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Abstract

The dynamics of the world’s oceans occur at a vast range of length scales. Al-
though there are theories that aid in understanding the dynamics at planetary scales
and microscales, the motions in between are still not yet well understood. This work
discusses a numerical model to study barotropic wind-driven gyre flow that is capable of
resolving dynamics at the synoptic, O(103 km), mesoscale, O(102 km) and submesoscales
O(10 km). The Quasi-Geostrophic (QG) model has been used predominantly to study
ocean circulations but it is limited as it can only describe motions at synoptic scales and
mesoscales. The Rotating Shallow Water (SW) model that can describe dynamics at a
wider range of horizontal length scales and can better describe motions at the subme-
soscales. Numerical methods that are capable of high-resolution simulations are discussed
for both QG and SW models and the numerical results are compared. To achieve high
accuracy and resolve an optimal range of length scales, spectral methods are applied to
solve the governing equations and a third-order Adams-Bashforth method is used for the
temporal discretization. Several simulations of both models are computed by varying
the strength of dissipation. The simulations either tend to a laminar steady state, or a
turbulent flow with dynamics occurring at a wide range of length and time scales. The
laminar results show similar behaviours in both models, thus QG and SW tend to agree
when describing slow, large-scale flows. The turbulent simulations begin to differ as QG
breaks down when faster and smaller scale motions occur. Essential differences in the
underlying assumptions between the QG and SW models are highlighted using the results
from the numerical simulations.
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Chapter 1

Introduction

The dynamics of the world’s oceans occur at a vast range of length scales and are influ-
enced by continental boundaries, Earth’s rotation, atmospheric winds and many other
factors. At the synoptic length scale, O(103 km), energy is entered into the ocean by exter-
nal forcing, such as atmospheric winds, and the motions are essentially two-dimensional.
This energy cascades across different length scales until, at the microscales, the energy
is dissipated by molecular viscosity and the motions are fully three-dimensional. Models
exists that describe the dynamics of water at the synoptic scales and microscales, but to
truly understand the complicated dynamics of the ocean, the intermediate length scales
must be thoroughly studied.

Modern understanding of large scale, wind-driven gyre flow originated with the work
of Sverdrup in 1947 [37]. In his paper, Sverdrup found that the meridional transport in
most of the ocean is directly proportional to the vorticity induced by the wind stress. This
relationship is now referred to as the Sverdrup Relation. Sverdrup’s theory is only valid in
the open ocean where frictional and nonlinear effects are negligible. Thus, there is a region
in the ocean where the Sverdrup Relation breaks down and a boundary layer solution
exists where the neglected effects must be considered. Soon after, it was discovered by
Stommel that the vorticity added by the atmospheric winds is necessarily dissipated along
the western boundary current (WBC) and the width of this current is directly related to
the strength of the dissipation [36]. Shortly after Stommel’s work, Munk studied wind-
driven flows by modelling the dissipation using a lateral friction term and found that the
WBC width can, again, be parameterized by the strength of the dissipation [23]. These
theories have been useful in understanding the qualitative behaviour of large-scale ocean
dynamics but they are insufficient as real oceans are turbulent in nature and smaller scale
dynamics must be considered.

To understand why a western intensification occurs, we first introduce potential
vorticity [24],

q =
f + ζ

h
, (1.1)

where f is the ambient or planetary vorticity due to Earth’s rotation, ζ is the relative
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vorticity and h is the fluid depth. The potential vorticity can be interpreted as a ratio
between the circulation and the volume of a fluid column. An important feature of the
potential vorticity is that it is a conserved quantity following the flow [24]. Now for the
sake of argument, suppose we look at a subtropical gyre on the northern hemisphere
where the curl of the wind stress is negative. From Sverdrup’s theory, the meridional
transport is southward for the majority of the ocean and conservation of mass requires
that a northward transport occurs within the boundary layer. To arrive at a contradiction
suppose that the boundary layer occurs along the eastern wall [7]. Within the boundary
layer, any changes in the zonal velocity is small compared to the steep increase of the
meridional velocity. Thus the vorticity can be approximated by

ζ =
∂v

∂x
− ∂u

∂y
≈ ∂v

∂x
. (1.2)

Based on the supposition that the northward velocity occurs on the eastern boundary,
there is a region near the eastern boundary such that the zonal gradient of v is positive.
Therefore, we have ζ > 0. Since the flow where Sverdrup’s theory is valid is slow, we have
ζ ≈ 0, but relative vorticity becomes important in the boundary layer so as f increases
northward, conservation of potential vorticity requires ζ to decrease to a negative value
within the boundary layer, which is a contradiction. If we assumed that the boundary
layer occurs along the western wall, no contradiction arises. Thus the boundary layer
must occur along the western boundary and the eastern boundary satisfies Sverdrup’s
solution. It is interesting to note that WBCs occur in both northern and southern
hemispheres since f is negative south of the equator.

Numerical computation is a pivotal tool in studying fluid dynamics. However, even
with powerful modern computers, it is impossible to resolve all length and time scales
that exist in a real ocean. This thesis presents a high-resolution numerical model that
takes advantage of modern, high-performance computer clusters in an attempt to resolve
a greater range of length and time scales than what has been previously considered.
The primary model for studying geophysical fluid dynamics is the Quasi-Geostrophic
(QG) model due to its simplicity and accuracy in large-scale flows. Although a lot has
been learned through this model, it is inaccurate when dynamics enter the submesoscale
regime, O(10 km). To achieve more physically relevant results at smaller length scales,
the Rotating Shallow Water (SW) model is used as it can resolve a greater range of
horizontal length scales. This work focusses on barotropic flows where it is assumed that
the motions are uniform in depth.

The SW model is an improvement over the QG model to study the mechanisms
that create a western intensification in wind-driven gyres as it can describe motions
at the synoptic scale, mesoscale and submesoscale. Submesoscale dynamics in a real
ocean tend to be more three-dimensional, but the velocity field in the SW model is
two-dimensional and therefore cannot accurately describe many aspects of submesoscale
motions. However, the SW model allows for a free-surface and assumes three-dimensional
incompressibility which should yield some insight into the generation of the submesoscale
dynamics that QG cannot. Furthermore, the free-surface in the SW model allows for the
generation and propagation of gravity waves that are absent in the QG model.
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Several numerical models exist for studying wind-driven, barotropic gyre flow. La-
Casce [19] studied turbulent oceans by solving the QG equation with a numerical model
that uses finite differences to compute spatial derivatives and Fourier sine transforms to
invert the vorticity to obtain the stream-function. Fox-Kemper [11] uses a Chebyshev
discretization in both zonal and meridional directions to study large-scale, low Reynolds
number, wind-driven gyre flow with variable viscosity. Both of these models are in the
context of QG and thus have its limitations in resolving small scale dynamics. The ma-
jor advantage that the numerical model in this thesis presents is the ability to resolve
more accurate dynamics that occur at synoptic length scales down to the submesoscales.
This is achieved by implementing a high-performance algorithm and also solving the SW
equations.

Numerical studies of wind-driven flow in a shallow water context includes work
done by Primeau and Newman [28] which studied double-gyre flow in a reduced gravity
SW model. However, the focus of this study was to find steady state solutions at low
Reynolds numbers whereas this thesis is more interested in turbulent dynamics which
occur at high Reynolds numbers. Crowley [6] developed a finite differencing scheme for
wind-driven barotropic gyre flow however it does not resolve wide range of motions. Yuan
and Hamilton [40] used a spectral method to solve the SW model on a f -plane. Their
numerical model is different as they studied turbulent flow on a doubly-periodic domain
with random external forcing. We look at a bounded domain problem with a forcing that
simulates a single-gyre flow at a higher grid resolution.

1.1 Thesis Outline

The goal of this thesis is to discuss high-resolution numerical methods for both wind-
driven ocean models and then compare the numerical results. Several features of ocean
dynamics that exist in the SW model but are absent in the QG model are highlighted.
Chapter 2 provides a detailed description of the numerical methods for the barotropic,
wind-driven ocean models. Section 2.1 sets up the coordinate system on a rotating refer-
ence frame to incorporate the Earth’s rotation and its curvature then describes an ideal
ocean basin, boundary conditions and wind forcing that are appropriate for a single-gyre
flow. Section 2.2 discusses a Fourier spectral method to solve the SW equations. Section
2.3 discusses a Chebyshev-Fourier spectral method to solve the QG equations. Chapter
3 presents the numerical simulations of both models. Section 3.1 presents physical pa-
rameters that are used in the simulations that are typically observed in a midlatitude,
subtropical gyre in the northern hemisphere. Section 3.2 shows simulations of the SW
model that show dynamics at a wide range of length and time scales then comparisons
between the SW and QG simulations are discussed in section 3.3. Chapter 4 summarizes
the discussion and presents future work.
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Chapter 2

Numerical Methods

In this chapter, we discuss numerical methods to solve the barotropic, wind-driven SW
and QG models. We begin by setting up an idealized ocean basin and prescribing bound-
ary conditions appropriate for a single-gyre simulation. Section 2.2 discusses a Fourier
spectral method to solve the SW equations. Section 2.3 discusses a Chebyshev-Fourier
spectral method to solve the QG equations. For both methods, a third-order temporal
discretization is discussed as well as a parallel implementation to improve runtime of the
simulation. Also, spectral filtering procedures are presented to overcome the numerical
instability that occurs in the method. Pseudocode is presented to summarize the methods
discussed in each section.

2.1 Model Setup

The models are situated on a rotating reference frame to incorporate the Earth’s spin
around its axis. The effects of Earth’s rotation is denoted by the Coriolis parameter,

f = 2ΩE sin(θ), (2.1)

where ΩE is Earth’s rotation rate and θ is the latitude measured from the equator. The
β-plane approximation is used where the Coriolis parameter is approximated linearly by,

f = f0 + βy, (2.2)

where
f0 = 2ΩE sin(θ0) (2.3)

and

β = 2
ΩE

RE

cos(θ0). (2.4)

RE is the mean radius of the Earth and θ0 is a reference latitude. The models describe
motions on a cartesian coordinate system where the x and y coordinates represent the
zonal (east) and meridional (north) directions, respectively. The velocity components
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in those directions will be denoted u and v, with ~u = (u, v). As the velocity field in

both models are two-dimensional, the gradient operator, ~∇, will only be applied to the
horizontal components,

~∇ = î
∂

∂x
+ ĵ

∂

∂y
. (2.5)

We idealize the ocean by assuming our domain is a rectangular box described by

Ω =

[
−Lx

2
,
Lx
2

]
×
[
−Ly

2
,
Ly
2

]
, (2.6)

where Lx and Ly represent the basin lengths in the zonal and meridional directions,
respectively. To ensure that there is no flow leaving or entering the system, we impose a
no normal flow condition on the entire boundary,

~u · n̂ = 0 on Γ, (2.7)

where n̂ is an outward pointing unit vector normal to the boundary, Γ. On the eastern
and western boundaries, we simulate continental coastlines by assuming that there is no
tangential flow (or no slip) on the boundaries,

~u · t̂ = 0 on ΓW ∪ ΓE, (2.8)

where t̂ is a unit vector tangential to the boundary. For large-scale flows, it is not entirely
clear as to which boundary condition should be used to emulate coastlines. The no slip
condition is chosen in our model to get a strong shear in the WBC. A real ocean is not
entirely encompassed by solid boundaries, and so we impose no stress (sometimes called
free slip) condition on the north and the south by simulating “fluid” boundaries,

∂u

∂y
+
∂v

∂x
= 0 on ΓN ∪ ΓS. (2.9)

The last boundary condition also prevents a shear instability from occurring along the
north and south boundaries which is typically not observed in a real ocean [11].

The wind forcing of choice is appropriate for a subtropical, single-gyre simulation,

~τ =
τ0

ρ0H
sin

(
πy

Ly

)
î, (2.10)

where τ0 is the forcing strength measured in N/m2, ρ0 is the fluid density and H is the
mean fluid depth. There is no zonal variation and thus the curl depends on the meridional
derivative,

k̂ · ~∇× ~τ = − πτ0

ρ0HLy
cos

(
πy

Ly

)
. (2.11)

This is negative throughout Ω and thus this form of wind forcing inputs negative vorticity
locally throughout the basin. Integrating the above equation across the entire basin gives,∫∫

Ω

k̂ · ~∇× ~τ dA = −2Lxτ0

ρ0H
< 0, (2.12)
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implying that the single-gyre wind forcing inputs net negative vorticity into the system.
It is shown in [24] that the vorticity entering the system due to the wind stress is dissi-
pated within the WBC. Thus, a mechanism is required to simulate the dissipation. We
use lateral viscosity in our models that can be interpreted as sub-grid scale viscosity that
parameterizes the effects of small-scale motions that are not resolved in our numerical
model. The lateral dissipation is preferable in our models since the higher-order deriva-
tives will allow us to impose all of the boundary conditions, (2.7)-(2.9). The details of
the dissipation will be discussed in later sections.

When comparing with a double-gyre simulation,

~τ = − τ0

ρ0H
cos

(
2πy

Ly

)
î, (2.13)

the problem becomes more simple. Integrating the new wind forcing above shows that
the global vorticity input is zero. In a double-gyre simulation, a clockwise flow (negative
vorticity) in the northern gyre is balanced by a counter-clockwise flow (positive vorticity)
in the southern gyre. Thus a vorticity balance is achieved by the cyclone-anticlone pair
and dissipation need not be considered [28].

2.2 Numerical Method for SW Model

2.2.1 Physical Model

As the name suggests, the SW model describes motion of a shallow layer of fluid with
aspect ratio, H/L� 1, where L is a horizontal length scale and H is the fluid layer depth.
In our model, we use H = 500 m thus SW is valid when dynamics have horizontal length
scales greater than 1 km. The small aspect ratio allows the assumption that the fluid is
homogeneous and the vertical variation in the horizontal velocities can be neglected. We
can also assume that the fluid is in hydrostatic balance,

∂p

∂z
= −gρ, (2.14)

which simplifies to
p = p0 − ghρ0 (2.15)

since density is assumed constant. The important aspect of pressure is its gradient which
can be written in terms of the fluid depth, h(x, y, t),

1

ρ0

~∇p = −g~∇h (2.16)

Thus for the SW model, the momentum equation is,

∂~u

∂t
+ ~u · ~∇~u+ fk̂ × ~u = −g~∇h+ ~D + ~τ . (2.17)
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where g is the acceleration due to gravity and ~D is a dissipation function. By depth-
integrating the three-dimensional continuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.18)

and applying the kinematic boundary condition at the surface and no-normal flow at the
flat bottom, we arrive at an evolution equation for the fluid depth,

∂h

∂t
+ ~∇ · (h~u) = 0. (2.19)

The wind forcing, used for the SW model is,

~τ =
τ0

ρ0h
sin

(
πy

Ly

)
î. (2.20)

This differs from (2.10) where this forcing is normalized by h, which varies in time and
space, rather than the H. It can be shown that this form induces a net negative vorticity
into the system as well. A lateral viscosity term is included in the model to dissipate the
vorticity in the system. A common choice for lateral viscosity is,

~D = ν∇2~u, (2.21)

where ν is the kinematic viscosity coefficient. However, for the SW model it can be
shown that this form of dissipation can cause the kinetic energy to increase locally which
is contrary to what one would expect to happen physically. This is shown in [14] and
a suggestion for dissipation is given such that the model is energetically consistent. For
our model we choose a dissipation that is derived in [30] which uses first principles and
chooses the stress tensor appropriately. In component form it is,

~D = ν

[
∇2u+ (ux − vy)hxh + (uy + vx)

hy
h

∇2v + (uy + vx)
hx
h
− (ux + vy)

hy
h

]
. (2.22)

The boundary conditions (2.7), (2.8) and (2.9) simplifies to

u = 0, (2.23)

v = 0 on ΓW ∪ ΓE, (2.24)

and

∂u

∂y
= 0, (2.25)

v = 0 on ΓN ∪ ΓS, (2.26)

on the rectangular basin. To conserve mass in the system, a no-flux boundary condition
is imposed on the fluid depth,

∂h

∂x
= 0 on ΓW ∪ ΓE, (2.27)

∂h

∂y
= 0 on ΓN ∪ ΓS. (2.28)
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The evolution of the fluid depth implies that there is a free-surface, η = h−H. This
free-surface introduces surface gravity waves which have speeds that are O(

√
gH), which

can be very fast for a deep ocean. The variation of the Coriolis parameter with latitude
allows for planetary waves to exist, also known as Rossby waves [24]. These waves exist
in the QG model as well. Rossby waves have speeds that are O(gHβ/f 2

0 ), which can be
smaller than the speed of gravity waves by several orders of magnitude. Simultaneously
including these two waves, one fast one slow, makes the SW equations very stiff. This
fact will be carefully considered when developing the numerical method.

2.2.2 Spatial Discretization

For the analysis of the methods presented in this chapter, we take a Method of Lines
(MOL) approach that is discussed in [21] and [38]. The idea is to first consider a spatial
discretization of the partial differential equations (PDE) which results in a system of
ordinary differential equations (ODE) that depend on time. We then apply a temporal
discretization scheme to the ODE system which evolves the original PDE over time.

Spectral methods are used for the spatial discretization. It is assumed that each
field is of the form ∑

m,n

âmnΨm(x)Φn(y), (2.29)

for globally interpolating orthogonal basis functions Ψm(x) and Φn(y). The spatial deriva-
tives are approximated in terms of these basis functions. Spectral methods are advanta-
geous as numerical accuracy can be improved by increasing the number of basis functions
used in the approximation. This is known as spectral accuracy [38]. The choice of basis
functions depend on the particular problem to be solved.

We begin by defining a computational domain by discretizing Ω on a uniform Nx×
Ny grid as follows,

(xi, yj) =

(
−Lx

2
+ i∆x,−Ly

2
+ j∆y

)
, (2.30)

for i = 0, . . . , Nx−1, j = 0, . . . , Ny−1, and where ∆x = Lx/Nx and ∆y = Ly/Ny. To
capture motions at the optimal range of length scales, we use a Fourier basis for our
spectral method. Suppose [U0, . . . , UN−1] is a discretized field in one dimension, then we
represent the field by a linear combination of Fourier modes by

Uj =
∑
n

Ûne
iknj, (2.31)

where j = 0, . . . , N−1 and kn = 2πn
L

are wave numbers. The complex Fourier coefficients,

Ûn, are obtained by the Discrete Fourier Transform (DFT) defined by

Ûn =
1

N

∑
j

Uje
−iknj, (2.32)
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where n = −N
2

+1, . . . , N
2

[17].

Using a Fourier basis in our spectral method has its advantages. There are Fast
Fourier Transform (FFT) algorithms available that are O(N log(N)) as N →∞ for one-
dimensional transforms, as opposed to a brute force calculation which is O(N2) [3]. Also,
computing derivatives become an algebraic operation by scaling Fourier modes by wave
numbers. The first-order derivatives can be computed by

U ′j =
∑
n

iknÛne
iknj, (2.33)

and the second-order derivatives by

U ′′j =
∑
n

−k2
nÛne

iknj, (2.34)

for each j = 0, . . . , N−1.

The DFT assumes that the array is periodic but our simulations impose boundary
conditions that are non-periodic. We take advantage of the fact that each field prescribes
either a zero-Dirichlet condition (no normal flow and no slip) or a zero-Neumann condition
(free slip and no flux) in each direction. For the zero-Dirichlet condition, only sine modes
are used to ensure that the boundary value is always zero and only cosine modes are used
to impose the zero-Neumann condition. Thus each field can be written as,

u(x, y) =
∑
m,n

ûmn sin (kmx) cos (lny) , (2.35)

v(x, y) =
∑
m,n

v̂mn sin (kmx) sin (lny) , (2.36)

h(x, y) =
∑
m,n

ĥmn cos (kmx) cos (lny) , (2.37)

where kn = 2πn
Lx

and lm = 2πm
Ly

are wave numbers in the x and y directions, respectively.

Since d
dx

cos(x) = −sin(x) and d
dx

sin(x) = cos(x), one must be careful when computing
derivatives in Fourier space and be certain that the correct inverse transforms are used.
When computing the derivative of an even transform, the spectral coefficients must be
multiplied by -1. This is not done for derivatives of odd transforms. Also, the derivative of
an odd function is even, and vice versa, so when computing the derivative, the appropriate
inverse transform must be used. The coefficients in (2.35)-(2.37) are real so using FFT
algorithms designed specifically for Discrete Cosine Transforms (DCTs) and Discrete Sine
Transforms (DSTs) will require half the memory and computation time compared to full
DFT algorithms [38] .

In Fourier theory, products in physical space are equivalent to convolutions in
Fourier space. However, when computing these, term-by-term products are less expensive
than convolutions. Thus due to the nonlinear terms in the SW equations, upon computing
the Fourier coefficients and the appropriate derivatives, it is necessary to transform back
to physical space to compute the SW evolution equations, (2.17) and (2.19). Although
this requires more DFTs to be performed, it is more efficient overall.
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Type Boundary Conditions Formula

DCT-I even at j=0, even at j=N−1 Ûn = U0+(−1)nUN−1+2
∑N−2

j=1 Uj cos
(
πjn
N−1

)
DCT-II even at j=−1

2 , even at j=N− 1
2 Ûn = 2

∑N−1
j=0 Uj cos

(
π(j+ 1

2
)n

N

)
DCT-III even at j=0, odd at j=N Ûn = U0 + 2

∑N−1
j=1 Uj cos

(
πj(n+ 1

2
)

N

)
DCT-IV even at j=−1

2 , odd at j=N− 1
2 Ûn = 2

∑N−1
j=0 Uj cos

(
π(j+ 1

2
)(n+ 1

2
)

N

)
Table 2.1: Discrete Cosine Transforms implemented in the FFTW library

Type Boundary Conditions Formula

DST-I odd at j=−1, odd at j=N Ûn = 2
∑N−1

j=0 Uj sin
(
π(j+1)(k+1)

N+1

)
DST-II odd at j=−1

2 , odd at j=N − 1
2 Ûn = 2

∑N−1
j=0 Uj sin

(
π(j+ 1

2
)(k+1)

N

)
DST-III odd at j=−1, even at j=N−1 Ûn=(−1)nUN−1+2

∑N−2
j=0 Un sin

(
π(j+1)(n+ 1

2
)

N

)
DST-IV odd at j=−1

2 , even at j=N − 1
2 Ûn = 2

∑N−1
j=0 Un sin

(
π(j+ 1

2
)(n+ 1

2
)

N

)
Table 2.2: Discrete Sine Transforms implemented in the FFTW library

2.2.3 FFTW

The FFTW (Fastest Fourier Transform in the West [13]) library has several efficient
implementations for DFT including real DCTs and DSTs [12] and so it is the library
of choice in our algorithm. Tables 2.1 and 2.2 list the available DCT and DST imple-
mentations in the FFTW library for a one-dimensional array, [U0, . . . , UN−1]. The idea
behind the DCT and DST algorithms is to periodically extend the array and then per-
form a DFT that ignores any redundant operations due to the larger array [32, 33]. The
Boundary Conditions column determines the parity of the extension and with respect to
which point the array is to be extended. j = 0 or j = N−1 indicate that the array is
to be extended with respect to an endpoint of the array. Extensions about j = −1 or
j = N occur with respect to a point that is one grid-scale outside of the physical array.
Extensions with respect to j = −1

2
or j = N − 1

2
occur similarly as the previous except

that the point of extension occurs a half grid-scale outside of the array.

Type-I and Type-II transforms have the same parity on each boundary and so the
array is copied once to achieve a periodic extension. Type-III and Type-IV transforms
have opposite parity on the boundaries so the physical data needs to be copied four times
over to produce a periodic extension. Type-I and Type-III transforms are performed on
a regular grid where the physical boundary points are a full grid scale length away from
the adjacent array points. However, for Type-II and Type-IV transforms, the Fourier
basis is on a staggered grid where the physical grid points are shifted by half of a grid
scale and the boundary point is a half grid-scale away from an adjacent point on the
array. The choice of which DCT/DST type to use in our numerical method depends on
the boundary conditions and Fourier basis we choose. Note that the boundary conditions
listed on table 2.1 and 2.2 do not impose any restrictions on our physical data.

10



Forward Inverse Forward Inverse
DCT-I DCT-I DST-I DST-I
DCT-II DCT-III DST-II DST-III
DCT-III DCT-II DST-III DST-II
DCT-IV DCT-IV DST-IV DST-IV

Table 2.3: Inverse DCT and DST

All of these transforms are invertible. The inverse of Type-I and Type-IV transforms
are the transform themselves, the inverse of Type-II is Type-III and vice versa. This is
summarized in table 2.3. However, the transforms computed by FFTW are unnormalized,
so computing a transform followed by its inverse yields the original array scaled by the
“logical” array size. For DCT-I the scaling factor is 2(N−1), for DST-I it is 2(N+1) and
for all else it is 2N . The transforms implemented in FFTW are most efficient when the
“logical” array length is a product of small prime factors which is why Type-I transforms
may not always be the best choice [13, 16]. In our algorithm, the required boundary
conditions leads us to use either Type-I or Type-II transforms. Thus to use the more
efficient implementation available, we use Type-II transforms and compute the equations
on a staggered grid, (xi+1/2, yj+1/2). On the staggered grid, the boundary conditions of
our physical problem are imposed implicitly.

Subroutines to compute the first and second derivatives using either sine or cosine
transforms are shown in algorithms 2.1-2.4. The wavenumbers, kn = πn

L
, are defined

on the “logical” array which is twice as long as the physical length, L. It is important
to note that the FFTW transforms only stores relevant Fourier modes. Thus the real
transform for an array of length N results in an array of length N but the spectral
coefficients for the cosine transforms correspond to wavenumbers {kn}N−1

0 whereas for
the sine transform, the spectral coefficients correspond to wavenumbers {kn}N1 . When
computing first derivatives (or any odd-order derivative for that matter), the shift in
spectral coefficients needs to be considered. In algorithm 2.1, the spectral coefficients,
Ûn, correspond to an even transform but Û ′n correspond to an odd transform. When
computing Û ′n, the even transform Ûn and wavenumbers kn are shifted accordingly while
the last coefficient, Û ′N−1 is set to zero. Algorithm 2.2 shows a similar shift in computing
the first derivative using a sine transform. Note that there is a negative sign when scaling
by the wavenumbers in algorithm 2.1 but not in algorithm 2.2. This is due to the fact
that d

dx
cos(x) = −sin(x) and d

dx
sin(x) = cos(x). A negative sign arises when computing

the derivative of a cosine and so it must be included when computing the derivative.
Computing second-order derivatives (or any even-order derivatives) does not require any
coefficient shifting since the parity of an even-numbered derivative is the same as the
original function. The subroutines to compute second-order derivatives are shown in
algorithms 2.3 and 2.4.
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Algorithm 2.1 function DCT dx: Compute first derivative with DCT

Input: {Uj}
Output: {U ′j}
{Ûn} ← DCT-II({Uj})
for n = 0→ N−2 do
Û ′n ← −kn+1Ûn+1

end for
Û ′N−1 ← 0

{U ′j} ← DST-III({Û ′n})
return {U ′j}

Algorithm 2.2 function DST dx: Compute first derivative with DST

Input: {Uj}
Output: {U ′j}
{Ûn} ← DST-II({Uj})
for n = 1→ N−1 do
Û ′n ← knÛn−1

end for
Û ′0 ← 0
{U ′j} ← DCT-III({Û ′n})
return {U ′j}

Algorithm 2.3 function DCT dx2: Compute second derivative with DCT

Input: {Uj}
Output: {U ′′j }
{Ûn} ← DCT-II({Uj})
for n = 0→ N−1 do
Û ′′n ← −k2

nÛn
end for
{U ′′j } ← DCT-III({Û ′′n})
return {U ′′j }

Algorithm 2.4 function DST dx2: Compute second derivative with DST

Input: {Uj}
Output: {U ′′j }
{Ûn} ← DST-II({Uj})
for n = 0→ N−1 do
Û ′′n ← −k2

n+1Ûn
end for
{U ′′j } ← DST-III({Û ′′n})
return {U ′′j }
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2.2.4 Time-Stepping Method

The time-stepping scheme of choice is the third-order Adams-Bashforth method (AB3),

Un+1 = Un + ∆t

(
23

12
F n − 4

3
F n−1 +

5

12
F n−2

)
, (2.38)

where Un is the numerical approximation of the dependent variable and F n represents
the function evaluation of the evolution equation at time n∆t [31]. Linear multi-step
methods such as AB3 are advantageous since only a single function evaluation is required
at each new step, however, this comes at a cost of more memory. When compared with
a single-step, multi-stage, fourth-order Runge-Kutta method (RK4) it is found that AB3
provides an overall faster runtime. Although RK4 has a larger stability regime than AB3
which allows for a larger time-step, it requires four function evaluations [21]. Numerical
experiments have shown that simulations using AB3 is about twice as fast as RK4 overall.

To determine an appropriate time-step size for the algorithm, first consider Burger’s
equation

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
, (2.39)

where ν is a diffusion coefficient. Burger’s equation contains a nonlinear term that is
similar to the nonlinear advection terms in (2.17) and (2.19). This equation contains two
time scales that are important in the SW model. One is due to advection and another
is due to diffusion. The nonlinear advection depends on the current state of U and the
fastest advection (and thus the shortest time scale) occurs where U is maximal. With
this in mind, now consider the more simple linear, advection-diffusion equation,

∂U

∂t
+ c

∂U

∂x
= ν

∂2U

∂x2
, (2.40)

where c is some advection speed which can be max{U} or another speed that occurs in
the SW (ie. surface gravity wave speed). This equation will be used to determine our
time-step size. We apply the AB3 method and substitute in a single Fourier mode with
wave number k and amplification factor α,

Un+j = αjeikx, (2.41)

to obtain the stability polynomial

α3 = α2 + γ∆t

(
23

12
α2 − 4

3
α− 5

12

)
, (2.42)

where,
γ = −νk2 − cki. (2.43)

To ensure stability, we must choose ∆t such that each solution of (2.42) satisfy |α| ≤ 1.
The region within the solid curve in figure 2.1 shows values of γ∆t on the complex plane
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Figure 2.1: Values of γ∆t on the complex plane such that the third-order Adams-
Bashforth method is stable (solid contour). |γ∆t| = 0.5 (dashed curve)

for which AB3 is stable. To ensure γ∆t lies within the region of stability, we choose ∆t
such that |γ∆t| = 0.5 or

∆t =
1

2|γ|
=

1

2
√

(ck)2 + (νk2)2
. (2.44)

This is indicated by the dashed curve in figure 2.1. Since Re(γ) < 0, γ∆t will always
lie within the stability regime for this choice of ∆t. This analysis was done for a single
Fourier mode with wavenumber k so for the algorithm to be stable for all modes, we
minimize ∆t using the largest wavenumber in the discretized domain. For the inviscid
case, ν = 0, we have ∆t = O(∆x) as ∆x → 0 and for the limiting case c = 0, which
is just the diffusion equation, we have ∆t = O(∆x2) as ∆x → 0. For the latter case,
where the diffusion time scale is much shorter than the advective time scale, the time-step
size can be rather small. But, using typical physical parameters for the SW model, the
advective time scale due to the speed of the surface gravity waves dominate all other time
scales in the model. Thus in our simulations, when computing the time-step with (2.44),
our time-step size is O(∆x). For a parameter set that where O(∆x), such as a reduced
gravity model, a semi-implicit scheme can be employed to allow larger ∆t.

For our choice of ∆t, it is necessary for explicit methods to satisfy the Courant-
Friedrichs-Lewy (CFL) condition [5] for stability. The CFL condition requires that the
time-stepping method can be convergent only if its numerical domain of dependence
contains the physical domain of dependence of the PDE to be solved. To allow larger
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Figure 2.2: Computational grid of SW problem. Solutions are calculated on ∗. The
numerical domain of dependence is shown by the solid lines with slope ±∆t/∆x. The
physical domain of dependence is shown by the dashed lines with slope ±1/c.

time-step sizes that does not necessarily satisfy the CFL condition, the alternative would
be to use an implicit method. However, larger time-steps do not resolve the fast gravity
waves in the SW model. Since we want include these motions, we use an explicit scheme
with small ∆t. Figure 2.2 shows the x-t plane to solve (2.40) and computing ∆t with
(2.44). The numerical domain of dependence is shown by the solid line and the physical
domain of dependence is shown by the dashed line. It can be shown that the slopes of
these lines satisfy

∆t

∆x
<

1

c
, (2.45)

implying that the numerical domain of dependence will always contain the physical do-
main of dependence and thus the CFL condition is always satisfied with this choice of
the time-step size.

The AB3 scheme is a three-step method which requires another method to compute
the first two steps. We avoid using low-order methods such as Forward Euler (which is
first-order) or the second-order Adams-Bashforth method. Instead, we use RK4 to take
the first two steps since it is fourth-order accurate. Although, RK4 requires more function
evaluations, only two steps are taken so the longer runtime can be neglected.

2.2.5 Parallel Implementation

The choice of time-step described in section 2.2.4 can be rather small and will result
in long runtimes. To improve the overall runtimes of the simulations, the program is
written with the Message Passing Interface (MPI) communication protocol and run in
parallel on a computer cluster. MPI allows the program to run different computations
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Figure 2.3: Schematic of the computational domain divided among four processors, P1
to P4, in the a) zonal direction, b) meridional direction

simultaneously on multiple processes and thus give an overall improvement in runtime.
In this simulation, the computational domain is divided into np zonal strips, where np is
the number of processes used in the simulation. Each process computes the SW equations
in their respective zonal strips. Computing derivatives in the x-direction is trivial, but to
compute derivatives in the y-direction is more intricate. Several MPI SendRecv calls are
required to send data from one process to another to re-divide the computational domain
into meridional strips. Only then can the y-derivatives be computed. Figure 2.3 shows a
schematic of the computational domain divided amongst four processors labelled P1 to
P4 in both the zonal and meridional directions.

An important metric to determine the scalability of a parallel program is the parallel
efficiency,

PE =
Tseq

npT (np)
, (2.46)

where Tseq is the runtime of the sequential (not parallel) version of the program and
T (np) is the runtime of the parallel program on np processors. A well scaled code will
have PE ≈ 1 for any np. Table 2.4 lists the parallel efficiencies of a short test simulation
on a 2048 × 2048 grid. When np is 2 or 4, we have PE ≈ 1 but as np increases, the
parallel efficiency decreases. This is due to the relatively fewer number of grid points on
each processor. For this reason, 3D simulations have better scalability results running on
higher number of processors than 2D simulations. Although, parallel efficiency is lower
for larger np, a scalable version of the program has been effective in reducing the runtime
significantly. Note that np must be chosen such that it divides both Nx and Ny.

2.2.6 Filtering

The nonlinear terms in the SW equations are responsible for energy being transferred
between different length scales. This may cause problems in the simulation for there
is a limit to the smallest range of motion that can be resolved on the computational
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np Parallel Efficiency

2 1.073
4 0.916
8 0.766
16 0.663
32 0.624
64 0.528
128 0.518

Table 2.4: Parallel efficiency of the SW solver of a test simulation on a 2048×2048 grid

0 0.5 1

Figure 2.4: An example of aliasing on 8 grid points. The dashed sine wave has frequency
14π but is misinterpreted as a wave with frequency −2π.

grid. Although the lateral viscosity term aids in reducing the energy at small scales, it
is insufficient for numerical stability for most cases. As the unresolved motions become
important, the simulations may give results that are unphysical or lead to numerical
instabilities. Another issue that arises due to the energy transfers between length scales
is aliasing [38]. Since the range of wavenumbers on a computational grid is finite, the
modes with frequencies that are too high for the grid are misinterpreted as a mode with
lower frequency. Figure 2.4 shows an illustration of aliasing on 8 grid points. The dashed
sine wave has frequency 14π which can not be properly resolved on an 8-point grid.
Instead, it is interpreted as a sine wave with frequency −2π.

To work around these issues, we filter or dealias the high frequency modes. The
filter of choice is a truncation method using the “two-thirds rule” [2]. In two-dimensions,
the wavenumber space is truncated to an ellipse where the semi-major and semi-minor
axes are two-thirds of the highest wavenumber in each direction. The filter follows the
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formula

Ûmn =

{
0 if

(
km

2
3
kmax

)2

+
(

ln
2
3
lmax

)2

≥ 1,

Ûmn otherwise.
(2.47)

where kmax and lmax are the largest positive wavenumbers in the computational domain
in the zonal and meridional directions, respectively. The filter is applied to each field,
u, v, and h, after each time-step.

Truncation effectively limits the range of wavelengths that are resolved in the numer-
ical model but the difference rather minor. Without truncation, the smallest wavelength
that can be resolved is λmin = 2∆x but with truncation, wavelengths as small as 4∆x
are resolved.

2.2.7 Pseudocode

The final algorithm is described in pseudocode in algorithm 2.5. To ensure stability as
the velocity fields evolve, ∆tnew is calculated using (2.44) with c as the max speed of
the current state. If ∆t < ∆tnew, then a new time-step is chosen based on ∆tnew and
the simulation proceeds. In the code, the discrete Fourier transforms are the most com-
putationally expensive subroutines so in practice we minimize the number of transforms
required, which is not shown in the pseudocode. When computing derivatives, the for-
ward transforms are taken once to compute both first-order and second-order derivatives.
Algorithm 2.6 describes the filtering procedure.

2.3 Numerical Method for QG Model

2.3.1 Physical Model

The barotropic QG model is the predominant model used to study large-scale ocean
circulation theory. It describes a two-dimensional flow of a one-layer, homogeneous,
incompressible fluid in the rigid lid limit [24]. The QG model can be derived directly
from the SW model by first introducing characteristic scales L, U , T and N0 to describe
typical magnitudes of length, velocity, time and free-surface elevation. Then define non-
dimensional variables, denoted with primes, by

(x, y) = L(x′, y′), (2.48)

(u, v) = U(u′, v′), (2.49)

t = Tt′, (2.50)

η = N0η
′. (2.51)
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Algorithm 2.5 Numerical method to solve Rotating Shallow Water equations

Compute ∆t using (2.44) with c =
√
gH

{uij} ← u0, {vij} ← v0, {hij} ← h0

t← 0
FirstStep← true, SecondStep← true
while t ≤ tend do

Compute terms in (2.17) and (2.19)
if FirstStep = true then

RK4 time-step
FirstStep← false

else if SecondStep = true then
RK4 time-step
SecondStep← false

else
AB3 time-step

end if
t← t+ ∆t
Filter({uij}, {vij}, {hij)}
Compute ∆tnew using (2.44) with c = max |(u, v)|
if ∆tnew < ∆t then

∆t← 3
4
∆tnew

FirstStep← true, SecondStep← true
end if

end while

Algorithm 2.6 Filtering procedure for SW solver

Input: {Uij}
Output: {Uij}

compute appropriate forward Fourier transforms
{Ûmj} ← DFTx({Uij})
{Ũmn} ← DFTy({Ûmj})
Truncate high-frequency wave modes
for m = 0, . . . , Nx−1 do
for n = 0, . . . , Ny−1 do

if
(

km
2/3kmax

)2

+
(

ln
2/3lmax

)2

≥ 1 then

Ũmn ← 0
end if

end for
end for
Transforms to physical space using appropriate inverse transform
{Ûmj} ← DFTy({Ũmn})
{Uij} ← DFTx({Ûmj})
return {Uij}
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To ensure that u′ and v′ are non-zero, we choose the free-surface scaling, N0, such that
the pressure gradient is large enough to balance the Coriolis acceleration,

N0 =
ULf0

gH
(2.52)

Substituting (2.48)-(2.51) into the SW model introduces nondimensional parameters,

ε =
U

f0L
, (2.53)

εT =
1

f0T
, (2.54)

called the Rossby number and the temporal Rossby number, respectively. If we enforce
that both ε and εT are equal and small, implying that the advective time scale, U/L,
is small compared to the Coriolis time scale, 1/f0, then the dependent variables can be
written as a perturbation expansion about ε,

u′ = u0 + εu1 + ε2u2 + · · · , (2.55)

v′ = v0 + εv1 + ε2v2 + · · · , (2.56)

η′ = η0 + εη1 + ε2η2 + · · · . (2.57)

The O(1) terms gives,

u0 = −∂η0

∂y
, (2.58)

v0 =
∂η0

∂x
, (2.59)

and
∂u0

∂x
+
∂v0

∂y
= 0. (2.60)

This means that the O(1) terms are in geostrophic balance and are incompressible in two-
dimensions. The O(ε) equations can be combined to arrive at an O(1) vorticity equation
where

ζ0 =
∂v0

∂x
− ∂u0

∂y
. (2.61)

Upon dropping the subscripts and replacing the order-one free-surface, η0, with a stream-
function, ψ, the QG equations in dimensional form are

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
+ β

∂ψ

∂x
= ν∇2ζ + k̂ · ~∇× ~τ , (2.62)

ζ = ∇2ψ. (2.63)

The second and third terms on the left-hand side is the nonlinear advection written in
terms of the stream-function. The last term on the left-hand is the ambient vorticity
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which incorporates the Earth’s rotation into the model. In this model, a simple Lapla-
cian term with the kinematic viscosity coefficient, ν, is used for lateral viscosity. The
dissipation term (2.22) reduces to a Laplacian term in the QG limit. This form models
the sub-grid motions that are not resolved in our numerical model [25]. The wind forcing
used is (2.10). The QG model describe O(1) motions in the perturbation expansion and
thus the error in the model is O(ε). This implies that the QG model is valid when the
advective time scale is small compared to the Coriolis time scale. As faster dynamics
occur at smaller length scales, then QG is no longer a reasonable approximation. For a
more detailed discussion on the QG model, the reader is directed to [24] or [25].

The boundary conditions (2.7), (2.8) and (2.9) in terms of the stream-function are

ψ = 0 on Γ, (2.64)

for no normal flow,

∂ψ

∂x
= 0 on ΓE ∪ ΓW , (2.65)

for no slip, and

∂2ψ

∂y2
= 0 on ΓN ∪ ΓS, (2.66)

for free slip on the north and south boundaries.

2.3.2 Spatial Discretization

At first, one may try to use a Fourier basis in the spectral method as in section 2.2 but
boundary conditions (2.64) and (2.65) make it problematic to use a Fourier decomposition
in the x-direction since a zero-dirichlet condition and a zero-neumann condition needs to
be satisfied. This inconsistent with the boundary conditions of a sine or cosine spectral
decomposition. So instead, we use a Fourier basis in the y-direction only where both
boundary conditions to the north and south can be satisfied using sine modes. In the
x-direction, we use a Chebyshev polynomial basis which will allow us to impose both
(2.64) and (2.65). Thus our stream-function will be of the form,

ψ(x, y) =
∑
m,n

âmnTm(x) sin(lny), (2.67)

where Tm(x) are Chebyshev polynomials. The algorithm developed in this section is
similar to the numerical method used in Chapter 4 of [35] where simulation of the QG
equations were used to study WBC separations.

21



x0x1x2x3x4x5x6x7

Figure 2.5: A Chebyshev grid with N = 7 is formed by projecting points that are
equidistant on a circle down onto the x-axis. {xi} is defined in descending order with
x0 = 1 and xN = −1

2.3.3 Chebyshev Polynomial Interpolation

In this section, we discuss Chebyshev polynomials on the interval [−1, 1]. The ideas
discussed can easily be extended to the interval

[
−Lx

2
, Lx

2

]
by a change of variable. We

first define a non-uniform grid on [−1, 1] by

xi = cos

(
πi

N

)
, (2.68)

for i = 0, . . . , N , called Chebyshev collocation points. Note that this defines the grid in
descending order but does not affect the derivation of the numerical method. The grid
points are calculated on equidistant points of a unit semi-circle then projected down to
the x-axis. Figure 2.5 illustrates a Chebyshev grid for N = 7. One important feature
of (2.68) is the crowding of grid points near the boundaries. A polynomial interpolation
using a uniform grid may result in highly oscillatory behaviour near the boundaries.
Furthermore, when interpolating a smooth function on a uniform grid, the convergence
rate becomes worse as N → ∞. This is called the Runge phenomenon. Having a
higher concentration of grid points near the boundaries eliminates the oscillations and
polynomial interpolations converge [38]. In practice, we use N = Nx−1 to be consistent
with the previous section so we have Nx to mean the exact number of grid points. For
ease of notation, the Chebyshev interpolation will continue to be discussed is this section
in terms of N .

The Chebyshev polynomials are defined in [10] as

Tm(x) = cos(mθ), θ = arccos(x). (2.69)
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The first case, m = 0, gives
T0(x) = 1, (2.70)

and m = 1 gives
T1(x) = x. (2.71)

Using the trigonometric identity, cos(θ) cos(mθ) = 1
2
[cos((m + 1)θ) + cos((m− 1)θ), the

remaining Chebyshev polynomials can be found recursively by

Tm(x) = 2xTm−1(x)− Tm−2(x), (2.72)

for m = 3, . . . , N . Although we assume that the stream-function can be decomposed in
terms of Tm(x) in the zonal direction, the spectral coefficients are not computed explicitly.
Thus we do not use a transform method to compute the derivatives as in section 2.2.
Instead, we compute the derivatives in physical space using a Chebyshev differentiation
matrix, Dx, defined as

[Dx]00 =
2N2 + 1

6
, [Dx]NN = −2N2 + 1

6
(2.73)

[Dx]jj =
−xj

2(1− x2
j)
, j = 1, . . . , N−1 (2.74)

[Dx]ij =
ci
cj

(−1)i+j

(xi − xj)
, i, j = 0, . . . , N, i 6= j (2.75)

where

ci =

{
2, if i = 0 or N,

1, otherwise.
(2.76)

Dx is a dense matrix since Chebyshev polynomials are globally interpolating basis func-
tions as opposed to other finite differencing schemes which interpolate locally resulting in
sparse differentiation matrices. The use of a differentiation matrix will be costly in terms
of computational resources but it is necessary to solve the inverse problem that will be
discussed in section 2.3.5.

2.3.4 Time-Stepping Method

Consider a linear system of ODEs,

~U ′(t) = A~U, (2.77)

where A is a constant matrix operator. When solving the above system with an explicit
time-stepping scheme, it is shown in [21] that we require that ∆t|λ| lies within the stability
region of the time-stepping scheme on the complex plane for each eigenvalue, λ, of A.
This implies that

∆t = O(λ−1
max), (2.78)

where λmax is the eigenvalue of A with the largest magnitude. When calculating the terms
in (2.62), we make use of the first and second-order Chebyshev differentiation matrix,
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Dx and D2
x. It is shown in [2] that the modulus of the largest eigenvalue of Dx is O(N2),

and D2
x is O(N4). Thus the advective terms in (2.62) requires ∆t = O(N−2) and the

dissipation term requires ∆t = O(N−4), as N → ∞, if solving with an explicit scheme.
The latter is a severe restriction on ∆t and not a suitable choice in our algorithm. To
allow larger ∆t, we solve the dissipation in (2.62) implicitly. The nonlinear advection
terms are to be computed explicitly as an implicit method would require a nonlinear,
iterative solver [31]. Computing the advection terms in (2.62) with an explicit method,
it is necessary to have ∆t = O(N−2) due to the CFL condition. Near the boundaries, the
grid points are clustered with distribution O(N−2) and as a result, the CFL condition
requires ∆t = O(N−2).

The time-stepping scheme used is a combination of the explicit AB3 method and
the implicit Backward Euler method (BE). The implicit/explicit time-stepping scheme
for the vorticity is

ζn+1 = ζn + ∆t

(
23

12
F n
QG −

4

3
F n−1
QG +

5

12
F n−2
QG

)
+ ∆tν∇2ζn+1 (2.79)

where

F n
QG = −∂ψ

n

∂x

∂ζn

∂y
+
∂ψn

∂y

∂ζn

∂x
− β∂ψ

n

∂x
+ k̂ · ~∇× ~τ . (2.80)

At each time-step, the explicit terms are solved first then the implicit terms are computed.
The method to solve the implicit terms as well as the inverse problem (2.63) is described in
section 2.3.5. AB3 is chosen in favor of a multi-stage method such as RK4 since it requires
only a single function evaluation at each step. A multi-stage method is problematic since
there is no evolution equation for the stream-function, ψ. The inverse problem would be
solved after each stage to find ψ before computing the next stage. The inverse problem is
computationally expensive so this is not a viable choice. We must take steps that require
only a single evaluation of FQG before solving the inverse problem.

We require two initial time-steps before executing the AB3 scheme but we must be
careful on what method to use. Our first step is taken with the Forward Euler method
(FE)

ζn+1 = ζn + ∆tF n
QG, (2.81)

then we take a step with the 2nd-order Adams-Bashforth method (AB2),

ζn+1 = ζn + ∆t

(
3

2
F n
QG −

1

2
F n−1
QG

)
, (2.82)

using the function evaluation from the FE step. We then proceed with using AB3 for
the remainder of the simulation. Although lower-order methods are used as the start-up
procedure, it is presumed that does not affect the overall accuracy of the simulation as
the start-up procedure only occurs a few times during the computation.

The step size, ∆t, is chosen such that

∆t <
0.5

max
i,j
{| uij

∆xi
}|+ max

i,j
{ vij

∆y
}
, (2.83)
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where ∆xi = xi − xi−1, to ensure that the CFL condition is satisfied in both x and
y-directions. The factor of 0.5 was found empirically. It is difficult to determine if this
choice of ∆t lies within the stability regime of AB3 due to the nonlinearity of the problem
and the different discretizations in each direction of the computational domain. However,
simulations of the QG equations with this choice of ∆t has yet to experience a numerical
instability.

2.3.5 Inverse Problem

What remains to be solved are the implicit terms in (2.79) and the inverse problem (2.63).
These two equations can be written in matrix form as[

0 I −∆tν∇2

∇2 I

]
︸ ︷︷ ︸

A

[
ψn+1

ζn+1

]
=

[
ζn + ∆t

(
23
12
F n
QG − 4

3
F n−1
QG + 5

12
F n−2
QG

)
0

]
︸ ︷︷ ︸

B

, (2.84)

where I denotes an identity operator. Equation (2.84) will become a system of linear
equations upon discretizing ψn+1 and ζn+1. Solving linear systems can be computationally
expensive so we take caution when discretizing the variables. Consider discretizing ψn+1

and ζn+1 as (NxNy)×1 vectors and A would be discretized as a (2NxNy)×(2NxNy) matrix.
Note that when discussing matrices, we use the row × column coordinates and not the
cartesian grid coordinates and thus differentiation matrix operators will be applied to the
left of the field to compute x-derivatives. The computational complexity of solving this
linear system is O((NxNy)

a) for some a > 2. Direct methods for solving linear systems
gives a = 3 but fast algorithms exist where the current lowest known value is a = 2.376
[4, 39]. This can be very expensive for high-resolution simulations. In an attempt to
improve the computational complexity, we take advantage of the Fourier basis in the
y-direction and use FFTs. We discretize ψn+1 and ζn+1 as Nx × Ny matrices, then we
take the Fourier transform of (2.84) in the y-direction to get[

0Nx INx −∆tν∇̃2

∇̃2 INx

]
︸ ︷︷ ︸

Ãl

[
ψ̃n+1
l

ζ̃n+1
l

]
= B̃l, (2.85)

where 0Nx and INx are Nx ×Nx zero and identity matrices, respectively. The Laplacian
operator becomes ∇̃2 = D2

x − l2INx where l denotes meridional wave numbers and tildas
indicate DSTs in the y-direction. Ãl is now a 2Nx × 2Nx matrix. There are Ny linear
systems to be solved for each l in the domain and two more DSTs to be executed (one
forward, one backward). Therefore, the computational complexity of the new discretiza-
tion, is O(Na

xNy + NxNy log(Ny)). Since a > 2, this is an improvement from what we
had before but it is still expensive for high-resolution simulations.

Before computing the inverse, Ãl and B̃l must be modified such that the resulting
ψn+1 satisfies the no normal flow and no slip conditions on the east and west boundaries.

25



The first and last row of each submatrix of Ãl in (2.85), along with the corresponding
rows in B̃, are replaced in the following manner,

[INx ]1,1:Nx 0 · · · 0
...

[INx ]Nx,1:Nx
0 · · · 0

[Dx]1,1:Nx
0 · · · 0

...
[Dx]Nx,1:Nx

0 · · · 0


[
ψ̃n+1

ζ̃n+1

]
=



0
...
0
0
...
0


. (2.86)

Recall that the boundary conditions on the north and south boundaries are already
satisfied by the use of the sine spectral basis.

The solutions to the linear systems are computed using the linear solvers available
in the library LAPACK (Linear Algebra PACKage [1]). In an attempt to use the most
efficient implementation available in LAPACK, the matrix Ã and B̃ can be rearranged
by swapping the top half with the bottom half and so Ã becomes a banded matrix with
upper bandwidth bU = Nx and lower bandwidth bL = Nx. LAPACK has a linear solver for
general banded systems, dgbsv, but numerical tests have shown that this method has a
longer runtime than using a general solver, dgesv. This is due to the relatively large upper
and lower bandwidths. The banded solver reshapes the matrix to a (2bL + bU + 1)× 2Nx

matrix which is larger than the original matrix Ã.

2.3.6 Parallel Implementation

The computational cost of solving the inverse problem dominates the total runtime of
the simulation. As with the SW solver, the program is written using MPI to run the sim-
ulation on np processors. First, consider the explicit time-stepping. The computational
domain is divided into zonal strips to solve the equations. To compute the zonal deriva-
tives, the differentiation matrix is multiplied on to the left of the discretized variables.
To compute meridional derivatives, the domain is divided into meridional strips as in the
previous section for the SW solver. For the inverse problem, we have Ny linear systems
to solve that are independent of each other thus the linear systems are divided evenly
among the processors and solved simultaneously.

Table 2.5 lists the parallel efficiency of a test simulation on a 512 × 512 grid. The
values show a much better scalability result than the SW solver. This is due to the even
distribution of the computationally expensive inverse problem amongst the processors.
But in practice, we choose Nx < Ny for high-resolution cases to reduce the overall runtime
of the simulation. This effectively decreases the relative size of the inverse problem. Since
a Chebyshev collocation is used in the zonal direction, a smaller Nx does not effect the
resolution of the motions as much of the dynamics occur near the WBC and the interior
is relatively slow. Table 2.6 shows the parallel efficiency of 256× 2048 simulation. With
the relatively smaller Nx, some parallel efficiency is lost but still shows better scalability
for large np than the SW solver.
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np Parallel Efficiency
2 0.991
4 1.032
8 1.002
16 0.998
32 0.944
64 0.979
128 0.903

Table 2.5: Parallel efficiency of the QG solver of a test simulation on a 512×512 grid

np Parallel Efficiency
2 1.014
4 0.971
8 0.909
16 0.902
32 0.864
64 0.867
128 0.748

Table 2.6: Parallel efficiency of the QG solver of a test simulation on a 256×2048 grid

2.3.7 Filtering

The nonlinear advection terms in (2.62) transfers energy to different length scales. To
avoid numerical instability due to under-resolved motions, a spectral filtering procedure
is required. The spectral method uses a Fourier basis the y-direction and a Chebyshev
polynomial basis in the x, each requiring a different filter for numerical stability. The
sine modes in the y-direction are filtered using the two-thirds truncation rule,

Ũn =

{
0 if ln ≥ 2

3
lmax,

Ũn otherwise.
(2.87)

In the x-direction, we must filter the high-degree Chebyshev polynomials to avoid unre-
solved, sub-grid dynamics. A truncation filter was found to cause numerical instabilities
in the code so instead we use a damping approach. Consider a fourth-order, hyper-
viscosity equation in one dimension,

∂U

∂t
= µ

∂4U

∂x4
. (2.88)

If we assume a wave-like solution of the form U(x, t) = exp(i(kx−ωt)), we get a dispersion
relation

ω = µk4i, (2.89)

and the wave-like solution becomes

U(x, t) = eµk
4teikx. (2.90)
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Here, the solution decays if µ < 0 and different wave modes decay at different rates.
Higher values of k dampens the solution very strongly whereas lower values experience
a weaker damping. We take a similar approach to our Chebyshev damping filter but we
modify µ and k such that only high-degree Chebyshev polynomials are dampened and
lower-degree polynomials remain unchanged.

Before proceeding, we need a method to obtain the spectral coefficients for the
Chebyshev decomposition. Recall from equation (2.69) that the Chebyshev polynomials
can be written in terms of cosine functions. In series form, the Chebyshev decomposition
can be written as ∑

m

Ûm cos(mθ), (2.91)

which is a Fourier cosine series in θ. Thus filtering a Fourier series in θ is equivalent
to filtering a Chebyshev series in x and the spectral coefficients can be found by taking
an even transform using DCT-I. Upon computing the coefficients, the filter follows the
formula

Ûm =

{
eµ(

m−mc
N−mc

)
4

Ûm if m > mc,

Ûm otherwise.
(2.92)

Polynomials with degree greater than the cutoff value mc are dampened in a manner that
is similar to the hyper-viscosity equation. This “exponential cutoff filter” is commonly
used when studying physical problems with spectral methods [8, 15]. The value of the
damping coefficient is chosen such that µ ≈ ln(ε) so the highest frequency is driven down
to machine precision, ε. In our simulations, we choose mc = 2

3
Nx to correspond with the

“two-third” truncation filter applied in the meridional direction.

Both filters are applied to matrix B in (2.84) after computing the explicit terms but
before solving the inverse problem. This ensures that any aliasing effects are removed
before we compute ψ and q.

2.3.8 Pseudocode

Pseudocode is presented to summarize the numerical procedure to solve the QG equa-
tions. Algorithm 2.7 provides an overview of the QG solver. To ensure that the CFL
condition is satisfied, ∆tnew is computed prior to each time-step and compared with the
current ∆t. If the CFL condition is violated, then a new ∆t is computed and the AB3
time-stepping restarts by taking a FE step and a AB2 step with the new ∆t. The function
evaluation of FQG is shown in detail in algorithm 2.8. The pseudocode for the filtering
procedure is shown in algorithm 2.9 and for the inverse problem is shown in algorithm
2.10.
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Algorithm 2.7 Numerical method to solve Quasi-Geostrophy equations
∆t← ∆tinit
{ψij} ← 0, {ζij} ← 0
t← 0
FirstStep← true, SecondStep← true
while t ≤ tend do

Compute FQG
if FirstStep = true then
B ← FE time-step
FirstStep← false

else if SecondStep = true then
B ← AB2 time-step
SecondStep← false

else
B ← AB3 time-step

end if
t← t+ ∆t
Filter(B)
Solve inverse problem
Compute ∆tnew using (2.83)
if ∆tnew < ∆t then

∆t← 3
4
∆tnew

FirstStep← true, SecondStep← true
end if

end while

Algorithm 2.8 function FQG
Input: {ψij}, {ζij}
Output: FQG

Compute y-derivatives using algorithm 2.2
Compute x-derivatives using differentiation matrix Dx

Compute FQG following (2.62)
return FQG
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Algorithm 2.9 Filtering procedure for QG solver
Input: Uij
Output: Uij

compute odd Fourier transforms in y
Ũin ← DSTy-II(Uij)
truncate high-frequency wave modes
for all n = 0, . . . , Ny−1 do
if ln ≥ 2/3lmax then
Ũin ← 0

end if
end for
transform to physical space
Uij ← DSTy-III(Ũin)
compute even Fourier transforms in x
Ûmj ← DCTx-I(Uij)
dampen high-degree polynomials
for all m = 0, . . . , Nx−1 do
if m ≥ mc then
Ûin ← 0

end if
end for
transform to physical space
Uij ← DCTx-I(Ûin)
return Uij

Algorithm 2.10 QG Inverse Problem
Input: B
Output: ψij, ζij
B̃ ← DSTy(B)

Ã←
[

0 I −∆tν(D2
x − l2nI)

D2
x − l2nI I

]
modify Ã and B̃ to impose zonal boundary conditions

solve Ã

[
ψ̃ij
ζ̃ij

]
= B̃

ψij ← IDSTy(ψ̃ij)
ζij ← IDSTy(ζ̃ij)
return ψij, ζij
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Chapter 3

Numerical Results

In this chapter, numerical simulations of the Rotating Shallow Water equations and the
Quasi-Geostrophic equations using the methods discussed in chapter 2 are presented.
The parameters used in all simulations are discussed in section 3.1. Results from the SW
solver are presented in section 3.2. In section 3.3 we compare some results between the
SW simulations and QG simulations.

3.1 Computational Parameters

The simulations take place on a square ocean basin with side lengths of 4000 km. The
choice of Coriolis parameters, f0 and β, are appropriate for a mid-latitude ocean centered
at 45 degrees north. The mean fluid depth, H, is set to be 500 m where it is estimated by
[29] that the effects of the atmospheric winds reaches down to this depth. Since this is a
one-layer model, we assume the ocean beneath this depth is static. In the simulations, a
wind stress parameter of τ0 = 0.2 N/m2 is used which is higher than the typically observed
value of 0.1 N/m2. The higher value inputs more energy into the system and allows us
to observe gyre flow at an earlier time however realistic velocity fields are observed. All
of the physical parameters are summarized in table 3.1.

Lx 4× 103 km
Ly 4× 103 km
g 9.81 m/s2

H 5× 102 m
f0 1× 10−4 s−1

β 2× 10−11 (ms)−1

τ0 0.2 N/m2

ρ0 1000 kg/m3

Table 3.1: Physical parameters used in numerical simulations.
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Case δM ( km) ν ( m2/s) Nx ×Ny (SW) Nx ×Ny (QG) np
Case 1 200 1.6×105 128× 128 128× 128 8
Case 2 100 2.0×104 256× 256 128× 256 16
Case 3 50 2.5×103 512× 512 128× 512 32
Case 4 25 312.5 1024× 1024 256× 1024 64
Case 5 12.5 39.0625 2048× 2048 512× 2048 128

Table 3.2: Simulation cases

To test the range of length scales that the simulations can resolve, we vary the
kinematic viscosity coefficient, ν, as it parameterizes the width of the WBC [25]. By
balancing the ambient vorticity with the dissipation term in the vorticity equation of
either model, a relationship between ν and the boundary layer width, δM , is found by

δM =

(
ν

β

) 1
3

. (3.1)

This particular boundary layer is called the Munk boundary layer [23]. It is important
to note that the width of the WBC depends directly on the strength of the dissipation
term. The vorticity dissipation in Stommel’s model is a bottom drag term that simulates
the frictional effects due to the bottom Ekman layer, −rζ. The WBC in this situation
would be parameterized by the drag coefficient described by,

δS =
r

β
, (3.2)

known as the Stommel boundary layer [36].

The first simulation is with a Munk layer of 200 km and for each subsequent case,
the Munk layer was decreased by a factor of two, (thus ν was decreased by a factor of
8) with the final case having a Munk layer of 12.5 km (ν = 39.0625 m2/s). As δM gets
smaller, the shear flow is stronger along the western boundary and thus more susceptible
to instabilities. For each case, the grid resolution is chosen such that there are sufficient
grid points within the Munk layer to ensure that the dynamics are well resolved. In the
SW simulations, a square grid was chosen such that there are 7 grid points within the
Munk layer. For the QG simulations, there are relatively fewer zonal grid points since
the crowding of the Chebyshev grid points near the boundaries ensures a well resolved
boundary layer. Table 3.2 lists the five cases used in our simulations along with the
kinematic viscosity coefficient, the grid resolution for the SW and QG simulations and
number of processors used in the computation, np.

The numerical simulations are initially at rest and atmospheric winds begin to
generate gyre flow that has qualitatively similar features to that observed in real oceans.
The net vorticity of the wind forcing is negative so we expect a clockwise flow at the
large scales which is indeed what is observed in our simulations. With the variation of
the Coriolis parameter with latitude, a western intensification in our gyre flow occurs
[36]. Throughout most of the interior, the flow is southward then westward and near the
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Figure 3.1: y = 0 cross-section of the normalized, time-averaged meridional velocity at
the western boundary of SW simulation.

western boundary, the northward return flow occurs in the WBC and is much more rapid.
As the WBC becomes more narrow, the conservation of mass dictates that the velocities
increase in the northward transport. When δM is small enough, the strong shear flow
generates a turbulent field with a wide range of length and time scales.

3.2 Simulations of Rotating Shallow Water Model

Figure 3.1 shows a zonal slice of the boundary region of the time-averaged meridional
velocity for each case near y = 0. The mean states are computed starting from day 50 so
the initial spin-up time of the gyre flow is ignored. The circles represent the grid points
and the vertical dashed lines indicate the δM for each case. The velocity was normalized
so that the maximum for each case is 1. This figure shows that there is a good agreement
between the theoretical Munk layer δM and the computed boundary layer.

Figure 3.2 shows a snapshot of the free-surface height, η = h−H, for case 1 and the
arrows indicate the velocity field. We observe a slow southward and westward flow in the
interior with maximum speed of approximately 0.03 m/s and a western intensification
with a faster northward velocity with maximum speed approximately 0.14 m/s. The
dissipation balances the vorticity that is inputted by the wind stress and thus settles
towards an equilibrium after 80 days. With the smaller value of ν in case 2 (Figure
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3.3), we see a stronger western intensification and an equilibrium is reached at a much
later time (approximately 750 days). Case 3 initially generates very large waves near
the eastern boundary that then propagate westward. The velocities in the interior have
a maximum value of approximately 0.03 m/s as in case 1. We observe a strong western
intensification with a steady northward return flow where the maximum velocities are
about 0.6 m/s. Figure 3.4 shows the large Rossby waves [24] generated at the early
stages of the simulation on days 25, 50, 75 and 100. The waves that are generated tend
to slow down after long time and settle towards an equilibrium solution as shown in figure
3.5.

In case 4, the narrow Munk layer and the faster northward velocity creates a strong
shear flow along the boundary and generates eddies along the western boundary. Figure
3.6 shows the dynamics of case 4 at the early stages of the simulation. A western intensi-
fication is observed as in case 3, but the simulation quickly deviates from this behaviour
and generates mesoscale eddies. The dynamics of the eddies are contained within a region
near the north-west corner of the basin. The last case in figure 3.7 begins in a similar
manner as case 4 where a western intensification is observed in the early stages then
eddies are generated. The vortical dynamics occur in a larger region than that observed
in case 4 as there are eddies that are travelling eastward along the northern boundary.
In the final two cases, the magnitude of velocities are O(10−1 m/s) in the interior and
O(1 m/s) in the WBC.

To further analyze the numerical results, we examine the power spectrum of the
data. The power spectrum can computed by,∫

C|~k|

∣∣∣Û(~k)
∣∣∣2 ds (3.3)

where ~k = (k, l) is a wave number vector, Û is the Fourier transform of the field and C|~k|
is a circle with radius |~k|. The power spectrum provides information on how much energy

exists in the fields for a given wavenumber vector, ~k. We first compute the spectra for each
field, η, u and v, and examine the range of length scales that are present in the simulations.
Although the fields are nonperiodic, we compute the Fourier transform using odd or even
transforms as discussed in 2.2.2. Figures 3.8, 3.9 and 3.10 show the power spectrum of
η, u and v plotted against the wavenumbers of the Fourier modes for Munk layer cases
δM = 50, 25 and 12.5 km at day 500. The vertical dashed line indicates the cutoff from the
truncation filter so any information to the left of the line is deemed unphysical and thus
should be ignored. The vertical dash-dot line denotes the theoretical Munk layer length,
δM . Case 3 in figure 3.8 can resolve dynamics in the mesoscale regime well but dynamics
towards the submesoscale regime are decimated due to the spectral filtering. Case 4
(figure 3.9) on a 1024× 1024 grid does a better job of resolving submesoscale dynamics.
The power spectrum shows wavelengths as small as 12 km exist in the physical spectrum
howevery the dynamics are damped by lateral viscosity. From figure 3.10, a resolution of
2048×2048 can resolve wavelengths as low as 6 km even with the spectral filtering. Thus
with the appropriate grid resolution, submesoscale dynamics can begin to be resolved.
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However, in our simulations there is very little motion in the submesoscale range as seen
by the low energy in the power spectrum.

Finally, we examine the distribution of kinetic energy across different length scales.
The kinetic energy spectrum is calculated by,∫

C|~k|

∣∣∣û(~k)
∣∣∣2 +

∣∣∣v̂(~k)
∣∣∣2 ds. (3.4)

Figure 3.11 shows that power spectrum of kinetic energy computed with the time-average
velocity field. The spectrum is plotted against relevant wavenumbers that are unaffected
by the spectral filtering. Slopes representing the lines k−3 and k−6 have been added
for comparison. The −3 slope significant as it is predicted by the Kraichnan-Leith-
Batchelor (KLB) theory [20]. According to KLB theory, there are two inertial ranges in
a two-dimensional turbulent fluid where the effects of viscosity and external forces are
negligible. One inertial range is energy and the other is enstrophy. The energy and the
enstrophy are injected by external forcing in some intermediate scales between energy
and enstrophy inertial ranges. The injected energy is then transferred to larger scales
through the energy inertial range by a −5/3 scaling, while the enstrophy is transferred to
smaller scales through the enstrophy inertial range, by −3 scaling, until it is eventually
dissipated by molecular viscosity.

For the laminar flows (Case 1, 2 and 3), there is a local maximum at the intermediate
wavenumbers that tends to shift to the right with decreasing viscosity. The kinetic energy
tend to be concentrated where the local maximum occurs. For the turbulent cases (Case
4 and 5), the slope is more shallow compared to the laminar cases at small wavenumbers
and the local maximum shifts towards larger wavenumbers while increasing in magnitude.
Each case drops off at a −6 slope at large wavenumbers which is the dissipation range due
to lateral viscosity. It can be shown that a −3 cascade slope arises when computing the
power spectrum of the kinetic energy perturbation, where the perturbation is computed
by subtracting the mean kinetic energy from the total kinetic energy at a given time.
A similar study has been done in [27], where simulations have been compute but with
weaker wind forcing. It was shown that the −3 cascade is more apparent when computing
the kinetic energy perturbation spectrum. Subtracting the mean state from the total field
effectively removes WBC from the data. It was found that the steep WBC produces a
shallow slope at lower wavenumbers which altered the spectrum of the mean total kinetic
energy. Also, since the vorticity dissipation occurs in the WBC, the steep −6 slope does
not appear in the dissipation range of the perturbation field and a −3 slope is observed
instead.
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Figure 3.2: free-surface plot of SW simulation for δM = 200 km at day 200.

Figure 3.3: free-surface plot of SW simulation for δM = 100 km at day 800.
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Figure 3.4: free-surface plot of SW simulation for δM = 50 km at days 25, 50, 75 and 100.
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Figure 3.5: free-surface plot of SW simulation for δM = 50 km at day 5000.
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Figure 3.6: free-surface plot of SW simulation for δM = 25 km at days 25, 50, 75 and 100.
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Figure 3.7: free-surface plot of SW simulation for δM = 12.5 km at days 25, 50, 75 and
100.
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Figure 3.8: Power spectrum of η, u and v for δM = 50 km at day 500. The wavelengths
to the left of the dashed line are the filtered modes. δM is indicated by the dash-dot line.

100 101 102 103
10 30

10 25

10 20

10 15

10 10

wavelength (km)

Power Spectrum

 

 

u
v

Figure 3.9: Power spectrum of η, u and v for δM = 25 km at day 500. The wavelengths
to the left of the dashed line are the filtered modes. δM is indicated by the dash-dot line.
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Figure 3.10: Power spectrum of η, u and v for δM = 12.5 km at day 500. The wavelengths
to the left of the dashed line are the filtered modes. δM is indicated by the dash-dot line.
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Figure 3.11: Power spectrum of the mean kinetic energy. Slopes representing k−3 and
k−6 are indicated by the dashed lines
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3.3 Comparison of QG and SW Models

In this section, several key differences between the QG model and the SW model are
discussed that are evident in the numerical simulations. First we compare the results
of the gyre flow simulations. Then, the total kinetic energy spectra of the simulations
are computed to better compare the simulations quantitatively. We then examine the
horizontal divergence of the SW simulations and see for which cases it becomes significant
in the gyre flow since QG assumes that the flow is horizontally non-divergent to leading
order. Finally, we look at surface gravity waves in the SW model as these waves are
neglected in the QG model.

3.3.1 Barotropic Gyre Flow

Simulations of the QG model are shown for each case. Figure 3.12 shows the stream-
function, ψ, and vorticity, ζ of cases 1, 2 and 3 at equilibrium. The flow in all of these
cases are laminar and have similar qualitative features as the SW simulations. As δM
decreases, a stronger western intensification is observed in the streamlines. In the vorticity
plots, there is a region of relatively strong, positive vorticity within the WBC. The width
of this region is determined directly by δM . Figure 3.13 shows the early stages of the QG
simulation for case 4 at days 25, 50 and 75. The flow is initially laminar but the strong
shear flow is unstable and vortex shedding occurs off the western boundary as seen in
day 50. This instability produces eddies with some similar behaviour as case 4 in the SW
simulation. The vortices tend to be confined within a region in the north-west corner of
the basin. Figure 3.14 shows the final case, δM = 12.5 km at days 25, 50 and 75. The
flow in this case is much more turbulent as vortices are generated in greater region than
case 4.

Figure 3.15 shows a cross-section of the mean meridional velocity near the western
boundary. Although there are fewer zonal grid points, Chebyshev collocation ensures that
there are at least 9 grid points within the Munk boundary layer. This is to be compared
to the boundary layer profiles in figure 3.1. The profiles appear to be similar but there are
slight quantitative differences between SW and QG within the WBC. Table 3.3 lists the
maximum values of the mean meridional velocity and the mean relative vorticity within
a region of width 2δM from the western boundary. In every case, with the exception
of case 1, the mean meridional velocity is slightly higher in the QG simulations. Thus
QG tends to have a slightly stronger meridional transport within the WBC than SW
with the difference being higher for cases 4 and 5. Also, QG tends show higher relative
vorticity values than SW within the WBC. It has been shown in [26] that the QG model
overestimates the growth rate of the fields compared to the SW model. Figure 3.16 shows
the extreme values of relative vorticity in both QG and SW simulations for case 5. The
fluctuations in the QG simulation is much larger than that of the SW simulations. Thus
one shortcoming of the QG model is that it provides relative vorticity values that are too
large.

43



Figure 3.12: Stream-function (left) and relative vorticity (right) plots of QG simulation
for δM = 200, 100 and 50 km at equilibrium.
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Figure 3.13: Stream-function (left) and relative vorticity (right) plots of QG simulation
for δM = 25 km at days 25, 50 and 75.
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Figure 3.14: Stream-function (left) and relative vorticity (right) plots of QG simulation
for δM = 12.5 km at days 25, 50 and 75.
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Figure 3.15: y = 0 cross-section of the normalized, time-averaged meridional velocity
near the western boundary of QG simulation.

SW QG
Case max v̄ (m/s) max ζ̄ (1/s) max v̄ (m/s) max ζ̄ (1/s)

Case 1 0.14366 1.2835× 10−6 0.14358 1.3819× 10−6

Case 2 0.31638 5.5218× 10−6 0.31650 5.9296× 10−6

Case 3 0.64273 2.2333× 10−5 0.64289 2.3974× 10−5

Case 4 0.91474 7.3169× 10−5 0.92611 7.9821× 10−5

Case 5 1.3074 2.5236× 10−4 1.3704 2.8369× 10−4

Table 3.3: Maximum values of mean meridional velocity, v, and relative vorticity, ζ,
computed from the SW and QG simulations within a distance of 2δM from the western
boundary.
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Figure 3.16: Extreme values of relative vorticity in the QG and SW simulations for case
5

3.3.2 Kinetic Energy Spectra

The power spectrum of the mean kinetic energy is computed for each simulation of the
QG model and compared to the spectra computed for the SW model. When computing
the spectra for the QG data, the Fourier modes cannot be calculated directly due to the
Chebyshev grid in the zonal direction. The data is first interpolated on the same uniform
grid as the SW simulations, then the same odd/even periodic extensions are used to
compute the DFT as discussed in the section 3.2.

Figure 3.17 shows the power spectra of the mean total kinetic energy for each of
the five cases. The QG spectrum is indicated by the solid line and the SW spectrum is
indicated by the dashed line. The oscillations that occur at high wavenumbers can be
attributed to the error due to interpolation of the QG results. The spectra for the laminar
cases, δM = 200, 100 and 50 km, are virtually identical throughout the spectra preceding
the noticeable error. Thus for large scale gyre flow, there is a lot of agreement between
QG and SW. For case 4 and 5, there is good agreement between QG and SW at large
scales and at the dissipation scales, however, there is an intermediate range where the
spectra differ. Although the differences appear to be rather minor, it is these two cases
where the differences in the underlying assumptions in the QG and SW model become
apparent.
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Figure 3.17: Kinetic energy spectra of time-averaged mean states for QG (solid) and SW
(dashed) simulations.
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3.3.3 Horizontal Divergence

The QG model assumes that the fluid is incompressible in two-dimensions and thus hor-
izontally non-divergent, whereas the SW model assumes three-dimensional incompress-
ibility with the free-surface allowing a non-zero horizontal divergence. Examining the
horizontal divergence has implications in the SW model as it is directly related to the
vertical velocity at the surface. By depth-integrating the three-dimensional incompress-
ibility equation, (2.18), and applying the assumptions that there is no depth variation in
the horizontal velocities and that there is no-normal flow at the bottom of the layer, we
get the relation

w = −h~∇ · ~u (3.5)

at the free-surface, z = η.

Figure 3.18 shows a time series of the maximum magnitude of the horizontal di-
vergence in the SW simulations. For the first three cases, where the flow is laminar, the
magnitude of the horizontal divergence is less than 10−8 and thus the vertical velocity is
less than 5 × 10−6 m/s. The vertical velocity at this magnitude can easily be neglected
and thus the laminar SW simulations is very close to the laminar QG simulations. In case
4 and 5 where instabilities occur, the magnitudes of the horizontal divergence increases
greatly and the vertical velocity can be as high as 3 × 10−4 m/s for the most turbulent
case. In these simulations, it is observed that the region with the highest horizontal
divergence occurs within the turbulent WBC and thus it is where the vertical velocity
becomes significant. Thus when gyre flow contains dynamics close to the submesoscale
regime, the horizontal divergence becomes more significant and thus QG can not properly
describe these motions.

3.3.4 Surface Gravity Waves

The free-surface in the SW model allows for a class of waves called inertia-gravity waves.
These waves are driven by gravity and, without rotation, travel at speeds

cg =
√
gH. (3.6)

The dispersion relation of gravity waves in a non-rotating reference frame is,

ω = ±cg|~k|, (3.7)

but with rotation, the dispersion relation becomes

ω = ±
√
f 2 + c2

g|~k|, (3.8)

which differs slightly compared to the non-rotating case. The scaling done in the QG
model eliminates the gravity waves in the simulations. Surface gravity waves play a role
in transferring energy across different length scales as it carries kinetic energy due to the
fluid motion and potential energy due to the free-surface displacements [18]. To examine
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Figure 3.18: Maximum divergence of SW simulations over 500 days

the gravity waves in the SW simulation, the equations can be combined to obtain a wave
equation for the time-derivative of the fluid depth,[

∂2

∂t2
+ f 2 − cg∇2

]
∂h

∂t
= nonlinear terms. (3.9)

The linear version of the above equation is derived in [22] and the nonlinear form follows
the same method. The left-hand side of (3.9) is the gravity wave equation in a rotating
reference frame. Thus the term, ∂h

∂t
, satisfies the nonlinear gravity wave equation and

provides us with a means to examine the surface gravity waves. The temporal derivative
can be computed by the continuity equation of the SW model,

∂h

∂t
= −~u · ~∇h− h~∇ · ~u, (3.10)

providing a means to find gravity waves in our simulations. Note that the horizontal
divergence appears in the above equation and so we should expect that gravity waves
become significant as the horizontal divergence does, namely in the turbulent simulations
as discussed in the section 3.3.3. For the case where there is very little depth variation,
the horizontal divergence is proportional to ∂h

∂t
.

In our simulations, gravity waves appear as highly oscillatory beams in logarith-
mic plots of ∂h

∂t
. The beams radiate from the basin walls and are triggered by various

mechanisms for generating gravity waves. However, even at our highest resolution, these
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(a) (b)

Figure 3.19: Close-up of a) relative vorticity and b) log |∂h
∂t
| for δM = 12.5 km simulation

on day 239.

gravity waves tend to oscillate at the grid-scales and thus are not properly resolved. Fig-
ure 3.19 shows a close-up of the relative vorticity and the logarithm of ∂h

∂t
for case 5 on

day 239. In figure 3.19a, a region of strong negative vorticity occurs along the western
wall near 1800 km north. At the corresponding location, in figure 3.19b, beams of gravity
waves are emitted symmetrically towards the north and south. This result was previ-
ously studied in [9] where gravity waves radiated regions of negative absolute vorticity.
Figure 3.20 shows plots for the same simulation on day 301. Gravity waves are generated
by vortex-wall interactions along the western boundary, most notably near 300 km and,
by a vortex dipole occurring near 1300 km north. This is similar to [34] where gravity
wave generation by large-scale vortex dipoles is studied in the context of a continuously
stratified fluid on a f -plane.

52



(a) (b)

Figure 3.20: Close-up of a) relative vorticity and b) log |∂h
∂t
| for δM = 12.5 km simulation

on day 301.
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Chapter 4

Conclusion

4.1 Summary

The dynamics of the world’s oceans occur at a wide range of length and time scales.
External forcing, such as atmospheric winds, adds energy at large length scales which
cascades down to smaller length scales due to the nonlinear nature of fluids. The predom-
inant model used to study large-scale, barotropic ocean dynamics has been the Quasi-
Geostrophic model. However, our simplifying assumptions restricts the motions to two
dimensions and thus it is unable to properly describe submesoscale dynamics as QG
breaks down when the Rossby number is O(1). Thus when developing a numerical
method to study submesoscale dynamics, the QG model is not an appropriate choice.
Thus, we solve the Rotating Shallow Water model as it can resolve motions at a wider
range of length scales than the Quasi-Geostrophic model.

Numerical methods for both the SW model and QG model that are capable of
high-resolution simulations are discussed. To compute dynamics at an optimal range of
motions, spectral methods are used for the spatial discretization where the SW model
uses a Fourier spectral basis and the QG model uses a Fourier-Chebyshev spectral basis.
Both models have an impeding feature that leads to long runtimes in computation. The
SW model is stiff due to slow Rossby waves and fast gravity waves and thus requires
small time steps for accuracy and stability. The QG model requires the solution of an
inverse problem which is computationally expensive. To overcome the long runtimes,
the methods have been implemented using the MPI protocol and executed on parallel
computer clusters. The nonlinear nature of the models and the finite number of spectral
basis functions require a spectral filtering procedure for each method.

Simulations for both SW and QG models have been computed using physical pa-
rameters that are typically observed in a midlatitude, subtropical ocean in the northern
hemisphere. The wind stress is chosen such that it induces a single-gyre flow. By varying
the width of the Munk boundary layer, δM , a wide range of dynamics on various length
and time scales are observed. The simulations where δM = 100, 200 and 50 km result in a
laminar flow which eventually reaches an equilibrium. It is observed in these cases that
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the SW and QG simulations have qualitatively similar behaviour. A western intensifica-
tion is observed in both the free-surface of the SW simulations and the streamlines of the
QG simulations and this intensification becomes stronger as the Munk layer narrows. The
simulations where δM = 25 and 12.5 km produce a strong shear which becomes unstable
resulting in a more turbulent flow. The quantitative and qualitative behaviour between
SW and QG begin to differ in these cases as was apparent in the kinetic energy spectra.

For the turbulent cases, the differences between the underlying assumptions in
the barotropic ocean models are evident in the simulations. It is for these less viscous
cases that the horizontal divergence and the surface gravity waves, which are absent in
the QG model, become substantial in oceanic gyre flow. The horizontal divergence is
small in magnitude and can be neglected in the laminar simulations. However in the
turbulent cases, the magnitude increases by an order of magnitude. Although still small,
it is apparent that the horizontal divergence is more significant in turbulent flows. The
horizontal divergence has vital implications as it is directly related to the vertical velocity
at the surface of the ocean and thus three-dimensional motions must be considered.
Furthermore, SW simulations have shown the existence of gravity waves in turbulent
dynamics that are completely absent in QG simulations. It is observed in the δM =
12.5 km case that vortex interactions with the boundaries generate beams of gravity
waves that propagate across the ocean basin. The importance of gravity waves in large-
scale flows is to be studied in future work.

4.2 Future Work

Future work includes extending the current SW model to incorporate more physically
relevant features of a real ocean. An ocean is a continuously stratified medium, whereas
the models presented in this thesis assume a homogeneous fluid. Thus, a natural extension
to the numerical method presented is to implement a multi-layer SW model with varying
fluid densities to observe the effects of stratification in wind-driven gyre flow in a discretely
stratified context. A two-layer SW model will effectively double the number of equations
to compute and thus double the computation time. A convenient feature of the SW model
is that it can easily incorporate the effects of bottom topography without modifying the
numerical methods. By adding terms to the continuity equation, the consequences of an
uneven ocean floor can be studied. For a multi-layer method, the fluid-depth evolution
equation corresponding to the bottom-most layer would be modified.

Further work in improving the QG solver is considered. Currently, the initial steps
prior to the AB3 time-stepping uses FE and AB2 methods which are first-order and
second-order accurate, respectively. An improvement to the method would be to consider
higher-order startup schemes to remove the impact of the low-order methods to the rest
of the simulation. Furthermore, the time-step size changes throughout the simulation to
satisfy the CFL condition, albeit not often, and thus startup methods are employed again
to reset the AB3 time-stepping. Thus higher-order startup methods should be explored
to maintain the third-order accuracy throughout the simulations. Another improvement
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to consider is the number of inverse problems to compute. The spectral filtering in the
meridional direction completely removes Fourier modes at high wavenumbers. Thus,
there is a redundancy when solving for the stream-function as inversions associated with
high wavenumbers need not be solved. The current implementation should be revised to
provide a more efficient simulation.

56



References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

[2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods:
Fundamentals in Single Domains. Springer-Verlag, 2006.

[3] J. W. Cooley and J. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251–180, 1990.

[5] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of
mathematical physics. IBM Journal, 11:215–234, 1967.

[6] W. P. Crowley. A numerical model for viscous, free-surface, barotropic wind driven
ocean circulations. Journal of Computational Physics, 5:139–168, 1970.

[7] B. Cushman-Roisin and J.-M. Beckers. Introduction to Geophysical Fluid Dynamics.
Academic Press, 2011.

[8] W.-S. Don and D. Gottlieb. Spectral simulation of unsteady compressible flow past a
circular cylinder. Computer Methods in Applied Mechanics and Engineering, 80:39–
58, 1990.

[9] R. Ford. Gravity wave radiation from vortex trains in rotating shallow water. Journal
of Fluid Mechanics, 281:81–118, 1994.

[10] L. Fox and I. B. Parker. Chebyshev Polynomials in Numerical Analysis. Oxford
University Press, 1968.

[11] B. Fox-Kemper and J. Pedlosky. Wind-driven barotropic gyre I: Circulation control
by eddy vorticity fluxes to an enhanced removal region. Journal of Marine Research,
62:169–193, 2004.

[12] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

57



[13] M. Frigo and S. G. Johnson. FFTW Home Page. http://www.fftw.org, 2009.

[14] P. R. Gent. The energetically consistent shallow-water equations. Journal of the
Atmospheric Sciences, 50(9):1323–1325, 1993.

[15] P. Godon and G. Shaviv. A two-dimensional time dependent chebyshev method
of collocation for the study of astrophysical flows. Computer Methods in Applied
Mechanics and Engineering, 110:171–194, 1993.

[16] S. G. Johnson and M. Frigo. A modified split-radix FFT with fewer arithmetic
operations. IEEE Transactions on Signal Processing, 55(1):111–119, 2007.

[17] D. W. Kammler. A First Course in Fourier Analysis. Cambridge University Press,
2nd edition, 2007.

[18] P. K. Kundu and I. M. Cohen. Fluid Mechanics. Academic Press, 4th edition, 2008.

[19] J. H. LaCasce. On turbulence and normal modes in a basin. Journal of Marine
Research, 60:431–460, 2002.

[20] C. E. Leith. Diffusion approximation for two-dimensional turbulence. Physics of
Fluids, 11:671–673, 1968.

[21] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. SIAM, 2007.

[22] J. C. McWilliams. Fundamentals of Geophysical Fluid Dynamics. Cambridge Uni-
versity Press, 2006.

[23] W. H. Munk. On the wind-driven ocean circulation. Journal of Meteorology, 7(2):19–
93, 1950.

[24] J. Pedlosky. Geophysical Fluid Dynamics. Springer-Verlag, 2nd edition, 1987.

[25] J. Pedlosky. Ocean Circulation Theory. Springer-Verlag, 1996.

[26] F. J. Poulin and G. R. Flierl. The nonlinear evolution of barotropically unstable
jets. Journal of Physical Oceanography, 33:2173–2192, 2003.

[27] F. J. Poulin, W. Ko, B. Fox-Kemper, and N. K.-R. Kevlahan. Spectral and
ageostrophic characteristics of turbulent wind-driven gyre flow. Journal of Fluid
Mechanics, Submitted.

[28] F. W. Primeau and D. Newman. Bifurcation structure of a wind-driven shallow
water model with layer-outcropping. Ocean Modelling, 16:250–263, 2007.

[29] P. B. Rhines and W. R. Holland. A theoretical discussion of eddy-driven mean flows.
Dynamics of Atmospheres and Oceans, 3:289–325, 1979.

[30] C. Schar and R. B. Smith. Shallow-water flow past isolated topography. part 1:
Vorticity production and wake formation. Journal of the Atmospheric Sciences,
50(10):1373–1412, 1993.

58

http://www.fftw.org


[31] G. Sewell. The Numerical Solution of Ordinary and Partial Differential Equations.
John Wiley & Sons, 2nd edition, 2005.

[32] X. Shao and S. G. Johnson. Type-II/III DCT/DST algorithms with reduced number
of arithmetic operations. Signal Processing, 2008.

[33] X. Shao and S. G. Johnson. Type-IV DCT, DST, and MDCT algorithms with
reduced numbers of arithmetic operations. Signal Processing, 88(6):1313–1326, 2008.

[34] C. Snyder, D. J. Muraki, R. Plougonven, and F. Zhang. Inertia-gravity waves gen-
erated within a dipole vertex. Journal of the Atmospheric Sciences, 64:4417–4441,
2007.

[35] D. Steinmoeller. Flow separation on the β-plane. Master’s thesis, University of
Waterloo, 2009.

[36] H. Stommel. The westward intensification of wind-driven ocean currents. Transac-
tions American Geophysical Union, 29(2):202–206, 1948.

[37] H. U. Sverdrup. Wind-driven currents in a baroclinic ocean: with applications to
the equatorial currents of the eastern Pacific. Proceedings of the National Academy
of Sciences, 33(11):318–326, 1947.

[38] L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000.

[39] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[40] L. Yuan and K. Hamilton. Equilibrium dynamics in a forced-dissipative f -plane
shallow-water system. Journal of Fluid Mechanics, 280:369–394, 1994.

59


	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Thesis Outline

	Numerical Methods
	Model Setup
	Numerical Method for SW Model
	Physical Model
	Spatial Discretization
	FFTW
	Time-Stepping Method
	Parallel Implementation
	Filtering
	Pseudocode

	Numerical Method for QG Model
	Physical Model
	Spatial Discretization
	Chebyshev Polynomial Interpolation
	Time-Stepping Method
	Inverse Problem
	Parallel Implementation
	Filtering
	Pseudocode


	Numerical Results
	Computational Parameters
	Simulations of Rotating Shallow Water Model
	Comparison of QG and SW Models
	Barotropic Gyre Flow
	Kinetic Energy Spectra
	Horizontal Divergence
	Surface Gravity Waves


	Conclusion
	Summary
	Future Work

	References

