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Abstract

Hidden Markov models have become a popular tool for modeling long-term investment guar-

antees. Many different variations of hidden Markov models have been proposed over the past

decades for modeling indexes such as the S&P 500, and they capture the tail risk inherent

in the market to varying degrees. However, goodness-of-fit testing, such as residual-based

testing, for hidden Markov models is a relatively undeveloped area of research. This work

focuses on hidden Markov model assessment, and develops a stochastic approach to deriving

a residual set that is ideal for standard residual tests. This result allows hidden-state models

to be tested for goodness-of-fit with the well developed testing strategies for single-state

models.

This work also focuses on parameter uncertainty for the popular long-term equity hidden

Markov models. There is a special focus on underlying states that represent lower returns

and higher volatility in the market, as these states can have the largest impact on investment

guarantee valuation. A Bayesian approach for the hidden Markov models is applied to ad-

dress the issue of parameter uncertainty and the impact it can have on investment guarantee

models.

Also in this thesis, the areas of portfolio optimization and portfolio replication under a

hidden Markov model setting are further developed. Different strategies for optimization

and portfolio hedging under hidden Markov models are presented and compared using real

world data. The impact of parameter uncertainty, particularly with model parameters that

are connected with higher market volatility, is once again a focus, and the effects of not

taking parameter uncertainty into account when optimizing or hedging in a hidden Markov

are demonstrated.
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Chapter 1

Introduction

The notion that, in the long run, the stock market always goes up has been embedded

into western civilization. The second half of the 20th century saw strong gains throughout,

with the occasional significant drop, which would always be corrected over the short period

following the drop.

This notion led many insurers and financial institutions in North America to include long-

term guarantees for their clients investment portfolios, often times at no extra cost to the

client. The assumption that the market would never go down over the long-term meant these

institutions felt that the guarantees they were providing were effectively worth nothing.

Imagine the surprise when the S&P 500 experienced an approximate 30% drop over the

January 1999 to January 2009 period, or that the Nikkei 225 has been in a state of steady

decline since 1989.

The original motivation for this work is the investment guarantee market. A simple example

of an investment guarantee is the Guaranteed Minimum Maturity Benefit, which guaran-

tees a policyholder a specified minimum amount their investment will mature for at the

termination of the investment period. Investment guarantees usually fall into the category

of undiversifiable risk, as the guarantees are made on the same equities. If one contract is

in-the-money at maturity, they all are.

Investment guarantees are often long-term, lasting five, ten or twenty years. The Amer-
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ican Academy of Actuaries proposed a stochastic methodology (AAA 2005) for reserving

investment guarantee contracts, following the recommendations of the Canadian Institute

of Actuaries (2001). This method involves modeling the index’s monthly returns, and then

using simulation to quantify the risk involved in the contract. Reserves can be held using

the “actuarial approach”, which requires the insurer hold enough capital to cover all losses

that fall within the bottom 95%− 99% of the loss distribution, or using a dynamic hedging

approach that creates a replicating portfolio that moves with the liability.

In the past, stock markets were modeled with simple, constant and tractable models. Black

& Scholes (1973) in their pioneering paper on option pricing used a simple lognormal process

for stock returns. In his ground-breaking paper in portfolio optimization, Markowitz (1952)

modeled the variances of a group of stocks with constant parameters. Since these times,

understanding of market movements and tendencies has evolved a great deal, and market

decisions and strategies must evolve in the same way.

Because of the nature of the risk (low frequency, high severity), modeling the tails of the

index correctly becomes quite paramount. In particular, the long-term left tail of the index

is of paramount relevance when reserving using the actuarial approach, as it will determine

with what level of uncertainty the chosen level of reserving will be adequate. The short term

left and right tails will be more relevant when reserving such a contract using a dynamic

hedge. For instance, if the contract is delta hedged, then it will be vulnerable to gamma risk

of the underlying index, which is typically associated with the steeper market movements.

One key feature apparent in most stocks and indexes is the concept of volatility clustering.

Markets experience periods where the price movements are relatively small, and experience

other periods where price movements are larger. Adapting models to capture this volatility

clustering has been the focus of much research. One idea that has enjoyed much success

is the concept of underlying market ‘states’. The main idea is simple: the market will go

through calm periods with very steady index returns, and the market will go through much

more volatile periods of uncertainty. When exactly the market changes states or how a long

a market stays in particular state is unknown, and many models that employ underlying

state processes categorize them as unknown.

However, educated guesses about the state of markets can be made. If the past week of
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trading has seen some very sharp price movements, investors would be more likely to suggest

that the market is in a more volatile state than if the past week of trading has been relatively

relaxed. There is inherent information about the likelihood of the market experiencing a

particular state in how its prices have been recently moving. Successful models will make

use of this information to more accurately predict market movements.

One class of multiple state models that has been the focus of much research are regime-

switching models, proposed by Hamilton (1989). Regime-switching models define the under-

lying state process to be a Markovian process. In accordance with all Markov chains, under

a regime-switching model, the distribution of the next event’s underlying state depends only

on the current underlying state of the process (and does not depend directly on past under-

lying states). An attractive feature of the Markov process is that it allows for correlation

in the data through the underlying state process, which can capture the volatility clustering

mentioned above.

Since the CIA’s task force on segregated fund investment guarantees in 2001, many equity

models have been proposed. A detailed examination of many of these models is found in

Hardy, Freeland and Till (2006). This paper concluded that the most promising models had

an embedded regime-switching process, which was successful in accounting for periods of

low volatility and high volatility over a long time horizon. Inference about regime-switching

frameworks for stock returns and their applications will be the focus of this thesis.

The issue of the underlying state process being unobserved presents some non-trivial chal-

lenges. When testing a model’s fit to the data, the common strategy is to test the residuals

that result from the fit to see if they are properly distributed. However, in a regime-switching

framework, the model parameters for any particular data point are unknown, as the under-

lying state is unknown (and the model parameters are dependent on the underlying state).

The residual associated with that particular data point then will also be unknown. More-

over, for a regime-switching model with K regimes, and a time horizon of T , then there are

K possible residuals for each data point, and correspondingly KT possible residual sets for

the entire data set.

The task of arriving at a suitable set of residuals to test is an undeveloped area of research.

Freeland, Hardy & Till (2006) made use of the probabilities associated with each regime
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or state of a model to arrive at a weighted average residual. This thesis will demonstrate

how that method can generate an unsuitable set of residuals for standard residual tests in

many cases, due to the nature of the weighted average. The magnitude of each residual

is often effectively lost through the average, and the magnitudes of those residuals is an

important factor in deciding whether or not a residual set is acceptable. Alternative methods

of generating residuals from the possible residual sets are explored here. The objective of the

research is to generate a set of residuals that maintain as much as possible the magnitude

and sign of the actual residual, which, of course, is unknown because of the unknown residual

process. The result arrived at for this problem is that a stochastic approach to deriving a

residual set provides an ideal set for the standard residual tests. This result is very powerful,

as it allows multi-state models to be tested to the same degree of effectiveness as single-state

models.

One particular focus of regime-switching models that this thesis will explore is parameter

uncertainty. While important for all statistical modeling, parameter uncertainty can have

a larger impact for regime-switching models for financial data because of the nature of the

underlying states in an equity setting. For most indexes modeled using a regime switching

framework, there will typically be a high frequency regime with calm volatility, and in

addition to possible other regimes, a low frequency regime with very high volatility. Because

this high volatility regime is less often visited, parameter uncertainty will be more profound

than it will for the low volatility regime. Yet the high volatility regime is the premier regime

of interest for investment guarantee reserving. The large stock movements, both up and

down, will typically be associated with this regime, and since the expected return of the

high volatility regime will typically be negative under the model for most financial data, the

long-term left tail of the model will also be defined by this regime. Summarily, the state of

the market an investment guarantee analyst is most interested in is the state she knows the

least about.

To address this issue, a Bayesian approach to estimation of the popular regime switching

models in finance will be explored. Bayesian estimation involves treating the unknown model

parameters as themselves random variables, first assigning a ‘prior’ distribution to them

which effectively represents pre-existing understanding, and then using the observed data to

adjust this distribution to a more likely one given the path the index has traveled. The Bayes
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approach to financial regime-switching models has been developed in literature (Robert et

al, 1999, Hardy, 2002 and Bauwens, Preminger and Rombouts, 2006, for example), and this

thesis will employ and adapt those methods to the commonly used models in investment

guarantee analysis.

Often, it is beneficial to model multiple indexes in a multivariate framework. For instance,

if an investor were to create a fund that comprised of many indexes or stocks, then how

those equities interacted with each other would need to be adequately captured. As was the

case for single-variate models, volatility clustering is a prevalent theme among many of the

world’s main indexes today. Regime-switching can again be used to capture this volatility

clustering in the multivariate case.

Another issue arises when trying to invest in an optimal portfolio strategy. In a single-

state market, investment strategies have been developed for a very long time (see Black and

Litterman(1992), Alexander, Coleman and Li(2004), etc). These methods are very effective

at accomplishing their set task. However, when working in a multi-state framework, with

the underlying state being unknown, one can handle the information given about a data set

different ways.

Using the unconditional distribution of the market, deriving an optimal portfolio strategy

would be as simple as a single state case. But, if one knew exactly which state the market

was in during optimization, then the process could be made more efficient, as the information

about the market would be more precise. This is not the case, as the underlying market

state process is unobserved. However, for each data point there is embedded information

about the likelihood of the market being in each of the underlying states. Taking advantage

of this information would produce more efficient portfolios than the unconditional approach.

There are different methods of using the described information about the underlying states,

and some main ones will be explored in this thesis.

An extension of the optimized portfolio problem of investment guarantees is the hedging of

an investment guarantee. Hedging derivative contracts has been well developed for single-

state models, but hedging under a multiple state market has in general meant approximating

the markets movement with a single state model. The error of this can become increasingly

problematic if the markets different states become further and further distinct. Again, the
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information about the underlying state can prove to be invaluable, as knowledge about the

current market state will allow a hedger to more accurately assess the likeliness of a market’s

movements. Using this information, similar in fashion to what was done for model testing

and portfolio optimization, would mean less hedging error and thus less hedging costs. This

these will explore different methods of handling the underlying state process when hedging

an investment guarantee contract, and show the impact of different methods using examples

and real world data.

Chapter 2 will describe popular regime-switching models in a financial setting, fit them to a

standard data set using frequentist estimation and discuss the implications of each for invest-

ment guarantee contracts. Chapter 3 will discuss validation of long-term equity models that

have been estimated using a frequentist approach, and will introduce a method of opening

up standard residual testing to regime switching models that was previously unavailable.

Chapter 4 will approach estimation of the same models using a Bayesian methodology, and

discuss the impact of parameter uncertainty on long-term equity distributions and compare

with the results from Chapter 2. Chapter 5 will discuss portfolio optimization in a regime

switching setting, and contribute to the existing literature by demonstrating the impact of

parameter uncertainty and provide some insight for practitioners. Chapter 6 will discuss

portfolio replication, also known as hedging, in a hidden Markov setting and demonstrate its

implications for deep out-of-the-money options that resemble investment guarantees. Finally,

Chapter 7 will be a discussion of future work.
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Chapter 2

Long-Term Equity Return Models

2.1 Introduction

The equity models used to quantify the risks associated with long-term, deep out-of-the-

money options, such as investment guarantees, must accurately model the tails the of the

returns on equities over very long periods. Unfortunately, these tails are the part of the long-

term equity distributions we know the least about. Modelling, say, 10-year returns directly

is problematic, because we have very few non-overlapping 10-year segments of the time series

available. A popular way to address this problem is to model a higher frequency (for example,

annual, quarterly or monthly) time series, and then use this model to draw inference about

the longer-term returns from the model. In addition to the usefulness of the model for

the longer term returns, modelling the higher frequency process allows us to analyze path

dependent cashflows, which will be important for assessing hedging effectiveness.

Many models for stock price returns have been developed since the 1950’s. Early mod-

els, such as the geometric Brownian motion assumed by Black & Scholes (1973), assumed

independence of stock price movements over different (non-overlapping) periods. Observed

dependence in stock returns, either through the stock price itself or the volatility of its move-

ments, was modeled through building autoregressive and moving average coefficients into the

log-normal framework. This was later further refined by Engle (1982) and Bollerslev (1986)
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through the popular class of ARCH/GARCH models. More recently, stochastic volatility

(see AAA, 2005, for example) and hidden Markov models have been proposed to capture

stock price movements over time.

This chapter will explore some single state models and hidden Markov models developed for

long-term equity analysis. These models will be fitted using maximum likelihood estimation

to US stock index data, and the long-term implications of each of the models, in particular

for out-of-the-money options, will be explored. This chapter will set the stage for further

chapters, where contributions to the hidden Markov model literature in finance will be made

in the areas of model validation, portfolio optimization and portfolio replication.

2.2 Long-Term Equity Data

Stocks prices are often affected by many factors, including firm performance, corporate deci-

sions, government policies and practices, consumer confidence, investor moods and systemic

shifts in the overall economy. Stock prices are also affected by decisions by firms to pay out

dividends. For the purposes of all equity models in this thesis, dividends will be assumed

to be reinvested in the stock; stock levels will thereby represent the stock’s full growth over

time. Other factors that determine stock prices will not be included in the models explicitly.

Stock indices are, in general, non-stationary time series. Index levels tend to increase ex-

ponentially with time. A log-transformation, followed by a series differencing, is typically

applied to stock prices before analysis; the resulting data are called log-returns.

2.2.1 The S&P 500

The Standard & Poor’s 500 (S&P 500) is a weighted index of the prices of the 500 most

actively traded stocks in the United States. It is one of the most widely followed indexes

in finance, with a long history. The monthly index levels of the S&P 500, with dividends

reinvested, from January 1950 to October 2010 are displayed in Figure 2.1(a). The data are

taken from finance.yahoo.com, and the index levels for this data set are the levels at the
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Figure 2.1: S&P 500 Monthly Index and Log-Return Levels

close of the first trading day of the month. The index is clearly increasing over time, and

the magnitudes of its movements are also increasing over time. As described above, a log

transformation was applied to the series, followed by it being once differenced. The series

of S&P 500 log-returns, along with its twelve-month rolling volatility, is displayed in Figure

2.1(b).

Mathematically, let St denote the index level at the end of month t. Then the transformed

series is

Yt = log

(
St
St−1

)
There is no visible upward trend in the series of log-returns Yt, nor in the volatility of

the series. However, it is apparent that the volatility of the S&P 500 log-returns is not

constant. The rolling-average annualized volatility of the S&P 500 exhibits significantly

different levels over the past 50 years, ranging from 0.043 to 0.325. Moreover, the volatility
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of the log-returns clusters in areas. Low volatility periods in the series are generally followed

by other low volatility periods, such as the periods in the 1950’s, the late 1970’s to early

1980’s, the mid 1990’s and the mid 2000’s. High volatility periods are also often followed

by other high volatility returns, such as the mid-1970’s, the late 1990’s to early 2000’s, and

the most recently the late 2000’s. Volatility clustering is a major driver of many of the more

sophisticated models that are presented later in this chapter. Specifically for investment

guarantees, failure to capture these volatility trends would be a significant drawback of any

model, as, among other things, the adequacy of investment guarantee reserving depends on

the ability of the reserving approach to capture the large movements in the index.

While the monthly log-returns of the S&P 500 comprise the time series to be modeled, it

is important to re-emphasize that the long-term behaviour of the index is of equal concern.

The monthly price movements are of concern specifically if one is dynamically hedging the

liability of an option or guarantee (see Chapter 6) or if the contract in question has a ‘ratchet’

or other path-dependent clause attached to it. However, monthly data are also used out of

necessity. There aren’t enough non-overlapping 10-year periods of S&P data to effectively

fit a 10-year model. While capturing the monthly price movements is important under this

approach, one can obtain an idea from Figure 2.1 about how candidate models should behave

in the long-term. Among other things, this means that periods of relative calm and periods of

relatively uncertainty should be plausible under candidate models, and should both happen

frequently enough to mimic the series displayed above.

Popular long-term equity models will be presented in the next section. Some background

and reasoning for each of the models will be discussed, and all the candidate models will be

fitted to the above data set using maximum likelihood estimation.

2.3 Simple Long-term Equity Models

In this section we provide a description of some simple models for financial data, fit them

to the S&P 500 using maximum likelihood estimation, and discuss some of the limitations

of each of the models. These models are generally unsatisfactory for investment guarantee

modeling purposes. Much of the analysis in this section is presented in Hardy, Freeland & Till
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(2006). It provides a foundation for the remainder of the chapter as the more complicated

models presented later use the simpler models as building blocks.

All models described in this chapter assume a process of random innovations, εt, t = 1, . . . , N ,

where t is a time index and N is the length of the series of log-returns. For each of the models

described, the random variables εt will always be assumed to be independent, identically

distributed N(0, 1) random variables. Other distributions are left as a subject for further

research.

In this thesis, expressions such as ‘the model is too thin tailed compared to the data’ are

often used. Let FX(x) = P [X ≤ x] represent the cumulative distribution function for

random variable X evaluated at x. For this specific discussion, let XM represent the random

variable of the total returns over any time period under the model, and let XD represent the

empirical random variable of the total returns over the same time period, using the observed

S&P index values. Then our contention that the model is ‘too thin in the left tail’ relative

to the data can be expressed as

F−1
XM

(x) > F−1
XD

(x) ∀x ∈ (0, x1)

where x1 is a small value such as 0.01 or 0.05. That is, the x1 quantile of the model is greater

than the x1 quantile of the data, for left tail values of x1. The model has is ‘too thin in the

right tail’ if

F−1
XM

(x) < F−1
XD

(x) ∀x ∈ (x2, 1)

where x2 now takes on relatively larger values of 0.95 or 0.99.
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2.3.1 The Independent Log-Normal Model

The independent log-normal (ILN) models the log-return series Yt with an independent and

identical Normal distribution. The process may be written as

Yt = µ+ σ · εt

The ILN model is the discretely obeserved version of a geometric Brownian motion, which is

one of the assumptions of the Black-Scholes option pricing formula (Black & Scholes, 1973).

The model captures short term market returns reasonably well, and has the advantage of

tractability, as well as consistency with the Black Scholes formula.

We find though that the ILN is generally not suitable for modeling index returns over longer

terms, and particularly where tail risk is important. The model assumes a constant volatility

parameter σ, and does not capture the volatility clustering described in Section 2.2. The

fitted ILN models generally have tails that are too thin to capture the risk of long-term

market drops. This will result in severe underestimation of the value of contracts that with

payouts in such cases.

2.3.2 The GARCH Model

The Generalized Autoregressive Conditionally Heteroskedastic (GARCH) family of models,

discussed extensively in Engle (1995), has been a popular choice for modeling indexes and

stocks over longer terms, in discrete time. The ARCH family allows changing volatility, and

therefore offers more flexibility than the ILN model. The ARCH family was first presented

by Engle (1982) followed by the GARCH extension in Bollserslev (1986). The models are

still popular today; Engle received the 2003 Nobel Memorial Prize in Economics, due to the

invaluable contribution of the ARCH family to econometric modelling.

The GARCH model differs from the ILN by assuming a volatility process, σt, t = 1, . . . , N .

The volatility level at each time point depends on previous values of the volatility, and on

the squared deviation of the process from its mean value.
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The variance process of the GARCH(p, q) model is defined to be

σ2(t) = α0 +

p∑
i=1

αi(Yt−i − µ)2 +

q∑
j=1

βjσ
2(t− j)

The parameters αi, i = 0, . . . , p and βj, j = 1, . . . , q are generally assumed to be greater than

zero, which avoids more complex constraints to ensure the variance process is always strictly

positive.

The variance process is stochastic, unconditionally, but deterministic, conditional on the

previous values of Yt and σ2
t . Given σ(t), the process at each time point is similar to a

standard ILN model:

Yt|σ(t) = µ+ σ(t) · εt

This process does capture volatility clustering. With positive β parameters, relatively higher

volatility levels for previous observations under the series will result in higher volatility levels

for future observations. A single, randomly high value of the Yt process will increase the

variance in the next value of the series, and the β parameters will determine how significantly

that higher variance impacts subsequent values. Similarly, lower volatilities will increase the

probability that subsequent observations will have lower volatilities.

The GARCH(1,1) model is the most popularly used for equity return modelling (see, for

example, the seminal text by Campbell, Lo and MacKinlay, 1997). The model has five

parameters: µ, α0, α1, β1 and the starting volatility σ2(0). The inclusion of σ2(0) in the

likelihood can sometimes have a significant impact on the resulting values of the other param-

eters under maximum likelihood estimation, which can be undesirable given the parameter

(usually) does not significantly impact long term projections of the series. Instead of treating

the starting volatility as a free parameter, one could also set the starting volatility to the

empirical average volatility of the data and have it remain fixed during model estimation.

The sum α1 + β1 measures the persistency of the volatility process. In order for the process
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µ1 α0 α1 β1 σ2(0)
0.00700 0.00000 0.13135 0.32016 0.00114

Table 2.1: The GARCH(1,1) MLE Parameters Fitted to the S&P 500 Monthly Log-Return
from Jan 1956 to Oct 2010

to be covariance-stationary we require

α1 + β1 < 1.

For some monthly data, we find that fitted values of α1 +β1 can become close to 1.0, but we

do not find any cases where α1 + β1 > 1. The issue of covariance stationarity for GARCH

models for stocks is more of a problem for higher frequency data. See Diebold (1986), for

example.

GARCH(1,1) and the S&P 500

The GARCH(1,1) model was fitted using maximum likelihood estimation to the S&P 500

monthly log-returns in Figure 2.1 using the Generalized Reduced Gradient Solver tool from

Microsoft Excel. The MLE parameters of the model are listed in Table 2.1.

2.3.3 Issues with the GARCH model for long-term equity data

To illustrate the ineffectiveness of the estimated GARCH(1,1) process at capturing the tails

of the S&P 500 index, a sample path of monthly log-returns the same length as the S&P 500

was simulated from the model. This sample path is compared to the monthly log-returns of

the S&P 500 monthly log-returns in Figure 2.2. The objective is to illustrate that the S&P

log-returns show more variability, particularly on the down-side. The GARCH(1,1) model

does not generate crashes of the sort experienced in 1987 or 2008. This is not just a feature

of this example path, it is a feature of the GARCH(1,1) model generally.

In October of 1987, the S&P 500 experienced a monthly fall of 21.76%. The probability of

experiencing a crash at least as big as this under the GARCH(1,1) model fitted to the S&P
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Figure 2.2: S&P 500 Monthly Log-Return Levels and a Sample Path of Log-Return Levels
from the GARCH(1,1)

data is approximately 0.00001, which would mean one would see such a one month drop every

8,000 years. More pertinent to long-term performance, the S&P 500, from January 1999 to

January 2009, experienced a ten year drop of 37.07%. The probability of experiencing at

least as large a drop as this under the fitted GARCH(1,1) model is 0.002, which would mean

one would see a ten year drop of such a magnitude around once every 5,000 years.

Several other GARCH(p, q) were explored, with values of p and q up to 3. The resulting

series suffered the same issues displayed in Figure 2.2. The extra parameters, although

sometimes significant, would simply replace existing parameters in terms of their effect.

There is limited flexibility in the contribution of the additional GARCH parameters. For a

more detailed comparison of GARCH models to other candidate models for the S&P 500,

see Hardy, Freeland & Till (2006).

With the focus of this thesis on the tails of both the short and long-term distributions, the
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need to move beyond GARCH modeling for the S&P 500 has been shown. Models need to

capture the larger volatility movements of the process. This development led to the more

sophisticated hidden Markov class of models detailed in Section 2.4.

2.4 Hidden Markov Models

Introduced in a series of papers by Baum in the 1960’s, with initial applications used in the

field of speech recognition, the class of models known as Hidden Markov, or regime-switching

models also has the capability of capturing changing volatility and volatility clustering. The

models are built around an underlying state process which is treated as unobserved. That

means that in this framework we have two dependent stochastic processes; the original log-

return process, and the unobserved, underlying process which we assume to be Markov. We

refer to this underlying process as the state process.

Under these models, the original process is assumed to be in any of K specified states at

each time point; at the next point, the process either stays in the same state or transitions

to another. For each of the K states a process is defined. The distribution for the original

process at each time point is dependent on which state the underlying state process lies in

at that time.

Hamilton (1989) provided some intuition for the use of hidden Markov models for economic

series. In the case of stock prices, we might conjecture that the market, or perhaps more

correctly the traders, experience periods of relative calm or optimism, where normal everyday

trading will take place. However, after some random trigger event, for example the collapse

of a key financial institution, the market will shift to a mood of pessimism, leading to poor

returns and higher volatility.

We denote the underlying state stochastic process by ρt ∈ {1, . . . , K}, t = 1, . . . , N , indi-

cating the underlying state of the market for each time t. Since this state of the market is

unobserved, these parameters are not estimated directly using typical maximum likelihood

estimation.
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As the name suggests, discrete hidden Markov models define the underlying state process

as a discrete time Markov chain. Homogeneous Markov models have the property that the

distribution of the underlying state at time t + 1 depends only on the state at time t, and

moreover this relationship does not depend on t, which is a very strong modeling assumption.

The underlying state process is described by a set of transition probabilities. Define pi,j as

the probability, conditional on the process being in state i at time t, that the state at time

t+ 1 will be j, independent of the value of t. More formally,

pi,j = P [ρt+1 = j|ρt = i], i, j ∈ {1, . . . , K}, t ∈ {1, 2, . . . }

These transition probabilities are parameters of the hidden Markov model. A model with

K states will have K · (K − 1) transition probability parameters, meaning the number

of parameters becomes very large very quickly as more states are added to the model. The

transition probability parameters are typically combined into a transition probability matrix.

Define the matrix P as

P = [pi,j]K×K

Since the underlying regimes are not estimated as point parameters, but instead treated as

random variables, it is often necessary to determine the probability that the process is in

each state for each time point t. Without any information from the data, the underlying

states all have the same distribution known as the stationary distribution.

Let πi, i ∈ {1, . . . , K} represent the stationary probabilities that the process is in state i

respectively (these also can be interpreted as the long-run proportion the series spends in

state i). The πi’s are then the solution to

πP = π, where π = (π1 π2 . . . πK)

The distribution of the log-returns is dependent on the underlying state of the process. As

this thesis deals with models with Gaussian innovations, the distribution of the log-returns
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at each time t under a regime switching model can be written as

Yt|ρt ∼ N(µρt,t, σ
2
ρt,t), Yi|ρi, Yj|ρj independent for i 6= j

The parameters µρt,t and σ2
ρt,t can be constant parameters, or may be stochastic processes

themselves. In following sections we present some of the popular choices.

Given the data observation set ~y = {y1, . . . , yt}, inference about the underlying state process

at each time point t can be made. We denote time 0 as the state immediately before

observation. We assume the probability function for ρ0 follows the stationary distribution,

π, and since it is only dependent on ρ0, ρ1 also follows the stationary distribution. At the

next time point, we may condition on the observation, y1. Let pi(1), i ∈ {1, . . . , K} denote

the probability that the underlying state at time 1 is state i, conditional on the log-return

y1, that is:

pi(1) = P [ρ1 = i|y1], ∀i

For each i ∈ {1, ..., K},

pi(1) ∝ πi · f(y1|ρ1 = i)

where f(y|ρ) represents the probability density function of log-return y under the distribution

associated with state ρ.

For each subsequent time point t, one can obtain a distribution of the underlying state at

t conditional on all data observations up to and including the observation at time t. Let

pi(t), i ∈ {1, . . . , K}, t ∈ {1, . . . , N} be the probability that the underlying state at time

t is state i, conditional on the data observations y1, . . . , yt. These probabilities are easily

obtained recursively, using the relations

pi(t) ∝
K∑
j=1

pj(t− 1) · pj,i · f(yt|ρt = i)

18



Conditioning on all data observations up to and including yt instead of just yt alone, adds

information regarding where the underlying state path has likely traveled. The probabilities

pi(t) are central to much of the decision making and analysis performed in the rest of this

thesis.

The long-term equity models described below all maintain the hidden Markov structure

described in this section. The difference between the models comes from assuming different

distributions within the states (or regimes) for the original log-return process.

2.4.1 The Regime-Switching Log-Normal Model

Proposed for long-term equity modeling by Hardy (2001), the regime-switching log-Normal

model (RSLN) uses Normal distributions for each state under the regime-switching frame-

work. Mean and variance parameters are defined for each regime, meaning an RSLN model

with K regimes, denoted RSLN-K, would have K · (K − 1) + 2K = K · (K + 1) parameters:

µ1, . . . , µK , σ1, . . . , σK and the K · (K − 1) transition probability parameters.

The model can be expressed as

Yt|ρt = µρt + σρt · εt, Yi|ρi, Yj|ρj independent for i 6= j

where ρt ∈ {1, . . . , K}, and conditional on the value of ρt−1, takes value k with probability

pρt−1,k.

One of the attractive features of the RSLN model for long-term equity prices is its ability

to capture volatility clustering through the regime-switching framework. Different variance

parameters apply in each of the regimes, which allows the modeling of log-returns with K

specified potential values for the monthly (say) volatility. If the persistence of each regime is

relatively high, then the process may spend extended periods in one regime with a relatively

low level of volatility, then transition to a different regime and spend extended periods with

a relatively higher level of volatility.

In investment guarantee literature (CIA, 2001, Hardy, 2001 and Hardy, Freeland & Till,
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Regime µ σ Transition Parameters
One 0.01024 0.03384 p1,2 = 0.0337
Two -0.01448 0.06486 p2,1 = 0.1517

Table 2.2: The RSLN-2 MLE Parameters Fitted to the S&P 500 Monthly Log-Return from
Jan 1950 to Oct 2010

2006, for example), typically two regimes are used. Using maximum likelihood estimation

for example, fitting stock index data generates one regime with a positive expected return

and a relatively low variance, and a second regime with a negative expected return and

a relatively high variance. Both regimes have a high persistency, with the probability of

remaining in the high return / low volatility regime around 95%, and the probability of

remaining in the low return / high volatility regime around 80%. This typical framework is

consistent with the intuitive justification for financial regime-switching models described at

the beginning of the section.

When adding a third regime to the framework, the third regime often acts as a transition

regime between the two existing regimes, with a very low persistency. Entering this regime

will usually only occur from one of the two original regimes, and the process exits to the

other. The parameters of the original regimes will change slightly, compared with the 2-

regime parameters but they maintain the general form, with a high mean low volatility

regime and a low mean high volatility regime.

RSLN and the S&P 500

Both the RSLN-2 and RSLN-3 models were fitted using maximum likelihood estimation

to the S&P 500 monthly log-returns from January 1950 to October 2010 using the same

Generalized Reduced Gradient Solver algorithm from Microsoft Excel. The parameters for

the RSLN-2 model are listed in Table 2.2, and the parameters for the RSLN-3 model are

listed in Table 2.3.

The third regime acts as a transition regime between the low return regime and the high

return regime. The expected time the process stays in this regime once it enters it is less

than two months. The third regime appears to capture a short positive period of recovery

20



Regime µ σ Transition Parameters
One 0.00876 0.03471 p1,2 = 0.0234, p1,3 = 0.0000
Two -0.03598 0.06601 p2,1 = 0.0000, p2,3 = 0.1956

Three 0.05944 0.01945 p3,1 = 0.6159, p3,2 = 0.0000

Table 2.3: The RSLN-3 MLE Parameters Fitted to the S&P 500 Monthly Log-Return from
Jan 1950 to Oct 2010

before the system returns to the more persistent long term regime. Adding the third regime

has a significant effect on the regime two mean in this case; as some of the returns that are

positive, coming towards the end of a period of uncertainty, are re-allocated to the third,

intermediate regime, the remaining regime 2 returns are more negative, on average. The

changes to the low return regime in the RSLN-3 model mean that a larger negative return

when entering a period of high volatility, captured by regime 2, is that more likely, and larger

positive returns are more likely coming out of the period of high volatility, now captured by

regime 3.

However, with such little time spent in the third regime, questions about its statistical

significance arise. Under the RSLN-3 model, for a series the same length as the S&P 500,

the process only expects to spend about 24 months in the third regime, for an extra six

model parameters (although three of them ended up being estimated as zero).

2.4.2 The Regime-Switching Draw-Down Model

The regime-switching draw-down model (RSDD), proposed by Panneton (2004), builds on

the RSLN model by adding a form of mean reversion to the distributions within the regimes.

The purpose of the extra framework is to encourage higher monthly returns after experiencing

low returns. The model achieves this by first defining a stochastic process Dt, which can be

described as the draw-down level, that tracks how far the total log-returns have fallen below

the processes previous high. More formally,

Dt = min(0, Dt−1 + Yt)
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The model incorporates the draw-down level into the expected log-returns by applying a

factor ϕk, k ∈ {1, . . . , K}, which is specific to the processes underlying regime. The ϕk’s are

treated as model parameters.

The process can be expressed as

Yt|ρt = µρt + ϕρt ·Dt−1 + σρt · εt where εt ∼ N(0, 1)

ρt|ρt−1 = k w.p. pρt−1,k k ∈ {1, . . . , K}

With an extra parameter per regime, relative to the RSLN model, the RSDD model has

K · (K + 2) parameters.

The ϕk parameters are generally negative, which means the regime-specific means µρt +

ϕρt ·Dt−1 will always be greater than or equal to the base mean µρt . More specifically, the

larger the process falls below its previous high, the larger the expected return of the next

observation will be. The intuition for this framework from a financial standpoint is that

markets will ‘bounce back’ after experiencing losses. While this addition can appear to be

only a slight change relative to the RSLN model for the monthly observations, this type

of framework has drastic implications for the long-term returns of the process. Strings of

negative returns are less likely under the model, resulting in a significantly thinner long-term

return left tails. Incidentally, this ‘bounce-back’ appears to be the feature captured in the

third regime in Table 2.3.

The states for the an RSDD-2 model typically break down the same way as the RSLN-2:

one regime has a positive return with a low variance, and one regime with a negative return

and a high variance. Typically, however, when fitting the RSDD-2 and RSLN-2 to the same

data set, the expected return for the second regime under the RSDD-2 model will be lower

than the respective expected return for the RSLN-2 model to counterbalance the draw-down

effect.
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Regime µ ϕ σ Transition Parameters
One 0.00648 -0.04687 0.03435 p1,2 = 0.0282
Two -0.04051 -0.05580 0.06446 p2,1 = 0.1809

Table 2.4: The RSDD-2 MLE Parameters Fitted to the S&P 500 Monthly Log-Return from
Jan 1950 to Oct 2010

RSDD-2 and the S&P 500

The RSDD-2 was fitted by maximum likelihood estimation to the S&P 500 from January

1950 to October 2010, and the parameters are shown in Table 2.4. The two states are similar

to the states from RSLN-2 model in function, but the state-two mean is almost three times

that of the RSLN-2 model, counterbalancing the draw-down functionality of the model.

The RSDD-2 model also spends more relative time in the low volatility state than does the

RSLN-2 model. Interestingly, the ϕ parameters from the two states are quite close together,

suggesting that the incorporated mean-reversion is irrespective of the state of the market.

2.4.3 The Regime-Switching GARCH model

As described by Gray (1996), the GARCH architecture can be defined within a regime-

switching framework for a regime-switching GARCH (RSGARCH) model. This model is

significantly more complicated than either the GARCH or the RSLN models. An extra com-

plication arises from the fact that current data observations under the GARCH framework

are dependent on previous volatilities, yet those volatilities under a regime switching setting

are still random variables after conditioning on the data, due to the unknown nature of the

underlying regimes.

Gray solved this issue through averaging the volatilities across the regimes. First, the regime-

specific distributions are defined as for any regime-switching model, except now with a

GARCH process within regimes:

Yt|ρt = µρt + σρt,tεt

σ2
ρt,t = αρt,0 + αρt,1e

2
t−1 + βρtσ

2
t−1
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Regime µ α0 α1 β1 Transition Parameters
One 0.00790 0.00000 0.00000 0.85279 p1,2 = 0.0433
Two -0.06459 0.00335 0.00000 0.57147 p2,1 = 1.0000

Table 2.5: The Two-Regime RSGARCH MLE Parameters Fitted to the S&P 500 Monthly
Log-Return from Jan 1956 to Oct 2010

Using the probabilities pi(t) as weights, where pi(t), as defined above is the probability that

at time t the underlying state is i, conditional on the data observations up to and including

the observation at time t, e2
t and σ2

t can be expressed as

et = yt − {p1(t)µ1 + (1− p1(t))µ2}

σ2
t = p1(t)(µ2

1 + σ2
1,t) + (1− p1(t))(µ2

2 + σ2
2,t)− {p1(t)µ1 + (1− p1(t))µ2}2

In exchange for the added complexity, the RSGARCH model allows a wide range of possible

values for the volatility process, as does the GARCH model, but, additionally, has the

ability to incorporate the association of periods of increased volatility with poorer market

returns through the regime-switching framework. However, the number of parameters for

the RSGARCH grows more quickly than simpler regime-switching models and can become

very difficult to fit models with as few as three regimes. Moreover, the number of parameter

permutations available within the framework is also quite large, which can make model

selection with the RSGARCH framework itself quite cumbersome.

RSGARCH and the S&P 500

For the S&P 500 from Jan 1950 to Oct 2010, a RSGARCH-2 model with a GARCH(1,1)

framework within both of the regimes was fitted using maximum likelihood. This model

has ten parameters: µ1, µ2, α1,0, α2,0, α1,1, α2,1, β1,1, β2,1 and the transition probabilities p1,2

and p2,1. Even this simple RSGARCH model was quite difficult to estimate using maximum

likelihood estimation, with many local maxima close to the global maximum. The MLE

parameters are listed in Table 2.5.
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When coupled with a GARCH(1,1) framework within regimes, the regime pattern is quite

different compared to the RSLN-2 model. The transition probability from regime two to

regime one is 1, meaning that after transition to the second regime, the process immediately

transitions back to the first. This process more resembles the regular GARCH(1,1) model,

except once in a while the process changes to produce an extreme left tail observation (the

mean of the log-returns in the second regime is -0.06459), and then immediately reverts to

the GARCH(1,1) framework again. This might suggest that the regime-switching framework

is perhaps not an ideal extension of the GARCH model, at least under maximum likelihood

estimation, for this data set.

The MARCH model and the S&P 500

Wong & Chan (2005) presented a specific version of the RSGARCH model, which was known

as the Mixture-ARCH (MARCH) process. The model had two major assumptions that

differentiate it from the full RSGARCH model. The first was that all β parameters under

the GARCH model were fixed to be zero, meaning the processes within regimes are ARCH

not GARCH. The second assumption was that the regime-switching process was constrained

to be a mixture process, meaning that the transition probabilities are now independent of

the current state.

Formally, the mixture assumption requires

p1,k = p2,k = · · · = pK,k, ∀k

The mixture assumption means that volatility clustering can no longer be captured through

the underlying state process, as the processes state at time t is now independent of the

processes state at any other time. Now, only can volatility clustering be captured through

the state-specific ARCH framework.

Hardy, Freeland & Till (2006) fitted the MARCH model to the S&P 500, and found a two-

point mixture with one mixture component having an ARCH process with two or three lags

and the other mixture component having no lags resulted in a good fit under the model’s

framework. This model was again fitted to the S&P 500 data from Jan 1950 to Oct 2010,
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State µ α0 α1 α2 α3 State Probability
One 0.00953 0.00000 0.07143 0.05702 0.16358 0.9667
Two -0.06593 0.00492 – – – 0.0333

Table 2.6: The Two-Point MARCH MLE Parameters Fitted to the S&P 500 Monthly Log-
Return from Jan 1950 to Oct 2010

and the model parameters are listed in Table 2.6.

Under the ML estimated model, the probability of the underlying state of the process at

any point in time being state 1 is 96.7%. As was the case for the RSGARCH model, this

probability is considerably higher than the state one frequency for the RSLN and RSDD

models. In a broader sense, however, the model parameters are quite similar to the other

hidden Markov models: an often visited state having a positive expected, and a less often

visited state with a negative expected return. The positive correlation seen in the volatility

of the data is captured here through the three α parameters from state 1.

2.4.4 The Hidden Markov Models and the Tails of the S&P 500

The fitted single-state GARCH family of models were unsatisfactory in that the models did

not satisfactorily capture either realistic volatility clustering, or the extreme values seen in

the data. A first look into the adequacy of the class of hidden Markov models when modeled

to the S&P 500 should look at these elements.

The S&P 500 index, and its observed volatility pattern is displayed in Figure 2.3, along with

sample paths from each of the hidden Markov models fitted and their respective observed

volatility patterns, similar to Figure 2.2 for the GARCH(1,1) model. The volatility patterns

of the hidden Markov models resemble much more closely that of the S&P 500, as the larger

jumps in observed volatility are seen for each of the models.

Also important the ability of the hidden Markov models to capture the extreme observations

seen in the data. The probability of each of the hidden Markov models experiencing the

market crash of October 1987 are displayed in Table 2.7, along with the probability of

experiencing the crash under the single state GARCH model. The probability of experiencing
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Figure 2.3: S&P 500 Monthly Log-Return Levels and Sample Paths of Log-Return Levels
from the Hidden Markov Models
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Model Probability
RSLN-2 0.0043 %
RSLN-3 0.0101 %
RSDD-2 0.0089 %

RSGARCH 0.0090 %
MARCH 0.0185 %

GARCH(1,1) <0.0001 %

Table 2.7: Probability of experiencing the S&P 500 October 1987 Crash under the Hidden
Markov Models

the crash is over 100 times greater under the more complex hidden Markov models.

The Long-term Tail of the S&P 500

Of more importance for long-term equity modeling than the single log-returns are the longer-

term implications of the candidate models. As noted earlier, over the 10-year period from

January 1999 to January 2009, the S&P 500 experienced a drop of 37.07%. Since a drop

of this magnitude would push a typical investment guarantee on the S&P 500 very deep

into-the-money, stronger candidate models used for such a contract would better capture it

such a drop.

The probabilities that a drop at least the size of the record drop in the S&P from January

1999 to January 2009 would occur in a 10-year period for each of the candidate hidden

Markov models are listed in Table 2.8. The RSLN-2 and RSLN-3 models capture the period

the best; under both models the probability of experiencing the 10-year crash is above

2.75%. The drop occurs with about 1.8% probability under the RS-GARCH model, 0.4%

probability under the MARCH model, and with 0.2% probability under the RSDD-2 model.

The probability of such a drop under the single state GARCH model was 0.2% as well,

meaning the RSLN models especially offer a drastic improvement for capturing this period.
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Model Probability
RSLN-2 0.0276
RSLN-3 0.0302
RSDD-2 0.0016

RSGARCH 0.0182
MARCH 0.0042

Table 2.8: Probability of experiencing the 1999-2009 S&P Return under the fitted Hidden
Markov Models

2.5 Long-term Equity Hidden Markov Model Selection

In this section, the recent history in hidden Markov model selection for long-term equity

data will be discussed. First an illustration of differences of the models discussed and fitted

in the previous section will be presented, providing the justification for a thorough model

decision process. A summary of the model selection discussion in Hardy, Freeland & Till

(2006) will follow. Finally, the need for hidden Markov goodness of fit tests will discussed,

paving the way for the hidden Markov residual tests that are introduced in the next chapter.

2.5.1 The 10-year Outlook for Long-term equity Hidden Markov

Models

The hidden Markov models discussed in the previous section all share the same framework:

they all have one underlying state representative of a normal stable market with positive

expected returns and relatively low volatility, and another underlying state representative of

market instability, where observed volatilities are high, and expected returns are negative.

The differences in the models are mostly in the intra-state distributions, such as the mean-

reversion parameters of the RSDD model, or the additional autoregressive parameters in the

RSGARCH and MARCH models. However, at least under maximum likelihood estimation,

the differences in the model specifications can force stark differences in the parameters of

the models, the most notable ones being the mean return within the high volatility state,

and the transition probabilities.

These differences can have significant effects on the long-term implications of the models,
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Figure 2.4: Density Functions of the 10-Year Accumulation Factors of the Popular Hidden
Markov Models

and consequently can have significant effects on the valuation of derivative contracts of the

equities being modeled. Figure 2.4 displays the probability density functions of the 10-year

total returns under each of the hidden Markov models fitted. The returns represent the

accumulation of a $1 investment in the index for a 10-year period. The distributions of

the accumulation factors, in particular in the left and right tails, are quite different under

the different models. The RSLN-3 and RSLN-2 models have quite comparable left tails,

the thickest of the candidate models. The RSGARCH left tail is slightly thinner, while the

MARCH model left tail is noticeably thinner again, and the RSDD-2’s left tail significantly

thinner still. The MARCH, RSLN-3 and RSLN-2 models have relatively thicker right tails,

while the RSDD-2 has the thinnest right and left tails.

The tails of the distributions are quite central to the valuation of equity linked investment

guarantees. Following is a simple example of an investment guarantee contract, to show

how the reserve level can be quite different under the different models. The effects of the

differences in the tails of the models displayed in Figure 2.4 will be illustrated. The objective

of the example is to show that the choice of model for investment guarantee analysis is a
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non-trivial decision, and that a rigorous validation and selection process for the models is

justified.

2.5.2 Guaranteed Minimum Accumulation Benefit Example

The example contract will be a 10-year Guaranteed Minimum Accumulation Benefit (GMAB)

contract (see Hardy, 2003 for details). A single premium is assumed to be paid by the poli-

cyholder. the premium which is placed in a fund which is assumed to be invested in the S&P

500 with dividends reinvested. The policy benefit, paid either at the end of the month of

death or at contract maturity, is the greater of the accumulated investor’s fund value and a

guarantee on the investor’s fund. The guarantee is initially set to the single premium. If the

policy is still in force at five years, then there is a one-time ratchet function which sets the

guarantee to the accumulated fund value at five years, if the fund is higher than the initial

guarantee level.

Formally, let Ft represent the policyholder’s fund value at time t, in months, before the

monthly expense charge has been deducted from the fund. Let Gt be the guarantee level at

time t. Then Gt is defined as

Gt =

F0 0 ≤ t ≤ 5

max(F0, F5) 5 < t ≤ 10

To fund the guarantee, an expense charge at the rate of 3% per year is deducted from the

fund value at the beginning of every month. This expense charge is treated independently of

the estimated cost of the guarantee under the assumption that supply and demand market

forces of GMAB contracts will determine the expense charge level.

The policyholder is assumed to be aged 50 and has mortality consistent with Appendix A of

Hardy(2003). Lapses for the contract are assumed to be 8% per annum (a ‘lapse’ in this case

is assumed to be the policyholder prematurely withdrawing the whole fund; an event under

which no guarantee is paid regardless of the fund’s level). The interest rate is assumed to
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CTE-Level RSLN-2 RSLN-3 RSDD-2 RSGARCH MARCH
% % % % %

75% 18.05 17.90 12.48 16.73 9.89
90% 34.67 35.28 22.85 30.53 21.96
95% 44.29 45.75 28.79 38.52 30.09

Table 2.9: CTE’s of the GMAB Present Value Liability (as a percentage of initial premium)
under different Regime-Switching Models, for different levels of α

be a fixed 5% per year.

For this simple example, the guarantee will assumed to be reserved using the ‘actuarial ap-

proach’. This approach uses Monte Carlo simulation to project the liabilities of the guarantee

under the model (the ‘real world’ distribution as opposed to the risk neutral distribution).

The reserve is then set to an appropriate risk measure of the discounted liabilities. The risk

measure used here will be the Conditional Tail Expectation (CTE), at the α · 100% level,

which is an average of the worst 100(1− α)% of the fund performance simulations.

The cash flows for the policy were simulated, 100,000 times, for each of the popular regime-

switching models, and reserve levels (as percentages of the initial premium investment F0)

for the 75%, 90% and 95% CTE of the GMAB liability are listed in Table 2.9. The reserves

for the GMAB liability are quite different across the different models. At one end of the

spectrum are the RSLN-2, RSLN-3 and RSGARCH models, and at the other end are the

RSDD-2 and MARCH models. Over the different levels for the CTE-measure, an insurer

would need 45-55% more capital under the RSLN-2 model compared to the RSDD-2 model.

This example demonstrates that model choice can have a very significant impact on eco-

nomic capital. It is therefore important for analysts to perform a thorough model validation

investigation to see which model is most consistent with the data. In the remainder of this

chapter and in Chapters 3 and 4 we develop tools to improve model validation and selection

for long term equity models, in particular with regime switching.
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2.5.3 Long-term Equity Hidden Markov Model Selection

Most of the hidden Markov equity model literature uses likelihood-based model selection

criteria after the models have been fitted to data. The aim of these criteria, such as the

Akaike Information Criterion (Akaike, 1974) or the Schwarz-Bayes criterion (Schwarz, 1978),

is to weigh the value of each the model’s parameters in an effort to select a single model

for use. Panneton (2002), for instance, based the argument for the RSDD model around

its significantly higher log-likelihood, and success in the corresponding tests. We note that

Hamilton and Susmel (1994) demonstrated that one should not use the likelihood ratio test

to determine the number of states in a hidden Markov model.

Other non-likelihood based testing has also been developed. Hardy, Freeland & Till (2006)

made use of a modified resampling technique for model inference. However, the results

were somewhere between the two extremes of the RSGARCH and RSLN-2 models and the

RSDD-2 model. The conclusion reached was that the RSLN-2 and RSGARCH models were

the safer choices, but limited scientific conclusions were reached through the model validation

analysis.

The comparative tests determine if a model fits better than another specified model, taking

likelihood and parsimony into consideration. Goodness of fit tests are used to determine

whether or not the candidate fits the data acceptably in the first place. This step should

be performed prior to any comparative tests, as comparing two models that do not fit the

data well, will result in an unsatisfactory model either way. Many goodness of fit tests apply

the test criterion to the difference between the observed data and the expected values under

the model. It is common, for example, to work with standardized residuals. For a single

process model, with independent, normally distributed innovation terms, the standardized

residuals can be tested to assess whether they significantly different, statistically, from the

independent normal sample expected from the model. Similarly, if the residuals, εt in the

models described earlier in this Chapter, are assumed to have a Student’s t-distribution,

the goodness of fit of the model could be assessed by comparing the standardized residuals

with the Student’s t-distribution. The idea is to compare the estimated residuals with the

random innovations assumed in the model; the null hypothesis would be that the residuals

are consistent with the model. For regime-switching models it is not quite so straightforward

33



to determine what the the distribution of the standardized residuals should be, under the

null hypothesis. Although the εt are assumed N (0, 1), the standardized residuals are not

necessarily N (0, 1), under the null hypothesis, because of the impact of the regime process.

Hardy, Freeland & Till (2006) did a preliminary, more heuristic analysis of the residuals from

each of the hidden Markov models above along with some other non-hidden Markov models,

for the S&P 500 and found that only the regime-switching models passed standard residual

tests such as the Jarque-Bera test and a QQ-plot inspection. In Chapter 3 we review the

heuristic approach of Hardy et al (2006) and develop a more rigorous process for goodness

of fit testing of regime switching models.

2.6 Conclusion

In this chapter, the S&P 500 total return index was identified as the data-set of interest,

and it was demonstrated that traditional GARCH modeling was inadequate for typical long-

term investment guarantee analysis for this index. Many of the popular hidden Markov

models used for long-term equity data were then described and fit to the S&P 500 using

maximum likelihood estimation. The hidden Markov models showed significant improvement

in capturing the long-term tails of the S&P 500 over traditional GARCH modeling.

The GMAB example demonstrated that model choice, even among different types of hidden

Markov models, can have a significant impact on long-term investment guarantee analysis,

justifying the need for thorough model validation and selection analysis. The current liter-

ature for investment guarantee model validation maintains a lot of uncertainty in decision,

which paves the way for a more thorough validation analysis developed here in Chapter 3.
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Chapter 3

Hidden Markov Residuals

3.1 Introduction

In Chapter 2, different hidden Markov models used for modeling long-term financial data

were presented and the long-term implications of each, when fitted to the S&P 500 were

discussed. There were very significant differences found between the models with regard to

the left tails of the longer term accumulation factors. These differences may have significant

impact on the risk management of investment guarantees or other financial derivatives. The

need for effective validation of these models was emphasized.

One branch of statistical tests is that of model comparison tests. Examples of such tests

include the Akaike Information Criterion (AIC) test (Akaike, 1974), and the Schwarz-Bayes

Criterion (SBC) test (Schwarz, 1978). These tests use the maximum log-likelihood of the

data under the model, with a penalty for the number if parameters, to rank candidate models

for the purpose of model selection.

The popular model comparison tests were developed for single state models. Their applica-

tion to hidden Markov models is questionable in some cases: for instance, under its standard

assumptions the LRT is not valid for selection of the number of underlying states in a hid-

den Markov for a particular data set (Hamilton, 1994), and in theory should only be used
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to compare embedded models. The LRT is widely used as a heuristic assessment outside

these theoretical limitations, including in Hardy, Freeland & Till, (2006), where some of the

models described in Chapter 2 were compared based on the LRT criterion, inter alia.

Another important branch of model tests are goodness-of-fit tests. These type of tests

measure whether or not a data set is consistent with a specified model. These tests are often

based on the standardized residuals of the data, because it is common that the distribution

of the model standardized residuals is well specified. That is, suppose we have a discrete time

stochastic process {Yt}, t = 1, 2, ..., T , and a data set (y1, y2, ..., yT ). The model standardized

residuals are the random variables

εt =
Yt − E[Yt]√

V [Yt]
,

and the standardized residuals of the data are estimated as

ε̂t =
yt − µ̂t
σ̂t

where µ̂t is the estimated value of E[Yt] and σ̂2
t is the estimated value of V [Yt].

For a univariate series, the model residuals are generally independent (even where the process

has serial dependence), and follow a standard distribution such as N (0, 1) or the Student’s

t-distribution. See, for example, Anscombe (1961), or Morgan (1954), or Campbell, Lo &

McKinlay (1996).

Residual-based testing has not been extensively developed for hidden Markov models. Al-

though the process is defined to have independent N (0, 1) residuals within each state, these

are not recovered using standardized residuals, assuming the state is unknown. A partic-

ular problem is that the standardized residuals under a regime switching process are not

independent, as they depend, serially, on the underlying regime.

In this chapter, the difficulties of defining residuals for hidden-Markov models are first il-

lustrated. We then demonstrate how, given a hidden Markov model with N (0, 1) residuals

within the underlying states, we can generate model residuals that are independent, N (0, 1)

distributed, even with a hidden Markov regime process. We can use this information to gen-

36



erate the distribution of the residuals from the data. The resulting random variables are also

independent N (0, 1) under the null hypothesis that the data is consistent with the model,

and this allows us to assess the goodness of fit of the data with the model using standard

goodness of fit tests for Normal distributions.

3.2 Hidden Markov Residuals

In this section, we use Rt to denote model residuals, which are functions of the random

variables Yt and ρt, the state process. We use rt to denote the data residuals, which are

functions of the data and of the estimated model parameters.

For a hidden Markov process with N (0, 1) innovations within regimes, we recover a N (0, 1),

independent residual process as

Rm
t |ρt =

Yt − E[Yt|ρt]√
V [Yt|ρt]

where ρt is the underlying state at time t as in Chapter 2. However, as the regime process

is unobserved, we cannot calculate the equivalent data residuals.

In practice, although this series of residuals is not observable because the underlying state

process is also unobserved, there is an observable set of residuals for each of the underlying

states. These sets of residuals are denoted rt,k, where k ∈ {1, . . . , K}:

rt,k =
yt − µ̂t,k
σ̂t,k

, t ∈ {1, . . . , N}, k ∈ {1, . . . , K}

where µ̂t,k and σ̂t,k are the estimates of µt and σt for regime k.

If the data is consistent with the model, then exactly one of the k residuals calculated at

each time point is the ‘true’ N (0, 1) residual. The problem is, we don’t know which one. Our

objective is to retrieve a residual set with values which are independent and follow a known

distribution (preferablyN (0, 1) as that is distribution of the model intra-state residuals), and

which does not require knowledge of the regime process ρt. If we then apply the same process
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to data, we can apply goodness of fit tests, knowing that the data should be consistent with

the model residual distribution for an adequate fit.

The challenge then is to select a single path of residuals from the state-specific residuals,

which retains the characteristics of the Rm
t |ρt process without conditioning. In the remainder

of this section different options used previously in the literature will be presented, and then it

will be demonstrated that some choices lead to an observed residual distribution which is be

quite different from the corresponding intra-state residual process, Rm
t |ρt, that the residuals

are intended to recover.

We then present a new, stochastic method for calculating residuals which does recover the

intra-state residual process.

As was the case in Chapter 2, we consider models with random innovations within regimes

that are independent N (0, 1) distributed. It would be straightforward to generalize to other

innovation distributions.

3.2.1 Unconditional Residuals

One approach to obtaining a single residual time series is to first calculate the unconditional

mean and standard deviation of the data observation, given what can be inferred about the

underlying state path. This set of residuals will be termed the ‘unconditional residuals’ for

this chapter.

Let µUCt and σUCt be the unconditional mean and standard deviation respectively of the data

observation at time t given the information set up to and including time t. µUCt and σUCt

can be calculated through the conditional expectation and variance formulae as:

µUCt =
K∑
k=1

E[Yt|ρt = k] · pk(t)

(σUCt )2 =
K∑
k=1

V ar[Yt|ρt = k] · pk(t) +
K∑
k=1

E[Yt|ρt = k]2 · pk(t)−
( K∑
k=1

E[Yt|ρt = k] · pk(t)
)2

38



where pk(t) is the probability under the model that data observation t has underlying state

k, given the data observations up to and including time t, as described in Chapter 2. The

parameters µUCt and σUCt are the unconditional values of the mean and standard deviation

of Yt, given the data up to t− 1 – that is

µUCt = Eρ [E[Yt|ρt]|{y1, ...yt−1}]

σUCt = Eρ [V [Yt|ρt]|{y1, ...yt−1}] + Vρ [E[Yt|ρt]|{y1, ...yt−1}]

Given the UC parameters, we consider the residual process

RUC
t ,=

Yt − ˆµUCt
ˆσUCt

, t ∈ {1, . . . , N}, k ∈ {1, . . . , K}

If Yt follows a hidden Markov process with Normal innovations within regimes, the set RUC
t

will not be N (0, 1) distributed. The residual values are likely to be far from the original set,

Rm
t |ρt, which we are seeking to recover.

To illustrate this point, consider a hidden Markov model with two states. Assume that the

distributions of observations within the states are N (−4, 1) and N (4, 1) respectively. Now

suppose yt = 0. The individual regime residual values are

rt,1 = +4 rt,2 = −4

Suppose, further, that p1(t) = p2(t) = 0.5. Then µUCt = 0 which means that rUCt = 0. So,

while rm|ρt must lie in either the left or right tail of the N (0, 1) distribution (either +4 or

-4), the unconditional residual rUC lies in the centre.

We can demonstrate that the UC residuals do not recover the Rm
t |ρt process with a simulated

example, where we start with known Rm
t |ρt values, and consider the resulting UC residuals.
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Figure 3.1: QQ-plot of N(0,1) and Unconditional Residual Quantiles for the RSLN-2 Example

We use the RSLN-2 model from Chapter 2, with parameters also from the MLE fit,

µ1 = 0.01024 σ1 = 0.03384 p1,2 = 0.0337

µ2 = − 0.01448 σ2 = 0.06486 p2,1 = 0.1517

To demonstrate the distortion of the unconditional residuals, compared with the Rm
t |ρt

(which are i.i.d. N (0, 1) in this model) we generate a series of 500 values of the log-return

from the RSLN process. Instead of random εt’s, we used standard quantiles from the Normal

distribution, randomly distributed throughout the time series, without replacement.

zt ∈
(

Φ−1(1/501),Φ−1(2/501), . . . ,Φ−1(500/501)

)

By construction, the innovations should appear to be perfectly N (0, 1). However, the resid-

uals {rUCt } are not normally distributed. The QQ-plot of the unconditional residuals is

displayed in Figure 3.1, which demonstrates that the obtained residual set is much thinner

tailed than the N(0,1) distribution.
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Figure 3.2: ACF of Unconditional Residuals for the RSLN-2 Example

Additionally, for this example, the distribution of the residual set is platykurtic. Both the

left and right tails of the unconditional residual distribution are thinner than the standard

Normal distribution, which is consistent with the effect in the earlier simpler example. This

is to say the unconditional residual set has thinner tails than the residuals {Rm
t |ρt}.

Such a finding represents a hazard when comparing the unconditional residual set to a

standard N (0, 1) distribution in the context of long-term equities. The method tends to

generate thinner tailed residuals than the underlying model, for situations where the two

regimes have different means. If an analyst assumed that this residual set was representative

of Rm
t |ρt, then he or she could be misled into using a model with tails that are significantly

thinner than those underlying the data.

Another important assumption of the residual distribution under the null hypothesis is in-

dependence. The autocorrelation function of the residual set generated for the RSLN-2

example is shown in Figure 3.2. For the time 1 lag, the estimated autocorrelation is right

on the border of rejection of independence at the 95% level. There does appear to be a

possibility for a positive correlation effect between two consecutive residuals.

An explanation for this can be found in the model framework. When the state process
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transitions from the low mean, high volatility state to the high mean, low volatility state,

this is generally the period of the greatest state uncertainty (the state probabilities p1(t)

and p2(t) are furthest away from both 0 and 1). This is due to the area of overlap of the

two regime distributions. This means that periods of distortion due to state uncertainty are

grouped together, which can create the correlation seen in Figure 3.2.

Together, the distortion of the residuals from the random innovations under the model, and

the possible evidence of correlation in the residuals, suggests that the unconditional residual

set is not suitable for appropriately testing the goodness-of-fit of the model to the data.

3.2.2 Weighted-Average Residuals

Instead of calculating the unconditional first two central moments of the data observations

and then obtaining the residual set using the unconditional method, one can instead first

calculate the state-specific residuals and then generate a single set of residuals through a

weighted-average calculation.

Mathematically, as before, let

Rt,k =
Yt − µt,k
σt,k

, t ∈ {1, . . . , N}, k ∈ {1, . . . , K}

be the standardized model residual for at time t for state k. Then using the state proba-

bilities, conditional on all information available at time t, pk(t),∈ {1, . . . , K}, the weighted

average residual at time is defined to be:

Rw
t =

K∑
k=1

Rt,k · P [ρt = k|Yt, . . . , Y1]

Similar to the unconditional case, for a process distributed as the hidden Markov distribu-

tion with randomly distributed Normal innovations under the null hypothesis, the weighted

average residual set Rw
t , t ∈ {1, . . . , N} also will not distributed as N (0, 1). Also similar to
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the unconditional case, the weighted average residual set will also typically have thinner tails

than what should be indicated by the data under the null.

Consider again the example of the two-state hidden markov with the state distributions for

the data being N (−4, 1) and N (4, 1) respectively. Under the model, the data observation

must be associated with one of the underlying states. Any observation in the interval (−4, 4)

will have a positive model-associated random innovation from one state, and a negative one

for the other. The resulting weighted average residual will always be smaller in magnitude

that either of the two associated state-specific random innovations. This is to say, still under

the null, that no matter what the rmt |ρt value is, the weighted average residual will always

understate it, if rmt |ρt lies between the mean values, µk, for the two regimes.

Another potential issue is that a deep value from the high-mean state which falls deep in the

left tail, will have a residual that resembles a small (positive or negative) random innovation

from the low-mean state. The same is true for deep right tail values from the low-mean state.

For the typical RSLN model for stock returns, the weighted average residual distribution has

much thinner tails than the underlying Rm
t |ρt distribution, so, again, we do not recover an

independent N (0, 1) residual sample using the weighted residual process.

Using the same simulation as in the UC example of Figure 3.2, we generated the weighted

residual set rwt , t ∈ {1, . . . , N}. The results are shown in Figure 3.3.

Similarly to the UC residual set, both the left and right weighted average residual tails are

significantly thinner than the N (0, 1) quantiles used for the rmt |ρt process, and it is clear

that weighted average residuals do not replicate the Rm
t |ρt distribution.

The autocorrelation function for the weighted average residuals exhibits the same pattern

as that for the unconditional residuals (Figure 3.4). There is some evidence that there is

positive correlation for consecutive residuals.

In both cases of averaging, either at the level of central moment calculation for the uncon-

ditional residual set, or through averaging of the residuals themselves, the residual sets do

not retain the independence nor the N (0, 1) distribution of the Rm
t |ρt process, and can’t be

assumed to do so for goodness of fit testing.

43



Figure 3.3: QQ-plot of N(0,1) and Weighted-Average Residual Quantiles for the RSLN-2
Example

Figure 3.4: ACF of Weighted Average Residuals for the RSLN-2 Example
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3.2.3 Indicator Residuals

A different approach is to use the information that the conditional model residual, Rm
t |ρt is

exactly equal one of the state-specific residuals, Rt,k|ρt = k, but we don’t know which. Sup-

pose we have data {yt}Tt=1, and we have calculated k sets of residuals, {rt,k}, t = 1, ..., T, k =

1, ..., K. We may select the value of rt,k for which pk(t) is greatest.

That is, the model indicator residuals are defined as

Ri
t =

K∑
k=1

Rt,k · I[P [ρt = k|Yt, . . . , Y1] = max
∀i

(P [ρt = i|Yt, . . . , Y1])]

Indicator residuals were used in Hardy, Freeland & Till (2006) to test the goodness-of-fit of

many long-term equity models, including hidden Markov models. The main attraction of the

indicator residual set is that, for the range of parameters and models commonly used, we are

often relatively confident in assessing which regime the process is in – that is, pk(t) is often

near to 1.0 for one regime. In this case, we will have a high probability that Ri
t = Rm

t |ρt.
This probability will depend strongly on the parameters of the model, and, in particular, the

overlap between regime distributions. This method will work best if the regime distributions

are reasonably distinct.

If Ri
t = Rm

t |ρt with high probability, then we might expect the distribution of Ri
t to be close

to the distribution of Rm
t |ρt. There are problems though. For example, in the cases where

the wrong regime is selected, so Ri
t 6= Rm

t |ρt, it is likely that the values are very far apart,

and also likely that |Ri
t| � |Rm

t |ρt|, because this method tends to choose smaller residuals

over larger ones, from the set {rt,k} at each t, because regime probabilities are connected to

the residuals, and a large residual will be associated with a lower regime probability than

a smaller residual. This results in both the left and the right tails of the overall associated

random innovation distribution being thinned by the indicator residual process.

The indicator residual set was calculated for the RSLN-2 model example using the same

methodology as for the unconditional and weighted average residual sets, and its QQ-plot

relative to the N (0, 1) quantiles is displayed in Figure 3.5. Note that the left and right
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Figure 3.5: QQ-plot of N(0,1) and Indicator Residual Quantiles for the RSLN-2 Example

tails of the indicator residual set are again too thin, although less significantly than for

the unconditional and weighted-average residual sets. However, it is still apparent that the

indicator residual set does not generate the perfect N (0, 1) set that replaced the random

innovation under the model by construction for the example.

The autocorrelation function for the indicator residual, however, behaves very differently

from those of the unconditional and weighted average residuals sets. Displayed in Figure 3.6,

the lag 1 autocorrelation is significantly negative, representing negative association between

consecutive residuals. An explanation for this again centers around the transition from

the low-mean state to the high-mean state. The regime probabilities are influenced by the

process history, and there is often a lag of 1 to 2 months between the regime shift happening,

and the regime probabilities reflecting the shift by moving from less than to greater than

0.5 for the new regime. During the lag period, the residuals will be chosen from the ‘wrong’

regime. So, if the process shifts from the high mean low volatility state to the low mean

high volatility state, and the wrong residual is selected, the indicator residual is likely to be

large (and negative), followed by the switch to the right regime one month later, where the

indicator residual is likely to be smaller. Similarly, switching from the high-vol regime to

the low, if the indicator is wrong for one month, a large residual (from the high vol regime)
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Figure 3.6: ACF of Indicator Residuals for the RSLN-2 Example

wrongly selected, is likely to be followed by a smaller residual correctly selected. Hence, we

see a negative auto-correlation generated by the lag in identifying regime changes under the

indicator method.

We see from the QQ and ACF plots that the indicator residual set, for this example, is

probably not independent and is not normally distributed.

3.2.4 Stochastic Residuals

The main issue with indicator residuals is that the process tends to select the smaller residual,

underestimating the possibility of larger residuals, except when transitioning, when the larger

residual may be wrongly selected if there is a lag in identifying the regime change. The

problem is more critical with more regimes, or with larger overlap between each regime

distribution, so the probabilities associated with each state may all be close, and the residual

selection becomes less likely to replicate the Rm
t |ρt process.

This selection bias can be corrected by sometimes selecting the less likely residual, rather

than always selecting the most likely residual. To determine how to do this we use the
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regime probabilities, {pj(t) = P (ρt = j|yt, yt−1, . . . , y0)}Kj=1. Sample regime paths can be

generated through Monte Carlo simulation, using the regime probabilities as the underlying

distribution.

The stochastic residual set for this path is then the residual set that results from assuming

the simulated path is the correct one. Letting τt be the simulated regime at time t, then a

stochastic residual value at t is selected to be one of the values of Rt,k, with probability pk(t)

for each regime k = 1, ..., K. That is, let

Rs
t = Rt,k × I

{
i−1∑
j=1

pj (t) < U <
i∑

j=1

pj (t)

}
t ∈ (1, . . . , N) (3.1)

where U is a randomly U(0, 1) variable, independent of Yt and ρt.

The values of rst are generated by Monte Carlo simulation. We can generate many different

paths through the rt,k values. We will come back to this later. First, we show that the model

stochastic residuals are independent N (0, 1) random variables where the return process is

RSLN-K.

A proof of the Normality of Stochastic Residuals

The following theorem shows that the model residuals generated in 3.1 will have a N(0,1)

distribution.

Theorem 1 Suppose that Yt, t = 1, ...n follows a regime switching process with K regimes,

such that

Yt|ρt ∼ N (µρt , σ
2
ρt)
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where ρt represents the regime at time t. Let

pj(t) = Pr[ρt = j|Y1, ..., Yt].

Then define the random variable Rs
t (U) as

Rs
t (U) =

K∑
i=1

Yt − µi
σi

I

{
i−1∑
j=0

pj(t) < U <

i∑
j=1

pj(t)

}
,

where I{} is the indicator function and U ∼ U(0, 1) and p0(t) = 0 ∀t.

Then, conditionally on pi,j, µk, σk ∀i, j, k ∈ {1, . . . , K} and measurable Y1, . . . , Yt,

Rs
t are i.i.d and N (0, 1)distributed.

Proof 1 Conditional on Y1, . . . , Yt−1, the process at time t, Yt, is simply a mixture of Normal

random variables. The mixing weights are given by

αi =
K∑
j=1

pjipj(t− 1) for i = 1, . . . , K,

where pji is the one-period transition probability from state i to state j.

The conditional density for Yt is then

f(y) =
K∑
i=1

αifi(y),

where fi(y) is the pdf for a Normal distribution with mean µi and variance σ2
i , that is, the

density corresponding to the ith regime distribution.

We also have

pi(t) =
αifi(y)

f(y)

So that pi(t)f(y) = αifi(y).
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Now we note that

E[I

{
i−1∑
j=1

pj (t) < U <

i∑
j=1

pj (t)

}
|Yt] = pi(t).

We complete the proof by finding the moment generating function for Rs
t (U), conditional on

Y1, Y2, ..., Yt−1.

MRs(s)|Y1, Y2, ..., Yt−1 = E[es·Rt(U)|Y1, ..., Yt−1]

= E
[
E
[
e
s·
∑K
i=1

Yt−µi
σi

I{∑i−1
j=1 pj(t)<U<

∑i
j=1 pj(t)}|yt

]]
= E

[
K∑
i=1

e
s· yt−µi

σi pi(t)

]

=
K∑
i=1

∫ ∞
−∞

e
s· y−µi

σi pi(t) f(y)dy

=
K∑
i=1

αi

∫ ∞
−∞

e
s· y−µi

σi fi(y)dy

=
K∑
i=1

αie
s2

2

= e
s2

2

Hence Rs
t (U) must have a standard Normal distribution; and, furthermore, since the condi-

tional information on previous values of Yt does not impact the mgf (it changes the αi weights

only), the stochastic residuals are also serially independent.

This result shows that for hidden Markov models of the form N(µρt , σρt), the stochastic

residual set is independent and identically N (0, 1) distributed. Standard tests of goodness

of fit, appropriate for normal models, can be applied to the stochastic residual set.
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Stochastic Residual Sampling Error and Averaging

One potential issue with stochastic residuals is sampling error. However, stochastic residual

sets can be generated multiple times. However, if one were to average residuals from the

same time t over the different generated stochastic residual paths, we simply recover the

weighted residuals, and the averaged sample of the stochastic model residuals is no longer

normally distributed. On the other hand, if we sort the residual sets, so that we ignore the

time argument (which should be uninformative, as the residuals are independent), then each

Monte Carlo generated stochastic model residual set is a sample of quantiles of the N(0,1)

distribution. To reduce the impact of sampling error, we may average the quantiles from a

large number of simulations.

The summarize, a general procedure for an overall set of stochastic residuals that retains the

N (0, 1) distribution of the model stochastic residuals is:

1. Generate, say, 10,000 individual stochastic residual paths.

2. Sort the residuals values within each path.

3. Average the order statistics across the different residual sets.

4. Compare the averaged order statistics with the true Normal(0,1) quantiles.

The average ordered stochastic residual set was as above was generated for the RSLN-

2 example with the perfectly standard normal model random innovations. The QQ-plot

for the calculated average stochastic residual set against the standard Normal quantiles is

displayed in Figure 3.7. The QQ-plot demonstrates that the constructed standard Normal

quantiles are indeed recovered through the stochastic residual process. The ACF of the

average stochastic residual set (Figure 3.8) also does not indicate any significant correlations

between consecutive residuals.

51



Figure 3.7: QQ-plot of N(0,1) and Average Stochastic Residual Quantiles for the RSLN-2
Example

Figure 3.8: ACF of Stochastic Residuals for the RSLN-2 Example
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The Power of Stochastic Residual Tests

Theorem 1 has shown that that stochastic model residuals for the regime switching condi-

tionally Gaussian process are N (0, 1) distributed. Hence, if we apply the process to data

generated from the model, we will have a N (0, 1) set of residuals, with some sampling vari-

ability if the number of simulations is small. However, what happens if the null hypothesis is

false – that is, if the data is not regime switching conditionally Gaussian? Will the stochas-

tic residual method, and especially the average stochastic residual method given its multiple

simulations, have the power to reject the null hypothesis?

We do not explore this question in any analytic detail; that lies beyond the scope of this

work. However, as a preliminary investigation we constructed an example, similar to the

RSLN-2 example above. In this case, we again use the RSLN-2 model except that, instead

of using the N (0, 1) quantiles for the random innovations, the first 50 and the last 50 were

raised to a power of 1.25. The resultant innovation quantiles are shown compared to the

standard Normal quantiles using a QQ-plot in Figure 3.9 (a). This example was chosen to

emulate a situation where the model is significantly thinner tailed than the data - a worst

case scenario for the valuation of many investment guarantees.

The stochastic residual sets were simulated as described above, from the generated heavy

tailed data set, and the averaged stochastic residual quantile set was calculated. A QQ-

plot of the average stochastic residual quantiles, compared to the quantiles of the standard

Normal distribution is shown in Figure 3.9 (b). The nature of deviation of the data from the

model is apparent from the plot, although the magnitude of the deviation has been softened

somewhat. The dampened power of the test should be kept in mind when the hidden Markov

models are tested against data from the real S&P 500, however.
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Figure 3.9: The Purposely Constructed Innovation Set (a), and the Resulting Average
Stochastic Residual Set for the RSLN-2 Residual Test Power Example

3.3 Stochastic Residuals and the S&P 500 Hidden Markov

Models

In this section, the long-term equity hidden Markov models fitted in Chapter 2 will be tested

for goodness of fit, using the stochastic residual method. For the stochastic residual method,

10,000 simulations of stochastic sets of residuals were performed, and quantiles averaged.

We also consider using the Indicator residuals, again, comparing with Normal quantiles, to

demonstrate the differences between the two methods applied to real world data.

3.3.1 RSLN-2

The QQ-plots for the indicator residuals and average stochastic residuals of the RSLN-2

model for the S&P 500 data against standard Normal quantiles are displayed in Figure 3.10.

54



Figure 3.10: QQ-plots for the Indicator and Stochastic Residuals of the RSLN-2 Model for
the S&P 500

This is a good example of the improved power of the stochastic residual method over the

indicator method. Using the indicator residuals, the left tail in the data appears slightly

thinner than the model (apart from October 1987). Using the stochastic residuals, the left

tail in the data is somewhat thicker than that of the model. This represents a very significant

difference for the purposes of long-term investment guarantee modeling from a qualitative

perspective, as underestimating the left tail can have much more profound impact than

overestimating it.

The average stochastic residual plot indicates the model does appear to fit reasonably well

for the most part. However, one should keep in mind the RSLN-2 example from the previous

section, where the average stochastic residual method was shown to dampen deviations.

This may suggest that the left tail underestimation could be more severe than indicated.

The average Jarque-Bera statistic (see Jarque & Bera, 1980) for the stochastic residual sets

for the RSLN-2 model was 3.5184, which has a corresponding p-value of 0.1722, providing

a more objective assessment that the stochastic residuals sets are consistent with model

assumptions.
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Figure 3.11: Autocorrelation Function for the Stochastic Residuals of the RSLN-2 Model for
the S&P 500

The autocorrelation function for the RSLN-2 stochastic residuals does not indicate anything

troubling. There is a significant correlation estimated for lag 5, but this is within the realm

of statistical noise. The lag 1 estimated correlation is close to 0.

3.3.2 RSLN-3

The RSLN-3 stochastic residual QQ-plot is similar to that of the RSLN-2 model (Figure

3.12). The plot indicates that the model may slightly underestimate the left and right tails

of the data. As was the case for the RSLN-2 model, the indicator residual plot suggested

the model slightly overestimated the left tail; the distortion effect of the indicator residual

method relative to the stochastic method can be seen again. Worth noting is that the

October 1987 market crash is adequately captured on the RSLN-3 residual QQ-plot. The

average Jarque-Bera statistic for the stochastic residual sets for the RSLN-3 model was found

to be 2.3480, which has a corresponding p-value of 0.3091. The average JB statistic for the

RSLN-3 model was significantly lower than that for the RSLN-2 model.

The ACF of the RSLN-3 stochastic residuals (Figure 3.13) also behaves similarly to that of
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Figure 3.12: QQ-plots for the Indicator and Stochastic Residuals of the RSLN-3 Model for
the S&P 500

Figure 3.13: Autocorrelation Function for the Stochastic Residuals of the RSLN-3 Model for
the S&P 500
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Figure 3.14: QQ-plots for the Indicator and Stochastic Residuals of the RSDD-2 Model for
the S&P 500

the RSLN-2 average stochastic residual plot.

3.3.3 RSDD-2

The RSDD-2 model also fits the data well. The QQ-plot and the ACF plot of the stochastic

residual set are displayed in Figures 3.14 and 3.15 respectively. The average Jarque-Bera

statistic for the stochastic residual sets for the RSDD-2 model was 1.6514, which has a

corresponding p-value of 0.4379. The stochastic residual QQ-plot behaves similarly to the

RSLN models, and the October 1987 crash is also adequately captured under the RSDD-2

model.

3.3.4 RS-GARCH

The stochastic residual QQ-plot for the RS-GARCH model indicates there are potentially

some problems with this model in the right tail (Figure 3.16). The QQ-plot indicates that
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Figure 3.15: Autocorrelation Function for the Stochastic Residuals of the RSDD-2 Model
for the S&P 500

the model may overestimate the deep right tail. The left tail of the data appears to fit

well. Again the distorting effect of the indicator residual method can be seen. The average

Jarque-Bera statistic for the stochastic residual sets for the RSGARCH model was 5.5430,

which has a corresponding p-value of 0.0625. This result would still pass at the 5% level,

but not by much. The RS-GARCH model performed the worst among the candidate models

under the J-B test.

The autocorrelation plot of the RS-GARCH model looks identical to the other hidden Markov

models. Overall, it appears the fit of the model may be slightly worse than those of the other

models due to the right tail deviation.

3.3.5 MARCH

For the MARCH, a significant change in the QQ-plot of the residuals under the indicator

method to the residuals under the stochastic method can clearly be seen in Figure 3.18. The

indicator residual QQ-plot indicated that the left tail did not fit the data well, overestimat-

ing the deep right tail, while underestimating the shallow portion of the tail. Under the
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Figure 3.16: QQ-plots for the Indicator and Stochastic Residuals of the RSGARCH Model
for the S&P 500

Figure 3.17: Autocorrelation Function for the Stochastic Residuals of the RSGARCH Model
for the S&P 500

60



Figure 3.18: QQ-plots for the Indicator and Stochastic Residuals of the MARCH Model for
the S&P 500

stochastic method, however, the left tail of the model fits the data quite well. The right

tail of the data is also fit well by the MARCH model. The average Jarque-Bera statistic for

the stochastic residual sets for the MARCH model was 2.5213, which has a corresponding

p-value of 0.2834, providing further evidence that the obtained residuals closely resemble

the assumed innovations of the model. The autocorrelation function for the MARCH model

using the stochastic residuals performs as the other hidden Markov models.

3.3.6 A Summary of the Stochastic Residual Testing of the S&P

500 Models

All of the hidden Markov models for the S&P 500 performed well in the goodness-of-fit testing

using the stochastic residual method. This provides evidence that hidden Markov models

in general represent a sound fit for S&P 500 monthly data. Comparison tests between the

models (as in Hardy, Freeland & Till, 2006) can now be performed knowing the comparisons

will be between models that adequately fit the data.
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Figure 3.19: Autocorrelation Function for the Stochastic Residuals of the MARCH Model
for the S&P 500

This section also demonstrated the benefit of using the stochastic residual method. For all

five of the models, there were noticeable differences between the indicator residual set and

the average stochastic residual set that change the results of the testing and the inference

drawn from it.

3.4 Conclusion

In this chapter, goodness-of-fit testing for hidden Markov models was the focus. Several

methods for generating residuals for hidden Markov models were presented, and distortion

effects where shown for some of the methods previously used in the literature. A brand new

hidden Markov residual method, the stochastic residual method, was introduced and it was

proven that the stochastic residual method generates standard Normal residuals under the

null hypothesis of the model. This method allows hidden Markov models to be properly

tested for goodness of fit using standard Normal tests. The power of the stochastic resid-

ual method to reject under the null hypothesis was also explored, and it was shown that

stochastic residual tests have the power to do this.
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The stochastic residual method was used to test the fit of the hidden Markov models for

the S&P 500 data from Chapter 2. All of the models performed reasonably well. Further,

a significant difference was noticeable between the indicator residual set and the stochastic

residual set for all models, indicating that usage of the stochastic residual method will have

an impact on the results obtained through testing.

63





Chapter 4

Bayesian Long-Term Equity Hidden

Markov Modeling

4.1 Introduction

The maximum likelihood fitting of the two-state hidden Markov models in Chapter 2 all

resulted in a similar state framework: one state with a high frequency, a positive expected

return and a relatively low volatility, and one state with a low frequency, negative expected

returns and a relatively high volatility. These results were consistent with Hardy (2001),

Wong & Chan (2005) and Panneton (2004). This nature of hidden Markov models when

fitted to long-term equity data creates a specific problem for modeling long-term deep out-

of-the-money options. The reserving of such contracts is concerned with tails of the model

used, and the accuracy of those tails in the model depends significantly on the accuracy of

the parameter estimation for the high volatility state. However, because that state has a

relatively low frequency, it is likely that the high volatility state parameters will have high

standard errors.

Using standard asymptotic results for assessing uncertainty of the maximum likelihood es-

timated parameters is problematic because the sample size for the high volatility state pa-

rameters is quite small, and because parameters may approach the bounds of the parameter
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space.

One could stress-test candidate models, which involves using different parameter sets and

observing the different reserving results for each. However, the different parameter sets

would not have an assigned distribution, and thus only qualitative inference is feasible.

An alternative approach is to fit the hidden Markov models to long-term equity data using

a Bayesian methodology. Bayesian modeling incorporates parameter uncertainty into the

estimation structure.

This chapter will present some techniques from the literature that are available for Bayesian

estimation of hidden Markov models, and then fit the models from Chapter 2 using Bayesian

estimation. The chapter contributes to the literature, by demonstrating the results of two

different Bayesian techniques for the RSLN-2 model when fitted to the S&P 500 monthly

data. We also compare the models using the additional insight available from the Bayesian

framework. A further objective of this chapter is to provide a framework for the analysis done

in Chapters 5 and 6, where we focus on portfolio optimization and replication, respectively,

under hidden Markov models, and assess the impact of parameter uncertainty on those

processes.

4.2 Traditional Bayesian Estimation

Conventional Bayesian estimation (see, for example, Gelman et al., 2004) first requires one

to assign a probability distribution to the model parameters, also known as the prior distri-

bution. Let Θ represent the vector of parameters of interest, and π(Θ) represent the prior

distribution of the parameters Θ. Many factors should be taken into account when deciding

on π(Θ). For example, a thinner tailed prior distribution might be used when more certain

about the likelihood of values for the parameter set Θ, whereas a thicker tailed prior might

be more suitable when there is less certainty about the values of Θ.

Once the data is observed, and the prior distribution selected, the distribution of the pa-

rameters conditional on the data observations can then be calculated. Using the conditional
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distribution of the data given the parameters, f(~y|Θ), where ~y = {y1, . . . , yN}, Bayes theo-

rem gives:

π(Θ|~y) =
π(Θ) · f(~y|Θ)

f(~y)

The distribution π(Θ|~y) is the posterior distribution, and represents the updated belief about

the distribution of the parameters given the sample; f(~y), the unconditional distribution of

the data, can be derived through the relationship

f(~y) =

∫
Θ

π(Θ) · f(~y|Θ)dΘ

For simple models, using conjugate distributions for π and f(), the posterior distributions can

be calculated analytically. For more complex models with many interdependent parameters,

such as hidden Markov models, we can not determine posterior distributions analytically,

but, using the Markov Chain Monte Carlo (MCMC) framework described below, we can

use simulation to generate a sample from the joint posterior distribution, and, provided the

sample is large enough, that will give us insight into the parameter uncertainties, as well as

a resource for quantifying the impact of that uncertainty on calculations.

4.2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo algorithms (thoroughly discussed in Gilks, Richardson and

Spiegelhalter, 1996) generate a Markov sequence of parameter vectors [Θ(0), Θ(1), Θ(2), . . . ,

Θ(r), . . . ], where Θ(r) is the set of parameter values after the rth iteration of the algorithm.

The stationary distribution of the sequence is the posterior distribution of Θ.

The sequence is serially correlated, so that the initialization, Θ(0) has an impact on the

resulting Markov chain. To minimize this impact, typically the first b observations of the

chain are omitted from the sample for the purpose of inference. This is referred to as

the ‘burn-in’ period. If there are R simulations performed during the algorithm, then the
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sequence of random variables [Θ(b), Θ(b+1), . . . , Θ(R)] converges to the desired posterior

distribution.

The choice of the starting parameters should typically be estimates that are relatively cen-

tral for the posterior parameter distribution, such as the maximum likelihood parameter

estimates. Smart choices will typically result in the chain converging more quickly than if

radical choices for parameters were input. However, even very central choices for starting

parameters will still have an impact on the Markov chain, and thus a ‘burn-in’ period is

always advisable.

For multi-parameter models, one approach for each iteration is to update the parameters

one at a time (see, for example, Robert and Titterington, 1998), with each parameter being

generated conditional on the data and the latest parameter values in the chain. Let Θ(r)

represent the vector of parameters generated during the rth iteration of the Markov chain,

and θ
(r)
d , d ∈ {1, . . . , D} be the generated dth parameter of the rth iteration. The (r +

1)th update of the parameter vector Θ(r+1) is generated by iterating through the individual

parameters consecutively, that is

θ
(r+1)
1 ∼ π(θ1|~y, θ(r)

2 , . . . , θ
(r)
D )

θ
(r+1)
2 ∼ π(θ2|~y, θ(r+1)

1 , θ
(r)
3 , . . . , θ

(r)
D )

. . .

θ
(r+1)
D ∼ π(θ1|~y, θ(r+1)

1 , . . . , θ
(r+1)
D−1 )

With this framework, the task of simulating Θ from its joint distribution π(Θ|~y) reduces to

single simulations of the θd’s from their conditional distributions π(θd|~y,Θ−d), which can be

simulated from the proportions

π(θd|~y,Θ−d) ∝ f(~y|Θ) · π(θd)

where Θ−d is the vector of parameters Θ without the parameter θd.

68



It is important to note that the parameter vector generated at each iteration is set of depen-

dent parameters, as each iteration is a simulation of the vector of parameters from the joint

posterior distribution π(Θ|~y). Maintaining this dependence is important for model accuracy

when simulating predictive distributions, which will be described in Section 4.2.2.

4.2.1.1 The Metropolis Hastings Algorithm

A popular technique for simulating from the posterior distribution using MCMC is the

Metropolis-Hastings algorithm (MHA) (first introduced in Metropolis and Ulam, 1949 and

Metropolis et al, 1953, and then generalized in Hastings, 1970). The main advantage of

the MHA is that it can be used when the posterior parameter distribution has no closed

form. The method involves simulating parameters from another distribution, known as the

candidate distribution, and then using an acceptance-rejection methodology to shape the

accepted candidate parameters such that their distribution follows the posterior distribution.

A joint candidate distribution can be specified for all D model parameters, or separate

candidate distributions can be specified for each parameter. Candidate distributions are

usually defined conditional on the value in the previous iteration of the chain. The objective

when specifying candidate distributions is to achieve an acceptance rate that falls in an

acceptable range, typically 35%-50%. If there are too many acceptances, there is a risk

that the chain is missing areas of the parameter space. If there are too many rejections, the

algorithm will converge to the posterior distribution too slowly, and most likely the candidate

distributions can be adjusted for a more efficient algorithm.

Let λ
(r)
d , d ∈ {1, . . . , D} be the candidate parameter for parameter θd for iteration r. Let

qd(·|θd), d ∈ {1, . . . , D} be the candidate distribution function for parameter θd, conditional

on the algorithm’s previous iteration’s parameter value. Therefore, the candidate distribu-

tion function of λ
(r)
d will be qd(λ

(r)
d |θ

(r−1)
d ).

Under the MHA, the candidate parameter λ
(r)
d is accepted with probability α, defined by

α = min

(
1,

πd(λ
(r)
d |~y,Θ

(r−1,r)
∼d ) · q(θ(r−1)

d |λ(r)
d )

πd(θ
(r−1)
d |~y,Θ(r−1,r)

∼d ) · q(λ(r)
d |θ

(r−1)
d )

)
(4.1)
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and rejected with probability 1− α.

Θ
(r−1,r)
∼d is the set of current values of the parameter set Θ, without parameter θd, at the time

that the candidate parameter λ
(r)
d is being simulated (assuming parameters are simulated in

the order 1, 2, . . . , d, . . . , D):

Θ
(r−1,r)
∼d = [θ

(r)
1 , . . . , θ

(r)
d−1, θ

(r−1)
d+1 , . . . , θ

(r−1)
D ]

The ratio of the posterior distributions evaluated at λ
(r)
d and θ

(r−1)
d respectively in equation

(4.1) is equal to the ratio of the likelihood of the data times the prior distributions, evaluated

at λ
(r)
d and θ

(r−1)
d respectively.

Let L(θ̂d,Θ∼d) represent the likelihood function under the model of the data set of interest

using θ̂d for parameter θd and the parameter set Θ∼d as normal. Then α can be calculated

through the formula

α = min

(
1,

L(λ
(r)
d ,Θ

(r−1,r)
∼d ) · πd(λ(r)

d ) · q(θ(r−1)
d |λ(r)

d )

L(θ
(r−1)
d ,Θ

(r−1,r)
∼d ) · πd(θ(r−1)

d ) · q(λ(r)
d |θ

(r−1)
d )

)

Finally, the likelihood function L(θ̂d,Θ∼d) can be computationally uncomfortable to work

with due to its size, so it is common to work instead with the natural logarithm of the

likelihood, l(Θ) = log(L(Θ)).

The general MHA used in this thesis can be summarized by the following steps:

1. Initialization:

• Specify prior distributions for all model parameters, πd(θd), d ∈ {1, . . . , D}

• Specify candidate distributions for all model parameters, qd(·|θd), d ∈ {1, . . . , D}

• Specify initial values for all parameters, Θ(0) = [θ
(0)
1 . . . θ

(0)
D ]′

2. For the rth iteration of the process, perform the following for each parameter d, d ∈
{1, . . . , D}:

(a) Sample a candidate parameter λ
(r)
d from its candidate distribution function qd(·|θ(r−1)

d )
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(b) Calculate the acceptance probability α using the equation

α = min

(
1,

L(λ
(r)
d ,Θ

(r−1,r)
∼d ) · πd(λ(r)

d ) · q(θ(r−1)
d |λ(r)

d )

L(θ
(r−1)
d ,Θ

(r−1,r)
∼d ) · πd(θ(r−1)

d ) · q(λ(r)
d |θ

(r−1)
d )

)

(c) Generate a Uniform(0,1) random number U

(d) If U < α, then set θ
(r)
k = λ

(r)
d . Otherwise, set θ

(r)
d = θ

(r−1)
d

3. Repeat step 2 for R total iterations.

There will be two versions of MHA methods explored for the RSLN-2 model in this chapter:

one using state simulation, and the other using the marginal likelihood method used in

Chapter 3 for maximum likelihood estimation. For the state simulation method, there is a

slight deviation from the above steps for the transition probability parameters. This will be

further explained in Section 4.3.1.

4.2.2 The Predictive Distribution

Once the joint posterior distribution of the parameter set Θ has been obtained, a distribution

of future values of the process can be obtained conditional on the data observations. This

distribution is known as the predictive distribution.

Assume the process has T observed data points, ~y = {y1, . . . , yT}. The predictive distribution

of yr|~y, for any r > T , has probability density function

f(yr|~y) =

∫
Θ

f(yr|Θ) · π(Θ|~y)dΘ

When Markov Chain Monte Carlo has been used to obtain the joint posterior distribution of

the parameter set Θ, then the predictive distribution can be obtained by simulation. Each

of the simulated values of the parameter set under the chain, Θ(s), s ∈ {b + t, . . . , S} is an

equally like set of parameter observations under the posterior distribution. Therefore, for

any r > T , the predictive distribution of yr, (or of any function which depends on future
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values of yt) can be obtained by simulation, where each simulation uses a different parameter

set Θ(s), generated using MCMC.

The values for yr simulated using the predictive distribution incorporates both parameter

and idiosyncratic uncertainty, since the simulations use parameters from across the range of

values from the posterior distribution. This will be different from values simulated assuming

fixed parameter values, such as the maximum likelihood parameter estimates. The predictive

distribution is a very useful tool for Bayesian model adequacy analysis (Robert et al. (1999)),

and will be further explored for hidden Markov long-term equity models in this chapter and

beyond.

Specifically related to applications in this thesis, where the tails of the data are of paramount

interest, the Bayesian predictive distribution of future data observations will incorporate the

higher parameter uncertainty relating to the low-frequency state, implicitly, in applications

where we can select different parameter sets from the MCMC algorithm in our simulations

of output measures such as guarantee payments.

4.3 Markov Chain Monte-Carlo for Hidden Markov

Models

For the ML estimation in Chapter 2, the likelihood of any particular data point is defined

to be the average of the regime-specific likelihoods, with the data dependent regime prob-

abilities, pk(t), k ∈ {1, . . . , K}, as weights. That is, the contribution of yt to the likelihood

function, L(Θ), is for the 2-state process,

f(yt|yt−1, ..., y1,Θ)

= f(yt|ρt = 1,Θ)Pr[ρt = 1|yt−1, ..., y1,Θ] + f(yt|ρt = 2,Θ)Pr[ρt = 2|yt−1, ..., y1,Θ]

= f(yt|ρt = 1,Θ)p1(t) + f(yt|ρt = 2,Θ)p2(t)

= f1(yt) p1(t) + f2(yt) p2(t)
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These contributions are combined to give the likelihood; for the general K−state case,

LML =
N∏
t=1

K∑
k=1

fk(yt) pk(t) (4.2)

The resulting likelihood is sometimes known as the marginal likelihood. Marginal likelihoods

were used for Bayesian estimation of hidden Markov models in Hardy (2002).

Another approach, which implicitly treats the (unknown) states as parameters, is to simulate

the state path, and then calculate the likelihood given the simulated path. See, for example,

Robert & Titterington (1998). The simulation of the underlying state path, ρ1, . . . , ρN , is

conditional on both the data set and the parameter set being tested. Once the state path has

been simulated, the likelihoods are calculated conditional on the state path, which makes

the calculation straightforward. Recall that, given ρt = k, say, yt is normally distributed,

with mean and variance µk and σ2
k, and is independent of the other values in ~y.

That is, let ~ρ = (ρ1, ..., ρn) denote the simulated state path, then the state simulation

likelihood is calculated as

LSS =
N∏
t=1

K∑
k=1

fk(yt)I(ρt = k) (4.3)

where I is the indicator function, and fk(yt) is defined, as above, as the density for yt given

that the process is in state k at t.

State simulation is quite popular for hidden Markov model MCMC in the literature (see,

for example, Shephard, 1994, Chib, 1996 or Robert & Titterington, 1998), typically using

Gibbs sampling (Geman & Geman, 1984), which is a special case of the MHA that does

not use acceptance-rejection. One reason that state-simulation MCMC is popular is that

the sample state paths can be used as a tool for diagnostic checks. Another reason is

that using this approach, state-specific parameters will only be affected by data points with

the corresponding simulated state. Therefore, state simulation could give a more ‘model-

oriented’ picture of what different parameter sets would look like given the different plausible

underlying state paths of the series. The simulated states also have been used as a diagnostic
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tool for model checking in the MCMC Bayesian literature.

Section 4.4.1 will compare the the marginal likelihood and state simulation methods for the

RSLN-2 model using the S&P 500 monthly data set. The objective will be to identify any

noticeable differences in the posterior and predictive distributions of the simulations in the

context of long-term equity models. The algorithms will be now further described in Sections

4.3.1 and 4.3.2.

4.3.1 Marginal Likelihood MCMC

The marginal likelihood MCMC method, used in Hardy (2002), does not simulate the un-

derlying regime, but instead defines the log-likelihood by averaging across the regimes using

the data-dependent regime probabilities pk(t). Mathematically, the log-likelihood of the data

observation set y is defined as

l =
N∑
t=1

log

( K∑
k=1

pk(t) · fk(yt)
)

which is simply the log of equation (4.2). The probabilities pk(t) are dependent on the

transition probability parameters p1,2 and p2,1, meaning these parameters are defined within

the marginal likelihood. Therefore, they can be treated as any other parameter under the

MHA and can be subject to the standard acceptance rejection procedure.

The algorithm used for the marginal likelihood method is identical to the algorithm de-

scribed in Section 4.2.1.1. For each iteration of the algorithm, the transition probability

parameters, p1,2 and p2,1, are simulated first, followed by the state-specific parameters (µ1,

σ1, µ2 and σ2 for the RSLN-2 model), though changing the order of simulation did not result

in any noticeable differences in the posterior distributions. The specific prior and candidate

distributions used for each of parameters were tailored based on the specific models and the

S&P 500 data set, and will be presented in Section 4.4.
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4.3.2 State Simulation MCMC

Under the state simulation MCMC method, the simulated state process, which is generated

using the candidate parameters for the transition probabilities, is used in the likelihood calcu-

lation. The acceptance-rejection step is applied simultaneously, for the transition parameters

and the resulting simulated regime paths.

For iteration r in the MHA under the state simulation method for the RSLN-2 model,

the algorithm is adapted as follows. Let ~θ(r−1) denote the parameter vector of state-specific

parameters, without the transition probabilities, from the r−1th iteration. Let ~P (r−1) denote

the vector of transition probabilities from the r − 1th iteration, and let ~ρ(r−1) denote the

simulated state path from the r− 1th iteration. Then the likelihood based on the simulated

states for the r − 1th iteration is LSS(~θ(r−1), ~ρ(r−1))

Consequently for the rth iteration:

1. We select candidate values for the transition probabilities, ~λP , say.

2. Use the candidate transition probabilities to simulate a candidate state path ~λρ, using

the method described in equations (4.4), (4.5) and (4.6) below.

3. Calculate the joint acceptance-rejection probability for the transition probabilities and

state path:

α = min

(
1,

LSS(~θ(r−1), ~λρ) π( ~λP ) q(~P (r−1)| ~λP )

LSS(~θ(r−1), ~ρ(r−1)) π(~P (r−1)) q( ~λP |~P (r−1))

)

4. If the transition probabilities are accepted, set the state path ~ρ(r) = ~λρ, and set ~P (r) =

~λP . If the transition probabilities are rejected, then ~ρ(r) = ~ρ(r−1), and ~P (r) = ~P (r−1)

5. Sample and accept/reject candidates for the other parameters of the model, µ1, σ1, µ2

and σ2, using the likelihood based on the state path ~ρ(r).

We use the local updating procedure of Robert et al. (1993) to simulate the underlying states.

Let ρ
(r−1)
t be the simulated regime for time point t for the rth iteration. Then regimes for
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all time observations for iteration r are simulated according to the following probabilities.

We use the transition probabilities and state process ρt in these equations, although in the

algorithm, these would be replaced with the candidate transition probabilities and simulated

states.

Pr[ρ
(r)
1 = k] ∝ πk pk,ρ(r−1)

2
fk(y1|θ(r−1)) (4.4)

Pr[ρ
(r)
t = k] ∝ p

ρ
(r)
t−1,k

p
k,ρ̂

(r−1)
t+1

fk(yt|θ(r−1)) (4.5)

P [ρ̂(r)
n = k] ∝ p

ρ
(r)
T−1,k

fk(yn|θ(r−1)) (4.6)

4.3.3 Switching states

One complication for the µ, σ and other state-specific parameters is that the states, and

thus their associated parameters, can switch places. Specifically this means that at some

point during the algorithm, the state that had previously represented the high volatility

state switches to the low-volatility state, and vica-versa. This will cause a mingling of

both transition probability and state-specific parameters that would most likely result in

them all having large cluttered posterior distributions. The resulting posterior distributions

would not be very useful for analysis of the hidden Markov model, as one would obtain little

understanding about the uncertainty about the different states. This is traditionally handled

in the literature (Robert & Titterington, 1998 and Hardy, 2002) by continually simulating

candidate parameters until the desired signs of µ1−µ2 or σ1−σ2, for example, are preserved.

Specifically, if one desired state ‘one’ to be the high expected return, low volatility state,

candidate parameters for µ1 are simulated until a parameter that is greater than the current

iteration’s value for µ2 is generated. After this check is met, one would proceed with the

standard MHA acceptance-rejection for the candidate parameter. The downside to this

method is the longer computation time. However, for this thesis, it was found that this

method did not increase algorithm time to beyond reasonable limits, and thus this method

was used for the Bayesian estimation of all models in this chapter.
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4.4 S&P 500 Bayesian Estimation

This section presents the results for the candidate models described in Chapter 2 when fitted

to the S&P 500 monthly data set (from January 1950 to October 2010) using the Bayesian

approaches described in Sections 4.1-4.3. Assessments of the convergence of the parameter

posterior distributions for each of the models be found in Appendix A.

4.4.1 RSLN2

The RSLN-2 model has six parameters: µ1, µ2, σ1, σ2, p1,2, and p2,1. The MCMC algorithm

was run using both the state simulation and marginal likelihood methods for the RSLN-2

model. For both methods, the MLE parameter estimates were used as the starting param-

eters of the chain. The choices here for prior distributions for the µ and σ parameters are

consistent with those found throughout much of the hidden Markov MCMC literature refer-

enced already, largely due to their being conjugate priors, though this is not a requirement

of Metropolis-Hastings MCMC.

The mean parameters, µ1 and µ2, have identically defined N(0, 0.022) prior distributions.

The candidate distribution for µ1, conditional on the previous iteration’s value of µ
(r−1)
1 , is

N(µ
(r−1)
1 , 0.0052), and the candidate distribution for µ2, conditional on the previous value

µ
(r−1)
2 , is N(µ

(r−1)
1 , 0.0152). Both candidate distributions resulted from trial and error to

yield MHA acceptance probabilities of approximately 40%.

The volatility parameters, σ2
1 and σ2

2, have inverse gamma distributions for both their prior

and candidate distributions. Using inverse gamma distributions, the lower parameter values

lead to the larger the variance in the corresponding candidate distribution, and vice-versa.

This results in the process being less likely to be stuck with repeatedly low candidate param-

eters for the processes volatility. The prior distribution for σ−2
1 is Gamma(1.038, 833.30) and

the prior distribution for σ−2
2 is Gamma(0.0361, 5263.2). Both of these prior distributions

are designed to have means equal to the maximum likelihood estimates of the parameters,

along with large enough variances such that the prior distribution will not have too large an

impact on the resulting posterior. The candidate distributions for σ−2
1 and σ−2

2 , conditional
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Figure 4.1: Distributions of the RSLN-2 parameters under Regime-Switching Bayesian Es-
timation

on the previous iteration’s parameters values are Gamma(52,
σ−2
1

(r)

52
) and Gamma(2.52,

σ−2
2

(r)

2.52
)

respectively, again designed to yield acceptance ratios of approximately 40%.

The prior distributions for p1,2 and p2,1 were Beta(4, 48) and Beta(2, 5) respectively.

The posterior distributions of the parameters under each of the regime-switching Bayesian

MCMC methods are displayed in Figure 6.3. The type of hidden Markov MCMC (marginal

likelihood versus state simulation) was found to have very minimal impact on the obtained

posterior distributions. The estimated posterior distributions of each of the parameters

were nearly identical for each method. The bivariate relationships between the state-specific

parameters, shown in Figure 4.2, are similar for either MCMC method.

Because the marginal likelihood and state simulation methods generate such similar results

for the RSLN-2 model, it was decided to use the marginal likelihood method for the Bayesian

estimation of the other popular long-term equity models. The reason for this is that the

marginal likelihood method is computationally less taxing due to not simulating underlying

regime paths.
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Figure 4.2: Relationships of the regime-specific RSLN-2 parameters under Regime-Switching
Bayesian Estimation

The posterior means under both methods are compared with the maximum likelihood es-

timates in Table 4.1. The Bayesian estimates of the transition probability parameters are

higher in both cases, meaning the Bayesian estimation of the model experiences more state

transitions. Under the Bayesian estimates, the model spends slightly more relative time in

state two. The state one parameters are quite similar across all three estimates. The state

two variance is higher under the Bayesian approach.

These factors together generate thicker tails for the longer term accumulation factors for the

Method p1,2 p2,1 µ1 σ1 µ2 σ2

Marginal Likelihood 0.0483 0.2133 0.0102 0.0336 -0.0147 0.0656
(Standard Deviations) 0.0177 0.0812 0.0017 0.0017 0.0086 0.0067

Regime Simulation 0.0489 0.2147 0.0104 0.0336 -0.0149 0.0658
(Standard Deviations) 0.0171 0.0835 0.0017 0.0016 0.0085 0.0064

MLE 0.0475 0.2017 0.00990 0.03412 -0.01286 0.06353

Table 4.1: The Posterior Distribution Means of the RSLN-2 Parameters Fitted to the S&P
500 Monthly Log-Return from Jan 1950 to Oct 2010 under the Bayesian Approach
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Figure 4.3: Simulated 10-Year Accumulation Factor Distributions of the RSLN-2 Model
under Different Model Estimations

RSLN-2 model. The 10-year accumulation factors are shown in Figure 4.3.

4.4.2 RSDD2

The Bayesian estimation of the RSDD-2 model is very similar to the RSLN-2 model, with

the addition of the drawdown parameters D1 and D2. The prior and candidate distributions

for the transition probabilities were the same as those used for the RSLN-2 estimation, as

were the state one parameters µ1 and σ1. The prior distributions for µ2 and σ2 were widened

a little. The D parameters were estimated using the same inverse gamma approach as is

done for the σ2’s.

The RSDD-2 parameter posterior distributions are displayed in Figure 4.4. For the parame-

ters that are also included in the RSLN-2 model, their respective posteriors from the RSDD-2

model are quite similar. The D parameters, especially D2, have larger uncertainty relative

to the state means µ1 and µ2, and the D2 posterior has a thicker left tail than a right one.
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Figure 4.4: Distributions of the RSDD-2 parameters under Bayesian Estimation

The bivariate parameter plots for the RSDD-2 model are displayed in Figure 4.5. There is

an positive relationship between D2 and µ2, indicating that the more negative the mean, the

more powerful the mean-reversion effect.

Relative to the maximum likelihood estimate, the probability of transitioning from state one

to state two on average under Bayesian estimation is twice as high (Table 4.2). There is

also a larger probability assigned to the opposite transition. For the other parameters, the

Bayesian posterior means and the ML estimates are relatively close together.

The inclusion of paramater uncertainty via Bayesian estimation did not have as profound

effect on the long-term left tail of the RSDD-2 model as it did for the RSLN-2 model. As

shown in Figure 4.6, the left tails for the 10-year accumulation factors from the maximum

likelihood and Bayesian estimates of the model are very close together. The relationship

between D2 and µ2 is clearly playing a role.
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Figure 4.5: Relationships of the RSDD-2 parameters under Bayesian Estimation
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Methd Bayesian S.D. (Bayesian) MLE
p1,2 0.0408 0.0142 0.0284
p2,1 0.2296 0.0755 0.1870
µ1 0.0064 0.0018 0.0068
ϕ1 -0.0544 0.0107 -0.0429
σ1 0.0341 0.0013 0.0352
µ2 -0.0427 0.0125 -0.0488
ϕ2 -0.0717 0.0231 -0.0997
σ2 0.0644 0.0059 0.0623

Table 4.2: The Posterior Distribution Means of the RSDD-2 Parameters Fitted to the S&P
500 Monthly Log-Return from Jan 1950 to Oct 2010 under Bayesian estimation

Figure 4.6: Simulated 10-Year Accumulation Factor Distributions of the RSDD-2 Model
under Different Model Estimations

83



4.4.3 RSGARCH

The RSGARCH model fitted using maximum likelihood estimation in Chapter 2 has ten

parameters: µ1, µ2, α1,0, α2,0, α1,1, α2,1, β1, β2, and the transition probabilities p1,2 and p2,1.

However, under the maximum likelihood fitting, all α parameters were found to be very close

to zero. A very small move in any of these parameters reduces the likelihood by very large

amounts. This suggests that great care in design will be needed for the MCMC algorithm

to work effectively. However, even with very tight priors for these parameters, simulations

could not produce acceptance ratios higher than 5%. So, for the final Bayesian estimation

of the RSGARCH model, we only considered the six other parameters.

An interesting result from the MLE fitting of the RSGARCH model in Chapter 2 was that

state two was very low frequency (p2,1 was estimated at effectively 1). However, lowering

the value of p2,1 does not significantly impact the likelihood. This fact, together with the

fact that state two is low frequency, suggests that the state two parameters should be given

prior and candidate distributions that incorporate this uncertainty, as very little was learned

about them through maximum likelihood estimation.

For prior distributions, p1,2 was assigned a Beta(4,60) distribution, and for p2,1 a Beta(3,2)

distribution was used. For µ1, a N(0.01, 0.02) was used for a prior distribution, and a

N(µ
(r−1)
1 , 0.003) distribution was used to simulate candidate parameters. For β1, a Beta(20,4)

prior was defined and a Beta(24 · β(r)
1 , 24 · (1− β(r)

1 )) was used as its candidate distribution.

The state-two parameters were allowed to range much more broadly, given the relatively

uncertainty about those. N(−0.08, 0.08) and N(µ
(r−1)
2 , 0.02) were used as the prior and

candidate distributions for µ2 respectively, and Beta(4,4) and Beta(5 ·β(r)
2 , 5 · (1−β(r)

2 )) were

defined as the prior and candidate distributions for β2.

The posterior distributions for the six parameters are displayed in Figure 4.7, and the bivari-

ate scatterplots are shown in Figure 4.8. There is much uncertainty exhibited by the results

for the transition probability parameter p2,1, as well as the parameter β2. The posterior for

the β2 parameter was difficult to generate, as acceptance rates were high.

Interestingly, however, there was no discernible relationship between these two parameters

in the bivariate scatterplot. There was, as expected, a relationship between µ2 and the
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Figure 4.7: Distributions of the RSGARCH parameters under Bayesian Estimation

transition probability parameters. The more likely the process is to spend time in the

second state, the higher its mean return, counterbalancing the parts of the distribution from

which negative returns can come.

When comparing the Bayesian estimates to the MLE estimates, the differences again centre

around the second state. The maximum likelihood estimates and the means of the Bayesian

posterior distributions for each of the parameters is displayed in Table 4.3. The relative

uncertainty about p2,1 and β2 meant that the ML estimates and the posterior means were

significantly different.

The impact of parameter uncertainty is quite profound for the RSGARCH model when com-

paring the 10-year accumulation factor distributions under both the Bayesian and maximum

likelihood model estimations (Figure 4.9). The Bayesian approach yielded much thicker

model tails, providing evidence that not accounting for parameter uncertainty can lead to

underestimation of the long-term left tail - the more dangerous side for investment guarantee

contracts.
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Figure 4.8: Relationships of the RSGARCH parameters under Bayesian Estimation
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Parameter Bayesian S.D. (Bayesian) MLE
p1,2 0.0458 0.0103 0.0331
p2,1 0.7183 0.1400 1.0000
µ1 0.0083 0.0014 0.0079
β1 0.7776 0.0251 0.8091
µ2 -0.0582 0.0158 -0.0870
β2 0.4535 0.1569 0.2939

Table 4.3: The Posterior Distribution Means of the RSGARCH Parameters Fitted to the
S&P 500 Monthly Log-Return from Jan 1956 to Sep 2004 under the Bayesian Approach
compared to the ML Estimates

Figure 4.9: Simulated 10-Year Accumulation Factor Distributions of the RSGARCH Model
under Different Model Estimations
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4.4.4 MARCH

The MARCH model from Chapter 2 when fitted using maximum likelihood estimation was

estimated to have 7 significant parameters: the means from the two states, µ1 and µ2, the

three alpha parameters from the high mean state α1,1, α1,2 and α1,3, the zero-lag alpha

parameter from the second state, α2,0, and the mixing weight P . As was the case for the

RSGARCH model, the second state was visited much less often for the MARCH model than

the RSLN or RSDD models, and rarely does the model spend consecutive periods in state

2 given the P estimate of 96.7%. Similar to the RSGARCH case, significant parameter

uncertainty pertaining to the state 2 parameters is expected from the Bayesian fitting.

The mixing weight P was assigned a Beta(48,4) prior distribution, and its candidate distri-

bution also a Beta distribution that was tightened somewhat and centered on the current

iteration’s value of the parameter. The means from the two states were assigned normal

priors and candidate distributions similar to those for the previous models. The state 1 α

parameters were assigned identicalBeta(2, 16) prior distributions, which were wider prior dis-

tributions than others, and their candidate distributions were all Beta(18 ·α(r), 18 ·(1−α(r)))

distributions which are dependent on the previous iteration’s value. Finally, α2,0 was assigned

a Beta(2, 24) prior distribution, and a corresponding centered Beta candidate distribution.

The posterior distributions for the seven MARCH parameters are displayed in Figure 4.10.

The posterior distribution of P is almost entirely over (0.9,1), so the Bayesian results confirm

state one to be very high frequency for the MARCH model. The posterior distributions of

the state 1 alpha parameters were interesting. The first and second lag parameters, α1,1 and

α1,2 respectively, have identical posterior distributions, whereas the posterior distribution

α1,3 was much further displaced from 0 and has a thicker right tail. This result suggests

there is more of an effect from the 3-month deviation lag than for the first two. Finally, the

posterior distribution of α2,0 indicated that the parameter had an effective range of (0.05,1),

and was relatively centered over that range.

The bivariate scatter plots of select MARCH parameter are shown in Figure 4.11. Of interest,

the state 1 α parameters have counter-balancing relationships. When one parameter has a

relatively large value, the other two tend to scale back, resulting in the overall ARCH effect
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Figure 4.10: Distributions of the MARCH parameters under Bayesian Estimation
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Figure 4.11: Relationships of the MARCH parameters under Bayesian Estimation

from previous data observations deviation from the mean remaining somewhat constant. Also

worth noting is the effect of the mixing parameter P on the state two parameters µ2 and α2,0.

As P increases, resulting in the second state being visited less often, the distribution of the

second state becomes more negative and more volatile, indicating that Bayesian framework

assigns the second state for the most volatile negative observations, but the uncertainty lies

in how much of the left tail the state captures.

The maximum likelihood estimates and the mean of the posterior distributions under the

Bayesian estimation of the MARCH parameters are displayed in Table 4.4. Compared to

the other models, the MARCH parameters are rather close together under the Bayesian and

MLE methods. Under the Bayesian approach, the model spends a little bit more time in

state 2, but the state 2 mean is smaller in magnitude to compensate. The Bayesian method
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Parameter Bayesian S.D. (Bayesian) MLE
P 0.9475 0.0213 0.9667
µ1 0.0096 0.0009 0.0095
α1,1 0.0772 0.0312 0.0714
α1,2 0.0696 0.0340 0.0570
α1,3 0.1377 0.0428 0.1636
µ2 -0.0477 0.0205 -0.0659
α2,0 0.0730 0.0141 0.0700

Table 4.4: The Posterior Distribution Means of the MARCH Parameters Fitted to the S&P
500 Monthly Log-Return from Jan 1950 to Oct 2010 under the Bayesian Approach compared
to the ML Estimates

also shifts some of the autoregressive effect to the 1st and 2nd lags, and away slightly from

the third.

Similar to the RSGARCH model, the 10-year accumulation factor left tail of the MARCH

model is significantly thicker under Bayesian estimation than under maximum likelihood

(Figure 4.12). This is a consequence of the left tail of the posterior distribution of P being

thicker than the right. The right tail of the 10-year accumulation factors for the MARCH

model are similar under maximum likelihood and Bayesian estimation.

4.5 Tail Capturing Revisited

In Chapter 2, the fitted hidden Markov models were compared by assessing their ability

to capture the more extreme negative return periods of the S&P 500. In particular, the

probability of experiencing the 37% drop in the S&P 500 from January 1999 to January 2009.

Table 4.5 displays these probabilities again for the maximum likelihood fitted models, but

also includes the probabilities of experiencing the crisis under the Bayesian model estimates.

Figure 4.13 shows the distributions of the 10-year accumulation factors for the models under

Bayesian estimation.

For the RSLN-2, RSGARCH and MARCH models, there was a significant increase in the

models’ capacity to capture the experience when fitted using Bayesian estimation over max-

imum likelihood. For the MARCH model, the probability of capturing the 10-year drop
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Figure 4.12: Simulated 10-Year Accumulation Factor Distributions of the MARCH Model
under Different Model Estimations

Model Maximum Likelihood Bayesian
RSLN-2 0.0276 0.0328
RSDD-2 0.0016 0.0016

RSGARCH 0.0182 0.0283
MARCH 0.0042 0.0075

Table 4.5: Probability of experiencing the 1999-2009 S&P Return under the Maximum
Likelihood and Bayesian fitted Hidden Markov Models

nearly doubled. The crash was still most likely to be experienced under the RSLN-2 model,

although the difference between the probability of capturing the drop under the RSLN-2 and

RSGARCH models is noticeably smaller.

For the RSDD-2 mode, however, the probability remained unchanged. The counterbalancing

effect seen in the parameter bivariate distributions displayed in Figure 4.5 meant that long-

term negative returns are just as unlikely under the model when estimated under a Bayesian

framework as they were for maximum likelihood. The model’s mechanics are not conducive

to capturing the deeper left tails of the other models.
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Figure 4.13: Density Functions of the 10-Year Accumulation Factors of the Popular Hidden
Markov Models Under Bayesian Estimation

4.6 Conclusion

In this Chapter, the hidden Markov long-term equity models from Chapter 2 were estimated

using a Bayesian approach. There were a few notable results from the analysis performed:

• For the RSLN-2 and the S&P 500, there was no observable difference in the obtained

posterior distributions for the parameters between the marginal likelihood and state

simulation methods under Metropolis-Hastings MCMC.

• The Bayesian predictive distributions of all of the hidden Markov models in this thesis

indicated thicker left tails that the respective maximum likelihood distributions, with

the sole exception being the RSDD-2 model. The posterior paramater distributions

also indicated that uncertainty was more prevalent in the parameters associated with

the left tail of the log-return distribution.

• Incorporating the parameter uncertainty with Bayesian estimation did not override
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model mechanics however. For the RSDD-2 model, the Bayesian analysis indicated

the long-term left tail of the log-returns was similar to the corresponding tail under

maximum likelihood estimation. This meant a further deviation of the RSDD-2 model

long-term returns from the other hidden Markov models.

The methodology from this Chapter will also be used to investigate the impact of parameter

uncertainty pertaining to hidden Markov portfolio optimization in Chapter 5, and portfolio

replication in Chapter 6.
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Chapter 5

Hidden Markov Portfolio

Optimization

5.1 Introduction

The optimal portfolio is one that meets a target expected return with minimum risk. Port-

folio optimization in finance typically uses a measure of portfolio variation as its definition

of risk, such as portfolio variance or portfolio value at risk. Risk can also be indirectly min-

imized through use of a utility function. A portfolio that maximizes an investor’s expected

utility is considered optimal under such a design (See Panjer et al. (1998)).

Markowitz (1952, 1959) used a single-period approach that provided a foundation for the

current state of optimization research in finance. The Markowitz model uses variance as the

risk criterion to be minimized, while at the same time aiming to maximize terminal wealth,

which is indirectly fixed through specification of a risk tolerance level.

Alexander, Coleman and Li (2006) explored the use of value at risk (VaR) and conditional

tail expectation (CTE) as the measure of risk to be minimized. These risk measures can be

more attractive than variance in some cases because the measure is only directly dependent

on one tail of the portfolio performance distribution. They found the CTE to be preferable

95



to VaR due to it being a coherent risk measure in the sense of Artzner et. al (1999), and

because they found minimizing portfolio CTE typically resulted in minimizing portfolio VaR

anyway.

A hidden Markov setting offers a challenge to portfolio optimization in finance: how best

to handle the unobserved nature of the underlying state process. All of the above measures

of risk can be derived unconditionally from a hidden Markov distribution (for the expected

utility case, see Boyle and Liew (2008)). The regime switching framework can be conditioned

away to yield the stationary distribution and its corresponding measures of risk, and portfolio

optimization can be performed as it would for any single state distribution of returns. Such

an approach does not take advantage of the information contained in the data about the

plausible underlying state paths under the model. More informed optimization processes,

when using the hidden Markov structure for equity returns, would dynamically incorporate

all information from which one could obtain inference about the underlying state process:

that contained in both the model and the data.

The literature pertaining to hidden Markov portfolio optimization has focused on a few

areas. Yin and Zhou (2004) looked at the topic from a continuous time perspective. They

showed that if the current underlying state of the market were known, then a portfolio that

was mean-variance optimized according to the mean and variance of the current regime is

asymptotically optimal as the length of the period in a discrete time setting approaches zero.

The paper looked at the problem from a solely theoretical perspective.

Ang & Bekaert (2004) investigated the problem of hidden Markov optimization for a selection

of international markets and funds. Their approach to the unobserved regime problem was

an approach similar to the indicator method described in Chapter 3. Theirs was a two-

regime model, and if the estimated probability of the process being in regime 1 for the next

stock return realization (based on the history of observed stock returns and the transition

probabilities) was greater than 0.5, the portfolio would be mean-variance optimized according

to the regime 1 parameters. If that probability were less than 0.5, the portfolio would be

optimized according to the regime 2 parameters. They found their regime-switching strategy

dominated non-regime switching strategies in out-of-sample tests.

Boyle & Liew (2008) investigated the use of hidden Markov portfolio optimization for ana-
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lyzing hedge-fund based portfolios. They optimized over the unconditional stationary dis-

tribution of the market (in this case, the hedge fund and the S&P 500) to demonstrate the

relative volatility of portfolios comprised of various hedge funds.

This chapter will explore optimization strategies using different approaches to including the

information about the regime switching process. The objectives will be to:

1. Determine if a particular method is favored for hidden Markov optimization over the

S&P 500 and NASDAQ indexes when the deep left tail of the investment portfolio is

the primary risk measure, and

2. Determine the robustness of the different methods when parameter uncertainty is taken

into account.

5.2 Multivariate Long-term Equity Modeling

The relationship that financial indexes have with each other can be both dynamic and

complex. Stocks in a particular index may be significantly financially linked with other

stocks in a different index, due, for instance, to the complex ownership and stakeholder

arrangements in many of the world’s large financial institutions. Good performance by a

single bank can have positive results on many of the world’s indexes. Likewise, in periods

of economic crisis, such as October of 1987 and the 2007-2010 crisis, virtually all financial

markets were in retreat and thus returns across different indexes were very highly correlated

with each other. The positively correlated relationship does not always exist, however,

as events in one nation may shape an index specific to that nation, but other indexes not

directly related may be less affected or perhaps completely unaffected. It becomes important

to capture as best possible these complex relationships when fitting joint models for the

world’s indexes when analyzing the risk of instruments based on these indexes.

It has been argued (Hamilton, 1989) that the rationale behind the use of hidden Markov

models for equity returns is that the market can be thought of as having different phases,

related to the state of investor opinion in general. This was discussed for the choice of hidden
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Markov models for single-variate equity returns, and the same line of reasoning can hold for

the use of multi-variate hidden Markov models for modeling multiple equity returns. The

hidden Markov process is still thought to represent the underlying state of the market as a

whole, and the extension of single-variate hidden Markov models for equity returns to the

multivariate case is quite natural.

Since the hidden Markov process is interpreted as representative of investor confidence and

general market perception, the interpretation can move beyond that of overall market sta-

bility measurement. The hidden Markov structure can still be representative of worldwide

index advances and retreats, yet can also model instances of index decoupling, where indexes

move independently of each-other. As an example, a fit of a hidden Markov model could

yield an underlying state for which the TSX index moved with relatively high volatility and

at the same time the S&P moved with relative stability - such a state could be representative

of uncertainty in Canada while steady investment holds in the United States.

The price paid for this flexibility of hidden Markov models for multivariate returns is that of

scope: the number of variables of the model grows exponentially with the number of regimes,

and generally the added model parameters have relatively more parameter uncertainty than

do the base parameters of the smaller model.

5.2.1 The S&P 500 and the NASDAQ

In this chapter, a portfolio optimization example using the S&P 500 and NASDAQ indexes

will be used to demonstrate some different hidden Markov optimization approaches and the

relative impact of parameter uncertainty on those approaches. A first step towards such a

goal, once the market of instruments over which an investor wishes to optimize is selected,

is the fitting of the hidden Markov class of models to the index data. In this section, some

brief observations about the two indexes will be made, and then a hidden Markov model will

be fit to two indexes using both maximum likelihood and Bayesian methods.

Thirty eight years (1971 to 2009) of monthly index levels and log-returns of the S&P 500

and NASDAQ indexes are displayed in Figure 5.1. A few qualities of the two indexes and

their interaction with each other over time can be directly observed from these graphs. The
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Figure 5.1: Monthly Closes and Log-Returns of the S&P 500 and NASDAQ Indexes

first is that the two indexes are very highly correlated with each other. Especially visible

from the log-return plot, this is true both when the indexes are experiencing steady-return

periods and when both indexes are experiencing more volatile return periods.

A second observation is that in periods of relative uncertainty, the NASDAQ’s returns are

much more volatile than those of the S&P 500. The two indexes were valued at almost the

same level in 1990, but the NASDAQ climbed to three times the value of the S&P by the

turn of the millennium. Successful models of the joint indexes will need to be reflective of

this observation.

One potential question in the use of hidden Markov models to capture the indexes is whether

or not there is enough support in the data for additional regimes beyond the two traditional

regimes of one state of low volatility and steady index returns, and the other of high volatility

and on average negative index returns. Additional market states are not outright apparent

from the index return plots. An investigation of the value and data support for additional

states is warranted during the model fitting stage.
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5.2.2 The Bivariate Regime-Switching Lognormal Model

Akin to the single-variate RSLN model, the bivariate regime-switching log-normal (BRSLN)

model uses a very simple modeling approach within the underlying states. For the two index

case, the equity log-returns are jointly modeled using a bivariate Gaussian distribution; one

defined for each underlying state. The bivariate normal distribution has five parameters:

the two series’ means, the two variances and the correlation coefficient parameter. Including

the transition probability parameters, the BRSLN-K model has 5K +K(K− 1) = K2 + 4K

parameters, where K is the number of underlying states in the model. The number of

parameters grows quite quickly with the number of regimes.

Mathematically, under the BRSLN model, the joint distribution of Xt and Yt, the log-returns

of the indexes of interest, given underlying state ρt at time t, can be defined by:

[
Xt

Yt

∣∣∣∣ρt
]
∼MVN

([
µXρt
µYρt

]
,

[
(σXρt)

2 σXρtσ
Y
ρtτρt

σXρtσ
Y
ρtτρt (σYρt)

2

])

where ρt ∈ {1, . . . , K} represents the unobserved underlying state of the process state at time

t, andK is the number of of underlying states of the model. µX1 , . . . , µ
X
K and µY1 , . . . , µ

Y
K repre-

sent the mean log-returns of indexes X and Y respectively, while σX1 , . . . , σ
X
K and σY1 , . . . , σ

Y
K

represent the standard deviations. The correlation coefficient parameters, τ1, . . . , τK , are de-

fined on [−1, 1], with τ = 1 representing perfect positive correlation between the two indexes,

and τ = 0 representing independence of the two indexes.

This base regime-switching multivariate model can capture relation between the two indexes

through two facets: directly through the correlation coefficient parameters τ1, . . . , τK , and

indirectly through the hidden Markov framework as described at the beginning of this section.

As with all hidden Markov models, the underlying states and their respective bi-variate

normal distributions resulting from the fit are more likely to be acceptable if they make

intuitive sense.
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Regime 1 Regime 2
S&P 500 NASDAQ S&P500 NASDAQ

µ = 0.00976 µ = 0.01277 µ = −0.02035 µ = −0.02727
σ = 0.03516 σ = 0.04474 σ = 0.07210 σ = 0.11561

τ = 0.85704 τ = 0.84649
p1,2 = 0.03039 p2,1 = 0.15080

Table 5.1: Maximum Likelihood BRSLN-2 Parameters of the S&P 500 and NASDAQ

5.2.3 Maximum Likelihood Estimation of the S&P 500 and NAS-

DAQ

The S&P 500 and NASDAQ indexes were first estimated with a BRSLN-2 model using

maximum likelihood estimation. The likelihood is as easily defined here as it was for the

RSLN model in the single-variate case, with the multivariate normal probability distribution

function taking the place of the single-variate normal pdf. The Generalized Reduced Gradient

optimization algorithm, part of the Microsoft Excel package, performed the optimization

quite quickly, and obtained the same optimal parameter set with the use of several different

sets of starting parameter vectors.

The MLE BRSLN-2 parameter set for the S&P 500 and NASDAQ indexes are listed in

Table 5.1. The resulting underlying states are very similar to the single-variate case found

in Chapter 2, and quite common for a hidden Markov model when fitted to long-term equity

data. One state is very investor friendly: the two indexes have positive expected log-returns

and relatively low volatility. The other state is quite the opposite, with both indexes having

negative expected log-returns and relatively high volatility. The transition parameters are

also standard for a two-state hidden Markov long-term equity model; the process spends

about 83% of the time in the calm, profitable state.

There are two additional observations about the optimal parameter set worth noting. The

first is that the NASDAQ is always the more volatile index of the two, which is consistent

with the observation made from the historical log-return plot earlier. Under the first under-

lying state, the higher volatility of the NASDAQ is compensated with a higher expected rate

of return. However, under the more chaotic state, the higher volatility is coupled with a ex-
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Regime 1 Regime 2 Regime 3
S&P 500 NASDAQ S&P500 NASDAQ S&P500 NASDAQ

µ = 0.00969 µ = 0.01270 µ = −0.02063 µ = −0.02772 µ = 0.05603 µ = 0.06785
σ = 0.03527 σ = 0.04482 σ = 0.07170 σ = 0.11534 σ = − σ = −

τ = 0.85618 τ = 0.84671 τ = 1
p1,2 = 0.02596 p2,1 = 0.14126 p3,1 = 0.00000
p1,3 = 0.00257 p2,3 = 0.00000 p3,2 = 1.00000

Table 5.2: Maximum Likelihood BRSLN-3 Parameters of the S&P 500 and NASDAQ

pected return even worse than that of the S&P, providing a rather inhospitable environment

to investors.

The second observation is that the correlation coefficients of the two indexes together are

nearly identical under both underlying states. Hence, under the model, there is no decoupling

effect between the two indexes when the market shifts to a more uncertain outlook. This

result is consistent with Boudreault & Panneton (2009), who found there to be no significant

evidence for differing covariance matrixes across regimes. Special attention will be paid to

this point when fitting the model using a Bayesian approach.

A BRSLN-3 model was also fitted to the S&P 500 and NASDAQ indexes to see the effect and

shape of the additional underlying state. The maximum likelihood estimates were much more

difficult to arrive at using the Generalized Reduced Gradient optimizer in Microsoft Excel

with the additional parameters (in this case there were 21 model parameters), and there

were several different parameter sets with log-likelihoods very close to that of the found

global maximum, even though the third regime for each of those sets would look drastically

different from case to case.

The parameter set yielding the global maximum log-likelihood found is displayed in Table

5.2. While the first two regimes are very reminiscent of the two regimes from the 2-state

model, the third regime, as evidenced by the zeroed volatility parameters for both indexes,

captures a single outlying data observation. In this case, the point captured is a high month

of returns that is experienced as the market transitions from the investor-friendly regime to

the chaotic one.

In many of the local maxima found for these two data sets for the BRSLN-3 model, the third
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regime acted to capture a single observation, and in all cases was the average tenure in the

additional regime only one month. Regimes of this kind represent inefficient parameterization

in the sense that the data observations that these regime capture can be captured with much

fewer parameters than those needed to do under a regime switching model. For instance,

a single jump parameter can capture the frequency of such an observation, as opposed to

several transition parameters needed to capture the data point with the same frequency. As

a result of the potential third regime being difficult to focus, the two regime model will be

presented for Bayesian comparisons.

5.3 Bayesian Estimation of Bivariate Hidden Markov

Models

Bayesian estimation of multivariate Hidden Markov models can be approached quite similarly

to the single-variate case in Chapter 4. Since the underlying states are defined similarly, the

estimation of the transition probability parameter posterior distributions can be programmed

much the same way; the main difference is that the likelihood used must now be the joint

likelihood of all of the modeled indexes in the market. Beta distributions remain suitable

choices for prior distributions (and candidate distributions in the case of use of the Metropo-

lis Hastings algorithm) of the transition parameters. Individual index mean and standard

deviation posteriors can be again estimated quite well with respective normal and inverse

gamma prior distributions.

The correlation coefficient parameters are the only new parameters to the estimation relative

to that from Chapter 4. The correlation coefficient parameters are defined on [−1, 1], and

so prior distributions would normally need to be defined on that range. However, if there

is sufficient evidence to believe that negative correlation between indexes is highly unlikely,

then the prior distributions that are defined on [0, 1], such as the beta distribution, can be

used. Uniform prior distributions are also an option, which would represent a prior position

of absolute uncertainty across the distribution range.
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5.3.1 Bayesian Estimation of the BRSLN-2 Model to the S&P 500

and NASDAQ

For the two indexes used for demonstration purposes for this chapter, the BRSLN-2 model

will be estimated using the Bayesian approach. The Metropolis-Hastings MCMC algorithm

will be employed similarly to that done in Chapter 4 for the single variate case. Likewise, the

marginal likelihood method of hidden Markov MCMC will be used as opposed to the regime

simulation method, under the assumption that the result obtained in Chapter 4 will carry

through (ie. that both the marginal likelihood and state simulation methods will perform

comparably).

Relative restriction of candidate parameters, such as the log-return means in the first state

always be higher than the log-return means in the second, that serve the purpose of prevent-

ing the hidden states from assuming each others positions and effectively creating identical

states that cover the entire model will also be incorporated in the estimation. This restriction

can be easily adapted to the joint S&P 500 and NASDAQ model, since both the log-return

plots and maximum likelihood estimates of the model indicated that the indexes are highly

correlated during periods of both index stability and index instability. State one will be the

investor-friendly state, and state two the highly volatile state.

Since the level of correlation between the two indexes is evidenced to be quite high (from

both the index level and log-return plots and from the results of the maximum likelihood

estimates) beta prior distributions will be used for the correlation coefficient parameters

initially. There was no evidence from the posterior distribution results for the correlation

coefficient parameters that a distribution defined outside of [0, 1] would be needed.

Several iterations of different prior and candidate distribution parameters were performed,

with the objective of achieving suitable candidate parameter acceptance rates. The prior

distributions for each of the parameters for the final MCMC simulation are displayed in

Table 5.3. The candidate distributions were very close to the priors in most cases, excepting

parameters for whom the acceptance rate was too low, for which the candidate distributions

were a bit tighter. The acceptance rates for each of parameters were all between 20% and

40%.
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Regime 1 Regime 2
S&P 500 NASDAQ S&P500 NASDAQ

µ ∼ N(0.01, 0.02) µ ∼ N(0.01, 0.02) µ ∼ N(−0.02, 0.04) µ ∼ N(−0.025, 0.04)
σ−2 ∼ G(1.04, 833) σ−2 ∼ G(1.04, 833) σ−2 ∼ G(0.036, 8000) σ−2 ∼ G(0.036, 8000)

τ ∼ Beta(10, 1.7647) τ ∼ Beta(10, 1.7647)
p1,2 ∼ Beta(2, 48) p2,1 ∼ Beta(2, 6)

Table 5.3: Parameter Prior Distributions for the Bayesian Estimation of the BRSLN-2 to
the S&P 500 and NASDAQ

The posterior distributions for the BRSLN-2 model parameters are displayed in Figures 5.2

(transition probability parameters), 5.3 (state 1 parameters), 5.4 (state 2 parameters), and

5.5 (correlation coefficient parameters). There is clearly more uncertainty surrounding the

NASDAQ parameters than those of the S&P, especially in the second more volatile state.

Also interesting is that the correlation coefficient parameter for state one has a very tight

posterior, with feasible values only ranging from 0.8 to 0.9. This indicates that the certainty

about this parameter is quite strong. This is somewhat less true for the state two correlation

coefficient parameter, whose posterior tails are thicker, though still concentrated above 0.7.

The argument that the two indexes are very highly correlated no matter the state of the

market is supported by the Bayesian results.

5.4 Portfolio Optimization

Under the optimization problem, let T denote the time horizon of the investment to be

made, and let St ∈ RN be the vector of asset prices at time t, where the investor selects a

portfolio from a universe of N instruments whose values at time t based on the asset prices

are Vt = [V1(St) . . . Vn(St)]
′. Finally, let xt ∈ Rn denote the decision variable of the portfolio

from time unit t to t+ 1. The portfolio value at time t after reallocation is then Vt
′xt.

Two standard constraints are often enforced in optimization problems and will be imple-

mented throughout this chapter. The first is a budget constraint, which serves to say that

any investor has a limited amount of money to invest. Bt will denote the investor’s budget

at time t, t ∈ {0, . . . , T} and is mathematically represented in the optimization problems
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Figure 5.2: Transition Parameter Posterior Distributions for the Bayesian Estimation of the
BRSLN-2 to the S&P 500 and NASDAQ
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Figure 5.3: State 1 Posterior Distributions for the Bayesian Estimation of the BRSLN-2 to
the S&P 500 and NASDAQ
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Figure 5.4: State 2 Posterior Distributions for the Bayesian Estimation of the BRSLN-2 to
the S&P 500 and NASDAQ
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Figure 5.5: Correlation Coefficient Posterior Distributions for the Bayesian Estimation of
the BRSLN-2 to the S&P 500 and NASDAQ
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by the equation Vt
′xt = Bt. For all of the optimizations in this thesis, the level of Bt, so long

as it is finite, will not change the portfolio weights.

The second constraint is a cap on short selling. This constraint prevents investors from

borrowing an infinite amount of money against one market instrument to invest in another.

The cap for each of the instruments can vary. Under the optimization problem, this is

mathematically represented as xt ≥ lt, where lt is an n-dimensional vector of real numbers,

typically less than or equal to zero, that represents the absolute minimum position an investor

can take in each of the instruments at time t.

5.4.1 Mean-CTE Optimization

The risk measure that will be minimized for optimization here is the Conditional Tail Ex-

pectation (CTE) of the portfolio. The CTE is a measure of tail risk, and in that sense is

consistent with the tail focus of the rest of this thesis. For a given confidence level β, the

value at risk (VaR) of a portfolio’s loss random variable is the loss value that is exceeded

with probability 1−β. The CTE, for a continuous random variable, for that confidence level

beta is the expected value of the loss given the loss is above the VaR.

Minimizing the CTE of portfolio loss has the attractive feature of only minimizing the risk of

the tail of the distribution concerned with portfolio loss, if that is indeed what the investor

is concerned about. Risk associated with the left tail of the loss random variable, the tail

concerned with portfolio gains, is not (directly) minimized under this risk measure. This has

potential benefit over minimizing a portfolio using a risk measure that has presence in both

tails of the loss random variable, such as variance.

Mathematically, let f(xt, St+1) denote the loss of the portfolio from time t to time t+1. The

portfolio loss then satisfies:

f(xt, St+1) = −(Vt+1 − Vt)′xt
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The Value at Risk for a specified confidence level β is given by:

αβ(xt) = inf{α ∈ R : Ff(xt,St+1)(α) ≥ β)}

where Ff(xt,St+1)(α) represents the cumulative distribution function of portfolio loss at level

α for a given portfolio xt.

For a portfolio defined on the real line with no jumps, the conditional expectation of portfolio

loss for a confidence level β is:

θβ(xt) = (1− β)−1

∫
F (xt,St+1)≥αβ(xt)

f(xt, St+1) · p(S)dS (5.1)

where p(S) is the probability distribution function of the underlying asset prices.

The minimization problem for mean-CTE optimization for the single time period t to t+ 1

is then:

min
xtεXt

{ θβ(xt) } (5.2)

subject to E[Vt+1
′xt] = µ

Vt
′xt = Bt

xt ≥ l

The integral in equation (5.1) can be calculated through methods such as Monte Carlo

simulation or delta-gamma approximations. Alexander, Coleman and Li (2006) showed that

the minimization problem in (5.2) is also a convex programming problem, which opens up

the optimization to more powerful convex programming problem machinery and software.
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5.4.2 Portfolio Optimization Under a Hidden Markov Setting

As was the case for model validation in Chapter 3, portfolio optimization has an added layer

of difficulty when the stock prices as assumed to follow a regime switching process. The

underlying state structure can also present an opportunity for an investor to make more

informed investment decisions and thus experience better portfolio performance.

The unobserved regime switching process provides some choices with regard to proceeding

with optimization. One could simply derive the stationary unconditional measures of risk

and distributions and proceed accordingly.

Where the investor knows exactly what the regime the process will be in for the period

of investment, the optimization becomes much more precise, as the other regimes do not

matter. The investor can simply optimize within the correct regime for the overall optimal

solution.

The information the investor has in the hidden Markov setting lies somewhere in the middle.

Given the data observations up to and including the observation at time t, the investor can

generate the probabilities of the process being in each regime at time t; the probabilities:

P [ρt = 1|Ft], . . . , P [ρt = k|Ft] for a regime switching process with k regimes. The probability

that the process will be in regime i for the next data observation (the period the investor

wishes to optimize over) is then
k∑
j=1

P [ρt = j|Ft] · pj,i where pj,i is the transition probability

from state j to state i.

Three different options for optimization over a single period are presented here.

1. Static Optimization

This method is as described above and does not make use of the probabilities

P [ρt = 1|Ft], . . . , P [ρt = k|Ft]

It is included mainly for demonstration purposes.

Unconditional optimization is akin to the weighted average residual option from Chap-
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ter 3. The unconditional risk measures and utility distribution are obtained through

conditional expectation:

E[X] = E[E[X|ρt+1]] V ar[X] = E[V ar[X|ρt+1]] + V ar[E[X|ρt+1]]

For the stationary option of this type of optimization, the probabilities

P [ρt = 1|Ft], . . . , P [ρt = k|Ft]

are assumed unknown, and can simply be replaced with the stationary probabilities

π1, ..., πk

and likewise the probabilities P [ρt+1 = 1|Ft], . . . , P [ρt+1 = k|Ft] will also be approxi-

mated by the stationary probabilities.

2. Dynamic Optimization

This method is identical to the stationary unconditional optimization method, except

we now assume

P [ρt = 1|Ft], . . . , P [ρt = k|Ft]

are known. We then use the probabilities

( k∑
j=1

P [ρt = j|Ft] · pj,1, . . . ,

k∑
j=1

P [ρt = j|Ft] · pj,k
)

for the unconditional risk measure and utility distribution calculation.

For example, the unconditional expected utility function will be

E[u(V ′t+1xt)] =
k∑
i=1

E

[
u(V ′t+1xt)|ρ = i

] k∑
j=1

P [ρt = j|Ft] · pj,i

The variance and CTE risk measures can likewise be calculated through the conditional
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expectation and variance formulas.

One potential issue with this optimization method is, ever when the hidden Markov

model is known, the optimizer never delivers the optimal portfolio consistent with the

optimal portfolio over one of the two regimes. Under the model, the next data observa-

tion’s distribution is going to be the same as one of the underlying state distributions,

not a weighted average of the states. A weighted average optimization is never going

to produce an optimized portfolio consistent with the model mechanics (unless one of

the estimated time t+ 1 regime probabilities is exactly 1).

Another potential issue relative to the other methods presented is that this is the only

method that requires re-optimization for each time period, as the incoming information

will update the next period regime probabilities. This method could potentially become

relatively computationally taxing depending on the frequency and the scope of the

investment.

3. Indicator Optimization

Similar to the indicator method for residual selection, indicator optimization selects

the portfolio that is optimized to the most likely regime for the next data observation.

Let g(x|ρ = i) represent the objective function for optimization under the ith regime.

Then the optimization objective line is:

max /min
xεX

g(x|ρ = h)

where

h = argmax
all i

k∑
j=1

P [ρt = j|Ft] · pj,i

The indicator optimization method has the attractive quality of correctly optimizing

when, under the model, the distribution of the market for the time period in question

is consistent with that of the selected regime h. However, when h’s distribution is not

consistent with that of the market, the chosen portfolio is optimized for a different

distribution.
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As opposed to non-stationary unconditional optimization, optimization under the in-

dicator method does not need to be performed at each time period, assuming the fitted

regime switching distribution has not changed. Once the model has been fitted and

selected, the optimizations within each regime can be performed right away. The only

factor that changes with the incoming data are the probabilities pk(t), which only im-

pact which optimized portfolio is selected. Indicator optimization will therefore require

much less computational time than non-stationary unconditional optimization.

Although the above methods are listed for single-period optimization, they all can be applied

to multi-period optimization through iteration. The latter two methods depend on the data

observations, and should therefore make use of the most up-to-date information.

Static optimization does not depend on the data. For multi-period optimizations, this

method can be changed to a single optimization using the distribution of the market re-

turns over the entire investment period. This strategy would be a buy and hold strategy,

versus an iterated single-period strategy, which would require re-balancing to the uncondi-

tional stationary weights after each period.

The effectiveness of each of these hidden Markov optimization methods will be investigated

using the S&P 500 and NASDAQ data set as an example. They will first be evaluated

under the hypothetical circumstance that the RSLN-2 model estimated through maximum

likelihood is fully and completely representative of the market. Next, the effects of parameter

uncertainty on the performance of the hidden Markov mean-CTE optimization methods will

be evaluated, and conclusions about the important factors for optimization in practice for

long-term equity data consistent with hidden Markov models will be made.

5.4.3 Portfolio Optimization under the Maximum Likelihood Es-

timates for the S&P 500 and NASDAQ Indexes

As discussed in Sections 6.2 and 6.3, the indexes of interest for this example are the S&P 500

and the NASDAQ. A BV-RSLN2 model has already been fitted to this data using maximum

likelihood estimation, and the parameters are given in Table 5.1. For this first example,
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this model is assumed to be completely representative of the market, and market stock

movements will be simulated from the model. The model is assumed to be fully known to

the investor.

The investor’s objective will be to minimize the conditional tail expectation of her portfolio

loss at the 95% level, given a preset desired portfolio expected return, and subject to budget

and short-selling constraints. The investor will be able to invest in both the S&P 500 and

the NASDAQ, in addition to a bond that yields an annual interest rate of 6%. The expected

portfolio monthly return of the investor will be 0.75% of the investment, and no short-selling

will be allowed. The investor’s budget will be set to $1, although as shown in Alexander,

Coleman and Li (2006), the optimal portfolio weights will found through the optimization

will be independent of the set budget level. The portfolio performance over a single one-

month period will be analyzed.

It is important to note that, assuming the model used is perfectly representative of the mar-

ket, the dynamic method will optimize as intended. The objective, then, of this preliminary

analysis will be to evaluate the performance of the indicator strategy relative to the perfectly

optimized strategy of the dynamic/static approach.

The optimizations will be performed using the CVX convex optimization tool for MATLAB.

CVX is a programming tool that solves convex optimization problems, and min-CTE opti-

mization is a convex optimization problem as shown by Alexander, Coleman and Li (2006).

The method for optimization involves simulating market movements under the probability

measure defined by the model, and then deriving the optimal portfolio weights, treating the

simulations as the distribution of market movements. One hundred thousand simulations

of one-month market movements were used as input for the optimization procedure, and it

was found that repeated (different) market simulation sets yielded almost identical optimal

portfolio weights.

The obtained portfolio weights for both the indicator and dynamic approaches under the

model’s stationary distribution are listed in Table 5.4. The dynamic portfolio is significantly

riskier than the indicator portfolio, and this makes sense. The indicator portfolio assumes

the data are distributed according to the first regime, where expected returns are positive

and market volatility is relatively low. This means that to achieve the expected monthly
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Method S&P 500 NASDAQ Bond
Indicator 0.3344 0.0792 0.5864
Dynamic 0.3299 0.4504 0.2197

Table 5.4: Optimal Portfolio Weights for the Indicator and Dynamic Methods Under the
Stationary Distribution for the S&P 500 and NASDAQ Maximum Likelihood Model

Method E[Return] CTE95%

Indicator 1.0061 0.9609
Dynamic 1.0075 0.9172

Table 5.5: Performance of the Indicator and Dynamic Methods Under the Stationary Dis-
tribution for the S&P 500 and NASDAQ Maximum Likelihood Model

return of 0.75%, the investor only need invest approximately 40% of her portfolio in stock,

and the rest can be placed in bonds. For the portion invested in stock, the S&P is favored

for its lower estimated volatility.

Conversely, for the dynamic portfolio, which is optimized over the unconditional distribution

of the market and includes the possibility of negative returns from the second regime, we

obtain the result that a more aggressive portfolio is required to achieve the expected portfolio

return of 0.75%. A significantly larger portion of the portfolio is invested in stock (close to

80%), with a much heavier NASDAQ position due to its higher expected return.

Now that the portfolio weights have been calculated, market returns are simulated using the

maximum likelihood BRSLN-2 distribution and portfolio performance can be assessed. The

achieved expected returns under each of the methods, and the estimated CTE at 95% loss

(displayed in the form of the portfolio value) are shown in Table 5.5. The dynamic method,

by construction, achieves the expected portfolio return of 0.75% at the minimum portfolio

loss CTE at 95%, which corresponds to a portfolio value of $0.9172. The indicator method

only achieves an expected return of 0.61%, which is only 81.3% of the expected return of the

dynamic method. This significant difference, under this example of the maximum likelihood

estimates perfectly representative of the data, suggests that the indicator method will not

achieve desired portfolio performance.
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5.4.4 Portfolio Optimization under the Bayesian Estimates for the

S&P 500 and NASDAQ Indexes

For the second half of this example, parameter uncertainty will be the focus, and its effect

on the different hidden Markov model portfolio optimization methods will be explored. Now

the market will be assumed to follow the BRSLN-2 model under its Bayesian estimation

from Section 5.3.

Recall from Section 5.3 that parameter uncertainty was greatest for the transition probability

parameter p2,1 and the state 2 volatility parameters for both the S&P 500 and the NASDAQ.

The NASDAQ parameters in general also exhibited wider posteriors than those for the S&P

500, indicating that there was more uncertainty surrounding the NASDAQ as well. It stands

to reason that a portfolio heavy in the NASDAQ (such as the MLE Dynamic optimized

portfolio) would be more sensitive in terms of portfolio performance to the greater uncertainty

in these parameters than a portfolio that was relatively lighter in the NASDAQ index.

The performance of three different optimized portfolios will be measured against the BRSLN-

2 distribution under the Bayesian estimates. The MLE indicator and dynamic optimized

portfolios from the first half of the example will be considered, and the third will be another

dynamically optimized portfolio, but this time using the Bayesian BRSLN-2 distribution as

the input distribution for the optimization procedure. The optimization was calculated in the

same fashion as for the dynamic MLE portfolio, simply using a different input distribution.

The Bayesian dynamic optimal portfolio weights are shown in Table 5.6, along with the

old weights that used the MLE distribution. Interestingly, the Bayesian dynamic portfolio

weights resemble the MLE indicator weights more closely than they do the MLE dynamic

weights. Investigation into this result yielded at least two factors that played a role. The

first is that the posterior distribution of the parameter p2,1 had more probability concen-

trated in the right tail than in the left (Figure 5.2). This asymmetry meant that under the

Bayesian distribution of the model, less time was spent in the second regime than under

the MLE model. This is turn meant that the market returns in general were less likely to

be negative, and thus less of the portfolio needed to be allocated to stock to achieve the

desired expected return. The second factor is that the greater uncertainty surrounding the

118



Method S&P NASDAQ Bond
MLE Indicator 0.3344 0.0792 0.5864
MLE Dynamic 0.3299 0.4504 0.2197

Bayesian Dynamic 0.2168 0.2594 0.5238

Table 5.6: Optimal Portfolio Weights for the Indicator and Dynamic Methods Under the
Stationary Distribution for the S&P 500 and NASDAQ Using Different Estimation Methods

NASDAQ parameters meant that the stock portion of the Bayesian dynamic portfolio was

allocated more towards the S&P 500 to minimize risk.

Once the Bayesian dynamic optimized portfolio was calculated, the three portfolios perfor-

mance was measure against market simulations, which this time were generated from the

Bayesian estimated BRSLN-2 distribution. In this case, the Bayesian dynamic portfolio

is the portfolio perfectly optimized against the market, and the performance of the MLE

indicator and MLE dynamic portfolios are of primary interest.

The expected returns achieved, and the 95% CTE of the loss function (shown again in the

form of portfolio value) are shown in Table 5.7. The MLE dynamic portfolio was a very

risky portfolio under this market. Though compensated with a higher expected return, its

portfolio loss at the 95% CTE level was almost double that of the Bayesian dynamic portfolio.

That parameter uncertainty could have as strong an effect as doubling the required reserve

to cover the potential portfolio loss should be a warning to any investor using hidden Markov

portfolio optimization without taking this uncertainty into account.

The indicator optimized portfolio, on the other hand, performed quite similarly to the

Bayesian dynamic optimized portfolio. This is a function of the nature of the parameter

uncertainty, as described above. The distributions of the final portfolio values of the three

methods are shown in Figure 5.6. The plots show that parameter uncertainty can have just

as large an effect as the optimization method selected under hidden Markov optimization.

There is also a benefit seen here in using the MLE indicator optimized portfolio over the

MLE dynamic optimized portfolio, due it beng less reliant on the parameters of greatest

uncertainty.

119



Method E[Return] CTE95% (MLE Est.)
MLE Indicator 1.0070 0.9554 (0.9609)
MLE Dynamic 1.0091 0.8999 (0.9172)

Bayesian Dynamic 1.0075 0.9472

Table 5.7: Performance of the Indicator and Dynamic Methods Under the Stationary Dis-
tribution for the S&P 500 and NASDAQ Bayesian Model

Figure 5.6: Distribution of the Single Period Returns for the Different Optimzation Methods
under the Bayesian BRSLN-2 Model
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5.4.5 Summary of the BRSLN-2 Portfolio Results

The preceding example demonstrated some important findings for hidden Markov portfolio

optimization:

• Parameter uncertainty can have a profound effect on portfolio optimization under

hidden Markov assumptions for equity returns. The uncertainty surrounding the pa-

rameters from the low mean, high volatility state was the cause of this effect when

optimizing over a BRSLN-2 model fitted to the NASDAQ and S&P 500 indexes.

• The dynamic hidden Markov optimized portfolio, when calculated using the maximum

likelihood estimates of the market, was found to be less robust to risk associated with

parameter uncertainty than the indicator optimized portfolio. A main reason for this

is that the optimal portfolio under the dynamic method places more portfolio weight

with the risky assets. The difference in portfolio performance can be significant, and

it is advisable that portfolion optimization using the hidden Markov dynamic method

should always take parameter uncertainty into account.

• The indicator method provided an effective alternative for the major American indexes,

due to it being less reliant on the parameters of the model for which parameter un-

certainty is greatest, and is significantly less computationally taxing than the dynamic

method.

5.5 Conclusion

This chapter explored hidden Markov portfolio optimization from the model fitting stage

to the optimized portfolio and the effect of parameter uncertainty. The estimated hidden

Markov model’s underlying state framework for the S&P 500 and NASDAQ indexes resem-

bled that of the single index model: one state with high expected returns and low volatility,

and another with the low expected returns and relatively high volatility. The posterior dis-

tribution from the Bayesian estimation indicated that, similar to the single index case, the

greatest uncertainty surrounded the high volatility regime.
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Different methods of hidden Markov portfolio optimization were described and compared

using an example involving the S&P 500 and the NASDAQ indexes. The example demon-

strated the importance of taking parameter uncertainty into account for hidden Markov

portfolio optimization, and that optimizations that are less reliant on the parameters with

the greater uncertainty, namely indicator optimization, will be more robust to its effects.
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Chapter 6

Hidden Markov Portfolio Replication

6.1 Introduction

In this chapter, the problem of interest changes from hidden Markov portfolio optimization

to hidden Markov portfolio replication. More specifically, the focus will be on the delta

hedging of an equity guarantee under a hidden Markov state framework.

Under the famous delta hedging strategy of Black & Scholes (1973), one of the assumptions

made by the Black-Scholes framework is that stock prices follow a geometric Brownian motion

with a constant volatility parameter. As argued in Chapters 2 through 4 of this thesis, such

an assumption is not realistic when looking at long-term equity data. Models with clustering

volatility, such as hidden Markov models, can provide much better fits to indexes such as

the S&P 500.

The literature concerning hedging under hidden Markov stock assumptions is limited. Al-

izadeh and Nomikos (2004) used a hidden Markov strategy for hedging an asset using its

futures value on the S&P 500 and FTSE 100. Their approach was to calculate the mean-

variance hedged portfolios for each of the underlying states, and then average the respec-

tive positions using the data-dependent regime probabilities. They compared their regime-

switching results against a portfolio hedged using the volatility estimated from a GARCH

123



process, and found that the regime-switching approach performed better for some cases, and

the GARCH approach better for others.

This chapter will first discuss delta hedging under the Black-Scholes framework and discuss

issues with the volatility assumption. Then, under the assumption of a hidden Markov model

for the data, this chapter will present different options for hedging through different selection

processes for the volatility parameter. It will then discuss the implications of each of the

strategies, and the circumstances under which they best perform. The focus will be on deep

out-of-the-money options because they are the most relevant to investment guarantees in

insurance. A deep out-of-the-money put option example, under the RSLN-2 model fitted in

Chapter 2, will demonstrate the effectiveness of the different replicating strategies. Finally,

the same example will adjusted to include the Bayesian analysis of Chapter 4 to demonstrate

the impact of parameter uncertainty on the hidden Markov hedging strategies.

This Chapter contributes to the literature on hidden Markov hedging by:

• Presenting and comparing different options for portfolio replication in a hidden Markov

setting;

• Demonstrating the implications of these different options for a deep out-of-the-money

put option for the S&P 500; and

• Assessing the impact of model parameter uncertainty on those implications.

6.2 Black-Scholes Delta-Hedging

Developed in the 1970’s, the Black-Scholes delta-hedging strategy is still widely used to fund

liabilities that are or resemble equity derivatives. The strategy, based on some assumptions

made about both the market and the stock price, creates a portfolio consisting of positions

in both the option’s underlying equity and a risk-free instrument. The portfolio will then

approximately replicate the movement of the value of option relative to changes in the

underlying stock’s price.
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The assumptions made about the stock and the market by the Black-Scholes framework are:

• The asset price, St, follows a geometric Brownian motion (GBM) with constant volatil-

ity parameter σ.

• Trading in the market is assumed to be done continuously, and the replicating portfolio

will be continuously re-balanced.

• Short selling is allowed in the market without restriction.

• No transaction costs or taxes are present in the market.

• All market investors can borrow and lend money at the same fixed force of interest r.

Each of the above assumptions above is unrealistic in at least some sense in trading markets.

The ability to continuously re-balance every replicating portfolio for every block of business

that every insurer has is obviously infeasible. Stock prices in the long-run, as demonstrated

in Chapter 2, do not resemble geometric Brownian motions, nor do they have constant

volatilities. There are limits to short-selling even for the largest of financial institutions.

Transaction costs and capital gains taxes can significantly affect returns for market investors.

Interest rates fluctuate, and there is almost always a bid-ask spread for risk-free interest rates

that banks will offer investors.

However, the assumptions can be relaxed or their costs be quantified. For this chapter, the

underlying asset price can be assumed to follow more complicated processes, such as those

described in Chapter 2. Trading will be assumed to be done at discrete intervals, which

will introduce a difference in value between the maturing portfolio and the new replicating

portfolio at the end of each interval. This difference is also known as hedging error or

tracking error. This error will be tracked and valued over time as a cost of hedging the

liability. Transaction costs will be incorporated.

The two assumptions that will be kept for the analysis of this chapter will be the lack of

restriction on short selling and the constant interest rate assumptions. Further investigations

about the impact and possible relaxing of these assumptions in the context of replicating

portfolios under hidden Markov models will be left as subject for further research.
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6.2.1 Hedging Under the Black-Scholes Model

A major result from the Black-Scholes-Merton framework is that security derivative’s price

is equal to the derivative’s expected value under the risk-neutral measure Q, discounted at

the risk-free force of interest r.

Pt = e−r(T−t)EQ[VT ]

Under the no-arbitrage assumption, Pt must also be the price of the replicating portfolio at

time t.

The Black-Scholes-Merton framework also describes how the hedging portfolio is constructed.

Let Ωt represent the partial derivative of the security price Pt with respect to the asset price

St

Ωt =
∂Pt
∂St

The portfolio that will exactly replicate the security holds Ωt ·St units in the risky asset, and

Pt−Ωt ·St in the risk-free asset. Moreover, this portfolio will be self-financing, meaning that

after each infinitesimal time step, the resulting hedged portfolio value will equal the value

needed to hedge the security over the next infinitesimal time step.

The Hedge of a Simple Guaranteed Minimum Maturity Benefit

A well known result under the Black-Scholes-Merton framework is the price of European put

and call options. Let t represent the current time, T the time of maturity of the contract

and K the strike price of the put option. Assume the asset price St has variance σ2 · t over

a period of length t. The Black-Scholes European put option price, BSP (t) is given by

BSPt = K · e−r(T−t) · Φ(−d2)− St · Φ(−d1)
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where d1 and d2 are given by

d1 =
log(St/K) + (T − t)(r + σ2/2)√

T − tσ
d2 = d1 − σ

√
T − t

and Φ(x) is the standard Normal cumulative distribution function evaluated at x.

The hedged portfolio holds Ωt · St in the risky asset, where Ωt has been proven to be

Ωt = −Φ(−d1)

under the Black-Scholes-Merton framework (see Hull, 1989 for details).

6.3 Regime-Switching Portfolio Replication

The Black-Scholes replication strategy requires a single value input for the process volatility,

which corresponds to the assumed volatility of the Brownian motion process for the un-

derlying stock. However, it has been argued in this thesis that such a model for the stock

process provides an unsatisfactory fit for long-term equity data. Moreover, even the more

relaxed assumption of constant volatility in the stock is shown to be non-trivially violated.

The dynamic nature of volatility of the equity process led to the fitting and validation of the

class of hidden Markov models, for which the volatility of the process can be quite different

from time period to time period under the model.

In this chapter, we explore the efficiency of hedging assuming an underlying hidden Markov

model. Given the significant effort put forth into validation and assessment of hidden Markov

equity models for the valuation of various investment guarantee contracts, a natural step

is the incorporation of these models into the financing strategy for these contracts. The

challenge becomes finding the most efficient way of utilizing both the hidden Markov model
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mechanics and the available information contained in the data to hedge the contracts.

Under the hidden Markov model structure, volatility parameters for each of the underlying

states are defined. However, the Black-Scholes replication formula requires that one value

for stock volatility be used for calculating portfolio values and hedging requirements. The

remainder of this chapter will introduce different types of volatility selection given a hidden

Markov model for the underlying equity, discuss the implications of each, and investigate

and assess their performance using examples.

6.3.1 The Static Unconditional Volatility Approach

A simple approach to deriving a single volatility estimate from the hidden Markov model

structure is to average the volatility parameters of each of the regimes using the invariant

distribution for the regimes as the probability measure. This can be done using the formula

for conditional variance. The volatility parameter used at time t for portfolio replication can

be expressed as:

σSTATt =
√
V ar[Yt]

=
√
V arπ[E[Yt|ρt]] + Eπ[V ar[Yt|ρt]]

Given the underlying state ρt, the mean and variance of the process are defined by the

model, E[Yt|ρt] = µρt and V ar[Yt|ρt] = σ2
ρt respectively. Under the invariant distribution,

where πk, k ∈ (1, . . . , n) represents the probability that the underlying state is state k at

any time given no additional information, the unconditional process volatility can be more

explicitly expressed as

σSTATt =

√√√√ n∑
k=1

µ2
k · πk −

( n∑
k=1

µk · πk
)2

+
n∑
k=1

σ2
k · πk

This approach will be called the static unconditional approach. The σt value never changes,
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as the processes invariant distribution never changes, and is not impacted at all by the

incoming observed data of the time series.

This approach is not expected to perform significantly different than the standard Black-

Scholes replication strategy using a simple log-normal model, as they both estimate a long-

run constant volatility of the process and plug that into the Black-Scholes equations. More-

over, this approach eliminates the main attraction of using hidden Markov models in the

first place: capturing the dynamic nature of the volatility of the stock process. Examples

using this method will be performed, but mainly so they can be used as a reference point

from which the relative success of other methods can be measured.

6.3.2 The Dynamic Unconditional Volatility Approach

Instead of using the unconditional regime probabilities as the probability measure for deriving

an unconditional volatility, one could instead use the data dependent regime probabilities.

These probabilities take into account the movements of the data up to and including the

current observation, resulting in more informed probability estimates of the underlying path

of the series. As defined in section 2.4, the regime probabilities, conditional on the data and

using the obtained estimates for the model parameters, are

pk(t) = P [ρt = k|yt, . . . , y1], k ∈ {1, . . . , K}, t ∈ {1, . . . , T}

and are calculated recursively as before.

When creating a replicating portfolio for an option at time t, one is not so much concerned

with the volatility of the process over the previous period t − 1 to t as one is with the

coming period t to t + 1. It is this time period for which the re-balanced hedged portfolio

is designed to move with the stock. Since the underlying regimes, ρt, represent the state of

the underlying process for the log-return observation yt, it is actually the distribution of ρt+1

that is more important to the forward-looking hedger. The analyst still only has information

from the data up to time t, however, meaning the regime probabilities conditional on the
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data that the hedger is looking for are

P [ρt+1 = k|yt, . . . , y1], k ∈ {1, . . . , K}, t ∈ {1, . . . , T}

These probabilities can be easily calculated from the probabilities pk(t). Let p+
k (t) represent

the probability that, conditional on the data up to and including the observation at time t,

the underlying state for the data observation at time t+ 1 will be regime k. The p+
k (t)’s can

then be calculated by

p+
k (t) =

N∑
n=1

pn(t) · ˆpn,k k ∈ {1, . . . , K}, t ∈ {1, . . . , T}

or, descriptively, the sum of the probability of being in each of the states for the time t

observation times the probability of transitioning from those states to state k under the

estimated model.

Conditional on these data-dependent regime probabilities, the unconditional volatility of the

process to be used for Black-Scholes portfolio replication can then be calculated:

σDYNt =

√√√√ n∑
k=1

µ̂k
2 · p+

k (t)−
( n∑
k=1

µ̂k · p+
k (t)

)2

+
n∑
k=1

σ̂k
2 · p+

k (t)

This approach is called the Dynamic Unconditional Approach, as the volatility estimate of

the upcoming observation will change based on the data observations and what underlying

state path has been estimated.

Note this approach is still a weighted average approach, meaning the volatility estimates

σDYNt will fall somewhere between the regime-specific volatility parameters. This approach

still estimates an overall volatility for the process, but now one that incorporates data move-

ments in addition to model mechanics. The objective of this approach is to provide a

volatility estimate for the hedger that will perform reasonably well under all feasible market

conditions, whether the market behaves relatively stable or more volatile.

130



6.3.3 The Indicator Volatility Approach

An alternative approach to incorporating the data dependent future regime probabilities

p+
k (t)’s into the calculation of a Black-Scholes volatility input parameter is to use an indicator

approach similar to that defined for residuals in Section 3.2.3. This approach selects the

state-specific volatility parameter, σk, for which p+
k (t) is highest. More formally,

σINDt = σ̂k, where p+
k (t) = max(p+

1 (t), . . . , p+
K(t))

This approach is quite different from the unconditional approaches in the sense that it does

not try to perform reasonably well under all market conditions. It instead tries to perform

the best it can under what the model estimates as the most likely set of market conditions,

ignoring the potential downside of incorrectly estimating the market ‘state’.

The potential upside of this approach is that if the different hidden Markov states of the

model are adequately representative of the different market conditions that affect equity

returns, and if within those states the model accurate captures market movements, then

the majority of the time this approach will produce very effective hedges. It will generally

not overestimate market volatility during stable times in an effort to account for possible

shifting market conditions to more extreme returns the same way the dynamic uncondi-

tional approach does. Nor will it generally underestimate the volatility when the market is

experiencing more drastic price movements.

The downside, however, is that this method will produce the least effective hedges when

the state it selects is not representative of market conditions. If the approach selects a

stable market state for a very volatile period, then the volatility used for hedging might

be drastically underestimated. It can be likewise significantly overestimated for a relatively

calm period of market activity.

The overall success of the indicator and dynamic unconditional approaches will be a a focus

of the remainder of this chapter.
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6.3.4 Additional Type of Hedging Error Introduced by the Dy-

namic Methods

One of the potential risks of using a dynamic approach to the volatility process under Black-

Scholes hedging is that additional hedging error is introduced through that volatility. The

Black-Scholes value of the option, and consequently the positions in stock and bond held by

the hedger are dependent on the assumed volatility, and if that assumed volatility changes,

so too will the calculated option value and hedged positions. This change alone can produce

significant hedging error (current option price less accumulated hedge value), in addition to

the hedging error from movements in the stock price itself.

Let BSPt(σ) and HEt(σ) be the respective Black-Scholes option price and hedging error at

time t dependent on volatility input parameter σ. Normally under Black-Scholes hedging,

this volatility parameter doesn’t change, and thus the hedging error at time t + 1 can be

represented as

HEt+1(σ) = BSPt+1(σ)− (Ht(σ) · St+1 +Bt(σ) · er)

where Ht(σ) and Bt(σ) are the hedge position and the bond position entered into at time t

respectively, given input volatility parameter σ.

However, if the assumed volatility were to change with time, letting σt be the calculated

process volatility at time t, then the hedging error under the new process would be presented

as

HEt+1(σt+1) = BSPt+1(σt+1)− (Ht(σt) · St+1 +Bt(σt) · er)

HEt+1(σt+1) = BSPt+1(σt+1)−BSPt+1(σt) +BSPt+1(σt)− (Ht(σt) · St+1 +Bt(σt) · er)

The hedging error can be de-constructed into two parts:
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• The hedging error resultant from changing the processes volatility: BSPt+1(σt+1) −
BSPt+1(σt);

• The hedging error that normally results from the process due to gamma risk and using

discrete time hedging: BSPt+1(σt)− (Ht(σt) · St+1 +Bt(σt) · er)

Transaction Costs

This extra hedging error can play a significant role due to the nature of transaction costs.

Typically, transaction costs for trading are proportional to the size of the position change.

A portfolio strategy that experiences smaller changes in its stock position will incur less

transaction costs than a portfolio that experiences many large changes, even if the portfolios

have the same average stock position.

The regime-switching portfolio replication methods are expected to experience different im-

pacts from transaction costs. The static unconditional method has a constant volatility

input parameter, and thus its transaction costs will operate similar to traditional portfolio

replication: no transaction costs will result from changing volatility parameters.

The indicator replication method selects one of the volatility parameters associated with

each of the regimes, and hedges using that parameter as input. For regime-switching models

for equity data, where regime transitions are infrequent, transaction costs will for the most

part behave similarly to the static unconditional method: the process spends a good deal of

time remaining in its current regime, and thus the volatility parameter associated with that

regime gets selected for many consecutive periods. However, when the underlying process

is calculated to have transitioned to another regime, assuming the regimes have dissimilar

distributions, then very large changes in the option value and thus large transaction costs

associated with volatility parameter change can be expected.

For the dynamic unconditional replication approach, the volatility of the process is constantly

changing, and thus transaction costs associated with volatility parameter change will be

experienced at every re-balance. However, because the volatility parameter is a weighted

average of the regime-specific volatility parameters, the dynamic volatility will always be
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Regime µ σ Transition Parameters
One 0.01024 0.03384 p1,2 = 0.0337
Two -0.01448 0.06486 p2,1 = 0.1517

Table 6.1: The RSLN-2 MLE Parameters Fitted to the S&P 500 Monthly Log-Return from
Jan 1950 to Oct 2010

calculated somewhere in the middle of the extreme volatility parameters associated with the

regimes. While transaction costs will be associated with every portfolio re-balance, they

will be smaller in magnitude than the large jumps associated with the indicator replication

approach.

An important aspect of the analysis of each of these methods is the relative trade-off of

potentially less hedging error due to gamma risk because of more responsive volatilities with

larger transaction costs due to more volatile portfolios.

6.4 A Portfolio Replication Put Example using the

RSLN-2 Model for the S&P 500

To investigate the effectiveness of each of the proposed hidden Markov portfolio replication

methods, an example under ideal circumstances will be presented. Equity returns for these

examples will be simulated from the RSLN-2 model estimated from the S&P 500 monthly

data using maximum likelihood. Moreover, the model is assumed known to the investor,

eliminating any possibility of parameter uncertainty or model error. The model parameters,

as calculated in Section 2.4.1, are displayed again here in Table 6.1 for quick reference.

The example used will be a 10-year put option on the simulated index. The index value at

time 0 will be $100, and the strike price $100. The put option example emulates a 10-year

GMMB contract on the index, without the management expense ratio (the guarantee value

is assumed paid for upfront in full). Transaction costs are assumed to be 0.02% of the change

in the stock position for each transaction. The risk-free force of interest, from which investors

can borrow or lend at no cost, is assumed at 5% per annum.
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Volatility Static Dynamic Indicator
EPV[Total Hedging Costs] 2.9681 2.5420 2.2518

90% CTE[Total Hedging Costs] 5.8092 5.6619 6.4691

Table 6.2: Total Hedging Cost Averages and 90% CTE’s for the Hedging Strategies for the
S&P 500 Put Option Example

The seller of the contracts will fund the liabilities of the contracts with a Black-Scholes hedge

under the static unconditional, dynamic unconditional and indicator strategies defined above.

The replicating portfolios will be re-balanced monthly. The discounted total cost of hedging

the contract (initial hedge value plus monthly re-balancing costs) will be calculated, and

used to measure the effectiveness of each of the hedging strategies. 100,000 simulations of

10-year index movements and resultant portfolio hedges were performed.

6.4.1 Maximum Likelihood Results

Since hedging is a trade of higher expected liability costs for lower risk, the effectiveness

of the strategies will be evaluated on a risk/reward basis. The reward will be the expected

total hedging costs of the contract, for which smaller values are obviously better, and the risk

measure will be the 90% conditional tail expectation of the total hedging cost distribution,

again for which smaller values are better.

The expected total hedging costs and 90% CTE’s of the hedging cost distributions are

displayed in Table 6.2. At a first glance, the dynamic replication method outperforms the

static replication for both average total cost (14.4% less) and in the right tail of the hedging

cost distribution (2.6% less). The dynamic hidden Markov strategy has already proven

itself significantly better than a static hedging strategy, under a hidden Markov model. The

indicator method is riskier than both the static and dynamic hedging strategies, but offers

a much lower expected total cost in return for this risk.

The distributions of the total hedging costs are displayed in Figure 6.1. The indicator hidden

Markov replication strategy clearly has on average lower total hedging costs, but also has

the thickest tails for its hedging cost distribution. The dynamic replication strategy has the

thinner total hedging cost right tail of the three distributions.
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Figure 6.1: Total Hedging Cost Distributions for the Hedging Strategies for the S&P 500
Put Option Example

The reason for the relative success of the indicator and dynamic methods over the static

strategy is because of the impact of inaccuracy in the volatility parameters used. Under the

model, the static strategy either significantly underestimates the volatility or significantly

overestimates the volatility. When the market volatility is higher than the static prediction,

the model is in state two which is associated with negative returns. Since the short position of

the static strategy is not as large as it should be, when the negative returns are experienced

it does not gain as much money as it should. Conversely, when the market is in state

one, the static method overestimates the volatility, which means its short position is larger

than it should be. Since state one is associated with positive returns, the static method

is losing more money on those positive returns due to its larger short position. So no

matter what the underlying state, the static method portfolio performs worse than it should

due to volatility mis-estimation. The indicator and dynamic strategies infer from the data

observations more accurate information about current market volatility, and therefore result

in better predictions of volatility and thus better hedges.

In order to quantify the effectiveness of the indicator and hidden Markov strategies over a
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static strategy, however, it will be necessary to compare their expected total hedging costs

against static strategies with similar 90% total hedging cost CTE’s, or compare their 90%

hedging cost CTE’s with static strategies of similar expected hedging costs.

As stated earlier, the larger one’s hedge position, the larger the expected hedging costs

associated with that portfolio, but the smaller the portfolio risk. Static strategies at different

hedge sizes will therefore have different associated total hedge cost distributions. The hedge

size of a static strategy can be controlled by the level of the volatility parameter. The larger

the volatility parameter, the more the process is expected to experience the deeper tails, and

therefore the larger the hedge size, and visa versa.

The black line in Figure 6.2 shows the relationship of total expected hedging costs to the

90% CTE of hedging costs for static replication strategies. The dynamic and indicator

hidden Markov replication strategies are also plotted, represented by the blue and magenta

dots respectively. Both hidden Markov strategies are significantly below the static strategy

frontier.

Relative to the static strategy of the same expected total hedging costs, the dynamic hid-

den Markov strategy offers a 16.7% percent reduction in the 90% CTE hedging cost risk.

Similarly, the indicator strategy also reduces the right 90% CTE tail risk by 17.0% relative

to a static strategy with the same expected total hedging cost. From a different angle, the

dynamic strategy also has an average hedging cost 16.7% less than the corresponding static

strategy with an identical total hedging cost 90% CTE. The expected total hedging cost of

the indicator strategy is 14.5% less than the expected cost for a static strategy with the same

hedging cost 90% CTE.

Both the indicator and dynamic hidden Markov strategies have proven very effective against

static strategies for delta hedging an deep out-of-the-money put option for the hidden Markov

model fitted to the S&P 500. The indicator strategy is somewhat riskier than the dynamic

strategy, but offers a smaller expected total hedging cost in compensation. Comparisons

between the indicator and dynamic strategies would require a cost/benefit assumption of

investor preferences for risk and reward, similar to a utility function, which will be subjective

from investor to investor. The two methods provide investors using hidden Markov models

with effective choices.
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Figure 6.2: Comparison of Expected Hedging Costs and 90% Hedging Cost CTE’s for Static
and hidden Markov Hedging Strategies for the S&P 500 Put Option Example
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This example was constructed under the hypothetical circumstance that the hidden Markov

model is perfectly known to the investor and that the model is perfectly representative of

market data. The next section will present the same example, except now the market will

be constructed to perform differently than the investor expects, encapsulating the effect that

parameter uncertainty can have on the hidden Markov replication strategies.

6.4.2 Evaluating the Effects of Parameter Uncertainty

One method of assessing the robustness of the performance of each of the hedging strategies

is to evaluate their performance when faced with parameter uncertainty. Given the different

approaches of the dynamic and indicator hedging strategies, parameter uncertainty may play

a different role under each of the strategies. The indicator approach, for example, selects a

regime-specific volatility as its hedging volatility which does not incorporate any parameters

not associated with that regime. This may result in parameter uncertainty in the volatility

parameters having a relatively larger effect on the indicator strategy. Likewise, uncertainty

in the transition probability parameters, or even the regime-specific log-return means, may

have a larger impact on the performance of the dynamic strategy, which incorporates all

model parameters in each volatility calculation.

Parameter uncertainty was a central focus of Chapter 4 of this thesis, where a Bayesian

approach was used to evaluate parameter uncertainty (and the resultant implications) of

long-term equity models. Since the put example above used estimates for the monthly S&P

500 data, the Bayesian results for the S&P 500 models can be applied to the example to

investigate the impact of parameter uncertainty on the hidden Markov hedging strategies.

The posterior distributions of the parameters of the RSLN-2 model fitted to the S&P 500

data, as found in Chapter 4, are displayed again here for quick reference (Figure 6.3). The

regime 2 mean posterior distribution has a thicker left tail than a right one, and the regime

2 volatility parameter has a thicker right tail than a left one, meaning the uncertainty of the

state extends towards it being even more volatile and less rewarding than the other direction.

This could have especially severe implications on hedging strategies for low strike price put,

given that under the model for the put to be in the money, the state path will almost
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Figure 6.3: Distributions of the RSLN-2 parameters under Regime-Switching Bayesian Es-
timation

certainly have to spend a significant amount of time in this state. The relative uncertainty

of the transition probability parameter p2,1 may also have significant implications on the

hedging strategies.

As a means of assessing the impact of parameter uncertainty the following adjustments to

the example were made:

• Instead of the maximum likelihood parameter estimates, the Bayesian posterior param-

eter distributions obtained in Chapter 4 are used to generate the simulated ‘real-world’

data. An equal number of market simulations were performed for each parameter set

iteration of the converged Markov chain.

• The hedger still uses the maximum likelihood RSLN-2 parameter estimates to perform

her calculations for regime probabilities and portfolio weights.

The objective of this example is to evaluate the performance of the same hedging strategies

and same model estimation given the Bayesian estimates of parameter uncertainty and the
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Volatility Static Dynamic Indicator
EPV[Total Hedging Costs] 3.0082 2.6823 2.4142

90% CTE[Total Hedging Costs] 5.9424 5.9493 6.7918

Table 6.3: Total Hedging Cost Averages and Standard Errors for the Hedging Strategies for
the S&P 500 Put Option Example Under Bayesian Data Simulation

corresponding impacts on the model.

Table 6.3 displays the expected hedging costs and the 90% CTE of the hedging cost distri-

bution for each of the three replication strategies. All three methods were affected by the

market parameter uncertainty not accounted for, though the indicator and dynamic methods

were more affected than the static strategy. The hedging costs 90% CTE for the dynamic

and indicator methods both increased by approximately 5% due to parameter uncertainty,

whereas it only increased 2.3% under the indicator strategy. The general relationship be-

tween the three methods is still the same however, which is further depicted in Figure 6.4.

In terms of the effectiveness of the indicator and dynamic strategies over static strategies

with the same level of risk or reward, both hidden Markov strategies still offer significant

improvements over the static method, but not to the same degree as when there was no

assumed parameter uncertainty (see Figure 6.5). The dynamic hidden Markov strategy

offers now a 10.9% percent reduction in the 90% CTE hedging cost risk over the static

strategy with the same expected costs, down from 16.7% in the previous section. Similarly,

the reduction in the indicator method over the static strategy with the same average cost

was 11.1%, down from 17.0%.

Overall, the results from the Bayesian example showed that the hidden Markov replication

strategies are more sensitive to parameter risk than static replication strategies for a deep

out-of-the-money put option on a model Bayesian-fitted to the S&P 500. However, both

methods still offer a significant reduction in hedging costs and/or risk, and the indicator

strategy was still shown to be cheaper and more risky than the dynamic strategy.
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Figure 6.4: Total Hedging Cost Distributions for the Hedging Strategies for the S&P 500
Put Option Example Under Bayesian Data Simulation
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Figure 6.5: Total Hedging Cost Distributions for the Hedging Strategies for the S&P 500
Put Option Example Under Bayesian Data Simulation
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6.5 Conclusion

This chapter presented two different delta-hedged portfolio replication strategies for put op-

tions, where the underlying equity price follows a hidden Markov distribution. The weighted

average strategy averages state volatilities for input into the Black-Scholes framework us-

ing the data dependent underlying state probabilities of the estimated model. The indicator

strategy uses the state specific volatilities, with transitions immediately when the data under

the model indicate a probable state shift.

The strategies were tested for a long-term out-of-the-money put option, which resembles a

long-term guaranteed minimum accumulation benefits guarantee, using the RSLN-2 model

for the S&P 500 monthly data. Both options significantly outperformed static delta-hedging

strategies. The weighted average strategy offered a very low risk option, while the indicator

strategy was somewhat riskier, but offered an expected discount on total hedging costs.

Incorporating parameter uncertainty into the analysis did not alter these overall results.
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Chapter 7

Future Work

This Chapter will identify a few areas for further research that are natural extensions of the

analysis presented in this thesis.

7.1 Relaxing the Constant Interest Rate Assumption

A focus of this thesis has been to obtain results and methods that would be of practical use

for long-term equity analysis, in particular for insurance applications. Real world data was

used for method and model comparisons. However, interest rates were held constant for the

examples and markets calculations. For the GMAB example in Chapter 2, the risk free rate

was held at 5%. The bond in Chapter 5 that was available for investment was assumed to

yield a constant 6% per annum. And the risk free force of interest for the dynamic hedging

example in Chapter 6 was also 5%.

A constant interest rate assumption is unrealistic. Moreover, since the general focus of this

thesis was the long-term left tail of equities, strung together periods of negative returns are

of concern. Such periods are often experienced at the same time as downturns in the econ-

omy, which also often prompt governments to lower interest rates for investment stimulation

purposes.
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A natural extension of the portfolio optimization and portfolio replication analyses would be

to include floating interest rates. Perhaps variations of the Vasicek model (Vasicek, 1977) or

the Cox-Ingersoll-Ross model (Cox, Ingersoll and Ross, 1985) for short term interest rates

could be incorporated into the hidden Markov model framework for more realistic results for

hidden Markov portfolio replication and optimization.

7.2 Developing further the Dynamic Hedging Analysis

Chapter 6 investigated dynamic hedging under a hidden Markov framework, and presented

results for a deep out-of-the-money put option. The analysis in Chapter 6 could be easily

adapted to study the effects of different types of options, such as calls, spreads, exotic options

and lookbacks. In addition, moving from monthly data to higher frequency data could be

considered to further investigate what the most beneficial hedging strategies are under a

hidden Markov setting. In this sense, a mix of short-term and long-term hidden Markov

dynamics could be integrated together, such that potential models could capture both short

term and long term market states.

7.3 Bayesian Model Validation

The focus of Chapter 3 was validation of the maximum likelihood estimated hidden Markov

models described in Chapter 2. A natural extension of this work would be a similar analysis

for the Bayesian estimates of the models from Chapter 4.

Bayesian residual analysis (see Gelman, 2003, for example) even for single state models,

encounters the same difficulties as hidden Markov analysis, in that parameter values are

treated as random variables and thus residuals can not be read off as in the single state

frequentist model case. Theorem 1 from Chapter 3 could be extended to broader classes of

latent parameters.

Other forms of Bayesian model validation include posterior predictive checking (presented in
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Rubin, 1981 and Rubin, 1984), involves replicating data multiple times under the model, and

comparing the distribution of a statistic of interest from the simulations to that obtained

from the model. For long-term equity models, the long-term left tail is often of primary

concern. The oversampling technique used in Hardy, Freeland and Till (2006), which gains

inference about the long-term left tail using a modified bootstrap technique, could be used

for this type of analysis.

7.4 Extensions to other Hidden Markov Models

The hierarchical hidden Markov (HHM) class of models consists of models for which there

are hidden Markov probabilistic state models within other probabilistic state models. When

a state in the upper hierarchy is experienced under the model, it activates an embedded

underlying state process, dependent on the upper hierarchy state. These models have only

recently been proposed in a financial setting (Troiano and Kriplani, 2010), but have longer

histories in the fields of speech recognition and computational molecular biology.

Theorem 1 from Chapter 3 could be adapted to the hierarchical hidden Markov model case

to enable proper goodness-of-fit testing of HHM models through residual analysis. Bayesian

analysis for single state hierarchical models and meta-analyses has been developed (De-

Mouchel, 1990, for example), and could be adapted for a HHM setting. The potential gain

in model goodness-of-fit for long-term equity data such as the S&P 500 over the simpler

hidden Markov models used in this thesis would be an interesting analysis.

Theorem 1 from Chapter 3 could also be adapted to non-Gaussian hidden Markov models

(for example, hidden Markov models with random innovations that are distributed according

to a Student’s t-distribution). Non-Gaussian innovations can represent a different way of

capturing the data observations that don’t fit within the simpler hidden Markov models,

rather than adding additional model structure. The ability to adapt tests for single state

models with the same respective random innovation processes to hidden Markov models

could be prove valuable.
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Appendix A

Posterior Convergence Assessment

For the Bayesian estimation of the hidden-Markov models in Chapter 4, a stationarity test

(Robert et. al, 1999) was used to assess convergence of the posterior distributions. To

perform the test, one first splits the chain

Θ(b+1), . . . ,Θ(S)

into two sub-chains of equal size,

Θ(b+1), . . . ,Θ(S−b
2

) and Θ(S−b
2

+1), . . . ,Θ(S)

From both sub-chains, further sub-samples of size G = G(S) are drawn. For each parameter

θd, the test compares the empirical cumulative distribution functions of the sub-samples

of size G with a Kolmogorov-Smirnov two-distribution test. The test statistic for each

parameter is defined by

KSd =
1

G
max
η

∣∣∣∣ G∑
g=1

(
I
θ
(g)
d ≤η

− I
θ
(g)
2d ≤η

)∣∣∣∣
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Parameter K-G Statistic P-value
p1,2 0.0390 0.0932
p2,1 0.0250 0.5545
µ1 0.0375 0.1175
σ1 0.0305 0.3056
µ2 0.0270 0.4545
σ2 0.0440 0.0404

Table A.1: Posterior Stationarity Test Results for the RSLN-2 Model

The p-values of the test statistics KSd, d ∈ {1, . . . , D} are the p-values of the standard

Kolmogorov-Smirnov test if G(S) ∈ o(S), or more explicitly,

lim
S→∞

G(S)

S
= 0

The term ‘stationarity test’ here can be misleading. There is some literature that disputes

whether stationarity can be assessed from a single Markov chain (see, for example, Gelman

and Rubin (1992)). The main area of danger is that there may be local areas the chain

experiences for extended periods of time before moving to its stationary distribution. If the

chain moves quickly to one such local area of attraction and remains in it until stopping

time S, the chain would pass the stationarity test despite not yet reaching the stationary

distribution of the posterior. The test therefore must be used with caution. If the test fails,

then an acceptable conclusion is that the chain needs to continue to run. If the test passes,

then one can conclude that the chain has at least reached a node of near -stationarity.

The number of simulations performed for each of the models was 21, 000. After the burn-in

period of 1, 000 was removed, the remaining 20, 000 observations were split into two sub-

chains. From each of these, 2, 000 observations for each parameter were simulated at random,

without replacement, to form the two sets that were compared with the Kolmogorov-Smirnov

test. The stationarity test results from the popular long-term equity hidden Markov models

are displayed in the tables that follow.
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Parameter K-G Statistic P-value
p1,2 0.0512 0.1011
p2,1 0.0460 0.2350
µ1 0.0356 0.4512
ϕ1 0.0290 0.7888
σ1 0.0477 0.1956
µ2 0.0400 0.3935
ϕ2 0.0430 0.3072
σ2 0.0660 0.0244

Table A.2: Posterior Stationarity Test Results for the RSDD-2 Model

Parameter K-G Statistic P-value
p1,2 0.0349 0.5723
p2,1 0.0630 0.0361
µ1 0.0380 0.4586
β1 0.0554 0.0921
µ2 0.04919 0.1683
β2 0.0310 0.7161

Table A.3: Posterior Stationarity Test Results for the RSGARCH Model

Parameter K-G Statistic P-value
P 0.0380 0.1089
µ1 0.0560 0.0036
α1 0.0165 0.9466
α2 0.0160 0.9586
α3 0.0225 0.6873
µ2 0.0365 0.1364
σ2 0.0225 0.6873

Table A.4: Posterior Stationarity Test Results for the MARCH Model
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