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Abstract

In this thesis we discuss deterministic compartmental epidemic models. We study the asymp-
totic stability of the disease-free solution of models with pulse vaccination campaigns.

The main contributions of this thesis are to extend the literature of pulse vaccination models
with delay. We take results for ordinary differential equation models and extend them to models
with delay differential equations. Model generalizations include the use of a general incidence
term as an upper bound for the actual incidence, and the use of switch parameters to approximate
time-varying parameters.

In particular, we look at contact rate parameters which are piecewise constant or time-varying.
We extend literature results for non-delay general incidence models to find uniform asymptotic
stability of the disease-free solution which helps us to add delay. We find an upper bound for
the susceptible population under pulse vaccination and use this bound to tighten results for
eradication thresholds: that is, we use this upper bound to find sufficient conditions for the
uniform asymptotic stability of the disease-free solution of delayed pulse vaccination models. We
extend literature results for constant contact rate bilinear incidence delay models to models with
periodic time-varying contact rate, and determine conditions under which the disease-free solution
is uniformly asymptotically stable for small delay. We also find conditions for disease permanence
in the corresponding non-delay, time-varying-parameter pulse vaccination model. For piecewise-
constant contact rate bilinear incidence models we again find thresholds which guarantee uniform
asymptotic stability under small delay.

We additionally discuss the effects of time-varying total population on our results, through a
change of variables to population fractions. The total population is commonly held constant in the
literature, for analytical simplicity, so we survey the methods for time-varying total population
and the effects of such variation on the pulse vaccination schemes. We retain thresholds for
eradication by considering the compartment populations as fractions of the total, instead of
population numbers. The result is also applied to constant-population delay systems. When
changing from standard incidence to bilinear incidence in delay systems, we discuss a way to
estimate the effect of time-varying N .

We support our theory with simulation results.
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Chapter 1

Introduction

This thesis focuses on dynamical systems used to model epidemics. We use deterministic com-
partmental models, in which a given population is divided into compartments based on disease
status (susceptible, infective, etc.).

The transfer between compartments, as well as the entrance to the population of new in-
dividuals and the exit of others, are modelled as terms in a differential equation governing the
time-evolution of each compartment value. Figure 1.1 gives examples of ways this movement
between compartments could occur.

The ultimate goal of an epidemic model is to be able to closely follow and predict real-life
disease outbreaks, with the aim of informing public policy. To that end we are interested in
looking at control methods, that is, ways to keep the infective population low or to eradicate the
infection altogether. One control method is vaccination. Some vaccination campaigns are run
continuously, for example with people of a certain age receiving their vaccine. Another way is to
organize large campaigns in which a large proportion of the population is vaccinated over a short
time; this technique is known as pulse vaccination, which we consider in this thesis.

There are many different ways to construct a compartmental model, and, depending on the
relevant disease, some models may agree with reality more closely than others. Many models
assume an exponential distribution of the time to move between compartments, but another
way is to use delay differential equations. A constant delay may be used if the movement time
(e.g. time until recovery or time until development of contagiousness) is known with reasonable
certainty. Model parameters are frequently assumed to be constants, but in a physical situation
this assumption is unreasonable. Time-varying parameters may be used, or approximated by a
piecewise constant.

1



Fig. 1.1: Population movement in a basic compartmental model

1.1 Contributions

The main contributions of this thesis are to extend the literature of pulse vaccination models
with delay. We particularly look at contact rate parameters which are piecewise constant or time-
varying. We extend literature results from [17] for non-delay general incidence models to find
uniform asymptotic stability of the disease-free solution, which will be helpful when we add delay.
We look at uniform asymptotic stability of the disease-free solution of delayed pulse vaccination
models: we combine literature results from [27] for constant contact rate bilinear incidence delay
models with those general incidence results from [17] to get eradication thresholds for models
with periodic time-varying contact rate, and to determine conditions under which the disease-
free solution is uniformly asymptotically stable for small delay. In [17] eradication conditions are
found; we also extend the results for this non-delay, time-varying-parameter pulse vaccination
model to find conditions for disease permanence. For piecewise-constant contact rate bilinear
incidence models we use methods from [27] to tighten thresholds obtained in [53], and extend [53]
to find thresholds which guarantee uniform asymptotic stability under small delay.

The total population is commonly held constant in the literature. We survey the methods for
time-varying total population and the effects of such variation on the pulse vaccination schemes.
We retain thresholds for eradication by considering the compartment populations as fractions of
the total, instead of population numbers, as in [12, 47], and extend the results to pulse vaccination
models. The fraction technique is also applied to constant-population delay systems. When
changing from standard incidence to bilinear incidence in delay systems, we discuss a way to
estimate the effect of time-varying N .

We support our theory with simulation results. Additionally we look at switched contact rate
models with delay in other compartments than E(t).

2



1.2 Guide to the Thesis

The thesis is structured as follows.

Chapter 2 This chapter gives a general background to epidemic modelling theory, introducing
terms, important concepts, and types of models.

Chapter 3 This chapter discusses differential equation theory relevant to the epidemic models
used later. In particular we discuss stability concepts and stability theorems, comparison
theorems, and especially theorems for the existence and uniqueness of solutions to ODEs,
DDEs, and IDDEs.

Chapter 4 This chapter is the related research chapter. We discuss epidemic modelling litera-
ture related to general incidence terms, delay differential equations, and time-varying total
populations, with a particular focus on pulse vaccination.

Chapter 5 This chapter is our first results chapter. We first extend some results from the litera-
ture to prove, for parameters below a certain threshold, the uniform asymptotic stability of
the disease-free solution of a general incidence pulse vaccination model, then use this result
to introduce delay. We additionally prove the permanence of the infection without delay if
the parameters are above the eradication threshold.

Chapter 6 In this results chapter we survey methods for the inclusion of a time-varying total
population, and their impact on pulse vaccination techniques used earlier. We consider
delay models as well.

Chapter 7 In our final results chapter we look at switched system epidemic models, where the
contact rate is modelled by a piecewise-constant parameter. We find results for eradica-
tion of a delayed switched pulse vaccination model with delay in the exposed class, apply
similar methods to models with delay in other compartments, and support our results with
simulations.

Chapter 8 This chapter gives our conclusions and ideas for future work.

3



Chapter 2

Epidemic Modelling Background

In epidemic modelling there are different ways to approach the problem of how to model a
situation. One way is to use probabilistic models, involving for example Markov chains and
stochastic processes, while deterministic models use differential equations that dictate the time-
evolution of the system. In a probabilistic model we can only determine the probability of an
outcome; a differential equation-based model in contrast will produce one particular outcome
for any given set of parameters and initial conditions. Earn [21] discusses the advantages and
disadvantages of each type of model. In particular, deterministic models can be fitted very well
to a particular outbreak and, while they represent a simplified version of the events, can provide
us with valuable information. In this thesis we focus on deterministic models.

In the event of an epidemic, that is, a marked rise in the incidence of some disease or contagious
phenomenon, we may be interested in estimating answers to many questions, such as:

• will the infected population increase?

• how many individuals will be infected?

• what proportion of individuals will be infected? Will everyone be?

• will the infection die out over time? If not, at what level may we expect it to be endemic?

• how do we find practical ways to predict the answers to these questions?

2.1 Basic Compartmental Model

The general idea for most deterministic models is to look at a so-called compartmental model, in
which the population is divided into compartments based on infection status. Individuals already

4



Fig. 2.1: Population movement in a basic compartmental model

in the population may either transfer to another compartment (for example by recovering from
the disease) or may leave the population altogether (e.g. by disease death). Individuals may
enter a population through processes such as immigration or births.

Some basic entrance, exit and transfer mechanisms are shown in Figure 2.1. In this example
individuals are born with no defence against the infection, that is, they enter into the total
population susceptible to the disease. They transfer to the infected compartment if they contract
the disease, and may transfer back to the susceptible compartment by recovering from the disease
without gaining immunity. Individuals in either compartment may die of “natural” causes (i.e.
not related to the specific disease).

A differential equation-based model of the above example is as follows. The coefficients are
parameters will be explained in Section 2.2.2.

�
S
� = b(S + I)− β

SI

S+I
− dS

I
� = β

SI

S+I
− dI

(2.1)

Here the term b(S+I) accounts for individuals entering the total population (through births), the
±β

SI

S+I
terms are transfer terms due to infection, and the terms −dS, −dI represent individuals

exiting the population (though natural deaths).

Compartmental models may become very complex; they may use many compartments, or
assume complicated disease distribution or incidence, or have parameters which are time- or even
state-dependent. These three concepts, however, of entering the population, transferring between
compartments, and leaving the population, always underlie the assumptions.

5



2.1.1 Kermack and McKendrick

The modelling of epidemics with differential equations can be traced back to Kermack and McK-
endrick [44]. In their seminal paper they use a model without demographic effects (b = d = 0):

�
S
� = −βSI

I
� = βSI − γI

(2.2)

The γI term moves individuals to a removed class that has no direct effect on the dynamics of S
and I and so is not analyzed.

Brauer and Castillo-Chavez [7] explain that the above system, though very simplified, can
still be very instructive. For example, we note that

I
�

S� =
dI

dS
=

γ

βS
− 1 ⇒ I =

γ

β
lnS − S + c.

We see that the solutions of (2.2) are the level sets of the function V (S, I) = I+S− γ

β
lnS [7]. In

particular, denoting S∞ = limt→∞ S(t) and I∞ = limt→∞ I(t) = 0, V (S0, I0) = c = V (S∞, I∞).
If in a population of size N we perturb the infection from 0 (I0 ≈ 0 and S0 ≈ N),

N − γ

β
lnS0 = S∞ − γ

β
lnS∞

⇒ β

γ
=

lnN − lnS∞
N − S∞

.

Brauer and Castillo-Chavez point out that we can estimate the right-hand side of the above by
using population data and incidence records from medical centres, which gives us an idea of the
ratio β/γ. That is, we have found a way to estimate the so-called “basic reproduction number”
(see Section 2.3) in a population of size 1. They also find from Kermack and McKendrick’s model
that as t → ∞ the total susceptible population approaches a positive limit, implying there will
always be some leftover susceptibles in a population, however virulent the disease.

Alternatively, we may estimate the maximum number of infectives: I(t) reaches its maximum
when I

�(t) = 0, i.e. S(t) = γ

β
. So [7]

V (
γ

β
, Imax) = V (S0, I0)

Imax = −γ

β
+

γ

β
ln

γ

β
+

�
S0 + I0 −

γ

β
lnS0

�
.

We may not know γ

β
until we approach S∞ in order to use the estimate above, but once this ratio

has been estimated we may use it (cautiously) in future similar outbreaks.

This model gives some good estimates, but has clear limitations. For example, we see that in
System (2.2) we always have limt→∞ I(t) = 0, while in real-life situations diseases may remain
endemic to a population, at least over a large area. We discuss endemic situations in later sections.
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2.2 Terminology and Legend

2.2.1 Compartments

The most common compartments are the susceptible and infective (contagious) populations in-
troduced in Section 2.1; in fact, some models (such as as Kermack and McKendrick’s in Section
2.1.1) use only these groups.

If recovery from a disease yields immunity then individuals transfer to the recovered class. It
may also be the case that a model does not incorporate natural births and deaths; if the disease
is potentially fatal then the recovered class may represent the population that has died of the
disease. In the event of control measures, a vaccinated class may be used, either instead of the
recovered class or in conjunction with it if the immunities conferred are of different strengths.

It is rare for a person who has just contracted a disease to become infective (contagious)
immediately, so an exposed class is often used to model the individuals in their latent period.
A susceptible individual who contacts an infective individual will transfer immediately to the
exposed compartment, then transfer from the exposed to the infective compartments at the end
of the latent period. The “latent period” and “incubation period” may be confused: here and
in the literature, their technical definitions are such that the latent period is the time until
infectiousness, while the incubation period is the time until symptoms appear [61].

Additional compartments may include a quarantined class. Some models structure by popu-
lation age ([23]), neighbourhood ([66]), or infection progression ([19, 55]). The conventions vary
for naming the compartment, but in this thesis additional but related compartments will be
distinguished by a subscript as necessary.

Table 2.1 records some common compartment variable names.

Populations
S susceptible
E exposed
I infective
R removed
V vaccinated
Q quarantined

Table 2.1: Common population compartments.
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2.2.2 Parameters

The easiest models assume exponential distribution of births, deaths, recovery, immunity waning,
vaccination, etc., e.g. dI

dt
= ...− γI.

That is, suppose we have a population N(t) governed by the mortality rate µ, so

dN

dt
= −µN. (2.3)

As Brauer and Castillo-Chavez say in [7], this equation yields

N(t)

N0
= e

−µt
, t ≥ 0,

so e
−µt of the individuals alive at time t = 0 are still alive at time t = t. If we assume a

homogeneous population, e−µt “denotes the probability of a person being alive at time t ≥ 0
given he was alive at time t = 0” [7]. Then, using the convention P (x) = probability of event x,
we have

P (dying in interval [0, t)) = 1− P (alive until time t)

=

�
1− e

−µt if t ≥ 0

0 if t < 0

=: F (t)

F (t) is the exponential cumulative probability distribution, hence in equation (2.3) we have
modelled an exponential distribution of deaths. Still following Brauer and Castillo-Chavez we
find the associated probability density function f(t) = dF (t)

dt
and, modelling the time until death

of an individual (alive at t = 0) by the random variable X, we have that the expected value of
X is

E[X] =

� ∞

−∞
tf(t)dt

=

� 0

−∞
t · 0dt+

� ∞

0
t(µe−µt)dt

= 0 +
�
−te

−µt
�∞
0

−
� ∞

0
(−e

−µt)dt (integrating by parts)

= [0− 0] +

�
−1

µ

�
e
−µt|∞0 =

�
−1

µ

�
(0− 1)

=
1

µ
.
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Hence the average life expectancy given a mortality rate µ is 1
µ
. In general, given some rate

parameter η, the average length of time spent in that compartment is 1
η
; for example if the

recovery rate is r then it takes an individual on average 1
r
units of time to recover.

Given this result, we will consistently use the following parameters, listed in Table 2.2, for
compartment entrance, transfer, and exit rates. Additionally we list some parameters that will
be used later for delay and pulse vaccination (see Sections 2.5.2 and 2.4).

Parameters
b birth rate
d natural death rate
µ birth/death rate if equal
β contact rate
κ rate leaving latent compartment (becoming infectious)
r latent period i.e. time until infectious (in delay models)
α disease death rate
γ recovery rate
ω time until recovered (in delay models)
θ vaccination rate (constant)
p pulse vaccination fraction
τ interpulse time
δ immunity waning rate

Table 2.2: Common model parameters.

Models may assume unequal birth (b) and death (d) rates, although frequently the assumption
b = d = µ is assumed, which can allow for constant population size: more in Sections 2.2.3 and
6.

2.2.3 Incidence and the Law of Mass Action

In a compartmental model such as System (2.1) above, the terms which transfer susceptible
individuals to the infected compartment are called incidence terms. These terms represent the
occurrence of the disease.

If we take N to be the total population, then a very common form of incidence term is the
standard incidence (“β SI

N
”) term seen in System (2.1). A related incidence term is “βSI”, which

we will refer to as the bilinear or mass-action incidence.

The difference between the terms listed above comes from the following reasoning. Suppose
the total population is N(t) (in System 2.1 we have N = S + I, but there may be additional
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compartments). Suppose each infective individual contacts others (with sufficient length/amount
of contact for transmission) at a rate of β contacts per unit time. Then there is a S

N
chance that

the contact is with a susceptible. Altogether we have an incidence term of:
�
contacts per time

per infective

�
×
�
chance contact is

with susceptible

�
×
�
number of

infectives

�
= β

S

N
I =

�
transmissions

per unit time

�

This reasoning is used in multiple sources (for example see [7, 12, 22, 36, 40, 47, 81]). However,
an alternate reasoning is that instead of β contacts per unit time, an infective could contact a
total of βN people/unit time, resulting in the βSI incidence [7]. The difference between the two
incidence terms depends on the definition of β (whether or not it includes N) and on the size of
N .

The β
SI

N
and βSI incidence terms reconcile so long as N is constant. In the above, we were

assuming time-varying N and dropping the “(t)” for brevity; now suppose we do have a constant
N(t) ≡ N . We can set N = 1 by considering each population as a fraction of the total population:
make the change of variables s = S

N
, i = I

N
, r = R

N
. Then System 2.1 with the population variables

(numbers of individuals, represented by capital letters) and the β
SI

N
standard incidence term is

equivalent to the below system (2.4) with lowercase population fraction variables and the βSI

mass action incidence term:
�
Ns

� = b(Ns+Ni)− β
(Ns)(Ni)

N
− dNs

Ni
� = βs(Ni)− dNi

⇒
�
s
� = b(s+ i)− βsi− ds

i
� = βsi− di

⇒
�
s
� = b− βsi− ds

i
� = βsi− di

(2.4)

since N = S+I in System 2.1 so s+ i = 1. If N is constant we can transform the system through
this change of variables; for brevity we can accomplish the same transformation by just assuming
N = 1.

In the event of a total constant population, then, we can use either of the above methods;
however, if the population is growing, it seems that the mass action incidence term, the βSI,
must have an extra factor of N hidden within the definition of β. Hethcote [36] explains that in
general we build the incidence term by defining β̃ to be the “average number of adequate contacts
per person per unit time” [36], and then for a given infective individual the chance that such a
contact is with a susceptible individual is S

N
. Multiply by the number of infective individuals

to get the standard incidence β̃
SI

N
. Comparing to the bilinear incidence βSI we see that we

must have β = β̃N , that is, a mass-action model implicitly predicts that the average number of
contacts per person will be larger in a larger population.
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In some ways this N -dependent contact rate result seems reasonable, for example in a large
city where populations are more dense and more people ride public transit. Hethcote quotes
studies, however, that assumed an incidence β

SI

N
N

ν and found it likely that ν ∈ (0.03, 0.07) [36];
that is, the standard incidence with ν = 0 is a more reasonable assumption than the bilinear with
ν = 1. Therefore, if the population can vary we will use the standard incidence, β SI

N
, at least as

a starting point. In Section 6 we discuss the effects of time-varying N(t) on disease thresholds.

Other forms of incidence term are possible, however, and may be commonly used. The
dependence on I may be nonlinear, for example, or the incidence may be time-dependent or
incorporate density effects. See Section 4.2 for more review of the literature.

2.3 Reproduction Number

When we consider a very simple epidemic model we can often readily see threshold values below
which an epidemic will not occur. For example, returning to Kermack and McKendrick’s simple
bilinear incidence model (2.2) we see that S�

< 0 unless I = 0 or S = 0, and that I � = I(βS−γ) <
0 if S <

γ

β
. Since S will always decrease in a non-trivial case, S <

γ

β
eventually so I will decrease

eventually. The issue then becomes if there will be an increase in infectives at all. We see that if
βS(0) > γ then I

�
> 0 initially and there will be an epidemic (although we are assured it will die

out later).
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Fig. 2.2: I(t) in System 2.2 for β
γ < 1 (blue dashes) and β

γ > 1 (red)

More rigorously, we have defined a threshold value

R0 :=
βS0

γ
, (2.5)
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where S(0) = S0, and we consider whether R0 < 1. R0 is known as the basic reproduction
number.

Heffernan et. al. in an overview paper define the reproduction number biologically as follows
[33]:

Definition 1. The basic reproduction number is the number of secondary infections caused by a
single infective in a wholly susceptible population.

Intuitively in a biological sense, if R0 < 1 then an infective is not producing enough new
infectives to replace itself, and the disease will die out.

The reproduction number may not always be so easily recognizable as in System (2.2). In
order to calculate it, Heffernan et. al. define the survival probability P (a) to be “the probability
that a newly infected individual remains infectious for at least time a.” Then if b(a) is the average
number of secondary infections per unit time, averaged over a time a of infectiousness, that this
first individual produces, the basic reproduction number is given by [33]:

R0 =

� ∞

0
P (a)b(a)da. (2.6)

So the reproduction number is the integral for all future time of the number of infections multiplied
by the probability the infective is still contagious (or still alive).

For Kermack and McKendrick’s model (2.2), if there were no infectives (I ≡ 0) then S
� = 0 so

S(t) ≡ S0, that is, the disease-free equilibrium has a wholly susceptible population S0. Suppose
we introduce an infective individual into the wholly susceptible population. The susceptible
population will still be approximately S0 until a large number of new secondary infections are
caused. From the βS · I bilinear incidence term of (2.2), over a time interval of length a this
newly-introduced infective will introduce βS0 · 1 new infections per unit time. The −γI term
in I

� tells us that the proportion of infectives who were infected at time t = 0 and are still
infective at t = a is I(a) = I(0)e−γa, that is, P (a) = I(a)

I(0) = e
−γa. Therefore we get that

R0 =
�∞
0 βS0e

−γa
da = βS0(

−1
γ
)e−γa|∞0 = β

γ
S0. So the threshold value we found by analyzing the

differential equation for I �(t) matches the biological definition of the basic reproduction number;
however we will see in later analyses that such is not always the case for complicated models.

More complicated models may have multiple infected stages (as opposed to the sole infectious
compartment I(t) in System (2.2). We could have, for example, an exposed compartment E(t)
as listed in Table 2.1. (The wording gets tricky here, but in the context of the reproduction
number we are interested in all compartments in which the individuals are infected. They could
be incubating the disease and not yet showing symptoms, or they could be in the latent period
and are not yet infective, or they could be in one of many contagious stages or compartments
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(depending on the model). I(t) refers only to the infective (contagious) compartment but we are
looking at all infected populations.)

If there are multiple infected stages, following Heffernan et. al. we need to consider all of
these compartments. Suppose there are n compartments and denote the state of the epidemic
model system by x(t) ∈ Rn. Suppose that m ≤ n of these compartments are for individuals with
the infection (in the Kermack and McKendrick model (2.2), n = 2 and m = 1). For i = 1 . . .m
we define Fi(x) to be the “rate of appearance of new infections” in compartment i. We define
V

+
i
(x) to be the rate of entrance of individuals into compartment i by any method except new

infection and V
−
i
(x) to be the rate of exit. This entrance could include transfer from another

infected compartment, infected births, or immigration of infected individuals, for example. The
exit could be through recovery, death (natural or disease-induced), or transfer to a different
infected stage. As an example, Heffernan et. al. [33] consider the SEIR model

�
E

� = βSI − (µ+ κ)E

I
� = κE − (µ+ γ)I

(2.7)

where the S and R compartments are suppressed since they are disease-free, and the parameters
correspond to those in Table 2.2. They further define Vi(x) = V

−
i
(x) − V

+
i
(x) which gives the

total rate of change of infected individuals out of compartment i (could be negative if more are
entering than exiting) except for the new infections. For model (2.7) the ±κE term represents
transferred infectives, not new ones. We have x = [S,E, I, R]T and

F1(x) = βSI

F2(x) = 0

V1(x) = (µ+ κ)E − 0

V2(x) = (µ+ γ)I − κE

The authors then define the m×m matrices

F =

�
∂Fi(x0)

∂xj

�
, V =

�
∂Vi(x0)

∂xj

�
, i, j = 1 . . .m (2.8)

where the xj are the infected populations and x0 is the disease-free equilibrium where E ≡ 0 ≡ I

[33]. Heffernan et. al. summarize earlier work: if we define R0 to be the spectral radius of
FV

−1 as did Diekmann et. al [14], van den Driessche and Watmough prove that a disease-free
equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1 [72].

In Equation (2.7) we have

F =

�
0 βS0

0 0

�
V =

�
µ+ κ 0
−κ µ+ γ

�
.
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Given the additional differential equation S
� = b − µS − βSI we get that S0 = b/µ and so the

biologically-defined reproduction number is R0 =
κβb

(µ+κ)(µ+γ)(µ) [33].

In the Kermack-McKendrick model (2.2), m = 1 and F1 = βSI, V1 = γI − 0, so F =
[βS0], V = [γ] ⇒ R0 = FV

−1 = βS0/γ as expected.

In this thesis we will always use the term “reproduction number” and the notation R0 to refer
solely to those thresholds that agree with the biological definition; the other threshold values we
find (that signify a change in the stability of the disease-free equilibrium) will be referred to as
“threshold numbers” or similar. The notation for these threshold values (R∗

, R̄, etc.) will still be
similar to that of the reproduction number to evoke the relation that they are important values
to the system.

2.4 Control Methods

Modelling epidemics can be used in theory to determine how severe an epidemic or outbreak may
be; however, the goal in public policy and in epidemiology is to try to influence the outcome of
such problems. We want to use control methods to limit the severity of outbreaks or, ideally, to
prevent them altogether.

There are different control methods available, such as quarantine, travel restrictions, or most
commonly vaccination. The point of vaccination in real life is to confer immunity to an individual
so they can fight off the disease if they are exposed to it; looking at the population as a whole,
vaccination decreases the size of the susceptible compartment, ideally below the threshold above
which there can be an outbreak.

Vaccination may be applied in different ways; two common types are continuous vaccination
and pulse vaccination, explained below.

Continuous Vaccination

Continuous vaccination involves consistently immunizing individuals at some rate; for example,
suppose we aim to vaccinate a population for measles, we could vaccinate each newborn a certain
number of months after their birth.

Mathematically, we choose a simple compartmental model with susceptible population S,
infective population I, and vaccinated population V (alternatively we could use R for “removed
from disease circulation”). We assume the vaccination is continuous with rate θ (that is, the
average individual is vaccinated after 1/θ units of time). Ignoring demographic effects such as
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births and deaths, we get the following:





S
� = −βSI − θS

I
� = βSI − γI

R
� = γI + θS

Notice that S is nonincreasing since S
� ≤ 0, so S(t) ≤ S(0) =: S0. Consider the equation for I �:

We have I
� = [βS − γ]I ≤ [βS0 − γ]I. If S0 <

γ

β
then I

�
< 0 ∀t and the infective population will

never rise above its initial level. If S0 ≥ γ

β
, we may hope to use the vaccination to help quickly

decrease S(t) below this threshold level. In the absence of disease, S� = −θS(S(t) = S0e
−θt)

so we can apply the continuous vaccination in order to drive S(t) below γ/β in preparation for
the possibility of disease introduction. That is, if an infective individual enters the population
(for example through immigration) at t = t1, we have been vaccinating since t = 0 to ensure
S(t1) < γ/β.

Brauer and Castillo-Chavez consider a model with birth rate b = death rate µ and with
constant births proportional to a carrying capacity K [7]:






S
� = µK − βSI − µS

I
� = βSI − (µ+ γ + α)I

R
� = γI − µR

The disease-free equilibrium is (S, I, R) = (K, 0, 0). Linearizing about this equilibrium we get
that the linearized system is stable when all eigenvalues of the Jacobian matrix are negative; in
particular we need βK − (µ + γ + α) < 0. (This result corresponds to finding the reproduction
number using the method in [33] with m = 1, F1 = βSI, V1 = (µ+γ+α)I ⇒ R0 = βK/(µ+γ+α)
and requiring R0 < 1.)

Looking for a non-disease-free equilibrium we see from the I � equation that such an equilibrium
will satisfy S∞ = (µ+ γ + α)/β and so we can rewrite the reproduction number as R0 = K/S∞.
After an epidemic without vaccination we can thus use the estimated size of the susceptible
population to approximate the reproduction number of the disease. If we wish to force R0 < 1,
we can add vaccination: suppose we continuously vaccinate a fraction θ of newborns, then we will
have S

� = µK(1− θ)− . . . and so we will find the new effective reproduction number R0(1− θ).
Then if we want R0(1−θ) < 1,⇒ θ > 1− 1

R0
and we have an estimate of how high our continuous

vaccination rate needs to be to eradicate the disease [7].

Pulse Vaccination

Pulse vaccination involves a campaign to vaccinate a given proportion of the susceptible popu-
lation after certain time intervals, with a campaign length short enough to be assumed instan-
taneous. With the measles example, we could organize a campaign every four years, say, to
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vaccinate a given fraction (ideally all) children under the age of four. If this campaign takes place
over only a few days or weeks then it is basically negligible compared to the interval (four years)
between vaccination “pulses.”

The main idea of pulse vaccination is to reduce the susceptible population as much as possible.
Nokes and Swinton explain that repeated pulse vaccination campaigns “achieve their effect by
rapidly starving the infectious disease of its supply of susceptible individuals,” so incidence is
reduced “drastically” [63].

Earn explains, for example, that measles incidence tends to go through periodic cycles, and
conjectures that a global pulse vaccination campaign could force the incidence levels to be syn-
chronized between different areas, so when the infective population falls in the troughs between
epidemics (as the susceptibles are used up) there is a higher chance that stochastic effects will
eradicate the disease [21]. If the campaign is merely local there is more chance of the disease being
re-imported from other areas. In our analysis and, indeed, in much of the literature, we tend to
assume a population is isolated and deterministic. If we intend to model real-life situations we
would do well to keep in mind that physical situations constantly evolve.

Shulgin et. al. discuss cases of practical application of pulse vaccination to polio and measles
in South America and the United Kingdom, respectively [68]. de Quadros et. al. explain that
in Cuba, “annual [polio] campaigns began in 1962, and shortly thereafter paralytic poliomyelitis
disappeared;” each course of the vaccine was distributed annually “only during two one-week
periods each year” [13] during which all children below a certain age received the vaccine.

See [63, 62], for example, for a more thorough introduction, [1, 68] for simulations analysis,
and [21, 4] for comparison to real-life data. We discuss mathematical models of pulse vaccination
beginning with Section 3.3 and further in the literature review Chapter 4 and in the results
Chapters 5 - 7.

2.5 Model Generalization

We have so far listed a few specific epidemic models, while in reality there are many different
ways to set up a compartmental deterministic system. Generally a model may be adapted to a
specific disease by:

• DE form: the inclusion or exclusion of terms or compartments; changing dependence of
terms on the state; or varying the parameters

• The type of DE: add delay (finite or infinite), add discrete control methods like pulse
vaccination
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2.5.1 Changes to DE Form: Parameters, Terms, and Compartments

Here we discuss extra terms (often resulting in extra parameters), extra compartments, changing
the form of the terms in a DE from the common incidences or exponential distributions, and
varying the parameters over time.

Extra Terms

An example of extra terms would be a vaccine waning term δR transferring individuals from R

to S: 




S
� = . . .+ δR(t)

...

R
� = . . .− δR(t)

The extra ±δR terms are simply transferring the population between compartments. In
transfer cases there will be matching terms of opposite sign in two different compartments. We
could instead have something like a disease death term I

� = . . . − αI or an immigration term
S
� = . . .+Im, modelling exit from and entrance to the total population. The point of extra terms

in the DEs are to more accurately model the real-life dynamics by including details which may
be important to disease propagation.

Extra Compartments

Adding or excluding compartments changes the dimension of the state vector x(t).

A compartment may be left out, for example, if it is irrelevant to the model for a specific
disease. For example, in a typical SIR model we use a removed class, representing those who have
immunity, whether by recovering from the disease or by vaccination. However, for a disease which
confers no immunity, the R compartment would be unnecessary and the model would become an
SI model (which has no recovery, γ = 0), or an SIS model (in which individuals recovering from
the disease become susceptible again):

�
S
� = bN − µS − β

SI

N
+ γI

I
� = β

SI

N
− (µ+ γ + α)I

Or, in an SIR model without demographic effects such as births and deaths, the compartment R
could represent individuals removed from the population due to disease deaths. In both of the
above cases we would have N = S + I, and N would still remain positive. Thus the removal of
compartments doesn’t affect the physicality of the population.
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Some epidemic models simply do not explore every compartment. They may repress analysis
of certain compartments (such as R) of which the other compartments are independent:

�
S
� = bN − (µ+ θ)S − βSI

N

I
� = βSI

N
− (µ+ γ)I

Here we have ignored the differential equation dR

dt
= θS + γI − µR because R has no effect on S

or I. Or a model may consider only the infected population, such as in [46]:

h
�(t) = βgm(t)

N − h(t)

N
− αh(t)− γh(t)

This model considers the size of the infected human population h(t), where m(t) is the infected
mosquito population. Only a fixed fraction g of the infected mosquito population is assumed to
be infective (contagious). It appears that some infection terms do not have corresponding terms
of opposite sign for another section of the population, the way we have seen so far and as we
claimed earlier. However, we note that by letting s(t) := N(t)−h(t) be the susceptible population
we get the more comprehensive human system (though without demographic effects)

�
s
�(t) = −βgm(t) s(t)

N
+ γh(t)

h
�(t) = βgm(t) s(t)

N
− αh(t)− γh(t),

with corresponding total population size governed by N
�(t) = −αh(t) (≥ −αN(t)).

The repressed or ignored compartments may be irrelevant to the dynamics of the compartment
of interest, but taking all of the (physically necessary) classes together we get a total population
of size N upon which we can find bounds, which let us prove existence and uniqueness of solutions
as will be discussed in Section 3.4.

Likewise the addition of compartments, which really involves the partitioning of the total
population into more specific classes, doesn’t affect the physical reasonableness of the total pop-
ulation dynamics. Another compartment may be added, as we have seen, for example if there
is an exposed class E. The latent period may be modelled by an exponential distribution with
mean 1/κ, leading to 





S
� = bN − (µ+ θ)S − βSI

N

E
� = βSI

N
− (µ+ κ)E

I
� = κE − (µ+ γ)I

R
� = θS + γI − µR

(2.9)
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Or, even more additional classes may be added to represent different disease states:





S
� = b− (µ+ θ)S − βsSI

N
+ δR

V
� = θS − βvV I

N
− νV − µV

I
� = βs

SI

N
+ βv

V I

N
− (µ+ γ)I

R
� = νV + γI − (µ+ δ)R

Here we have a partially-effective vaccine which causes a lower rate of successful transmission to
vaccinated individuals than to those fully susceptible (βV < βS). We want to consider vaccinated
individuals as a separate class because the compartment dynamics may be different from that of
S, but we still see each term in V

� cancels with a term in another differential equation of the
system.

In both of the above cases we still have N
�(t) = (b − µ)N(t) (where N is the sum of the

compartments), and the new compartments didn’t have any inherent discontinuities in their
governing differential equations. In general, we can easily “add” extra compartments to the
model (by dividing existing ones) to more accurately model the disease progression. The tradeoff
is that with a larger-degree system the model may become more complicated to analyze.

Form of Differential Equation Terms

It is definitely possible to have different forms of the terms in the system than just the common
incidence and exponential terms described above.

We could use a different form for the incidence terms: those so far have been of a bilinear
incidence form βSI or a standard incidence β

SI

N
. Bilinear incidence comes from the law of mass

action, that is, the number of transmissions is assumed to be proportional to the product of the
susceptible and infective populations [32]. We could find, however, that we have a saturated
contact rate [49]:

Ṡ(t) = . . .− β
SI

1 + aS

İ(t) = β
SI

1 + aS
+ . . .

The saturation here occurs as S grows, but could just as easily be in terms of I, with 1 + aI in
the denominator.

Another way to change the underlying assumptions of the associations within the system
would be to allow for logistic growth. We have been continually returning to the fact that

19



Ṅ = (b− µ)N (or similar), reflecting simple exponential growth or decay in the total population
N . In population biology models, logistic growth may also be considered:

Ṅ = ρN(1− N

K
)

where ρ > 0 and K is the carrying capacity of the environment.
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15
x 105

Fig. 2.3: Logistic (blue) vs. exponential (black) long-term population change.

Over the time period of an epidemic the assumption of pure growth or decay may be likely,
as typical growth rates are not explosive in human populations so a population doesn’t reach
carrying capacity very quickly. As shown in Figure 2.3, exponential decay may not long remain
close to a logistic decay with the same initial conditions, but may still be similar for the time
scale of a short epidemic. Exponential growth may roughly model logistic growth for a relatively
longer time.

Time-Varying Parameters

The parameters in all of the above models were assumed to be constants, but this assumption is
clearly unrealistic. Although we do not consider spatially-varying parameters or systems in this
chapter, it is clear that the assumption of a homogeneously-mixed population, especially if the
population is meant to be human, is a very strong one. For now we merely consider time-varying
parameters, which Earn explains can in themselves explain a great deal of observed epidemic
effects such as seasonality [21].

The rate of successful contacts in a population, for example, is not constant over time. On
the time scale of a day, a person is likely to spend some times around more people, or in closer
contact to them, than other times. Over the course of weeks, children spend time in the classroom
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and out of it, and Grassly and Fraser note that transmission rates increase during the school
season [31]. On the time scale of a year, the weeks of schooling and the weeks of vacation may
display very different transmission rates. Regarding the whole population (not just school-age
children), seasonality can be observed, for example with the annual flu season. In addition to
human behaviour, Grassly and Fraser discuss that causes of seasonality may include varying
environmental factors (such as temperature and humidity) which may affect the survival of a
pathogen, or which may affect the availability of vectors such as mosquitoes.

2.5.2 Changes to the Type of Differential Equation

So far we have only considered ordinary differential equation (ODE) models. We may use other
types of differential equation to suit the model circumstances as explained below.

Spatial Variation

All models so far have assumed a homogeneously-mixed population, which is unlikely both in
terms of peoples’ habits and in terms of their spatial distribution. Rather than the ODE models
we have been looking at so far, we can use partial differential equations to model spatial variation
in the population. This thesis does not consider such models in detail.

Discrete Behaviour

The previous models assumed continuous dynamics in the system, but hybrid dynamical systems
may be used to idealize physical systems or to approximate real-life behaviour.

We may introduce discrete behaviour into our systems in the form of pulse vaccination as de-
scribed in Section 2.4, where we are analyzing the mathematics based on an idealized vaccination
campaign. We could use switched systems, where at certain times the model switches between
subsystems. These subsystems may have completely different forms, or they may simply have
different parameters values from each other. In order to simplify the analysis, for example, a
seasonally-varying contact rate β(t) may be approximated by a switching parameter βσ(t), where
σ(t) ∈ {1, . . . ,m} (m is the number of subsystems) [52].

Switched systems may not always be simply to make the math easier; Grassly and Fraser
explain that among populations of children, transmission of measles is lower over the holidays
[31], and we can extrapolate roughly to assume that transmission of many diseases follows a
similar pattern. When students return to school they are suddenly in close contact with other
individuals, and so approximating the change with a near-instantaneous switch seems reasonable.
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Earn discusses a model which uses the contact rate [21]

β(t) =

�
βH schooldays

βL non− schooldays.
(2.10)

Delay Differential Equations

In all of the previous epidemic model examples in this thesis, we have looked at ODE systems in
which the time-dependence was purely based on the current time level t. That is, the incidence
was dependent on the populations at time t, as were the other transfer terms and the entrance
and exit terms to the populations.

Physical processes take time, however. A vaccination might need time to take effect as the
recipient builds immunity, or the time until infectiousness develops may be consistent across a
population so the exponential distribution is unreasonable. In such cases we use a delay differential
equation, in which the arguments may be reduced (“delayed”): x(t − r) instead of x(t). As an
example, suppose it takes a time r for individuals who have been exposed to the disease to become
infectious. Instead of (2.9), which used an exposed compartment with exponential recovery rate
κ, we could have the model






S
� = bN − (µ+ θ)S − βSI

N

E
� = β

SI

N
− β

S(t−r)I(t−r)
N(t−r) − µE

I
� = β

S(t−r)I(t−r)
N(t−r) − (µ+ γ)I

R
� = θS + γI − µR

(2.11)

Delay equations can have richer dynamics than ODEs and can be a better fit to the real-world
situation we intend to model. They can be complicated, however, for instance because a delay
differential equation is infinite-dimensional and so chaos may occur even in low-order systems.

Previously we had individuals moving sequentially through the population compartments (e.g.
S → E, after delay → I → R), so that if any factor of a term transferring between populations
is delayed, all factors are (such as in the second term in the E

� equation in (2.11)). The delay in
a DDE model does not have to be introduced as a consequence of this movement: we could for
example have mixed delays, where different factors of a term have different delay arguments.

Vector-borne disease models can use mixed delays due to the interaction between two species
populations. All previous epidemic model examples in this thesis involved the transmission of a
disease through one population (e.g. humans). Some diseases, however, are borne by animals or
by other vectors such as mosquitoes.

Meng et.al. discuss an equation with delay in the I factor of the incidence, but not S; that is,
the incidence term is −βS(t)I(t−r) [59]. The current rate of new infective people depends on the
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current number of susceptible people and upon the current number of infective mosquitoes. With
an incubation period of r, the current number of infective mosquitoes depends on the number
of infective people r time units ago, so with bilinear incidence we therefore we have the product
S(t)I(t− r). Mixed delays are not necessary, though; an example of a vector-borne disease model
without mixed delay was studied by A.J. Lotka and disussed by Kuang in [46]:

�
h
�(t) = βHgm(t− u)N−h(t−u)

N
− αHh(t)− γHh(t)

m
�(t) = βMfh(t− v)M−m(t−v)

M
− αMm(t)− γMm(t)

u and v are the incubation delays in the human population and mosquito population respectively.
N is the total human population while h is the infected human compartment, of which a fraction
g are contagious (infective). M is the total mosquito population with m the infective mosquitoes
and f the contagious fraction.

Delay in the previous examples has been assumed constant, but in a more general model we
could have time-dependent or even state-dependent delay. For example, suppose we use a delay
to model the time to recover from the disease. A sample model to start with, obtained by adding
delay to System (2.2), could be






S
� = −βSI

I
� = βSI − βS(t− ω)I(t− ω)

R
� = βS(t− ω)I(t− ω)

The time individuals take to recover, in addition to being quite likely dependent on the individuals
themselves, may also depend for example on the time of year. We might recover better in the
summer when the weather is warm, or during holidays when we relax, for example. It is reasonable
then to include a time-dependent delay ω(t). An example of a state-dependent delay may be if
there is a quarantined class Q where recovery is faster for small Q (since there may be more
resources available than in a crowded situation), so ω = ω(Q(t)).

Even with time- or state-dependent delay, the delay discussed so far has been single-valued
for all individuals at a particular point in time. Whereas the exponential terms (such as ±γI)
assumed an exponentially-distributed transfer time, a single delay is equivalent to assuming a
precisely-known transfer time that is the same for every individual in the population. According
to Anderson the measles virus has an infectious period of 5-7 days [3]; this variation may be
due to periodic environmental factors, but it is also entirely possible that healthy individuals
recover faster. Assuming an exact value for a delay (whether it be the latent or recovery period
or otherwise) is not very realistic. We may wish to make our model more general by using a
distributed delay.

Cooke and Kaplan for example use the equation [11]

I
�(t) = f(t, I(t)) +

�
t

t−ω

f(s, I(s))P �(t− s)ds
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where ω < ∞ is the maximum recovery time, P (a) is the probability that an infective is still
contagious a time units after infection. The tradeoff with a distributed delay is that the mathe-
matical analysis becomes even more difficult. See Kuang’s book [46] for a good introduction. In
this thesis we focus on constant delays.

24



Chapter 3

Differential Equation Theory

In this chapter we present some theorems on existence, uniqueness, and stability for differential
equations (DEs) relevant to the epidemic modelling literature. In Section 3.1 we discuss ordinary
differential equations and in Section 3.2 we extend the results to delay DEs. In Section 3.3 we
discuss hybrid systems and in particular the effects of discrete impulses on the preceding theorems.

As discussed in Section 2.5 there are many different compartmental epidemic models. After
presenting theorems applicable to very general systems of differential equations, we will apply
them to the following sample systems for illustration purposes:

Non-delay SIR model: 




S
� = b(N − S)− β

I

N
S

I
� = β

I

N
S − (µ+ γ)I

R
� = γI − µR

(3.1)

Delay SEIR model:






S
� = b(N − S)− β

I

N
S

E
� = β

I

N
S − βe

−µr I(t−r)
N(t−r)S(t− r)− µE

I
� = βe

−µr I(t−r)
N(t−r)S(t− r)− (µ+ γ)I

R
� = γI − µR

(3.2)

The parameters were explained in Table 2.2 of Section 2.2.2.

Notice we again define the total population (sum of the compartments) to be N(t); and as
usual, for brevity we suppress the notation “(t)” for variables at the current time.

The generalization of our following results to other models should be clear, but in Section 3.4
we will explicitly explain why we are able to extend our results.
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3.1 Ordinary Differential Equations

In this section we discuss theorems for a general ordinary differential equation (ODE)

x
�(t) = f(t, x) (3.3)

which will be relevant to later analyses. This equation is nonautonomous since it depends explic-
itly on the time varable t in addition to the state variable x(t). We assume the ODE is subject
to the initial condition (IC)

x(t0) = x0. (3.4)

We analyze these models using results from the Fall 2009 UW Amath 751 course notes by
Prof. Xinzhi Liu [50] (the theorems are commonly known but will be referenced to [50] from
which they were transcribed). We then apply our results to the sample model system (3.1).

3.1.1 Existence and Uniqueness

Local Existence

Peano’s existence theorem gives us conditions for when a solution to Equation (3.3) exists:

Theorem 1. [50] Peano’s Existence Theorem: Let f ∈ C(F,Rn), that is, f is a continuous
function from F to Rn where

F = {(t, x) ∈ R× Rn : |t− t0| ≤ a, �x− x0� ≤ c, a, c > 0}, (3.5)

and let �f(t, x)� ≤ M on F for some M > 0. Then the IVP (3.3-3.4) has at least one solution
x(t) defined on [t0 − α, t0 + α] where α = min

�
a,

c

M

�
.

Equal Birth and Death Rates

If µ = b and the population is normalized to N = S + I +R ≡ 1, (3.1) becomes:






S
� = µ(1− S)− βIS

I
� = βIS − (µ+ γ)I

R
� = γI − µR

Define x := [S, I, R]T and f(t, x) := [x�1, x
�
2, x

�
3]
T . Then (3.1) is equivalent to x

�(t) = f(t, x).

In this normalized case, the physical region is x ∈ Ω1 := {(S, I, R) ∈ [0, 1]3 : S + I + R = 1}
since S, I, and R are fractions of the population. This region is positively invariant.
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Using the L1-norm,

�f(t, x)� = |µ(1− S)− βSI|+ |βSI − (γ + µ)I|+ |γI − µR|
≤ |µ(1− S)|+ |βSI|+ |βSI|+ |(γ + µ)I|+ |γI|+ |µR|
≤ µ+ 2βSI + 2γI + µ(|S|+ |I|+ |R|)
≤ 2µ+ 2(β + γ) =: M1,

since S, I, R ≥ 0 and S + I + R = 1. Thus �f(t, x)� ≤ M1 for all x ∈ Ω1. If we choose any
compact region F = {(t, x) ∈ R+ × Ω1 : |t − t0| ≤ a, �x − x0� ≤ c}, then we have f ∈ C(F,Ω1)
and �f(t, x)� ≤ M1 on F . Therefore by Peano’s Existence Theorem, Equation 3.3 has at least
one solution on [t0 − α, t0 + α], where α := min(a, c

M1
). Notice that if we choose c ≥ 3 then

{x : �x− x0� ≤ c} ⊇ Ω1.

Allowance for Population Growth

If the birth and death rates are unequal, b �= µ, then the boundedness of f is slightly more
difficult to prove, since the population sizes may grow. The physical region of interest is now
(potentially) unbounded; thus we define ΩN := R3

+ (where R+ = [0,∞)). The region ΩN is
positively invariant with respect to the DE 3.3:

S = 0 ⇒ S
� = µ > 0

I = 0 ⇒ I
� = 0

R = 0 ⇒ R
� = γI ≥ 0,

so with initial conditions in ΩN , the trajectory of the solution will never leave ΩN .

Now suppose we again take a compact region F = {(t, x) ∈ R+×ΩN : |t−t0| ≤ a, �x−x0� ≤ b}.
Consider N = S + I +R. Notice from system (3.1) that

N
� = S

� + I
� +R

�

= [b(S + I +R)− β
S

N
I − µS] + [β

S

N
I − (γ + µ)I] + [γI − µR]

= b(S + I +R)− µ(S + I +R)

⇒ N
� = (b− µ)N ⇒ N(t) = N0e

(b−µ)(t−t0). (3.6)

So for now we find that N(t) varies exponentially with time, which means N(t) is bounded on
the compact region F because N(t) ≤ N0e

|b−µ|a =: NM . Since all of S, I, and R are non-negative
and N = S + I + R we must have S(t), I(t), R(t) ≤ N(t) ≤ N

M as well. Now we can show that
�f(t, x)� is also bounded on F as follows, noting that all parameters and variables are positive
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and that N = S + I +R ⇒ S

N
≤ 1 and I ≤ N :

�f(t, x)� = |b(S + I +R)− β
S

N
I − µS|+ |β S

N
I − (γ + µ)I|+ |γI − µR|

≤
�
|bN |+ |β S

N
I|+ |µS|

�
+

�
|β S

N
I|+ |γI|+ |µI|

�
+ (|γI|+ |µR|)

≤ bN + 2βI + 2γI + µ(|S|+ |I|+ |R|)
= (b+ µ)N + 2(β + γ)I

≤ (b+ µ+ 2β + 2γ)N(t) ≤ (b+ µ+ 2β + 2γ)NM =: M.

Thus we find on an arbitrary compact F ⊂ R+ × ΩN that f ∈ C(F,ΩN ) and �f(t, x)� ≤ M

for all (t, x) ∈ F . Hence we find that the system (3.1) has, by Peano’s Existence Theorem, at
least one solution on [t0 − α, t0 + α], where α := min(a, b

M
).

Remark. The above analysis assumes the total population will undergo exponential growth or
decay depending on the relative values of b and µ. Clearly these birth rate assumptions are very
simplistic; however, given any physically reasonable model we must have that N(t) is bounded
on any compact set and that S

N
≤ 1, so the above result can be generalized.

Global Existence

We now look to see whether we can continue the local solutions of 3.3. We use the following
theorem:

Theorem 2. [50] Continuation of Solutions: Let Q ⊂ Rn+1 be an open set and let f ∈ C(Q,Rn).
If x(t) is a solution of the IVP (3.3-3.4) on some interval, then it can be extended over a maximal
interval of existence.

Moreover, if (α1, α2) is a maximal interval of existence, then (t, x(t)) tends to the boundary
of Q as t → α

+
1 and as t → α

−
2 .

The following corollary makes Theorem 2’s use explicit for our epidemic models:

Corollary 1. [50] Let f ∈ C(R+ × Rn
,Rn), R+ = [0,∞), and let x(t) be a solution of IVP

(3.3-3.4) on a right-maximal interval J = [t0, α2). Then α2 = ∞ if, for any c > t0, x(t) is
bounded on J ∩ [t0, c).

Since in (3.1) we have f ∈ C(R+ × R3
,R3), then a solution x(t) to System 3.1 can be

extended over a maximal interval of existence [t0, α2). As shown in the previous section, N(t) =
S(t) + I(t) + R(t) is bounded on any finite interval [t0, c] (e.g. in the exponential case, N(t) ≤
N(t0)e|b−µ|(c−t0)), hence �x(t)� ≤ 3|N(t)| is bounded as well. Thus by the corollary to the
Continuation Theorem 2 we have that α2 = ∞. The significance of this result is to show that an
epidemic model system such as (3.1) will always have a solution continuing indefinitely.
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Uniqueness

The uniqueness of a solution to system 3.3 depends on whether f(t, x) is Lipschtizian in x:

Definition 2. [50] Lipschitzian: Say f ∈ C(Q,Rn) where Q ⊂ Rn+1 is an open set. f(t, x) is
said to be locally Lipschitzian in x on Q if for each (t0, x0) ∈ Q there exists a neighbourhood U

of (t0, x0) and positive constant L = L(U) such that for (t, x), (t, y) ∈ U

�f(t, x)− f(t, y)� ≤ L�x− y�.

If L is independent of U then f is said to be Lipschitzian in x on Q.

Theorem 3. [50] Uniqueness: Let f ∈ C(F,Rn), where F is the compact set defined in Theorem
1, and let f satisfy a Lipschitz condition on F with Lipschitzian constant L. Then the IVP
(3.3-3.4) has at most one solution on an interval [t0 − α, t0 + α].

Claim 1. If f has continuous partial derivative in x then f is locally Lipschitzian in x on Q and
Lipschitzian on any compact and convex subset of Q [50].

Fortunately in for these epidemic models the Lipschitzian property is easy to show: since
N(t) ≥ N0e

−|b−µ|(t−t0), N(t) �= 0 unless N0 = 0, which is physically unreasonable (how can we
study epidemic patterns without a population?). In fact for any time-varying population where
N(t) does not go to 0 in finite time, the fractions (S + I + R)−1 are always defined, and the
Jacobian,

Df(x) =





b− µ− β

�
I+R

(S+I+R)2

�
I b− β

�
S+R

(S+I+R)2

�
S b+ β

�
1

(S+I+R)2

�
SI

β

�
I+R

(S+I+R)2

�
I β

�
S+R

(S+I+R)2

�
S − (γ + µ) β

�
1

(S+I+R)2SI

�

0 γ −µ





is defined and continuous for all x ∈ ΩN .

Since f has continuous partial derivatives in x it is locally Lipschitzian in x on any compact
subset of R+×ΩN and so there is a unique solution which may be extended to a maximal interval.

This maximal interval was shown in the previous section to be [t0,∞). Therefore we have
found that, for the SIR epidemic model without delay, there is a unique solution on [t0,∞)
without pulses.

3.1.2 Stability Theorems

We first state some stability definitions given in the AMATH 851 course at the University of
Waterloo [51]. We assume that f(t, 0) ≡ 0 in (3.3) and call x(t) ≡ 0 the trivial solution.
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Definition 3. [51] Stability: The trivial solution of (3.3)-(3.4) is called

(i) Stable if for all � > 0 and t0 ∈ R+, there exists δ = δ(t0, �) > 0 such that

�x0� < δ ⇒ �x(t)� < �, t ≥ t0.

(ii) Uniformly Stable (US) if (i) holds and δ = δ(�) is independent of t0.

(iii) Asymptotically Stable (AS) if (i) holds and there exists σ = σ(t0) > 0 such that

�x0� < σ ⇒ lim
t→∞

x(t) = 0.

(iv) Globally Asymptotically Stable (GAS) if σ = σ(t0) is arbitrary in (iii).

(v) Uniformly Asymptotically Stable (UAS) if (ii) holds and if for all η > 0, there exists
σ > 0 (independent of t0) and there exists T = T (η) > 0 such that for all t0 ∈ R+,

�x0� < σ ⇒ �x(t)� < η, t ≥ t0 + T.

(vi) Globally Uniformly Asymptotically Stable (GUAS) if σ is arbitrary in (v).

(vii) Unstable if (i) fails.

Uniform stability and asymptotic stability do not combine to automatically give uniform
asymptotic stability; the additional T (η) requirement is to ensure the rate of decrease for a
UAS solution. In the context of the epidemic models we discuss, we are interested in uniform
asymptotic stability: it is not enough in practice to know that the disease will die out. We want
some sort of assurance of how quickly it will happen.

The next definitions are necessary for the theorems on Lyapunov stability to follow.

Definition 4. [51] Positive Definite: A function w(x) is called positive definite if w(0) = 0
and w(x) > 0 for x �= 0.

We are interested in general nonautonomous systems for now, so we extend the definition to
functions that are also function of t:

Definition 5. [51] Positive Definite, Decrescent: A function V (t, x) is called positive definite
if

V (t, x) ≥ w(x) (3.7)

where w(x) is positive definite. V (t, x) is called decrescent if

V (t, x) ≤ W (x) (3.8)

where W (x) is positive definite.
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Definition 6. Class-K Function: A function a(y), y ∈ R is said to be in the class K if a is
continuous, a(0) = 0, and a(y) is strictly increasing.

According to [51],

• V (t, x) is positive definite ⇐⇒ V (t, x) ≥ a(�x�); and

• V (t, x) is decrescent ⇐⇒ V (t, x) ≤ b(�x�) where a, b ∈ K.

We now restate commonly-known theorems on the use of Lyapunov functions for stability.
These theorems were introduced to the author in the AMATH 851 course [51] at the University
of Waterloo.

Theorem 4. Lyapunov function method for US: Let V ∈ C
1(R+ × Rn

,R). Assume that

(i) V (t, x) is positive definite;

(ii) V (t, x) is decrescent; and

(iii) V
�(t, x) = ∂V

∂t
+ ∂V

∂x
·f(t, x) ≤ 0 for (t, x) ∈ R+×Bρ(0), where Bρ(0) := {x ∈ Rn : �x� <

ρ, ρ > 0}.

Then the trivial solution of (3.3) is uniformly stable. (Without condition (ii) it is stable.)

Theorem 5. Lyapunov function method for UAS: If in Theorem 4 we strengthen condition
(iii) to V

�(t, x) ≤ −c(�x�), c ∈ K, (t, x) ∈ R+ ×Bρ(0), then we get uniform asymptotic stability.

Proof. See AMATH 851 course notes [51].

3.1.3 Additional Theorems

In this section we state additional theorems which will be useful later. We first state Gronwall’s
Inequality, which will be used in Section 5.1, then we discuss comparison theorems for ordinary
differential equations.

Theorem 6. [50] Gronwall’s Inequality: Let m, v ∈ C(J,R) where J = [a, b). For t ∈ J , let
v(t) ≥ 0 and

m(t) ≤ c+

�
t

a

v(s)m(s)ds

where c is a constant. Then for t ∈ J ,

m(t) ≤ ce

� t
a v(s)ds

.
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We state some definitions relevant to the comparison theorems.

Definition 7. [50] Dini Derivative: Given m ∈ C(J,R) where J = [a, b], the upper right Dini
derivative is defined by

D
+
m(t) = lim

h→0+
sup

1

h
[m(t+ h)−m(t)].

The lower-right Dini derivative is similarly

D+m(t) = lim
h→0+

inf
1

h
[m(t+ h)−m(t)].

When m(t) is differentiable, the expression reduces to D
+
m(t) = m

�(t) = D+m(t).

Definition 8. [50] Extremal Solutions: A solutions γ(t) = γ(t; t0, x0) of (3.3)-(3.4), defined
on its maximal interval Jγ , is called a maximal solution if for any other solution x(t) = x(t; t0, x0)
of (3.3)-(3.4) on its maximal interval Jx we have

γ(t) ≥ x(t)

for t ∈ Jγ ∩ Jx. A minimal solution ρ(t) is defined similarly, where ρ(t) ≤ x(t) on Jρ ∩ Jx.

The following comparison theorem will be used frequently Chapter 5 when we have an ODE
with an upperbound or lowerbound on the derivative.

Let m ∈ C(J,R) where J = (α1, α2) and consider also the IVP

u
� = g(t, u), u(t0) = u0 (3.9)

where g ∈ C(J × R,R).

Theorem 7. [50] ODE Comparison Theorem (≤): Suppose

D
+
m(t) ≤ g(t,m(t))

for t ∈ J . If t0 ∈ J , m(t0) ≤ u0, and γ(t) = γ(t, t0, u0) is the maximal solution of (3.9), then

m(t) ≤ γ(t)

for t ∈ J .

Corollary 2. In the above theorem we can set m(t) := �x(t)�, where x
� = f(t, x) as in (3.3),

then if �f(t, x)� ≤ g(t, �x�) and x(t0) = x0 with �x0� ≤ u0, then �x(t)� ≤ γ(t).

The inequality works in the other direction:
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Theorem 8. ODE Comparison Theorem (≥): Suppose

D+m(t) ≥ g(t,m(t))

for t ∈ J . If t0 ∈ J , m(t0) ≥ u0, and ρ(t) = ρ(t, t0, u0) is the minimal solution of (3.9), then

m(t) ≥ ρ(t)

for t ∈ J .

Proof. We follow the same method as the proof in [50] of Theorem 7. From Equation (3.9) we
extend to the IVP

u
� = g(t, u)− �, u(t0) = u0 − � (3.10)

leading to the family of solution functions u(t,−�) = u(t, t0, u0 − �) defined on their maximum
intervals J�.

The proof is nearly identical to that in [50] for u(t,+�). As in [50] we get the results

1. If �1 < �2 then u(t,−�1) > u(t,−�2).

Proof. For any �1, �2 ∈ R, �1 < �2 ⇒ u(t0,−�1) = u0 − �1 > u0 − �2 = u(t0,−�2). As-
sume ∃ t1 > t0 such that u(t1,−�1) = u(t1,−�2) and u(t,−�1) > u(t,−�2) for t ∈ [t0, t1).
We must have u(t,−�2) crossing above or at least being tangent to u(t,−�1) at t = t1;
but u

�(t1,−�2) = g(t1, u(t1,−�2)) − �2 = g(t1, u(t1,−�1)) − �2 < g(t1, u(t1,−�1)) − �1 =
u
�(t1,−�1). This contradiction shows u(t,−�1) > u(t,−�2) for all t > t0, t ∈ J�1 ∩ J�2 (the

intersection of the maximal intervals of the two solutions).

2. There exists a ρ(t) defined on a right-maximal interval [t0, α) such that lim�→0+ u(t,−�) =
ρ(t) uniformly on any compact subset of [t0, α).

Proof. Choose a sequence {�k} where �1 > �2 > . . . and limk→∞ �k = 0. Let uk(t,−�k) be a
solution of

u
� = g(t, u)− �k, u(t0) = u0 − �k (3.11)

where the uk are defined on right-maximal intervals [t0, αk). Let α = limk→∞ inf αk. Let
u(t) be any solution of (3.9) defined on its maximal interval Ju, then u(t) = u(t, 0), a
solution of (3.11). For all b ∈ (t0, α), on [t0, b] we have

u1(t,−�1) < uk(t,−�k) < u(t)

by (1.) for all m ∈ Z, and so {uk} is uniformly bounded on [t0, b]. Since g is continuous
then on this closed set g is bounded above and below, so {u�

k
} = {gk} = {g(t, uk) − �k} is
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uniformly bounded on [t0, b], therefore {uk} is equicontinous. By the Ascoli-Arzela lemma
there is a subsequence which converges uniformly on [t0, b] to a solution ρ(t) of (3.9). {uk}
is monotone increasing by (1.) so limk→∞ uk(t,−�k) = ρ(t) uniformly on [t0, b] for arbitrary
b, that is, ρ(t) is defined on [t0, α) which is right-maximal by choice of α.

3. ρ(t) is the minimal solution of (3.9):

Proof. Let u(t) be any solution of (3.9) defined on Ju. Then u(t) = u(t, 0), a solution of
(3.11), so by (1.), for any � > 0, u(t) > u(t,−�), t ≥ t0 for t ∈ Ju ∩ J�. Take the limit as
� → 0+ and we get u(t) ≥ ρ(t) for t ∈ Ju ∩ (t0, α).

The main point to take away from the preceding proofs of (1.)-(3.) is that {um} → ρ (the
minimal solution of (3.9)) uniformly on a closed interval [a, b] ⊂ Jρ.

Now suppose m ∈ C(J × R,R) and D+m(t) ≥ g(t,m(t)) with m(t0) ≥ ρ(t0). We choose a
sequence {�k} where �1 > �2 > . . . and limk→∞ �k = 0. We get a sequence {uk(t,−�k)} → ρ(t)
uniformly as k → ∞: then for all m ∈ Z,

m(t) ≥ uk(t,−�k). (3.12)

If not, there exists t1 > t0 such that m(t1) = uk(t1,−�k) and m(t) < uk(t,−�k) on (t1, t1 + δ)
for some δ > 0. For h ∈ (0, δ),

m(t1 + h)−m(t1)

h
<

uk(t1 + h,−�k)− uk(t1,−�k)

h
.

Taking the lim inf,

D+m(t) = limh→0+ inf m(t1+h)−m(t1)
h

< limh→0+ inf uk(t1+h,−�k)−uk(t1,−�k)
h

= limh→0+
uk(t1+h,−�k)−uk(t1,−�k)

h
= u

�
k
(t1,−�k) since uk is differentiable

= g(t1, uk(t1,−�k))− �k < g(t1, uk(t1,−�k)) = g(t1,m(t1)).

This result contradicts our assumption D+m(t) ≥ g(t,m(t)). Taking limits in (3.12) we get
m(t) ≥ ρ(t), thus concluding the proof.

A similar corollary applies to Theorem 8 as applied to Theorem 7. In many of our epidemic
model analyses, however, we look at a comparison DE for the infected population I(t); this
population is scalar so the above results apply directly (without needing the corollary) with
m(t) = I(t).

In the case of pulse vaccination, our populations are continuous from the right and so we
understand our derivatives in the dynamical systems models to be from the right as well; so we
have D

+
m(t) = m

�(t) (from the right) and D+m(t) = m
�(t) as well. Therefore in the cases we

are considering we may use this comparison theorem.
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Fig. 3.1: xt as a translation of a segment of the trajectory x(t).

3.2 Delay Differential Equations

In this section we discuss theorems for a delay differential equation

x
�(t) = f(t, xt) (3.13)

with initial condition
xt0 = φ. (3.14)

First we discuss the notation involved in delay differential equations, then we state the existence,
uniqueness, stability, and comparison theorems corresponding to those discussed in Section 3.1.

3.2.1 Notation and Definitions

Given a function x(t) : J �→ Rn, we define the function xt : [−r, 0] �→ Rn by

xt(s) := x(t+ s), s ∈ [−r, 0]. (3.15)

xt basically translates the segment of x(t) from the interval of length r to t = 0 (see Figure 3.1).

We use the notation C := C([−r, 0],Rn) as shorthand for the set of continuous functions from
[−r, 0] to Rn. Given a set D we further define CD := C([−r, 0], D). For a, b ∈ R with a < b and
D ⊂ Rn, following [6] we define the set of piecewise-continuous functions from [a, b] to D by

PC([a, b], D) := {ψ :[a, b] → D such that





ψ(t+) = ψ(t) ∀t ∈ [a, b),

ψ(t−) ∈ D ∀t ∈ (a, b] and

ψ(t−) = ψ(t) for all but at most a finite number of points t ∈ (a, b] }.

Analogous to C and CD, when a = −r and b = 0 we define the shorthand notation

PC := PC([−r, 0],Rn); PCD := PC([−r, 0], D).

35



Definition 9. For a function ψ ∈ PC, �ψ�r := sup−r≤s≤0�ψ(s)�. (See Figure 3.1 for an illustra-
tion.)

� · �r is a norm on PC but may not be on the restricted set PCD if PCD is not a linear space;
however, we can think of PCD as a subset of PC, so �·�r on PCD is just a norm on PC, restricted
to PCD [18].

3.2.2 Existence and Uniqueness

In this section we discuss existence, continuation and uniqueness theorems for delay DEs, following
the explanation by Driver [18].

For an ordinary differential equation x
� = f(t, x) we saw that continuity of f was enough for

the existence of a local solution; boundedness of f gave a continuation of the solution; and a
Lipschitz condition guaranteed uniqueness. Here we extend those definitions and results.

Definition 10. [18] Continuity Condition: We define the continuity condition to be that
f(t, xt), considered as a composite function of t, is continuous with respect to t in [t0, α1) for each
given continuous function x : [t0 − r, α1) → D.

Claim 2. If f(t, xt) ∈ C([−r, 0]× CD,Rn) then f satisfies the continuity condition.

Proof. f(t, xt) is continuous so for any � < 0, there exists δ > 0 such that |t − t̃| < δ and
�ψ − ψ̃�r < δ ⇒ �f(t, ψ)− f(t̃, ψ̃)� < �.

In particular, for a continuous function x : [t0 − r, α1) �→ D we have for t ∈ [t0 − r, α1) that
for any δ > 0, there exists δ1 > 0 such that |t − t̃| < δ1 ⇒ �x(t) − x(t̃)� < δ. Then we have for
any t ∈ [t0, α1) and t̃ ∈ [t− δ1, t+ δ1] ∩ [t0, α1):

�xt − x
t̃
�r = max

s∈[−r,0]
�xt(s)− x

t̃
(s)�

= max
s∈[−r,0]

�x(t+ s)− x(t̃+ s)�

< max
s∈[−r,0]

δ = δ

That is, for t ∈ [t0, α1), if δ1 < δ then if |t − t̃| < δ1 we have |t − t̃| < δ and �xt − x
t̃
� < δ

and so �f(t, xt) − f(t̃, x
t̃
)� < �. If δ1 ≥ δ then we simply restrict |t − t̃| < δ. Then we have

|t − t̃| < δ ≤ δ1, so �xt − x
t̃
� < δ and so �f(t, xt) − f(t̃, x

t̃
)� < �. So ∃ δ1 > 0 such that

|t − t̃| < δ1 ⇒ �f(t, xt) − f(t̃, x
t̃
)� < �; therefore f(t, xt) is a continuous function of t for any

t ∈ [t0, α1).
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Definition 11. [18] Lipschitzian: Given f : J × CD �→ Rn, and a subset U ⊂ J × CD, if there
exists L ≥ 0 such that

�f(t, ψ)− f(t, ψ̃)� ≤ L�ψ − ψ̃�r
for any (t, ψ) and (t, ψ̃) ∈ U , then we say f satisfies a Lipschitz condition on U with Lipschitz
constant L. f is locally Lipschitzian in U if, given any (t, ψ) ∈ J×CD, there exists a neighbourhood
of (t, ψ) in which f is Lipschitzian.

We work through the theorems in a slightly different order than in Section 3.1. For ODEs, we
first stated that continuity of f gave the existence of a solution on a small interval; boundedness of
f or x gave continuation of that solution; and then adding a Lipschitz condition gave uniqueness.
For DDEs, we follow the order given in [18]: continuity condition together with a Lipschitzian
condition gives at most one solution on the time interval of definition of f , and in particular
gives exactly one solution on some small interval. Then quasi-boundedness (to be defined) gives
continuation of this unique solution. (The proofs in [18] are easier to follow in this sequence.)

Theorem 9. [18] Uniqueness: Let f : [t0, α1)× CD �→ Rn satisfy the continuity condition and
let it be locally Lipschitzian. Then, given any φ ∈ CD, the system (3.13-3.14) has a most one
solution on [t0 − r, α) for any α ∈ (t0, α1].

Theorem 10. [18] Local Existence: Let f : [t0, α1)×CD �→ Rn satisfy the continuity condition
and be locally Lipschitzian. Then, for each φ ∈ CD, the system (3.13-3.14) has a unique solution
on [t0 − r, t0 +∆) for some ∆ > 0.

Definition 12. [18] Quasi-bounded: f : [t0, α1)× CD �→ Rn is said to be quasi-bounded if f is
bounded on every set of the form [t0, α0]×CF where t0 < α0 < α1 and F is a closed and bounded
subset of D.

That is, quasi-bounded means f is bounded on every compact subset of [t0, α1)× CD.

Theorem 11. [18] Continuation: Let f : [t0, α1) × CD �→ Rn satisfy the continuity condition
and let it be locally Lipschitzian and quasi-bounded. Then for each φ ∈ CD, the system (3.13-3.14)
has a unique noncontinuable solution on [t0 − r, α); and if α < α1 then for every closed bounded
set F ⊂ D we must have x(t) /∈ F for some t in (t0, α).

The last condition is the same as for Theorem 2 in that (t, x) must approach the boundary
of [t0, α1)×D; if t does not approach α1 then x must be approaching the boundary of the open
set D, that is, leaving any closed and bounded set F .

Now that we have listed the relevant theorems, we show that they apply to the delay epi-
demic models. In particular we consider the model (3.2). Similarly to Section 3.1 we let
x = [x1, x2, x3, x4]T := [S,E, I, R]T , then f(t, xt) is equal to the right-hand side of (3.2).
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1. Continuity condition: we in fact have f(t, xt) = F (t, x(t), x(t− r), and F (looking at (3.2)
is continuous in t, x(t), and x(t − r). So for any continuous x : [t0 − r, α1) �→ D, f is
a composition of functions which are continuous with respect to t, and therefore f itself
satisfies the continuity condition. (This result is trivial in the case of a finite number of
constant bounded delays.)

2. As in Section 3.1 the partial derivatives of f(t, xt) = F (t, x(t), x(t− r)) with respect to x(t)
and x(t− r) are continuous, so long as we are not in the trivial case N =

�
n

i=1|xi| = 0. So
F is Lipschitzian in x(t) and x(t − r) by Claim 1. From Claim 3 in Section 3.3 we obtain
that f is Lipschitzian in its second variable.

3. Quasi-bounded: On any closed bounded subset of [t0, α1)×CD, f is clearly bounded. That
is, for any (t, yt) ∈ [t0, α0] × CF (where F ⊂ D ⊂ R4 is closed and bounded) we have
�yt�r ≤ M for some M > 0, then if xt ∈ CF , noticing I/N ≤ 1 we have

�f� ≤ |x�1|+ |x�2|+ |x�3|+ |x�4|
≤ (µ(x2 + x3 + x4) + βx1) + (βx1 + βx1(t− r) + µx2) + (βx1(t− r) + (µ+ γ)x3) + (γx3 + µx4)

≤ (6µ+ 4β + 2γ)M,

and so �f� is bounded.

The continuity condition applies for any model with a finite number of bounded delays. The
quasi-boundedness of f can be generalized to different models simply by following the process
above; even in a model with different incidence we will not have �f� → ∞ in finite time or for
finite x. The local Lipschitzian condition is likewise satisfied for all of the models discussed so
far this chapter. Therefore we get that there exists a unique continuable solution to (3.2) (with a
physically valid initial function). For any model in which f is defined for t ∈ [t0,∞) and satisfies
the appropriate conditions, since �f� does not go to infinity in finite time then �x(t)� does not
and we must have that this solution is continuable for all future time.

3.2.3 Stability Theorems

The definitions of stability of the trivial solution in Section 3.1 apply for delay differential equa-
tions, with the generalization that we consider the initial condition xt0 = φ instead of simply x(t0)
(= xt0(0)) = x0. We require that the initial conditions are “small enough” under the �·�r-norm.

For example, the trivial solution is stable if for every � > 0, there exists δ > 0 such that
�x(t; t0, φ)� < � for all t ≥ t0 − r so long as �φ�r < δ [18].

The next theorem comes from Driver’s book and extends Theorem 4 to delay systems.
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Theorem 12. (Driver [18] 31-A) Let w and W be continuous nondecreasing functions on [0, H)
which are zero at 0 and positive on (0, H). If there exists a nonnegative functional V on (α,∞)×
CD such that

(i) V (t, ψ) ≥ w(�ψ(0)�) (V is positive definite);

(ii) V (t, ψ) ≤ W (�ψ�r) (V is decrescent); and

(iii) Whenever x = x(t, t0, φ) on [t0−r, α1) is the noncontinuable solution of equation (3.13)
through some (t0, φ) ∈ (α,∞)×CD, V (t, xt) defines a nonincreasing function of t on [t0, α1);

then the trivial solution of (3.13) is uniformly stable [18] .

Remark. In Theorem 4, V is continuously differentiable and in particular continuous; hence
since V

� ≤ 0 we must (by Mean Value Theorem) have that V is nonincreasing. In this sense we
note that condition (iii) of Theorem 4 is equivalent to condition (iii) of Theorem 12.

Remark. Note w and W could be defined as class-K functions on [0, H), but the nondecreasing
condition is slightly relaxed from the class-K condition of strict increase.

In [18] the proof of Theorem 12 does not use contradiction to prove the impossibility of �x(t)�
growing greater than a given �. Here we prove it more rigorously, using the method from AMATH
851.

Proof. Choose any � > 0 small enough that �x(t)� ≤ � ⇒ x(t) ∈ D (we note that � could in fact
be very large if D is). Choose δ = δ(�) > 0 such that W (δ) < w(�); this choice is possible since
w(0) = 0 = W (0) and w and W are continuous. Then for any φ ∈ CD with �φ�r < δ,

w(�x(t0)�) ≤ V (t0, xt0) = V (t0, φ) by (i)

≤ W (�φ�r) by (ii)

< W (δ)

< w(�),

⇒�x(t0)� < �.

We claim that �x(t)� < � for all t ∈ [t0, α1) (where recall α1 is as far as x(t) is continuable).

If not, then there exists some t1 > t0 such that �x(t1)� = � and �x(t)� < � for t ∈ [t0, t1).
Since �x(t)� ≤ � then x(t) ∈ D for t ∈ [t0, t1] and by (iii) V is nonincreasing on [t0, t1]. Hence

V (t1, xt1) ≤ V (t0, xt0) = V (t0, φ) < w(�), (3.16)
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but by condition (i),

V (t1, xt1) ≥ w(�x(t1)�) = w(�). (3.17)

Combining (3.16) and (3.17) we get that

w(�) ≤ V (t1, xt1) < w(�)

which is a contradiction. Hence no such t1 exists and the trivial solution of 3.13 is stable on
[t0, α1). Since δ was independent of t0 the stability is uniform.

Finally since x(t) remains small it does not approach the boundary of D as t → α1; hence we
must have α1 = ∞, that is, the solution x(t) is continuable for all future time. Therefore, the
trivial solution of (3.13) is uniformly stable for all t ≥ t0.

Theorem 13. (Driver [18] 32-C) If in Theorem 12 we strengthen condition (iii) to

(iii’) Whenever (t0, φ) ∈ (α,∞)× CD and x = x(t, t0, φ) on [t0 − r, α1) one has

d

dt
V (t, xt) ≤ −w1(�x(t)�) for t ∈ [t0, α1)

and if we additionally require �f(t, ψ)� ≤ M for some constant M > 0 for all (t, ψ) ∈ (α,∞)×CD,
then we get uniform asymptotic stability.

Proof. See Driver [18], theorem 32-C.

Effects of Small Delay

We consider the linear DDE

x
�(t) =

m�

j=1

Aj(t)x(t− rj) (3.18)

with initial condition (3.14). The system for x(t) is a linear system, where each of the Aj(t)
are continuous. Many of the results and supporting theorems in [18] hold only for a system like
(3.18) with a finite number m of bounded constant delays 0 ≤ rj ≤ r, j = 1, . . . ,m. For our
epidemic models to be discussed here this condition is easily met, as we have m = 2 with r1 = 0
and r2 = r.
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If we define h(t, ψ) = f(t, ψ)−
�

m

j=1Aj(t)ψ(−rj) then we can rewrite (3.13) as

x
�(t) =

m�

j=1

Aj(t)x(t− rj) + h(t, xt). (3.19)

We are thus rewriting our general nonlinear equation as a combination of a linear part and a
nonlinear perturbation [18]. If the perturbation h(t, xt) is “small enough” (a concept we will
quantify in the following) then we would expect it will not affect stability of the System (3.18).
First we state a theorem on uniform asymptotic stability:

Theorem 14. (Driver [18] 34-B) The trivial solution of equation (3.18) is uniformly asymp-
totically stable if and only if there exist constants M ≥ 1 and η > 0 such that for every
(t0, φ) ∈ (α,∞)× C,

�x(t; t0, φ)� ≤ M�φ�re−η(t−t0) for all t ≥ t0 (3.20)

We now state the theorem that allows us to use the smallness of r:

Theorem 15. (Driver [18] 34-G) Let the trivial solution of (3.18) be uniformly asymptotically
stable and let M and η be as in (3.20). Let constants K > 0 and N ∈ (0, η/M) exist such that

(i) �f(t, ψ) − f(t, ψ̃)� ≤ K�ψ − ψ̃�r when (t, ψ), (t, ψ̃) ∈ (α,∞) × CD (a global Lipschitz
condition)

(ii) �h(t, ψ)� ≤ N max{�ψ�r, �ψ
��r
K

} just for (t, ψ) ∈ (α,∞) × CD with ψ continuously dif-
ferentiable.

Then the trivial solution of (3.13) is uniformly asymptotically stable.

Following [18], as a simple example, suppose we consider a scalar system of the form

x
�(t) = f(t, xt)

where
f(t, ψ) = a · ψ(0) + b · ψ(−r).

We can rewrite f as
f(t, ψ) = (a+ b) · ψ(0) + b · (ψ(−r)− ψ(0)).

(a + b)ψ(0) is the linear part while we set h(t, ψ) = b(ψ(−r) − ψ(0)). Then h(t, ψ) ≤ b · r�ψ��r
and so we have N = b · r. For small enough r we will have N ∈ (0, η/M) regardless of the values
of η and M , satisfying the conditions of the theorem.
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3.2.4 Comparison Theorems

There is a delay analogue to the ODE comparison theorem, Theorem 7, used by Smith [69]. We
use Smith’s notation: for φ, ψ ∈ C, φ ≤ ψ ⇐⇒ φ(s) ≤ ψ(s) for all s ∈ [−r, 0].

Definition 13. Given φ, ψ ∈ C := C([−r, 0],Rn), a function f is said to satisfy the quasimonotone
condition if whenever φ ≤ ψ and φi(0) = ψi(0) for some i ∈ {1, 2, . . . , n}, we have that fi(φ) ≤
fi(ψ).

In particular we look at the equation (3.13), that is, x�(t) = f(t, xt). Following [69] we denote
by x(t; t0, φ, f) the solution to the equations (3.13)-(3.14).

From the quasimonotone condition we get a comparison theorem for delay differential equa-
tions, proved in [69]:

Theorem 16. [69] Let J ∈ R be open. Let f, g : J × C �→ Rn be continuous, Lipschitz on each
compact subset of J×C, and assume either f or g satisfies the quasimonotone condition. Assume
also that f(t, φ) ≤ g(t, φ) for all (t, φ) ∈ J × C.

If (t, φ), (t, ψ) ∈ J × C satisfy φ ≤ ψ, then

x(t; t0, φ, f) ≤ x(t; t0, ψ, g)

holds for all t ≥ t0 for which both are defined.

3.3 Impulsive Differential Equations

Delay differential equations have similar conditions to ODEs for existence and uniqueness, just
slightly more complicated. The same is true for impulsive delay differential equations (IDDEs).
We follow the work by Ballinger and Liu [6] in order to find more general existence and uniqueness
results for IDDEs, then apply them to the delayed epidemic model (3.2) with pulse vaccination
added. We deal with delay IDEs in this section but impulsive ODEs are the special case when
r = 0.

3.3.1 Restrictions on Impulsive Behaviour

We look at the model (where x
�(t) is the right-hand derivative)

x
�(t) = f(t, xt), t �= τk, t ≥ t0

∆x(t) = I(t, xt−), t = τk, t > t0
(3.21)

with initial condition (3.14), where f, I : J ×PCD → Rn, the initial time is t0 ∈ J , and ∆x(t) =
x(t+)− x(t−). Assumptions on impulses:
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• pulse times τk are fixed and head off to ∞,

• impulses do not send solutions outside of the domain of f .

Otherwise, we are fortunate that I(t, xt−) does not affect the existence and uniqueness proofs [6].

Ultimately epidemic models are meant to be used to make predictions about the course of an
outbreak, or to inform better choices for control measures such as vaccination campaigns. Pulse
vaccination leads to the following impulsive model, building on (3.2):






S
� = bN − µS − β

I

N
S

E
� = β

I

N
S − βe

−µr I(t−r)
N(t−r)S(t− r)− µE

I
� = βe

−µr I(t−r)
N(t−r)S(t− r)− (µ+ γ)I

R
� = γI − µR

t �= kτ






S(t) = (1− p)S(t−)

E(t) = E(t−)

I(t) = I(t−)

R(t) = R(t−) + pS(t−)

t = kτ

(3.22)

We want to know, does the impulsive behaviour affect the existence and uniqueness of a solution
to the system? In such a model,

• τk are fixed and limk→∞ τk = ∞.

• The impulses do not affect the population size: at a pulse tτk = kτ ,

N(t) = S(t) + E(t) + I(t) +R(t)

= [(1− θ)S(t−)] + [E(t−)] + [I(t−)] + [R(t−) + θS(t−)]

= S(t−) + E(t−) + I(t−) +R(t−)

= N(t−)

E(t) and I(t) are unchanged by the pulses, S(t) decreases (but not below zero), and R(t)
grows by an amount less than or equal to θ(N − R). Thus we find that the pulses do not
drive the solution out of the range of interest, namely Ω1 or ΩN .

Thus the pulse vaccination meets the requirements on I(t, xt−) needed in order to apply the
existence and uniqueness theorems of Ballinger and Liu in [6]. We now discuss these theorems;
the main difference between DDE existence theory and IDDE existence theory is the presence of
discontinuities in the second argument of f .
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3.3.2 Discontinuities in xt

Although the total population is unchanged, pulse vaccination necessarily introduces some dis-
continuity into the compartment populations. Even if there is no discontinuity in the initial
condition function φ, after the first pulse time t = 1 · τ there will be discontinuity introduced
that propagates through the derivatives (if, say, S(τ) = (1 − p)S(τ−) then I

�(t) has a jump
discontinuity at t = τ + r). �·�r is infinite-dimensional and so we find problems with drawing
analogies to non-delay systems: in particular just because x(t) is piecewise continuous, it does
not immediately follow that xt : [−r, 0] → Rn defined by xt(s) = x(t+ s) is piecewise continuous
under the norm �·�r, as shown in the following example.

Example 1. Let

x(t) =

�
0, t ∈ [−r, 0)

1, t ∈ [0, r].

x(t) is clearly piecewise continuous. We wish to show continuity of xt with respect to �.�r with an
�−δ proof: that is, to see if for any � > 0, we can find δ > 0 such that t1−t2 < δ ⇒ �xt1−xt2�r < �.
However, for any δ suppose we choose t1, t2 ∈ [0, r] such that 0 < t1 − t2 < δ. Then take
s = −t1 ∈ [−r, 0]:

xt1(s)− xt2(s) = x(t1 + s)− x(t2 + s)

= x(t1 − t1)− x(t2 − t1)

= x(0)− x(−(t1 − t2)), where t1 − t2 > 0

= 1− 0

⇒ �xt1 − xt2�r ≥ �xt1(s)− xt2(s)� = 1.

Thus xt is discontinuous with respect to �.�r for any t ∈ [0, r].

So we find that even with a piecewise continuous initial condition for x(t), xt may not be piece-
wise continuous and so theorems about existence and uniqueness must use a different definition
of continuity. In Section 3.2 we defined the “continuity condition,” requiring f to be continuous
in t for a continuous x; here we look to generalize to piecewise continuous functions.

Definition 14. [6] Composite-PC: A functional f : J × PC([−r, 0], D) → Rn is said to be
composite-PC if for each t0 ∈ J and α1 > t0 with [t0, α1] ⊂ J , if x ∈ PC([t0 − r, α1], D) and x is
continuous at each t �= τk in (t0, α1] then the composite function g defined by g(t) = f(t, xt) is
piecewise continuous (g ∈ PC([t0, α1],Rn)).

With many functionals it will easily be the case that f is composite-PC; for example, if
f(t, ψ) = ψ(eat) then f(t, xt) = x(t+ e

at) which is piecewise continuous for piecewise continuous
x. Difficulties may arise if, for example, f involves an infinite series, or any other form that causes
an infinite number of discontinuities.
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Remark. We note that we could technically redefine the continuity condition from Section 3.2
as “composite-C:” that is, f considered as a composite function of t is continuous in t if xt is.
We chose at the time to use notation consistent with [18].

There is a need for the composite-PC definition for impulsive DEs because, as explained in
Example 1 above, we may have xt is not piecewise continuous although x(t) is. Ballinger and Liu
[6] say “the discontinuities inherent in solutions of impulsive delay differential equations cause
sufficient complications to prevent the application of already existing theorems [such as in Driver’s
book [18]] for continuous delay differential equations.”

In order to present a theorem from Ballinger and Liu [6] on local existence, we define another
property:

Definition 15. [6] A functional f : J ×PCD �→ Rn is said to be continuous in its second variable
if for each fixed t ∈ J , f(t, ψ) is a continuous function of ψ on PCD.

Remark. Notice that in order for f(t, ψ) to satisfy the “composite-C” continuity condition from
Section 3.2, we would need f to be continuous explicitly in its first variable t. We assume this
condition is true, otherwise at a point t = t1 at which f(t1, ψ) is discontinuous we would have
impulsive behaviour regardless of the system state, and so the time t1 should be governed by
I(t, ψ).

The condition of continuity in the second variable, then, is sufficient but not necessary to
satisfy the composite-C continuity condition from the previous section; for composite-C we only
need the composition to be continuous in t, so continuity in the second variable is a different
condition than composite-C.

Theorem 17. [6] Local Existence: Assume f is composite-PC, quasi-bounded, and continuous
in its second variable. Then for each (t0, φ) ∈ J × PCD there exists a solution x(t) = x(t; t0, φ)
of (3.21)-(3.14) on [t0 − r, t0 + β1] for some β1 > 0.

In Section 3.2 the existence theorem also included the Lipschitz condition and therefore
uniqueness; this current existence theorem allows for multiple solutions, but we will see later
that adding the Lipschitz condition still confers uniqueness.

Based on System 3.22, we define x = [x1, x2, x3, x4]T = [S,E, I, R]T and g(t, x(t), x(t− r)) by

g(t, x(t), x(t− r)) =





b(x1 + x2 + x3 + x4)− β
x1x3

x1+x2+x3+x4
− µx1

β
x1x3

x1+x2+x3+x4
− βe

−µr x1(t−r)x3(t−r)
(x1+x2+x3+x4)|t−r

− µx2

βe
−µr x1(t−r)x3(t−r)

(x1+x2+x3+x4)|t−r
− (µ+ γ)x3

γx3 − µx4




(3.23)
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Since x1 + x2 + x3 + x4 = N > 0 ∀t, g is continuous in x(t) and in x(t − r). We will now show
that System 3.22, that is, x� = f(t, xt) = g(t, x(t), x(t − r)) with g as defined in (3.23), satisfies
the three conditions of the theorem:

• Composite-PC: Suppose x ∈ PC([t0−r, t0+α],R4
+) is continuous at each t �= τk in (t0, t0+α].

Then x(t − r) ∈ PC([t0, t0 + α],R4
+), and so the composite function g(t, x(t), x(t − r)) ∈

PC([t0, t0+α],R4
+) (where g is a composition of piecewise-continuous functions of t, and is

thus considered as a function only of t).

• Quasi-boundedness: If t0 ∈ R+, α > 0, and F ⊂ R4
+ is compact, then [t0, t0 + α] × F

2

is compact. Then g continuous in each xi ⇒ there exists M ≥ 0 such that �g(t, y, ỹ)� ≤
M ∀t ∈ [t0, t0 + α] and y, ỹ ∈ F .

For any ψ ∈ PCF , ψ(0) ∈ F and ψ(−r) ∈ F so in the above we can choose y = ψ(0) and
ỹ = ψ(−r). Hence �f(t, ψ)� = �g(t, ψ(0), ψ(−r))� ≤ M , therefore f is quasi-bounded.

• f continuous in its 2nd variable (xt): Let t ∈ R+ be fixed. Let ψ ∈ PC([−r, 0],R4
+) and

choose � > 0. g(t, y, ỹ) as defined in (3.23) is continuous in y and ỹ ⇒ there exists δ0 > 0
such that �g(t, y, ỹ) − g(t, ψ(0), ỹ)� < �/2 if �y − ψ(0)� < δ0 and there exists δ1 > 0 such
that �g(t, y, ỹ) − g(t, y, ψ(−r))� < �/2 if �ỹ − ψ(−r)� < δ1. (We can use ψ(0) and ψ(−r)
since they are both in F as stated above.) Take δ = min(δ0, δ1) and we have that

�g(t, y, ỹ)− g(t, ψ(0), ψ(−r))� = �g(t, y, ỹ)− g(t, ψ(0), ỹ) + g(t, ψ(0), ỹ)− g(t, ψ(0), ψ(−r))�
≤ �g(t, y, ỹ)− g(t, ψ(0), ỹ)�+ �g(t, ψ(0), ỹ)− g(t, ψ(0), ψ(−r))�
< �/2 + �/2 = �

So we find for our arbitrary � > 0 that if we choose δ as above, then

�ψ − ψ̃�r < δ ⇒ �ψ(0)− ψ̃(0)�, �ψ(−r)− ψ̃(−r)� < δ

⇒ �f(t, ψ)− f(t, ψ̃)� = �g(t, ψ(0), ψ(−r))− g(t, ψ̃(0), ψ̃(−r))� < �.

Hence f is continuous in its second variable.

So for the delay epidemic model with pulse vaccination, there is at least a local solution. In
order to look for global existence, we use the following theorem from [Ballinger and Liu]:

Theorem 18. Continuation: Assume f is composite-PC, quasi-bounded, and continuous in its
second variable. Let (t0, φ) ∈ J × PCD and let x = x(t0, φ) be any solution of (3.22)-(3.14).

• If x is defined on a closed interval of the form [t0−r, t0+β1], where β1 > 0 and [t0, t0+β1] ⊂
J , then x is continuable.
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• If x is defined on an interval of the form [t0−r, t0+β1) where 0 < β1 < ∞ and [t0, t0+β1] ⊂
J , then either x is continuable or else for every compact set F ⊂ D there exists a sequence
of numbers {tk} with t0 < tk < tk+1 < t0 + β1 for k = 1, 2, ... and limk→∞ tk = t0 + β1 such
that x(tk) /∈ F .

We apply this theorem to our impulsive delay epidemic model by noting that, as shown
earlier, dN

dt
= (b−µ)N so N(t) is bounded on any compact set, and since all of the compartment

populations are non-negative and bounded above by N we have that x(t) is bounded.

In particular for t on [t0, t0+β1) where β1 < ∞, N(t) ≤ N(t0)e|b−µ|β1 < ∞. If we define F as
the closure of the range of x(t) over [t0, t0 + β1] then F ⊂ D (= R4

+ \ {0}) is closed and bounded,
and therefore any sequence x(tk) must have its limit points in F , so x(tk) ∈ F ∀k. Hence we
may continue our solution to the end of the interval J (where f(t, xt) is defined for t ∈ J). Since
the continuous part, System (3.2), of our pulse vaccination epidemic model is defined for all t we
have that solutions to (3.22)-(3.14) are defined for t ∈ R+; that is, we have global existence of
solutions.

The preceding theorems merely guarantee the existence of a solution to our system, but to
determine if there is a unique solution we turn to one more definition and theorem from [Ballinger
and Liu]. The theorem is analogous to the ODE and non-impulsive delay case in which Lipschitz-
continuity of f in its second variable guarantees uniqueness.

Definition 16. A functional f : J × PCD → Rn is said to be locally Lipschitz in its second
variable if for each t0 ∈ J and β1 > 0 with [t0, t0 + β1] ⊂ J , and for each compact set F ⊂ D

there exists some L > 0 such that �f(t, ψ) − f(t, ψ̃)� ≤ L�ψ1 − ψ̃�r for all t ∈ [t0, t0 + β1] and
ψ, ψ̃ ∈ PCF .

Theorem 19. Uniqueness: Assume that f : J × PCD → Rn is composite-PC and locally
Lipschitz in its second variable. Then there exists at most one solution of (3.22)-(3.14) on [t0 −
r, t0 + β2) where 0 < β2 ≤ ∞ and [t0, t0 + β2) ⊂ J .

Claim 3. In particular, with a functional of the form f(t, xt) = g(t, x(t), x(t− r)) we have that
f is locally Lipschitz in its second variable as long as g(t, y, ỹ) is locally Lipschitz in y and ỹ.

Proof. We want to show f(t, ψ) is Lipschitzian in ψ on a compact set F ⊂ D where ψ ∈ PCF .
Suppose g(t, y, ỹ) is locally Lipschitzian in y on F and in ỹ on F ; this implies

�g(t, y, ỹ)− g(t, y�, ỹ)� ≤ L0�y − y
��

�g(t, y, ỹ)− g(t, y, ỹ�)� ≤ L1�ỹ − ỹ
��
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where y, y
�
, ỹ, ỹ

� ∈ F . Take L = 2max(L0, L1). Since ψ(0), ψ(−r) ∈ F for ψ ∈ PCF we can
replace y with ψ(0) and ỹ with ψ(−r). Then

�f(t, ψ)− f(t, ψ̃� = �g(t, ψ(0), ψ(−r))− g(t, ψ̃(0), ψ̃(−r))�
= �g(t, ψ(0), ψ(−r))− g(t, ψ̃(0), ψ(−r)) + g(t, ψ̃(0), ψ(−r))− g(t, ψ̃(0), ψ̃(−r))�
≤ �g(t, ψ(0), ψ(−r))− g(t, ψ̃(0), ψ(−r))�+ �g(t, ψ̃(0), ψ(−r))− g(t, ψ̃(0), ψ̃(−r))�

≤ 1

2
L�ψ(0)− ψ̃(0)�+ 1

2
L�ψ(−r)− ψ̃(−r)�

≤ L�ψ − ψ̃�r.

With g as defined in (3.23), the Jacobian with respect to x(t) = [S(t), E(t), I(t), R(t)]T is

Dg(x(t)) =





∂g1/∂S ∂g1/∂E ∂g1/∂I ∂g1/∂R

∂g2/∂S ∂g2/∂E ∂g2/∂I ∂g2/∂R

∂g3/∂S ∂g3/∂E ∂g3/∂I ∂g3/∂R

∂g4/∂S ∂g4/∂E ∂g4/∂I ∂g4/∂R





=





b− µ− β
�
E+I+R

N2

�
I b+ β

�
1
N2

�
SI b− β

�
S+E+R

N2

�
S b+ β

�
1
N2

�
SI

β
�
E+I+R

N2

�
I −β

�
1
N2

�
SI − µ β

�
S+E+R

N2

�
S −β

�
1
N2SI

�

0 0 −(µ+ r) 0
0 0 r −µ





Treating x(t− r) as a separate variable, the Jacobian with respect to x(t− r) = [S(t− r), E(t−
r), I(t− r), R(t− r)]T is

Dg(x(t− r)) =





∂g1(t)
∂S(t−r)

∂g1(t)
∂E(t−r) . . .

∂g1(t)
∂R(t−r)

∂g2(t)
∂S(t−r)

. . .
...

...
. . .

...
∂g4(t)

∂S(t−r) . . . . . .
∂g4(t)

∂R(t−r)





=





0 0 0 0

−β
N(t−r)−S(t−r)

N(t−r)2 I(t− r) β
S(t−r)I(t−r)

N(t−r)2 −β
N(t−r)−I(t−r)

N(t−r)2 S(t− r) β
S(t−r)I(t−r)

N(t−r)2

β
N(t−r)−S(t−r)

N(t−r)2 I(t− r) −β
S(t−r)I(t−r)

N(t−r)2 β
N(t−r)−I(t−r)

N(t−r)2 S(t− r) −β
S(t−r)I(t−r)

N(t−r)2

0 0 0 0





Since N > 0 for all t ≥ t0−r, all partial derivatives of g with respect to x(t) and x(t−r) exist for
(t, x(t), x(t− r)) ∈ [t0,∞)× R4

+ × R4
+ and are continuous from [t0,∞)× R4

+ × R4
+ �→ R4

+, so g is
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locally Lipschitzian on F in x(t) and in x(t− r) where F ⊂ R4
+ is any compact subset. Therefore

we can use the above claim to apply Theorem 19 and the solution to System 3.22 is unique.

Theorem 19 also says that there is at most one solution to System (3.22)-(3.14) on a general
interval [t0, t0 + β1) where 0 < β1 ≤ ∞ and [t0, t0 + β1) ⊂ J , which means in particular we can
use [t0,∞), the right-maximal interval for our epidemic model system. Therefore there exists a
unique solution to the delayed SEIR epidemic model with pulse vaccination, System (3.22), for
all t ∈ R+, that is, for all future time.

Remark. Suppose r = 0 (there is no delay), and we have

x
�(t) = f(t, x), t �= τk, t ≥ t0

∆x(t) = I(t, x(t−)), t = τk, t > t0,

where f by itself satisfies the existence and uniqueness requirements in Section 3.1. Then the
composite-PC property follows because f is continuous; quasi-boundedness follows from the re-
quirement f(t, x) ≤ M on F in Peano’s existence theorem, Theorem 1; and Lipschitz continuity
in the second variable is the same as before. Therefore pulse vaccination in an ODE system still
satisfies the existence and uniqueness requirements of the IDDE theory.

3.4 Model Generalization

3.4.1 Changes to DE Form

In the preceding sections we showed existence and uniqueness for two specific epidemic models,
(3.1) and (3.2) (including with pulse vaccination, (3.22)), while in reality there are many different
ways to set up a compartmental deterministic system. Generally a model may be adapted to a
specific disease by changes such as those discussed in Section 2.5. In all cases, however, we follow
the same main idea of showing that the total population N(t) is (i) strictly positive, and (ii)
bounded over any finite time.

Regardless of the number of transfer terms or compartments, (i) means the right-hand side
of

x
�(t) = f(t, x) (3.24)

is continuous wrt x and its partial derivatives in x exist and are continuous. In the delay case,
for

x
�(t) = f(t, xt) = g(t, x(t), x(t− r1), . . . , x(t− rj)), (3.25)

f(t, xt) is continuous in its second variable and the partial derivatives in x(t), x(t−r1), . . . , x(t−rj)
exist and are continuous.
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(ii) means that �f(t, x)� is also bounded and f(t, xt) is quasi-bounded. Thus we can keep
our existence results. We can continue any solution because (ii) implies �x(t)� (≤ dim(x)N(t))
is also bounded on any finite interval. Finally uniqueness follows with or without delay because
the continuous partial derivatives cause f to be locally Lipschitz in its second variable.

Extra Terms

In most cases additional terms serve simply to transfer populations from one compartment to
another; hence the total population N is unchanged and the above results on boundedness hold.

One problem may arise, for example, with the inclusion of a term that models exit or entrance
to the population. For example, we could account for deaths due to the disease with an expo-
nential distribution with mean 1/α. Such an event would cause the population, in the absence of
everything else, to shrink over time:

dI

dt
= . . .− αI(t)

⇒ dN

dt
= (b− µ)N(t)− αI(t).

In this case we have

(b− µ− α)N(t) ≤ dN

dt
≤ (b− µ)N(t)

⇒ N(0)e(b−µ−α)t ≤ N(t) ≤ N(0)e(b−µ)t

⇒ N(0)e−|b−µ−α|t ≤ N(t) ≤ N(0)e|b−µ|t

⇒ 0 < N(t) ≤ N(0)e|b−µ|t

In the above we use the Comparison Theorem 8 for (non-delay) differential equations, with the
result that N(t) is still always positive (and still bounded for any finite time). We note that the
differential equation governing the evolution of N(t) involves no delay and so for both a non-delay
and a delay compartmental epidemic model we find that f(t, x) and g(t, x(t), x(t−r)) respectively
are still continuous with respect to their second (and third) variables, and their partial derivatives
exist and are continuous so they satisfy a Lipschitz condition. Thus we still retain the existence
and uniqueness results even when disease deaths, which do not have a corresponding increase in
another compartment, are accounted for.

Extra Compartments

Adding or excluding compartments changes the dimension of the vector x(t), but the general
existence and uniquness results still hold as well.
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Some epidemic models simply do not explore every compartment. They may repress analysis
of certain compartments (such as R) of which the other compartments are independent in order
to simplify the analysis of the dynamics of the compartments of interest. In such cases, for
existence/uniqueness purposes we may consider the model as extended to included the repressed
or ignored compartments. They may be irrelevant to the dynamics of the compartment of interest,
but taking all of the (physically necessary) classes together we get a total population of size N

upon which we can find bounds which let us prove existence and uniqueness of solutions.

Likewise the addition of compartments, which really involves the partitioning of the total
population into more specific classes, doesn’t affect the existence or uniqueness of a solution.
Another compartment may be added, as we have seen, for example if there is an exposed class E,
but the dimension of x(t) does not affect the continuity or Lipschitz condition of f . If the extra
compartment just serves to transfer populations around we still have N

�(t) = (b − µ)N(t); even
if the new compartments cause exit/entrance to the population, we will still have N is bounded
and positive, and our results hold so long as the new compartments didn’t have any inherent
discontinuities in their governing differential equations.

Form of Differential Equation Terms

Such discontinuities should not be introduced with any realistic DE term form, though. We may
have different forms of the terms in the system than just the mass action and exponential terms
in the examples above, such as a different type of contact rate as discussed in Sections 2.2.3 and
2.5; so long as the denominator is never zero (which, for example, in the case of the saturated
contact rate, it cannot be since S ≥ 0), the derivative function f is still continuous, as are its
partial derivatives, and the existence and uniqueness results hold.

As explained in Section 2.5, another way to change the underlying assumptions of the asso-
ciations within the system would be to allow for logistic growth such as N

� = ρN(1 − N

K
). We

need to ensure, however, that the solution would still be well-defined.

For ρ > 0 then we will easily keep the result thatN(t) is bounded; in fact, N(t) ≤ maxK,N(t0)
for all future time. The logistic growth also doesn’t affect the continuity of the function in the
right-hand side of the differential equations, or the existence or continuity of the partial derivatives
with respect to x.

Time-Varying Parameters

We will not describe in detail the effects of time-varying parameters; suffice it to say that, if the
parameters are continuous functions of t, they will not affect the existence or uniqueness of a
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solution. For example, if β = β(t), then using System 4.7 for example we get






S(t)� = . . .− β(t)S(t)I(t)

E(t)� = β(t)S(t)I(t)− β(t− r)e−µr
S(t− r)I(t− r) + . . .

I
�(t) = β(t− r)e−µr

S(t− r)I(t− r) + . . .

R
�(t) = . . .

Terms in the differential equations still have corresponding terms of opposite sign in other DEs, so
again these epidemic effects (with time-varying coefficients or not) cancel in the DE for Ṅ(t). Our
boundedness results still hold, and so long as the time-dependent parameters are continuous f will
still be continuous (composite-C in the delay case, composite-PC with pulse vaccination) and we
get the existence of a solution continuable for future time, or at least until an impulse interrupts
it. These parameters do not affect the partial derivatives with respect to x = [S,E, I, R]T so
again if the parameters are continuous the partial derivatives of f in x (xt in the delay case) will
be.

If the parameters are discontinuous then so long as they are single-valued and keep x in the
domain of f , we can analyze the solutions on the opposite sides of a parameter discontinuity
separately.

3.4.2 Changes to Type of DE

We consider the changes mentioned in Section 2.5.2:

• Spatially-varying PDEs are beyond the scope of this thesis.

• The theory in [6] deals with very general impulsive delay systems, so we may extend our
results from Section 3.3. The delay existence and uniqueness pulse vaccination results
depend on f(t, xt) being composite-PC, but for any f of the form

f(t, xt) = g(t, x(t), x(t− h1(t)), . . . , x(t− hj(t))) (3.26)

we have f is composite-PC, quasi-bounded, and continuous in its second variable so long
as g ∈ C(R+ × Rn(j+1)

,Rn), j is finite, the hi(t) are continuous and bounded, and the
t− hi(t), i = 1..j are strictly increasing [6]. Thus we can handle more than one delay, and
many cases of time-varying delay. The results also apply for unequally-spaced impulses.

• In the case of distributed delays we may not retain such a property but for most other
epidemic models there will be a finite number of delays.
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Chapter 4

Literature Review

4.1 Introduction

The epidemic modelling literature is extensive, beginning formally in the early part of the 20th
century. Heesterbeek [32] discusses the contributions of W. H. Hamer, R. Ross, and A. G.
McKendrick in compartmental modelling and particularly discusses the use of the law of mass
action for the bilinear incidence term. A seminal paper by W. O. Kermack and McKendrick [44],
which introduced model (2.2) in Section 2.1.1, is credited by many ([7, 9, 15]) as a foundation in
the qualitative study of epidemics through compartmental models.

The epidemic modelling literature took off in more recent decades, starting in about the
1970s due to authors such as H.W. Hethcote ([35], [34]), K.L. Cooke ([8], [11]), and J.A. Yorke
([80]). Since then there has been an abundance of publications ranging from empirical studies to
purely theoretical treatments. Kermack and McKendrick’s ODE model dealt nominally with two
compartments (a removed class is implied) in a homogeneously mixed population, with permanent
removal and no control measures [44]. The literature which followed branched into such areas as

• vaccination control measures

• heterogeneous populations (age-structured, infectious stages)

• spatial heterogeneity (PDEs)

• constant latent/infectious/immune periods (DDEs)

• distributed delay

• stochastic effects
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and many, many other areas. In the following sections we discuss the literature on general forms
of incidence, pulse vaccination campaigns, and delay differential equations.

4.2 Changes to Incidence Term

In Section 2.2.3 we introduced the mass-action bilinear incidence term and the standard incidence
β
SI

N
which takes into account varying population size. While these incidences are very common,

more general terms are ubiquitous as well.

The dependence on I may be nonlinear, for example a saturation incidence term such as
βS

I

1+kI
where k > 0 [49, 78]. The contact rate still increases as I increases, but the growth is

largest when I is very close to 0 and approaches a positive limit from below for large I.

Psychological effects may cause contact rates to not just level off but to decline with respect
to I for high levels of infectives, for example as individuals become wary of contact. Capasso and
Serio model such effects in the incidence term [9]. A sample incidence term could be something
like f(I)S = kI

p(1− I)q−1
S with k > 0, p > 1, q ≥ 1.

More generally we can have an incidence term of the form G(S, I, t). Physicality conditions
are:

• G(0, I, t) ≡ 0 ≡ G(S, 0, t)

• G(S, I, t) ≥ 0 for all S ≥ 0, I ≥ 0, t ≥ 0

These assumptions are to keep the model physically reasonable: without infection, there can
be no transmission, and there can be no “negative” transmission (a susceptible contacting an
infective cannot take away the disease).

A more complicated incidence term is not just inserted to make the analysis look “fancy;”
there can be very important implications to stability. Alexander and Moghadas, for example, use
an incidence term β[1+f(I; ν)]IS where f(I, 0) = 0 and so ν is a measure of the “departure from
mass action” [2]. They find that under reasonable assumptions on f , multiple endemic equilibria
can be possible even when the reproduction number is less than one! Thus we find that, for
one thing, having a good empirical basis for the model structure chosen is very important, and
also that while simplifications can be very instructive, merely choosing a simple model may not
explain phenomena that could be observed in real-life outbreaks.

Like Alexander and Moghadas, van den Driessche and Watmough also look at bifurcations,
in their case with an SIS model with incidence term λ(I)SI where S = 1− I [71]. Korobeinikov
uses the incidence term G(S, I, t) = f(S, I) where f satisfies the above physicality conditions and
is concave down with respect to I [45].
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d’Onofrio dispenses with the parameter ν but generalizes [2] to nonautonomous systems using
G(S, I, t) = g(I, t)Sq for q > 0 [17]. Adding the t-dependence complicates the results. d’Onofrio
also considers pulse vaccination control measures, as discussed in the next subsection (4.2.1).

4.2.1 Pulse Vaccination and General Incidence

Pulse vaccination has become more prevalent in the literature starting in the early 1990s; see,
for example, [63] and [62] for a more thorough introduction, [1] and [68] for simulations analysis,
and [4] for comparison to real-life data.

There are many recent publications in the epidemic modelling literature dealing specifically
with pulse vaccination and non-bilinear incidence. Gakkhar and Negi [24] study bifurcations in
a SIRS model with non-monotonic incidence in I of the form κSI/(1 + βI + αI

2). Wang et. al.
[74], Xu and Ma [78], and Gao et. al. [25] use a saturation incidence in SIRVS, SEIRS, and SEIR
models, respectively. Zhang and Teng ([82], [81]) and Meng et. al. [57] analyze SEIRS models
with saturation in S, that is, with incidence term β

S

1+αS
I; Song et. al. [70] use an SVEIR model

with saturation in S and V . Zhang et. al. more recently use saturation in S in an SIR model
[85]. Wang et. al. [75] and Luo et. al. [54] study a βIS

q incidence in an SEIR model and SIR
model respectively, while Hui and Chen [39] study βI

p
S
q.

While more complicated incidence terms may lead to richer dynamics, accurate parameter
estimation and the necessity of confidence in the model choice can raise issues. Looking at a
more general form of the incidence function, for example G(S, I, t) discussed in the last section,
may be more complicated but can lead to more widely applicable results. As stated in the previous
section, d’Onofrio in [17] considers a general force of infection which is polynomial in S but a
general function of I and t. The model is as follows, using pulse vaccination but with no delay
[17]: 





S
� = µ ([1− θ]− S)− g(I, t)Sq

I
� = g(I, t)Sq − (µ+ γ)I

R
� = γI − µR

V
� = µθ − µV

t �= kτ, k ∈ Z






S(kτ+) = (1− p)S(kτ)

I(kτ+) = I(kτ)

R(kτ+) = R(kτ)

V (kτ+) = V (kτ) + pS(kτ)

t = kτ

(4.1)

V is the vaccinated compartment while R is for those who have recovered from the disease.
The compartments R and V do not directly affect the dynamics of S and I, so by assuming that
recovery from the disease leads to the same strength of immunity as vaccination, and by setting
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θ = 0 (that is, no continuous at-birth vaccination) we can combine compartments R and V in
System (4.1): 





S
� = µ(1− S)− g(I, t)Sq

I
� = g(I, t)Sq − (µ+ γ)I

R
� = γI − µR

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

t = kτ

(4.2)

d’Onofrio in (4.1) assumes that the populations are continuous from the left, as opposed
to from the right as given in background Section 3.3. This assumption does not affect the
existence/uniqueness or form of solutions, so in (4.2) and later we will use right-continuous DEs
in order to pick a method and be consistent.

The general incidence g(I, t) is subject, as in [17], to the assumptions:

• g(0, t) = 0

• g(I, t) ≥ 0 for I ≥ 0

• g(I, t) ≤ λ(t)I

As before, the first two assumptions are for physicality of the incidence. In the third assumption,
we get λ(t) from the restriction

λ(t)

�
= ∂g(0,t)

∂I
if ∂g(0,t)

∂I
> 0

>
∂g(0,t)

∂I
if ∂g(0,t)

∂I
≥ 0.

(We are not defining λ pointwise in t, that is we are not letting λ(t1) = ∂g(0,t1)
∂I

> 0 while

λ(t2) >
∂g(0,t2)

∂I
= 0; rather, we are simply choosing an upperbound to ∂g(0,t)

∂I
that is always

nonzero. If ∂g(0,t)
∂I

itself is always nonzero then we define λ(t) equal to it, otherwise we choose a
different function.) We also note that, for the purposes of the proofs in [17], λ(t) must be periodic
with period T which divides into the pulse vaccination interval τ (i.e. τ = nT for some n ∈ Z).
This restriction decreases the generality of the model, but can make physical sense in the sense
that λ(t) could model seasonal variations with a period of one year, while the pulse vaccination
campaign is led every few years.

Thus we are restricting our g(I, t) incidence to one that grows at most linearly in I. This
g(I, t), however, does allow far more general incidence rates than the usual bilinear term, as
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Fig. 4.1: g(I, t∗) = I(1 − 2I3) (a psychological inci-
dence)

Fig. 4.2: g(I∗, t) with periodic bound λ(t) =
1
2cos(2πt) + 1.65

shown in Figures 4.1, 4.2, and 4.3. The bilinear incidence is the special case g(I, t) ≡ βI and
λ(t) ≡ β.

In [17] it is shown that the disease will die out in System (4.1) if

1

τ

�
τ

0
λ(t)S̃q(t)dt ≤ µ+ γ, (4.3)

where

S̃(t) = (1− θ)

�
1− p

1− (1− p)e−µτ
e
−µ(t−kτ)

�
, t ∈ (kτ, (k + 1)τ ] (4.4)

is the disease-free periodic solution of System (4.1). We will return to S̃(t) in more detail in
Lemma 1 of Section 4.3.1. The form (·, ·] of the t interval in (4.4) comes from the left-continuity
of (4.1); if we have pulse vaccination such that the compartment populations are continuous from
the right, it would be [·, ·).

As in [17] we may also generalize System (4.1) to a system with an exposed class E:






S
� = µ ([1− θ]− S)− g(I, t)S

E
� = g(I, t)S − (µ+ κ)E

I
� = κE − (µ+ γ)I

R
� = γI − µR

V
� = µθ − µV

t �= kτ, k ∈ Z (4.5)

where the pulse behaviour is as before with E(kτ+) = E(kτ). This model does not use delay,
and instead has an exponential distribution of the latent period: see Section 5.2 for a discussion
and results involving delay.
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Fig. 4.3: g(I, t) =
�
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10sin
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·
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�
(bottom) ≤ (cos(2πt) + 2) I =: λ(t)I (top);

g(I, t∗) models psychological effects.

In [17] it is found that a sufficient condition for eradication of the disease is

1

τ

�
τ

0
λ(t)S̃q(t)dt ≤ κ− γ

κ
(µ+ γ), (4.6)

so long as κ > γ, that is, the average latent period 1
κ
is shorter than the average recovery period

1
γ
. (This result can be proven with the Lyapunov function L := κ

κ−γ
E + I.) Note that in the

limit κ → ∞ (that is, 1
κ
→ 0 so the time spent in the compartment E vanishes), we recover the

result for the SIRV model (4.1).

4.3 Delay in Epidemic Models

The delay differential equation literature is also extensive. For textbooks, see Driver [18] for a solid
introduction to DDEs. Kuang [46] discusses delay and distributed delay differential equations
in the context of population models, including predator-prey systems but also with logistic-type
equations that are applicable to epidemic models. Brauer and Castillo-Chavez have an excellent
introduction to epidemic models in [7] with extensions to delay systems.

In Chapter 1 we discussed the use of exponential distributions in an epidemic model, that is,
terms of the form σxi (i.e. x

�
i
= . . . σxi) for constant σ and where xi is one of the compartment

populations. Instead of an exponential distribution we might want to model a different distribu-
tion; for example d’Onofrio uses a gamma distribution for the infectious period, arguing that an
exponential distribution is independent of the starting time, and concludes from [5] that “from
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medical literature the latent and infectious time are known to have a well defined mean and a
quite small standard deviation” [16].

More generally we can use a distributed delay term of the form
� 0
−r

g(xt(s))ds for some function
g. This distribution in fact includes infinite delays since the integral term (or terms) of the
differential equation depends on x(t+ s) for all s ∈ [−r, 0]. See, for example, Cooke and Kaplan
[11] or Gao et. al. [28].

For simplicity we will be considering discrete delays for now; that is, rather than following an
exponential or other distribution, the time of latency or infectiveness or immunity is considered
to be a constant. d’Onofrio’s above comment helps to justify this assumption [16]. Even among
just delay-related publications, the epidemic modelling literature is extensive. We list sample
papers from each area but warn that the list is not comprehensive.

Delay may be incorporated through a fixed latent period (time until infectious, while the
disease develops in an exposed individual), resulting in an exposed class. For example,

E
�(t) = G( S(t), I(t), t )−G( S(t− r), I(t− r), t− r )e−µr − µE(t)

(assuming exponentially-distributed death rate with mean life expectancy 1/µ). Gao et. al. use
such a model with bilinear incidence in [26] and [27], with the former involving time-varying
population. Jiang et. al. in [41] and Wei et. al. in [77] use a delay for latent period in an SVEIR
model in which the vaccinated class may still become infected, albeit at a reduced rate. Pei et. al.
[65] consider a quarantined class. Publications with latent delay and nonlinear incidence include
those by Meng et. al. [58] (which uses a specific case of the incidence in Alexander and Moghadas
[2]), Wei and Chun [76] (saturation incidence in S), Xu and Ma [78] (saturation incidence in I),
and Zhao et. al. [86] (polynomial incidence in S).

We could alternately have delay in the infectious class, so the infective period (time to recov-
ery) is fixed; for example,

I
�(t) = G( S(t), I(t), t )−G( S(t− r), I(t− r), t− r )e−µr − µI(t)− αI(t)

where we have included disease deaths at rate α as an example. Publications using related models
include those by Gao et. al. [30], Meng and Chen [56], and Pang and Chen [64]. Zhang et. al.
[84, 85] use a fixed infectious period, with a saturation incidence and in a structured model with
different levels of susceptibility respectively. Luo et. al. [54] include the delay in a model with
two susceptible categories.

We could also use delay to model a fixed immune period. Suppose the infectives recover at a
rate γ, then such a model would look something like

R
�(t) = γI(t)− γI(t− r)e−µr − µR(t).
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Li et. al. consider the spatial analog of an SIRS model with temporary immunity [48] and
Hethcote [37] separately considers delay during infectiousness and in the recovered (immune)
period.

Clearly we could also analyze models with combinations of these delays. Cooke and Kaplan
[11] use their distributed delays to model the incidence over the infectious period taking into
account the distribution of time until recovery. Cooke and van den Driessche [12] and Wang
[73] use fixed latent and immune periods; [12] is also notable for using the standard incidence
β
SI

N
as opposed to the usual bilinear incidence. Gao et. al. extend this model to include pulse

vaccination and use saturation incidence [25]. Song et. al. and Meng et. al. similarly use fixed
latent and immune periods, with a saturation incidence in [57, 70] and with vertical (newborn)
transmission in [60]. Jiao et. al. [42], Gao et. al. [29], and Wang et. al. [75] use a fixed latent
period followed by a fixed period of infectiousness; Wang et. al. additionally use an incidence
that is polynomial in S.

Delay is also incorporated to model vector transmission without explicitly modelling the
vector population, such as in Meng et. al. [59], through the presence of an incidence of the
form βS(t)I(t − r). The number of new infections at the current time level depends on the
contact between current susceptibles S(t) and vectors (e.g. mosquitoes) which contacted infected
individuals r time units ago (where r is the incubation time in the vector), so indirectly, I(t− r).

4.3.1 Pulse Vaccination and Delay

The combination of pulse vaccination in an epidemic model with delay has also been well studied.
Because this thesis is focussing on pulse vaccination, a large proportion of the papers referenced
in the previous section in fact use pulse vaccination as well: [41, 42, 54, 64, 65, 70, 75, 76, 77, 78,
83, 84, 85, 86] and all the papers with first author S. Gao ([25]-[30]) or X. Meng ([56]-[60]).

Gao et. al. [27] study the following pulse vaccination model with delay:





S
� = µ(1− S)− βSI

E
� = βSI − βe

−µr
S(t− r)I(t− r)− µE

I
� = βe

−µr
S(t− r)I(t− r)− (µ+ γ + α)I

R
� = γI − µR.

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

E(kτ) = E(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ

(4.7)

Pulse vaccination is applied to move individuals from the susceptible to the recovered compart-
ment at t = kτ . In [27] the pulse vaccination is in fact applied so the populations are continuous

60



Fig. 4.4: Susceptible population converging to disease-free periodic solution S̃(t).

from the left (e.g. S(kτ+) = (1 − p)S(kτ)). As discussed in Section 4.2.1, we change it to
right-continuity for consistency with our theorems and previous models.

In this model bilinear (mass-action) incidence is used. The e
−µr factor in the delayed terms

arises from natural deaths over the course of the latent period, that is, integrating E
� we have

that

E(t) =

�
t

t−r

βe
−µ(t−s)

S(s)I(s)ds. (4.8)

The average life expectancy is 1/µ, which is on the order of decades for human populations, so
µ itself is small. If the latent period is not an appreciable fraction of the year then we will get
e
−µr ≈ 1; that is, the factor may help us slightly near endemic thresholds, but is not likely to
make a large difference.

In [27] the authors defined threshold numbers

R∗ =
βe

−µω

µ+ γ
S̃
M
, R∗ =

βe
−µω

µ+ γ
S̃m = (1− p)R∗

where S̃
M := maxt∈[0,τ ] S̃(t) = S̃(τ−) and S̃m := mint∈[0,τ ] S̃(t) = S̃(τ), as shown in Figure 4.4.

It is found that in (4.7) the disease is eradicated if R∗
< 1 and permanent if R∗ > 1, that is,

R∗
>

1
1−p

[27].

While the incidence term βSI is very commonly used in the literature for its simplicity and
accuracy, the bilinear incidence assumes that the population is homogeneously mixed and that
there are no effects such as psychological issues (discussed in Section 4.2) which may change
population behaviour at high or low disease incidence levels. If we want to take into account such
(more physically realistic) effects then we should use a more general incidence term as described
in Section 4.2.
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Our coming results, in addition to the proofs in [27] for eradication and permanence, rely
heavily on the knowledge of the disease-free periodic solution S̃(t) given in Equation (4.4). Many
papers in the literature ([17, 24, 25, 26, 27, 28, 29, 30, 41, 42, 54, 56, 57, 58, 59, 60, 64, 65, 68, 70,
74, 75, 76, 77, 81, 82, 83, 84, 85, 86]) use similar methods to find sufficient conditions for disease
eradication. These methods use the following lemma, explicitly or implicitly:

Lemma 1. [27] Consider the following impulsive differential equations:

x
�(t) = a− bx(t), t �= kτ

x(t) = (1− p)x(t−), t = kτ
(4.9)

where a > 0, b > 0, 0 < p < 1. There exists a unique positive periodic solution

x̃(t) =
a

b
+
�
x
∗ − a

b

�
e
−b(t−kτ)

, kτ ≤ t < (k + 1)τ (4.10)

to this system, which is globally asymptotically stable, where x
∗ = a(1−p)(1−e

−bτ )
b(1−(1−p)e−bτ )

.

If the impulsive behaviour is x(t+) = (1−p)x(t), the time interval becomes kτ < t ≤ (k+1)τ .

The lemma may be proven (see [27]) by integrating between pulses (from kτ to t), then requir-
ing (1−p)x̃((k+1)τ−) = x̃(kτ) for the periodic solution. Define f(x) := (1−p)

�
a

b
+
�
x− a

b

�
e
−bτ

�
,

then the periodic solution is found to be globally asymptotically stable because f is a contraction
mapping.

Remark. Rearranging the above, we get

x̃(t) =
a

b
+

�
a(1− p)(1− e

−bτ )

b(1− (1− p)e−bτ )
− a

b

�
e
−b(t−kτ)

=
a

b
+

�
a(1− p)(1− e

−bτ )

b(1− (1− p)e−bτ )
− a(1− (1− p)e−bτ )

b(1− (1− p)e−bτ )

�
e
−b(t−kτ)

=
a

b
+

�
a[1− p− (1− p)e−bτ ]− [1− (1− p)e−bτ ]

b(1− (1− p)e−bτ )

�
e
−b(t−kτ)

⇒ x̃(t) =
a

b

�
1− p

(1− (1− p)e−bτ )
e
−b(t−kτ)

�
, kτ ≤ t < (k + 1)τ. (4.11)

General procedure to determine eradication threshold with pulse vaccination:

Lemma 1 may be applied, explicitly or implicitly, to find parameter thresholds below which the
infection will be eradicated. A common procedure is as follows. (We assume the births are
proportional to a constant A; we could for example have A = N if N is constant, or A = K for
a carrying capacity K.)
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(i) Consider the maximum value of S� for physically valid compartment populations:

S
� = µ(A− S)−G(S, I, t)

⇒ S
� ≤ µ(A− S)

(ii) Use a comparison system (with equality where the inequality for S� is),

x
� = µ(A− x) (4.12)

and look for a solution x(t). Ignoring the other compartments and considering the above as
a scalar system, we let f1(t, φ) = µ(A−φ(0))−βφ(0)I(t) and f

2(t, φ) = µ(A−φ(0)). Then
both f

1 and f
2 satisfy the quasimonotone condition since they only involve the current

time. By Theorem 16, since f
1(t, φ) ≤ f

2(t, φ) we have that x(t; t0, φ, f1) ≤ x(t; t0, φ, f2);
that is, S(t) ≤ x(t) for all t ≥ t0 [69].

(iii) Use Lemma (1) to find the periodic solution to the comparison equation (4.12) with PV
and to determine that this periodic solution is GAS.

(iv) Find the resulting upperbound for S(t): S(t) is bounded above by x(t) which is ap-
proaching the periodic solution x̃(t). x̃(t) has a time-independent maximum value S̃

M

which S(t) must either be less than or become arbitrarily close to from above, i.e. for any
� > 0, S(t) < S̃

M + � eventually.

(v) Then, in either the delay or non-delay case, we can use the upperbound for S(t) to
find parameter values which ensure eradication of the infection over the long term, that is,
I(t) → 0.

For example, given a model with

I
� = βe

−µr
S(t− r)I(t− r)− (µ+ γ)I (4.13)

⇒ I
� ≤ βe

−µr
S̃
M
I(t− r)− (µ+ γ)I,

let f1(t, φ) = βe
−µr

S(t−r)φ(−r)−(µ+γ)φ(0) and f
2(t, φ) = βe

−µr
S̃
M
φ(−r)−(µ+γ)φ(0),

then f
2 satisfies the quasimonotone condition. (For a general incidence G(S, I, t) if G does

not satisfy the quasimonotone condition in I, then so long as it is bounded above by a
function which does, such as G(S, I, t) ≤ λ(t)SI in [17], we can still use the comparison
theorem.)

Suppose y
�(t) = f

2(t, yt), then by Theorem 16 we have that I(t) ≤ y(t) for all t ≥ t0. If
we can find conditions for y(t) → 0 then since I(t) ≥ 0 we have asymptotic stability of the
trivial solution I ≡ 0 of 4.13 as well.
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(vi) If possible, use I → 0 to find a minimum value of S� (using the same idea, that of an
exact solution to a comparison system) and show by squeeze theorem that S(t) approaches
the infection-free periodic solution as t → ∞. If there is no delay term in S

� we may
compare the systems using ODE theory. If there is a delay term (for example, through a
fixed immunity period after which individuals return to S) we cannot necessarily compare
the resulting DDEs.

If we combine the above models in Systems (4.7) and (4.2) then we get a pulse vaccination
delay model with general incidence:






S
� = µ (1− S)− g(I, t)S

E
� = g(I, t)S − g(I(t− r), t− r)e−µr

S(t− r)− µE

I
� = g(I(t− r), t− r)e−µr

S(t− r)− (µ+ γ + α)I

R
� = γI − µR

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

E(kτ) = E(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ

(4.14)

It is the intent of part of this thesis to study the long-term dynamics of this system; that is, we
want to combine results from Gao et. al. [27] for a SEIR delay epidemic model with the results
by d’Onofrio [17] for a non-delay model with general force of infection.

4.4 Total Population, N(t)

In many of the models described so far, if we let N(t) be the total population then we see
that N

�(t) ≡ 0, that is, N(t) ≡ N a constant. This result arises from the possibly unrealistic
assumptions that the birth rate and death rate are equal, that there are no disease deaths, and
that the birth rate is proportional to N (as opposed to, say, logistic growth) over the time frame
we are interested in. These assumptions will be discussed in more detail in Chapter 6.

While the assumption N(t) ≡ N (= 1) is extremely common in the literature, there are also
many publications dealing with time-varying total population.

Some publications which consider time-varying population N(t) include those by Cooke and
van den Driessche [12] and Gao et. al. [26] (as mentioned in Section 4.3.1); Cooke and van den
Driessche model births proportional to N(t) and use the standard incidence β SI

N
. Gao et. al. use

a constant birth rate and include disease-induced deaths, as do Wei and Chen in [76]. Hethcote
[38] and Luo et. al. [54] analyze models with delay during infectiousness, and Zhang and Teng
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add delays for the latent and immune periods [83]. Of the aforementioned papers, [26, 54, 76, 83]
consider pulse vaccination.
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Chapter 5

SEIR Model with Fixed Population

Size, Bilinear and General Incidence

In the following three chapters we present our results.

In this chapter we look for new results for models with pulse vaccination and time delay. We
apply the theorems from AMATH 851, with extensions to delay systems based on Driver [18].
We consider an epidemic model with general incidence rate as stated by d’Onofrio in [17], with
help from Gao et. al. [27] for the delay aspects.

In Chapter 6 we survey ways for the total population N(t) to vary over time, and their effects
on the applicability of Lemma 1 and the pulse vaccination procedure listed in Section 4.3.1.

In Chapter 7 we consider a piecewise-constant contact rate. We do so using switched systems,
following the lead of Liu and Stechlinski in [52], with the overall epidemic model switching between
subsystems in which the contact rate is constant at a particular value.

We want to find conditions for disease eradication and permanence in the delay model System
(4.14) with general incidence. First we look to strengthen the conditions that were found in [27]
on System (4.7), that is, (4.14) with the common incidence term g(I, t) = βI.

In this section we will continue with the constant population assumption; many of the results
carry over to a growing population, depending on the type of growth, but for simplicity we will
assume N is constant for now. In particular, we must assume that α = 0 in (4.14). If so then
without loss of generality we may assume N = 1, that is, that the compartments are modelling
fractions of the population. This assumption is the reason for the “µ · 1” term in the DE for S(t)
in models such as (4.14): the births are assumed proportional to the total population N = 1.
We note that since the compartments are fractions of N then we must have each compartment
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Fig. 5.1: Motivation for time-average threshold value R̄.

population in the interval [0, 1]; that is, in Systems (4.7) and (4.14) we need

(S,E, I, R) ∈ Ω4 := {(S,E, I, R) ∈ [0, 1]4 : S + E + I +R = 1}, (5.1)

in System (5.4) to follow we need (S, I, R) ∈ Ω3 := {(S, I, R) ∈ [0, 1]3 : S+I+R = 1}, and so on.
These sets Ω3,Ω4 are invariant for their respective models: the total population is constant and
equal to 1, so for each DE we can set the compartment population to 0 and see that its derivative
must be ≥ 0. This result is difficult to see for E�(t) in the delay model but from the definition of
E(t) in (4.8) we are assured that E(t) ≥ 0 always. Then the populations are all nonnegative and
sum to 1 so they must remain in their respective sets Ωn. The vaccination pulses merely transfer
populations without affecting the total population. They either do not affect the compartment
populations (as for E and I), shrink them by a factor between 0 and 1 (as for S), or, in the
case of R or V , they increase the population but not to a value greater than 1 since the other
compartments are still nonnegative.

In [27] Gao et.al. defined threshold numbers R∗ and R∗ = (1 − p)R∗. They found that the
disease is eradicated if R∗

< 1 and permanent if R∗ > 1, that is, R∗
>

1
1−p

[27]. In this section,

we want to fill the “gap” for 1 < R∗
<

1
1−p

(see Figure 5.1).

To do so we will again look, as in condition (4.3) (with q ≡ 1), at the time-average of S̃(t)
over one period, rather than its maximum or minimum. That is, we define

R̄ =
1

τ

�
τ

0

βe
−µr

µ+ γ
S̃(t)dt (5.2)

where
S̃(t) = 1− p

1− (1− p)e−µτ
e
−µ(t−kτ)

, t ∈ (kτ, (k + 1)τ ] (5.3)

is the solution to

S
� = µ(1− S), t �= kτ

S(kτ) = (1− p)S(kτ−)

as obtained from Lemma 1 in Section 4.3.1. We look to show that the disease will be endemic
for R̄ > 1 and eradicated for R̄ < 1.

Let Ω2 := {(S, I) ∈ R2 : S, I ≥ 0, S + I ≤ 1}, i.e. Ω2 is Ω4 with E and R suppressed (valid
but ignored). We define disease permanence rigorously:
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Definition 17. [27]. An epidemic model system is said to be permanent if there exists a compact
region Ω ∈ int(Ω2) such that every solution of the system with physically valid initial data will
eventually enter and remain in the region Ω.

In Section 5.1.1 we look at the eradication conditions of the disease, and in Section 5.1.2 we
look at permanence.

5.1 Eradication and Permanence without Delay

We consider the SIR model without delay:






S
� = µ (1− S)− g(I, t)S

I
� = g(I, t)S − (µ+ γ)I

R
� = γI − µR

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ

(5.4)

This model is equal to System (4.2) if q = 1.

5.1.1 Eradication without Delay: UAS of Disease-Free Solution

Our background theorems in Chapter 3 deal mostly with uniform asymptotic stability (UAS).
We know from d’Onofrio [17] that the trivial (disease-free) solution for I(t) in (5.4) is globally
asymptotically stable (GAS) so long as condition (4.3) is satisfied; this section strengthens the
result to uniform asymptotic stability, so we can later use it in Section 5.2 to apply the theorems
that extend results to delay systems.

Define R̄ to be the period-average of the ratio of the coefficients of the upper bound for I �(t),
that is, if I �(t) ≤ a(t)I(t − r) − b(t)I(t) for positive-valued functions a(t), b(t) (where r may be
0), define

R̄ :=
1

τ

�
τ

0

a(t)

b(t)
dt.

For (4.7) with delay and bilinear incidence, R̄ = 1
τ

�
τ

0
βe

−µr
S̃(t)

µ+γ
dt. For the general incidence model

such as (5.4) or (4.14) we use the bound g(I, t) ≤ λ(t)I(t) to get R̄ = 1
τ

�
τ

0
λ(t)e−µr

S̃(t)
µ+γ

dt (where
again r = 0 for the non-delay model, and where as in [17] we are assuming λ(t) to be τ -periodic).

Theorem 20. In the non-delay general incidence model, the disease is eradicated if R̄ < 1.
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Proof. We consider the general incidence model because the bilinear incidence is just the special
case g(I, t) ≡ βI.

As explained in the “General Procedure” given after Lemma 1 in Section 4.3.1, since S
� ≤

µ(1− S) we have S(t) ≤ x(t) where x is the solution to the ODE with equality. Including pulse
vaccination we get, by the global attractiveness of S̃(t) explained in Lemma 1, that x(t) < S̃(t)+�

eventually for any � > 0, and so S(t) < S̃(t) + � as well.

Then the GAS result comes from comparing the eventual DE for I �(t),

I
� = g(I, t)S − (µ+ γ)I

≤
�
λ(t)(S̃(t) + �)− (µ+ γ)

�
I

to a similar system with equality

x
� =

�
λ(t)(S̃(t) + �)− (µ+ γ)

�
x

=: a(t)x, (5.5)

where x(t0) = I(t0) =: x0. Thus we have that there exists a δ independent of t0 such that
�x0� < δ ⇒ limt→∞ x(t) = 0 (in fact, global asymptotic stability gives that δ is arbitrary). We
then need to confirm that the other condition of uniform asymptotic stability is met; namely, for
any σ > 0, there exists a T = T (σ) independent of t0 such that �x(t)� < σ for all t ≥ t0 + T .

From Equation (5.5) we get

x
�(t)− a(t)x(t) = 0

x
�(t)− d

dt

��
t

t0

a(s)ds

�
x(t) = 0

d

dt

�
e
−

� t
t0

a(s)ds
x(t)

�
= 0

⇒ e
−

� t
t0

a(s)ds
x(t)− x(t0) = 0 ⇒ x(t) = x0e

� t
t0

a(s)ds
.

If we choose � small enough then from R̄ < 1 we know that

1

τ

�
t0+τ

t0

[λ(t)S̃(t)− (µ+ γ)]dt < 0 ⇒ 1

τ

�
t0+τ

t0

[λ(t)S̃(t)− (µ+ γ)]dt < −2�α

where α := 1
τ

�
t0+τ

t0
λ(t)dt > 0, and so

1

τ

�
t0+τ

t0

a(t)dt =
1

τ

�
t0+τ

t0

[λ(t)(S̃(t) + �)− (µ+ γ)]dt < −�α.
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Thus

x(t0 + τ) < x0e
−�ατ

x(t0 + 2τ) = x(t0 + τ)e
� t0+2τ
t0+τ a(t)dt

<
�
x0e

−�ατ
�
e
−�ατ

. . .

x(t0 + kτ) < x0e
−k�ατ (5.6)

for any integer k.

So we get that x(t) is following a negative exponential pattern at the pulse times kτ . We need
to show that between these times x(t) is still bounded above by an appropriate exponential. We
note that for any t ∈ [kτ, (k + 1)τ),

x(t) = x(kτ) +

�
t

kτ

x
�(s)ds = x(kτ) +

�
t

kτ

a(s)x(s)ds

≤ x(kτ) +

�
t

kτ

|a(s)|x(s)ds

which implies x(t) ≤ x(kτ)e
� t
kτ |a(s)|ds by Gronwall’s inequality. Define aM = max0≤t≤τ |a(t)|, then

again for t ∈ [kτ, (k + 1)τ) we have

x(t) ≤ x(kτ)e
� (k+1)τ
kτ a

M
ds = x(kτ)ea

M
τ

Thus
x(t) ≤ x0e

−k�ατ
e
a
M

τ = x0e
−τ(k�α−a

M ) (5.7)

As k → ∞ the exponent becomes negative. So if we want x(t) < σ, we simply need

x0e
−τ(k�α−a

M )
< σ

⇒ −τ(k�α− a
M ) < ln

�
σ

x0

�

⇒ k >
1

τ�α
ln
�
x0
σ

�
+ a

M

�α
.

(Note we assume x0 > σ else the condition is trivially satisfied.) Since k ∈ Z we take the largest
integer greater than this value; then we define

T = τ

�
1

τ�α
ln
�
x0

σ

�
+

a
M

�α

�

and get that x(t) < σ for t ≥ t0 + T . Therefore the trivial solution of the linear comparison
equation x

�(t) = a(t)x(t) is uniformly asymptotically stable. Since 0 ≤ I(t) ≤ x(t) we get that
I(t) ≡ 0 in (5.4) is UAS as well, so the disease can be eradicated.
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Remark. We followed through with the calculation for T (σ) in order to be explicit, however, upon
reaching (5.7) we can directly apply Theorem 14 to obtain that the trivial solution is uniformly

asymptotically stable. Since x(t) ≤ x0e
−k�ατ

e
a
M

τ ≤ x0e
−�α(t−τ)

e
a
M

τ for t ∈ [kτ, (k + 1)τ) (since

t− τ < kτ), then the theorem is satisfied with M := e
(aM+�α)τ and η := �α = �

1
τ

�
t0+τ

t0
λ(t)dt.

5.1.2 Permanence without Delay

Bilinear Incidence

In the previous section we were able to show that if R̄ < 1 the disease-free equilibrium is UAS,
that is, the disease is eradicated in the general incidence non-delay model; in this subsection we
consider permanence of the disease in the bilinear incidence SIR (non-delay) model. That is, we
consider system (4.7) in the limit as r → 0:






S
� = µ(1− S)− βIS

I
� = βIS − (µ+ γ + α)I

R
� = γI − µR.

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ

(5.8)

Similar to the method used by Gao et. al. [27], first we define a special value Ī based on R̄:

Ī :=
µ

β

�
R̄ − 1

�
(5.9)

and notice that if R̄ > 1 then Ī > 0, and also

Ī = µ

β

�
R̄ − 1

�
= µ

β

�
β

µ+γ

1
τ

�
τ

0 S̃(t)dt− 1
�

<
µ

β

�
β

µ+γ

1
τ

�
τ

0 S̃(t)dt
�

≤ µ

β

�
β

µ+γ

1
τ

�
τ

0 S̃(t)dt
�

= µ

µ+γ
< 1.

(recall S̃ < 1). So we have defined this value µ

β

�
R̄ − 1

�
and named it after the compartment I

for reasons evident soon; however this naming is reasonable because we can see that 0 < Ī < 1
so it is a valid compartment population.

In [27] the authors used a condition on the minimum value of S̃(t) to determine conditions
for permanence. Here we cannot exactly follow their method (which looks for a contradiction at
a local minimum) because we are only using a time-average over one pulse period. Instead we
need to define a second threshold number R̄∗:
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Claim 4. Define S̄ as the periodic solution to the system

S
�(t) = µ− (µ+ βĪ)S, t �= kτ (5.10)

S(kτ) = (1− p)S(kτ−)

Then if R̄ > 1, we have

R̄∗ :=
1

τ

�
τ

0

β

µ+ γ
S̄(t)dt > 1. (5.11)

Proof. By integrating between pulses we can see that S̄ is defined similarly to S̃, and we get the
following values for the thresholds R̄ and R̄∗:

R̄ =
β

µ+ γ
· 1
τ

�
τ

0
S̃(t)dt

=
β

µ+ γ
· 1
τ

�
τ

0

�
1− p

1− (1− p)e−µτ
e
−µ(t−kτ)

�
dt

=
β

µ+ γ
·
�
1− p

1− (1− p)e−µτ
· 1− e

−µτ

µτ

�

R̄∗ =
β

µ+ γ
· 1
τ

�
τ

0
S̄(t)dt

=
β

µ+ γ
· 1
τ

�
τ

0

1

R̄

�
1− p

1− (1− p)e−µR̄τ
e
−µR̄(t−kτ)

�
dt

=
β

µ+ γ
· 1

R̄

�
1− p

1− (1− p)e−µR̄τ
· 1− e

−µR̄τ

µR̄τ

�

So we have

R̄∗ =
1

R̄

�
R̄+

β

µ+ γ

�
p

1− (1− p)e−µτ
· 1− e

−µτ

µτ
− p

1− (1− p)e−µR̄τ
· 1− e

−µR̄τ

µR̄τ

��

= 1 +
β

µ+ γ
· 1

R̄

�
p

1− (1− p)e−µτ
· 1− e

−µτ

µτ
− p

1− (1− p)e−µR̄τ
· 1− e

−µR̄τ

µR̄τ

�

> 1 +
β

µ+ γ
· 1

R̄
· p

1− (1− p)e−µτ
· 1

µτ

�
1− e

−µτ − 1− e
−µR̄τ

R̄

�

R̄∗
> 1 if the quantity in brackets is positive. Define

f(R̄) = R̄(1− e
−µτ ), g(R̄) = 1− e

−µR̄τ
.
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Then f(1) = g(1) and

df

dR̄
= 1− e

−µτ
> µτe

−µτ
> µτe

−µR̄τ =
dg

dR̄

for R̄ > 1 and for all µτ > 0. So R̄(1− e
−µτ ) = f(R̄) > g(R̄) = 1− e

−µR̄τ for R̄ > 1 and so the
quantity in brackets above is strictly positive, and therefore R̄ > 1 ⇒ R̄∗

> 1.

Theorem 21. If R̄ > 1 in System (5.8) then the disease is permanent.

Proof. Given R̄ > 1, we assume that I(t) stays “small” for all large t and look for a contradiction.
Specifically, following [27], assume there exists t1 > 0 such that I(t) < Ī for all t > t1 (this
assumption includes the case of eradication, where limt→∞ I(t) = 0). Then we have S

�
> µ −

(µ + βĪ)S for t > t1. Comparing to the system (5.10) we see that for any � > 0, there exists
t2 > t1 such that S(t) > S̄(t)− � for all t > t2. (So far this procedure is similar to the “General
procedure” given in Section 4.3.1 but with a lower bound for S rather than an upper bound.)
Choose � small enough so that R̄∗

> 1 + �
β

µ+γ
.Then in this non-delay case,

I
�(t) = (µ+ γ)

�
β

µ+γ
S(t)− 1

�
I(t)

> (µ+ γ)
�

β

µ+γ

�
S̄(t)− �

�
− 1

�
I(t) for t > t2

⇒ d

dt

�
I(t)e−(µ+γ)

� t
0

β
µ+γ (S̄(s)−�)−1ds

�
> 0

Integrating from any t
∗
> t2 to t

∗ + τ ,

I(t∗ + τ)e−(µ+γ)
� t∗+τ
0

β
µ+γ (S̄(s)−�)−1ds − I(t∗)e−(µ+γ)

� t∗
0

β
µ+γ (S̄(s)−�)−1ds

> 0

I(t∗ + τ)e−(µ+γ)
� t∗+τ
0

β
µ+γ (S̄(s)−�)−1ds

> I(t∗)e−(µ+γ)
� t∗
0

β
µ+γ (S̄(s)−�)−1ds

I(t∗ + τ) > I(t∗)e(µ+γ)
� t∗+τ
t∗

β
µ+γ (S̄(s)−�)−1ds

= I(t∗)e
(µ+γ)

�
R̄∗−(1+�

β
µ+γ )

�
τ

Since the exponent is a strictly positive constant (for small enough �, that is, for t large enough),

we get I(t∗ + τ) > I(t∗) for any t
∗
> t2. In particular, define c := (µ + γ)

�
R̄∗ − (1 + �

β

µ+γ
)
�
τ

and we get I(t∗ + kτ) > I(t∗)eck → ∞ as k → ∞. This result contradicts the restriction (in
this constant-population model) that I(t) ≤ 1 for all t. Therefore we conclude that I(t) is not
less than Ī for all large t. If I(t) ≥ Ī for all large t, then the permanence condition is satisfied
automatically. The only other option is if I(t) oscillates about Ī indefinitely.

In the oscillatory case, suppose now that I(t3) = Ī for some t3 > t2 and that σ is the smallest
positive constant such that I(t3 + σ) = Ī and I(t) �= Ī for t ∈ (t3, t3 + σ).
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Fig. 5.2: Results on threshold values for bilinear incidence non-delay system.

• If σ < τ then since I
�(t) > −(µ + γ)I(t) we have I(t) > I(t3)e−(µ+γ)σ = Īe

−(µ+γ)σ
>

Īe
−(µ+γ)τ

> 0 for t ∈ (t3, t3 + σ).

• If σ ≥ τ then let σ = aτ + b where a, b ∈ Z, a > 0 and b = σ mod τ . We know from
the above for t ∈ (t3, t3 + aτ ] that I(t) > I(t3)eca. Then for t ∈ (t3 + aτ, t3 + σ) we have
I(t) > I(t3 + aτ)e−(µ+γ)b

> Īe
ca
e
−(µ+γ)τ

> Īe
−(µ+γ)τ .

Since t3 > t2 was arbitrary then this result is true between any two times at which I(t) = Ī.
Therefore we have shown that if R̄ > 1 then I(t) > Īe

−(µ+γ)τ
> 0 for all t > t2. Therefore the

disease is permanent.

For R̄ close to 1, Ī and correspondingly Īe
−(µ+γ)τ are very small. The important point,

however, is that this bound is strictly positive so the disease is permanent. Suppose Īe
−(µ+γ)τ ≈

0.0002, in a population of one million individuals (and we need large populations to assume the
model is continuous) this bound still translates into at least 200 infected at any given time.

Figure 5.2 summarizes the results so far for threshold values for System (5.8) (with common
incidence term βSI). We have found that the time average R̄ = 1 is the crucial threshold above
which the disease is permanent and below which it is eradicated.

Now we look to extend our results to the general incidence delay model.

General Incidence

In the previous section we were able to show that if R̄ > 1 the disease is permanent in the
bilinear incidence non-delay model; now we consider general incidence, that is, the system (4.14)
in the limit as r → 0:






S
� = µ(1− S)− g(I, t)S

I
� = g(I, t)S − (µ+ γ + α)I

R
� = γI − µR.

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ
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First we define the time-average λ̄ := 1
τ

�
τ

0 λ(t)dt. Then we again define Ī based on R̄:

Ī(t) =
µ

λ(t)

�
R̄ − 1

�
. (5.12)

This time we have that Ī is a function of t, but we notice that Ī from Equation (5.9) in the
bilinear incidence subsection is a special case of the above, with λ(t) ≡ β.

Again we have that if R̄ > 1 then Ī(t) > 0 for all t. The main issue with general incidence
arises from our constant-population model; as in the previous subsection we will look to show
that I(t) does not stay below Ī(t) forever beyond some threshold time, but if we can have Ī(t) ≥ 1
then we will find a contradiction. Such a case would arise if for some t we had λ(t) ≤ µ(R̄ − 1).
As such we impose the restriction

λ(t) > µ(R̄ − 1) (5.13)

for all t ∈ [0, τ ], that is, λ(t) cannot oscillate with too large an amplitude. (λ(t) is just part of
a bound for ∂g(0, t)/∂I, however, so this does not directly restrict the amplitude of oscillation
on g(I, t).) If this condition is satisfied we will have that Ī(t) remains a valid compartment
population. We note however that just because Ī(t) > 1 for some t does not mean that I(t) will
be; we could have the case of oscillation about Ī(t), and so could have I(t) remain less than one
even if Ī(t) does not always.

Extending the bilinear incidence result to the time-varying incidence, we get that R̄ > 1 ⇒
R̄∗

> 1:

Claim 5. Define S̄ as the periodic solution to the system

S
�(t) = µ− (µ+ λ(t)Ī)S = µ− µR̄S, t �= kτ (5.14)

S(kτ) = (1− p)S(kτ−)

Then if R̄ > 1, we have

R̄∗ :=
1

τ

�
τ

0

λ(t)

µ+ γ
S̄(t)dt > 1. (5.15)

Proof. Although the incidence varies with time, the DE for S̄(t) has constant coefficients so we
can easily integrate between pulses as before. We get the following values for the thresholds R̄
and R̄∗:

R̄ = 1
µ+γ

· 1
τ

�
τ

0 λ(t)S̃(t)dt = 1
µ+γ

· 1
τ

�
τ

0 λ(t)
�
1− p

1−(1−p)e−µτ e
−µ(t−kτ)

�
dt

R̄∗ = 1
µ+γ

· 1
τ

�
τ

0 λ(t)S̄(t)dt = 1
µ+γ

· 1
τ

�
τ

0 λ(t) 1
R̄

�
1− p

1−(1−p)e−µR̄τ e
−µR̄(t−kτ)

�
dt
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So we have

R̄∗ =
1

R̄

�
R̄+

1

µ+ γ
· 1
τ

�
τ

0
λ(t)

�
p

1− (1− p)e−µτ
e
−µt − p

1− (1− p)e−µR̄τ
e
−µR̄t

�
dt

�

> 1 +
1

R̄
· 1

µ+ γ
· p

1− (1− p)e−µτ
· 1
τ

�
τ

0
λ(t)

�
e
−µt − e

−µR̄t

�
dt

Since R̄ > 1, e−µt − e
−µR̄t

> 0, and therefore R̄∗
> 1.

Theorem 22. If R̄ > 1 in System (5.4) then the disease is permanent.

Remark. Theorem 21 is the special case of Theorem 22 with g(I, t) = λ(t)I and λ(t) ≡ β. We
presented it first so the initial analysis was simpler.

Proof. Proceeding as in the previous theorem, given R̄ > 1, we assume that I(t) stays “small”
for all large t and look for a contradiction. Again following [27], assume there exists t1 > 0 such
that I(t) < Ī for all t > t1. Then S

� = µ−µS−g(I, t)S > µ− (µ+λ(t)I)S > µ− (µ+λ(t)Ī)S for
t > t1. Comparing to the system (5.14) we see that for any � > 0, there exists t2 > t1 such that

S(t) > S̄(t)− � for all t > t2. Choose � small enough so that R̄∗
> 1+ �

λ̄

µ+γ
. With β replaced by

λ(t) we follow the exact same derivation as for the bilinear incidence to get

I(t∗ + τ) > I(t∗)e(µ+γ)
� t∗+τ
t∗

λ(t)
µ+γ (S̄(s)−�)−1 ds

= I(t∗)e
(µ+γ)

�
R̄∗−

�
1+�

λ̄
µ+γ

��
τ

Since the exponent is a strictly positive constant (for small enough �, that is, for t large

enough), we get I(t∗+τ) > I(t∗) for any t∗ > t2. In particular, define c := (µ+γ)
�
R̄∗ −

�
1 + �

λ̄

µ+γ

��
τ

and we get I(t∗ + kτ) > I(t∗)eck → ∞ as k → ∞. This result contradicts the restriction (in this
constant-population model) that I(t) ≤ 1 for all t. Therefore we conclude that I(t) is not less
than Ī(t) for all large t.

Again, I(t) ≥ Ī(t) for all large t, then the permanence condition is satisfied automatically.
Otherwise, in the oscillatory case, suppose now that I(t3) = Ī(t3) for some t3 > t2 and that σ is
the smallest positive constant such that I(t3 + σ) = Ī(t3 + σ) and I(t) �= Ī(t) for t ∈ (t3, t3 + σ).

• If σ < τ then since I
�(t) > −(µ + γ)I(t) we have I(t) > I(t3)e−(µ+γ)σ = Ī(t3)e−(µ+γ)σ

>

Ī(t3)e−(µ+γ)τ
> 0 for t ∈ (t3, t3 + σ).

• If σ ≥ τ then let σ = aτ + b where a, b ∈ Z, a > 0 and b = σ mod τ . We know from the
above for t ∈ (t3, t3 + aτ ] that I(t) > I(t3)eca = Ī(t3)eca. Then for t ∈ (t3 + aτ, t3 + σ) we
have I(t) > I(t3 + aτ)e−(µ+γ)b

> Ī(t3)ecae−(µ+γ)τ
> Ī(t3)e−(µ+γ)τ .

76



Since t3 > t2 was arbitrary then this result is true between any two times at which I(t) = Ī(t).
Recall Ī(t) is periodic and known so Ī(t3) is a known, fixed value. Therefore we have shown that
if R̄ > 1 then I(t) > Ī(t)e−(µ+γ)τ

> 0 for all t > t2. Therefore the disease is permanent.

Thus we see that Figure 5.2 also summarizes the results for threshold values for System (5.4)
(with general incidence term g(I, t)S). We have found that the time average R̄ = 1 (defined as
the period-average of the ratio of the coefficients of I �(t), whatever the incidence) is the crucial
threshold above which the disease is permanent and below which it is eradicated.

In the next subsection we give some simulations. Then in Section 5.2 we look to extend our
results to the bilinear incidence delay model (4.7) and, if possible, the general incidence delay
model (4.14).

5.1.3 Simulations

For our simulations we use the Matlab DDE solver dde23, explained by Shampine and Thompson
in [67], even for ODE simulations (we simply set the delay to zero). For initial conditions we set
R(0) = 0 and since we consider a normalized total population, we choose S(0) = 0.5 = I(0).

We try to use physically realistic values for the parameters. The values consistently used are
as listed in Table 5.1. The time unit is one year.

Parameters
µ

1
70

τ 1
p 0.2
γ 2

Table 5.1: Parameters held constant during simulations.

µ = 1/70 corresponds to an average life expectancy of 70 years. The pulse vaccination
campaign is assumed to run once every year, with a conservative estimate of only 20% vaccination
coverage.

Without delay, by solving System (5.4) with bilinear incidence g(I, t) = βI for varying values
of γ, we found that a longer recovery period 1

γ
led to a higher infection peak population and

longer-lasting epidemic. The results are shown in Figure 5.3. In order to increase the likelihood
of a severe epidemic (with all other factors held constant), then, we set γ = 2 (a recovery period of
6 months) in subsequent simulations. For many diseases of interest (e.g. influenza, measles) this
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Fig. 5.3: Infective population in bilinear incidence SIR model with varying recovery period 1/γ.

assumed recovery period is far longer than the real value, but we want to increase the visibility
of the epidemic in these simulations.

Simulation results with varying values of R̄ are displayed in Figures 5.4 and 5.5, confirming
the theoretical results for the bilinear incidence model without delay.

5.1.4 Model Adaptations: Vaccine Waning

In the event that the vaccine wanes, that is, the immunity conferred by vaccination is not per-
manent, then we will have the new model

S
� =µ(1− θ)− µS − g(I, t)S + δV (5.16)

. . .

V
� =µθ − (µ+ δ)V

The addition of vaccine waning forces the model to be more cyclical (before, births could cause
new susceptible individuals but at a very slow rate relative to the dynamics of the epidemic),
but it does not directly affect the differential equation for I(t). Thus if we can find out how the
waning will affect the disease-free equilibrium solution S̃(t) then we may be able to proceed as
before from there.

The model (4.1) from [17], as with many epidemic models in the literature, expects a constant
population N(t) ≡ N which is normalized to N = 1, that is, the compartments are fractions of
the population. Thus we notice

V = 1− S − I −R

≤ 1− S
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Fig. 5.4: Infective population for R̄ linearly spaced
between 0.90 and 1.10.

Fig. 5.5: I(t) for R̄ linearly spaced between 0.99 and
1.01. Note difference in scale.

⇒ S
� ≤ µ(1− θ)− µS − g(I, t)S + δ(1− S)

≤ µ(1− θ)− µS + δ(1− S)

= [µ(1− θ) + δ]− [µ+ δ]S.

We can use the pulse vaccination lemma to get

S̃δ(t) =
µ(1− θ) + δ

µ+ δ
+

�
(µ(1− θ) + δ)(1− p)(1− e

−(µ+δ)τ

(µ+ δ)(1− (1− p)e−(µ+δ)τ )
− µ(1− θ) + δ

µ+ δ
e
−(µ+δ)(t−kτ)

�

=
µ(1− θ) + δ

µ+ δ

�
1 +

�
(1− p)(1− e

−(µ+δ)τ )

(1− (1− p)e−(µ+δ)τ )
− 1

�
e
−(µ+δ)(t−kτ)

�

=
µ(1− θ) + δ

µ+ δ

�
1− p

e
−(µ+δ)(t−kτ)

(1− (1− p)e−(µ+δ)τ )

�
.

Then we note that for any x > 0

µ+ δ > µ

e
−(µ+δ)x

< e
−µx

1− (1− p)e−(µ+δ)x
> 1− (1− p)e−µx

.

So the numerator of the second term of S̃δ is less than that of S̃, while the denominator is larger.
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So the entire fraction in the second term is smaller for S̃δ and we get that

�
1− p

e
−(µ+δ)(t−kτ)

(1− (1− p)e−(µ+δ)τ )

�
>

�
1− p

e
−µ(t−kτ)

(1− (1− p)e−µτ )

�
. (5.17)

Then we consider the coefficients of S̃δ (µ(1−θ)+δ

µ+δ
) and S̃ (µ(1−θ)

µ
):

µ(1− θ)

µ
= 1− θ, while

µ(1− θ) + δ

µ+ δ
=

µ+ δ − µθ

µ+ δ
= 1− µ

µ+ δ
θ > 1− θ

From consideration of both factors of S̃δ (the coefficient and the brackets) we get S̃δ > S̃. This
result is as expected because physically if the vaccine could wear off, more susceptibles would
become available leading to a more difficult process of eradicating the disease.

However we may now use the same process as in [17] to get the sufficient condition for
eradication

1

τ

�
τ

0
λ(t)S̃δ(t)dt ≤ µ+ r. (5.18)

That is, we now have

I
� = g(I, t)S − (µ+ r)I

≤ [λS − (µ+ r)]I

≤ [λ(S̃δ + �)− (µ+ r)]I eventually,

so if the above condition (5.18) on the period-average is met the disease will be eradicated as
t → ∞.
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5.2 Eradication and Permanence with Delay

5.2.1 Eradication in Delay Model with small R

We consider (4.14) without disease mortality (α = 0), reproduced here:






S
� = µ (1− S)− g(I, t)S

E
� = g(I, t)S − g( I(t− r), t− r )e−µr

S(t− r)− µE

I
� = g( I(t− r), t− r )e−µr

S(t− r)− (µ+ γ)I

R
� = γI − µR

t �= kτ, k ∈ Z






S(kτ) = (1− p)S(kτ−)

E(kτ) = E(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ) + pS(kτ−)

t = kτ

(5.19)

This model is a combination of the delay model in [27] and the general incidence model in [17].
As in Section 4.3.1, the e−µr factor arises from natural deaths over the course of the latent period.
In this general case we have that

E(t) =

�
t

t−r

g(I(s), s)e−µ(t−s)
S(s)ds.

We analyze the model based on the methods described in Section 4.3.1. The delay does not
affect S(t) directly, so we can say S

� ≤ µ(1− S) and look at an ODE comparison system

x
� = µ(1− x), t �= kτ

x(t) = (1− p)x(t−), t = kτ

Using the procedure outlined after Lemma 1 of Section 4.3.1 we get that for any � > 0, S(t) ≤
S̃(t) + � eventually where S̃(t) is the periodic solution defined by Equation (5.3). Then

I
� = g(I(t− r), t− r)e−µr

S(t− r)− (µ+ r + α)I

≤ [λ(t− r)e−µr(S̃(t− r) + �)]I(t− r)− [µ+ γ]I(t)

Because the delay term has positive coefficient we can use a comparison system with equality in
the derivative:

y
� = [λ(t− r)e−µr(S̃(t− r) + �)] · y(t− r)− [µ+ γ] · y(t) (5.20)
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and get that if I(t) = y(t) for t ∈ [−r, 0], then I(t) ≤ y(t) for all t ≥ 0. We define

R(t) =
λ(t)e−µr

S̃(t)

µ+ γ
. (5.21)

The question then is about the long-term behaviour of y(t). We can use the Razumikhin
approach of Theorem 13 by defining

V (t, yt) : = y
2
t (0) + (µ+ γ)

� 0

−r

y
2
t (s)ds (5.22)

= y
2(t) + (µ+ γ)

�
t

t−r

y
2(s)ds (5.23)

where yt(σ) = y(t+ σ), σ ∈ [−r, 0]. Theorem 13 is reprinted here:

Theorem 23. Let w, W , and W1 be continuous nondecreasing functions on [0, H) which are
zero at 0 and positive on (0, H). Let �F (t, ψ)� ≤ B for some constant B > 0 for all (t, ψ) ∈
(α,∞)× CD. If there exists a functional V on (α,∞)× CD such that

1. V (t, ψ) ≥ w(�ψ(0)�),

2. V (t, ψ) ≤ W (�ψ�r), and

3. whenever (t0, φ) ∈ (α,∞)× CD and x = x(.; tt, φ) on [t0 − r, β1) one has
d

dt
V (t, xt) ≤ −W1(�x(t)�) for t0 ≤ t < β1,

then the trivial solution of x�(t) = F (t, xt) is uniformly asymptotically stable.

Here CD = C([−r, 0], D) where D is an open set in R (since y is a scalar). We are looking at
Equation (5.20) so F (t, ψ) = [λ(t−r)e−µr(S̃(t−r)+�)]ψ(−r)−[µ+γ]ψ(0). Note λ(t) and S̃(t) are
periodic and bounded. Then, while we could theoretically have D = R, if we have D = (−H,H)

we have �f(t, ψ)� ≤ H

�
maxt λ(t)(maxt S̃(t) + �) + [µ+ γ]

�
=: B.

Let a(u) = u
2, then a is a class-K function for u ≥ 0 and V (t, yt) ≥ y

2(t) = y
2
t (0) =

a(yt(0)) ⇒ the first condition of “positive definiteness” is satisfied. The difference here is that
we are considering V as a functional and not a function, but the condition is still based on y(t),
that is, on the current time. The second condition is easily met as well:

V (t, yt) : = y
2(t) + (µ+ γ)

�
t

t−r

y
2(s)ds

≤ �yt�2r + (µ+ γ)

�
t

t−r

�yt�2rds

= �yt�2r(1 + (µ+ γ)r)
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Then for the third condition, we take the derivative along solutions y of (5.20):

dV

dt
= 2y(t)y�(t) + (µ+ γ)

�
y
2(t)− y

2(t− r)
�

= 2y(t)
��

λ(t− r)e−µr(S̃(t− r) + �)
�
y(t− r)− [µ+ γ]y(t)

�
+ (µ+ γ)

�
y
2(t)− y

2(t− r)
�

= 2y(t)
�
λ(t− r)e−µr(S̃(t− r) + �)

�
y(t− r)− (µ+ γ)

�
y
2(t) + y

2(t− r)
�

≤ 2|y(t)y(t− r)|
�
λ(t− r)e−µr(S̃(t− r) + �)

�
− (µ+ γ)

�
y
2(t) + y

2(t− r)
�

≤
�
y
2(t) + y

2(t− r)
� �

λ(t− r)e−µr(S̃(t− r) + �)
�
− (µ+ γ)

�
y
2(t) + y

2(t− r)
�

=
�
y
2(t) + y

2(t− r)
� �

λ(t− r)e−µr(S̃(t− r) + �)− (µ+ γ)
�

≤ y
2(t)

�
λ(t− r)e−µr(S̃(t− r) + �)− (µ+ γ)

�

For the simple functional we’re using, we can just drop y
2(t− r) at the end of dV/dt, so long as

λ(t)e−µr
S̃(t) − (µ + γ) < 0 for all t. That is, so long as R(t) < 1 for all t, we recover the same

threshold condition as usual; although our functional depended on yt, that dependence was simple
enough that the derivative dependence could be reduced to a dependence on y at the current time
level, y(t). (Note that because of the strict inequality, we will still have λ(t)e−µr(S̃(t)+ �)− (µ+
γ) < 0 if � is small enough.)

In this theorem we are so far only able to look at a condition based on the maximum value
of the functions λ(t) and S̃(t). That is, we needed R(t) < 1 for all t. Is there some result such as
in Section 5.1 we can find based on if, say, the average value of R is less than 1? This question
will be addressed in the next subsection.

5.2.2 Eradication with Delay

We again consider model (5.19).The delay does not affect S�(t) directly, so we proceed as before
to get that for any � > 0, S(t) ≤ S̃(t) + � eventually where S̃(t) is as in Equation (5.3). Then

I
� = g(I(t− r), t− r)e−µr

S(t− r)− (µ+ r + α)I

≤ [λ(t− r)e−µr(S̃(t− r) + �)]I(t− r)− [µ+ γ]I(t)

We would like to use a Razumikhin-style approach by defining a positive definite, decrescent
functional V satisfying the conditions of Theorem 13. In the process of choosing one, however,
we instead find a different useful functional: define

Ṽ (t, It) := I(t) +

�
t

t−r

g(I, s)(S̃(s) + �)e−µr
ds, (5.24)

83



Then we would have that Ṽ (t, It) ≥ I(t) = �It(0)� and Ṽ (t, It) ≤ �It�r
�
1 +

�
t

t−r
λ(s)(S̃(s) + �)e−µ(t−s)

ds

�
,

satisfying the first two conditions of Theorem 13. Depending on λ(t), though, the third condi-
tion is not immediately apparent. Even with bilinear incidence we only get V

� ≤ −w1(I(t)) if
βe

−µr
S̃(t) < µ+ γ for all t ∈ [0, τ ].

Instead we decide to look at bounds on the delay. Because the delay term has positive
coefficient we again use the comparison system (5.20) with equality in the derivative:

y
� = [λ(t− r)e−µr(S̃(t− r) + �)] · y(t− r)− [µ+ γ] · y(t) (5.25)

and get that if I(t) = y(t) for t ∈ [−r, 0], then I(t) ≤ y(t) for all t ≥ 0.

We can apply the theorems of Section 3.2.3 to the periodic delay system (5.20) (used as a
comparison system for I �(t)) as follows. We use the same idea as in Example 34-3 of [18]. Rewrite
Equation (5.20) as

y
�(t) = λ(t− r)e−µr(S̃(t− r) + �) · y(t− r)− (µ+ γ) · y(t)

= [λ(t− r)e−µr(S̃(t− r) + �)− (µ+ γ)] · y(t) + λ(t− r)e−µr(S̃(t− r) + �) · [y(t− r)− y(t)]

=: a(t)y(t) + h(t, yt)

Despite the shift in t by −r, since both λ(t) and S̃(t) are known we define the coefficient a(t) of
the y(t) term as a function of the current time t only. We are interested in solutions of the linear
part of (5.20),

x
�(t) = a(t)x(t) =

�
λ(t− r)e−µr(S̃(t− r) + �)− (µ+ γ)

�
x(t). (5.26)

(Note that a(t) would generally be a matrix-valued function, but here in our scalar equation we
have a : R �→ R.)

Since shifting λ(t) and S̃(t) does not affect their time-average over a pulse period τ , from
Section 5.1.1 we know that if R̄ < 1, then the trivial solution of (5.26) is UAS. We now want to
apply Theorem 15 to the DE for y(t).

Eradication under Small Delay

For condition (i) of Theorem 15, we notice

�f(t, yt)− f(t, ỹt)� = � λ(t− r)e−µr(S̃(t− r) + �)[y(t− r)− ỹ(t− r)] − (µ+ γ)[y(t)− ỹ(t)] �
≤ λ(t− r)e−µr(S̃(t− r) + �) · �y(t− r)− ỹ(t− r)� + (µ+ γ) · �y(t)− ỹ(t)�
≤

�
λ(t− r)e−µr(S̃(t− r) + �) + (µ+ γ)

�
�yt − ỹt�r
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so if we take
K = λ

M
e
−µr(S̃M + �) + (µ+ γ)

where λ
M := maxt∈[0,τ ] λ(t) (and recall S̃M is defined similarly), then the global Lipschitz condi-

tion is satisfied.

For condition (ii), notice that �y(t − r) − y(t)� ≤ max−r≤s≤0�y�(t)�r = �y�t�rr. So for
h(t, yt) = λ(t− r)e−µr(S̃(t− r) + �)[y(t− r)− y(t)] we have

�h(t, yt)� ≤ λ(t− r)e−µr(S̃(t− r) + �)�y�t�rr

Define
N := rλ

M
e
−µr(S̃M + �)K,

then we have

�h(t, yt)� ≤ rλ(t− r)e−µr(S̃(t− r) + �)�y�t�r
≤ rλ

M
e
−µr(S̃M + �)�y�t�r

= N
�y�t�r
K

.

Condition (ii) is then satisfied so long as

rλ
M
e
−µr(S̃M + �)K = N <

η

M

⇒ r λ
M
e
−µr(S̃M + �)

�
λ
M
e
−µr(S̃M + �) + (µ+ γ)

�
< �αe

−τ(aM+�α) (5.27)

where α := 1
τ

�
t0+τ

t0
λ(t)dt, aM = maxt∈[0,τ ]|λ(t)(S̃(t) + �)− (µ+ γ)|, and η and M were obtained

in Section 5.1.1. We can choose � to be arbitrarily small. Assuming we can satisfy this inequality
then for small enough delay the periodic delay system is also uniformly asymptotically stable.

Note that in (5.27) we have returned to a condition on the maximum of the functions λ(t)
and S̃(t), but the weaker condition on the time-average of these functions was useable for the
asymptotic stability of the linear part.

From earlier we have that M := e
(aM+�α)τ and η := �α = �

1
τ

�
t0+τ

t0
λ(t)dt. The condition then

becomes

r <
e
−(aM+�α)τ

λMe−µr(S̃M + �)
·

�
1
τ

�
t0+τ

t0
λ(t)dt

λMe−µr(S̃M + �) + (µ+ γ)

where � > 0 is fixed but arbitrary (we could and maybe should choose it as large as we like).

Simulation results for bilinear incidence agree with the theoretical work in this section, even
for relatively large delay. Figure 5.6 displays infective populations with R̄ = 0.90 over a short
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Fig. 5.6: Infective population for varying r with R̄ =
0.90.

Fig. 5.7: Smaller scale of Figure 5.6 with t over 100
years.

time (6 years) for varying delays; despite the coarse time scale, we see that the infections all
appear to die out. Figure 5.7 extends these results to 100 years with a much smaller y-axis scale.
We see that even to 10−5 the infectives appear to be dying out, although longer delay does appear
to defer the eradication.

Comparison to Model without Pulse Vaccination

If there was no pulse vaccination (PV) in System (4.7) then the threshold condition for eradication

would reduce to 1 > R0 := βe
−µr

µ+γ
. Comparing this condition to R̄ < 1 and using our knowledge

of S̃ we see that R̄ = R0
�
τ

0 S̃(t)dt = R0 ·
�
1− p

1−(1−p)e−µτ · 1−e
−µτ

µτ

�
(S̃ is given explicitly in (5.3)

and easily integrated). For the parameter values used in our simulation (see Table 5.1 of Section
5.2.3) we have R̄ ≈ R0[1−0.94] << R0 so we expect eradication in the PV model for values that
would not lead to eradication otherwise. Figure 5.8, with R̄ = 1.10, confirms that with PV the
infection dies out more quickly, while the susceptible population is kept small.

5.2.3 Permanence with Delay: Simulations

Determining the effects of delay on permanence is unfortunately more difficult than eradication,
so we turn to simulation results for now.

To obtain the figures in this section, as well as Figures 5.6 and 5.7, we again use the Matlab
DDE solver dde23. For initial conditions, we pick R(0) = 0. We choose an exponentially growing

86



0 50 100
0

0.2

0.4

0.6

0.8

1
SEIR results with and without PV

time t (years)

S(
t)

0 5 10
0

0.002

0.004

0.006

0.008

0.01

time t (years)

E(
t)

 

 

0 5 10
0

0.002

0.004

0.006

0.008

0.01

time t (years)

I(t
)

0 50 100
0

0.2

0.4

0.6

0.8

1

time t (years)

R
(t)

With PV
Without PV

Fig. 5.8: Bilinear incidence SEIR model, R̄ = 1.1, with and without pulse vaccination.

infective population I(t) = be
µt for t ∈ [−r, 0], an exponentially shrinking susceptible population

S(t) = ae
−µt for t ∈ [−r, 0], and we determine E(0) based on Equation 4.8, reprinted here for

t = 0:

E(0) =

� 0

−r

βe
µs
S(s)I(s)ds. (5.28)

We choose a = 0.8 and b is then fixed because we need S(0) + E(0) + I(0) = 1.

We use the parameter values from Table 5.1 of Section 5.1. with delay r = 5 days to consider
the SEIR model (4.7) for different values of R̄, that is, we are varying β.

Like for the SIR model, in Figure 5.9 we again see that when R̄ ≤ 1 the disease appears to be
dying off. (The R̄ = 1 case was not discussed in this project but in reality would be pathological.)
“Zooming in,” in Figure 5.10 we see that even for values of R̄ very near to 1, R̄ = 1 appears to
be the threshold above which the disease eventually stops decreasing over time, and below which
the disease dies out.

In Figure 5.6 of Section 5.2.2 we set R̄ = 0.90 and ran simulations for varying delay. Figure
5.11 repeats this process for R̄ = 1.10, that is, under conditions that would lead to endemic
disease if there were no delay. Comparing Figure 5.6 to Figure 5.11 we note that in the short
term the effects of the value of R̄ are barely distinguishable. Over the longer term, however,
(comparing Figures 5.7 and 5.12) we see that R̄ = 1.10 leads to a clearly endemic disease state
with infected fraction on the order of 10−3, while R̄ = 0.90 leads to eradication, at least to the
order of 10−5.
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Fig. 5.9: Infective population in delay model for R̄
linearly spaced between 0.90 and 1.10.
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Fig. 5.10: I(t) for R̄ linearly spaced between 0.99 and
1.01. Note difference in scale.

In Figures 5.6, 5.7, 5.11, and 5.12 the maximum delay was still only about 64 weeks. Without
delay R̄ = 1 was a sharp threshold between eradication and permanence, and it appears from
these figures that it may be so for delay as well. In Figure 5.13 we set R̄ = 1 and vary the delay
between 2 and 9 years. While the trajectory of the infective population becomes very erratic, it
doesn’t seem as though the delay has upset the threshold yet. It may still be the case for larger
delays, though.

All of these simulations were run for a bilinear incidence model; future work involves extension
to time-varying incidence g(I, t).

5.2.4 Model Adaptations: Accidental Vaccination of Exposed Class

Suppose we are implementing a pulse vaccination campaign aimed at vaccinating a fraction p

of the susceptible population with each pulse. Those in the exposed or even infective classes,
however, may not be showing symptoms yet: individuals move from E to I after the latent
period during which they are not contagious. The so-called incubation period, however, is the
time until an individual shows symptoms, and may be greater than the latent period, so there
could be infectives not yet showing symptoms. Therefore there is a possibility the campaign will
inadvertently vaccinate some exposed or infective individuals.

Without structure based on age or spatial distribution, though, these models (such as (5.8)
and (5.19)) are assuming a homogeneous distribution of the population. In particular the mass-
action incidence βSI does so, but even the more general g(I, t)S assumes even mixing. Thus if
we are aiming to vaccinate a fraction p of S, we may in fact end up also vaccinating a fraction p
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Fig. 5.11: Infective population for varying r with R̄ =
1.10.

Fig. 5.12: Smaller scale of Figure 5.11 with t extended
over 100 years.

of E and I as well. The PV part of model (5.19) could become:

S(kτ) = (1− p)S(kτ−)
E(kτ) = (1− p)E(kτ−)
I(kτ) = (1− p)I(kτ−)
R(kτ) = R(kτ−) + p[S(kτ−) + E(kτ−) + I(kτ−)]

Note that this model assumes that the vaccination can somehow help to treat or cure the
exposed and infective people, or maybe that exposed and infective individuals can be identified
by the campaign and treated quickly. In the next subsections we consider the mathematical
ramifications in such a case.

It may be more likely that the pulse does not affect E or I at all; in that case, we are still
vaccinating the fraction p of S that we were planning on, but unfortunately resources are being
wasted in giving vaccinations to those for whom it is too late. In terms of policy-making and
cost-effectiveness it is important to not waste resources.

Models without delay

In a non-delay model similar to (4.5), with rate δ leaving the latent period, we have introduced
discontinuity into E and I (not just their derivatives), but the compartments are still piecewise
continuous. Between pulses we can apply the same analyses as before; at the pulses, the factor
0 ≤ (1− p) ≤ 1 only serves to help decrease the infective populations.
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Fig. 5.13: Infective population for varying r with R̄ = 1.0.

That is, we can still use the usual bounds S� ≤ µ(1− θ)−µS and find that we have the same
globally attractive disease-free solution as obtained in [17] and [27]. In an SIR model without an
exposed class, since everything in I

�(t) depends on only the current time t, for t �= kτ we can again
use the bounds I

�(t) ≤ [λ(S̃ + �) − (µ + r)]I eventually to show that I(t) is decreasing between
pulses: by the condition (4.6) we have I

�
< 0. With an exposed class we can use the Lyapunov

function approach as in [17]. Then at the pulses we have I(kτ) instantaneously decreasing further,
and so we get that inadvertent treatment does not adversely affect the eradication of the disease.

In fact, even if only exposed individuals were likely to attend vaccination campaigns (and so
I(t) remained continuous and unchanged at the pulses), we would use the Lyapunov function
approach with L := δ

δ−γ
E + I to get:

L
� =

δ

δ − γ
[g(I, t)S − (µ+ δ)E] + δE − (µ+ γ)I

= . . .

=
δ

δ − γ
g(I, t)S − (µ+ γ)L

≤ δ

δ − γ

�
λ(S̃ + �)− δ − γ

δ
(µ+ γ)

�
L

Between pulses everything is exactly as before; at the pulses I(t) is not directly affected, while
L(t) is only decreased because of the (1− p)E. Hence we still have I(t) → 0 as t → ∞.
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A problem may arise, however, if instead of aiming to vaccinate a proportion p of the suscep-
tibles, we determined say what that fraction would be in hard numbers and aimed to vaccinate
that many (as a fraction of the total population N). That is, say we estimate a population of
1, 000, 000 is 60% susceptible. Then we try to vaccinate 50% of the susceptibles, translating it
into a goal of 300, 000 people. However, if use this hard number and vaccinate the set amount
of people, we could have exposed or even infected people skewing the data and only wind up
vaccinating less than 50% of the susceptibles. How much such an issue would affect the total
depends on how large the exposed and infective populations are - at the verge of an outbreak,
when many could be infected without knowing it yet, it would have more of an effect than if a
disease is under control and a nearly-negligible number of people have it.

Mathematically, say we aim to vaccinate a total pS of the population. Assuming an equal
distribution of S, E, and I, we could have

pS = p̄S + p̄E + p̄I

⇒ p = p̄

�
1 +

E + I

S

�

p̄ =
p�

1 + E+I

S

�

Then we are only vaccinating a smaller fraction p̄ of S, since E+I

S
> 0. So long as the eradication

condition (period-average) holds with the resulting larger S̃p̄ we will still have eradication, but
campaign failure or ineffectiveness could otherwise result.

Models with Delay: Physical Well-Posedness

An important model issue becomes apparent with the accidental pulse treatment of exposed
populations. Figure 5.14 shows the exposed population in the bilinear incidence SEIR model
(4.7) with delay, with and without pulse treatment of E(t). With pulse treatment, that is,
removing a fraction p of E(t) every τ time units, the population clearly becomes negative. Pulse
removal of a fraction of E affects its DE only through the small −µE term; the −βS(t−r)I(t−r)
term still causes a large decrease which, as shown in the figure, can drive E below zero.

In the model, we can see by integrating that E(t) =
�
t

t−r
βe

−µ(t−s)
I(s)S(s)ds, but this result

does not come across in the simulations (and incorporating it directly will lead to issues near
the pulse times). Future work may need to involve incorporating the integral equation into the
simulations.

We note that without pulse treatment of E(t) the model remains well-defined and the set Ω4 is
invariant. Even with pulse treatment we have that (S, I) remain in {(S, I) : 0 ≤ S, I;S + I ≤ 1},
and it is only R(t) that may be growing greater than 1. We further note that pulse treatment
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Fig. 5.14: E(t) with and without pulse treatment.

may be unrealistic, at least on the same order as the pulse vaccination is effective; it is at least
unlikely that the vaccines will spontaneously cure the entire fraction p of E(t).

5.3 Existence of Periodic Solutions

We have so far been trying to look at the time-average of the coefficients of our non-autonomous
bounding equation for I �(t),

x
�(t) = (e−µr

λ(t− r)S̃(t− r))x(t− r)− (µ+ γ)x(t). (5.29)

An alternative method, used in many references (such as Cheng and Zhang [10] and Yan [79]),
is to look for the existence of periodic solutions to Equation (5.29). In Appendix A we adapt
theorems from [79] for equations of the form

�
y
�(t) = h(t, y(t))− ηf(t, y(t− τ(t)), t ∈ R, t �= tk

y(t+
k
)− y(t−

k
) = ξIk(tk, y(tk − r(tk))), k ∈ Z

(5.30)

to equations with opposite sign in the derivative of y. Then we are able to apply these theorems
to find a threshold Rper below which there can be no periodic solution of (5.29). Our hope is
that Rper < R∗, sharpening our current results. Unfortunately, when we compare this threshold
Rper to R∗ we find that it is almost surely larger, for reasonably physical choices of parameters,
by a fair margin. Appendix A gives much more detail.
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Chapter 6

Models with Varying Total

Population Size

In this section we look to generalize our threshold results from the previous section to time-
varying populations. For consistency we will use models with the common bilinear and standard
incidences in order to illustrate the time-varying methods. We will use systems without delay
for the most part, since we have shown in Section 5.2 that for small delay, uniform asymptotic
stability of the non-delay system implies UAS of the delay system. We will discuss the effects of
time-varying populations on the results in the previous section, then in Sections 6.3 and 6.4 we
will look at generalizations to other incidence forms.

In the sections where N(t) is not constant we will introduce the disease death rate α, that is,
I
�(t) = . . .− (µ+ γ + α)I. In the previous work we have always assumed α = 0.

6.1 Constant Non-normalized Population N �= 1

As explained in Section 2.2.3, in Systems (5.4) and (5.19) the initial term in the DE for S
�(t),

“µ · 1”, arose from the constant population size which was normalized to 1. With a time-varying
population N(t) we might instead assume, for example, that the births are proportional to N

(“µ · N”), or proportional to some carrying capacity K. This assumption, however, leads to a
necessary change in the bilinear incidence model, as described in Hethcote [36]: in particular, we
use the standard incidence β

SI

N
described in Section 2.2.3.

This new incidence does not mean that our prior calculations were wrong, however. If we
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take the SIR model with standard incidence:





S
� = µ(N − S)− β

I

N
S

I
� = β

I

N
S − (µ+ γ)I

R
� = γI − µR

t �= kτ






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

t = kτ

(6.1)

and make the change of variables s = S

N
, i = I

N
, r = R

N
, then dividing each equation of System

(6.1) by N we get






S
�

N
= µ

N−S

N
− β

S

N

I

N

I
�

N
= β

S

N

I

N
− (µ+ γ) I

N

R
�

N
= γ

I

N
− µ

R

N

⇒






s
� = µ(1− s)− βsi

i
� = βsi− (µ+ γ)i

r
� = γi− µr.

Because the pulse vaccination reaches a proportion of the susceptible population S, it reaches
the same proportion of s:

S(kτ) = (1− p) · S(kτ−)
N(kτ)s(kτ+) = (1− p) ·N(kτ−)s(kτ−)

⇒ s(kτ) = (1− p) · s(kτ−)

since N(t) remains unchanged across the pulse times.

This system (6.1) is equivalent to System (5.8) that we have been analyzing (the same result
holds for the SEIR model). Thus in the constant-population model we can assume N �= 1.

Our threshold results from previous sections still hold; for example, we notice that we still
have S�(t) ≥ µN −µS where N is a constant. The comparison theorem with equality, by Lemma
1, leads to the globally attractive periodic solution

S̃N (t) =
µN

µ

�
1− p

(1− (1− p)e−µτ )
e
−µ(t−kτ)

�
, kτ ≤ t < (k + 1)τ,

and we realize that S̃N (t) = N · S̃(t) where S̃(t) is as we have been using in previous sections.
Then we note from (6.1) that eventually

I
�(t) < β

S̃N + �

N
I − (µ+ γ)I

= β(S̃ + �
�)I − (µ+ γ)I
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and so our results depending on R̄, which was based on S̃, are still crucial in leading to eradication
of the system. Even though we are looking at the exact number of infectives rather than the
proportion of the population, we easily reduce the system to a DE with the exact same coefficients
(besides the arbitrarily small �, ��) as when we analyzed the normalized model. The other results
for the normalized system similarly carry over to when N �= 1.

There may be issues if we build a model with births dependent on N(t) but keep the bilinear
incidence, because the simple change of variables no longer tranforms the system to the familar
system 5.8. If N(t) ≡ N then the issue is handled in the next section in the same way as with
a carrying capacity. Otherwise the analysis is trickier; non-constant, non-logistic N , as well as
extensions to other incidence forms such as the general incidence g(I, t), will be looked at in
Sections 6.3 and 6.4.

6.2 Carrying Capacity K

Assuming a constant birth rate A is equivalent to a carrying capacity K with A = µK. (Alter-
natively, if the birth rate b is different from the death rate µ, we may have really decided that
A = bK

� for some K
�. Since we are dealing with constants, however, we can just assume the

factor of µ instead.) The differential equation for the total population then becomes

N
� = µK − µN − αI. (6.2)

This approach is common in literature concerning pulse vaccination with time-varying total
population size [26, 54, 57, 76, 81, 83]. There is an unfortunate issue with the model definition:
without an equation of the form N

� = N · f(N) for some f , we have that N = 0 is no longer
an equilibrium point and a population can arise from nothing. In this section, however, we do
not aim to fix the problem; rather, we continue our survey of the pulse vaccination literature
and concern ourselves with the effects of this pseudo-logistic approach on the pulse vaccination
approach outlined in Section 4.3.1.

In the analysis, the difference amounts to merely an extra factor of K in the resulting equa-
tions. That is, in Lemma 1 we have a = µK instead of just µ, and then with b = µ again we have
the resulting periodic solution

S̃K(t) =
µK

µ

�
1− p

(1− (1− p)e−µτ )
e
−µ(t−kτ)

�
, kτ ≤ t < (k + 1)τ.

= KS̃(t)

We do need to take into account the fact that the population is no longer normalized, though, in
which case we should again revert to using the standard incidence β

S

N
I.
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Using Lemma 1 we get S(t) ≤ S̃K(t)+ � eventually, resulting in the bounding equation for I �:

I
� ≤

�
β
1

N
(S̃K + �)− (µ+ γ + α)

�
I

The 1/N factor could prove to be a problem if N → 0, but thanks to the boundedness of the
population in a logistic model we are alright:

• If α = 0 then N(t) ≥ min{N0,K} for all t ≥ t0.

• If α �= 0 then since I ≤ N we have N
� = µ(K − N) − αI ≥ µ

�
K − (1 + α

µ
)N

�
> 0 if

N <
K

1+α/µ
, that is, the set {N ∈ R+| N ≥ K

1+α/µ
} is attractive.

Thus we have N(t) ≥ Nm := min(N0,
K

1+α/µ
) (where α can be 0) for all t ≥ 0, so 1/N ≤ 1/Nm.

Then

I
� ≤

�
β

1

Nm

(S̃K + �)− (µ+ γ + α)

�
I

=

�
β

K

Nm

(S̃ + �
�)− (µ+ γ + α)

�
I.

We can use conditions on the time-varying “coefficient” in brackets to determine sufficient con-
ditions for eradication of the disease as before; we will find that we need the possibly more strict
condition �

1

τ

�
τ

0

βS̃(t)

µ+ γ + α
dt =

�
R̄ <

Nm

K
≤ 1. (6.3)

In the case where N0 > K and there are no disease-related deaths (α = 0 so it does not show up
in the denominator of R̄), we immediately get the same eradication condition as we did for the
normalized system.

Additionally, we note that for any �0 > 0, as t → ∞, N(t) grows greater than K

1+α/µ
− �0.

So as t → ∞ our condition on R̄ becomes R̄ <
1

1+α/µ
− �0 < 1. Whether the amount of time it

takes for the system to reach this proximity to K is reasonable compared to the time scale of the
disease likely depends on the specific parameters.

In the pulse vaccination literature, even in models with a varying population, the change
to standard incidence is not frequently used. Suppose that instead of switching to the standard
incidence we look at a carrying capacity model with bilinear incidence; Gao et. al. [26] and Zhang
et. al. [83] consider such models (with more complications added). In this case the condition for
eradication reduces to

I
� ≤

�
β(S̃K + �)− (µ+ γ + α)

�
I ⇒ R̄ <

1

K
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for eradication. R̄ is the same as in (6.3), which is as we always define it besides the α term.
This way the K factor of the coefficients of I in I

� is more obvious:

I
� ≤ (µ+ γ + α)

�
KR̄ − 1

�
I.

Unless disease deaths causeN(t) → 0 we can generally assume thatN andK are on approximately
the same order of magnitude (or will grow close). If we do not use the standard incidence to
include the additional factor of N , then instead of needing to be less than 1, our threshold value
R̄ must now be less than 1/K. Depending on the value of K this may be a restrictive assumption,
although it may be implicit; in [26], [83], [57], and [76], the carrying capacity is represented by a
constant birth term A. Rather than setting A = µK and simplifying the µ factors where possible,
following through leads to the restriction R̄A < 1 where R̄A = AR̄ (or similar). With A just
considered as another parameter the threshold is less obviously restrictive, but if we consider it
as a product of µ with a population on the same order as N the dependence is clearer. If we use
empirical data from prior epidemics to get a rough estimate of the basic reproduction number
R0 (described in Section 2.4), this issue could cause a large change in our successive estimate of
β. So, if we plan to use such empirical estimates to make predictions with our more complicated
model, we need to be careful to ensure that the estimates agree with the model.

As described in the previous section on non-normalized constant N , we could also use the
bilinear incidence with a birth rate proportional to N . Similarly to using carrying capacity K

we would derive the condition R̄ < 1/N for eradication. If we have not normalized the total
population then N might be a very large number indeed.

We note that all of our sample models in this section have been SIR models with no delay.
These models were chosen for their simplicity, but for at least a small delay we note that the
results carry over; as shown in Section 5.2, if the trivial solution of x�(t) = [a(t) − b(t)]x(t) is
uniformly asymptotically stable, then for small enough delay r we will also have that the trivial
solution of x�(t) = a(t)x(t− r)− b(t)x(t) = [a(t)− b(t)]x(t) + a(t)[x(t− r)− x(t)] is UAS as well.

For permanence in the standard incidence model with births proportional to K, we note that
N(t) ≤ N

M := max(K,N0) (regardless of the value of α). In fact, as t → ∞ we have that for
any �1 > 0, there exists t1 > 0 such that N(t) < K + �1 for all t > t1, that is, NM → K + �1.
(Clearly t1 = t0 if N0 ≤ K.)

We can follow the same process as in earlier sections to look at permanence by defining

Ī(t) := N(t)
µ

β
(R̄ − 1)

Note if N0 > 0 then N(t) > 0 for all future time, so if R̄ > 1 then Ī(t) > 0 in the non-trivial case.
We also note that this definition of Ī(t) is in agreement with our definition in earlier sections; if
we define I = Ni, then we see that Ī(t) = N(t)̄i where ī is the value defined in [27]. If N(t) ≡ 1
then Ī(t) and ī are interchangeable.

We also define R̄∗ in terms of R̄ (the time-average coefficient ratio) as before.
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Claim 6. If R̄∗
> N

M
/K we have disease permanence.

Proof. Suppose R̄∗
>

N
M

K
for all t greater than some t1. Assume that I(t) < Ī(t) for all large t.

Then for t > t1,

S
� = µK − µS − β

I

N
S > µK − µS − µ(R̄ − 1)S = µK − µR̄S,

which taken together with the pulse vaccination gives S(t) > S̄K(t) − � = KS̄(t) − � eventually.
Then

I
� = β

S

N
I − (µ+ γ + α)I >

�
K

NM
β(S̄ + �)− (µ+ γ + α)

�
I

eventually. From the process in Section 5.1.2 we see that I(t) → ∞, leading to a contradiction.
Therefore if the period-average of the brackets is positive we either have I(t) > Ī(t) for all t,
where

Ī(t) = N(t)
µ

β
(R̄ − 1) ≥ K

1 + α/µ

µ

β
(R̄ − 1) =: Īm,

and so the disease will be permanent, or otherwise I(t) oscillates about Ī(t).

In the oscillatory case, we follow the same process as in Section 5.1.2. Suppose that I(t2) =
Ī(t2) for some t2 > t1 and that σ is the smallest positive constant such that I(t2+σ) = Ī(t2+σ)
and I(t) �= Ī(t) for t ∈ (t2, t2 + σ).

• If σ < τ then since I
�(t) > −(µ + γ)I(t) we have I(t) > I(t2)e−(µ+γ)σ = Ī(t2)e−(µ+γ)σ

>

Īme
−(µ+γ)τ

> 0 for t ∈ (t2, t2 + σ).

• If σ ≥ τ then let σ = aτ + b where a, b ∈ Z, a > 0 and b = σ mod τ . We know from
the above for t ∈ (t2, t2 + aτ ] that I(t) > I(t2)eca. Then for t ∈ (t2 + aτ, t2 + σ) we have
I(t) > I(t2 + aτ)e−(µ+γ)b

> I(t2)ecae−(µ+γ)τ = Ī(t2)ecae−(µ+γ)τ
> Īme

−(µ+γ)τ .

Since t2 > t1 was arbitrary then this result is true between any two times at which I(t) = Ī(t).
Therefore we have shown that if R̄∗ K

NM > 1 then I(t) > Īme
−(µ+γ)τ

> 0 for all t > t1. Therefore
the disease is permanent.

Remark. As t → ∞, if N0 > K then N(t) → K, so this condition becomes R̄∗
> 1. (That is, for

any � > 0 there exists t3 large enough that N(t) < K+ � for all t > t3. Then considering t3 as our
new initial point, we have N

M = K + � and for small enough �, if R̄∗
> 1 then by the strictness

of the inequality R̄∗
> 1 + �

K
= N

M

K
.) If N0 ≤ K then N

M
/K ≤ 1 so R̄∗

> 1 ⇒ R̄∗
> N

M
/K.

The condition R̄∗
> 1 works in both cases.

98



We proved earlier that R̄ > 1 ⇒ R̄∗
> 1, therefore with a carrying capacity we in fact keep

the permanence threshold R̄ > 1. When we mentioned in Section 6.1 that the permanence results
carry over from N = 1 to general constant N , the proof is analogous to the above (and indeed
simpler since there are no ratios with N and K to deal with).

6.3 Exponentially-varying Total Population Size

We consider the more general model






S
� = bN − µS − g(N,S, I, t)

I
� = g(N,S, I, t)− (µ+ γ + α)I

R
� = γI − µR

(6.4)

with pulse vaccination as in (6.1). We will analyze this model in order to discuss the effects of a
total population N(t) that does not approach a carrying capacity.

First we note that
N

� = (b− µ)N − αI. (6.5)

Because N(t) varies with time we cannot apply the PV method of Gao et. al. ([27]) di-
rectly; without a constant births term we cannot integrate as before, and so we do not obtain
the disease-free periodic solution S̃(t) which helps us lower the eradication threshold. When
N(t) ≡ N , though, we were able to change variables to the population fractions, which led to the
normalized type of model so often used in the literature. We apply the same method here with
later adjustments for the non-constancy of N(t). Cooke and van den Driessche, and later Li, use
this population fraction method [12, 47], but to our knowledge the technique hasn’t been used to
allow for a more generalized population in a pulse vaccination model.

Let s = S/N , i = I/N , r = R/N . Then model (6.4) becomes






(Ns)� = bN − µ(Ns)− g(N,Ns,Ni, t)

(Ni)� = g(N,Ns,Ni, t)− (µ+ γ + α)(Ni)

(Nr)� = γ(Ni)− µ(Nr)

(6.6)

⇒






N
�
s+Ns

� = bN − µNs− g(N,Ns,Ni, t)

N
�
i+Ni

� = g(N,Ns,Ni, t)− (µ+ γ + α)Ni

N
�
r +Nr

� = γNi− µNr.

(6.7)
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Rearranging and dividing by N(t),





s
� = b− µs− 1

N
g(N,Ns,Ni, t)− s

N
�

N

i
� = 1

N
g(N,Ns,Ni, t)− (µ+ γ + α)i− i

N
�

N

r
� = γi− µr − r

N
�

N
.

(6.8)

From (6.5) we have N
�
/N = [(b− µ)N − αI]/N = b− µ− αi. Substituting into the above,






s
� = b− µs− 1

N
g(N,Ns,Ni, t)− bs+ µs+ αsi

i
� = 1

N
g(N,Ns,Ni, t)− µi− γi− αi− bi+ µi+ αi

2

r
� = γi− µr − br + µr + αir

⇒






s
� = b− bs− 1

N
g(N,Ns,Ni, t) + αsi

i
� = 1

N
g(N,Ns,Ni, t)− (b+ γ + α)i+ αi

2

r
� = γi− br + αir.

(6.9)

The pulse vaccination still reaches the same proportion p of s as it does of S, as explained in
Section 6.1.

In this subsection we assume α = 0 (no deaths due to the disease); in the next subsection we
deal with the nonzero case. If α = 0 we are left with this inequality for s�:

s
� ≤ b− bs, t �= kτ

s(kτ+) = (1− p)s(kτ).

Using a comparison system for x(t) with equality in the derivative, we find that s(t) ≤ x(t) and
use Lemma 1 to find x(t) → s̃b(t) as t → ∞, where

s̃b(t) = 1− p

1− (1− p)e−bτ
e
−b(t−kτ)

for t ∈ (kτ, (k + 1)τ ]. That is, rather than finding a disease-free periodic solution dependent on
the death rate µ, we see that the solution depends instead on the birth rate. The important
point, though, is that this solution is despite the fact that N(t) varies! While we couldn’t find
a periodic solution bounding S(t) (depending on whether N(t) shrinks or grows), we have found
one for the susceptible proportion s(t).

We can now use this bound on s(t) (that s(t) < s̃b(t) + � eventually for any � > 0) in our
equation for i�. For example, if we use the standard incidence rate g(N,S, I, t) = β

SI

N
,

i
� =

1

N
β
(Ns)(Ni)

N
− (b+ γ)i

< [β(s̃b(t) + �)− (b+ γ)] i (6.10)
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Whether or not the model includes delay (unless in the susceptible class) is basically irrelevant
up to this point. (We say “basically” because for latent delay we would need to include an exposed
class E, and the equation for i

� would involve g( N(t − r), S(t − r), I(t − r), t − r ).) Assuming
g is increasing in s, once we obtain the upperbound equation for i� we can find conditions under
which i → 0. For example, with standard incidence in (6.4) (bilinear incidence in (6.9)) then we
find, as per d’Onofrio [17], that β

b+γ

�
τ

0 s̃b(t)dt < 1 ⇒ the disease is eradicated. With a delay

model we can at least use the threshold R∗ = β

b+γ
maxt∈[0,τ ] s̃b(t) as in [27].

We note, however, that just because i → 0 does not mean that I → 0. In fact, if N is growing
to ∞, we could have I → ∞. Hethcote and van den Driessche explain that the definition of
“persistence” of the disease is that i ≥ iL > 0 for some bound iL [38]; thus if we find sufficient
conditions for i → 0 in (6.10) then we avoid persistence even if infective individuals remain. In our
previous persistence proofs we either had constantN(t) (so S, I, R and s, i, r were interchangeable)
or N(t) was bounded above and below, so we avoided the pitfall of looking at the wrong infective
measure.

We further note that N(t) varies only exponentially in the above models; given the nature of
the compartmental models, N �(t) is prescribed for us. We could assume some other time evolution
for N(t) and work backwards to construct the appropriate model, but logistic and exponential
models seem adequate when looking at a single noninteracting population.

6.4 Extensions: Eradication with Disease Mortality and Cyclical

Models

In the previous subsection we obtained System (6.9) from a SIR model, then proceeded to assume
that α = 0 in order to show that we can still find conditions for disease eradication in a general
time-varying model.

Here we assume that α > 0 and consider the changes to the threshold conditions. Then we
consider cyclical models in which removal is not permanent (individuals in R return to S through
immunity waning).

If α > 0 then in (6.9) we have a term in s
� that depends on i. If this term, αsi, was negative we

could “drop” it when we drop the incidence term, to get s� ≥ b− bs; unfortunately it is positive.
We can exploit the fact, though, that we are dealing with population fractions: that is, we can
use i ≤ 1. A tighter bound may be possible but this method is a good first step. If b > α we
obtain the equation

s
� ≤ b− (b− α)s,

s(kτ+) = (1− p)s(kτ),
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from which we again use Lemma 1 to get that s(t) < s̃αb(t) + � eventually, where

s̃αb(t) =
b

b− α

�
1− p

1− (1− p)e−(b−α)τ
e
−(b−α)(t−kτ)

�
.

If b < α, our system for s(t) is of the form

s
� ≤ b+ as, t �= kτ (6.11)

s(kτ+) = (1− p)s(kτ),

where a = α − b > 0. Lemma 1 for the existence and global attractivity of s̃b(t) needed an
equation of the form x

� = c1 − c2x where c1, c2 > 0 so we cannot apply the result here. Instead,
we proceed as we did when originally finding S̃(t) in Lemma 1: multiply by the integrating factor
e
−at and integrate between pulses to get

s(t) =

�
s(kτ) +

b

a

�
e
a(t−kτ) − b

a

for t ∈ [kτ, (k+1)τ). For an equilibrium solution we want s(kτ) = s((k+1)τ) = (1−p)s((k+1)τ−).
If we define

f(s) = (1− p)

��
s+

b

a

�
e
aτ − b

a

�
(6.12)

then we are looking for a fixed point s∗ = f(s∗). Using this condition in (6.12) and isolating:

s
∗ =

b

a
· (1− p)(eaτ − 1)

1− (1− p)eaτ
.

If we have an periodic solution then s
∗ will be its minimum. In order for a physically-valid (disease-

free equilibrium) periodic solution to exist we thus need s
∗
> 0; looking at the denominator, this

condition translates to (1− p)eaτ < 1 or equivalently

a <
−1

τ
ln(1− p)

(since p < 1, this condition does not force a < 0).

Looking at the problem an alternate way, in order for any periodic solution (strictly positive
or otherwise) to be attractive, we need f(s) to be a contraction mapping. Specifically, f �(s) =
(1− p)eaτ < 1 ⇒ a <

−1
τ
ln(1− p) again.

The b = α case is pathological but proceeding the same way we find that s(t) = b(t−kτ)+s(kτ)
for t ∈ [kτ, (k+ 1)τ), so for a periodic solution we need s

∗ = h(s∗) = (1− p)(bτ + s
∗). h is also a

contraction mapping since 0 < p < 1 so a periodic solution exists and is globally attractive.
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In terms of our original model parameters, then, we find that if b ≥ α then a positive periodic
solution exists and is globally attractive, and we have now extended it so that if α > b we still
have a globally attractive positive periodic solution of (6.11) so long as

α < b+
1

τ
ln

1

1− p
. (6.13)

If α is very large then we expect the disease deaths to remove infectives from the population
quickly, and the births are not frequent enough to replenish the population. As N(t) → 0 the
susceptible population S(t) is squeezed to 0 with it and s(t) cannot sustain a periodic solution.

Regardless of the parameters, so long as they satisfy α ∈
�
0, b+ 1

τ
ln 1

1−p

�
, then once we find

an upperbound for s(t) we have

i
� =

1

N
g(N,Ns,Ni, t)− (b+ γ + (1− i)α)i

≤ 1

N
g(N,Ns,Ni, t)− (b+ γ)i,

and so long as g is increasing in Ns we can find conditions on a comparison DE with equality to
see when i → 0. A sharper bound might be possible by keeping α explicitly in i

�. We have not
ignored the parameter, however, because it features in s̃αb. Depending on the form of g we can
still find conditions on the eradication of the disease despite the disease deaths and time-varying
N(t).

Similarly, suppose we have a cyclical model such as a SIRS model, in which immunity wanes
in an exponential distribution: S� = . . .+ δR, R� = . . .− δR. The proportional model becomes






s
� = b− bs− 1

N
g(N,Ns,Ni, t) + αsi+ δr

i
� = 1

N
g(N,Ns,Ni, t)− (b+ γ + α)i+ αi

2

r
� = γi− (b+ δ)r + αir.






s(kτ+) = (1− p)s(kτ)

i(kτ+) = i(kτ)

r(kτ+) = r(kτ) + ps(kτ)

Since r, i ≤ 1,
s
� ≤ (b+ δ)− (b− α)s (6.14)

which together with the pulse vaccination leads to s(t) < s̃αbδ + � eventually, where

s̃αbδ(t) =
b+ δ

b− α

�
1− p

1− (1− p)e−(b−α)τ
e
−(b−α)(t−kτ)

�
.
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The replenishing of susceptibles due to δ means that the coefficient b+δ

b−α
of s̃αbδ(t) is larger than

that of s̃αb(t),
b

b−α
, which is in turn larger than the coefficient (= 1) of s̃b(t). While it seems

like disease deaths could contribute to the eradication of the disease, a likely reason why the
coefficient of s̃αb(t) is in fact greater than one (with a corresponding increase in R̄αb) is that
disease deaths decrease both I and N by the same number. The total susceptible population S

stays the same (when a disease death occurs) so the susceptible fraction s increases; recall we
have changed variables to population fractions, not totals.

While the cyclical model can lead to richer dynamics that may be skipped in this analysis, we
at least find that the time-varying N(t) does not keep us from finding a periodic eventual upper
bound for s(t). Then we can find some manner of conditions under which i → 0.

In terms of permanence, for a general incidence term the analysis may be unclear, but if we
can follow the same procedure as for bilinear incidence then disease deaths and vaccine waning
do not affect our analysis. That is, we assume i < some ī for all future t, then bound s

� from
below: if g is increasing in i, we say s

� ≥ b − bs − g(N,Ns,Nī, t) + αsi + δs and we can in fact
just drop the last two terms (s� ≥ b − bs − g(N,Ns,Nī, t)) and continue as in earlier sections:
find a lower bound for s(t) and substitute it into i

�.

Again a tighter bound may be desired or at least possible, but in an intuitive sense, disease
deaths and vaccine waning help improve the chances of persistence so we can ignore their “helpful”
effects and still find conditions for permanence. Similarly when we substitute our resulting
lowerbound sm for s into i

� to get i� ≥ 1
N
g(N,Nsm, Ni, t)− (b+ γ + α)i+ αi

2, we can drop the
αi

2 term.

6.5 Extensions: Delay Models with Standard Incidence

In the previous sections of this chapter we have been considering models without delay, mostly
for brevity because when we look at the total population’s derivative, the delay terms cancel out.
In this section we deal with the issues that arise in changing variables to switch from standard
incidence to bilinear incidence in a delay model.

Basically, to go from the non-delay, standard incidence model to the normalized bilinear
model, we simply divided both sides of the equation by N(t). If N is constant then there are no
problems in applying this approach to a delay model.

104



Delay in E(t)

If N(t) is not constant, we obtain the following SEIR model:





S
� = bN − µS − β

SI

N

E
� = β

SI

N
− βe

−µr S(t−r)I(t−r)
N(t−r)

I
� = βe

−µr S(t−r)I(t−r)
N(t−r) − (µ+ γ + α)I

R
� = γI − µR

(6.15)

with the usual pulse vaccination applied.

Again let s = S/N , e = E/N , i = I/N , r = R/N . Then model (6.15) becomes





(Ns)� = bN − µ(Ns)− β
(Ns)(Ni)

N

(Ne)� = β
(Ns)(Ni)

N
− βe

−µr (N(t−r)s(t−r))(N(t−r)i(t−r))
N(t−r) − µ(Ne)

(Ni)� = βe
−µr (N(t−r)s(t−r))(N(t−r)i(t−r))

N(t−r) − (µ+ γ + α)(Ni)

(Nr)� = γ(Ni)− µ(Nr)

(6.16)

Expanding the left-hand-side derivatives, rearranging, and dividing by N(t) we get

⇒






s
� = b− bs− βsi+ αsi

e
� = βsi− βe

−µr
s(t− r)i(t− r)N(t−r)

N(t) − be+ αei

i
� = βe

−µr
s(t− r)i(t− r)N(t−r)

N(t) − (b+ γ + α)i+ αi
2

r
� = γi− br + αir

(6.17)

(Regardless of the delay term, we have N
� = (b − µ)N − αI.) The analysis plays out almost

identically to the non-delay case except for the N(t − r)/N(t) factor in the incidence term.
Instead of considering the compartment derivatives which have delay, we focus only on s

� for
now.

From the equation for s� we get s(t) < s̃αb(t) + � eventually for any � > 0, where s̃αb is as in
Section 6.4. So S(t) = N(t)s(t) < N(t)(s̃αb(t) + �) eventually; now we return to the equation for
I
� (the “big” I, the total infective population) and substitute this bound.

I
� = βe

−µr
S(t− r)I(t− r)

N(t− r)
− (µ+ γ + α)I (6.18)

< βe
−µr

N(t− r)s̃αb(t− r)I(t− r)

N(t− r)
− (µ+ γ + α)I (6.19)

= βe
−µr

s̃αb(t− r)I(t− r)− (µ+ γ + α)I (6.20)

(6.21)
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Using the methods of Gao et.al. applied to this equation, then, we find that if the threshold

R∗ =
βe

−µr
s̃
M

αb

µ+ γ + α
< 1 (6.22)

then I(t) → 0 [27]. The important thing to note is that N(t) may not be bounded, so I(t) → 0
does not mean that the infective fraction i(t) vanishes if N(t) is shrinking as well. (If N(t) shrinks
too much, though, we will not be able to approximate the population as continuous, so the case
becomes pathological.) Hence we may still use the change to fractional variables for this delay
equation, but must be careful about our interpretation of the results.

Note we could use this method even without pulse vaccination, by using the relationship
S(t− r)/N(t− r) ≤ 1 to get rid of the N(t− r) in the denominator of the term in I

�(t).

Delay in Other Compartments

In the above model, the delay occurred in E(t), and we were basically able to ignore it and move
on to the compartment of interest I(t). If instead the delay occurred in I(t), for example

I
� = β

SI

N
− βe

−µr
S(t− r)I(t− r)

N(t− r)
− (µ+ α)I, (6.23)

then we could not use an upperbound on S to get rid of the N(t−r) in the denominator, because
the term with this factor is negative. Similarly with a delay in R(t) we could have

R
� = γI − γe

−µr
I(t− r)− µR, (6.24)

or with an exposed class (without delay) and a delay in I(t) we could have

I
� = κE − κe

−µr
E(t− r)− (µ+ α)I, (6.25)

all with negative delay terms and with resulting fractional equations such as

r
� = γi− γe

−µr
i(t− r)

N(t− r)

N(t)
− µr +

N
�

N
r. (6.26)

The N(t− r)/N(t) ratio is still a problem, but we can at least use the bounds

(b− µ− α)N(t) ≤ N
�(t) ≤ (b− µ)N(t),

N0e
(b−µ−α)t ≤ N(t) ≤ N0e

(b−µ)t (6.27)

and so

e
−αt · e−(b−µ−α)r =

e
(b−µ−α)(t−r)

e(b−µ)t
≤ N(t− r)

N(t)
≤ e

(b−µ)(t−r)

e(b−µ−α)t
= e

−(b−µ)r · eαt. (6.28)

Dealing with solutions to such a system is beyond the scope of this thesis, but we can at least
use the bound on this ratio as a start.
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Chapter 7

Switched Systems: Models with

Standard Incidence and Switched

Contact Rate

In Section 5.1 we looked at pulse vaccination together with, in some cases, delay. We considered
a periodic bound λ(t) for the contact rate, as in [17], in order to allow for more general models
than the usual standard and bilinear incidences. The nonautonomy of the system, however, led
to some difficulty in finding results for the delay systems.

In this section we will consider standard incidence models with a piecewise constant contact
rate, in order to approximate a periodic parameter but still allow for more explicit results. Specif-
ically, we follow the method of Liu and Stechlinski and use a switched contact rate βσ(t), where
σ(t) ∈ {1, 2, . . . ,m} is a periodic switching rule [52, 53].

The main aim of this section is to look at switched systems with impulsive behaviour and
delay. As stated, we have already considered impulsive behaviour and delay together; in Section
7.2 we look to combine switched (non-delay) systems with impulsive behaviour, then in Sections
7.3.1 and 7.3.2 we add delay.

7.1 Introduction to Switched Systems

For brevity, in this section we consider a basic SI model such as that of Kermack and McKendrick
in (2.2), reproduced here [44]:
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�
S
� = −βSI

I
� = βSI − γI

(7.1)

The contact rate β is a constant value in this model. Suppose we instead use a piecewise
constant for β, then we would in fact have β = β(t) and our epidemic model becomes nonau-
tonomous. For simplicity, suppose that β(t) only takes on two values, β1 and β2. Suppose β(t)
“jumps” to β1 at times t = t2k and jumps to β2 at times t = t2k+1. Then we have defined β(t) by

β(t) =

�
β1, t ∈ [t2k, t2k+1)

β2, t ∈ [t2k+1, t2k+2)
(7.2)

for k ∈ Z. The notation β = β(t) is a bit misleading in this case, then, because it implies that β
could vary a lot over time instead of just being piecewise constant. Instead we use the notation
β = βσ(t) where

σ(t) =

�
1, t ∈ [t2k, t2k+1)

2, t ∈ [t2k+1, t2k+2).
(7.3)

is a “switching rule” [53]. Our initial model (7.1) then becomes
�
S
� = −βσSI

I
� = βσSI − γI

(7.4)

which is made up of two subsystems,
�
S
� = −βiSI

I
� = βiSI − γI

(7.5)

for i ∈ {1, 2}.
These concepts easily generalize to larger numbers of subsystems: we simply specify σ(t) ∈

{1, . . . ,m} to get a switched system made up of m subsystems. For general switching between m

subsystems, the switch times will not follow the easy rule teven ⇒ β1, todd ⇒ β2 that occurs for
m = 2. Instead we denote by tk the switch times (k ∈ Z).

In the remainder of this chapter we will look at switched systems where the switching param-
eter is the contact rate β and the switching rule σ(t) is periodic with period T . We denote by
Tk the time spent by σ(t) at index k ∈ {1, . . . ,m}, where

�
m

k=1 Tk = T . We assume that σ(t)
switches away from k at switch times tk; that is, σ(t) = k for t ∈ [tk−1, tk) = [tk − Tk, tk).

We assume σ cycles consecutively through the numbers {1, . . . ,m}, but the values βσ(t) do
not have to be sequential by any means; we could have βi > βi+1, or βi = βj for some i �= j,
depending on what best matches the situation we are trying to model. For example, we might
set β1 = 2 in winter, β2 = 1.5 in spring, β3 = 1 in summer, and β4 = 1.5 again in the fall.
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Existence and Uniqueness of Solutions

In this chapter we will look at switched systems with both delay and non-delay models. We will
consider the non-delay models as a special case of the delay ones, in which r = 0.

As with the impulsive behaviour of the pulse vaccination, the switching of βσ will cause
discontinuities. If we consider our model to be

x
�(t) = fσ(t)(t, xt), t �= τk, t ≥ t0

∆x(t) = I(t, xt−), t = τk, t > t0
(7.6)

then I models the pulse vaccination while fσ(t) models the changing contact rate βσ(t) by switching
between systems fi, i = 1, . . . ,m. (Here we use fσ for brevity, but fσ is not a completely
general function; we are specifically considering a compartmental epidemic model, so we have
fσ(t, ψ) = gσ(t, ψ(0), ψ(−r)) where g is the right-hand side of the epidemic model we are interested
in.)

Over any finite time interval, the switching introduces only a finite number of discontinuities in
fσ(t). Drawing on Section 3.3 we thus find that fσ(t)(t, ψ) is still composite-PC, that is, piecewise
continuous when considered as a composite function of t, for piecewise continuous ψ. fσ(t) still
satisfies a Lipschitz condition in x(t) and x(t− r), and is still quasi-bounded (fσ(t) jumps at the
switch times t = tk but only to a subsystem with different finite parameters). Therefore we have
that there exists a unique solution to (7.6) on the domain of definition of fσ(t).

Alternatively, we could simply consider the solution to (7.6) separately on the intervals
[tk−1, tk − r), [tk − r, tk), [tk, tk+1 − r), and so on (assuming Tk > r for i = 1, . . . ,m; the point
is we look at intervals upon which all parameters, βσ(t), βσ(t−r), etc. are constant). Then upon
each interval the system has no discontinuities besides the pulse vaccination, and we know from
Section 3.3 of the existence, continuation, and uniqueness of a solution in such a case. Piecing
the intervals together we have piecewise-continuous initial conditions xt for each interval, but this
is handled since fσ is composite-PC.

7.2 Switched Contact Rate with Pulse Vaccination

7.2.1 Eradication with τ = T

In this section we sharpen the results of Liu and Stechlinski [53].
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We consider the constant-population model with standard incidence,





S
� = µ(N − S)− βσ

SI

N

I
� = βσ

SI

N
− (µ+ γ)I

R
� = γI − µR.

, t �= kτ (7.7)






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

In [53] Liu and Stechlinski consider nearly the same model:





s
� = µ(1− s)− βσsi

i
� = βσsi− (µ+ γ)i

r
� = γi− µr.

, t �= kτ (7.8)






s(kτ+) = (1− p)s(kτ)

i(kτ+) = (1− p)i(kτ)

r(kτ+) = r(kτ) + ps(kτ) + pi(kτ)

Because they consider a normalized constant-population model we express the compartments as
population fractions s = S/N , etc., so s + i + r = 1. This change of variables is explained in
detail in Section 6.1. The only other differences in the model are that we consider right-continuous
populations (for consistency with earlier discussions), while in [53] the authors use left-continuous;
and in [53] the pulse vaccination also affects i(t) (by way of treatment).

Liu and Stechlinski state the following result:

Theorem 24. ([53], Thm. 3.3) Given the ratios

Ri :=
βi

µ+ γ
, (7.9)

if the switching rule σ(t) is periodic and

ln(1− p)

(µ+ γ)T
+

�
m

i=1RiTi

T
< 1, (7.10)

then the solution of (7.8) converges to the disease-free periodic solution (s, i, r) = (s̃, 0, 1− s̃).

The ln(1− p)/((µ+ γ)T ) term of (7.10) comes from the pulse treatment of the infective class
[53]. The disease-free solution s̃(t) follows directly from Lemma 1 and the pulse vaccination
procedure of Section 4.3.1: as in Equation (5.3) we have

s̃(t) = 1− p

1− (1− p)e−µτ
e
−µ(t−kτ)

, t ∈ (kτ, (k + 1)τ ]. (7.11)
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We continue with the lower-case s̃ because we are looking at population fractions in Equation
(7.8). We will show that we can tighten the threshold for eradication using the disease-free
periodic solution s̃ (as in [27]), although we do not consider the ln(1 − p)/((µ + γ)T ) impulsive
treatment term.

Claim 7. Define the new ratios

R∗
i :=

βis̃
M

µ+ γ
, (7.12)

where s̃
M = maxt∈[0,τ ] s̃(t). If the switching rule σ(t) is periodic and

�
m

i=1R∗
i
Ti

T
< 1, (7.13)

then the solution of (7.7) converges to the disease-free periodic solution (S, I, R) = (Ns̃, 0, N(1−
s̃)).

Proof. In [53] the authors use the fact that

i
� = [βis− (µ+ γ)]i

≤ [βi − (µ+ γ)]i

since 0 ≤ s ≤ 1.

We instead make the change of variables s = S/N, i = I/N, r = R/N in (7.7) so our model
looks just like (7.8) besides the direction of continuity and the pulse treatment of i(t). We use
Lemma 1 to say that there exists t1 > t0 such that

�
s
� ≤ µ(1− s)

s(kτ) = (1− p)s(kτ−)
⇒ s(t) < s̃(t) + �

for all t > t1, for any � > 0. Then

i
� = [βis− (µ+ γ)]i

≤ [βi(s̃+ �)− (µ+ γ)]i (7.14)

eventually, where � is arbitrarily small so the strict inequality in our threshold condition (7.13)
will cause it to be irrelevant (see explanation in Section 5.1). The remainder of the proof is
identical to that in [53]; thus we find that if

�
m

i=1R∗
i
Ti

T
= s̃

M

�
m

i=1RiTi

T
< 1, (7.15)

where again s̃
M = maxt∈[0,τ ] s̃(t), then the disease will be eradicated.

The main importance of this claim is that s̃
M can be very small indeed: for µ = 1/70, τ =

4, p = 0.2 we have s̃
M ≈ 0.227; for p = 0.8, s̃M = 0.069. We see that pulse vaccination can very

quickly decrease the susceptible population, and we take advantage of this result.
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7.2.2 Eradication with τ = nT

If the pulse vaccination period is an integer multiple of the switching period, and if condition
(7.13) is satisfied, then we will still have eradication of the disease.

If (7.13) is not satisfied then we may still be able to satisfy a looser bound on the Ri.

Claim 8. Suppose σ(t) is periodic with period T and the pulse vaccination period is τ = nT . If

1

τ

�
τ

0
s̃(t)Rσ(t)dt < 1, (7.16)

where Rσ(t) = βσ(t)/(µ+ γ) as in [53]. Then the disease will be eradicated.

Proof. From the strict inequality in (7.16), pick � small enough so that

1

τ

�
τ

0
(s̃(t)Rσ(t) − 1)dt < −2�βav, (7.17)

where βav =
�
nT

0 βσ(t)dt = n
�
T

0 βσ(t)dt.

Starting with t = t1 where t1 is large enough so that

I
�(t) < [βσ(t)(s̃(t) + �)− (µ+ γ)]I(t), (7.18)

for t ≥ t1, from the above we get that

d

dt

�
I(t)exp

�
−
�

t

t1

(µ+ γ)(Rσ(θ)(s̃(θ) + �)− 1)dθ

��
< 0. (7.19)

In particular, integrate from t1 to t1 + τ to get

I(t1 + τ) < I(t1)exp

��
t1+τ

t1

(µ+ γ)(Rσ(θ)(s̃(θ) + �)− 1)dθ

�

< I(t1)exp

��
t1+τ

t1

(µ+ γ)(Rσ(θ)s̃(θ)− 1)dθ + �

�
t1+τ

t1

(µ+ γ)Rσ(θ)dθ

�

< I(t1)exp{(µ+ γ)(−2�βav + �βav}
< I(t1)exp{−(µ+ γ)�βav}

by (7.17) since τ = nT and σ(t) and s̃(t) have periods which divide τ . Define c := exp{−(µ +
γ)�βav} < 1, then integrating over successive intervals we find that I(t1 + kτ) < I(t1)ck → 0
as k → ∞. By the proof in Section 5.1 we have that the disease-free solution is uniformly
asymptotically stable.
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7.3 Switched Contact Rate SEIR Model with Pulse Vaccination

and Delay

We consider the constant-population model with standard incidence,





S
� = µN − µS − βσ

SI

N

E
� = βσ

SI

N
− βσ(t−r)

S(t−r)I(t−r)
N(t−r) − µE

I
� = βσ(t−r)

S(t−r)I(t−r)
N(t−r) − (µ+ γ)I

R
� = γI − µR.

, t �= kτ (7.20)






S(kτ) = (1− p)S(kτ−)

E(kτ) = E(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

As explained in Section 6.5, because N is constant we may again make the change of variables
to population fractions, and be left with the bilinear incidence model






S
� = µ− µS − βσSI

E
� = βσSI − βσ(t−r)S(t− r)I(t− r)− µE

I
� = βσ(t−r)S(t− r)I(t− r)− (µ+ γ)I

R
� = γI − µR.

, t �= kτ (7.21)






S(kτ) = (1− p)S(kτ−)

E(kτ) = E(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

where each of S,E, I, R is less than or equal to 1. We stick with the uppercase letters out of
consistency with the work in Chapter 5.

We make the assumption that Ti > r for i = 1..m. This assumption may be restrictive
physically, but it simplifies the analysis; also, since the Ti are usually on the order of months or
seasons, and the latent period is likely on the order of days, in practice the assumption can easily
hold.

7.3.1 2 Subsystems

In this section we assume σ(t) ∈ {1, 2} (that is, m = 2) and we look to find conditions, which
lead to disease eradication, on the average ratio of the parameters of I �(t) (including S̃) over one
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period T of σ(t).

Definition of V (t)

We have that
I
�(t) ≤ βσ(t−r)e

−µr
S̃
M
I(t− r)− (µ+ γ)I(t). (7.22)

Use the comparison equation

x
�(t) = βσ(t−r)e

−µr
S̃
M
x(t− r)− (µ+ γ)x(t). (7.23)

By the comparison theorem, I(t) ≤ x(t) and since I(t) ≥ 0, if we can show x(t) → 0 then by
squeeze theorem I(t) → 0 as well.

We define

V (t) :=
1

µ+ γ

�
x(t) +

�
t

t−r

βσ(s)e
−µr

S̃
M
x(s)ds

�
(7.24)

Then

(µ+ γ)V �(t) = x
�(t) +

d

dt

��
t

t−r

βσ(s)e
−µr

S̃
M
x(s)ds

�

= βσ(t−r)e
−µr

S̃
M
x(t− r)− (µ+ γ)x(t) + βσ(t)e

−µr
S̃
M
x(t)

− βσ(t−r)e
−µr

S̃
M
x(t− r)

=
�
βσ(t)e

−µr
S̃
M − (µ+ γ)

�
x(t)

⇒ V
�(t) =

�
βσ(t)e

−µr

µ+ γ
S̃
M − 1

�
x(t)

We define

R∗
σ(t) =

βσ(t)e
−µr

µ+ γ
S̃
M (7.25)

Then we get
V

�(t) = [R∗
σ(t) − 1]x(t) (7.26)

Since σ(t) = i for t ∈ [ti−1, ti], we define R∗
i
:= R∗

σ(t) for t ∈ [ti−1, ti]. Then

V
�(t) = [R∗

i − 1]x(t) for t ∈ [ti−1, ti]. (7.27)

Define Ti = ti − ti−1. Initially we let m = 2, that is, σ(t) ∈ {1, 2}. Suppose

(R∗
i − 1)Ti + (R∗

i+1 − 1)Ti+1 < 0. (7.28)

In the case where r = 0 we know that the disease will be eradicated. We now look for restrictions
in the delay case.
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Proof V (t) → 0

For brevity we let
β̃σ(t) := βσ(s)e

−µr
S̃
M
. (7.29)

For t ∈ [ti−1, ti),

V
�(t) = [R∗

i − 1]x(t)

= [R∗
i − 1]

�
(µ+ γ)V (t)−

�
t

t−r

βσ(s)e
−µr

S̃
M
x(s)ds

�

⇒ d

dt

�
V (t)e−(µ+γ)(R∗

i−1)t
�
= −(R∗

i − 1)e−(µ+γ)(R∗
i−1)t

�
t

t−r

β̃σ(s)x(s)ds.

Integrating from ti−1 to t,

V (t)e−(µ+γ)(R∗
i−1)t − V (ti−1)e

−(µ+γ)(R∗
i−1)ti−1

=−
�

t

ti−1

�
(R∗

i − 1)e−(µ+γ)(R∗
i−1)θ

�
θ

θ−r

β̃σ(s)x(s)ds

�
dθ

V (t) = V (ti−1)e
(µ+γ)(R∗

i−1)(t−ti−1)

− (R∗
i − 1)e(µ+γ)(R∗

i−1)t
�

t

ti−1

�
e
−(µ+γ)(R∗

i−1)θ
�

θ

θ−r

β̃σ(s)x(s)ds

�
dθ

Thus, recalling that Ti = ti − ti−1, we find

V (ti) = V (ti−1)e
(µ+γ)(R∗

i−1)(ti−ti−1)

− (R∗
i − 1)e(µ+γ)(R∗

i−1)ti

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt

= V (ti−1)e
(µ+γ)(R∗

i−1)Ti

− (R∗
i − 1)e(µ+γ)(R∗

i−1)ti

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt

Nothing in the above analysis depends on our assumption (7.28). Thus we can apply the same
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process on [ti, ti+1] to get

V (ti+1) = V (ti)e
(µ+γ)(R∗

i+1−1)Ti+1 (7.30)

− (R∗
i+1 − 1)e(µ+γ)(R∗

i+1−1)ti+1

�
ti+1

ti

�
e
−(µ+γ)(R∗

i+1−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt

= V (ti−1)e
(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1]

− (R∗
i − 1)e(µ+γ)(R∗

i−1)tie
(µ+γ)(R∗

i+1−1)Ti+1

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt

− (R∗
i+1 − 1)e(µ+γ)(R∗

i+1−1)ti+1

�
ti+1

ti

�
e
−(µ+γ)(R∗

i+1−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt (7.31)

We are still dealing with the case m = 2, so given the period T of the switching signal σ(t) we
have that V (ti+1) = V (ti−1+m) = V (ti−1 + T ). If we can show V (ti−1+m) ≤ ηV (ti−1) for some
η < 1 then we can show that the switched system is uniformly asymptotically stable.

If both R∗
i
and R∗

i+1 are less than 1, the disease will be eradicated - we may use a common
Lyapunov function

V (t) =
1

µ+ γ

�
x(t) +

�
t

t−r

β
M
e
−µr

S̃
M
x(s)ds

�
(7.32)

to prove it, where β
M is the largest βi. If both R∗

i
and R∗

i+1 are greater than 1, the disease will
remain permanent: we can use a common “Lyapunov functional” using the smallest value of βi to
prove the disease persists by the method Gao et. al. used in [27]. Thus we are interested in the
case where one of the ratios is less than 1 while the other is greater. (To generalize, in systems
with m > 2 we are interested in the cases when the R∗

i
’s are not all greater or all less than 1).

WLOG we assume that R∗
i
< 1 < R∗

i+1. Then the second term of (7.30) is positive (we are
subtracting a negative) while the third term is negative. We are interested in an upper bound on
V (ti+1); thus we drop the third term to find

V (ti+1) ≤ V (ti−1)e
(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1] (7.33)

− (R∗
i − 1)e(µ+γ)(R∗

i−1)tie
(µ+γ)(R∗

i+1−1)Ti+1

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt

At this point we would like to factor the above inequality. The first term is a function of
V (ti−1) but we need to find such a factor in the second term somehow. One method would be to
use

�
t

t−r
β̃σ(s)x(s)ds = (µ+γ)V (t)−x(t) by definition of V and use V (t) ≤ V (ti−1) on [ti−1, ti] to

further simplify; following through with the t-integral, however, we eventually find the inequality

V (ti+1) ≤ e
(µ+γ)(R∗

i+1−1)Ti+1)V (ti−1). (7.34)
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The exponent is positive due to our assumption above so this method does not help us to prove
that V (t) → 0.

Instead, by the definition of V (t) we also have x(t) ≤ (µ + γ)V (t) for all t. On [ti−1, ti)
we have V

�(t) = (R∗
i
− 1)x(t) ≤ 0 so x(t) ≤ (µ + γ)V (t) ≤ (µ + γ)V (ti−1) for t ∈ [ti−1, ti].

Similarly on [ti−1 − r, ti−1) we have V
�(t) = (R∗

i−1 − 1)x(t) = (R∗
i+1 − 1)x(t) ≥ 0 since m = 2, so

V (t) ≤ V (ti−1). Thus x(t) ≤ (µ+ γ)V (t) ≤ (µ+ γ)V (ti−1) for t ∈ [ti−1 − r, ti], and so

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)θ
�

t

t−r

β̃σ(s)x(s)ds

�
dt ≤ (µ+ γ)V (ti−1)

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)ds

�
dt

≤ V (ti−1) · e−(µ+γ)(R∗
i−1)ti · (µ+ γ)

�
β̃i + β̃i+1

2
r
2 + β̃ir(Ti − r)

�
.

The double integral is evaluated by factoring out an upper bound on the exponential term,
then splitting the dt integral into two, one from ti−1 to ti−1+ r and one from ti−1+ r to ti. Then
in the former we split the ds integral into two, one from t − r to ti−1 and one from ti−1 to t.
Including this bound in (7.33) we get

V (ti+1) ≤ V (ti−1)e
(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1]

− (R∗
i − 1)e(µ+γ)(R∗

i−1)tie
(µ+γ)(R∗

i+1−1)Ti+1

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)θ
�

t

t−r

β̃σ(s)x(s)ds

�
dt

≤ V (ti−1)e
(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1]

− (R∗
i − 1)e(µ+γ)(R∗

i+1−1)Ti+1V (ti−1)(µ+ γ)

�
β̃i + β̃i+1

2
r
2 + β̃ir(Ti − r)

�

= V (ti−1) · e(µ+γ)[(R∗
i−1)Ti+(R∗

i+1−1)Ti+1]· (7.35)
�
1 + (1−R∗

i )(µ+ γ)e(µ+γ)(1−R∗
i )Ti

�
β̃i + β̃i+1

2
r
2 + β̃ir(Ti − r)

��

Define

η := e
(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1] (7.36)

·
�
1 + (1−R∗

i )(µ+ γ) · e(µ+γ)(1−R∗
i )Ti

�
β̃i + β̃i+1

2
r
2 + β̃ir(Ti − r)

��
,

then we are interested in if η < 1. The second factor (in round brackets) is greater than 1 since
R∗

i
< 1 and all other values are positive. The first factor, e(µ+γ)[(R∗

i−1)Ti+(R∗
i+1−1)Ti+1], must be

less than 1 if we are to have η < 1, which agrees with Assumption (7.28). In fact, since η < 1 is
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sufficient for eradication, we get the restriction

(µ+ γ)[(R∗
i − 1)Ti + (R∗

i+1 − 1)Ti+1]

< ln

�
1 + (1−R∗

i )(µ+ γ) · e(µ+γ)(1−R∗
i )Ti

�
β̃i + β̃i+1

2
r
2 + β̃ir(Ti − r)

��−1

⇒
R∗

i
Ti +R∗

i+1Ti+1

T

< 1− 1

(µ+ γ)T
ln

�
1 + (1−R∗

i )(µ+ γ)e(µ+γ)(1−R∗
i )Ti · r ·

�
β̃i + β̃i+1

2
r + β̃i(Ti − r)

��

Define

ζ := (1−R∗
i )(µ+ γ)2e(µ+γ)(1−R∗

i )Ti ·
�R∗

i
+R∗

i+1

2
r +R∗

i (Ti − r)

�
(7.37)

then ζ > 0 and we have the slightly more understandable condition for eradication

2�

j=1

R∗
j
Tj

T
< 1− 1

(µ+ γ)T
ln(1 + rζ). (7.38)

We note that if r = 0 we recover the non-delay eradication threshold (7.28).

This condition is rather complicated, but we note that it can definitely be achieved; for
example, if we take R∗

1 = 1/3, R∗
2 = 1.5, T1 = T2 = 0.5, and as in simulations we have µ = 1/70,

γ = 2, r = 5/365, τ = 4, then we get that the left-hand side is equal to 0.9167 while the right-hand
side of the condition is equal to 0.9938. Even with a much larger delay, say r = 50/365, we get
that the right-hand side is equal to 0.9183 > 0.9167 (the left side is independent of r). Note that
by choosing the R∗

i
we can ignore the dependence on βi and on the pulse vaccination proportion

p; those parameters both affect the R∗
i
but we are only interested in their combination.

Proof I(t) → 0

While the uniform asymptotic stability of I(t) may not be evident, we can clearly find that I(t)
is asymptotically stable by squeeze theorem. That is,

0 ≤ I(t) ≤ x(t) ≤ (µ+ γ)V (t) → 0 as t → ∞.

7.3.2 m Subsystems

The indices are more complicated when there are more than 2 subsystems, but the general
principle is the same. We integrate V (t) over successive switch intervals to get V (ti+m) as a
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function of V (ti). We drop the negative terms to get an upper bound on V (ti+m) and bound the
remaining terms using V (ti). If the period-average of the parameters of I �(t) (including the max
S̃
M of S̃(t)) is less than 1 we find that V (ti+m) ≤ ηV (ti) where η depends on our interval but is

< 1 eventually.

For brevity we define

f(i) :=

�
ti

ti−1

�
e
−(µ+γ)(R∗

i−1)t
�

t

t−r

β̃σ(s)x(s)ds

�
dt. (7.39)

Starting from t = ti and integrating successively, we get

V (ti+1) = V (ti)exp{(µ+ γ)(R∗
i+1 − 1)Ti+1}

− (R∗
i+1 − 1)f(i+ 1)exp{(µ+ γ)(R∗

i+1 − 1)ti+1},
V (ti+2) = V (ti)exp{(µ+ γ)[(R∗

i+1 − 1)Ti+1 + (R∗
i+2 − 1)Ti+2]}

− (R∗
i+1 − 1)f(i+ 1)exp{(µ+ γ)[(R∗

i+1 − 1)ti+1 + (R∗
i+2 − 1)Ti+2]}

− (R∗
i+2 − 1)f(i+ 2)exp{(µ+ γ)(R∗

i+2 − 1)ti+2}, etc.

Continuing this way we find

V (ti+k) = V (ti)exp




(µ+ γ)
k�

j=1

(R∗
i+j − 1)Ti+j






− (R∗
i+1 − 1)f(i+ 1)exp




(µ+ γ)



(R∗
i+1 − 1)ti+1 +

k�

j=2

(R∗
i+j − 1)Ti+j










...

− (R∗
i+k

− 1)f(i+ k)exp
�
(µ+ γ)(R∗

i+k
− 1)ti+k

�
,

that is,

V (ti+k) = V (ti)exp




(µ+ γ)
k�

j=1

(R∗
i+j − 1)Ti+j




 (7.40)

−
k�

h=1

(R∗
i+h

− 1)f(i+ h)exp




(µ+ γ)



(R∗
i+h

− 1)ti+h +
k�

j=h+1

(R∗
i+j − 1)Ti+j










for any k ∈ Z.
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In particular, after one period we find

V (ti+m) = V (ti)exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 (7.41)

−
m�

h=1

(R∗
i+h

− 1)f(i+ h)exp




(µ+ γ)



(R∗
i+h

− 1)ti+h +
m�

j=h+1

(R∗
i+j − 1)Ti+j








 .

In the subtracted terms, the exponential factors are clearly all positive, as are the f(i+ h) (since
they are integrals of positive quantities). The R∗

i+h
− 1 factors are what can change the sign of

the terms. We drop the terms for which R∗
i+1 > 1 to find the following upper bound on V (ti+m):

V (ti+m) ≤ V (ti)exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 (7.42)

+
m�

h=1
R∗

i+h<1

(1−R∗
i+h

)f(i+ h)exp




(µ+ γ)



(R∗
i+h

− 1)ti+h +
m�

j=h+1

(R∗
i+j − 1)Ti+j








 .

If we can find the terms in the second line in terms of V (ti) then we may be able to reach
conclusions about the asymptotic behaviour of V .

To do so, we first notice that for h ∈ {1, . . . ,m} such that R∗
i+h

< 1,

f(i+ h) ≤ e
−(µ+γ)(R∗

i+h−1)ti+h

�
ti+h

ti+h−1

��
t

t−r

β̃σ(s)x(s)ds

�
dt, (7.43)

and so the first term in the round brackets in (7.42) is cancelled to obtain

V (ti+m) ≤ V (ti)exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 (7.44)

+
m�

h=1
R∗

i+h<1

(1−R∗
i+h

)

�
ti+h

ti+h−1

��
t

t−r

β̃σ(s)x(s)ds

�
dt · exp




(µ+ γ)
m�

j=h+1

(R∗
i+j − 1)Ti+j




 .

Then we use the fact that on any switch interval [tk−1, tk] in which Rk < 1, V (tk) ≤ V (tk−1)
(since V

�(t) = (R∗
σ(t) − 1)x(t)). On intervals in which Rk > 1, we still have

V
�(t) ≤ (Rk − 1)(µ+ γ)V (t) ⇒ V (t) ≤ V (tk−1)exp{(µ+ γ)(Rk − 1)(t− tk−1)}.
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So for t ∈ [ti+k−1 − r, ti+k],

x(t) ≤ (µ+ γ)V (t) ≤ (µ+ γ)V (ti)exp





(µ+ γ)

k�

j=1
R∗

i+j>1

(R∗
i+j − 1)Ti+j





. (7.45)

Substituting (7.45) into (7.44),

V (ti+m) ≤ V (ti)exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 (7.46)

+ V (ti)
m�

h=1
R∗

i+h<1

(1−R∗
i+h

)f̄(i+ h)exp




(µ+ γ)
m�

j=h+1

(R∗
i+j − 1)Ti+j






where

f̄(i+ h) := (µ+ γ) exp





(µ+ γ)

h�

j=1
R∗

i+j>1

(R∗
i+j − 1)Ti+j






�
ti+h

ti+h−1

��
t

t−r

β̃σ(s)ds

�
dt (7.47)

is a positive constant. Factoring (7.46), and leaving out the bounds of integration for brevity,

V (ti+m) ≤ V (ti) · exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j






·



1 +
m�

h=1
R∗

i+h<1

(1−R∗
i+h

)f̄(i+ h)exp




−(µ+ γ)
h�

j=1

(R∗
i+j − 1)Ti+j










= V (ti) · exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 · [ 1+ (7.48)

m�

h=1
R∗

i+h<1

(1−R∗
i+h

)(µ+ γ)

��
β̃σ(s)ds dt · exp





−(µ+ γ)

h�

j=1
R∗

i+j<1

(R∗
i+j − 1)Ti+j





]
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and so

V (ti+m) ≤ V (ti) · exp




(µ+ γ)
m�

j=1

(R∗
i+j − 1)Ti+j




 · η (7.49)

where η is the factor in square brackets above. We are assuming for i = {1, . . . ,m} that R∗
i
is

strictly greater or less than one, and treating the R∗
i
= 1 case as pathological. As before, the

double integral is equal to

r ·
�
β̃i+h + β̃i+h−1

2
r + β̃i(Ti − r)

�
. (7.50)

As in the m = 2 case, if we can show V (ti+m) ≤ ξV (ti) for some ξ < 1 then V (ti+km) ≤
ξ
k
V (ti) → 0 as k → ∞. The factor η in the above is clearly greater than 1, so the exponential

factor must certainly be less than 1 if we are to have ξ < 1. We thus extend Assumption 7.28 to

m�

i=1

R∗
iTi < T. (7.51)

If r = 0 then this condition is sufficient. If r �= 0 (that is, there is delay) then we must instead
have the stronger condition

m�

i=1

R∗
i
Ti

T
< 1− 1

(µ+ γ)T
· (7.52)

ln




1 +

m�

h=1
R∗

i+h<1

(1−R∗
i+h

)(µ+ γ)

��
β̃σ(s)dsdt · exp





(µ+ γ)

h�

j=1
R∗

i+j<1

(1−R∗
i+j)Ti+j










which is sufficient for the asymptotic stability of the disease-free equilibrium: that is, as k → ∞,
V → 0. By squeeze theorem we have 0 ≤ I(t) ≤ x(t) ≤ (µ+ γ)V (t) → 0 as before, so the disease
is eradicated eventually.

We note that our boundaries on the V (ti+h) are not tight, and in fact we lead to the conclusion
(as seen in 7.48) that the R∗

i
which are less than 1 actually contribute to the size of η! This result

agrees with our previous analysis for m = 2, though; in both cases we note that as r → 0 then
we recover the delay-free restriction seen in [53].

7.4 Switched Contact Rate in Other Models

Our delay analysis so far has always dealt with a SEIR model with delay in the exposed class.
In this section we look at extensions to other models. As in Sections 7.3.1 and 7.3.2, we assume
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the total population N is constant in order to avoid the change-of-variable problems described in
Section 6.5.

7.4.1 Delay in I(t)

We consider a normalized population model (obtained from a standard incidence, constant-
population model) of the form






S
� = µ(1− S)− βσSI

I
� = βσSI − βσ(t−ω)e

−µω
S(t− ω)I(t− ω)− µI

R
� = βσ(t−ω)e

−µω
S(t− ω)I(t− ω)− µR.

t �= kτ (7.53)






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

As usual we first proceed by applying Lemma 1 to the equation for S
� to find that S(t) is

bounded above by the disease-free solution which starts at the same initial value; then, since S̃

attracts all disease-free solutions, we as usual find that S(t) becomes arbitrarily close to S̃(t) from
above. Then in I

� we have

I
�
< βσ(S̃ + �)I − βσ(t−ω)e

−µω
S(t− ω)I(t− ω)− µI

≤
�
βσ(S̃ + �)− µ

�
I.

By dropping the delay term entirely, we obtain an ODE for I(t) almost identical (besides the
missing γ) to equation (7.14). We are justified mathematically in dropping this term; define

f(t, ψ) = βσS(t)ψ(0)− βσ(t−ω)e
−µω

S(t− ω)ψ(−ω)− µψ(0),

g(t, ψ) =
�
βσ(S̃

M + �)− µ

�
ψ(0).

g satisfies the quasimonotone condition from [69] and, while we do not know S(t− ω), we know
it is positive and so the subtracted delay term in f is positive. Then f(t, ψ) ≤ g(t, ψ) (for large
enough t) for all ψ ∈ PCmathcalR+ , so from Theorem 16 we are able to compare I(t) to the solution

of x� =
�
βσ(S̃ + �)− µ

�
x [69]. Then if x → 0 we can use squeeze theorem to show I → 0 as well.

Just like in Claim 7 we define the ratios

R∗
i :=

βiS̃
M

µ
,
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where S̃
M = maxt∈[0,τ ] S̃(t). We again find that if the switching rule σ(t) is periodic and if

�
m

i=1R∗
i
Ti

T
< 1 (7.54)

then x → 0 and so the disease will be eradicated. The proof is identical to that in Claim 7 (which
uses [53]) except for the lack of a γ term in the denominators of the Ri.

Remark. While mathematically we have only “dropped γ,” the physical ramifications are im-
portant. By entirely ignoring the delay term in I

� we are ignoring recovery from the disease, with
the only way left to leave the infective class being through natural deaths. The condition (7.58)
is in fact very restrictive (we could have µ ≈ 1/70 while γ ≈ 2 or greater, so 1/(µ + γ) < 1/2
while 1/µ = 70). The other parameters of the system would need to be much greater to ensure
eradication under this analysis; basically our condition is that we need each infective individual
to die of natural causes before they pass on the infection! We can at least take comfort that the
pulse vaccination very quickly decreases the susceptible population, so the chance an infective
will pass on the infection is greatly decreased.

A much sharper bound could likely be obtained if we instead considered the entire delay
differential equation for I �.

7.4.2 Delay in R(t)

We again consider a normalized population model (obtained from a standard incidence, constant-
population model) with non-permanent immunity, of the form






S
� = µ(1− S)− βσSI + γe

−µh
I(t− h)

I
� = βσSI − (µ+ γ)I

R
� = γI − γe

−µh
I(t− h)− µR.

t �= kτ (7.55)






S(kτ) = (1− p)S(kτ−)

I(kτ) = I(kτ−)

R(kτ) = R(kτ−) + pS(kτ−)

In this model the recovered individuals lose their immunity after a time h, and return to the
susceptible compartment.

Here we have a simple ODE for I �, so as long as we can find some sort of bound on S(t), we
should be able to find thresholds easily. The difficulty of course arises with the delay term in S

�.

The simplest way is to ignore the delay part entirely and use the fact that we are dealing
with population fractions; then γe

−µh
I(t− h) ≤ γe

−µh and we are looking at a pulse vaccination
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system for S of the form

S
� ≤ (µ+ γe

−µh)− µS, t �= kτ

S(kτ) = (1− p)S(kτ−)
(7.56)

Just like in Section 6.4, we can use a comparison system with equality to apply Lemma 1 and
find that eventually S(t) < S̃γ(t) + �, where

S̃γ(t) =
µ+ γe

−µh

µ

�
1− p

1− (1− p)e−µτ
e
−µ(t−kτ)

�
.

Then we define

R∗
i =

βiS̃
M
γ

µ+ γ
(7.57)

and proceed as in Section 7.2 to get eradication so long as [53]

�
m

i=1R∗
i
Ti

T
< 1. (7.58)

Alternatively we could try to include the delay in S
�. It seems as though keeping the I(t−h)-

dependence will be difficult, since we would have two coupled equations for S� and I
� (rather than

being able to deal with S first then use the result in I
�). Instead we can use the fact that

I(t) ≤ N(t)− S(t) = 1− S(t), (7.59)

to get

S
� ≤ µ(1− S)− βσSI + γe

−µh(1− S(t− h))

= (µ+ γe
−µh)− (µS + γe

−µh
S(t− h))− βσSI

≤ (µ+ γe
−µh)− (µS + γe

−µh
S(t− h)).

This bound on S
� is similar to (7.56) but with the extra negative term −γe

−µh
S(t − h), so we

expect to find S decreases more or at least faster when we include the delay term.

7.5 Switched System Simulations

For all of the following simulations we use the Matlab DDE solver dde23. We have so far used
this solver’s event-finder to halt the integration at pulse vaccination times; now we use it to find
the parameter switch times as well.
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We again use the initial conditions R(0) = 0, I(t) = be
µt for t ∈ [−r, 0], S(t) = ae

−µt for
t ∈ [−r, 0], and we determine E(0) based on Equation 4.8, reprinted here (with switching) for
t = 0:

E(0) =

� 0

−r

βσ(s)e
µs
S(s)I(s)ds. (7.60)

As before, we choose a = 0.8 and b is then fixed because we need S(0) + E(0) + I(0) = 1.
We assume that the parameter switching still occurs in the initial condition functions, and still
assume that the delay is small compared to the switch times (so r < Ti, i = 1..m). Thus we
use βm in the initial condition (since σ(t) = m for t ∈ [−Tm, 0] ⊃ [−r, 0]) and then switch to β1

starting at t = 0.

7.5.1 Delay in E(t)

In this subsection we look at simulations for the delayed SEIR model with pulse vaccination and
switching parameter βσ, System (7.21), that we studied in Section 7.3.

1
T

�
m

i=1R∗
i
Ti near 1

In Figures 7.1 - 7.4 we look at systems in which the time average 1
T

�
m

i=1R∗
i
Ti is close to 1. The

interpulse period is τ = 4, the pulse vaccination proportion is p = 0.6, and the delay is r = 5/365,
otherwise the parameters are as in Table 2.2. The first two figures have 1

T

�
m

i=1R∗
i
Ti = 0.9875,

and the next pair have 1
T

�
m

i=1R∗
i
Ti = 1.0125. On the same scale as in Figure 7.3, the solution

in Figures 7.1 - 7.2 looks almost identical. It is when we look extremely closely, as in Figures
7.2 and 7.4, that we see eradication on one side of the threshold and permanence on the other.
Therefore our experimental results seem to support our theoretical ones.

Comparison to Model without Pulse Vaccination

In Section 7.3 we looked at 1
T

�
m

i=1R∗
i
Ti near 1, where the R∗

i
are as defined in (7.12). In terms

of the Ri defined in (7.9),
R∗

i = s̃
M · Ri.

In this section we set Ri and compare the solutions with and without pulse vaccination.

In Figures 7.5 - 7.8 we have 1
T

�
m

i=1RiTi =
1
4(26+1+5+12) = 11. For our specific parameter

values, however, we have that S̃
M ≈ 0.0893, and so 1

T

�
m

i=1R∗
i
Ti ≈ (11)(0.0893) = 0.9819 < 1.

We see the eradication of the disease in the pulse vaccination case (Figure 7.8), while without it
the disease clearly remains endemic (Figure 7.6). We can also clearly see how much lower the
susceptible population is kept by pulse vaccination.
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Fig. 7.1: SEIR delay model with T = 1, Ti = 0.25,
i = 1..4, Ri = [1, 0.9, 1.1, 0.95]T .
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Fig. 7.2: SEIR delay model of Figure 7.1 on a smaller
scale.
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Fig. 7.3: SEIR delay model with T = 1, Ti = 0.25,
i = 1..4, Ri = [1, 0.9, 1.1, 1.05]T .
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Fig. 7.4: SEIR delay model of Figure 7.3 on a smaller
scale.

7.5.2 Application to Measles Modelling

Finally, we wish to see how our results compare to real-life data. The SEIR model with delay in
E that we have been using, System (7.21), is well-suited qualitatively to model measles: there is
permanent immunity, low death rate (in developed countries), and there are studies available on
the relevant parameters. Figure 7.9 shows typical population movement between compartments.

Table 7.1 lists common parameter values in the literature. From Anderson and May we have
that the incubation period is 9-12 days and the duration of infectiousness is 5-7 days [3]. We
need to pick an exact number for r (one of the limitations of our delay model) so we choose the
midpoint, r = 10.5/365 years (simulations in Chapter 5 showed that for small delays the results
will not be affected much). Another limitation is the exponential distribution of the recovery rate
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Fig. 7.5: SEIR delay model with T = 1, Ti = 0.25,
i = 1..4, Ri = [26, 1, 5, 12]T .
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Fig. 7.6: SEIR delay model of Figure 7.5 on a smaller
scale.
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Fig. 7.7: SEIR delay model in Figure 7.5 with pulse
vaccination.
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Fig. 7.8: SEIR delay model of Figure 7.7 on a smaller
scale.

γ that we have assumed - with such a small distribution of infectious period [3] we could be better
off with a fixed delay. With an exponential parameter, we could choose 1/γ = 6/365 ≈ 1/61 to
match the average duration of infectiousness from [3]. From Kalivianakis et.al., though, we have
that a common value in the literature is γ = 100 [43], so in our simulations we split the difference
between the two γ values and set γ = 80. Kalivianakis et.al. also state that commonly µ = 1/50
and βav ≈ 1800 [43], so we will choose our switching values βi accordingly.

In particular, we choose the values in Table 7.2. We assume that children and students
returning to school have skyrocketing contact rates, while the lower density of the winter holidays
lowers it again. Over the spring and summer we assume the combination of warm weather and,
later, low density, lower the rate again. Since children may pass on disease to their parents we
extrapolate to the general population.
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Fig. 7.9: Population movement in a measles compartmental model

Parameter Range
Incubation period 9-12 days
Infectious period 5-7 days
Recovery rate 100 years−1

Life expectancy 50 years
Average contact rate 1800 years−1

Table 7.1: Common measles parameter values.

Figure 7.10 gives empirical results for measles cases in Ontario between the years 1950 and
1960. The data for this figure was obtained from the International Infectious Disease Data Archive
[20].

We first attempt to find the solution to our switched SEIR delay model (without pulse vacci-
nation) with the above parameter values. Unfortunately we find our solution accumulates error
to the point of crashing. This instability is typically the result of the large difference in parameter
sizes, such as µ = 2× 10−2 while β = 1.8× 103. It seems that our choice of DDE solver may not
be able to handle the stiff problem well. While we would like to model the real-life situation as
closely as possible, we will instead try to scale down some of the larger values while still seeing if
we can approximate the shape of the graph in Figure 7.10. It is possible that our large value for γ,
together with the large β, is causing steep changes in the graph. Instead we try smaller values for
both γ and β: we take γ = 2 as before (although this implies an unusually long average recovery
period) and accordingly scale the βi in Table 7.2 by 1/40 as well. In future work we would like
to investigate other numerical DDE solvers to see if they are better suited to stiff problems.

Figure 7.11 shows the trajectory over 10 years of the infective population under the new
parameter assumptions.

Clearly the real-life data would have stochastic variation which our deterministic model cannot
match. Of more concern is that our model falls quickly into a near-periodic state, which does not

129



i βi Ti Reason
1 4000 0.3 Fall (start of school)
2 500 0.1 Rest over holidays
3 3100 0.1 Return to school
4 500 0.5 Weather improves, summer vacation

Table 7.2: Switching parameter values.
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Fig. 7.10: Measles cases in Ontario, 1950-1960.
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Fig. 7.11: SEIR model with physically realistic values.

allow for qualitative change in the incidence, contradicting empirical data in which the period of
the epidemics may change over time [21]; Earn explains that despite the variance we model in β,
over time all parameters (birth rate, life expectancy, etc.) will drift. These parameter changes
can often be expressed, through a change of variables, as a change in β. Hence our fixed periodic
choice for β will lead to much less erratic solutions than in real-life [21].

This section teaches us that while we may have a strong theoretical background for our model,
accurate parameter estimation is very important. A switching parameter may do a very good job
of modelling a time-varying parameter, but in any model it is difficult to take into account the
drift of parameters over time.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work we have strengthened the results of d’Onofrio in [17] for non-delay models to show
that if the time average R̄ < 1 the disease-free solution is uniformly asymptotically stable, and
we have shown that if R̄ > 1 the disease is permanent.

We have extended the results for bilinear incidence delay models of Gao et. al. in [27] to
determine that, for small delay, if R̄ < 1 in a general incidence model the disease will be erad-
icated. We have confirmed our bilinear incidence results with simulations. We have considered
the existence of periodic solutions to a pulse vaccination campaign model using existing theory
on periodic solutions. We were not able to sharpen our cutoffs for eradication or permanence.

We explained different types of time-varying total population size, and their effects on a pulse
vaccination solution. We explained why it is usually reasonable to assume a model with time-
varying total population has a normalized population, by showing how we can change variables to
a system where the compartments are fractions of the total population. The result also applied to
constant-population delay systems. When changing from standard incidence to bilinear incidence
in delay systems, we discussed a way to estimate the effect of time-varying N .

We extended the work of Stechlinski and Liu [52] on switched systems to include the decreased
susceptibles in a pulse vaccination model. We then extended the results to a switched system
with pulse vaccination and time delay, first with two subsystems and then to a general number
of subsystems. We supported our theory with simulation results, and tried to apply the model to
a real-life measles example. Additionally we looked at models with delay in other compartments
than E(t).
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8.2 Future Directions

In future work, we would like to find results for time-varying parameters. With pulse vaccination
we frequently find an eventual upper bound S̃(t) for the susceptible population S(t): even with a
constant contact rate β, then, we would like to be able to treat βS̃(t) as a time-varying coefficient
of I(t) and find threshold results based on the time-average of this coefficient. For non-delay
systems we can easily find such results. In Section 5.1, however, we tried to generalize the
periodic time-varying incidence results of d’Onofrio [17] to delay systems, but in the case of large
delays we had to revert to looking at the maximum of this coefficient. In future work we would
like to investigate whether this bound (a threshold value based on S̃

M ) can be tightened until it
is based on the period-average.

We would like to investigate optimum pulse vaccination timing. We are interested in the
optimum inter-pulse time, and also the best time to start the campaign; if we have an incidence
≤ λ(t)S̃(t), then we may be able to shift S̃(t) so the product with λ(t) is minimized.

Some of our results for systems with delay were approximations, which we would like to
improve upon; for example, when the delay was in the infective period (Section 7.4.1), we merely
dropped the delay term. We would like to analyze this model completely, including the delay.

We would like to investigate any stabilizing effect of the delay. In Section 7 we discuss
eradication of the disease, but permanence was more elusive, so we did not find an exact cutoff
between eradication and permanence that we would have in a non-delay model. We want to
investigate whether the delay may be helping to stabilize the disease-free equilibrium.

We would also like to look at more models with time-varying total populationN(t). In Chapter
6 we discuss such models, but most of the systems we analyze either have constant population
or are transformable (by switching to population fractions) into a constant-population model. If
we include disease deaths, for example, then we would have to take into account the size of N(t)
and we would like to include more simulations that do so. We would also like to look at models
with a constant immigration term in addition to births proportional to N .

Finally we would like to apply our methods to real-life data. In Section 7.5.2 we consider
measles epidemic data, and have some issues with our DDE solver; we would like to try other
solvers and to improve our results, and in particular to see if the approach of Earn is applicable
to our models [21]. We would also like to do the same with other diseases, such as those which
do not confer permanent immunity, and their relevant models.
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Appendix A

Existence of Periodic Solutions

In Chapter 5 we have so far been trying to look at the time-average of the coefficients of our
non-autonomous bounding equation for I �(t),

x
�(t) = (e−µr

λ(t− r)S̃(t− r))x(t− r)− (µ+ γ)x(t) (A.1)

An alternative method, used in many references such as (Cheng and Zhang [10], and Yan [79]), is
to look for the existence of periodic solutions to Equation (A.1). In this Appendix we follow the
methods of Yan [79] and compare our results to those thresholds obtained previously. First we
summarize the relevant assumptions and results from [79], then we apply the results to Equation
(A.1).

A.1 Summary of Yan, 2007 [79]

In [79] we consider a general impulsive delay differential equation with parameters η and ξ:

�
y
�(t) = h(t, y(t))− ηf(t, y(t− τ(t)), t ∈ R, t �= tk

y(t+
k
)− y(t−

k
) = ξIk(tk, y(tk − r(tk))), k ∈ Z

(A.2)

We make the following assumptions on the model [79]:

(i) η > 0, ξ ≥ 0

(ii) {tk}, k ∈ Z, is an increasing sequence of real numbers with limk→±∞ tk = ±∞
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(iii) h, f : R × R+ �→ R+ satisfy Caratheodory conditions (that is, h(t, y) and f(t, y) are
locally Lebesgue measurable in t for each fixed y and are continuous in y for each fixed t)
and are τ -periodic functions in t. Moreover, f(t, y) > 0 for all t and y > 0. r : R �→ R is a
locally bounded Lebesque measurable τ -periodic function.

(iv) There exist τ -periodic functions a1, a2 : R �→ R+ with
�
τ

0 a1(t)dt > 0 which are locally
bounded and Lebesgue measurable so that a1(t)y ≤ h(t, y) ≤ a2(t)y for all y > 0 and

limy→0+
h(t,y)

y
exists.

(v) Ik : R × R+ �→ R, k ∈ Z, satisfy Caratheodory conditions and are τ -periodic functions
in y and there exists an integer ρ such that Ik+ρ(tk+ρ, y) = Ik(tk, y), tk+ρ = tk + τ, k ∈ Z.
Moreover, Ik(t, 0) = 0 for all k ∈ Z.

(vi) p and q (to be used later) are positive bounded Lebesgue measurable τ -periodic functions
that are bounded away from zero.

We define the following values:

δ̄i = e
−

� τ
0 ai(t)dt, i = 1, 2, ᾱ =

δ̄2

1− δ̄2
, barβ =

1

1− δ̄1
, σ̄ =

ᾱ

β̄

As in [79] we define a Banach space E = {y(t) : R → R|y(t) is continuous in (tk, tk+1), y(t
+
k
)

and y(t−
k
) exist, y(t−

k
) = y(tk), k ∈ Z, and y(t+ τ) = y(t)} with the norm �y�τ = sup−≤t≤τ |y(t)|.

Define K = {y ∈ E|y(t) ≥ σ̄�y�τ , t ∈ [0, τ ]}, then K is a cone because

Yan et. al. define an operator T̄ : K → K by

(T̄ y)(t) = η

�
t+τ

t

Ḡ(t, s)f(s, y(s− r(s)))ds+ ξ

�

t≤tk<t+τ

G(t, tk)Ik(tk, y(tk − r)) (A.3)

where

Ḡ(t, s) =

�
e
−

� t
s

h(u,y(u))
y(u) du

��
1− e

−
� τ
0

h(u,y(u))
y(u) du

�−1

. (A.4)

They prove the following lemma for their system (A.2). This system is close to the equation
(A.1) we wish to study, besides the sign of the terms. We will first state the lemma given by Yan
et. al., then prove the analogue for equation (A.1).

Lemma 2. Assume that (i)− (v) hold. Then T̄ : K → K is well defined, and the existence of a
positive τ -periodic solution of (A.2) is equivalent to the existence of a non-zero fixed point of T
in K.
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We then define

f(y) = min0≤t≤τ

f(t,y)
p(t)y , f0 = limy→0+ f(y), f∞ = limy→∞ f(y),

I(y) = min0≤t≤τ,0≤k≤ρ

Ik(t,y)
q(t)y , I0 = limy→0+ I(y), I∞ = limy→∞ I(y),

P =
�
τ

0 p(t)dt, Q =
�

0≤tk≤τ
q(tk).

(A.5)

Then we have the following theorem:

Theorem 25. [79] Assume that (i)− (vi) hold and each of f0, f∞, I0, I∞ is not zero. Then there
exists � > 0 such that for all η, ξ satisfying ασ�(ηP + ξQ) > 1, (A.2) has no positive periodic
solution.

A.2 Application of [79] Methods to System 5.19

The linear autonomous bounding DDE we have for I
�(t), Equation (A.1), is similar to System

(A.2) except for the sign of the two terms. Yan et. al. note in their conclusion that the results
of their paper may be similarly applied to such an equation; [79] in this section we prove this
assertion and show that the above theorems apply in the special case of Equation (A.1). We note
also that the pulse vaccination in the model (5.19) does not affect I �(t) directly, but we continue
to use it in the proofs since it accommodates the discontinuities in I

�(t). Setting ξ = 0 recovers
equation (A.1).

We begin by noting that Equation (A.1) is of the form

�
y
�(t) = −h(t, y(t)) + ηf(t, y(t− τ(t)), t ∈ R, t �= tk

y(t+
k
)− y(t−

k
) = ξIk(tk, y(tk − r(tk))), k ∈ Z.

(A.6)

where h(t, y(t)) = (µ+γ)y(t), r(t) ≡ r, ηf(t, y(t− r)) = λ(t− r)S̃(t− r)y(t− r), and Ik(tk, y(tk−
r)) ≡ 0.

A.2.1 Theorems from [79] Applied to Equation (A.6)

We require the same assumptions (i)− (vi) for Equation (A.6); that is, for example, we still have
that h : R× R+ → R+, we just now have the negative sign “out front” in the DE.

Again we define a Banach space E = {y(t) : R → R|y(t) is continuous in (tk, tk+1), y(t
+
k
) and

y(t−
k
) exist, y(t+

k
) = y(tk), k ∈ Z, and y(t + τ) = y(t)} with the norm �y�τ = sup−τ≤t≤0|y(t)|.

Notice that we have “tweaked” the definition slightly to make y(t) everywhere continuous from
the right instead of the left. If the pulse vaccination does not directly affect the infected class in
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our SEIR model (Ik ≡ 0 so I(t) is continuous but its derivative has jump discontinuities) then
even in our more general equation (A.6) we can assume y(t) is continuous everywhere and it will
still apply in the case of interest.

For Equation (A.6) we will need to define Ḡ(t, s) and the other parameters slightly differently.
We show the derivation in order to explain.

We begin with the continuous part if (A.6). Rearranging:

y
�(t) = −h(t, y(t)) + ηf(t, y(t− r)), t ∈ R, t �= tk

y
�(t) +

h(t, y(t))

y(t)
y(t) = ηf(t, y(t− r))

d

dt

�
y(t)e

� t
0

h(u,y(u))
y(u) du

�
= ηf(t, y(t− r))e

� t
0

h(u,y(u))
y(u) du

As with a linear ODE, we want to integrate from t to t+ τ , so the left hand side will give us y(t)
explicitly and we can rearrange to isolate it. However y(t) has jump discontinuities that we must
take into account. Integrating the left hand side, we see that

�
t+τ

t

d

ds

�
y(s)e

� s
0

h(u,y(u))
y(u) du

�
ds

=

�
t
−
k

t

d

ds

�
y(s)e

� s
0 (h/y)du

�
ds+

�
t
−
k+1

tk

d

ds

�
y(s)e

� s
0 (h/y)du

�
ds+ . . .

. . .+

�
t+τ

tk+ρ−1

d

ds

�
y(s)e

� s
0 (h/y)du

�
ds

=

�
y(t−

k
)e

� t−
k

0 (h/y)du − y(t)e
� t
0 (h/y)du

�
+

�
y(t−

k+1)e
� t−

k+1
0 (h/y)du − y(tk)e

� tk
0 (h/y)du

�
+ . . .

. . .+
�
y(t+ τ)e

� t+τ
0 (h/y)du − y(tk+ρ−1)e

� tk+ρ−1
0 (h/y)du

�

= y(t+ τ)e
� t+τ
0 (h/y)du − y(t)e

� t
0 (h/y)du −

�

t<tk≤t+τ

e

� tk
0 (h/y)du

�
y(tk)− y(t−

k
)
�

since e

� t−
k

0 (h/y)du = e

� tk
0 (h/y)du. Hence we find

y(t+ τ)e
� t+τ
0 (h/y)du − y(t)e

� t
0 (h/y)du = η

�
t+τ

t

e

� s
0 (h/y)duf(s, y(s− r))ds

+
�

t<tk≤t+τ

e

� tk
0 (h/y)du

ξIk(tk, y(tk − r(tk)))
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Now we are interested in the possibility of periodic solutions, so we assume y(t) is τ -periodic.
That is, y(t+ τ) = y(t), so in the above we get

y(t)
�
e

� t+τ
0 (h/y)du − e

� t
0 (h/y)du

�
= η

�
t+τ

t

e

� s
0 (h/y)duf(s, y(s− r))ds+

�

t<tk≤t+τ

e

� tk
0 (h/y)du

ξIk(tk, y)

y(t)
�
e

� t
0 (h/y)du

� �
e

� τ
0 (h/y)du − 1

�
= η

�
t+τ

t

e

� s
0 (h/y)duf(s, y(s− r))ds+

�

t<tk≤t+τ

e

� tk
0 (h/y)du

ξIk(tk, y)

⇒ y(t) = η

�
t+τ

t

e

� s
0 (h/y)du

e

� t
0 (h/y)du

�
e

� τ
0 (h/y)du − 1

�f(s, y(s− r))ds

+
�

t<tk≤t+τ

e

� tk
0 (h/y)du

e

� t
0 (h/y)du

�
e

� τ
0 (h/y)du − 1

�ξIk(tk, y)

= η

�
t+τ

t

G(t, s)f(s, y(s− r))ds+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, y)

where we define

G(t, s) =

�
e

� s
t

h(u,y(u))
y(u) du

��
e

� τ
0

h(u,y(u))
y(u) du − 1

�−1

. (A.7)

Continuing to use a1(t) = µ+ γ = a2(t), by choosing

(δ1 = δ2 =) δ = e
+

� τ
0 a1(t)dt, α =

1

δ − 1
, β =

δ

δ − 1
, σ =

α

β

then similarly to before we have α ≤ G(t, s) ≤ β.

Define K = {y ∈ E|y(t) ≥ σ�y�τ , t ∈ [0, τ ]}, then K is again a cone. Similarly to Yan et. al.
we define an operator T : K → K by

(Ty)(t) = η

�
t+τ

t

G(t, s)f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, y(tk − r(tk))) (A.8)

Notice we have changed the position of the strict inequality in match our right-continuous general
system (A.6).

We now prove the Lemma 2 for System (A.6). Yan et. al. prove the case for System (A.2) in
[79] and the proof is nearly the same.

Proof. Assume (i)− (v) hold.

First we show that T : K → K is well-defined; that is, (Ty)(t) is defined for any y ∈ K and
(Ty)(t) ∈ K. Recall that K ⊂ E and any y ∈ E is τ -periodic.
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Because f is Lebesgue measurable in t (and in particular, given the special case (A.1) we have
f is piecewise continuous in t), the integral in the definition of (Ty)(t) may be evaluated for any
t. (Ty)(t) is continuous for t ∈ (tk, tk+1) and we have that (Ty)(t+

k
) and (Ty)(t−

k
) exist (just by

taking the limit of (Ty)(t) as t approaches tk from the right and left, respectively). We also have
(Ty)(t+

k
) = (Ty)(tk) (for Equation (A.1) we have tk = kτ so

(Ty)(t+
k
) = η

�
t
+
k +τ

t
+
k

G(t+
k
, s)f(s, y(s− r(s)))ds+ ξG(t+

k
, tk+1)Ik+1(tk+1, y(tk+1 − r))

= η

�
tk+τ

tk

G(tk, s)f(s, y(s− r(s)))ds+ ξG(tk, tk+1)Ik+1(tk+1, y(tk+1 − r)) = (Ty)(tk),

while the second term of (Ty)(t−
k
) is ξG(t−

k
, tk)Ik(tk, y(tk − r))).

As long as we can show τ -periodicity of Ty we will then have that Ty ∈ E for any y ∈ K. To
do so, we simply need to use the τ -periodicity of y, f , Ik, and G: take any y ∈ K, then for any
t ∈ R,

(Ty)(t+ τ) = η

�
t+2τ

t+τ

G(t+ τ, s)f(s, y(s− r(s)))ds+ ξ

�

t+τ<tk≤t+2τ

G(t+ τ, tk)Ik(tk, y(tk − r(tk)))

= η

�
t+τ

t

G(t+ τ, u+ τ)f(u+ τ, y(u+ τ − r(u+ τ)))du+ ξ

�

t<tk≤t+τ

G(t+ τ, tk)Ik(tk, y(tk − r))

= η

�
t+τ

t

G(t, u)f(u+ τ, y(u+ τ − r(u+ τ)))du+ ξ

�

t<tk≤t+τ

G(t+ τ, tk)Ik(tk, y(tk − r))

= η

�
t+τ

t

G(t, u)f(u, y(u− r(u)))du+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, y(tk − r(tk)))

= (Ty)(t).

To get the second line we just make the substitution u = s− τ ; to get the third we use the fact
that the integral in G(t, s) is from t to s and its integrand is τ -periodic; and to get the fourth
line we use the fact that f and y (if y ∈ K) are τ -periodic. For the Σ term we use the perodicity
of Ik and the tk in Assumption (v). Hence we have shown Ty ∈ E.

Now we look to show that Ty ∈ K; it remains to be shown that (Ty)(t) ≥ σ�Ty�τ for any
t ∈ [0, τ ], where σ = α/β as defined before. But for any y ∈ K, since 0 ≤ α ≤ G(t, s) for
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t, s ∈ [0, τ ], we have

(Ty)(t) ≥ α



η
�

t+τ

t

f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

Ik(tk, y(tk − r(tk)))





= σβ



η
�

t+τ

t

f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

Ik(tk, y(tk − r(tk)))





since G(t, s) ≤ β. For any t we have

|(Ty)(t)| ≤ β



η
�

t+τ

t

f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

Ik(tk, y(tk − r(tk)))





but since f and y ∈ K are τ−periodic we have that f(t, y(t−r(t))) is τ -periodic so its integral over
one period is constant. Similarly by Assumption (v) we have that

�
t<tk≤t+τ

Ik(tk, y(tk − r(tk)))
is constant because as soon as t = tk we no longer include Ik(tk, y(tk − r(tk))) in the sum, but
we do include Ik+ρ(tk+ρ, y(tk+ρ − r(tk+ρ))) = Ik(tk, y(tk+ρ − r(tk+ρ))) and tk+ρ = tk + τ so
y(tk+ρ − r(tk+ρ))) = y(tk − r(tk))).

So we have |(Ty)(t)| ≤ β

�
η
�
t+τ

t
f(s, y(s− r(s)))ds+ ξ

�
t<tk≤t+τ

Ik(tk, y(tk − r(tk)))
�
for

all t ∈ [0, τ ], and so �Ty�τ ≤ β

�
η
�
t+τ

t
f(s, y(s− r(s)))ds+ ξ

�
t<tk≤t+τ

Ik(tk, y(tk − r(tk)))
�
as

well. Thus we have

(Ty)(t) ≥ σβ



η
�

t+τ

t

f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

Ik(tk, y(tk − r(tk)))





≥ σ�Ty�τ

which proves that Ty ∈ K. Therefore T : K → K is well defined.

Finally we prove that there exists a positive τ -periodic solution of (A.6) ⇐⇒ there exists a
non-zero fixed point of T in K. Again we follow [79] very closely.

[⇒] Suppose that y(t) is a positive periodic solution of (A.6). Then, following our above
derivation of G(t, s) we see that (Ty)(t) = y(t).
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[⇐] Suppose y ∈ K and Ty = y with y �= 0. Then for any t �= tk,

y
�(t) = ((Ty)(t))�

=



η

�
t+τ

t

G(t, s)f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, y(tk − r(tk)))




�

=



e
−

� t
0 (h/y)duη

�
t+τ

t

e

� s
0 (h/y)du

�
e

� τ
0 (h/y)du − 1

�f(s, y(s− r(s)))ds+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, y(tk − r(tk)))




�

=
h(t, y(t))

y(t)
(Ty)(t) + η [G(t, t+ τ) · f(t+ τ, y(t+ τ − r(t+ τ)))−G(t, t) · f(t, y(t− r(t)))]

= h(t, y(t)) + η [G(t, t+ τ)−G(t, t)] · f(t, y(t− r(t)))

where the Σ term disappeared because it is constant in t as discussed earlier. We then note that

G(t, t+ τ)−G(t, t) =
e

� t+τ
t

h(u,y(u))
y(u) du

e

� τ
0

h(u,y(u))
y(u) du − 1

− e

� t
t

h(u,y(u))
y(u) du

e

� τ
0

h(u,y(u))
y(u) du − 1

=
e

� τ
0

h(u,y(u))
y(u) du

e

� τ
0

h(u,y(u))
y(u) du − 1

− 1

e

� τ
0

h(u,y(u))
y(u) du − 1

= 1.

So we see that for t �= tk, y�(t) = h(t, y(t)) + ηf(t, y(t − r(t))), satisfying the first part of (A.6).
At the impulse times, that is, for any t = tj ,

y(tj)− y(t−
j
) = (Ty)(tj)− (Ty)(t−

j
)

= η

�
tj+τ

tj

[G(tj , s)−G(t−
j
, s)]f(s, y(s− r(s)))ds

+ ξ




�

tj<tk≤tj+τ

G(tj , tk)Ik(tk, y(tk − r(tk)))−
�

t
−
j <tk≤t

−
j +τ

G(t−
j
, tk)Ik(tk, y(tk − r(tk)))





= ξ

�
G(tj , tj + τ)Ij+ρ(tj + τ, y(tj + τ − r(tj + τ)))−G(t−

j
, tj)Ij(tj , y(tj − r(tj)))

�

= ξ

�
G(tj , tj + τ)−G(t−

j
, tj)

�
Ij(tj , y(tj − r(tj))

= ξIj(tj , y(tj − r(tj))

The term with coefficient η is 0 since the integral in G(t, s) means G(tj , s) = G(t−
j
, s). The

quantity in brackets G(tj , tj + τ) −G(t−
j
, tj) = 1 as explained above, since G(tj , tj) = G(t−

j
, tj).
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So the second part of (A.6) is also satisfied. Therefore y is τ -periodic and we have shown it is a
solution of (A.6).

Therefore the existence of a positive periodic solution of (A.6) is equivalent to the existence
of a fixed point of T in K.

As in [79] we define a few more quantities:

f̄(y) = max0≤t≤τ

f(t,y)
p(t)y , Ī(y) = max0≤t≤τ,0≤k≤ρ

Ik(t,y)
q(t)y

where p, q : R → R+ satisfy Assumption (vi). Following [79] we define the quantities P =
�
τ

0 p(t)dt
and Q =

�
0≤tk<τ

q(tk), and the notations:

f
0 = limy→0+ sup f̄(y) f

∞ = limy→∞ sup f̄(y)
I
0 = limy→0+ sup Ī(y) I

∞ = limy→∞ sup Ī(y)

We restate and proof a non-existence proof given in [79]:

Theorem 26. Assume that Assumptions (i)− (vi) hold and that each of f0
, f

∞
, I

0
, I

∞ is finite.
Then there exists � > 0 such that for all η, ξ satisfying

� · β(ηP + ξQ) < 1, (A.9)

Equation (A.6) has no positive τ -periodic solution.

Proof. A similar theorem in which each of f0
, f

∞
, I

0
, I

∞ is nonzero is proved in [79]. We adapt
their proof in order to prove the above theorem.

Let �0 > max{f0
, f

∞
, I

0
, I

∞} < ∞. We note, for example, that

lim
y→0+

f(t, y)

p(t)y
= f

0
< �0 ⇒ f(t, y) ≤ �0p(t)y

for small enough y. The same result applies for Ik and for “large enough” y using the f
∞ limit.

Hence from the limit definitions of f0
, f

∞
, I

0
, I

∞ we see that there exist positive constants r1 < r2

such that

f(t, y) ≤ �0 · p(t)y Ik(t, y) ≤ �0 · q(t)y for y ∈ [0, r1], t ∈ [0, τ ], 0 ≤ k < ρ

f(t, y) ≤ �0 · p(t)y Ik(t, y) ≤ �0 · q(t)y for y ∈ [r2,∞), t ∈ [0, τ ], 0 ≤ k < ρ

We have bounds on f and Ik for small and large y; what remains is to consider y ∈ [r1, r2]. Since
this interval is closed, y ≥ r1 > 0 and p(t), q(t) are bounded away from 0, we define

� = max

�
�0, max

y∈[r1,r2],t∈[0,τ ]

f(t, y)

p(t)y
, max

y∈[r1,r2],t∈[0,τ ],0≤k<ρ

Ik(t, y)

q(t)y

�
.
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Then f(t, y) ≤ � · p(t)y, Ik(t, y) ≤ � · q(t)y for y ∈ R+ and for all t ∈ [0, τ ] with 0 ≤ k < ρ.

Under these conditions we assume the existence of a positive τ -periodic solution ỹ(t) and
look for a contradiction. From Lemma 2 we have that any postive τ -periodic solution of (A.6) is
equivalent to a fixed point of T : K → K, which means

ỹ(t) = (T ỹ)(t) = η

�
t+τ

t

G(t, s)f(s, ỹ(s− r(s)))ds+ ξ

�

t<tk≤t+τ

G(t, tk)Ik(tk, ỹ(tk − r(tk)))

≤ β



η
�

t+τ

t

f(s, ỹ(s− r(s)))ds+ ξ

�

t<tk≤t+τ

Ik(tk, ỹ(tk − r(tk)))





≤ β



η
�

t+τ

t

� · p(s)ỹ(s− r(s))ds+ ξ

�

t<tk≤t+τ

� · q(tk)y(tk − r(tk))





≤ �β�ỹ�τ



η
�

t+τ

t

p(s)ds+ ξ

�

t<tk≤t+τ

q(tk)





= �β�ỹ�τ [ηP + ξQ]

< �ỹ�τ

So for any t ∈ [0, τ ] we have ỹ(t) < �ỹ�τ , i.e. �ỹ�τ < �ỹ�τ . This contradiction proves that we
can’t have a positive τ -perodic solution ỹ(t) if all of f0

, f
∞
, I

0, and I
∞ are finite.

A.2.2 Application to SEIR model and Equation (A.1)

Equation (A.1) is of the form (A.6) with

r(t) ≡ r

ηf(t, y(t− r(t))) = e
−µr

λ(t− r)S̃(t− r)y(t− r))

h(t, y(t)) = (µ+ γ)y(t)

tk = kτ

Ik(kτ, y(kτ − r)) ≡ 0.

The impulsive behaviour in this model affects the susceptible population and leads to the factor
of S̃(t); however, while it causes discontinuity in the time derivative of the infected population,
the impulses do not affect the continuity of the population itself. That is, y(t) is continuous
everywhere. Since Ik ≡ 0 for all k ∈ Z, we might as well set ξ = 0 for this model for brevity.
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Lemma 2 applies to System (A.1) because assumptions (i)− (vi) are satisfied in this special
case:

(i) η > 0, ξ ≥ 0: η is assumed to be a constant included in λ(t).

(ii) Set tk = kτ ∈ R for k ∈ Z. Then {tk} is an increasing sequence and limk→±∞ tk = ±∞.

(iii) h is constant and therefore Lebesgue measurable and τ -periodic in t, and h is linear and
therefore continuous in y for each fixed t. f(t, y(t− r)) = e

−µr
λ(t− r)S̃(t− r)y(t− r) > 0

for y > 0 and is continuous in y for fixed t; f is discontinuous but Lebesgue measurable in t

since S̃ is piecewise continuous in t. r(t) ≡ r is clearly Lebesgue measurable and τ -periodic
since it is constant.

(iv) If we set a1(t) ≡ µ + γ ≡ a2(t) then a1(t)y ≤ h(t, y) ≤ a2(t)y for all y since we in
fact have equality. These constant functions a1, a2 are therefore τ -periodic and we have
limy→0+

h(t,y)
y

= limy→0+(µ+ γ) = µ+ γ.

(v) Ik(t, y) ≡ 0 for all k ∈ Z so we have that the {Ik} satisfy Caratheodory conditions
trivially. If we take ρ = 1 then Ik+ρ(tk+ρ, y) = Ik(tk, y) = 0, and tk+ρ = tk+1 = (k + 1)τ =
tk + τ, k ∈ Z.

(vi) Take p(t) = 1
η
e
−µr

λ(t− r)S̃(t− r) and q(t) ≡ q > 0, then p and q are positive bounded
Lebesgue measurable τ -periodic functions that are bounded away from zero (assuming
λ(t) > 0 for all t).

For (A.1) we have
f(t, y

p(t)y
=

1

η
· e

−µr
λ(t− r)S̃(t− r)

p(t)
.

Take p(t) = c · 1
η
e
−µr

λ(t− r)S̃(t− r) for some constant c and we get f̄ = 1/c is constant. Then

f
0 = f

∞ = 1/c.

Since Ik ≡ 0 we have for any strictly positive q(t) and y(t) that Ī = 0
q(t)y = 0, so I

0 = I
∞ = 0.

Therefore we have that f0
, f

∞
, I

0
, I

∞ are all finite. By Theorem 26 we have that if

� · β(ηP + ξQ) < 1, (A.10)

where

� = max

�
�0, max

y∈[r1,r2],t∈[0,τ ]

f(t, y)

p(t)y
, max

y∈[r1,r2],t∈[0,τ ],0≤k<ρ

Ik(t, y)

q(t)y

�

= max

�
�0,

1

c
, 0

�
>

1

c
,
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then we cannot have a positive periodic solution to (A.1).

In particular for this system (A.1), P =
�
τ

0
c

η
e
−µr

λ(t− r)S̃(t− r)dt and since ξ = 0, condition
(A.10) tells us that we need

1

c
· β(η

�
τ

0

c

η
e
−µr

λ(t− r)S̃(t− r)dt) < 1

⇒ β

�
τ

0
e
−µr

λ(t− r)S̃(t− r)dt < 1 (A.11)

Recall that

β = max
t,s∈[0,τ ]

G(t, s) =
e
(µ+γ)τ

e(µ+γ)τ − 1
=

1

1− e−(µ+γ)τ
;

that is, condition A.11 means that we have the condition

Rper :=

�
τ

0

e
−µr

λ(t− r)S̃(t− r)

1− e−(µ+γ)τ
dt < 1 (A.12)

A.3 Comparison of new threshold Rper to R∗

At the beginning of this chapter we discussed the threshold value R∗ defined by Gao et. al. in
[27]. For a general incidence rate g(t, I) ≤ λ(t)I(t) we have the corresponding value

R∗ =
e
−µr maxt∈[0,τ ] λ(t)S̃(t)

µ+ γ
. (A.13)

For g(I, t) = βI we have maxt∈[0,τ ] λ(t)S̃(t) = βS̃
M so we recover the R∗ from [27]. For brevity

we let (λS̃)M := maxt∈[0,τ ]λ(t)S̃(t).

How does our new threshold Rper compare to R∗? We would hope that this threshold below
which periodic solutions cannot occur would help us to determine when the disease will be eradi-
cated. Although we do not know for certain that the absence of a periodic solution for an infected
population necessitates the eradication of the infection, in this section we shall unfortunately see
that such theory is unnecessary. Even if it were true, we will show that Rper > R∗

> R̄, so
Rper < 1 ⇒ R∗

< 1.

In order to show this, we consider the possibility that Rper < R∗. If this case is true, we have

�
τ

0 e
−µr

λ(t− r)S̃(t− r)dt

1− e−(µ+γ)τ
<

e
−µr(λS̃)M

µ+ γ
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Dividing both sides by τ and denoting by (λS̃)av the average of λ(t)S̃(t) over one period τ ,

(λS̃)av
1− e−(µ+γ)τ

<
(λS̃)M

(µ+ γ)τ

⇒ (µ+ γ)τ

1− e−(µ+γ)τ
<

(λS̃)M

(λS̃)av
(A.14)

The right-hand side is independent of γ. We consider the left-hand side as a function of γ,
F (γ) = (µ+ γ)τ/(1− e

−(µ+γ)τ ). Taking the derivative,

F
�(γ) =

τ(1− e
−(µ+γ)τ )− (+τe

−(µ+γ)τ )(µ+ γ)τ

(1− e−(µ+γ)τ )2

=
τ
�
1− e

−(µ+γ)τ − (µ+ γ)τe−(µ+γ)τ
�

(1− e−(µ+γ)τ )2

F
�(γ) = 0 only when the quantity in square brackets is zero. Considering the function G(x) =

1 − e
−x − xe

−x, we see that G(x) = 0 only if 1 − (1 + x)e−x = 0 ⇒ e
x = 1 + x ⇒ x = 0. For

x > 0, ex > 1 + x so G(x) > 0 ∀x > 0. Since all of our parameters in our epidemic model are
nonnegative, (µ + γ)τ ≥ 0 always. That is, F (γ) is always increasing in γ. If we are ever to
satisfy the condition (A.14), it must certainly be satisfied when γ = 0.

We use the parameters from our simulations in Table 5.1 in Section 5.2.3 and a constant
contact rate λ(t) ≡ β (here β is the contact rate from earlier sections, not the value maxG(t, s)).
We find

(µ+γ)τ
1−e−(µ+γ)τ = 2.3244, (λS̃)M

(λS̃)av
= 1.1108

These values were for τ = 1, a physically rather small interpulse period of one year. Setting τ = 4
(for example for a mass measles vaccination campaign every 4 years) we get

(µ+γ)τ
1−e−(µ+γ)τ = 8.0597, (λS̃)M

(λS̃)av
= 1.1099

Suppose instead we are vaccinating a large proportion p = 0.80 of the susceptible population with
each vaccination campaign, and suppose that the campaigns are frequent, that is τ = 0.5 years.
Then we find

(µ+γ)τ
1−e−(µ+γ)τ = 1.5867, (λS̃)M

(λS̃)av
= 1.6653

A strong but infrequent vaccination campaign on its own, however, is not enough (τ = 1, p =
0.8 ⇒ LHS = 2.3244, RHS = 1.6640). We also note that for a recovery period of one week
(γ = 365/7) with the other parameters as in Table 5.1 we have the right-hand side = 1.1108
still (it is independent of γ), while the LHS = 52.1571. So it seems unlikely that for a physical
campaign, with a recovery period on an order less than years, that we will ever have

(µ+ γ)τ

1− e−(µ+γ)τ
<

(λS̃)M

(λS̃)av
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as we require for our new bound Rper to be an improvement on R∗.
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