets relatively quickly, then

a simplifying assumption that server speed is constant can be made. This, in essence, is

the stochastic fluid network model.
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In regards to performance analysis, the model has distinct advantages and disadvantages

which are best illustrated through the canonical model studied mainly by Kella and Whitt

(e.g. [34, 38, 39]).

Let {J(t) : t ≥ 0} be a non-decreasing Lévy process representing the cumulative amount

of fluid that has arrived at the links, P be the routing matrix of the network and r be a

vector representing the service rates at each link. Then the workload {W (t) : t ≥ 0} can

be simply represented by the following equation,

W (t) = W (0) + J(t)− (I − P ′)rt+ (I − P ′)Z(t), (1.1)

where W (0) is the initial workload and {Z(t) : t ≥ 0} ensures that W is non-negative.

The advantage of this model is that one can analyze the model sample-path wise i.e. using

deterministic methods. In Kella [34], a pathwise bound on the total workload was used to

establish stability criteria for the network. In Kella and Whitt [39], a comparison theorem,

used to establish monotonicity properties for the workload. Both of the theorems assume

a fixed, and common in the case of the comparison theorem, routing matrix.

It is the goal of Chapter 2 to obtain similar pathwise bounds and comparison theorems

when there is time- and state-dependence in the parameters r and P , and (in the case of

comparison theorems) when the routing matrices are not the same.

Though one can establish stability criterion, it was shown in [34] that, except for trivial

cases, the stationary distribution is never product form. Except for restricted class of

network topologies, such as tandem networks [37], little is known about the stationary

distribution.

In this situation, for both discrete and fluid inputs, a common technique to alleviate

this problem is to use the so-called ”‘Heavy Traffic”’ Approximation (HTA). The HTA

essentially models a scaled version of the system as a Reflected Brownian Motion, for

which the steady state distribution can be at least computed numerically. Though this

begs the following question: Does the steady-state distribution from the HTA correspond

to the steady-state distribution of the original network model?

This conjecture was first confirmed by Gamarnik and Zeevi [22] for Generalized Jackson

Networks, followed by Budhiraja and Lee [17] for Generalized Jackson Networks under
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weaker assumptions and Zhang and Zwart [71] for limited processor sharing queues. To

the authors knowledge, it has not been explored for fluid type inputs. This interchange of

limits conjecture is confirmed to be true in Chapter 3 even when there is state-dependence

in the routing matrix. The proofs utilize the pathwise results of Chapter 2.

1.1.2 Flow Level Model

File transfers compose much of the traffic of the current Internet. They typically use

the transmission control protocol (TCP) and adapt their transmission rate to the available

bandwidth. When congestion occurs, users experience delays, packet losses and low transfer

rates. Thus it is essential to use congestion control algorithms that minimize the probability

of occurrence of such congestion periods.

Flow level models hide the complex underlying packet-level mechanisms and simply repre-

sent congestion control algorithms as bandwidth sharing policies between flows. A natural

approach is to treat bandwidth sharing as a utility maximization problem. A key band-

width sharing policy of practical importance is proportional fairness [41], which seeks to

maximize a logarithmic utility function. It has been shown by Low et. al. [46] that TCP

Vegas is proportionally fair in equilibrium.

In general, analyzing the steady-state performance of a network operating under propor-

tional fairness is quite difficult and can not be done analytically, except for simple network

topologies [11]. It turns out that proportional fairness can be well approximated by the

slightly different notion of balanced fairness [11]. Balanced Fairness is an insensitive band-

width sharing policy for which an analytical formula for the stationary distribution is

known.

In most of the literature on Balanced Fairness, it is assumed that flows utilize all the band-

width alloted to them. In reality, they are often severely rate limited and heterogeneous.

One can define congestion in such flow models as a flow not receiving its maximum bit

rate. Balanced Fairness with rate limits has not been well studied in the literature, outside

of the single link case [8, 15] or tree networks [14]. In fact, analysis of congestion in such

networks has not been studied at all.
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Chapter 4 develops analytic formulas for congestion metrics under the single link and so-

called parking lot network topologies. Unfortunately, it was found that due to the structure

of the stationary distribution, the calculations for even simple systems were extremely time

consuming. Leveraging the large system asymptotic from loss networks [23], fast and tight

closed-form approximations are introduced as well.

1.2 Outline of Thesis

The thesis is organized as follows: Chapter 2 investigates sample-path properties for

stochastic fluid networks via comparison theorems, and discusses an application to Gener-

alized Processor Sharing (GPS) networks. Chapter 3 affirms that the interchange of limits

for stochastic fluid networks in heavy traffic holds. Chapter 4 analyzes congestion in net-

works operating under balanced fairness. Finally, Chapter 5 summarizes the main results

in each of the previous chapters and suggests future lines of research.

Each chapter is organized in roughly the same manner: The introduction provides a liter-

ature review and a summary of the contributions. This is followed by a brief description

of the external tools and techniques used in the chapter. Then a description of the model

is given which includes a discussion of the assumptions. Lastly, the main results are stated

and proven.

The results obtained in Chapter 2 can be found in [26] co-authored with Ravi Mazumdar

and Francisco Piera. The results in Chapter 3 expands [24] and will appear in [25]. Both

of the paper were co-authored with Ravi Mazumdar. Finally, the results in Section 4.5 will

appear in a paper co-authored with Thomas Bonald and Ravi Mazumdar [9].

1.3 Contributions of this Thesis

The major original contributions of this thesis are as follows:

Chapter 2 New pathwise comparison theorems are proven for stochastic fluid networks with

time- and state-dependent parameters. These comparison theorems provide new
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insight into the qualitative behaviour of stochastic fluid networks and generalize the

results available in the literature.

Chapter 3 We prove the interchange of limits for stochastic fluid networks with state-dependent

routing and Lévy type inputs. Of further interest, the proofs utilize the deterministic

sample-path results of Chapter 2.

Chapter 4 Tight closed-form approximations for calculating congestion metrics in a single link

are shown. The approximations are based on the large system asymptotic.

Chapter 4 A new criterion for identifying the states for which congestion occurs in a parking

lot network operating under balanced fairness is shown. As well, upper bounds

for the calculation of congestion metrics in parking lot networks are established.

The calculation of these bounds are found to be extremely time consuming in even

trivial systems with many flows classes, i.e. state-space explosion. To bypass this

problem, tight closed-form approximations based on the large system asymptotic are

introduced as well.
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Chapter 2

Pathwise Results for Stochastic Fluid

Networks

2.1 Introduction

The analytic analysis of networks in general has historically been a very difficult task.

In fact, few concrete results are known outside of the Markovian setting. In recent years,

pathwise analysis has provided invaluable insight into the general behavior of various classes

of networks, especially for establishing bounds and proving stability.

Stochastic fluid networks (SFNs) are a simple but insightful class of network model for

which arrivals are modeled as a fluid and service at the queues can be approximated as

a deterministic fluid flow. The particular case of SFNs with fixed routing matrix has

been extensively studied in a series of papers by Kella [33, 34], Kella & Whitt [37, 38,

39] and in the book by Whitt [65]. In particular, the papers of Kella [34] and Kella

& Whitt [39] provide stability conditions for SFNs with Lévy and stationary increment

inputs respectively, through the use of comparison theorems.

Most of the comparison results for stochastic fluid networks are through their association

with reflected equations. Kella & Whitt [39] established several comparison results for
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reflected equations with constant reflection directions. A comparison result for reflected

differential equations, with state- and time-dependent parameters, was proven by Rama-

subramanian [55]. Piera and Mazumdar [50] established a similar comparison theorem for

reflected diffusions with jumps.

The chapter is divided as follows: Section 2.2 gives an introduction to the Skorokhod

Oblique Reflection Problem or just the Skorokhod Problem. Section 2.3 describes the fluid

network model in more detail than the one given in the introduction. Section 2.4 proves

and discusses the qualitative implications of various comparison theorems. The insights

obtained from the previous section are then applied to show a comparison theorem for a

multi-class stochastic fluid network under the Generalized Processor Sharing (GPS) service

discipline in Section 2.5. Finally, future work is discussed in Section 5.1.

All results proven in Sections 2.4 and 2.5 are original contributions unless otherwise stated.

The most important contribution in Section 2.4 is Theorem 2.4.1, which establishes condi-

tions for comparing networks with different routing matrices. To the author’s knowledge,

this has not been considered before in the context of stochastic fluid networks.

2.1.1 Assumptions and Notation

This section specifies the assumptions and notation that will be used in the chapter. Unless

otherwise stated the integer N ≥ 0 will be fixed as the dimension. Let D ≡ D([0,∞),RN)

be the space of càdlàg, RN -valued functions defined on the interval [0,∞). The space D

will be endowed with the Skorokhod J1 topology. Let the subsets D+ ≡ D+([0,∞),RN)

be the non-negative càdlàg functions and D↑ ≡ D↑([0,∞),RN) denote the non-negative,

non-decreasing càdlàg functions. As well, we will denote D↑,0 ≡ D↑,0([0,∞),RN) as the

subset of functions in D↑ that are null at the origin. For any x, y ∈ D↑([0,∞),RN), the

notation x ≺ y means that for all s ≥ t ≥ 0, x(t) ≤ y(t) and x(s) − x(t) ≤ y(s) − y(t).

For any functions f, g, f(N) ∼ g(N) means f(N)/g(N) → 1 when N → ∞. Finally, the

notation x(t−) means the limit when x approaches t from the left.

Vectors and matrices are assumed to have real-valued entries. As well, vectors will be

assumed to be column vectors. The transpose of a matrix A will be denoted by A′ and I

8



will represent the identity matrix. For a constant C, we use ~C to mean an N -dimensional

column vector with all its entries being equal to C. The notation xi will mean the ith

entry of a vector x and likewise, Ai,j will mean the (i, j)th entry of a matrix A. Note that

the notation xn will also refer to a possibly vectorial element in a sequence, though the

meaning of the notation will be obvious. The space RN will be equipped with the Euclidean

metric. For p ∈ [1,∞], |·|p will denote the standard vector and induced matrix p-norms.

For simplicity we shall write |·| ≡ |·|1. Comparisons are assumed to be component wise.

As well, scalar operations on vectors are to be interpreted component wise. We denote by

ei the standard unit vector, i.e. the ith component is 1 and the rest are 0. For any two

scalars a and b, a ∧ b is the minimum and a ∨ b is the maximum.

An N × N matrix R is said to be an M-matrix if it has positive diagonal entries, non-

positive off-diagonal entries, and has a non-negative inverse [19](p. 164). In this thesis,

routing matrix, denoted by P , will mean a substochastic matrix such that (I − P ′) is an

M-matrix.

2.2 Background

2.2.1 The Skorokhod Problem

Let X ∈ D with X(0) ∈ RN
+ and let R be an M-matrix.

Definition 2.2.1. The functions (W,Z) ∈ D×D↑,0 are said to solve the Skorokhod Oblique

Reflection Problem (SP) corresponding to (X,R) if the following conditions hold:

1. W (t) = X(t) +RZ(t) ∈ RN
+ ∀t ≥ 0,

2. Z ∈ D↑,0,

3.

∫ t

0

Wi(s)dZi(s) = 0, i = 1 . . . N.
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It is well known that the functions (W,Z), referred to as the reflected and regulator func-

tions respectively, exist and are unique. Meaning for all X ∈ D with X(0) ∈ RN
+ , there

exists a unique pair of mappings ΦR,ΨR : D → D such that ΦR(X) = W and ΨR(X) = Z.

The mapping ΦR is known as the Skorokhod map. Both ΦR and ΨR depend solely on the

reflection matrix R. As well, they are Lipschitz continuous in the following sense:

Lemma 2.2.1. Let X(1), X(2) ∈ D, X(1)(0), X(2)(0) ∈ RN
+ , and let R be an M-matrix.

Also let (W (i), Z(i)) solve the SP corresponding to
(
X(i), R

)
(ie. ΦR(X(i)) = W (i) and

ΨR(X(i)) = Z(i)) for i = 1, 2. Then there exists a finite constant C whose value depends

solely on the matrix R such that for any fixed T > 0,

|W (1)(t)−W (2)(t)|+ |Z(1)(t)− Z(2)(t)| ≤ C sup
s∈[0,T ]

|X(1)(s)−X(2)(s)| (2.1)

for all t ∈ [0, T ].

Solutions of the SP possess useful pathwise properties that will often be exploited in the

analysis. One such result is the following lemma which describes the regulator process as

the minimal process that keeps the free process in the positive orthant.

Lemma 2.2.2. Let X ∈ D, X(0) ∈ RN
+ , R be an M-matrix and let (W,Z) solve the SP

corresponding to (X,R). If there exists another Z̃ ∈ D↑,0 such that W (t) = X(t)+RZ̃(t) ∈
RN

+ ∀t ≥ 0, then Z̃(t) ≥ Z(t) ∀t ≥ 0.

See Chapter 14 of Whitt [65] or Chapter 7 of Chen & Yao [19] for further details.

2.2.2 The Skorokhod Problem: Time- and State-Dependent Re-

flection

A generalization of the above classic version of the Skorokhod problem was studied by

Ramasubramanian [55]. Given a càdlàg process {X(t); t ≥ 0} and functions b : R+×RN
+ ×

RN
+ → RN , R : R+ × RN

+ × RN
+ → RN×N such that
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1. Each component bi, 1 ≤ i ≤ N , is bounded continuous and (z, w) 7→ bi(t, z, w) are

Lipschitz continuous, uniformly in t.

2. Each component Rij, 1 ≤ i, j ≤ N , is bounded continuous and (z, w) 7→ Rij(t, z, w)

are Lipschitz continuous, uniformly in t. Moreover, Rii = 1.

3. There exist a constant V ∈ RN×N such that |Rij(t, z, w)| ≤ Vij, for i 6= j, and Vii = 0.

As well, σ(V ) < 1 where σ(V ) denotes the spectral radius of V .

The functions (W,Z) ∈ D × D↑,0 are said to solve the Skorokhod Oblique Reflection

Problem (SP) corresponding to (X, b(t, z, w), R(t, z, w)) if the following conditions hold:

1. W (t) = X(t) +

∫ t

0

b(s, Z(s−),W (s−))ds+

∫ t

0

R(s, Z(s−),W (s−))dZ(s) ∈ RN
+ ∀t ≥

0,

2. Z ∈ D↑,0,

3.

∫ t

0

Wi(s)dZi(s) = 0, i = 1 . . . N.

Note that since V has spectral radius less than 1, there exists constants ai > 0, i = 1 . . . N

and 0 < α < 1 such that for all t ≥ 0, w, z ∈ RN
+ , and i = 1 . . . N the inequality∑

j 6=i

aj|Rj,i(t, z, w)| ≤
∑
j 6=i

ajVj,i < αai, (2.2)

is satisfied.

Let c1, c2, T > 0 be arbitrary constants, and let ϕT and ψT be the total variation norm and

supremum norm over the interval [0, T ] respectively. Then for any(
W (1), Z(1)

)
,
(
W (2), Z(2)

)
∈ D([0, T ],RN)×D↑,0([0, T ],RN)

the function

dT
((
W (1), Z(1)

)
,
(
W (2), Z(2)

))
, c1

N∑
i=1

aiϕT

(
Z

(1)
i − Z

(2)
i

)
+ c2

N∑
i=1

aiψT

(
W

(1)
i −W

(2)
i

)
(2.3)
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is a metric. Moreover, the metric space
(
D([0, T ],RN)×D↑,0([0, T ],RN), dT

)
is complete.

The following result is a comparison theorem due to Ramasubramanian [55]. This powerful

comparison result will be used for some of the theorems and lemmas to follow.

Theorem 2.2.1 (Theorem 4.1,[55]). Let (W (i), Z(i)) solve the SP corresponding to(
X(i), b(i)(t, z, w), R(i)(t, z, w)

)
for i = 1, 2.

Suppose that the following conditions are satisfied:

• X(1) ≺ X(2),

• X(1)(0) ≤ X(2)(0),

• b(1)
i (t, z1, w1) ≤ b

(2)
i (t, z2, w2),

• R(1)
ij (t, z1, w1) ≤ R

(2)
ij (t, z2, w2) ≤ 0, i 6= j,

whenever w1 ≤ w2, z1 ≥ z2 and t ≥ 0.

Then

W (1)(t) ≤ W (2)(t) t ≥ 0, (2.4)

Z(2) ≺ Z(1). (2.5)

2.3 Model

2.3.1 A Fluid Network Model

A Single Queue Model

Let {J(t) : t ≥ 0} be a non-negative, non-decreasing function such that for any time t, J(t)

is the amount of work offered to the queue in the interval [0, t]. When non-empty, fluid is

drained from the queue at a constant rate r. Fluid that arrives into an empty queue gets

processed and drained immediately. As well, unlimited storage capacity is assumed.

12



For a fluid model, the workload process {W (t) : t ≥ 0}, defined by

W (t) , W (0) + J(t)− rt+ rL(t) ∈ D+, (2.6)

where W (0) is the initial workload (i.e. the initial amount of fluid in the queue) and

{L(t) : t ≥ 0} is defined as

L(t) ,
∫ t

0

1W (s)=0ds, (2.7)

is the focus of many performance calculations. Define the regulator process {Z(t) : t ≥ 0}
and the virtual workload process {X(t) : t ≥ 0} by

Z(t) = rL(t), (2.8)

and

X(t) = W (0) + J(t)− rt, (2.9)

respectively. Then (W,Z) is the solution to the SP corresponding to (X, 1). It is straight-

forward to verify that

Z(t) = sup
s≤t
−X(s) ∨ 0. (2.10)

Knowledge of the analytical form of the regulator process enables many performance cal-

culations that have currently eluded the network models discussed in the next section.

Fluid Network

The section begins by looking at networks without any time- or state-dependencies in

the parameters. It is assumed that the fluid network consists of N single server, work

conserving queues naturally labeled 1, . . . , N . A stochastic fluid network can be uniquely

characterized by the 4-tuple (J, r, P,W (0)): The input process J ∈ D↑,0, the processing or

drain rate r ∈ RN
+ , the routing matrix P ∈ RN×N

+ , and the initial workload W (0) ∈ RN
+ .

The routing matrix P will be assumed to be substochastic such that (I − P ′) is an M-

matrix, which implies that the network is open. The cumulative amount of work that

arrives externally to the system at queue i = 1 . . . N in the interval [0, t] is modeled by

13



Figure 2.1: A Stochastic Fluid Network

Ji(t). Work at queue i is drained as a fluid at rate ri > 0, and routed to queue j at rate

Pijri. An example of a stochastic fluid network is given in Figure 2.1.

Let the virtual workload process {X(t) : t ≥ 0} be defined by

X(t) = W (0) + J(t)− (I − P ′)rt. (2.11)

Then the workload and regulator processes (W,Z) are defined as the solution to the SP

corresponding to (X, I − P ′).

To include time- or state-dependency into the model, restrictions must be imposed on

the routing matrix and processing rates. The routing matrix is assumed to be a function

P : R+ × RN
+ × RN

+ → RN×N
+ and the processing rate r : RN

+ → R+, such that for fixed

t ≥ 0, z, w ∈ RN
+ :

• Each component of the routing matrix Pij, 1 ≤ i, j ≤ N , is bounded continuous and

(z, w) 7→ Pij(t, z, w) are Lipschitz continuous, uniformly in t.

14



• Pii = 0 and Pij ≥ 0.

• There exists a constant V ∈ RN×N such that Pij(t, z, w) ≤ Vij, for i 6= j, and Vii = 0.

As well, σ(V ) < 1 where σ(V ) denotes the spectral radius of V .

• P (t, z, w) is a substochastic matrix such that (I − P ′(t, z, w))−1 exists and is non-

negative.

• r is bounded continuous.

The workload and regulator processes (W,Z) are defined as the solution to the SP corre-

sponding to (W (0) + J,− (I − P ′(t, z, w)) r(t), I − P ′(t, z, w)). Explicitly, the workload is

written as

W (t) = W (0) + J(t)−
∫ t

0

(
I − P ′(s, Z(s−),W (s−))

)
r(t)ds (2.12)

+

∫ t

0

(
I − P ′(s, Z(s−),W (s−))

)
dZ(s).

The notation (W,Z) = FN(W (0), J, r(t), P (t, z, w)) will be used to indicate the workload

and regulator processes of a particular fluid network. The dependence of r and P on time

and state will always be made explicit in the notation, e.g. a constant routing matrix will

be written as P while a time-dependent routing matrix will be written as P (t).

2.4 Results

The first lemma uses the Ramasubramanian comparison theorem to highlight an important

relationship between the service rates and the regulator process.

Lemma 2.4.1. Let

(W,Z) = FN (W (0), J, r(t), P ) .

Then

{
∫ t

0

r(s)ds− Z(t) : t ≥ 0}

is a non-negative, non-decreasing process.
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Proof. Let (
W (1), Z(1)

)
= FN (W (0), J, r(t), P )

and (
W (2), Z(2)

)
= FN (0, 0, r(t), P ) .

The solution to the second SP is

(W (2), Z(2)) = (0,

∫ ·
0

r(s)ds).

The result follows by applying Theorem 2.2.1.

The next result establishes monotonicity with respect to the initial workload, cumulative

input, and the routing matrix.

Theorem 2.4.1. Let (
W (1), Z(1)

)
= FN

(
W (1)(0), J (1), r(t), P (1)

)
,

and (
W (2), Z(2)

)
= FN

(
W (2)(0), J (2), r(t), P (2)

)
.

As well suppose,

J (1) ≺ J (2),

W (1)(0) ≤ W (2)(0),

and assume that

P (1)(t, z1, w1) ≤ P (2)(t, z2, w2) ∀t ≥ 0, z1 ≥ z2 and w1 ≤ w2.

Then

W (1)(t) ≤ W (2)(t), t ≥ 0,

Z(1)(t) ≥ Z(2)(t), t ≥ 0,

Z(2) ≺ Z(1).
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Proof. Let

Ri ≡ I − P (i)′ for i = 1, 2.

For (t, z, w) ∈ R+ ×D↑[0,∞)×D+[0,∞) define the mappings:

X(i)(t, z, w) = W (i)(0) + J (i)(t)−
∫ t

0

R(i)(s, zs− , ws−)r(s)ds−
∫ t

0

P (i)′(s, zs− , ws−)dzs,

T (i)(t, z, w) = sup
0≤s≤t

max(0,−X(i)(s, z, w)),

and

S(i)(t, z, w) = X(i)(t, z, w) + T (i)(t, z, w)

where the sup and max operations are to be applied component wise and i = 1, 2. Note

that the mappings (T (i), S(i)) solves a SP with input X(i) and identity reflection matrix.

Choose processes

(z(i), w(i)) ∈ D↑[0,∞)×D+[0,∞)

such that w(2) ≥ w(1), z(i)(0) = 0, z(1)(t2) − z(1)(t1) ≥ z(2)(t2) − z(2)(t1) and z(1)(t2) −
z(1)(t1) ≤

∫ t2
t1
r(s)ds ∀0 ≤ t1 ≤ t2.

From the assumptions, it is straightforward to see that

X(2)(0, z(2), w(2)) ≥ X(1)(0, z(1), w(1)),

and

X(2)(t2, z
(2), w(2))−X(2)(t1, z

(2), w(2)) ≥ X(1)(t2, z
(1), w(1))−X(1)(t1, z

(1), w(1))

for all t2 ≥ t1 ≥ 0.

So by Theorem 2.2.1,

S(1)(t, z(1), w(1)) ≤ S(2)(t, z(2), w(2)), t ≥ 0,

T (1)(t, z(1), w(1)) ≥ T (2)(t, z(2), w(2)), t ≥ 0,

T (1)(t2, z
(1), w(1))− T (1)(t1, z

(1), w(1)) ≥ T (2)(t2, z
(2), w(2))− T (1)(t1, z

(2), w(2)) ∀t2 ≥ t1 ≥
0.
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Note that

T (1)(0, z(1), w(1)) = T (2)(0, z(2), w(2)) = 0.

Also by Lemma 2.4.1,

T (1)(t2, z
(1), w(1))− T (1)(t1, z

(1), w(1)) ≤
∫ t2

t1

r(s)ds ∀t2 ≥ t1 ≥ 0.

The remainder of the proof follows mutatis mutandis from the proof of Theorem 3.7 in

[55]: Essentially, there exists a time point t0 > 0 such that, restricted to [0, t0], the maps

(T (i), S(i)) are contraction maps (using the metric dt0 (2.3)) whose unique fixed point is

the solution to the SP (Z(i),W (i)). The procedure is then repeated starting at time t0 and

so forth.

The previous result establishes a very intuitive notion. If the fluid leaving the network

at each node decreases or a greater amount of fluid arrives at each point in time, then

the workload at each queue should, and by Theorem 2.4.1 does indeed, increase. But,

monotonicity of the workload with respect to all parameters was shown except for the

service rate. So it is natural to wonder if a similar result with respect to the service

rates can be found as well. In general the answer is no, and it is fairly straightforward

to find examples of this. But Theorem 2.2.1 tells us that, under restrictive conditions,

monotonicity can exist.

Lemma 2.4.2. Let (
W (1), Z(1)

)
= FN

(
W (0), J, r(1)(t), P (t, z, w)

)
and (

W (2), Z(2)
)

= FN
(
W (0), J, r(2)(t), P (t, z, w)

)
.

Assume that R(t, z1, w1)r(1)(t) ≥ R(t, z2, w2)r(2)(t) and R(t, z1, w1) ≤ R(t, z2, w2) whenever

z1 ≥ z2 and w1 ≤ w2, where R ≡ I − P ′.

Then:

W (1)(t) ≤ W (2)(t), t ≥ 0,
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Z(1)(t) ≥ Z(2)(t), t ≥ 0,

Z(2) ≺ Z(1).

Corollary 2.4.1. Let (
W (1), Z(1)

)
= FN

(
W (0), J, r(1)(t), P

)
and (

W (2), Z(2)
)

= FN
(
W (0), J, r(2)(t), P

)
.

If (I − P ′)r(1) ≥ (I − P ′)r(2) then,

W (1)(t) ≤ W (2)(t), t ≥ 0,

Z(1)(t) ≥ Z(2)(t), t ≥ 0,

Z(2) ≺ Z(1).

As mentioned above, increasing the service rates in the network does not necessarily corre-

spond to a decrease in the workload at each queue. But as the next comparison theorems

will show, they do decrease the total workload in the network. Theorem 2.4.2 and its proof

are a generalization of Lemma 3.1 in [34].

Theorem 2.4.2. Assume that W (1)(0) ≤ W (2)(0), J (1) ≺ J (2), P (1) ≥ P (2) and (I −
P (1)′)−1(I − P (2)′)r(2)(t) ≤ r(1)(t), ∀t ≥ 0.

Define (
W (1), Z(1)

)
= FN

(
W (1)(0), J (1), r(1)(t), P (1)

)
and (

W (2), Z(2)
)

= FN
(
W (2)(0), J (2), r(2)(t), P (2)

)
.

Then ∑
j=1...N

W
(1)
j (t) ≤

∑
j=1...N

W
(2)
j (t), ∀t ≥ 0 (2.13)
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Proof. First assume that W (1)(0) = W (2)(0) = 0 and define {Z∗(t); t ≥ 0} such that

Z∗(t) = (I − P (1)′)−1(J (2)(t)− J (1)(t)) + (I − P (1)′)−1(I − P (2)′)Z(2)(t)

+

∫ t

0

r(1)(s)− (I − P (1)′)−1(I − P (2)′)r(2)(s)dt.

Note that since P (1) ≥ P (2), (I−P (1)′)−1(I−P (2)′) ≥ I. Z∗ is also clearly a non-decreasing

process with Z∗(0) = 0. So J (1)(t)−(I−P (1)′)r(1)t+(I−P (1)′)Z∗(t) = W (2) ≥ 0. Therefore

Z∗ ≥ Z(1) by the minimality property of the regulator process.

This implies that (I−P (1)′)−1W (2) ≥ (I−P (1)′)−1W (1). Since P is substochastic, the result

follows by multiplying both sides of the above inequality by a column vector of ones.

Now if W (1)(0) ≤ W (2)(0), one proves the results using the following method:

Set J (1)(t) = J (1)(t) + W (1)(0) and J (2)(t) = J (2)(t) + W (2)(0). Shift the starting time

from 0 to −t0 < 0 and defining W (1)(−t0) = W (2)(−t0) = 0 and J (1)(t) = J (2)(t) = 0

∀t ∈ [−t0, 0), this implies that W (1)(t) = W (2)(t) = 0 ∀t ∈ [−t0, 0). The proof follows

exactly the same as above but adjusting for the fact the time now starts at −t0 instead of

0.

For any stochastic fluid network, let A ⊂ {1, 2, . . . , N} and define PA = {j ∈ {1 . . . N} :

∃ a path from the output of queue j to queue i in A} ∪ A. Note that if j ∈ PA and m /∈
PA then by definition Pm,j = 0.

Now we return to the problem of comparing two stochastic fluid networks. In Theorem

2.4.2, it was vital that P (1) ≥ P (2), as opposed to the much more natural comparison

theorem condition that P (1) ≤ P (2). The following Lemma shows that in the latter case, a

little more can be said.

Lemma 2.4.3. Assume that W (1)(0) ≤ W (2)(0), J (1) ≺ J (2), P (1) ≤ P (2) and r(2)(t) ≤
r(1)(t), ∀t ≥ 0.

Define (
W (1), Z(1)

)
= FN

(
W (1)(0), J (1), r(1)(t), P (1)

)
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and (
W (2), Z(2)

)
= FN

(
W (2)(0), J (2), r(2)(t), P (2)

)
.

Then for every set A ⊂ {1, 2, . . . , N},∑
j∈P(1)

A

W
(1)
j (t) ≤

∑
j∈P(2)

A

W
(2)
j (t), ∀t ≥ 0. (2.14)

Proof. Combining Theorems 2.4.1 and 2.4.2 gives∑
j=1...N

W
(1)
j (t) ≤

∑
j=1...N

W
(2)
j (t), ∀t ≥ 0.

The condition P (1) ≤ P (2) implies that ∀A ⊂ {1, 2, . . . , N} P(1)
A ⊂ P

(2)
A . Therefore∑

j∈P(2)
A

W
(2)
j (t) ≥

∑
j∈P(2)

A

W
(1)
j (t) ≥

∑
j∈P(1)

A

W
(1)
j (t).

Before proceeding to the next section, a slight modification of the model, which will be

labeled the ”‘state process”’ model, needs to be introduced. To simplify the analysis, it

will be assumed that the input is of the ON-OFF type and that the system knows the state

of the input at time t, ie. whether State(Ji(t)) = ON or State(Ji(t)) = OFF . Define the

state process S : R+ → {0, 1}N such that Si(t) = 1 if fluid is flowing out of queue i at time

t and Si(t) = 0 otherwise.

For the remainder of the section we will assume that the service rates are dependent on

the state process, i.e. r : {0, 1}N → RN
+ . The workload process becomes

W (t) = J(t)−
∫ t

0

(I − P ′)r(S(s))dt+ (I − P ′)Z(t).

From the physics of the fluid network, Si = 1 if and only if there exists j ∈ Pi s.t.

Wj(t
−) > 0 or State(Jj(t)) = ON . The implication is that if Sj(t) = 1, then Si(t) = 1. So

all permissible states may be strictly smaller then all combinations of {0, 1}k×n. Denote S
as the set of permissible states of S(t).
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Theorem 2.4.3. Assume that

P (1) ≤ P (2),

W (1)(0) ≤ W (2)(0),

and

J (1) ≺ J (2).

As well, given s(1), s(2) ∈ S, assume that if s(1) ≤ s(2) then r(1)(s(1)) ≥ r(2)(s(2)).

Define

W (1)(t) = W (1)(0) + J (1)(t)−
∫ t

0

(I − P (1)′)r(1)(S(1)(s))dt+ (I − P (1)′)Z(1)(t),

and

W (2)(t) = W (2)(0) + J (2)(t)−
∫ t

0

(I − P (2)′)r(2)(S(2)(s))dt+ (I − P (2)′)Z(2)(t).

Then ∀t ≥ 0,

S(1)(t) ≤ S(2)(t).

Furthermore, ∀A ⊂ {1, . . . , N},∑
j∈PA

W
(1)
j (t) ≤

∑
j∈PA

W
(2)
j (t).

Proof. Before proceeding, the following fact (Corollary 14.3.5 of [65] and Theorem 3.7 of

[55]) is required: ∀j ∈ Pi states, W (1) and W (2) are continuous at all continuity points of

the input processes J (1) and J (2) respectively.

The proof of the main result will follow by contradiction. From the assumptions, it is

known that

S(1)(0) ≤ S(2)(0).

So assume that there exists a time T > 0 such that

S(1)(T ) 6≤ S(2)(T ).
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Let i be a queue that has S
(1)
i (T ) = 1 and S

(2)
i (T ) = 0. Since S

(2)
i (T ) = 0, this implies

that ∀j ∈ P(2)
{i},

W
(2)
j (T ) = 0 and state(J

(2)
j (T )) = OFF.

But since

r(1)(S(1)(t)) ≥ r(2)(S(2)(t)) ∀t ∈ [0, T ),

Lemma 2.4.3 states that for all t ∈ [0, T ),∑
j∈P(2)

{i}

W
(2)
j (t) ≥

∑
j∈P(1)

{i}

W
(1)
j (t).

Non-negativity of the workload process and continuity imply that ∀j ∈ P(1)
{i},

W
(1)
j (T ) = 0.

This is a contradiction since

state(J
(2)
j (T )) = OFF ⇒ state(J

(1)
j (T )) = OFF

and ∀j ∈ P(1)
{i}, W

(1)
j (T ) = 0 means that S

(1)
i (T ) = 0. Therefore ∀t ≥ 0,

S(1)(t) ≤ S(2)(t).

The remainder follows by Lemma 2.4.3.

2.5 Application

Multi-class networks are very difficult to analyze analytically. In this section we establish

some comparison results for multi-class networks under the Generalized Processor Sharing

service discipline. The results are established exploiting the single class state process model,

which was defined in the previous section.

Generalized Processor Sharing or GPS is a service discipline that is used to imitate a

(weighted) round robin process sharing at each queue. Assume the network has k classes
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and let φc,i > 0 denote the ”‘weight”’ of class c ∈ {1 . . . k} at queue i ∈ {1 . . . N}. Without

loss of generality, it will be assumed that for all i ∈ {1 . . . N},
k∑
c=1

φc,i = 1.

Each queue has service capacity Ci, and the service rate at time t for each class c at each

queue i is

rc,i(t) =
Sc,i(t)φc,i

φc,i +
∑

c̃ 6=c Sc̃,i(t)φc̃,i
Ci.

S is defined to be the k ×N dimensional state process.

The workload process vector for all class c ∈ {1 . . . k} is

Wc(t) = Wc(0) + Jc(t)−
∫ t

0

(I − P ′c)rc(S(s))ds+ (I − P ′c)Zc(t).

Unfortunately, this model of the workload is not useful for our purposes. Define

r̂c,i(t) ,
φc,i

φc,i +
∑

c̃6=c Sc̃,i(t)φc̃,i
Ci, (2.15)

řc,i(t) ,
(1− Sc,i(t))φc,i

φc,i +
∑

c̃6=c Sc̃,i(t)φc̃,i
Ci, (2.16)

Ẑc,i(t) ,
∫ t

0

řc,i(S(s))ds+ Zc,i(t). (2.17)

It is evident that

rc(t) = r̂c(t)− řc(t),

Ẑc,i(0) = 0,

Ẑc,i ∈ D↑.

Therefore we can now redefine the workload process as

Wc(t) = Wc(0) + Jc(t)−
∫ t

0

(I − P ′c)rc(S(s))ds+ (I − P ′c)Zc(t), (2.18)

Wc(t) = Wc(0) + Jc(t)−
∫ t

0

(I − P ′c)r̂c(S(s))ds+ (I − P ′c)(
∫ t

0

řc(S(s))ds+ Zc(t)),

(2.19)

Wc(t) = Wc(0) + Jc(t)−
∫ t

0

(I − P ′c)r̂c(S(s))ds+ (I − P ′c)Ẑc(t). (2.20)
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Notice that r̂c(S(t)) has the very useful property that if, s(1), s(2) ∈ {0, 1}k×N such that

s(1) ≤ s(2), then r̂c(s
(1)) ≥ r̂c(s

(2)). For simplicity, from now on we let rc ≡ r̂c and Zc ≡ Ẑc.

Finally, we now convert the multi-class network with k classes and N queues into a larger

single class network {J̃ , r̃, P̃ , W̃ (0)} with k ∗N queues using the following procedure:

• The multi-class processes Jc, rc,Wc(0), are mapped to the single class vectorial pro-

cesses J̃ , r̃, W̃ (0) using the mapping (c, i)→ (c− 1) ∗N + i.

• The routing matrix P̃ is a N ∗ k × N ∗ k block diagonal matrix, with the routing

matrices Pc, c = 1 . . . k as the block diagonal elements.

Combining this setup and Theorem 2.4.3 establishes the following comparison theorem.

Theorem 2.5.1. Assume that ∀c ∈ {1 . . . k}:

P (1)
c ≤ P (2)

c , (2.21)

W (1)
c (0) ≤ W (2)

c (0), (2.22)

J (1)(t)− J (1)(s) ≤ J (2)(t)− J (2)(s) ∀t > s ≥ 0, (2.23)

C(1) ≥ C(2). (2.24)

Then

S(1)(t) ≤ S(2)(t), (2.25)

N∑
i=1

W
(1)
c,i (t) ≤

N∑
i=1

W
(2)
c,i (t) ∀t ≥ 0. (2.26)

Descriptively the above theorem tells us that increasing congestion in one aspect of the

network, increases the total workload in the network for each class. A simple corollary is

that increasing the congestion in just one class adversely affects the other classes in terms

of workload. Note that this statement is not true in general discrete queueing networks

under GPS. In a discrete queueing network, very large arrivals of a certain class could

potentially ”‘clog”’ the routes of that class, which by the very nature of GPS would be

beneficial to the other classes.
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Chapter 3

Interchange of Limits

3.1 Introduction

It is often the case in the performance analysis of stochastic networks that the calculation of

the stationary distribution of the workload process is of great importance. Unfortunately,

besides exceptional cases such as Jackson networks, the stationary distribution is difficult

to compute.

On the other hand heavy traffic analysis often leads to Reflected Brownian Motion (RBM)

(more precisely Semi-martingale Reflected Brownian Motion (SRBM)) models for which a

substantial theory exists and whose stationary distributions can be explicitly characterized

in many interesting cases [19, 53] and in other situations can be numerically computed

from the Fokker-Planck type equations [62]. The heavy traffic limit as an approximation

for the stationary distribution rests on the notion that by studying the heavy traffic limits

we can bound the actual performance of networks. This naturally leads to the question as

to whether the stationary distribution of the diffusion limit, if it exists, is the limit of the

stationary distributions of the pre-limits.

This ”‘interchange of limits”’ conjecture was first answered by Gamarnik and Zeevi [22]

for Generalized Jackson Networks, but under restrictive moment assumptions on the input

sequences exist. The condition was relaxed in a recent paper by Budhiraja and Lee [17]
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who showed that the result was true assuming only the existence of the second moment.

Under additional assumptions they proved that the moments of the stationary distribution

can be interchanged as well.

In this chapter the interchange of limits approximation is justified for Stochastic Fluid

Networks (SFN) with non-decreasing Lévy inputs. Akin to the paper of Budhiraja and

Lee [17], only second moment assumptions are required to justify the interchange of limits

and under further moment assumptions, the interchange of limits results for the moments

of the stationary distribution is justified as well. Furthermore under stronger assumptions,

it is shown that the interchange of limits also hold for state-dependent routing as well.

The stochastic fluid network model with non-decreasing Lévy inputs has been analyzed in a

series of papers by Kella [33, 34], Kella and Whitt [36, 38, 39]. Results for the more general

stochastic network with spectrally positive Lévy inputs can be found in Konstantopoulos

et al. [43].

Diffusion, or heavy traffic approximations have been studied extensively. The SRBM model

was introduced by Harrison and Reiman [27] and stability conditions were given in Har-

rison and Williams [28]. The convergence of networks in the heavy traffic limit to SRBM

is by now well known, see the survey in [67]. The monograph of Whitt [65] is also a

comprehensive reference.

The chapter is divided as follows: Section 3.2 gives a brief introduction to weak convergence

of probability measures in a metric space. Section 3.3 describes the stochastic fluid net-

work model and the heavy traffic approximation. Section 3.2.2 discusses and states some

results from the single link stochastic fluid network model. Sections 3.4 and 3.5 justify

the interchange of limits approximation for fixed and state-dependent routing respectively.

Finally, a summary of chapters conclusions and future research directions are discussed in

Section 5.2.

All results proven in Sections 3.4 and 3.5 are original contributions unless otherwise stated.

Besides justifying the interchange of limits approximation for the SFN, an additional con-

tribution of note was the use of primarily sample-path arguments to obtain the results.
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3.1.1 Assumptions and Notation

This section specifies the assumptions and notation that will be used in the chapter. Unless

otherwise stated the integer N ≥ 0 will be fixed as the dimension. Let D ≡ D([0,∞),RN)

be the space of càdlàg, RN -valued functions defined on the interval [0,∞). The space D

will be endowed with the Skorokhod J1 topology. Let the subsets D+ ≡ D+([0,∞),RN)

be the non-negative càdlàg functions and D↑ ≡ D↑([0,∞),RN) denote the non-negative,

non-decreasing càdlàg functions. As well, we denote D↑,0 ≡ D↑,0([0,∞),RN) as the subset

of functions in D↑ that are null at the origin. For any x, y ∈ D↑([0,∞),RN), the notation

x ≺ y means that for all s ≥ t ≥ 0, x(t) ≤ y(t) and x(s)− x(t) ≤ y(s)− y(t). Finally, the

notation x(t−) means the limit when x approaches t from the left, i.e. the left limit.

Vectors and matrices are assumed to have real-valued entries. As well, vectors will be

assumed to be column vectors. The transpose of a matrix A will be denoted by A′ and I

will represent the identity matrix. For a constant C, we use ~C to mean an N -dimensional

column vector with all its entries being equal to C. The notation xi will mean the ith entry

of a vector x and likewise, Ai,j will mean the (i, j)th entry of a matrix A. Note that the

notation xn will also refer to a possibly vectorial element in a sequence, though the meaning

of the notation will be obvious. The space RN will be equipped with the Euclidean metric.

For p ≥ 1, |·|p will denote the standard vector and induced matrix p-norms. For simplicity

we shall write |·| ≡ |·|1. Comparisons are assumed to be component wise. As well, scalar

operations on vectors are to be interpreted component wise. We denote by ei the standard

unit vector, i.e. the ith component is 1 and the rest are 0. For any two scalars a and b,

a ∧ b is the minimum and a ∨ b is the maximum.

An N × N matrix R is said to be an M-matrix if it has positive diagonal entries, non-

positive off-diagonal entries, and has a non-negative inverse [19](p. 164). In this thesis,

routing matrix, denoted by P , will mean a substochastic matrix such that (I − P ′) is an

M-matrix.

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis. The filtration (Ft)t≥0 is right continuous and F0

contains all the P-null sets of F . All stochastic processes will be adapted to the filtration.

The symbol⇒ will denote weak convergence for probability distributions and convergence
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in distribution for random elements. The abbreviation ”‘a.s.”’ denotes almost surely. We

use the term subordinator to mean an N -dimensional (unless otherwise stated), a.s. non-

decreasing Lévy process (i.e. subordinator). Furthermore, we shall impose the requirement

that all components of the subordinator are independent and that their increments have

finite second moments.

3.2 Background

3.2.1 Weak Convergence

This subsection about weak convergence is based on the books of Billingsley [7], Jacod and

Shiryaev [30] and Whitt [65].

Let X be a Polish space (i.e. a complete, separable metric space) with metric d and let B
be the Borel σ-field of subsets of X generated by the open sets. Suppose that (Ω,F ,P) is

a probability space. A random element X in X is a measurable mapping from (Ω,F) into

(X ,B). A random element X has a corresponding probability measure π (on X ) known as

the distribution defined by

π , P (X ∈ ·) .

A sequence of probability measures (πn) converges weakly to π (i.e. πn ⇒ π) if for all

bounded, continuous real-valued functions f ,

lim
n→∞

∫
X
f(x)πn(dx) =

∫
X
f(x)π(dx).

We say that a sequence of random elements (Xn) converges weakly to X (i.e. Xn ⇒ X) if

the corresponding sequence of distributions converges weakly.

The following theorem provides equivalent characterizations of weak convergence.
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Theorem 3.2.1 (Portmanteau). The following five conditions are equivalent:

(i)πn ⇒ π,

(ii) lim
n

∫
fdπn =

∫
fdπ for all bounded, uniformly continuous f,

(iii) lim sup
n

πn (F ) ≤ π(F ) for all closed sets F,

(iv) lim inf
n

πn (G) ≥ π(G) for all open sets G, and

(v)πn (A)→ π (A) for all sets A such that the boundary ∂A satisfies π (∂A) = 0.

The following important result states that weak convergence is preserved by continuous

mappings. The continuity assumption can be relaxed, but that will not be required in this

thesis.

Theorem 3.2.2 (Continuous Mapping Theorem). Let h be a continuous mapping from

X into another metric space X ′, with metric d′ and Borel σ-field B′. If πn ⇒ π, then

πnh
−1 ⇒ πh−1.

Another important result is Prokhorov’s theorem. A family of probability measures Π is

tight if for each ε > 0 there exists a compact set K such that π(K) > 1− ε for all π ∈ Π. A

family Π of probability measures is relatively compact if every sequence contains a weakly

convergent subsequence. The limit does not need to be in Π.

Theorem 3.2.3 (Prokhorov). A family of probability measures Π is tight if and only it is

relatively compact.

A sequence of X -valued random variables is tight if and only if the corresponding sequence

of distributions is tight. Now suppose that the metric space is (D, dJ1) (which is Polish).

An important notion in many of the proofs will be that of C-tightness. A sequence of

D-valued random variables (Xn) is C-tight if it is tight and all limit points have a.s.

continuous sample paths.

The following theorem from [30] (in Chapter VI, Proposition 3.26) gives a characterization

of C-tightness.
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Theorem 3.2.4. A sequence of processes (Sn) is C-tight if and only if for all T, α, ε > 0

there are K, θ > 0 and a positive integer n0 s.t. for all n ≥ n0:

1. P
(
supt∈[0,T ] |Sn(t)| > K

)
≤ ε,

2. P (wT (Sn, θ) > α) ≤ ε,

where wT (Sn, θ) = sup{supr,s∈[t,t+θ] |Sn(r)− Sn(s)| : 0 < t < t+ θ < T}.

The first condition of Theorem 3.2.4 holds if the sequence (Sn) is simply tight (See Section

VI, Theorem 3.2.1).

3.2.2 Properties of Reflected Lévy Processes

In this section, we state some useful properties about reflected Lévy processes that will be

used in later sections. The proofs have been omitted since they are straightforward.

Let J be a 1-dimensional subordinator and r a non-negative constant such that E[J(1)] < r.

Define the process X such that X(t) = J(t)−rt. Then X is a 1-dimensional finite variation

Lévy process with no negative jumps and E[X(1)] < 0. We know from Kella [34] that the

reflected process of X has a unique stationary and limiting distribution. Let W be a

random variable whose law follows that stationary distribution.

Let α > 0, φ(α) = lnE[e−αX(1)] and φk(α) = dkφ(α)
dαk

. It is known that (e.g. [38]) the

Laplace-Stieltjes transform of W is E[e−αW ] = αφ1(0)
φ(α)

. We begin by stating a simple

recursive property of the Laplace-Stieltjes transform.

Lemma 3.2.1. Define the functions

f0(α) =
α

φ(α)
=
E[e−αW ]

φ1(0)

and

fk(α) =
dfk−1(α)

dα

for k ≥ 1.
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Then fk(α) =


−f0(α)φ1(α)−1

φ(α)
, k = 1

−
∑k
i=1

(
k
i

)
fk−i(α)φi(α)

φ(α)
, k ≥ 2.

Let κi = (−1)iφi(0) (i.e. the ith cumulant of X(1)) which is finite if E[J(1)i] < ∞. Fix a

positive integer k. Noting that dkE[e−αW ]
dαk

= (−1)kE[W ke−αW ] via the dominated conver-

gence theorem and lim
α→0

E[W ke−αW ] = E[W k] via the monotone convergence theorem, we

obtain the following useful corollary:

Corollary 3.2.1. Assume that E[Jk+1] <∞. Then

E[W k] =
−1

(k + 1)κ1

k+1∑
i=2

(
k+1

i

)
E[W k+1−i]κi <∞.

In the case of k = 1, E[W ] = −V ar(X(1))
2E[X(1)]

. Alternatively there exists a multivariate polyno-

mial Q such that E[W k] = Q(κ1,...,κk+1)

κk1
.

An important consequence of Corollary 3.2.1 is that we can write the moments of the

stationary distribution W in terms of the cumulants of X(1). Cumulants of Lévy processes

in general have the attractive property that they are linear with time (see Proposition 3.13

of [20]). Therefore, when κi exists, the ith cumulant of X(n)√
n

is n1− i
2κi.

3.3 Model

3.3.1 The Stochastic Fluid Network

In this chapter networks of N single server, work conserving queues are considered. The

queues are naturally labeled as 1, . . . , N . A stochastic fluid network can be uniquely

characterized by the 4-tuple (J, r, P,W (0)): An N -dimensional, (Ft)-adapted stochastic

process J , a vector r ∈ RN
+ , a matrix P ∈ RN

+ × RN
+ , and an N -dimensional non-negative

random vector W (0).
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It is assumed that P is a routing matrix (ie. a substochastic matrix such that (I − P ′) is

an M-matrix), which implies that the network is open. The cumulative amount of work

that arrives externally to the system at queue i = 1 . . . N is modeled by Ji. Work at queue

i is drained as a fluid at rate ri > 0, and routed to queue j at rate Pi,jri. The random

vector W (0) represents the initial amount of work in the system at time 0.

The cumulative input process J is assumed to be a subordinator, i.e. a non-decreasing

Lévy process. We denote λ = E[J(1)] where J(1) denotes the amount of work that has

arrived in the unit interval. Also, we assume that W (0) is independent of J .

Let X be the virtual workload process, which is defined by the relation X(t) = W (0) +

J(t)− (I − P ′)rt. Also let (W,Z) be the solution to the SP corresponding to (X, I − P ′).
The reflected process W , also known as the workload process, models the dynamics of the

work in the network. Physically, Wi(t) represents the amount of work at queue i at time t.

The workload W is known to be a strong Markov process (see Kella [34]). If (I−P ′)−1λ < r,

then from Theorem 3.1 of Kella [34] the process W is also ergodic (see pg. 94 of Bramson

[16] for definition). We will represent the stationary distribution of the workload by π and

let W (∞) denote a random vector with distribution π.

A recurring theme in this chapter is bounding the workload in the network by the workload

of a simpler network. The following lemma due to Kella [34] (Lemma 3.1) that establishes

conditions under which the total workload in a SFN can be bound by the workload of a

simpler SFN consisting of N independent queues.

Lemma 3.3.1. Assume that (I − P ′)−1λ < r and consider a vector λ̃ ∈ RN such that

λ̃ > λ and (I − P ′)−1λ̃ < r. Let (J, r, P,W (0)) and (J, λ̃,0,W (0)) be two stochastic fluid

networks with respective workload processes W and W̃ . Then |W (t)| ≤ |W̃ (t)| a.s. for each

t ≥ 0.

Since λ̃ > λ, W̃ is ergodic. Let π̃ represent the stationary distribution of W̃ , and W̃ (∞)

denote a random vector with distribution π̃. The following corollary of Lemma 3.3.1 will

be useful in proving some of the later results.
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Corollary 3.3.1. Let k = 1, 2, . . . and assume that E
[
J(1)k+1

]
<∞. Then

E
[
|W (∞)|k

]
≤ E

[
|W̃ (∞)|k

]
<∞. (3.1)

Proof. Using Corollary 3.2.1, we have that E
[
W̃ (∞)ki

]
< ∞ for i = 1, . . . , N . Therefore

E
[
|W̃ (∞)|k

]
<∞ follows by expanding E

[
|W̃ (∞)|k

]
using the multinomial theorem and

applying Hölder’s inequality term wise.

Fix a positive integer M . From Lemma 3.3.1, for any t ≥ 0 we have

E
[
min(|W (t)|k ,M)

]
≤ E

[
min(|W̃ (t)|k,M)

]
.

Applying the Portmanteau theorem and the monotone convergence theorem to each side

of the inequality, we obtain

E
[
|W (∞)|k

]
≤ E

[
|W̃ (∞)|k

]
.

3.3.2 Heavy Traffic Approximation

We now consider a sequence of stochastic fluid networks (Jn, rn, P,Wn(0)). Each network

in the sequence will have the same assumptions as in Section 3.3.1. We assume that Jn is

a subordinator, rn > ~0, and Wn(0) is a non-negative vector independent of Jn. As well,

each network will have common routing matrix P . For each n we define λn and Γn as the

mean and covariance matrix of Jn(1) respectively. We will establish the heavy traffic limit

for the sequence of workload processes by “stretching time by n” and “compressing space

by
√
n”.

For each t ≥ 0 define

Jn(t) =
Jn(nt)− λnnt√

n
, (3.2)

W n(0) =
Wn(0)√

n
(3.3)
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and

Xn(t) = W n(0) + Jn(t) +
√
n(λn − (I − P ′)rn)t. (3.4)

Let (Wn, Zn) be the sequence of workload and regulator processes corresponding to the

sequence of SFNs (Jn, rn, P,Wn(0)). Define

W n(t) =
Wn(nt)√

n
(3.5)

and

Zn(t) =
Zn(nt)√

n
. (3.6)

Note that for each n, (W n, Zn) is the solution to the SP corresponding to the sequence

(Xn, I − P ′).

In order to establish the heavy traffic approximation, the following assumptions are re-

quired: There exists vectors λ, r ∈ RN
+ , η ∈ RN , and a covariance matrix Γ such that

(I − P ′)−1λn < rn,

Γn → Γ,

λn → λ, (3.7)

rn → r,
√
n(λn − (I − P ′)rn)→ η.

From the assumptions, we see that η satisfies (I − P ′)−1η < 0. As well, for each fixed n,

we will denote the unique stationary distribution of the ergodic Markov process W n by πn.

Also, we define W n(∞) to be a random vector with distribution πn.

Let B be a standard N -dimensional Brownian motion, W (0) a non-negative random vec-

tor and define BMW (0)(η,Γ) where BMW (0)(η,Γ)(t) = W (0) + ηt + ΓB(t). Assuming

that W n(0) ⇒ W (0), the heavy traffic limit of the sequence W n will be shown to be a

Reflected Brownian Motion, which is the reflected process of the solution to the SP cor-

responding to (BMW (0)(η,Γ), I − P ′). The reflected Brownian motion will be denoted

by RBMW (0)(η,Γ, I − P ′). We require the following result from Harrison and Williams
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[28]: RBMW (0)(η,Γ, I − P ′) possesses a unique stationary distribution if and only if

(I − P ′)−1η < 0. We will denote the stationary distribution by πRBM and let WRBM(∞)

be a random vector with distribution πRBM .

3.4 Results: Fixed Routing

The approach we use to prove the interchange of limits result follows the same line of

reasoning as Gamarnik and Zeevi [22] and can roughly be divided into three steps. We

first prove that the heavy traffic limit for our model is a reflected Brownian motion. Then

we will prove that the sequence of stationary distributions (πn)n∈N is tight. Finally, we

will prove that the sequence weakly converges to the stationary distribution of a reflected

Brownian motion.

3.4.1 Convergence to Reflected Brownian Motion

Due to the stationary and independent increments property of the Lévy process, the weak

convergence argument is straightforward.

Lemma 3.4.1. Suppose that W n(0) ⇒ W (0). Then the sequence
(
Xn

)
n∈N converges in

distribution to BMW (0)(η,Γ).

Proof. From the stationary and independent increments property, Jn(n) =
∑n

i=1 J̃
i
n(1)

where J̃ in(1) are independent copies of Jn(1). So from the central limit theorem, Jn(1)⇒
N(0,Γ). Therefore by Corollary 3.6 of Jacod and Shiryaev [30] (Chapter VII), Jn ⇒ ΓB.

Since by assumption W n(0) is independent of Jn and the sequence (
√
n(λn − (I − P ′)rn))

is deterministic, (
W n(0), Jn,

√
n(λn − (I − P ′)rn)

)
⇒
(
W (0),ΓB, η

)
.

Therefore

Xn ⇒ BMW (0)(η,Γ)

by applying the continuous mapping theorem.
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Due to the continuity of the Skorokhod map, one can prove the following theorem using

the previous lemma and the continuous mapping theorem.

Theorem 3.4.1. Suppose that W n(0)⇒ W (0). Then the sequence
(
W n

)
n∈N converges in

distribution to RBMW (0)(η,Γ, I − P ′).

3.4.2 Tightness

The next step in proving the interchange of limits is to show that the sequence of stationary

distributions is tight.

Lemma 3.4.2. Suppose supnE
[
Jn(1)k+1

]
< ∞. Then for any p ∈ [0, k], the sequence(

E[W n(∞)p]
)
n∈N is bounded.

Proof. From Hölder’s inequality, we only need to prove the lemma for p = k. Let rn ≡
√
nrn, λn ≡

√
nλn, εn =

min
i=1...N

(rn − (I − P ′)−1λn)i

2 |(I − P ′)−1|∞
and λ̃n = λn + ~εn.

We will verify that λ̃n > λn and (I − P ′)−1λ̃n < rn.

To verify the first inequality, it is enough to check that εn > 0 which is true since rn >

(I − P ′)−1λn.

To verify the second equality, note that

(I − P ′)−1 ~εn = (I − P ′)−1~1
min
i=1...N

(rn − (I − P ′)−1λn)i

2 |(I − P ′)−1|∞
,

≤ ~1
min
i=1...N

(rn − (I − P ′)−1λn)i

2
,

≤ 1

2
(rn − (I − P ′)−1λn).

Thus (I − P ′)−1λ̃n ≤ 1
2
(I − P ′)−1λn + 1

2
rn < rn.
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For each n, define the process X̃n such that

X̃n(t) = W n(0) + Jn(t) + (λn − λ̃n)t.

Let (W̃n, Z̃n) be the solution to the SP corresponding to (X̃n, I). Since εn > 0 and lim
n
εn =

mini=1...N(−(I − P ′)−1η)i
2 |(I − P ′)−1|∞

> 0, we see that sup
n
E[W̃n(∞)k] <∞ from Corollary 3.2.1. The

result follows by applying Corollary 3.3.1.

Theorem 3.4.2. The sequence of stationary distributions (πn)n∈N is tight.

Proof. Since supnE [Jn(1)2] < ∞ by assumption, tightness follows by using the Markov

inequality in conjunction with Lemma 3.4.2.

We now complete the proof of the main result on the interchange of limits.

Theorem 3.4.3. The sequence (πn)n∈N weakly converges to πRBM .

Proof. Suppose thatW n(0) has distribution πn. Since the sequence (πn) is tight, Prohorov’s

theorem says that for every subsequence there exists a further subsequence that converges.

Let (πnk) be a convergent subsequence with weak limit π.

From Theorem 3.4.1, W nk ⇒ RBMW (0)(η,Γ, I − P ′), where W (0) has distribution π. So

for any fixed time t, W nk(t) ⇒ RBMW (0)(η,Γ, I − P ′)(t). Since πnk is the stationary

distribution of W nk , for any t ≥ 0, W nk(t) is equal in distribution to W nk(0). This implies

that π is a stationary distribution of RBM. But the stationary distribution of RBM is

unique, so π must be equal to πRBM .

Since this was true for any arbitrary convergent subsequence, πn ⇒ πRBM .

Under an additional assumption, the next theorem will show that the interchange of limits

holds for the moments as well.
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Theorem 3.4.4. Assume that supnE
[
Jn(1)k+1

]
<∞. Then

E[W n(∞)p]→ E[WRBM(∞)p], (3.8)

for all p ∈ [0, k).

Proof. Lemma 3.4.2 implies uniform integrability of the sequence, which implies conver-

gence of the pth moments for any p ∈ [0, k) (see [7] (pg. 32)).

3.5 Results: State Dependent Routing

Up until now, we have assumed fixed routing. With a few additional assumptions, we

will show that the main results from the previous section hold when the routing is state

dependent. First we will have to expand the meaning of the solution to the Skorokhod

problem.

3.5.1 The Skorokhod Problem and the Stochastic Fluid Network

Model

Let X ∈ D with X(0) ≥ ~0, b : RN
+ → RN with each entry being a Lipschitz continuous

function, R̂ be an M-matrix with R̂(i,i) = 1 for all i = 1 . . . N . Let R : RN
+ → RN×N be

such that for each w ∈ RN
+ , R(w) is an M-matrix with R(w)(i,i) = 1 for all i = 1 . . . N .

As well suppose that |R(w)(i,j)| ≤ |R̂(i,j)|, and each entry R(i,j) is Lipschitz continuous for

i, j = 1 . . . N and i 6= j.

Definition 3.5.1. The functions (W,Z) ∈ D2 are said to solve the Skorokhod Problem

corresponding to (X, b(w), R(w)) if the following conditions hold:

1. W (t) = X(t) +

∫ t

0

b(W (s))ds+

∫ t

0

R(W (s))dZ(s) ≥ 0 ∀t ≥ 0,
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2. Z ∈ D↑,0,

3.

∫ t

0

W (i)(s)dZ(i)(s) = 0 for each i = 1 . . . N .

From Theorem 3.7 of Ramasubramanian [55], (W,Z) exist and are unique.

A stochastic fluid network with state dependent routing is defined almost the same way

as its fixed routing counterpart. Let P̂ be a routing matrix with diagonal entries equal

to 0. Also let P : RN
+ → RN×N

+ such that for each w ∈ RN
+ , P (w) is a routing matrix

with diagonal entries equal to 0. Furthermore assume that supw∈RN+ P (w) ≤ P̂ and P (i,j) is

Lipschitz continuous for i, j = 1 . . . N and i 6= j. The matrix valued function P will model

the state dependent routing.

As in Section 3.3.1, we define the vector of service rates by r > ~0, the initial workload by

the non-negative random vector W (0) and the cumulative input process is modeled by a

subordinator J . Furthermore, the initial workload W (0) is independent of J . We denote

the mean of J(1) by λ. A stochastic fluid network with state dependent routing can be

uniquely characterized by the 4-tuple (J, r, P (w),W (0)).

Define the process X such that X(t) = W (0) + J(t). Let (W,Z) be the solution to the

SP corresponding to (X,−(I−P ′(w))r, I−P ′(w)). The dynamics of the workload process

will be modeled by the process W . Furthermore, from Theorem 6.1 in [55], W is strong

Markov.

In the fixed routing case, bounding the workload of a SFN by the workload of another

simpler network consisting of N independent queues played a critical role in proving the

results of the previous section. Similarly, we will bound the workload of a SFN with state

dependent routing with the workload of a SFN with fixed routing. Let (Ŵ , Ẑ) be the

solution to the SP corresponding to (X,−(I− P̂ ′)r, I− P̂ ′). Under the assumptions of this

section, we have the following useful lemma which is a special case of Theorem 2.4.1.

Lemma 3.5.1. For all t ≥ 0, the workload processes W and Ŵ satisfy the inequality

W (t) ≤ Ŵ (t) a.s.. Furthermore, the processes Z and Ẑ satisfy the relation Ẑ ≺ Z a.s..
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A corollary of Lemma 3.5.1 is that Z is a continuous process since Ẑ is a continuous process.

Another application of Lemma 3.5.1 will be to provide a simple stability condition for SFN

with state dependent routing.

Lemma 3.5.2. Under the assumption (I − P̂ ′)λ < r, the workload process W is ergodic.

Proof. From the proof of Theorem 3.1 in Kella [34], Ŵ is a positive recurrent Markov

process with regeneration set {~0}. Furthermore, Ŵ admits coupling. Since, from Lemma

3.5.1, Ŵ (t) ≥ W (t) a.s. for all t ≥ 0, it follows that W is a positive recurrent Markov

process with regeneration set {~0}. But the regeneration set is the single point ~0, so W

admits coupling as well. The result follows from Theorem 2.7 and Proposition 3.8 (iii) in

[1] (Chapter VII).

The definitions and terminology used in the previous result can be found in Chapter VII,

Subsections 2 and 3 of Asmussen [1]. For a more detailed discussion about stability, see

Chapter 4 of Bramson [16].

3.5.2 Heavy Traffic Approximation

As in Section 3.3.2, we will need to consider a sequence of SFNs (Jn, rn, P̃n(w),Wn(0)).

For each network in the sequence, we assume that Jn is a subordinator, rn > ~0, and Wn(0)

is a non-negative vector independent of Jn. Each P̃n is a matrix valued function such that

P̃n(w) is a routing matrix and each entry is a Lipschitz continuous function. Additionally,

we assume that there exists a routing matrix P̂ such that supw∈RN+ P̃n(w) ≤ P̂ for all

n. As well, for each n, define λn and Γn to be the mean and covariance matrix of Jn(1)

respectively. Our goal will be to take the limit as P̃n approaches P̂ .

Let (Wn, Zn)n∈N be the sequence of workload and regulator processes corresponding to the

sequence of SFNs (Jn, rn, P̃n(w),Wn(0))n∈N. We want to scale the workload and regulator

processes by “stretching time by n” and “compressing space by
√
n”.

For each t ≥ 0 define

Jn(t) =
Jn(nt)− λnnt√

n
(3.9)
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and

W n(0) =
Wn(0)√

n
. (3.10)

As well let

W n(t) =
Wn(nt)√

n
(3.11)

and

Zn(t) =
Zn(nt)√

n
. (3.12)

Writing out the scaled workload equation,

W (nt)√
n

=W n(0) + Jn(t) +

∫ t

0

√
n
(
λn − (I − P̃ ′n(W (ns)))

)
ds+ (3.13)∫ t

0

(I − P̃ ′n(W (ns)))d
Z(ns)√

n

or

W n(t) = W n(0) + Jn(t) +

∫ t

0

√
n
(
λn − (I − P̃ ′n(

√
nW n(s)))

)
ds+∫ t

0

(I − P̃ ′n(
√
nW n(s)))dZn(s).

For simplicity, we write Pn(w) ≡ P̃n(
√
nw), ηn ≡

√
n(λn − (I − P̂ ′)rn) and pn(w) ≡

√
n(P̂ − Pn(w))rn. Note that supw∈RN+ Pn(w) ≤ P̂ for all n. Also, define the process Xn

such that

Xn(t) = W n(0) + Jn(t) + ηnt. (3.14)

For each n, (W n, Zn) is also the solution to the SP corresponding to (Xn,−pn(w), I −
P ′(w)).

We will require the following heavy traffic assumptions for all w ∈ RN
+ :

There exists vectors λ, r ∈ RN
+ , η ∈ RN , a covariance matrix Γ, and a Lipschitz continuous
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function p : RN
+ → RN

+ such that

(I − P̂ ′)−1λn < rn,

ηn → η,

Pn(w)→ P̂ ,

pn(w)→ p(w), (3.15)

Γn → Γ,

λn → λ,

rn → r.

Additionally, we need to assume that the sequence of functions pn satisfies the following

uniform linear growth property: There exists a constant Cg > 0 such that for each w ∈ RN
+ ,

the inequality |pn(w)| ≤ Cg(1 + |w|) is satisfied for all n.

From the assumptions, we see that η satisfies (I − P ′)−1η < 0. As well, for each fixed n,

we will denote the unique stationary distribution of the ergodic Markov process W n by πn.

Let W n(∞) be a random vector with distribution πn.

We also define the sequence (Ŵn, Ẑn)n∈N, which are the solutions to the SP corresponding

to the sequence (Xn, 0, I − P̂ ′)n∈N. Each Ŵn is the scaled workload process of a SFN with

fixed routing characterized by (Jn, rn, P̂ ,Wn(0)). We will denote the unique stationary

distribution of the ergodic Markov process Ŵn by π̂n. Let Ŵn(∞) be a random vector with

distribution π̂n.

As in Section 3.3.2, let B be a standard N -dimensional Brownian motion, W (0) a non-

negative random vector and define BMW (0)(η,Γ) where BMW (0)(η,Γ)(t) = W (0) + ηt +

ΓB(t). Assuming that W n(0)⇒ W (0), the heavy traffic limit of the sequence W n will be

shown to be a reflected diffusion with state dependent drift, which is the reflected process

of the solution to the SP corresponding to (BMW (0)(η,Γ),−p(w), I − P̂ ′). For a discussion

on the existence and uniqueness of the solution to the SP, see Theorem 2.1 in [2]. The

reflected diffusion will be denoted by RBMW (0)(η − p(w),Γ, I − P̂ ′). Since (I − P̂ ′)η < 0,

there exists a unique limiting and stationary distribution. See Remark 4.3 in [50] and
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Theorem 2.2 in [2]. We will denote the stationary distribution by πRBM and let WRBM(∞)

be a random vector with distribution πRBM .

3.5.3 Interchange of Limits for State-dependent Routing

Unlike the fixed routing case, the main difficulty will be showing weak convergence of

the workload process under heavy traffic. Proving the interchange of limits result will

be straightforward using Lemma 3.5.1. We will begin by proving that
(
Zn

)
is C-tight,

which means that the sequence is tight and for any convergent subsequence the limit has

continuous sample paths.

Lemma 3.5.3. Suppose that W n(0)⇒ W (0). Then the sequence
(
Zn

)
n∈N is C-tight.

In this section we prove Lemma 3.5.3, which states that the sequence of regulator processes

Zn is C-tight. Before proving the lemma though, we will first state a simple lemma, which

follows from the union bound, that will be used quite a bit in the proof of Lemma 3.5.3.

Lemma 3.5.4. For some positive integer M , let Xi i = 1 . . .M be non-negative random

variables. Then for all K > 0,

P

(
M∑
i=1

Xi > K

)
≤

M∑
i=1

P
(
Xi >

K

M

)
. (3.16)

Proof of Lemma 3.5.3. We will prove that the properties of C-tightness from Theorem

3.2.4 holds. All pathwise relations are to be interpreted almost surely. As well, throughout

the proof we fix ε, α, T > 0.

To begin the proof, we first define the processes Xn, hn such that Xn(t) = Xn(t) −∫ t
0
pn(W n(s))ds and hn(t) =

∫ t
0

(
P̂ ′ − P ′n(W n(s))

)
dZn(s). Note that from the unique-

ness of the solution to the SP, we can say that (W n, Zn) solves the SP corresponding

to (Xn + hn, 0, I − P̂ ′). Now let (W̃n, Z̃n) be the solution to the SP corresponding to

(Xn, 0, I − P̂ ′). Since hn ∈ D↑,0, by applying Theorem 2.2.1 it is observed that Zn ≺ Z̃n.

Furthermore from Proposition 3.35 of [30] (Chapter VI), if Z̃n is C-tight then so is Zn.

The advantage of working with Z̃n is that we can apply the results of Section 2.2.1.
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Now we will verify the first condition of Theorem 3.2.4. From Lemma 2.2.1 and the triangle

inequality, there exists a constant Cl > 0 such that

sup
t∈[0,T ]

∣∣∣Z̃n(t)
∣∣∣ ≤ Cl sup

t∈[0,T ]

∣∣Xn(t)
∣∣+ Cl sup

t∈[0,T ]

∣∣∣∣∫ t

0

pn(W n(s))ds

∣∣∣∣ .
From Lemma 3.4.1 and Prohorov’s theorem, Xn is C-tight. By 3.2.4, there exists a constant

K1 and a positive integer n1 such that for all n ≥ n1,

P

(
Cl sup

t∈[0,T ]

∣∣Xn(t)
∣∣ > K1

2

)
≤ ε

2
.

We will now show that there exists a constant K2 such that for all n ≥ n1,

P

(
Cl sup

t∈[0,T ]

∣∣∣∣∫ t

0

pn(W n(s))ds

∣∣∣∣ > K2

2

)
≤ ε

2
.

By applying the uniform linear growth property and Lemma 3.5.1 to
∣∣∣∫ t0 pn(W n(s))ds

∣∣∣, we

get that

∣∣∣∣∫ t

0

pn(W n(s))ds

∣∣∣∣ ≤ ∫ t

0

∣∣pn(W n(s))
∣∣ds,

≤
∫ t

0

Cg
(
1 +

∣∣W n(s)
∣∣)ds,

≤
∫ t

0

Cg

(
1 +

∣∣∣Ŵn(s)
∣∣∣)ds,

≤ Cgt

(
1 + sup

s∈[0,t]

∣∣∣Ŵn(s)
∣∣∣) .

Note that Lemma 2.2.1 says that there exists constant β > 0 such that

sup
t∈[0,T ]

∣∣∣Ŵn(t)
∣∣∣ ≤ βCl sup

t∈[0,T ]

∣∣Xn(t)
∣∣ .
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Therefore by setting a constant K2 = T (βK1 + 2) and rearranging terms,

P

(
Cl sup

t∈[0,T ]

∣∣∣∣∫ t

0

pn(W n(s))ds

∣∣∣∣ > K2

2

)
≤ P

(
Cl sup

t∈[0,T ]

∣∣Xn(t)
∣∣ > K1

2

)
,

≤ ε

2
.

Setting

K =
max(K1, K2)

2Cl

and applying Lemma 3.5.4, we conclude that for all n ≥ n1,

P

(
sup
t∈[0,T ]

∣∣∣Z̃n(t)
∣∣∣ > K

)
≤ ε.

This verifies the first condition of Theorem 3.2.4. We will now proceed to show that the

second condition of Theorem 3.2.4 is satisfied as well. First note that since Z̃n ∈ D↑,0, we

can write wT

(
Z̃n, θ

)
= supt∈[0,T−θ]

∣∣∣Z̃n(t+ θ)− Z̃n(t)
∣∣∣ for any θ ∈ (0, T ). Now fix u ≥ 0

and let the mapping ΨI−P̂ ′ ≡ Ψ be defined as in Section 2.2.1 (ie. Z̃n = Ψ(Xn)). From the

shift property of the regulator process (Property 4 on pg. 166 in [19]),

Z̃n(u+ θ)− Z̃n(u) = Ψ(W̃n +Xn(u+ ·)−Xn(u))(θ).

Also from Theorem 2.2.1, Ψ(Xn(u+ ·)−Xn(u))(θ) ≥ Ψ(W̃n +Xn(u+ ·)−Xn(u))(θ).

Now fix θ1 ∈ (0, T ). From Lemma 2.2.1, there exists a constant Cl > 0 such that∣∣∣Z̃n(u+ θ1)− Z̃n(u)
∣∣∣ ≤ Cl sup

s≤θ1
|Xn(u+ s)−Xn(u)| .

Therefore

wT

(
Z̃n, θ1

)
≤ Cl sup

t∈[0,T−θ1]

sup
s≤θ1
|Xn(t+ s)−Xn(t)| .

From the triangle inequality,

wT

(
Z̃n, θ1

)
≤ wT

(
ClXn, θ1

)
+ Cl sup

t∈[0,T−θ1]

sup
θ≤θ1

∣∣∣∣∫ t+θ

t

pn(W n(s))ds

∣∣∣∣ .
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Since Xn is C-tight, from Theorem 3.2.4 there exists a θ2 ∈ (0, T ) and a positive integer

n2 such that for all n ≥ n2, such that

P
(
wT
(
ClXn, θ2

)
>
α

2

)
≤ ε

2
.

Moreover by applying the uniform linear growth property and Lemma 3.5.1 to∣∣∣∣∫ t+θ

t

pn(W n(s))ds

∣∣∣∣ ,
we have that

Cl sup
t∈[0,T−θ1]

sup
θ≤θ1

∣∣∣∣∫ t+θ

t

pn(W n(s))ds

∣∣∣∣ ≤ Clθ1 sup
t∈[0,T ]

(
Cg

(
1 + sup

s≤t

∣∣∣Ŵn(s)
∣∣∣)) .

From Lemma 13.4.1 in [65], the supremum function is continuous. Therefore since Ŵn is

tight (Theorem 3.4.1 and Prohorov’s theorem), using the continuous mapping theorem we

observe that sups∈[0,·]

∣∣∣Ŵn(s)
∣∣∣ is tight as well. Again from Theorem 3.2.4, there exists a

constant K3 and a positive integer n3 such that for all n ≥ n3

P

(
sup
t∈[0,T ]

ClCg(1 + sup
s∈[0,t]

∣∣∣Ŵn(s)
∣∣∣) > K3

)
≤ ε

2
,

which gives us

P

(
Cl sup

t∈[0,T−θ1]

sup
θ≤θ1

∣∣∣∣∫ t+θ

t

pn(W n(s))ds

∣∣∣∣ > θ1K3

)
≤ ε

2
.

Since θ1 was arbitrary, we select θ1 from the interval (0,min(T, α
2K3

)) which gives us the

desired inequality

P

(
Cl sup

t∈[0,T−θ1]

sup
θ≤θ1

∣∣∣∣∫ t+θ

t

pn(W n(s))ds

∣∣∣∣ > α

2

)
≤ ε

2
.

Therefore by selecting θ0 = min (θ1, θ2), n0 = max (n1, n2, n3) and applying Lemma 3.5.4,

we get that for all n ≥ n0,

P
(
wT

(
Z̃n, θ0

)
> α

)
≤ ε.
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We have satisfied the conditions from Theorem 3.2.4 to conclude that the sequence Z̃n,

and hence Zn, is C-tight.

Theorem 3.5.1. Suppose that W n(0)⇒ W (0). Then the sequence
(
W n

)
n∈N converges in

distribution to RBMW (0)(η − p(w),Γ, I − P̂ ′).

Proof. From Lemma 3.4.1, Xn ⇒ BMW (0)(η,Γ). Therefore, the sequence
(
Xn

)
n∈N is C-

tight from Prohorov’s theorem. Since the sequence
(
Zn

)
n∈N is also C-tight, using Corollary

3.33 of [30](Chapter VI) we observe that the tuple
(
Xn, Zn

)
is C-tight. Furthermore, since

the paths of Zn are in D↑,0, C-tightness of the sequence
(
Zn

)
implies that the sequence is

also predictably uniformly tight (See Section 6a of [30] (Chapter VI)).

Therefore from Theorem 6.9 of [30] (Chapter IX) and Prohorov’s theorem,
(
Xn, Zn,W n

)
is tight. Thus, we can select a convergent subsequence

(
Xnk , Znk ,W nk

)
. Let the limit of

that subsequence be
(
BMW (0)(η,Γ), Z,W

)
, where

W (t) = BMW (0)(η,Γ)(t)−
∫ t

0

p(W (s))ds+ (I − P̂ ′)Z(t)

from Theorem 6.9 [30] (Chapter IX).

Since ∫ t

0

W n(s)dZn(s) = 0,

we also have ∫ t

0

W (s)dZ(s) = 0

for all t ≥ 0. Also, W ∈ D+ and Z ∈ D↑,0. Therefore we have that (W,Z) solves the SP

corresponding to (BMW (0)(η,Γ),−p(w), I − P̂ ′). But the solution to the SP is unique, so

all convergent subsequences converge to the same limit,

RBMW (0)(η − p(w),Γ, I − P̂ ′).
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As mentioned at the beginning of the section, after establishing the heavy traffic limit, the

final result is quite straightforward to prove. The following theorem extends Theorems

3.4.3 and 3.4.4 to the state dependent routing model.

Theorem 3.5.2. The sequence (πn)n∈N weakly converges to πRBM . Furthermore, if

sup
n
E
[
Jn(1)k+1

]
<∞

, then

E[W n(∞)p]→ E[WRBM(∞)p] (3.17)

for all p ∈ [0, k).

Proof. From Lemma 3.4.2, the sequence
(
E[Ŵn(∞)k]

)
n∈N

is bounded. It follows from

Lemma 3.5.1 that the sequence
(
E[W n(∞)k]

)
is bounded as well. The result is obtained

by following the proofs of Theorems 3.4.2, 3.4.3 and 3.4.4.
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Chapter 4

Balanced Fairness

4.1 Introduction

File transfers compose much of the traffic of the current Internet. They typically use

the transmission control protocol (TCP) and adapt their transmission rate to the available

bandwidth. When congestion occurs, users experience delays, packet losses and low transfer

rates. Thus it is essential to predict the probability of occurrence of such congestion periods.

A useful abstraction is to view each file transfer as a fluid elastic flow, whose rate adapts to

the evolution of the number of other flows that share the same links. Under a separation of

time scales assumption, the complex underlying packet-level mechanisms (e.g. congestion

control algorithms, packet scheduling, buffer management) are then simply represented by

some bandwidth sharing policy between ongoing flows.

In the study of flow-level models, one of the most critical concepts is that of ”‘fair”’

bandwidth sharing (or allocation) between flows. For a single bottleneck link, flows are

generally assumed to share the bandwidth equally, yielding the processor sharing model

[29, 59, 4, 42]. This model relies on the assumption that the flows sharing the link are

homogeneous. However, in practice, flows have different bandwidth requirements and

constraints.
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A natural approach is to treat bandwidth sharing as a utility maximization problem. A

key bandwidth sharing policy is proportional fairness, introduced by Kelly et al. [41],

which seeks to maximize a logarithmic utility function. The policy corresponds to a Nash

bargaining solution [69] and can be implemented via a primal-dual mechanism, cf. [41].

Furthermore, it has been shown by Low et. al. [46] that TCP Vegas is (weighted) propor-

tionally fair in equilibrium.

In general, analyzing the steady-state performance of a network operating under propor-

tional fairness is quite difficult and can not be done analytically, except for simple network

topologies [11, Theorem 3]. It turns out that proportional fairness can be well approximated

by the slightly different notion of balanced fairness [10, 11, 48]. This bandwidth sharing

policy has the attractive advantage of being both tractable and insensitive. Tractability

means that the underlying dynamical system enters the class of Kelly-Whittle networks

for which explicit analytical results are known [61, 65, 40]; insensitivity means that the

stationary distribution does not depend on any flow-level traffic characteristics beyond the

mean [11].

The goal of the chapter is to estimate congestion, roughly defined as a flow not being alloted

its maximum bit rate, in single link and parking lot networks operating under balanced

fairness. Since such calculations suffer from state space explosion, a more efficient method

of computation, based on the large system scaling techniques used in loss systems [23] will

be proposed.

The chapter is divided as follows: Section 4.4 introduces the flow model and provides

basic results for general networks operating under balanced fairness. Section 4.3 gives an

introduction to the large system scaling technique. Section 4.5 analyzes congestion for a

single link operating under a balanced fair policy. The insights obtained from the single

link are extended in Section 4.6 to the parking lot network topology. In Section 4.7, some

numerical experiments are run to compare the approximate congestion calculations to the

actual value and finally, future work is discussed in Section 5.3.

All results proven in Sections 4.5 and 4.6 are original contributions unless otherwise iden-

tified. Section 4.5 Balanced Fairness for networks with constraints on the maximum bit

rates of flows has not been well studied except for the single link case and tree networks,
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cf. [8, 14] and references within. The main contribution in Section 4.5 is establishing that

the large system scaling techniques used in loss systems can be used for this type of flow

level model. The main contributions in Section 4.6 are identifying the states in which con-

gestion occurs and establishing bounds for the congestion calculations using the insights

and results of the single link case.

4.2 Assumptions and Notation

Vectors and matrices are assumed to have real-valued entries. As well, vectors will be

assumed to be column vectors and will use the arrow notation, i.e. ~x. The transpose of

a vector ~x will be denoted by ~x′. The notation xi will mean the ith entry of a vector ~x.

The space RN will be equipped with the Euclidean metric. For p ≥ 1, |·|p will denote

the standard vector and induced matrix p-norms. For simplicity we shall write |·| ≡ |·|1.

Comparisons are assumed to be component wise. As well, scalar operations on vectors are

to be interpreted component wise. We denote by ~ei the standard unit vector, i.e. the ith

component is 1 and the rest are 0. The notation ~x · ~y represents the dot or inner product

of vectors ~x and ~y.

For any set S, |S| will mean the cardinality of the set. Also, for any functions f, g,

f(N) ∼ g(N) means f(N)/g(N) → 1 when N → ∞. For any two scalars a and b, a ∧ b
is the minimum and a ∨ b is the maximum. Finally, the large system asymptotic notation

used in Section 4.3.2, will be used throughout the chapter.

4.3 Background

4.3.1 Multi-rate Erlang Loss Systems

Consider a multi-rate circuit switching system consisting of C circuits which are accessed

by M types of calls. Type-i calls arrive as an independent Poisson process with intensity
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λi and request ri circuits for an independent, exponentially distributed duration with

parameter µi. We denote by βi = λi/µi the corresponding traffic intensity in Erlangs.

This model is closely related to the one that will be studied in 4.4.3. The only difference is

that calls are admitted in the system as long as the system state ~x satisfies ~x · ~r ≤ C after

each arrival; otherwise, the call is blocked and lost. Under elastic sharing, flows are always

admitted in the system but adapt their rate to the level of congestion. We note that, in the

absence of congestion, class-i flows have independent, exponentially distributed duration

with parameter µi = ri/vi. In particular, the normalized traffic intensity βi = αi/ri that

will be introduced in 4.4.3 coincides with the corresponding parameter βi = λi/µi of the

loss system.

The stationary distribution of the Markov process describing the evolution of the system

state ~x is given by

πB(~x) = πB(~0)
M∏
i=1

βxii
xi!

and the normalization constant will be denoted by

GB =
1

πB(~0)
=

∑
~x:~x·~r≤C

M∏
i=1

βxii
xi!

.

The blocking probability of class-i calls then follows from PASTA [3]:

PB
i =

∑
~x:C−ri<~x·~r≤C

πB(~x), (4.1)

Analysis of such a system is an extremely well studied problem. The blocking probabilities

can be calculated exactly using the Kaufman-Roberts recursion [32, 60]. Unfortunately,

the computation can be burdensome when dealing with large parameters, so one often

resorts to asymptotic analysis.

4.3.2 Large Multi-rate Erlang Loss Systems

This section introduces the large system asymptotic (the term large system approxima-

tion will be used interchangeably). Consider a sequence of multi-rate Erlang loss models
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indexed by N , with arrival rates ~λ(N) = N~λ and C(N) = NC circuits. By applying

exponential centering around C and using a local limit theorem for sums of i.i.d. lattice

random variables, Gazdzicki et al. [23] obtained closed-form expressions for calculating the

asymptotic blocking probability in the three cases ρ < 1, ρ = 1, ρ > 1, where ρ denotes

the system load, defined by (4.17) with αi = βiri for all i = 1, . . . ,M .

Theorem 4.3.1. If ρ < 1, then for all i = 1 . . .M ,

PB
i (N) ∼


e−NIeτdε(N) d√

2πNσ
1−eτri
1−eτd ρ < 1,√

2
πN

ri
σ

ρ = 1,

1− eτri ρ > 1.

Where:

• d is the greatest common divisor of r1, . . . , rM ,

• ε(N) = NC
d
−
⌊
NC
d

⌋
,

• τ is the unique solution to the equation
M∑
i=1

riβie
τri = C,

• I = Cτ −
M∑
i=1

βi (e
τri − 1),

• σ2 =
M∑
i=1

r2
i βie

τri.

4.4 Model

4.4.1 Flow-Level Model

Flow level models assume a separation of timescales such that the timescale of the packet

level dynamics (e.g. the congestion control algorithms of TCP) is much smaller then the
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flow level dynamics (e.g. document arrivals and departures). This means that packet level

details are ignored, there is no queueing or storage at the links and changes in network

state are immediate (i.e. there is no delay in transmission). As well, flows are assumed to

be fluid.

Consider a network as a set of links L = {1, . . . , K}, where each link l ∈ L has a finite

capacity Cl bit/s. A random number of flows compete for access to these links. There are

M flow classes indexed by M = {1, . . . ,M}. Each class m ∈ M is uniquely identified by

its route pm ⊆ L and maximum bit rate rm. Let R be the set of routes, let ~r = (r1, . . . , rM)

represent the maximum bit rate of the flow classes, and also let Ll be the set of flows that

share link l ∈ L. For convenience, L0 , ∅. The maximum bit rate of a flow is always

assumed to be less then the minimum capacity of its route, i.e. rm ≤ minl∈pm Cl. The

state of the network will be represented by the vector ~x = (x1, . . . , xM), where xi is the

number of active flows of class i ∈M.

The aggregated capacity φm is the bandwidth allocated to all flows of class m ∈M. This

bandwidth allocation depends only on the bandwidth sharing policy and the network state

~x. Within a class m, the capacity φm is shared equally between flows, i.e. each flow of class

i is given a bandwidth of φi/xi. If ~x /∈ ZM+ , then Φ(~x) = 0. For any state ~x, the following

link and rate constraint conditions must hold:∑
i∈Ll

φi(~x) ≤ Cl ∀l ∈ L, (4.2)

φm(~x) ≤ xmrm ∀m ∈M. (4.3)

Arrivals of class-m flows are modeled as an independent Poisson process with rate λm

and have independent, exponentially distributed volumes with mean vm. We refer to the

product αm = λmvm as the traffic intensity of class m. The evolution of the system state

~x defines a Markov process {X(t) : t ≥ 0} with transition rates λm from state ~x to state

~x+ ~em and φm(~x)/vm from state ~x to state ~x− ~em, provided xm > 0.

A necessary condition for stability in a flow-level model is that for all l ∈ L,∑
m∈Ll

αm ≤ Cl. (4.4)
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This stability condition shall always be assumed to be satisfied throughout the chapter.

Finally, congestion in this thesis is defined as a class-i flow not being alloted it maximum

bit rate, i.e. φm(~x)/xm < rm.

4.4.2 Insensitive Bandwidth Sharing Policies

A flow-level model can be also be modeled as a network of processor-sharing queues. Con-

sider such a network where each queue corresponds to a flow class. Customers arrive at

queue as a Poisson process with rate λi and i.i.d. exponential service requirements with

mean vi. They are served at the queue with state-dependent rate φi(~x). Such networks

are, in general, intractable unless the following balance property holds:

Definition 4.4.1 (Balance Property).

φi(~x)φj(~x− ~ei) = φj(~x)φi(~x− ~ej) ∀ i, j ∈M, ~x : xi, xj > 0. (4.5)

Processor sharing networks that satisfy the balance property are Kelly-Whittle networks

[61] and the corresponding bandwidth allocation policies are labeled as being insensitive.

The balance property is equivalent to saying that the underlying Markov process X is

reversible. Thus the stationary distribution π, when it exists, can be written in the product

form

π(~x) = π(~0)Φ(~x)
M∏
i=1

αxii ∀~x, (4.6)

where the function Φ(~x) : ZM+ → R+ is known as the balance function. As such, the balance

function plays a pivotal role in the analysis of balanced bandwidth sharing policies.

Let < ~x, ~x−~ei1 , ~x−~ei1 −~ei2 , . . . , 0 > be a direct path from state ~x to state 0. The balance

function Φ is defined by Φ(0) = 1, Φ(~x) = 0 if ~x /∈ ZM+ and

Φ(~x) =
1

φi1(~x)φi2(~x− ei1) · · ·φin(~x− ei1 · · · − ein)

otherwise, where n = |~x|.
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The balance function uniquely defines an insensitive allocation. One can recover the ag-

gregate capacity φm of flow class m ∈M by the relation

φm(~x) =
Φ(~x− ~em)

Φ(~x)
∀ ~x /∈ ZM+ . (4.7)

The assumptions on the arrival and service requirements may seem restrictive, but are in

fact being assumed for convenience. Due to the insensitivity of a Kelly-Whittle network,

results in this chapter are applicable to much larger weaker assumptions. The service

requirements, assumed to be exponentially distributed, can be replaced by a phase-type

distribution (Chapter III, Section 4 of [1]) with the same mean. The set of phase-type

distributions is dense in the set of positive-valued distributions, which means that any

positive-valued distribution can be approximated by a phase-type. As well, the assumption

that the arrival process of flows is Poisson, can be weakened to assuming that the arrival

process of sessions are Poisson with the same rate. A session is composed of a succession

of flows and separated by periods of inactivity referred to as think-times. Both the service

requirements of the flows and the duration of the think-times are assumed to be phase-

type. Note that no independence assumptions were made about the flows and think-times

with a session. See [11] for further discussion.

The primary weakness of insensitive bandwidth sharing policies is that, unlike policies

that maximize a utility function, they are not Pareto efficient in general. A policy is said

to be Pareto efficient if one cannot increase the bandwidth allocated to one flow without

reducing the bandwidth allocated to another flow. Though the lack of efficiency limits the

applicability of most insensitive policies, there does exist a few that are ”‘efficient enough”’;

the most prominent being Balanced Fairness.

4.4.3 Balanced Fairness

The balance function for Balanced Fairness is defined as

Φ(~x) , max

(
max
l∈L

1

Cl

∑
m∈Ll

Φ(~x− ~em), max
m:xm>0

Φ(~x− ~em)

xmrm

)
. (4.8)
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A key property of Balanced fairness is that the balanced fairness is minimal.

Lemma 4.4.1 ([11, Lemma 1]). Consider a positive function Φ̃ such that Φ̃(0) = 1 and

the inequalities (4.2),(4.3) are satisfied. Then

Φ̃(~x) ≥ Φ(~x) ∀~x ∈ ZM+ . (4.9)

Balanced Fairness is considered the most ”‘efficient”’ insensitive bandwidth sharing policy

for several reasons. First, it is clear from the definition that a balanced fair allocation sat-

isfies the link and rate constraints (4.2),(4.3) with at least one of the constraint inequalities

being satisfied with equality. As well, if an allocation is insensitive and Pareto efficient,

then that allocation coincides with one produced by Balanced Fairness.

When introducing the flow-level model, it was mentioned that the inequalities (4.4) were

a necessary condition for the stationary distribution π of the underlying Markov process

X to exist. In fact, under balanced fairness they are also sufficient.

Proposition 4.4.1 ([11, Theorem 2]). The stationary distribution π exists if and only the

inequalities (4.4) are satisfied.

4.4.4 Congestion Metrics

As mentioned previously, flow-level congestion is defined as a flow not being alloted its

maximum bit rate. For a general network topology, the states where congestion occurs

can not be easily identified. Though, as will be seen in Sections 4.5 and 4.6, there exists

simple and intuitive conditions to identify which states congestion occurs in the single link

and parking lot networks. Once the congestion states are identified, then the steady-state

congestion can be measured. In this chapter, two steady-state congestion metrics will be

studied: The probability of congestion and the time-average congestion rate.

Let Cm be the set of states for which congestion occurs for flows of type m ∈M. The first

congestion metric, the probability of congestion Pm, is defined in straightforward manner,

Pm , Pπ (X ∈ Cm) . (4.10)
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There are two equivalent interpretations for Pm. It can be seen as the long term average

the flows of class-m are congested. Alternatively, by the PASTA property, it can be seen

as the steady-state probability that a flow of class-m enters a congested network.

The other congestion metric of interest, the time-average congestion rate, is a measure of

the average fraction of time that an arrival does not receive its maximum bit rate during

its time in the system. Let τm be the sojourn time of class-m arrivals in the system. Define

Fm ,
Em

[∫ τm
0

1{X(t)∈Cm}dt
]

Em[τm]
, (4.11)

where the expectation is taken with respect to the Palm measure for the point process of

arrivals of class-m and ~x is the stationary state process. Then Fm denotes the ratio of

the average time that a class-m flow spends in a congested state during its sojourn to the

average sojourn time.

It follows respectively from the Swiss Army formula of Palm calculus, cf. [3], that

Eπ[Xm(0)] = λmEm[τm]

and

Eπ[1{X(0)∈C}Xm(0)] = λmEm

[∫ τm

0

1{X(t)∈C}dt

]
.

Therefore

Fm =

∑
~x∈C

xmπ(~x)∑
~x

xmπ(~x)
. (4.12)

Although the congestion metrics can be evaluated directly, the calculation is hardly fea-

sible for high capacity links or a large number of classes. It is the goal of the chapter

to give simple, tight approximations of these performance metrics for large systems. In

particular, the complexity is independent of the number of classes. The approach relies on

the corresponding results derived for loss systems.
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4.5 Single Link

In this section, a single link operating under balanced fairness is investigated. Studying

the single link case will provide invaluable insight into the parking lot network topology

investigated in the next section. Since |L| = 1, the capacity of the link will be written as

C ≡ C1.

The balance function Φ is recursively defined by Φ(~0) = 1 and

Φ(~x) = max

(
1

C

M∑
m=1

Φ(~x− ~em), max
m:xm>0

Φ(~x− ~em)

xmrm

)
∀~x ∈ ZM+ \ {~0}. (4.13)

In fact, it can be shown [8] that for all ~x ∈ ZM+ the balance function can be simplified to

Φ(~x) =


M∏
m=1

1

xm!rxmm
if ~x · ~r ≤ C,

1

C

M∑
m=1

Φ(~x− ~em) Otherwise.

(4.14)

In particular, it follows that φm(~x) = xmrm if ~x ·~r ≤ C, so that each flow gets its maximum

bit rate in the absence of congestion; it will be shown in Lemma 4.5.1 that no flow gets its

maximum bit rate in when ~x · ~r > C.

As described in Section 4.4, the stationary distribution of the underlying Markov process

is given by

π (~x) = π(~0)Φ(~x)
M∏
m=1

αxmm . (4.15)

By using (4.14), the stationary distribution can be rewritten as

π (~x) =


π(~0)

M∏
m=1

βm
xm

xm!
if ~x · ~r ≤ C,

M∑
m=1

ρmπ(~x− ~em) Otherwise.

(4.16)
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where βm = αm/rm is the normalized traffic intensity and ρm = αm/C is the load of

class-m. The normalization constant, given by

G =
1

π(~0)
=
∑
~x∈ZM+

Φ(~x)
M∏
m=1

αxmm ,

is finite if and only if ρ < 1, where ρ denotes the aggregate link load, i.e.

ρ =
M∑
m=1

ρm =
M∑
m=1

αm/C. (4.17)

As a reminder, the stability condition ρ < 1 will be assumed to be satisfied.

4.5.1 Congestion Events

It has been previously established that congestion will not occur for any class if the system

state ~x satisfies the condition ~x · ~r ≤ C. The following lemma establishes that congestion

will occur for all classes if ~x · ~r > C, i.e. For all classes m, Cm = {~x ∈ ZM+ : ~x · ~r > C}.

Proposition 4.5.1. If ~x · ~r > C then φm(~x) < xmrm for all classes m = 1 . . .M such that

xm > 0.

Proof. Let m be such that xm > 0. In view of (4.7), it is sufficient to show that

Φ(~x) >
Φ(~x− ~em)

xmrm
.

The proof is split up into several cases.
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First assume that (~x− ~em) · ~r > C. If xm ≥ 2 then, in view of (4.13)

Φ(~x) =
1

C

M∑
n=1

Φ(~x− ~en),

≥ 1

C

(∑
n6=i

Φ(~x− ~em − ~en)

xmrm
+

Φ(~x− 2~em)

(xm − 1)rm

)
,

>
1

C

M∑
n=1

Φ(~x− ~em − ~en)

xmrm
,

=
Φ(~x− ~em)

xmrm
.

Similarly, if xm = 1 then

Φ(~x) =
1

C

M∑
n=1

Φ(~x− ~en),

≥ 1

C

(∑
n6=i

Φ(~x− ~em − ~en)

xmrm
+ Φ(~x− ~em)

)
,

>
1

C

∑
n6=i

Φ(~x− ~em − ~en)

xmrm
,

=
Φ(~x− ~em)

xmrm
.
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Now assume that (~x− ~em) · ~r ≤ C. Then

Φ(x) =
1

C

M∑
n=1

Φ(~x− ~en),

≥ 1

C

(∑
n6=i

Φ(~x− ~em − ~en)

xmrm
+ Φ(~x− ~em)

)
,

=
1

C

(∑
n6=i

xnrnΦ(~x− ~em)

xmrm
+ Φ(~x− ~em)

)
,

=
1

C

M∑
n=1

xnrnΦ(~x− ~em)

xmrm
,

=
~r · ~x
C

Φ(~x− ~em)

xmrm
,

>
Φ(~x− ~em)

xmrm
.

4.5.2 Probability of Congestion

Since, from Lemma 4.5.1, the states for which congestion occurs is the same for all flow

classes, the probability of congestion will just be written as P . One can now write the

probability of congestion as

P =
∑

~x:~x·~r>C

π (~x).

The following lemma due to Bonald and Virtamo [15] shows that the expressions can

actually be written as a function of far fewer states. The proof is provided for the sake of

completeness.

Lemma 4.5.1. The probability of congestion can be written as

P =
M∑
m=1

ρmBm

1− ρ
,
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with

Bm =
∑

~x:C−rm<~x·~r≤C

π (~x).

Proof. In view of (4.16),

P =
∑

~x:~x·~r>C

π (~x),

=
∑

~x:~x·~r>C

M∑
m=1

ρmπ(~x− ~em),

=
M∑
m=1

ρm

( ∑
~x:~x·~r>C

π (~x) +
∑

~x:C−rm<~x·~r≤C

π (~x)

)
,

=
M∑
m=1

ρm(P +Bm).

Hence

P =
M∑
m=1

ρmBm

1− ρ
.

Noting that the stationary distributions π and πB are proportional on those states ~x such

that ~x · ~r ≤ C, it follows from (4.1) that

Bm =
GB

G
PB
m .

Thus the probability of congestion is:

P =
GB

G

M∑
m=1

ρmP
B
m

1− ρ
.

In view of Theorem 4.3.1, a tight approximation under large system scaling using the

blocking probabilities PB
m can now be established. It remains to calculate the normalization

constant, which can be unwieldy. As will be shown in the next two lemmas GB(N) ≈ G(N)

for large N , where GB(N) and G(N) denote the normalization constants of the loss and

the flow-level models respectively.
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Lemma 4.5.2. Let ~xN be an M-dimensional random vector with mutually independent

Poisson components with respective parameters Nβ1, . . . , NβM . Then for any constant

K ∈ [0, C]:

P (~xN · ~r ≥ NC −K)→ 0 when N →∞.

Proof. Let

F (a, h,N) = ha−N
M∑
m=1

βm(ehrm − 1)

and

I (a,N) = sup
h≥0

F (a, h,N).

Since F (NC −K,h,N) is concave with respect to h, there exists a unique maximum hN .

Looking at the first order conditions,

NC −K −N
M∑
m=1

βmrme
hNrm = 0.

In particular,
M∑
m=1

βmrme
hNrm → C when N →∞.

Since

ρ =
M∑
n=1

βmrm
C

< 1,

this implies hN > 0 for sufficiently large N , say N ≥ N0. Therefore, I (NC −K,N) > 0

for all N ≥ N0.

Now, by the Chernoff bound,

P (~xN · ~r ≥ NC −K) ≤ e−I(NC−K,N).

The result then follows from the fact that

I (NC −K,N) ≥ N

N0

I (N0C −K,N0) ,

which grows to infinity when N →∞.
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Lemma 4.5.3.
GB(N)

G(N)
→ 1 when N →∞. (4.18)

Proof. Let β =
M∑
m=1

βm and denote by ~xN an M -dimensional random vector with mutually

independent Poisson components with respective parameters Nβ1, . . . , NβM .

GB(N)e−Nβ =
∑

~x:~x·~r≤NC

M∏
m=1

e−Nβm
(Nβm)xm

xm!
,

= P (~xN · ~r ≤ NC) ,

= 1− P (~xN · ~r > NC) .

In view of Lemma 4.5.2,

GB(N)e−Nβ → 1 when N →∞.

Now let

P ′(N) =
∑

~x:~x·~r>NC

ΦN(~x)
M∏
m=1

(Nαm)xm ,

and for all m = 1, . . . ,M ,

B′m(N) =
∑

~x:NC−rm<~x·~r≤NC

ΦN(~x)
M∏
m=1

(Nαm)xm .

Note that P ′(N) and B′m(N) are the respective unnormalized versions of P (N) and Bm(N).

In particular, it follows from Lemma 4.5.1 that

P ′(N) =
M∑
m=1

ρmB
′
m(N)

1− ρ
.
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Moreover, for all m = 1, . . . ,M ,

B′m(N)e−Nβ =
∑

~x:NC−rm<~x·~r≤NC

M∏
n=1

e−Nβn
(Nβn)xn

xn!
,

= P (NC − rm < ~xN · ~r ≤ NC) ,

≤ P (~xN · ~r > NC − rm) .

In view of Lemma 4.5.2,

∀m = 1, . . . ,M, B′m(N)e−Nβ → 0 when N →∞,

so that

P ′(N)e−Nβ → 0 when N →∞.

Noting that G(N) = GB(N) + P ′(N), it is concluded that

G(N)e−Nβ → 1 when N →∞,

and
GB(N)

G(N)
=
GB(N)e−Nβ

G(N)e−Nβ
→ 1.

By combining the previous results, one arrives at the following conclusion.

Theorem 4.5.1. Under the large system scaling,

P (N) ∼
M∑
m=1

ρmP
B
m (N)

1− ρ
, (4.19)

where

PB
m (N) ∼ e−NIeτdε(N) d√

2πNσ

1− eτrm
1− eτd

• d is the greatest common divisor of r1, . . . , rM ,

• ε(N) = NC
d
−
⌊
NC
d

⌋
,
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• τ is the unique solution to the equation
M∑
m=1

rmβme
τrm = C,

• I = Cτ −
M∑
m=1

βm (eτrm − 1),

• σ2 =
M∑
m=1

r2
mβme

τrm.

4.5.3 Time-Average Congestion Rates

Finally, the large system scaling will be applied to the time-average congestion rates (4.12).

The following lemma due to Bonald and Virtamo [15] shows that the corresponding sums

can be written as a function of far fewer states. Again, the proof is provided for complete-

ness.

Lemma 4.5.4. For all m,n = 1, . . . ,M , let

Qm,n =
∑

~x:C−rn<~x·~r≤C

xmπ (~x),

and

Qm =
∑

~x:~x·~r>C

xmπ (~x).

Then

Qm =
ρmPm
1− ρ

+
M∑
n=1

ρnQm,n

1− ρ
.
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Proof. Therefore,

Qm =
∑

~x:~x·~r>C

xmπ (~x),

=
∑

~x:~x·~r>C

xm

M∑
n=1

ρnπ(~x− ~en),

=
M∑
n=1

ρn
∑

~x:~x·~r>C

xmπ(~x− ~en),

=
M∑
n=1

ρn
∑

~x:~x·~r>C−rn

(xm + 1{n=i})π (~x),

= ρmPm +
M∑
n=1

ρn(Qm +Qm,n),

from which the result follows.

Now let PB
m,n be the class-n blocking probability in a multirate loss system with capacity

C − rm. Then:

Proposition 4.5.2. Under large system scaling,

PB
m,n(N) ∼ e−NImeτmdεm(N) d√

2πNσm

1− eτmrn
1− eτmd

,

where

• d is the greatest common divisor of r1, . . . , rM ,

• εm(N) = NC−rm
d
−
⌊
NC−rm

d

⌋
,

• τ is the unique solution to the equation
M∑
n=1

rnβne
τrn = C,

• σ2 =
M∑
n=1

r2
nβne

τrn,
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• τm = τ − rm
Nσ2 ,

• Im =
(
C − rm

N

)
τm −

M∑
n=1

βn (eτmrn − 1),

• σ2
m =

M∑
n=1

r2
mβne

τmrn.

Proof. In view of Theorem 4.3.1, it is sufficient to observe that the solution τm to the

equation:
M∑
n=1

rnβne
τmrn = C − rm

N

satisfies:

τm = τ − rm
Nσ2

+

(
1

N

)
.

The following result, together with Theorem 4.5.1 and Proposition 4.5.2, provides the large

system asymptotics of the time-average congestion rates.

Theorem 4.5.2. Under large system scaling, for all m = 1, . . . ,M :

Fm(N) ∼ rm
NC(1− ρ)

Pm(N) +
M∑
n=1

ρn
1− ρ

PB
m,n(N).

Proof. First write Fm as

Fm =
Qm

Qm + Sm
,

with

Sm =
∑

~x:~x·~r≤C

xmπ (~x).

In view of (4.16), for all states ~x such that ~x · ~r ≤ C:

xmπ (~x) = βmπ(~x− ~em).
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In particular,

Sm = βm
∑

~x:~x·~r≤C−rm

π (~x),

= βm
GB

G
(1− PB

m ).

In view of Theorem 4.3.1 and Lemma 4.5.3,

Sm(N) ∼ Nβm.

Similarly, for all n = 1, . . . ,M :

Qm,n = βm
∑

~x:C−rm−rn<~x·~r≤C−rm

π (~x)

= βm
GB

G
PB
m,n,

so that under large system scaling:

Qm,n(N) ∼ NβmP
B
m,n(N).

By Lemma 4.5.4,

Qm(N) ∼ ρmPm(N)

1− ρ
+

M∑
n=1

Nβm
ρnP

B
m,n(N)

1− ρ
.

The proof then follows from the fact that:

Qm(N) + Sm(N) ∼ Nβm

and
ρm
Nβm

=
rm
NC

.
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4.6 Parking Lot Network

In this section, the results of Section 4.5 will be shown to extend to the so-called parking lot

network. An example of a parking lot network is given in Figure 4.1 courtesy of Bonald et

al. [13]. The sets (Ll)l∈L have a special structure, that is Ll ⊂ Ll+1. Recall the definition

of the balance function, i.e.

Φ(~x) = max

(
max
l∈L

1

Cl

∑
m∈Ll

Φ(~x− ~em), max
m:xm>0

Φ(~x− ~em)

xmrm

)
. (4.20)

Note that if there exists an l ∈ L such that Cl > Cl+1, then

1

Cl

∑
m∈Ll

Φ(~x− ~em) <
1

Cl+1

∑
m∈Ll+1

Φ(~x− ~em) ∀~x,

which of course implies that link l is inconsequential in the maximization. Indeed if Cl >

Cl+1, then the total allocation to all flows can never be greater then Cl+1 and thus will

always be less than Cl. So it shall always be assumed that Cl ≤ Cl+1. As well, the balance

function will often be indexed by the number of links, e.g. a network with n nodes will

have balance function Φn.

Due the recursive nature of the network topology, notationally it will be more convenient

to deal with sequences instead of vectors. So let (rm)m∈N, (Cn)n∈Z+ , and (Ln)n∈Z+ be the

sequence analogues of the maximum bit rates, capacities, and index set of flows. For n ≥ 1,

Define Rn , Ln \Ln−1 with R1 , L1. To avoid degeneracy, it will be assumed that Rn 6= ∅
for all n. Also for convenience, C0 = 0 and L0 = ∅.

4.6.1 Balanced Function

As was seen in Section 4.5, the particular form of the balance function (4.14) played a

critical role in establishing the results. We will show that a similar form of the balance

function exists for parking lot networks. Corollary 4.6.1, and therefore Proposition 4.6.1,

can be established immediately from the Pareto efficiency of tree networks [14], for which

72



Figure 4.1: A Parking Lot Network

the parking lot network is a special case. The proofs in this section, which apply to the

parking lot network only, have been included for completeness and additional insight into

the behaviour of the balance function.

To begin, for any index set In, such as Rn, Ln, etc., define

~xIn ,
∑
m∈In

xmrm.

For each n, and all states ~x, the functions γn : Z|Ln|+ → Z+, yn : Z|Ln|+ → Z+ and Φ̃n :

Z|Ln|+ → Z+ are defined recursively by:

γn(~x) ,
∏
m∈Rn

1

rxmm xm!
, (4.21)

yn(~x) ,

1 n = 0,

~xRn + yn−1(~xLn−1) ∧ Cn−1 otherwise,
(4.22)

Φ̃n(~x) ,


1 n = 0 or ~x = ~0,

γn(~x)Φ̃n−1(~xLn−1) yn(~x) ≤ Cn,
1

Cn

∑
m∈Ln

Φ̃n(~x− ~em) otherwise.

(4.23)
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If ~x has a negative component or n < 0, then it will be understood that

γn(~x), yn(~x), Φ̃n(~x) , 0.

To reduce the notational clutter, when the state ~x is unambiguous it will be dropped,

e.g. γn(~x) ≡ γn. As well, explicit reference to the sub-vector will also be dropped, e.g.

yn−1(~xLn−1) ≡ yn−1(~x) ≡ yn−1 where the final equivalence will be used when the state

vector ~x is unambiguous.

For any fixed n, Φ̃n is a balance function. In fact, Φ̃1 coincides with the second form of the

single link balance function (4.14). The goal of this section will be to show that for any

n, Φ̃n is the balance function for parking lot network with n links. The function y has a

physical meaning as well. As the next lemma will show, Cn ∧ yn can be interpreted as the

aggregate bandwidth allocation of all flows.

Lemma 4.6.1. For all states ~x and n ∈ N,∑
m∈Ln

Φ̃n(x− ~em) = (Cn ∧ yn) Φ̃n(~x). (4.24)

Proof. Base case: If n = 1, note that y1 = ~xR1 . So if y1 > C1, then by (4.23)

1

C1

∑
m∈L1

Φ̃1(~x− ~em) = Φ̃1(~x).

So therefore ∑
m∈L1

Φ̃1(~x− ~em) = C1Φ̃1(~x) = (C1 ∧ y1) Φ̃1(~x).

Otherwise y1 ≤ C1, for which (4.23) implies that∑
m∈L1

Φ̃1(~x− ~em) = ~xR1Φ̃1(~x) = (C1 ∧ y1) Φ̃1(~x).

Induction step: Assume that∑
m∈Ln−1

Φ̃n−1(~x− ~em) = (Cn−1 ∧ yn−1) Φ̃(~x) ∀~x.
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If yn > Cn, then by definition (4.23),∑
m∈Ln

Φ̃n(x− ~em) = CnΦ̃n(~x) = (Cn ∧ yn) Φ̃n(x).

Otherwise if yn ≤ Cn,∑
m∈Ln

Φ̃n(~x− ~em) =
∑
m∈Rn

Φ̃n(~x− ~em) +
∑

m∈Ln−1

Φ̃n(~x− ~em)

= xR1γnΦ̃n−1(~x) + γn
∑

m∈Ln−1

Φ̃n−1(~x− ~em),

= xR1γnΦ̃n−1(~x) + (Cn−1 ∧ yn−1) γnΦ̃n−1(~x),

= ynγnΦ̃n−1(~x),

= ynΦ̃n(~x),

= (Cn ∧ yn) Φ̃n(~x).

The next proposition establishes that for any fixed n, Φ̃n(~x) satisfies the link constraints

(4.2) and rate constraints (4.3).

Proposition 4.6.1. For any state ~x and non-negative integer n,

Φ̃n(~x) ≥ 1

Cl

∑
i∈Ll

Φ̃n(~x− ~ei), (4.25)

Φ̃n(~x) ≥ Φ̃n(~x− ~em)

xmrm

for all l = 1, . . . , n and m ∈ N such that xm > 0.

Proof. Base case: Since Φ̃1(~x) coincides with the balance function for a single link op-

erating under balanced fairness, the inequalities (4.25) are automatically satisfied for all

states ~x and n = 1. Also, note that since Φ̃n(~0) = 1, the inequalities are satisfied for all n

and |~x| = 0 as well.
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Induction step: Assume that for all ~x and n0 = 1, . . . , n−1, Φ̃n0 satisfies the inequalities

(4.25). Fix some positive integer k, and assume that Φ̃n satisfies the inequalities (4.25) for

all ~x such that |~x| ≤ k − 1.

Fix ~x such that |~x| = k and k0 ∈ {1, . . . , n − 1}. The remainder of the proof is split into

two cases: yn ≤ Cn and yn > Cn.

First suppose that yn ≤ Cn. The inequality

Φ̃n(~x) ≥ 1

Cn

∑
m∈Ln

Φ̃n(~x− ~em),

is satisfied via Lemma 4.6.1. As well, by the induction assumption,

Φ̃n−1(~x) ≥ 1

Cn−k0

∑
m∈Ln−k0

Φ̃n−1(~x− ~em).

Therefore,

Φ̃n(~x) = γnΦ̃n−1(~x),

≥ γn
1

Cn−k0

∑
m∈Ln−k0

Φ̃n−1(~x− ~em),

=
1

Cn−k0

∑
m∈Ln−k0

Φ̃n(~x− ~em).

Now, for any m such that xm > 0,

Φ̃n−1(x) ≥ Φ̃n−1(x− ~em)

xmrm
,

by the inductive assumption. So

Φ̃n(~x) = γnΦ̃n−1(~x),

≥ γn
Φ̃n−1(~x− ~em)

xmrm
,

=
Φ̃n(~x− ~em)

xmrm
.
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Now suppose yn > Cn. By (4.23),

Φ̃n(~x) =
1

Cn

∑
m∈Ln

Φ̃n(x− ~em).

To show
1

Cn

∑
m∈Ln

Φ̃n(x− ~em) ≥ 1

Cn−k0

∑
m∈Ln−k0

Φ̃n(~x− ~em), (1)

the strategy will be to expand the sums, eliminate common terms, and then show that the

difference is non-negative.

The expansion of the terms will center around the sets

An , {m ∈ Ln : yn(~x− ~em) ≤ Cn}.

Note that if m ∈ An and m ∈ Rk for some k ∈ {1, . . . n}, then yk′(~x − ~em) ≤ Ck′ for all

k′ ∈ {k, . . . , n}.

To begin, the left hand side of (1) is split into two summations,

1

Cn

∑
m∈Ln

Φ̃n(~x− ~em) =
1

Cn

∑
m∈An

Φ̃n(~x− ~em) +
1

Cn

∑
m∈Acn

Φ̃n(~x− ~em). (LHS)

The first summation can be further decomposed into

1

Cn

∑
m∈An

Φ̃n(~x− ~em) (LHS An)

=
1

Cn

[
γn~xRn∩AnΦ̃n−1(~x) + γn

∑
m∈An

Φ̃n−1(~x− ~em)

]
,

...,

=
1

Cn

[
k0−1∑
i=0

(
i∏

j=0

γn−j

)
~xRn−m∩AnΦ̃n−1−m(~x)

+

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)

 .
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For the second summation, by applying the inductive assumption to each term,

1

Cn

∑
m∈Acn

Φ̃n(~x− ~em) ≥ 1

Cn

∑
m∈Acn

1

Cn−k0

∑
j∈Ln−k0

Φ̃n(~x− ~em − ~ej). (LHS Acn)

The right hand side of (1) is split and expanded similarly:

1

Cn−k0

∑
m∈Ln−k0

Φ̃n(~x− ~em) (RHS)

=
1

Cn−k0

∑
m∈Ln−k0∩An

Φ̃n(~x− ~em) +
1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n(~x− ~em),

1

Cn−k0

∑
m∈Ln−k0∩An

Φ̃n(~x− ~em) =
1

Cn−k0

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em), (RHS An)

and

1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n(~x− ~em) =
1

Cn−k0

∑
m∈Ln−k0∩A

c
n

1

Cn

∑
j∈Ln

Φ̃n(~x− ~em − ~ej). (RHS Acn)

Taking the difference between (LHS Acn) and (RHS Acn) yields

1

Cn

∑
m∈Acn

Φ̃n(~x− ~em)− 1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n(~x− ~em)

≥ 1

Cn

∑
m∈Acn

1

Cn−k0

∑
j∈Ln−k0

Φ̃n(~x− ~em − ~ej)

− 1

Cn−k0

∑
m∈Ln−k0∩A

c
n

1

Cn

∑
j∈Ln

Φ̃n(~x− ~em − ~ej),

=
1

Cn

1

Cn−k0

∑
m∈Acn

∑
j∈Ln−k0∩An

Φ̃n(~x− ~em − ~ej)

−
∑

m∈Ln−k0∩A
c
n

∑
j∈An

Φ̃n(~x− ~em − ~ej)

 .
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To find common terms, both double summations in the previous equation need to be

analyzed further. Expanding the first double summation gives∑
m∈Acn

∑
j∈Ln−k0∩An

Φ̃n(~x− ~em − ~ej)

=

k0−1∑
l=0

∑
m∈Ln−l∩Acn

∑
j∈Ln−k0∩An

Φ̃n(~x− ~em − ~ej)

+
∑

m∈Ln−k0∩A
c
n

∑
j∈Ln−k0∩An

Φ̃n(~x− ~em − ~ej),

=

(
k0−1∏
j=0

γn−j

)
k0−1∑
l=0

~xRn−l∩Acn

∑
j∈Ln−k0∩An

Φ̃n−k0(~x− ~ej)

+
∑

m∈Ln−k0∩A
c
n

∑
j∈Ln−k0∩An

Φ̃n(~x− ~em − ~ej).

Similarly expanding the second double summation,∑
m∈Ln−k0∩A

c
n

∑
j∈An

Φ̃n(~x− ~em − ~ej)

=

k0−1∑
l=0

∑
m∈Ln−l∩An

∑
j∈Ln−k0∩A

c
n

Φ̃n(~x− ~em − ~ej)

+
∑

m∈Ln−k0∩An

∑
j∈Ln−k0∩A

c
n

Φ̃n(~x− ~em − ~ej),

=

k0−1∑
l=0

(
l∏

j=0

γn−j

)
~xRn−l∩An

∑
j∈Ln−k0∩A

c
n

Φ̃n−1−l(~x− ~ej)

+
∑

m∈Ln−k0∩An

∑
j∈Ln−k0∩A

c
n

Φ̃n(~x− ~em − ~ej).

Note the similarities between the final line of the previous equation and (LHS An). Taking
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the difference between (LHS) and (RHS Acn) yields the inequality

1

Cn

∑
m∈Ln

Φ̃n(~x− ~em)− 1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n(~x− ~em)

≥ 1

Cn

[
k0−1∑
l=0

(
l∏

j=0

γn−j

)
~xRn−l∩AnΦ̃n−1−l(~x)

+

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)


+

1

Cn

1

Cn−k0

(k0−1∏
j=0

γn−j

)
k0−1∑
l=0

~xRn−l∩Acn

∑
j∈Ln−k0∩An

Φ̃n−k0(~x− ~ej)

−
k0−1∑
l=0

(
l∏

j=0

γn−j

)
~xRn−l∩An

∑
j∈Ln−k0∩A

c
n

Φ̃n−1−l(~x− ~ej)

 ,
=

1

Cn

 1

Cn−k0

(
k0−1∏
j=0

γn−j

)
k0−1∑
l=0

~xRn−l∩Acn

∑
j∈Ln−k0∩An

Φ̃n−k0(~x− ~ej)

+

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)


+

1

Cn

k0−1∑
l=0

(
l∏

j=0

γn−j

)
~xRn−l∩An

Φ̃n−1−l(~x)− 1

Cn−k0

∑
j∈Ln−k0∩A

c
n

Φ̃n−1−l(~x− ~ej)

.
Observe that by the inductive assumption, for all l = 0, . . . k0 − 1,

Φ̃n−1−l(~x) ≥ 1

Cn−k0

∑
m∈Ln−k0

Φ̃n−1−l(~x− ~em).
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This implies that

Φ̃n−1−l(~x)− 1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n−1−l(~x− ~em)

≥ 1

Cn−k0

∑
m∈Ln−k0∩An

Φ̃n−1−l(~x− ~em),

=

(
k0−1∏
j=l+1

γn−j

)
1

Cn−k0

∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em).

Therefore

1

Cn

∑
m∈Ln

Φ̃n(~x− ~em)− 1

Cn−k0

∑
m∈Ln−k0∩A

c
n

Φ̃n(~x− ~em)

≥ 1

Cn

 1

Cn−k0

(
k0−1∏
j=0

γn−j

)
k0−1∑
l=0

~xRn−l∩Acn

∑
j∈Ln−k0∩An

Φ̃n−k0(~x− ~ej)

+

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)


+

1

Cn

1

Cn−k0

(
k0−1∏
j=0

γn−j

)
k0−1∑
l=0

~xRn−l∩An
∑

m∈Ln−k0∩An

Φ̃n−k0(~x− ~em),

=
1

Cn

1

Cn−k0

(
k0−1∏
j=0

γn−j

)k0−1∑
l=0

~xRn−l
∑

j∈Ln−k0∩An

Φ̃n−k0(~x− ~ej) + Cn−k0


 ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)

 .

Finally, taking the difference of (LHS) and (RHS) gives

1

Cn

∑
m∈Ln

Φ̃n(~x− ~em)− 1

Cn−k0

∑
m∈Ln−k0

Φ̃n(~x− ~em)

≥ 1

Cn

1

Cn−k0

(
k0−1∏
j=0

γn−j

) ∑
m∈Ln−k0∩An

Φ̃n−k0(~x− ~em)

(
k0−1∑
l=0

~xRn−l + Cn−k0 − Cn

)
.
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But,

k0−1∑
l=0

~xRn−l + Cn−k0 =

k0−2∑
l=0

~xRn−l +
(
~xRn−k0+1

+ Cn−k0

)
,

≥
k0−2∑
l=0

~xRn−l +
(
~xRn−k0+1

+ yn−k0 ∧ Cn−k0
)
,

=

k0−2∑
l=0

~xRn−l + yn−k0+1,

=

k0−3∑
l=0

~xRn−l +
(
~xRn−k0+2

+ yn−k0+1

)
,

≥
k0−3∑
l=0

~xRn−l +
(
~xRn−k0+2

+ yn−k0+1 ∧ Cn−k0+1

)
,

...,

≥ ~xRn + yn−1,

≥ ~xRn + yn−1 ∧ Cn−1,

= yn,

> Cn.

Therefore
1

Cn

∑
m∈Ln

Φ̃n(~x− ~em)− 1

Cn−k0

∑
m∈Ln−k0

Φ̃n(~x− ~em) ≥ 0.

To show

Φ̃n(~x) ≥ Φ̃n(~x− ~em)

xmrm

for any m such that xm > 0, the proof is again divided into different cases. Fix ~x and m

such that xm > 0.
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The first case supposes y(~x− ~em) ≤ Cn and m ∈ Rn. Then

Φ̃n(~x) =
1

Cn

∑
j∈Ln

Φ̃n(~x− ~ej),

=
1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~ej) + Φ̃n(~x− ~em)

 ,
≥ 1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

+ Φ̃n(~x− ~em)

 ,
=
γn(~x− ~em)

Cn

 ∑
j∈Rn\{m}

xjrjΦ̃n−1(~x− ~em)

xmrm

+
∑

j∈Ln−1

Φ̃n−1(~x− ~em − ~ej)
xmrm

+
xmrmΦ̃n−1(~x− ~em)

xmrm

 ,
=
γn(~x− ~em)

xmrmCn

[
~xRnΦ̃n−1(~x− ~em) + Cn−1 ∧ yn−1(~x− ~em)Φ̃n−1(~x− ~em)

]
by Lemma 4.6.1,

=
γn(~x− ~em)

xmrmCn
Φ̃n−1(~x− ~em)

[
~xRn + Cn−1 ∧ yn−1(~x)

]
since yn−1(~x) = yn−1(~x− ~em),

=
γn(~x− ~em)

xmrm
Φ̃n−1(~x− ~em)

yn(~x)

Cn
,

>
γn(~x− ~em)Φ̃n−1(~x− ~em)

xmrm
,

=
Φ̃n(~x− ~em)

xmrm
.
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Now suppose y(~x− ~em) ≤ Cn and m /∈ Rn, then almost exactly as the previous case,

Φ̃n(~x) =
1

Cn

∑
j∈Ln

Φ̃n(~x− ~ej),

≥ 1

Cn

[∑
j∈Ln

Φ̃n(~x− ~em − ~ej)
xmrm

]
,

=
γn(~x− ~em)

Cn

∑
j∈Rn

xjrjΦ̃n−1(~x− ~em)

xmrm
+
∑

j∈Ln−1

Φ̃n−1(~x− ~em − ~ej)
xmrm

 ,
=
γn(~x− ~em)

xmrmCn

[
~xRnΦ̃n−1(~x− ~em) + Cn−1 ∧ yn−1(~x− ~em)Φ̃n−1(~x− ~em)

]
,

>
γn(~x− ~em)Φ̃n−1(~x− ~em)

xmrm
,

=
Φ̃n(~x− ~em)

xmrm
.

Finally, first suppose y(~x− ~em) > Cn and xm ≥ 2. Then,

Φ̃n(~x) =
1

Cn

∑
j∈Ln

Φ̃n(~x− ~ej),

≥ 1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

+ Φ̃n(~x− ~em)

 ,
≥ 1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

+
Φ̃n(~x− 2~em)

(xm − 1)rm

 ,
>

1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

+
Φ̃n(~x− 2~em)

xmrm

 ,
=

1

Cn

∑
j∈Ln

Φ̃n(~x− ~em − ~ej)
xmrm

,

=
Φ̃n(~x− ~em)

xmrm
.
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Otherwise if y(~x− ~em) > Cn and xm = 1, then

Φ̃n(~x) =
1

Cn

∑
j∈Ln

Φ̃n(~x− ~ej),

≥ 1

Cn

 ∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

+ Φ̃n(~x− ~em)

 ,
>

1

Cn

∑
j∈Ln\{m}

Φ̃n(~x− ~em − ~ej)
xmrm

,

=
Φ̃n(~x− ~em)

xmrm
.

Remark 4.6.1. From the proof, it can be seen that for any fixed n, state ~x and m such

that xm > 0, the inequality yn(~x) > Cn implies that Φ̃n(~x) >
Φ̃n(~x− ~em)

xmrm
. This fact will

prove useful in the remaining sections.

Using the previous proposition, we can now establish a more useful characterization of the

balance function for parking lot networks.

Corollary 4.6.1. For a parking lot network with n links, Φn(~x) = Φ̃n(~x).

Proof. By Proposition 4.6.1, all the link and rate constraints are satisfied. So

Φn(~x) ≤ Φ̃n(~x),

by Proposition 3 of [12]. It will be shown that Φn(~x) ≥ Φ̃n(~x) via induction.

Base case 1: For n = 1, it is immediate from (4.14) and (4.23) that Φ1(~x) = Φ̃1(~x) for

all states ~x.

Induction step 1: Assume that Φn−1(~x) ≥ Φ̃n−1(~x) ∀~x.

Base case 2: For |~x| = 0, Φn(~0) = Φ̃n(~0) = 1.

Induction step 2: Fix k ∈ N and assume Φn(~x) ≥ Φ̃n(~x) for all |~x| ≤ k − 1.
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Now fix ~x such that |~x| = k.

First suppose that yn ≤ Cn. If there exists an m ∈ Rn such that xm > 0, then

Φ(~x) ≥ Φn(~x− ~em)

xmrm
,

≥ Φ̃n(~x− ~em)

xmrm
,

= Φ̃n(~x).

Otherwise

Φ̃n(~x) = Φ̃n−1(~x),

≤ Φn−1(~x),

= Φn(~x),

where the final equality follows from (4.20) and the fact that xm = 0 for all m ∈ Rn.

If yn > Cn then,

Φn(~x) ≥ 1

Cn

∑
j∈Ln

Φ(~x− ~ej) ≥
1

Cn

∑
j∈Ln

Φ̃n(~x− ~ej)

= Φ̃n(~x).

The recursive form of the balance function allows for a simple characterization of the

stationary distribution. Let πn be the stationary distribution for a parking lot network

with n links. Then it can be recursively defined by:

πn(~x) =

πn(~0)
∏

m∈Rn
βm

xm

xm!
πn−1(~x) if yn(~x) ≤ Cn,

1
Cn

∑
m∈Ln αmπn(~x− ~em) otherwise.

(4.26)
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4.6.2 Probability of congestion

For the remainder of this thesis, the number of links is fixed at some positive integer

K. Recall that for a state ~x, congestion occurs for a flow class m at that state when

φm(~x) < rmxm. For the single link case, all flow classes were congested over the same

states ~x and that occurred when ~x > C. The former fact is not true in general for the

parking lot network. But, as the following lemma will show, a simple criterion to identify

the states where congestion occurs for each flow class does exist.

Lemma 4.6.2. For all n ∈ {1, . . . , K}, flow class m ∈ Rn and states ~x, the total allocation

to flows of class m are φm(~x) = xmrm if and only if yk ≤ Ck for all k = n . . .K.

Proof. Fix n ∈ {1, . . . , K}, m ∈ Rn, and ~x. Since φm(~x) = 0 if xm = 0, then it will be

assumed that xm > 0. Recall from Corollary 4.6.1 that Φ̃· = Φ·.

To begin, assume that yk ≤ Ck for all k = n . . .K. Then φm(~x) = xmrm follows directly

from the definition of the balance function (4.23).

Now assume that φm(~x) = xmrm. As discussed in Remark 4.6.1: If yK > CK then ΦK(~x) >
ΦK(~x− ~em)

xmrm
, which implies that φm(~x) < xmrm. Therefore, yK ≤ CK by assumption. The

remainder of the proof will show, via contradiction, that yk ≤ Ck for all k = n . . .K.

Assume that there exist integers k such that yk > Ck. Select the largest such integer and

label it, for simplicity, as k. Also note that K > k. Then, via Remark 4.6.1, Φk(~x) >
Φk(~x− ~em)

xmrm
. But from the definition of Φ, i.e. (4.23),

ΦK(~x) =

(
K∏

j=k+1

γj

)
Φk(~x).
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So by (4.7),

φm(~x) =
ΦK(~x− ~em)

ΦK(~x)
,

=

(
K∏

j=k+1

γj

)
Φk(~x− ~em)(

K∏
j=k+1

γj

)
Φk(~x)

,

=
Φk(~x− ~em)

Φk(~x)
,

< xmrm,

which is a contradiction.

The result agrees with intuition: Congestion occurs for a flow only if there exists a saturated

link on its route. A link n is saturated if yn > Cn. So for any flow class m ∈ Rn, the

probability of congestion is now reduced to summing over all the states that have at least

one of the links n, . . . ,K saturated. For the majority of this section though, the attention

will be focused on the quantity PK which represents the probability that linkK is saturated.

Akin to the single link case, to simplify the calculation of the congestion metrics the state

space needs to be appropriately partitioned. Define the sets (AKl )l=0,...,K such that

AKl , {~x ∈ Z|LK |+ : yl(~x) ≤ Cl}, (4.27)

and A0
0 = ∅. The state space can be partitioned by the disjoint sets (HK

j )j=1,...,K+1 defined

by

HK
j ,


(
AKK
)c

j = K + 1,⋂K
l=j A

K
l ∩

(
AKj−1

)c
otherwise.

(4.28)

Partitioning the state space by the HK
j ’s has numerous advantages. For any 1 < j < K+1,

let

ÃKj,l =

~v ∈ Z|LK\Lj−1|
+ :

∑
m∈LK\Lj−1

rmṽm,j ≤ Cl − Cj−1

 ,
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where

ṽm,j ≡ vm−|Lj−1|.

Then

∑
~x∈HK

j

ΦK(~x)
∏
m∈LK

αxmm =

 ∑
~u∈(Aj−1

j−1)
c

Φj−1(~u)
∏

m∈Lj−1

αumm


 ∑
~v∈
⋂K
l=j Ã

K
j,l

∏
m∈LK\Lj−1

β
ṽm,j
m

ṽm,j!

 .

(4.29)

Thus the normalization constant GK can be written as

GK =
∑

~x∈Z|LK |+

ΦK(~x)
∏
m∈LK

αxmm ,

=
K+1∑
j=1

∑
~x∈HK

j

ΦK(~x)
∏
m∈LK

αxmm ,

=
K∑
j=2

 ∑
~u∈(Aj−1

j−1)
c

Φj−1(~u)
∏

m∈Lj−1

αumm


 ∑
~v∈
⋂K
l=j Ã

K
j,l

∏
m∈LK\Lj−1

β
ṽm,j
m

ṽm,j!

 (4.30)

+
∑

~x∈
⋂K
l=1 A

K
l

∏
m∈LK

βxmm
xm!

+
∑

~x∈(AKK)
c

ΦK(~x)
∏
m∈LK

αxmm .

The term

P ′K ,
∑

~x∈(AKK)
c

ΦK(~x)
∏
m∈LK

αxmm (4.31)

has a very familiar interpretation, from Lemma 4.6.2, it is the unnormalized probability

that all flows are congested. Let

V K
m , {~x ∈ Z|LK |+ : yK(~x+ ~em) > CK}, (4.32)

and

B′Km ,
∑

~x∈V Km ∩AKK

ΦK(~x)
∏
m∈LK

αxmm . (4.33)
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Following Lemma 4.5.1, P ′K can be rewritten as∑
~x∈(AKK)

c

ΦK(~x)
∏
m∈LK

αxmm =
∑
m∈LK

ρ
(K)
m B′Km

1− ρ(K)
, (4.34)

where ρ
(K)
m = αm

CK
and ρ(K) =

∑
m∈LK ρ

(K)
m . Suppose m ∈ Rn. Then it is clear from the

definitions of V K
m and AKK that

V K
m ∩ AKK =

K⋂
j=1

HK
j ∩ V K

m ,

=
n⋂
j=1

HK
j ∩ V K

m . (4.35)

For example, assume HK
n+1 ∩ V K

m is not empty and select ~x ∈ HK
j ∩ V K

m . By definition of

HK
n+1 and yK , CK ≥ yK(~x) = ~xLK\Ln+1 + Cn. Therefore yK(~x+ ~em) = yK(~x) ≤ CK and so

~x /∈ V K
m which is a contradiction.

The advantage of this form is that the computation is over a smaller set of states. Unfortu-

nately, when the capacities are ”‘large”’, the computation can still be lengthy. To alleviate

this problem the large system approximation is introduced again.

The first step is to analyze (4.31). Unfortunately, it is not readily amenable to the large

system approximation. To work around this problem, an upper bound is established. Fix

m ∈ LK and suppose m ∈ Rn. Let
(
V H

K

m,j

)
j=1...n

be sets of vectors in Z|LK |+ such that for

any ~x ∈ V HK

m,j,

yj−1(~x) > Cj−1, (4.36)

~xLK\Lj−1
≤ CK − Cj−1,

~xLK\Lj−1
+ rm > CK − Cj−1.

Lemma 4.6.3. For each flow class m,

V K
m ∩HK

j ⊆ V H
K

m,j, (4.37)

where j = 1, . . . , n and m ∈ Rn.
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Proof. Select ~x ∈ V K
m ∩HK

j . Then by definition,

yj−1(~x) > Cj−1,

and

yK(~x) = ~xLK\Lj−1
+ Cj−1,

≤ CK .

As well, note that by definition of yK , if n = K then

yK(~x+ ~em) = ~xRK + rm + CK−1 ∧ yK−1(~x),

≤ ~xRK + rm + yK−1(~x),

...

≤ ~xLK\Lj−1
+ rm + Cj−1 ∧ yj−1(~x),

≤ ~xLK\Lj−1
+ rm + Cj−1.

Similarly if n < K,

yK(~x+ ~em) = ~xRK + CK−1 ∧ yK−1(~x+ ~em),

≤ ~xRK + rm + yK−1(~x+ ~em),

...

≤ ~xLK\Lj−1
+ rm + Cj−1 ∧ yj−1(~x),

≤ ~xLK\Lj−1
+ rm + Cj−1.

Therefore,

CK < yK(~x+ ~em),

≤ ~xLK\Lj−1
+ rm + Cj−1.
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Let

B̃′Km ,
K∑
j=1

∑
~x∈V HK

m,j

ΦK(~x)
∏
m∈LK

αxmm . (4.38)

Then:

Lemma 4.6.4.

B̃′Km ≥ B′Km . (4.39)

Proof. Apply Lemma 4.6.3 with the fact that
⋃n
j=1H

K
j ∩ V K

m = V K
m ∩ AKK .

Now, for any 1 < j ≤ n,

∑
~x∈V HK

m,j

ΦK(~x)
∏
i∈LK

αxii =

 ∑
~u∈(Aj−1

j−1)
c

Φj−1(~u)
∏

i∈Lj−1

αuii


 ∑
~v∈TKm,j

∏
i∈LK\Lj−1

β
ṽi,j
i

ṽi,j!

 ,

and for j = 1, ∑
~x∈V HK

m,1

ΦK(~x)
∏
i∈LK

αxii =

 ∑
~x∈TKm,1

∏
i∈LK

βxii
xi!

 ,

where

TKm,j ≡ {~v ∈ Z|LK\Lj−1|
+ : vj ≤ CK − Cj−1 < vj + rm},

vj ≡
∑

m∈LK\Lj−1

vm−|Lj−1|rm,

and

ṽm,j ≡ vm−|Lj−1|.

Also, let

P̃ ′K ,
∑
m∈LK

ρ
(K)
m B̃′Km

1− ρ(K)
, (4.40)

where, once again, ρ
(K)
m = αm

CK
and ρ(K) =

∑
m∈LK ρ

(K)
m . Then it is clear from Lemma 4.6.4

that P̃ ′K ≥ P ′K . Let P̃K be the normalized version of P̃ ′K .
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Using the more amenable upper bound, the large systems approximation will now be

analyzed. By induction over the number of links and Lemma 4.5.2 (via the proof of

Lemma 4.5.3), P̃ ′K(N)e−N |βK | → 0. This leads to the following result:

Lemma 4.6.5.

GK(N)e
−N |β|
K → 1. (4.41)

Finally, the main result of the section can now be stated.

Theorem 4.6.1. The probability that all flows are congested is upper bounded by

P̃K(N) =
∑
m∈LK

ρ
(K)
m B̃m(N)

1− ρ(K)
, (4.42)

where:

P̃0(N) = 1,

and for each flow class m ∈ Rn,

B̃m(N) ∼
n∑
j=1

P̃j−1(N)P
(K)
m,j (N), (4.43)

P
(K)
m,j (N) ∼


e−NIeτdε(N) d√

2πNσ
1−eτrm
1−eτd ∆Cj < αj,√

2
πN

rm
σ

∆Cj = αj,

1− eτrm otherwise.

, (4.44)

∆Cj = CK − Cj−1,

αj =
∑

m∈LK\Lj−1

αm,

d is the greatest common divisor of (rm)m∈LK\Lj−1
,

ε(N) =
N∆Cj
d
−
⌊
N∆Cj
d

⌋
,
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τ is the unique solution to the equation
∑

m∈LK\Lj−1

rmβme
τrm = ∆Cj,

I = ∆Cjτ −
∑

m∈LK\Lj−1

βm (eτrm − 1),

σ2 =
∑

m∈LK\Lj−1

r2
mβme

τrm.

Now that an efficient formula to approximately calculate the probability that all flows are

congested has been found, we now return to the problem of calculating the problem that

a specified flow class is congested. Fix a flow class m ∈ Rn and let P
(m)
K be the probability

of congestion for that flow, i.e.

P
(m)
K =

∑
~x∈
⋃K
l=n(AKl )

c

πK(~x).

But,
K⋃
l=n

(
AKl
)c

=
K+1⋃
l=n+1

HK
l .

So one can rewrite P
(m)
K as

P
(m)
K =

K+1∑
l=n+1

∑
~x∈HK

l

πK(~x).

Then, from (4.29) and Lemma 4.6.5, the large system upper bound for the probability of

congestion is

P
(m)
K (N) ∼

K∑
j=n

Pj(N), (4.45)

≤
K∑
j=n

P̃j(N).
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4.6.3 Time-Average Congestion Rates

The calculation of the time-average congestion rates follows very similarly to the previous

section and so the same notation will carry over. Recall from (4.12) that the time-average

congestion rate of a flow class m ∈ Rk is

FK
m =

∑
~x∈Cm

xmπK(~x)∑
~x

xmπK(~x)
,

where Cm was identified in Lemma 4.6.2, i.e.

Cm =

(
K⋃
j=k

AKj

)c

.

Like the probability of congestion in the previous section, it will be fruitful to first inves-

tigate the states where all flows are congested. To that end, define QK
m by

QK
m ,

∑
~x∈(AKK)c

xmπK(~x). (4.46)

Following the proof of Lemma 4.5.4 mutatis mutandis,

QK
m =

ρ
(K)
m

1− ρ(K)
(PK +BK

m) +
∑
j∈LK

ρ
(K)
j

1− ρ(K)
QK
m,j, (4.47)

where BK
m is B′Km normalized and for j ∈ Rn,

QK
m,j =

∑
~x∈AKK∩V

K
j

xmπK(~x),

=
∑

~x∈
⋃K
l=1(HK

l ∩V
K
j )

xmπK(~x), (4.48)

=
∑

~x∈
⋃n
l=1(HK

l ∩V
K
j )

xmπK(~x),

=
n∑
l=1

∑
~x∈HK

l ∩V
K
j

xmπK(~x).
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The QK
m,j can be further decomposed by analyzing the sets HK

l ∩ V K
j . Fix l = 1, . . . , n. If

k ≥ n or n > k ≥ l then,∑
~x∈HK

l ∩V
K
j

xmπK(~x) = βm
∑

~x∈HK
l ∩V

K
j

πK(~x− ~em),

= βm
∑

~x+~em∈HK
l ∩V

K
j

πK(~x),

≤ βm
∑

~x+~em∈V H
K
l,j

πK(~x),

= βm

 ∑
~u∈(Al−1

l−1)
c

π|Ll−1|(~u)

 bKlj .

Otherwise, if n ≥ l > k, then

∑
~x∈HK

l ∩V
K
j

xmπK(~x) =

 ∑
~u∈(Al−1

l−1)
c

xmπ|Ll−1|(~u)

 bKlj ,

= Ql−1
m bKlj ,

where

bKlj =

 ∑
~v∈Z

|LK\Ll−1|
+ :v≤CK−Cl−1<v+rj

π|LK\Ll−1|(~v)

 .

and for l = 1,  ∑
~u∈(Al−1

l−1)
c

xmπ|Ll−1|(~u)

 = 1.

Of course, Q1
m is just the single link case and its computation was the focus of Section

4.5.3. Let

Q̃K
m =

ρ
(K)
m

1− ρ(K)
(P̃K + B̃K

m) +
∑
j∈LK

ρ
(K)
j

1− ρ(K)
Q̃K
m,j, (4.49)
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where

Q̃K
m,j =

Q̃l−1
m bKlj if n ≥ l > k,

βm

(∑
~u∈(Al−1

l−1)
c π|Ll−1|(~u)

)
bKlj otherwise.

It is clear from the definition that Q̃K
m ≥ QK

m. Again, Q̃K
m can be efficiently calculated

using the large system asymptotic (note that bKlj is equivalent to a single link calculation).

Moreover, as derived in Theorem 4.5.2,∑
~x

xmπK(~x) ≥
∑

~x∈
⋂K
l=1 A

K
l

xmπK(~x),

∼ Nβm in the large system asymptotic.

Let

fKm =

∑
~x∈(AKK)

c

xmπK(~x)

∑
~x

xmπK(~x)
,

=
QK
m∑

~x

xmπK(~x)
,

and

f̃Km =
Q̃K
m∑

~x

xmπK(~x)
.

Then using the same method as deriving (4.45), one gets

FK
M (N) ∼

K∑
j=n

f jm(N),

≤
K∑
j=n

f̃ jm(N).
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4.7 Numerical Results

The chapter is concluded with a numerical comparison of the asymptotic formula of Theo-

rems 4.5.1 and 4.6.1 with exact results for a single link and a two-link parking lot network

with M = 3 classes of traffic. For the network case, the first flow class travels through

both links while the other flows travels through the second link only. The rate limits for

both networks are r1 = 1, r2 = 1 and r3 = 2. As well the traffic intensities are α1 = 1,

α2 = 1 and α3 = 2.

For the single link, the probability of congestion was computed. The numerical experiment

was run twice. The first time the link capacity was set to C = 4.8, and the second it was

set to C = 4.3 corresponding to a light and heavy load. The results are given in Table 4.1.

Table 4.1: Probability of Congestion - Single Link

(a) Light load

Exact Approximation

N

10 2.21e-1 2.50e-1

20 9.51e-2 1.07e-1

30 4.72e-2 5.38e-2

40 2.49e-2 2.81e-2

(b) Heavy load

Exact Approximation

N

10 9.34e-1 9.81e-1

20 6.14e-1 6.45e-1

30 4.66e-1 4.89e-1

40 3.75e-1 3.94e-1

Two immediate patterns become apparent when observing the tables. First, the heavier the

load, the more conservative the approximation becomes. Secondly, the larger the scaling
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factor, i.e. N , the more accurate the approximation becomes. Not surprisingly, these

points were noted by Gazdzicki et al. [23] in the loss networks context.

The two-link parking lot network had more interesting results. The quantity computed was

the exact probability that all flows were congested and the approximate upper bound. The

numerical experiment was run three times corresponding to the three cases in Theorem

4.6.1. The link capacities were set to C = [1.2, 4.8], [1.4, 4.4] and [1.5, 4.3]. The results are

given in Table 4.2.

The results suggest that the load at the final link is, unsurprisingly, the most important

variable in determining the probability of congestion. Once again, the heavier the load,

the more conservative the approximation. In fact, as it is an upper bound, the results seem

to suggest that a simpler and tighter approximation could be achieved by simply ignoring

the network structure and treating the system as a single link. Another interesting pattern

that seems to be emerging is that the lighter the load at the first link, the tighter the

approximation is to the exact value.
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Table 4.2: Probability of Congestion - Parking Lot Network

(a) C = [1.2, 4.8]

Exact PK(N) Approximation P̃K(N)

N

10 1.92e-1 4.02e-1

20 8.22e-2 1.52e-1

30 4.08e-2 7.11e-2

40 2.15e-2 3.60e-2

(b) C = [1.4, 4.4]

Exact PK(N) Approximation P̃K(N)

N

10 6.41e-1 7.01e-1

20 4.04e-1 4.36e-1

30 2.92e-1 3.13e-1

40 2.23e-1 2.39e-1

(c) C = [1.5, 4.3]

Exact PK(N) Approximation P̃K(N)

N

10 9.24e-1 1.19e0

20 6.13e-1 6.79e-1

30 4.66e-1 4.97e-1

40 3.75e-1 3.96e-1
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Chapter 5

Conclusion and Future Work

5.1 Pathwise Results for Stochastic Fluid Networks

Sample-path comparison theorems were investigated to build insight into the behaviour

of fluid networks. Some applications were discussed as well. The physics of the fluid

model allows for strong pathwise conclusions that are not available in the discrete counter-

part. From the comparison theorems discussed, several general conclusions can be drawn.

Domination by the routing matrix, initial workload, or the input process ensures pathwise

domination in the workload at each queue. Meanwhile decreasing the service rate can only

ensure that total workload in the network increases.

An interesting future line of research direction would to be find conditions that would

extend Lemma 2.4.2 to networks with a state-dependent routing matrix. It is the belief of

the author that the following extension to Lemma 3.1 in [34] is most likely true.

Conjecture 5.1.1. Suppose that limt→∞
J(t)
t

= λ and (I − P ′)−1λ < r. Consider a vector

λ̃ ∈ RN such that λ̃ > λ and (I−P ′)−1λ̃ < r. Let (J, r, P (w),W (0)) and (J, λ̃,0,W (0)) be

two stochastic fluid networks with respective workload processes W and W̃ . Then |W (t)| ≤
|W̃ (t)| for each t ≥ 0.

Proving such a conjecture would show, in great generality, that there exists a pathwise
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bound for the workload in a state-dependent network.

5.2 Interchange of Limits

The interchange of limits problem was shown to hold for stochastic fluid networks with both

fixed and state-dependent routing matrices. The techniques used to prove the interchange

results took advantage of the sample-path theorems developed in Chapter 2.

The method of proof used to prove the interchange of limits purposely avoided the powerful

tools and techniques associated with Markov processes utilized by similar works [22], [17].

Since sample-path methods were used instead, the proofs can be adapted to more general

inputs then the canonical Lévy setting. So an interesting future line of research is in

proving the results for more general inputs. Unfortunately that is where the real difficulty

lies since little is known beyond the Markovian setting.

Another line of potential future research is to remove the constraint in the state-dependent

case that the routing matrix is upper bounded. Affirming Conjecture 5.1.1 would be a

large step forward in proving such a result.

5.3 Balanced Fairness

In Chapter 4, congestion in networks operating under Balanced Fairness was investigated.

For the single link case, the congestion metrics were shown to correspond to a multi-rate

loss system. Through such a correspondence, the large system approximation for a single

link loss system was applied to yield efficient congestion estimates. As well, an analysis

of the qualitative properties for parking lot networks was given. It was shown that the

results of the single link network could be applied to upper bound the congestion metrics

in a parking lot network.

A future direction of research is to show that such results hold for more general networks, in

particular a tree network. The tree topology is a generalization of the parking lot topology
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that possesses many of the latter’s useful recursive properties. So many of the techniques

used could potentially carry over to the tree network.
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