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Abstract

Several decades of physiology, imaging and psychophysics research on attention has
generated an enormous amount of data describing myriad forms of attentional effects. A
similar breadth of theoretical models have been proposed that attempt to explain these
effects in varying amounts of detail. However, there remains a need for neurally detailed
mechanistic models of attention that connect more directly with various kinds of experi-
mental data – behavioural, psychophysical, neurophysiological, and neuroanatomical – and
that provide experimentally testable predictions.

Research has been conducted that aims to identify neurally consistent principles that
underlie selective attentional processing in cortex. The research specifically focuses on
describing the functional mechanisms of attentional routing in a large-scale hierarchical
model, and demonstrating the biological plausibility of the model by presenting a spiking
neuron implementation that can account for a variety of attentional effects.

The thesis begins by discussing several significant physiological effects of attention, and
prominent brain areas involved in selective attention, which provide strong constraints
for developing a model of attentional processing in cortex. Several prominent models of
attention are then discussed, from which a set of common limitations in existing models
is assembled that need to be addressed by the proposed model. One central limitation is
that, for many existing models, it remains to be demonstrated that their computations
can be plausibly performed in spiking neurons. Further, few models address attentional
effects for more than a single neuron or single cortical area. And finally, few are able to
account for different forms of attentional modulation in a single detailed model. These and
other limitations are addressed by the Attentional Routing Circuit (ARC) proposed in this
thesis.

The presentation of the ARC begins with the proposal of a high-level mathematical
model for selective routing in the visual hierarchy. The mathematical model is used to
demonstrate that the suggested mechanisms allow for scale- and position-invariant repre-
sentations of attended stimuli to be formed, and provides a functional context for inter-
preting detailed physiological effects.

To evaluate the model’s biological plausibility, the Neural Engineering Framework
(NEF) is used to implement the ARC as a detailed spiking neuron model. Simulation
results are then presented which demonstrate that selective routing can be performed
efficiently in spiking neurons in a way that is consistent with the mathematical model.
The neural circuitry for computing and applying attentional control signals in the ARC is
then mapped on to neural populations in specific cortical laminae using known anatomical
interlaminar and interareal connections to support the plausibility of its cortical imple-
mentation.
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The model is then tested for its ability to account for several forms of attentional mod-
ulation that have been reported in neurophysiological experiments. Three experiments of
attention in macaque are simulated using the ARC, and for each of these experiments, the
model is shown to be quantitatively consistent with measured data. Specifically, a study by
Womelsdorf et al. (2008) demonstrates that spatial shifts of attention result in a shifting
and shrinking of receptive fields depending on the target’s position. An experiment by
Treue and Martinez-Trujllo (1999) reports that attentional shifts between receptive field
stimuli produce a multiplicative scaling of responses, but do not affect the neural tuning
sensitivity. Finally, a study by Lee and Maunsell (2010) demonstrates that attentional
shifts result in a multiplicative scaling of neural contrast-response functions that is con-
sistent with a response-gain effect. The model accounts for each of these experimentally
observed attentional effects using a single mechanism for selectively processing attended
stimuli.

In conclusion, it is suggested that the ARC is distinguished from previous models
by providing a unifying interpretation of attentional effects at the level of single cells,
neural populations, cortical areas, and over the bulk of the visual hierarchy. As well,
there are several advantages of the ARC over previous models, including: (1) scalability to
larger implementations without affecting the model’s principles; (2) a significant increase
in biological plausibility; (3) the ability to account for experimental results at multiple
levels of analysis; (4) a detailed description of the model’s anatomical substrate; (5) the
ability to perform selective routing while preserving biological detail; and (6) generating a
variety of experimentally testable predictions.
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Chapter 1

Introduction to Visual Attention

This introductory chapter provides a high level overview of visuospatial attention and dis-
cusses some general psychophysical, physiological, anatomical, and computational findings
that together have contributed to our understanding of the mechanisms by which atten-
tional routing is performed in cortex. The research presented here incorporates results from
studies of these areas, which serve as constraints for constructing a biologically plausible
mechanistic model of how attended information is selectively processed in the brain.

1.1 The Problem of Visual Attention

William James famously wrote, “Every one knows what attention is. It is the taking pos-
session by the mind, in clear and vivid form, of one out of what seem several simultaneously
possible objects or trains of thought. [...] It implies withdrawal from some things in or-
der to deal effectively with others...” [emphasis added] [95]. This oft-quoted statement
efficaciously highlights that attention need not be considered as a monolithic process, but
rather as being composed of at least three key subcomponents: the selection of a particu-
lar stimulus, the selective processing of that target, and the inhibition of other irrelevant
stimuli. The research presented in this thesis addresses the second and third of these atten-
tional components, that of selectively processing attended visual information and inhibiting
irrelevant information in cortex so that it may gain access to further processing.

The process of selecting an attention target can be driven by exogenous or endogenous
factors, or a combination thereof. Exogenous selection draws attention to salient targets in
the environment based on the conspicuity or salience of their features, such as luminance
onset, colour, orientation, and motion [269]. In this thesis, the term “feature” is used to
refer to a particular stimulus dimension to which a neuron may respond, such as orientation,
motion direction, or colour. The term “feature value” then refers to a particular measure of
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a given stimulus dimension, such as a contrast value of 50% or an orientation of 90◦. Such
targets are thought to be salient due to their features and feature values being sufficiently
different from those of other nearby stimuli, so as to stand out among their surroundings.
Conversely, endogenous selection is a process in which volitional control has a greater
influence, with selection being goal-driven, as in visual search tasks, and generally involves
a slower and more sustained attentional state [277].

Once the attentional target has been determined, either through an exogenous or en-
dogenous selection process, attention may then be directed to the target overtly with eye
movements, or covertly, without eye movements. Covert attention can be thought of as
looking at something out of the corner of one’s eye, where the eyes are directed to a separate
location than that to which one is paying attention.

The third component of attention is closely related to the selective processing com-
ponent, and involves minimizing the amount of extraneous information that is processed,
so that more neuronal resources can be devoted to processing the target. Each second,
between one million and one hundred million bits of information fall on the retina and are
passed through the optic nerve [102]. This considerable volume of information far exceeds
the processing capacity of the visual system in subsequent striate and extra-striate cortical
regions. The selective processing of relevant stimuli and concomitant suppression of irrel-
evant stimuli are inextricably intertwined, and together allow the brain to circumvent its
resource limitations.

For both exogenous and endogenous selection, as well as for overt and covert shifts,
attention may be focused on an object (object-based attention), on visual features such as
colour, orientation, and motion (feature-based attention), or on a spatial location (spatial
attention). The model of selective attentional processing proposed in this thesis, the Atten-
tional Routing Circuit (ARC), addresses the problem of selectively processing attentional
targets that have been determined by endogenous selection mechanisms and attended to
either overtly or covertly.

1.2 Motivation and Objectives

At any one point in time, the amount of information falling on the retinae far exceeds that
which can be processed by the visual system. Attention can be functionally characterized
as filtering out the extraneous information so that the information relevant to the task
at hand may be processed as it traverses the hierarchy of visual brain areas, without
interference from irrelevant and distracting information. Given the dense and redundant
connectivity between neurons in visual areas, the problem of selective attentional processing
can be thought of as a problem of selecting one out of many paths or routes through which
information can travel. Although the past two decades have seen numerous proposals of
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how this may occur in cortex, what is lacking is a single model that performs the necessary
functions of selective routing, and does so in a way that is anatomically and physiologically
plausible.

The routing problem can be contextualized as being part of a larger question, namely
how does the brain recognize objects in a natural environment when they can appear at
different locations, under different lighting, and with different sizes? Consider the case
of looking at a butterfly and attempting to identify its species based on its appearance –
When viewed from a distance of 5 metres, the patterns formed on the retina are drastically
different than those formed when the same butterfly is viewed from a distance of 1 metre.
A similar problem arises when directing the eyes to the side of the butterfly as compared
with looking directly at it. That we can recognize it as being a butterfly invariant to its
spatial position and size, and possibly identify its species, is a feat that computer vision
research has met with limited success, especially when compared to human performance.

The neural realization of attentional functions can be observed in myriad forms and at
different levels of analysis, from increases in neurotransmitters such as acetylcholine [85] to
improved reaction times in detecting changes at an attended location [183]. Not surpris-
ingly, a breadth of approaches have been proposed by theoreticians attempting to define
the conditions and mechanisms that give rise to these phenomena. Unfortunately, few of
the models based on these theoretical approaches address more than one level of empirical
support. Nevertheless, computational modelling, in concert with experimental work, offers
a powerful method for furthering our understanding of attentional function. Models can,
in principle, integrate different levels of abstraction, addressing the influence of extracel-
lular chemicals on neuronal responses [145], the temporal characteristics of sequences of
action potentials [39, 163], changes in firing rates of single cells or populations [188, 204],
changes in tuning curve profiles for a given feature [188, 189, 245], modulations at the level
of cortical areas [168, 218], and psychophysical effects [2, 30, 82].

In short, theoretical models can approach the problem from a functional and imple-
mentational perspective simultaneously, aiming to specify the computations that might
be performed, and how they might be implemented, in order for the system to exhibit
selective processing. Thus, theoretical models have the potential to bridge the gaps that
exist between the many levels of empirical description currently available. Unfortunately,
most models currently on offer for attentional phenomena do not do so.

The approach taken in this thesis is to study the anatomical and physiological proper-
ties of areas known to be involved in attentive processing, and to then use this information
to formulate a model that is not only capable of performing attentional tasks, but does
so within the constraints of biology. A central assumption of the work presented here is
that scale- and position-invariant recognition ability is subserved by routing attended in-
formation to an object-centred reference frame in cortex. Here, an object-centred reference
frame refers a representation of an object that is formed in higher level cortex, invariant
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to its retinal size and position, and in a manner that is relatively independent of the visual
information surrounding that object. It is presumed that in each level of visual cortex,
local spatial relationships of attended stimuli are maintained, such that the relative spatial
topography of the object formed on the retina can be extracted at each cortical level.

Overall, this thesis aims to identify general principles of how an attentional system
can dynamically modulate the manner in which visual information is processed in cortex.
These principles propose that the same routing mechanism exists in each area of the visual
hierarchy, and throughout the extent of each area. The principles are also largely indepen-
dent of changes in its parameters, such as the neuron model being used (e.g. LIF, aLIF,
Hodgkin-Huxley), the number of neurons, connectivity between areas, or stimulus features
being represented.

The model derived from these principles is intended to be sufficiently general that it is
able to account for results gathered using numerous experimental protocols, without need
for significant alterations. In designing the model, attention has been paid to minimizing
the number of free parameters. In models having many free parameters, it is increasingly
possible for the model to match experimental data by sufficiently adjusting parameters,
although doing so limits the model’s explanatory and predictive power for other data and
experiments [228]. However, while preserving its generality, the model is also intended to be
sufficiently specific in detail to quantitatively match experimental data. Importantly, the
model itself is specified at the level of individual spiking neurons and neural connectivity.
Several examples are presented later in the thesis.

There are several benefits of first modelling the problem at the computational level.
First, specifying the model as a functional mathematical abstraction provides a clear de-
scription of the model’s components and their interactions. This allows the mechanism to
be contextualized in a large-scale implementation and to demonstrate that it is capable of
performing the functions that are required for attentional routing before introducing the
additional complexity that comes with a neural model. However, there are many possible
ways in which the same function could also be performed, although some of them may be
implausible due to the limited processing and representational capacity of neurons. For
instance, selective routing could be performed by providing each neuron in each visual area
with a unique signal that indicates the part of their receptive field from which they should
selectively process visual signals. Such an arrangement however, suffers from a combina-
torial explosion in the number of unique control signals required and the vast connectivity
from control neurons to visually responsive neurons, which quickly becomes implausible.

By subsequently implementing the abstracted model in spiking neurons it is possible to
assess the neural feasibility of the mechanisms. If it can be successfully demonstrated that
the abstracted model produces the expected effects, and can be plausibly implemented
within biological constraints, then simulations with the spiking model can be conducted
to verify whether the proposed mechanisms reproduce the phenomena to be explained.
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The inherent neuronal noise and variability of spiking neurons yield results that vary from
trial to trial, and repeating the trials for different neurons operating on the same general
principles, allows the proposed mechanisms to be tested in numerous simulated animals.
Across these levels of abstraction, the model can then be qualitatively assessed based on
its behaviour, and quantitatively assessed against specific experimental data. This second
kind of assessment is of particular significance, since if the model is shown to be consistent
with experimental data, then it is possible for predictions to be made. Such predictions may
suggest ways in which details of the proposed mechanisms may be tested experimentally,
or the expected distribution of effects that would be observed if recordings were made from
additional neurons and animals. As well, such a model may also be used to predict other
properties and characteristics of neurons that were not measured.

The following section introduces some of the forms of attentional modulation that have
been observed, many of which may be consistent with the model. Presently, the majority
of these observations seem consistent with the model, though not all have been explicitly
simulated in this thesis (see Chapter 6 for details).

1.3 Experimental Observations of Attentional Effects

Much of our understanding of visual attention comes from combining the findings of
psychophysical, neurophysiological and computational modelling research. Psychophysi-
cal studies assess the functional capabilities of the visual system typically by measuring
changes in subjects’ reaction times or in their ability to discriminate stimuli in an attention
demanding task. Neurophysiological studies examine how a subject’s attentional state pro-
duces changes in the spiking activity, neuronal tuning or activation of different brain areas.
Finally, computational modelling studies seek to theorize the underlying mechanisms that
may produce the behaviourally or physiologically recorded phenomena, formulate theories
that integrate the characteristics of neural activity and behavioural responses, and use
these findings to model these cortical and subcortical visual areas so as to make testable
behavioural predictions [267]. Currently, most models of attention address the problem
by attempting to reproduce high level psychophysical data, or by attempting to reproduce
physiological data using abstract or mathematical models that lack sufficient biological
detail.

1.3.1 Behavioural and Cognitive Effects

Around the middle of the 20th century, two theories of attention were dominant: early and
late selection models. Early selection models (e.g. [24, 248]) theorize that the recognition
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mechanism can only operate on one stimulus at a time, and thus unattended visual in-
formation is attenuated before its contents can be further processed. A single stimulus is
selected for further processing so that under focused attention, the limited capacity channel
can operate specifically on the selected information. Since the attentional selection is said
to precede recognition, such models are termed early selection models.

Late selection models (e.g. Deutsch and Deutsch [47]) on the other hand, theorize that
recognition has an unlimited capacity and all sensory information is processed preatten-
tively in parallel. Attention then serves to allow a subset of the processed information to
gain access to memory and consciousness. Both models suggest a bottleneck in processing
resources, either as a perceptual limitation (early selection), or as a response limitation
(late selection). Since these proposals were originally made, numerous theories of attention
have been presented that are more biologically detailed. These are largely in agreement
with the early selection theory, and are discussed in Chapter 3.

To test these ideas, two experimental paradigms have been commonly used in psy-
chophysics studies of visuospatial attention, namely visual search and spatial cueing. In
visual search tasks, subjects are instructed to search for a target stimulus placed among
distractors. In a typical task, the set size (number of distractors) is varied across trials,
and the subject’s reaction time (RT) is measured as a function of set size. After plot-
ting RT versus set size, the search is said to be efficient if the slope is shallow (i.e. slope
< 10ms/item), while inefficient searches are characterized by steep slopes (i.e. slope >
10 ms/item) [269]. Early on, it was suggested that efficient searches were indicative of
parallel, preattentive processing, while inefficient searches reflected a serial, attentive pro-
cessing [54]. However, this theory is now considered less tenable, since steep RT slopes may
instead reflect a parallel process with limited capacity; i.e. multiple display items may be
searched in parallel, but due to capacity limitations, searching through larger sets requires
more time [52].

In spatial cueing tasks [183], a stimulus cue is presented in the display prior to target
onset, and may either validly or invalidly predict the target’s location. The cue can take a
variety of forms, such as a peripheral flicker, arrow or word, and performance is typically
measured as reaction time, discrimination accuracy, localization accuracy, or identification
accuracy [270]. Cues and targets are typically displayed for short intervals (≤ 200 ms)
to prevent covert attention shifts or eye movements to the cued location [53]. Subjects
typically respond more quickly on trials with valid cues, while subjects with attentional
deficits or lesions can exhibit significantly different behaviour.

At the behavioural level more generally, attending to a stimulus has been shown to
produce perceptual benefits, including increases in spatial acuity [276], improved contrast
sensitivity [29], and improved reaction times to events occurring at an attended loca-
tion [183]. While the model presented here reproduces some of these effects, it is pre-
dominately focused on attention at the neuronal and population level, so the discussion
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primarily addresses attentional effects at the physiological level.

1.3.2 Physiological Effects

In cortical and subcortical areas, electrophysiology studies have demonstrated numerous
ways in which attending to a spatial location or non-spatial feature can modulate neuronal
responses. Measuring the modulation is typically performed by first locating the recorded
neuron’s receptive field and then determining the cell’s preferred stimulus. The receptive
field is the region of the retina within which visual stimuli can influence the firing of the
cell. The preferred stimulus is the stimulus to which the cell responds most strongly. The
neuron’s response to variations of that stimulus is then recorded. The animal typically then
covertly directs their attention to a stimulus inside the receptive field or to one outside of
the receptive field. In higher cortical areas such as MT, V4 and IT, the large receptive
field sizes allow multiple stimuli to be placed inside the receptive field, and attention may
be directed to either of the stimuli inside the receptive field or outside.

Some studies have examined receptive field modulation by recording neural responses
when attention is directed to one of two stimuli placed within the recorded cell’s receptive
field, or to a target outside the receptive field, and examined how responses are affected by
the stimulus configuration and attentional target. Reynolds et al. [188] found that when a
probe and reference stimuli were placed symmetrically inside a V2 or V4 neuron’s receptive
feld and attention was covertly directed to a stimulus outside the receptive field, the cell’s
activity was driven by both stimuli, yielding a response somewhere between that elicited
by each stimuli appearing alone. When attention was directed to one of the stimuli within
the receptive field however, the cell’s response was similar to that elicited by the stimulus
being presented alone, with the unattended stimulus having a lesser impact on its firing
rate, suggesting that the neuron is selectively processing the attended stimulus. Recording
from V4 and IT, Moran and Desimone [147] used a match-to-sample task in which they had
monkeys attend to coloured bars at one location while ignoring a stimulus at another. When
both stimuli were within the recorded cell’s receptive field, the neuron responded strongly
when attention was directed to the preferred stimulus, but its response was significantly
reduced when the preferred stimulus was positioned at the unattended position. With
two stimuli in the receptive field, responses were primarily determined by the feature
values of the attended stimulus, being similar to that elicited by the attended stimulus
being presented alone. This was taken to suggest that attention involves a suppression
of unattended information, rather than an enhancement of attended information as is
suggested by some models [188, 189]. Other studies have reported consistent effects using
similar approaches in ventral stream areas V2 and V4 [118], as well as dorsal stream areas
MT and MST [186, 246, 247]

Attention also modulates the spatial properties of receptive fields. As shown by Con-
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nor et al. [36] and Womelsdorf et al. [272], when attention is directed toward a stimulus,
the effective portion of a neuron’s receptive field may shift toward the attended stimulus.
Receptive field shifts enable the neuron to selectively process information near the atten-
tional target, with the non-attended object contributing less to its activity, and thereby
allow attended information to be routed to subsequent areas for further processing. These
effects have been reported in both ventral and dorsal areas, where the Connor et al. [36]
study examined neurons in V4, while Womelsdorf et al. [272] examined neurons in MT.
The results from both studies closely match each other, suggesting that attention may
work in similar ways in both ventral and dorsal stream areas.

Neurons in more peripheral areas such as LGN and V1 have smaller receptive fields,
thereby making it difficult to place multiple stimuli inside their RF, and thus more difficult
to quantify changes in the size and position of the neuron’s RF [118]. However, several
studies have observed changes in firing rates of LGN [132] and V1 [149, 196] neurons when
an animal covertly attends to a stimulus inside the cell’s RF versus away from it, despite
the same stimulus falling in its RF. Other studies have reported only weak modulation in
V1 [131] or no modulation [118, 147], although the experimental methods used in these
studies vary considerably. Consequently, the observation of attentional modulation, or lack
thereof, may be related to the difficulty of the task being performed, where fine detailed
information encoded in lower areas may or may not be required for a particular task.

The observation of weaker attentional modulation in V1 than in higher areas [26] has led
to the idea that attentional modulation in V1 may be driven by attentional feedback signals
from higher extrastriate areas. This hypothesis is supported by studies of attentional effects
in ventral stream areas which have found that the timing at which attentional modulation
occurs, as well as the strength and prevalence of the modulation varies considerably between
areas. Recording laminar event-related potentials (ERPs) in V1, V2, V4, IT, and superior
temporal sulcus, Mehta and colleagues [138] found that attentional modulation of higher
cortical areas precedes that of earlier areas. Additionally, they found more powerful and
earlier effects occurring in V4 100-300 ms after stimulus onset, with smaller effects occurring
in V2 during the same period, and later in V1. Similar results have been reported in a study
by Buffalo and colleagues [26] that measured single cell activity in V1, V2 and V4, which
found that attention modulates the responses of neurons in higher areas earlier than in lower
areas. They also report that the proportion of recorded cells showing modulation is greater
in higher areas, and that there is a significantly stronger modulation of activity in higher
areas than in lower areas. In other electrophysiology studies, attentional modulation has
been observed to occur in TE with a latency of ∼200 ms [32], while attentional modulation
in V1 has a longer latency of ∼235 ms [196] or more [26].

Consistent with these reports of modulation in ventral stream areas, Herrington and
Assad [86] found that attentional effects appear significantly earlier in dorsal areas LIP
than in MT, with which it is connected. Their study had monkeys covertly shift attention
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between two peripheral stimuli that were validly cued 85% of the time, and detect a short
increase at either dot patch. It was found that the onset of attentional modulation was
∼ 60 ms earlier in LIP than in MT, with approximately 85% of LIP neurons showing an
increase in the attentional index when attending to the receptive field stimulus compared
with roughly 76% in MT. Further, the strength of modulation was greater in LIP than MT
by a factor of ∼3.

With a single stimulus presented inside a neuron’s receptive field, the main attentional
effect of directing attention to the spatial position of that stimulus is to increase the
neuron’s response to all stimulus values, both preferred and non-preferred [43]. Such effects
have been reported for orientation tuning in V4 [131] and motion direction in MT and
MST [245], where the responses proportionally increase for all orientations and directions
respectively. This form of modulation is referred to as “response gain” because it affects
the overall gain or firing rate of the neuron across different feature values (Figure 1.1(a)).

Other studies have investigated the influence of stimulus contrast on attentional modu-
lation, finding that the amount of gain is greater when attention is directed to low contrast
stimuli than to high contrast stimuli [125, 190]. This form of modulation is referred to as
“contrast gain” because it provides a similar effect as proportionally increasing the contrast
of the attended stimulus (Figure 1.1(b)).

Contrast (%) Contrast (%)

0

1

Re
sp

on
se

0 100 0 100

-

Contrast (%) Contrast (%)

0

1

Re
sp

on
se

0 100 0 100

-

Figure 1.1: Effect of stimulus contrast on neuronal response. The x axis indicates contrast
(%) on a logarithmic scale and the y axis indicates neural response normalized to the range
[0, 1]. (a) Response gain, where the neuron’s activity is modulated by a similar proportion
for all contrasts. (b) Contrast gain, where responses to low and intermediate contrast
stimuli are scaled by a larger amount than for high contrast stimuli, resulting in a leftward
shift of the contrast-response curve. (Adapted from [112]).

Under which conditions neurons exhibit a pure response gain or contrast gain remains
debated in the literature for several reasons. First, detecting changes in low contrast
stimuli requires a greater attentional vigilance than for high contrast stimuli and may
artificially inflate the effect for low contrast stimuli, resulting in stronger modulation [112].
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As has been shown in numerous studies, attentional effects are generally stronger with more
complex tasks requiring fine discrimination [112, 118, 147, 222]. Second, long stimulus
presentations may provide sufficient time for adaptation to low contrast stimuli, which
may also obscure this effect. For example, Martinez-Trujillo and Treue [125] presented
each stimulus for 1000 ms and conducted the analysis using the average activity from
200-1000 ms following stimulus onset.

Third, the study by Martinez-Trujillo and Treue [125] reports a contrast gain effect,
although response gain was also found to provide a good fit to the data, as the correlation
coefficients for both models were greater than 0.82 across neurons. An early study by
Reynolds et al. [190] also reported contrast gain between attend-out and attend-in condi-
tions with a single receptive field stimulus, although that study did not quantitatively test
whether the data were better fit by a response gain or contrast gain model. As noted by
Lee and Maunsell [112], only a small number of cells in the Reynolds et al. study could not
be explained by response gain; rather, the data reported by Reynolds et al. present suggest
that, were a quantitative analysis performed, the response gain model would also provide a
suitable description of the modulation effect. In addition to the stimulus and task design,
the discrepancies between these studies may arise from different methods being used for
analysis. Reynolds et al. [190], as well as a study of attentional effects in superior colliculus
by Li and Basso [115], both suggest that the effects were consistent with contrast gain.
However, both studies examined neural responses using a receiver operator characteristic
(ROC) analysis, which compresses differences at higher contrast values, where the effects
of response gain are most evident [266]. Using a similar experimental method to that of
Reynolds et al. [190], Williford and Maunsell [266] found that most of the attentional effects
could be marginally better explained by response gain or activity gain than by contrast
gain. In sum, it remains unclear the conditions in which a pure contrast gain may be
evoked, and this issue is returned to in Chapter 6 where simulations with the presented
model show some evidence for contrast gain, although response gain is demonstrated to
significantly better explain the effect.

In addition to modulating the firing rates and tuning of cortical neurons, several studies
have reported attentional modulation of the temporal structure of neuronal activity. Cook
and Maunsell [37] examined the effects of spatial attention on motion integration for MT
neurons, showing that when attention was covertly directed to a receptive field stimulus,
there was a multiplicative scaling of the neurons’ temporal integration window. In V4,
Mitchell et al. [144] found a modest but significant reduction in the variance of firing
rates as measured by the Fano factor (ratio of spike count variance to mean spike count),
and a stronger and more reliable attentional modulation of putative interneurons. These
interneurons, as identified by the narrow width of their action potentials, predominately
project locally and not to other cortical areas. In another study of V4 neurons, Fries et
al. [61] found that neurons activated by an attended stimulus showed increased gamma-
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band (35-90 Hz) synchrony as compared with nearby neurons activated by distractors.

Overall, the primary effects considered by the model are responses being primarily
driven by the attended stimulus, changes in receptive field profiles, proportional scaling
of responses to attended stimuli, and response gain versus contrast gain, while the effect
of earlier and stronger modulation in higher cortical areas is consistent with the model.
Many of these forms of attentional modulation produce comparable effects in both ventral
stream areas such as V4 and dorsal stream areas such as MT. Given the similarity of these
effects across many studies, it is proposed that the brain has evolved to employ similar
mechanisms in dorsal stream areas as well.

1.4 Thesis Organization

Chapter 2 reviews the literature pertaining to the neurobiology of attention and outlines
significant findings that serve to constrain biologically plausible models. This chapter also
serves to describe the relevant biological details of the brain areas involved in attentional
processing, so as to provide a frame of reference for the discussion of existing models of
attentional processing.

Chapter 3 begins with a discussion of possible mechanisms for attentional routing and
reviews several related models. The reviewed models include gain field models [204, 272],
shifter circuit [168], SAIM [82], biased competition [188], normalization model [189], and
synchrony- and oscillation-based models [162, 163]. Across these models, there are several
common limitations that remain to be addressed in a single model. These limitations
include a spiking neuron implementation, defining the model for attentional processing
across multiple cortical areas, and being able to account for multiple forms of attentional
modulation using a single detailed mechanism.

Chapter 4 introduces the Attentional Routing Circuit at a high level to provide a general
sense of the proposed mechanisms for selective routing by defining the computations that
are performed in the model. Examples of selective routing using the model are presented,
and several of the model’s assumptions are discussed. Finally, the presented model is
then compared with previous models introduced in Chapter 3, and their similarities and
limitations are discussed.

Chapter 5 then introduces the Neural Engineering Framework (NEF) [55] which allows
the mathematical model to be implemented in spiking neurons. Subsequently, the general
model is defined in greater neuronal detail in order to elucidate the division of labour
amongst groups of neurons in different cortical areas. Results of several simulations with
the spiking neuron model are then presented and are shown to be consistent with that
predicted by the mathematical model. With the functional roles of the neuronal ensembles
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defined, further details of the model’s anatomical substrate are given as a canonical laminar
cortical circuit to which the model is mapped.

With the functional principles of the model defined, as well as their anatomical and
physiological basis, Chapter 6 presents results of simulations using the ARC that allow
the model to be more closely tied to experimental findings while preserving its overall
functionality.

Chapter 7 then summarizes the simulation results and model predictions, and discusses
several directions for future work.
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Chapter 2

The Neurobiology of Attention

This chapter outlines the anatomy and physiology of several cortical and subcortical areas,
and discusses their relationship and roles in the visual processing of attended informa-
tion. This review focuses on the levels of the properties of single cells, the laminar and
columnar structure within individual cortical areas, as well as inter-laminar and inter-areal
communication. The goal of this chapter is to provide a sense of how single cells process
information and how groups of neurons may interact as part of a cortical circuit so as to
yield a frame of reference for constructing a detailed model of attentional routing.

2.1 Cortical Areas

At least 30 cortical areas, representing more than half of cerebral cortex [67], are known to
be involved in visual processing [59]. Based on their connectivity and neuronal properties,
they have been organized into a hierarchy with 10 levels. Within the visual system, there
are two major processing streams that originate in V1 and include several extrastriate
regions. The ventral or “what” pathway, is centrally involved in object recognition, with
information projecting from V1 to V2, V4 and on to inferotemporal cortex, which is a
complex of approximately six visual areas in the inferior portion of the temporal lobe [59].
The dorsal or “where” pathway, is involved with determining spatial relationships among
objects and visual guidance toward them, and projects through V2, V3, MT, VIP, and on
to LIP and area 7a. In general, neurons in the ventral stream respond to features that are
relevant for object recognition, such as colour and shape, while neurons in the dorsal stream
respond to more spatial features, such as direction and velocity of stimulus movement.
Figure 2.1 illustrates the connectivity between visual cortical areas, with connections in
the dorsal and ventral streams represented by dashed and solid lines, respectively. Although
these processing streams are often thought of as being independent, this is not strictly the
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Figure 2.1: Connections between visual cortical areas. Dashed and solid lines indicate
connections within the dorsal and ventral stream, respectively. LGN – lateral geniculate
nucleus, magnocellular (M), parvocelluar (P) and koniocellular (K) divisions. V1 – primary
visual cortex, layers 4Cα, 4Cβ and 4B, and blob and interblob regions. V2 – second visual
area, containing thick, pale and thin stripes. V3 – third visual area. MT – Middle temporal
area. PP – Posterior parietal cortex. IT – inferotemporal cortex. See text for details.

case, as there are numerous points in each stream at which there are reciprocal connections
between dorsal and ventral stream areas, particularly in higher levels [12, 59].

In addition to feedforward connections from earlier processing areas, each area also
has reciprocal feedback connections. A general rule of connectivity between two cortical
areas is that if area A projects to area B, then area B reciprocates this connection [59,
109]. Although the exact function of the feedback connections is not fully known, it is
tacitly assumed that feedforward connections serve to drive the target cells, while feedback
connections serve to modulate the target cells’ activity (e.g. for selective attention) [9, 79,
104].

In most topographically organized visual areas, the number of neurons representing
an area of visual field decreases sharply and monotonically between foveal and peripheral
representations. Quantitatively, this is expressed by the cortical magnification factor, which
describes the area of cortex (mm) representing one degree of visual angle. This resembles
the change in retinal ganglion cell density with eccentricity, and it has been proposed that
the increased number of neurons representing the central field in V1 (approximately 55%-
60% of the surface area corresponds to the central 10◦) arises from the spatial density of
retinal projections [264].

At progressively higher levels of the hierarchy, the surface area of each region, as well
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Figure 2.2: Proportional surface area of cortical regions in the ventral stream. At higher
levels of the visual hierarchy, the surface area of each region, and the number of neurons
they contain, decreases.

as the number of neurons they contain, typically decreases (Figure 2.2), while the size of
the receptive fields increases (Figure 2.3). This latter property is thought to arise due
to neurons in higher levels pooling visual information from multiple neurons within their
receptive field. A hierarchical organization also allows lower level neurons to respond
to relatively local visual features, while higher level neurons are activated to more global,
complex visual features and respond to combinations of features encoded by their afferents.
The combination of larger, overlapping receptive fields and increasing abstraction of visual
features at higher levels results in the clear topographic organization found in V1 and V2
becomes being less obvious in higher levels, such as V4, PIT and CIT.

The hierarchical organization of the more than three dozen visual cortical areas pro-
posed by Felleman and Van Essen [59] is based on the physical and connective properties
of these areas. However, a different hierarchical organization can be formed by considering
the temporal pattern of activation following stimulus onset. For example, Felleman and
Van Essen [59] place frontal eye fields (FEF), an area involved in eye movements and at-
tention, at the same level as central IT in the anatomical hierarchy, yet cells in FEF show
activation with a similar latency to cells in V1, despite being situated seven levels higher
in the anatomical hierarchy [27].

Visual area 1 (V1), or striate cortex, is among the most extensively studied visual areas,
and primarily receives retinotopic projections from LGN, with central regions of the visual
field being represented by a disproportionately large number of cells. V1 has a columnar
organization, with interblob areas containing orientation columns made up of several simple
cells having similar receptive fields and orientation tuning, as well as complex cells that
receive intracolumnar projections from simple cells. Projections to interblob neurons can
be traced to the LGN parvocellular layers, and V1-4Cβ [199, pp. 60]. Neurons in the
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Figure 2.3: Changes in receptive field size with eccentricity. (Reproduced from [176, pp.
151]).

magnocellular layers of LGN project to V1-4Cα and on to V1-4B to form the basis of
the dorsal stream, sending afferents to the thick stripes of V2, as well as V3 and MT. By
combining information from multiple simple cells, complex cells are able to provide more
abstract representations of visual stimuli, and respond similarly to stimuli falling anywhere
within their receptive field. Each orientation column is flanked by columns containing
neurons tuned to slightly shifted axes of orientation, with a complete cycle of orientations
being found approximately every 0.75mm [97, pp. 537]. Dispersed between these columns
are blobs, which are regions of cells selective to colour rather than orientation, and receiving
projections from LGN K cells. V1 also contains binocular neurons which receive input
from both eyes, but typically respond more strongly to stimulation from one or the other.
Similar to orientation-selective neurons, cells that preferentially respond to the same eye
are grouped into ocular dominance columns, with the columns organized in stripes of
alternating left and right eye dominance columns [89]. Grouping together sets of orientation
columns spanning a complete cycle of orientations, blobs, and ocular dominance columns
with a common receptive field, yields a hypercolumn [92].

2.1.1 Ventral Stream

In the ventral stream, information from V1 projects to alternating thin and pale regions in
V2, which primarily encode colour and form information respectively. Information from the
thin and pale stripes in V2 is projected through V4 to TEO (near the temporal-occiptial
border in macaque, homologous to PIT in humans), from where information about object
colour, form and texture is projected to TE, the macaque homologue of CIT or AIT in
humans (Figure 2.1).

In contrast with V1 neurons, most V2 cells are driven by binocular inputs, have larger
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receptive fields and prefer stimuli having lower spatial frequencies [113]. Staining V2 with
cytochrome oxidase shows intermixed thick, thin, and pale stripes that receive different
inputs (Figure 2.1). These three types of stripes contribute to the representation of three
distinct visual maps in V2, with the thin, thick and pale stripes containing neurons selective
for colour, motion and form, respectively [199, pp 59]. Neurons in thin stripes of V2 receive
input from blobs in V1 and project to V4, are typically not orientation selective, with
over half being double-opponent colour cells. Neurons in thick stripes receive projections
from the magnocellular layers of LGN via V1-4Cα and V1-4B, and project to MT and
V3. Thick stripe neurons are often characterized by their binocular sensitivity, as they
respond most strongly when both eyes are simultaneously stimulated. They may also be
orientation- and contrast-sensitive, colour-insensitive, and of the approximately 15% of
V2 neurons selective for motion direction, the majority are localized here. Finally, pale
neurons receive input from V1 interblobs and project to V4, and are selective to orientation
but not to colour or motion, with over half being end-stopped (i.e. responsive to line ends
and corners) [195, 199].

V4 receives direct projections from V1, V2 and V3, and sends strong projections to
PIT. The majority of cells in V4 are selective to orientation, the length and width of
oriented bars, or wavelength [44, 207], while some are responsive to contours such as angles
and curves (particularly convex contours) [177], and binocular disparity [265]. Several
studies have shown that in conditions where a V4 neuron’s receptive field contains two
stimuli, its response is primarily driven by the attended stimuli [147, 188]; this effect is
largely suppressive of unattended stimuli, rather than facilitatory, since the cell’s response
is not significantly different when attending the preferred stimulus than in conditions where
attention is directed to a stimulus outside the cell’s receptive field [256, pp. 546].

Inferotemporal (IT) cortex can be divided into at least six areas, arranged both hierar-
chically and anatomically and having ventral and dorsal subareas: posterior IT (PITv and
PITd), central IT (CITv and CITd), and anterior IT (AITv and AITd). Note that the
ventral and dorsal distinctions are based on their anatomical location rather than associ-
ation with the ventral and dorsal processing streams. Some anatomical studies also make
this ventral/dorsal distinction for lower areas including V2, V3, V4, V5, and MST. As a
general principle, the dorsal division contains neurons having receptive fields in the lower
visual field, while neurons in the ventral portion of a given area have receptive fields in the
upper quadrants. However, this is less apparent in higher areas, where the large receptive
fields can cross the horizontal and vertical meridians [77, 78].

PIT contains neurons that are selective to some basic features, as well as neurons that
are selective for even more complex feature combinations than V4 neurons (e.g. com-
plex shapes, and shape/texture and shape/colour combinations). Single cell recordings in
macaque IT have shown that neurons recorded in a single vertical penetration respond to
similar stimuli, and that with subsequent penetrations made nearby, cells respond pref-
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erentially to similar stimuli [62]. On average, each column spans ∼0.4mm, and although
neurons within a column respond to similar stimuli, individual cells differ slightly in their
preferred stimulus and tuning. The functional implications of such a configuration are that
a given column may encode information about object features of multiple shapes, although
the activity of different cells within that column allow the differences between those shapes
to be encoded [62].

Neurons in CIT have larger receptive fields than those in PIT, although both areas also
have a columnar organization, with similarly tuned neurons being grouped in the same, or
nearby column [101]. Tsao et al. [251] found that almost 97% of the cells recorded in the
anterior portion of macaque area TEO were selective for faces, while fMRI studies have
reported greater activity in a region extending from V4 to rostral TE for pictures of intact
objects than with scrambled objects [250].

2.1.2 Dorsal Stream

The dorsal stream is the complement to the ventral stream, and is a chain of visual cortical
areas that contribute to representing object location, motor control (e.g. arm movements,
saccades), and motion processing. The dorsal stream also begins in V1, where direction-
selective neurons in layer 4B project to neurons in the thick stripes of V2, and on to V3
(Figure 2.1). Signals from these three areas then project to MT (V5) and other motion
direction-selective areas in the superior temporal sulcus, and on to ventral intraparietal
cortex (VIP), from where they are projected to other parietal areas including lateral in-
traparietal cortex (LIP) and area 7a. Several of these parietal areas also receive direct
projections from peripheral representations in V1 and V2, which may serve to rapidly
activate regions that mediate spatial attention [256]. Two primary functional character-
istics of areas in this pathway are a larger representation of the peripheral visual field as
compared to ventral stream areas, and specialization for detecting and processing moving
stimuli [225, pp. 1229]. Each of these areas has topographic organization and is recipro-
cally connected with the pulvinar, with higher areas (e.g. MST, VIP and LIP) also having
reciprocal connections with higher ventral areas such as V4, PIT, and CIT. As with areas
in the ventral stream, the receptive field size of neurons increases at higher layers and at
greater eccentricity (Figure 2.3).

Area V3 is located directly anterior to V2, and its representation of the central 40◦ of
visual field is divided into two areas, with the dorsal (V3d) and ventral (V3v) portions
representing the lower and upper areas of the visual field, respectively [121, 259]. Layer
4B of V1 provides the primary inputs to both portions of V3, which in turn project to
dorsal areas MT, MST, and VIP [120]. V3 also receives inputs from V2 and is reciprocally
connected with V4. V3d contains more directionally selective and fewer colour-sensitive
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neurons than does V3v, although neurons in both areas are more sensitive to contrast, and
prefer lower spatial and higher temporal frequencies than V2 neurons [68].

Visual area MT (middle temporal), or V5, receives strong afferents from V1-4B and
from the thick stripes of V2, and is reciprocally connected with other topographically
organized areas including V1, V2, V3, V4, VIP, LIP, inferior and lateral pulvinar nuclei,
and superior colliculus. Neurons in MT largely project to MST which, as with MT, contains
many directionally-selective neurons, but preferring more complex motion patterns such
as clockwise or counterclockwise motion, expansion and contraction [76, 129, 199]. MT
has a retinotopic organization, and most cells in MT are selective to the direction and
velocity of stimuli, a characteristic shared with V1-4B and the thick stripes of V2 [66]. MT
neurons have large receptive fields that are similar in size to those of V4 neurons at a given
eccentricity, with the sizes increasing with eccentricity (see Figure 2.3). MT has a columnar
organization with similar motion-directionally tuned neurons being grouped together. The
majority of neurons in MT respond most strongly when both eyes are stimulated [127],
and have directional selectivity for motion of random dots, bars and gratings, and depth-
selectivity [128]. Functionally, MT appears to contribute to stereoscopic depth perception,
the analysis of movement and motion integration [127].

Neurons in the lateral intraparietal area (LIP) receive projections from numerous corti-
cal areas including V2, V3, V3a, V4, MT, MST, TEO, and TE, and have reciprocal connec-
tions with VIP and area 7a, prefrontal cortex, superior colliculus, and pulvinar [15, 18, 59].
Neurons in LIP have larger receptive fields than MT cells, and over half of the neurons
respond to information from the central 6◦ of visual field [176]. LIP has been shown to
be involved in encoding the location of an upcoming saccade [136], storing information in
both retinal- and body-centric coordinates, and has neuronal activity that is modulated
by the task relevance and salience of the stimuli [73, 230]. A study by Duhamel et al. [51]
found that in LIP, locations of remembered objects are updated to new retinal coordinates
before saccades in anticipation of upcoming eye movements. Similar effects have also been
observed in V2, V3, and V3a [156].

2.1.3 Frontal Eye Fields

The frontal eye fields (FEF) play an important role in generating saccadic eye move-
ments and attentional shifts [239] and show rapid activation following stimulus onset
(75 ± 13ms [209]), well before most V2 cells. FEF neurons have large receptive fields,
respond more strongly when their receptive field contains the target of an overt or covert
attentional shift, and often discharge immediately prior to a shift. FEF makes strong pro-
jections to superior colliculus (SC), which in turn projects to pulvinar [179]. The rapid
activation of FEF may occur via a pathway from retinal ganglion cells to superior colliculus,
mediodorsal thalamus, and to FEF [100], or alternatively from retinal ganglion cells to the
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magnocellular layers of LGN, V1, MT, and FEF. The magnocellular layers of LGN contain
neurons selective for low spatial frequency/high temporal frequency visual information,
making them suitable for a rapid first pass of the scene to determine potential attentional
targets. Indeed, reversible deactivations of LGN-M with muscimol injection have been
shown to cause significant impairments in an animal’s ability to shift attention [191].

2.2 Subcortical Structures

2.2.1 Pulvinar

In addition to the discussed cortical areas, there are also several subcortical structures
involved in visual attentive processing. The pulvinar is the largest nucleus of the thalamus
and phylogenetically, it is the most recent thalamic nucleus, being relatively small in carni-
vores, progressively increasing in size in higher order primates, and becoming significantly
larger in humans, where it is several times greater in size than the LGN [31, 162].

Pulvinar is typically subdivided into the inferior (PI), lateral (PL), medial (PM), and
dorsomedial (Pdm) nuclei [227]. Dorsal pulvinar, including PM and Pdm, is connected
with dorsal stream areas and in conjunction with parietal cortex, is thought to be involved
in generating attentional signals. In contrast, ventral pulvinar (VP), including PI and PL,
is connected with the ventral stream and is believed to play a more modulatory role in
cortical processing (Shipp, personal communication).

Mapping studies of the macaque pulvinar have shown two retinotopically organized
maps, one in inferior pulvinar (P1), and another in lateral pulvinar (P2) [180], both of
which receive strong afferents from superior colliculus [1]. Whereas the P1 map receives
projections covering the majority of the visual field, the P2 map contains only a represen-
tation of the central area [255]. The inferior and ventral portion of the lateral nuclei of the
pulvinar also receive cortical projections from striate cortex and the adjoining extrastriate
areas, as well as some retinal input, both directly and through superior colliculus (SC), with
PI receiving more input from SC than ventral PL [227, 255]. Neurons in PI and ventral
PL have well-defined receptive fields with sizes that increase with eccentricity, are retino-
topically organized, respond to visual stimuli presented through either eye, and are either
non-selective or broadly tuned to motion direction or orientation [179]. The characteristics
and connectivity of neurons in these areas suggest that PI and ventral PL may be involved
with guiding eye movements and attention [179, 192]. Within ventral pulvinar, at least
two types of neurons may be distinguished. Parvalbumin-expressing neurons are relay cells
that primarily drive neurons in layer-III and IV of cortex, whereas calbindin-expressing
neurons are more regulatory in nature, and terminate in layer-I of cortex [71, 96], where
they modulate the activity of their target neurons (Shipp, personal communication).
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The medial nuclei (PM) and dorsal portion of PL have more widespread projections
than PI and ventral PL, and have connections with several higher cortical areas including
parietal areas 7a and LIP, frontal cortex, inferotemporal cortex, and V4, but not with V1
or V2 [214, 255]. PM is also interconnected with several other high level cortical areas
including auditory and somatosensory cortex, and contains subregions that are predomi-
nately selective for information from visual or other sensory modalities. Neurons in PM
and dorsal PL are directionally sensitive and have more widespread cortical projections
than PI, but have a much coarser topographic organization. Based on its connectivity
with higher level cortex, and the results of imaging studies, PM is also thought to be
involved in directed attention and determining visual salience [110, 201].

PI and PL are more retinotopically organized than is Pdm [179], and both PI and PL
are reciprocally connected with areas of the ventral stream, whereas Pdm is only known
to be connected with more dorsal visual areas [227]. Many cells in Pdm are visually re-
sponsive and have saccade- and attention-modulated activity (i.e. higher activity when the
receptive field contains the target), whereas neurons in PI and PL exhibit less attentional
modulation [179, 180]. Although in these studies ventral pulvinar neurons showed weaker
modulation than those in dorsal pulvinar, the study used a simple attentional task with
only a single target stimulus without distractors. Studies of attentional modulation in V4
and MT have shown stronger effects with more difficult tasks and when two stimuli are in
the receptive field than with one [21, 112, 118, 147, 222], and it is likely that neurons in
ventral pulvinar will show similar modulation as dorsal pulvinar neurons if more complex
tasks are used.

Recording from neurons in the dorsomedial region of pulvinar (Pdm, located in PL)
of rhesus monkeys, Petersen, Robinson and Morris [180] found that Pdm neurons respond
more strongly shortly before the animal saccades to a stimulus, or when it covertly attends
to a peripheral stimulus. These characteristics are also found in parietal area 7a, which is
thought to be involved in spatial attention, and is reciprocally connected with Pdm.

In the ARC and several other models of attention [2, 7, 162, 169], attentional signals
for information routing are hypothesized to come from the pulvinar, and numerous studies
have provided evidence to support this hypothesis. Posner and Petersen [184] presented
an influential hypothesis, which posits that pulvinar is responsible for engaging attention,
posterior parietal cortex for disengaging attention, and the superior colliculus for shifting
attention. This hypothesis is consistent with several lesion and imaging studies showing
that pulvinar lesions diminish an animal’s ability to filter out irrelevant information and
determine what is visually important or salient. Desimone et al. [45] found that by using
muscimol to temporarily deactivate the portion of PL that projects to V4 and IT, macaque
monkeys had reduced accuracy in colour and form discrimination tasks when distractors
were present, but exhibited no such impairment in trials without distracting stimuli. Be-
cause the impairment was only observed when multiple stimuli were present, these findings
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support the hypothesis of pulvinar being involved with visual selection, either by filtering
out irrelevant information [45] or by enhancing relevant information [180].

Rafal and Posner [185] investigated the effects of hemorrhages in the thalamus (which
included, but were not exclusive to the pulvinar) in human subjects in a spatial cueing
task. Subjects had slower reaction times when detecting stimuli in the contralesional field
whether or not attention had been cued to that location. However, with longer intervals
between the cue and stimulus (stimulus onset asynchrony), validly cued targets in both
hemifields produced similar improvements in reaction times, suggesting that they did not
have a deficit in shifting attention. They hypothesized that the pulvinar lesion caused
a deficit in their ability to engage attention to the target contralateral to the lesion, by
impairing their ability to detect and respond to the target

Recent fMRI studies have shown increased pulvinar activity during luminance detection
tasks [98] and rapid serial visual presentation tasks [275], while positron emission tomog-
raphy (PET) studies have observed similar effects during object recognition tasks [110]
and feature discrimination tasks [38] that require selective attention. Morris, Friston and
Dolan [148] also used PET imaging to examine changes in pulvinar activity as a function
of image salience. During the conditioning phase, subjects were presented with images of
faces with happy, fearful or neutral expressions paired with either silence or loud white noise
(making the stimuli have a more averse and thus behaviourally significant and salient qual-
ity). During the PET scan, subjects again attentively viewed the face images but without
noise. They found that for aversely conditioned faces, subjects showed increased pulvinar
activity, which they hypothesize reflects the subject having increased attention to more
salient stimuli, which supports pulvinar involvement in controlling processing in sensory
cortex [148].

Bender and Youakim [16] recorded from cells in macaque LGN, PI, PL, Pdm, V2, V4
and parietal area 7a while the animal attended to a central fixation point. While they
found no evidence of attentional modulation during fixation in LGN, approximately 26%
of recorded pulvinar cells showed modulated activity, with no significant difference between
subdivisions, as well as increasing amounts in areas between V2 (21%) and 7a (43%). In
each of these areas, a roughly equal number of neurons were facilitated or suppressed,
except in area Pdm, where all cells were suppressed during fixation. The observation of
equal amounts of facilitation and suppression in PI and PL is particularly interesting, as it
suggests a different interpretation of the results of Vandenberghe et al. [260]. In the study
by Vandenberghe et al., no significant pulvinar activation was observed when subjects
employed minimal selective attention to one of two stimuli, although they did observe
activation of the left pulvinar when only a single stimulus was displayed. If pulvinar
activity is facilitated or suppressed in approximately equal proportions, measurements of
the regional glucose uptake in PET scans would lack the resolution to detect changes in
neuronal activity as observed in single cell recordings.
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Based on their findings from selective attention studies on pulvinar lesion patients,
Ward and Danzinger [262] oppose the theory that the pulvinar is critical for filtering
information and allocating attention. Instead, they propose that the pulvinar is involved in
activating responses, particularly for situations of response competition between multiple
stimuli, and in spatially coding visual features. In [263], the authors report of patient
TN who has lesions in the anterior and most dorsal portions of the pulvinar, an area
that corresponds to the PI and PL areas in macaque. TN has a selective impairment in
localizing and binding features in the inferior contralesional quadrant, which they suggest
to be a deficit of spatial coding. In that study, the subject performed a demanding central
primary task while a target was briefly presented in the contralesional or ipsilesional field.
When the target and distractor were in the contralesional field and separated by 1.7◦, TN
produced significantly more illusionary conjunction errors, although when the separation
was increased to 5.1◦, these errors significantly decreased.

In a different task, TN was asked to fixate a central digit, and report the central digit
identity, as well as the target identity, colour and the quadrant of visual field in which
it appeared. The subject again made significantly more mislocation errors for targets
in the inferior contralesional quadrant, with no significant difference between the other
quadrants. In a finding consistent with Desimone et al. [45], they also found that TN’s
ability to localize isolated, single objects was little affected in each quadrant. The authors
hypothesize that damage to PI and PL causes information from the visual area affected by
the lesion to be combined with erroneous or degraded spatial information.

The above studies provide support for pulvinar being involved with visual attention,
with imaging and single cell recording studies showing attentional modulation of pulvinar
activity, and studies of lesioned and deactivated pulvinar revealing difficulties in localizing
and maintaining spatial feature relationships of contralateral stimuli. While Ward and
Danzinger [262] argue that pulvinar’s role is not to filter out irrelevant information and
allocate attention, but rather is involved in preventing response activation and selection
of objects, these hypotheses are not necessarily mutually exclusive, but rather may be
addressing different aspects of the same function.

In the absence of a pulvinar signal (i.e. when it is deactivated or lesioned), the ARC
model includes the proposal that the visual system operate in its default state, which
causes the entire visual field to be processed at each level. Because of the increased spacing
between afferents for columns in higher levels, in the default state, columns will integrate
information from a greater portion of their receptive field. Placing the two stimuli more
closely together may result in higher level columns integrating features from both nearby
stimuli, resulting in illusionary conjunctions. This hypothesis may explain the observation
made by Ward et al. [263], where fewer illusionary conjunction errors were made when the
separation of stimuli was increased to 5.1◦, and it is suspected that this error rate will
decrease with increased separation.
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2.2.2 Superior Colliculus

The superior colliculus (SC), or optic tectum, is situated at the roof of the midbrain.
Histological staining of the SC shows a laminar organization that can be divided into
superficial, intermediate, and deep layers [130]. In the ARC, the hypothesis of collicular
function follows that of Posner and Petersen [184], who suggest that it contributes to
encoding the location to which attention should be shifted, either by the deep layers as
overt shifts involving eye movements, or by the superficial layers for covert shifts.

Cells in the superficial layers are topographically organized, respond more strongly to
stimuli that are saccadic targets than to non-targets, more strongly to moving stimuli than
non-moving stimuli, and are insensitive to the intensity, size and shape of stimuli [40]. A
recent study by Ress et al. [187] had human subjects perform a difficult contrast decrement
discrimination task for a slow moving stimulus while maintaining fixation. fMRI imaging
of the superficial layers revealed distinct retinotopic maps for direct visual stimulation as
well as covert attention that were in register. These findings are consistent with a study
in rhesus monkeys by Müller et al. [154] in which the animal maintained central fixation,
above which were two targets to the left or right of fixation. A peripheral cue, to which
covert attention is thought to be facilitated through microstimulation of the superficial
layers of SC, was given at eccentricities between 2◦ and 35◦ as a cluster of coherently
moving dots whose direction (left or right) signalling the saccade target. They found
that discrimination performance improved when focal stimulation was applied to neurons
in the superficial layers having receptive fields covering the cued location. The authors
conclude that although the SC is necessary for guiding covert attention, it is not sufficient,
as similar results have been obtained through stimulation of the frontal eye fields [146],
which suggests that covert attentional shifts are likely to arise through the interaction of
multiple distributed cortical structures.

In addition to their involvement in signalling covert attentional shifts, the superficial
layers have been shown to be involved in inhibition of return [48]. The superficial layers
receive direct afferents from retinal ganglion cells and indirect projections from layer V of
V1 and V2, and have efferents to PI and PL, and to dorsal and ventral LGN, while the
deep layers project to PL, PM, and Pdm, as well as areas involved in saccade production,
such as dorsal thalamus, oculomotor cortex and structures in the brainstem [130].

Within the deep layers, three primary neuron types have been identified: saccade-
related burst neurons, that are thought to signal a saccade having the vector associated
with their activity and position in the SC map; buildup neurons, which represent the
preparation to make a saccade; and fixation neurons that are associated with maintaining
fixation [273]. Neurons in the deep and intermediate layers exhibit multisensory response
properties that result from converging inputs from corical areas involved in processing
information from different sensory modalities including visual, auditory and somatosensory
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areas [48]. Similar to the receptive fields of neurons in the superficial layers, the response
activation of cells in the deep and intermediate layers is produced by activity in their
coarsely tuned movement fields. Movement fields have an activation gradient, such that a
given neuron responds maximally to a saccade of specific direction and amplitude, termed
an optimal saccadic vector [273]. Neurons with different optimal saccadic vectors are
organized to form a neural map in SC, with vectors of similar direction and magnitude
being grouped within a local subregion. The activity of neurons in this map of saccadic
vectors is thought to collectively encode a vector of the change in eye position produced
by the saccade [219]. Further, with over one quarter of the burst cells being active before
a saccade [155], it is thought that the average or sum of the vectors represented by the
population of active cells encodes the magnitude and trajectory of a saccade [220].

2.3 The Columnar Hypothesis

Mountcastle [150] proposed that neocortex has a relatively uniform structure composed
of repeating elementary processing units called minicolumns. Unlike the laminar orga-
nization of the cortical sheet into six horizontally divided sections, these structures run
orthogonal to the laminar arrangement and encompass all six layers. The basis for the
columnar hypothesis comes from electrode recordings in cat somatosensory cortex, where
it was observed that all cells in a given vertical penetration showed similar receptive field
locations and similar response latencies [150]. After making multiple nearby penetrations,
Mountcastle suggests that these columns span no more than 500µm.

The minicolumn, containing 80-100 neurons across laminae II-VI, is the smallest level of
vertical structure in cortex [28], and when bundled together in groups of 60-80 minicolumns,
form a macrocolumn [152]. Primary visual cortex contains several specific types of columns
such as ocular dominance columns, composed of cells that preferentially respond to retinal
input from one eye, and orientation columns of neurons preferentially responding to stimuli
of a given orientation, as well as hypercolumns, which are groups of several macrocolumns.
The hypothesis proposes that these columns form distinct units, with adjacent columns
having discrete boundaries, rather than a gradual transition of tuning across the cortical
sheet.

While numerous past models have employed the columnar hypothesis [69, 81, 151, 163,
162, 168], the hypothesis of cortex being divided into columns with discrete boundaries
is still debated more than 50 years after its original proposal [88]. In V1, a columnar
organization can be observed for certain visual features (e.g. orientation, colour, ocular
disparity), although a central criticism of the hypothesis pertains to the sharpness of colum-
nar boundaries. In their pioneering studies on orientation tuning in cat area 17, Hubel and
Wiesel [91] had difficulties finding evidence of such discrete boundaries, as the preferred ori-
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Figure 2.4: Linear dendrite neuron model. At the soma, a weighted summation of dendritic
activity is passed through a global axosomatic nonlinearity to determine the cell’s firing
rate.

entation of recorded cells often shifted directions rather unpredictably with small advances
of the electrode, leading them to conclude, “The orientation columns, finally, if discrete,
certainly fall within the definition of the term column. If orientation varies continuously
with distance there are again semantic difficulties - either one must broaden the definition
of the column or decide that the system is not strictly columnar” [91, pp. 289].

Regardless of there being abrupt and discrete column boundaries, or a graded transition
of preferred tuning across a local cortical area of the cortical sheet, the basic idea of
nearby neurons having similar receptive fields and predominately local connectivity, is a
useful organizational simplification for modelling cortex. Thus, in the ARC, the broader
definition of a column is used to refer to a predominately locally connected functional
unit spanning the six cortical layers and having gradual horizontal boundaries that is
periodically iterated spatially in each area.

2.4 Dendritic Computation

The dendrites are branching, tree-like structures that represent the primary source of
electrochemical inputs to a neuron. These processes significantly increase the surface area
for inputs to a neuron by a factor of ∼10-20 [140], and provide a site for receiving input
signals from neurons that are more distant from the cell body. Some cell types, such as
pyramidal neurons, which constitute 70-90% of cortical cells [56, 144], have dendritic spines,
which are a membranous extension on the dendrite that further increases the surface area.

The traditional view of dendrites is of them being passive cables surrounded by a mem-
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brane having a conductance in parallel with a capacitance [102]. However, it is now known
that pyramidal and other cell types also have an active component, resulting from voltage-
dependant membrane conductances that arise from a relatively homogeneous distribution
of sodium channels along the dendrites [102]. The functional role of these active conduc-
tances may be to mitigate at the soma, the attenuation of signals from distal synapses [140].

The classical view of neurons considers neurons as being single computational units
or “point-neurons” (Figure 2.4) [134]. This view is common in models of brain function,
and suggests that the combined effect at the soma of the activity of two or more synapses
can be determined as a weighted sum of their individual responses, independent of their
absolute or relative position in the dendritic tree. Global summation models of synaptic
integration also include a single axosomatic nonlinearity, such as a logarithmic, exponential
or sigmoidal function of the weighted synaptic input that determines the neuron’s firing
rate.

Mathematically, this corresponds to neurons integrating inputs as a weighted sum of
their excitatory and inhibitory inputs, which are then passed through a single output
nonlinearity:

r = g(
∑
i

ωixi), (2.1)

where i indexes the presynaptic inputs, xi is the firing rate of the ith presynaptic neuron,
ωi is the synaptic efficacy or weight, and g() is a nonlinear function that determines firing
rate.

More recently, an alternative two-layer model has been proposed [181] based on physi-
ological studies reporting that within-branch stimulation from two electrodes can produce
sublinear, linear or superlinear responses, depending on the placement and timing of the
stimulation [182]. In that study, dual-site focal extracellular stimulation was applied to
various parts of the thin dendrites of neurons in rat barrel cortex while somatic voltage
responses were recorded (Figure 2.5). Somatic recordings were made with electrodes tar-
geting the same dendritic branch (within-branch) or separate branches (between-branches).
In the within-branch case, the summed response at the soma was linear for weak stimu-
lation, strongly superlinear for intermediate stimulation, and slightly sublinear for strong
stimuli. Conversely, in the between-branches case, the effect at the soma was a linear
summation for weak and intermediate stimulation, with a slight superlinearity with strong
stimulation.

In another study, dendritic spikes evoked by focal synaptic stimulation were shown to
typically remain confined to a single dendritic branch [208]. Specifically, stimulation within
a single terminal basal dendritic branch evoked a sigmoidal subunit nonlinearity, but the
activity summed linearly when different terminal branches were stimulated [208]. The
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Figure 2.5: Somatic voltage traces when electrode stimulation was applied to the same
dendritic branch (within branch) or to separate branches (between branch). Stimulation
from two electrodes was applied individually (black traces) and simultaneously (red traces).
Blue traces indicate the arithmetic sum of the two individual response. (a-c) Within
branch stimulation showing linear summation for weak inputs (a), superlinear summation
for medium inputs (b) and sublinear for strong inputs (c). (d-f) When separate branches
were stimulated, the effect was a linear summation for weak and medium inputs and slightly
sublinear for strong inputs. (Reproduced from [182]).

y

Σ

dendritic 
inputs

axosomatic
nonlinearity

dendritic 
nonlinearity

Figure 2.6: Pyramidal neuron model with nonlinear dendrites. Dendritic subunits com-
pute a nonlinear function of their inputs and the soma receives a weighted sum of the den-
dritic activity, which is then passed through a global axosomatic nonlinearity. (Adapted
from [181]).
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two-layer model (Figure 2.6) suggests that thin basal dendrites of pyramidal cells, where
the majority of excitatory synapses are located [137], act as processing subunits, where
the activity of each branch is determined by its own sigmoidal nonlinearity [181, 182]. A
second stage of processing then occurs at the soma, similar to the point-neuron model,
where a weighted summation of the subunit activities provide the input to the axosomatic
nonlinearity that determines the neuron’s firing activity.

r = g(
∑
i

ωis(xi)). (2.2)

In cases where s(xi) = xi, this is equivalent to the point-neuron model, or a communication
channel (see Chapter 5).

As noted by Mel [140], if the subunit nonlinearity is a logical AND operation and the
second nonlinearity is an OR operation, this produces a two-layer boolean logic network,
whereas if the dendrites compute a product of their inputs and the second nonlinearity is a
summation, this produces a sigma-pi network [141]. With a sigmoidal second nonlinearity,
it effectively endows each pyramidal cell with the ability to operate in a similar capacity as
a two-layer artificial neural network [181]. As has been shown in numerous artificial neural
network models, any nonlinear function can be approximated to finite precision with a given
number of sigmoidal hidden units, which here correspond physically to terminal dendritic
branches [63]. In the ARC, it is shown how this nonlinearity can be exploited to result in
efficient attentional routing.
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Chapter 3

Models of Visual Attention

As noted in the introduction, visuospatial attention involves numerous processes including
selecting a target, selectively processing information about this target, and limiting the
processing of extraneous information. This chapter outlines several prominent models of
attentional routing and discusses their strengths and limitations in terms of their biological
plausibility, level of detail, and ability to explain experimental results. Although the past
two decades have seen significant amounts of data being collected about the neurophysi-
ology of attention, most models of attention do not currently address the mechanisms of
attention while preserving significant amounts of biological detail.

3.1 Selecting Attentional Targets

The problem of selecting an attentional target, based on the saliency of bottom-up stimulus
features or by top-down task demands, is included in several models of attention [168, 188].
Although the model proposed in this thesis does not explicitly include such a mechanism,
this section briefly reviews several approaches in order to provide context for selecting
attentional targets that may be combined with the proposed model.

The feature integration theory (FIT) of Triesman and Gelade [244] is largely based on
psychophysical studies of visual search, and has had considerable influence on models of
visual attention since its introduction. FIT proposes that a set of topographic feature maps
represent information from the entire visual field, where a given feature map may represent
the topographic distribution of vertically oriented bars, or the “redness” within the visual
field. These maps are then integrated to form a “master map” and a spotlight of attention
is then shifted over regions of high activation in the master map. Feature maps are updated
preattentively, and their contents are not consciously accessible, with conscious access to
information only being available from the attended regions in the master map. Models
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that utilize a master or saliency map to guide attentional deployment (e.g. [94, 168, 253])
are considered early selection models and typically incorporate elements of FIT.

The central predictions of FIT are that (a) visual search in a single feature dimension
is parallel and efficient, since the activity in the corresponding feature map can direct the
spotlight to the appropriate location; and (b) visual search for conjunctions of features is
serial and inefficient (i.e. search time increases linearly with the number of distractors)
since the spotlight cannot be guided by a single feature map, and therefore elements in the
display must be visited in sequence.

Since its introduction however, several problems with FIT have been noted. In its orig-
inal form, a detailed account of how information from each of the feature maps is combined
to form the master map is not provided, although later implementations (e.g. [94, 107])
attempt to specify this mechanism. Several studies have also provided evidence of effi-
cient conjunction search, combining binocular disparity and colour [157], or motion and
shape [135], which conflicts with the second prediction of FIT. Additionally, in feature
and conjunction searches, distractors often have homogeneous orientation and/or colour,
although when inhomogeneous distractors are used (e.g. distractor having different orien-
tations in an orientated line search), there is little difference in subjects’ performance when
searching for elementary features and for feature conjunctions [52]. That study also found
that search efficiency decreases when targets and distractors are increasingly similar, and
when there is decreasing similarity between the distractors themselves.

Koch and Ullman’s model of selective attention [107] seeks to provide a more detailed
implementation of Triesman’s FIT. As with FIT, attention is guided by a master or saliency
map that is created by combining several feature maps, and suggest that the saliency
map might be located in V1 or LGN. A winner-takes-all (WTA) network determines the
most salient location and projects information from this region to a representation where
local spatial relationships are maintained, and recognition proceeds on this representation.
During visual search, locations winning the competition are attended and are then inhibited
after being processed (inhibition of return), so that the focus of attention may shift to the
next most salient location. However, the model is presented as a high level abstraction
without much biological detail, and does not describe how the individual feature maps are
represented in neurons and combined. Additionally, the model does not attempt to address
a crucial element of attentional processing, namely the attentional routing mechanism,
noting only that routing can be achieved by removing “some tonic inhibitory influence” or
increasing the amount of excitation at the target [107].

The model of Itti, Koch and Niebur [94] extends Koch and Ullman’s model in more de-
tail by extracting visual features in parallel using 42 topographic feature maps representing
orientation, intensity and colour at six spatial scales. At each spatial scale, feature maps
are computed by linearly filtering the input image, convolving the filtered representation
with a centre-surround structure and then normalizing. Feature maps from all spatial scales
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are summed across scales by reducing each map to a common scale to form conspicuity
maps of each feature dimension (orientation, intensity and colour), and these conspicuity
maps are then linearly summed to produce a saliency map. Selection and inhibition of
return of attended locations proceeds using the saliency map in the same manner as the
Koch and Ullman model. Walther and Koch [261] further extend this model to infer the
spatial extent of a “proto-object” at the attended location from the maps that are used to
compute the saliency map.

The anatomical location of a saliency map has been ascribed to many cortical and
subcortical areas by different groups including LGN [107], pulvinar [192], posterior parietal
cortex [74, 168], lateral intraparietal area [108], V1 [116], frontal eye fields [83, 239], or
distributed throughout the oculomotor system [45]. Although the ARC does not explicitly
specify the process of selecting attentional targets, it is a straightforward extension for the
model to incorporate any of these selection models. In this case, the output of the saliency
model would be sent to pulvinar, from where the size and position of the target would be
projected to PIT.

With this in mind, the remainder of this chapter addresses models of the subsequent
stage of attentional processing, that of selectively processing information about the atten-
tional target.

3.2 Approaches to Selective Information Routing

At the neuronal level, to selectively route visual information about an attended object
between two adjacent cortical areas, there are several general approaches that may be
taken (Figure 3.1). The need for selective processing is particularly evident in higher
ventral stream areas where receptive fields can span more than 70◦ of the visual field [200].
At a given moment, such neurons may have multiple objects within their receptive field,
yet the majority of these objects are irrelevant for the current task and should be ignored.
How then, is this filtering of extraneous information performed at the cellular level?

Ignoring for the moment that the visual system is a hierarchy of multiple interconnected
areas, we can first consider how visual information may be routed between two adjacent
areas (e.g. V4 and IT). Based on the similarities of neurons in different ventral stream
areas, as well as their inter- and intra-areal connectivity, it is presumed that the mechanisms
for selective routing in one area are also employed in other areas as well. If we further
presume that evolution has influenced the formation of these mechanisms to minimize the
system’s energy consumption in terms of the number of neurons involved in controlling
the routing, as well as the length of their axonal and dendritic processes, some of these
approaches are more suitable than others. And, while limiting the resource requirements
is an important factor for models of attentional routing, so too is ensuring that the model
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(a) (b)

(c) (d)

Figure 3.1: Four possible implementations of routing at the single cell level. (a) Control
signals individually modulate each connection between input and output neurons. (b)
Control signals modulate the output of a neuron, affecting all of its connections equally.
(c) Modulating inputs to a neuron. (d) Modulating groups of connections to a variety of
neurons with one controls signal. See text for details.

maintains its functional ability to perform this operation, and to do so with sufficient
flexibility to operate in the variety of conditions that may be encountered.

Maintaining local spatial relationships at each level of the visual hierarchy is not agreed
upon by different models of attention, with some models preserving them [168, 169, 82],
while others do not [162, 253]. As suggested by Koch [105], models that maintain local
spatial relationships would predict that neurons encoding the attentional target will have
receptive fields that span a portion of the target, and that there is a retinotopic organization
among these neurons. Models that do not maintain spatial relationships however would
predict that those neurons may have receptive fields that span the entire attentional target,
without a topographic organization among them.

A näıve approach to cortical routing is to dynamically modulate the connection strengths
of all connected neurons between levels, such that only a subset of inputs to a given cell
are driving its activity, with other inputs being inhibited (Figure 3.1(a)). However, to
perform routing using this approach requires that feedforward connections from neurons
in each input column are given a unique control signal, which places considerable demand
on the neuronal resources in a way that quickly becomes intractable with larger networks.
To effect these changes of a connection strength, existing models have proposed that either
the synaptic strength is modified [168, 188], or that it may be modulated by imposing a
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multiplicative gain signal on the connection [189, 204].

A second approach is to have the attentional control signals modulate the outputs of
neurons in the lower level. This could be accomplished by having the control neurons
form inhibitory synapses on the axon hillock or in the perisomatic region of the axon
(Figure 3.1(b)). This arrangement would attenuate the output activity of the cell to all
postsynaptic targets in the higher level. Although this approach provides a means of
inhibiting the propagation of information from distracting and irrelevant stimuli, it is par-
ticularly problematic at higher cortical levels where receptive fields are large. Since a given
neuron may project to thousands of cells in multiple columns in the higher level, such a
configuration will only be able to alter the routing of visual information in a coarse manner,
as the postsynaptic neurons will receive similarly modulated inputs, thereby precluding an
undistorted and selective routing of the attentional target.

A third method to perform selective routing is similar to the inverse of the second
approach, wherein control neurons modulate all feedforward inputs to a cell equally, and
could be implemented by control neurons synapsing on the dendritic truck near the soma
of the higher level neurons (Figure 3.1(c)). This has the effect of modulating all inputs
received by the higher level neurons in a similarly coarse manner, without the selectivity
required to minimize distortion of the stimulus’ representation.

A fourth approach is to have each control signal modulate the efficacy of groups of
connections. The configuration shown in Figure 3.1(d) is similar to that taken by the
shifter circuit [168, 169]. In this example, each control neuron modulates the inputs from
the same part of each output neuron’s receptive field, which allows the attentional target
to be translated between levels, although scaling the stimulus introduces additional dis-
tortion to the representation. To perform scaling without this distortion requires either
additional control neurons, which increases the neuronal demand and may exceed biological
constraints, or a different organization of the control signal projections. The ARC follows
this last approach by using the same control signal for all connections of a column, but
transforming it for each input column, and is discussed in greater detail in the following
chapter.

3.3 Gain Fields and Dynamic Routing

3.3.1 Gain Fields

Numerous physiological studies of attention have reported a multiplicative modulation of
neuronal responses with changes in attention [34, 35, 36, 131, 206, 245]. Gain field models
suggest that such changes in activity can be fit by the product of two functions, one that
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is based on the position of the stimuli in a neuron’s receptive field, and another that is
based on the position of the attentional target.

The gain field model of Salinas and Abbott [204] consists of an ensemble of V4 neurons
providing feedforward input to a single IT neuron. The V4 neurons are tuned to four
orientations and three spatial frequencies, and their activity is computed as the product of
the luminance of stimuli in their receptive field and an attentional gain field that depends
on the position of the attentional target:

vi = Fi(ai, I)G(y − bi), (3.1)

where vi is the firing rate of neuron i, ai is its receptive field centre, I is the input image
and Fi(·) is the output of the Gabor-like visual filter. The attentional gain field G(·) is a
Gaussian function of the attentional target y, and the cell’s preferred attentional locus, bi.

The response of the single IT neuron is then determined by taking a weighted sum of
its V4 inputs, vi, subtracting a threshold θ, and rectifying the result:

V =

[∑
i

Wivi − θ

]
+

, (3.2)

where V = 0 if the summed inputs are less than 0.

In Womelsdorf et al. [272], a simple gain field based model was proposed to account for
their observation of receptive fields in MT shifting and shrinking with changes in atten-
tional targets. Their model consists of two levels, with feedforward visual inputs having a
Gaussian connectivity profile with receptive field centre xR, amplitude AR and width σR.
The feedforward inputs interact multiplicatively with a Gaussian shaped attention function
having a centre xatt, gain Aatt and width σatt. Responses of MT neurons are computed as:

R = 1 + Aattexp
[
− (xR−xatt)2

2(σatt)2

]
. (3.3)

This multiplicative interaction of a Gaussian shaped attentional function is closely
related to that used in the Salinas and Abbott model [204] and in the ARC. However,
these past models have significant limitations that remain to be addressed. Both the
Salinas and Abbott [204] and Womelsdorf et al. [272] models focus on explaining the
mechanisms by which the multiplicative interactions of a Gaussian shaped attentional gain
field and visual inputs can yield changes in the effective portion of a neuron’s receptive field.
Both models also only consider the effects of attention between two adjacent cortical areas,
without addressing the relationship of attentional modulation in different levels of the visual
hierarchy. Further, neither model addresses how the receptive field profile modulations are
related for neurons in other columns of that cortical area or how the attentional gain fields
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are generated in the context of a large scale model. The Womelsdorf et al. [272] model
is a purely mathematical implementation without spiking neurons, thereby precluding the
assessment of it being plausibly implemented in the brain.

3.3.2 Shifter Circuit

Several models of visual attention have been proposed that utilize control neurons to
dynamically route information under attentional influence and to model the dynamic
changes in receptive fields, although perhaps the most neurally oriented is the shifter
circuit [7, 167, 168, 169]. The key principles of the model are: 1) the flow of information
is dynamically controlled across multiple hierarchical levels; 2) spatial relationships within
the focus of attention are preserved; 3) attentional control is performed by dynamically
modulating synaptic weights; and 4) scale and position invariance is handled by routing
information from the focus of attention (FOA) to a 30×30 object-centred reference frame.

The basic architecture of the model is shown in Figure 3.2. Sample points in the
input layer represent the retinal image that is sampled at three spatial resolutions by three
separate stacks, each containing the same number of nodes. Nodes in the shifter circuit can
be thought of as simplified columns. The bottom layer of each stack samples the retinal
image, which is transformed at each stage by an attentional control signal to form an
object-centred representation at the top layer, which corresponds to inferotemporal cortex.
Salient locations are determined using a simplified version of the Koch and Ullman [107]
mechanism by blurring the image into blobs and selecting the largest and brightest blob
as the attentional target. The model can operate in blob search mode, which models
visual search by having feature values of the target influence the saliency calculations, or
in object recognition mode, where a signal indicating the spatial location of the target
is projected to the saliency map. Control signals at each level modulate the connection
strengths between levels as information is remapped from one level to the next. The visual
information represented by node µ in level l, X l

µ, is determined by combining its afferents
X l−1
µ with a control signal C l

λ:

X l
µ =

∑
v

W l
µvX

l−1
µ , (3.4)

where W l
µv =

∑
λ

C l
λΓ

l
λµv, λ indexes the control blocks, Γlλµv is a control block specifying

the amount by which λ modulates W l
µv, and v indexes the afferents to µ.

Figure 3.3 shows a connection space diagram corresponding to the network in Fig-
ure 3.2, where an × indicates a synaptic connection between a node in the input level
(horizontal dots) and the node in the above level to which it projects (vertical dots). Level
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Figure 3.2: Shifter Circuit architecture. The model dynamically routes attended stimuli
to an object-centred reference frame to provide shift- and scale-invariance. Three stacks
receive retinal inputs with each stack having different spatial distances between sample
points. Within a stack, the attentional target is shifted or scaled down by a factor of
< 2; if a greater downsampling is required, the next larger stack is used. (Reproduced
from [167]).
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Figure 3.3: Shifter Circuit connection space diagram. Input nodes are arranged horizontally
and output nodes vertically. Connections between input and output nodes are shown with
an x, and control blocks that modulate connection strengths for selective routing encircle
several connections. (Reproduced from [167]).
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2 is represented twice, as it receives output from Level 1 and projects to Level 3. Here, an
ellipse around several connections indicates a control block C l

λ, which has a Gaussian pro-
file centered in the control block, with all other diagonals having the same organization of
control blocks. Each control block receives a scalar signal that is multiplied by the control
block’s Gaussian weights to determine the effective connection weights for that block. To
downsample the target’s representation between levels, multiple control blocks along a di-
agonal in connection space that correspond to the position of the target’s representation in
each level are assigned positive control signals. This approach allows the values in one level
to be approximately interpolated in the next. However, combining the representation of
numerous inputs also causes the representation to be blurred at the next level, particularly
when using larger control blocks to reduce the neuronal requirements, when downsampling
by larger amounts, and in higher levels where connections are increasingly separated. To
mitigate this effect, and to approximate the retinal sampling density, the model incorpo-
rates a multiscale lattice, where each stack contains approximately the same number of
sample points, but lower resolution stacks cover increasing amounts of the periphery. This
allows a single lattice to resize information from the target’s representation by a factor of
two, with larger resampling being performed by the next larger lattice.

For a single level in each lattice, the number of control blocks is approximately NB ×
fanIn, where NB = blayerSize/wc, w = bmoduleSize/2c, and fanIn is the number of
inputs to each node. For each stack shown in Figure 3.2, there are five control blocks at
stage 2 and 25 for stage 1, where a stage refers to two adjacent levels and the control
blocks that operate on the connections between them. Further, a module refers to a group
of spatially adjacent nodes, their input nodes, and the connections between them, with
each stage being composed of multiple partially overlapping modules. For the network
shown in Figure 3.2 and 3.3, a module consists of nine input nodes and 5 output nodes.

The shifter circuit provides a compelling explanation of how dynamic routing can be
employed for selective attentional processing, and approaches the problem from a more
neurally oriented perspective than many computational models. Although the shifter cir-
cuit provides a good starting point for understanding the properties of attentional routing,
it also has several limitations. As with most computational models, the shifter circuit lacks
details of the computations and representations of cortical and subcortical neurons, which
limits its explanatory and predictive capabilities. Specifically, it is a purely mathematical
implementation without spiking neurons, which thereby precludes evaluating the plausibil-
ity of its neural implementation and the detailed neuronal requirements for the calculation,
representation and communication of visual and control signals.

Second, when the model is scaled to approximate the size of visual cortex, the neuronal
resources required by the model for computing control signals exceeds that available in
the pulvinar. Specifically, Selemon et al. [211] estimate that pulvinar contains 2.52 ×
106 neurons, and Petersen et al. [179] report that many cells in pulvinar fail to exhibit
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Figure 3.4: SAIM architecture. Visual information is presented to the system’s visual
field from where it is projected to the contents network, where gating signals from the
selection network interact with the visual signals. The selection network is biased for
spatial attention by inputs from the location map or for object-based attention by the
knowledge network. The focus of attention represents the target in an object-centred
reference frame and projects to the knowledge network where template matching object
recognition is performed. (Reproduced from [81]).

any significant attentional effects. Olshausen et al. [169] propose that for a full brain-
scale shifter circuit for spatial attention, approximately 800,000 unique control signals
would be required, which suggests that approximately three pulvinar neurons are available
for computing and projecting each control signal. If it is assumed that each pulvinar
neuron in the shifter circuit has a signal to noise ratio on the order of 10:1 (see Eliasmith
and Anderson [55]), the model would in fact require ∼ 8 × 106 pulvinar neurons, which
significantly exceeds the number of available neurons. In short, it is unlikely that only 3
neurons could sufficiently accurately encode the needed control signals in the shifter circuit.
Third, the shifter circuit performs dynamic routing by modifying the synaptic connection
weights, although there is little evidence that synaptic plasticity can occur at the time
scale required for attentional processing.

3.3.3 Selective Attention for Identification Model (SAIM)

The SAIM model [81] follows the idea of the shifter circuit, but focuses on modelling
the cognitive aspects of attention and effects of lesions, with less emphasis on biological
correspondence. The architecture of SAIM is shown in Figure 3.4. Visual information
enters the model in the visual field, from where it is projected to a selection network and
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contents network. The selection network serves to selectively gate and route information
from the visual field to the focus of attention, and contains a k × l × i × j matrix of
connection strengths, where k and l represent the spatial size of the visual field and i and
j are the spatial dimensions of the focus of attention. This configuration is similar to the
first proposed routing mechanism shown in Figure 3.1(a). The location map is similar to a
saliency map, in that it encodes potential or previously attended locations, but differs by
not directly engaging in any competition between targets, and instead biases the selection
of targets within the selection network. The location map is also involved in inhibition of
return, wherein the salience of previously visited locations are suppressed. The focus of
attention in the model is consistent with the notion of an object-centred reference frame,
and provides gated visual signals to the knowledge network, where object recognition is
performed using template matching.

Information from the visual field is selectively routed to an object-centred reference
frame in the focus of attention by the selection network projecting gating signals to each
possible connection between the contents network and focus of attention, where the control
signals are multiplied by the signal carried along each connection, and the product is
summed by each unit in the focus of attention. A central constraint of the model is that
spatial relationships are preserved, and this is accomplished by imposing two additional
constraints that each retinal input projects only to a single unit in the focus of attention,
and that each unit in the focus of attention receives input from only one retinal unit.

More recently, Heinke et al. [82] extended the SAIM model to use spiking LIF neurons,
aiming to close the gap between the behavioural and neurobiological levels of analysis. The
model was shown to qualitatively reflect the behavioural effects of attention in normal and
lesion patients, but has several limitations. The model addresses position invariance but
not scale invariance, and assumes that at any one time, neurons in a given column receive
inputs from exactly one input column, with all other inputs being fully suppressed. The
visual hierarchy is also reduced to consist of two interconnected levels, with a large matrix
in the selection network controlling the precise routing of each possible pathway between
the two levels. The model also has scalability limitations, as incorporating additional
visual processing levels in the model requires additional high dimensional matrices to be
represented and transformed.

3.4 Competition Based Routing

3.4.1 Biased Competition

The biased competition model is another proposal for how attended visual stimuli may be
selectively processed in cortex [43, 188]. The model proposes that the appearance of two
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Figure 3.5: Biased competition model. The neuron on top receives excitatory (black lines)
and inhibitory projections (grey lines) from input populations, shown at the bottom. Each
input population represents separate stimuli, shown here as vertical and horizontal bars
below them. (Adapted from [188]).

or more stimuli in a neuron’s receptive field activates neuronal populations that automat-
ically compete with each other, and that directing attention to one of the stimuli biases
this competition in favour of the attended stimulus [43]. The assumption of an intrinsic
competition in cortex has been incorporated in several models of attention [199, 253], al-
though a detailed account of the hypothesis was largely advanced in the computational
model of Reynolds et al. [188].

A schematic of their feedforward model is shown in Figure 3.5. Two separate stimuli,
shown as vertical and horizontal bars, activate populations of input neurons (ovals at the
bottom of the figure) that provide feedforward input to the single output neuron, shown
as an oval at the top of Figure 3.5. Input neurons i with firing rates xi are connected
to the output neuron with excitatory and inhibitory connections having weights wi+ and
wi− respectively. The excitatory and inhibitory inputs to the output cell are determined
as the sum of the activities of the input cells, multiplied by the excitatory and inhibitory
weights, respectively:

E = x1w
+
1 + x2w

+
2

I = x1w
−
1 + x2w

−
2 .

(3.5)

The activity of the output cell, in terms of firing rate, is computed then as:

y = BE
E+I+A

, (3.6)

where B is the maximum response of the cell and A is a passive decay term. The model
assumes that attention causes the strength of signals from attended stimuli to increase in a
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multiplicative manner, and is implemented by increasing both the inhibitory and excitatory
synaptic weights from the attended stimulus by a factor of 5. This method of selective
routing is similar to the first approach presented in Figure 3.1(a).

The article in which the model was first presented also reported results from several
single cell recording experiments in V2 and V4 with different attentional and stimulus con-
ditions, with which the model was shown to be qualitatively consistent [188]. Specifically,
Reynolds et al. had three monkeys attend to a target outside the recorded cell’s receptive
field and measured the activity when one or two stimuli were placed inside its receptive
field. With a preferred and non-preferred stimulus in the receptive field, shifting attention
to one of the targets caused the cell to respond at a rate that was similar to that elicited by
the presentation of the attended stimulus alone. That is, with both a preferred and non-
preferred stimulus in the receptive field, attending to the non-preferred stimulus yielded a
lower firing rate than that elicited by the preferred stimulus being alone, yet higher then
the firing rate elicited from the presentation of the non-preferred stimulus alone.

While the model was shown to capture some qualitative properties of attentional mod-
ulation in cortex, it has several limitations. As with many other models, the biased com-
petition model is a purely mathematical abstraction of the computations, rather than the
biological mechanisms, that may lead to selective routing. Second, the means of applying
the attention signal by changing synaptic weights is debatable on the time scale needed
for attentional routing. In their implementation, an attention influence was provided by
increasing the synaptic weights by a factor of five, although the basis for this value, along
with its generation in the context of a large-scale model, are not specified. This is effectively
a multiplicative modulation of attended information, for which there is much experimental
support. However, there are a few key differences in their approach and a gain modula-
tion. As was discussed in Chapter 1, attention appears to attenuate unattended stimuli
rather than to amplify attended stimuli [147]. The model also does not specify the basis
for the value of the weight increase, nor how it is related to attentional modulation in other
neurons in that area. Finally, similar to the gain field model of Salinas and Abbott [204],
the model is only specified for a single output neuron, without detailing how attentional
control applies in other ventral stream areas.

3.4.2 Normalization Model of Attention

The normalization model of attention [189] is an extension of the biased competition model
that combines aspects of several previously proposed models [80, 188]. The model seeks to
define, in a single computational model of attention, the mechanisms that can account for
numerous forms of attentional modulation including contrast gain, response gain, sharpen-
ing of tuning curves, and reductions in firing rate with an additional non-preferred stimulus
in the receptive field. The model comprises three general components that operate on a one
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Figure 3.6: Normalization Model. Visual stimuli generate the stimulus drive and the
attention field specifies the features (y-axis of attention field) or locations (x-axis) of the
attentional target. The product of the stimulus drive and attention field is then convolved
with a Gaussian to yield the suppressive drive, which divisively normalizes the activity to
produce the population response. (Reproduced from [189]).

dimensional visual field and for one feature dimension: a stimulation field, a suppressive
field and an attention field.

The stimulation field characterizes the response of a neuron to visual stimuli in its re-
ceptive field, based on the stimulus’ feature values (e.g. orientation) and spatial position,
without any attentional modulation. The suppressive field characterizes the spatial posi-
tions and feature values of a stimulus that can cause a suppressive effect on the stimulus
evoked activity, or stimulus drive. The attention field describes the multiplicative gain that
is applied to the stimulus drive of all neurons, based on the feature or spatial properties
of the attentional target, as specified by a top-down mechanism. In cases of feature-based
attention, the attention field has larger values for the target feature (i.e. γ > 1, where γ
is the maximum value) across all spatial positions, whereas for spatial attention, the map
has larger values for the target position across all feature values.

The population response represents the activity of neurons in the output level and is
a function of the attention field, specifying the position and/or features of the target, and
the stimulus drive, as determined by the visual features of the stimuli. The suppressive
field is effectively a Gaussian blurred version of the stimulus drive and serves to divisively
normalize the product of the attention field and stimulus drive.

Figure 3.6 illustrates the arrangement of these three components for one spatial dimen-
sion of a single cortical area (e.g. V2, V4 or IT) when attention is directed to a target on
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the right side of the visual field (spatial attention). The leftmost box shows two vertically
oriented stimuli in the visual field, with one stimulus in each hemifield. The receptive field
of one cell is shown as a dashed circle, and the attentional target is outlined in red. The
x-axis of each box indexes the spatial position of a neuron’s receptive field centre, while
the y-axis spans the range of preferred orientations at that location. The attention field
has higher values, shown in white, for stimuli of all orientations, at the target location.
The firing rates of the population, R, as a function of the stimulus drive and suppressive
drive, are given by:

R(x, θ) =
∣∣∣ E(x,θ)
S(x,θ)+σ

∣∣∣
T
, (3.7)

where E(x, θ) is the stimulus drive of a neuron with receptive field centre x and orientation
tuning θ, and S(x, θ) is the suppressive drive for that cell. σ is a constant that determines
the neuron’s contrast gain, and |·|T represents rectification of the response with threshold
T .

As with several other models [168, 188, 204], selection of attentional target is not
handled by the model, but is provided to the system as A(x, θ) for all receptive field
positions and preferred orientations. In cases of visuospatial attention, A(x, θ) has values
of γ = 1 for all receptive field positions and orientations, except at the spatial position of
the target, where it has a value of γ > 1. The peak of the attention field, γ can have various
values, depending on the strength of attentional modulation required by the task. In cases
where γ = 1, the attention field has equal strength everywhere, resulting in the stimulus
drive of all neurons being multiplied by 1. Further, that γ > 1 for attentional targets,
rather than γ < 1 for non-targets (i.e., enhancement of the target instead of suppression
of distractors), is similar to the biased competition approach of increasing the weights of
the attended stimulus to a value > 1.

The effect of attention is to multiply the stimulus drive by an attentional gain term
specified in the attention field, which in turn influences the suppressive drive. Incorporating
the attention field, the resulting activity of the population of neurons is then expressed as:

R(x, θ) =
∣∣∣A(x,θ)E(x,θ)

S(x,θ)+σ

∣∣∣
T
, (3.8)

S(x, θ) = s(x, θ) ∗ [A(x, θ)E(x, θ)] , (3.9)

s(x, θ) is the Gaussian kernel, ∗ indicates convolution, and
∫
s(x, θ) = 1.

The model was shown to account for several forms of attentional modulation in cortex,
including contrast and response gain. Contrast gain, the model proposes, arises in cases
where the stimulus target is small and the attention field is large. The response of a neuron
is then determined as:
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R(c;x, θ) =
∣∣∣ γE(x,θ;c)
s(x,θ)∗(γE(x,θ;c))+σ

∣∣∣
T
, (3.10)

where c is the stimulus contrast and γ is the peak of the attention field. Because the
region of the attention field having vlaues γ > 1 is large, it effectively multiplies the
entire stimulus by γ, thereby shifting the contrast-response curve leftward for intermediate
contrasts before saturating at higher contrasts. Assuming that all neuronal responses are
proportional to contrast c and that the large attention field has a value of γ everywhere,
Equation 3.10 can be rewritten as:

r(c) = α(γc)/(γc+ σ)
= αc/(c+ σ/γ),

(3.11)

where α is the maximum response.

Response gain on the other hand, is proposed to occur in scenarios where the stimulus is
large and the attention field is smaller than the stimulus. The effect of the small attention
field is to multiply only the centre of the stimulus by γ, which also produces a similar
effect to that created by decreasing the stimulus size, as it reduces the spatial spread of
the stimulus drive. Thus, by using stimuli having contrasts with a Gaussian spatial profile
(i.e. highest contrast at their centre), only the centre of the stimulus is affected by the
attentional gain, while the edges of the stimulus having lower contrasts are unaffected.

To model response gain, the activity of a neuron with the stimulus and attention field
at the centre of its receptive field is computed as:

r(c) = α(γc)/(γc+ βc+ σ) (3.12)

where Bε[0, 1] scales the suppressive drive from the area surrounding the stimulus field.
For low contrasts, the response to contrast c is approximately equal to r(c) ≈ αγc/σ where
increasing γ scales the response, while for high contrasts (c >> σ), r(c) ≈ αγ′, where
γ′ = γ/(γ+β), causing saturation at higher contrasts. The model was used to simulate an
experiment by Treue and Martinez-Trujillo [245], in which two stimuli were placed inside
the receptive field, one moving in the anti-preferred direction, and the other moving in
one of 12 directions in the range [-180◦, 180◦]. They found that directing attention to the
variable motion stimulus produced an increase in the gain of the tuning curves, but there
was no change in its width. This experiment is simulated in Chapter 6.

However, this model has several limitations. First, the model is a purely mathematical
implementation without spiking neurons, and has limited predictive power in neurobiology
as it stands. Although the model is not intended to provide a detailed mechanistic expla-
nation of attentional modulation, the mathematical implementation makes it unclear how
biologically plausible the computations are.
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The normalization model is consistent with the experimental findings of increased direc-
tional gain when attending the variable direction stimulus, but is inconsistent with regard
to the sharpening of tuning curves with spatial shifts of attention. The experiment by
Treue and Martinez-Trujillo [245] that was modelled by the normalization model specifi-
cally tested whether the width of the tuning curve changes when attention is directed to
the non-preferred or variable stimulus, finding that there was no significant sharpening.
The normalization model however, predicts the opposite, that directing spatial attention
to the variable stimulus will sharpen the tuning curve (i.e. the range of motion directions
to which the neuron responds). Reynolds and Heeger suggest that this experimental result
is not inconsistent with the model, as a later study by Martinez-Trujillo and Treue [126]
demonstrated tuning curve sharpening. However, the later study by Martinez-Trujillo and
Treue used a different experimental configuration that involved only one receptive field
stimulus, and involved feature-based attention rather than spatial attention. From their
simulations, they report that using a broad attention field, equal in size to the stimulus,
results in the sharpening of tuning curves, and that the amount of sharpening depends on
the width of the attention field.

Using their model 1 to repeat this simulation, reducing the width of the attention
field from 5 (as specified in their simulations in [189]) to 4 does reduce the amount of
tuning curve sharpening. However, the smaller attention field causes only the centre of the
stimulus to be gain modulated (similar to the response gain simulations), resulting in the
attend-out case producing a greater peak response than attending the variable direction
stimulus, which conflicts with the experimental data. Conversely, increasing the size of
the attention field from 5 to 6 yields a change similar to contrast gain, further increasing
the range of directions to which the neuron responds when attending the variable motion
stimulus. This issue is returned to in Chapter 6, where the proposed model is used to
simulate the Treue and Martinez-Trujillo [245] experiment.

3.5 Synchrony- and Oscillation-based Models

For many years, there have been reports of correlations between oscillatory activity in the
gamma band (30-100 Hz, prototypically 40Hz) and mental processing, particularly atten-
tion and decision making [65, 75, 161]. Crick and Koch [39] proposed that this increased
power in and around 40 Hz may play a role in binding together the components of attended
stimuli by superimposing an oscillatory 40 Hz signal in the activity of neurons represent-
ing the attentional target. Their temporal tagging hypothesis was further developed in a
computational model by Niebur et al. [163], which consists of a V1 and V4 module and

1Available online at: http://www.cns.nyu.edu/heegerlab/
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a saliency map based on the Koch and Ullman mechanism [107]. The saliency map, hy-
pothesized to exist in superior colliculus or dorsomedial pulvinar, projects to cells in V1
having receptive fields that contain the attentional target, but not to V4. The signal from
the saliency map affects only the temporal structure of spike trains from those V1 cells
processing attended information, but not their mean firing rate.

For neurons in V1, the total firing rate λ is determined as the sum of spontaneous
activity, λspont and stimulus dependent activity λ0. For neurons not receiving visual input,
or stimuli having features of the cell’s non-preferred direction, λ0 = 0, while for neurons
receiving preferred stimuli, λ0 is proportional to the amount of spatial overlap of their
receptive field with the stimulus:

λo = λmax × overlap(stimulus, receptiveF ield), (3.13)

where λmax =200 Hz is the neuron’s maximum firing rate and overlapε[0, 1], where 1
indicates a complete overlap. In their model, a neuron’s featural tuning is simplified to
have a preferred stimulus to which it responds, with all other feature values being ignored.
Attentional modulation is produced by an inhomogeneous Poisson process having a time
varying mean rate of:

λ(t) = λ0(1 + Asin(ωt+ φ)) + λspont, (3.14)

where φ is a time-independent phase shift, ω/2π is the modulating frequency in the γ range
(25-60 Hz) imposed by the saliency map, and Aε[0, 0.75] is the strength of modulation based
on the degree of spatial overlap between the receptive field and the attentional target.
Individual cells are modelled using a linearized Hodgkin-Huxley model, with refractory
periods drawn from a uniform distribution in the range [2,5] ms, with λspont=2 spikes per
second.

The V4 module has a columnar organization, with each column containing inhibitory
and excitatory neurons tuned to various features, but having similar receptive fields. Specif-
ically, each column contains pyramidal cells that process visual stimuli and are paired with
interneurons that inhibit those pyramidal neurons that are tuned to opposing stimulus
features. The model proposes that there is a competition between V4 neurons in each
column representing different stimuli. The competition is biased toward neurons receiving
input signals that are tagged with a γ-band oscillation imposed by the saliency map by
using interneurons tuned to respond preferentially for spikes arriving every ∼ 25 ms (40
Hz). These interneurons that are paired with pyramidal cells preferring a given stimulus,
inhibit other pyramidal cells in that column tuned to opposing stimuli, thereby allowing
its paired cell to “win” the competition.

A revised version of the model was subsequently presented by Niebur and Koch [162],
which sought to identify an alternative means of imposing the temporal tag on attended
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stimuli, as oscillatory firing in single cells was difficult to observe experimentally. For
example, Luck et al [118] found that only ∼ 5% of neurons showed evidence of oscillations
in their autocorrelograms. In the revised model, no periodically recurring events were
required, nor were V4 interneurons that are selective for spikes arriving every ∼ 25 ms.
Rather, neurons in the lower level representing the attended stimulus are tagged by having
them fire synchronously in the γ range, an effect that unlike the former model would not
be seen in the activity of a single cell, but only in the activity of multiple neurons. V4
interneurons then detected coincidences in their inputs, and similarly inhibit pyramidal
cells tuned to opposing stimuli.

Both models predict that there will be no attentional effects on the firing rate of neu-
rons in areas below V4, although such effects have since been reported in LGN, V1, and
V2 [26, 118, 132, 138, 149, 196]. Further, Shadlen and Newsome [213] have argued that
the existence of neurons in V4 or other visual areas that can detect coincident spikes at
the time scale required by the model are unlikely. Several other models that incorporate
rhythmically synchronized neuronal activity have been proposed to account for selective
attentional processing in cortex (e.g., [10, 11, 19, 20, 25, 143, 242]), but will not be dis-
cussed in detail. Although several of these models aim to address phenomena at a similar
level of detail as the ARC, few of them attempt to describe the relationship of the atten-
tional effects between cortical areas (at most 2 areas are considered in any model) and
none define the detailed laminar circuitry of their cortical implementation.

3.6 Summary of Existing Models

From the above discussions of these other models, there are several aspects of the proposals
that are consistent with or incorporated in the ARC. I will return to a comparison of
this past work with the presented model after describing it in the next chapter. The
ARC is most closely related to the shifter circuit model [168, 169], which provides an
appropriate starting point for generating a new model. Several concepts introduced by
the shifter circuit are incorporated into the ARC. First, the ARC follows the notion that
visuospatial attention can be considered as a problem of routing attended information
through a hierarchy of visual areas. The ARC also seeks to route information from the
attentional target to an object-centred reference frame using control neurons that serve
to guide the routing of information between cortical areas while preserving local spatial
relationships within the representation of the target.

Although the shifter circuit’s proposed mechanism for performing dynamic routing by
changing synaptic weights is questionable, a similar effect can be obtained through the use
of gain fields. Gain modulation has been observed in numerous cortical and subcortical ar-
eas as a change in the response amplitude of a neuron, without affecting its selectivity [205].
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Salinas and Abbott [205] propose that gain modulation, or gain fields, are a widespread
computational mechanism that subserves the transformation of information from one co-
ordinate frame to another. Within the ventral visual stream, attention provides a strong
gain control signal, while in the dorsal stream, gaze direction serves a similar purpose.

In parietal cortex, Andersen and colleagues found that visual responses depend both
on the retinal location of a stimulus and the direction of gaze [5, 6]. They demonstrated
that with gaze held constant while spots of light were presented at various locations within
the neuron’s receptive field, the resulting responses could be well fit by a Gaussian over
the range of stimulus positions. When the animal directed its gaze to a different spatial
position, similar results were obtained, but with a different amplitude. These results
demonstrate that gaze direction has a multiplicative influence on neural responses that is
well described by a Gaussian shaped gain field.

One functional advantage of gain fields in parietal cortex is that they allow for infor-
mation to be transformed from eye-centric to head-centric and body-centric coordinate
systems. In the higher levels of the dorsal stream, it has been reported that gain fields in
LIP depend on gaze direction, placing information in body-centric coordinates, while in
area 7a, to which LIP projects, gain fields depend on body position [217].

Functionally similar gain field effects have also been reported in ventral stream areas,
where the gain fields depend on the position of the attentional target. Similar to the
gaze-dependent experiments of Andersen et al. [5, 6], studies by Connor et al. [35, 36]
examined the effects of attentional position on the responses of V4 neurons. As the animal
maintained fixation, bars of light were flashed inside the receptive field while the animal
covertly attended a target nearby, but outside the receptive field. These neurons also
exhibited gain modulated response that can be characterized by an attentional gain field.
Overall, then, it seems that gain fields provide a useful and well-established means of
addressing how attentional multiplication might be accomplished in a shifter circuit.

The normalization model [189] provides a particularly interesting approach to under-
standing the neurophysiological basis of attentional processing by proposing that the many
different forms and effects of attention may arise through a common mechanism. Several
previous proposals have addressed only some forms of attentional modulation such as con-
trast gain, response gain, or receptive field modulation, although comparatively few have
attempted to simulate several forms using a single mechanism. Consequently, it is a goal
of this thesis to simulate several forms of attentional modulation with a single mechanism.

Across these models, there are several common limitations that need to be addressed.
First, most of the above models are implemented in purely mathematical terms, without
spiking neurons [168, 188, 189, 272]. Although they are able to capture the qualitative
properties of attentional modulation and routing at various levels of abstraction, it re-
mains unknown whether the necessary functions and representations can be plausibly im-
plemented in the brain, within the constraints of timing, neural processing and storage.
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In particular, constructing models with spiking neurons allows the model’s scalability to
be tested; increasing the size of the visual field, the number of features being processed,
and the number of connections between cells and thus synaptic weights, requires additional
neurons to represent and process this information at a given precision, and it is necessary
to verify that the neuronal requirements of larger models do not exceed those of the areas
being modelled.

A second limiting factor with several of these models is that they describe a possible
mechanism for attentional modulation subserving routing for only a single cell [188, 204,
272]. Although they serve a valuable role in advancing our understanding of attentional
modulation at this level, there is a need for models to extend these proposals to specify
how the control signals are generated and applied for other neurons in that area.

Of the models that do consider attentional modulation for an entire cortical area, they
do not address how attention modulates activity in other areas of the ventral stream,
aside from proposing that it operates in a similar manner[188, 189]. There is mounting
evidence that attentional effects vary between areas of the ventral stream hierarchy, in
terms of the timing of modulation, strength of modulation, and proportion of cells showing
modulation [26, 138], phenomena which are not addressed by any of the models. With the
recent advancements in electrophysiology equipment allowing an increasingly large number
of cells to be recorded simultaneously from multiple areas, there is a need for theoretical
models to provide predictions that may be tested, and to be able to model this data as it
becomes available.

From the above discussions of existing models, a set of common limitations can be
assembled that the proposed model seeks to address:

1. Implemented in spiking neurons, within biophysical constraints;

2. Defined for an entire cortical area, rather than for a single cell;

3. Able to account for the relationship of attentional modulation between multiple cor-
tical areas, and the interaction of attentional routing between these areas;

4. Well-matched to physiological data; and

5. Able to account for different forms of attentional modulation using a common mech-
anism.

With these criteria established, the following chapter introduces the Attentional Rout-
ing Circuit (ARC), which is first described in functional terms for ventral stream areas
V1-PIT. The following chapter elaborates this description by implementing the model in
spiking neurons using the Neural Engineering Framework (NEF) [55], and then presents a
detailed mapping of the model to specific neuron types and cortical laminae.

51





Chapter 4

Attentional Routing Circuit - High
Level Overview

Understanding the detailed neuronal mechanisms of selective attentional processing in cor-
tex remains an outstanding problem in neuroscience. Given the complexity of the cortical
circuitry and myriad results from behavioural and physiological studies discussed in ear-
lier chapters, attempting to understand the ways in which the brain selectively routes
information can be pursued in several ways. The approach taken in this thesis is to first
describe, at a high level, the functional mechanisms with which selective routing may be
performed, while operating within the biological constraints previously outlined. Specif-
ically, this chapter introduces the Attentional Routing Circuit (ARC) and describes the
general mathematical basis of attentional routing, so as to provide a general sense of the
proposed mechanisms. The model is further elaborated into a spiking neuron implementa-
tion in the subsequent chapter, but first, the general principles are established.

4.1 Overview of Model Structure

Figure 4.1 shows the general architecture of the ARC. The model is constructed as a
hierarchy of levels that are taken to correspond to ventral stream areas V1, V2, V4, and
posterior IT (PIT) for the purposes of exposition, but also map to the visual hierarchy in the
dorsal stream (V1, V2, V5, PPC). Each level has a columnar and topographic organization,
where each cortical column contains populations of neurons. Columns are shown with a
uniform spacing between them, although more accurately, the spacing between columns
and the receptive field sizes of the neurons they contain, increases at further distances from
the fovea according to the cortical magnification factor. For explanatory purposes and due
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Figure 4.1: General architecture of the ARC. Each level has a columnar and retinotopic
organization, where columns are composed of visually responsive neurons and control neu-
rons (blue circles). Red circles indicate columns representing the attentional target. Each
column receives feedforward visual signals (gray lines) and a local attentional control signal
from control neurons (green lines), and these signals interact nonlinearly in the terminal
dendrites of pyramidal cells (green circles). Global control signals from pulvinar are fed
back to control neurons in lower levels (yellow lines). Connectivity is highlighted for the
rightmost columns only, although other columns in each level have similar connectivity.

to limitations of computational resources, the model is restricted to a one dimensional
visual field, although extension to two dimensions is straightforward.

As with several past proposals [69, 81, 151, 168], the ARC adopts the view that the
calculations used to determine local control signals are the same for columns in all levels.
That is, the computations used to transform the global control signals to local control sig-
nals, and the means by which the local control signals are applied, are the same throughout
the network.

In each column in the ARC, two types of neurons in each column can be distinguished
based on their functional roles: visually responsive neurons that processes the feedforward
visual signals, and control neurons that compute local control signals for dynamically
routing the information that is processed by visually responsive neurons in that column. As
is discussed below, these control neurons can be further divided based on the computations
they perform and the cortical layers in which they are found.

Two types of control signals may also be distinguished. Global control signals indicate
the size and position of the attentional target, and originate in pulvinar from where they
are projected to PIT and fed back through the hierarchy. The second type are local control
signals that are used within the column and are derived from the global control signals.
For each column, the local control signals simply specify the position within the receptive
field from which visually responsive neurons should selectively process visual information.
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The number of columns in each level of the ARC is based on the anatomical sizes of
the cortical areas being modelled, and so the number of columns decreases exponentially
at successively higher levels [271]. Given the considerable variance of the average surface
area of visual areas in human cortex [49], this is a simple assumption, though one that
does not affect the principles of the model. All columns in a given level receive the same
number of inputs from the previous level, although in higher levels, neurons in each column
receive input from a greater number of non-contiguous columns in the previous level, as
demonstrated by numerous anatomical studies [57, 58, 60, 236]. Specifics of the connectiv-
ity between columns and neurons within columns (e.g., the number of columns providing
input to a column or neuron) are not critical to the model’s routing mechanisms, since all
of the control calculations are performed using locally available information and the same
low-dimensional global control signals originating in pulvinar. In fact, the principles of
the ARC still hold in networks having additional or fewer levels, with a linear or arbitrary
reduction in the number of columns in each level, and with varied receptive field positions
and sizes for individual neurons in a column.

In numerous areas of visual cortex, visually responsive neurons within a column have
similar spatial receptive fields, but may respond preferentially to different visual features
at that location. For simplicity, neurons in each level of the model are sensitive only to
stimulus intensity. This simplification is made because although there is a fairly good
characterization of the tuning and selectivity of neurons in V1 and MT, our understanding
of the stimulus parameters needed to describe the complex receptive fields and tuning in
the three dozen other visual areas is considerably less. Thus, there is no attempt to specify
the features represented by these neurons. Instead, and each visually responsive neuron
may be thought of as encoding a feature vector, in this case a scalar value corresponding
to stimulus intensity. If more complex stimuli are encoded, these feature vectors would be
defined in a higher dimensional space, with each dimension corresponding to a particular
feature. Such an arrangement is found in models of object recognition and machine vision.
None of the ARC’s principles prevent its extension to processing such higher dimensional
spaces.

Figure 4.1 shows the primary elements for routing in the ARC. Red filled circles indicate
columns in each level that encode visual signals from the attentional target and unfilled
circles are columns operating in their default routing state and not encoding information
from the target. Each column contains cortical control neurons (small blue circles) that
compute local control signals for the visually responsive neurons in their column. The local
control signals are computed based on the global control signals from pulvinar (blue lines),
which projects to control neurons in PIT. Feedback projections from control neurons in
PIT relay the global control signals to control neurons in the previous level (yellow lines).
The local control signals are projected to the inputs of the visually responsive neurons
(green lines) where they modulate the gain of the input signals from each input column.
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Feedforward inputs to a column are shown with gray lines.

It is presumed that in the absence of, or prior to the arrival of a global attentional
control signal from pulvinar (e.g. when the target’s location is not cued or known before
stimulus onset), the system operates in a default routing state, wherein the entire visual
field is routed to form a coarse representation in PIT. Since the retinal sampling density
and cortical magnification factor cause more neurons to represent the foveal and parafoveal
regions, information from these regions will be represented in PIT with greater fidelity
than will peripheral regions. When the target is known, columns that are not encoding
information from the attentional target still operate in their default routing state, and this
assumption is further discussed in Section 4.5.

Following the assumption of control calculations being the same in all ventral stream
areas, the following section presents the methods for computing the local control signals
for a single column in the top most level, with columns in other levels employing the same
mechanism.

4.2 Control Calculations

For columns in each level, cortical control neurons serve three general functional roles.
First, control neurons determine the size of the attentional target’s representation in the
level below, in terms of the number of columns that it will span. In determining this value,
the model seeks to minimize the loss of visual information by having as many columns as
possible represent signals from the target.

Second, control neurons determine the position of the target’s representation in the
previous level. In computing the location of the target’s representation in the previous
level, the model attempts to have the target’s representation centred at the lowest level as
possible. That is, if the attentional target is located in the far periphery in V1, at each
level, its representation is drawn closer to the centre of that level. This axiom follows a
core concept of the model, namely minimizing the loss of information from the attentional
target. Neurons in numerous visual cortical areas have Gaussian shaped receptive fields,
with sensitivities that fall off at the edge of their receptive field [35, 36, 171]. By shifting
the target’s representation toward the centre at each level, this effect can be minimized
so that neurons, particularly those in higher levels, are selectively processing information
from the centre of their receptive field.

Once the control neurons have determined the size and position of the attentional tar-
get’s representation in the previous level, the third function performed by control neurons is
to determine the portion of the attentional target that each column should selectively pro-
cess. This function is of particular importance in the ARC, as it ensures that only relevant
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Table 4.1: Parameters used in the ARC
Variable Name Usage
Alen Length of attentional target
Apos Position of attentional target
θl Position of attentional target in level l
a Receptive field size
m Maximum shift
s Shift
sf Sampling Factor
i Position index of output column
j Position index of input column
µ Attentional target within receptive field
xj Input column at position j
x̂j Visual signal carried by input column
size Number of columns in level
σatt Width of routing function
σω Width of Gaussian connection strengths

information (i.e., the target) gets selectively processed, and that extraneous information
does not.

With this overview in mind, the steps for computing local control signals when the at-
tention target is known, are now defined mathematically. For reference, Table 4.1 provides
a summary of the parameters used in the ARC.

The procedure for performing selective routing in the ARC begins when pulvinar
projects to cortical control neurons in the top level of the hierarchy (PIT), a signal that
coarsely encodes the size and location of the attentional target (Alen and Apos). The first
component of this signal Alen, specifies the size of the target in terms of the number of
columns in V1 that it covers. The second component, Apos specifies the position of the
centre of the target, also in terms of V1 columns.

As mentioned above, the first computation performed by control neurons seeks to de-
termine the size of the target’s representation in V4. Assuming an object-centred reference
frame in PIT, where all columns represent the target, these control neurons simply deter-
mine, based on the global control signal Alen, whether the target’s representation in V4
will be larger than the number of columns in PIT. If the representation is larger, as will
typically be the case, then the representation will need to be downsampled as it is pro-
jected from V4 to PIT. In this case, control neurons determine the downsampling factor
by computing the number of V4 columns between which signals are selectively processed.
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Assuming an object-centred reference frame in PIT where all columns represent the
target, the first type of cortical control neuron receives Alen and uses it to compute the
number of columns between values of µ for adjacent PIT columns:

sf = min(max(Alen,sizePIT ),sizeV 4)−1
sizePIT−1

(4.1)

where sizePIT and sizeV 4 are the number of columns in PIT and V4 respectively. As both
of these values are fixed for a given network architecture, they are not explicitly signalled
or represented, but are stored in the weights of the control neurons.

The second step in computing the local control signals is to determine the position
of the target’s representation in the previous level. This is performed using the second
component of the global control signal from pulvinar, which indicates the position of the
centre of the target, Apos. As mentioned above, in performing this calculation, the model
seeks to have the target’s representation be centred in each level if possible. The position
of the target’s representation in V4 (θV 4) is given by:

θV 4 =

{
0 if Apos ≤ mPIT

Apos − (sign(Apos)×mPIT ) otherwise
(4.2)

mPIT = (aPIT − 1)/2 +mV 4 (4.3)

where sign(Apos) = 1 if the target is to the right of centre (Apos ≥ 0) and -1 otherwise, and
mPIT represents the maximum shift that can occur for columns in PIT. Stated simply, if
the centre of the attentional target in V1 (Apos) can be routed such that its representation
is centred in V4, then route it to this position. If however, Apos is at a greater eccentricity
than can be routed to the centre of the level (due to the size of the receptive fields of
neurons in that level), then route it as close to the centre of the level as possible. For a
particular network architecture, the maximum possible shift m is fixed for control neurons
in each level, and is computed by summing 1

2
of its receptive field size ((a− 1)/2) and the

maximum shift of the level below.

Having computed the position of the target’s representation in V4 (θV 4) and assuming
an object-centred reference frame in PIT (θPIT ), the number of columns by which the
centre of the target’s representation is shifted between V4 and PIT is given by:

sl = θV 4 − θPIT . (4.4)

Both θ and the global control signals Alen and Apos are fed back to control neurons
in V4 from PIT. These signals are provided to all V4 columns within the receptive fields
of the PIT columns. However, depending on the values of the control signals, only some
of the V4 columns will switch from their default routing state to one in which they are
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selectively routing information from the target. To determine whether a given V4 column
will be involved in encoding information from the target, at the point where the feedback
signals arrive in V4, the following is computed:

state(xj) =


selective if Alen > sizeV 4,
selective if θl−1 − Alen−1

2
> xj > θl−1 + Alen−1

2
,

default otherwise,
(4.5)

where xj is the jth input column in the previous level, selective indicates that the column
will switch from its default routing state (default) to one in which information from
the target is being selectively processed. In V4 columns not selectively routing attended
information, the feedback signals are gated before they can influence the activity of the
control neurons. Further, V4 columns remaining in their default routing state do not relay
the feedback signals to the V2 columns within their receptive field, and thus, those V2
columns will also remain in their default routing state.

Before proceeding further, Figure 4.2 illustrates the role of sf and θ in the local control
signal calculations. For V2 and V4, an equal number of columns encode the attentional
target (sf = 1) since the size of the target (Alen) is less than the number of columns in those
levels. As PIT has the fewest columns, the number of columns in V4 representing the target
will typically exceed the number of columns in PIT. In Figure 4.2, the representation of the
target spans seven columns in V4, while PIT contains just three columns (sizePIT = 3). In
order to route the target’s representation from V4 to PIT, the PIT columns sample every
third column in V4 (sf = 7−1

3−1
= 3).

Figure 4.2 also illustrates that at each level, the target’s representation is shifted as
close to the centre of that level as possible. In V2, the centre of the target’s representation
θV 2 = 4, due to the small receptive fields of neurons in lower levels. At V4 however, the
larger receptive fields allow the target to be routed to the centre of the level (θV 4 = 0).

Pyramidal cells with nonlinear dendrites have been reported in neocortex and hip-
pocampus [117, 122, 160, 182], and based on the morphological and electrochemical sim-
ilarities between those cells and pyramidal cells in visual cortex, it is proposed that such
neurons may also be found in visual cortex (see Section 2.4 for further details). The func-
tional advantage of the dendritic nonlinearities is that they endow the cell with the ability
to compute two nonlinear functions of their inputs, similar to a two-layer artificial neural
network [63, 181]. Presently, it is shown how this additional nonlinearity can be used to
perform efficient selective routing.

The control neurons involved in computing Equations 4.1 and 4.4 project sfPIT and
sPIT to the nonlinear terminal dendrites of the visually responsive pyramidal cells in column
i in PIT. In the dendrites, these signals are used to determine the location within their
receptive field to which attention should be directed:
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Figure 4.2: Example ARC network showing the position of the target’s representation (θl)
in each level when attention is directed to the stimulus in V1 shown with gray circles
(Apos=6 and Alen=7). Dashed lines indicate the attentional focus of each column, µ, as
determined by the local control signals. The relative shift of the target between V2 and
V4 is sV 4=-4, and between V1 and V2, sV 2=-2.

µi = sf × i+ sPIT . (4.6)

This value µi specifies the centre of a Gaussian-shaped routing function over the recep-
tive field of column i that serves to modulate the gain of visual signals from input columns
throughout the receptive field:

f(µi, xj) = e
−(µi−xj)

2

2σ2
att , (4.7)

where xj is a constant representing the spatial location of the jth input column in V4.
Similar to gain fields models [204], this yields a Gaussian centred on µi with width σatt.
Figure 4.2 shows that in PIT, two of the columns are selectively processing information
from the edge of the target’s representation in V4. In specifying the control signals, the
ARC ensures that at least one column is selectively processing information from the edge of
the target’s representation at each level, as in biological and computational vision systems,
edges are known to play an important role in object recognition [94, 104, 212].

Figure 4.3 illustrates the routing function (Equation 4.7) in a single column i=0 in PIT
receiving inpts from three columns xj=[-1, 0, 1]. The control signals specify that column
i should selectively process information from xj = 0 (µ = 0), shaded in red. Input signals
from each column are multiplied by the gain term computed by the routing function for
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Figure 4.3: Illustration of the routing function in the ARC. The control neuron is sending
µ, and the centre of the Gaussian routing function is focused on the input column at
position xj = 0 as µ = 0. Visual signals encoded by each of the three input columns
(xj = [−1, 0, 1]) are multiplied by the gain term computed by the routing function for each
input column’s position.

each column, with signals from xj=[-1, 1] being attenuated, and the signal from xj=0 being
multiplied by 1.

If the number of columns representing the attentional target in a given level exceeds
the total number of columns in the next higher level, then sf will be greater than 1. This
results in adjacent columns in the upper level having values of µ that skip one or more
columns in the previous level that are encoding information from the target. Using the
example shown in Figure 4.2, columns in PIT have values of µ = [−3, 0, 3]. If a narrow
routing function were used such that all columns except for those at µi were significantly
attenuated, information from V4 columns [−2,−1, 1, 2] would not be routed to PIT, re-
sulting in this information being lost. In such cases, it is desirable that all information
within the target’s representation still be routed through, thereby requiring each column
in the higher level to pool the visual signals from several columns in the previous level.
This is accomplished by adjusting the width of the attention function, σatt in Equation 4.7
by dividing sf by the full width at half maximum:

σatt = sf/2.35. (4.8)

With larger values of sf , this will introduce some blurring into the target’s represen-
tation in higher levels, although doing so prevents the target’s representation in PIT from
containing sharp discontinuities between adjacent PIT columns.

Figure 4.4 illustrates the need for changing the width of the routing function depending
on the size of the attentional target. Thick blue lines above each level represent the decoded
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Figure 4.4: Effect of using a routing function with a fixed width (σatt). (a) When σatt is
fixed at the appropriate value for all levels performing a shift of the FOA, selective routing
proceeds as expected. (b) When the same routing function width is used for routing a
larger target that requires both shifting and scaling, some columns in PIT have values of
µ that land between two columns and thus the adjacent columns are attenuated, resulting
in distortion of the target’s representation.

visual signal at each level. In Figure 4.4a, Alen = 9 and at each level sf = 1. The width of
the routing function is computed as sf/2.35, and information from the attentional target
is routed to PIT as expected. In Figure 4.4b, the size of the attentional target is increased
to Alen = 13, but σatt is kept at 1/2.35. By not modifying σatt to accommodate the
selective routing of the larger target, some of the PIT columns have values for µ that
fall between two V4 columns, shown as small red ellipses in V4. The result is that the
Gaussian routing function produces a value of f(µi, xj) = 1 at a position in between the
two columns which, as a result of the narrow routing function, correspondingly yields a
value of 0.36 for the columns between which µ falls. When the routing function’s gain
term is multiplied by the visual signals in the adjacent columns, their encoded values are
significantly attenuated, producing a distortion of the visual signal in some PIT columns.
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Figure 4.5: Routing example in a three level network. In the default routing state the full
visual field is routed to an object-centred reference frame in Level 3. Dashed lines indicate
the centre of the routing function for each column in their default routing state. When
the target is known, pulvinar projects the global control signals Alen and Apos to control
neurons in the top level (small blue circles), where the global control signals are used to
compute local control signals that specify the centre of the routing function (solid black
lines). The global control signals are fed back to level 2, where local control signals are
computed using the same mechanisms.

If the size of the attentional target were further increased such that it exceeds the number
of columns in V4 or V2, this type of distortion would be similarly added at those levels as
well and compounded at higher levels. As a result, it is necessary for σ to be modified for
the selective routing of the attentional target as shown in Equation 4.8.

The result of Equation 4.7 is projected along with the feedforward visual signal from
input column xj (x̂j) to the soma, where the two values are multiplied using the second
dendritic nonlinearity. The gated signal is then pooled along with gated signals from other
neurons in that column to serve as feedforward input to the next higher cortical level. In
total, the pyramidal cells with nonlinear dendrites receive three input signals, s, sf and
x̂j, which interact according to Equations 4.6 and 4.7. The consequence is that the signals
encoded by V4 columns at the centre of the Gaussian (i.e. xj = µi) are multiplied by 1 and
thus contribute most to the activity of xi in PIT, whereas columns that are more distant
from µi are attenuated and contribute less.

Figure 4.5 shows an example of how this routing proceeds in a small three-level network.
The network parameters, which are fixed for the network, are summarized in Table 4.2. In
the default routing state, the entire visual field is routed to the top level, with the centre of
the routing function for each column indicated by dashed lines. Once the target is known,
pulvinar projects the global control signals indicating the size and position of the target
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Table 4.2: Routing example - network parameter values for the network shown in Figure 4.5.
Parameter Level 1 Level 2 Level 3
size 7 5 3
a - 3 3
m - 1 2

Table 4.3: Routing example - computed parameter values for the network shown in Fig-
ure 4.5.

Level 2 Level 3
µ default [-3, -1.5, 0, 1.5, 3] [-2, 0, 2]
µ selective [-3, -1.5, 1, 2, 3] [0, 1, 2]
sf default 1.5 2
sf selective 1 1
s default 0 0
s selective -1 -1
θ 1 0

(Alen = 3 and Apos = 2) to control neurons in the top level. The control neurons use the
global control signals to compute local control signals for performing selective routing. The
centre of the routing function computed by each column is indicated by solid black lines.
The result of the routing function is then multiplied by the visual signals arriving in each
column

The global control signals are then fed back to all columns in level 2, where each column
determines if it will switch from its default routing state to selectively process the attended
stimulus (Equation 4.5). For this target, level 2 columns xj = [−2,−1] will remain in their
default state, and the other columns in that level switch to perform selective routing. The
parameter values in the default routing state, as well as the local control signals computed
for selective routing are summarized in Table 4.3. For columns having switched to a
selective routing state, the values of µ are shown in bold, with non-bold values indicating
that the corresponding columns remain in their default state.

As was discussed earlier, attention has been shown to affect the activity of neurons
in higher cortical levels earlier than in lower levels [26, 32, 86, 138, 196], and the ARC
proposes that this effect results from attentional control signals being fed back through the
hierarchy, where they affect neuronal activity at each area along the way. As the control
signals are computed, applied and fed back at each level, then for some time, neurons in
PIT will be receiving a partially routed image. As time proceeds, the lower levels will
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Figure 4.6: Evolution of visual signals in the ventral stream as attentional control signals
affect routing in each area in a top down manner. (a) When the attentional target is
unknown, the system operates in its default routing state and the entire visual field is
routed to PIT. (b) The global control signal from pulvinar arrives in PIT, indicating that
the attentional target covers the centre 11 columns in V1. At this point, neurons in
PIT selectively route information from the target’s representation in V4, while V4 and
V2 remain in the default state. (c) The global control signal is fed back to V4, where
columns encoding the target switch to a selective routing state, while columns not encoding
information from the attentional target remain in their default state. (d) The global control
signal is received in V2, which now selectively routes information from the target.
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receive the feedback control signals and switch from their default routing state to one in
which the target is selectively processed.

Figure 4.6 shows the evolution of the visual signal’s representation in each level. At
first (Figure 4.6a), all four levels are operating in their default state. Following the arrival
of the global control signals in PIT, local control signals are computed in PIT which allows
them to selectively route information from the V4 columns that will encode information
from the target. This process continues through each lower level until the entire network
is selectively processing information from the attentional target.

Examining the representation in PIT at each step in this example, it can be seen that
the decoded visual signal does not significantly changes once local control signals have been
applied in PIT. This suggests that, depending on the amount of spatial detail required,
successful recognition of the target may be performed without needing to modulate the
routing performed below V4. This observation may explain the lack of attentional effects
seen in lower areas when simple tasks are used [118, 131, 147].

4.3 Dendritic Nonlinearities

Pyramidal neurons are the most common type of neuron in cortex and constitute 70-90% of
the neurons in cerebral cortex [56, 144]. The classical view of neurons used in most compu-
tational models is that neurons compute a single nonlinearity of the weighted sum of their
dendritic inputs. For years, theorists have proposed the existence of neurons with nonlinear
dendritic processing capabilities [106, 139, 141], and several recent studies have reported
such neurons in the deep layers of rat neocortex [182], sensorimotor cortex [160] and hip-
pocampus [117, 122]. When combined with the axosomatic nonlinearity, such neurons are
able to compute two nonlinear functions of their dendritic inputs, thereby significantly in-
creasing their computational power. The ARC predicts that pyramidal cells with dendritic
nonlinearities will be found in layer-IV of visual cortex, and the experimental evidence that
supports this prediction is presented by comparing layer-IV cortical pyramidal cells with
those shown to have dendritic nonlinearities in area CA1 of hippocampus.

Pyramidal cells in both CA1 and visual cortex typically contain a single axon, several
short basal dendrites, and one or two apical dendrites that branch several times to form
the apical tuft [223]. Pyramidal cells in both areas also contain thousands of dendritic
spines, and these membranous extensions of the dendritic surface represent the primary
postsynaptic site for excitatory glutamatergic synapses [13]. Further, pyramidal neurons
in both areas have a relatively high and constant density of Na+ channels throughout
the dendritic tree, increasing density of Ih channels at greater distances from the soma,
a narrow window for temporal summation, backpropagating action potentials, dendritic
Na+, KA and Ca2+ channels, and somatic Na+ channels [142, 223]. Neurons in both areas
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are also capable of acting as coincidence detectors, which refers to the ability to discern the
simultaneous occurrence of synaptic inputs at different locations on the same cell [223, 231].
Finally, both types of pyramidal cells can propagate dendritic spikes toward the soma [223].

In order for the neurons to exhibit dendritic nonlinearities, several conditions must
be satisfied. For superlinear summation in the dendrites to occur, synaptic inputs to the
terminal dendritic branches must arrive within 40 milliseconds and 40 µm of each other,
and occur within the same dendritic branch [182]. A simplifying assumption of the neuron
model used in this thesis is that synaptic inputs to these dendrites are positioned within
40 µm.

In this neuron model, the first stage of processing reflects the computation occurring in
the thin terminal dendrites which receive approximately 85% of total input to the cell [117,
181, 182, 224]. Each thin terminal dendritic branch or dendritic subunit, computes a
nonlinear function of its inputs. The second processing stage corresponds to that occurring
at the soma, where the dendritic activities are integrated and a spike is generated using
the standard LIF axosomatic nonlinearity when the firing threshold has been reached.

4.4 Coarse to Fine Processing

The ARC proposes that in conditions where the attentional target is not known, the visual
system routes information according to a default routing state in which the entire visual
field is processed. In this state, the visual information encoded by columns in PIT is a
coarse representation of the entire visual scene. The representation in PIT lacks fine spatial
detail primarily because significantly fewer neurons at each level are representing the visual
information. To accommodate the reduced capacity at each level, each column pools the
visual signals from multiple input columns within their receptive field. This pooling yields
an increasingly blurred representation at higher levels, resulting in a loss of high spatial
frequency information, while the low frequency information is better preserved. Once the
attentional target is known however, routing may then proceed to allow finer detailed
information of the target to be routed through the hierarchy.

The proposal that perceptual processing occurs at both coarse and fine spatial scales,
with a first pass of the scene being at a coarse spatial resolution, and subsequent assessment
at finer resolutions dates back several decades [158, 159, 172], and is included in several
theoretical models [27, 94, 123]. This is closely related to the global advantage effect
described in psychology literature, which suggests that the global structure and the spatial
relationships between components are processed before the analysis of local details [166].
For a detailed review of psychophysical studies showing this effect, see [99].

Several studies have demonstrated that with rapid presentation of complex scenes,
subjects tend to describe the scene based on its low frequency components [164, 165].
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Schyns and Oliva [210] investigated the role of spatial frequency in perceptual processing
by presenting subjects with “hybrid” images constructed by overlaying the low frequency
components extracted from one image with the high frequency components extracted from a
second image. Subjects were primed with a brief presentation of the hybrid image for 30 ms,
after which subjects had to match the image with a normal picture. With short presentation
times, subjects seemed to perform matching based on the coarse, low spatial frequency
components, although with longer presentations of 150 ms, this effect was reversed, with
subjects matching based on the high frequency components, with similar effects reported
by Sripati and Olson [226]. Consistent with these findings, a study by Parker et al. [175]
investigated the effect of presentation sequence on discrimination performance using high-
pass and low-pass spatially filtered versions of each image. They found that when the
filtered images were presented in a low-to-high order, subjects were significantly better
able to discriminate the stimuli than when the stimuli were presented in a high-to-low
order.

A recent fMRI study by Goffaux and colleagues [72] provides further evidence of coarse-
to-fine processing. In that study, images of faces that were filtered to preserve low, medium
or high spatial frequency components were flashed for 75, 150 or 300 ms. In the fusiform
face area, a high level cortical region often characterized by the presence of face selective
neurons, there was a robust response to low frequency stimuli with short exposures that
decayed rapidly with longer exposure durations. Conversely, the responses to face images
containing only high spatial frequency components became more robust over time with
longer exposures, suggesting that the processing of coarse, low spatial frequency informa-
tion precedes that of detailed high spatial frequency information.

At the neuronal level, a correlate of the global advantage effect has been reported in
macaque area IT. Sripati and Olson [226] presented shape stimuli that were formed with
either solid lines, or as hierarchical shapes composed of smaller shapes. The hierarchical
stimuli were either congruent (e.g. a square composed of several small squares) or incon-
gruent (e.g. a square composed of small circles). They found that the responses of IT
neurons form a coarse representation of the shape approximately 30 ms before their ac-
tivity reflects the local shape information, consistent with the coarse-to-fine model. That
study also reports evidence of scale-invariance, such that neurons preferentially responding
to a particular larger solid shape also tend to prefer the corresponding small shape when
presented in isolation.

Taken together, these results indicate that in some conditions, visual processing first
performs a rapid analysis of the visual scene based on the coarse properties, with subsequent
processing being performed at a finer resolution. Both physiologically and computation-
ally, there is good reason for such an arrangement. In the magnocellular layers of LGN,
neurons are sensitive to stimuli with high temporal frequency and low spatial frequency
information, and have heavily myelinated axonal projections that provide a rapid conduc-
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tance of this information to higher cortical areas. This rapid processing is seen in neurons
in dorsal stream areas showing activation significantly earlier than neurons receiving sig-
nals from the parvocellular layers of LGN. As noted by Bullier [27], this is consistent with
the dorsal stream’s involvement in visuomotor processing, where rapid visual processing is
an important factor in guiding fast motor movements.

From a computational perspective, the rapid first pass of the visual scene allows the
coarse estimate of the information to guide the expectation of its contents [27, 94, 123] or
to activate schemas in memory [210]. Depending on the task, the brief analysis of the scene
can be used to guide subsequent processing of salient or task-relevant areas or objects in
more detail.

4.5 Default Routing

The ARC proposes that neurons that are not involved in encoding information from the
attentional target remain in their default routing state. This proposal suggests that such
neurons can be identified by three characteristics. First, their receptive field will generally
be larger when they do not contain the attentional target. This effect was demonstrated
in a study by Womelsdorf et al. [272] and is addressed in greater detail in the simulations
of that experiment in Chapter 6.

The second characteristic of neurons operating in their default routing state proposed
by the ARC is that neurons with peripheral receptive fields will not necessarily be most
sensitive to stimuli at the centre of their receptive field when it does not contain an atten-
tional target. As seen in the example of attentional routing in Figure 4.5, in the default
routing state, the centre of the routing function is not necessarily centred in the receptive
field. Rather, in the default routing state, neurons in the periphery have values of µ that
are biased away from the fovea, which allows the entire visual field to be routed. This ar-
rangement may explain the receptive field shift asymmetry reported by Connor et al. [36],
which found a slight, but significant deviation in the receptive field shift toward the fovea.

This prediction could be tested by having the animal attend to a non-receptive field
target while small probe stimuli are displayed in the receptive fields of neurons in V2, V4,
and IT. The responses to probe stimuli across the receptive field would then be fit with a
Gaussian, similar to the method used by Womelsdorf et al. [272]. The animal would then
covertly attend to a non-preferred stimulus placed within the receptive field while probe
stimuli are displayed throughout the receptive field.

By systematically comparing the receptive field fits in the attend-out condition with the
attend-in condition as a function of receptive field eccentricity, the model’s prediction can
be tested. Specifically, it is predicted that as the receptive field eccentricity increases, in
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the attend-out case, the peak of the Gaussian will be displaced further from the receptive
field centre, in the direction away from the fovea than for neurons having receptive fields in
the foveal and parafoveal regions. The model also predicts that when attention is directed
to the receptive field stimulus, the magnitude of the shift will be larger when the target is
positioned on the side of the receptive field that is closer to the fovea than when the target
is on the opposite side of the receptive field, away from the fovea.

Additionally, the ARC predicts that in higher areas, there will be a greater number
of cells showing this effect, and that the shift magnitude will also be greater. Following
the proposal of the global signals being fed back through the visual hierarchy, the model
predicts that the differential timing of attentional modulation occurring earlier in higher
cortical areas results from neurons switching from their default routing state to a selective
state. This is closely related to the findings of Buffalo et al. [26], but allows for the specific
hypotheses of the underlying functional mechanisms producing this effect to be tested.

The third characteristic of neurons operating in their default state proposed by the ARC
is that they will encoded a coarse and less detailed representation of the visual information
in their receptive field. This proposal is supported by a study by Alvarez and Oliva [4] of
human subjects performing a multiple object tracking task. The display contained eight
moving objects, and subjects were to attentively track a subset of four items that were
indicated as targets by flashing on and off at the start of the trial. At a random time
in each trial, all items disappeared briefly, after which either one item disappeared (a
randomly selected target or distractor), or four items disappeared (all of the targets or
all of the distractors). Subjects were then asked to estimate the location of the missing
item when one item disappeared, or to estimate the centroid of the group of missing items.
When a single item disappeared, the subjects’ estimate of the missing item’s position was
significantly worse when the missing item was a distractor than when it was a target.
However, in both single item conditions, this produced a significantly larger error than on
trials in which they estimated the centroid of the four missing items, when either all four
distractors disappeared or all four targets. The authors suggest that subjects can make
accurate judgements about the positions of distractors by pooling information from the
individual distractors, even though detailed information about the individual distractors
is not represented accurately. Further, they conclude that information outside of the focus
of attention is represented at a coarse level that carries an accurate statistical summary of
that information, but lacks precise details about individual items.

The default routing state may also be sufficient for simple tasks that do not require
fine spatial detail about the stimulus structure. Measuring receptive fields of IT neurons,
Rolls et al. [197] found that when monkeys were presented with a stimulus on a blank
background, the receptive fields were large (39◦) and they were able to rapidly locate the
target. However, when the same stimuli were presented with a complex background from a
natural scene, the size of the receptive fields shrunk considerably to 11◦, and their reaction
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times significantly increased. In the ARC, the former case is proposed to correspond to
neurons operating in their default routing state, as the simple task does not require fine
discrimination. In the latter condition, in which the receptive fields contain a significant
amount of irrelevant information, corresponds to neurons operating in a selective routing
state. It is presumed that when an animal is under anaesthesia, the attentional system
does not guide the selective processing of information and has little influence on stimulus
processing. In such conditions, a default routing state would be used, wherein the entire
visual field is processed, thereby resulting in the width of the routing function, and thus
the receptive field size being larger. This presumption is consistent with reports of IT
neurons having significantly larger receptive fields under anaesthesia [42, 77]. Further, in
non-anaesthetized animals, IT receptive fields tend to be smaller and restricted to the im-
mediate area the animal is attending [147], indicating that effective inputs are dynamically
modulated with changes in attention.

4.6 Object-centred Reference Frame

Being able to recognize an object under varying lighting conditions and viewpoints is a
central problem in computer vision, yet is one that is well handled by human vision.
We are able to identify a particular object whether it is directly in front of our face or
several metres away, despite these two viewpoints forming markedly different images on
the retina. Similarly, when overtly attending to an object by looking directly at it, or
when covertly attending to the object while directing the eyes elsewhere, a very different
image is presented to the retina, which stimulates different retinal ganglion cells, and in
turn those in LGN and striate cortex. However, in both cases, we are able to recognize
the object despite the change in its size (scale-invariance) and location in the visual field
(position-invariance).

The ARC seeks to address how this invariant recognition may be performed, by propos-
ing that attended objects are routed to a common object-centred reference frame. In this
thesis, an object-centred reference frame refers a representation of an object that is formed
in higher level cortex, invariant to its retinal size and position, and in a manner that is
relatively independent of the visual information surrounding that object.

The notion of object representations being transformed to an object-centred coordinate
system or reference frame has been around for several decades [87, 124, 168, 169, 170, 173]
and this assumption is supported by physiological and psychophysical findings. From
a computational perspective, remapping the retinal image of an attended stimulus to a
reference frame centred on that object greatly reduces the complexity of recognition by
largely discarding visual information that is unrelated to the object being identified [235].

The shifter circuit model [168] proposes that the object-centred reference frame is of
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a fixed size, which they estimate to contain 25-30 sampling elements in each spatial di-
mension. One line of evidence supporting this hypothesis comes from a study by Sperling
et al. [221] which investigated the influence of image pixel density on the intelligibility of
American Sign Language symbols. They found that when compared to control images with
a size of 96×64 pixels, images containing 24×16 pixels were reported to be 86% as intelligi-
ble as the control images. Although the study did not examine this effect on images below
this size, the proposal of a fixed size reference frame predicts that the performance should
deteriorate rapidly once the image resolution is reduced below that of the object-centred
reference frame. Olshausen and colleagues [168, 257] suggest that the intelligibility of the
images with 24 sample points in one spatial dimension is consistent with their estimate of
the size of the reference frame.

In a study by Toet et al. [243], subjects were presented with a display containing
three blobs with Gaussian spatial contrast profiles. The blobs were vertically aligned and
had an equal spacing between them. The task was a two-alternative forced choice design
in which subjects had to report whether there was a left or right displacement of the
middle blob relative to the outer blobs. By systematically varying the spatial extent of the
blurring and separation between stimuli, they were able to measure subjects’ displacement
discrimination thresholds. The study found that the discrimination thresholds increased
linearly with increasing blur, while for a given separation, the threshold was reduced as
the amount of blurring, and thus stimulus size, was reduced. Once the blob sizes were
reduced beyond a certain point however, performance plateaued when the separation of
the blobs was a constant multiple (∼ 25) of the amount of blur. Van Essen et al. [257]
suggest that this reflects a fixed-size reference frame that is consistent with their estimate
of 25-30 sampling elements in each spatial dimension.

For an object-centred reference frame to be formed at some level in the visual hierarchy,
neurons in lower areas providing inputs would also need to contribute some degree of scale
and position invariance or coordinate transformation. Such effects have been reported in
studies showing receptive field shifts [35, 36, 272], as well as coordinate transformations
see in parietal cortex [5, 6, 217] (see the discussion of gain fields in Section 3.6).

From monkey physiology studies, supporting evidence of an object-centred reference
frame comes from observations of increasing scale- and position-invariance in higher ventral
stream areas. Recording from superior temporal sulcus (STS), which receives inputs from
IT and other areas, Perrett et al. [178] found that presenting images of faces ranging in size
from 20 cm to more than 2 metres failed to show any effects of size in the neural activity.
Similarly, Rolls and Baylis [198] found that the majority of STS neurons gave relatively
invariant responses to faces, responding at rates greater than half of their maximal rate to
image sizes changing by a factor of ∼ 12. A study by Ito et al. [93] recorded from neurons
in IT to assess the degree to which cells were invariant to size and position, finding that
43% of the recorded cells were maintained their selectivity over a 2-fold change in stimulus
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size, while 21% of the cells were responsive to a 4-fold change in the size of the stimulus.

Desimone et al. [42] recorded from IT cortex while images of complex objects, shapes,
patterns and faces were presented. Many neurons responded strongly to the majority of
presented stimuli, without clear preference for size and other stimulus attributes. Other
cells that were more selective for the shape, color or texture of the stimulus maintained their
selectivity across positions within their large receptive fields. Further, a small population
of neurons were found that were selective for faces. These cells responded selectively over
a wide range of image sizes and orientations in the receptive field, but did not respond
invariantly to different configurations of facial features, as is found in higher levels such as
STS and FFA [72, 251].

A study by Pasupathy and Connor [177] demonstrated that neurons in V4 responded
selectively to certain shape characteristics at an object-centred location throughout their
receptive field. This finding of cells that are selective for shape elements within a restricted
subregion of a larger object suggests that they may be participating in the formation of an
invariant representation of the object in higher cortical areas. This finding was confirmed
in a subsequent study by Brincat and Connor [23] which found consistent results in PIT
when more complex stimuli were used.

As was discussed in the previous section, Sripati and Olson [226] found that neurons
in IT respond strongly to a given shape whether it is constructed from solid lines, or is
a hierarchical shape formed from several small shapes. Further, they report that neurons
preferring a given large shape tend to also prefer the corresponding small version of that
shape, indicating a tendency for shape selectivity to be scale-invariant.

The physiological studies presented above all support the proposal of an invariant
object-centred representation in higher level cortex. The varying amounts of scale and posi-
tion invariance reported in IT in different studies may be due to the influence of projections
from other areas. IT receives projections from a multitude of areas including early ventral
stream areas, FEF, STS, amygdala, hippocampus, and entorhinal cortex [59, 114, 202],
which may affect the neural activity depending on the task requirements and the animal’s
cognitive state.

Results from several psychophysical studies have been interpreted as reflecting the men-
tal representation of objects in object-centred coordinates, based on increasing reaction
times for rotated objects [237, 238] and object-centred deficits in neglect patients [14, 133].
However, the mapping of human performance to physiological effects is challenging, as
there are numerous processing stages following the intermediate cortical levels from which
recordings were made that can play an important role in generating responses. Despite
uncertainty of the relationship between physiological and behavioural effects, the accumu-
lating evidence of object-centred representations provides sufficient support to justify the
hypothesis.
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At present, it is difficult to determine whether an object-centred reference frame would
be formed in PIT, or in a higher cortical area beyond PIT. The current model proposes
that PIT is a likely candidate, as in higher visual and association cortical areas, the large
receptive fields cause the retinotopic organization of each area to quickly erode. In areas
beyond PIT, there is still a columnar organization [62, 203, 202, 233], although it is arranged
according to columnar groupings of neurons tuned to similar high-dimensional and complex
stimuli.

Whether an object-centred reference frame is formed in PIT or in a higher area, the
routing mechanisms proposed by the ARC still apply, and suggest that all columns in the
level in which the object-centred reference frame is formed attempt to selectively process
information from the target. Due to the specificity of their tuning, not all columns will
be responsive to the target stimulus, which will result in the activation patterns in that
area showing “hotspots” of activity [104], corresponding to strong responses from columns
that are selective for stimuli that are similar to the target. However, the columns showing
strong responses to the target will not necessarily be spatially adjacent on the cortical
sheet. This issue is discussed further in Section 7.1.2.

4.7 Comparison to Existing Models

In Chapter 3, several previous models of attentional processing were discussed. Having
introduced the ARC earlier in this chapter, this section compares the reviewed models
with the ARC by highlighting their similarities and limitations.

The principles of gain fields for performing coordinate transformations is well supported
by experimental work, and have been shown to provide a solid explanation of receptive field
modulation with attention, both in previous models and in the ARC. However, existing
gain field models by Salinas and Abbott [204] and Womelsdorf et al. [272] reviewed in
Chapter 3 lack details of how such attentional effects fit into the larger context of selective
attentional processing across multiple cortical areas. Specifically, neither model suggests
how the control signals that define the gain fields are computed or how these effects are
related to those in other areas, as they only address receptive field modulation between
two adjacent cortical regions.

In contrast, the ARC details a mechanism for generating the local control signals that
is physiologically and anatomically consistent, and specifies how the control signals are
communicated and transformed between cortical areas, within an individual area, and
between laminae of individual columns. By using a multilevel hierarchy, through which a
global attention signal is fed back, the ARC is able to provide a qualitative explanation of
the differential timing of attentional modulation between areas, with testable predictions
of the mechanisms that produce a temporal delay in more peripheral areas. Also, as
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both the Salinas and Abbott [204] and Womelsdorf et al. [272] models focus on receptive
field modulation for neurons in a single column, they do not address how local spatial
relationships are maintained between columns representing the target. The ARC proposes
that topography is preserved by having control neurons in each cortical area compute
control signals using a common mechanism on the same input signals (i.e. Alen and Apos),
and locally projecting these signals within the column and to columns within their receptive
field in the previous level. Finally, neither model suggests how attention affects neurons
that are not encoding information from the attentional target.

The shifter circuit [168, 169] provides a strong starting point for modelling attentional
routing in cortex as it describes the relationship of attentional modulation across multiple
cortical areas, the computations sufficient for generating the control signals, and provides
a functional account of how selective routing may be performed. However, it has several
limitations that remain to be addressed (see Section 3.3.2).

First, it is a purely mathematical model that lacks details of how the calculations
and representations may be performed in spiking neurons, which preempts assessment of
the biological plausibility of the model’s computations. By first presenting the ARC in a
purely mathematical instantiation allows it to functionally demonstrate selective routing in
a large-scale network, and be subjected to a similar level of analysis as the shifter circuit. By
then implementing the ARC in spiking neurons, the plausibility of the control calculations
can be explicitly tested. The model can also be used to simulate physiological experiments,
which further demonstrate the biological plausibility of the proposed mechanisms.

The second limitation of the shifter circuit is that it has limited scalability. The shifter
circuit proposes that specific control signals (similar to the local control signals used in
the ARC) are computed in pulvinar, from where they are distributed to ventral stream
areas. However, if the model is scaled to approximate the size of visual cortex, the neuronal
resources required by the model for computing control signals exceeds that available in the
pulvinar (see Section 3.3.2). Since the shifter circuit proposes that these control signals
are computed by pulvinar and not simply relayed, thereby significantly increasing the
computational requirements of pulvinar, this suggests that pulvinar may not be capable of
performing routing with sufficient precision.

The ARC overcomes this second limitation by proposing that pulvinar encodes a coarse
representation of the size and position of the attentional target, and projects this signal to
cortical control neurons in PIT. By proposing that pulvinar represents a low dimensional
control signal, rather than unique control signals for all levels as in the shifter circuit,
the ARC significantly reduces the neural requirements of the nucleus. The generation of
specific local control signals is then performed by cortical control neurons in each level,
which relay the signal from pulvinar through successively more peripheral visual areas.
Control neurons in all levels employ a common mechanism that operates on the same
signal from pulvinar, without need for precisely targeted and wide reaching projections
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from pulvinar.

The third limitation of the shifter circuit is that selective routing is performed by having
the control signals dynamically change the synaptic connection weights, which is unlikely
to occur at the time scale required for selective routing. The ARC overcomes this limitation
by using an approach similar to gain field models, wherein the local control signals and
visual signals interact multiplicatively in the dendrites.

The normalization model [189] is closely related to the biased competition model [188],
and provides a compelling account of selective processing in cortex. Several aspects of
the model are consistent with the ARC, although it also has several limitations. The first
similarity is that both models propose that the many forms of attentional modulation
result from a single common attentional mechanism, and are able to address such effects
within a single model. Second, both models presume that attention affects each processing
stage similarly, although in the normalization model, it is unclear how the attention field is
propagated and transformed in each level. The third similarity is that both models do not
define the processes or mechanisms for selecting the attentional target, but assume that
it is provided to the ventral stream areas. Finally, both models utilize a multiplicative
interaction between the feedforward visual signals and a control signal, although in the
normalization model, the attention field is specified for all individual neurons, whereas
the ARC uses a coarse, low-dimensional global control signal that is transformed in each
cortical area to generate local control signals.

As with the models using gain fields [204], synchrony and oscillations [162, 163, 204], the
normalization model only describes attentional modulation in a single cortical area, without
addressing the relationship to other ventral stream areas. Similar to the shifter circuit,
the model is a purely mathematical implementation, which limits its predictive power in
neurobiology. The implementation also prevents the detailed study of physiological effects
such as changes in responses at the single cell and population levels, and the distribution of
these effects across multiple repetitions and in different simulated primate brains. Further,
the plausibility of the computations being performed in actual neurons is unclear.

The normalization model also suggests that size of the attentional target will differently
affect the attentional modulation for low and medium contrasts. Specifically, the model
predicts that attending to small stimuli will produce a contrast gain effect, while attending
to larger stimuli will produce a response gain effect. However, the results of several studies
cast doubt on this hypothesis. First, Lee and Maunsell [112] did not observe a significant
positive correlation between attentional modulation and stimulus size. Further, the Lee and
Maunsell study used stimuli with an average size of 0.5◦ which produced a similar amount
of modulation to that reported in another study in MT by Treue and Maunsell [247]
which used stimuli covering only 0.3◦. Finally, a separate study by Lee and Maunsell [111]
increased the stimulated area of the MT neurons’ receptive field by placing two stimuli
that moved in the same direction within the receptive field, finding that the response
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modulation with both stimuli was not significantly different than when only one receptive
field stimulus was used. In contrast, the ARC is consistent with the results of these studies,
which are discussed further in the simulations presented in Chapter 6.
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Chapter 5

Attentional Routing Circuit -
Computational Specification

To this point, a high-level overview of the mathematical basis for performing selective
routing in the ARC has been presented. This chapter introduces the methods for extending
the model’s principles to a more biologically detailed instantiation using spiking neurons in
the Neural Engineering Framework (NEF). Details are given of the single neuron models,
the organization of the columns and their relationship within the hierarchy, and of the
specific laminar circuitry for generating and applying control signals.

5.1 Neural Engineering Framework

A core concept of the Neural Engineering Framework (NEF) [55] is that the activity of
a neural population “represents” information about external stimuli or internal process-
ing. The framework describes this information and its transformation mathematically, as
representations of scalar values, vectors and functions. The NEF proposes that the neural
representation of a stimulus or variable is defined by the combination of nonlinear encoding
(e.g. neuron tuning curves and spiking) and weighted linear decoding over neural popu-
lations and time. The tuning curve determines the cell’s encoding of inputs and can be
expressed as:

ai(x) = Gi

[
αi

〈
xi · φ̃i

〉
n

+ J biasi

]
+ ηi(t), (5.1)

where αi is gain, xi is the input, φ̃i is the preferred direction vector, J biasi is the bias term
corresponding to background activity, 〈·〉 is the inner product of the n dimensional vectors,
Gi is the output nonlinearity that transforms somatic current to spiking activity, and η is
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a noise term. In all of the simulations presented in this thesis, Gi represents the standard
leaky integrate-and-fire (LIF) nonlinearity [103], although other neuron models may be
used. The LIF neuron model is used as it provides a suitable trade-off between biological
realism and computational efficiency. The particular choice of neuron model that is used
(e.g. adapting-LIF, Hodgkin-Huxley, Morris-Lecar, θ-neuron, etc.), does not affect the
principles of the NEF. Nor does it influence the neural coding in the model, as the NEF
does not depend on how the spikes are generated, but only on the statistics of the spike
generation [55, pp. 89].

The output activity ai(x) represents the neural response and the simulations presented
in this thesis were conducted with spike trains. This value is greatest when the input x is
aligned with the neuron’s preferred direction vector, φ̃i. With spiking neurons, the activity
of neuron i is defined as a sum of action potentials:

ai(x, t) =
∑
n

δ(t− tin), (5.2)

where δ is an impulse representing a spike, t represents time, and tin is the time of the nth

spike produced by neuron i.

With LIF neurons, the firing rate of neuron i is computed as:

ai(x) = 1

τref−τRC ln(1−
Jthresh
i

aix+Jbias
i

)
,

(5.3)

where τref = 2ms is the cell’s refractory period, τRC = 20ms is the membrane time constant,
and J thresh is the current threshold. This rate representation is used to compute optimal
decoders in the NEF.

Decoding in the NEF is a linear operation, determined as a weighted sum of the neuronal
activity:

x̂ =
∑
i

ai(x)φi, (5.4)

where φi is the decoding vector and x̂ is the decoded estimate of x. The decoding vectors
φi can be analytically derived. To derive φi, we minimize the error between the decoded
estimate and the actual value of x as:

E = 1
2

∫ 1

−1

[
x−

N∑
i=1

ai(x)φi

]2

dx

= 1
2

〈[
x−

N∑
i=1

ai(x)φi

]2〉
x

,

(5.5)
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Figure 5.1: A communication channel in the NEF. Input signal x is projected to population
a, which then relays this signal to population b. The connection weights between ai and
bj, ωij, are analytically derived to approximate the communication function, f(x) = x.

where 〈·〉x is the integral over x. Solving for the decoders φi gives:

φ = Γ−1Υ (5.6)

Γij = 〈ai(x)aj(x)〉x (5.7)

Υj = 〈aj(x)x〉x (5.8)

Having specified the methods for representing a value in a neural population in the NEF
through encoding and decoding, we now describe how such representations can be com-
municated and transformed between populations by determining their connection weights.
Figure 5.1 shows a simple example of a communication channel between population A and
B, where A receives input x and simply communicates this value to B without transforming
the information. The connection weights of a communication channel between presynaptic
neuron i in population A and postsynaptic neuron j in population B are determined as
the product of their encoding and decoding vectors, scaled by a gain term:

ωij = αj

〈
φ̃jφi

〉
n
, (5.9)

where φ̃j is the encoding vector of neuron j specifying its preferred direction, φi is the
decoding vector of neuron ai and αj is the gain. These weights can be computed by sub-
stituting the decoding equation (Equation 5.4) into the encoding equation for population
B (Equation 5.1). Thus, the activity of neuron bj is computed as:

bj(x) = Gj

[
N∑
i=1

ωijai(x) + J biasj

]
. (5.10)
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Figure 5.2: NEF ensemble computing the ARC’s routing function for an input column
at position xj = 0, with σatt = 0.75. The control signal µ is varied continuously across
the receptive field. As µ becomes increasingly distant from 0, the value computed by the
routing function decreases, thereby increasingly attenuating the visual signal carried by
neurons in column xj = 0.

This describes how a simple communication channel may be implemented using the
methods of the NEF, and by deriving different connection weights, the synaptic strengths
between A and B can serve to compute arbitrary transformations of the values represented
in A. Using the same methods as when deriving the decoders φj for a communication
channel, the decoders φf(x) can be determined to approximate an arbitrary function f(x).
Substituting these decoders into Equation 5.9 provides the weights for estimating the
representation of f(x) in B.

Figure 5.2 shows an example for a population computing the routing function f(µ, x)
used in the ARC (Equation 4.7). A control signal µ is provided as input to the population

xj where j = 0, and the synaptic weights approximate the function f(µ) = e
−(µi−xj)

2

2σ2
a by

solving for φ
f(µ)
j . In this example, the population is receiving inputs from a column at

position xj = 0, and µ is varied across the neuron’s receptive field which spans the range
[-1, 1]. In the ARC, the result of this function for a given µ is used as a multiplicative
gain term for gating the input signals. When µ = 0, inputs from xj = 0 are multiplied
by a value of 1, and as µ moves away from 0, the gain term increasingly attenuates input
signals from those parts of the receptive field.
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Figure 5.3: Visual depiction of neural circuitry for generating and applying local control
signals in the ARC. Each box corresponds to a neural population: dashed boxes indicate
populations encoding feedforward visual signals, shaded boxes are control neurons, and
white solid line boxes together depict the layer-IV pyramidal cells with nonlinear dendrites.
(nD) indicates the dimensionality of the encoding vectors, and dn indicates the signals
encoded by each dimension of the nonlinear dendrites.

5.2 Spiking Neuron Implementation of the Attentional

Routing Circuit

To this point, the general architecture of the ARC has been defined and shown to be capa-
ble of performing selective routing of attended visual information. Further, the requisite
components have been presented for constructing and connecting neural populations that
can encode and transform information in spiking neurons using the NEF. In this section,
the NEF is used to construct a spiking neuron implementation of the ARC. It is presumed
that the same computations for selective routing are performed in each level of the visual
hierarchy, and as such, the description and simulations presented here are performed using
only a subset of the columns from the large-scale model. Given the model’s proposed con-
sistency of function within and across areas, it is presumed that if the model can be shown
to perform selective routing as predicted by the mathematical model, then extending the
spiking implementation with other columns and levels will also be consistent.

Figure 5.3 depicts the mapping of the mathematical model presented in the previous
chapter onto populations of neurons that are found in a single column. The column contains
three functional types of neural ensembles: those involved in computing local control signals
(shaded boxes), the layer-IV pyramidal neurons with nonlinear dendrites that selectively
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gate the visual signals, and those providing feedforward visual signals (dashed boxes).

Input signals to the column are composed of both feedforward and feedback projections:
the feedforward signals encode the visual signal x̂j from column j in the previous level,
while the feedback signals encode the global control signals Apos and Alen, as well as the
relative shift of the attentional target, θ.

The two signals related to the position of the attentional target, Apos and θ are projected
to the same population of neurons, L5pos. To aide the transition from describing these
populations in functional terms to laminar terms, the nomenclature presently used indicates
the cortical layer in which the population is found (e.g. layer-V) and its functional role
(e.g. encoding Apos). Further details of the biological mapping of these populations on to
specific cortical laminae is presented in Section 5.4.

We can begin by considering in detail the function of a small population of L5pos
neurons. The 100 neurons in this population, along with all other neurons in the model
unless indicated otherwise, have maximum firing rates drawn from a uniform distribution
over the range [60, 120] Hz, a membrane time constant of 20 ms, and a refractory period of
2 ms. As neurons in this population receive two signals, Apos and θ, this can be treated as a
two dimensional vector, where each input dimension can have values in the range [-1, 1]. If
both input signals have a value of 1, this produces a vector of length

√
2. Thus, in order for

this population to be able to accurately represent values in this range, when constructing
the population, their preferred direction vectors are drawn from a circle having a radius
of
√

2, with the first dimension encoding Apos and the second dimension encoding θ. This
distinction of the dimensions in which each signal is encoded is made to lay the groundwork
for the discussion of optimizing the encoders and decoders of the dendrites later in this
section.

The output projections from L5pos are to a population of 100 neurons, L6shift, that
use the two dimensional signal from L5pos to compute the amount by which the target’s
representation is shifted from the level below (Equations 4.2, 4.3, and 4.4).

The second type of feedback signal arriving in the column is the global control signal
that specifies the size of the attentional target, Alen. For columns in PIT, both Apos
and Alen originate in pulvinar, while in levels below PIT, it is fed back from the next
higher level. This signal is received by an ensemble of 100 neurons, L5len, that encode
Alen as a one dimensional vector. The L5len population relay the global control signal
to a population of 100 neurons, L6sf, where the synaptic weights between L5len and L6sf
approximate Equation 4.1, which specifies the sampling factor (sf), or the number of input
level columns by which values of µ are separated for two adjacent output level columns
(Figure 4.2). As with L6shift, neurons in L6sf project to the dendrites of layer-IV neurons.
The output of L6shift s and L6sf sf , is then scaled to the range [−1√

3
, 1√

3
]. The reason this

value is scaled is because neurons in this population project to the nonlinear dendrites
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Table 5.1: Summary of representation and transformations in the nonlinear dendrites of
layer-IV pyramidal cells.

Source Signal L4dend dimension Transformation
L6shift s 1 sfi+ s

L6sf sf 1 sfi+ s
L6sf sf 2 sf/2.35
xj x̂j 3 x̂j

of the layer-IV neurons (L4dend), which encode three dimensional signals; scaling each of
the input dimensions to 1√

3
allows the layer-IV dendrites to have encoding vectors drawn

from the unit sphere, and normalizing each dimension ensures that each dimension can be
represented with a similar accuracy.

Depending on the size of the attentional target, the width of the routing function σatt
can take on different values at each level. Equation 4.8 shows that σatt is a function of sf :
σatt = sf/2.35. This function is approximated by the synaptic weights between L6sf and
L4dend, along with the communication channel relaying the value of sf .

The dendrites of the layer-IV pyramidal cells are the point at which much of the in-
teresting processing occurs in the ARC. As was discussed in the previous chapter, they
represent the confluence of the feedforward visual signals x̂j and the local control signals
in all levels of the visual hierarchy. Thus, the layer-IV dendrites of neurons in column i
receive three signals, two from neurons within the column (s and sf), and the feedforward
signal (x̂j). The first two signals from within the column, s and sf have both been scaled
to the range [−1√

3
, 1√

3
], and are added together in the first dimension of L4dend to specify

the attentional target as µi = s + sfi (Equation 4.6). Since i is fixed for each column,
its value is not explicitly represented, but is encoded in the synaptic weights between L6sf
and L4dend.

The projection from the L6sf population carrying sf is also transformed by the synaptic
weights between L6sf and L4dend to compute the width of the routing function, σatt =
sf/2.35, which constitutes the value in the second dimension of L4dend. Finally, the
feedforward signal x̂j is also scaled to the range [−1√

3
, 1√

3
] by the synaptic weights, and is

represented in the third dimension in L4dend.

To summarize, the dendrites receive three distinct input signals, the processing of which
is given in Table 5.1. From left to right, the columns in Table 5.1 specify the following:
1) the population providing the input, 2) the signal being projected to the dendrites, 3)
the dimension in which it is encoded in the dendrites, and 4) the transformation that is
performed on the input.
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Dendritic nonlinearities endow the pyramidal cells with more computational power,
as they allow the neurons to compute a second nonlinear function, similar to a two-layer
artificial neural network (ANN). However, this model differs from a two layer ANN because
of the constraint that any dendritic branch projects to only one neuron, as compared with
an ANN, in which input layer nodes can project to multiple or all hidden units. Estimates
of the number of terminal dendritic branches with nonlinearities per pyramidal cell are on
the order of 50-100 [137], and the model presented in this section uses 50 per neuron.

The output of L4dend is to the soma (L4soma). In the ARC, input connections to
the soma and also to their dendrites, are constrained such that each layer-IV neuron in
column i receives inputs from a population of layer-II/III neurons in single column j in the
preceding level. The basis for this is that it eliminates the need for the synaptic weights
of the inputs to L4dend to encode the identity of the column providing their feedforward
input, and for this information to also be carried to the soma where the routing function is
computed for a fixed xj. The consequence of this arrangement, wherein a given layer-II/III
neuron pools inputs from multiple layer-IV pyramidal neurons receiving visual signals from
a single column, is that neurons in layer-II/III will exhibit larger receptive fields than the
neurons providing their input. This has indeed been reported for neurons in primary visual
cortex (area 17) of the cat [70], where layer-IV receptive fields were the smallest, layer-II/III
were intermediate, and layer-VI were the largest. Similar findings have also been reported
in somatosensory areas 3b and 1 in macaque monkeys, where neurons in layer-IV were
found to have smaller receptive fields than those of neurons above or below layer-IV [232].

It is possible that in actual cortex, different dendritic branches of a given layer-IV
neuron will receive signals from multiple input columns. If so, this may be incorporated
into the current model by specifying different values of xj to different dendritic branches
of the same neuron and having them carry this value to the soma. This modification does
not affect the principles of routing proposed by the model, although for simplicity, the
implementation presented here follows the former assumption.

The layer-IV dendrites send to the soma, a three dimensional vector containing the
values specified in the rightmost column of Table 5.1. The second nonlinearity of the two-
layer neuron model [181] used for the layer-IV neurons, takes the three dimensional signal
projected from the dendrites, scales the values back to the range [-1, 1], and computes the
routing function (Equation 4.7), which provides a multiplicative gain term that is applied
to the feedforward visual signal as f(µi, xj) × x̂j. This produces a one dimensional value
that is then projected to the L2/3 population, where the outputs from multiple layer-IV
neurons are pooled. Neurons in L2/3 in turn send the gated visual signals as feedforward
projections to layer-IV neurons in the next level of the hierarchy. In the simulations
presented in Chapter 6, many of the neurons recorded in experimental studies can be
well described as being “on” neurons, and thus are used to model layer-II/III neurons
(Figure 5.4(a)). Figure 5.4(b) shows the tuning curves of a population containing both
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“on” and “off” neurons.
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Figure 5.4: Response functions for a population of 100 neurons with maximum firing rates
in the range [60, 120] Hz. (a) These neurons have encoding vectors of 1 (“on” neurons),
and thus respond increasingly to larger positive values. (b) Neurons with one dimensional
encoding vectors of -1 (“off” neurons) and 1 (“on” neurons).

In most cases, solving for the decoding vectors in the NEF (Equation 5.8) is performed
by minimizing the error of the decoded estimate over a distribution of possible values, with
each sample value having equal probability within a given range. However, if distribution
over the range is non-uniform, and is known in advance, this structure can instead be used
when solving for the decoders.

For the dendrites in this model, the distribution of input values they will receive can
be well characterized for a given network architecture. The first dimension represented in
the dendrites receives the signals sf and s and uses them to compute µ = sfi+ s. For this
column, it is most likely that µ will take on values of -0.25, 0, or 0.25, indicating that the
routing function is centred on one of the input columns. Since the values in each dimension
in the dendrites is scaled, the expected scaled value of µ = −1√

3
, 0, 1√

3
in this dimension can

be used when solving for the decoders. The second dimension uses sf to compute the
width of the routing function σatt, which is scaled to the range [−1√

3
, 1√

3
]. It is assumed

that in this network architecture, the attentional target can span 3, 4 or 5 columns, which
results in the width of the routing function having three possible scaled values: −1√

3
for

targets of length 3, 0 for targets of length 4, and 1√
3

for targets of length 5. The third
dimension encodes the visual signal x̂j, which after scaling, can take on a value anywhere
in the range [−1√

3
, 1√

3
].

The above characterization of values likely to be represented in the dendrites are used
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Figure 5.5: Arrangement and connectivity of control and sensory neurons in the ARC.
Gray ellipses denote a column containing three visual processing neurons (unfilled circles);
gray circles: control neurons; gray dash-dotted lines: axonal projections from the control
neurons; black dash-dotted lines: pyramidal cell dendrites; black lines: pyramidal cell
axons.

when solving for their decoders by specifying the points in 3D space from which samples
should be taken. Specifically, 1000 evaluation points were used in solving for the decoders,
where the value in each dimension of each sample point was selected from a Gaussian cloud
around a randomly selected point consistent with the distribution of values just described.
Specifically, a random value from each of the sets (−1√

3
, 0, 1√

3
), (−1√

3
, 1√

3
), and (−1√

3
, 0, 1√

3
) was

selected giving a 3D point. This point was then used as the mean of a Gaussian cloud with
a variance of 0.1 in every direction, from which the final 3D point was selected.

Given that the values in each dimension are well characterized, and the computations
performed by the dendrites are known, this information can be used to further improve the
representational accuracy of the dendrites by biasing the distribution of encoding vectors
toward the first two dimensions which receive sf and s. Specifically, for 2

3
of the dendrites,

the encoders are assigned random values from a uniform distribution in the range [−1√
3
, 1√

3
]

for the first two dimensions, and zero for the third dimension. The remaining 1
3

of the
dendrites have encoders that are [0, 0, ± 1√

3
]. This arrangement results in 2

3
of the dendrites

being able to better encode the first two dimensions, which allows for the routing function
to be more accurately computed. These encoder and decoder selection methods are not
essential for the functioning of the model, but instead help ensure that few neurons are able
to sufficiently accurately compute the desired function. The same result could be obtained
with many more cells using the standard NEF methods (i.e., random even distribution of
encoders, and optimization of decoders over an even distribution on the range of values).

Figure 5.5 illustrates how the control signals interact with the feedforward signals. The
bottom row of the figure contains three input columns that project to a single column.
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Black lines indicate axonal projections from the input columns carrying the visual signals,
black dash-dotted lines represent dendrites of the layer-IV neurons in the upper level,
and gray dash-dotted lines indicate the axonal projections of control neurons. Control
neurons project local control signals s and sf to the terminal dendrites of the layer-IV
neurons, where feedforward projections from the input columns also terminate. This figure
illustrates the scalability of the control calculations, which do not require additional control
neurons to be included if more input columns are added, since the same control signals (s
and sf) are sent to all layer-IV neurons in that column.

5.2.1 Simulation Results from Spiking Neuron Implementation
of the ARC

Figure 5.6 illustrates the organization of the model used to demonstrate selective routing
in spiking neurons. The shaded block at the top of the figure shows five input columns
projecting to three columns in the upper level, where the numbers inside the circles indicate
each column’s spatial position. In these simulations, the columns within the non-shaded
triangle were implemented. The lower portion of the figure shows an expanded view of the
connectivity. The model is similar to the functional diagram shown in Figure 5.3, but with
additional input columns providing feedforward visual signals. Feedback signals specifying
the global control signals Apos and Alen are received by neural ensembles in layer-V (L5pos
and L5len), which project to layer-VI populations L6s and L6sf. From layer-VI, local
control signals s and sf are sent to the dendrites of layer-IV pyramidal cells (D), which
also receive feedforward visual signals from a single column in the previous level (x−0.25,
x0, x0.25). The dendrites of the layer-IV neurons then project to their somata (L4), and
the output of the layer-IV cells is pooled by neurons in layer-II/III. The properties of each
ensemble and their neurons are as specified in the previous section.

To demonstrate that the spiking neuron implementation of the ARC performs routing
as predicted from the mathematical model, the model shown in Figure 5.6 was tested for its
ability to selectively route visual information with different attentional targets and visual
input signals. Figure 5.7(a) depicts the first configuration that was tested. The columns
that are implemented in this simulation are outlined in black, and for clarity, column i = 0
in the upper level is expanded to illustrate that subpopulations of layer-IV neurons in the
column each receive feedforward visual signals from input columns x−0.25, x0, and x0.25.
The numbers inside the circles indicate each column’s spatial position. For illustrative
purposes, the routing function is depicted by the red line.

For the first 750 ms, the attentional target covers all 5 input columns, with each input
column encoding a signal with a value of 1. After 750 ms, the size of the target (Alen) is
reduced to span only the centre three columns, resulting in a reduction of σatt and thus a
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Figure 5.6: Circuitry for selective routing in a cortical column in the ARC. The shaded
top block of the figure situates the modelled column among others in each level. The
non-shaded region, containing one column that receives inputs from three columns in the
previous level, is expanded in the lower portion of the figure. L2/3 – layer-II/III neurons.
L4 – layer-IV pyramidal cell somata. D – nonlinear dendrites of layer-IV neurons. L5pos
and L5len – layer-V control neurons receiving global control signals. L6sf and L6s – layer-
VI control neurons computing local control signals. x−0.25, x0, x0.25 – layer-II/III neurons
providing feedforward visual signals.
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Figure 5.7: Simulation results of selective routing in the ARC. (a) Network architecture
used in the simulations. Columns that were implemented are outlined in black, the num-
ber inside each circle indicates the column’s spatial position, and red circles indicate the
attentional target. Column i = 0 in the upper level is expanded to reflect its connectivity.
Each input column projects a value of 1 except for column x0, which changed every 250
ms from 1 to 0 to -1. For the first 750 ms, the attentional target (red circles) covered five
input columns, and after 750 ms, its size was reduced to three columns. Decoded estimates
of the gated signals are shown for columns receiving inputs from: (b) x−0.25, (c) x0, and
(d) x0.25. (e-g) Spike rasters from layer-IV neurons receiving inputs from (e) x−0.25, (f) x0,
and (g) x0.25. Notice that when the target’s size is reduced, the gain of the signals in (b)
and (d) is also reduced, while (c) is relatively unchanged.
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narrowing of the routing function. To demonstrate the effect of the routing function’s gain
term on the visual signals in layer-IV, for each size of attentional target, the magnitude of
the input signal in the centre column was decreased every 250 ms from 1 to 0 and then to
-1.

Figure 5.7(b) shows the decoded estimate of the gated visual signal for layer-IV neurons
that receive feedforward visual signals from input column x−0.25. For the first 750 ms, the
larger attentional target causes the routing function to be wider, resulting in a moderate
attenuation of the visual signal from x−0.25. When the size of the attentional target is
reduced after 750 ms, the width of the routing function decreases, which results in the
the signals from x−0.25 being significantly more attenuated, as seen in the reduction of the
decoded estimate of the gated signal.

Figure 5.7(e) shows the spike raster from this population, where each dot represents a
single action potential, and each row of dots represents the spike train from a single layer-
IV neuron. The spike raster illustrates that, following the change of the target’s size at 750
ms, the activity patterns reflect the change in the signals being encoded by these neurons.
This effect is most pronounced in some cells that stop responding when the target changes
size. For example, the activity of neuron 15 in Figure 5.7(e) indicates that it is an “on”
neuron with an x-intercept that is greater than 0.2. This property can be deduced because
the neuron responds to the larger encoded value in the first 750 ms (∼ 0.6), but does not
respond when the encoded value is ∼ 0.2 during the period 750-1500 ms. Conversely, the
activity of neuron 65 indicates that it is an “off” neuron with an x-intercept that is less
than 0.6, based on its lack of activity for the larger encoded value during the first 750
ms, although it responds when the encoded value is ∼ 0.2 during the second half of the
simulation. Finally, some cells do not exhibit any activity with either attentional target
as a result of them being “off” neurons with x-intercepts that are less than the encoded
value in both conditions.

Figure 5.7(c) shows the decoded estimate of the gated visual signal from layer-IV neu-
rons receiving feedforward signals from input column xo. With each attentional target size,
the magnitude of the visual signal encoded by input column x0 was decreased every 250
ms from 1 to 0 to -1. Figure 5.7(a) shows that for both target sizes, the value computed
by the routing function should not change for these neurons, as µ=0 for both target sizes.
However, the decoded estimate of the gated signal is slightly attenuated when the size of
the target is reduced. This effect occurs because of an interaction between the encoded
dimensions in the dendrites, which results in a moderate reduction of the routing function.
This issue is discussed in more detail later in this section.

Figure 5.7(f) shows the spike rasters from the layer-IV neurons receiving signals from
input column x0. In this figure, the activity of “on” and “off’ neurons is more apparent,
with some neurons only responding when the encoded signal has a large positive value (e.g.
cell 53 in Figure 5.7(f)), and others that only respond when the encoded signal is negative
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(e.g. cell 72).

Finally, Figure 5.7(d) shows the decoded estimate of the gated visual signal from the
layer-IV neurons receiving feedforward visual signals from input column x0.25. Comparing
this signal with that shown in Figure 5.7(c), the decoded values are similar as is expected,
since the position of the target does not change and the gain term computed by the routing
function is the same for neurons receiving inputs from x−0.25 and x0.25 for each target
size. The spike rasters for neurons receiving inputs from x0.25 are shown in Figure 5.7(g).
Comparing this figure with the spike raster of neurons receiving inputs from input column
x−0.25 (Figure 5.7(e)) shows that the two rasters have distinctly different activity patterns,
yet both populations are able to similarly encode the signals.

To verify that the spiking neuron implementation of the ARC performs routing as
predicted by the mathematical model when the target’s position changes, an additional
simulation was conducted with the network presented in Figure 5.6, using the same model
as was used for the simulations presented in Figure 5.7. In this simulation, the attentional
target covered three input columns, and every 250 ms, the position of the target moved
from being centred on x0.25 (Apos = 0.25) to x0 and then to x−0.25. Figure 5.8 shows the
decoded estimates of the gated visual signals as the attentional target changes position,
and the stimulus configuration of this simulation is shown in Figure 5.8(a).

Figure 5.8(b) shows the decoded estimate of the gated visual signal from layer-IV
neurons receiving feedforward visual signals from input column x−0.25. For the first 250
ms, the value of µ computed by the control neurons is 0.25, which results in the signals
from input column x−0.25 being almost entirely attenuated. However, at 250 ms, the
target’s position shifted to x0 causing the centre of the routing function to be closer to
x−0.25, which reduces the attenuation of signals from that column. At 500 ms, the target’s
position is centred on x−0.25, and thus the visual signal is multiplied by 1 and passes
through with minimal attenuation. The corresponding spike raster for this population is
shown in Figure 5.8(e).

Figure 5.8(c) plots the decoded estimate of the gated visual signal from layer-IV neurons
receiving feedforward projections from input column x0. For the period 250-500 ms, µ
was centred on x0, resulting in the visual signals from that column passing through with
minimal attenuation. For the first and last 250 ms intervals of the simulation, µ was
adjacent to x0 at positions x−0.25 and x0.25, resulting in the routing function attenuating the
input signals by the same amount in both conditions. Figure 5.8(f) shows the corresponding
spike raster from this population as the target’s position shifted.

The decoded estimate from the layer-IV neurons receiving visual signals from input
column x0.25 is shown in Figure 5.8(d). As expected, the decoded estimate decreases as µ
moves away from x0.25. Since this column’s position is symmetric to x−0.25 in the receptive
field, the signal is isomorphic by mirror symmetry to the values shown in Figure 5.8(b),
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Figure 5.8: Simulation results of selective routing in the ARC. The stimulus configuration
is shown in (a), where the target (red circles) covers three input columns, but changes
positions every 250 ms. Columns outlined in black were implemented, numbers inside
each circle indicates the column’s spatial position, and column i = 0 in the upper level
is expanded to show that subpopulations of layer-IV neurons receive inputs from different
input columns. (b-d) Decoded estimates of the gated visual signals are shown for neurons
receiving inputs from input columns (b) x−0.25, (c) x0, and (d) x0.25. Spike rasters are
shown for layer-IV neurons receiving inputs from (e) x−0.25, (f) x0, and (g) x0.25. Notice
that in (b) and (d), the decoded estimates of the signals are symmetric since the columns
providing their input signals are positioned symmetrically in the receptive field, while in
(c), the decoded estimate is the same when the routing function is centred on either column
adjacent to input column x0.
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with some variation arising from the different neuron tuning in each population, as can be
seen in the spike rasters shown in Figure 5.8(g).

As is expected from the mathematical model, the decoded estimates of the signal are
similar in all three populations of layer-IV neurons when the routing function is centred
on the column providing their input and when it is centred on the adjacent column. The
visual input signals have values of 1, and thus the decoded estimate of the gated signal is
equivalent to the value computed by the routing function. With each target position rela-
tive to the column providing input to each layer-IV population, a similar decoded estimate
of the gated signal is produced, demonstrating that the routing function is computing a
similar gain term in each column.

To provide further insight into the processing and representation in the ARC, Figure 5.9
shows the decoded estimates of the visual signals and local control signals from the den-
drites and somata of the layer-IV neurons. In this simulation, the attentional target was
centred on x0. Initially, the target covered the middle three columns, and then its size was
increased to cover all five input columns (Figure 5.9(a)).

As with the previous simulations, the neurons in layer-IV are organized such that each
column in the previous level projects to a different ensemble of neurons. This arrangement
is reflected in Figure 5.9(b), where the plots in the leftmost column are for neurons receiving
input signals from column x−0.25, the centre column is for neurons receiving inputs from
x0, and the rightmost column for x0.25. The change in the decoded signal that occurs in
the middle of each of the nine plots corresponds to the point at which the size of the target
Alen was increased from spanning the centre three columns to cover all five input columns.

The top row of Figure 5.9(b) shows the decoded value of the gated signal that is
projected out of each ensemble of layer-IV neurons, where the y-axis indicates the signal
magnitude and the x-axis is time (seconds). These plots show that as the size of the target
Alen is increased, the width of the routing function σatt also increases, thereby reducing
the attenuation of signals from input columns x−0.25 and x0.25. This is reflected in the
decoded estimate of the signal increasing in the left and right columns when the target size
is increased, and is similar to the simulation shown in Figure 5.7, but with constant input
values, and the target’s size increasing rather than decreasing.

The second row of Figure 5.9 shows the decoded estimates of the signals arriving at the
soma in layer-IV, where the visual signal is shown in blue, and the result of the routing
function is shown in black. Examination of the values in nT[0]:X (centre column) reveals
that as the size of the target is increased, there is a slight increase in the result of the
routing function. This effect is a result of the scaled value of σatt temporarily moving away
from the outer limits of the encoding vectors.

The third row of Figure 5.9 shows the scaled values encoded in the dendrites, sfi + s
(black), σatt (blue) and x̂J (red). These estimates are from the 50 dendritic subunits of
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Figure 5.9: (a) Network architecture, with the attentional target (red circles) covering the
middle three input columns before being expanded to cover all five columns. The columns
that are implemented are outlined in black, with the number inside each circle indicating
the column’s spatial position. Column i = 0 in the upper level is expanded to illustrate
its connectivity. (b) Decoded estimates of the signals from the layer-IV somata and their
dendrites. The three columns in the figure correspond to neurons receiving visual signals
from input columns x−0.25, x0, and x0.25. Top row – value projected to layer-II/III, which is
the product of the feedforward visual signal and result of the routing function. Second row
– decoded estimate of the visual signal (blue) and result of the routing function (black).
Bottom row – decoded estimate from the dendrites of a single neuron: visual signal (red),
sfi+ s (black), and σatt (blue), scaled to the range [−1√

3
, 1√

3
].
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a single layer-IV neuron. Ideally, each collection of the dendritic subunits shown in each
column should be encoding the same value, as they are all receiving the same local control
signals (sf and s) and the feedforward visual signal from each input column is 1. However,
due to the limited processing and representational capacity of these dendrites, there is
some variation in the encoded values across different collections of dendritic subunits. By
using 50 layer-IV neurons, each having different dendritic subunits, this effect is largely
ameliorated.

The plots in the bottom row of in Figure 5.9 show the signals that are encoded by
the dendrites, with a moderate interaction between dimensions in the decoded estimates.
As σatt changes from −1√

3
to 1√

3
, the representation of sfi + s (black lines) improves and

moves closer to the correct value of zero. This interaction is present in the majority of
dendrite “ensembles” (i.e. the dendrites of multiple layer-IV neurons), and is significantly
stronger when random encoding vectors are used rather than the approach taken here in
which 2

3
of the dendritic subunits of each neuron have encoders biased toward the first two

dimensions. This point is further demonstrated by observing that the decoded estimate
of x̂j, for which 1

3
of the encoders were specifically biased, is not significantly affected by

changes in the other two dimensions.

5.2.2 Influence of the Number of Neurons and Dendrites in each
Column

The network shown in Figure 5.6 illustrates the organization of the model used to demon-
strate selective routing in spiking neurons. In this section, this architecture is used to
examine how the accuracy of the gated signal is affected by the number of dendritic sub-
units per neuron and the number of neurons receiving feedforward visual signals from each
input column. In these simulations, the control signals to output column i specified that
attention should be directed to the centre of its receptive field. The input signals had a
magnitude of 1 and were presented for 250 ms, with the first 50 ms discarded. Accuracy
was measured by comparing the decoded estimate of the gated signal with the value pro-
duced in the math model using the root mean square error (RMSE). Ten repetitions of
each simulation were performed, using 10, 20, 25, 50, 75 and 85 dendritic branches per
neuron, and 25, 30, 35, 50 neurons in each layer-IV population.

Figure 5.10 shows the average RMSE for each pair of parameter values across 10 repe-
titions. Increasing the number of dendritic subunits per neuron significantly improves the
accuracy of the signal, although there is little improvement in the decoded estimate be-
yond 50 terminal branches per neuron. Increasing the number of neurons receiving signals
from each input column also improved the accuracy of the decoded signal, but in a less
pronounced manner. Not surprisingly, the inclusion of additional dendritic subunits and
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Figure 5.10: Effect of varying the number of dendritic subunits per neuron and the number
of neurons receiving the visual signal from each input column on the accuracy of the gated
signal. With additional dendritic subunits for each neuron, the error of the encoded signal
(RMSE) significantly decreases. The error also decreases with additional neurons in each
column, although the improvement is less pronounced.

neurons reduces the error in the decoded estimate of the signal, but significantly increases
the computational demands. In the simulations presented in Chapter 6, the models use 50
neurons per column, each having 30 dendritic subunits, as this arrangement seems to pro-
vide a suitable trade-off between representational accuracy and computational efficiency.

5.3 Separating Inhibitory and Excitatory Connections

In Section 5.1, the methods for computing connection weights in the NEF were presented
(Equation 5.9). Using that approach, the synaptic weight from neuron aj to postsynaptic
neurons in bj could be negative (inhibitory) to some neurons in bj and positive (excitatory)
to others, as there were no constraints placed on the sign of the individual weights. How-
ever, in cortical neurons, synaptic connections from a given neuron are either excitatory or
inhibitory. In many models of neural systems, this constraint is ignored, thereby limiting
the models’ biological plausibility. To overcome this limitation, Parisien, Anderson and
Eliasmith [174] presented an elegant method (the APE transform) for transforming such
models into more realistic forms by separating inhibitory and excitatory projections, while
still maintaining the model’s function and dynamics.

Consider the communication channel between population A and B show in Figure 5.1.
To remove the negative weights of projections from A to B, the APE transform involves
manipulating the encoding and decoding vectors using a two step process. The first step
is to ensure that all weights between A and B are positive (excitatory) by adding a bias
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Figure 5.11: Communication channel in the NEF after applying the APE transform to
ensure that synaptic connections from each neuron in population A are either inhibitory
or excitatory. Population C contains inhibitory neurons to satisfy this constraint. See text
for details.

to the synaptic weights of the bj connections that is equal to the largest negative weight
from A. In its original form, the current arriving at neuron bj is:

Jj(x) =
N∑
i=1

ωorigij ai(x) + J biasj , (5.11)

where ωorigij contains both excitatory and inhibitory weights. Adding a bias to these weights
gives:

ωij = ωorigij + ∆ωij
δωj = −min(ωorigij ),

(5.12)

which results in the current arriving at bj being given by:

Jj(x) =
N∑
i=1

ωorigij ai(x) + J biasj +
N∑
i=1

∆ωjai(x) + J biasj . (5.13)

Adding this additional bias
N∑
i=1

∆ωjai(x) results in a greater input current being pro-

vided to that cell, which alters the function being computed at that connection. The second
step of the transform mitigates this effect by adding a set of inhibitory neurons ck that
also receive projections from population A. First, the decoders of neurons in population B,
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φf are scaled so that the new function computed using the augmented weights between A
and B, f(x) is constrained to the range [0, 1]. With φf defined, the encoders of neurons in
bj are then computed as:

˜
φfj =

∆ωij
αjφf

. (5.14)

As the bias function f(x) will typically be nonzero for the entire domain of x, separating
it into a constant portion (f1) and variable portion (f2(x)) such that f(x) = f1 + f2(x)
reduces the amount of inhibitory current, and thus firing rate, of neurons in the inhibitory
population.

The bias current may now be expressed as:

Jfj (x) = αj
˜
φfj f1 + αj

˜
φfj f2(x). (5.15)

As the first part of Equation 5.15 is constant, by incorporating it into the background
current of bj we obtain:

J biasnewj = J biasj − αj ˜
φfj f1. (5.16)

The inhibitory interneurons in population C are set to respond more strongly to positive
inputs (“on” neurons), since they receive only positive inputs as a result of scaling φf to
the range [0, 1]. The current arriving at neuron Ck is given by:

Jk(x) = αkφ̃kf(x) + J biask

=
N∑
i=1

ωikai(x) + J biask ,
(5.17)

with the weights ωik = αkφ
f being positive. The background current of Ck is then adjusted

similarly as for neurons bj:

J biasnewk = J biask − αkf1, (5.18)

such that population C will output only the variable component of the bias function, f2(x).
Similar to when solving for the decoders the communication channel (Equation 5.8), the
decoders φk are determined for fx(x):

f̂2(x) =
N∑
k=1

φkck(f(x)). (5.19)

The input current to population B, through both excitatory connections from A and in-
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hibitory connections from C, is now computed as:

Jj(x) =
N∑
i=1

ωijai(x) + J biasnewj −
N∑
k=1

∆ωkjck(f(x)), (5.20)

where ωkj = αj
˜
φfjφk.
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Figure 5.12: Effect of applying the APE transform to the ARC. Decoded estimates of the
gateed visual signals from three input columns when attention was directed to the receptive
field centre. The stimulus configuration is the same as that used in Figure 5.7. Compared
with the signal estimates from the model not using the transform, the gated signals are
indistinguishable.

To assess the impact of using the APE transform in the ARC, the transform was applied
to the model shown in Figure 5.6. Estimates of the proportions of inhibitory and excitatory
neurons in visual cortex suggest that in layer-V, 15.8% of all synapses are inhibitory, while
16.2% of the synapses in layer-VI are inhibitory [17, 64], which corresponds to 18% of the
cells in layer-V being GABAergic and 17% for layer-VI.

The model shown in Figure 5.6 was thus modified using the APE transform which intro-
duced 22 additional inhibitory neurons in each of the layer-V populations (22/122=18%)
and 21 inhibitory neurons in the layer-VI populations.

Figure 5.12 shows an example of routing in the ARC after applying the APE transform.
The same stimuli as in Figure 5.7 were used, with attention directed to xj = 0. For the
first 750 ms, the attentional target covered five input columns, after which it was reduced
to the centre three columns. With each attentional target, the visual signal in column
xj = 0 was changed from 1 to 0 and -1, with each stimulus being presented for 250
ms. Comparing these results to those shown in Figure 5.7 demonstrates that there is no
appreciable difference in the decoded value in the model when using the APE transform.
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5.4 Neurobiological Mapping

In the previous section, an overview was given of the calculations performed in the ARC
for generating attentional control signals. This description is now extended by describing
an anatomically consistent mapping of the ARC’s control calculations to cortical neurons
in specific laminae.

Anatomical findings place important constraints on neurobiological models in terms of
the number of neurons, their intra- and inter-laminar input and output connections, and
placement and properties of their somata, dendritic, and axonal arbours. Combining these
anatomical constraints and previously defined computational specifications provides a firm
basis for constructing a detailed model of attentional processing. By ascribing a particular
function to neurons in a cortical layer places constraints on the possible computations that
may be performed due to the anatomical connectivity and neuronal density of that layer.
Further, it allows for the assessment of the plausibility of these functions being performed
in actual cortical circuits by comparing the number of neurons required by the model with
the number found in the corresponding biological area. The problem addressed here is to
define a laminar circuit that is consistent with biological constraints and is sufficient for
implementing the cortical calculations in the ARC.

In addition to the anatomical distinction of these layers, the ARC follows the idea that
the laminar arrangement can be divided along functional lines as well [69, 104, 258]. The
general proposal of laminar organization in the ARC is that neurons in layers-V and -VI
are involved in computing the local control signals, neurons in layer-IV are involved in
selective gating of inputs based on control signals from the deep layers, while neurons in
layer-II/III serve to process the gated visual signals. The proposed physical and functional
organization of cortical layers within each column is shown in Figure 5.13. This extends the
cortical circuit for implementing the control calculations in a single column presented in
Figure 5.3. Other plausible variations to this mapping may be found (for a detailed analysis
of inter-laminar connectivity, see [50, 240, 241]). However, the arrangement proposed here
is consistent with the most salient and well documented inter-laminar connections, and
requires minimal control neurons and wiring.

As with previous proposals [33], minimizing the neural requirements and wiring be-
tween neurons is a central factor constraining the model’s design. The model attempts to
minimize the number of neurons required for computing the local control signals for two
primary reasons. First, in visual cortex, there are significantly more neurons in layer-IV
than in layers-V and -VI combined [17], suggesting that control signals are being dis-
tributed to multiple neurons. Second, as layer-V and VI neurons are also involved in other
processing via their projections to subcortical structures and the thalamus [71, 97, 240], it
is likely that only a fraction of the neurons in these layers are involved in computing local
control signals. The ARC satisfies this constraint by having common neural ensembles
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compute the local control signals for the entire column. This arrangement also permits the
model to be scaled to have significantly more neurons in each column receiving feedforward
inputs from many more columns, without requiring any additional control calculations to
be made.

To reduce the computational demands of control neurons, the ARC attempts to mini-
mize the number of highly nonlinear functions because these tend to require more neurons
to compute in the NEF. Further, in the calculations of local control signals, parts of the
routing function are linearly separable, and thus the ARC distributes these functions across
different groups of neurons, so that each population is computing an easier function. Com-
bining these components of the routing function together in the dendrites yields the same
result, while requiring significantly fewer neurons.

5.4.1 Overview of Cortical Layers

The six layers of homotypical cortex can be distinguished by their patterns of connectivity
and the types of neurons they contain. Starting at the outermost layer (i.e. closest to the
skull), layer-I primarily contains the apical tufts of pyramidal cell dendrites, axon termi-
nations and relatively sparse GABAergic inhibitory neurons [50]. Layer-I is the primary
target of feedback projections from higher cortical areas, pulvinar, and from non-specific
thalamus [96, 104]. Layers II and III are often grouped together as part of the superfi-
cial layers. Unlike layer-I, these layers are densely populated with small pyramidal, spiny
stellate and inhibitory neurons [241]. Generally, corticocortical feedforward projections
originate in the superficial layers and terminate in layer-IV along with dense thalamic
afferents [50].

Layer-IV is particularly thick in cortical areas that process sensory information [97],
and contains various types of pyramidal and inhibitory neurons. This layer is often divided
into sublaminae (See Figure 2.1) and is the primary target of thalamocortical projections.
In V1, retinal signals transmitted by LGN terminate in various sublaminae of layer-IV,
while in extrastriate cortex, feedforward projections from layer-II/III largely terminate
in layer-IV, with a minority of feedforward projections targeting layer-VI [84, 90, 119].
Layer-IV neurons have strong projections to nearby cells in layer-II/III that are organized
in strong columnar fashion [50, 71, 119].

Layer-V contains many small- and large-bodied pyramidal cells and projects to a variety
of subcortical structures including non-specific thalamus, pons and superior colliculus, as
well as to other cortical regions [241]. In addition to their subcortical targets in pulvinar
and superior colliculus [240], neurons in layer-V have local projections to nearby neurons
in layer-VI [50, 240], and send feedback projections that terminate in layer-I [193, 194].
In layer-V, two primary neuron types can be distinguished by their firing patterns and
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Figure 5.13: Laminar circuitry of attentional control in the ARC for a single column. Global
attention signals (Alen and Apos) and θ are fed back from the next higher cortical level to
layer-I where they ramify on apical dendrites of layer-V cells. The layer-V neurons relay
this signal to the next lower area with collaterals projecting to control neurons in layer-VI
of that column where sf and s are computed. These signals, along with feedforward visual
signals x̂j are received by layer-IV pyramidal cells where the routing function is computed
in the dendrites and multiplied with x̂j at the soma. Cells in layer-II/III pool the activity
of multiple layer-IV neurons and project the gated signal to the next higher level.
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dendritic formation. Intrinsically bursting neurons are large-bodied pyramidal cells found
in the lower portion of layer-V that have long apical dendrites with tufts located in layer-I,
through which they have access to broadly distributed feedback signals from the level above,
as well as from calbindin-expressing neurons in pulvinar and thalamus [214, 240, 241]. The
second primary type of layer-V neurons are regular spiking cells that are small- or medium-
bodied pyramidal cells with apical dendrites that seldom extend beyond layer-II/III.

Finally, layer-VI also contains large-bodied pyramidal neurons that can be divided
into at least 8 subtypes [50]. In macaque primary visual cortex, two of these subtypes
predominately project locally within layer-VI, while the axons of the remaining 6 subtypes
largely arbourize in the various sublaminae of layer-IV [22, 268]. Afferents from layer-VI to
layer-IV are similar in density to thalamic inputs to layer-IV, with layer-VI pyramidal cells
providing ∼ 45% of the excitatory input to layer-IV [119], although the relative strength
of these projections is not known [119]. In addition to their corticocortical projections,
pyramidal neurons in layer-VI also make strong projections to various thalamic nuclei [71].

5.4.2 Laminar Mapping

Having now described the composition and connectivity of the cortical layers, the de-
scription of the ARC given in Section 5.2 is now extended by ascribing the model’s control
calculations to different types of cortical neurons, and specifying the laminae in which such
neurons may be found. Figure 5.13 outlines the general connectivity of neurons within a
column.

Feedback projections from higher cortical areas (yellow lines) terminate in layer-I upon
the apical dendrites of layer-V pyramidal cells. This type of layer-V control neuron is
an intrinsically bursting (IB) pyramidal cell that receives the signal Alen. Such neurons
have large cell bodies and long apical dendrites that spread widely in layer-I, providing
them with access to the broadly distributed signals from the area above [214, 240, 241].
These neurons relay the signal Alen to dendrites in layer-I of the preceding area in the
hierarchy [193, 194] and to the dendrites of nearby layer-VI pyramidal cells in the same
column [50, 240]. It is proposed that at the synapse between the layer-V axons and layer-VI
dendrites, sf (Equation 4.1) is calculated.

Other layer-V IB neurons with dendritic arbours in layer-I are involved in computing
the relative shift of the target’s representation from the preceding level (s). These neurons
receive feedback projections that encode Apos and θ and have similar connectivity as those
relaying Alen, except these neurons use the Apos signal to compute s (Equation 4.4). This
requires a greater amount of computation to be performed by neurons in layer-VI than
in layer-V, as the latter simply relay the feedback signals to layer-VI neurons. This is
consistent with reports of layer-VI having a greater neuronal density and relative layer
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thickness than layer-V in striate and extrastriate cortex in both humans and non-human
primates [46].

The primary efferents of layer-VI neurons are to nearby pyramidal cells in layer-IV [22,
241, 268], and in the dendrites of these layer-IV pyramidal cells, σatt (Equation 4.8) and
µ (Equation 4.6) are computed. The product of f(µ, xj) and x̂j is then computed at the
soma. The layer-IV neurons project the gated visual signals to neurons in layer-II/III,
which pool the gated visual signals from multiple layer-IV neurons in their column. Cells
in layer-II/III then project the gated signals to layer-IV cells in the next higher cortical
area [50, 71, 119, 194].

The layer-IV neurons in the ARC are modelled using the 2-layer neuron model with
nonlinear dendrites, where each layer-IV neuron receives inputs from a single column in the
preceding level, and layer-II/III neurons in a given column pool the activity of multiple
layer-IV neurons in that column. It is from these layer-II/III neurons that the activity
is recorded in the simulations presented in the following chapter. This arrangement also
requires considerably more complex computations to be performed by neurons in layer-IV
than by those in layers-V and VI, although anatomical studies suggest that the number of
neurons in layer-IV outnumbers those in V and VI by a factor of ∼20:1 [129, 153].
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Chapter 6

Attentional Routing Circuit -
Simulations of Attentional
Modulation Experiments

In this chapter, the spiking neuron implementation of the ARC presented in the previous
chapter is used to simulate three experiments of attentional modulation in visual cortex.
The first experiment by Womelsdorf et al. [272] investigates the effects of attention on spa-
tial receptive field properties that occur when shifting attention between targets outside
or inside the receptive field of the recorded cell. The second experiment by Treue and
Martinez-Trujillo [245] examines attentional effects on feature tuning that occur when at-
tention is directed to a target outside the receptive field, or to a preferred or anti-preferred
stimulus inside the receptive field. The third experiment by Lee and Maunsell [112] inves-
tigates the influence of attention on contrast-response functions when attention is switched
between receptive field targets. Each of these three studies describe seemingly different
forms of attentional modulation, although as is discussed in Section 6.4, the ARC is able
to reproduce each effect using the same mechanisms for selective routing described earlier
in this thesis. That each of these effects can be demonstrated using the same routing
mechanisms in a biologically detailed model, suggests that the ostensibly different forms
of modulation may in fact be consequent to a common underlying routing principle.

6.1 Simulations of Womelsdorf et al. (2008)

In Womelsdorf et al. [272], recordings were made from area MT in macaque monkeys
performing a spatial attention task. The study had the animal foveate a fixation point,
after which a cue stimulus (stationary random dot pattern, RDP) was presented for 440
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Figure 6.1: Experimental method used in Womelsdorf et al. (2008). (Reproduced
from [272]).

ms at one of three target locations indicating where the animal should covertly attend
(Figure 6.1). Following a delay, two RDPs were presented inside the isolated cell’s receptive
field at equal eccentricity (stimulus S1 and S2), and a third RDP (S3) was placed outside
of the receptive field in the opposite hemifield. The task was to detect a small, transient
change in the direction of motion of the stimulus at the cued location. As the monkey
covertly attended each of the three stimuli, probe stimuli (RDPs with higher contrast) were
presented for 190 ms at various locations inside the receptive field, without overlapping
the stimuli inside the receptive field, and neural activity was recorded in response to each
probe. For each attended stimulus, the recorded activity was used to to determine the
amount that each probe contributed to the cell’s activity. Receptive field profiles were
constructed from responses to each probe stimulus by subtracting the baseline activity and
fitting the activity with a Gaussian having four parameters (mean, standard deviation,
amplitude, and shift). Directing attention to a target stimulus inside the receptive field
resulted in the peak of the Gaussian shifting toward the target while its width shrunk,
without a significant change in peak activity.

This experiment was simulated using the ARC implemented in the network shown in
Figure 6.2. The two level network is composed of a single MT column containing 100
control neurons, 100 layer-II/III neurons, and 9×50 layer-IV pyramidal neurons, each
having 30 nonlinear terminal dendrites. Visual input signals come from nine V1 columns
containing 100 neurons. Several studies have demonstrated that the sensitivity of visual
cortical neurons across their receptive field has a Gaussian profile [35, 36, 171], and thus
connection strengths between V1 and MT are determined by a projecting a Gaussian with
µω = 0 and σω = 1 onto the connection weights using the methods of the NEF. Specifically,
the Gaussian connection strengths were computed as:

ω = e
−(µω−xj)

2

2σ2
ω . (6.1)
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Figure 6.2: ARC with spiking neurons used for simulations of Womelsdorf et al. (2008).
MT has a single column containing 450 layer-IV pyramidal neurons, subsets of which
receive input from a single V1 column. Control neurons in the MT column (gray circle)
project a local control signal to the terminal dendrites of MT neurons to enable selective
routing. The spatial position of V1 columns is indicated inside the V1 columns and the
magnitude of the visual signals encoded by each column is shown at the bottom of the
figure. Attentional targets are shown as arrows (S1, S2, S3), with S3 corresponding to the
attend-out/default routing condition.

Each layer-II/III MT neuron has a maximum firing rate drawn from a uniform dis-
tribution in the range [90, 120] Hz, and responds more strongly to larger positive input
values. 100 cortical control neurons also project to the terminal dendrites of MT cells and
send the control signal µ, indicating the location within the receptive field from which the
neurons should selectively process. In the dendrites of the layer-IV MT pyramidal cells, the
feedforward visual signals (x̂j) and control signal (µ) interact according to Equation 4.7.
Layer-IV neurons then project to 100 layer-II/III pyramidal cells, from which recordings
were made of the spiking activity that is used in the subsequent analysis.

The two non-preferred reference stimuli were simulated using an input signal of 0.25,
placed symmetrically at positions xj = −0.75 and xj = 0.75, with all other inputs set to
zero (Figure 6.2). For the “attend-out” condition, the attentional control signal for the
MT column is set to µ = 0, such that attention is directed to the centre of the receptive
field (S3 in Figure 6.2). This value is based on the data of Womelsdorf et al. [272] which
show that in the attend-out condition, the peak of the receptive field occurs at a point
that is roughly equidistant between S1 and S2 and corresponds to the neurons being in
their default state in which their receptive fields are large, with the width of the routing
function σatt = 1. When attention is directed to either receptive field stimulus, the width
of the routing function is set to 0.75.

Preferred probe stimuli with a magnitude of 0.5 were then presented at each of the
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Table 6.1: Qualitative summary of simulation data from the ARC with experimental data
reported by Womelsdorf et al. (2008).

ARC Womelsdorf et al. (2008)
Change Statistically Change Statistically

Direction Significant Direction Significant
Gain Entire sample - no + no

Selected pairs - no + no
Shrink Entire sample - yes - yes

Selected pairs - yes - yes
Shift Entire sample + yes + yes

Selected pairs + yes + yes

seven remaining V1 columns. After stimulating the MT neurons with the reference stimuli
alone to establish baseline activity, each probe was displayed for 190 ms, during which time
the activity of all 100 layer-II/III MT neurons was recorded. The same process was then
repeated with attention focused on the left stimulus (S1; µ = −0.75) and right stimulus
(S2; µ = 0.75) in the receptive field.

The value for σatt in the attend-in condition was selected not by parameter fitting, but
as being some smaller value than that used in the attend-out condition. With these simple
values for σω and σatt, it is demonstrated that the model can account for the experimental
results without taking recourse to parameter fitting. It may be possible to have the model
more closely match the experimental data by adjusting the value of σω and σatt, although
as is shown below, the model is able to reproduce their results without doing so.

To analyse the neuronal activity for each attentional condition, the methods of Wom-
elsdorf et al. [272] were followed. Specifically, the analysis used the recorded data from
60 to 200 ms after probe onset for each probe condition and attentional condition, and
the average response to each of the seven probes was calculated with the baseline activity
subtracted. These data were then fit by a Gaussian having four free parameters, and the
goodness of fit was evaluated by computing the r2 value for each fit. Any neuron having
one or more parameter values greater than 4 SDs from the group mean were excluded from
subsequent analysis. For completeness, curve fitting was performed with Matlab’s curve
fitting toolbox, using the nonlinear least squares method with a maximum of 600 function
evaluations. The gain, width and baseline shift had a lower bound of zero and no upper
bound, and the mean parameter was bound to the size of the receptive field [-1, 1].

For statistical power and to demonstrate the robustness of the general architecture,
100 different simulated monkeys were used and the neural responses to probe stimuli were
recorded with attention directed at each of the three targets. In this analysis, the methods
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Table 6.2: Quantitative results - Aggregate data from 100 simulated monkeys in the ARC
compared with experimental data from two monkeys reported in Womelsdorf et al. (2008).
Mean indicates the average change in the receptive field property measured, and 95% CI
Low and High represent the lower and upper 95% confidence intervals. The Womelsdorf et
al. (2008) study reports standard error of the mean (SE%), from which lower and upper
95% confidence intervals were estimated.

ARC Womelsdorf et al. (2008)
Mean (%) 95% CI Low 95% CI High Mean (%) SE (%) 95% CI Low 95% CI High

Gain Entire sample -0.343 -1.485 0.797 4.1 4.3 -4.328 12.528
Selected pairs -0.583 -1.733 0.577 5.0 3.0 -0.88 10.88

Shift Entire sample 33.231 32.864 33.620 31.4 2.8 25.912 36.888
Selected pairs 33.407 33.037 33.776 25.3 4.6 16.284 34.316

Shrink Entire sample -13.567 -14.425 -12.694 -12.1 1.9 -15.824 -8.376
Selected pairs -16.193 -17.190 -15.183 -11.2 2.3 -15.708 -6.692

of Womelsdorf et al. [272] were used to investigate three effects on receptive field properties
when attention is directed toward a stimulus inside the receptive field compared with a
stimulus outside the receptive field: a change in the peak firing rate (gain of the Gaussian
fits); a shift of the receptive field centre (mean of the Gaussian fit); and a change in
the receptive field size (standard deviation of the Gaussian fit). These data were then
compared with the reported experimental results. For all statistical analyses, the data
were bootstrapped (n = 3000) for amplitude, shift and shrink using the values from the
Gaussian fits, both for individual neurons and for the aggregate values of each simulated
monkey. The bootstrapped data were then used to calculate the 95% confidence interval
for each test. Table 6.1 summarizes the changes in the three attentional effects for the
simulation and experimental data, and quantitative results are summarized in Table 6.2.

Across the 100 simulated monkeys, the average number of neurons discarded in each
monkey was 30.34 of 100 neurons, with a 95% confidence interval of [29.41, 31.10], which
is larger than the 20.2% discarded in Womelsdorf et al. [272]. However, 65.54% of the
discarded cells were excluded because they exhibited little or no activity in response to the
reference and probe stimuli as a result of them having had x-intercepts near -1.0 or 1.0
rather than as a result of the fitting process. Combining all neurons from all simulated
monkeys, the median r2 value of the fit was 96.43%. Figure 6.3 shows the distribution of
r2 values for all neurons (blue bars) and selected pairs (red bars) at each attentional focus.
Following Womelsdorf et al. [272], those neurons having an r2 value from the Gaussian fit
greater than the median for each of the three attentional targets are referred to as “selected
pairs.”
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Figure 6.3: r2 values for individual neuron receptive fields fit with a Gaussian in different
attentional conditions for all simulated monkeys. Red bars indicate neurons with above
median r2 values (“selected pairs”), and blue bars indicate the fits of the entire sample.

6.1.1 Changes in Receptive Field Amplitude

For the change in receptive field amplitude, a significant decrease in activity was ob-
served in the attend-in condition compared with attend-out (p < 0.001, one sample t-test,
n = 13932) when all neuron pairs from the 100 simulated monkeys were considered (Fig-
ure 6.4(a)). The change in peak activity was calculated as in−out

out
. This change had a mean

decrease of -0.359% (CI = [-0.597%, -0.132%]). For just the selected pairs, there was also a
significant decrease in peak activity (p < 0.001, one sample t-test, n = 6914), with a mean
decrease of -0.597% (CI=[-0.943%, -0.255%]).

To test whether the data were normally distributed, the Jarque-Berra test was applied
to the data. The distribution of activity changes of the individual neurons is highly non-
normal for both the selected pairs and entire sample (p < 0.001 Jarque-Berra test), so an
additional analysis was performed to examine the mean amplitude changes from each sim-
ulated monkey. Figure 6.5 (blue bars) shows a histogram of the aggregated data composed
of the mean change in peak activity between the attend-out and attend-in conditions for
the ensemble of neurons recorded in each of the 100 simulated monkeys. A non-significant
decrease in peak activity was observed (p > 0.001, one sample t-test, n = 200), with an
average decrease of -0.343% (CI=[-1.485%, 0.797%]). In this test, the n=200 corresponds
to 100 measurements from when attention was directed to S1 versus attend-out, and 100
from attend-S2 versus attend-out. An estimate of the upper and lower confidence interval
of the experimental data (Ru and Rl) can be obtained as Rl = Rmean − (1.96 ∗ SE) and
Ru = Rmean+(1.96∗SE). The simulation data is within the 95% confidence interval of the
mean reported in Womelsdorf et al. [272], which found an average change of 4.7%±4%SE,
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Figure 6.4: Change in receptive field amplitude of the Gaussian fits between the attend-out
and attend-in conditions. (a) Simulation data for neurons from 100 simulated monkeys.
Blue bars indicate the change in the entire sample of neuron pairs (mean = -0.359%,
95% CI=[-0.597%, -0.132%]). For the selected pairs (red bars), the mean change was -
0.597% (95% CI=[-0.943%, -0.255%]). (b) Experimental data reported by Womelsdorf et
al. (2008). For the entire sample (light gray bars), the mean change was 4.7% (95% CI =
[-4.33%, 12.54%]). For the selected pairs (dark gray bars), the mean change was 5% (95%
CI = [-0.88%, 10.88%]). (Adapted from [272]).

corresponding to a 95% CI of [-4.328%, 12.538%]. Similarly, for just the selected pairs
(Figure 6.5, red bars) there was a non-significant decrease (p > 0.001, one sample t-test,
n = 200), with a mean of -0.583% (CI=[-1.733%, 0.577%]), which is consistent with the
results of Womelsdorf et al. [272] (5%±3.0%SE), corresponding to a 95% CI of [-0.88%,
10.88%] (Figure 6.4(b)). The slight reduction in amplitude can be attributed to the influ-
ence of the Gaussian connection strengths over the receptive field (σω). These feedforward
weights have the effect of moderately attenuating inputs from the edges of the layer-IV
neurons’ receptive fields.

Comparing the experimental data Figure 6.4(b) with the simulation data for all neurons
in all simulated monkeys (Figure 6.4(a)) and with the distribution of the average change in
each simulated monkey (Figure 6.5) illustrates that the simulation data closely matches the
experimental data. These figures show that the model captures the overall effect that the
receptive field amplitude does not change. Not surprisingly, by conducting the simulations
with more neurons and simulated monkeys, the distribution of changes in receptive field
amplitude is considerably more smooth than the experimental data.
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Figure 6.5: Average population change in receptive field amplitude from 100 simulated
monkeys between attend-out and attend-in conditions. There was not a significant change
between conditions, with the average change for the entire sample (blue bars) being -
0.343% (95% CI=[-1.485%, 0.797%]), and for selected pairs (red bars) = -0.583% (95% CI
= [-1.733%, 0.577%]).

6.1.2 Changes in Receptive Field Position

For each neuron, the Gaussian fit receptive fields were compared between each of the
attend-in conditions versus the attend-out condition to determine if their receptive fields
had shifted, and by how much. The shift in receptive field with attention was calculated
as (xattendedR −xR)/(xAtt−xR), where xattendedR represents the mean of the Gaussian fit with
attention directed to a stimulus inside the receptive field, xR is the mean of the Gaussian fit
in the attend-out condition, and xAtt is the position of the control signal, µ. For individual
neurons from all simulated monkeys, a significant shift in the receptive field centre toward
the stimulus was observed (p < 0.001, one sample t-test, n = 13932). The average shift
for all neuron pairs was 33.26%, with a 95% confidence interval of [33.197%, 33.325%]
(Figure 6.6(a), blue bars). For the selected pairs (Figure 6.6(a), red bars), there was also
a significant shift of the receptive field centre toward the attended stimulus (p < 0.001,
one sample t-test, n=6914), with an average shift of 33.436% (CI=[33.347%, 33.532%]).
As with the amplitude change, the data were not normally distributed (p < 0.001, Jarque-
Berra test).

Figure 6.7 (blue bars) shows the average population change in receptive field position
for the entire sample between attentional conditions for 100 simulated monkeys, where the
average shift was 33.231%, with a 95% confidence interval of [32.864%, 33.620%]. This
shift was statistically significant (p < 0.001, one sample t-test, n = 200), and the mean
change of the simulation data is also within the 95% confidence interval of Womelsdorf et
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(b) Experimental data.

Figure 6.6: Shift of receptive field position between attentional conditions. (a) Simulation
data from individual neurons of 100 simulated monkeys. For the entire sample (blue bars),
the mean shift was 33.26% (CI=[33.197%, 33.325%]), and for the selected neurons (red
bars), the mean shift was 33.436% (CI = [33.347%, 33.532%]). (b) Experimental data
reported by Womelsdorf et al. (2008). For the entire sample (light gray bars), the mean
shift was 31.4% (95% CI = [25.01%, 36.89%]), while for the selected pairs (dark gray bars),
the mean shift was 25.3% (95% CI = [16.28%, 34.32%]). (Adapted from [272]).

al. [272] (31.4 ± 2.8% SE; 95% CI = [25.913%, 36.888%]) (Figure 6.6(b)). For the selected
pairs from each simulated monkey (Figure 6.7, red bars), a significant shift of receptive
field centres toward the target was observed across simulated monkeys (p < 0.001, one
sample t-test, n = 200), with an average of 33.407% (95% confidence interval=[33.037%,
33.776%]). This shift is also within the 95% confidence interval of the mean found in
Womelsdorf et al. [272] (25.3%± 4.6% SE), which corresponds to a 95% CI of [16.284%,
34.316%].

As with receptive field amplitude, the significantly larger number of neurons in the
simulation data produces distributions of changes (Figures 6.6(a), 6.7) that are considerably
smoother than the experimental data (Figure 6.6(b)), while still demonstrating a consistent
average change in receptive field size.

6.1.3 Changes in Receptive Field Size

Finally, the changes in the receptive field size with attention were also quantified by mea-
suring the change of the width of the Gaussian fits between the attend-out (σR) and
attend-in (σAttendedR ) conditions, as (σAttendedR /σR)−1. Figure 6.8(a) shows that when using
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Figure 6.7: Average population receptive field shift between attend-out and attend-in
conditions from 100 simulated monkeys. The average shift when using the entire sample
(blue bars) was 33.231% (95% CI = [32.864%, 33.620%]), and for selected pairs (red bars)
= 33.407% (95% confidence interval=[33.037%, 33.776%]).

the entire sample from all simulated monkeys (blue bars), there was a significant reduc-
tion in the size of the receptive field in the attend-in condition (p < 0.001, one sample
t-test, n = 13932), with an average reduction of -13.615% (CI=[-13.875%, -13.382%]) for
the entire sample. With just the selected pairs (Figure 6.8(a), red bars), there was a sig-
nificant decrease in receptive field size (p < 0.001, one sample t-test, n=6914), with an
average change of -16.237% (CI=[-16.660%, -15.806%]). As with amplitude change and
shift, for both the selected pairs and entire sample, the distribution of receptive field size
changes was non-normal (p < 0.001, Jarque-Berra test), so this effect was assessed using
the mean change across the recorded neurons in each simulated monkey. Using the mean
of the entire sample from each simulated monkey (Figure 6.9, blue bars), the receptive field
size significantly decreased (p < 0.001, one sample t-test, n=200) on average by -13.567%
(CI=[-14.425%, -12.694%]). As with the previous two attentional effects, these results are
consistent with the experimental data, which report an average change in receptive field
size with the entire sample of -12.1%± 1.9% SE, corresponding to a 95% CI of [-15.824%,
-8.376%] (Figure 6.8(b)). The attentional effect on receptive field size was similar when
using the mean change of the selected pairs across all simulated monkeys (Figure 6.9, red
bars), where there was a significant decrease in receptive field size (p < 0.001, one sample
t-test), with an average change of -16.193% (CI=[-17.190%, -15.183%]). This effect is also
consistent with the experimental observation of -11.2% ± 2.3% SE (95% CI=[-15.708%,
-6.692%]).

Again, the distribution of changes in receptive field size is considerably smoother in
the simulation data with ∼14000 neurons (Figure 6.8(a)) and with the population average
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(b) Experimental data.

Figure 6.8: Changes of receptive field sizes between attentional conditions. (a) Simulation
data for individual neurons from 100 simulated monkeys. For the entire sample (blue bars),
there was an average decrease of -13.615% (CI=[-13.875%, -13.382%]), and for the selected
pairs (red bars), the average was -16.237% (CI = [-16.660%, -15.806%]). (b) Experimental
data by Womelsdorf et al. (2008). For the entire sample (light gray bars), the mean shrink
was -12.1% (95% CI = [-15.82%, -8.38%]) and for the selected pairs, the average shrink
was -11.2% (95% CI = [-15.71%, -6.69%]). (Adapted from [272]).

from 100 simulated monkeys (Figure 6.9) than in the experimental data (Figure 6.8(b)),
although the simulation data are still consistent with the experimental reports.

6.1.4 Results Summary

Figure 6.10 summarizes the changes in receptive field properties from the simulation data
(dashed lines) and experimental data (solid lines) for both the selected pairs (red lines)
and entire sample (blue lines). The mean change of each attentional effect is shown with
an asterisk and error bars indicate the 95% confidence intervals of the mean.

As shown in Figure 6.10, across these three measurements, there is no statistical dif-
ference between the simulation data and the experimental data. However, this figure also
illustrates that the distribution of each attentional effect is much narrower in the simu-
lation data than in the experimental data, and there are several possible causes of this
effect. First, the simulation data are from recordings of ∼14000 neurons across 100 simu-
lated monkeys, whereas the experimental data recorded from 78 neurons in two monkeys
(n = 57 and n = 21 for the two monkeys). As the lines in Figure 6.10 are for the 95%
confidence intervals and not standard deviation, it is expected that the confidence intervals
would shrink with increasingly large datasets. The significant variance in the experimental
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Figure 6.9: Average population change in receptive field size between attend-out and
attend-in conditions from 100 simulated monkeys. Average size change for the entire
sample (blue bars) = -13.567% (CI=[-14.425%,-12.694%]), and for selected pairs (red bars)
= -16.193% (CI=[-17.190%, -15.183%]).
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Figure 6.10: Summary of attentional effects (mean and 95% confidence intervals) for 100
simulated monkeys (dashed lines) and results reported by Womelsdorf et al. (2008) (solid
lines). Blue bars are from the entire sample, and red bars are selected pairs. See text for
details.
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data may also arise from measurement noise, or the myriad forms of noise found in real
brains, such as changes in the animal’s alertness and cognitive state, stimulus processing
effects, or subtle movements in the recorded cell’s position.

The Womelsdorf et al. [272] experiment examined the influence of attention on the
spatial position, size and amplitude of receptive fields when attention is shifted between
targets inside and outside the receptive field. Considering each effect of attention on re-
ceptive field profiles in the context of the model presented in Chapter 4, these forms of
modulation are consistent with the model’s principles. The first effect reported in Wom-
elsdorf et al. [272] is that the amplitude of the receptive field does not significantly change
between attentional conditions, an effect that was reproduced by the ARC. Considering
the routing mechanisms of the ARC, this effect is predicted by the model. The local con-
trol signal µ can have values anywhere within the receptive field, and for each of these
positions, the peak of the routing function has a constant value of 1, meaning that since µ
was centred on each target, the visual signal from each stimulus was similarly multiplied
by 1.

The simulation data showed a slight, but non-significant reduction in the receptive
field amplitude when attention was directed to stimuli within the receptive field. This
reduction is presumably due to the Gaussian shaped connection strengths between the V1
columns and the MT column. For simplicity, the connection strengths had a Gaussian
profile (Equation 6.1) with µω = 0 and σω = 1. If a smaller value for σω were to be used
used instead, this would cause the inputs from columns at the edges of the receptive field
to be more strongly attenuated. With a smaller value for σω, the model predicts that
directing attention to a stimulus at the receptive field edge will result in the amplitude
of the receptive field fits decreasing, and thus a reduction in gain. This observation also
suggests further details of this attentional effect, and predicts that if the two receptive
field stimuli are placed closer to the edges of the receptive field, the receptive field gain
will decrease when attending either receptive field target as compared with the attend-out
condition.

The second effect reported is that when attending to a receptive field stimulus, the
receptive fields shift toward the attended target, and that the position of the shifted re-
ceptive field varies with the position of the attentional target. The ARC proposes that
selective information routing from a particular region of the receptive field results from the
routing function attenuating input signals from parts of the receptive field that are distant
from the attentional target for neurons in that column (µ). This position is computed by
control neurons in each column, based on the global size and position of the attentional
target. Consequently, changes in the target’s position cause changes in the global control
signals, which results in µ changing in each column when the target is within the receptive
field. This principle is seen in the receptive fields shifting with different attentional targets.

Comparing the simulation data for receptive field shift with the experimental data
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(Figure 6.6), there is a subset of neurons reported experimentally having characteristics
not found in the simulation data. Specifically, a minority of cells in the experimental data
were found to have receptive fields that shifted away from the target, producing a negative
shift, while all of the simulated neurons only showed positive shifts. However, a different
study of receptive field modulation with spatial attention in V4 found that 46% of the
recorded cells had receptive fields that significantly shifted in the direction of attention,
although none of those cells showed a shift in the opposite direction [36]. This suggests
that it may be worth repeating this experiment with additional cells to see if these “away”
shifts are reproducible.

The third effect reported in Womelsdorf et al. [272] is that the size of the receptive
field decreases when attention is directed to a stimulus inside the receptive field, an effect
that was also reproduced by the ARC. As was discussed in Chapter 1, attention serves
to selectively processes attended information and to filter out extraneous information. In
higher cortical levels in particular, the large receptive fields provide each neuron with
information from a large spatial area, and much of this information may be irrelevant for
the current task. The ARC proposes that columns that are not encoding visual information
from the attentional target operate in their default routing state, and in this state, the
width of the routing function is larger than when neurons are in a selective routing state.
The ARC predicts that the reduction in receptive field size observed when attention is
directed to a receptive field stimulus results from these neurons switching from their default
routing state to one in which the target is being selectively processed.

Overall, considering all three effects together, the width of the routing function was
set to 1 for the attend-out condition and σatt = 0.75 for the attend-in conditions. These
values were selected to ensure that for the attend-in condition, the value was lower than
for the attend-out condition on a normalized range. With these values, the simulation data
were statistically indistinguishable from the experimental data, for all three measurements.
Given the considerable variance of the mean in the experimental data, it is plausible that
there exist several parameter regimes in which the model and experimental data will be
consistent, and perhaps more closely match the mean changes reported experimentally.
However, until further data are available to constrain these values, there is no advantage in
do doing so. Rather, the model’s ability to quantitatively match the experimental results
without parameter fitting demonstrates the robustness of the model to reproduce these
effects.
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Pattern A Pattern B 

Figure 6.11: Stimulus design used in the Treue and Martinez-Trujillo experiment. The
monkey was required to maintain fixation at the fixation point (cross in lower left) while
covertly attending to one of two random dot patterns in the receptive field. Pattern A
moved in the cell’s anti-preferred direction, while Pattern B could move in one of 12
directions on a given trial. (Reproduced from [245]).

6.2 Simulations of Treue and Martinez-Trujillo (1999)

In the previous section, it was shown that the ARC can account for modulation of spatial
receptive fields when attention is shifted between targets within a receptive field. The
simulation presented in this section address the effects of attention on feature tuning with
shifts of attention. Treue and Martinez-Trujillo [245] recorded from 56 neurons in area
MT of two macaque monkeys while the animals covertly attended to one of two stimuli
inside the recorded cell’s receptive field or to a stimulus placed at the fixation point. The
stimuli used were two random dot patterns, one moving in the cell’s anti-preferred direction
(Pattern A), and the other (Pattern B) moving in one of 12 directions (Figure 6.11). On
each trial, either stimulus was designated the target by the presentation of a stationary
random dot pattern at that location. After the cue was extinguished, the two stimuli
were presented and the monkey was to release a lever when the target stimulus changed
speed or direction, while ignoring any changes of the distractor. The target could change
anywhere between 270 and 4000 ms following stimulus onset, and only trials that were
correctly completed without eye movements were subject to analysis. Firing rates were
then determined based on the average activity in the 1000 ms following target movement,
with the first 200 ms discarded.

To construct tuning curves for each cell, activity was recorded for each of 12 direc-
tions that the stimulus moved, with attention directed to Pattern A, B or to fixation. For
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each attentional condition, the 12 firing rates were fit with a Gaussian having four free
parameters: rnull, the cell’s response to the anti-preferred direction, dirGain, the maxi-
mal response modulation, prefDir, the cell’s preferred direction, and width, the range of
direction to which the neuron responds:

rnull + dirGain× exp(−0.5 (dir−prefDir)2
width2 ). (6.2)

They found that attending to the variable motion stimulus (Pattern B) resulted in an
increase in response gain (dirGain), while attending to Pattern A produced a reduction
in gain, with an intermediate response occurring when attending the neutral stimulus at
fixation. Further, the width of these curves did not significantly change between attentional
conditions, but rather the responses were multiplicatively scaled similarly for all motion
directions.

This latter finding is of particular significance for distinguishing between possible mech-
anisms of attentional routing. Specifically, the biased competition [188], normalization
model [189] and ARC all suggest that directing attention to a stimulus will increase its
contribution to the neuron’s activity while diminishing the effect of the unattended stim-
ulus. That is, the cell’s response will be more strongly influenced by the properties of
the attended stimulus, with the unattended stimulus contributing less. However, both
the biased competition and normalization models differ from the ARC by predicting that
the range of motion directions to which a neuron responds will increase when attending
the anti-preferred stimulus, with an overall decrease in gain. This is seen as an increased
width of the Gaussian fit when attending to Pattern A as compared with attending to the
variable motion Pattern B. In other words, attending to the variable direction or preferred
stimulus will produce a sharpening of the tuning curve. Conversely, the ARC predicts that
the range of directions (i.e. the width of the Gaussian fit) will not change when attention
is directed to either stimulus, or to the neutral stimulus. For clarity, note that although
the spatial width of the receptive field may change with shifts of attention as was shown
in the simulations of Womelsdorf et al. [272], the range of features to which the neurons
respond should not.

This prediction was tested by simulating the experiment of Treue and Martinez-Trujillo
[245], using a similar model to that used in the simulations of the Womelsdorf task (Fig-
ure 6.12). 100 simulated monkeys were used, in each of which nine V1 columns provide
visual input to a single MT column. The V1 columns each contain 100 layer II/III neurons,
and the MT column contains 9× 50 layer-IV pyramidal cells, 100 layer-VI control neurons
and 100 layer II/III neurons from which recordings were made.

As with the Womelsdorf et al. simulations, the connectivity of the afferents to the MT
column was organized such that each V1 column projects to 50 layer-IV MT cells, each
having 30 nonlinear dendritic subunits that compute the routing function (Equation 4.7).
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Figure 6.12: Spiking neuron ARC used in the simulations of Treue and Martinez-
Trujillo [245]. Pattern A is at x−0.5 and Pattern B at x0.5. When attention is directed
to the fixation point, the network operates in its default routing state with attention at x0.

Further, the width of the Gaussian connection strengths was set to σω = 1, and the width
of the routing function was set to σatt = 1 for the attend-fixation condition, and σatt=0.75
when attention was directed to a stimulus inside the receptive field. As in the previous
simulation, the value of σatt = 0.75 was selected not by parameter fitting, but as being
some value lass than that used in the default state.

The three attentional conditions were modelled by setting the attentional target for
Pattern A as µ = −0.5 and Pattern B as µ = 0.5. The neutral condition reflects these neu-
rons being in their default routing state, and for simplicity, the control signal in this state
was specified as µ=0, as in the previous simulation. Any neuron that did not respond to
two or more motion directions was excluded from analysis. Following Treue and Martinez-
Trujillo [245], in each attentional condition, each stimulus direction was presented for 1000
ms, with the first 200 ms being excluded from analysis.

To simplify the analysis, all layer II/III neurons were modelled as “on” neurons, such
that they respond more strongly to increasingly large positive values. Direction of motion
was modelled by having the V1 neurons project a scalar value in the range xV 1ε[−1, 1],
corresponding to directions [-180, 180]. As the tuning curves for motion direction in MT
cells can be well characterized as a Gaussian over the range of directions [8], this is modelled
by transforming the direction signals so that the maximum response obtained for a direction
of 0◦ corresponds to the neuron receiving an input value of 1.0. The minimum response to
-180◦ or 180◦ thus corresponds to an input value of -1.0. This transformation is given by:

xMT = 2× exp−(
(xV 1−0)2

2σ2 ) − 1, (6.3)

Thus, Pattern A had a value of -1.0 corresponding to a motion direction of ±180◦ and
Pattern B had 12 equally spaced directions in the range [-1.0, 1.0], corresponding to [-
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180◦, 180◦]. This can also be modelled in the NEF by using neurons with two dimensional
tunning for direction, although in order to have the stimuli represented with the same
accuracy as in the 1D neurons used here, the number of neurons encoding the input signals
would need to be increased by a factor of approximately 2. Thus, the present simulations
use neurons sensitive to the transformed signals in one dimension, as it produces the same
functional effect, while requiring significantly less computational resources.

Although in cortex it would be expected to find neurons responsive to all directions
of motion, rather than all neurons having a preferred direction of 0◦, this arrangement is
equivalent to using neurons tuned to a variety of directions and aligning their preferred
directions to 0 before conducting the analysis. Further, to ensure that the recorded neurons
were responsive to a range of directions, the x intercepts of their tuning curves (i.e. the
input value at which they begin spiking) were selected from a uniform distribution over
the range [-1.0, -0.5], corresponding to [-180◦, -90◦] or [90◦,180◦]. Maximum firing rates of
layer II/III neurons were drawn from a uniform distribution over the range [90, 120] Hz,
with refractory periods of 5 ms, and a membrane time constant of 20 ms. These choices
were made to match the responses observed in the experiment.

Following Treue and Martinez-Trujillo [245], the change in gain and width when atten-
tion is directed to Pattern B is measured as an attentional index:

Ai(dirGain) = (dirGainb−dirGaina)
(dirGainb+dirGaina)

(6.4)

Ai(width) = (widthb−widtha)
(widthb+widtha)

(6.5)

where Xa and Xb indicate attention being directed to Pattern A or B respectively.

Figure 6.13 shows the responses of a single cell in each of the three attentional condi-
tions. The top curve is the neuron’s responses when attention was directed to the variable
motion stimulus (Pattern B), the middle curve is the activity when attention was directed
to a target outside the receptive field (“sensory” condition), and the lower curve is with
attention directed to the anti-preferred stimulus (Pattern A). For this cell, the r2 value of
the fits are 0.99, 0.97, and 0.98 with attention directed to Pattern B, fixation and Pattern
A respectively. Across the simulated monkeys and attentional conditions, the average r2

value was 0.9847, with a 95% confidence interval of [0.9640, 0.9953].

Figure 6.14 shows a histogram of the attentional index for gain from 85 cells in a
single simulated monkey, as calculated using the attentional index (Equation 6.4). When
attention was directed to Pattern B, there was a significant increase in gain across the
population (p < 0.001), with an average attentional index of 0.171 (95% CI=[0.164, 0.177]),
which corresponds to an average increase in directional gain of 141.5% (95% CI=[139.6%,
143.4%]). Figure 6.15 shows a histogram of the attentional modulation of tuning width
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Figure 6.13: Responses of an example cell with attention directed to the anti-preferred
stimulus (Pattern A, red), fixation (“sensory” response, black), or to the variable motion
stimulus (Pattern B, blue). Asterisks indicate neural responses to each direction of motion
and the curves are the best fitting function for responses in each attentional condition.

for the same simulated monkey as shown in Figure 6.14. For this single simulated monkey,
there was no significant change in the width between conditions (p > 0.001), with an
average AI of 0.000 (95% CI=[-0.005, 0.006]), which corresponds to an average ratio of
widths for Patterns B and A of 1.002%, (95% CI=[99.1%, 101.4%]).

Grouping the data from all neurons in all simulated monkeys, the attentional mod-
ulation of gain (Figure 6.16(a)) showed a significant increase between attentional condi-
tions (p < 0.001), with an average attentional index of 0.1564 (95% confidence interval =
[0.1558, 0.1570]). This corresponds to an increase in the gain term of 137.39% (95% confi-
dence interval = [137.31%, 137.57%]) when attention was directed to the variable direction
stimulus.

As with the simulations of the Womelsdorf et al. [272] experiment, the mean change
across the population of cells in each simulated monkey were combined, and the data
were subjected to the same analysis as when combining individual cells from all monkeys.
Figure 6.16(c) shows the distribution of changes in the attentional index for gain aggregated
across simulated monkeys. Again, there was a significant change in the attentional index
for gain (p > 0.001), with a mean of 0.1564 (95% confidence interval = [0.1529, 0.1597],
corresponding to an average change in the ratio of 137.39% (95% confidence interval =
[136.41%, 138.32%]). Figures 6.16(e) and 6.16(f) show the distribution of changes reported
in Treue and Martinez-Trujillo [245] for gain and width respectively.

Figure 6.16(b) shows a histogram of the attentional modulation of the width of the
Gaussian fit when combining all cells from all simulated monkeys. Again, the width of the
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Figure 6.14: Change in the gain attentional index for a single simulated monkey. On
average, the change in gain was 0.171 or a geometric mean of 141.5%, with 95% confidence
intervals of [0.164, 0.177] and [139.6%,143.4%].
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Figure 6.15: Change in the width attentional index for a single simulated monkey, with an
average attentional index of 0.000, corresponding to 0.2%, with 95% confidence intervals
of [-0.005, 0.006] and [99.1%, 101.4%].
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(a) AI(dirGain) for all cells.
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(b) AI(width) for all cells.
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(c) AI(dirGain) aggregated across
simulated monkeys.
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(d) AI(width) aggregated across simu-
lated monkeys.
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Figure 6.16: Summary of attentional index values for gain and width. (a) and (b) combine
all neurons from all simulated monkeys, (c) and (d) are the average change in each simulated
monkey, and (e) and (f) are experimental results reproduced from [245]. The simulation
data shown in (a) and (c) and experimental data (e) show that the receptive field gain
significantly increases wen attending the variable motion stimulus, while the width does
not change in the model (b, d) or experimental data (f).
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Figure 6.17: Comparison of attentional effects reported by Treue and Martinez-Trujillo
(solid lines) and from simulations using the ARC (dashed lines).

Gaussian fit did not change significantly between attentional conditions (p > 0.001). The
average AI for width across all cells was -0.00018 with a 95% CI of [-0.00094, 0.00053],
corresponding to an average ratio of 0.2% (95% confidence interval = [0.05%, 0.3%]).

The corresponding change in the attentional index for width across the 100 simulated
monkeys is shown in Figure 6.16(d). As was the case when combining all cells from all
simulated monkeys (Figure 6.16(b)), there was not a significant change (p > 0.001), with
an average attentional index of -0.00018 (95% confidence interval = [-0.0033, 0.0031]),
corresponding to a mean change of 100.2% (95% confidence interval = [99.58%, 100.86%]).

From the original experiments, the authors report few details of the data, indicating
only the geometric mean of the directional gain being 156% and a non-significant change
in width of 8%. However, from the histograms in the original article, (Figure 4 in [245]),
confidence intervals of the mean can be estimated by taking the number of cells in each
histogram bin, and assigning to these points, the value corresponding to the centre of
the histogram bin. This estimated data set was then bootstrapped (n=3000) and the
bootstrapped data were used to estimate their confidence intervals. For directional gain,
this yields an average AI of 0.2125, with an estimated 95% confidence interval of [0.1518,
0.2768], and an average AI for width of 0.0357 (CI=[-0.0179, 0.0821]).
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6.2.1 Results Summary

Figure 6.17 summarizes the attentional effects from the simulation data and the experi-
mental data. For each measurement, the confidence intervals of the simulation and ex-
perimental data overlap, indicating that there is not a significant difference between the
simulation and experimental data. However, it is useful to further assess the consistency
of the model with the experimental data by determining the amount by which the model
may be incorrect, in the worst-case scenario given the available information. To determine
this value, the maximum likely difference, or equivalence test threshold is used [229, 249]:

MLD = max(Mu −Rl, Ru −Ml), (6.6)

where Mu and Ml are the upper and lower 95% confidence intervals of the model, and
Ru and Rl are the “real-world” or experimental confidence intervals. The MLD specifies
the smallest threshold θ for which the null hypothesis that |R −M | > θ can be reliably
rejected, and is defined in the same units as the confidence intervals (attentional index).
For the attentional index for width, this measurement yields an MLD value of 0.0457, while
for gain, MLD=0.0619; that is, given the available data, in the worst case, the difference
between the attentional index produced by the model and that of the experimental data
is 0.0457 for width and 0.0619 for gain.

Similar to the comparative summary presented for the previous simulation (Figure 6.10),
Figure 6.17 shows that the confidence intervals of the simulation data overlap with the ex-
perimental data, but are significantly narrower. In these simulations, recordings were
made from 100 neurons in 100 simulated monkeys, while Treue and Martinez-Trujillo [245]
recorded from 56 neurons in two monkeys.

The experiment by Treue and Martinez-Trujillo [245] examined two effects when at-
tention was switched between the fixation point, the anti-preferred and variable motion
stimulus. The first effect reported is that attending to the variable motion stimulus pro-
duced stronger responses (i.e. increased directional gain) than when attending the fixation
point or anti-preferred stimulus, an effect that was reproduced by the ARC. The reason
this effect is expected in the model is as follows.

In the ARC, the signal that is encoded by the layer-II/III neurons is a weighted sum
of the signals from the anti-preferred and variable motion stimuli. The routing function,
being centred on the receptive field in the attend-fixation condition, attenuates the gain
of each stimulus by a similar amount, since the stimuli were placed symmetrically in the
receptive field. Directing attention to either of the stimuli inside the receptive field both
shifts the centre of the routing function (µ) toward the target, and causes the model to
switch from the default routing state, thereby decreasing the width of the routing function
σatt. When attending the anti-preferred stimulus, which on its own produces little activity
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in the recorded neurons, the combined effect of shifting µ away from the variable motion
stimulus, and reducing σatt, causes the signals from the variable motion stimulus to be more
attenuated. This results in the anti-preferred stimulus contributing more to the activity
of the recorded cells, thereby reducing the magnitude of the encoded visual signal, and in
turn the firing rate. Conversely, attending to the variable motion stimulus results in the
anti-preferred stimulus being attenuated by a similar amount as the preferred stimulus was
in the previous condition. However, when attending the variable motion stimulus, which
generally has directions closer to the preferred direction of the layer-II/III cells, the signals
from that stimulus are located at the centre of the routing function, and pass through with
little attenuation.

While the simulation data cannot be statistically distinguished from the experimental
data, there is a subset of recorded neurons in the experimental data with characteristics
not seen in the simulation data. Specifically, in the experimental data, 10 of the 56 cells
showed a negative attentional index for directional gain (Figure 6.16(e)), indicating that
the fit of these cells had a larger dirGain value when attending the anti-preferred stimulus
than when attending the variable motion direction stimulus.

As shown in Figure 6.16(a), none of the neuron fits in the simulation data exhibited a
reduction of the gain parameter as was found in the experimental data. This discrepancy
may arise for several reasons. First, although the equation to which the neuronal responses
were fit was given in the original article, there are numerous fitting methods that may be
used (e.g. least-squares, weighted least-squares, robust regression, etc.), which may result
in the data being fit differently. Further, the number of fit evaluations, bounds for the
parameters, and fitting priority of each parameter can result in different fits, and thus
parameter values, for the same data. Second, the fit values for the other parameters,
particularly rnull which shifts the baseline of the curve, can have a significant impact
on the values of the gain term (dirGain), and can obscure the peak gain of the curve
when different fit methods or constraints are used. Finally, measurement noise, changes
in the animal’s cognitive state or the recorded neurons being involved in processing other
information may all contribute to this effect. Whether the few neurons in the experimental
data showing decreased gain parameters is an artifact of the fitting methods, or is due to
another factor, remains unclear.

The second effect reported by Treue and Martinez-Trujillo [245] is that the range of
directions to which the cell is responsive, does not change with attentional shifts, an effect
that was also reproduced by the ARC. The ARC proposes that this effect arises because
the multiplicative gain term computed in the routing function only depends on the spatial
position being attended and similarly affects all feature values from each receptive field
position. The routing function is defined over the neuron’s spatial receptive field, and as
long as the global control signals indicating the size and position of the target does not
change, any visual signals from a given column will be modulated by the same amount,
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independent of the contents of the visual signal. This property of the model is reflected
in the simulation data (Figure 6.16(b), 6.16(d)) which show that the tuning curves do not
change width, as all motion directions from a given spatial position are multiplied by the
same gain term.

The results of these simulations provide support for the ARC, and provide the model
with some explanatory advantage over other models that were discussed in Chapter 3.
Specifically, the biased competition [188] and normalization model [189] predict that di-
recting attention to the variable motion stimulus will produce a sharpening of the neuron’s
orientation tuning curve. However, the experimental data demonstrate that the tuning
curve width is unaffected by directing spatial attention to different receptive field targets.
In contrast, the ARC predicts that the multiplicative scaling of responses in each atten-
tional condition is a result of the routing function attenuating visual signals from parts of
the receptive field that are not being preferentially processed (i.e. columns that are distant
from µ). The model predicts that the effect of visuospatial attention to a particular loca-
tion is largely restricted to the spatial dimensions. That is, visuospatial attention affects
the processing of information based on its retinal or receptive field location, and similarly
affects all featural information from a given location. This prediction is further tested in
the simulations presented in the following section, where the effects of attentional shifts on
contrast-response functions are investigated.
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6.3 Simulations of Lee and Maunsell (2010)

To this point, we have seen that directing attention to a stimulus in a neuron’s receptive
field can influence the response of the cell as compared to the response elicited by directing
attention to a stimulus outside the receptive field. Another means of testing attentional
mechanisms has been pursued by several studies that have investigated the influence of
attention on the contrast-response function, which describes the change in neuronal firing
rates as contrast increases, to assess whether the attentional effect is better described as
response gain or contrast gain. Due to the possible confounding factors present in several
previous studies (see Section 1.3.2), Lee and Maunsell [112] sought to clarify this question
in their recent work.

Their study recorded from 56 neurons in area MT of two macaque monkeys performing
a speed-change detection task (Figure 6.18). Two Gabor stimuli were presented in the
receptive field of each recorded neuron, one moving in the cell’s preferred direction, and
the other in a non-preferred direction. The two Gabors had equal contrast, with the
contrast value of each presentation randomly drawn from a set of 8 values [0, 1.6, 3.1,
6.2, 12.5, 25, 50, 100%]. The stimuli were placed at locations within the receptive field
that were at equal eccentricity from fixation, and that gave strong and roughly equivalent
responses. After signalling the location of the target, either with a location cue or by
instruction trials, the animal’s task was to detect the appearance of a Gabor at the cued
location having a slightly faster drift speed, while ignoring distractor Gabors at the non-
cued location having a faster drift speed than the target. When the change was detected,
the animal then responded by making a saccade to the target, and was rewarded with a
drop of liquid if the response was made within 600 ms of the change.

In their experiment, neurons were held for an average of 36 repetitions of each contrast
value and attention condition, and the response was measured as the average activity be-
tween 50 and 250 ms following stimulus onset. The mean responses across repetitions from
each attentional condition and stimulus were first fit with a hyperbolic ratio function [3]:

R = Rmax

(
cn

cn+cn50

)
+m, (6.7)

where Rmax is the maximum firing rate, c is contrast, n is the steepness of the function, and
m is the baseline activity. To further assess whether the attentional modulation was more
consistent with a response gain or contrast gain, the mean responses in each attentional
condition were fit with modified contrast response functions (Equation 6.7) that model
either a pure response gain or pure contrast gain.

The response gain model is given by incorporating an additional term, a, that acts
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Figure 6.18: Task design for the Lee and Maunsell experiment. Once the animal had held
its gaze on the fixation point, the attentional target was signalled either by instruction
trials or a location cue, and pairs of Gabors with equal contrast were presented in the
receptive field. The animal had to detect a change in the speed of the cued stimulus while
ignoring changes in the distractor. (Reproduced from [112]).
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multiplicatively on the contrast-response function:

R = aRmax

(
cn

cn+cn50

)
+m. (6.8)

The contrast gain model is given by:

R = Rmax

(
cn

cn+(ac50)n

)
+m. (6.9)

For both models, a is fixed at 1 when attention is directed to the non-preferred stimulus
and varies freely when attention is directed to the preferred stimulus.

After fitting the average responses with the response gain and contrast gain models,
the partial correlation was calculated using the correlation between the data and each
model’s fit. Fisher’s r-to-Z transformation was then applied to each partial correlation
coefficient to produce a Z score, and the transformed values were divided by the standard
error, given as the square root of the degrees of freedom (df) minus 3. In the experiment
and simulations presented below, df=16 is the number of data points, with 8 values from
each attentional condition. To test whether the response modulation was more consistent
with a response or contrast gain model, a statistical criterion of 1.645 was used, which
corresponds to a p value of 0.05.

In a third form of analysis, the data were fit using Equation 6.7, but with m and n fixed
between attentional conditions to permit a closer examination of the attentional influence
on Rmax and c50. In this approach, a neuron would be said to exhibit a pure response gain
if Rmax changes between conditions and c50 does not. In a pure contrast gain however, c50

would change between attentional conditions while Rmax would not.

Comparisons of the changes in Rmax and c50 between attentional conditions were made
by computing a modulation index:

mi(Rmax) =
(
Rpmax−Rnpmax
Rpmax+Rnpmax

)
(6.10)

mi(c50) =
(
cnp50−c

p
50

cnp50 +cp50

)
, (6.11)

where p and np indicate attention being directed to the preferred and non-preferred stimuli
respectively.

To simulate this experiment in the ARC, a similar network to that used in the simula-
tions of the Womelsdorf et al. [272] and Treue and Martinez-Trujillo [245] was implemented,
and is shown in Figure 6.19. Nine V1 columns provide input to a single MT column having
9×50 layer-IV neurons, 200 layer-II/III neurons from which recordings were made, and
100 layer-VI control neurons. To ensure that the layer-II/III neurons responded similarly
weakly to 0% contrast, their x-intercepts were distributed in the range [-0.1, 0.1]. Further,
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Figure 6.19: ARC with spiking neurons used for simulations of Lee and Maunsell (2010).
MT has a single column containing 450 layer-IV pyramidal neurons, subsets of which receive
input from a single V1 column. Control neurons in the MT column (gray circle) project
a local control signal to the terminal dendrites of MT neurons to enable selective routing.
The preferred stimulus is presented at x−0.75 and the non-preferred stimulus at x0.75.
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Figure 6.20: Average response of 56 MT neurons reported by Lee and Maunsell (2010) with
attention directed to the preferred stimulus (black solid line) or non-preferred stimulus
(dashed line). Error bars are SE. (Reproduced from [112]).
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as in the previous simulations, the layer-II/III neurons had encoding vectors of 1 such
that they respond more strongly to higher contrast stimuli. The activity of all cells was
recorded for 36 repetitions at each of the eight contrast values and in both attentional con-
ditions. To add variability in the neural responses across repetitions, noise was simulated
by injecting the soma of the layer-II/III neurons with a random amount of current drawn
from a uniform distribution in the range [-22.5µA, 22.5µA] at each time step. Further, to
mimic the variability introduced by neurons below MT, the input was scaled by a factor
randomly chosen from a uniform distribution in the range [75%, 125%]. Although this has
the potential to introcue a considerable amount of noise in the input signals, its effects
on firing rate are less apparent, as the activity is averaged across 36 repetitions. This is
discussed further in Section 6.4.

Figure 6.20 shows the average response of the 56 cells recorded by Lee and Maun-
sell [112] as the stimulus contrast and attentional target was varied. Solid black circles are
the responses when attending the preferred stimulus, and unfilled circles are the responses
when attending the non-preferred stimulus. Although these contrast-response functions
for are not uncommon for MT and V4 cells [112, 190, 266], their tuning to contrast is dis-
tinctly different than for other feature dimensions. Specifically, the recorded cells respond
similarly for subthreshold contrasts below 3%, and have considerable sensitivity to a nar-
row range of contrasts between 3% and 12% before largely saturating at contrasts above
25%. This high sensitivity to contrast, along with preference for low spatial frequency
and high temporal frequency stimuli, are among the hallmark characteristics of cells along
the pathway extending from the magnocellular layers of LGN [97]. Indeed, similar tuning
has been observed in V1 neurons projecting to dorsal stream areas, but with less sensi-
tivity than MT cells, or a higher c50 value when fit with the hyperbolic ratio function
(Equation 6.7) [3, 266].

In the NEF, this effect of saturation at higher contrasts can be simulated with a popu-
lation of neurons having encoding vectors that are -0.2 or 0.2 (Figure 6.21(a)). The y-axis
of Figure 6.21(b) plots the decoded estimate of a continuously monotonically increasing
input value in the range [0, 1]. This population is able to well represent signals having val-
ues within the range for which their encoders are defined (i.e. [-0.2, 0.2]), although values
beyond this range largely result in the neural activity saturating, as well as the decoded
estimate of the signal carried in their activity.

Given that this simulation aims to investigate the influence of attention rather than the
processing of information in lower areas, the computational requirements of the model can
be reduced by simply replacing the input population shown in Figure 6.21(a) with 10 direct
mode neurons that approximate this saturated value. In the NEF, direct mode neurons are
non-spiking neuron-like elements that functionally represent and transform signals similarly
to spiking neurons, but with considerably less computational demands. In the present
simulations, these input neurons threshold any input value exceeding 0.3 to mimic the high
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Figure 6.21: (a) Response functions for a population of 100 neurons with encoding vectors
of -0.2 and 0.2. (b) Decoded estimate of a continuously increasing value. The cells have
high sensitivity for input signals having values in the range [0, 0.2], but largely saturate at
higher contrasts. These responses were used in the model to account for the high contrast
sensitivity and saturation effects of neurons projecting to MT.

contrast sensitivity and saturation effects at higher contrasts observed in areas projecting to
MT that receive signals originating in the magnocellular layers of LGN [258]. Layer-II/III
neurons in the V1 columns are also “on” neurons, with the preferred stimulus moving
in the direction 1.0, and the non-preferred stimulus moving in a direction of 0.5 (i.e.
orthogonally). This input is then projected to the layer-IV MT cells as the dot product of
the stimulus direction and its contrast.

Figure 6.22 shows the activity of an example neuron from the ARC when attention was
directed to the preferred stimulus (filled circles and black solid line) and when attention
was directed to the non-preferred stimulus (open circles and dashed line). The fitting for
this cell was performed using Equation 6.7 for the average activity across 36 repetitions,
with error bars indicating SE. For this neuron, the fits explained 99.8% of the variance of
the mean responses.

Figure 6.23(a) shows the average activity of the entire population when fit with the
hyperbolic ratio function (Equation 6.7). For all 200 neurons, the median variance ex-
plained was 99.7% with attention directed to the preferred stimulus and 99.8% for the
non-preferred stimulus. Figure 6.23(b) shows the same data as in Figure 6.23(a), but with
each neuron’s activity normalized to its largest response. As with Lee and Maunsell [112],
this typically occurred when attending the preferred stimulus at the highest contrast value.

For completeness, and to allow comparison with other studies [266], the distributions of
parameter values obtained from fitting the data with Equation 6.7 are shown in Figure 6.24.
Plots in the left column indicate parameter values when attention was directed to the
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Figure 6.22: Contrast-response functions of a single layer II/III model neuron. The solid
and dashed lines are the best fitting function when attention was directed to the preferred
and non-preferred stimuli respectively. Error bars are SE values.

preferred stimulus and the right column when attending the non-preferred stimulus (dashed
lines indicate the median value). For Rmax (Figures 6.24(a), 6.24(b)), the mean value when
attending the preferred stimulus was 62.1154 (95% CI= [59.8235, 64.3975]), and the mean
when attending the non-preferred stimulus was 43.7445 (95% CI=[42.3958, 45.1034]). For
n, the mean value when attending the preferred stimulus was 2.3161 (95% CI=[2.2061,
2.4304]), and 2.8574 (95% CI=[2.6799, 3.0419]) for the non-preferred stimulus. For c50, the
mean value when attending the preferred stimulus was 0.1297 (95% CI=[0.1272, 0.1322]),
and 0.1471 (95% CI=[0.1426, 0.1516]) for the non-preferred stimulus. Finally, for m the
mean value when attending the preferred stimulus was 7.3892 (95% CI=[6.2704, 8.5141])
and 6.5354 (95% CI=[5.4741, 7.6785]) for the non-preferred stimulus.

In subsequent analysis, the average responses in the two attentional conditions were
fit with the response-gain and contrast-gain models (Equations 6.8 and 6.9) to determine
which of these two models better explained the simulation data. Following Lee and Maun-
sell [112], the partial correlation was computed between the simulation data and the values
generated by each fit, and transformed to a Z score. Figure 6.25(a) shows a scatter plot
of the Z-transformed correlations for the contrast-gain and response-gain models. Filled
circles represent neurons that were significantly better fit by the response-gain model, and
open circles are neurons for which neither model provides a statistically significantly better
fit. Dotted lines mark the statistical criterion for the test.

Of the 200 neurons that were fit by both the contrast-gain and response-gain models,
only one could not be distinguished as being better fit by either model. As seen in Fig-
ure 6.25(a), the 199 neurons that were significantly better fit by the response-gain model
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Figure 6.23: Population average contrast-response functions for 200 model neurons. The
solid and dashed lines are the best fitting function when attention was directed to the
preferred and non-preferred stimuli respectively. Error bars are SE values. (a) Average
response across the population. (b) Normalized average population responses, with each
neuron’s response is normalized to to its maximum mean firing rate.

appear to form two distinct clusters. The first cluster, having higher Z-scores for both Zc
and Zr contains 92 neurons, all of which have x-intercepts greater than zero and lower
background activity (J bias). The consequence of their higher x-intercepts is that the ma-
jority of cells in this cluster did not respond above baseline to the first two contrast values
(0% and 1.6%). The other cluster in which Zc and Zr are lower, predominately contains
neurons having x-intercepts less than zero and higher background activity (J bias), resulting
in them exhibiting stronger responses at the lowest contrast values.

For comparison, Figure 6.25(b) shows the Z-transformed partial correlations reported
by Lee and Maunsell [112]. Of the 56 cells recorded, 45 were significantly better fit by the
response gain model, 10 were comparably fit by both models, and one cell was significantly
better fit by the contrast gain model. As with the simulation data from the ARC, the
majority of cells in the experimental data were better explained by a response gain.

Figure 6.26(a) shows the results from the third form of analysis, in which responses were
fit using Equation 6.7, with m and n fixed between attentional conditions. Gray circles
indicate neurons in which there was a significant change in the modulation index of Rmax

and c50, and black filled circles indicate a significant change in Rmax but not in c50. The
solid lines indicate the 95% confidence intervals. Of the 200 neurons, 18 showed a significant
change in Rmax, consistent with a pure response gain, and the remaining 182 exhibited a
significant change in both Rmax and c50. This finding is consistent with the increased mean
value of c50 when attending the non-preferred stimulus (Figure 6.24(e), 6.24(f)), when fit
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Figure 6.24: Distribution of fit parameter values when attending the preferred (left column)
or non-preferred stimulus (right column). Dashed lines are the median parameter values
from 200 neurons. See text for details.
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Figure 6.25: Z-transformed partial correlations between simulation data and curve fitting.
Black circles are neurons having fits that are significantly better described by the response
gain model. Dotted lines indicate the threshold for statistical significance (1.645, corre-
sponding to p=0.05). The model (a) and experimental data (b) both indicate that for the
majority of neurons, the attentional effect on contrast-response functions is significantly
better explained by response gain. (Figure (b) reproduced from [112]).

with the standard hyperbolic ratio function (Equation 6.7). For comparison, the results
reported by Lee and Maunsell are shown in Figure 6.26(b). Of the 56 recorded cells, 27
had a significant change in Rmax but not c50, 21 had a significant change in both, and the
remaining 8 had no significant change in either parameter (white circles).

6.3.1 Results Summary

Of the numerous studies that have examined contrast-response functions [115, 125, 190,
266], the experiment by Lee and Maunsell [112] was selected, as their method avoids
possible confounds found in earlier studies, and provides a rigorous examination of the
data that quantitatively evaluates both contrast gain and response gain.

The simulation data were shown to be consistent with the results of Lee and Maunsell,
which report that the dominant effect of attention is a multiplicative scaling of neural
sensory responses. Lee and Maunsell found that none of the recorded cells showed a clear
attentional effect that was consistent with contrast gain, a finding that was reproduced by
the ARC. The results of this simulation provide further insight for addressing the question
of whether shifting attention between receptive field stimuli will produce an effect that is
more consistent with response-gain or contrast-gain. The simulations demonstrate that,
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Figure 6.26: Modulation indexes for Rmax (y-axis) and c50 (x-axis). Gray circles – neurons
showing a significant change in both Rmax and c50. Black filled circles – significant change
in Rmax but not in c50. Unfilled circles – neurons with no significant change. Solid lines –
95% confidence intervals. Both the model and experimental data show that the majority
of cells had a significant increase in their maximum firing rate (Rmax) when attending the
preferred stimulus, consistent with a response gain effect. (a) Simulation data from the
ARC. (b) Experimental data from Lee and Maunsell (2010). (Reproduced from [112]).

were the data only assessed using a contrast gain model, it could be rightfully concluded
that contrast gain provides an excellent explanation of the phenomena (see Figures 6.23(a)
and 6.25(a)). However, closer inspection of the data by quantitatively comparing both
contrast-gain and response-gain models reveals that the data are significantly better ex-
plained by a response-gain model. These simulation results demonstrate that the analysis
and fitting methods used to characterize the attentional effects can have a significant im-
pact on the interpretation of the data.

The core of the model used to simulate the experiment by Lee and Maunsell [112] was
the same as that used in the first two simulations. However, in order to capture the contrast
sensitivity characteristics seen in the experimental data, the layer-II/III neurons in V1 and
MT were altered. In this simulation, the V1 neurons were constructed to exhibit the
high contrast sensitivity seen in the experimental data, as well as the LGN-magnocellular
recipient neurons in V1 reported elsewhere [3, 258, 266]. As in the previous simulations
with the ARC, the layer-II/III neurons in MT were modelled as “on” neurons, although
for the simulations of the Lee and Maunsell experiment, their x-intercepts were drawn
from a significantly narrower range to ensure that their responses were similarly weak for
low contrasts. However, contrast is but one of the feature dimensions to which neurons in
higher cortical areas are sensitive, and as was shown in the simulations, for other stimulus
dimensions, a much broader sensitivity can be used.

Consistent with the results reported by Lee and Maunsell, when the simulation data
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were fit using a response gain and contrast gain model, it was found that response gain
significantly better describes the attentional effects 6.25. However, similar to the results
from the previous two simulations in this chapter, the distribution of the simulation data
was significantly narrower than the experimental data. For example, in the simulation data
(Figure 6.25(a)), only one neuron was equally well described by both contrast gain and
response gain models, although Lee and Maunsell report that 10 of the 56 recorded cells
were equally well fit by both models (Figure 6.25(b)). Additionally, the experimental data
are generally more scattered than are the simulation data, although both sets of results
demonstrate that, in the majority of neurons, the attentional effect is significantly better
described as response gain.

In comparing the two scatterplots shown in Figure 6.26, the experimental data generally
have considerably larger confidence intervals of the mean for both parameters, whereas the
simulation data have considerably less variation. For example, the cell in the top right
corner of Figure 6.26(b) has a 95% confidence interval for the modulation index of c50 that,
after being bootstrapped 1000 times, nearly spans the range [-1, 1]. For a cell to exhibit
such widely varying modulation indexes, its responses would need to be significantly larger
when responding to the preferred stimulus on some repetitions, and significantly larger
when attending the non-preferred stimulus on other repetitions. However, another study
of the attentional effects on contrast-response functions in area MT by Martinez-Trujillo
and Treue [125] had to discard 29/63 recorded neurons because the fits produced c50 values
that exceeded the maximum contrast used in the experiment in at least one attentional
condition. If neurons with similar fits to those discarded in [125] were included in the
analysis in the Lee and Maunsell study, this may partially explain the considerable variance
they report, although it is unknown whether such neurons were included.

The 95% confidence intervals of the simulation data are significantly narrower than the
experimental data, despite a similar number of repetitions being performed (the experiment
performed 36 on average, and the simulations used exactly 36), and the same analysis
methods being used. Even with 25% noise added to the encoded values of the input signals,
the recorded cells do not exhibit the considerable variability found in the experimental data.
Qualitatively consistent results were obtained without the inclusion of noise at the input
level, although there was significantly less variability across repetitions. Several possible
sources of trial to trial variability may have influenced the experimental recordings that are
not present in the model, such as measurement error, stimulus processing effects, changes
in the animal’s cognitive state and alertness, and involvement of different cell assemblies.
Given the paucity of data that can inform the selection the most appropriate method for
modelling this variability, the simple approach used here provides a suitable approximation.
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6.4 Summary of Simulation Results

In this chapter, the ARC was used to simulate three experiments of attentional processing
by Womelsdorf et al. [272], Treue and Martinez-Trujillo [245], and Lee and Maunsell [112].
In the analysis of each simulation, the data were analysed using the same methods as in
the original experiments, and the model was shown to be quantitatively consistent with
the experimental results.

The first simulation presented in this chapter (Womelsdorf et al. [272]) demonstrated
that directing attention to a target inside the receptive field causes the receptive field to
shrink and shift toward the target. This form of attentional modulation occurs as a result
of the Gaussian shaped routing function attenuating input signals from neurons located
in parts of the receptive field that are distant from where information is being selectively
processed by the column (µ).

Using this same model, the findings of Treue and Martinez-Trujillo [245] were also re-
produced, which highlights that the allocation of spatial attention does not affect tuning
sensitivity. Rather, the model demonstrates that changes in neural responses occurring
when attending a preferred or non-preferred stimulus can be attributed to changes in the
multiplicative gain term from the routing function that are determined by the location
of the attentional target. This finding distinguishes the ARC from the normalization
model [189] and biased competition model [188], which predict that directing spatial at-
tention to a preferred receptive field stimulus will cause a sharpening of the tuning curves,
which is inconsistent with the experimental data and simulation data from the ARC. Con-
sistent with these effects, the third simulation of the Lee and Maunsell experiment [112]
demonstrated that the attentional effect of response gain also can be seen to result from
the multiplicative gain term produced by the routing function, and that response gain is
equivalent to the increased amplitude and unchanging tuning curve selectivity reported by
Treue and Martinez-Trujillo [245].

From a modelling perspective, the configuration of the Treue and Martinez-Trujillo
experiment is similar to that of Womelsorf et al.: two stimuli are placed in the receptive
field of the recorded cell, and attention is directed to either of the stimuli, or to the fixation
point. However, the Womelsdorf et al. experiment examined the effects of attention on
the spatial properties of the receptive field by measuring responses to probe stimuli, while
the Treue and Martinez-Trujillo experiment assessed the effects of attention on feature
selectivity. The similarity of the experimental configurations allows the model’s generality
to be tested by using the same model configuration to simulate both experiments, with the
primary difference between these two simulations being the stimuli that were used.

In the model, it is not particularly surprising that the peak response activity is con-
sistently higher when attending to the variable direction stimulus than when attending
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the anti-preferred stimulus. Since the layer-II/III neurons from which the activity was
recorded are “on” neurons, their activity is strongly correlated with the value being repre-
sented. This value is based on a weighted summation of the feature values of each stimulus,
multiplied by a gain term computed by the routing function. When attention is directed to
the anti-preferred stimulus, its value is multiplied by the peak of the routing function, and
the other stimulus is attenuated, resulting in the inputs to the recorded cells being pre-
dominately from the anti-preferred stimulus. Similarly, attending to the variable motion
direction stimulus causes the inputs from the anti-preferred stimulus to be attenuated by
the routing function, thereby typically yielding a greater response from the recorded cells.
Regardless, these results demonstrate that the ARC is consistent with the experimental
observations of increased directional gain, and that the range of stimulus values to which
the cells respond does not change with attentional shifts.

The third set of simulations with the ARC modelled the experiment by Lee and Maun-
sell [112] that investigated the effect of attentional shifts on contrast response functions.
As with the previous two simulations, the attentional effects shown by Lee and Maunsell
are consistent with that predicted by the model’s principles. When compared with the re-
sults of Treue and Martinez-Trujillo [245], the model predicts that a response gain should
be expected. The Treue and Martinez-Trujillo study found that spatial shifts of attention
produce a multiplicative scaling of neural responses across motion directions. This effect
was similarly shown by Lee and Maunsell, except with a multiplicative scaling across con-
trasts. In this light, the attentional effects reported by Treue and Martinez-Trujillo for
motion direction are equivalent to that produced by a response gain model.

Situating the combined results from these three experiments within the context of the
large-scale functional model allows the experimental observations of attentional modula-
tion to be interpreted at multiple levels of analysis. This property of the ARC, as discussed
in previous chapters, is presently not found in the majority of models of attention. Using
a single model of attentional routing also highlights that the seemingly different forms
of modulation can be explained through a common mechanism of visuospatial attention.
In each of the simulations, the gain term produced by the ARC’s routing function affect
the feedforward visual signals similarly, although by using different stimuli and analysis
methods on the data, these seemingly different forms of attentional modulation were repro-
duced using the same mechanisms. The model thus predicts that the various attentional
effect observed in feature responses are primarily consequent to the modulation of spatial
receptive fields.

These results also highlight several distinctions between the ARC and previous models.
First, the simulations were performed using a spiking neuron model that was shown to to
be consistent with three forms of attentional modulation. The gain field model by Salinas
and Abbott [204] was shown to be qualitatively consistent with reports of receptive field
shifts, although that model uses rate code neurons and the model results were not quan-
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titatively compared with specific physiological data. The synchrony- and oscillation-based
models [162, 163] are implemented in spiking neurons, but it remains to be demonstrated
that they can account for the attentional effects described in this chapter.

The ARC also has a significant explanatory advantage over models using mathematical
implementations. The shifter circuit [168] and SAIM [82] models address the problem of
selective processing at a more abstract level than the ARC, which significantly limits the
models’ ability to address neurophysiological effects.

The results of the simulations presented in this chapter also distinguish the ARC from
the biased competition [188] and normalization models [189], which are mathematical im-
plementations. As with other non-spiking models, the neurophysiological explanatory and
predictive capabilities of the biased competition and normalization models are limited, as
the plausibility of the models being implemented in spiking neurons is unclear.

Implementation concerns aside, the biased competition and normalization models differ
from the ARC in their predictions about the forms of attentional modulation. Specifically,
the biased competition and normalization models predict that in the Treue and Martinez-
Trujillo experiment [245], a neuron’s tuning selectivity will become sharper when attending
the preferred stimulus, although experimental results report that the tuning selectivity does
not change. In contrast, the ARC’s principles predict that selectivity will not change with
spatial shifts of attention, and this prediction was shown to be quantitatively consistent
with the experimental data.
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Chapter 7

Future Work and Conclusions

The ARC provides a detailed account of how the selective routing of attended visual
information may be performed in cortex. Extending this high level functional model with
a biophysically detailed and anatomically consistent spiking neuron implementation allows
the principles of the model to be quantitatively tested against specific neurophysiological
recordings. The design of the model permits it to be significantly scaled up, in terms of
additional hierarchical levels, the number of neurons in each column, the visual features
they encode, and the number of columns in each level. This scalability results from the use
of common ensembles of control neurons in each column that compute local control signals
for all visually responsive neurons in the column. The local control signals are computed
using minimally complex functions on low dimensional signals, which allows them to be
computed accurately and efficiently with plausible neural requirements.

7.1 Summary of Results and Predictions

The presentation of the ARC in this thesis began with a mathematical description of
selective attentional routing in cortex (Chapter 4). The mathematical model was shown
to perform routing similar to a shifter circuit [168, 169], but in a manner that overcomes
several limitations of that model. Specifically, the ARC performs selective routing without
needing to change synaptic weights, without exceeding the neural capacity of pulvinar, and
without need for specific long-range projections from pulvinar.

The mathematical implementation of the ARC provides a strong functional account of
performing selective attentional routing in cortex. However, the plausibility of its compu-
tations being performed in neurons remained to be tested. To verify the neural feasibility
of the model, the ARC was implemented in spiking neurons using the Neural Engineering
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Framework (NEF) [55], and was shown to perform routing as predicted by the mathemat-
ical model (Chapter 5). It was demonstrated that control signals can be computed and
represented with minimal control neurons in each column, in a manner that is consistent
with the anatomical connectivity and neural density of the modelled cortical areas.

Having demonstrated in Chapter 5 that the proposed mechanisms for selective routing
can be implemented in spiking neurons, Chapter 6 evaluated the model’s principles by
comparing it to the attentional effects observed in real brains. This evaluation was con-
ducted by simulating three physiology studies of visual attention in macaque, where each
study reported different forms of attentional modulation.

The first simulation (Section 6.1) was of an experiment by Womelsdorf et al. [272], which
found that attentional shifts result in the receptive fields shifting toward the attentional
target and shrinking in size. The simulation results from the ARC were shown to be
quantitatively consistent with each of the observed effects, from which several predictions
about the properties of attentional modulation in this experiment were generated, and are
discussed below.

The second simulation (Section 6.2) modelled an experiment by Treue and Martinez-
Trujillo [245], which found that shifting attention between a variable motion and non-
preferred stimulus presented inside the receptive field produces an increase in receptive
field gain when attending the variable motion stimulus and a reduction in gain when
attending the non-preferred stimulus. Additionally, that experiment reported that with
attentional shifts, there was no significant change in the tuning selectivity. Using the same
model as in the Womelsdorf et al. [272] simulations, the ARC was able to reproduce the
effects reported experimentally. These results also allow the model to be distinguished
from previous proposals, as discussed in Section 7.2.

The third experiment that was simulated using the ARC (Section 6.3) was a study
by Lee and Maunsell [112] that investigated the effects of attentional shifts on contrast-
response functions. This study demonstrated that although the attentional effect can be
partially explained as a contrast gain, by using a more detailed analysis that quantitatively
assesses both contrast gain and response gain, the effect is significantly better explained
by response gain. The results of simulating this experiment with the ARC were also shown
to be consistent with the experimental results.

The combined results of these three simulations support the plausibility of the model’s
principles being found in cortex, as they demonstrate that the proposed mechanisms for
selective routing are consistent with the attentional modulation observed in cortical neu-
rons. Together, they also support the model’s prediction of a single mechanism producing
these different forms of attentional modulation. The simulations of the Womelsdorf et al.
study were presented first, as they provide strong evidence of one of the model’s central
predictions, that of dynamic shifting and shrinking of receptive fields to perform selective
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processing. The ARC was shown to be statistically indistinguishable from the experimen-
tal results, while using the same mechanisms for selective routing as in the large-scale
mathematical model and in the simulation of the other experiments.

The mathematical model provides a context for interpreting the results of Womelsdorf et
al., by suggesting a functional role for the receptive field shifts within the larger problem of
selective routing. Specifically, the ARC proposes that the selective processing of attended
stimuli is performed by dynamically modulating the portion of the receptive field from
which information is selectively processed. This receptive field location is computed by
cortical control neurons in each column that use global control signals to specify the centre
of the Gaussian-shaped routing function.

The results of the Womelsdorf et al. simulations in turn provide a context for inter-
preting the effects of spatial attention on feature tuning and contrast-response functions
reported by Treue and Martinez-Trujillo [245] and Lee and Maunsell [112]. The results
of simulating the experiments by Treue and Martinez-Trujillo [245] and Lee and Maun-
sell [112] are consistent with the model’s prediction that directing attention to a location
imposes a multiplicative gain term on visual inputs that is based on their spatial location,
but not on the signals encoded by neurons at each spatial position. Specifically, both of
these studies report that shifts of spatial attention produce a multiplicative scaling of re-
sponses that similarly affects all motion directions and contrast values, without attenuating
responses to non-preferred motion directions or stimuli with high contrasts.

7.1.1 Predictions

As stated at the outset of this thesis, a central strength of computational models is that
they can be used to bridge the gap between theoretical proposals of brain function and
experimental work by quantitatively testing whether the theoretical proposals are consis-
tent with experimental observations. If the results of simulations with the model are not
consistent with experimental findings, then the discrepancies between the model and data
can inform where the model is wrong and how it may be revised. If however, the simu-
lation results are consistent with experimental data, the model can be used to generate
predictions that may then be tested experimentally. This iterative process of theorizing,
simulating, and testing experimentally is crucial to advancing our understanding of brain
function.

The ARC’s consistency with the experimental data lend support to the model’s prin-
ciples. And, as a result, the model provides several predictions regarding other aspects of
attentional processing that can be tested to further evaluate whether the model’s princi-
ples are biophysically consistent. Details of these predictions were discussed in Chapters 4
and 6, and are now summarized.
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1. The attentional modulation of feature selectivity, contrast-response functions and
receptive field profiles with spatial shifts of attention result from a single mechanism
for selectively processing attended stimuli. Specifically, attending to a particular
feature dimension imposes a Gaussian shaped multiplicative gain term defined over
the dimension being attended, and centred on the target feature.

2. Visual cortical neurons operate in a default routing state prior to the target being
known and when they are not encoding information from the attentional target. The
ARC predicts four properties of neurons in their default routing state:

(a) Neurons operating in their default routing state will have larger receptive fields
on average than when their receptive field contains an attentional target.

(b) In the Womelsdorf task [272], neurons with receptive fields in the periphery will
on average respond more strongly to probe stimuli presented on the side of their
receptive field that is more distant from the fovea.

(c) When two stimuli are placed inside a peripheral neuron’s receptive field, the
receptive field profile will on average, shift by a larger amount when attention is
directed to the receptive field target that is located closer to the fovea than when
attending the target on the opposite side of the receptive field.

(d) An increasing proportion of neurons at each higher cortical level will show at-
tentional modulation on average, as a result of them switching from their default
routing state to a selective routing state, and the size of the shift will also be
larger.

3. Independent of the target’s size, the effect of spatial shifts of attention can be ex-
plained by a multiplicative scaling of responses across different feature dimensions
including contrast, motion direction, orientation, and colour.

4. In the Womelsdorf task [272], as the two target stimuli are placed closer to the
receptive field edge, there will be a systematic increase in the receptive field shift and
decrease in amplitude on average.

7.1.2 Assumptions

Although the combined results of computational, physiological and psychophysical research
have greatly advanced our knowledge of neural processing and attention, a considerable
amount remains presently unknown. Given this uncertainty, in defining the model, several
assumptions were made based on the currently available information. It is possible that
future studies will provide evidence that conflicts with the ARC’s assumptions, and the
remainder of this section discusses the impact on the model of these assumptions being
incorrect.
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Pulvinar Providing a Global Control Signal

The ARC assumes that pulvinar provides global control signals that are used to perform
selective routing in visual cortex. This assumption is shared by several models of atten-
tion [2, 7, 162, 169], and there is a considerable amount of experimental support for this
hypothesis. Single-cell recording studies have shown stronger activity in pulvinar neurons
when their receptive field contains an attentional target [16, 179, 180, 192], imaging studies
demonstrating stronger activation in pulvinar in attentional tasks [98, 110, 148, 260, 275]
and pulvinar deactivation and lesion studies have reported deficits in engaging atten-
tion [45, 185, 262, 263].

However, myriad other cortical and subcortical areas are also known to be involved
in guiding saccades and attentional allocation, including superior colliculus, FEF and
LIP [146, 184, 215]. It is probable that the pulvinar is not the sole locus of attentional
control, but rather serves as a hub for distributing high level control signals to visual cortex.

The model’s principles for selective routing are independent of how the high level control
signals are generated and in which brain region(s), as the ARC addresses the issue of
selective routing one the target has been determined. If the high level control signals are
computed in FEF, LIP, pulvinar, or distributed across these areas, it is suspected that the
size and position of the attentional target will still be encoded in the signals from these
areas. The basis for this proposal is that many neurons in FEF and LIP respond more
strongly when their receptive fields contain an attentional target or target of an upcoming
saccade [146, 184, 215] which, when combined across the populations of neurons in these
areas, forms a map from which the location and spatial extent of the target can be inferred.

Global Control Signals Are Only Projected to the Topmost Level of the Hier-
archy

The ARC proposes that global control signals for visuospatial attention terminate in layer-I
of PIT, although it is possible that future studies may find that this information is also
projected to lower areas such as V4, V2 and V1. This may be the case if the global control
signals are encoded in FEF or LIP, which both project to V4 and IT [59, 86, 146]. This
could affect routing in the ARC in two ways.

1. One possibility is that the global control signals Alen and Apos are not exclusively
projected to PIT, but are simultaneously projected to each ventral stream area (Fig-
ure 7.1(a)). In this case, the global control signals would still carry a coarse and
low-dimensional signal indicating the size and position of the target, and each ven-
tral stream area would simultaneously compute local control signals using the same
mechanisms as in the current model. In this arrangement, the predictions from the
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Figure 7.1: Alternative methods for distributing high level attentional control signals. (a)
Global control signals are projected simultaneously to each ventral stream area from some
unspecified area(s), such as FEF, LIP, pulvinar, or some combination therein. (b) Global
control signals are projected from the area(s) in which the target is selected to thalamus.
From thalamus, the global control signals are first projected to PIT, which relays the
signals back to thalamus, and this cycle continues for areas V4, V2, and V1.

model still hold, as do the routing mechanisms, although the role of feedback pro-
jections would need to be reconsidered, as it is unclear how the differential timing of
modulation in different levels would arise.

2. A second alternative is that global control signals are distributed to the hierarchy
in a top-down manner, but are relayed through the thalamus between each cortical
level (Figure 7.1(b)). This arrangement involves the global control signals first be-
ing projected from the brain region(s) encoding the signals, be it pulvinar, areas in
the frontal or parietal cortex, or some combination therein, to the top level of the
hierarchy via thalamus, where local control signals are computed as in the current
model. However, instead of the global signals being fed back from PIT to V4, they
would be relayed to the thalamus, and then from thalamus to V4. This communi-
cation could be realized using the corticothalamic projections from neurons layer-V
of visual cortex [240] and the thalamocortical projections terminating in layer-I and
layer-IV [97]. In this arrangement, the methods for computing local control signals
do not need to be altered from the present model, and may also allow thalamus to
restrict the distribution of the global control signals depending on the task demands.
For example, in simple tasks that do not require fine spatial details for discrimina-
tion, thalamus could prevent the global control signals from being projected to V2 or
V1. This arrangement requires the global control signals to traverse through several
additional synapses, and thus additional time would be added to the delay at which
attentional modulation is observable in each level. The timing of attentional modu-
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lation in each area varies considerably between studies [26, 32, 138, 196], and only
recently have experiments been conducted in which the timing of modulation has
been measured in different ventral stream areas of the same monkey. As additional
studies are conducted that can describe the timing of modulation in more detail,
their results will allow the suitability of these different configurations to be better
evaluated.

Dendritic Nonlinearities in Layer-IV Pyramidal Cells

The ARC assumes that pyramidal cells with dendritic nonlinearities will be found in layer-
IV of visual cortex. As was discussed in Section 2.4, this hypothesis is supported by the
electrochemical and morphological similarities of layer-IV pyramidal neurons in cortex and
the neurons with dendritic nonlinearities reported experimentally. If future experiments
fail to locate any such cells in visual cortex, this would require alterations to the lami-
nar mapping of the ARC, but not to the model’s principles. Specifically, the processing
performed using the dendritic nonlinearities in the present model could be combined with
the computations performed using the layer-IV neuron’s second nonlinearity. In order to
handle the additional computational requirements of these neurons, a similar optimization
of the encoding and decoding vectors to that described in Section 5.2 would likely need
to be performed, although given the number and density of layer-IV neurons, there seem
to be sufficient neural resources to perform these computations, although it remains to be
explicitly tested.

Object-Centred Reference Frame

The ARC proposes that information from an attended stimulus is routed to an object-
centred reference frame in which the representation of the object is largely invariant to its
retinal size and position. Although there is strong experimental evidence that supports
this hypothesis (Section 4.6), this hypothesis is not agreed upon by all theorists [252].

The present model defines routing through cortical areas V1 to PIT and does not include
areas above PIT, as beyond this level, much less is understood about the spatial distribu-
tion of an object’s representation across the cortical sheet. For example, the retinotopic
organization and moderate receptive field sizes in V1 to V4 significantly constrain which
columns could encode information from the target. Beyond PIT however, the columnar
organization of each area becomes much more complex. In CIT and AIT, receptive fields
can cover 50◦ or more of the visual field [41, 200], and the columnar organization seems
to be defined according to the high dimensional feature space that neurons in each col-
umn are selective for (e.g. circles, corners, textured oriented ellipses, and common facial
features) [62, 233]. It has been proposed that the complex properties of AIT columns are
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assembled through the specific columnar projections from columns in PIT that are selective
to more simple features[60, 203].

The general proposal of an object-centred reference frame is that the representation of
an attended stimulus is largely invariant to the object’s retinal size and position. Further,
in the cortical area where the object-centred reference frame is formed, whether it is PIT,
CIT, AIT, or an even higher area, all columns in that area attempt to selectively process
information from the attended stimulus. Due to the increasingly specific columnar tuning in
these areas, some columns will respond weakly or not at all when the target is non-preferred,
although any column that is sensitive to stimuli similar to the target will be selectively
processing its information. This would be seen as “hotspots” of activity in response to a
particular attended stimulus, and these hotspots may be separated by columns showing
little activity. This is consistent with reports of neurons in IT that are selective for a
particular stimulus and give weak responses when attention is directed to a non-preferred
stimulus, despite the preferred stimulus still being within their receptive field [147].

Such activity patterns have been observed in several studies of macaque area TE,
where spatially separated columnar clusters of cells, each covering ∼ 400µm, show strong
activation when a preferred stimulus is displayed [202, 234, 254, 274]. Koch [104] estimates
that the entire area of TE could be parcelled into more than a thousand such “hotspots,”
which is consistent with the estimate of 30 × 30 sampling units proposed by the shifter
circuit [168, 169, 257].

In higher cortical areas beyond PIT, selective routing could still be performed using
the principles of the ARC, although it is unclear if each column would selectively process a
portion of the target as seen in some V4 neurons [23, 177], or whether the entire attended
object would be routed to each column. Given the complexity of tuning in these areas,
which requires pooled information from a larger spatial areas to form high dimensional
feature conjunctions, it seems seems plausible that in areas beyond PIT, columns are
selectively processing information from an increasingly large portion of the target, and
eventually, the entire target.

7.2 Summary of Comparison to Past Models

In Section 3.6, a set of limitations that are common amongst existing models of attention
was given. A central goal of the ARC is to overcome these limitations in a single mechanistic
model, by proposing a model which is:

1. Implemented in spiking neurons, within biophysical constraints;

2. Defined for an entire cortical area, rather than for a single cell;
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Table 7.1: Summary of common limitations in existing models of attention. Column head-
ings indicate whether each model satisfies the following criteria: Spiking - implementation
using spiking neurons. Entire cortical area - describes the relative effects of attentional
modulation throughout an entire cortical area. Multiple cortical areas - describes the rela-
tionship of attentional effects between multiple cortical areas. Matching to physiology - the
model is shown to account for specific physiological data. Multiple forms of modulation -
the model is shown to account for multiple forms of attentional modulation within a single
model.

Model Spiking Entire Multiple Matching to Multiple forms
cortical area cortical areas physiology of modulation

ARC yes yes yes yes yes
Salinas and Abbott [204] yes no no no no

Womelsdorf et al. [272] no no no yes no
Shifter Circuit [168] no yes yes no yes

SAIM [82] yes no no no no
Biased Competition [188] no no no yes yes

Normalization Model [189] no yes no yes yes
Synchrony and Oscillation [163, 162] yes yes no yes yes

3. Able to account for the relationship of attentional modulation between multiple cor-
tical areas, and the interaction of attentional routing between these areas;

4. Well-matched to physiological data; and

5. Able to account for different forms of attentional modulation using a common mech-
anism.

Table 7.1 summarizes the limitations of each of the models discussed in Chapter 3.
In the ARC, the first point was addressed in Chapter 5, in which the spiking neuron
implementation was first presented and the model’s detailed laminar mapping was specified.
The second and third point were addressed in Chapter 4 where the methods for performing
selective routing in each hierarchical level were defined. The final two points were then
addressed in Chapter 6, where the ARC was shown to account for three seemingly different
forms of attentional modulation using the same mechanisms for each simulation as defined
in the models presented in Chapters 4 and 5.

The ARC is most closely related to the shifter circuit [168, 169], which provides a strong
starting point for modelling visual attention, as it frames the problem of visual attention
as a problem of dynamically routing attended information through the visual hierarchy to
an object-centred reference frame, provides a well-defined functional account of selective
routing, and is largely biologically consistent. However, the shifter circuit is a purely
mathematical implementation that lacks detail of how the model may be implemented in
neurons. Additionally, it has several physiological inconsistencies.
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Several aspects of the shifter circuit are incorporated in the ARC, including the proposal
of dynamically routing an attended stimulus to an object-centred reference frame, and
performing this routing by dynamically modulating the information being processed in
each column. The shifter circuit performs selective processing in each column by changing
the connection weights of inputs to each column, while the ARC demonstrated that a
functionally similar effect can be produced in a biologically plausible manner through
the multiplicative interaction of feedforward visual signals and a Gaussian-shaped routing
function.

A section limitation of the shifter circuit is its proposal that all of the control signals for
routing are computed in pulvinar, from where they are projected to specific connections
in each ventral stream area. When the model is scaled to approximate the size of the
human brain, the number of unique control signals required approaches the total number
of neurons in pulvinar, and since pulvinar neurons are also required to compute these
control signals, it suggests that pulvinar may not be sufficient for performing routing in
such a model.

The ARC overcomes this limitation by proposing that pulvinar only coarsely encodes
the size and position of the attentional target, with all detailed local control signals being
computed by cortical control neurons. By implementing the ARC in spiking neurons, the
neural requirements for computing the local control signals can be evaluated, and it was
demonstrated that the control signals can be efficiently and accurately computed with
minimal neural requirements.

The normalization model [189] is the other model with which the ARC can be most
directly compared, as several aspects of that model are consistent with the ARC, and
they both aim to explain similar attentional phenomena (see Section 4.7). However, the
normalization model has several limitations that remain to be addressed. First, it is a
mathematical implementation, which makes it unclear how biologically plausible its com-
putations are, and limits the model’s explanatory and predictive capacity.

Although the model can qualitatively account for several different forms of attention
in a single model, several of its predictions are inconsistent with experimental results.
Specifically, the model predicts that in the experiment by Treue and Martinez-Trujillo [245],
the receptive field gain will increase when attending the variable motion stimulus and the
tuning curve will become sharper (i.e. increasingly selective for the preferred stimulus).
The first prediction that directing attention to a preferred receptive field stimulus produces
an increase in gain has been demonstrated by numerous studies [118, 147, 186, 188, 246,
247], and the simulation result from normalization model was shown to be consistent
with this prediction. The second prediction, that neurons will exhibit a sharpening of
their tuning curves, is inconsistent with the results of the study that was being modelled.
Rather, the study by Treue and Martinez-Trujillo [245] demonstrated that spatial shifts of
attention do not alter the tuning selectivity of neurons in MT. The normalization model
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suggests that the amount of tuning curve sharpening is related to the size of the attention
field, although using their model code to simulate that experiment, the effects of increased
gain without changes in selectivity could not be reproduced with larger or smaller attention
field sizes. The ARC was also used to simulate the experiment by Treue and Martinez-
Trujillo, and was able to quantitatively match the experimental data in a spiking neuron
implementation.

The normalization model also predicts that the size of an attentional target will dif-
ferently affect the attentional modulation for low and medium, although as was discussed
in Section 4.7, the results of several studies have shown that stimulus size has little or no
effect on contrast-response functions. The ARC however, predicts that the stimulus size
will not cause different effects in the contrast-response function. With two stimuli inside
the receptive field, the ARC predicts that the effect of spatial attention is a multiplicative
scaling of responses, and that the amount of scaling is constant for all feature values at each
position in the receptive field, independent of their size, contrast, or direction of motion.

7.3 Future Work

There are numerous directions in which future work with the ARC may proceed. In general,
these extensions are related to increasing the scale of the model to larger sizes and including
neurons that encode additional feature dimensions.

Multi-level hierarchy in spiking neurons

Due to computational constraints, the spiking neuron implementations in this thesis per-
forms selective routing between two cortical areas. However, recent advancements in GPU-
accelerated processing allow larger networks to be simulated, and the introduction of spe-
cialized computational hardware called Neuromorphic Computational Fabrics [216] can be
used to to emulate spiking neural networks for models containing up to a million neurons,
running in real-time. Both of these advancements can be used to conduct significantly
larger simulations with the ARC, and when the spiking neuron model is extended to
include multiple hierarchical levels, there are three particularly promising directions for
investigation.

(a) Quantitatively measuring the timing of attentional modulation in each cortical area.

(b) Quantitatively measuring the proportion of cells in each area and cortical layer that
exhibit attentional modulation.

(c) Quantitatively measuring the strength of modulation in each area and cortical layer.
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Higher dimensional feature tuning of neurons in each level

It is also well established that the ventral stream areas modelled in the ARC play a crucial
role in processing visual information for object recognition. This hierarchical processing,
involving neurons in higher areas pooling spatial and temporal information from lower
areas in order to construct more complex representations, presumably occurs concurrently
with the routing mechanisms employed by the ARC. For simplicity, the model ignores the
increasingly complexity of neural tuning at higher levels of the ventral stream, although it
is assumed that incorporating neurons tuned to more complex stimuli will not affect the
proposed mechanisms.

By incorporating neurons tuned to higher dimensional stimuli, there are two main
directions for future work:

Incorporating the ARC Into a Hierarchical Vision System

A recent model by Tang and Eliasmith [235] that uses Deep Belief Networks for performing
visual recognition has been implemented in spiking neurons using the NEF. Their results
show that using a simple attention-esque top-down feed back signal significantly improved
the model’s recognition performance on a dataset of handwritten digits. The ARC is well
suited for integration with hierarchical vision models, and suggests a promising application
for the model.

Verifying the model’s prediction of spatial attention not affecting tuning sen-
sitivity with higher dimensional tuning

The simulations with the ARC presented in this thesis involve neurons that are tuned for
one or two dimensional visual stimuli, and future work may explicitly test the model’s
prediction that spatial attention does not affect tuning sensitivity when using neurons
tuned to higher dimensional stimuli. When using neurons sensitive to multiple feature
dimensions, it may be that spatial attention causes an interaction between other feature
dimensions that was not detectable with the low dimensional stimuli used in this thesis.
Although the model predicts that there will not be any interactions, it remains to be
explicitly tested.

Feature-based attention

That attentional modulation seems to have a Gaussian profile which interacts multiplica-
tively in the dimension being attended was shown here for spatial attention, although
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several experimental studies show a similar effect for feature-based attention for orienta-
tion in V4 [131, 222] and motion direction in MT [126]. If we consider that space is just
another stimulus dimension to which neurons are sensitive, then the selective routing in
terms of orientation and motion may well be performed using a similar mechanism to that
defined here.

Investigation of the temporal structure of spike trains

The simulations presented in this thesis were all conducted using a spiking LIF neuron
model [103], which was selected because it provides a suitable trade-off between biological
realism and computational efficiency. However, the regularity of activity in LIF neurons in
response to a constant stimulus drive limits the ability for simulation data from the ARC
to be investigated for synchronous or oscillatory properties. The NEF allows other neuron
models to be used instead of LIF neurons, and future work may also investigate the effects
of attention on the temporal structure of spike trains across populations in the ARC.

Concluding Remarks

The research presented in this thesis has proposed and demonstrated a mechanism by which
the selective routing of attended stimuli may be performed in cortex. This proposed ARC
model provides a platform for unifying several seemingly disparate forms of attentional
modulation, and suggests that they each may be characterized as resulting from a common
process for performing selective routing. However, the model contains several speculative
proposals, and as more data becomes available regarding neural function, anatomy and
physiology, parts of the model may need to be reconsidered. However, the general principles
of the model are expected to be relatively unchanged, even with a variety of possible future
findings.

As it stands, the ARC model provides several testable predictions, which make the
model and its underlying assumptions clearly empirically testable. While the ARC is but
a stepping stone to an improved future theory, it has clear advantages over several past
theories of attention. Its unique combination of proposing both a large-scale architecture
and a biologically plausible implementation, put it in a good position to continue to unify
behavioral, physiological, and anatomical data regarding how attentional processing is
actually performed in the brain.
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