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Abstract

The combined survival status of the insured lives is a critical problem when

pricing and reserving insurance products with more than one life. Our preliminary

experience examination of bivariate annuity data from a large Canadian insurance

company shows that the relative risk of mortality for an individual increases after

the loss of his/her spouse, and that the increase is especially dramatic shortly after

bereavement. This preliminary result is supported by the empirical studies over

the past 50 years, which suggest dependence between a husband and wife.

The dependence between a married couple may be significant in risk manage-

ment of joint-life policies. This dissertation progressively explores Markovian mod-

els in pricing and risk management of joint-life policies, illuminating their advan-

tages in dependent modeling of joint time-until-death (or other exit time) random

variables. This dissertation argues that in the dependent modeling of joint-life

dependence, Markovian models are flexible, transparent, and easily extended.

Multiple state models have been widely used in historic data analysis, particu-

larly in the modeling of failures that have event-related dependence. This disserta-

tion introduces a common shock factor into a standard Markov joint-life mortality

model, and then extends it to a semi-Markov model to capture the decaying effect

of the “broken heart” factor. The proposed models transparently and intuitively

measure the extent of three types of dependence: the instantaneous dependence,

the short-term impact of bereavement, and the long-term association between life-

times. Some copula-based dependence measures, such as upper tail dependence,

can also be derived from Markovian approaches.

Very often, death is not the only mode of decrement. Entry into long-term care

and voluntary prepayment, for instance, can affect reverse mortgage terminations.
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The semi-Markov joint-life model is extended to incorporate more exit modes, to

model joint-life reverse mortgage termination speed. The event-triggered depen-

dence between a husband and wife is modeled. For example, one spouse’s death

increases the survivor’s inclination to move close to kin. We apply the proposed

model specifically to develop the valuation formulas for roll-up mortgages in the UK

and Home Equity Conversion Mortgages in the US. We test the significance of each

termination mode and then use the model to investigate the mortgage insurance

premiums levied on Home Equity Conversion Mortgage borrowers.

Finally, this thesis extends the semi-Markov joint-life mortality model to having

stochastic transition intensities, for modeling joint-life longevity risk in last-survivor

annuities. We propose a natural extension of Gompertz’ law to have correlated

stochastic dynamics for its two parameters, and incorporate it into the semi-Markov

joint-life mortality model. Based on this preliminary joint-life longevity model, we

examine the impact of mortality improvement on the cost of a last survivor annuity,

and investigate the market prices of longevity risk in last survivor annuities using

risk-neutral pricing theory.
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Chapter 1

Introduction

Many insurance products provide benefits that are contingent on the combined

survival status of multiple lives. The most common examples are joint-life annuities

and insurances sold to married couples. A couple is considered as an entity, and

the payoff of the products is contingent on the first death (joint-life status) or the

last death (the last survival status) in the entity. Although some products are

sold to, for example, business partners, we in this thesis restrict our discussion to

benefits payable to married couples. Modeling the combined survival status of the

insured lives is a critical problem in pricing and reserving those products. The

theory of multiple life contingencies traditionally postulates independence between

the remaining lifetimes of joint lives for the sake of simplicity, but there is strong

empirical evidence that supports dependence between the time-until-death random

variables of a husband and wife.

This introductory chapter serves as background to motivate the study of joint-

life mortality risk evaluation and management in the Markovian framework, and is

organized as follows. Section 1.1 develops the reasons for dependent modeling of

joint time-until-death random variables. Section 1.2 gives a brief review of multiple

state models and the Markov and semi-Markov property. Section 1.3 reviews several
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mortality models that have been proposed in demographic analysis for the modeling

of force of mortality. Among these mortality models, the Gompertz law serves as

a starting point for the transition intensities of the multiple state model. The first

three sections are tied together in Section 1.4, where we raise the research questions

that will be answered in this thesis. A detailed exposition of the contents of this

thesis is presented in Section 1.5.

1.1 Dependent Joint Lifetimes

Research on the dependence between bivariate lifetimes of coupled lives dates

back to the 1960’s. See Young at el. (1963), Cox and Ford (1964), and Parkes et al.

(1969). Recent research work, such as Frees et al. (1996) and Youn and Shemyakin

(2001), focused on more sophisticated modeling of the dependence between couples.

The selection effect of bereavement on the post-bereavement mortality of the

surviving spouse was recognized early in the empirical research literature. Young

et al. (1963) traced the mortality of widowers up to the end of the fifth year after

bereavement. They found the mortality rate during the first six months of be-

reavement was 40% greater than that for married men of the same age, and the

increase gradually fell thereafter to the level of the rate for married men. Parkes et

al. (1969) examined the same widowers studied by Young et al. (1963) and showed

that the increased mortality was almost confined to the first six months of bereave-

ment, after which mortality falls back to that of married men of the same age.

Their research on the selection effect of bereavement underpinned the semi-Markov

property specified for the mortality in the widowed status. The instantaneous de-

pendence among the lifetimes of a couple describes the dependence of lives arising

from a common exogenous events. Marshall and Olkin (1967) modeled this type of

dependence by the “common shock” model.
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Overall, the dependence between the future lifetimes of a husband and wife can

be categorized as follows:

• the long-term dependence that is due to the common lifestyle shared by a

married couple,

• the short term dependence that is caused by the select effect of the “broken

heart syndrome”,

• the instantaneous dependence as a result of the common shock events exposed

to a married couple at the same time.

Joint-life insurance policies and financial products are highly popular and the

dependence among multiple lives has been recognized as a consensus. The unre-

alistic assumption of independence could have a significant financial impact in the

industry. The problem of fair pricing for such products requires the construction

of a statistical model for the impact of one life’s survivorship on another.

1.2 Multiple State Models

Multiple state models, also called multi-state models, or MSMs, are models

for a continuous-time stochastic process, which at any time occupies one of a finite

number of possible states. The states and transitions allowed between selected pairs

of states, specify the features and conditions of a process. Multiple state models

have been widely used in demography, biostatistics, and other fields.

Some specific models can be formulated as special examples of multi-state mod-

els in general, for example, a competing risk model in which a subject is exposed to

many causes of failure. Sverdrup (1965) used a multi-state Markov chain to model

disability. Freund (1961) used a homogeneous Markov multi-state model where
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the hazard of future events is determined by the state at the current time. The

“common shock” model also can be easily formulated in the multiple state model

framework. Recently, multiple state models have become an widely used tool for

the calculation of life contingent functions. Examples can be found in Dickson et

al. (2009).

A Markov model assumes that the transition probability depends only on the

current time and the state occupied, that is, it is independent of all previous tran-

sitions. In a semi-Markov model, the transition probability depends not only on

the current time and the state occupied, but also on the time since the previous

transition. In other words, the transition rate depends on the duration spent in the

current state. Semi-Markov models are an interesting extension of Markov mod-

els. A semi-Markov model can be used to study whether the risk fades out, or is

increased after an event has happened.

1.3 Models for the Force of Mortality

In multiple state models, the transition intensity, also called force of transition,

between states are of interest. In life contingency theory, the distribution of an

individual’s future lifetime can be represented as a multiple state model with two

states, which are ‘Alive’ and ‘Dead’. The concept of force of mortality in life

contingencies is identical to the transition intensity in this simple two-state model.

It is a tradition in demographic and survival analysis that mortality models are

represented by force of mortality, which are called hazard functions in statistics.

This section reviews several formulae that have been proposed for describing the

relationship between aging and force of mortality. All those models can serve as a

candidate model for the transition intensity of a multiple state model.

In 1825, Benjamin Gompertz developed a simple mathematic relationship be-
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tween aging and the mortality rates of the elderly. Gompertz (1825) observed that

the force of mortality exponentially increases with age, based on empirical data for

ages from 30 to 80. This famous law is expressed as

µ(x) = Bcx,

where B is interpreted as the general mortality level and c is the exponential coeffi-

cient of mortality growth. Although the Gompertz curve was criticized for overes-

timating the high age mortalities, it well describes adult mortality. Furthermore, it

offers a parsimonious and analytically tractable formula for force of mortality (see,

Schoen et al., 2004). Ever since Gompertz’ work, mortality models proposed all

contain the Gompertz component.

Makeham (1860) added an age-independent component to the Gompertz model,

to take into account the force of accidental death that is assumed to be not age

related. The force of mortality is modeled as

µx = A+Bcx.

As stated in Dickson et al. (2009), the extra constant term improves the model to

fit to mortality data at younger ages better than Gompertz’ law.

Perks (1932) proposed a four-parameter general logistic model, in a form of

µx =
A +Beµx

1 + Ceµx
.

Beard (1963) proposed a less complex three-parameter logistic mortality, in a

form of

µx =
Beµx

1 + Ceµx
.

Logistic models dealt with the problem that the Gompertz law and Makeham’s

law overestimate mortality at the oldest ages. Thatcher (1999) addressed this

problem in a form similar to the Beard model,

µx = A+
Beµx

1 +Beµx
.
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He stated that the fully general logistic model (Perks model) was found to

be less useful in practice, while the three-parameter logistic model is simpler and

more robust. Bongaarts (2005) pointed out that, at lower adult ages the force

of mortality estimated by the Makeham’s law and the Thatcher model are very

similar, because the denominator term in the second term of the Thatcher model is

close to 1. However, the two models diverge at the oldest ages due to the fact that

the Thatcher model levels off 1 +A while the Makeham’s force of mortality has no

limit.

Kannisto (1992) assumed that the parameter A = 0, and gave a simple 2-

parameter model

µx =
Beµx

1 +Beµx
,

which implies that logit(µx) = ln(B) + µ · x.

1.4 Research Questions

The method of modeling the dependence between lifetimes has followed two

popular methods: copula methods and multi-state Markov models. Multiple state

models are a natural tool in actuarial science. Many actuarial models, such as sur-

vival models, disability models, and “death-disease” decrement models, are specific

examples of multiple state models in general. Multiple state models are intuitive,

flexible, and easily extendable.

For pricing and risk management of joint-life insurance policies and financial

products, what is of concern is the correlation between joint lives. A major ele-

ment of dependence could be called event-related, which means an actual event,

such as an accident, or the death of one’s spouse, leads to the change in risk. A

multi-state model presents itself as an intuitive approach to model such non-static

event-related dependencies between a couple, having the advantages of being flex-
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ible and transparent. This dissertation makes an attempt to employ multi-state

Markovian approaches (we include its semi-Markov case within the general class

of Markovian approaches) to joint-life survival analysis for the risk management of

joint-life insurance and financial products, addressing three questions:

1. How can we employ a multiple state model to describe the recognized types

of dependence between the remaining lifetimes of joint lives?

2. Based on the flexibility and extendability of a Markovian multiple state

approaches, how will a Markovian joint-life model be generalized to a more complex

product?

3. How can we evaluate joint-life longevity risk in the framework of Markovian

multiple state approaches?

These three research questions are not isolated topics. They constitute a pro-

gressive study of joint-life Markovian models. Through addressing these three ques-

tions, this thesis aims to make its contribution to provide a comprehensive model

for pricing and risk management of a wide range of joint life products, including

life insurance, annuities, pensions, and reverse mortgage schemes.

1.5 Overview of the Thesis

Each of the next three chapters of this thesis will further develop issues specific

to one research question, present the findings, and discuss the future work. This

section gives an overview of how this thesis elaborates on three research topics.

In Chapter 2, we build two multi-state Markovian models to measure the extent

of three types of dependence between the lifetimes of a married couple, which

we will compare with the copula approach. Copulas are a popular method for

modeling the dependence among bivariate lifetimes. An attractive advantage of

copulas is that they have a parameter-parsimonious model structure. However, the
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dependence structure in a copula model is not so transparent as a MSM. Moreover,

the copula dependence structure remains static over time. As stated in Section 1.2,

multiple state models lead themselves most readily to modeling the dependence

between the remaining lifetimes of a couple. We set up two models, one Markov

and one semi- Markov, and fit the models to a set of bivariate joint-life and last-

survivor annuity data from a large Canadian insurance company. We employed two

fitted models to examine the impact of dependence on the value of last-survivor

annuities, and compare our Markovian models with two copula models considered

in previous research on modeling joint-life mortality. Our findings illustrate the

advantages of multiple state Markovian approaches in modeling joint-life mortality.

This establishes the theoretical basis for our research direction.

In Chapter 3, we apply the semi-Markov joint-life model in the previous chapter

to a more complex financial product, the reverse mortgage, also known as equiva-

lently an equity release product. Huge uncertainty about the amount and timing

of the future cash flow introduces risks to the pricing and risk management of re-

verse mortgages. The timing of reverse mortgage repayments is dependent on many

exit modes: death, moveout, entering long-term care, refinancing, and other vol-

untary prepayment. A good reverse mortgage termination model will reduce the

uncertainty around the timing of the cash flows from a reverse mortgage, provid-

ing reliable information on reverse mortgage terminations. Given its flexibility, the

semi-Markov joint-life model is extended to incorporate more decrements. Based

on the proposed model, we investigate the prices of the embedded “no negative

equity guarantee” in the U.K. equity release schemes and examine the sensitivity of

the price to each termination mode assumption. We also assess the fairness of the

mortgage insurance premium in the U.S. reverse mortgages for its “non-recourse”

guarantee.

In Chapter 4, we extend the semi-Markov joint-life model to examine the mar-

ket prices of longevity risk in last-survivor annuities. To this end, we propose
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a semi-Markov joint-life longevity model for the pricing and risk management of

last-survivor annuities. An unexpected increase in life expectancy puts enormous

pressure on retirement funds and annuity products. Currently, insurance companies

usually price annuities based on a life table projected with deterministic mortality

reduction factors. Great uncertainty about future mortality improvement speed

leads to a controversy over whether the annuity market has sufficiently allowed for

mortality improvement in pricing annuity products. In terms of last-survivor prod-

ucts, dependence between joint lives may complicate the situation. Longevity risk

may be even greater for couples. We incorporate the stochastic Gompertz law to the

semi-Markov joint-life mortality model. The model makes a preliminary attempt

at the dependent modeling of joint-life longevity risk. We then use the proposed

model to price last survivor annuities in a risk-neutral measure, and compare the

market prices of longevity risk in last-survivor annuities and single-life annuities.

Chapter 5 concludes the thesis and discusses future work.

9



Chapter 2

Markovian Approaches to

Joint-life Mortality

2.1 Introduction

Several empirical studies in recent years suggest considerable dependence be-

tween the lifetimes of a husband and wife. Denuit et al. (2001) argue that a

husband and wife are exposed to some of the same risks, since they share a com-

mon lifestyle and may encounter common disasters. Jagger and Sutton (1991) show

that there is an increased relative risk of mortality following spousal bereavement.

This condition, which they call the broken-heart syndrome, can last for a prolonged

period of time. We find evidence of both common shock and broken-heart effects

in the data set on which this article is based. All these findings call for appropriate

methods to model lifetime dependence, which may have a significant impact on risk

management for joint-life insurance policies.

One way to model dependence between lifetimes is to employ copula models.

Frees et al. (1996) and Youn and Shemyakin (2001) use a Frank’s copula and
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a Hougaard copula respectively to model joint-life mortality. We refer interested

readers to Frees and Valdez (1998), Klugman et al. (2008) and McNeil et al. (2005),

who offer comprehensive descriptions of copula models. An attractive advantage

of the copula approach is that it allows the correlation structure of the remain-

ing lifetime variables to be estimated separately from their marginal distributions.

Nevertheless, choosing a suitable copula may not be straightforward. While we

can compare one copula with another, whether either actually fits the dependence

structure adequately is often not easy to quantify, and it is rare to have a qualitative

or intuitive justification for a specific copula.

Another way to model dependence is to use finite state Markov models. In

this approach, possible outcomes are mapped to a number of states. Transitions

between states are governed by a matrix of transition intensities. Depending on the

properties of transition intensities, models in this approach can be divided into two

categories: Markov and semi-Markov. In Markov models, transition intensities de-

pend on the current state only, while in semi-Markov models, transition intensities

depend on only the current state and the time elapsed since the last transition (the

sojourn time in the current state). Markov and semi-Markov models are highly

transparent, as we see clearly from the multiple state model how a change of state,

for example, from married to widowed, impacts mortality.

Markov multiple state models have been applied to diverse areas in actuarial sci-

ence. Sverdrup (1965) and Waters (1984) both considered models where the states

represented different health statuses. The first application to joint-life mortality

modeling may be by Norberg (1989). Spreeuw and Wang (2008) extend Norberg’s

work by allowing mortality to vary with the time elapsed since death of spouse.

Dickson et al. (2009) explain how finite state Markov models may be used for

modelling various insurance benefits, including joint life, critical illness, accidental

death and income replacement insurance.

This study, conducted simultaneously with that of Spreeuw and Wang (2008),
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considers different extensions to Norberg’s model. First, we introduce to the model

a common shock factor, which is associated with the time of a catastrophe, for

example, a plane crash, that affects both lives. Secondly, we extend the original

model to a semi-Markov model, which characterizes the broken-heart effect by a

smooth parametric function of the time elapsed since bereavement. The parametric

function provides more information about how the broken-heart factor diminishes

with time than the step function given by Spreeuw and Wang (2008). Furthermore,

we offer a comparison between the multiple state and copula approaches, by apply-

ing our models to the data set used by Frees et al. (1996) and Youn and Shemyakin

(2001).

The rest of this chapter is organized as follows. Section 2 describes the data we

use throughout this study. Section 3 illustrates the concept of Markovian modeling

with a simple Markov model. Section 4 presents the full semi-Markov model with

a parametric function for modeling the broken heart effect. Detailed information

about the model structures and the estimation procedure is provided. Section 5

compares annuity prices using the Markov model with the semi-Markov model.

Section 6 compares the semi-Markov model with the copulas proposed in Frees et

al. (1996) and in Youn and Shemyakin (2001). Section 7 gives concluding remarks.

2.2 The Data

The data used in this chapter were developed in the research reported in Frees

et al. (1996), funded by the Society of Actuaries. Youn and Shemyakin (2001)

as well as Spreeuw and Wang (2008) also used this data. They comprise 14,947

records of joint and last-survivor annuity contracts over the observation period from

December 29, 1988 to December 31, 1993. In Table 2.1 we show a summary of the

data after the removal of replicated records and records associated with annuitants

of the same sex. It is interesting to note that the death counts for males are almost
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three times that for females. This observation implies that there are more widowed

females than widowed males.

In Table 2.2 we show the breakdown of the data by the following categories:

(1) survived to the end of the observation period; (2) died at least 5 days before or

after spouse’s death; (3) died within 5 days before or after spouse’s death. Without

cause of death information, we cannot tell if the highly proximate deaths are due

to a common disaster, or due to the impact of the broken heart syndrome on the

widow(er)’s physiognomy. In our analysis of the data, it seems most likely that

couples in group (3) died of the same accident as their spouses. To capture this

phenomenon, we introduce a common shock component to the Markovian models.

The use of a 5-day cut-off to allocate the deaths to common shock is admittedly

somewhat arbitrary. The issues are discussed and analyzed further in Section 4.

2.3 Markov Model

2.3.1 Model Specification

Before we present our extension to Norberg’s (1989) work, we illustrate the

concept of multiple-state modeling with a simple Markov model.

A stochastic process {St, t ≥ 0} is a Markov process if, for any u > v > 0, the

conditional probability distribution of Su, given the whole history of the process up

to and including time v, depends on the value of Sv only. In other words, given Sv,

the process at time u is independent of the history of the process before time v.

The Markov process for this study can conveniently be represented by the dia-

gram in Figure 2.1. The boxes represent the four possible states that a couple can

be in at any time and the arrows indicate the possible transitions between these

states. The process has a state space {0, 1, 2, 3}. We interpret, for example, St = 0
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Age at inception No. of persons-at-risk No. of deaths

Females

60 − 69 6397 177

70 − 79 2376 188

80 − 89 192 49

90+ 10 7

Total 8975 421

Males

60 − 69 4949 373

70 − 79 3684 586

80 − 89 318 130

90+ 24 19

Total 8975 1108

Table 2.1: Number of persons-at-risk at the beginning of the observation period

and number of deaths during the observation period.

as both husband and wife are alive at time t.

We assume that the force of mortality for an individual depends on his/her

marital status, but not on his/her spouse’s age. Let us suppose that the current

ages of a wife and husband are x and y, respectively. The wife’s force of mortality at

age x+ t is µ∗x+t if she is widowed; the force of mortality from all causes other than

common shock, for a wife with husband still living, is denoted by µx+t. Likewise,

the husband’s force of mortality at age y + t is µ∗y+t if he is widowed, while µy+t

denotes mortality for a still married man from all causes other than common shock.
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Females Males

Survived 8554 7867

Died at least 5 days before spouse’s death 288 999

Died at least 5 days after spouse’s death 81 57

Died within 5 days before/after spouse’s death 52 52

Total 8975 8975

Table 2.2: Breakdown of the data by survival status at the end of the observation

period.

The common shock factor allows the process to move from state 0 to state

3 directly. Without this transition, simultaneous deaths would not be possible

within this model, given the standard Markov model assumptions. We assume that

µ03, the intensity of moving from state 0 to state 3 directly, is independent of age

(time). This assumption may be relaxed if sufficient information about common

shock deaths is available. The use of the common shock transition means that the

total force of mortality for a married woman age x + t is µx+t+µ03, and similarly for

a married man. This is essentially the same common shock model as that described

in Bowers et al. (1997), though they do not use the Markov model framework.

In many applications of the model, we require the following transition proba-

bilities:

tp
ij
x = Pr(Sx+t = j|Sx = i), i, j = 0, 1, 2, 3, x, t ≥ 0.

The computation of these probabilities requires two technical assumptions, in

addition to the Markov assumption. Assumption (1): the probability of two or

more transitions in a small interval h is o(h), where o(.) is a function such that

limh→0 o(h)/h = 0. Assumption (2): tp
ij
x is a differentiable function of t. Given

these two assumptions, we can compute tp
ij
x by the Kolmogorov forward equations,
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State 0 State 1

Husband dead

Wife alive

x
03

x
*

State 2 State 3

Wife dead

Husband alive

Both alive

Both dead

y

y
*

Figure 2.1: Specification of the Markov model.

which can be written in a compact form as

∂

∂t
P (x, x+ t) = P (x, x+ t)A(x+ t), x, t ≥ 0,

where P (x, x+ t) and A(x+ t) are matrices in which the (i, j)th entries are tp
ij
x and

µij(x + t), respectively. A(x + t) is called the infinitesimal generator matrix, also

known as the intensity matrix, in which µij(x+t) ≥ 0 for every i 6= j, and µii(x+t) =

−
∑3

j=0,j 6=i µ
ij(x+t). Solving this system of partial differential equations, we obtain
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the following expressions for the transition probabilities:

tp
00
x:y = exp

(

−
∫ t

0

µx+s + µy+s + µ03 ds
)

;

tp
11
x = exp

(

−
∫ t

0

µ∗x+s ds
)

;

tp
22
y = exp

(

−
∫ t

0

µ∗y+s ds
)

;

tp
01
x:y =

∫ t

0
sp

00
x:y µy+s t−sp

11
x+s ds;

tp
02
x:y =

∫ t

0
sp

00
x:y µx+s t−sp

22
y+s ds;

tp
13
x =

∫ t

0
sp

11
x µ∗x+s ds;

tp
23
y =

∫ t

0
sp

22
y µ∗y+s ds.

More detail is offered in Dickson et al. (2009).

2.3.2 Parameter Estimation

Let Tx and Ty be the remaining lifetimes of a wife and husband, respectively.

The joint density function for Tx and Ty can be expressed as

fTx,Ty
(u, v) =



















up
00
x:y v−up

22
y+u µx+u µ∗y+v, if u < v,

vp
00
x:y u−vp

11
x+v µy+v µ∗x+u, if u > v,

up
00
x:y µ03, if u = v.

(2.3.1)

Technically speaking, fTx,Ty
(u, v) is a probability density function with respect to

a probability measure that is a combination of a two dimensional absolutely con-

tinuous Lebesque measure and a one dimensional singular measure, with positive
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mass on the line Tx = Ty. Therefore, the probability of moving directly from state

0 to state 3 is non-zero.

Given the joint density function, we can construct the log-likelihood function

from which maximum likelihood estimates of transition intensities can be derived.

Assuming independence among different couples in the data, the log-likelihood

function can be written as a sum of three separate parts, ℓ1, ℓ2, and ℓ3, where

ℓ1 =

n
∑

i=1

(

−
∫ vi

0

(µxi+t + µyi+t + µ03) dt+ d1i lnµyi+vi + d2i lnµxi+vi + d3i lnµ
03
)

,

ℓ2 =

m1
∑

j=1

(

−
∫ u1,j

0

µ∗xj+vj+t dt+ h1,j lnµ
∗
xj+vj+u1,j

)

,

ℓ3 =

m2
∑

k=1

(

−
∫ u2,k

0

µ∗yk+vk+t dt+ h2,k lnµ
∗
yk+vk+u2,k

)

,

where

• n is the total number of couples in the data set,

• m1 (m2) is the total number of widows (widowers) in the data set,

• vi is the time until the ith couple exits state 0, i = 1, ..., n,

• dji = 1 if the the ith couple moves from state 0 to state j at t = vi, i = 1, ..., n,

j = 1, 2, 3,

• u1,j (u2,k) is the time until the jth (kth) widow (widower) exits state 1 or 2,

j = 1, ..., m1, k = 1, ..., m2,

• h1,j = 1 if the jth widow dies at t = u1,j,

• h2,j = 1 if the kth widower dies at t = u2,k,

• xi and yi are the entry ages of the wife and husband of the ith couple, respec-

tively.
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By maximizing three parts of log-likelihood function separately, we can get the

maximum likelihood estimates of the transition intensities in each state. Note that,

for right censored data, dji , h1,j , and h2,j will be zero.

To calculate the log-likelihood, there is a need to define ‘simultaneous deaths’

so that a value of dji can be assigned to each couple. Here we treat the 52 deaths

which occurred within 5 days before or after bereavement as simultaneous deaths.

A deeper discussion on the cut-off rule is provided in Section 2.4 in which we present

the full semi-Markov model.

Although we could assume that the forces of mortality are piecewise constant, in

this study we graduate the forces of mortality (except µ03, which is assumed to be

invariant with age) using Gompertz’ law, µx = BCx, where B > 0, and C > 1. The

parametric graduation is used because it is a more parsimonious approach, it allows

us to extrapolate the forces of mortality to extreme ages, it smooths the results,

and it enables us to calculate quantities such as annuity values efficiently. Although

we use the Gompertz model, we do not claim that it provides the best fit of all

possible models. Our point here is to illustrate the combination of the individual

mortality model (Gompertz, for simplicity) with the multiple state model which

provides the dependency framework.

Assuming that, for both genders, the mortality in state 0 follows Gompertz’

law, we can rewrite ℓ1 as

ℓ1 =
n

∑

i=1

(

−B1C
xi

1 (Cvi
1 − 1)

ln(C1)
+ d2i ln(B1C

xi+vi
1 )− B2C

yi
2 (Cvi

2 − 1)

ln(C2)

+d1i ln(B2C
yi+vi
2 )− viµ

03 + d3i ln(µ
03)

)

,

(2.3.2)

where (B1, C1) and (B2, C2) are the Gompertz parameters for female and male

mortality in state 0, respectively. We can rewrite ℓ2 and ℓ3 in a similar manner. The

maximum likelihood estimate of µ03 is 0.1407%, and its standard error is 0.0195%

based on the asymptotic variance of the maximum likelihood estimator. Maximum
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likelihood estimates of other parameters are displayed in Table 2.3. Parameters µ∗x

and µ∗y have higher standard errors, since the number of individuals who transition

to states 1 or 2 is relatively small (see Table 2.2), even in this extensive data set.

In Figure 2.2 we plot the fitted forces of mortality in different states. We observe,

for both sexes, an increased force of mortality after bereavement. This observation

supports the broken-heart syndrome. We can further deduce from Figure 2.2 that

broken-heart effects vary with age, as the mortality curves do not shift in parallel.

B Standard error C Standard error

Females

µx 9.741× 10−7 2.889× 10−7 1.1331 0.0047

µ∗x 2.638× 10−5 3.370× 10−5 1.1020 0.0181

Males

µy 2.622× 10−5 1.038× 10−5 1.0989 0.0058

µ∗y 3.899× 10−4 4.057× 10−4 1.0725 0.0136

Table 2.3: Estimates of Gompertz parameters in the Markov model.

To examine whether the Gompertz’ laws give an adequate fit, we perform a

χ-square test. That is

χ2 =
k

∑

j=1

(Ej − Oj)
2

Ej

,

where Ej is the number of expected observations and Oj is the number of observa-

tions in the age interval. The age interval is set up with a conservative condition

that each has at least 5 expected observations.

For µx, µ
∗
x, and µ∗y, the null hypothesis that the model gives an adequate fit is

not rejected at 5% level of significance, but for µy, the null hypothesis is marginally

rejected (the p-value is 0.042). The fit for µy can be improved by using Makeham’s

law, µx = A+BCx, which increases the p-value for the χ-square to 0.13, indicating
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an adequate fit. However, for consistency reasons, we use Gompertz’ law for all

four forces of mortality, even though Makeham’s law may better fit µy.

In addition, we also fit the other two logistic models of mortality to the data.

One is the Beard model (Beard, 1963), µx = Beµx

1+Ceµx
, which a three parameter logistic

model (Logit-3). The other is the Kannisto model ( Kannisto, 1992), µx = Beµx

1+Beµx

(Logit-2). we present in Table 2.4 the estimated log-likelihood value from these

four parametric models of mortality.

Log-likelihood value

Force of mortality Gompertz Logit-2 Logit-3 Makeham

µx -1605.135 -1605.318 -1604.835 -1604.627

µ∗x -327.038 -327.035 -327.033 -327.023

µy -4463.311 -4464.085 -4462.905 -4460.447 †

µ∗y -179.687 -179.072 -179.016 -179.686

† The Gompertz law is rejected by a likelihood ratio test with p-value= 0.05.

Table 2.4: Estimated log-likelihood value for four parametric models of

mortality.

We can see that, for µx, µ∗x, and µ∗y, the estimated maximum log-likelihood

values are very close among the four parametric models. Only in the case that µy is

fitted by the Makeham’s law, is the Gompertz model rejected by a likelihood ratio

test at 5% level of significance. Neither a three parameter nor a two parameter

logistic model presents higher quality of fitting than the Gompertz law.

As we have stated, the Gompertz model is used mainly for illustration, and these

tests are simply to ensure that the model is not radically out of line with the data.

Alternative models, for example, non-parametric Kaplan-Meier estimates, can also
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be used. However, because of very sparse data at high ages, Kaplan-Meier and

other non-parametric approaches are of limited usefulness. We reiterate that, our

purpose is more to demonstrate the methodology than to give definitive answers.

We encourage users to apply their own data sets and determine the models most

appropriate to them.

2.4 Semi-Markov Model

2.4.1 Model Specification

The Markov model described above is somewhat rigid, in that the mortality

impact of widow(er)hood is assumed to be constant, regardless of the length of time

since the spouse’s death. While it might be reasonable that mortality of widow(er)s

is generally higher than married individuals of the same age, it also seem reasonable

to consider that the detrimental impact of bereavement on the surviving spouse’s

health might be stronger in the months immediately following the spouse’s death

than it is later on. In fact, the medical and demographic descriptions of the broken

heart syndrome generally reference this more short term impact.

An analysis of times to death for widows and widowers can offer us some insight

into how the forces of mortality change after bereavement. In Table 2.5 we show

the breakdown of post-bereavement death counts by different ranges of W , which

denotes the time between bereavement and death (in years). We observe from

Table 2.5 that more than half of the deaths occurred during the first year after

bereavement. In addition, we see an inverse relationship between death counts

and W , suggesting that the deterioration of mortality after bereavement tapers

off with time. Therefore, a semi-Markov model, which allows transition intensities

to vary with sojourn times, may offer a better representation of post-bereavement

mortality.

22



Total 0 < W ≤ 1 1 < W ≤ 2 2 < W ≤ 3 W > 3

Females 90 51 19 14 6

Males 100 72 16 4 8

Total 190 123 35 18 14

Table 2.5: Breakdown of post-bereavement death counts by different ranges time

(W ) between bereavement and death.

The need for a semi-Markov model can also be seen from Figure 2.3, which

shows, for both sexes, the graduated values of the following three forces of mortality:

• µ∗x(y)|0: the force of mortality during the first year after bereavement;

• µ∗x(y)|1: the force of mortality during the second year after bereavement;

• µ∗x(y)|2+ : the force of mortality beyond the second year after bereavement.1

We observe that, at any given age, µ∗x(y)|0 is always highest, followed by µ∗x(y)|1,

and then µ∗x(y)|2+ . These curves point to the conclusion that the deterioration of

mortality after bereavement tapers off with time, even if age is controlled.

Given the observed pattern of post-bereavement mortality, we use the following

parametric functions to model the force of mortality after bereavement:

for widows,

µ∗(x, t) = (1 + a1e
−k1t)(µx+t + µ03) = F1(t)(µx+t + µ03);

for widowers,

µ∗(y, t) = (1 + a2e
−k2t)(µy+t + µ03) = F2(t)(µy+t + µ03),

1In calculating these forces of mortality, we treat deaths which occurred within 5 days before

or after bereavement as simultaneous deaths. The graduation is based on Gompertz law.
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Figure 2.2: Forces of mortality in different states
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Figure 2.3: Forces of mortality in different years after bereavement
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State 0 State 1

Husband dead

Wife alive

x
03 *

(x, t)

State 2 State 3

Wife dead

Husband alive

y

Both alive

*
(y, t)

Both dead

Figure 2.4: Specification of the semi-Markov model

where aj > −1 and kj > 0 for j = 1, 2, and t is the time since bereavement.

Under this model, the force of mortality after bereavement is proportional to the

corresponding force of mortality if bereavement did not occur. Initially, bereave-

ment increases the force of mortality by a percentage of 100a1% for females and

100a2% for males. As t increases, the multiplicative factors F1(t) = 1 + a1e
−k1t

and F2(t) = 1 + a2e
−k2t decrease exponentially and finally approach 1, capturing

the selection effect of the broken-heart syndrome. Parameters k1 and k2 govern the

speed at which the selection effect diminishes. The complete specification of the

semi-Markov model is shown diagrammatically in Figure 2.4.

2.4.2 Parameter Estimation

Because the semi-Markov extension affects post-bereavement mortality only,

there is no change to the meaning and values of µx, µy, and µ03. Given the estimates
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of µx, µy, and µ03, the remaining parameters can be estimated by partial maximum

likelihood estimation. The partial likelihood function ℓp1 for parameters a1 and k1

is given by

ℓp1 =

m1
∑

j=1

(

−
∫ u1,j

0

(1 + a1e
−k1t)(B̂1Ĉ

x+t
1 + µ03)dt (2.4.3)

+h1,j ln
(

(1 + a1e
−k1t)(B̂1Ĉ

x+t
1 + µ03)

))

,

where B̂1 and Ĉ1 are the maximum likelihood estimate for B1 and C1, respectively

(see Table 2.3). The partial likelihood function ℓp2 for a2 and k2 can be obtained by

changing the parameters in ℓp1 accordingly. By maximizing ℓp1 and ℓp2, we can obtain

estimates for the semi-Markov parameters.

In the above log-likelihood function ℓp1, B1, C1 and µ03 have been estimated. This

estimation method is called a two-stage estimation. In evaluating the variation in

the estimator â1, k̂1, the variation in B̂1, Ĉ1 and µ̂03 from the first step need to

be taken into account. A full description of this two-stage estimation procedure as

follows.

The full log-likelihood function l is given by

ℓ = ℓ1 + ℓ2 + ℓ3

=

n
∑

i=1

(

−
∫ vi

0

(µxi+t + µyi+t + µ03) dt+ d1i lnµyi+vi + d2i lnµxi+vi + d3i lnµ
03

−
∫ u1,i

0

(1 + a1e
−k1t)(µxi+vi+t + µ03)dt+ h1,j ln

(

(1 + a1e
−k1t)(µxi+vi+t + µ03)

)

−
∫ u2,i

0

(1 + a2e
−k2t)(µyi+vi+t + µ03)dt+ h2,j ln

(

(1 + a2e
−k2t)(µyi+vi+t + µ03)

)

)

,

(2.4.4)

where all symbols carry the same meaning as they do in Section 2.3.2. Note that,

from equation (2.4.3) and (2.4.4), we know there are n − m1 observations where

females did not enter the widowed state, The observed value of u1,j is hence 0, and

obviously h1,j is 0, where j = 1, 2, . . . n−m1 .
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Define α1 = [B1, C1, µ
03]′ and β1 = [k1, a1]

′. The estimating functions for α1 are

given by
∑n

i=1 S1,i(α1) = ∂ℓ/∂α′1. α1 is obtained as the solution to

n
∑

i=1

S1,i(α1) = 0, (2.4.5)

Given the estimate of α1, we define the estimating functions
∑n

i=1 U1,i(α̂1, β1) =

∂ℓ/∂β ′1. The estimating equation for β1 are

n
∑

i=1

U1,i(α̂1, β1) = 0, (2.4.6)

Let H1,i(α1, β1) =





S1,i(α1)

U1,i(α1, β1)



. As the estimating equations S1,i(α1) are

functions of α1 alone, the information matrix ∂H1,i(α1, β1)/∂(α
′
1, β

′
1) is lower trian-

gular, i.e.,

∂H1,i(α1, β1)

∂(α′1, β
′
1)

=





∂S1,i(α1)

∂α′

1
0

∂U1,i(α1,β1)

∂α′

1

∂U1,i(α1,β1)

∂β′

1





As stated in appendix of Yi and Cook (2002), with probability approaching

to 1, there is a unique solution (α̂1
′, β̂1

′
)′ from the joint estimating equations

∑n
i=1H1,i(α1, β1) = 0, that satisfies

n1/2





α̂1 − α1

β̂1 − β1



 = −{E[∂H1,i(α1, β1)/∂(α
′
1, β

′
1)]}−1 ·n−1/2

n
∑

i=1

H1,i(α1, β1)+op(1).

The solution (α̂1
′, β̂1

′
)′ from the joint estimating equations is the same as the

two-stage solution α̂1, β̂1. Further, since ∂H1,i(α1, β1)/∂(α
′
1, β

′
1) is lower triangular,

for the estimator β1 of central interest, we have

n1/2
(

β̂1 − β1

)

= −Γ−1n−1/2 ·
n

∑

i=1

Q1,i(α1, β1) + op(1),
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where Γ = E[∂U1,i(α1, β1)/∂β
′
1)], and

Q1,i(α1, β1) = U1,i(α1, β1)− E[∂U1,i(α1, β1)/∂α
′
1)] · [∂S1,i(α1)/∂α

′
1]
−1 · S1,i(α1).

By the central limit theorem, n1/2
(

β̂1 − β1

)

is asymptotically normally dis-

tributed with mean 0 and asymptotic variance Γ−1Σ[Γ−1]′, where

Σ = E[Q1,i(α1, β1)Q
′
1,i(α1, β1)].

The asymptotic distribution for n1/2
(

β̂2 − β2

)

, where β2 = [k2, a2]
′, can be

obtained similarly. The estimates of a1, a2, k1, and k2 and their standard errors

are shown in Table 2.6.

A limitation of our semi-Markov model is high parameter uncertainty. This is

because the semi-Markov parameters are estimated from only a small number of

post-bereavement deaths (see Table 2.5). Still, all four parameters are significantly

greater than zero,2 indicating the need for both the parameters for the magnitude

of bereavement effect, ai and the parameters for the speed of decay ki.

Central estimate Standard error

Females

a1 3.3786 1.0723

k1 0.5225 0.3058

Males

a2 11.0541 4.6484

k2 7.9064 3.3335

Table 2.6: Estimates of parameters a1, a2, k1, and k2 in the semi-Markov model

2Assuming normality holds and a 95% level of significance, we say that a parameter θ is

significantly greater than zero if θ̂ − 1.645

√

Var(θ̂) > 0, where θ̂ is the central estimate of θ.
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Figure 2.5 displays how the multiplicative factors F1(t) and F2(t) vary with

time. The upper panel, which focuses on the first year after bereavement, shows that

widowers are subject to a much higher broken heart effect shortly after bereavement.

However, as the lower panel indicates, the broken heart effect for widows is more

persistent than that for widowers.

Since µ∗x and µ∗y in the semi-Markov model are functions of both age (x) and

time since bereavement (t), conducting a chi-square test for each specific force of

mortality (as what is done in Section 2.3) would require us to group the deaths not

only by x but also by t. In such a grouping, the number of deaths in each group

will not be significant enough for us to perform the test with sufficient granularity.

2.4.3 Identifying Common Shock Deaths

In the semi-Markov model, the following two effects are explicitly modeled:

1. the common shock effect: the effect of a catastrophic event that affects both

a husband and wife;

2. the broken-heart effect: the effect of spousal death on an individual’s mortal-

ity.

In building the semi-Markov model, the threshold or cut-off for defining simul-

taneous deaths is highly important. If the threshold is set too long, some deaths

associated with the broken-heart effect will be misclassified as simultaneous deaths,

leading to an overestimation of µ03. If the threshold is set too short, some simulta-

neous deaths will be misclassified, affecting the shape of the multiplicative factors

F1(t) and F2(t), which are intended to model the broken-heart and not the common

shock effect.

The parameter estimates in Table 2.6 are based on cut-off rule of 5 days. As

a robustness check, we re-estimate the model parameters using cut-off rules of 0
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day (i.e., no common shock), 2 days, and 10 days. The re-estimated multiplicative

factors are shown diagrammatically in Figure 2.6. (We show F2(t) in log scale

because the value F2(0) is extremely large when a 0-day or 2-day cut-off rule is

used.)

When a short cut-off rule is used, the resulting multiplicative factors become

extremely large for small values of t. For instance, when a 2-day rule is used, the

value of F2(0) is as large as 95, which means mortality immediately after bereave-

ment is 95 times greater than before! Also, when a short cut-off rule is used, the

multiplicative factors reduce to 1 swiftly, failing to indicate the broken-heart effect

that we should expect given the mortality curves shown in Figure 2.3. These obser-

vations indicate that short cut-off rules such as 0-day and 2-day tend to misclassify

deaths associated with the common shock effect, distorting the shapes of F1(t) and

F2(t).

From Figure 2.6 we observe that a reasonable cut-off rule would be at least 5

days. We base the parameters in the semi-Markov model on a cut-off rule of 5 days

because it yields a higher log-likelihood value than longer cut-off rules.

Defining simultaneous deaths is to capture common shocks. If a shock happens

to a couple and causes pair deaths, we refer this to “simultaneity”. Common shock

events do happen somewhere around us. Of the 190 pairs of deaths in our data,

24 occurred with one day, 30 occurred with two day, and 52 occurred with five

day. We believe some paired deaths were caused by an accident event and hence

were “simultaneous”. Without causes of death information, it is impossible to

distinguish common shock deaths from bereavement caused deaths for sure. Paired

deaths within one or two days gap may be due to bereavement, while those with

five or even more than five days may be caused by common shock events. We

reiterate that our intention is to demonstrate the full flexibility of the model, and

consistency with the data set in question. It is not our intention to provide definitive

parameter or annuity values under the model. The choice of a 5-day cut-off allows
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Figure 2.5: Factors F1(t) and F2(t) in the semi-Markov model.
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different cut-off rules for simultaneous deaths.
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us to demonstrate the model incorporating, separately, the common shock and

broken heart effect.

2.5 Positive Quadratic Dependence

So far, we have studied two parts of the dependence structure implied by the

Markovian models. The first part is the common shock factor (µ03), which describes

the instantaneous dependence between the lifetimes of a husband and wife in state

0. The second part is the broken heart factor (F1(t) and F2(t) in the semi-Markov

model), which models the temporary increase in mortality after bereavement. The

Markov model differs from the semi-Markov model in that it postulates long-term

dependence between the lifetimes of a husband and wife.

To understand the long-term dependence structure implied by the Markov mod-

els, we utilize the concept of positive quadrant dependence (PQD), which was first

introduced by Lehmann (1966). We let Tx and Ty be the remaining lifetimes of a

husband and wife, respectively. The lifetimes Tx and Ty are positively quadrant

dependent if

Pr(Tx ≤ t, Ty ≤ s) ≥ Pr(Tx ≤ t) Pr(Ty ≤ s) ∀ t, s ≥ 0, (2.5.7)

or, equivalently,

Pr(Tx > t, Ty > s) ≥ Pr(Tx > t) Pr(Ty > s) ∀ t, s ≥ 0. (2.5.8)

Expressions (2.5.7) and (2.5.8) state that the probability that both lifetimes

are small (or large) is higher under PQD assumption than under the assumption

of independence. Another way to interpret PQD can be obtained by rewriting

expressions (2.5.7) and (2.5.8) respectively as

Pr(Tx ≤ t | Ty ≤ s) ≥ Pr(Tx ≤ t) ∀ t, s ≥ 0, (2.5.9)
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and

Pr(Tx > t | Ty > s) ≥ Pr(Tx > t) ∀ t, s ≥ 0. (2.5.10)

The inequalities above mean that an individual is expected to live longer if his/her

spouse lives for a long time, and to die earlier if his/her spouse dies early. Since

these inequalities hold true for all values of t and s, PQD means spousal death (or

survival) has long-term effects on the mortality of widows and widowers.

Norberg (1989) proved that the following statements regarding Markov models

are true if there is no common shock component:

µx ≡ µ∗x and µy ≡ µ∗y ⇐⇒ Ty and Tx are independent;

µx < µ∗x and µy < µ∗y ⇐⇒ Ty and Tx are positive quadrant dependent.

Without common shock component, two lifetimes are independent if the force

of mortality before and after bereavement are equal; while with common shock

transition, µ03, in the Markov model, Norberg’s conclusion will be changed a little

bit.

µx + µ03 ≤ µ∗x and µy + µ03 < µ∗y ⇐⇒ Ty and Tx are positive quadrant dependent.

With µ03 > 0, PQD holds even if the force of mortality before and after bereavement

are equal. The formal proof of this is given as follows.

If Pr(Tx > s|Ty > t) is an increasing function of t for each fixed s, then we have

Pr(Tx > s|Ty > t) ≥ Pr(Tx > s|Ty > 0) = Pr(Tx > s),

which immediately implies

Pr(Tx > s, Ty > t) ≥ Pr(Tx > s) Pr(Tx > t),

that is, Tx and Ty are positive quadrant dependent. As a result, it suffices to show

that Pr(Tx > s|Ty > t) is an increasing function of t for each fixed s if µ∗x ≥ µx+µ03

and µ∗y ≥ µy + µ03.
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When s ≤ t,

Pr(Tx > s, Ty > t)

Pr(Ty > t)

=
Pr(Tx > t, Ty > t) + Pr(s < Tx ≤ t, Ty > t)

Pr(Tx > t, Ty > t) + Pr(Tx ≤ t, Ty > t)

=
e−

∫ t
0 φ(x,y,u) du +

∫ t

s
e−

∫ τ
0 φ(x,y,u)du µx+τ e−

∫ t

τ
µ∗

y+u du dτ

e−
∫ t

0
φ(x,y,u) du +

∫ t

0
e−

∫ τ

0
φ(x,y,u)du µx+τ e−

∫ t

τ
µ∗

y+u du dτ

= 1−
∫ s

0
e−

∫ τ

0
φ(x,y,u) du µx+τ e−

∫ t
τ
µ∗

y+u du dτ

e−
∫ t
0 φ(x,y,u) du +

∫ t

0
e−

∫ τ
0 φ(x,y,u) du µx+τ e−

∫ t
τ
µ∗

y+u du dτ

= 1− e−
∫ t

0
µ∗

y+u du
∫ s

0
e−

∫ τ
0 γ1(x,y,u) du µx+τ dτ

e−
∫ t

0
φ(x,y,u) du + e−

∫ t

0
µ∗

y+u du
∫ t

0
e−

∫ τ

0
γ1(x,y,u) du µx+τ dτ

= 1−
∫ s

0
e−

∫ τ
0 γ1(x,y,u)du µx+τ dτ

e−
∫ t

0
γ(x,y,u) du +

∫ t

0
e−

∫ τ

0
γ1(x,y,u)du µx+τ dτ

.

where φ(x, y, u) = µx+u + µy+u + µ03, and γ1(x, y, u) = µx+u + µy+u + µ03 − µ∗y+u.

Differentiating both sides with respect to t, we obtain

∂

∂t
Pr(Tx > s|Ty > t) = C0(t)(µ

∗
y+t − µy+t − µ03),

where C0(t) is a function which is positive for all t. Therefore, for s ≤ t, Pr(Tx >

s|Ty > t) is an increasing function of t for each fixed s if µ∗y+t > µy+t +µ03 for all t.

When s > t,

Pr(Tx > s, Ty > t)

Pr(Ty > t)

=
Pr(Tx > s, Ty > s) + Pr(Tx > s, t < Ty ≤ s)

Pr(Tx > t, Ty > t) + Pr(Tx ≤ t, Ty > t)

=
e−

∫ s
0 φ(x,y,u) du +

∫ s

t
e−

∫ τ
0 φ(x,y,u)du µy+τe

−
∫ s
τ
µ∗

x+u du dτ

e−
∫ t

0
φ(x,y,u) du +

∫ t

0
e−

∫ τ

0
φ(x,y,u)duµx+τ e−

∫ t
τ
µ∗

y+u du dτ
.
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Differentiating both sides with respect to t, we obtain

∂

∂t
Pr(Tx > s|Ty > t)

= C1(t)
(

−µy+t e
∫ s

t
γ2(x,y,u)du

(

1 +

∫ t

0

e−
∫ t

τ
γ2(x,y,u) duµx+τ dτ

)

+
(

1 +

∫ s

t

e−
∫ s
τ
γ2(x,y,u) duµy+τ dτ

)(

µy+u + µ03 + µ∗y+u

∫ t

0

e−
∫ t
τ
γ2(x,y,u) du µx+τ dτ

))

,

where γ2(x, y, u) = µx+u + µy+u + µ03 − µ∗x+u, and C1(t) is a function which is

positive for all t. The integral
∫ s

t
e−

∫ s
τ
γ2(x,y,u)duµy+τ dτ can be evaluated as follows:

∫ s

t

e−
∫ s

τ
γ2(x,y,u) duµy+τ dτ

=

∫ s

t

e−
∫ s

τ
γ2(x,y,u) duγ2(x, y, τ)dτ +

∫ s

t

e−
∫ s

τ
γ2(x,y,u)du(µ∗x+τ − µx+τ − µ03)dτ

= e−
∫ s

t
γ2(x,y,u) du − 1 +

∫ s

t

e−
∫ s

τ
γ2(x,y,u)du(µ∗x+τ − µx+τ − µ03)dτ .

Substituting the above equation into the expression for ∂
∂t
Pr(Tx > s|Ty > t)

when s > t, we obtain

∂

∂t
Pr(Tx > s|Ty > t)

=
(

∫ s

t

e−
∫ s
τ
γ2(x,y,u) du(µ∗x+τ − µx+τ − µ03)dτ

)

×
(

µy+t + µ03 + µ∗y+t

∫ t

0

e−
∫ t
τ
γ2(x,y,u) duµx+τ dτ

)

+(µ∗y+t − µy+t)×

e
∫ t

s
γ2(x,y,u)du

∫ t

0

e−
∫ t

τ
γ2(x,y,u)duµx+τ dτ + µ03e

∫ t

s
γ2(x,y,u) du.

Since µ∗y+t > µy+t for all y and t, it follows that, for s > t, Pr(Tx > s|Ty > t)

is an increasing function of t for each fixed s if µ∗x+t > µx+t + µ03 for all t. In

conclusion, positive quadrant dependence holds if µ∗x ≥ µx+µ03 and µ∗y ≥ µy+µ03.

The proof is still valid with a time variant common shock component µ03
t .

As we see from Figure 2.2, both conditions (µ∗x ≥ µx + µ03 and µ∗y ≥ µy + µ03)

hold for the estimated Markov model. It would be interesting to see whether PQD

holds in the fitted semi-Markov model.
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In the semi-Markov model, the multiplicative factors F1(t) and F2(t) are strictly

greater than 1 for all t. The force of mortality after bereavement is higher than the

corresponding force of mortality before bereavement. However, the above formal

proof does not apply to this case, since the multiplicative factors are functions of

sojourn time in the widowed status. In fact, PQD does not hold, in general, for

the semi-Markov model. We see this from Figure 2.7, where the ratio of Pr(Tx >

t, Ty > s) to Pr(Tx > t) Pr(Ty > s) for the semi-Markov model is greater than 1 at

most points of t and s, but not everywhere.

Examine the ratio of Pr(Tx > t, Ty > s) to Pr(Tx > t) Pr(Ty > s). If PQD exists

between random variables Tx and Ty, we will expect the value of ratio is greater

than 1 for every pair of t and s. Taking x = 60 and y = 62 as an example, we plot

the values of this ratio in Figure 2.7. We see the Markov model has PQD between

Tx and Yy. However, the ratio from the fitted semi-Markov model is not greater

than 1 everywhere.

Take one point as an example. Pr(Tx=60>35,Ty=62>5)

Pr(Tx=60>35) Pr(Ty=62>5)
< 1. From this inequality,

it is trivial to derive

Pr(Tx=60 > 35|Ty=62 > 5) < Pr(Tx=60 > 35|0 < Ty=62 ≤ 5),

which means that the probability of a 60-year-old wife living to her 90th birthday is

greater if her husband died 30 years before than if her husband died more recently.

It means, in some cases, the longer the widowhood period, the greater probability

of living longer. The situation may partially be explained by the semi-Markov

property which allows for recovery from bereavement. In a sense, the allowance for

recovery from bereavement made by the semi-Markov model emphasizes short-term

dependence in addition to long-term dependence between the remaining life times

of a couple.
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Figure 2.7: Plots of ratios of Pr(Tx > t, Ty > s) to Pr(Tx > t) Pr(Ty > s) for the

Markov and semi-Markov model, x = 60 and y = 62

2.6 Implications for Annuity Values

In Section 2.5, we introduced an important property called positive quadrant

dependence, and summarized the dependence structure described by the Markov

and semi-Markov models. Note that both Markovian models indicate an increase in

mortality after bereavement. However, the implied persistency is different. While

the semi-Markov model allows recovery from bereavement, the Markov model as-

sumes that the increase in mortality is permanent. Such a difference has an impact

on annuity values, as we now discuss.
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Figure 2.8: Three-dimensional plot of the ratios of Markov-model-based to inde-

pendent last-survivor annuity values (5% interest is assumed).

First, let us consider the Markov model in Section 2.3. The three-dimensional

plot in Figure 2.8 shows the ratios of annuity values using the Markov-model to

values assuming independent lifetimes. All ratios in the plot are less than 1, con-

firming that last-survivor annuities are overpriced if the assumption of independent

lifetimes is used. From the three-dimensional plot we also observe that the annuity

ratios are lower when the gap between the lives’ ages is larger. This observation

implies the effect of long-term dependence is more significant when the age gap

|x− y| is wider.

The three-dimensional plot in Figure 2.8 is clearly asymmetric. This asymmetry

can be explained by the ratios µ∗x/(µx+µ03) and µ∗y/(µy+µ03). From Figure 2.9 we

observe that, the ratios are different from each another, indicating a sex differential

in the effect of bereavement on mortality. Such a differential explains why we

observe an asymmetry in the plot of annuity ratios.

Next we consider the semi-Markov model from Section 2.4. Figure 2.10 plots
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Figure 2.9: Ratios µ∗x/(µx+µ03) and µ∗y/(µy+µ03) computed from the fitted Markov

model.

the ratio of the last-survivor annuity values using the semi-Markov model to those

based on the assumption of independence. We observe that these ratios are closer

to 1.0; a little lower at most age combinations. We also note that the plot is

asymmetric, as we would expect, given the different patterns for males and females

of the impact and likelihood of bereavement.

For many annuity contracts, the difference between the ages of a husband and

wife is small. We found from our data set that more than 50% of the annuity

contracts are sold to couples with an (absolute) age difference of less than 2 years. So

the annuity ratios when x and y are close to each other are of particular importance.

In Figure 2.11 we plot the annuity ratios for x = y, on the basis of both Markov

and semi-Markov models. The Markov model results in lower annuity values for

younger ages, and higher for more advanced ages, compared with the semi-Markov

model. This can be explained by the fact that the semi-Markov model generates

higher mortality immediately after bereavement, compared with the Markov model,
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Figure 2.10: Three-dimensional plot of the ratios of semi-Markov-model-based to

independent last-survivor annuity values (5% p.y. interest).

60 65 70 75 80 85 90
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Age 

A
nn

ui
ty

 R
at

io

Figure 2.11: Ratios of dependent to independent last-survivor annuity values when

x = y (5% interest is assumed).
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but later, after a period of recovery, the ultimate rates are lower for widows and

widowers under the semi-Markov model. For younger lives, the long term mortality

has more impact, so the last survivor may be assumed to live longer, compared

with the Markov, so the annuity values are higher. For older lives, the shorter

term mortality is more significant as there is no time for long term recovery after

bereavement, before extreme old age, and so the last survivor under the semi-

Markov model will have heavier overall mortality, resulting in lower annuity values.

2.7 Markovian Models vs. Copulas

Another way to model the dependence between the lifetimes of a husband and

wife is to use copulas. A copula C(u, v) is a bivariate distribution function over the

unit square with uniform marginals. It allows us to construct bivariate distribu-

tions for random variables with known marginal distributions. To illustrate, let us

consider two variables X and Y with known marginal distribution functions FX(x)

and FY (y), respectively. From C(u, v) and the marginal distribution functions, we

can create a bivariate distribution function

FX,Y (x, y) = C(FX(x), FY (y)),

which introduces a degree of association between the two random variables. A good

general introduction to copulas can be found in Frees and Valdez (1998), Klugman

et al. (2008) and McNeil et al. (2005).

The use of copulas to model the dependence between two lifetimes has been

considered by Frees et al. (1996) and Youn and Shemyakin (2001). Given that

their studies are based on the same data as we use in this research, a comparison

between their and our findings may offer us some insights into how Markovian

approaches are different from copula approaches.
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Frees et al. (1996) model the dependence between the lifetimes of a wife and a

husband by a Frank’s copula, which can be expressed as follows:

C(u, v) =
1

α
ln
(

1 +
(eαu − 1)(eαv − 1)

eα − 1

)

,

where the α is a parameter that controls the degree of association between the two

random variables. Values of α less than 1 indicate a positive association, values

greater than 1 indicate an inverse interaction, and 1 indicates independence. This

copula is symmetric, because C(u, v) = C(v, u).

Using the estimation procedure provided by Frees et al. (1996), we obtain the

estimated copula parameter α̂ = −3.64. The extent of dependence between the two

marginal lifetime distributions can be measured by Kendall’s τ , which ranges from

−1 and 1. We found that the Kendall’s τ statistic for this model is 0.36, which

indicates a moderate dependence between the two marginal distributions.

On the basis of this copula, we plot in Figure 2.12 the ratios of dependent

to independent last-survivor annuity values for a range of ages. There are two

significant differences between this plot and the plots based on our Markovian

models. First, this plot is roughly symmetric, which means that the marginal

distributions of males’ and females’ lifetimes have approximately the same effect

on the ratios. Second, some annuity ratios in this plot are greater than 1. This

suggests that under the Frank’s copula, the use of the independence assumption

may under- or overestimate the value of a last-survivor annuity, depending on the

wife’s and husband’s ages when the annuity is sold.

Youn and Shemyakin (2001) consider a Hougaard copula,3 which can be written

as follows:

C(u, v) = exp(−((− ln u)θ + (− ln v)θ)1/θ),

where θ ≥ 1 is a parameter that indicates the extent of dependence. When θ = 1,

there is no dependence; and when θ → ∞, the two underlying random variables

3Also known as a Gumbel copula.
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Figure 2.12: Ratios of last-survivor annuity values based on a Frank’s copula to

last-survivor annuity values based on the independent assumption (5% interest is

assumed).
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Figure 2.13: Ratios of last-survivor annuity values based on a Hougaard copula to

last-survivor annuity values based on the independent assumption (5% interest is

assumed).

tend to be perfectly correlated with each other. This copula is also symmetric as

C(u, v) = C(v, u). Fitting a Hougaard copula to the annuitants’ mortality data, we

obtain θ̂ = 1.57. The Kendall’s τ statistic for this model is 0.36, as for the Frank’s

copula.

Given the Hougaard copula, we plot in Figure 2.13 the ratios of dependent to

independent last-survivor annuity values. This plot shares the same features as

that based on the Frank’s copula: (1) both plots are roughly symmetric; (2) when

the age gap |x− y| is large, annuity ratios in both plots are greater than 1.

In a sense, every joint distribution implicitly contains both a description of

individual marginal distribution and a description of their dependence structure.

Copulas and Markovian approaches model the dependence between remaining life-
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times of joint lives in different ways. Direct comparison of the dependence structure

described by copulas and Markovian models is not easy. but we can gain some in-

sight using the upper tail dependence plots of bivariate remaining lifetimes, Tx and

Ty, under each model.

Both the Frank’s copula and Hougaard copula are used for the dependence

profile of a bivariate age-at-death random vector (X, Y ), while we are concerned

with the dependence between the future lifetimes of a married couple.

Define the upper tail dependence functions of Tx and Ty as

λ(u) =
Pr(Tx > Ψ←1 (u), Ty > Ψ←2 (u))

1− u

=
(Pr(X > x+Ψ←1 (u), Y > y +Ψ←2 (u))

Pr(X > x, Y > y)

)

/(1− u),

where Ψ←() is the inverse of the cdf of Tx(y). The function λ(u) is the survival

probability for (x) given that (y) survives to beyond the u−quantile of the marginal

distribution (or vice versa). The limiting value λ = limu→1− λ(u) is called the

coefficient of the upper tail dependence, provided a limit of λ ∈ [0, 1] exists. If

λ = 0, then Tx and Ty are asymptotically independent in the upper tail; if λ ∈ (0, 1],

they are said to have extremal dependence in the upper tail.

The upper tail dependence functions of Tx=60 and Ty=62 are graphed in Figure

2.14 for two copulas and two Markovian models. The Hougaard copula has very

heavy upper tail dependence compared with all the others. A value for, say, λ(0.999)

of around 0.5 means that the wife has a 50% chance of surviving to the 99.9th

percentile of the lifetime distribution if her husband did so, and only a 0.05% chance

of doing so if her husband did not (combining to give a 0.1% chance overall).

Frank’s copula and the semi-Markov model do not show upper tail dependence

in the limit. Away from the extremes, Frank’s copula and the Markov model have

similar upper tail dependence, and the semi-Markov model shows the lightest upper

tail dependence.
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Figure 2.15 gives 5,000 simulated points of (Tx=60, Ty=62) from the Frank’s cop-

ula, Hougaard copula, Markov model, and semi-Markov model. Two Markovian

models exhibit asymmetric dependence structure between Tx and Ty and the simul-

taneous dependence from the modeled “common shock” effect. Our data set is not

large enough for a direct comparison with the upper tail dependence in the data

itself.

An advantage of copula approaches is that they involve a smaller number of

parameters than Markovian approaches do. To illustrate, let us assume that we

use Gompertz law to model the marginal lifetime distributions. Using a Frank’s

copula or a Hougaard copula, the resulting bivariate distribution will consist of 5

parameters (1 from the copula and 2 from each Gompertz formula). However, if we

use the Markov model specified in Section 2.3, then we will be required to estimate

9 parameters (1 from the common shock factor, 4 from the Gompertz formulas for

state 0, and 4 from the Gompertz formulas for states 1 and 2), with two further

parameters for the semi-Markov version. It is difficult to compare quantitatively

the fit of the copula model compared with the Markov model, to assess the benefit

from the additional parameters, because the semi-Markov model is fitted using

partial likelihood. This means we cannot easily apply likelihood based criteria such

as Akaike or Schwartz’ Bayes Information.

Although they are more parsimonious than the semi-Markov model, we believe

that there are some significant advantages supporting the use of a Markov (or

semi-Markov) approach:

1. It is natural in mortality studies to work with the force of mortality rather

than the distribution function. The dependence structure in the Markov

and semi-Markov models is instantly comprehensible through the impact on

the force of mortality of the bereavement event. Using copulas, it is not so

transparent. There is no intuitive explanation for why the Hougaard copula

fits the data better than Frank’s copula, nor is it straightforward to see the
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impact of bereavement on the mortality of the survivor. We cannot tell, from

how the copula is formulated, why the plots of annuity ratios (Figures 2.12 and

2.13) are highly symmetric even though the marginal lifetime distributions

for males and females are different. In contrast, using Markov models, by

considering the transitions between states and the short- and long-term effects

of bereavement on mortality, we can easily understand the nature of the

dependence between joint lives, and explain intuitively the properties of the

surfaces in Figures 2.8 and 2.10.

2. Using a copula results in a dependence structure between lifetimes that is

static. By introducing factors F1(t) and F2(t) in the semi-Markov model, we

allow the impact of the broken-heart syndrome to diminish with time in a

way that would be difficult to capture with a copula.

3. According to Sklar’s theorem (described in Frees et al. ,1996), there exists a

unique copula for any pair of continuous random variables. Therefore, there is

a copula behind each Markovian model we presented, although the copula may

not have an explicit expression. However, Sklar’s theorem does not necessarily

mean that the two approaches are equivalent. Suppose that we have single

life data that contains information regarding each individual’s marital status

at the moment of death; we may even know, for widows/widowers the length

of their widow(er)hood. Using our Markov approach, this information can be

incorporated into the model easily through the log-likelihood function given

in equation (2.3.2) or (2.4.3). For copula methods, this information would be

insufficient; if we have no information on the age of the spouse, if living, or

the age at death, if not, then we cannot use the dependence structure. Only

bivariate data can be applied.

Similarly, we can apply the model to a life knowing only that life’s age, sex

and marital status (and length of widow(er)hood if relevant). This could
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improve the pricing and valuation of single life annuities for older married

and widowed annuitants.

2.8 Concluding Remarks

That there is dependence between the lifetimes of a husband and wife is intuitive,

but the nature of the dependence is not clear from pure empirical observations.

Through the Markovian models we fit to the annuitants’ mortality data, we have

a better understanding of two different aspects of dependence between lifetimes.

First, the common shock factor µ03 tells us the risk of a catastrophic event that

will affect both lives. Second, in the semi-Markov model, factors F1(t) and F2(t)

measure the impact of spousal death on mortality and the pace that this impact

tapers off with time.

We acknowledge the shortcoming that both Markovian models we considered

involve a relatively large number of parameters. Given a small volume of data, the

parameter estimates tend to have large variances, and a removal or addition of a

few data points may affect the maximum likelihood estimates significantly. The

lack of data also prohibits us to consider a more sophisticated model specification.

With more data, we could possible examine how the common shock factor may

vary with the ages of a husband and wife, and perhaps relax the assumption that

the force of mortality for an individual is independent of his/her spouse’s age.

Very often, death is not the only mode of decrement. Lapses and surrenders,

for instance, can affect the pricing for many traditional insurance products. Rather

than being static, the intensity rates for lapses and surrenders are known to be

dependent on time and policyholders’ circumstances (see, e.g., Kim (2005) and

Scotchie (2006)). By expanding the state space (i.e., introducing new states), we can

easily incorporate multiple modes of decrement into Markovian models. Further,
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just as we modeled the diminishing impact of the broken heart syndrome, we can

explicitly allow the intensity rates for different modes of decrement to vary with,

for example, age, gender and sojourn time.
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Chapter 3

A Semi-Markov Multiple State

Model for Reverse Mortgage

Terminations

3.1 Introduction

A reverse mortgage is a loan available to seniors to convert home equity to cash

or lifetime income. The elderly borrows money against the value of their home

equity and retain full ownership of the home for the whole life of the loan. No

repayments of interest or principal are required until the last survivor dies or leaves

home (e.g., moves to a long-term care facility) permanently. At that time, the

mortgaged home is sold and the proceeds from the sale are used to repay the loan.

Usually, a reverse mortgage includes an embedded guarantee which ensures that

the borrower will not have to pay back any more than the value of the mortgaged

home if it is less than the amount owing on the loan. This guarantee is called the

No-Negative-Equity-Guarantee (NNEG) in the UK and the non-recourse provision
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(NRP) in the US. We will use the NNEG acronym here to refer to the guarantee

whether in the UK or US context.

From the lender’s viewpoint, the inclusion of the NNEG is the same as writing

a put option on the mortgaged home with the strike price being the outstanding

balance of the loan when the loan is terminated. Termination occurs when the

property is vacated, or on earlier prepayment. The payoff from the guarantee is

determined by the interest rate on the loan, the house price appreciation rate, and

the termination date. In this chapter, we specifically focus on the uncertainty asso-

ciated with the termination date. This piece of uncertainty is critically important,

because the longer the loan continues, the more likely that the outstanding balance

will exceed the net house value. From an option valuation perspective, the strike

price is increasing at the interest rate on the loan, which will be greater than the

risk free rate. In this case, the value of the put option is an increasing function of

the term. We therefore require a model for reverse mortgage terminations to value

the contract, and to better understand the risks and impact of borrower behaviour.

Currently, multivariate regression models are used for reverse mortgage termi-

nations in the US. The model was originally suggested by Chow et al. (2000), and

were adapted by the US Department of Housing and Urban Development (2003)

and Rodda et al. (2004). These models provide a good fit to the actual termina-

tion rates before age 90. However, because they are regression-based, they require

substantial economic and non-economic information about the borrowers as input.

Another problem of these models is that they assume the probability of loan ter-

mination remains level after age 90; this is counter-intuitive, and because there is

significant longevity risk inherent in the guarantee, it appears to be a significant

weakness. Furthermore, these models do not make explicit allowance for moveouts,

health or non-health related.

In this chapter, we utilize and extend the semi-Markov model in Chapter 2,

which describes the dependence between the lifetimes of a husband and wife, to
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model reverse mortgage terminations. The proposed model explicitly incorporates

three different modes of termination: death, entrance into a long-term care facility,

and voluntary prepayment. In addition, the event-triggered dependency between

the lifetimes of a husband and wife is modeled. This feature is of practical im-

portance, because a significant proportion of reverse mortgages are issued to cou-

ples (around 40% in the US, according to HUD Report, 2008). The model would

also offer a more sophisticated approach to reverse mortgages purchased by wid-

ows/widowers.

The rest of this chapter is organized as follows: in Section 2 we provide some

background information regarding reverse mortgages in the UK and US, and de-

scribe the guarantees embedded in the reverse mortgages sold in these two countries.

Section 3 first discusses different modes of reverse mortgage termination; it then

describes the semi-Markov multiple state model which we use for modeling these

modes of termination. Section 4 applies the model to roll-up mortgages sold in

the UK, and examines the importance of each mode of termination to the value of

the embedded guarantee. Section 5 applies the proposed model to HECMs sold in

the US, and analyzes the adequacy of the guarantee premiums that are currently

charged. Finally, Section 6 concludes the work.

3.2 Reverse Mortgages in the UK and US

3.2.1 Contract Design

Reverse mortgages are available in many countries, including the UK, the US,

India, Australia, and Japan. In this work, we consider specifically roll-up mort-

gages in the UK, and Home Equity Conversion Mortgages (HECMs) in the US for

illustrative purposes. Below we provide some background information about these

two types of reverse mortgage.
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In the UK, there are different ways for older home owners to release the equity

that has been built up in their home. One way is to use a home reversion, which

is not a mortgage but a sale with conditions. Under a home reversion contract,

the homeowner sells all or part of his/her property to the provider for an agreed

amount, but retains the right to live in the property rent-free until death. Another

way is relying on a lifetime mortgage, which permits homeowners to borrow money

against the value of their home equity and retain full ownership of the home for

the whole life of the loan. Depending on how the loan is taken and repaid, lifetime

mortgages are divided into finer classifications. In this work, we consider roll-up

mortgages, also called fixed interest lifetime mortgages, which may be regarded

as the most straightforward type of lifetime mortgages. Other types of lifetime

mortgages include interest-only mortgages and drawdown mortgages. We refer

interested readers to the Institute of Actuaries (2005a) for further details.

In a typical roll-up mortgage, the homeowners are advanced a lump sum of

money at the outset, and interest on the amount advanced is compounded at a

fixed rate. The principal and interest are repaid from the property sale proceeds

when the last survivor dies, sells the house, or moves into a long-term care facility

permanently. The loan may also be prepaid without a house sale.

Given that the value of the property when the loan is repaid is uncertain, a

shortfall in the proceeds from the sale of the home relative to the outstanding

mortgage is possible. However, most roll-up mortgages in the UK are sold with

the NNEG, which protects the borrower by capping the redemption amount of the

mortgage at the lesser of the face amount of the loan and the sale proceeds of the

home. Because the interest rate is fixed, borrowers have a financial incentive to

repay the loan and refinance when interest rates decline.

In the US, HECMs are the most popular reverse mortgage product, accounting

for about 90% of the market share. HECMs are sold to US homeowners who are

no younger than 62 years old. In contrast to the roll-up mortgages in the UK,
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HECMs can be originated with an interest rate adjusted either monthly, annually

or fixed. Borrowers choosing a fixed-rate HECM will receive a closed-end loan and

will not be able to prepay the loan and draw any additional funds, while borrowers

with a variable-rate HECM loan tend to choose payments in the form of a line of

credit rather than a single lump sum at the outset of the contract. Usually, variable

interest rates are linked to the rate on the one year Constant Maturity Treasury

(CMT) bills or the one year London Interbank Offered Rate (LIBOR).

Recently, the US HECMs went through many changes, some of them were

driven by the Fannie Mae’s policy on purchasing HECM loans. Fannie Mae is

the primary investor in the reverse mortgage market. In September 2009, Fan-

nie Mae discontinued purchasing CMT-indexed HECMs, but continued purchasing

monthly adjustable-rate LIBOR-indexed HECMs and fixed-rate HECMs. Variable-

rate HECM thereafter has shifted to being LIBOR-indexed, and fixed-rate HECM

has become more popular. Another move in the HECM program was the introduc-

tion, in October 2010, of the HECM Standard and the HECM Saver in replace of

the uniform HECM contracts.

All HECMs are insured by the Federal Housing Administration of the US De-

partment of Housing and Urban Development. The purposes of this insurance are

twofold. The first is to ensure that borrowers will receive cash advances in a timely

manner even if their lender becomes bankrupt. The second is to protect lenders

from losses if the price of the mortgaged home falls below the loan balance. In

this connection, such insurance may be viewed as an embedded guarantee that is

similar to the NNEG in the UK.

Each HECM borrower is required to pay a mortgage insurance premium. The

current mortgage insurance premium for the HECM Standard is comprised of a

front-end charge of 2% of the maximum claim amount1 and a monthly charge of

1The maximum claim amount is the lesser value of the appraised home equity and the maximum

loan limit for the geographical area in which the mortgaged property is located.
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1/12 of 1.25% of the outstanding loan balance. The HECM Saver has a front-end

charge of 0.01% of the maximum claim amount and the same monthly charge as

the HECM Standard, with compensation of lower loan-to-value rates available to

borrowers.

3.2.2 The Embedded Guarantee

We let Lt and Ht be the time-t values of the loan and the mortgaged home,

respectively. Suppose that the loan is due at time t. If Ht ≥ Lt, then the lender

will obtain the entire value of the loan, Lt, and the balance of the property price

passes to the borrowers or their estate. If Ht < Lt, then the lender will obtain only

Ht through the NNEG. Mathematically, the repayment to the lender is given by

min(Lt, Ht) = Lt −max(Lt −Ht, 0), (3.2.1)

which is the loan value less the payoff from the guarantee. Note that max(Lt−Ht, 0)

is precisely the payoff function for a European put option with a strike price Lt.

The embedded guarantee prevents the borrower from owing more than the value

of the mortgaged home when the loan is repaid. The risk that the loan exceeds the

home value is borne by the lender (for roll-up mortgages in the UK) or the Federal

Housing Administration (for HECMs in the US). This risk is sometimes referred to

as the crossover risk.

Let us use a simple roll-up mortgage to illustrate the crossover risk. Assume

that the initial value of the mortgaged home is $300,000 and that the loan to value

ratio is 50%. Given the hypothetical trajectory shown in Figure 1 (dashed line),

the crossover occurs in about 35 years from now. If the loan is repaid after the

crossover, the lender is subject to a loss. If a higher loan-to-value ratio, say 60%,

is assumed, the crossover will occur sooner.
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Figure 3.1: Demonstration of the crossover risk.

From Figure 1 we observe that the crossover risk is affected by the loan-to-value

ratio and the interest rate at which the loan is accumulated. The risk is also affected

by stochastic factors including the appreciation of house prices and the timing of

repayment. Some research on the appropriate model for house prices exists (such

as Li et al., 2010). The focus of this work, though, is the timing of the repayment

date, basing the modeling on the semi-Markov model we describe in the following

section.
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3.3 A Semi-Markov Multiple State Model

3.3.1 Modes of Termination

A reverse mortgage may terminate for various reasons.

• Death

Death is a major mode of termination. Its role is particularly important when

the homeowner reaches a very high age.

• Entrance to a long-term care (LTC) facility

Similar to mortality, health-related moveouts plays a predominant role when

the homeowner becomes old.

• Moveout for non-health reasons

A homeowner may move out his/her mortgaged home permanently for a non-

health reason, for example, downsizing.

• Refinancing

A reverse mortgage may be repaid because of a change in the borrower’s

financial circumstances. In the UK, voluntary prepayments may be associated

with refinancing when the market interest rate is lower than the fixed interest

rate at which the loan is accumulated. In the US, refinancing may occur if the

younger spouse dies, as the maximum loan to property ratio is determined as

a function of the age of the younger surviving spouse.

3.3.2 Model Specification

Our model is built upon the semi-Markov multiple state model proposed in

Chapter 2 to capture the effect of bereavement. In that model, the force of mortality

after bereavement is specified by the following parametric functions:
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• widows, age x, t years since bereavement:

µ̃f(x, t) = (1 + afe−k
f t)(µf

x+t + λ) = F f(t)(µf
x+t + λ);

• widowers, age y, t years since bereavement:

µ̃m(y, t) = (1 + ame−k
m t)(µm

y+t + λ) = Fm(t)(µm
y+t + λ),

where λ represents the force of mortality from “common shock” events (events that

would cause simultaneous mortality of both lives), and µf
x+t and µm

y+t represent the

force of mortality for married women and men, respectively, from all causes other

than common shock; am, af , km, and kf are the semi-Markov parameters.

In this chapter, the model is extended to incorporate additional modes of decre-

ment. The complete specification of our proposed model is shown diagrammatically

in Figure 3.2. The boxes represent the state process during the lifetime of a reverse

mortgage. For example, if the process is still in State 0 at time-t, that means that

both husband and wife are alive at t. In States 1 to 4, only one of the joint bor-

rowers is still living at the mortgaged home. In States 5 to 8, the last survivor has

either died or permanently left the mortgaged home, and the reverse mortgage is

terminated on the transition to any of those states.

The arrows between the states represent the possible transitions, indicating how

a reverse mortgage may be terminated. Our model permits transitions from State

0 to 5. This feature captures the simultaneous dependence between joint lifetimes

due to common shocks. However, transitions from State 0 to 7 are not permitted,

although we can easily relax this assumption if information about long-term care

incidence for married couples is available. For convenience we allocate the two

non-health related terminations, moveout for non-health reasons and refinancing,

to one single state, State 8, labeled as voluntary prepayment.

Note that, State 6 where one spouse is in a LTC facility and one is dead includes

two situations. One situation is the borrower has died after his/her spouse moved
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to a LTC facility; the other situation is that the borrower has moved to a LTC

facility after loosing his/her spouse. The model permits transitions from State 3

or 4 to 6 directly, but does not permit transitions from State 3 to 6 via State 1,

or from State 4 to 6 via State 2. We assume that lenders will not follow up the

borrower’s status after he/she moves into a LTC facility. That means we actually

do not know the LTC spouse’s status on the death of the remaining spouse.

Following Chapter 2, a semi-Markovian approach is used to model the effect of

bereavement on mortality. Specifically, µ15
x and µ25

y are obtained by multiplying

F f(t) and Fm(t), respectively, with the corresponding pre-bereavement force of

mortality.

Let x and y denote the age of a wife and husband, respectively. The forces of

transition from State 0, in which both borrowers are living in the mortgaged home,

are denoted by µ0i
x:y, for i = 0, 1, 2, 3, 4, 5, 8. A slightly different notation is used

when there is only one person living in the mortgaged home, as we assume the age

of each partner is only relevant while that person is still in the home. For example,

we use µ15
x to denote the transition intensity for a widow of age x from State 1 to

5. The age of her husband is not included in the notation as it is irrelevant to the

calculations.

Since all transitions are unidirectional, it is straightforward to calculate the

transition probabilities by using the Kolmogorov’s forward equations. We denote

the probability of transition from State 0 to State i at time t by tp
0i
x:y.

We let t|q
(τ)
x:y be the probability that a reverse mortgage, issued to a wife aged x

and a husband aged y at time 0, is in force at time t and will be terminated before

time t+1. This aggregate one-year termination probability is of particular interest,

because the simulation studies in later sections are conducted in annual time steps.

We can calculate t|q
(τ)
x:y by summing the probabilities of transition from State 0 to
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Figure 3.2: A multiple state model for joint-life reverse mortgages.
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States 5, 6, 7, and 8; that is,

t|q
(τ)
x:y

=

∫ 1

0
tp

00
x:y sp

00
x+t:y+t (µ

05
x+t+s:y+t+s + µ08

x+t+s:y+t+s) ds

+

∫ 1

0
tp

01
x:y sp

11
x+t (µ

15
x+t+s + µ16

x+t+s + µ18
x+t+s) ds

+

∫ 1

0
tp

02
x:y sp

22
y+t (µ

25
y+t+s + µ26

y+t+s + µ28
y+t+s) ds

+

∫ 1

0
tp

03
x:y sp

33
x+t (µ

36
x+t+s + µ37

x+t+s + µ38
x+t+s) ds

+

∫ 1

0
tp

04
x:y sp

44
y+t (µ

46
y+t+s + µ47

y+t+s + µ48
y+t+s) ds.

3.4 Valuing NNEGs in the UK

3.4.1 The Pricing Formula

Let us define the following notation:

• r: the continuously compounded risk-free interest rate;

• g: the continuously compounded rental yield;

• u: the continuously compounded roll-up interest rate on the loan;

• Lt: the value of the reverse mortgage loan at time t, excluding NNEG; Lt =

L0e
ut;

• Ht: the value of the mortgaged property at time t;

• δ: the average delay in time from the point of home exit until the actual sale

of the property.
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• c: the cost (as a percentage of the property value) associated with the sale of

the property;

• ω: the highest attained age;

• P (t, S0, K, r, g, σ): the time-zero value of a put option on an asset with initial

value S0, volatility σ and dividend yield g; the option matures at time t and

has a strike price K.

We use discrete annual time steps and assume that all decrements occur at mid-

year, the value of a NNEG written to a wife of age x and a husband of age y can

be expressed as

ω−min(x,y)−1
∑

t=0

P

(

t +
1

2
+ δ,H0(1− c), L0e

ut, r, g, σ

)

t|q
(τ)
x:y, (3.4.2)

where t|q
(τ)
x:y is the probability that the loan is terminated between year t to year

t+1. This probability is calculated on the basis of the semi-Markov multiple state

model.

In our illustrations we assume that property prices follow a geometric Brownian

motion. The same assumption on house prices is also used by the Institute of

Actuaries (2005b). A more realistic econometric model may be used, but we do

not explore this aspect of the problem. See Li et al. (2010) for more discussion of

house price modeling.

Assuming that the price of the mortgaged property follows a geometric Brow-

nian motion, P
(

t+ 1
2
+ δ,H0(1− c), L0e

ut, r, g, σ
)

can be calculated by the Black-

Scholes formula:

L0e
(u−r)(t+ 1

2
+δ) N(−d2) − H0(1− c)e−g(t+

1
2
+δ) N(−d1), (3.4.3)

where N(·) is the cumulative distribution of the standard normal distribution,
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Parameter Assumed value

σ 12%

r 4.75%

g 2%

u 7.5%

δ 0.5 year

c 2.5%

L0 £30 000

Table 3.1: Assumed values of the parameters in the NNEG pricing formula.

Age of the younger spouse at inception 60 70 80 90

Initial house value £176 500 £111 000 £81 000 £60 000

Table 3.2: Minimum initial house values. Source: Institute of Actuaries (2005b).

d1 =
ln
(

H0(1−c)
L0

)

+(r−u−g+σ2

2
) (t+ 1

2
+δ)

σ
√

t+ 1
2
+δ

, and d2 = d1 − σ
√

t+ 1
2
+ δ.

In practice, the roll-up rate u is greater than the risk-free interest rate r. When

u > r, the value of P
(

t+ 1
2
+ δ,H0(1− c), L0e

ut, r, g, σ
)

will be a strictly increasing

function of t. Therefore, decrement assumptions play a critical role in valuing the

guarantee.

The assumed parameter values are summarized in Table 3.1. The initial house

value H0 is the minimum assumed starting property value required for a loan of

L0 = £30 000 (see Table 3.2). Note that the value of H0 is negatively related to

the age of the younger spouse at inception – older lives may borrow more, because

of the reduced crossover risk.
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3.4.2 The Impact of Mortality

Here we examine the impact of mortality assumptions on the value of a NNEG.

For now we assume that death is the only mode of decrement.

First we price guarantees written to single lives. Using the joint-life mortality

data, we estimate the marginal survival distribution for each gender. Termination

probabilities for all durations are calculated accordingly and are substituted into

equation (3.4.2) to obtain the guarantee value. The relationship between the value

of the guarantee and the age at inception is depicted in Figure 3.3. The guarantee

values for females are higher than the corresponding values for males, because

female mortality is generally lighter than male mortality.

Next we price guarantees written to joint lives. To examine how the value of

a NNEG may be affected by the dependence between two lifetimes, we use two

different assumptions. First, we assume independence between the lifetimes of the

husband and wife, and use the marginal distributions. Secondly, we use the semi-

Markov multiple state model (with States 0, 1, 2, and 5), which is fitted to the

same data set. We use simulation (with 100,000 projections) to estimate aggregate

termination probabilities, which are then applied to equation (3.4.2) to obtain the

guarantee value.

In Figure 3.3 we show the guarantee values simulated with both assumptions.

The standard errors in the simulated prices are very small. Take the age combina-

tion of x = 60 and y = 62 as an example, the mean of simulated price is 40.72% with

a standard error of 0.0378%. For joint lives, the x-axis in the diagram corresponds

to the age of the wife, who is assumed to be two years younger than the husband.

From the diagram we observe that the assumption of independence generally leads

to an overestimation of NNEG prices. The overestimation is especially significant

at high ages. This may be explained by the semi-Markov property, which allows

widows and widowers to recover from bereavement. In particular, as younger wid-
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Figure 3.3: Simulated NNEG prices (as a percentage of cash advanced), single lives

and joint lives with a 2-year age gap.

owed borrowers have time to recover, the impact of bereavement on the guarantee

value is relatively low. The opposite is true for older widowed borrowers.

In assessing the impact of mortality assumption, we do not make allowance for

mortality improvements. We focus on the different pricing results from single life

models and joint-life models. Most providers in practice usually allow for mortality

improvements in pricing the NNEG costs. However, we believe that allowance for

mortality improvements will not affect the conclusion of the comparison. Actually,

it is not difficult to incorporate mortality improvement assumption into the semi-
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Markov model by using a mortality projection model for the force of mortality.

3.4.3 The Impact of Long-Term Care Incidence

We now study the impact of long-term care incidence on the value of a NNEG.

The model used here is comprised of States 0 to 7, assuming that mortality and

entrance to a long-term care facility are the only two modes of termination.

Generally speaking, people living in long-term care facilities are less healthy

than those remaining in their own homes. This means that the introduction of

long-term care incidence to the model impacts the at-home mortality. Therefore,

besides estimating the additional forces of transition, the forces of transition that

are included in the model considered in Section 3.4.2 must also be re-estimated or

at least adjusted.

We derive the required forces of transition by a proportional adjustment. Let

µf
x and µm

y be the forces of mortality (from all causes other than common shock)

for a wife of age x and a husband of age y, respectively (see Section 3.3.2). We

model the forces of transition to a long-term care facility for males and females

by ρmy µ
m
y and ρfxµ

f
x, respectively, where ρmy and ρfx are constants. We model the

knock-on impact by assuming males and females at-home mortality are obtained

by multiplying their forces of mortality (from all causes other than common shock)

with constant proportional factors θmy and θfx , respectively.

We assume that bereavement has an effect on the forces of transition from States

1 and 2. The forces of transition from these states are obtained on the basis of the

semi-Markov functions F f(t) and Fm(t) defined in Section 3.3.2. For instance, the

force of transition from State 1 to 5 for a widow of age x, s years after bereavement,

is given by F f(s)(θfxµ
f
x+λ). The expressions for all forces of transition in the model

are provided in Table 3.3.
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When both borrowers are alive

µ01
x:y = θmy µ

m
y

µ03
x:y = ρmy µ

m
y

µ02
x:y = θfxµ

f
x

µ04
x:y = ρfxµ

f
x

µ05
x:y = λ

When one of the borrowers is dead (s years after bereavement)

µ15
x = F f(s)(θfxµ

f
x + λ)

µ16
x = F f(s)(ρfxµ

f
x)

µ25
y = Fm(s)(θmy µ

m
y + λ)

µ26
y = Fm(s)(ρmy µ

m
y )

When one of the borrowers is in a long-term care facility

µ36
x = θfxµ

f
x + λ

µ37
x = ρfxµ

f
x

µ46
y = θmy µ

m
y + λ

µ47
y = ρmy µ

m
y

Table 3.3: Transition intensities for the model in Section 3.4.3.

To estimate the proportional factors for the move from an aggregate model to

the at-home/in LTC split model, we make use of the findings in the Equity Release

Report of the Institute of Actuaries (2005b). In the report, the following ratios are

provided:

• Lm
y : long-term care incidence rate to population mortality rate (males, age

y);

• Lf
x: long-term care incidence rate to population mortality rate (females, age
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x);

• Am
y : at-home mortality to population mortality rate (males, age y);

• Af
x: at-home mortality to population mortality rate (females, age x).

Given these ratios, the proportional factors are calculated by solving the follow-

ing equations numerically:

Lm
y =

∫ 1

0
e−

∫ s
0 (θmy +ρmy )µm

y+u+(θfx+ρfx)µ
f
y+u+λdu ρmy µ

m
y+s ds

∫ 1

0
e−

∫ s
0 µm

y+u+µf
y+u+λdu (µm

y+s + λ) ds
;

Am
y =

∫ 1

0
e−

∫ s

0
(θmy +ρmy )µm

y+u+(θfx+ρfx)µ
f
y+u+λ du (θmy µ

m
y+s + λ) ds

∫ 1

0
e−

∫ s
0 µm

y+u+µf
y+u+λdu (µm

y+s + λ) ds
;

Lf
x =

∫ 1

0
e−

∫ s

0
(θmy +ρmy )µm

x+u+(θfx+ρfx)µ
f
x+u+λdu ρfxµ

f
x+s ds

∫ 1

0
e−

∫ s
0 µm

x+u+µf
x+u+λdu (µf

x+s + λ) ds
;

Af
x =

∫ 1

0
e−

∫ s
0 (θmy +ρmy )µm

x+u+(θfx+ρfx)µ
f
x+u+λ du (θfxµ

f
x+s + λ) ds

∫ 1

0
e−

∫ s

0
µm
x+u+µf

x+u+λdu (µf
x+s + λ) ds

.

Note that in equations above, it is assumed that the husband and wife are of

the same age. In Table 3.4 we show the estimated proportional factors for ages

≤ 70, 80, 90, and ≥ 100. For ages 71-79, 81-89 and 91-99, the proportional factors

are obtained by linear interpolation.

We then use the eight-state model to simulate prices of NNEGs written to joint-

borrowers. To examine the impact of long-term care incidence on the NNEG prices,

we consider the following four cases:

• Case 1: Central estimate of ρ.

• Case 2: ρ is increased by 30%, other things equal.

• Case 3: ρ is decreased by 30%, other things equal.
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Age ρm θm ρf θf

≤ 70 0.05 0.97 0.10 0.95

80 0.07 0.97 0.20 0.90

90 0.15 0.94 0.33 0.85

≥ 100 0.22 0.94 0.46 0.80

Table 3.4: Estimated values of ρm, θm, ρf , and θf .

• Case 4: No long-term care incidence.

Table 3.5 shows the NNEG prices under the four assumptions about long-term

care incidence. It is assumed in the calculations that the husband is two years older

than the wife. From Table 3.5 we observe that, when long-term care incidence is

introduced to the model, the resulting guarantee value, expressed as a percentage

of cash advanced, will decrease in absolute value by 4.5% and 1% for young-old

borrowers and old-old borrowers, respectively. This indicates that entrance to a

long-term care facility is a significant mode of termination, and that it requires

adequate modeling.

In expressing long-term care incidence rates as a fraction of the corresponding

base mortality rates, we have implicitly assumed that the desire to move to a long-

term care facility is determined by age-related health conditions only. However,

other factors, for example, the quality of long-term care facilities, may also affect

one’s desire to move. If data permits, such factors may be incorporated into the

model by modifying the expressions for the forces of transition accordingly.

3.4.4 The Impact of Voluntary Prepayment

We now consider the full nine-state model, which incorporates three modes of

termination including voluntary prepayment. A roll-up mortgage may be prepaid

70



NNEG prices (standard errors in brackets)

Age of wife at inception 60 70 80 90

Case 1 36.19% 23.6% 10.51% 3.85%

(0.031%) (0.020%) (0.013%) (0.006%)

Case2 34.24% 22.08% 9.58% 3.42%

(0.032%) (0.019%) (0.01%) (0.005%)

Case 3 38.46% 25.38 % 11.63% 4.39%

(0.027%) (0.022%) (0.013%) (0.007%)

Case 4 40.72% 27.18% 12.79% 4.92%

(0.038%) (0.026%) (0.014%) (0.008%)

Table 3.5: Simulated NNEG prices (as a percentage of cash advanced) under dif-

ferent assumptions about long-term care incidence.

voluntarily due to a non-health related moveout or refinancing.

There is little information about non-health related moveouts available in the

public domain. In our calculations, we use the assumptions made by the Institute

of Actuaries (2005b), which are summarized in Table 3.6. The initial selection effect

is modeled by using lower rates for early contract years. We assume further that,

after the fifth contract year, the rate of non-health related moveouts is reduced by

0.25% if both lives are still staying in the mortgaged property. This assumes that

a borrower may have a greater desire to move out after his/her spouse has died.

The assumptions of prepayment due to non-health related moveouts are set

very approximately, as stated in the Institute of Actuaries (2005b). According to

the Safe Home Income Plans (SHIP) voluntary code, an equity release mortgage

is transportable on moving home provided that the loan-to-value is lower than

the maximum allowed. The assumption for prepayment rates may need to take
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Contract year Prepayment rate

1 0.0%

2 0.0%

3 0.15%

4 0.3%

5 0.3%

6+ 0.75%

Table 3.6: Allowances for prepayments arising from changes in personal circum-

stances expressed as a percentage of in force contracts. Source: Institute of Actu-

aries (2005b).

into account this fact. However, without reliable data, we do not propose further

adjustment. Equity release product providers are encouraged to make their own

judgement according to firm experience.

As the roll-up interest rate is usually fixed, borrowers may have a financial

incentive to refinance when there is a fall in market interest rates. Here we use the

remortgaging rates assumed by Hosty et al. (2007), which they claim to be suitable

for reverse mortgages sold at a time when interest rates are relatively low but not

at the bottom of the market.2 The assumed remortgaging rates are displayed in

Table 3.7.

We incorporate these voluntary prepayment rates into the full nine-state model

to price a NNEG. To examine the impact of the assumption, we consider four cases:

2More specifically, Hosty et al. (2007) claim that the remortgaging rates in Table 3.7 might

be considered best estimates for a provider with robust early repayment charges distributing a

flexible product at competitive but not market-leading rates through a broker distribution channel

at a time when interest rates are relatively low but not bottom of the market (say headline rates

of 6.5% p.a.).
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Contract year Remortgaging rate

1-2 1.0%

3 2.0%

4-5 2.5%

6-8 2.0%

9-10 1.0%

11-20 0.5%

21+ 0.25%

Table 3.7: Assumed remortgaging rates. Source: Hosty et al. (2007).

• Case 1: Central rates of voluntary prepayment from Table 3.6 and 3.7.

• Case 2: The rates of voluntary prepayment are increased by 30%, other things

equal.

• Case 3: The rates of voluntary prepayment are reduced by 30%, other things

equal.

• Case 4: No voluntary prepayment.

The simulated NNEG prices for all four cases are shown in Table 3.8. It is

assumed in the calculations that the husband is two years older than the wife.

Note that the prices for Case 4 are taken from Section 3.4.3. From Table 3.8 we

observe that the NNEG prices drop significantly when voluntary prepayment is

taken into account. The effect of voluntary prepayment is even more significant

than the effect of long-term care incidence.

The analysis shows that, using reasonable assumptions for the termination

model, the impact of health and non-health related move-outs is very significant,
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NNEG prices (standard errors in brackets)

Age of wife at inception 60 70 80 90

Case 1 24.45% 17.09% 8.16% 3.27%

(0.031%) (0.021%) (0.010%) (0.005%)

Case2 21.72% 15.51% 7.56% 3.12%

(0.027%) (0.020%) (0.011%) (0.005%)

Case 3 27.5% 18.83% 8.80% 3.44%

(0.03%) (0.022%) (0.012%) (0.005%)

Case 4 36.19% 23.6% 10.51% 3.85%

(0.031%) (0.020%) (0.013%) (0.006%)

Table 3.8: Simulated NNEG prices (as a percentage of cash advanced), under dif-

ferent assumptions about voluntary prepayments

and that the semi-Markov model offers a transparent and flexible approach to the

modeling of terminations.

We apply the model to valuing the contracts by allow progressively for each

mode, in order to present the significance of each mode of termination. The flexibil-

ity and transparency of the semi-Markov termination model guarantee that further

extension can be developed in practice, for example, including initial and ongoing

expenses for assessing capital requirement.
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3.5 Valuing HECM Insurance Premiums in the

US

3.5.1 The Pricing Formula

In this section, we use the model and parameters developed above to analyze

the premium that US HECM borrowers pay for the NNEG. All HECMs sold in the

US are insured by the Federal Housing Administration, with premiums paid by the

borrowers. For a loan written to a wife of age x and a husband of age y, the time-0

value of the mortgage insurance can be expressed as follows:

ω−min(x,y)−1
∑

t=0

P

(

t+
1

2
+ δ,H0(1− c), L0e

ut, r, g, σ

)

t|q
(τ)
x:y (3.5.4)

where L0 is the amount borrowed, including the origination costs and front-end

mortgage insurance premium; H0 is the adjusted property value when the loan is

originated. We assume that H0 is always smaller than the HECM maximum loan

limit for the area in which the property is located. Other symbols in the above

expression carry the same meaning as they do in Section 3.4.1. It is assumed in our

calculations that all loans terminate at mid-year.

On October 4, 2010, the Federal Housing Administration introduced the HECM

Saver to give participants a borrowing option with a lower front-end insurance pre-

mium. The purpose is to offer a loan with lower origination costs for mortgagors

who want to borrow a smaller amount than that available with a HECM Standard.

The HECM Standard is to distinguish and separate the HECM Saver from the ini-

tial HECM program. In addition, The FHA raised the monthly insurance premium

to 1.25% annually of the outstanding loan balance, for both the HECM Standard

and the HECM Saver. The rate had been 0.5%.

The HECM Saver is a positive development, but the ongoing insurance premium

on all the HECM loans has been raised. Recent decreases in home values during
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the economic recession lead to an opinion that the FHA has been undercharging for

the risk associated with the program. The new borrowing option complies with the

suggestion that the front-end mortgage insurance premium of 2% has much room

to cut off the high origination cost, for example in Caplin (2002). However, the

expected total mortgage insurance premium charged from the borrows increases,

regardless of that fact the trend of house prices will be reverse in the wake from

the 2007-09 global financial crisis.

Let α be the fair front-end charge, expressed as the a percentage of the home

value. The time-0 value of the total mortgage insurance premium can be expressed

as

α H0 + 0.0125× 1

12

ω−min(x,y)−1
∑

k=0





k|q
(τ)
x:y

12(k+ 1
2
)

∑

t=1

L0e
(u−r)t

12



. (3.5.5)

By actuarial equivalence, we have the following formula for calculating α:

α =
1

H0

ω−min(x,y)−1
∑

k=0

{

k|q
(τ)
x:y

[

P

(

k +
1

2
+ δ,H0(1− c), L0e

ut, r, g, σ

)

−0.0125× 1

12

12(k+ 1
2
)

∑

t=1

L0e
(u−r)t

12











. (3.5.6)

Here we assume again that house prices follow a geometric Brownian motion.

In equation (3.5.6) of deriving a fair front-end charge by actuarial equivalence, we

ignore the value of the other purpose of the HECM’s insurance, that is, protection

against the lender’s default. Presently, there is no record that a reverse mortgage

provider has discontinued its commitment to borrowers, but we acknowledge that

some value should be attributed to this part of insurance. However, there is no

reliable information for assessing a fair charge for it. We believe that the premium

charged for it will be marginal relative to the cost of the non-recourse guarantee.

We simply ignore this part of value and treat it as a by-product of the non-recourse

guarantee.
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Age of the younger spouse

at inception 65 70 75 80 85 90

Variable-Rate HECM Standard 0.535 0.572 0.605 0.641 0.684 0.716

Fixed-Rate HECM Standard 0.642 0.671 0.698 0.724 0.754 0.776

Variable-Rate HECM Saver 0.430 0.455 0.478 0.503 0.531 0.552

Fixed-Rate HECM Saver 0.536 0.552 0.566 0.580 0.598 0.610

Table 3.9: Principal limit factors for HECM loans in 90803 Los Angeles.

When H0 is smaller than the HECM maximum loan limit, the maximum amount

that a borrower can borrow is the product of H0 and the applicable principal limit

factor, f , which depends on the expected interest rate and the borrower’s age at

inception. For example, if the applicable principal limit factor is 0.551 and the value

of the mortgaged property is $100,000 at inception, then the maximum amount

that can be borrowed would be $55,100, including the origination costs paid on the

borrower’s behalf.

Table 3.9 displays the principal limit factors for different inception ages of the

younger spouse and different HECM contracts. These factors are obtained from

the online reverse mortgage calculator provided on Wells Fargo Bank’s website3 on

22 April 2011. They are applicable to HECM Standard loans and HECM Saver

loans with monthly adjustable one-year- LIBOR-indexed interest rate and fixed-

rate respectively. The calculations were based on zip code 90803 Los Angeles,

which has the highest number of HECM loans. Our calculations will be based on

these principal limit factors.

Borrowers desiring a fixed-rate HECM loan will receive a closed-end loan of

100% of initial principle limit. They will not be able to prepay the loan and draw

any additional funds. However, most borrowers choosing variable-rate HECM loans

3https://www.benefits-mortgage.com/calculator/entry.do?linkType=mps.
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do not use the full principal limit. According to the HECM Actuarial Review

Report (2010) provided by the IBM Global Business Services, the line of credit

option accounted for 91% of the 2009 book-of-business and 93% of the 2010 book-

of-business. Although most borrowers of variable-rate HECM loans use a sizeable

amount of their lines of credit at the inception of the contract, they usually do not

exhaust the line of credit during the term of the loan.

If the borrower withdraws 100φ% of the maximum amount that he/she can

borrow, then L0 in equation (3.5.6) can be expressed as φfH0. Plugging equation

(3.4.3) into equation (3.5.6) and replacing L0 by φfH0, we can show easily that

α does not depend on H0 if we assume house prices follow a geometric Brownian

motion.

In our calculations, the following three scenarios are considered: φ = 1, φ = 0.9,

and φ = 0.8. The assumed values for other model parameters are described below.

• The house price volatility, σ, is 12%. This is the historical volatility of the

Quarterly Purchase-only House Price Index from 1991 to 2008 provided by

Office of Federal Housing Enterprise Oversight.

• The continuously compounded risk-free interest rate, r, is 3.4285%. This

equivalent to the average annual rate of 3.488% on 10-year US Treasury Bills

in April as of 22 April 2011, obtained from the website of the US Department

of Treasury.4

• The continuously compounded roll-up rate, u, is 4.94%, which is equivalent

to an annual interest rate of 5.06% for the Wells Fargos Bank’ s fixed-rate

HECM loans in April 2011.

As in pricing the UK NNEGs, we assume that g = 2%, c = 2.5%, and δ = 0.5.

4http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-

rate/yield.shtml.
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3.5.2 Decrement Assumptions

When we apply the semi-Markov multiple state model to HECM insurance

premiums, the following assumptions are used:

• Mortality and long-term care incidence

Central assumptions about mortality and long-term care incidence are the

same as those used in Section 3.4.

• Refinancing

In contrast to roll-up mortgages sold in the UK, fixed-rate HECM loans are

close-ended, which means borrowers will not be able to refinance the loan.

Meanwhile, borrowers of variable-rate HECMs loans have rather low incen-

tive to refinance. The current market practice uses the age of the younger

spouse to determine the principal limit of the loan. Therefore, a borrower

choosing a variable-rate HECM loan may remortgage when his/her spouse

dies, as that may lead to an increase in the principal limit. However, such

a refinancing arrangement would not affect the existing mortgage insurance.

In this connection, refinancing is not considered when we compute HECM

insurance premiums.

• Non-health-related moveouts

In a US-specific study on mobility, Zhai (2000) argued that mobility is a

combined result of increasing health-related and declining non-health-related

moveouts, plus a static rate. Zhai went on to derive a U-shaped curve of

mobility rates, which says that the rate of mobility (for both health and non-

health related reasons) declines from 4.8% at age 60 to 3.2% at age 80, and

then rises slowly to about 4.2% at age 105.

We set our assumptions about non-health related moveouts on the basis of

the U-shaped curve provided by Zhai (2000). In particular, since mobility at
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younger ages is mostly non-health related, we assume that the rate of non-

health related moveout is 4% from age 60 to 65. This rate is linearly reduced

to 1% for age 90 and above, when mobility is mostly health-related. Following

Zhai (2000), we discount the mobility rate by 50% when both borrowers are

living in the mortgaged property.

We further model the effect of selection by applying a 80% discount to the

mobility rate during the first contract year. The discount is reduced linearly

to zero during the tenth contract year.

Having established the decrement assumptions, we can simulate the survival

curve for a HECM contract. From the survival curve we can tell the probability

that the HECM contract is still in force at a certain time after inception.

In Figure 3.4 we show the survival curves for a HECM contract written to a

62-year-old wife and a 64-year-old husband, when different modes of termination

are incorporated into the model. We observe from the diagram that long-term care

incidence and voluntary prepayments (non-health related moveouts) would signifi-

cantly reduce the survival probabilities, thereby shortening the expected duration

of the HECM contract.

3.5.3 The Estimated Premiums

In Table 3.10 we display the estimated values of α (the front-end charge as a

percentage of house value) in fixed-rate HECMs and various scenarios of variable-

rate HECMs. The calculations are based on 100,000 simulations from the multiple

state model and the assumption that the husband is two years older than the wife.

We observe that the estimated fair front-end charge for a variable-rate HECM

loan will drop significantly if the joint borrowers do not exhaust the available line

of credit when the loan is originated. When 80% of the principal limit is advanced,
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wife and a 64-year old husband.
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the required front-end charges are negative in almost all cases we consider. This

means that the monthly premium itself is more than enough to cover the cost of the

embedded guarantee. The average drawdown rate of a variable-rate HECM loan is

below 60%, according to, for example, the HECM Actuarial Review Report (2010).

This indicates that variable-rate HECM loans are generally sustainable.

However, fixed-rate HECM program is a different story. Borrowers draw 100%

of the principal limit because of the close end loan. The principal limit factors,

which are determined according to borrowers’ age and the expected interest rate,

are very high in the current economic situation of low interest rates. According to

the model and the assumptions described, the charged front-end premium, 2% in a

HECM Standard and 0.01% in a HECM Saver, is insufficient for the risk associated

with the non-recourse guarantee. Attention is called for this situation, as 69% of

HECMs contracts originated in fiscal year 2010 are fixed-rate loans compared to

11% in 2009 according to the HECM Actuarial Review Report (2010).

The simulation results point to three other important conclusions. First, since

the estimated front-end charge decreases with the borrowers’ ages, older couples

are subsidizing younger couples under the current premium structure. The problem

could be ameliorated by using an age-dependent front-end charge as this, according

to our results, does not seem to undermine the long-term financial soundness of

the HECM insurance fund. Alternatively, lower principal limit factors should be

offered to younger borrowers. We expect that this change will be profound, since

the US reverse mortgage market has seen a shift to younger elderly homeowners

(Bishop and Shan, 2008).

Secondly, The HECM Saver program is a positive development. The lower front-

end premium charge makes HECMs more attractive to potential borrowers, and

the lower principal limit factors make the HECM Saver much safer to the mortgage

insurance fund than the HECM Standard. The monthly premium of 1.25% may be

higher than a fair level. However, we note that the GBM assumption for the U.S.
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Age of wife

at inception 65 70 75 80 85 90

Front-end premium for Variable-rate HECM Standard loans

φ = 1.0 6.21% 5.52% 4.36% 3.28% 2.57% 1.58%

(0.006%) (0.006%) (0.005%) (0.004%) (0.004%) (0.003%)

φ = 0.9 2.91% 2.23% 1.25% 0.43% -0.03 % -0.55 %

(0.005%) (0.004%) (0.004%) (0.003%) (0.003%) (0.002%)

φ = 0.8 0.08% -0.51% -1.23% -1.73% -1.85% -1.87%

(0.004%) (0.003%) (0.003%) (0.002%) (0.001%) (0.001%)

Front-end premium for Variable-rate HECM Saver loans

φ = 1.0 0.18% -0.62% -1.45% -1.99% -2.17% -2.12%

(0.004%) (0.003%) (0.002%) (0.002%) (0.001%) (0.001%)

φ = 0.9 -1.72 % -2.35% -2.89% -3.1% -2.94% -2.54%

(0.003 %) (0.002%) (0.002%) (0.001%) (0.001%) (0.001%)

φ = 0.8 -3.24% -3.66% -3.89% -3.78% -3.33% -2.66%

(0.002%) (0.002%) (0.001%) (0.001%) (0.001%) (0.001%)

Front-end premium for Fixed-rate HECM Standard loans

φ = 1.0 13.96 % 12.3% 10.21 % 7.94% 6.04% 4.07%

(0.008%) (0.008%) (0.007%) (0.006%) (0.006%) (0.004%)

Front-end premium for Fixed-rate HECM Saver loans

φ = 1.0 6.27% 4.31% 2.29% 0.55% -0.57% -1.28%

(0.006%) (0.005%) (0.004%) (0.003%) (0.002%) (0.001%)

Table 3.10: Simulated front-end premiums (standard errors in brackets) for fixed-

rate HECM loans and variable-rate HECM loans with different values of φ.
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Figure 3.5: Ratios of the present value of total premium charges to the total guar-

antee value for variable-rate HECMs with different portions of the available line of

credit are utilised.

house prices will (probably) lead to an underestimate of the guarantee cost, given

that the process is more likely to exhibit fatter tails and auto-correlation.

Thirdly, the estimated front-end charge decreases dramatically when the utiliza-

tion of the available line of credit is reduced. This implies that, under the current

premium structure, borrowers who utilize a smaller portion of the available line

of credit are subsidizing those who utilize more. This problem can be understood

more easily from Figure 3.5, in which we plot, for three different degrees of uti-

lization, the ratio of HECM’s current total premium charge to total time-0 value

of the embedded guarantee. We observe from this diagram that the problem of

subsidy is particular severe in a HECM Saver loan. A fairer premium structure

would use a multiple of the loan utilised rather than the house value as the basis

for the front-end charge.

Finally, we calculate the front-end charge for three typical age combinations: (1)

84



Age of wife

at inception 65 70 75 80 85 90

Scenario 1: husband and wife are of the same age

premium 14.45% 12.85 % 10.77 % 8.51% 6.58% 4.56%

(0.009%) (0.008%) (0.007%) (0.006%) (0.006%) (0.004%)

Scenario 2: husband is 1 years older than the wife

premium 14.20% 12.57% 10.48% 8.22% 6.30% 4.30%

(0.009%) (0.008%) (0.007%) (0.006%) (0.006%) (0.004%)

Scenario 3: husband is 3 years older than the wife

premium 13.73% 12.05 % 9.96% 7.69% 5.81% 3.86%

(0.008%) (0.007%) (0.007%) (0.005%) (0.006%) (0.004%)

Table 3.11: Simulated front-end premiums (standard errors in brackets) for fixed-

rate HECM Standard loans with different age combinations.

the husband and wife are of the same age; (2) the husband is 1 year older than his

wife; (3) the husband is 3 years older than his wife. The calculations are based on

100,000 simulations from the termination model and the fixed-rate HECM Standard

loans. The results, which are displayed in Table 3.11, indicate that the front-end

charge is quite dependent on the age gap. This effect arises from the dependence

among joint-lives, suggesting the advantage of using a joint-life termination model

when valuing joint-life reverse mortgages.

3.6 Concluding Remarks

In this chapter, we have proposed a semi-Markov multiple state model for re-

verse mortgage terminations. The model incorporates not only multiple modes
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of decrement, but also the statistical dependence between the lifetimes of a hus-

band and wife. This feature is particularly important for valuing joint-life reverse

mortgages, which have become increasingly popular in recent years.

Because most data on reverse mortgage terminations are proprietary, some

proxy data and assumptions are used in our illustrations. Nevertheless, this does

not affect our objectives, to demonstrate how the model can be used to determine

a fair price for the NNEG, and to demonstrate the relative importance of different

modes of termination. Reverse mortgage providers, who have access to their own

decrement data, can easily adapt the multiple state model we propose to suit their

own experience.

For the US HECMs, it was found that, in today’s interest rate environment,

the current principal limit factors for fixed-rate HECMs are extremely high. High

loan-to-value ratios make fixed-rate HECMs unsustainable to the risk associated

with the non-recourse guarantee. This result may not cause enough concern since

fixed-rate HECM loans have only become popular in 2010. However, providers need

to review fixed-rate HECMs’ principal limit factors.

The HECM Saver contracts charge a negligible front-end mortgage insurance

premium. In contrast, the rather low principal limit factors for this new loan

option make it more sustainable than the counterpart, the HECM Standard. High

front-end charge in the HECM standard is less attractive. On the contrary, it is

insufficient for the risk of non-recourse guarantee. The main reason comes from a

high loan-to-value ratio, especially for younger borrowers.

What determines the claim from a HECM mortgage insurance is the value of

the mortgaged property when the loan is due, usually many years from the time

when the loan is written. Hence, in some sense, the heavily front-loaded mortgage

insurance premium means that HECMs have front-loaded revenue and back-loaded

risk. From a risk management viewpoint, the HECM Saver’s premium structure

with a lower front-end charge would seem to be more effective for capturing the
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risk associated with the uncertainty in future house prices.

Readers should keep in mind that our conclusions on HECM mortgage insurance

premiums are based on the interest rate and the principal limit factors as of this

writing. When interest rates change, the principal limit factors, and hence the

estimated mortgage insurance premiums, will change accordingly. It is important

to take the change in interest rates, possibly through a stochastic interest rate

model, into account when deciding a new premium structure. The use of a model

such as ours to determine principal limit factors could improve the product design,

We repeat two caveats around the specific numerical results presented here. The

geometric Brownian motion assumption for house prices is probably too thin tailed.

In practice, one may consider a house price model that permits autocorrelation and

stochastic volatility. For example, Li et al. (2010) fit an ARMA-EGARCH model

for house prices in the UK; Chen et al. (2009) use an ARMA-GARCH model for

house prices in the US. The use of such models will imply market incompleteness,

which adds an extra challenge in the pricing process.

The loan interest rate is another variable that we have not explored extensively.

It will, of course, affect how fast a floating rate loan is accumulated. It will also

affect the guarantee values through the correlation with house prices, as we have

observed painfully through the recent financial crisis. Furthermore, there will be

dependence between the termination transition probabilities, especially for the non-

health related terminations. For example, it is more likely that a borrower will

move and repay his/her reverse mortgage in a booming economy. In a recession,

homeowners may be less likely to choose the expensive option of long term care. In

future research, it would be interesting to integrate a stochastic interest rate model

into the multiple state termination model, possibly through a regime-switching

framework.
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Chapter 4

Longevity Risk in Last Survivor

Annuities

4.1 Introduction

During the past half-century, developed countries have witnessed remarkable

mortality improvement leading to the growth of older population and increasing

life expectancy (see Khalaf-Allah et al. 2006, Cox et al. 2008, and references

therein). A large element of mortality improvement is driven by medical advances.

Ongoing support for medical research will continue to lead to further mortality

decline (Gallop, 2006). The US National Institute of Health Workshop Report

on Aging has estimated that the 65- to 74-year-old age group in the US will be 36

million in 2030 compared with 21.5 million in 2010; the 75- to 84-year-old age group

will be 25 million compared with 17 million in 2010; and the 85- to 99-year-old age

group will be 5 million, compared with 2.1 million in 2010.

Mortality improvement is anticipated in the foreseen future, while such a process

is of great uncertainty in terms of the extent and pace of improvement. Uncertainty
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in mortality improvement puts enormous pressure on retirement funds and annuity

insurance funds. Social security retirement systems and private annuity product

providers have come under increasing strain of affording payments for longer than

expected periods.

We refer to this higher-than-expected mortality improvement as longevity risk.

Given life expectancy for the population as a whole, the idiosyncratic risk that a

particular annuitant lives longer than expected could, in principle, be minimized

by holding a sufficiently large portfolio of individual policies. Longevity risk is

uncertainty about the life expectancy of the population as a whole. It is a systematic

risk of the annuity business, having potentially significant impact on the annuity

market. Insurance companies and private pension plan providers should incorporate

longevity risk in their actuarial calculations. In the language of financial economics

there should be a market price for the systematic longevity risk.

Currently, annuity prices in the private annuity market are usually based on

the annuity life table projected to the current year and beyond. Deterministic, age

specific mortality reduction factors are usually used for mortality projection. US

insurance companies generally use the Annuity 2000 Basic Table and Scale G for

pricing individual annuities (Doll et al., 2011). UK companies similarly use period

mortality tables with some improvement projection methods. The UK Continuous

Mortality Investigation Bureau (CMI, for short) used smoothed P-spline estimates

of the annual mortality improvement rates in its mortality projection model.

While deterministic modeling can provide best-estimate mortality scenarios, it

is inadequate for some applications in the practice. Where longevity and mortal-

ity risk constitute a significant risk for insurers, stochastic models can be used in

evaluating these risks. Stochastic modeling is able to deliver full probability dis-

tributions of the quantities of interest, and allows us to quantify uncertainty and

risks adequately, for better risk management.

Dependence between joint-life mortality has not been taken into account in the
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practice of pricing annuity products either. The forecasting of joint-life longevity

may be even more complicated than single lives, because of the dependence between

the future lifetime of a husband and wife. The prices for joint-and-last survivor

annuities in the current market are quite inconsistent. In the US, prices for last

survivor annuities quoted from Immediate Annuity1 are determined only by the

younger age of a husband and wife. In the UK annuity market, there is a similar

pricing practice.

Also as a new era of unisex annuity rates is anticipated, because on 1 March

2011 the European Court of Justice ruled that gender may not be used in insurance

pricing, the market for last survivor annuities may be growing. It would be harmful

to the development of annuity market if prices for joint-life annuities deviate too far

from the fair price range. The aim of this chapter is to examine how the annuity

market accounts for future improvements in mortality rates and life expectancy

when pricing last survivor annuities. For this end, we propose a joint-life longevity

risk model, incorporating stochastic mortality dynamics into the semi-Markov joint-

life mortality model.

In the current actuarial literature, several stochastic mortality models have been

proposed during the past two decades. The Lee-Carter model (Lee and Carter,

1992) and the Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006) are two more

popular ones among them. The Lee-Carter method models central mortality rates

by two age-specific factors and a time-dependent factor. The model is famous

for its parsimonious structure and easy interpretation. Various extensions and

methodological improvements have been studied. Readers are referred to Wilmoth

(1993), Brouhns et al. (2002), Renshaw and Haberman (2003 and 2006), Li et al.

(2010), Delwarde et al. (2007), etc.

The CBD model forecasts the post-60 mortality using two factors that are mea-

1It is referred to as the No. 1 web site for income annuities. Immediate annuity rates can be

quoted from its web site http://www.immediateannuities.com/.
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surable with time. The first factor affects mortality-rate dynamics at all ages,

and its downward trend indicates general improvements in mortality over time.

The second factor affects mortality-rate dynamics as a coefficient of age. Its

increasing trend means mortality improvements have been relatively greater at

younger old ages. From another viewpoint, the CBD model might be looked as

a dynamic version of the Heligman and Pollard model. Heligman and Pollard

(1980) proposed a mortality graduation model for the whole ages in equation of
qx

1−qx
= A(x+B)C + De−E(lnx−lnF )2 + GHx, where qx is the mortality rate at age

x, and A,B, · · · , H are parameters. The third term stems from the Gompertz

exponential, representing senescent mortality.

Applying Gompertz’ law in stochastic modeling of mortality rates is not new.

McNown and Rogers (1989) applied a univariate time series approach to the Heligman-

Pollard model for forecasting the US mortality. Schoen et al. (2004) considered a

time factor for a continuously declining mortality, in a form of µ(x, t) = Aekx−ct,

with A, k > 0 and c ≥ 0. Lockwood (2009) fitted univariate time series models to

the parameters of a series of Gompertz-Makeham models of order (r, s), or GM(r, s)

models, using CMI male assured lives data and the England and Wales population

data from age 30 to 90.

The merits of Gompertz’ law and its application in mortality forecasting moti-

vate us to propose a stochastic Gompertz model with time dependent parameters

for the transition intensities in the semi-Markov joint-life mortality model. The

reasons that we choose a preliminary stochastic Gompertz model for mortality

forecasting are as follows:

1. the Gompertz’ exponential curve per se well describes older age mortality, in

a simple, analytically tractable pattern (Schoen et al., 2004, and references

therein);

2. the proposed stochastic Gompertz model has parsimonious and readily inter-
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pretable parameters;

3. it is convenient to be incorporated into the semi-Markov joint-life mortality

model.

Based on the proposed joint-life longevity risk model, we examine the market

prices of longevity risk in joint-and-last survivor immediate annuities in the cur-

rent US and UK annuity market. The remainder of this chapter is organized as

follows: Section 2 specifies the semi-Markov joint-life longevity model, where transi-

tion intensities are stochastically modeled by Gompertz’ law with time-dependent

parameters. The model is fitted to the US and UK base annuity life table and

historic population data, for the forecasting of annuitants’ mortality in the future.

Section 3 demonstrates the impact of longevity risk on the prices of last survivor

annuities. Section 4 reviews pricing methodologies for longevity/mortality risk and

describes the method used in this research. The market prices of longevity risk in

last survivor annuities written in the US and UK annuity market are then compared.

Section 5 concludes this chapter.

4.2 A Semi-Markov Joint-life Longevity Model

4.2.1 Model Specification

In Chapter 2, we propose a semi-Markov mortality model for the dependent

modeling of joint-life mortality, in which the force of mortality after bereavement

is modeled as the product of a multiplicative function and the corresponding force

of mortality when his/her spouse is still alive. Specifically, the force of mortality

for widows, age x, s years after bereavement,

µ∗(x, s) = F f(s)(µf
x + λ); (4.2.1)
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and for widowers, age y, s years after bereavement,

µ∗(y, s) = Fm(s)(µm
y + λ), (4.2.2)

where µf
x and µm

y represent the force of mortality for married women and men,

respectively, from all causes other than common shock, λ is the “common shock”

parameter. The multiplicative functions are exponentially decreasing, in forms of

F f(s) = 1 + afe−k
fs and Fm(t) = 1 + ame−k

ms, where am, af , km, kf > 0.

We proposed a semi-Markov joint-life longevity model as an extension of the

semi-Markov joint-life mortality model. For the joint-life longevity model, we as-

sume that λ is zero, that is, we do not allow for transitions from “common shock”

events. The main reason for this assumption is that there is no historic mortality

data for “common shocks”. We can hardly calibrate a process for the instantaneous

transition. If data permits, time-t dependent or independent common shock tran-

sition can easily be incorporated, and will not affect the current setting. Figure 4.1

specifies the proposed joint-life longevity model.

State 0 State 1

Husband dead

Wife alive

 
f
(x, t)                

f *
(x, t, s)

State 2 State 3

Wife dead

Husband alive

Both alive

     
m*

(y, t, s)

Both dead

  
m

(y, t)

Figure 4.1: Specification of the semi-Markov joint-life longevity model
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The transition intensities are stochastically modeled and thereafter time-t de-

pendent. Let µf(x, t) and µm(y, t) denote the force of mortality for a x-age wife and

a y-age husband at time t respectively, in the married status; µf∗(x, t, s) denotes

the force of mortality for a x-age widow, at time t, s years after bereavement, while

µm∗(y, t, s) is the force of mortality for a y-age widower and widower, at time t and

s years after bereavement.

We assume that the exponentially decaying functions for the bereavement effect

identified in Chapter 2 are still valid with the joint-life longevity model. The

selection effect of the broken-heart syndrome is well defined by F f(s) and Fm(s).

That is to say, the post-bereavement mortality rates are driven by three factors:

age, chronological time, and time since bereavement. Specifically, the proposed

semi-Markov joint-life longevity model will have

µf∗(x, t, s) = (1 + afe−k
fs)µf(x, t); (4.2.3)

and,

µm∗(y, t, s) = (1 + ame−k
ms)µm(y, t). (4.2.4)

4.2.2 Stochastic Transition Intensities

We start with Gompertz’ law and make a proposal for stochastic Gompertz

parameters in the Gompertz formula. The two Gompertz parameters are thereafter

time-t dependent.

Gompertz’ law models the hazard function of a random lifetime variable for an

individual as µx = Becx, for x > 0 and B, c > 0. Gumbel (1937) and Carriere

(1992, 1994) employed informative re-parametrization of the Gompertz formula in

a form of

µx = ξ exp{ξ(x− γ)}, (4.2.5)
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where γ is the mode parameter and ξ denotes the force of mortality at the modal

age, that is, µγ = ξ. It is trivial to get γ = −1
c
ln(B

c
) and ξ = c.

The force of mortality at the modal age coincides with the Gompertz ageing

parameter. Carriere (1992) showed that, the aging parameter also coincides with

the measure of spread about the mode. The lifetime distribution concentrates about

the mode γ when ξ is large, that is, the inverse of the aging parameter represents

the spread of the Gompertz distribution.

Allowing the Gompertz parameters to be time-t dependent, we express the forces

of mortality µf(x, t) and µm(y, t) for a x-age wife and a y-age husband, at time t,

in the married state, mathematically as

µf(x, t) = ξft exp{ξft (x− γf
t )}, (4.2.6)

and

µm(y, t) = ξmt exp{ξmt (y − γm
t )}, (4.2.7)

where ξft and γf
t are the Gompertz mode parameter and aging parameter at time

t for females, and ξmt and γm
t are for males. Their values determine the time-t

mortality profile of females and males in the married status.

By fitting Gompertz’ law to historical mortality data, we can get a time series

of historic Gompertz parameters. The Human Mortality Database provides his-

torical data of mortality rates, death counts and population size at detailed levels.

Maximum likelihood estimation methodology is used to estimate the parameters

of the Gompertz distribution. It is assumed that the number of deaths, which is

a counting random variable, follows the Poisson distribution (see, e.g., Wilmoth,

1993 and Brouhns et al., 2002).

We fit Gompertz’ law to the US historic population period mortality data for age

60 to 109 during years from 1950 to 2007. Figure 4.2 depicts the estimated values

of ξt and γt from year 1950 to 2007. The mortality improvement has occurred with
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increasing mode parameter γt and increasing aging parameter ξt. An increasing γt

causes the left shift of the lifetime distribution. An increasing ξt indicates of the

concentration about the modal age of the lifetime distribution.
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Figure 4.2: Estimated values of ξt and γt for the US historic mortality data from

1950 to 2007

We also fit Gompertz’ law to the England and Wales population data from year

1950 to 2009, a similar period as the US example. Figure 4.3 depicts the estimated

values of ξt and γt. Generally increasing mode parameter γt and increasing aging

parameter ξt indicate a trend of declining mortality; while, the estimated volatilities

of the stochastic process for the UK mortality might be greater than the volatilities

for the US mortality.

A vector stochastic process is thereafter proposed to model the Gompertz pa-

rameters ξt and γt, modeling their trends, in a correlated form, for the stochastic
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Figure 4.3: Estimated values of ξt and γt for the England and Wales population

mortality data from 1950 to 2009

modeling of µf(x, t) and µm(y, t). Denote zf (t) and zm(t) to be the vector stochas-

tic process for the Gompertz parameters for females and males respectively, that

is, zf (t) = [ξft , γ
f
t ]
′ and zm(t) = [ξmt , γm

t ]′. Define the drift vector νf and νm for

females and males respectively by

νf =





νf
1

νf
2



 and νm =





νm
1

νm
2



 ,

the 2×2 - dimensional covariance matrix V f and V m for females and males respec-
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tively by

V f = σfσf ′ =





V f
11 V f

12

V f
21 V f

22



 and V f = σmσm′ =





V m
11 V m

12

V m
21 V m

22



 ,

and the 2-dimensional standard normal random variable by Z(t). Symbol “′” means

the transpose of a matrix.

In discrete time, the vector processes zf (t) and zm(t) are modeled as a two-

dimensional random walk with drift. Specifically

zf (t+ 1) = zf (t) + νf + σf Z(t + 1), (4.2.8)

and

zm(t+ 1) = zm(t) + νm + σm Z(t+ 1). (4.2.9)

The choice of diffusion matrix σf and σm is not unique but will not make any

difference to our analysis, as stated in Cairns et al. (2006). Following Cairns et al.

(2006), σf(m) is chosen to be the Cholesky decomposition of V f(m).

Fitting the vector processes zf (t) and zm(t) to the estimated historic Gompertz

parameters from the US population data for 60 to 109 ages during year 1950 to

2007 (58 observations), we have

for females,

νf =





0.1292

2.083× 10−4



, V f = σfσf ′ =





0.0324 −7.2589× 10−5

−7.2589× 10−5 5.3877× 10−7



;

for males,

νm =





0.1533

2.632× 10−4



, V m = σmσm′ =





0.0475 1.6330× 10−5

1.6330× 10−5 4.7453× 10−7



.
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Similarly, fitting the vector processes zf (t) and zm(t) to the estimated historic

Gompertz parameters from the England and Wales historic population mortality

data for 60 to 109 ages from year 1950 to 2009 (60 observations), we get

for females,

νf =





0.1407

1.7225× 10−4



, V f = σfσf ′ =





0.0945 −2.3514× 10−4

−2.3514× 10−4 1.587× 10−6



;

for males,

νm =





0.1659

2.1766× 10−4



, V m = σmσm′ =





0.1137 8.6000× 10−6

8.6000× 10−6 2.0164× 10−6



.

The estimated results may be indicative of some information about the trend

of mortality during the past half-century. Firstly, there are upward trends in the

Gompertz modal parameter and aging parameter, which means that human lifetime

distribution is increasingly concentrated around the increasing modal age.

Secondly, the pace of mortality improvement is faster but more volatile for males

than for females. However, this feature comes from a short period of data. The

conclusion may be reversed in a long run of human mortality evolvement.

Finally, using the historic mortality data as of 1950, the correlation between

the two Gompertz parameters is negative for female mortality but positive for

male mortality.When we fit the stochastic processes to different period of data, the

sign of correlation changes for males. This may be due to the high volatility in

male mortality evolvement, or it may indicate that the stochastic process for the

Gompertz parameters is not robust to the data.

The proposed stochastic Gompertz model is theoretically feasible, and poten-

tially provides satisfactory forecasts of future mortality rates. However, we ac-
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knowledge that the validity and robustness of the model needs to be tested. We

would like to leave it to future work, for not been distracted from the main purpose

of this study.

Generally, incorporating the stochastic Gompertz’ law into the semi-Markov

joint-life mortality model is a preliminary step. The multiplicative functions for

the select effect of bereavement are derived based on force of mortality modeled by

Gompertz’ law. The stochastic Gompertz’ law is a natural extension.

Other mortality forecasting models, like the Lee-Carter model or other more

complicated stochastic parameter models, may also play the role. When more data

becomes available in the future, further research work is expected in the area of

joint-life mortality forecasting, choosing suitable models and testing the robustness

of each method in the joint lives context.

4.2.3 Base Rates of Mortality

Our goal is to examine last survivor annuity prices and the implied market prices

of joint-life longevity risk. Base rates of mortality should in principle be related to

the mortality experience of annuitants. The currently used annuity life tables in

the US and UK annuity market are used as base tables.

A life table gives mortality rates at each age for an individual. It specifies the

distribution of the future lifetime random variable Tx for males or females at any

age x, regardless of their marital status. It is the aggregate mortality rates for an

individual in the status of being married, single, divorced, or widowed with any

period of time after bereavement.

From the semi-Markov joint-life model, without mortality projection at this

stage, we can derive marginal mortality rates for the married and the widowed.

Assume mortality rates for the single or divorced are the same as the aggregate
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rates. Let hx be the percentage of population in the married status, and gx be the

proportion in the widowed status; 1 − hx − gx is for the others. We assume that

the aggregate mortality rate is approximately represented by the equation

µaggregate
x =

hx

hx + gx
µmarried
x +

gx
hx + gx

µwidowed
x .

Borrowing information from relevant census study on age-specific marital status,

we can approximately estimate the values of the Gompertz parameters for the base

mortality rates in the semi-Markov joint-life longevity risk model, by equating the

approximately mixed single-life mortality rates to the mortality rates in the referred

life table for both males and females. Meanwhile, we can also estimate the values

of the Gompertz parameters, by directly fitting Gompertz’ law to the mortality

rates in the referred life table for both males and females, that is, without the semi-

Markov model. The resulting estimates are for individual single-life Gompertz

mortality model or independent joint-life mortality rates.

US insurance companies generally use the Annuity 2000 Basic Mortality Table

(A2000, for short) as the base mortality for annuity pricing. Using the marital

status of the population in 2000 studied by Kreider and Simmons (2003), and the

individual mortality rates in A2000, we estimate the parameters for the base rates

of mortality in the semi-Markov joint-life longevity model, by fitting the mixed

marginal mortality distribution from the semi-Markov joint-life mortality model to

the mortality rates in the A2000 life table. The fitting approach is based on a least

squares minimization.

Table 4.1 summarizes the estimated parameters for the semi-Markov joint-life

mortality model and individual single-life Gompertz mortality model. These pa-

rameters are based on the mortality rates at ages beyond 59 in A2000 life table.

Single-life Gompertz models specify the aggregate mortality rates for individuals in

various marital status. They can be used for independent joint lives or single lives.

The parameters displayed in Table 4.1 indicates several important results. Firstly,
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The semi-Markov model Single-life model

Parameters Values Parameters Values

γf 91.9541 γf, Inde 90.4699

ξf 0.1096 ξf, Inde 0.1138

γm 89.1318 γm, Inde 87.1418

ξm 0.0870 ξm, Inde 0.0972

af 3.7804

kf 0.3901

am 10.4253

km 0.7754

Table 4.1: Parameter values for base mortality in the semi-Markov joint-life

longevity model and individual single-life mortality model, for the US.

the force of mortality in the married status is generally lower than the marginal, or

independent, force of mortality of the same age, which represents the combined rate

of mortality of the married and the widowed. Secondly, the effect of bereavement

will increase the force of mortality after bereavement by a higher level for males

than for females, however males recover from bereavement faster than females. This

estimated result is consistent to the result in Chapter 2.

Similarly, using the population marital status information provided by the UK

Government Actuary’s Department and the UK CMI Series 00 Immediate Annuity

Life tables, we can estimate the parameters for the base mortality rates in the semi-

Markov joint-life longevity mortality model and single-life Gompertz model applied

to the UK annuitants. Table 4.2 summarizes the estimated parameters, which are

based on the mortality rates at ages beyond 59 in the CMI Series 00 Immediate

Annuity Life tables.
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The semi-Markov model Single-life model

Parameters Values Parameters Values

γf 92.8059 γf, Inde 90.0127

ξf 0.1296 ξf, Inde 0.1383

γm 88.7920 γm, Inde 86.6564

ξm 0.1044 ξm, Inde 0.1202

af 8.4790

kf 0.3921

am 8.6868

km 0.3603

Table 4.2: Parameter values for base mortality in the semi-Markov joint-life

longevity model and individual single-life mortality model, for the UK.

The estimated parameter values for the UK are slightly different from the values

fitted for the US. The difference lies in the parameters for the semi-Markov property,

that is, the selection effect of bereavement. From the values for the UK, males and

females are subject to a nearly same broken heart effect shortly after bereavement,

and they recover from bereavement at a similar speed. Here, we just state the data

fitting results. The reasons underlying this difference between the US and UK are

beyond the scope of our study.

4.2.4 Joint-life Mortality Projection

We have specified the basic mortality rates, joint-life dependence structure, and

a mortality projection model for the semi-Markov joint-life longevity model. We

have two ways to proceed for joint-life mortality projection.

One method is to assume the two exponentially decreasing multiplicative func-

103



tions for the select effect of bereavement keep unchanged with time. We only

stochastically model time-t dependent forces of mortality µf(x, t) and µm(y, t) in

the married state. The other method is to stochastically project the mortality rates

in the married state and the marginal, independent, or aggregate mortality rates

at the same time, for females and males respectively. By this way, we stochas-

tically model time-t dependent forces of mortality µf(x, t) and µm(y, t), and the

corresponding time-t dependent single-life forces of mortality. The select effect of

bereavement, which may evolve with time, is implied by a set of forecasted time-t

dependent mortality rates.

The probability that the last survivor of a currently x-age wife and y-age hus-

band at time t0 = 2011 will survive t years from now can be computed as

tpxy(t0) = tp
f
x(t0) + tp

m
y (t0)− tp

00
x:y(t0), (4.2.10)

where

tp
f
x(t0) =

t−1
∏

j=0

exp

{

−
∫ 1

0

(

µf, Inde(x+ j + s, t0 + j)
)

ds

}

,

tp
m
y (t0) =

t−1
∏

j=0

exp

{

−
∫ 1

0

(

µm, Inde(y + j + s, t0 + j)
)

ds

}

,

tp
00
x:y(t0) =

t−1
∏

j=0

exp

{

−
∫ 1

0

(

µf(x+ j + s, t0 + j) + µm(y + j + s, t0 + j)
)

ds

}

This approach calls for less computer resources in joint-life mortality projec-

tion. Furthermore, it enables comparison between joint-life and single-life mortal-

ity projection, because single-life mortality rates are projected at the same time for

deriving the projected joint-life mortality rates. In addition, the implicitly defined

dependence structure may evolve with time. If we use the first approach, we have

to assume that dependence structure is time-invariant.
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Choosing this joint-life mortality projection method, we assume that the marginal

mortality and the mortality in the married status, for both females and males, have

their Gompertz parameters follow the same vector random walk process. It may be

argued that mortality in the married status and the marginal (or aggregate) mor-

tality may evolve differently. At the current stage, we have no historic mortality

data for married couples to support or test this argument. If better data become

available in the future, we can explore this topic further.

Meanwhile, forces of mortality are projected by the vector random walk process

that has been fitted using the population mortality database. We acknowledge

that this database is not perfect for calibrating the vector stochastic processes for

annuitants’ mortality improvement. However, without more suitable data, we use

the population data to calibrate the process, at least approximately. Furthermore,

correlation between the improvements of mortality for males and females has not

been examined. We leave it to future work.

4.3 Implication for Last Survivor Annuity Values

Joint and last survivor annuities are typical products associated with joint-

life longevity risk in the current annuity market. They provide benefits to the

annuitant and his/her spouse until both of them have passed away. These products

are not only offered by insurance companies but are also an important benefit to

pension plan retirees. If annuitants live longer than expected because of unexpected

mortality improvement, the financial soundness of annuity portfolios could be at

risk.

In this section, we examine how stochastic joint-life mortality improvement will

affect the cost of a last survivor annuity using the model proposed above. The

impact of joint-life longevity risk can be measured by the increase in the cost of
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a last survivor annuity due to the allowance of mortality improvement compared

with the corresponding cost when mortality improvement is not allowed.

The quantity of interest, the cost of a last survivor annuity, is a non-linear func-

tion of the fitted Gompertz parameters in the current year and the parameters of

the vector stochastic Gompertz processes. It is not possible to derive the distri-

bution of the last survivor annuity net premiums and relevant confidence intervals

analytically. Monte-Carlo simulation is used here.

4.3.1 Simulation Method

To derive the distribution of the expected annuity value, we simulate the real-

ization of future Gompertz parameters for 5,000 times. From each realization of

future Gompertz parameters, we have a surface of mortality for individuals and

married couples. We then estimate the present value of annuity payments from

each realization of future mortality surface.

Specifically, we simulate the cost of a last survivor annuity taking the following

steps:

1. Simulate N trajectories of the Gompertz parameters for individual mortality

and joint survival mortality from the year, in which the base mortality is

applied to, to the current year and beyond. Each trajectory is simulated

based on the Gompertz parameters for the base mortality and the calibrated

vector stochastic processes from the historic population mortality data.

2. From each trajectory, compute individual survival probabilities and joint sur-

vival probabilities, and estimate the expected present value of annuity pay-

ments;

3. From step (2), get an empirical distribution of the cost of a last survivor

annuity.
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In calibrating the stochastic processes for the Gompertz parameters, there are

generally two sources of parameter uncertainty: sampling errors in the historic

Gompertz parameters estimated from the Poisson models, and parameter uncer-

tainty in calibrating the stochastic mortality models to the historic Gompertz pa-

rameters. A parametric bootstrap simulation technique can be used to allow for

parameter uncertainties.

We conduct two simulation methods, with and without allowance for parame-

ter uncertainty. Allowance for parameter uncertainty in the model is more time-

consuming but does not make much difference in the simulated annuity values.

So, we do not use a parametric bootstrap in the simulation and ignore the trivial

impact of parameter uncertainty.

4.3.2 The Results

Allowance for mortality improvement will increase the expected present value

of annuity payments. We use a last survivor annuity issued to a 65 year old hus-

band and a 65 year old wife, with annual payments of $1 (or £1) paid monthly

in advance, as an example to illustrate the extent of increase in the annuity value

due to mortality improvement. Annuities with more frequent payments in a year

are approximately calculated using the Woolhouse’s formula, which is discussed in

Chapter 5 of Dickson et al. (2009). The interest rate is assumed to be 4.25% ,

which is an approximate average interest rate on the 20-year US treasure bills and

20-year UK government bonds during April 2011.

Based on the proposed semi-Markov joint-life longevity model, we can simulate

a surface of survival probabilities for last survival status. For each scenario, we com-

pute the cost of the annuity with and without allowance for mortality improvement.

With no allowance for future mortality improvement, the Gompertz parameters in

the future will be the same as the parameters in the current year (t0=2011).
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Figure 4.4: Distribution of the cost of last survivor annuity in year 2011 with and without

allowance for future mortality improvement, for the US market (Top) and the UK market

(Bottom), female age x = 65 and male age y = 65, interest rate 4.25%.
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We depict in Figure 4.4 the simulated cost of the last survivor annuity in the

current year 2011 with and without allowance for future mortality improvement,

for US market (Top) and the UK market (Bottom) respectively. The simulated

empirical distribution is smoothed using a kernel density estimation method. The

quoted market price and simulated cost is for an annuity per unit annual benefit

paid monthly in advance. No allowance for future mortality improvement means

the base rates of mortality have been projected to the current year only.

The information from Figure 4.4 can be summarized as follows. Firstly, al-

lowance for mortality improvement dramatically increases the cost of last survivor

annuities. Systematic longevity risk has significant impact on the annuity cost.

For pricing annuities, a mortality projection model is critical. In fact, this is a

fundamental problem in the annuity market.

Secondly, the modeled joint-life longevity risk from the proposed semi-Markov

model is more significant in the US market than in the UK market. From the US

model, there is a very short overlap between the distribution of simulated annuity

value with and without allowance for mortality improvement.

Thirdly, based on the same interest rate, the annuity value in the UK market

may generally be lower than the value in the US market, while the simulated annuity

value is more volatile in the UK market. The underlying reason for the annuity

volatility is the more volatile mortality improvement calibrated from the historic

England and Wales population mortality data.

Finally, the quoted annuity rate in the US market is lower than the simulated

annuity rates, which are based on a risk-free interest rate. We would expect that

the market annuity rate should be higher than the average of the simulated annuity

rate with full mortality projection, if the market sufficiently allows for mortality

improvement in their pricing. It appears that, the US annuities are underestimated.

The underpricing problem is less in the UK market. In the next section, we further

investigate the longevity risk in last survivor annuities.
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4.4 The Market Prices of Longevity Risk

In this section we attempt to identify how joint-life longevity risk has been

taken into account in the practice of pricing last survivor annuities.The concept

of the market price of longevity risk is used to assess how insurers view longevity

implicitly in their pricing.

4.4.1 Pricing Method

In the recent literature, several pricing methods have been developed for pricing

the longevity/mortality risk. Cairns et al. (2006), Dahl and Møller (2006), and

Dahl et al. (2008) use a risk-neutral pricing theory; Wang (1996, 2000, 2001,

2002) has developed a method that uses a one-factor risk distortion operator to

drive a risk-distorted measure for universally pricing financial and insurance. Lin

and Cox (2005) and Denuit et al. (2007) have applied the Wang transform to

pricing mortality risk. Other methods include the utility maximization principle,

the principle of equivalent utility, and the Sharpe ratio approach. Chen et al. (2010)

investigated connections and differences among the risk-neutral method, the Wang

transform and the Sharpe ratio rule. Readers are referred to Chen et al. (2010)

and references therein for a review of these methods.

The Wang transform has been widely used in insurance pricing. Cox and Lin

(2005) used the Wang transform to distort the best estimated deterministic dis-

tribution, tqx, of the remaining lifetime random variable Tx. A market consistent

price of mortality risk was deduced for pricing mortality derivatives. However, this

distortion method is rather arbitrary, since the risk of interest is the uncertainty

in the mortality rates per se rather than individual lifetimes. Chen et al. (2010)

stated that the Wang Transform is stable for large probabilities whereas it is highly

unstable for small probabilities, and robustness of the Wang transform becomes
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worse as the maturity becomes longer. In addition, the Wang transform is unable

to deliver a risk-adjusted dynamic.

Risk neutral pricing theory is well established. Financial economic theory states

that, if the market is arbitrage-free, there exists a risk-neutral measure such that

the price of an asset equals the expected discounted payments under the risk-neutral

measure. A risk-neutral measure, also called an equivalent martingale measure or

Q-measure, is equivalent to a real-world measure which is referred to as P -measure,

in the probabilistic sense. In the Q-measure (using risk adjusted probability), the

current value of all financial assets is equal to the expected future payoff of the

asset discounted at the risk-free rate.

If the market is complete, there exists a unique risk-neutral measure, while, in

an incomplete market many risk-neutral risk measures might exist. As pointed out

in Cairns et al. (2006), we are far from having a complete market in which all

contingent claims can be replicated by self-financed portfolio. There is no liquid

market for systematic longevity risk. In a sense, it is difficult to calibrate the risk

premium in annuities for systematic longevity risk.

Using the risk-neutral pricing approach, we need to make a further assumption

that market players act in an equilibrium setting and this equilibrium selects a

market consistent risk-neutral measure. In this research, we follow the method pro-

posed in Cairns et al. (2006) to define such a market-consistent Q-measure. In their

method, the risk-adjusted pricing measure Q(η) is modeled using an adjustment to

the dynamics of the stochastic process of mortality rates. Specifically, under the

risk-neutral measure Q(η),

zf(m)(t+ 1) = zf(m)(t) + νf(m) + σf(m)(Z̃(t+ 1) + ηf(m))

= zf(m)(t) + ν̃f(m) + σf(m)Z̃(t + 1),

where ν̃f(m) = νf(m) + σf(m)ηf(m). Z̃(t + 1) is a standard two dimensional normal

random variable under Q-measure.

111



The vector ηf(m) is the market prices of longevity risk associated with the

stochastic processes for Gompertz parameters γ
f(m)
t and ξ

f(m)
t . η

f(m)
1 is the market

price of longevity risk associated the stochastic process of the Gompertz modal

parameter, γt, representing left shift in mortality distribution; while η
f(m)
2 is the

market price of longevity risk associated the stochastic process of the Gompertz

aging parameter, ξt, representing dispersion in mortality distribution.

We use the risk-neutral approach to calculate the risk premium for systematic

longevity risk based on the idea that the market prices of annuities reflect the

uncertainty of longevity risk. Assuming that the longevity and interest risk risks

are independent, we can evaluate the market price of joint-life longevity risk using

risk-adjusted survival probabilities, which can be simulated from the stochastic

mortality processes in the Q-measure.

Let us denote P (s, τ) to be the price of a zero-coupon bond issued at time s,

which pays one dollar at maturity time τ (τ ≥ s). Define δ(t) to be the risk-free

interest rate at time t. In the risk neutral measure Q,

P (s, τ) = EQ

[

exp
(

−
∫ τ

s

δ(t)dt
)

|Fs

]

,

where {Fs, s = 0, 1, . . . } is the natural filtration for the process.

Assuming that the longevity and interest rate risks are independent, the cost

of an annuity is the present value of contingent payments, discounted by the risk-

free interest rate, using the Q-measure. Using risk-neutral survival probabilities,

we then derive the price of last survivor immediate annuity issued to a y-year old

husband and x-year old wife by the following equation:

ä market
xy (2011) = 1 +

∑

τ≥1

P (0, τ)EQ(ηf ,ηm)

[

τpxy|G0

]

, (4.4.11)

where ä market
xy (2011) is the market price of a last survivor immediate annuity with

$1 per year paid in advance in year 2011. For annuities with more frequent pay-
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ments in a year, we approximate ä(m), where payment is made 1/mthly, using the

Woolhouse’s formula again.

4.4.2 The US Market

We use the prices of last survivor immediate annuities to derive the market

price of joint-life longevity risk, since the market of immediate annuities is larger

and more transparent than the market of deferred annuities. The risk-free interest

rate is assumed to be constant and equal to 4.25%, which is the average interest

rate on the US 20-year Treasure bill in April 2010.

The prices of immediate annuities in the US market are quoted from the Im-

mediateAnnuity.com2. The quoted prices are for annuities per $1 annual benefit

paid in advance, in monthly instalment. The ImmediateAnnuity.com claims that

the quoted price from its web site is close to the lowest price in the current market.

We assume the quoted prices are net of expense.

Theoretically, if the market is consistent, there will be unique market prices of

longevity risk. However, the market for annuities is not consistently priced. We

actually derive a series of the market prices of joint-life longevity risk using the

quoted annuity prices for differen age combinations.

For the convenience of comparison, we assume ηf1 = ηf2 and ηm1 = ηm2 . That

is interpreted as assuming that the market prices of the two elements of risk are

same. Our aim is more to demonstrate to what extent the market prices of joint-life

longevity risk are reflected in the current market prices of last survivor annuities,

than to calculate the exact values of market prices of risk η1 and η2, which would

require more data and more assumptions.

We quote a series of market prices of last survivor annuities for $1 paid monthly

in advance, without guarantee. From the quoted prices, we know that, in the

2Available at: http://www.immediateannuities.com/
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US market, the price of a last survivor annuity depends on the age of younger

annuitant only. The age of elder annuitant will not change the quoted prices. This

phenomenon is not actuarially sound. Annuity payments to a 65-year-old husband

and 65-year-old wife are expected to be greater than the payments to a 75-year-old

husband and 65-year-old wife. However, the quoted immediate annuity prices for

these two couples are same according to the current pricing practice.

Female age Male age Market annuity price ηf ηm ηf = ηm

65 65 15.56 -0.1714 -0.8509 -0.4154

66 66 15.23 -0.1238 -0.9116 -0.4096

67 67 14.90 0.0038 -0.9323 -0.3996

68 68 14.81 -10.1144 1.0747 -0.2296

69 69 14.38 0.2181 -1.3702 -0.2682

70 70 14.06 -2.4832 0.7675 -0.2377

71 71 13.65 -0.2085 -0.3234 -0.2520

72 72 13.26 0.3759 -1.5999 -0.2530

73 73 13.16 0.5207 -1.6741 -0.0668

74 74 12.77 0.5484 -1.7395 -0.0532

75 75 12.41 -0.0241

Table 4.3: Market prices of joint-life longevity risk in the US market, ηf and ηm,

calibrated from the quoted market prices of immediate last survivor annuities with

equal inception ages from 65 to 75.

Table 4.3 displays the quoted prices of last survivor annuities where the age of

the female, who is younger, ranges from 65 to 75. According to the current market

pricing practice, the quoted annuity price for each age combination applies to all

the cases that the female is at the specified age and her spouse is the same age
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or older. For calibrating the market prices of longevity risk, we assume that the

husband and wife are the same age. Each pair of values of ηf and ηm for an age

combination is estimated using the quoted annuity values for that age combination

and the next one.

The average value of the market price of longevity risk is -1.1434 for females and

is -0.7560 for males. The market price of risk for each element of longevity risk, γt

and ξt, is negative for both female and male mortality. It means that the market’s

view about the left shift in future lifetime distribution is smaller than modeled by

the proposed joint-life longevity model; the marked is also less worried about the

concentration of future lifetime distribution about the modal age than modeled.

This result may indicate an underpricing problem with last survivor annuities in

the US market.

The estimated values of ηf and ηm fluctuate dramatically. In addition, it seems

that the value of one parameter is reflecting the value of the other. It may be due

to that the stochastic processes for female and male mortality are uncorrelated.

An increase in the market price of risk for the elements of longevity risk in female

mortality rates leading to a decrease in the price for the elements of longevity risk in

male mortality rates, and verse visa. A model that allows for correlation between

the future mortality improvements in female and male mortality rates may give

more reasonable results than the current setting.

From the modeling results, we believe that the US annuity market underprices

last survivor annuities. We acknowledge that the constraints ηf1 = ηf2 = ηf and

ηm1 = ηm2 = ηm will not exactly reflect the market’s view about longevity risk.

Dramatic fluctuation in ηf and ηm make it hard to tell a general level of the market’s

view about longevity risk.

We further assume ηf = ηm to determine a general extent of the underpricing.

Negative market prices of longevity risk at all ages indicate that the market un-

derestimates longevity risk in last survivor annuities. The extent of underpricing
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is more severe for younger old annuitants. This may be due to cross subsidy or

natural hedge between younger annuitants and older annuitants in pricing.

From the estimated prices in the last column in Table 4.3, the average level of the

market price of longevity risk is -0.2372. It appears that last survivor annuities are

underpriced according to our joint-life longevity model. Antolin (2006)’s argument

that the market does not allow adequately for longevity risk is supported here in

the case of last survivor annuities.

The market is aggressive in pricing last survivor immediate annuities, perhaps

due to very competitive pricing strategy, with low rate of voluntary annuitization.

However, unexpected mortality improvements in joint-life mortality could jeopar-

dize the financial solvency of an annuity fund that has not adequately anticipated

the possible impact of longevity risk.

4.4.3 The UK Market

The UK annuity market is bigger and more developed than the US market,

because of the legal obligation to annuitize substantial proportion of retirement

funds. Meanwhile, the UK market was aware of longevity risk earlier than the US

market. In addition, it is more liquid because of the availability of longevity risk

securitization instruments.

More information can be gleaned by comparing these two markets. The prices

of immediate annuities in the UK annuity market are quoted from the Annuity

On-line3, which gives an indication of an averaged annuity price from a number of

annuity providers during February 2011. We quote for last survivor annuities for

annuitants in good health and non-smoking. We assume again these quoted prices

are net of expense.

3Available at: http://www.annuities-online.com/
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Table 4.4 displays the quoted market prices of unit annuities, and the calibrated

market prices of longevity risk. The quoted prices are for annuities per £ 1 annual

benefit paid in advance, in monthly instalment, without guarantee, same as the

US example above. We use the same age combinations as the US example, and

calibrate the market prices of longevity risk assuming that the husband and wife

are the same age.

Assuming ηf1 = ηf2 and ηm1 = ηm2 , the average value of ηf is 0.0647 and of

ηm is -0.3437. The market price of risk is positive for the elements of longevity

risk in female mortality rates, and negative for the elements in male mortality

rates. Underpricing last survivor annuities also appears to the UK annuity market,

though to a lesser extent than in the US market. This point is confirmed, as a

positive market price of longevity risk is derived if ηf = ηm is assumed. It could be

interpreted that the joint-life longevity risk appears to be more adequately allowed

in the UK annuity market than in the US annuity market; in addition, the US

market considered the longevity risk of joint lives less consistently than the UK

market, because of the wider range of market prices of longevity risk in the US

market.

As in the US market, the UK market has a similar pricing practice for last

survivor annuities. The male’s age will not be a pricing factor unless he is at least

two years younger than his wife. The quoted last survivor annuity price for a 65-year

old wife and 65-year old husband is applied to all the cases that the wife is aged 65

and the husband is aged 63 or older. That is to say, the last survivor annuity price

only depends on the female’s age (x) once her spouse’s age (y) satisfies y ≥ x − 2

. In that case, the age of the male is ignored in determining the expected annuity

payments.

The prices of last survivor annuities in both the US and the UK market do not

reflect the difference between single-life mortality and joint-life mortality. They

are not based on a joint-life mortality model. Dependence between joint lives,
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Female age Male age Market annuity price ηf ηm ηf = ηm

65 65 16.17 -0.9635 0.5396 0.0397

66 66 15.77 0.1398 -0.1652 0.0306

67 67 15.40 0.1605 -0.2002 0.0356

68 68 15.01 0.1743 -0.2198 0.0396

69 69 14.62 0.2029 -0.2759 0.0459

70 70 14.20 0.4180 -1.2110 0.0494

71 71 13.78 0.4168 -1.1955 0.0513

72 72 13.34 0.0244 0.0887 0.0494

73 73 12.88 0.4341 -1.2509 0.0484

74 74 12.47 -0.3605 0.4534 0.0695

75 75 11.98 0.0611

Table 4.4: Market prices of joint-life longevity risk in the UK market, ηf and ηm,

calibrated from the quoted market prices of immediate last survivor annuities with

equal inception ages from 65 to 75.

including the “broken heart” effect, has not been considered. The irrational last

survivor annuity pricing structure in the US and UK market implicitly affect the

calibrated market price of longevity risk of joint lives, to some extent.

4.4.4 Joint-life vs. Single-life

For further understanding of the results in the previous section, we also exam-

ined the market prices of single-life longevity risk in the US and UK annuity market.

Recall that, in projecting joint-life mortality rates, the single-life mortality is pro-

jected as the marginal mortality distribution. It enable a meaningful comparison

118



The US market The UK market

Inception age Males Females Males Females

65 13.17 14.16 14.97 16.09

66 12.86 13.87 14.62 15.68

67 12.53 13.56 14.21 15.31

68 12.21 13.37 13.78 14.92

69 11.92 13.09 13.40 14.52

70 11.63 12.80 13.00 14.10

71 11.28 12.42 12.59 13.68

72 10.93 12.07 12.11 13.23

73 10.71 11.72 11.67 12.77

74 10.39 11.37 11.23 12.35

75 10.11 11.05 10.76 11.86

Table 4.5: Quoted market prices per unit annual benefit paid monthly in advance

for single-life immediate annuities in the US and UK market for different inception

ages.

between the market prices of longevity risk in joint-life products and in single-life

products.

The market prices of single-life longevity risk are calibrated based on the pro-

jected marginal single-life mortality, using quotes of single-life immediate annuities

in the US and UK market. Table 4.5 lists the quoted market prices of single-life

immediate annuities per unit annual benefit in monthly instalments, paid in ad-

vance, without guarantee, in the US and UK market. The quoted market prices of

single-life annuities in the UK are generally higher than the quoted prices in the

US, while the difference narrows with the inception age of annuity.
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Figure 4.5: The estimated market prices of longevity risk in last survivor annuities

(Top) and single-life annuities (Bottom) in the US market (Left) and the UK market

(Right) .
120



Figure 4.5 compares the calibrated market prices of longevity risk in last survivor

annuities (Top) and single-life annuities (Bottom) in the US and the UK market.

The risk-free interest rate is 4.25%. The market prices of longevity risk of joint lives

are taken for the last column in Table 4.3 and 4.4, which are calibrated assuming

ηf = ηm.

In the US, the line of market prices of joint-life longevity risk is roughly between

the two lines of market prices of single-life longevity risk. However, the market

prices of longevity risk, either joint-life or single-life, are generally negative.

In the UK, all the calibrated market prices of longevity risk are positive, al-

though the market prices of longevity risk in last survivor annuities is much lower

than the corresponding market price of single-life longevity risk. The market prices

of longevity risk are positive in the UK annuity market, but negative in the US

market. It indicates that the UK annuity market appears to more adequately allow

for longevity risk when pricing immediate annuities than the US annuity market.

Furthermore, the market prices of longevity risk in the US are far below zero. The

US market does not correctly estimate the future improvements in mortality rates.

Underpricing appears to be prevalent in the US annuity market. Mortality as-

sumptions for pricing annuities needs to be reviewed. Further study in fair pricing

annuities is required.

4.5 Concluding Remarks

In this chapter, we have mainly focussed on the sustainability and reasonability

of the prices of last survivor annuities in the private market. For this end, we

propose a semi-Markov joint-life longevity risk model, and investigate the market

prices of joint-life longevity risk in the US and UK, using the risk-neutral pricing

theory.
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The effect of mortality improvement has substantial impact on last survivor

annuities. However, market prices of longevity risk in last survivor annuities for

two components of mortality processes are quite volatile. Negative market prices

of longevity risk calibrated from the prices of last survivor annuities in both the

US and the UK market indicate that last survivor annuities may not be well priced

currently.

We compare the market prices of joint-life longevity risk against the market

prices of single-life longevity risk. The results indicate that the US market system-

atically underprices joint-life annuities and single-life annuities. The UK annuity

market has more conservative allowance for longevity risk when pricing single-life

annuities. Unfortunately we do not see consistent pricing of joint-life annuities.

Joint-life pricing structures are irrational in both the US and the UK annuity

market. The impact could be destructive for the development of annuity market.

Last survivor annuities are likely to become more critical following the European

Union ban on gender-specific annuity rates, which will take effect in 2012. Careful

attention is called for to avoid underpricing these products. Further study in fare

pricing this type of annuities is required.

Deep-deferred annuities, which are also called longevity annuities or an advanced-

life delayed annuity, have been introduced to the market recently. They are pro-

moted to provide efficient protection against longevity risk (see, for example, An-

drew, 2008; Gong and Webb, 2009). Last survivor deep-deferred annuities could

be an important longevity hedge in an increasingly defined contribution world.

Negative market prices of longevity risk imply that, the ability of the market to

price last survivor deep-deferred annuities adequately is questionable. Pricing these

annuities based on the market price of longevity risk calibrated from immediate an-

nuities could be harmful. US and UK Insurers need to re-evaluate their pricing of

last survivor annuities and other joint-life products.

The aforementioned remarks are based on the proposed semi-Markov joint-life
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longevity model, which is built up upon a Gompertz distribution with stochastic

parameters for the stochastic modeling of force of mortality. The stochastic Gom-

pertz mortality model is a natural extension of the Gompertz’ law. It is most easily

incorporated into the semi-Markov joint-life model. However, we acknowledge that

mortality forecasting using models with stochastic parameter relies on the accuracy

of the underlying parametric model.

Although the Gompertz curve generally fits adult mortality quite well, the ex-

ponential relationship between the force of mortality and aging has been criticized

as overestimating mortality rates at the advanced ages. The argument of late-life

mortality plateau suggests improvement over Gompertz’ law at a cost of less parsi-

monious form. Li et al. (2008) proposed a threshold life table method, integrating

the extreme value theory with Gompertz’ law, offering a promising approach to the

modeling of high age mortality.

Generally speaking, the proposed model is a preliminary step in the modeling

and risk management of joint-life longevity risk. Currently, a little research has

been done in this area. What we have done here is only a lead-in to future analysis.

The correlation in the improvement of mortality for males and females has not

been reflected. If there exists some correlation, it may have non-negligible impact

on joint-life longevity risk. This should be investigated further, especially if suitable

data become available.
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Chapter 5

Discussion and Future Research

5.1 Markovian Approaches for Joint-life Mortal-

ity

Most insurance companies in practice postulate independence between joint

lives. The unrealistic assumption of independence has a potentially significant

financial impact on the industry. A model for the impact of one life’s survivorship

on another is required for products that provide benefits contingent on the combined

survival status of multiple lives.

In Chapter 2, we explore Markovian models for the dependent modeling of joint

lifetime random variables, as an important alternative to the copula method. A

“common shock” factor is introduced into a standard Markov joint-life mortality

model, for capturing instantaneous dependence between joint lifetimes. The semi-

Markov property is exerted on the force of mortality for the widowed, capturing

the decaying effect of the “broken heart” factor

In the proposed semi-Markov joint-life mortality model, a decreasing exponen-
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tial function has been defined to describe the selection effect of bereavement. How-

ever, the parameters are estimated using relatively limited bivariate mortality data

from a large Canadian insurance company. Collection of reliable industry-wide bi-

variate mortality data is highly encouraged. Further research work can thereafter

be conducted on the dependent modeling of joint-life mortality in the framework

of Markovian approaches.

Another future research topic is to refine the joint-life dependence structure in

a Markovian model for joint-life mortality. The relationship between the mortality

rates in the married state and in the widowed state could be further explored.

The short-term dependence due to the impact of bereavement has been specifically

modeled by a multiplicative function that decreases with the time in widowhood,

while the long-term dependence due to common life styles shared by a husband and

wife may be specified through a component in forces of mortality in the married

status.

In addition, we have examined positive quadratic dependence in the Markov and

semi-Markov model. Conditions for positive quadratic dependence in the Markov

model are derived. Counter examples are used to disprove the existence of positive

quadratic dependence in the semi-Markov model. In future work, a potentially

challenging topic is to investigate the conditions for positive quadratic dependence

in a semi-Markov mortality model.

5.2 Multiple State Model for Reverse Mortgage

Terminations

In Chapter 3, the semi-Markov joint-life model is extended to model joint-life

reverse mortgage terminations, incorporating other decrements than death. Event-

triggered termination, status-dependent termination, and anti-selection effect on
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termination have been allowed for in the model. A specific semi-Markov multiple

state model has been developed for the dependent modeling of joint-life reverse

mortgage terminations, incorporating elaborately categorized termination modes.

The implication of each termination mode to the value of a No-Negative-Equity-

Guarantee in reverse mortgages has been investigated.

The model has a complex but well-organized state structure. With ever-developing

computer capacity and improved simulation techniques, the proposed model can be

easily applied in practice. As a multiple state model is employed in modeling re-

verse termination rates, the industry has an incentive to collect detailed termination

data. Users can adapt the model according to the available reverse mortgage data.

The model could be developed further to account for more realistic termination

assumptions.

On the basis of a multiple state model for reverse mortgage terminations, we

may consider the following suggestions for further research on reverse mortgages.

• Integrating economic factors into the multiple state termination model

Economic factors, such as interest rates, and economic cycles, will significantly

affect reverse mortgage terminations. For example, a borrower is more likely

to move and repay his or her reverse mortgage in light of increases in home

values during the economic boom. In a economic recession, homeowners will

be less likely to move out. A regime-switching framework offers a potential

solution.

• Projecting the financial status of the HECM portion of the Mutual Mortgage

Insurance Fund

The HECM program is now in the Mutual Mortgage Insurance Fund (MMIF).

To ensure the financial soundness of MMIF, it is necessary to monitor the

viability of the program. The risk of the program to the insurance fund is
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driven by three main risk factors: termination rates, interest rates, and the

appreciation rates of home equity. These three factors are correlated. A

model that can dependently model all these factors will lead to more reliable

projection of the financial status of the HECM portion of the MMIF than

independent assumptions.

5.3 Longevity Risk in Last Survivor Annuities

In Chapter 4, we incorporate a mortality projection method into the semi-

Markov joint-life mortality model, to investigate the market prices of longevity risk

in last survivor annuities. A preliminary semi-Markov joint-life longevity model

has been established, which generalize Gompertz’ law to a stochastic process.

The market prices of longevity risk are examined in a risk-neutral measure

defined in Cairns et al. (2006). In the research literature on longevity/mortality

risk, different methods are proposed for pricing the risk. Each method has its

advantages, but there is no agreement on which method is preferable to the other.

It is interesting to compare and discuss the market prices of joint-life longevity risk

implied by different pricing theories.

Longevity risk has become an increasingly important risk in the annuity market

and a hot research topic in the actuarial literature. Recent research on longevity

risk mainly focuses on how to recognize, quantify and manage the risk. It is critical

to develop a reliable model for the projection of mortality improvements. However,

this task has proven to be difficult. We will continue, in future work, to explore

solutions for longevity risk management and securitization. In addition to the

aforementioned research directions, we may also consider the following topics.

• Incorporating correlation between male and female mortality improvements

into the joint-life longevity model
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Although male and female mortality rates have experienced different improve-

ment speed (see Anderton et al., 1997), their trends will not diverge too much.

In Chapter 4, we do not allow for any correlation between the stochastic

dynamics for male and female mortality rates. This presumptive condition

leads to some problems when calibrating the market prices of longevity risk in

last survivor annuities. A method that allows for co-integration between two

stochastic processes or controls the divergence between them can be employed

to deal with the situation.

• Integrating the stochastic Gompertz model with the Extreme Value Theory.

High age mortality and mortality improvement at advanced ages constitute a

significant risk in annuity products. A typical product associated with such

risk is a deep deferred annuity, where annuity payments commence at the very

high ages, say 85 and above. Forecasting of high age mortality is a difficult

task because of sparse data at older ages. The stochastic Gompertz model

use a mathematical function of age and automatically permits extrapolations,

which is not suitable for forecasting mortality at very advanced ages. The

model, having been fitted to the mortality data at all ages, may not provide

a particularly good fit at the advanced ages.

Recent research has applied extreme value theory to this problem. The gener-

alized Pareto distribution (GPD) offers a promising approach to the modeling

of high age mortality. For example, Han (2003, 2005) applied a transformed

generalized Pareto distribution to period life tables. Watts et al. (2006) used

generalized extreme value and GPD to investigate advanced age mortality

data. Li et al. (2008) has developed a threshold life table. To generalize the

threshold life table methodology to a stochastic version, it is challenging to

guarantee the smoothness of mortality distribution.

• Risk management of longevity risk in deep-deferred annuity
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In a world of low levels of voluntary annuitization rates amongst the elderly,

deep-deferred annuities offer a new way of boosting lifetime retirement in-

come. In stead of paying a large lump sum at retirement for an immediate

annuity, participants will only pay a small amount for a deep-deferred annuity

and receive income at older ages. Deep-deferred annuities offer an efficient

protection against longevity risk. However, the fundamental supply problem

with deep deferred annuities relates to longevity risk, especially the upper tail

risk.

Modeling and managing the involved longevity risk are challenging, especially

in the case of joint lives. One potential research direction is to design a

longevity risk backed security for risk management of deep-deferred annuities.

A deferred longevity bond or a longevity risk swaption is a possible choice

for transferring the risk to the capital market. The proposed securitization

option should avoid early coupon payments that have very low longevity risk

attached to them, overcoming the problem of being capital-intensive.
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