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Abstract

We develop a new approach to classical gravity starting from Mach’s principles and
the idea that the local shape of spatial configurations is fundamental. This new theory,
shape dynamics, is equivalent to general relativity but differs in an important respect:
shape dynamics is a theory of dynamic conformal 3-geometry, not a theory of spacetime.
Equivalence is achieved by trading foliation invariance for local conformal invariance (up
to a global scale). After the trading, what is left is a gauge theory invariant under 3d
diffeomorphisms and conformal transformations that preserve the volume of space. There
is one non—local global Hamiltonian that generates the dynamics. Thus, shape dynamics
is a formulation of gravity that is free of the local problem of time. In addition, the
symmetry principle is simpler than that of general relativity because the local constraints
are linear. Therefore, shape dynamics provides a novel new starting point for quantum
gravity. Furthermore, the conformal invariance provides an ideal setting for studying the
relationship between gravity and boundary conformal field theories.

The procedure for the trading of symmetries was inspired by a technique called best
matching. We explain best matching and its relation to Mach’s principles. The key features
of best matching are illustrated through finite dimensional toy models. A general picture
is then established where relational theories are treated as gauge theories on configura-
tion space. Shape dynamics is then constructed by applying best matching to conformal
geometry. We then study shape dynamics in more detail by computing its Hamiltonian
perturbatively and establishing a connection with conformal field theory.
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Chapter 1

Introduction

I recently spoke to a group of grade 9 students at a local high school about the wonders
of math and physics. Their teacher, who is a good friend of mine, had just assigned
them their Problem of the Day, which was to identify the most “square” object out of a
collection of differently shaped rectangles. Their first task was to rank the objects in order
of “squareness”, then to find a mathematical criterion for determining the “squareness” of
an object. This thesis is a general solution to that problem.

What is truly remarkable is that the solution to such a simple problem leads to a
new theory of gravitation that is equivalent to general relativity (GR) but has different
symmetries that treat local shapes as the irreducible physical degrees of freedom. This
new theory represents a fresh starting point for quantum gravity, free of the problem of
time. It provides a conformal framework for understanding gravity that is ideally suited
for understanding gauge/gravity dualities and a new computational framework for doing
cosmology.

Indeed, to achieve such a theory, we will need to solve a slightly more general problem
than that posed by my friend to his students: how to quantify the “difference” between
the local shapes formed by configurations of matter in the universe. By “local” shapes
we mean the shape of objects, treated individually, that are finitely separated in space.
The extent of these separations and the definition of the local neighborhood is an issue
we will address shortly. Because we want our construction to be as general as possible,
we want our definition to work no matter what kind of matter is being considered and
what kind of shapes are being formed. This can be achieved by manipulating the space
that the imagined shapes live in and by identifying those manipulations that can actually
change the local shapes. A moment’s reflection reveals what manipulations do not change



the local shapes: coordinate transformations and local rescalings of the spatial metric,
or conformal transformations. This is because local shape does not depend on position
and orientation, which are equivalent to local infinitesimal coordinate transformations, or
changes of the local scale. Thus, to solve the general problem that my friend set to his
students, we need to find a way to quantify the “difference”, or “distance”, between two
conformal geometries. Since, mathematically, a metric is what gives a notion of distance,
our task is to define a metric on the space of conformal geometries, also known as conformal
superspace, or simply shape space.

One may ask what purpose this metric could serve. To address this question, consider
the nature of time in classical physics. In our classical experience of the world, time is
undoubtedly what flows when genuine change occurs. Dynamics is a way of predicting
what will change when time flows. Therefore, the key to defining dynamics is identifying a
way of quantifying how much genuine change has occurred. We will make a choice, which
we will motivate with Mach’s principles,! that places local shapes as the fundamental
empirically meaningful quantities in Nature. With this choice, genuine change is given
by the change of local shapes. We can then use our metric on shape space to define a
dynamics for conformal geometry. Remarkably, it is possible to define a theory of shape
dynamics in this way that is dynamically equivalent to GR.

What shape dynamics is

Shape dynamics is a theory of dynamical conformal geometry that reproduces the known
physical solutions of GR. It was discovered by requiring that local shapes represent the
physical degrees of freedom of the gravitational field, a requirement directly inspired by
Mach’s principles. The simplest way to understand the connection between shape dynamics
and GR is to think of it as a duality whose mechanism is similar to the mechanism behind
T—duality in string theory. There exists a kind of parent theory, which we feel is more
appropriately called a linking theory in this context, that is defined on a larger phase
space. Shape dynamics and GR represent different gauge fixings of this linking theory
and, for that reason, make the same physical predictions.

An equivalent way of understanding the move from GR to shape dynamics is as a du-
alization procedure that trades one symmetry for another. To understand this trading,
we must first understand the symmetry in GR that is traded. GR is a spacetime theory
invariant under 4-dimensional coordinate transformations, or diffeomorphisms. However,

!The plural in “principles” is used because we will distinguish between two key physically distinct ideas
of Mach to motivate our choice.



it is possible to express GR as a theory of dynamic 3—geometry by restricting the space-
time manifold to have a topology ¥ x R, where ¥ is an arbitrary 3—dimensional manifold.
With this topology, the spacetime can be sliced by spacelike hypersurfaces that foliate it.
Of course, because of 4d diffeomorphism invariance, there are many choices of foliation
leading to the same 4d geometry. In the Hamiltonian formulation of GR, this invari-
ance under refoliations appears as a local gauge symmetry of the theory generated by
the Hamiltonian constraint. But the symmetries generated by the Hamiltonian constraint
have a split personality: on one hand, they represent local deformations of the spacelike
hypersurfaces while, on the other hand, they represent global reparametrizations of the
parameter labeling the hypersurfaces. There is, thus, a qualitative difference between the
local part of the Hamiltonian constraint, generating refoliations, and the global part, gen-
erating reparametrizations. Unfortunately, these two different roles cannot be untangled
in general because each choice of foliation requires a different split of the Hamiltonian
constraint. This dual nature of the Hamiltonian constraint is the origin of the problem of
time.

Shape dynamics can be constructed by trading the refoliation invariance of GR for con-
formal invariance. The dual nature of the Hamiltonian constraint is resolved by fixing a par-
ticular foliation in GR where the split between refoliations and reparametrizations is made.
The split personality is resolved by trading all but the part of the Hamiltonian constraint
that generates global reparametrizations. This means that we must keep the particular lin-
ear combination of the Hamiltonian constraint of GR that generates reparametrizations in
the foliation we have singled out. In turn, this implies that shape dynamics will be missing
one particular linear combination of conformal transformations that corresponds to part of
the Hamiltonian constraint we are keeping. This turns out to be the global scale. Since the
invariance of GR under 3d diffeomorphisms is untouched (and, as it turns out, unaffected
by the trading procedure), we are led to the following picture for shape dynamics: it is a
theory with a global Hamiltonian that generates the evolution of the 3—metric on space-
like hypersurfaces. This evolution is invariant under 3d diffeomorphisms and conformal
transformations that preserve the global scale. In the case where ¥ is a compact manifold
without boundary, the conformal transformations must preserve the total volume of 3.

The symmetry principle in shape dynamics is considerably cleaner than that of GR.
Conceptually, this is clear because refoliation invariance leads, for instance, to relativity of
simultaneity, which is more challenging to conceptualize than local scale invariance. More
generally, there is no many—fingered time in shape dynamics. Time is simply a global pa-
rameter that labels the spacelike hypersurfaces. Thus, there is no local problem of time.
There is still a global problem of time associated with the reparametrization invariance but
this problem is considerably easier to deal with. There are also technical simplifications.



As we will see, the conformal constraints are linear in the momenta in contrast to the
Hamiltonian constraints of GR, which are quadratic in the momenta. Aside from avoiding
operator ordering ambiguities in quantum theory, linear constraints can form Lie algebras.
This implies that group representations can be formed simply by exponentiating the local
algebra, a drastic improvement over GR. There is a price to pay for these simplifications.
The global Hamiltonian of shape dynamics is a non-local functional of phase space. From
the point of view of the linking theory, this non—locality is the result of the phase space
reduction required to obtain shape dynamics. However, the non—locality is simply a tech-
nical challenge and not a conceptual one. In this thesis, we will give some examples where
this technical challenge can be overcome.

It cannot be overemphasized that shape dynamics is a gauge theory in its own right
and not just a gauge fixing of GR. From this perspective, shape dynamics is not a solution
to the problem of time of GR but rather a formulation of gravity that is itself free of the
problem of time. Although it is true that the first step of the dualization procedure leading
to shape dynamics involves fixing a particular spacetime foliation, shape dynamics has a
conformal gauge symmetry that GR does not have. This means that there are gauges in
shape dynamics that do not correspond to the solutions of GR, although they are gauge
equivalent. For example, it is always possible to fix a gauge in shape dynamics on compact
manifolds without boundary where the spatial curvature is constant. This gauge provides
a valuable computational tool that we will exploit to solve the local constraints of shape
dynamics.

There are other important differences between shape dynamics and GR resulting from
having to fix a foliation to use the dictionary. We will see that the particular foliation that
needs to be fixed is such that the spacelike hypersurfaces have constant mean curvature
(CMC) in the spacetime in which they are embedded. CMC foliations are used extensively
in numerical relativity and are known to foliate many of the physical solutions of GR.? It
is only in CMC gauge where a general procedure for solving the initial value constraints
is known to exist and to be unique.?> However, not all solutions to GR are CMC foliable.
Many of these, like those with closed timelike curves, are clearly unphysical. However,
it is still possible that our universe is not CMC foliable. Thus, CMC foliability of the
universe is a prediction of shape dynamics. By excluding potentially unphysical solutions
of GR and by providing a cleaner symmetry principle, shape dynamics may have a simpler

2Precisely which solutions of GR are excluded in shape dynamics is an important but difficult question
to answer and is beyond the scope of this thesis. We will, thus, leave precise statements for future
investigations.

3The same mechanism behind the existence and uniqueness proofs of the initial value problem (see [1])
is used to prove the existence and uniqueness of the shape dynamics Hamiltonian.



quantization than GR.

What shape dynamics may be

We have just described shape dynamics as a theory of dynamic conformal geometry. The
form of the global Hamiltonian used to generate this dynamics is specifically chosen so
that theory will make the same predictions as GR. The key new feature introduced by this
global Hamiltonian is non—locality. Although, the entire causal structure of GR is encoded
in this one global object, the precise interplay between the non-locality of shape dynamics
and the causal structure of GR is still a mystery. I believe that unraveling this mystery
could be the key to understanding how to quantize gravity.

What we seem to be missing is a further principle to help construct the shape dynamics
Hamiltonian without having to rely on GR. It’s not clear what such a principle could be but
somehow it should impose on shape dynamics the information about the causal structure
of the spacetime in the GR side of the duality. In addition, it is reasonable to hope that
this new principle will also suggest a way to quantize shape dynamics without a notion
of locality. This is a question of utmost importance because of the necessity of a locality
principle in quantum and effective field theory.* Unfortunately, we do not yet have such a
principle.

One possibility, which deserves further exploration, is to revisit the ambiguity in defin-
ing local shapes mentioned early in this discussion. The original motivation for introducing
conformal symmetry was that only local shapes are empirically meaningful. To be more
precise, all measurements of length are local comparisons. However, in order to make sense
of this observation we need to be precise about how we actually measure the shape degrees
of freedom. Concretely, we can imagine that our universe is filled with point particles and
that these particles are clumped into small groups that form local shapes. We can make
our statement more precise by imagining that we have at our disposal a small system of two
(or possibly more) particles that we can use a ruler. If the system we are trying to study is
large compared with the length of this ruler, then we can define the local shape degrees of
freedom as the quantities that can be measured in the system by comparing them to the
ruler. Using this definition, it is clear that no local measurement of length made with the
ruler will change if we perform a local scale transformation. As we move the ruler from one
clump of particles to another, the ruler gets rescaled along with the new clump. If the scale

41t is possible to work in the linking theory which is local. However, the linking theory has the same
problem of time as general relativity because its constraint algebra contains the hypersurface deformation
algebra as a subgroup.



factor varies significantly over the extension of the ruler, then the infinitesimal segments
of the ruler will simply get rescaled along with the infinitesimal segments of the system
we are comparing to. However, if the system is small compared with the size of the ruler,
then there may be shape degrees of freedom that cannot be resolved by the ruler: what
one ruler sees as two distinct particles a coarser ruler may only see as one. For example,
on galactic scales, the solar system is but a point. It is only on smaller scales that one can
resolve the planets or, smaller still, the moons, mountains, people, insects, etc... Thus, the
shape of the universe changes as the size of the ruler changes.

The fact that the local shapes resolved in experiments depend strongly on the resolution
used to make measurements of these shapes suggests that renormalization group (RG)
flow could play an important role in our understanding of shape dynamics. Indeed, it
may be possible to exactly mimic the flow of time in shape dynamics by the change in
shape resulting from RG flow. Concretely, Hamiltonian flow in shape dynamics could be
represented as RG flow in a theory with no time. The conformal constraints of shape
dynamics act, in the quantum theory, like the conformal Ward identities of a conformal
field theory (CFT). This suggests that shape dynamics may be the ideal theory of gravity
for formulating dualities between gravity and CFT. We will show that it is possible to
construct a holographic RG flow equation for shape dynamics similar to what is done in
standard approaches to the AdS/CFT correspondence. Exploring these connections further
may both lead to a deeper understanding of the holographic principle and also may provide
a way of defining shape dynamics through holographic RG flow in a CFT.

There is one final potentially interesting connection worth noting. Shape dynamics has
the same local symmetries as the high energy limit of Hotava—Lifshitz gravity. Interestingly,
it is this symmetry that leads to the power counting renormalizability arguments. This is
because the conformal symmetry singles out the square of the Cotton tensor as the lowest
dimensional term allowed in a quasi—local expansion of the action. However, this term
has 6 spatial derivatives compared with the 2 time derivatives in the kinetic part of the
action, leading to the z = 3 anisotropic scaling of the theory. The stability problems of
Horava’s theory are avoided in shape dynamics because non—local terms are allowed in the
Hamiltonian (this also allows for ezact equivalence with GR). These stability problems
appear in the theory because of the appearance of an extra propagating degree of freedom.
This degree of freedom does not appear in shape dynamics because the foliation invariance
is simply traded for the conformal symmetry. Thus, the local propagating degrees of
freedom of shape dynamics are identical to those of GR. Unfortunately, the non-locality
also forbids the use of the perturbative power counting arguments to argue that the theory
is finite. Nevertheless, it may still be true that the conformal symmetry protects shape
dynamics in the UV. Although the non—perturbative renormalizability of GR remains an



open question, shape dynamics has a different symmetry. Thus, the question of finiteness
of quantum gravity may be more easily addressed in the shape dynamics framework.

1.1 Basics

In Section (5.5), we derive shape dynamics using a dualization procedure that we apply
to GR. Then, we devote the entire 6" chapter to studying shape dynamics in detail.
Nevertheless, it is useful to give an intuitive summary of our results here without attempting
to prove anything rigorously.

There are two helpful pictures to keep in mind when trying to understand how shape
dynamics is defined. The first is to think of shape dynamics and GR as different theories
living on different intersecting surfaces in phase space. The second is to picture them as
being different gauge fixings of a larger linking theory. The first is often convenient for
conceptualizing while the second is essential for proving things rigorously.

1.1.1 Intersecting surfaces

As has been discussed, shape dynamics is a theory of evolving conformal geometry. The
evolution is generated by a global Hamiltonian that has a flow on the constraint surface
in phase space generated by 3d diffeomorphism and conformal constraints. The conformal
constraints have one global restriction corresponding to the volume preserving condition.
This nearly specifies the constraint surface. The remaining task is to find a global Hamil-
tonian that leads to a dynamics equivalent to that of GR.

In the Hamiltonian formulation, GR is a theory of dynamic geometry whose flow is
generated by the diffeomorphism constraints and the usual local Hamiltonian constraints.
What can be shown is that the Hamiltonian constraints can be partially gauge fixed by
the volume preserving conformal constraints. This turns out to be a gauge where the
spacelike foliations are CMC. Because of the volume preserving condition, there is still one
degree of freedom of the Hamiltonian constraints that is not gauge fixed. This is the CMC
Hamiltonian.

To be precise, let us call D ~ 0 the constraint surface defined by the volume preserving
conformal constraints, S &~ 0 the part of the Hamiltonian constraint that is gauge fixed
by the CMC condition (S ~ 0 would be the full Hamiltonian constraint), Hy the global
Hamiltonian of shape dynamics, and Hcye the CMC Hamiltonian. Geometrically, the fact
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Figure 1.1: Shape dynamics, represented by D = 0, intersects GR, represented by S ~ 0.
The gauge orbits of both surfaces are shown.

that D =~ 0 is a gauge fixing of S &~ 0 means that the two surfaces have a common intersec-
tion that selects a single member of the gauge orbits of S ~ 0. Since the diffeomorphism
constraints are common to both theories, they can be trivially taken into account when
comparing them. Figure (1.1) represents shape dynamics as living on the surface D ~ 0
with flow generated by H, and GR as living on the surface S ~ 0 with flow generated by
Hceve- The common intersection represents GR in CMC gauge.

It is now possible to understand how Hg is defined. Because the constraint surface
D = 0 is integrable, it is possible to move orthogonally to the intersection by moving along
the gauge orbits generated by D. These are volume preserving conformal transformations
in phase space. Thus, for any point on D & 0, it is possible to find a unique volume
preserving conformal transformation 95 that will bring you to the intersection. Then, one
can guarantee that Hg is both first class with respect to the D’s and generates the same
flow as GR by defining it everywhere on D = 0 to be equal to the value of Hoyme at the
intersection. In other words,
Hg = Ty Home, (1.1)

8



where T signifies a volume preserving conformal transformation on phase space. This
definition is illustrated in Figure (1.1). This picture is a very useful way to think of the
relationship between shape dynamics and GR. We will show it again in Section (6.1) where
we will be much more careful and complete with our definitions.

To understand the dictionary between shape dynamics and GR, note that different
gauge fixings of GR are simply different sections of the surface S ~ 0 while different gauge
fixings of shape dynamics are different sections of D ~ 0. Thus, it is always possible to
take a solution of a given theory and use a pair of gauge transformations to express it as
an arbitrary equivalent solution of the other theory.

1.1.2 Linking theory

The linking theory provides a powerful tool both for conceptualizing and for rigorously
proving many of the statements made in the previous section. The idea is to treat GR
and shape dynamics as different gauge fixings of a theory on an enlarged phase space. The
dictionary can further be established by choosing the appropriate gauge fixing that brings
the solutions to the intersection. Figure (1.2) shows a diagram of these relations.

The definition of the linking theory can be understood in the following way. Con-
sider the usual diffeomorphism and Hamiltonian constraints of GR. Now consider trivially
extending the phase space by including the variable ¢ and its conjugate momentum
without changing the original constraints. Adding the first class constraint m, ~ 0 does
nothing to the dynamics of the original variables but ensures that ¢ and 7, are auxil-
iary. This is the linking theory. It is convenient to perform a canonical transformation
on this theory that puts it in a more useful form. This canonical transformation is a vol-
ume preserving conformal transformation on phase space (the precise definition is given in
Section (5.5.7)).

We will see that, under this canonical transformation,
7T¢—>7T¢—D. (12)

Thus, if we fix a gauge for the transformed Hamiltonian constraint using the gauge fixing
condition 7y ~ 0, the first class constraint

T,—D~0 — D=0, (1.3)

and the S’s have been traded for the D’s. Performing a phase space reduction leads
immediately to shape dynamics. It is easy to see that GR can be obtained from the linking
theory by imposing ¢ ~ 0 as a gauge fixing condition for 7y — D ~ 0, then performing a
phase space reduction.



Linking

Theory
gauge fixing gauge fixing
phase space
reduction
Shape General
Dynamics Relativity
gauge fixing gauge fixing
Dictionary

Figure 1.2: Gauge fixings lead from the linking theory to GR, shape dynamics, and, ulti-
mately, the dictionary relating them.
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1.2 Outline

One of most promising aspects of shape dynamics is that it is based on simple founda-
tional principles. The road to shape dynamics starts with a careful formulation of Mach’s
principles. In Chapter (2), we start by clearly stating what we believe to be an accurate
formulation of Mach’s principles that captures the essence of Mach’s ideas. Using this, we
develop a procedure, called best matching, that provides a principle of dynamics that can
be used to define relational theories. We first illustrate the procedure by showing how it
can be used to construct a simple relational particle model; then, we develop the general
procedure. What best matching suggests is that relational theories should be thought
of as gauge theories on configuration space and that the dynamics should be given by a
geodesic principle on configuration space. We use a historically relevant example, Newton’s
bucket, to illustrate how best matching eliminates absolute space and time and rigorously
implements Mach’s ideas.

Chapters (3) and (4) are devoted to exploring the detailed structure of best matching.
In particular, we develop the canonical formulation of best matching. This allows us
to clearly identify how best matching removes absolute structures by introducing special
constraints. In some cases, these constraints lead to standard gauge symmetries. In other
cases, these constraints provide gauge fixings that lead to a dualization procedure. We will
separate these distinct cases by exploring the first in Chapter (3) and by developing the
second in Chapter (4).

In both cases, we will study general finite dimensional models. These models are
important for several reasons: 1) they provide toy models for the geometrodynamic theories
we will study later, 2) they can be worked out explicitly, 3) they provide limiting cases
of the geometrodynamic models. In some cases, they provide interesting models in their
own right. For example, the general finite dimensional models developed in Section (3.1)
can be used to study mini—superspace cosmologies. However, one of the most important
reasons for studying the toy models is to build intuition for the technically more challenging
geometrodynamic models we will present later. The simplicity of the toy models brings to
light the key aspects of best matching, free of other technical distractions. This will build
an arena for conceptualizing that will be useful for the more subtle field theories.

In Chapter (3), we exploit the new understanding of relational theories provided by best
matching to motivate a specific definition of background independence. This definition
is then used to study a toy model with a global problem of time. In Chapter (4), we
develop a dualization procedure for trading symmetries. This provides a good model
for the dualization procedure used in geometrodynamics to derive shape dynamics and
introduces the idea of a linking theory.
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In Chapter (5), we use best matching to construct relational theories where the metric
of space is dynamic. We consider three different classes of theories. The first is a naive
generalization of best matching as it applies to particle models. We will show that the
notion of locality in these models is not restrictive enough to lead to a sensible theory.
We will then introduce a modification to the naive best matching principle that leads to
a local action. Using this principle it is possible derive GR. Indeed, it is even possible
to use our previous definition of background independence to solve the global problem
of time by introducing a background global time. Our proposal naturally leads to uni-
modular gravity. Finally, we will use best matching to construct a conformally invariant
geometrodynamic theory that is equivalent to GR. This procedure implements local scale
invariance by following the dualization procedure studied in the toy models. The result
is shape dynamics, which allows for non—locality but is nevertheless restrictive enough to
produce a well defined theory.

We conclude our discussion in Chapter (6) by examining in more detail the structure of
shape dynamics. The goal is to understand shape dynamics better as a theory in its own
right. We start by describing the global Hamiltonian, then compute it using two different
perturbative expansions. The first is an expansion in large volume. This expansion is
useful for understanding the connection between shape dynamics and CFT. The second
is an expansion of fluctuations about a fixed background. This expansion is useful for
doing cosmology using shape dynamics. We end with a calculation of the Hamilton—Jacobi
functional in the large volume limit. This result is used to construct the semi—classical
wavefunction of shape dynamics and establish a correspondence between shape dynamics
and a timeless CFT. Further explorations of this correspondence may provide a deeper
understanding of the AdS/CFT correspondence and the meaning of shape dynamics.

1.3 History

Shape dynamics began with the development of best matching in Barbour and Bertotti’s
original 1982 paper [2] and has taken more than one unanticipated turn since that time.
The most important champion of this approach has undoubtedly been Julian Barbour,
who has enthusiastically encouraged the development of this idea from its inception to its
current form. The best-matching procedure was developed for particle models in [3, 4, 5]
and many papers by Ed Anderson including [6, 7, 8, 9, 10, 11]. In geometrodynamics,
best matching was used to construct GR in [2, 12, 13, 14]. The last two papers present a
powerful construction principle for GR.

To the best of my knowledge, the first paper proposing to look for a 3d conformally
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invariant geometrodynamic theory using best matching was [15]. In this paper, Niall
O’Murchadha proposed non—equivariant best matching and applied it to the full group of
conformal transformations in GR. These ideas were elaborated on in [3, 16], then refined in
[17] where the volume preserving condition was introduced. Finally, in [18], the observation
was made that the global scale could be replaced by a ratio of volumes. In these papers,
the special variation used in best matching (which will be introduced in Section (2.3.3))
was treated as a kind of gauge fixing condition for the lapse. However, the canonical
analysis was incomplete and there were no clues that a dual theory could be constructed
from a phase space reduction. The main observation was that a geodesic principle could
be defined on conformal superspace that reproduced the predictions of GR in CMC gauge.
However, this connection was restricted to a gauge fixing of GR, which we now understand
as the intersection of shape dynamics and GR. A summary of these approaches with an
excellent description of the conceptual motivations from best matching is given in the
short review [19]. For an interesting alternative approach to 3d conformal invariance in
geometrodynamics, see [20].

The ideas presented in these papers were inspired by York’s solution to the initial
value problem [21, 22, 23], which used conformal transformations and the CMC gauge of
GR to find initial data that solve the Hamiltonian and diffeomorphism constraints of GR.
Indeed, the existence and uniqueness theorems developed in [1] for the solutions of the
initial value problem using this approach were a vital inspiration for the uniqueness and
existence theorems used to develop shape dynamics.

The current form of shape dynamics was discovered by Henrique Gomes, Tim Koslowski,
and myself when we realized that a phase space reduction of what we now call the linking
theory would leave a theory invariant under volume preserving conformal transformations.
We published our results in [24]. Shortly after, Gomes and Koslowski discovered the
linking theory [25], which significantly helped to clarify the presentation of the dualization
procedure. Since then, with input from Flavio Mercati, we have published a calculation
of the Hamilton—Jacobi functional in the large volume limit [26], which proposed a new
approach to the AdS/CFT correspondence [27, 28, 29, 30] and the holographic RG flow
equation [31, 32, 33, 34]. There has been much unpublished work on matter coupling,
perturbation theory, and Ashtekar variables that has relied on valuable input from Timothy
Budd and James Reid (on top of the authors already mentioned). This work should be
appearing in the literature shortly. The quantization of (2 + 1) shape dynamics in metric
variables can be found in [35].

The material of this thesis was based on the work presented in [36, 37, 24, 26]. However,
I have adapted some of the presentation of the results of [24] to include the insights of [25].
In regards to best matching, for pedagogical reasons I have often summarized my own

13



understanding of the procedure based on my reading of the papers above and discussions
with Julian Barbour. I hope that this provides a useful new perspective. However, there
are new contributions worth noting. The possibility of treating best matching as a gauge
theory on configuration space was noticed in [36] and [38]. However, a first principles
derivation of the best—-matching connection and its explicit calculation in toy models is
part of a work in preparation by Barbour, Gomes, and myself. I have included these
concepts in this thesis. Finally, the complete canonical formulation of equivariant best
matching was first presented in [37] and is the main subject of Chapter (3).
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Chapter 2

Foundations of best matching

During my first visit to Julian Barbour’s historic home, College Farm, in Northern Ox-
fordshire, I asked the inventor of best matching to explain to me the basic idea behind
the procedure. He started by drawing two different triangles on his white board and an-
nounced: “the idea behind best matching is to find the difference between two different
shapes.” Remarkably, this simple idea is all that is needed to construct a general frame-
work for producing relational models based on Mach’s principles that is capable of deriving
general relativity and of revealing its conformal dual: shape dynamics.

To see how this is possible, we must proceed step by step. First, we will try to under-
stand the problem that best matching claims to solve. To do this, we will look carefully at
a well known example: Newton’s bucket. This famous example illustrates the differences
between absolute and relative motion and how best matching responds to Newton’s argu-
ments for absolute space. After studying the problem, we will show how best matching
manages to “find the difference between two shapes.” We will illustrate this with a simple
example of a system of particles moving in 2 dimensions. This example illustrates many of
the key features of best matching. We will use it to motivate a general formulation of best
matching for finite dimensional systems. Our analysis will suggest that relational theories
are best thought of as gauge theories on configuration space. We will see precisely how
this beautiful geometric picture emerges.

It will be convenient to distinguish between two different kinds of relational theories:
those whose metric on configuration space is constant as we compare different physically
equivalent configurations (for reasons that will become clear later, this will correspond to
the equivariant case) and those whose metric is not constant (this will correspond to the
non—equivariant case). Equivariant theories are always consistent in the finite dimensional
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case but non—equivariant theories need extra conditions in order to be consistent. Because
of these extra complications, which are crucial to understanding the relation between shape
dynamics and general relativity, we will treat non—equivariant theories in a separate section.

2.1 Newton’s Bucket

To illustrate the key features of best matching, it is instructive to review an historically
relevant example that illustrates the difference between absolute and relative space. The
example is commonly know as Newton’s bucket and was first introduced in Newton’s Prin-
cipia. Newton’s bucket is a bucket half-filled with water suspended by a rope that can be
wound tightly by spinning the bucket around an azimuthal axis. A modern version can be
can be crafted from a piece of string and a pickle jar with two holes punched into the lid
(see Figure (2.1)).

The experiment compares the motion of 3 different reference frames: the lab frame, the
bucket, and the water. There are 4 simple steps:

1. No motion between the lab, bucket, and water.
2. The bucket is quickly spun so that the water remains static with respect to the lab.
3. Over time, the bucket and the water spin together.

4. The bucket is quickly stopped from spinning while the water continues to spin.

The observable phenomenon is the shape of the surface of the water in the bucket, which
can be either flat or curved up the walls of the bucket.

It is easy enough to imagine the outcome of this experiment. In the first step, the
water will be flat because nothing is happening. In the second step, the water stays flat
because it hasn’t started to spin yet even though the bucket is. In the third step, the
water begins to spin and creeps up the surface of the bucket. In the last step, the water
is still curved because it is spinning even thought the bucket has been stopped. Newton
uses this to argue that the relative motion between the water and bucket clearly has no
impact on the physically observable phenomenon, which is the shape of the surface of the
water. It is clear from Table (2.1), which summarizes the results, that there are always two
possible outcomes for each type of relative motion. This implies that the relative motion
of the bucket and water does not explain the observed phenomena. Instead it is the only
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Pickle Jar

Figure 2.1: Newton’s bucket made with a pickle jar, string, and water.

1 2 3 4
Relative Motion | no | yes | no yes
Surface of Water | flat | flat | curved | curved

Table 2.1: The results of Newton’s bucket experiment.
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the motion of the water with respect to the lab frame that determines the shape of the
water. Newton concludes that the lab is at rest with respect to absolute space and that
only motions with respect to absolute space are meaningful.

In The Mechanics [39], Mach provides an objection to this argument. He notices that
the lab is effectively at rest with respect to the “fixed stars” (which we now know to be
galaxies). He points out that what Newton’s bucket experiment shows is that it is only
the relative motion of the water with respect to the fixed stars that determines the shape
of its surface. But, the observable phenomena should not depend on the relative motion
of only the bucket and the water but on the relative motion of the bucket and everything
else in the universe. This obviously includes the fixed the stars that are considerably more
massive than the bucket. This extra mass should make the relative motion of the water and
the fixed stars more significant than that of the water and bucket, leading to the observed
results of the experiment.

Mach, unfortunately, did not provide a precise framework for testing this hypothesis
nor did he provide a specific theory that would explain how the massive stars have more
impact on the behavior of the water. Nevertheless, the intuitive argument is clear: all
relative motions between bodies must be considered and those bodies with greater mass
have a more significant impact on the overall behavior of the system. This reasoning greatly
influenced Einstein and played an important role in the development of GR. Indeed, one
could say that Mach predicted the frame dragging effects that occur in GR.

In the next sections, we will develop best matching. As we do, it will become clear
that best matching provides a precise framework for implementing Mach’s explanation of
Newton’s bucket experiment. The procedure produces a theory that explains exactly how
the stars provide the illusion of absolute space. The starting point for this framework is
Mach’s principles, which we will now state.

2.2 Mach’s Principles

It is difficult to find agreement on the exact manner in which to state Mach’s principles.
There are many different versions that exist in the literature, all based on different inter-
pretations of Mach’s writings. Since Mach did not clearly state what his principles are, we
have some liberty in how we define them. In this work, we will adapt a definition based on
the one carefully outlined in [40]. We will distinguish between two different principles: spa-
tial relationalism and temporal relationalism. These principles originate from one simple
idea that I believe to be the core of Mach’s principles:
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The dynamics of observable quantities should depend only on other observable
quantities and no other external structures.

From this general observation, we can identify two distinct physical principles that realize
this idea:

Principle 1. According to Mach, only the spatial relations between bodies matter.

“When we say that a body K alters its direction and velocity solely through the
influence of another body K', we have inserted a conception that is impossible
to come at unless other bodies A, B, C... are present with reference to which
the motion of the body K has been estimated.” [39]

There is no absolute space — only the spatial relations between these bodies. We will take
this to be the principle of spatial relationalism.

Principle 2. For Mach, the flow of time is perceived only through the changes of spatial
relations.

“It is utterly beyond our power to measure the changes of things by time. Quite
the contrary, time is an abstraction, at which we arrive by means of the changes

of things... 7 [39]

We will refer to the statement that the flow of time should be a measure of change as the
principle of temporal relationalism.

The above terminology has been adapted from [41] since it clearly distinguishes two very
different concepts. One is an ontological statement about what should be observed and
how a physical theory should depend on these observables while the other is a definition of
time valid for classical systems. Both principles derive from the simple statement that the
dynamics of physical quantities should not depend on external structures. As we will see,
these concepts of different physical origins manifest themselves differently in the technical
description of relational theories such as GR. This distinction will be, thus, important to
keep in mind as we develop best matching.

2.3 A best—matched toy model

In this section, we will illustrate the key features of best matching through a simple exam-
ple. This will motivate the formal constructions of best matching that rigorously implement
the principles stated above.
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2.3.1 Kinematics

Consider a system of 3 particles in 2 dimensions. The most general configuration possible
in such a system is an arbitrary triangle. Following Mach’s first principle, only the spatial
relations between these particles are observable. Thus, there are two independent observ-
ables in this system and they can be parametrized many different ways. A way to see that
there are only two physically meaningful observables is to note that there are only three
lengths that can be measured in this system: the length of each side of the triangle. How-
ever, since lengths should not be compared to an absolute scale one must use one length as
a reference length against which we measure the other two. This reduces the total degrees
of freedom to 2. Another way to parametrized the physical degrees of freedom would be to
choose the two largest angles. Because all angles must add up to 7, these two angles are
sufficient to completely determine the shape of the triangle up to an unobservables scale.

Historically, no satisfactory attempt to construct a dynamical principle in terms of the
physical degrees of freedom of a system of particles has been successful (see [42] for a
summary of known attempts, which suffer from anisotropic effective mass). This poses an
interesting philosophical question regarding the ubiquity of gauge theories. It is not my
intention to address such a philosophical question in this work. Instead, I will simply point
out that the only known dynamical principles that lead to sensible particle theories are not
written in terms of the physically observable quantities but, rather, redundant variables.
Best matching is a theory of this kind. As an immediate consequence of this redundancy,
the implementation of Mach’s first principle will require a quotienting of the redundant
configuration space in order to indirectly isolate the physical, or relational, degrees of
freedom. In accordance with standard terminology, we will refer to the quotiented degrees
of freedom as the gauge degrees of freedom.

We now return to the main question that started this chapter: How can we determine
the difference between two shapes or, in this case, triangles? As noted above, our strategy
will be to make use of Newton’s absolute Euclidean coordinates only to quotient these by
the unphysical gauge degrees of freedom. First, we will do a counting of (configuration)
degrees of freedom to give us an idea of what our gauge group is. There are 3 x2 = 6 config-
uration degrees of freedom describing the motion of 3 particles in 2 dimensions. However,
the origin and orientation of the coordinate system used to label the particle positions is
completely unphysical. This corresponds to two translational degrees of freedom and one
rotation. Also, the size of the triangle is unobservable. This adds up to 4 gauge degrees
of freedom leaving 2 physical ones, in agreement with our previous analysis. The gauge
group is, thus, the 2d Euclidean group, consisting of rotations and translations, crossed
with the group of dilations. The tensor product of these two groups is also a group called
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Figure 2.2: Two snapshots of a three particle system at different times.

the similarity group.

2.3.2 Matching triangles

Best matching provides a dynamical procedure for quotienting the Euclidean positions
of particles by the similarity group. Consider two snapshots of the 3 particle system,
represented by two different triangles in a 2d Euclidean plane. An example of two such
triangles is shown in Figure (2.2). We need to be able to compare these two triangles
without making reference to their origin, orientation, and size. This is achieved by using one
triangle as the reference shape then shifting the second triangle with arbitrary translations,
rotations, and dilatations. Since we assume that each particle has an identity, we can
calculate the “distance” between the two shapes by summing the Euclidean distances
between each vertex of the triangle from one snapshot to the next. The best-matched
configuration is the one achieved by minimizing this “distance” using only translations,
rotations, and dilatations of the second triangle. Figure (2.3) shows the second triangle as
it is shifted into its best—matched position.

It is straightforward to express this procedure mathematically. Let ¢%(¢) represent the
ith Buclidean coordinate of the It particle of the system at some time t. Since we will
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Figure 2.3: The second triangle is to be shifted into its best-matched position.

shortly be considering models where duration will emerge out the framework, it will be
convenient to think of ¢ simply as some arbitrary parameter labeling the snapshots. To
highlight this, we will call ¢ — A\ and think of A as a arbitrary time label which does
nothing but order events. We can represent the “shifting” as a group action on the ¢’s

q;(A) = G(&"(N)jar(N), (2.1)

where
G(¢*(\)); = exp { " (M)t} o } (2:2)
and « ranges from 1 to 4 (the dimension of the similarity group in 2d). The ¢*()) are the

group parameters representing the amounts of rotation, translation, and dilatation to be
performed and the t} , are the generators of the similarity group listed in Table (2.2).

We imagine that the two snapshots represent the configuration of the system at two
infinitesimally separated moments in time. If we define the quantity

5qr = GO+ 5N ar (A +6X) — G\ ar(N), (2.3)

where spatial indices have been suppressed so that GG should be thought of a matrix and
0q as a column vector, then the condition that the triangles are best matched reduces to

ming {6"76q} ndq,} (2.4)
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Symmetry | number of generators t; o

translations | 2 (a=k=1...2) 050k
rotations 1 (a=3) €q;0)
dilatations 1(a=4) 050" O,

Table 2.2: The generators of the similarity group.

where 7 is the diagonal unit matrix. The T takes the transpose and the subscript ¢ indicates
that a value of ¢(A\) must be found that minimizes this quantity at all times A. This
procedure is reminiscent of a y? minimization of the distance between the vertices of the
triangle.

2.3.3 Action principle and the best—matching variation

The best—matching procedure is naturally expressed in terms of an action principle on
configuration space. For infinitesimal 0\, we can expand (2.3) and keep only the lowest
order terms in JA. We can then rewrite dg; and define the D, operator and its action on

qr as

10qr i
Dyqr =G 15—){ =g + GGy, (2.5)
where the " represents a derivative with respect to A\. Then, the minimization procedure
(2.4) is equivalent to the condition % = 0, where
S = / dM/617 (GDyar) G Dyt (2.6)

This is clear because the integrand is the square root of the quantity to be minimized in
(2.4) under variations of ¢,. The square root is minimized so that the entire procedure is
invariant under the choice of A\. This can be seen by noting that the action S is invariant
under reparametrizations of A of the form A\ — f(\), where f is an arbitrary smooth
function.

It is important to acknowledge that the variation with respect to ¢, must be performed
according to rules that implement the best matching procedure described above. These
rules are not the ones usually used in action principles because ¢, is not a physically
meaningful variable. Thus, its value at the endpoints of any infinitesimal interval along
the variation must remain arbitrary. This means that we cannot use the vanishing of d¢,, on
any interval of the variation. To see why this must be the case, recall the basic rules of the
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best—-matching procedure. We have two triangles that we want to compare. To do this, we
must be able to shift arbitrarily the triangles until they reach the best—matched position.
But, this means that we certainly cannot fix the value of ¢, at one of the endpoints. This
would precisely defeat the purpose of the procedure because it would fix a particular origin,
orientation, and scale for the system. Instead, we must be able to vary ¢, freely along any
interval of the variation.

The mathematical realization of this variation can be stated in the following way. After
an integration by parts, the variation of S with respect to ¢, takes the form

oL d (0L oL M
08, :/d)\{———(—.>]5 + 0p—| 2.7
’ 90~ \ag)) "% A il
where L is the Lagrange density
L= \/51J(GD¢(]1)TT/GD¢QJ (28)

and (\;, Ay) are the endpoint values of A\. The local terms of 4.5, lead to the usual Euler—
Lagrange equations for ¢. However, to get the boundary term to vanish, we must impose

the additional condition
oL

a6
This condition must hold along any infinitesimal interval one could chose to do the varia-
tion. This is because the best—matching procedure should be independent of which interval
one chooses to perform the variation. If we impose the condition (2.9) for all values of
(A\i, Af), we obtain the best-matching condition

OL(A

# = 0. (2.10)

d¢

Thus, the best—matching variation of ¢, is equivalent to a standard variation of ¢, with
the additional condition (2.10).

Af

(2.9)

Ai

To obtain an interacting theory, it is necessary to slightly generalize the action S. To
motivate this generalization, note that §7/n;; is a flat metric on configuration space. The
variational principle for S is then a geodesic principle on configuration space since S is just
the length of path on configuration space using this metric.! To get a non-trivial theory,

n fact, this is not quite true. Only if one treats the Dy’s as standard A derivatives would this be true.
We will address this difference in Section (2.4).
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we must simply curve the metric on configuration space. The simplest way to do that is
to multiply it by a conformal factor. This simple generalization is sufficient to reproduce
Newtonian particle mechanics, as we will see. If we call the conformal factor 2(E — V' (Gq))
(the factor of 2 is conventional and it is most natural to think of V' as a function of the
best matched coordinates, GGq) then the Lagrange density becomes

L — \/2(E ~ V(G))6" (GDyar) G Dyt (2.11)

The quantity 677 (GDsqr)TnGDyqy is just twice the kinetic energy T' of the system once it
has been best matched (in units where the particle masses have been set to 1) and the total
energy, F, of the system is a constant determined experimentally. Using this definition,
we have

L=2\/(E-V)T. (2.12)
This action is commonly known as Jacobi’s action and is known to reproduce Newtonian
particle dynamics when V' is interpreted as the usual potential for the system. For an
introductory treatment of Jacobi’s theory see chapter V.6-7 of Lanczos’s book [43].

Best matching as applied to 3 particles in 2d can be stated as follows

e First, start with a geodesic principle on configuration space (i.e. Jacobi’s action).
This sets up the x? type minimization required for best matching.

e Make the substitutions ¢ — G(¢)q. This allows for the appropriate shifting of the
coordinates.

e Perform a best—matching variation of ¢ by imposing the Euler-Lagrange equation
and the addition best-matching condition (2.10).

It is important to point out that this procedure, particularly the best—matching condition,
was derived from the simple requirement of finding the “difference” between shapes by
minimizing the incongruence between them. Later, we will see that the best-matching
condition is key to the discovery of shape dynamics. The point to emphasize here is that
this condition is not ad—hoc in any way but results from a simple idea motivated by Mach’s
principles.

2.3.4 Linear constraints and Newton’s bucket

The best—-matching condition, (2.10), can be computed for our system. The result leads
to valuable physical insight into the meaning of best matching and how best matching
resolves Newton’s bucket problem.
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Taking partial derivatives and dropping overall factors, it is a short calculation to show

that
OL(\)

¢
Inserting the values of the generators ¢, of the similarity group from Table (2.2), we find
that these constraints reduce to

=0= 5IJ(D¢QI)TT]tQQJ =0. (213)

> =0 (2.14)
I
> epia; =0 (2.15)

I
> phg =0, (2.16)
I

where p% = ¢\ + qb’ is the best-matched linear momentum of the I'" particle and ¢;; is the
completely anti-symmetric tensor in 2d.

To understand this result, consider what the linear constraint (2.14), generated from
best matching the translations, accomplishes. The best-matched momentum p} represents
the momentum of the vertices of the triangle when the system has been shifted to the
best-matched position. Thus, the condition (2.14) says that the total linear momentum
of system, when best—matched, is zero. This is precisely the Noether charge associated
to translational invariance. In other words, the best-matching procedure requires that
the system be shifted translationally such that the total momentum of the system is zero.
Unsurprisingly, the analogous thing holds for the rotations and dilatations. The constraint
(2.15) says that the total angular momentum (in 2d) of the system is zero when the system
has been best-matched. Similarly, (2.16) requires the dilatational momentum to vanish.
Indeed, we will see that it is a general result: the best matching condition is a constraint,
linear in the momentum, that requires the vanishing of the appropriate Noether charge.
The meaning of this is clear. In standard mechanics, the value of the Noether charge is
set by the initial conditions. In best matching, the initial conditions that set the value of
this charge have no physical significance since they correspond to the gauge coordinates
of the ¢’s. As a result, the actual value of this charge is physically meaningless. The
best—matching condition is a choice where the value of this unphysical charge is set to
Zero.

We can now return to the example of Newton’s bucket and see how best matching
provides a concrete model for framing Mach’s argument. We can think of our system as a
being composed of the water, bucket, and fixed stars. Best matching with respect to the
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rotations tells us that the total angular momentum of the system must be zero. Since the
fixed stars are very massive and distant, their contribution to the angular momentum is
significantly greater than that of the bucket or the water. Because of this, the bucket and
water can have virtually any realistic amount of rotation without impacting the angular
momentum of the whole system and, thus, the dynamics of the rest of the system. This
leads to the illusion of absolute space because the fixed stars effectively behave like a fixed
absolute background for rotation. However, if they were not part of the system and only
the water and bucket existed in the universe, then the best-matching condition would
imply that the angular momentum of the bucket must cancel that of the water. This
would lead to only two possibilities: either the bucket and water are not rotating at all and
the surface of the water is flat or the bucket and water are rotating in opposite directions
and the surface of the water is curved up the walls of the bucket. Unlike the results of
Newton’s experiment, these two possibilities are completely consistent with a relational
theory since there are only two outcomes correlated directly with the relative motion of
the bucket and water. Unfortunately, such an experiment is not feasible because the real
universe consists of much more than some water in a bucket. Nevertheless, we see that
best matching provides an explanation for how the fixed stars actually create the illusion
of a fixed background for small subsystems of the universe such as Newton’s bucket.

2.3.5 Mach’s second Principle

Surprisingly, the best matching procedure we have just developed for implementing Mach’s
first principle also implements Mach’s second principle. As we pointed out, taking the
square root of the minimum distance between shapes, (2.4), makes S invariant under
reparametrizations of the time label A. In fact, there is a preferred choice of parametrization
where the equations of motion manifestly take the form of Newton’s equations for non—
relativistic particles in terms of the best—matched coordinates. Performing a variation of
S with respect to the shifted quantities ¢ = (Gq, we obtain

vd [ [Vdg\ ov
\@a (\/;a>— 97 (217)

where, as before, V(7) is the potential and T'(¢) is the kinetic energy but both are in terms
q. If we identify

(2.18)
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This becomes 2o oV
q
—t = 2.19
dt3; q (2.19)
which is precisely Newton’s law in terms of the best—-matched coordinates.

The choice (2.18) is a particular parametrization that is completely equivalent to New-
ton’s time. This choice, however, is relational since its definition depends purely on the
configuration space variables and their relative changes. To be more precise, we can rewrite
(2.18) in the following way by taking out the A dependence (since ty is reparametrization

invariant):
1677(6qr)™moqy
=\ 2.2
ol \/2 E—-V(q) (2.20)

This is proportional to the total change of the shape of the system. Thus, the best—
matching procedure leads directly to a notion of time that is both equivalent to Newton’s
and that treats time as a measure of the change in the configurations of the universe. This
is precisely in accordance with our statement of Mach’s second principle.

2.4 Formal constructions

The toy model can now be used to point out the key features of best matching and motivate
the general geometric features of the procedure.

2.4.1 Mach’s first principle and Principal Fiber Bundles

The first step in best matching is also the most subjective. It involves identifying the ontol-
ogy of the theory. The basic assumption behind best matching is that the most convenient
variables presented to us to study physical theories contain significant redundancies. These
redundancies can be eliminated by best matching if they originate from a continuous sym-
metry generated by a Lie algebra. In the case of our toy model, the most convenient
variables to use to study the theory are the Euclidean coordinates. However, the physi-
cally meaningful quantities, measurable by observers in the system, are the ratios of the
particle separations. This suggests that the redundancy of the variables is parametrized
by the similarity group. In general, the first step is to identify the redundant, or absolute,
configuration space A then the symmetry group G parametrizing the redundancy. These
identifications imply the quotient space R = A/G representing the reduced, or relational,
configuration space on which live the physical degrees of freedom.
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Figure 2.4: Changes of orientation and scale represent motion along the vertical directions
of a fiber bundle over shape space. (Note: A = Q?)

The redundant configuration space A admits a Principal Fiber Bundle (PFB) structure.
In the finite dimensional particle models, A has a simple tensor product structure A =
R x G so that the fibers are given by G and the base space is R. Vertical flow along the fibers
is generated by the group action on A. In our toy model, this is represented by translations,
rotations, and dilatations of the triangles. Genuine changes of shape are represented by
horizontal flow in the PFB A. Figure (2.4) shows how changes of orientation and scale of
the triangles represents motion along the fibers of A. Best matching is a procedure that
aims to find the “difference” between two infinitesimally different shapes. Geometrically,
this requires a notion of derivative between two neighboring fibers. In other words, it
requires a connection on A. Indeed, best matching is precisely a method for choosing a
connection on A. Just as a choice of section on a PFB selects one member out of an
equivalence class represented by the fibers, best matching selects one member — the best—
matched configuration — out of an equivalence class generated by the symmetry group G.
In fact, the best—matching condition

OL(\)

09
corresponds to the condition for the horizontal lift above a particular curve in R. Fig-
ure (2.5) illustrates how the fiber bundle structure of best matching projects curves onto

-0 (2.21)
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Figure 2.5: The fiber bundle structure of best matching projects curves down to shape
space.

shape space (many thanks go to Boris and Julian Barbour for providing Figures (2.4) and
(2.5)).

In practice, it is usually necessary to extend configuration space by introducing the
auxiliary fields ¢,. They can be thought of as the vertical components of the redundant
configuration variables. It is now clear that the operator D,, whose action on the ¢’s in
our toy model was

Dyq = G+ ¢"tag, (2.22)

is actually defining the covariant derivative along a trial curve in A. @, is then the pullback
of the connection onto this trial curve. From our knowledge of ¢,, it is possible to compute
the full best-matching connection A over A. This is done in Section (2.4.3).

To summarize, Mach’s first principle is implemented in best matching by: first, identi-
fying the configuration variables, 4, and their symmetries, G, then, by using the horizontal
lift, or best—matching connection, to compare neighboring configurations in A. This en-
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sures that only physically meaningful quantities enter the the description of the dynamics
because the PFB structure projects the dynamics onto the relational configuration space
R. This has the effect of making irrelevant any initial conditions specified along the fiber
directions since this information is physically meaningless.

2.4.2 Mach’s second principle and geodesics on configuration
space

In the toy model, 2V (q)d"/n;; was a conformally flat metric on configuration space. The
dynamics implied by best matching produced trajectories that are geodesics of this metric.
The ability to define metrics on configuration space suggests a natural way to implement
Mach’s second principle. According to our definition, time, or more specifically duration,
should be a measure of the total change undergone by the configurations. The princi-
pal fiber bundle structure obtained from implementing Mach’s first principle allows us to
project the dynamics onto the reduced configuration space R. Then, to satisfy Mach’s
second principle, duration should be given by a length on R. Indeed the Newtonian time,
tn, is precisely that. It should be cautioned that the metric used to compute the Newto-
nian time is not the same metric used in the action. Nevertheless, the basic idea is clear:
the presence of natural metrics on configuration space allows for both a way to define the
dynamics through a geodesic principle and a way to define duration in a Machian way.
Thus, the final picture that emerges from best matching is a geodesic principle on R.

The fact that we have a geodesic principle on R puts an additional restriction on the
number of freely specifiable initial data in the theory. To specify a geodesic, one requires
a point and a direction. This is one less piece of information than is typically required
to specify dynamics on configuration space since, in the standard case, one must specify
a point and a tangent vector. The one additional piece of information, the length of
the tangent vector, specifies the speed at which the system moves through the trajectory.
Since geodesics are reparametrization invariant, the speed along the trajectory is physically
meaningless. One can then summarize Mach’s principles by stating them through the
number of freely specifiable initial data required to uniquely specify a classical solution:

The freely specifiable initial data required to uniquely specify a classical solution
of a relational theory is a point and direction on the reduced configuration space

R.

This requirement was first stated by Poincaré [44] as a generalized relativity principle as
been coined Poincaré’s principle [2].
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2.4.3 The best—matching connection

It is possible to compute the best—matching connection, A, over the whole configuration
space. Since the ¢ fields represent A pulled back onto a trial curve v, we can find an
expression for A by generalizing (2.13) over the whole configuration space. The covariant
derivative along a path D, generalizes to

94

o, + AP 1,9 g5, (2.23)

Dyqi — Dy qf =

where A?’J are the components of the best—matching connection. This has both particle
and spatial indices in accordance with the index structure we are using for the configuration
space coordinates ¢f. Using this, (2.13) generalizes to

5”qufncd tag q5 =0. (2.24)

for A (we have reinserted spatial indices to avoid any ambiguity in notation).

It is instructive to compute A for simple cases.

Scale invariant model

Here we consider the global connection associated with the dilatations. The advantage of
this simple case is that an explicit expression can be obtained for A. This is enlightening
because it tells us what the connection is doing over the entire PRB A.

For the dilations, there is only one generator
ap — 0p- (2.25)

We will rescale the coordinates ¢ so that it is possible to consider particles with different
masses, my, (previously, we used units where m; = 1)

q¢ — /miqs. (2.26)

In these units, it is a short calculation to work out (2.24) in terms of A. This gives:

Al(q) = ~0n /T(q). (2.27)

In the above, I(q) is the off-shell generalization of the moment of inertia of a point in A
I(q) = mi6" qing,. (2.28)

32



In row vector notation, where rows label particle numbers, the connections take the simple
form,

Alq) = =" [ magh | (2.29)

Pulling back this result onto a trial curve v, parametrized by A, gives

d(\) = —% (m I()\)) , (2.30)

which is identical to the result obtained by directly solving (2.16). Note that the potential,
fortunately, drops out of the equations for A.

Translationally Invariant Models

As a second example, we will consider the pure translations. For this example, care must
be taken to get the correct index structure for the generators. In this case, the o index
splits into a spatial index and a particle index. However, this notation is redundant since
the generators are identical for each particle. In the end, to solve for A we will need to
sum over this redundant index. Explicitly, the generators take the form

ap — 63%, (2.31)
N

where the o index has split into n and N. Similarly, A has the components

APl — AV (2.32)

Using these conventions, one can reduce (2.24) to the following form

VINTAS N e + /i p AL 6PN 1, = 0, (2.33)

where we avoid summing over particle indices. Because of the redundancy in the notation,
this expression contains many more equations then we need. Summing over N allows us
to eliminate the redundancy. Performing this sum and rearranging gives

Asn
maor

AnA - __ " "a
¢ PIIION

(2.34)
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This is a very compact way of expressing the information contained in the best—matching
connection for the translations. A is both diagonal and depends only on the masses.

This result can be pulled back to a particular path v on A parametrized by the param-
eter A. This leads to .
g = 2 M (2.35)
dormy
which is the center of mass velocity. Thus, the best—-matching procedure is telling us
explicitly that the velocity of the center of mass is the physically meaningless quantity
associated with the translational invariance, completely in agreement with our intuition.

2.4.4 Equivalent action

As already discussed, to define a geodesic principle on R, it is sufficient to use the length
of a path on R as the action. In general, a geodesic action takes the form

S = / A Gap gt (2.36)

Since our action is actually defined on A, we must replace A derivatives by covariant
derivatives and shift the metric g4, to its best matched position gq, = Gggcd(Gq)Gg. Thus,

S = /d)\\/gabD¢an¢qb (237)

leads to a proper geodesic principle on R when ¢, are varied with a best—matching varia-
tion.

Because actions with square roots are difficult to deal with mathematically, it is con-
venient to introduce an auxiliary field N(A), which we will call the lapse in analogy to
the ADM action of GR, to write the action in a simpler form. Assuming that the metric
decomposes conformally as

Gab = Vg(;b (238)
then it is easy to show that the action
1
S = / d\ {Ng;bD¢an¢qb ~ NV (2.39)

reproduces exactly the same equations of motion. We will often use this form of the action
for expressing a geodesic principle since it is more manageable mathematically.
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There is yet another way to simplify this action that gives it a structure similar to a
best matched symmetry. The idea is to note that the lapse, N, has the units of velocity.
Thus, it is better to think of N as the derivative of some variable 7. If set N = 7 then

1
S/ = /d)\ |:;g:lbp¢qa,D¢qb —7V]. (240)

In this form, S’ is a reparametrization invariant version of Hamilton’s well-known principle,
where . = T'— V. Thus, we will refer to the variation of this action as Parametrized
Hamilton’s Principle (PHP). However, because of the derivative on 7, we must perform a
best matching variation of 7 to get the same equations of motion that we had with the
Lagrange multiplier V. In this way, it appears that the theory defined by (2.40) is a theory
where the reparametrization invariance has been best matched.

2.4.5 Equivariant and non—equivariant metrics

We conclude this chapter by making an important distinction between two kinds of best—
matching theories. The first occurs when the metric, g4, on configuration space is equiv-
ariant under the symmetry group. This means that the flow generated by G is a Killing
vector of g. An immediate result of this is that

Jab = G9:4(Gq)GY = gab- (2.41)

Then, the best-matching procedure takes the original action

S = /d/\\/gabcj“q'b, (2.42)

which is invariant under global (in \) gauge transformations of the form ¢ — G¢, and sends
it to the locally gauge invariant action

5'= [ i\fauDorDor (2.43)

by promoting A derivatives to gauge covariant derivatives. Equivariant best matching
is, thus, equivalent to doing standard gauge theory on configuration space. However, it
provides a powerful conceptual framework, based on Mach’s principles, to motivate the
local gauging of a symmetry. In this sense, best matching leads to a deeper understanding
of gauge theory.
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The second possibility is that the metric in not equivariant under the action of G. In this
case, we will see that the consistency of the equations of motion is no longer guaranteed.
However, in special situations, consistency can be restored in a particular gauge so that a
geodesic principle on R can still be defined. This allows for the possibility of constructing
a truly equivariant metric by equivariantly lifting the metric on R. This leads to a dual
theory that has the required symmetries. In GR, this procedure will lead to shape dynamics
when 3d Weyl symmetry is best matched.
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Chapter 3

Equivariant best matching

In this chapter, we will give an in depth description of the mathematical structure of best
matching in general finite dimensional systems. Undoubtedly, one cannot fully understand
the structure of a theory until one has understood its Hamiltonian formulation. As Dirac
put it: “I feel that there will always be something missing from [alternative methods| which
we can only get by working from a Hamiltonian.” [45] With this in mind, we perform a full
canonical analysis of a general class of finite dimensional best—matched theories. In this
chapter, we will only consider the case where the metric is equivariant, saving the non—
equivariant case for next chapter. This will provide a detailed framework for understanding
relational theories and will complement the key results of last chapter.

We will proceed as follows. First, we will formulate some general geometric construc-
tions for the framework. Then, we perform the Legendre transform and compute the canon-
ical equations of motion. We develop in detail the canonical version of the best—matching
variation and point out some key differences compared with the Lagrangian approach that
allow us to capture the full gauge invariance of the theory. This identification allows us, at
the same time, to identify and then eliminate the gauge redundancies, providing us with
an explicit formalism to formally compute the gauge independent observables. These new
insights provide two valuable tools: 1) the matching procedure can be seen as a canonical
transformation on the extended phase space, which will be useful for understanding the
non—equivariant theories, and 2) the best-matching condition provides a specific criterion
for defining background independence with respect to a given symmetry. We end the chap-
ter by applying our definition of background independence to reparametrization invariant
theories. This has interesting implications for the problem of time.
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3.1 Finite Dimensional Models

3.1.1 Mach’s second principle

We begin with some general geometric considerations that will deepen our understanding
from last chapter and set up the transition to the Hamiltonian theory.

Mach’s second principle is implemented by a geodesic principle on the configuration
space, A (we will consider the R and Mach’s first principle in a moment). This can be
achieved by extremizing an action, S, that gives the length of the trajectory on configura-
tion space

s/ " AN I DENPN. (3.1)

qin
Jap s a function only of ¢ and not of its A—derivatives. A has been written explicitly in this
reparametrization invariant action so that it can be used as an independent variable in the
canonical analysis.

We will find it convenient fix a conformal class of the metric by selecting a positive
definite function €2(¢) such that

Gab = VYap- (3.2)

In many situations, —€2 can be interpreted as twice the potential energy of the system. As
we have seen, in the dynamics of non-relativistic particles, the configuration space is just
the space of particle positions ¢*. The metric g4, leading to Newton’s theory is conformally
flat so that

Yab = Mab, (33)

where 7 is the flat metric with Euclidean signature.! In general, the metric g, is a specified
(ie, non—dynamical) function on A. From now on, we will use the action (3.1), making
use of the decomposition (3.2) only when necessary. This allows us to work directly with
geometric quantities on A.

The variation of S leads to the geodesic equation
G+ T = s(N)g", (3.4)

where k = dIn \/ga¢*¢®/dX and T'Y, = 39°*(gav.c + Gae,s — Goe,a) is the Levi-Civita connection
on A.

!The units can be chosen so that all of elements of n are 1. Particles with different masses can be
considered by replacing n with the suitable mass matrix for the system.
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The choice of the parameter A is important. Normally, one would like to set K = 0 with
an affine parameter. However, for metrics of the form (3.2) with v = const, there is another
special choice of A that simplifies the geodesic equation. If we choose the parameter 7 such

that

d_T 'V gabqaqb (3 5)

d\ Q ’
the geodesic equation becomes

e 1y0 3.6

Yab dr2 - 9 asb- ( : )
In the case of non-relativistic particles, 2 = —2V and v = n so that the geodesic equation
is Newton’s 2" law. With these choices, 7 = —% is just equivalent to the Newtonian

time tN-

3.1.2 Mach’s first principle

We can now implement Mach’s first principle by introducing the auxiliary fields ¢, and
performing best matching. This sends the A derivatives to covariant derivatives and shifts
the metric g4 to its best—-matched value g,, = Gggcd(Gq)Gg. This leads to the action

S = /d)\ \/gab D¢qCD¢qd, (37)
Y

which must be varied over all paths v on A according to the rules of the best-matching
variation.

The action (3.7) can be written in an illuminating form using the fact that our metric
is symmetric under G. The equivariance criterion leads to the existence of global Killing
vectors and is expressed by the fact that the Lie derivative in the direction of the symmetry
generators L, ,g = 0 is zero. Explicitly,

la ((:a 9b)e + acgab tafiqd = 0. (38)

where the rounded brackets indicate symmetrization of the indices. This expression can
be exponentiated to prove the following relation

Gab = gab(GQ) Gng = gcd(q) (39)
Inserting this into (3.7) gives
4fin
S = / dA \/ 9abr(q) Dpq“Dyq". (3.10)
gin
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The relation (3.9) can be inserted into the original action S to show that, with an equivari-
ant metric, the original theory is invariant under \ independent G—transformations. This
shows in detail why equivariant best matching is equivalent to gauging a global symmetry.

We can now proceed with the canonical analysis of the best-matching action (3.10).
The momenta p,, conjugate to ¢*, and 7,, conjugate to ¢%, are

oL Do’

pa= o= —2 0 and (3.11)
9¢*  \/9ea Dpq°Dypgq*
oL b Do

Ma= 2= Jb Tl 4 oage (3.12)

dpo V/9ea Dsq°Dyg?

It is easy to verify that these momenta obey the following primary constraints

H=g%pspy —1=0, and (3.13)
Ho = Ta — Pa tald” =0, (3.14)

where ¢? is the inverse of g,. The quadratic scalar constraint H arises from the fact
that p,, according to (3.11), is a unit vector on phase space. It corresponds to the fact
that only a direction in A can be specified. Thus, H reflects the physical insignificance
of the length of ¢. The linear vector constraints H, reflect the continuous symmetries of
the configurations. They indicate that the phase space of the theory contains equivalence
classes of states generated by H,. Note that H and H, arise in very different ways: H is
a direct consequence of using a geodesic principle on A and can be attributed to Mach’s
second principle while H,, is a consequence of the best matching and can be attributed to
Mach’s first principle. In the equivariant case, we will see that these constraints are first
class. This leads precisely to the restrictions on the freely specifiable initial data required
by Poincaré’s principle.

Using the fundamental Poisson Brackets (PBs)
{¢";p} =0y, and {¢% 7z} = d5, (3.15)
we find that there are two sets of non—trivial PBs between the constraints. They are
{Ha, Hp} = 0357{7, and (3.16)
{Ha Ha} = 8cgabpapb taccl qd - gabpcp(a ta lc)) ) (317)

where czﬁ are the structure constants of the group. From (3.16), we see that the closure of
the vector constraints on themselves is guaranteed provided G is a Lie algebra. The PB’s
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(3.17) vanish provided (3.8) is satisfied. Thus, the closure of the constraints is guaranteed
by the global gauge invariance of the action.

Because of the important role played by (3.8), it is illuminating to see the conditions
under which (3.8) is satisfied for particular models. In translationally invariant non-
relativistic particle models the generators given in Table (2.2) are used in (3.8). Being
careful about particle and spatial indices (particle indices are labeled by I and spatial
indices are indicated by arrows) leads to the following condition on the potential

> ViV =o, (3.18)
I

where V; = a%,' This requires that the potential be translationally invariant. It is satis-
fied by potentials that are functions of the differences between the coordinates. The same
argument applied to the rotations leads to a similar result: the potential must be rotation-
ally invariant. The dilatations are different. They imply the following condition on the
potential

0.V ¢¢ = -2V. (3.19)

By Euler’s theorem, this implies that the potential should be homogeneous of order —2 in
C

q°.

While the gauge invariance of the action is guaranteed for the rotations and translations
by the gauge invariance of the potential, it is not for the dilatations. This is because the
kinetic term has conformal weight +2 under global scale transformations of the ¢’s. Thus,
the potential must have conformal weight —2 if the action is to be scale invariant. This is
just the requirement (3.19) and is equivalent to the consistency conditions obtained in [3]
but derived from different motivations and in the canonical formalism. The key message
to take from this result is that equivariance of the metric does not necessary imply gauge
invariance of the potential. If the non—gauge invariance of the potential is compensated by
the non—gauge invariance of the kinetic term, the entire action can still be gauge invariant.
The dilatations provide an example of this.

It is possible to work out the gauge transformations generated by the linear constraints
H,. Computing the PBs {q, H,} and {¢%, Hz} we find ¢ and ¢ transform as

§@ — e S tabgh
% — % + (* (3.20)

under large gauge transformations parameterized by (*. This is what Barbour call banal
invariance in [3]. From the canonical analysis, this is a genuine gauge invariance of the
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theory. It is simply a statement that the ¢ field, because of how it was introduced into
the theory, is purely auxiliary. In practice, the ¢ field is formally equivalent a Stiickelberg
field [46], in which case the banal invariance is a splitting symmetry.

3.1.3 Best—matching variation

Before computing the canonical equations of motion and solving the constraints, we will
describe the canonical version of the best—matching variation. This is analogous to varia-
tion used in the Lagrangian formulation that we introduced in Section (2.3.3). However,
there are important differences and new insights that should be highlighted.

As was discussed in detail, the ¢’s should be varied freely on the endpoints of any
interval along the trajectory. To see how this is carried out in the canonical formalism,
consider the canonical action:

5[q,p,¢,ﬂ]=/dA [p-fi+¢3-7f—h(q,p,¢,7r) : (3.21)

We are concerned only with variations of the ¢’s and n’s since the p’s and ¢’s are treated
as standard phase space variables. We need to determine the conditions under which the
action will vanish if the ¢’s and the 7’s are varied freely at the endpoints. The variation
with respect to the 7’s vanishes provided ¢ = g—’; = {q, h} regardless of the conditions on
the endpoints. Thus, Hamilton’s first equation is unchanged by the free endpoint condition.

However, the procedure leading to Hamilton’s second equation is modified.

After integration by parts, the variation of (3.21) with respect to ¢ is

3S1q, p, @, | = —/d)\ {g—g + 7%} 0p + 7r(5¢|;\?n“ =0. (3.22)

The first term implies Hamilton’s second equation
oh
= ~90 ={m, h}. (3.23)

However, because d¢ is not equal to zero on the endpoints, the second term will only
vanish if 7(A\iy) = 7(Agn) = 0. This single free endpoint condition, however, is not enough.
In order for the ¢ fields to be completely arbitrary, the solutions should be independent
of where the endpoints are taken along the trajectory. This implies the canonical best—
matching condition, T(A) = 0, everywhere. The best-matching condition is an additional
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equation of motion. In Dirac’s language, it is a weak equation to be applied only after
taking Poisson brackets.

For metrics satisfying (3.9), ¢ is a cyclic variable. This means that it enters the action
only through its dependence on gb In this case, {7, h} = 0 identically so that, by Hamilton’s
second equation, 7 is a constant of motion. Normally, this constant of motion would be
set by the initial and final data. The main effect of applying the best—-matching condition
is to set this constant equal to zero. When combined with the linear constraints H, ~ 0,

the best-matching condition implies
Patairq® =0 (3.24)

which is the vanishing of the Noether charge associated to a symmetry of the action under G.
In the Lagrangian language, this results immediately from applying the Lagrangian form of
the best—matching condition. In the canonical formalism, this is a two step process. First,
we must impose the linear constraints H,,, then we must apply the best—matching condition.
This important difference highlights the advantages of the canonical framework. We can
see that the best-matching condition imposes a new symmetry on the theory: invariance
under ¢ — ¢+¢. Unlike the splitting symmetry (or banal invariance), this gauge invariance
has a real physical significance: it generates the background independence of the theory
because it projects the theory down to the relational phase space. This observation will
be used to establish a precise definition of background independence in Section (3.4).

3.1.4 Cyclic variables and Lagrange multipliers

We pause for a brief comment on the meaning of the best-matching variation. As we briefly
mentioned, a cyclic variable is one that enters a theory only through its time derivative.
Conversely, a Lagrange multiplier appears in a theory without any time derivatives. In the
equivariant case, ¢® drops out of the theory because of the equivariance property. This
means that ¢* is a cyclic variable. Since

oL

— =0 3.25
o (3.25)
identically for cyclic variables, the best—-matching condition

oL

— =0 (3.26)

ol

is the only non-trivial equation of motion needed to be satisfied by the theory. However,
the best—matching condition on a cyclic variable is completely equivalent to a standard
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variation with respect to a Lagrange multiplier. This is because, for a Lagrange multiplier
A, the Euler-Lagrange equations are

oL

Thus, in the equivariant case, one can think of the best—-matching variation as a variation
where the connection is treated as a Lagrange multiplier. This is the way that the lapse
and shift are varied in the ADM action. However, we see here that it is more appropriate
to think of these as cyclic variables varied by a best—matching variation. This approach is
mathematically equivalent but is based on a more solid conceptual picture.

3.1.5 Classical equations of motion

We are now in a position to compute the canonical equations of motion of our theory.
The definitions of the momenta, (3.11) and (3.12), imply that the canonical Hamiltonian
vanishes, as it must for a reparametrization invariant theory. Thus, the total Hamiltonian
Hr is proportional to the constraints

Hy = NH + N°H, (3.28)

where the lapse, N, and shift, N*, are just Lagrange multipliers enforcing the scalar and
vector constraints respectively. We use this terminology to emphasize that these Lagrange
multipliers play the same role as the lapse and shift in general relativity.

The best-matching variation implies

¢* = {¢”, Hr} = N, (3.29)
o ={m, Hr} =0, and (3.30)
o = 0. (3.31)

The ¢“’s are seen to be genuinely arbitrary given that their derivatives are equal to the
shift vectors. As expected, the 7,’s are found to be constants of motion set to zero by the
best—matching condition.

We now perform a standard variation of the ¢’s and p’s. A short calculation shows that
Hamilton’s first equation ¢* = {¢%, Hr}, can be re-written as

1 _1b 0

Pa = 557 Jab G, BN (Géqd) ) (3.32)
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where we have made use of the definition G} = exp{—¢® to}}. Note that G can be
rewritten in terms of the shift vectors using the equation of motion ¢® = N*. By (3.9), we
find that, in terms of barred quantities, (3.32) becomes

1 b
= —0u(7) T, 3.33
Pa = 53:9a(7) 4 (3.33)
where p, = G2 .
Hamilton’s second equation gives
pa = _N(aagbc)pbpc + Napb tag ’ (334>

which, upon repeated use of (3.9), leads to

Pa = —N(0a9" (7)) Dope- (3.35)

Thus, the equations of motion can now be written purely in terms of the best—matched
quantities:

1 8 1 _ ;b . 17 N bC o
ﬁa (Wgab(Q) q ) = _ipbpcaag (Q) (3-36)

We can now use the conformal flatness of the metric g, = Q14 = (—2V )14 and the
scalar constraint g% p.p, = 1 — n%®p.p, = —2V to write (3.36) in a more recognizable
form. Identifying 7 = —%, (3.36) reduces to

82 q(l
or?

= —0"V(q). (3.37)

This, as expected, is Newton’s 2" law with 7 playing the role of Newtonian time and with
the ¢’s replaced by their best—matched values. Note that we did not use the conformal
flatness of the metric until the last step and then only to write our results in a more
recognizable form. We note in passing that Newton’s laws are just (3.37) written in the
proper time gauge, analogous to the similar gauge condition used in general relativity,
where N =1 and N® = 0. This special gauge also corresponds to Barbour’s distinguished
representation [3].

3.1.6 Solving the constraints

It is now possible to use Hamilton’s first equation to invert the scalar and vector constraints
and solve explicitly for the lapse and shift. This will allow us to write the equations of
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motion in terms of gauge invariant quantities having eliminated all auxiliary fields ¢.
Solving for the lapse and shift allows us to write the equations of motion in a gauge
invariant form. This will allow us to identify gauge independent quantities.

The shift can be solved for by inserting Hamilton’s first equation
§* = 2Npyg® — N* t, 0 ¢° (3.38)

into the vector constraint H, = 7, — pa tafq® = 0 after applying the best-matching
condition 7, = 0. Inverting the result for N* gives

N*Meap = naq” t5° ¢, (3.39)

where
Mag = Tlab ta & taly 4°¢". (3.40)

In the above, we have used g., = 14 and removed as factors €2 and N. The fact that NV
drops out is what allows the scalar and vector constraints to decouple allowing the system
to be easily solved. Theories of dynamic geometry are typically more sophisticated, and
this separation is no longer possible. If M,z is invertible, then N® is given formally in
terms of its inverse M*?. In Sec. (3.3) we shall give simple closed-form expressions for
N¢ for non-relativistic particle models invariant under translations and dilitations. The
inversion of M,z for non-Abelian groups, such as the rotations in 3 dimensions, is formally
possible but illuminating, closed—form expressions are difficult to produce.

The lapse can be solved for using (3.9) and inserting Hamilton’s first equation (3.33)
into the scalar constraint H = ¢g%p,p, — 1 = 0. This gives

N =\ a@ i (341)

Having already solved for the shift we can use it to compute G (¢*) in the above expression
using the equation of motion ¢* = N“. We can now express all equations of motion without
reference to auxiliary quantities.

3.2 Canonical best matching

In this section, we will illustrate a powerful method for applying the best—matching pro-
cedure starting directly from phase space. Although the motivation behind the procedure,
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and in particular the canonical best—matching condition, comes from the Lagrangian frame-
work where the configurations are fundamental and Mach’s principles can be intuitively
implemented, the canonical framework is mathematically more powerful and can bring ad-
ditional insight into the gauge structure of the theory. The inspiration for this approach
comes from [25], which streamlined the dualization procedure presented in [24], where
shape dynamics was discovered. This approach to best matching is thus an important tool
for understanding non—equivariant best matching and the structure of shape dynamics.

We start immediately from the phase space I'(¢%, p,) coordinatized by the configuration
variables ¢ and their conjugate momenta p,. We equip I" with a symplectic 2—form that
induces the Poisson brackets

{q" po} = 6y (3.42)

To define a geodesic principle on configuration space, we require that the initial speed of
the system along the classical trajectory not affect the shape of the classical solutions. In
the canonical language, this implies a Hamiltonian constraint # that constrains p, to a
unit vector on I'. Thus,

H = gpapy — 1 = 0. (3.43)

The next step is to trivially extend the phase space I'(q,p) — T'c(q, p, ¢*, ) by intro-
ducing ¢“ and its conjugate momenta 7,. The symplectic structure is extended such that
the only new non-vanishing Poisson bracket is

{¢% ms} = 05. (3.44)
To guarantee that ¢* is arbitrary, we can add the constraint
To = 0, (3.45)

which does nothing but set P to a Lagrange multiplier. Because H is independent of
¢, o =~ 0 is trivially first class with respect to H. Note this is not the best-matching
condition since we have not yet done any matching. It is simply a constraint that does not
affect the original geodesic principle.

The shifting is accomplished on phase space by performing a canonical transformation

(q, ¢; p, ™) — (q, ¢; p, ™) generated by the type—II generating functional F'(q, ¢; p, 7) defined
by

F(q,¢:0,7) = BoG(0)og" + ¢ Ta (3.46)
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The transformed ¢’s and ¢’s can easily be computed

OF

=5 = Gy(0)¢" (3.47)
T 8_F _ I«
=5 =" (3.48)

The ¢’s are just shifted by the action of G and ¢ is unchanged. The transformed momenta
are more interesting. Using

oF

. = =G%(o)p 3.49
Pe = g0 = Gl (3.49)

oF .
T = 8760[ = Tq +pa tab qb’ (350)

we find that

Pa=(G")lps (3.51)
Ta = Ta — Patat q’ (3.52)

Clearly, p, is the same p, we found convenient to define when working out the classical
equations of motion.

The Hamiltonian constraint transforms to
H — PaDog™ — 1. (3.53)
Because of the equivariance property, this reduces to
H = pappg™ — 1. (3.54)

Thus, in the equivariant case, H is invariant under the best-matching canonical transfor-
mation. This also implies that it is first class with respect to the best—-matching condition
To =~ 0, a key difference from the non—equivariant case. As we will see, if g is non—
equivariant, the best—matching condition will only close with the Hamiltonian constraint
under special circumstances.

Under the canonical transformation generated by F, the first class system of constraints
(H ~ 0,7, ~ 0) transforms to

H=~0 He = T — Da taf ¢" = 0. (3.55)
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These are exactly the constraints obtained from the Legendre transform of the original
best—matching action. At this point, the canonical transformation has done nothing to the
original theory. To implement Mach’s first principle, we must perform a best—matching
variation with respect to ¢* by imposing the best—matching condition 7, ~ 0. Because
of the equivariance property of g, ¢* does not appear anywhere in the Hamiltonian of
the transformed theory. Thus, 7, =~ 0 is first class with all constraints. Since ¢“ doesn’t
appear in the theory, we can integrate out ¢“ and m, by imposing 7, = 0 strongly. This
reduces the phase space back to the original one, leaving the constraints

H~0 Pataiq® ~0. (3.56)

Since the second constraint is the vanishing of the generalized momentum associated to
the symmetry G, we have reproduced the results obtained from the Lagrangian approach.

3.3 Gauge—independent observables

The simple form of (3.36) and (3.37) suggests there might be something fundamental
about the best-matched coordinates g = G¢q¢’. In fact, as can be easily checked, they
commute with the primary, first class vector constraints H,. The ¢’s are then invariant
under the gauge transformations (3.20) generated by H,. They do not, however, commute
with the quadratic scalar constraint. For this reason, they are non—perennial observables
in the language of Kuchai [47, 48], who argues that such quantities are the physically
meaningful observables of reparameterization invariant theories. Barbour and Foster take
this argument further in [49], showing how Dirac’s theorem fails for finite-dimensional
reparameterization invariant theories. The reason for ignoring the non—commutativity of
the observables with the scalar constraint is that the scalar constraint generates physically
distinguishable configurations. This is in contrast to the linear vector constraints, which
generate physically indistinguishable states. In this work, we will use Kuchai’s language
to describe these observables and see that, in all cases where the constraints can be solved
explicitly, the g* are manifestly relational observables.

The best-matched coordinates, ¢*, have a nice geometric interpretation. Using Hamil-
ton’s first equation for ¢“, the ¢’s can be written in terms of the shift as

7" = exp {¢” tal} q® = Pexp {/N“ tap d)\} ¢, (3.57)

where P implies path—ordered integration. Thus, the best-matched coordinates are ob-
tained by subtracting the action of the open—path holonomy of the lapse (thought of as
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the pullback of the connection over A onto the classical path) on the ¢"’s. This subtracts
all vertical motion of the ¢’s along the fiber bundle.

3.3.1 Special cases

The significance of the ¢’s is more clearly seen by solving the constraints for specific sym-
metry groups. First, consider non-relativistic particle models invariant under translations.
The ¢’s represent particle positions in 3—dimensional space. The a indices can be split
into a vector index, i, ranging from 1 to 3, and a particle index, I, ranging from 1 to the
total number of particles in the system. Then, a = i/. For 7,, we use the diagonal mass
matrix attributing a mass m; to each particle. With the generators of translations (see
Table (2.2)), (3.39) takes the form

N = M =a (3.58)

ZI m; Gem-
The shift is the velocity of the center of mass ¢.,,. Aside from an irrelevant integration
constant, which can be taken to be zero, the auxiliary fields ¢* represent the position of
the center of mass. Inserting this result into (3.57), the corrected coordinates are

7 =q"—q.. (3.59)

They represent the difference between the particles’ positions and the center of mass of the
system. This is clearly a relational observable. Furthermore, the non—physical quantity is
the position of the center of mass since the theory is independent of its motion.

We can also treat models invariant under dilatations.> In this case, (3.39) is easily
invertible since there is only a single shift function, which we will call s. Using the same
index conventions as before and the generators of dilatations from Table (2.2) we find

0 1

where I = Y, m(qr)? is the moment of inertia of the system. Aside from an overall
integration constant, which can be set to zero, the auxiliary field is —1/2 times the log of
the moment of inertia. Using (3.57), the corrected coordinates are the original coordinates
normalized by the square root of the moment of inertia

=21 (3.61)

vai

2See [3] for more details on these models.
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Because I contains two factors of ¢, ¢ will be invariant under rescalings of the coordinates.
Thus, the corrected coordinates are independent of an absolute scale.

The quantity 7, which plays the role of the Newtonian time, can now be computed. It
is a function of the lapse and the potential. Since the lapse is an explicit function of the
corrected coordinates, it will be observable. Using the definition 7 = —% and (3.41), 7 is
simply

_ |_T(a)
T = /d/\ V@) (3.62)

where T' = %mabcj“cjb is the relational kinetic energy of the system. 7 is independent of A
and observable within the system. Thus, once the constraints have been solved for, the
equations of motion (3.37) are in a particularly convenient gauge-independent form. This
definition of 7 corresponds to Barbour and Bertotti’s ephemeris time [50, 2].

3.4 Background dependence and independence

The presence of a symmetry of the configurations of A allows for a distinction between
two types of theories:®

e those that attribute physical significance to the exact location of the configuration
variables along the fiber generated by the symmetry. We will call these theories
Background Dependent (BD).

e those that do mot attribute any physical significance to the exact location of the
configuration variables along the fiber. These theories will be called Background
Independent (BI).

Based on these definitions, it would seem odd even to consider BD theories as they dis-
tinguish between members of an equivalence class. These theories are useful nevertheless
whenever there is an emergent background that breaks the symmetry in question at an
effective level. This is the situation that arises in Newton’s bucket experiment. Although
one could treat this system in a relational BI way, this would be cumbersome because the
exact motions of the fixed stars would have to be known in order to solve the angular
momentum constraints. Instead, it is simplest to treat this, as Newton did, as a system
with an absolute background given by the rest frame of the fixed stars. In this way, we

3These definitions should apply equally to equivariant and non—equivariant theories.
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see that BD theories shouldn’t be fundamental but are, nevertheless, useful to describe the
effective physics of a subsystem of the universe.

Best matching provides a framework for making our definitions of BD and BI more
precise. Whenever there are symmetries in the configurations it is possible to introduce
auxiliary fields ¢“ whose role is nothing more than to parametrize the symmetry. Indeed,
making the ¢’s dynamical can be very useful since, as we have seen, the full power of
Dirac’s formalism [45] can be used to study the dynamical effects of the symmetry. In
addition, introducing the ¢“ fields gives us the freedom to distinguish between BD and BI
theories as follows:

e BD theories are those that vary the ¢ fields in the standard way using fized end-
points. This requires the specification of appropriate initial and final data, which is
considered to be physically meaningful.*

e BI theories are those that vary the ¢* fields using a best—matching variation.

Given these definitions, we can understand the physical difference between BD and BI
theories by considering the form of the vector constraints (3.14). In the BD case, the 7, ’s
are constants of motion. These constants are determined uniquely by the initial conditions
on the ¢’s. However, in the BI theory, the constants of motion are irrelevant and are seen
as unphysical. The initial data on R cannot affect their value. As a result, the BD theory
requires more inputs in order to give a well defined evolution. The difference is given
exactly by the dimension of the symmetry group. This is precisely in accordance with
Poincaré’s principle.

3.5 Time and Hamilton’s principle

As we have seen in Section (2.4.4), Parametrized Hamilton’s Principle (PHP) is an alter-
native to a square root action principle for determining the dynamics of a system. It is
still a geodesic principle on configuration space but the square root is disposed of in place
of a mathematically simpler action. The cost of having this simpler action is the introduc-
tion of an auxiliary field whose role is to restore the reparameterization invariance. PHP

4S0 as not to add redundancy to the boundary conditions, we can set ¢*(Ain) = ¢*(Agn) = 0 without
loss of generality. The boundary conditions on the ¢’s will then contain all the information about the
absolute position of the ¢’s along the fiber.
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has the advantage over square root actions in that it singles out a preferred parametriza-
tion of the geodesics through a choice of normalization of the scalar constraint. For a
standard normalization, the preferred parameter is just Barbour and Bertotti’s ephemeris
time. In geometrodynamics, this quantity will be related to the proper time of a freely
falling observer. In the case of the particle models, PHP is just the action principle for the
parameterized particle treated, for example, in [43].

Because time is now dynamical, we can use the definitions of BI and BD from Sec. (3.4)
to distinguish between theories that have a background time and those that are timeless.
As we would expect, Newton’s theory, which contains explicitly an absolute time, can be
obtained from PHP with a background time. Alternatively, a timeless theory is obtained
from PHP by keeping the time background independent.

3.5.1 Action and Hamiltonian

To simplify the discussion, we will ignore for the moment the spatial symmetries. This
will avoid having to deal with the linear constraints. Comparison to the equations of
previous sections can either be made by setting the shift, N, equal to zero or by unbarring
quantities. It can be verified that neglecting the spatial symmetries does not affect the
discussions regarding time [51].

PHP is defined by the action

e 11
Sy = / d\ = {—,%bqaq‘b —|—7"Q:| . (3.63)
i 2|7

The Lagrangian has the form of Hamilton’s principle T'— V' (recall that Q@ = —2V') but
the absolute time 7 has been promoted to a dynamical variable by parameterizing it with
the auxiliary variable A. This explains the name: Parametrized Hamilton’s Principle.
The particular normalization used takes advantage of the conformal split of the metric and
singles out BB’s ephemeris time as a preferred parameter for the geodesics.® For simplicity,
we restrict ourselves to metrics of the form: v, = 1.

We can perform a Legendre transform to find the Hamiltonian of the system. Defining

® Alternatively, one could split the action as Sg = [ dA [£Qvap¢?¢® — 7| without changing the equations
of motion. This action would single out an affine parameter for the geodesics. It corresponds to dividing
the scalar constraint by (2.
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the momenta

08 1
Po= = Znwd®, and (3.64)

0q* T

0SH 1 [nag*q®
= - = — — - Q *

Po="57 2 { 72 (3.65)

we note that they obey the scalar constraint
Hbam = 5 (77 PaPy — Q) +Dpo= EHJacobi +po = 0. (366)

The appearance of the py term is the only difference, other than the factor €2, between the
timeless geodesic theory and PHP (the factor 2 is purely conventional). The factor € can
be absorbed by a field redefinition of the lapse and has no bearing on physical observables.
It is a relic of our choice of ephemeris time to parametrize geodesics. Using the definitions
(3.64) and (3.65), we find that the canonical Hamiltonian is identically zero, as it must be
for a reparameterization invariant theory. Thus, the total Hamiltonian is

1 1
HT:N%:N<?WMM—§Q+m). (3.67)

3.5.2 BI theory

In PHP, time is promoted to a configuration space variable. The symmetry associated
with translating the origin of time is reflected in the invariance of the action under time
translations 7 — 7 + a, where a is a constant. In [51], it is shown that applying the best—
matching procedure to this symmetry is equivalent to treating 7 itself as an auxiliary field.
To make the theory background independent with respect to the temporal symmetries, we
follow the procedure outlined in Sec. (3.4) and impose the best-matching condition after
evaluating the Poisson brackets. In this case, the best—matching condition takes the form

po = 0.

We pause for a brief observation. Since the best-matching variation of a cyclic variable
is equivalent to the standard variation of a Lagrange multiplier, we can replace 7 with
N when doing a background independent formulation of PHP. Then, the action (3.63)
bears a striking resemblance to the ADM action. This illustrates why the ADM action is
background independent as far as time is concerned. However, the ADM action hides the
possibility of introducing a background time (following the procedure given in the next
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section). Considering this, it might be more enlightening to think of the lapse as a cyclic
variable subject to best-matching variation as is done in [3] and [14].

In order to compare this to the standard timeless geodesic theory, it is instructive to
work out the classical equations of motion

¢* = {q", Hr} = Nn™py, (3.68)
pa = {p(za HT} = Naa <%) = _Naav (369)

7={r,Hr} =N, and (3.70)
po = {po, Hr} = 0. (3.71)

(3.70) reinforces the fact that 7 is an auxiliary. It is straightforward to show that the above
system of equations implies
a2qa
oT?

This is Newton’s 2°¢ law. Solving the scalar constraint gives an explicit equation for 7,

: . T
T = \/ﬁﬂabqaqb = \/—_V’ (3.73)

using the definitions for V' and T' given in Sec. (3.1.1). This is precisely the expression for
the ephemeris time 7 defined in the usual timeless geodesic theory. It should be noted that
the best-matching condition implies that the integration constant of (3.71) is zero. Use
was made of this to deduce (3.73). From this it is clear that the BI theory is classically
equivalent to the timeless geodesic theory.

— —0"V(q). (3.72)

One can take this further and compare the two theories quantum mechanically. Noticing
that the canonical action is linear in 7 and pg, we can integrate out 7 without affecting the
quantum theory and use the best-matching condition py = 0 to reduce the scalar constraint
to

H = g%ppp —1=0 (3.74)

(after factoring €2). This is the scalar constraint (3.13) of the timeless geodesic theory.
With 7 now defined by (3.73), the canonical theories are identical. Thus, their canonical
quantizations should also match. For more details on the equivalence of these theories
quantum mechanically, see [51], where the path integrals for these theories are worked out
in detail.
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3.5.3 BD theory

For the BD theory, we do not impose the best-matching condition. Integration of (3.71)
implies pg = —FE. The only effect that this has on the classical theory is to alter the

formula for 7 to
) T
T_”E—V' (3.75)

Now an initial condition is imposed on 7 that fixes the value of E' and violates Poincaré’s
principle. Thus, 7 is equivalent to a Newtonian absolute time. Note that inserting a
background time would have been impossible if we started with the ADM form of PHP.

Strictly speaking, there is a difference between F, defined as the negative of the momen-
tum canonically conjugate to time, and E’, which is just the constant part of V' = —E'4+V".
Together they form what we would normally think of as the total energy Ei,; = E + E’ of
the system. E’ is freely specifiable and plays the role of a fundamental constant of nature
while Fi is fixed by the initial conditions on 7. In the classical theory, it is unnecessary to
make a distinction between Ei and E. However, in the quantum theory, this distinction
is important because of the possible running of constants of nature like E’. In general rel-
ativity, the role of E’ is played by the cosmological constant. As a result, this distinction
may be relevant to the cosmological constant problem [52].

3.5.4 A problem of time

In the classical theory, it seems that there is only a very subtle difference between the BI
and BD theories. The difference amounts to the ability to impose boundary conditions on
T that constrain the total energy. However, the quantum theories are drastically different.
Using Dirac’s procedure, we promote the scalar constraint to an operator constraint on the
wavefunction W. In the BD theory, Dirac’s procedure applied to the Hamiltonian (3.67)
gives the time dependent Schrodinger equation

. 1
HY = {577“%1% +V(q) + ]30] U = 0. (3.76)

In a configuration basis, py = —i%. Thus, the above is indeed the standard Schrodinger
equation. However, in the BD theory, the best-matching condition requires py = 0 leaving
instead the time independent Schrodinger equation

« 1
HY = {;ﬂ”ﬁam + V(@) — E} v =0, (3.77)
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where we have explicitly removed the constant part of the potential. While it is easy to
define an inner product in the BD theory under which evolution will be unitary this is not
the case in the BI theory. This makes it difficult to define a Hilbert space for the BI theory
(at least at the level of the entire universe). The difficulties associated with this can be
called a problem of time similar to what happens in quantum geometrodynamics.® It is
interesting to note that, in finite—dimensional models, one can eliminate this problem of
time by artificially introducing a background time. In Section (5.4.2), we study the effects
of applying the same procedure to geometrodynamics and are led to unimodular gravity.
Clearly the issue of background independence is of vital importance in the quantum theory.
This will have important implications in any quantum theory of gravity.

6In geometrodynamics, there are additional complications associated with foliation invariance or many-
fingered time. As far as I know, these have no analogues in the finite-dimensional models.
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Chapter 4

Non—equivariant best matching

In the last chapters, we saw how Mach’s principles can be clearly stated and implemented
using best matching. We then saw that best matching is naturally seen as a way of defining
a connection on a principal fiber bundle constructed by quotienting a redundant configu-
ration space, A, by some suitably defined gauge group, G. In this way, relational theories
are seen to be best understood as gauge theories on configuration space. One normally
motivates the gauge theory approach by starting with a global symmetry of the action
and then gauging this symmetry by making it local using gauge covariant derivatives. The
best-matching procedure does not follow this paradigm. Instead, the gauging process is
derived from a natural procedure motivated by Mach’s principles. This raises the question:
does the deeper understanding of the gauge principle provided by best matching suggest
any natural generalizations? Indeed, there is at least one possibility that emerges. This
involves best matching an action that is not globally invariant under the desired symmetry.
This generalization of the gauge principle can lead to the construction of dual theories that
have the desired symmetry. In particular, GR is a theory of this type with respect to 3d
conformal transformations. Its conformal dual is shape dynamics.

In this chapter, we will illustrate the key properties of non—equivariant best—matched
theories and show how they can lead to a dual representation. These features will be
illustrated using a toy model that possesses many key features of shape dynamics. This
toy model will be used to motivate a general dualization procedure that one can follow
starting from a non—equivariant theory. Then, we will show how canonical best matching
provides a powerful framework that draws a link between the original theory and its dual
through a series of gauge fixing conditions required by the best—matching variation. To
begin with, we will make some general geometric observations that will set the foundation
for our discussion.

o8



4.1 Non—equivariance

In Chapter (3), we only considered metrics, g, on configuration space that are equivariant
under the action of the group G. This implied the equivariance condition

Ge9:4(Ga)GY = gan(@), (4.1)

which, in turn, implied that the original action
S = / A gan @ (4.2)

is invariant under a global A independent gauge transformation ¢* — G%(¢*)qgb. This can
easily be seen by noting that for ¢ = 0, only the metric transforms to the LHS of (4.1).
Thus, the equivariance condition immediately implies that S is invariant.

One can understand this from geometric considerations on the PFB A. Locally, (4.1)
takes the form of the vanishing of the Lie derivative of the metric in the direction of the
flow generated by G. This means that the fibers are the integral curves of Killing vector
fields of g,,. Now consider a particular curve, v, living on a section of A defined by the
best-matching condition (ie, a curve on the horizontal lift of A). The value of the best—
matched action is defined as the length of v in terms of the metric g,. If one shifts v by a
constant amount along the fibers then, since these are Killing directions of g4, the length
of v, and thus the value of S, will remain unchanged. Thus, there is a dim(G) parameter
family of paths v, related by global gauge transformations, that minimize .S. Nevertheless,
these all project down to the same path in the base space R. In the equivariant approach,
it is this projectability that makes it possible to define a unique geodesic principle on the
reduced configuration space R. In the non—-equivariant approach, this argument breaks
down. Nevertheless, it is still possible to use a best matching connection to define a
geodesic principle on the reduced configuration space.

In the non—equivariant case, what is lost is the invariance of the action under constant
translations of v in the vertical directions of A. However, it is still possible that there
exists a particular choice of «, corresponding to a preferred section in 4, that minimizes
S. One can then define a metric on R by taking the value of g, on this preferred section.
This still provides a geodesic principle on R that does not require any specification of
initial data along the vertical directions of A. Thus, the theory will still satisfy Mach’s
principles as stated by Poincaré (i.e., that the freely specifiable initial data of the theory
must correspond to a point and a direction on the reduced configuration space). In other
words, if there exists a particular section for which the length of v is extremized, then this
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extremization condition selects a position in the vertical direction of A for which no freely
specifiable initial data can be given. Thus, the variational procedure itself performs the
required quotienting from A to R.

There are two interesting consequences to this. First, it is possible to define a back-
ground independent relational theory with respect to a symmetry that doesn’t exist as a
global symmetry of the original action. This seems contradictory the spirit of the gauge
principle and many definitions of background independence. Second, it provides a way
of constructing a dual theory that does have the desired global symmetry. This can be
accomplished in the following way. Once the preferred section on A has been found that
minimizes S, a metric on R can be defined by taking the value of g,;, on this section. It is
then possible to equivariantly lift this metric back to A to get a truly equivariant metric
over all of A. That new metric can be used to define the dual theory on A. This is the
configuration space picture of what happens in the dualization procedure used to construct
shape dynamics. In the coming sections, we will be mainly concerned with the phase space
picture that is more powerful mathematically. However, the configuration space picture is
still useful because it gives a nice (though somewhat restrictive) intuitive picture for what
is going on.

To conclude this section, we point out what conditions need to be satisfied in order
for non—equivariant theories to be consistent. The main thing that can go wrong, from
the point of view of the Hamiltonian picture, is that the Hamiltonian constraint is no
longer invariant under G-transformations. The negative effect of this is that the best—
matching constraint, imposed by the best—matching variation, will no longer be first class
with respect to it. This could lead to an inconsistent system because the constraint algebra
is not closed. However, in fortunate situations, the constraints reduce to a first class system
in a particular gauge. This is a standard technique for dealing with second class systems,
although there is no guarantee that such gauges exist. The fact that this is the case in GR
is still a mystery. Whether this is a fortunate accident or whether there is some deeper
principle that we have not yet discovered at work behind this mechanism is a question of
top priority.

4.2 Toy model

We begin our discussion of non—equivariant best matching by developing, in detail, a toy
model that contains many of the key features of shape dynamics. Our strategy will be
to first recognize the non—equivariance then outline a step—by-step strategy for finding a
consistent theory then constructing the dual theory. We will see that the Hamiltonian
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constraints will be first class with respect the best—matching condition. To obtain a first
class system, we can find a particular gauge for the Hamiltonian constraints where the
system is first class. From this, it is possible to construct the dual theory and compare
its classical equations of motion to the original. Accordingly, we start by gauge fizing
some of the symmetries of the original theory then replace them with different symmetries.
Remarkably, this achieves a trading of symmetries. Thus, what we will present is an
algorithm for trading one symmetry for another.

The toy model consists of n independent harmonic oscillators in d dimensions. The

action is!
n

S = /: dt ;% [(%(t))2 — kq;(t)] . (4.3)

The masses have been set to 1, for convenience. We will need to consider negative spring
constants £ < 0 to avoid imaginary solutions. Unstable solutions will not worry us here
since we are interested mainly in the symmetries of the toy model, which we do not consider
a physical theory.

We write the above action in a reparametrization invariant form by introducing the
auxiliary fields N; and the arbitrary label A

S = /A: d\ Izn; {92%](\2) + Ny (@q?()\) + 81)} : (4.4)

where we have restricted to strictly negative k. We choose to parametrize the trajectory
of each particle independently and allow the time variables to be varied dynamically. The
Ny’s represent the \ derivatives of the time variables and mimic the local lapse functions of
geometrodynamics, whose terminology we will borrow. The total energy of each particle £;
essentially specifies how much time should elapse for each particle in the interval A\; — Ay so
that this theory is equivalent to n harmonic oscillators with different “local” time variables.
We have introduced the local reparametrization invariance as a way of studying this feature
of geometrodynamics in a finite dimensional toy model. It is not meant to have any direct
physical significance.

After performing the Legendre transform S = [ dAY"7_, (71¢% — Ho(g, 7)), where m]

a —

the local reparametrization invariance leads to n first class constraints, x;. The total

85
3¢

2

1Uppercase indices are only summed when explicitly shown. Also, v? = v*v%d,;, for vectors and u? =

uaupd® for covectors.
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Hamiltonian is

Hy, = ZNIXI, where (4.5)
=1
1

X1 = 5 (W% — || q?) - & (4.6)

and the phase space I'(q, 7) is equipped with the Poisson bracket
{a7, 7} = 0397, (4.7)

Our goal, as explained below, will be to exchange all but one of the first class x;’s for new
first class conformal constraints.

4.2.1 Identify the symmetries to best match

Our objective is to best—match this theory with respect to an analogue of local conformal
invariance. However, we must be careful when choosing the precise symmetry to best
match. A naive choice would be to best match with respect to the symmetry, S, defined
by identifying the configurations

qf — e’qf, (4.8)

so that each particle gets its own conformal factor, ¢;. Then, we would be trading all the
x1’s for this new symmetry. This choice, however, will lead to frozen dynamics because
one global y must be left over to generate dynamical trajectories on phase space?. Thus,
we need to leave at least one linear combination of x’s unchanged. Because of this, our
first — and most subjective — step is to identify a subset of S to best match.

A natural choice is the symmetry §/V, where V represents all configurations that share
the same total moment of inertia. Since the total moment of inertia sets the global scale
of the system, §/V identifies all locally rescaled ¢’s that share the same global scale. This
symmetry requires invariance under the transformation

qf — e'qj, (4.9)

where ngS obeys the identity

<¢3> =0. (4.10)

2We draw the reader’s attention to [49], which suggests that such a global x does not generate a gauge
transformation but a genuine physical evolution.
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The mean operator, is defined as (-) = £ >°7_| -/, where - signifies inclusion of the field we
would like to take the mean of. The idea is to trade all but one of the local Hamiltonian
constraints for constraints that generate local rescalings. In this particle model, “local”
means “individual” for each particle. As is straightforward to show, by imposing the
constraint (4.10), we restrict ourselves to rescalings that do not change the total moment
of inertia of the system. This restriction on the rescalings mimics the volume preserving
condition in shape dynamics. After performing the symmetry trading, we will still have a
single Hamiltonian constraint left over to generate dynamics. This is crucial for obtaining
a non—trivial theory.

We can impose the identity (4.10) explicitly by writing $ in terms of the local scale
factors ¢y X
b1 =1~ (9. (4.11)
Thus, we parametrize the group §/V redundantly by S. The fact that the x;’s are not in-
variant under this symmetry implies that we have a non—equivariant best—matching theory
with respect to this symmetry.

4.2.2 Perform canonical best matching

The next step is to best match the symmetry S§/V following the procedure outlined in
Section (3.2). This is achieved first by trivially extending the phase space I'(q,7) —
Le(q, 7, ¢, ) to include the canonically conjugate variables ¢; and Wé, then by applying
the canonical transformation 7'

¢ = Tq} =75 =" g (4.12)
al s Trl =7l = 6_(2)I7T£ (4.13)
o1 —= Tor = g1 = ¢ (4.14)
my = Ty =7y = — [qima — (q- )] (4.15)
generated by
F=>" (q? exp(¢r)TL + qbzfrqi) (4.16)
I

As before, the non—zero Poisson bracket’s introduced in I'y are

{¢r,7]} =67 (4.17)

We note that the introduction of (¢, 7®) is analogous to the restoration of U(1)-gauge
symmetry in massive electrodynamics through the introduction of a Stiickelberg field ¢:
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the original photon field A, is replaced by a U(1)-transformed A, + 0,¢, where ¢ is not
viewed as a gauge parameter but as a new field with its own gauge transformation property,
such that the transformed photon mass term mTQ(A“ + 0*¢) (A, + 0,¢) is gauge-invariant.
Because of this close analogy, we will often refer to ¢ as a Stiickelberg field in the remaining
text.

The trivial constraint 7r;; ~ 0 in the original extended theory transforms to
Try=C"=x)— (xlqf — (m-q)) = 0. (4.18)

Because T is a canonical transformation, the C’s are trivially first class with respect to
the transformed constraints Ty

1 ~ A
xr — Txr = B (6_2¢7T? — e* |k| Cﬁ) - (4.19)

In fact, since 7T¢I) ~ 0 commuted with any functions f(g, p) in the original theory, C7 ~ 0
commutes with any functions, f(q, p), of the best-matched quantities ¢ and p. This should
be expected: the canonical transformation (4.16) did not change the theory. But, by
extending the phase space, we have added two phase space degrees of freedom per particle.
The role of the C}’s is precisely to remove these degrees of freedom. This can only happen
if the C’s are first class. Consequently, the infinitesimal gauge transformations generated
by the C7’s on the extended phase space variables

50Jq1 - —(SIJé]qI 59J7T[ = 5[Jé[7Tj
59(]§Z5[ = 5IJ€J 59(]7'% = O, (420)
where dy,- = {-,9‘7 C J} (no summation), represents at this stage a completely artificial

symmetry.

Before writing down the remaining constraints, we note that one of the C}’s is singled
out by our construction. Averaging all the C;’s gives

(mg) = 0. (4.21)

However, the action of this constraint is trivial for arbitrary functions f on the extended
phase space I'c. To see this, note that the gauge transformations dg- = {-, 0 () } generated

by (4.21) are trivial for the phase space variables ¢, T, 6, and 7. The only transformation

that is not automatically zero is 59@ =40 {QASI, (7r¢>}, which can easily be seen to vanish.

Since the ¢’s only enter the theory through the qg’s, we see that the constraints (4.21)
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act trivially on all quantities in our theory. This is a reflection of the fact that there
is a redundancy in the qAB variables. Eq (4.21) is then an identity and not an additional
constraint. This reflects the redundancy in the original qg variables expressed in terms of
Q’s.

It will be convenient to separate this identity from the remaining constraints by in-
troducing the numbers o, where i = 1...(n — 1), such that the set {(my),C;}, where
C; = >, alCy, forms a linearly independent basis for the C;’s.®> We are then safe to drop
the constraint (ms) = 0 from the theory. The remaining constraints are

Txr ~ 0, and C; =~ 0. (4.22)

where I =1,...,nandi=1,...,n— 1.

4.2.3 Impose and propagate best—matching constraints

In order to complete the best—matching procedure, we impose the best—-matching con-
straints
m, ~ 0. (4.23)

One of the best-matching constraints, (m,) & 0, is first class but trivially satisfied. It can
be dropped. The remaining 7}’s can be represented in a particular basis as ), = aj7} and
are second class with respect to the T'x’s. To see this, consider the smearing functions f'.
Then, the Poisson bracket

Y Txadmly =) [(ahf (75 + Kl 4))) — alf” (x5 + |kl 47)] (4.24)

I,J=1 J=1

is non-zero for general f! (in the above, the mean is taken with respect to the j compo-
nents). Nevertheless, the constraints 71'25 can be propagated by the Hamiltonian by using
the preferred smearing f! = N{ that solves the n — 1 equations

> ahNg (kI g5+ 75) = (NG (1Kl 5 + 7)) - (4.25)
J=1

These lapse fixing equations lead to consistent equations of motion.

3Note that the ability to explicitly construct this basis is a feature of the finite dimensional model. This
possibility sets the toy model apart from the situation in geometrodynamics, which is more subtle.
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We can now understand the reason for imposing the identity <<§> = 0. Were (/5 unre-

stricted, the n xn matrix {TX I 7T$ } would have a trivial kernel N} = 0. This uninteresting
solution leads to frozen dynamics. Alternatively, the (n—1) xn matrix {TX I W;} has a one
dimensional kernel. Thus, (4.25) has a one parameter family of solutions parameterized
by the global lapse. This leaves us, in the end, with a non—trivial time evolution for the
system.

The fact that we have a remaining global lapse indicates that we have a remaining
linear combination of Ty;’s that is first class. We can split the T'x;’s into a single first
class constraint

Txte. = NyTxi (4.26)
I
and the second class constraints

Txi =Y B/Tx, (4.27)
I

where the 3! are numbers chosen so that the above set of constraints is linearly independent.
Note that, in the finite dimensional case, it is easy to ensure that this new basis is equivalent
to the original set of x;’s. In geometrodynamics, the situation is more subtle because we
are dealing with continuous degrees of freedom. Using this splitting, we now have the first
class constraints

Txte ~ 0, and C;~0 (4.28)
as well as the second class constraints

Tx; ~ 0, and 7, ~ 0. (4.29)

4.2.4 Eliminate second class constraints

To see that this procedure has succeeded in exchanging symmetries, we can eliminate the
second class constraints by defining the Dirac bracket

{" "}Db = {'7 “}Pb + Z {" W;} Czj {TXJ" } - {" TXi} C’; {7T27 } ) (430)

where ' . ,
C;={m, Tx;} - (4.31)
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The existence and uniqueness of the Dirac bracket depend on the invertibility of C', which,
in turn, depends on the existence and uniqueness of the lapse fixing equations (4.25). In
this toy model, (4.25) are just arbitrary linear algebraic equations. Thus, C' will generally
have a non—vanishing determinant.

The advantage of using the Dirac bracket is that the second class constraints 7Té) and
Tx; become first class and can be applied strongly and eliminated from the theory. This
procedure is greatly simplified because one of our second class constraints, namely 7ré5 =0,
is proportional to a phase space variable. Thus, the method discussed by Dirac in [53] can
be applied to eliminate the second class constraints. For Wé), this involves setting wé =0
everywhere in the action. For the T'y;’s, this involves treating Ty; as an equation for ¢.
The solution, ¢g(q, ), of

TXilgr_gg =0 (4.32)
is then inserted back into the Hamiltonian. This leaves us with the dual Hamiltonian
n—1 n
Hayal = NT'Xtc. (o) + Z A’ Z o (qima — (- 7)), (4.33)
i=1  I=1

where N and A? are Lagrange multipliers. We can write this in a more convenient form by
using the redundant constraints D; = ¢¢n! — (q - )

Hdual - NTXfc(QbO) + Z AID] (434)

I=1
remembering that one of the Dy’s is trivially satisfied.

The remaining Hamiltonian is now dependent only on functions of the original phase
space I'. Furthermore, the Dirac bracket between the dual Hamiltonian and any functions
f(g,m) on I' reduces to the standard Poisson bracket. This can be seen by noting that
the extra terms in the Dirac bracket {f(q, ), Hauai}p, only contain a piece proportional
to {f(q,m), s}, which is zero, and a piece proportional to, {772, Hdual}, which is weakly
zero because Hgy, is first class. Thus, this standard procedure eliminates ¢ and 7, from
the theory.

The theory defined by the dual Hamiltonian (4.34) has the required symmetries: it
is invariant under global reparametrizations generated by .| o and it is invariant un-
der scale transformations that preserve the moment of inertia of the system. This last
invariance can be seen by noting that the first class constraints D; generate exactly the
symmetry (4.9).
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Before leaving this section we will give two explicit examples of how one can construct
Txte(¢o) explicitly. In the first example, we solve the second class T'x;’s for ¢y exactly
and then plug the solution into the definition of T'y¢.. This immediately gives the general
solution for n particles. Unfortunately, this procedure cannot be implemented explicitly
in geometrodynamics because the analogue of Tx;(¢¢) = 0 is a differential equation for
¢o. There is, however, a slightly simpler procedure that one can follow for constructing
Txtc.(¢o) provided one can find initial data that satisfy the initial value constraints y; of
the original theory. If such initial data can be found, then ¢, = 0 is a solution for these
initial conditions. Because the theory is consistent, the initial value constraints will be
propagated by the equations of motion. Thus, ¢y = 0 for all time. We can then use this
special solution and compute y¢.. using its definition. This alternative method is given in
the second example for the n = 3 case and agrees with the more general approach.

General n

For simplicity, we take & = 0. This will lead to transparent equations, which we value
more in the toy model than physical relevance. In the particle model, it is possible to find
®} explicitly for an arbitrary number of particles, n, by solving T'x;(dg) = 0. It is easiest
to solve for ¢} directly. The solution is*

204 i (4.35)
(& = . .
[kl a7

We can choose a simple basis for the second class x;’s: {x;|i # j}, for some arbitrary j.
The first class Hamiltonian is then

Xee. = Nix;(05)- (4.36)
Using the identity ng57 =—>; oy QAbl , we can rewrite this as

o o exp (22&5) 2 4 exp (—zz%) e (1.37)

I#j I#j

Inserting (4.35), the first class x becomes

Xte. OX Hﬂ'? — |k|" H qr. (4.38)
=1 =1

4Negative spring constants k < 0 are required to give real solutions to this equation.
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It can be readily checked that (4.38) is invariant under the symmetry
qr — ququ T — 6_‘7517?1, (4.39)

where, ¢ = ¢! — ().

In geometrodynamics, solving for q% explicitly will not be possible because it will require
the inversion of a partial differential equation. However, if one is only interested in mapping
solutions from one side of the duality to the other, then it is sufficient to find initial data that
satisfy the y;’s with ¢ = 0 and use the preferred lapse to construct the global Hamiltonian.
This procedure is outlined in the next example.

Example: n =3

We analyse the 3 particle case because this involves subtleties that do not arise in the 2
particle case but must be dealt with in the general n particle case.

If we choose the basis {7‘(‘2)} = {Wé,ﬂ';}, then the lapse fixing equations (4.25) with
¢ = 0 have the unique solution

k| 3 + 732 |k| g3 + 72
NI = N3 [kl g5 + 5 NZ=N3 |2 3], 4.40
0 °(Wﬁ+ﬁ 0 =No \ KTz v 2 (4.40)

Inserting this solution into Xte|4_q = D ; Nixr, we find

Xt ¢ (Timyms — ’k|3CI%ngI§) — 2X1X2X3- (4.41)

The consequence of setting ¢! = 0 instead of using it to solve Ty (@) = 0 is that we pick
up a term that is proportional to x; and xs, which are strongly zero. For this reason, we
need to ensure that we have initial data that solve the initial value constraints (x; = 0
and y2 = 0 in this case) for ¢ = 0 in order to arrive at the correct global Hamiltonian.
Assuming that such data have been found, the last term is zero and y¢.. reduces to

Xte o (mimams — [k[” ¢ig3q3) (4.42)

This agrees with our general result from last section.
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4.2.5 Construct explicit dictionary
We can now compare our starting Hamiltonian with that of the dual theory:

Hy=) N (4.43)
1

Hypa = N Xf.c.|¢0 + ZAI (ﬂ-iQ? - <7TI ' ql))
I

=N [HW? — k" ][ a7
I=1 I=1

The first theory is locally reparametrization invariant while the second has local scale
invariance and is only globally reparametrization invariant. Note the highly non-local
nature of the global Hamiltonian of the dual theory.

T Z A (maqf = (71 -an)) - (4.44)

The equations of motion of the original theory are
¢4 = N'mls® il = NT|k| ¢36,. (4.45)
Those of the dual theory are

n—1

i@ = 2N H W%] T8+ Arqy (4.46)

n
J#I

= 2N ][] IkIQ3] || q76as +
JAI

DAl (4.47)

n

We can now read off the choice of Lagrange multipliers for which the equations of motion
are equivalent

N'=2oN ][] ~2N]] Ikl ¢ (4.48)
J£I J£I

AT =0. (4.49)
In the second equality of (4.48), the x;’s have been used.

4.3 General symmetry trading algorithm

Based on the above description of the procedure, we can sketch out a general algorithm
for trading the first class symmetry x for D:
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1. Extend the phase space of the theory to include the Stueckelberg field ¢ and its
conjugate momentum 7, then artificially introduce the symmetry to be gained in the
exchange by performing a canonical transformation of the schematic form:

F(6) = gexp(@)F + 7. (4.50)
The trivial constraint w4 ~ 0 transforms to

T7T¢EC:D—7T¢%0. (451)

2. Perform a best—matching variation by imposing the conditions
7 ~ 0. (4.52)

If they are first class, then the procedure just “gauges” a global symmetry. If they are
second class with respect to the transformed first class constraints, T"y, of the original
theory, then they can be exploited for the exchange if the Lagrange multipliers, N°,
can be fixed uniquely such that

{TXx(N%),m} = 0. (4.53)

When this is possible, the 7y’s can be treated as special gauge fixing conditions for
x. It is possible, as in our case, that there will be a part of Ty that is still first class
with respect to m,. This should be separated from the purely second class part.

3. Define the Dirac bracket to eliminate the second class constraints. This can be done
provided the operator {T'x, 7, } has an inverse (which also means that N° exists and
is unique). The second class constraints can be solved by setting 75 = 0 everywhere
in the Hamiltonian and by setting ¢ = ¢ such that T'x(¢9) = 0. The second class
condition and the implicit function theorem guarantee that this can be done. When
this is done, the Dirac bracket reduces to the Poisson bracket on the remaining phase
space variables. The 74 terms drop out of the C’s and the x’s have been traded for
D’s.

4. To check consistency, construct the explicit dictionary by reading off the gauges in
both theories that lead to equivalent equations of motion.

Guided by this basic algorithm, we will now construct a formal geometric picture to
illustrate why this algorithm works.

71



4.3.1 Geometric picture

Let us now examine the mathematical structure behind the trading of gauge symmetries
that we encountered by constructing the dual theory. We start out with a gauge theory
(T, {.,.}, H,{xi}icz), where T' is the phase space of the theory supporting the Poisson-
bracket {.,.}, the Hamiltonian H, and the constraints x;. We demand that the constraints
are first class, i.e. for all 7, 7 € Z there exist phase space functions Z’; as well as u¥ s.t.
{Hxit = XperuiXn

The constraints define a subspace® C = {z € T : x;(z) = 0Vi € Z} and the first line
of equation (4.54) implies that the derivations {y;,.} are tangent to C, while the second
line implies that the Hamilton vector field {H, .} is tangent to C. The {x;,.} generate a
group G of gauge-transformations on C that lets us identify C through an isomorphism
i : E — C with a bundle® E over C/G. The fibres of E are gauge orbits of a point x € C
and thus isomorphic to G/Iso(z). According to Dirac, we identify the fibres with physical
states and observe that the total Hamiltonian H,,, = H + ZieI Aiy; depends on a set of

undetermined Lagrange multipliers {)\; };,cz. Fixing a gauge means to find a section o in
E.

This is most easily done by imposing a set of gauge-fixing conditions” {¢;};cr such
that the intersection of G = {x € T : ¢;(z) = 0Vi € Z} with C coincides with (o).
To preserve i(0) under time evolution we have to solve {Hu, ¢i}|. = 0 Vi € T for the
Lagrange-multipliers M = M. The gauge-fixed Hamiltonian is

Hgf = H —+ Z >\in (455)

1€T

and the equations of motion are generated by {H,y,.}, while the initial value problem is
to find data on (o).

Given a gauge theory (H,{x;}iez) on a phase space (I',{.,.}) we define a dual gauge
theory as a gauge theory (Hy, {p;j}jes) on (I',{.,.}) if and only if there exists a gauge fixing
in the two theories such that the initial value problem and the equations of motion of both
theories are identical.

5Although we assert “space” we abstain from topologizing I' or any of its subsets in this thesis.

6This bundle is, in general, not a fibre bundle, since different points 2 in C generally have different
isotropy groups Iso(x).

"In general the index set for ¢; could be different from Z.
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One particular way to construct a dual theory is to use gauge-fixing conditions {¢; }icr
defining G such that for all 7,5 € Z there exist phase space functions gfj satisfying the
integrability condition

{6005} = gl (4.56)
kel
The {¢;,.} thus generate a group H of transformations on G that lets us identify G with
a bundle F' over G/H using an isomorphism j : F' — G. The fibres of F' at x € G are
H/Iso(x). The Hamiltonian Hy of the dual theory has to satisfy

{Ha, }, = {Hys },
{Ha, 0}lg = 0. ! (4.57)

These conditions as well as the integrability condition can be fulfilled by construction
using the canonical Stiickelberg formalism to implement symmetry under an Abelian group
H with the subsequent elimination of the Stiickelberg field by substituting it with the
solution to the constraint equations in the original theory. The nontrivial conditions for
the Stiickelberg formalism to yield the anticipated trading of gauge symmetries are: 1) that
the generators of the group furnish a gauge-fixing for the original gauge symmetry and
2) that the transformed constraint equations admit a solution in terms of the Stiickelberg
field. In the particle model, the first condition is satisfied by the invertibility of (4.25) in
terms of Ny while the second condition is guaranteed by the invertibility of T'x;(¢¢) = 0 in
terms of ¢g.

4.4 Non—equivariance and linking theories

The symmetry trading algorithm just presented can be viewed in a more powerful way
using the concept of a linking gauge theory. We will adopt the general idea introduced in
[25] to the non—equivariant toy model presented in this chapter.

Consider the totally constrained Hamiltonian gauge theory on extended phase space
Ie(q, p, ¢, m,) with the symplectic structure given in Section (4.2.2) and the first class
constraints

1~ 0 &~ 0. (4.58)

Since the x;’s do not depend on the ¢’s, one can straightforwardly apply the phase space
reduction I'y — I' by setting Wé = 0 strongly. This shows explicitly the trivial statement
that the extended theory is equivalent to the original one. For reasons that will become
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apparent in a moment, we call the extended theory a linking theory when the metric is
non—equivariant with respect to the symmetry parametrized by the ¢’s.

We can perform the canonical transformation 7', defined in Section (4.2.2), in the linking
theory. This transforms the constraints to

Tx ' ~0 C'=x,-D'~0, (4.59)

where
D' =qip, —(q-p)- (4.60)

We split T'x; into T'xc. and Tx; and CT into C* and (C') (which is redundant). This gives
the constraints

Xte ~ 0 (C)=0 (4.61)
Tx' ~0 C' =0, (4.62)

where . is first class with respect to the D”’s. (Note that the equals sign in the above
equation is not a typo: this constraints is automatically satisfied.)

The reason for calling this a “linking” theory is that it provides a link between the
original theory and the dual theory through a particular choice of gauge fixings. If we
choose the gauge ¢; = 0 (which is trivially a valid gauge choice for this theory), then the
map 7" becomes the identity and the constraint Wé) = ' must be fixed strongly. Thus, the
theory reduces to the original theory on I'. Alternatively, the gauge 7 = 0 can be fixed
by solving T'x* = 0 strongly for ¢. This leaves x¢.. =~ 0 and D' =~ 0, which is precisely the
dual theory. Thus, both the original theory and the dual theory represent different gauge
fixings of the linking theory. This is a powerful way of thinking about the dualization
procedure. Figure (4.4) shows how the linking theory leads to the original or dual theory
through different gauge fixing.
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Original Theory
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Dictionary
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Figure 4.1: Different gauge fixings of the linking theory distinguish between the original
and dual theories.
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Chapter 5

Best matching in geometrodynamics

In this chapter, we study different relational geometrodynamic theories. By “geometro-
dynamic,” we mean theories that involve a dynamical Euclidean metric on an arbitrary
spatial manifold ». We will be mainly dealing with 3—-geometry but the generalization to
n dimensions and Lorentzian metrics is either trivial or straightforward. By “relational,”
we mean that the theories satisfy Mach’s principles as they have been outlined throughout
the text. This means that we will be using best matching to eliminate what we consider to
be unphysical information contained in the metric. Accordingly, the first step is to identify
what we believe to be the empirically meaningful information contained in the metric.
We will argue that this is nothing but the information about the shape of local configu-
rations. Mathematically, this corresponds to best matching the 3—metric with respect to
3—dimensional diffeomorphisms and conformal Weyl transformations. The theory we are
led to in this fashion is shape dynamics.

After identifying the configuration space to work with and the symmetry group to best
match, the only remaining ambiguity is the choice of the metric on A. For shape dynamics,
this choice is highly non—trivial. We do not yet have a simple understanding of the choice
of metric that leads to shape dynamics. Instead, we motivate our choice by picking a
metric, equivariant with respect to the conformal diffeomorphisms, such that a geodesic
principle in terms of this metric reproduces the predictions of GR. It is remarkable that
such a metric exists but understanding this choice better could be the key to unlocking
the relationship between Mach’s principles and the causal structure of spacetime.

The reason for this, as we will see, is that GR, in ADM form, can be derived from
a version of best matching with respect to the 3—diffeomorphisms. This version of best
matching is not a true geodesic principle but a sort of local version of one. However, if we
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best match this “local” geodesic theory with respect to the conformal transformations, we
get a non—equivariant theory whose dual is shape dynamics, which is a genuine geodesic
principle on conformal superspace. To achieve equivalence with GR, however, we must
abandon locality. This is a serious price to pay for a geodesic principle but the gain is a set
of simple linear constraints and a clear conceptual picture motivated by Mach’s principles.

To motivate the transition to shape dynamics we will start by discussing different ways
of constructing relational geometrodynamic theories. First, we will sketch a naive choice
that maintains a certain degree of locality and a genuine geodesic principle. Among theories
of this kind is Hotava’s projectable lapse theory at high energy [54]. As a next step, we
will abandon a genuine geodesic principle in favor a more restrictive one that is manifestly
local. Using this, we will be able to derive GR in ADM form following [2]. We will then use
the framework to briefly address the problem of time by using our definition of background
independence to insert a background time into GR. The theory we obtain is equivalent to
unimodular gravity. Finally, we will insist on a genuine geodesic principle by applying our
symmetry trading algorithm to the ADM form of GR. This will lead to shape dynamics.

5.1 Identification of the symmetry group

As is always the case, the first and most subjective step in best matching is the identification
of the configuration variables and the symmetry group. We will make a choice that is
strongly inspired by Mach’s ideas. Consider a complicated system of particles existing
in the universe. We claim that only the local shapes produced by the distribution of
these particles is measurable and that these local shapes are determined purely from the
conformal geometry.

The idea is simple: if we can go locally to a frame that is approximately flat then
we should be able to best—match the shapes of any particles that live in this locally flat
neighborhood. Thus, all we must do is shift our thinking about best matching from a
global shifting procedure to a local one. But how should we think of the ¢ fields in
this case? For the translations, we are looking for a smooth way to shift the locally flat
references frames (or the frame fields) by a certain amount in an arbitrary direction. This
is simply an arbitrary diffeomorphism of the metric. For rotations, this is the requirement
that the frames fields be rotated by arbitrary amounts. However, the metric is invariant
under rotations of the frame fields, so this has no effect on the metric itself. In other
words, applying the best matching procedure to the Euclidean group locally is equivalent
to shifting the spatial metric by an arbitrary diffeomorphism. This is a way of stating that
there is coordinate ambiguity when comparing a system of particles from one moment to
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the next. Thus, the local shapes should depend on the geometry and not the coordinate
information contained in the metric. More specifically, this translates into the requirement
that the theory should be best matched under the diffeomorphism group whose local algebra
is generated by the Lie derivative of the metric and parameterized by the vector fields &
such that

5gab = E{galr (51)

Lastly, the local shapes should not depend on the local scale. This is because all
measurements are local comparisons. If one uses a particular ruler to measure the length
of an object, the result of the measurement is unchanged if the local scale is tripled in size.
This is obvious because both the ruler and the object will be rescaled. But, this principle
also holds independently for different local neighborhoods. If you carry the object and the
ruler to a different point in space where everything is only half the size, then still nothing
changes in the outcome of the measurement. This requirement translates to an invariance
of the metric under local Weyl transformations of the form

Gav(x) = €@ g (), (5.2)

where the factor of 4 is conventional in 3 dimensions.!

Putting these results together, we are looking for a theory that depends only on the con-
formal geometry because it is best matched with respect to the conformal diffeomorphisms.
We can now identify the fiber bundle to be used in our procedure. The configuration space
of all 3—metrics is called Riem, the quotient space of Riem with the 3—diffeomorphisms
is superspace, and the quotient of superspace with the conformal transformation is con-
formal superspace. Thus, we are looking for a best—matching theory where A = Riem,
R =conformal superspace, and G is the group of conformal diffeomorphisms. Note that
Riem is not a principal fiber bundle over conformal superspace because of the presence
of metrics with global isometries. One must mod out by these isometry groups to get a
genuine PFB.

5.2 Equivariant geodesic theories

In this section, we consider the simplest options for forming genuine geodesic theories where
Riem is treated as a fiber bundle over conformal superspace. Unfortunately, these naive

In d dimensions, the conventional factor is ﬁ. This factor ensures that the curvature scalar transforms
in a simple way under this transformation.
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choices do not lead to GR and likely suffer from instability problems. Nevertheless, it is
useful to start with these simple models to see why they cannot work.

We want a genuine equivariant geodesic principle on Riem. For this, we need to specify
a metric on Riem. Such a metric should be a functional of the spatial metric, g, and should
feed on two symmetric Rank(2) tensors, u and v. For an up to date account of how to
define metrics on Riem, see [55]. We will only consider those metrics G that split into an
ultra—local piece

Glu,v, 9] = / d"w+/g G (@) uap (1) var (1) = / d"v\/g (99" — g™ g Yuapvea,  (5.3)
% 2

and a conformal piece Vg, 9y, ...] = [ d"x\/gV such that G[u,v,g,9g,...] =V|g,dg,.. ]
Glu,v,g]. Note that G is the most general ultra-local Rank(4) tensor that can be
formed from the metric. It represents a one parameter family of supermetrics labeled by
a € R. For a = 1, we recover the usual DeWitt supermetric. The supermetric G®¢ plays a
role similar to the flat metric 7, in the toy models. The scalar function V (g(z), dg(z),...)
is analogous to the conformal factor of the toy models and, for this reason, is often called
the potential. However, it differs from the potential of the finite-dimensional models in
that it can depend on the spatial derivatives of the metric.

We can perform best matching with respect to the diffeomorphisms by infinitesimally
shifting the metric by
Gab = Gab + LeGav (5.4)

and by doing a best matching variation with respect to . Equivariance of the action
with respect to this symmetry is guaranteed by choosing it to be a scalar. Just like the toy
models, the transformation (5.4) is equivalent to introducing the gauge covariant derivative

Dﬁgab = gab + *Cg'gab = gab + é(a;b)a (55)

which replaces all occurrences of % in the action. In the above, semi—colons represent
covariant differentiation on the tangent bundle of ¥ using the metric compatible connection.

Similarly, best matching with respect to the conformal transformations implies the
additional term

4§bgab (56)

to the covariant derivative and a best-matching variation with respect to ¢. Thus, the full
covariant derivative becomes

D€,¢gab = gab + é(a;b) + 4$gab' (57)
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Equivariance with respect to the conformal transformations requires the potential to be
conformally invariant because this covariant derivative makes the kinetic term conformally
invariant. In 3 dimensions, the lowest dimensional operator that one can form out of the
metric and its derivatives is the Cotton tensor

1
C’ab - Vc (Rda - ZRgda) ECdegeba (58)

where €%¢ is the totally antisymmetric tensor in 3d. Thus, the simplest conformally in-

variant scalar one can form from the metric and a finite number of its derivatives is the
square of the Cotton tensor
V = CuC® = (C?, (5.9)

which has 6 spatial derivatives of the metric. In principle, the potential can be any confor-
mally invariant scalar formed from the metric. However, since this is the lowest dimensional
operator compatible with our symmetries, there is an anisotropic scaling of z = 3 between
space and time. This occurs because the C? has 6 spatial derivatives compared with the
2 time derivatives in the kinetic term. Power counting with this scaling indicates that
the C? term is the only relevant local operator in 3 dimensions. It would then seem like
a natural choice for the potential of the bare theory. This is similar to what happens in
Hotava-Lifshitz gravity [54, 56].

We can now write down a geodesic principle on Riem. A direct analogy with the toy
models gives

Sglobal = /d)\\/g[pfga DSQ? g, 897 .- ] (510)

-/ dA\/ [ @275 6D gD \/ [aevavieon.). G
> >

Clearly, (5.11) is a non—local action as it couples all points in ¥ at a given instant. However,
the potential is still required to be a local functional of the metric. This is what singles
out the C? term as the only relevant coupling at high energy. If we allow for non-local
functionals of the metric, then this is no longer the case and many other potentials are
allowed. Shape dynamics is a theory of this kind. It has an equivariant potential but one
that is a non-local functional of the metric. This allows it to be conformally invariant
without introducing anisotropic scaling or relying on the C? term in the UV.
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5.2.1 Hamiltonian

The momenta (7, (%, m,) canonically conjugate to (gup, &4, @) obtained from a Legendre
transform of the action (5.11) are

0S [V
7Tab = = 7—_\/§Gab6d’l)57¢gcd (512)

— 55 —
oS % bed
R AVA —/gG"“De 4. 5.13
¢ 73 b <\/ 7-\/§ .69 d) (5.13)
05 A% bed
= —_— :4 a — GGC D c :4 3 514
Ty 56 Jab 7-\@ £,09cd ™ ( )

where T = G[D¢ 49, Devg, 9] = [ d"x /GG De 49, De pgea is the kinetic term and 7 =
Gapm™. This leads to the primary constraints

He(z) = (*(z) + 2Vpm®(z) = 0 (5.15)
C(x) =my(x) —7(z) = 0, (5.16)

which, combined with the best matching conditions ¢(* ~ 0 and 7, ~ 0, are the standard
ADM diffeomorphism constraint and the conformal constraint, respectively. Although
these constraints are clearly local, there is another primary constraint that is an integral
over all of space. This constraint is the zero mode of the standard ADM Hamiltonian
constraint .

H(O) = /dnl’ |:—Gabcd7Tab7TCd— \/EV:| = /dn$H (517)

V9

It guarantees that the metric on Riem G[Dg¢ 49, D¢ 49, g, 09, . . .] is non-negative. The total
Hamiltonian is

Hit = NOOHO + / d"x [N“(\, ) Ho(N, 7) + p(\, 2)C(N, )] (5.18)

where the lapse N, shift N® and p are Lagrange multipliers.

The lapse function is only A — and not x — dependent. It is said to be projectable.
Because of this, the theory does not obey the full Dirac—Teitelboim algebra [57] and is
invariant only under foliation preserving diffeomorphisms and not the full 3 + 1 diffeo-
morphism group. Because of this and because the simplest potential, V' = C?, has 6
derivatives of the metric, this naive theory cannot be GR. If one chooses the value of «

81



to be the conformal value v = 1/3, then the kinetic term is conformally invariant without
using covariant derivatives. In this case, the conformal constraint m = 0 is unnecessary and
the theory becomes equivalent to the high energy formulation of Horava—Lifshitz gravity.
However, this theory is believed to suffer from instabilities and may not be well defined.
As a result, this simple choice doesn’t seem to lead to a sensible theory. Nevertheless, it
is interesting to note that Horava’s theory is very naturally motivated by best matching.
In the next sections, we will try to obtain sensible theories, first by modifying the best
matching procedure to make it more consistent with locality. This will lead us to GR in
ADM form. Then, we will abandon non—locality completely and allow for potentials that
are non—local functionals of the metric. This will lead us to shape dynamics.

5.3 GR from best matching

In this section, we will slightly modify our geodesic principle by taking the square root
of (5.10) inside the integral. Physically, this seems like the more natural choice because
the action principle is now local. On the other hand, the mathematical structure is less
appealing because we no longer have a proper metric on Riem. Also, we lose a direct
analogy with the finite-dimensional models since we can no longer write the action in terms
of a quantity that gives the “distance” between two infinitesimally separated geometries.
Furthermore, as we will see, using a local square root produces a local scalar constraint
that restricts one degree of freedom at every point. In order for the new theory to be
consistent, the local scalar constraint must be first class with respect to the remaining
constraints. This puts a severe restriction on the possible forms of the potential (this issue
is studied in detail in [13, 12]). With the right choice of potential, this extra gauge freedom
manifests itself as foliation invariance and leads to many technical and conceptual issues,
particularly in the quantization.? Despite these complications, this modification leads to
a sensible classical theory: GR in ADM form. It is, thus, important to understand how
this comes about and the role that the local square root plays in producing a consistent
foliation invariant theory.

To obtain GR, it will not be necessary to best match with respect to the conformal con-
straints. In this approach, the conformal constraints are replaced by the local Hamiltonian
constraint. Bringing the square root inside the spatial integration of (5.10) and removing

2For a review of the difficulties associated with foliation invariance and other issues associated to time,
see [47, 58].
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the ¢ fields gives

Stocal = / d\d"z \/ 9 G DegasDegea- V (9, 99)- (5.19)

The quantity VG is the infinitesimal “distance” between two points of two infinitesi-
mally separated geometries. It is a kind of pointwise metric on Riem. Thus, there is no
clean geodesic principle on the reduced configuration space.

The action (5.19) has been analyzed in detail in [17, 2, 16]. For the special choices
a =1 and
V(g. Vg, V?g) = 2A — R(g,Vg,V?g), (5.20)

where R is the scalar curvature of ¥ and A is a constant, the constraint algebra is known
to close. With these choices, (5.19) is the Baierlein-Sharp—Wheeler (BSW) action of GR
with cosmological constant [59] whose Hamiltonian is equivalent to that of ADM [60]. We
have, thus, recovered GR in ADM form.?

5.4 ADM and best matching

While it is useful to have a derivation of GR in BSW form from best matching, it would be
convenient to dispose of the awkward square root altogether. This can be done by using the
alternative action principle discussed in Section (2.4.4).* Since the action principle (2.40)
can be understood as a best matching of the reparametrization invariance, it provides
a natural framework for introducing a notion of background time in GR by lifting the
best—matching condition on 7. Interestingly, this procedure leads directly to unimodular
gravity.

To implement an action of the form (2.40) in geometrodynamics, we use the kinetic
term and potential outlined in Sec. (5.3). Using a local action principle and introducing
the auxiliary field 7°(), x), the analogue of (2.40) is

111
SH = /d)\ d"x \/§§ {EG“deDggabpggcd - TO(2A/ — R) , (521)

where we have used a prime to distinguish A’ from another A that we will consider later
(this is completely analogous to E versus E’ encountered in the particle models of Sec-
tion (3.5.3)). It can be verified that using a local function, 7%, of x is equivalent to taking a

3Equivalence is achieved because the best matching variation of f is equivalent to the usual variation
of the shift vector N*. See, for example, [14].
“For a demonstration of this following a Routhian reduction see [14].
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local square root instead of the usual geodesic principle. Similarly, a global 7° is equivalent
to a global square root.

The ADM theory can be obtained by doing a short canonical analysis of the action
(5.21). The momenta are:

oL L
7Tab = agab = gGadeQJCd + g(c,d))v (522)
co— g’gL _ v, (\/_G(ab)cd( e )) and (5.23)
_ 0L _ Vg :

where pg is the momentum density conjugate to 79. The scalar constraint is

1
H = ﬁGabcdw“b “ 1 /92N — R) + 2py = Hapm + 2po = 0, (5.25)

where Hapw is just the scalar constraint of the ADM theory. There is also a vector
constraint associated with (. It is

He = V'™ 4 ¢ = Hopy + ¢ = 0. (5.26)
The constraint H%py is ADM’s usual vector constraint.

The canonical Hamiltonian is zero as it should be in a reparameterization invariant
theory. Thus, the Hamiltonian is

H=NH+ N,H* = Hapn + 2Npo + N2 (5.27)

Hapwn is the ADM Hamiltonian. However, this may not be the full Hamiltonian since we
need to check for secondary constraints. To do this, we introduce the fundamental equal-\
PB’s

{gab(X,2), T (N 9) } = 8503 0, y), (5.28)
{&a(h2), ¢\ y)} = 0,0(2,y), and (5.29)
{7\ @), po(\ )} = 6(x,y). (5.30)

Then, the constraint algebra reduces to
{g7"PH(2), H(y)} = [(97*Hipn) (2) + (97 *Hipn) ()] 0(2,9):a (5.31)
{g7"?H(2), Hapm(y) } = g~ *Hapm(2)*0(2,y) (5.32)

{97212 (@), W)} = (g7 o) @030, 9)" + (g7 Haon ) )39, (533

At this point, the discussions for standard and best matching variations diverge.
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5.4.1 Best matching variation: time—independent theory

After taking PB’s we can apply the best matching conditions for p, and (*

po =0 (5.34)
¢ 0. (5.35)

Then, the vector and scalar constraints imply

HADM ~0 (536)
H% oy ~0. (5.37)

Thus, the constraint algebra is first class and the total Hamiltonian is given by (5.27).

At this point, we can not use the best matching conditions to recover the ADM theory
because they are only weak equations. To see that the ADM theory is indeed recovered,
we work out the classical equations of motion. The terms in (5.27) that are new compared
with the ADM theory commute with g,, and 7. Thus, they do not affect the equations
of motion for g or for 7@ other than replacing the lapse N with 7° and the shift IV, with
€,. Since the remaining equations of motion just identify

7 ={7" Hr} = 2N, and (5.38)
éa - {gm HT} - Naa (539)

the theories are classically equivalent. In other words, it is trivial to integrate out the
auxiliary fields 70 and &, along with their conjugate momenta. This simply disposes of
the best matching conditions and replaces 7° and &, with the lapse and shift. It is now
easy to see that the quantum theories will also be equivalent since the quantization of the
best matching conditions imply that the quantum constraints are identical to those of the
ADM theory.

5.4.2 Fixed endpoints: unimodular gravity

In this section, we consider the effect of fixing the endpoints of 7°. According to the
definition of background dependence from Sec. (3.4), this will introduce a background
time. We will, however, not fix a background for the diffeomorphism invariance. Thus, we
still have the best matching condition (* ~ 0 for the variation of &,.
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The constraint algebra is no longer first class after lifting the best matching condition
po ~ 0 because the scalar constraints no longer close with the vector constraints. From
(5.32) and (5.25),

{97 " H(2), Hipu() } = —(97po)“d(x, y), (5.40)

which implies the secondary constraint
— V.A=0, (5.41)

where A = —g~/2p is the undensitized momentum conjugate to 7°. The constraint algebra
is now first class. Using the Lagrange multipliers 7¢, the total Hamiltonian is

Hy = Hapy + 2Npg 4+ NoC®* — 7°V,A. (5.42)

The secondary constraint (5.41) assures that A is a spatial constant. Given the equa-
tions of motion 7% = N and A = 0, one might expect that the 7°A term in the action is
analogous to adding a cosmological constant term to the potential. Indeed this is what
happens. Since the action is linear in ¢, we can integrate out ¢* by inserting the equation

of motion &, = N, and the best matching condition (* = 0. This leads to

Semi = / ANd"x [Gapm®™ + Tpo + /GT VA

1
—QNQVbﬂ'ab — N (ﬁGabcdﬂ'abWCd — \/E(R — 2Atot)):| s (543)

which is identical to the action of unimodular gravity considered by Henneaux and Teitle-
boim [61]. Unimodular gravity was originally proposed as a possible solution to the problem
of time and was developed extensively in [62, 63, 64].

Note that Ay = A+ A’. It is the observable value of the cosmological constant. In this
context, it will depend on the boundary conditions imposed on the cosmological time

)‘ﬁn
T:/ d)\/d”x g7, (5.44)
Ain %

In [52], it is shown that the fact that Ay is an integration constant protects its value
against renormalization arguments that predict large values of A’. This provides a possible
solution to the cosmological constant problem.
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These results show that unimodular gravity is obtained by inserting a background time
into general relativity using the definition of background dependence given in Section (3.4).
The quantization of this theory is known to lead to a time dependent Wheeler-DeWitt
equation [64]. This supports the claim that we have inserted a genuine background time.
Although there are some hints that unimodular gravity contains unitary cosmological solu-
tions (see [65, 66]), it is clear that unimodular gravity will not be able to solve all problems
of time in quantum gravity. As was pointed out by Kuchaf in [67], the background time
in unimodular gravity is global whereas foliation invariance in general relativity presents
several additional challenges. These complications are introduced by the local square
root and, therefore, would not have analogues in the finite-dimensional models and the
projectable-lapse theories.

Interestingly, shape dynamics is a projectable-lapse theory and does not suffer from the
same complications associated to foliation invariance. One could then use this principle
to produce a time dependent WDW-like equation for quantum shape dynamics. However,
simply inserting a background should not be thought of as a genuine solution to the problem
of time because background dependent theories violate Mach’s principle and should not be
thought of as fundamental (unless one has other good reasons for believing in an absolute
time). Instead, one should think of background dependent theories as having emerged,
under special conditions, out of a fundamental background—independent theory.

5.5 Shape Dynamics

In this section, we derive shape dynamics by considering the non—equivariant best—-matching
theory obtained by best matching the action (5.19) with the potential (5.20) with respect
to conformal transformations. As we will see, if we restrict to conformal transformations
that preserve the volume of ¥, we can use the symmetry trading algorithm presented in
Section (4.3) to trade foliation invariance for volume preserving conformal invariance. The
theory we obtain is shape dynamics: it has a projectable lapse and is equivariant with
respect to volume preserving conformal transformations.

5.5.1 Notation

Before applying the symmetry trading procedure, we pause to reestablish notation. It will
be convenient to define a more compact notation for smearing functions that will require a
slightly different nomenclature for the ADM constraints. To avoid ambiguity, we will use
this section to clearly state our conventions.
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We start with the ADM formulation of general relativity on a compact spatial manifold
¥ without boundary (and if confusion arises we will assume the topology of ¥ to be S3).
The phase space I' is coordinatized by 3-metrics g, represented locally by a symmetric
2-tensor g : &+ gap(7)dr?da®, and its conjugate momentum density 7, represented locally
by a symmetric 2-cotensor 7 : x +— 7%(2)9,0, of density weight 1. Given a symmetric
2—cotensor density, F', and a symmetric 2-tensor f we denote the smearing by

Flg) = /E BrF () gu(x) and 7(f) = /E Brr (@) fu (). (5.45)

We will not explicitly state differentiability conditions for (g, 7) or details about the Banach
space we use to model I', we just assume existence of suitable structures to sustain our
construction. The non—vanishing Poisson bracket is

(F(g).m(f)} = F(f) = / PrF(a) fun ), (5.46)
and the Hamiltonian is
H(N,€) = / 02 (N(2)S(x) + € () Ha(2)) (5.47)

where the Lagrange multipliers N and &* denote the lapse and shift respectively. The

constraints are @)
S — ab abcd X Cd R
(x> ™ (x> \/T -V ‘9 ‘

(5.48)
Hy(x) = —2gec(z)Dyr®(x )7

where D denotes the covariant derivative w.r.t. g, Gupeq denotes the inverse supermetric
and R|[g] the curvature scalar. Denoting smearings as C(f) = [, @*zC(z) f(z) and C(?) :=
Js @xv*(x)Cy(x), we obtain Dirac’s hypersurface-deformation algebra

@), 2@} = H(aq)
S} = Sw() (5.49)
S(f

{S(f),5(f)y = H(N(f1, f2),

where [.,.] denotes the Lie-bracket of vector fields, so the first line simply states that the
H(x) furnish a representation of the Lie-algebra of vector fields on ¥ and where N°(f1, fo) :

x = g%(2) (f1(2) fap(2) = fro(@) fo(@).
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5.5.2 Identify the symmetries to best match

We now apply the general symmetry trading procedure outlined in Section (4.3) to derive
shape dynamics. We treat in detail the spatially compact case but the asymptotically flat
case is developed in [25]. For more details on the mathematical structure of the dualization
and a more detailed proof of the dictionary, see [25, 24].

Let us spell out the symmetry to be gained in exchange for foliation invariance. Naively,
we would trade S(x) for constraints that generate general conformal transformations of g.
However, as in the toy model, trading all such symmetries would lead to frozen dynamics.
One global constraint must be left over to generate global reparametrization invariance.
In analogy to the toy model, we restrict to conformal transformations that do not change
the global scale. In geometrodynamics, the analogue of the moment of inertia is the total
3—volume. Thus, the desired symmetry is explicitly constructed in the following way:

Let C denote the group of conformal transformations on ¥ and parametrize its elements
by scalars ¢ : ¥ — R acting as

4o(z)
o:{ g 2 S, (5:0)

Consider the one—parameter subgroup V parametrized by homogeneous ¢ : * — a. Notice
that V is normal, because C is Abelian, so we can construct the quotient C/V by building
equivalence classes w.r.t. the relation

Co¢~¢ ifTaeV, st o=¢ +a. (5.51)

Given a metric g on ¥ and ¢ € C we can find the unique representative in the equivalence
class [¢]. € C/V that leaves V;, = [ d®z+/|g|(z) invariant using the map

- 1
Tgio - In{e%),, (5.52)
where we define the mean (f), := %g Js d*x+/|g|(z) f(x) for a scalar f : ¥ — R. The

map . , allows us to parametrize C/V by scalars ¢. Note that ngSg can be written more
transparently by observing that it is chosen so that the volume element of the conformally

transformed metric is equal to
—
‘e4¢g‘ = —/ |g]. (5.53)
)
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Thus, the conformal transformation

~

gap(T) — exp (4¢($)> 9ap() (5.54)

leaves

V, = /d3x\/mz /d3x<ZZZ>\/? Vgé;g’i (5.55)

invariant (we will often suppress the subscript g in QASg for convenience). C/V is then
precisely the symmetry we want to obtain in exchange for foliation invariance. Given the
transformation properties of R[g] under (5.54), it is easy to show that the ADM is not
invariant. We are, thus, dealing with a non—equivariant best matching theory.

5.5.3 Perform canonical best matching

The next step is to enlarge the phase space I'(g; ) — Te(g, ¢; m,my) = I' x T*(C) with the
canonical “product Poisson bracket” and parametrize conformal transformations by scalar
functions ¢ and their conjugate momentum densities by scalar densities 74. To ensure that
¢ and 7y are purely auxiliary, we must impose the trivial constraint

s~ 0. (5.56)

This constraint has a trivial property that we will need in a moment: it commutes with
any smooth function f(g; ) of the original phase space variables.

We can now do a canonical transformation T : {g,¢;m, 73} — {G,®;II,11,} that
performs the shifting required for best matching. We define the generating function

Fl¢] := /d3a7 <gab(a7) exp (4@@@)) H“b(x) + gb(:r;)l_[¢(x)> ) (5.57)

Note that capitalized variables represent transformed variables. Then, the canonical trans-
formation 7" generated by F[¢] is:

gu(@) = Tgu(e) = exp (49(x)) gulo)

wx) o Tat(r) = O (x(a) — i), (1= 90) g (@) VIgl@))  (5.58)
dla) = To(x) = olo)

mo(e) = Tmol@) = mole) =4 (wle) - (v) 5(a))
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where 7 = 7%g,,. This is indeed a volume preserving conformal transformation. Under
this transformation, the constraint 74 ~ 0 transforms to the new constraint

T~ 0— C=my—4(n(x) — (m) /9(z)) = 0. (5.59)

Before the canonical transformation, C' was first class with respect to any smooth func-
tions f(g,p). Thus, after the canonical transformation, C' will continue to be first class
with respect to the transformed functions f(T'g,T'w). In other words, C' acts trivially on
the image of T'. In particular, it will continue to commute with transformed scalar and
diffeomorphism constraints. The interpretation of C' does not change after applying 7'
Its role in the theory is to remove the auxiliary degrees of freedom introduced by ¢ and
my. It must be present to ensure that the extended theory is dynamically equivalent to
the original. Note that C' could have been derived as a primary constraint directly from
the Lagrangian by performing conformal best matching on the BSW action followed by a
Legendre transform. This equivalent approach was followed in [17].

The scalar constraints transform in the following way under the map 7"

e—69 T )2 . T .
S() = TS(@) = o [y = T Thaq by (0o g e&wm]

V1 276 3
— /Il [Rlg) — 8 (D% + (D9)*) | (5.60)
where v? = ggv®0® for any vector v®. To avoid technical difficulties arising from the proper

treatment of the diffeomorphism constraint, we remove it for the time being and verify
after the dualization is completed that it can be consistently reintroduced into the theory.

The quantity
D =n(x) — \/E(m)ﬁ)g (5.61)
will be the first class constraint left over in the dual theory. We pause for a moment to
note its important properties, which can be verified by straightforward calculations. First,

D is invariant under the canonical transformation (5.58). Second, it generates infinitesimal
volume preserving conformal transformations. This can be seen by noting that

09 gap(7) = (40(x) — (46)) gav ()
00 7() = (~40(0) + (46)) (7(0) — 5 (), V). (6

where 0y = {-, D(460)}, is the infinitesimal form of (5.58). This is the key property that we
require of the dual theory.
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We note one final property of C(z). Just as in the toy model, one of the C(z)’s is an
identity and not an independent constraint. This can be seen by noting that

/2 d*r C(z) = /E d*r7y(2) (5.63)

but the Poisson bracket of [ d*xzm, with the variables g;;, 7, qZA>, and 7, is identically zero
(the only non-trivial calculation is {p(gz;), Js &Pz w¢(x)} = 0 for arbitrary smearings p).

This is a consequence of restricting to C/V instead of just C. It means that [d*zC can
be removed from the theory without affecting the theory in any way. The result of this is
that we will be left with a global first class scalar constraint at the end of the procedure.

5.5.4 Impose and propagate best—matching constraints

To make this theory relational with respect to volume preserving conformal transforma-
tions, we must perform a best—matching variation. This involves imposing the constraints

Ty ~ 0. (5.64)

One of these constraints: [ d®z m,, is trivial as noted above. However, singling out this
constraint explicitly is more subtle now than it was in the finite dimensional toy model. For
simplicity, we will work with this redundant parametrization of the constraints, keeping in
mind that it is over—complete by one equation.

Imposing 7,(z) ~ 0 turns all but one of the original scalar constraints into second class
constraints, as can be observed from the Poisson bracket

(TS0, = [ dex@) [Fy = VIgl@)e ) Fu, (5.65)

where we smeared 74 with a scalar A and Fy is given by

Fy = 8g4,D" (¢ D'N ) \/Igl = 8Ne/[g] | Rlg) — 8 (D*6 + (D3)?)]
— 2Ne¥\/[g[(m)? — N[6TS + 2m(m)y(C +74)] . (5.66)

The last term in Fy is weakly zero. This is the canonical form of the non—equivariance
condition. The consistency of the dynamics requires that we fix the Lagrange multipliers
to satisfy the equation
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The trivial solution Ny = 0 yields “frozen dynamics.” Fortunately, there is a unique
solution No(¢, g;;, ) to the lapse fixing equation
. R R 1 N .
N {64‘1) |Rlg) — 8 (D + (D9)?) | + ng} — VgDt (FDIN) = (L), (5.68)

that is equivalent to the first line of (5.67). In (5.68), £ is defined as ¢%¢,/]g] times the
left—hand-side of (5.68).

In terms of the transformed variables Go, = Tgq and 11% = T7%, (5.68) takes the
simple form

(R[G] + <T£L>G — DZ) N = <(R[G] - % — DZ) N>G. (5.69)

This is the same lapse fixing equation obtained in [17] by a similar argument using the
Lagrangian formalism. To understand why (5.69) has a one parameter family of solutions
(and, thus, depends only on ¢) note that any solution, Ny, to

(R[G] + Mg _ D2) Ny = —¢, (5.70)

for an arbitrary constant ¢, is also a solution to (5.69). Eq (5.70) is the well-known lapse
fixing equation for CMC foliations. It is known to have unique positive solutions[68, 23, 1].
This fact is vital for our approach to work as it allows us to construct the Hamiltonian of
the dual theory.

The one parameter freedom in Ny is exactly what we expect from the redundancy of
the m,(z)’s. We are one global equation short of completely fixing the N(x)’s. Thus, we
should be left with a single first class linear combination of the T'S(x)’s. This is precisely
the global Hamiltonian

Hy = / d*x No(z)TS(z) = T'S(Ny), (5.71)
where both Ny(z) and T'S(z) are functionals of g, 7, ¢. Hy is constructed to be first class

with respect to m4. We can now state the important result that the extended system with
the constraint my ~ 0 is consistent as merely a (partial) gauge fizing of the original system.
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5.5.5 Eliminate second class constraints

Let us collect and classify the constraints of our theory to recap what we have done. We
started with the first class constraints 7'S(z) and then imposed the conditions m4(x) = 0.
The former are second class with respect to the latter but, since [ d*zm, plays no role
in the theory, there is a corresponding constraint Hg that is still first class. We can
split the first class Hy from the remaining second class T'S(z)’s by defining the variable

TS(x) =TS(x) — Hy. This leaves us with the first class constraints
Hy =0 C(z) =0 (5.72)
as well as the second class constraints
TS(z) ~ 0 ms(x) ~ 0 (5.73)

in analogy with equations (4.28) and (4.29) of the toy model. Note that, for the moment,
we are still relaxing the diffeomorphism constraints. In Section (5.5.4), we showed that
Ny is consistent gauge choice for general relativity. However, we should now construct the
Dirac bracket to explore the full structure of the theory.

First, notice that since {Hg, 74} ~ 0 we know that {fé(x),m)(y)} ~{TS(x),ms(y)}
This leads to the weak equality

[ 6@ NI md’s’ ~ [ Glaa){TSE), mu(w)ld's’ = ba,y)

provided the Green’s function, G, for the differential operator acting on N in (5.69) exists.
This is guaranteed because the existence and uniqueness of solutions to the CMC lapse
fixing equation, for suitable initial data and boundary conditions, implies existence of the
Green’s function for the respective initial data and boundary value problem.’> The formal
existence of this Green’s function is all that we will need for the remainder of the paper.

In terms of this Green’s function, the Dirac bracket is defined as:

Uhblo = {f b} = [ @ady {fm@}Ga g TSWL BY oy
+ [ dedy {11, TS@)G @,y {mo(v). 2},

for arbitrary functions f; and fy. By construction, the Dirac bracket between 7, or TS and
any phase space function is strongly equal to zero. We can then eliminate these constraints

5This is implied by the existence of a Green function for the so called Lichnerowicz Laplacian D? + R,
an operator that can be put into the form of a Hodge Laplacian d§ + dd.
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from the theory by following Dirac’s algorithm [53]. First, we set ms = 0 everywhere that it
appears; then we find $0 such that TTS‘(&O) = 0 and insert qgg into all constraints. Note that
it is é, and not ¢, that we can explicitly solve for. This is analogous to what happens in the
toy model and arises because of the redundancy in the 74 (2). When this is done, the system
will have been reduced to the original phase space I". The Dirac bracket between functions
f of I and the remaining first class constraints is weakly equivalent to the Poisson bracket.
This is true, just as in the toy model, because the extra terms in the Dirac bracket are
either proportional to {f, ms(x)}, which is zero, or {m,(y), Hg} and {m4(y), m¢(x)}, which
are both weakly zero. Finally, because we are simply inputting the solution of a constraint
back into the Hamiltonian, the equations of motion on the contraint surface will remain
unchanged. Thus, T}, is still effectively a canonical transformation. For more details, see
[25] or the appendix of [24].

The last step is to verify that T'S(¢y) = 0 can be solved for ¢y. We can simplify (5.60)
using the strong equations 74 = 0 and by taking linear combinations of the first class
constraints C'(z). This leads to the equivalent constraint

~6¢ w2 X
(0% — ﬂel2">|g| — e Rlgly/]g]| =0, (5.75)

Vgl 6

where 0 = 7 — 1(m) g°*\/]g|] and R[g] = Rl[g] — 8(D?*$ + (D¢)?). Eq (5.75) is the
Lichnerowicz—York (LY) equation used for solving the initial value problem of general rela-
tivity. Its existence and uniqueness properties have been extensively studied.® It is known
to have unique solutions when ¢ is transverse and traceless. Fortunately, these are ex-
actly the conditions required by the diffeomorphism and conformal constraints respectively.
The formal invertibility of this equation is the second vital requirement for our procedure.
Without this, we would not be able to prove the existence of the dual theory. However,
given that we can solve (5.75) for ngﬁo for specified boundary and initial data, we arrive at

the dual Hamiltonian
Hlo = N Hyldo] + / de(z) (n(z) — (m)), (5.76)
>

where N is a spatially constant Lagrange multiplier representing the remaining global
lapse of the theory. We can now reinsert the diffeomorphism constraint. This gives the
final Hamiltonian

Hauar = N Hg ] +/

X

d*x [)\(x)D(:U) + fa(x)T(;;OHa(x)] , (5.77)

6See [1] or, for the specific context given here, see [69)].
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using the definition (5.61). Note that we must use the transformed H,(z) evaluated at ¢,
(recall that D is invariant under 7°). As shown above, the usual Poisson bracket over I'
can be used to determine the evolution of the system.

5.5.6 Construct explicit dictionary

We can verify that the dual Hamiltonian has the required properties. First, we check that
all the constraints are first class. The global fixed Hamiltonian was constructed to be first
class with respect to the conformal constraints D. This can be seen by observing that the
T'S(z)’s are first class with respect to the C'(x)’s and that the C'(z)’s are equal to the D(z)’s
when my(x) = 0. The H,’s are easily seen to be first class with Hy because they are first
class with respect to the original S(z)’s and because T is a canonical transformation. The
me's commute with themselves because they are ultra-local canonical variables. Lastly,
one can directly verify that

{1,,@),D(1)} = T, {H(@), D)} = DLuS) =0, (5.78)

where ¢ and f are smearings.

Secondly, the dual theory is indeed invariant under volume preserving conformal trans-
formations. For this, recall that the D’s generate the infinitesimal form of (5.58) according
to (5.62). Furthermore, the theory is also invariant under 3D diffeomorphisms gener-
ated by the H,’s. The theory is not, however, invariant under 4D diffeomorphisms. The
diffeomorphism invariance is only within the spatial hypersurfaces and is, thus, foliation
preserving. This means, in particular, that the theory is not Lorentz invariant because it
is not invariant under boosts.

Finally, there is a gauge in which the equations of motion of the two theories are
equivalent. Compare the ADM Hamiltonian to that of the dual theory.

Huow = [ d% (N(@)S(a) +€(0) Hala)
Hawis = Nolon + | & [N@)D(@) + € ()T, (o)
_ /E P (NNo(, d0)T5,5(2) + Ma)D() + € (1), Hulr) ) (5.79)

Because T is a canonical transformation, the equations of motion of both theories take the
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same form in the gauges

N(z) = N'No(z, ¢o)
A(z) = 0. (5.80)

To map the solutions from one side of the duality to the other, we simply need to use the
explicit function ¢y and the map T3 . This completes the dictionary.

This dictionary is particularly straightforward to use if one can find initial data for the
ADM Hamiltonian that satisfies the initial value constraints. In this case éo = 0. Because
both theories are first class, this condition will be propagated and the solutions of each
theory are equal in the gauges (5.80). To find suitable initial data, we still must solve the
LY equation. However, for the purpose of using the dictionary in the classical theory, we
only need to solve this for a single point on phase space.”

Given the existence of the above dictionary, we arrive at the following proposition:

Proposition 1. The theory with total Hamiltonian (5.77) is a gauge theory of foliation
preserving 3—diffeomorphisms and volume preserving 3D conformal transformations. In

the gauge A = 0, this dynamical system has the same trajectories as general relativity in
CMC' gauge.

We define this theory to be shape dynamics.

5.5.7 Linking theory

It is powerful to view shape dynamics and GR as originating from a linking theory just as
was done for the toy models in Section (4.4). This approach was first done in [25]. The
linking theory is simply the extended theory on the enlarged phased space I'. consisting of
the constraints

S(N) ~ 0 (5.81)
H(¢)~0 (5.82)
Ts(p) = 0. (5.83)

"To prove that the dual theory actually exists and to study the quantum theory, we still must be able
to solve the LY equation over all of phase space.
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The canonical transformation T leads to

TS(N) ~0 (5.84)
TH(E) ~ 0 (5.85)
Try(p) = C(p) = 0. (5.86)

The gauge fixing condition ¢ = 0 trivializes the 7" map and a phase space reduction
eliminates the C' constraint. This leads immediately to the ADM theory. Alternatively,
the gauge fixing condition 74 = 0 and subsequent phase space reduction eliminates 7'S ~ 0
by setting ¢ = ¢y then sends C'(p) — D(p). This is shape dynamics. The dictionary is
obtained by further picking the gauge fixings p = 0 in shape dynamics and N = N (ie,
CMC gauge) in ADM. These gauge fixings are shown in Figure (5.5.7).
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Linking Theory
TS(N)=0
TH(E) =0

C(p)=0

w,=0

Phase space reduction

Shape dynamics
H,~0 H(E)=0|r,=0
D(p) =0 0=

p= 0\
Dictionary

H,~=0 H()=0

Figure 5.1: Shape dynamics and ADM are obtained from different gauge fixings of a linking
theory.
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Chapter 6

Shape dynamics

In the last chapter we took a back door route to shape dynamics. We motivated its con-
struction by applying a dualization procedure inspired by non—equivariant best matching.
The result was a theory, equivariant with respect to volume preserving conformal transfor-
mations, with a highly non-local global Hamiltonian. The non-locality allows us to have,
at the same time, conformal invariance and equivalence to GR. Because of its global lapse,
one can think of shape dynamics as a genuine geodesic principle on conformal superspace,
albeit one with a complicated configuration space metric. Our choice of metric is made
purely to have a dynamics that is equivalent to GR. The purpose of this chapter is to try
to understand this choice better. We will try to piece together some of the basic structures
of shape dynamics in the hopes of understanding it better as a theory in its own right.

The way that shape dynamics has been presented in terms of a dualization procedure
hides some aspects of the simple relationship between shape dynamics and GR. In this
chapter, we give a simple picture that illustrates how the shape dynamics Hamiltonian is
actually constructed in practice. Because it is obtained through the solution of a non—
linear partial differential equation on an arbitrary compact manifold without boundary, X,
the global Hamiltonian is not straightforward to handle analytically in full generality. It
is, thus, convenient and insightful to compute the Hamiltonian in different perturbative
expansions. We will discuss two different approaches to solving for the global Hamiltonian:
1) by Taylor expanding in terms of the inverse of the volume, 2) by expanding in fluctuations
about a background. The first approach reveals that shape dynamics has an intriguing
behavior at large volume: it becomes a fully conformal theory. The second is useful for
studying cosmological solutions of shape dynamics. After computing the Hamiltonian in
these two expansions, we will calculate the Hamilton—Jacobi functional in the large volume
limit. This large volume expansion contains more information than the usual derivatives
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expansions that can be performed in standard GR about asymptotically DeSitter (or Anti-
DeSitter) backgrounds.

These calculations highlight the main advantage that shape dynamics presents over
GR: that the local constraints are linear in the momenta. This has two important conse-
quences: 1) that the constraints themselves can be solved analytically, and 2) that group
representations can be formed by exponentiating the local algebra. In other words, it is
straightforward to construct quantities that are invariant under volume preserving confor-
mal transformations. Furthermore, there are special gauges, which do not correspond to
GR in CMC gauge, where certain calculations are drastically simplified. So although it is
true that no calculation should, in principle, be more difficult in shape dynamics then in
standard GR; in practice, having control of the gauge invariance in shape dynamics can
help to organize the calculation in a more efficient way.

The conformal behavior of the shape dynamics Hamiltonian and the computation of
the Hamilton—Jacobi functional at large volume suggests a potentially powerful way of
studying gauge/gravity dualities using a holographic renormalization group flow equation
in shape dynamics. The immediate advantage presented by an approach based on shape
dynamics is that shape dynamics is nearly conformally invariant for from the onset. As a
result, the action of the canonically quantized conformal constraints on the shape dynamics
wavefunction is nearly identical to the action of the conformal Ward identities on a CFT
living on an arbitrary background. The only thing that breaks the conformal invariance
is global Hamiltonian, which, as we will see, is conformal at large volume. This may
provide us with an interesting option: to treat Hamiltonian flow in shape dynamics as
renormalization group flow in a CFT. If this were possible, it may provide a construction
principle for shape dynamics that is independent of general relativity. We will present some
hints that this may be possible. A deeper exploration of this exciting option is reserved
for future work. Much of the work presented in this chapter is based on [26].

6.1 Basic Construction

In Section (5.5), we rigorously constructed shape dynamics using non—equivariant best
matching applied to GR in ADM form. We will now present a different derivation that is
less rigorous but more intuitive. The aim is to establish a clear picture that can be used
to better understand the nature of the shape dynamics Hamiltonian.

Our starting point is to look for a theory that is invariant under volume preserving
conformal transformations and 3—dimensional diffeomorphisms and has the same dynamical
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trajectories and initial value problem as GR in CMC gauge. Thus, we are looking for a
theory with a Hamiltonian of the form

Hep(\) = /E B [N*(2, ) Ha + 4p(a, \)D] + N (V) Hy, (6.1)

where, as before, H, generates 3—diffeos and D generates infinitesimal volume preserving
conformal transformations. Hg is some global Hamiltonian, depending only on A, that is
chosen so that this theory is equivalent to GR. Recall that the volume preserving condition
is enforced by using hatted conformal factors qZA> that are required to satisfy

<66¢3> ~ 1 (6.2)

For convenience, we also recall that the metric g, and its conjugate momentum density
7% transform in the following way under volume preserving conformal transformations

Gab — 64&gab7
ab —4¢ ab 1 6¢ ab (63)
T — e [71’ —§<7r><1—e >g (a:)\/g}
We must find an expression for Hg such that the flow of Hgp when p = 0 is identical
to that of the usual ADM Hamiltonian

Hxpm(N) = / >z [N“(z, \)Hy (2, \) + N(x,2)S(z, \)] (6.4)

in CMC gauge. To obtain H,, consider the unique linear combination S of S such that
det, {g(x),D(y)} #£ 0. S represents the part of S that is gauge fixed by the CMC

condition 7= = (m) (or D = 0). To prove that S exists and is unique it is most convenient

to extend the phase space and work in the linking theory, as was done in Section (5.5).
We will not dwell on the details of this proof here. For a more complete analysis, see

[25, 70]. As a consequence of the invertibility of {S (x), D(y)}, the configuration space

surfaces S = 0 and D = 0 have a unique intersection (see Fig (6.1)) that we require to
be the common trajectory shared by shape dynamics and GR. To fulfill this requirement,
Hg is defined as the part of S on the intersection that is not gauge fixed by the D’s. Hgy
can be defined anywhere on the D = 0 surface by lifting the value of S|s_, ,_, along the
gauge orbits of D. Since these are the volume preserving conformal transformations (6.3),
He on D is

1

V9
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Figure 6.1: The definition of Hy. The constraint surface D = 0 provides a proper gauge
fixing of S ~ 0. Hy is defined by the value of S at the gauge fixed surface, represented by
the dark dotted line.

where we have used the ¢, map as a short hand for the volume preserving conformal
transformations, (6.3). As illustrated in Fig (6.1), ¢ needs to be found such that ¢, brings
you to the surface S = 0, where S is constant. Thus, (6.5) needs to be solved for ¢ such
that the left hand side is a constant. As an immediate consequence of this definition, Hy
is invariant under finite volume preserving conformal transformations.

In summary, the shape dynamics Hamiltonian is given by (6.1), where Hy and ¢ are
given by solving the simultaneous equations

1
Healg,m) = ﬁs(twatqﬂf)

<eﬁ¢9> ~ 1 (6.6)

This is completely equivalent to final algorithm obtained in Section (5.5). However, this
derivation presents a much clearer picture of how shape dynamics is constructed from GR.
These are two theories living on different intersecting surfaces of the ADM phase space.
The intersection of the two theories contains the physical trajectories so that any flow in
directions where the surfaces do not intersect is unphysical and can always be projected
back down the intersection.
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6.1.1 Yamabe problem

We note that the above algorithm is analogous to that used to solve the Yamabe problem
[71] that all compact manifolds in d > 3 are conformally constant curvature. For this, one
needs to show that a constant R can be found such that

R = R(eMom) g) (6.7)

for some non-local functional A[g, z) of g. The restriction <€65‘> = 1 selects a unique value

of R. This suggests an intriguing connection between the Yamabe problem and shape
dynamics. Indeed, R will play an important role in the solution of the equation of shape
dynamics in the large V' expansion.

6.1.2 Matter coupling

The inclusion of matter into the shape dynamics formalism has recently been achieved in
[72]. The procedure is relatively straightforward and follows from the results of [73, 74].
The procedure can be implemented for any matter for which the initial value problem
can be solved in GR. We will only consider the pure gravity sector of the correspondence,
for which interesting conclusions can already be drawn. The more complete analysis that
includes matter is currently underway.

6.2 Large volume expansion

Constructing the shape dynamics Hamiltonian involves solving the system of equations
(6.6), which constitute a non-linear partial differential equation under a global integral
condition. This task is not straightforward, even when considering simple topologies for
>.. However, it is possible to find simple expansions that lead to recursion relations with
which Hg can be solved. The first expansion we will consider is a Taylor expansion in
terms of 1/V?/3. The 2/3 power is chosen because this is how the metric changes in terms
of the volume under global rescalings. The large volume expansion is useful, not just as a
computational tool, but also for providing insight into the nature of Hy. As we will see,
it may provide a link between shape dynamics and CFT.
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6.2.1 Canonical transformation

To perform the large V' expansion, it will be convenient to take advantage of the fact that
R is conformally constant by shifting

&= d+ A, (6.8)

so that R — R. Recall that, by (6.7), A is the conformal factor used to construct a
conformally constant curvature metric, Gqp, through gu, = ¢**9g,, and R is the constant
value of the curvature when § has unit volume. Since they are solutions to (6.7), both R
and \ are non-local functionals of the metric. Note that this freedom drastically reduces
the amount of work that needs to be done to perform the large V' expansion. This is
evidence that knowing how to construct gauge invariant quantities in shape dynamics can
help organize certain calculations in a more efficient way.

To expand Hg in powers of V~2/3 the explicit V dependence of Hy must be isolated.
This can be done using the change of variables (gqp; 7) — (V, Gap; P, ) given by

vyl
w=(3) o V= [do (6.9)
0

7 = (%)3 (w“b - % () g“b\/§> , P= § (), (6.10)

where Vy = [ d®z./7 is a fixed reference volume. The quantity P is the York time in CMC
gauge, which is spatial constant by definition. This canonical transformation is motivated
by the fact that the York time is canonically conjugate to the volume in CMC gauge. Thus,
{V, P} = 1. Our goal is to completely extract the volume dependence from g, and 7.
This can be achieved for the metric by simply dividing by the appropriate power of the
volume as is done in the construction of gu,. It is straightforward to verify that {P, g,»} = 0
so that 9

Jab

o 0. (6.11)
For the momenta 7%, we must extract the trace part, which is canonically conjugate to V,
before dividing by the appropriate power of the volume. This leads to 7?°, which indeed
satisfies {P, ﬁ“b} = 0 so that

aﬁ_ab
ov

Thus, the barred quantities and (V, P) can be used to extract the volume dependence of
ga» and m. However, care must be taken because g and 7 are not canonically conjugate

=0, (6.12)
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so that this is not a canonical transformation. As a result, we will have to exercise caution
later when solving the Hamilton—Jacobi equation or if one would like to quantize shape
dynamics using these variables.

6.2.2 Expansion

If we use these variables and call = e#* we can insert (6.3) into (6.6) and, using D = 0,
see that the equations (6.6) transform into
o (8@2—1%)9 7—rab7—ra
He = (2A - %PQ) + (V/Vo)2/305 (V/V0)2§§12§ (6.13)
(Q%) =1, (6.14)

where tilded quantities and means are calculated using g,,. We will solve these equations
by inserting the expansion ansatz

[e's) —2n/3 00 —2n/3
H —E Y /7-[ QG—E v /w (6.15)
gl — Vb (n)> - % (n) .

and solving order by order in 1/V?3. The reason for expanding Q6 instead of € is that
the restriction (6.14) is trivially solved by

<w(n)> =0 (6.16)

for n # 0 and (w()) = 1.

We can solve for the H,)’s by inserting the expansion, taking the mean, and using the
fact that R is constant. We will demonstrate the procedure by working out the first couple
of terms. For n = 0, we have trivially.

3
Hoy =2A — gP2. (6.17)
For n =1, we get
1 = 1/6 2/3 ~
Hay = , < V? — R) why =—R <w )
(1) w? O/)e,VQ /3 (0) (0)
= —R(w'9)- (6.18)
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If we take the mean of both sides, we obtain

Hay = - <R(w(2({)3§)> : (6.19)

Inserting this into (6.18) gives
R(wiy5) = (R@iy9)) (6.20)
This simply says that w?g)ggab must be the unit volume metric with constant curvature. In

other words, w?o/)?’gab = Jab, O w() = 1. Inserting this result into (6.19)

Hay = —R. (6.21)
Because the solution to the Yamabe problem is wunique, we know that this is the only
solution for H ;) and w.
For n = 2, we get
92 /. .
He) = —3 <R + 2V2) W()- (6.22)

Taking the mean and using integration by parts to drop boundary terms (we are on compact
without boundary ¥) we get

Ho) = ——% (w)
3

=0. (6.23)
In the last line, we used the fact that <w(1)> = 0 because of (6.16). Inserting this into
(6.22) gives
(2+2V2) wiy =0, (6.24)
This equation has the solution

This solution is unique provided R is not in the discrete spectrum of 2V2. We will ignore
the measure zero case where R happens to be in this spectrum. For more details on the
uniqueness of this procedure, see [70].
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The subsequent orders can be worked out in a similar fashion. In general, the solution
for H(n) can be used to solve recursively for w,). Collecting the first three terms, we get

My = <2A - 2132) - (%)2/3 <R>

The next order terms are significantly more complex and non—local as they involve the
inverse of the operator R + 2V?2.

The expression (6.26) combined with the conformal constraints allows us to make a
classical connection with CFT. Using P = 2 (7), solving Hg = 0 for (r), and adding the
result to D ~ 0, we obtain

/g ==*c. (6.27)

c is a spatial constant and commutes with all conformal constraints. It is, thus, a central
charge of the conformal algebra. We see that, at the classical level, shape dynamics is
equivalent to two classical CFTs with specific central charges. In the quantum theory, we
will see that it may be possible to treat the terms contributing to ¢ as a 1-loop renormal-
ization of the conformal anomaly. This observation may have some interesting applications
in defining shape dynamics directly from a pair of CFTs.

6.3 Perturbative shape dynamics

In this section, we introduce a perturbative expansion of fluctuations, hy, and p®, about

some background metric, g., and momenta, 7,

Gab — Gab + Ehab (628)

7 = 1% ep™. (6.29)
Our goal is to solve the system of equations (6.6) order by order in € for the expansion
parameters, H,) and w,), of Hqua and €2 such that

o0

Haual = Z " Hn (6.30)

n=0
oo

Q6 = ZE”W(n). (631)

n=0
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It is straightforward to compute (6.6) to zeroth order. The result is

(W) =1, (6.32)
1 <7T>2 <7T>2 R VQ(,U(O)
Hoy = — (7'77__)__+2A_ 46+8 5/6 (6.33)
OF 3 0 w(({) “(0/>

Equation (6.33) has the same form as (6.6), which is known to have a unique solution.
However, (6.33) is simpler because it is in terms of the background metric only. If we can
pick a background for which g,; and p® are spatial constants, then it is easy to verify that
the unique solution is

W) = 1 (6.34)

1 (m)”

As expected, we've recovered the undensitized Hamiltonian constraint of the ADM theory
on CMC surfaces in terms of the background fields. Since we’re expanding about a solution,
H (o) is satisfied by assumption. In appendix (A), we give g, and 7 for a background
deSitter spacetime in CMC gauge.

To deal with the higher orders, we need the following propositions.

Proposition 2. The equation

S
T¢_ - 7-[dual (636)

V9

can be expanded order by order in perturbation theory, for n > 0, by solving
Hey = (V2 + m%n)) Win) — fn), (6.37)

where

e V2 and m,y depend only on the backgrounds g, and 7.

o fmn) depends on wyy only for i < n and all perturbations of the metric and momenta
up to n' order.

Proof. wg) must appears in (6.36) with a factor of €”. Thus, any product of it with the
operator V24 m?n) will be higher order in epsilon unless this operator depends only on the
background. Furthermore, f(,) will contain higher orders of € unless it is composed of w;
for © < n. The case i = n can be absorbed by my,). O
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Proposition 3. The condition

<Q6> =1 (6.38)
can be expressed order by order in perturbation theory, forn >0, as
(wWim) = Wi (6.39)

where W,y depends on wg only for i < n and all perturbations of the metric and momenta
up to n' order.

Proof. Because w(,) necessarily introduces a factor of €”, w,) can only enter (Q°) through
(Wny) calculated with the background metric. The other terms of (Q°) are necessarily
products of lower order expansions of the background and of €. O

If we can find a background for which m,) is a spatial constant depending only on time
(the deSitter background given in Appendix (A) is an example of such a background) then
we can solve (6.39) and (6.37) for n > 0 explicitly. Taking the mean of (6.37), we get

Hpy = (V2 +miy) Wiy = fy) » (6.40)
= miy (W) — (fn)) (6.41)
=m n)W —{fmy) (6.42)

where, in the second line, we used integration by parts and the constancy of m and, in the
third line, we used (6.39). In general, f(,) will depend on w; for i < n. We can compute
these by inserting our solution for H,, into (6.37). This leads to

-1
Wiy = Weny + (V2 +miy () [fe) = (fm)] - (6.43)
This equation can be solved by first finding the solution w,) of

-1

By = (V2 +miy (1) f (6.44)
then setting
Wiy = Win) + D) — (D)) - (6.45)

That this ansatz solves (6.43) follows directly from the linear action of the operator
V2 + m?n) (t) on the mean. For certain backgrounds, the operator V2 + m%n) (t) can be
inverted straightforwardly. For the deSitter background presented in Appendix (A), the
Laplacian is simply the Laplacian on the sphere. The explicit calculation of w,) arbitrary
order is, therefore, straightforward and left for future work (some variations useful for this
calculation are given in the Appendix (A)).
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6.4 Hamilton—Jacobi (HJ) equation

Using the 1/ V2/3 expansion, we can solve the HJ equation for shape dynamics with sym-

metric boundary conditions. This is useful both for solving the classical theory and for

later drawing a connection with CF'T. Remarkably, gauge invariance will allow us to solve

for all local constraints in the large V' expansion. This provides more information at each

order than the usual derivative expansions used to solve the HJ equation in GR [30, 31].

The HJ equation can be obtained from (6.26) by making the substitutions
08 ab 08

P —
— oV T = 5gab,

(6.46)

where S = S(gap, @®) is the HJ functional that depends on the metric g,, and paramet-
rically on the separation constants a®’, which are symmetric tensor densities of weight 1.
We can express 7% in terms of %

3S 1/ 48
qob /23 (— ~3 <—gcd> gab\/§> (6.47)

5gab 5gcd

then use the chain rule

08 _ 05 oV, / By 05 0Ga(y)
39a(@) OV 6Gu(2) Y 5 3a0(y) Ogus ()

to write the result in terms of 3—5 and (g—sb. Remarkably, the V' derivatives drop out of the
final expression:

(6.48)

5gab 3

—ab 0S 1 < 0S
T — Gab
7

>g“b\/§. (6.49)

ab

The strategy will be to expand S in powers of (V/V;)~%/3,

00 Vv (3—2n)/3
S=>" (70) Stn) (6.50)
n=0

then insert this expansion into the HJ equation obtained using the substitution (6.49).
To obtain a complete integral of the HJ equation, Sy can be taken of the form S =
[ &Pz a®gqp. The linear constraints determine a® to be transverse and covariantly constant
trace. The leading order HJ equation determines the value of the trace of a®. This restricts
the freely specifiable components of a® precisely to the freely specifiable momentum data
in York’s approach [22].
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When o have a vanishing transverse-traceless part, it is possible to solve for the
HJ functional exactly using a recursion relation. These conditions are compatible with
asymptotic (in time) dS space, which has maximally symmetric CMC slices. The treatment
of general a’s is currently under investigation. The vanishing transverse—traceless condition

implies that
/16

To obtain the remaining S(,)’s, we can use the gauge invariance of Hg under the action
of the D’s to work in a gauge where R is constant. In this gauge, R = R and the variations
of R can be found using the standard variations of R. The S(n)’s can be found recursively
using our solution for Sy and by collecting powers of (V/ Vo)~2/3. The first terms are

\/7}2\/0 \/7/d3x\/_R (6.52)
Sey =+ (X) / d*z\/g ( R“”Rab) (6.53)

Note that Sy and S(;) are the only terms with positive dimension. The higher order terms
can be obtained straightforwardly but become increasingly more involved because of the
non-local terms appearing in the V expansion of Hy. Gauge invariant solutions can be
obtained by restoring the A[g, z) dependence of the tilded variables. This solves the local
HJ constraints of shape dynamics in asymptotic dS space. In this calculation, the gauge
invariance has allowed us to construct a general solution to all the local constraints of
the theory in the large V' expansion. This would not be possible in GR since the local
quadratic constraints are considerably more complicated, providing further evidence that
the local constraints of shape dynamics are helpful in simplifying certain calculations.

6.5 The semiclassical correspondence

We will now use our solution of the HJ equation to establish a semiclassical correspondence
between shape dynamics and CFT. In the semiclassical approximation, the phase of the
wavefunctional is given by the solution to the HJ equation. Thus,

V=0 +0, = oure%s+ +a_enS-, (6.54)

where S, represent the two solutions of the HJ equation. Using the gauge invariance of our
solutions under volume preserving conformal transformations, it follows, by differentiating
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with respect to the volume, that the \Ilsjfi obey the conformal Ward identities

0
\/_6ab

\/W \/;A (V/Vy) /3 (6.56)

-3 (K)3/2<8R2 R‘“’Rab> (V/Vo) ™3 +

is a conformal anomaly. The advantage that shape dynamics has over GR is that the local
constraints are linear in the momenta. The shape dynamics constraints can be quantized
unambiguously as vector fields on configuration space leading to linear Ward identities on
the CFT side of the correspondence. It follows that the wavefunctional of shape dynamics
is invariant under diffeomorphisms and volume preserving conformal transformations. The
correspondence thus implies that the CFT partition function is also invariant under dif-
feomorphisms and volume preserving conformal transformations at all RG times and not
just at the conjectured fixed point (ie, the infinite volume limit).

ihgar—— —TZ(9) = FA(9)VE(9), (6.55)

where

This correspondence suggests an interesting possibility: the potential of developing a
construction principle for shape dynamics that does not rely on having GR at our disposal.
Such a construction principle might be obtained through the correspondence by trying to
implement Barbour’s understanding of time [75]. The identification of “volume time” with
“RG time” suggests that time is identified with the level of coarse graining of a CFT.
Coarse graining is roughly a restriction of the complexity of configuration space. If true,
this would imply that time is given by complexity. Thus, this construction principle for the
shape dynamics Hamiltonian would provide a realization of Barbour’s idea that the flow
of time enters a timeless theory through a measure of complexity. He calls this measure
the abundance of “time capsules.”

Our derivation is close in spirit to [31] and is particularly inspired by Freidel [30]. As
mentioned, being able to impose all local constraints is not technically viable in GR, and
thus provides an enormous advantage of the shape dynamics approach. Our central charge
is a genuine central charge, even away from the fixed point. This is in contrast to GR
where the constraints are no longer first class with respect to the conformal constraints
away from the fixed point.

Our assumptions for the construction of the large volume shape dynamics Hamilto-
nian are compact CMC slices and the existence of trajectories that reach the large volume
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limit. Thus, we have shown that the correspondence from shape dynamics does not need
to assume asymptotic (A)dS space, but is a generic large CMC volume gravity/CFT cor-
respondence. To obtain the particularly simple HJ functional, we furthermore assume late
time homogeneity. In light of these advantages, we believe that shape dynamics may be
the natural framework for further exploring the connection between gravity in the large
CMC volume limit and boundary CFT.
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Chapter 7

Conclusions / Outlook

We have shown that it is possible to derive gravity starting from two simple principles:

1. that all measurements of length reduce to local comparisons.

2. that duration should be a measure of the relative change in the universe.

The first principle implies that it is the local shape degrees of freedom that are physically
relevant for the evolution. This motivates that the transformation

gap(T) = 64‘15(‘”)9@1,(:5) (7.1)

should be a gauge symmetry of a theory of gravity, where g,; is a dynamical spatial metric
and ¢ is an arbitrary conformal factor. The second principle implies that the dynamics of
the theory should be given by a geodesic principle on shape space. We then reviewed a
procedure, called best matching, that implements these principles simultaneously.

The idea behind best matching, we saw, was to shift the redundant configuration vari-
ables used in the theory (in shape dynamics this is the 3—metric) along the symmetry
directions until the difference between two different snapshots of the configurations, calcu-
lated with some choice of metric, is minimized. This minimum distance gives the value of
the metric on shape space. We showed that this procedure was equivalent to treating con-
figuration space as a fibre bundle over shape space and then choosing a particular section
on this fibre bundle. Best matching is, thus, a way of implementing Mach’s principles by
doing gauge theory on configuration space. In phase space, we showed that best matching
is equivalent to performing a particular canonical transformation then imposing an extra
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condition. For certain choices of metric on configuration space, this leads to the standard
Gauss constraints encountered in gauge theories. For others, this extra condition provided
a gauge fixing of one of the other first class constraints of the theory.

Once the structure of the fibre bundle has been identified, the only ambiguity in the
procedure is a choice of metric on configuration space. We showed that there exists a unique
choice of metric that leads to a theory, shape dynamics, whose dynamics is equivalent to
GR, even with the volume preserving restriction. The relationship between shape dynamics
and GR is most easily understood by noting that both theories are different gauge fixings of
a larger linking theory. In this picture, it is possible to “trade” one symmetry for another
by lifting to the linking theory and performing the appropriate gauge fixing. However,
in order to get non-trivial dynamics in the theory, it was necessary to trade all but one
of the local Hamiltonian constraints of GR for constraints that generate local conformal
transformations. For this reason, there is a global restriction on the transformation (7.1)
in shape dynamics. This restriction is that the conformal transformation must preserve
the 3—volume of the universe when the spacial topology is compact and without boundary.

The conformal symmetry (7.1) that is obtained from this procedure is technically and
conceptually much simpler than foliation invariance in GR. The cost of this simplification
is non—locality in the Hamiltonian. This non-locality originates from the fact that we
must perform a phase space reduction in the linking theory to obtain shape dynamics.
This phase space reduction involves the inversion of a partial differential equation. The
challenge in shape dynamics is, thus, to compute this non—local Hamiltonian explicitly.
We provided two expansions where this is possible. The first, was an expansion in large
volume. This expansion reveals that shape dynamics is purely conformal at large volume.
The solution to the Hamilton—Jacobi equation about the large volume limit suggests an
intriguing connection between Hamiltonian flow away from the large volume limit and RG
in a boundary CFT. The second expansion was in terms of small perturbations about a
background. This expansion may be particularly useful for cosmology.

We have shown that there exists an equivalent formulation of GR that has a different
symmetry group and is motivated from simples principles. Obviously, there are many
interesting possible ways to extend this work. First, it is important to understand the
structure of this new theory. For example, there are many interesting conceptual questions
like how to explain the twins paradox and length contraction in a theory with an absolute
notion of simultaneity. Alternatively, it would be interesting to study how highly symmetric
solutions could be derived directly from shape dynamics without reference the analogous
solution in GR in CMC gauge. More interesting, though, would be the potential for doing
new calculations in cosmology. Because gauge fixing is straightforward in shape dynamics,
certain calculations may be easier than the analogous calculation in GR.
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However, the most interesting implications are those for the quantum theory. The
non-locality at the classical level should not allow for any predictions different from that
of GR. But, at the quantum level, the non-locality might manifest itself differently. This
would be an interesting possibility to explore. The local symmetries of shape dynamics are
identical to those of Hotava—Lifshitz gravity. However, the non—locality of the dynamics
makes it impossible to use the power counting arguments normally used for perturbative
renormalizability. Nevertheless, it may still be true that this new theory will change the
RG flow of the theory into the UV. It would be interesting to compare the non—perturbative
behavior of quantum shape dynamics with that of GR. Finally, the potentially most inter-
esting extension of this work would be to identify a principle for selecting the metric on
configuration space. This would have to pick out the precise form of the shape dynamics
Hamiltonian without having to refer directly to GR. One possible mechanism would be to
take inspiration from the AdS/CFT correspondence and try to equate Hamiltonian flow
away from large volume with RG flow in a boundary CFT. If such a principle could be
found, it would potentially explain how to quantize a field theory that is fundamentally
non—local. It would also provide the missing link necessary for deriving gravity directly
from a simple set of well motivated principles.
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Appendix A

Useful Formula

A.1 De Sitter background in CMC

In this section, we give the metric, gu, and its conjugate momentum density, 7, for
a deSitter spacetime in CMC gauge in arbitrary dimension, d. We also calculate useful
quantities like the spatial curvature, R, and other important phase space functions.

1
1 .y
Guv(ts 7,01, 02) = ( 2 2 > Qap(r,01,0) = sin” 6,

o’ cosh (t/a)Qab Sin2 91 Sin2 62

(A.1)
VQ = sin? 0, sin 6, Vo= [d*zv/Q V = [d®x/g = o cosh®(t/a)V;
gap = % cosh?(t/a) Qg g® = Wﬁ(tm) Vg = o’ cosh? (t/a)VQ
e = —@ tanh(t/a)g®\/g © = —@ tanh(t/a),/g (m) = —@ tanh(t/a)
R= a5 A=d0 L[rom— 5] = —6tanh*(t/a) g
Gapea = GacGbd — d_ilgabgcd

(A.2)
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A.2 Useful Variations

In this section, we give some useful variations of phase space quantities for calculating H ).

The expansion is:

9ab = YJab + 6hab

° 7Tab N 7.[.ab + epab

Haval = 7‘[(0) + 67‘[(1) + 627-[(2) + ...

06 = W(o) + €wW(1) + egw(g) + ...

In terms of these, we find:

0" =1+ enwq + € (TL(U(Q) + ﬁiz),w(lﬂ +0(e?)

o g% — g% — ch® + O(e?)

VI — g (1 +eh/2+ O())

o T w+e(p+m-h)+ O(e?)

o (m) = (m) +e((m-h)—1/2(m) (h) + (p))

o gt =7 — 1 (x) g /g — g e [pob — L (6 (x) — (x) B) g™ — (x) het) /g] + O(e?)

ec-0—>0-0+2(c-d0c+0-g-h-0)+O()

o T T -T+2(m-ptm-g-h-m)+ O(?)

R— R+¢€(G-h+hi +VR) + O(e?)
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