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Abstract

Recently, the maximum drawdown (MD) has been proposed as an alternative
risk measure ideal for capturing downside risk. Furthermore, the maximum
drawdown is associated with a Pain ratio and therefore may be a desirable
insurance product. This thesis focuses on the pricing of the discrete maximum
drawdown option under jump-diffusion by solving the associated partial integro
differential equation (PIDE). To achieve this, a finite difference method is used
to solve a set of one-dimensional PIDEs and appropriate observation conditions
are applied at a set of observation dates. We handle arbitrary strikes on the
option for both the absolute and relative maximum drawdown and then show
that a similarity reduction is possible for the absolute maximum drawdown with
zero strike, and for the relative maximum drawdown with arbitrary strike. We
present numerical tests of validation and convergence for various grid types and
interpolation methods. These results are in agreement with previous results
for the maximum drawdown and indicate that scaled grids using a tri-linear
interpolation achieves the best rate of convergence. A comparison with mutual
fund fees is performed to illustrate a possible rationalization for why investors
continue to purchase such funds, with high management fees.
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Chapter 1

Introduction

1.1 Overview

Recently, the maximum drawdown (MD) has been proposed as an alternative risk
measure ideal for capturing downside risk [2, 3]. In fact, it is often compared
with the Sharpe ratio as one of the top performance measures, and is widely used
in practice [4, 5, 6]. The most popular drawdown-based measure is the Calmar
ratio [6], but others include the Pain ratio [7], Ulcer index [7] and Sterling ratio.

Although drawdown measures are widely used, there is a significant gap
between practice and theory [6]. Recent work by Schuhmacher et al. [6]
attempts to bridge this gap by providing theoretical insights into drawdown
based measures. Nevertheless, the maximum drawdown is insufficient when it
comes to forecasting future drawdowns or performance [5].

On the other hand, it is clear that large drawdowns are something that all
investors want to avoid. Loss aversion in behavioural finance suggests that
investors feel losses much more than they feel gains [8, 2, 9]. Furthermore,
the maximum drawdown is associated with both the Pain ratio and the Ulcer
index which both indicate an association between the maximum drawdown and
suffering by the investor. A recent article [10] captures this association and
develops the idea of the drawdown being an indicator of pain.

In this thesis, we suggest that a maximum drawdown option can provide
portfolio protection by providing insurance against large drawdowns. Suppose
an investor invests in a risky asset but wants to be protected against large
drawdowns in a given time period. The investor can, in addition, purchase a
maximum drawdown option on the underlying asset with strike K, which pays
out in cases of large drawdowns.

Paying such a premium can be compared to paying mutual fund fees. Since it
has been shown that higher mutual fund fees are correlated with lower before-
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fee returns, the motivation behind why investors continue to purchase such
funds is a topic of debate [11, 12]. One suggestion is that such fees are set
strategically, in order to extract surplus from unsophisticated investors [13, 12].
Another explanation is that investors are paying for a service they value, which is
unrelated to performance [14]. Following these ideas, investors may believe that
the fund manager can prevent large drawdowns, and they may view the fee akin
to drawdown insurance.

1.2 Previous Work

The maximum drawdown has been previously studied in literature. Magdon-
Ismail first developed analytic expressions for the expected maximum drawdown
under Brownian motion [4]. Unfortunately, such analytic solutions have not
been extended to the case of Geometric Brownian motion (GBM). More recently,
Pospisil and Vecer [15, 16] develop partial-differential equation methods for
pricing a forward on the maximum drawdown under GBM [15]. However, a
major issue in pricing drawdown claims is the ability to model jumps. Jumps
in risky assets are observed in practice and cannot be explained by GBM. Since
the maximum drawdown is path-dependent and measures the largest drop over
a given period, it is evident that jumps are crucial to an appropriate pricing
methodology. Recently, Pospisil and Vecer have extended their model to include
jump-diffusion under the special case of a crash option on the maximum relative
drawdown (MRD) [17].

This thesis extends the model of Pospisil and Vecer to handle jump-diffusion
and discrete observations of path-dependent variables for both the MD and MRD.
Following the work of Windcliff et al. [18] we solve a set of one dimensional
PDEs embedded in a higher-dimensional space. On each discrete observation
date, each one dimensional PDE is connected through no-arbitrage observation
conditions. This style of approach has been used successfully for several other
path-dependent options including Parisian options [19], Asian options [20],
shout options [21], cliquet options [18] and many others.

1.3 Main Contributions

Our approach will handle not only the absolute maximum drawdown, but also
the relative maximum drawdown which may be more intuitive to investors. We
handle the case of an arbitrary strike on the option, which can allow investors
protection against larger drawdowns at reduced cost. In many cases the associ-
ated three-dimensional problem can be reduced to a two-dimensional problem
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via a similarity reduction.
The main contributions in this thesis are

• We value maximum drawdown options under geometric Brownian motion
with jump-diffusion by following the work of Pospisil and Vecer.

• We develop a discrete observation approach consistent with path-dependent
options in practice.

• We handle arbitrary strikes on the option for both absolute maximum draw-
down and relative maximum drawdown. We demonstrate the effectiveness
of a strike in reducing the cost of insurance against large drawdowns.

• Although the use of an arbitrary strike would normally result in a 3-D
problem, we show that the case of the maximum relative drawdown can be
reduced to a 2-D problem via a similarity reduction.

In addition, we validate our work by comparing to the previous work of Vecer
[15], as well as Monte Carlo simulations. We compare results with and without
jump-diffusion to demonstrate the significant impact of jumps on the option
values.

1.4 Outline

Chapter 2 of this thesis outlines the basic financial models of the stock market.
It is intended to be targeted at readers with a basic understanding of stochastic
differential equations and assumes no knowledge of finance. Along with fun-
damental models, it presents the financial products of interest including the
maximum drawdown and maximum relative drawdown.

Chapter 3 continues the background by using the principle of no arbitrage to
set a fair price on financial products. It begins by presenting the Black-Scholes
equation and offers some discussion over other valuation methods such as Monte
Carlo simulation. Chapter 4 presents the formalism of discrete observation
conditions which allow for path-dependent options which form the core focus of
this thesis.

Chapter 5 discusses the general boundary and terminal conditions for financial
PIDE valuation. In particular, it presents specific examples for the case of the
maximum drawdown and maximum relative drawdown option. Following this,
Chapter 6 then defines a general similarity reduction and with specific focus on
path-dependent financial options.
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This thesis is focused primarily on the numerical aspect of the PIDE pricing
problem and Chapter 7 discusses all aspects of the numerical solution. Begin-
ning with the basic localization of the problem, it continues on to a specific
discretization method to solve the problem. It also provides an overview of
the requirements for convergence both with and without a similarity reduction.
Finally, it provides some discussion of numerical grid and observation condition
interpolation techniques.

Chapters 8 and 9 show the numerical results that demonstrate our algorithm
for the maximum drawdown and maximum relative drawdown. In addition to
a numerical characterization of grid type and interpolation method, they also
provide a validation of our work by comparison with the previous work of Pospisil
and Vecer in [15] as well as Monte Carlo simulation. Chapter 9 also provides a
possible rationalization for why investors still purchase mutual funds with high
management fees. This thesis then draws to a close with Chapter 10, which
presents concluding remarks and possible future directions.
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Chapter 2

Financial Products and Models

The financial world is focused around selling products with an uncertain payoff
at a future point in time. This chapter will describe some of these products and
mathematical models that will allow us to set a price on them. When selling
such products it is important to establish a fair price, and also to protect yourself
from the associated risk. Investment banks typically charge slightly above the
fair price and hedge their risk making a slight profit.

2.1 Stocks and Options

The stock market is the simplest form of financial products from which many
more complicated products known as derivatives can be created. Investors can
purchase shares or stock of a publicly traded company which then evolves over
time. Popular stocks are often combined into indices which comprise of many
stocks from a range of sectors and attempt to reflect the economy. Figure 2.1
shows the American S&P 500 index over the one year period from May 11th,
2010.

Options are a popular derivative on a specific asset, and are contracts between
two parties, the buyer and the seller. The buyer, or holder, of the option has the
right, but not the obligation to perform a future transaction on the underlying
asset at a fixed price. For example, call options allow the holder to buy the
underlying asset at a strike price K at maturity, or expiration, time T . This results
in an effective payoff of

call=max(ST − K , 0), (2.1)

where ST is the price of the underlying asset at time T . Similarly, put options
allow the holder the right to sell the underlying asset at time T and have an
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Figure 2.1: S&P 500 index realization over the one year period starting May 11,
2010.

effective payoff of

put=max(K− ST, 0). (2.2)

Such options can only be exercised for the payoff at an exercises date. European
options have only one exercise date at maturity, and can therefore only be
exercised as the option expires. On the other hand, American options can be
exercised at any time before maturity.

More complex options known as exotic options can be created with any
desired payoff. Exotic options can be path-dependent and depend on the value
of the asset at all times before maturity. A simple example is the lookback option,
which depends on the extremum (maximum or minimum) of the asset value over
its lifetime. In all cases, a fair price for such options must be determined and this
gives rise to mathematical models.

2.1.1 Maximum Drawdown

In particular, this thesis focuses on a particular exotic option known as the
maximum drawdown option. The maximum drawdown (MD) is the largest drop
from a peak to a trough during the lifetime of the option. Figure 2.1 shows an
example of this for the S&P 500 index. Mathematically, the maximum drawdown
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at time t is given by,
MD(t) = max

0≤u≤t
(M(u)− S(u)), (2.3)

where M(t) is the maximum,

M(t) = max
0≤α≤t

S(α). (2.4)

The European maximum drawdown option with strike K and maturity time T
has payoff given by,

payoffMD =max(MD(T)− K, 0). (2.5)

This can be viewed as an insurance product to the investor, since it protects his
investment from maximum drawdowns larger than K.

2.1.2 Maximum Relative Drawdown

Closely related to the maximum drawdown is the maximum relative drawdown
(MRD). Instead of an absolute drawdown, it is expressed as a ratio,

MRD(t) = max
0≤u≤t

�

1−
S(u)
M(u)

�

. (2.6)

This may be more intuitive to investors, who often deal in percentages of the
underlying asset.

2.2 Stochastic Processes

In order to arrive at a fair price for the options described in Section 2.1, we first
need to choose an appropriate model for the underlying asset. Since the future
performance of the asset is unknown, it is natural to use a stochastic, or random
process. This chapter will present and discuss some of the key models used in
the financial industry.

2.2.1 Geometric Brownian Motion

Geometric Brownian motion (GBM) is the simplest and most widely used process
in industry. The asset’s path is described by the stochastic differential equation
(SDE),

dSt

St
= µd t +σdW, (2.7)

where µ is the expected drift of the option, σ is the volatility, and W is a Brownian
motion process. Intuitively, the first term is a constant growth term, while the
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second is the source of randomness and risk. Although this model can be very
successful in modelling many assets in the market, the simplest model assumes
both constant µ and σ which often fluctuate in practice. The model also fails to
account for the discontinuous jumps observed in the market. Note that GBM is
only one choice and an entirely different model could be adapted.

2.2.2 Volatility Surface

One correction to the constant parameter problem is to allow for the volatility to
vary as a function of the asset price and time. This is known as a volatility surface
or a local volatility model. For our purposes we will generally work with constant
volatility, but any volatility surface can be easily incorporated. This amounts to
replacing σ in Equation (2.7) with the given surface σ(S, t).

2.2.3 Stochastic Volatility

Although the volatility surface is an appropriate extension, it fails to account for
the random behaviour of σ over time. As such it may be appropriate to use a
second SDE for the volatility, known as stochastic volatility. Although we will not
consider this model in the thesis, it is an appropriate extension to this work. As
such it amounts to the modified SDEs,

dSt

St
= µd t +

p
νt dW, (2.8)

and

dνt = α(S, t)d t + β(S, t)dY, (2.9)

where Y is a correlated Brownian motion process with correlation given by
dW dY = ρd t, and α(S, t) and β(S, t) depend on the choice of model.

2.2.4 Jump-Diffusion

As discussed the GBM model fails to account for instantaneous jumps in the
market, and we will show that this can produce significantly different results
from a continuous model. As such we use the modified SDE,

dSt

St
= µd t +σdW + (η− 1)dqλ, (2.10)

where dqλ is an independent Poisson process with mean arrival time λ (dqλ = 0
with probability 1− λd t and dqλ = 1 with probability λd t), and η is the jump
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amplitude causing S to jump to Sη. The jump amplitude η has probability
distribution function (PDF) g(η).

In practice one can use any PDF for the jump distribution g(η), but this thesis
will focus on the log-normal distribution,

g(η) =
e

�

− (ln(η)−µJ )2

2γ2

�

p
2πγη

, (2.11)

with mean µJ , and standard deviation γ.
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Chapter 3

Risk-Neutral Valuation

Although the models of Chapter 2 are appropriate for modeling the underlying
asset, our goal is to determine a fair price for options and financial derivatives.
This is done by the concept of no-arbitrage, which states that there should not
be a price difference between two equivalent products or strategies, because
this could lead to an instantaneous risk-free profit. Black and Scholes showed
that an option can be replicated by holding shares in the underlying asset and
continuously rebalancing the amount of shares [22].

3.1 Partial Differential Equations

3.1.1 Black Scholes Equation

No-arbitrage applied to the GBM model results in a partial differential equation
(PDE) known as the Black-Scholes equation. Given an option on an underlying
no-arbitrage states that its price, V , is given by,

Vτ =
1

2
σ2S2VSS + rSVS − rV, (3.1)

where r is the risk free interest rate and τ = T − t, where T is the expiry time.
Note that r is the same for any underlying, and µ does not appear. For the
purposes of this thesis we will consider only the case of constant r, but one could
adopt a stochastic model for the interest rate. Such models are usually referred
to as short rate models. This equation holds for any option on an underlying
asset, and the specific option payoff will determine the boundary and terminal
condition to be discussed in a later chapter. Although this equation has analytic
solutions for simple (vanilla) options, for the case of the maximum drawdown
option that is our focus, numerical techniques must be used.
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3.1.2 Jump-Diffusion Equation

Under the jump-diffusion model an extension of the Black-Scholes equation
arises, where the option value, V , is given by the partial integro differential
equation (PIDE),

Vτ =
1

2
σ2S2VSS + (r −λκ)SVS − (r +λ)V +λ

∫ ∞

0

V (Sη)g(η)dη, (3.2)

where κ = E[η − 1], and g(n) is the log-normal jump size density given in
Equation (2.11). For compactness we will usually write Equation (3.2) as

Vτ = LV +λJ V, (3.3)

where

LV =
1

2
σ2S2VSS + (r −λκ)SVS − (r +λ)V, (3.4)

and

J V =

∫ ∞

0

V (Sη)g(η)dη. (3.5)

3.2 Risk Neutral Measure

An equivalent way of arriving at the Black-Scholes equation is to change the
probability measure. While the equations of Chapter 2 are under the real-world
(P) measure, where the parameters are inferred from historical data, we can
adopt a risk-neutral measure under which all assets drift at the risk neutral rate.
Typically referred to as the Q measure, the parameters are instead found by
calibrating to quoted option prices in financial markets.

3.3 Monte Carlo Methods

Under the risk neutral measure, an alternative to solving the associated PDE (or
PIDE) is by Monte Carlo (MC) simulation. The value of the option is given by,

V = e−rT EQ[payoff], (3.6)

where EQ[payoff] is the expected payoff under the risk neutral measure. By
simulating M sample paths or realizations, we can approximate the expected
value of a given future payoff as,

EQ[payoff] = lim
M→∞

M
∑

i=0

payoffi

M
, (3.7)
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Figure 3.1: Monte Carlo simulated paths under GBM.

Figure 3.2: Monte Carlo simulated paths under jump-diffusion.

where payoffi is the simulated payoff of path i. We will focus primarily on
numerical methods for solving the PIDE in Equation (3.2), but will use this
technique for independent validation of our results where previous work has not
been done. Figure 3.1 shows three such paths under GBM, and Figure 3.2 shows
three paths under jump-diffusion. In practice of course three is not sufficient and
millions of simulations often become necessary to achieve desired accuracy.
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Chapter 4

Observation Conditions

4.1 Path-Dependent Options

Path-dependent options have payoffs depending in some way on the path of
the option. For example, the option may depend on the average of the stock
price or on the extrema during the lifetime of the option. In the stock market,
the asset price can change every second, and investors can impact the price by
buying or selling a significant number of shares. As a result, updating the average
or extrema every instant is not necessarily the most appropriate action, since
investors could take advantage of this quite easily.

We model the option with discrete observation times where the running payoff
is updated a fixed number of times per year (Nobs). Our results will show that
the continuously observed option can have a significantly different price than
the discretely observed case even in the limit of daily observations. In general
we work with a set of observation times D =

¦

d1, d2, ..., dNobs

©

at which point the
path-dependent variables of the option are updated. Usually in practice d1 = 0
and dNobs

= T since this is when the option is bought and exercised, respectively.
For simplicity we will maintain a fixed observation interval,

∆d =
T

Nobs
(4.1)

in all results throughout this thesis.

4.2 Partial Differential Equation

Given a PDE for the option value, we wish to solve for the value of a discretely
observed path-dependent option. Unfortunately, since the PDE is solved back-
wards in time we do not know the path of the option. To work around this, we
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introduce state variables from which we can calculate the option payoff. For
arbitrary payoff, we write

V = V (S, t, Z), (4.2)

where Z is a set of state variables which allow us to determine the payoff of
the option. Hence for a payoff on the maximum we might require one state
variable for the running maximum. The solution of the PDE then requires a set
of observation conditions to update Z appropriately at each observation time di.

4.3 Observation Conditions

Given an observation time di, we denote the instant before and after the ob-
servation condition as d−i and d+i , respectively. The observation condition is,

Z+ = f (Z−, S, di), (4.3)

where Z− = Z(d−i ) is the set of state variables before the update, and Z+ = Z(d+i )
is the state vector immediately after. The function f depends on the option type
and explicit examples for the maximum drawdown will follow.

Across these observation times, we also need to update the option value. To
do this we again apply a no-arbitrage condition, namely that

V (S, t−, Z−) = V (S, t+, Z+), (4.4)

since otherwise an investor could profit from the instantaneous difference in the
option value. The overall solution is obtained by solving the PDE from each di to
di−1, and applying the observation condition at each di in Equation (4.4).

4.4 Maximum-Drawdown

An option on the maximum drawdown with strike K has payoff given by Equation
(2.5). In this case the additional state variables are M and MD (see Eqns (2.3)
and (2.4)) and Z = {M , MD} and V = V (S, t, M , MD).

The full problem is solved on the three-dimensional domain, 0< S < M <∞,
0≤MD<∞ and 0≤ t ≤ T , where V = V (S, t, M , MD) and M and MD are updated
only at a set of observation times D. In the case of the maximum drawdown,
given the asset price S, these observation conditions are

M+ =max(M−, S), (4.5)
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and

MD+ =max(MD−, M+− S), (4.6)

where M± = M(d±i ), and MD± = MD(d±i ). Since we solve the PDE backwards
through time, we initially set M−(dNobs

) = M(t = T ) and MD−(dNobs
) =MD(t = T ).

From no arbitrage, we have that the option value must not change from this
condition, and hence,

V (S, t = d−i , M−, MD−) = V (S, t = d+i , M+, MD+). (4.7)

Substituting Equation (4.5) and (4.6) into Equation (4.7), we obtain

V (S, t = d−i , M−, MD−) = V (S, t = d+i , max(M−, S),max
�

MD−,max(M−, S)− S
�

.
(4.8)

4.5 Maximum-Relative Drawdown

The situation is very similar for the maximum relative drawdown [17], which is
given by Equation (2.6). The payoff, in this case is

payoffMRD(MRD, K) =max(MRD− K , 0). (4.9)

Where the full problem is solved on the three-dimensional domain 0< S < M <

∞, 0≤MRD< 1 and 0≤ t ≤ T , where V = V (S, t, M , MRD) and M and MRD are
updated only at a set of observation times, D. The new observation conditions
become,

MRD+ =max(MRD−, 1− S/M+), (4.10)

and

V (S, t = d−i , M−, MRD−) = V (S, t = d+i ,max(M−, S),max
�

MRD−, 1− S/max(M−, S)
�

.
(4.11)

The maximum relative drawdown may be more intuitive to investors, since it
is naturally expressed as a fraction of the underlying asset. Furthermore, we will
also show that, numerically, it has some advantages since, even in the case of
arbitrary strike, we can reduce the dimensionality of the problem by a similarity
reduction. As described in Section 4.3, we solve a set of 1-D PDEs coupled with
the observation condition in Equation (4.11) at fixed observation times D.
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Chapter 5

Boundary and Payoff Conditions

In order to solve the PIDE in Equation (3.2), we need an appropriate payoff
(terminal) condition, and boundary conditions at S = 0 and S =∞. The payoff is
given by the option type, and in general may depend on S and the set of additional
state variables Z . Since there is no direct dependence in the PIDE on the state
variables in Z , we require no additional boundary conditions. The dependence on
these state variables comes solely through the observation conditions discussed
in Chapter 4.

5.1 Boundary Conditions

As S→ 0, Equation (3.2) becomes

Vτ =−rV, (5.1)

because g(η) is a probability density function and we assume that V is bounded
near S = 0, which gives S2VSS → 0 as S → 0. Indeed, if we assume a non-zero
value of S2VSS at S = 0, then

VSS(S = 0) = O
�

1

S2

�

. (5.2)

Integrating would give,

V (S = 0) = O(log S) + aS+ b, (5.3)

but then V could not be bounded.
As S → ∞, we could apply the linearity condition VSS = 0 [23]. However,

as discussed in [18], this no longer leads to a monotone scheme. Applying this
directly to Equation (3.2) we obtain,

Vτ = rSVS − rV, (5.4)
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which we can apply for any option type.
Alternatively, integrating VSS = 0 twice gives,

V = c(t, Z)S+ b(t, Z). (5.5)

Using Equation (5.5) in Equation (3.2), we obtain cτ = 0 and bτ =−r b. However,
the precise functions c and b are given by the specific option type. We will show
examples of this technique for the maximum drawdown and maximum relative
drawdown.

5.2 Maximum Drawdown

In order to solve Equation (3.3), we need appropriate boundary and payoff
conditions. The payoff condition for the maximum drawdown is,

V (S, T, M , MD, K) = payoffMD(M D, K). (5.6)

For large S we expect the option value to be linearly proportional to S from
the definition of the maximum drawdown in Equation (2.3). As a result, we
make the assumption that in Equation (5.5), b� cS, which gives

V = c(t, M , MD)S (5.7)

as S→∞, and
Vτ = 0. (5.8)

This is equivalent to applying a Dirichlet condition, and preserves the mono-
tonicity of our scheme. In practice using either Equation (5.4) or (5.8) for the
boundary condition gives the same result to accuracy well below the discretiza-
tion error.

5.3 Maximum Relative Drawdown

For the case of the relative maximum drawdown, MRD, the boundary conditions
are similar with terminal condition payoffMRD instead of payoffMD. As S→∞ we
can apply VSS = 0 directly, or by integrating we have

V = c(t, M , MRD)S+ b(t, M , MRD). (5.9)

Since the drawdown is relative, we expect V to be independent of S for large S.
As a result, we assume c = 0, and we have

Vτ = bτ =−rV, (5.10)
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as at S = 0. This is equivalent to applying a time-dependent Dirichlet condition,
and preserves the monotonicity of the scheme. As with the maximum drawdown,
both methods give the same result to accuracy well below the discretization error.
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Chapter 6

Similarity Reduction

With an abuse of notation, we will write V = V (S, t, Z1, Z2) when considering
observation conditions, but V = V (S,τ, Z1, Z2) in the context of the PIDE solve.
Since the discrete path-dependent problem requires the use of additional state
variables, the problem becomes multi-dimensional. In order to reduce the overall
complexity of the problem, we employ what is called a similarity reduction. A
PIDE satisfies a general similarity reduction of degree n if the solution V satisfies,

V (ζS,τ,ζZ1, Z2) = ζ
nV (S,τ, Z1, Z2), (6.1)

where Z1 is a set of variables affected by the similarity reduction, Z2 is a set of
variables unaffected and ζ > 0 is an arbitrary constant. Each valid similarity
reduction allows one variable from Z1 to be removed, reducing the overall
dimensionality. Alternatively, a similarity reduction of degree n is valid if, given a
solution V (S,τ, Z1, Z2),

1
ζn V̂ (ζS,τ,ζZ1, Z2) is also a solution. This follows because

the solution is unique and we then have that V̂ (ζS,τ,ζZ1, Z2) = V (ζS,τ,ζZ1, Z2).

6.1 PIDE

We begin with a more general form of the PIDE in Equation (3.2),

Vτ = c1S2VSS + c2SVS + c3V + c4

∫ ∞

0

V (Sη, t, Z1, Z2)g(η), (6.2)

where c1,c2,c3, and c4 are independent of S. Assuming Equation (6.1) holds,
we then have by a change of variables V (S,τ, Z1, Z2) =

1
ζn V̂ (Ŝ,τ, Ẑ1, Z2) is also a

solution, where Ŝ = ζS, and Ẑ1 = {ζz |∀z ∈ Z1}. This follows from straightforward
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substitution into Equation (6.2),

1

ζn V̂τ = c1S2ζ2 1

ζn V̂ŜŜ + c2Sζ
1

ζn V̂Ŝ+ c3
1

ζn V̂ + c4
1

ζn

∫ ∞

0

V̂ (Ŝη,τ, Ẑ1, Z2)g(η)dη

V̂τ = c1Ŝ2V̂ŜŜ + c2ŜV̂Ŝ + c3V̂ + c4

∫ ∞

0

V̂ (Ŝη,τ, Ẑ1, Z2)g(η)dη.

In addition to this, we require that the associated boundary and terminal con-
ditions also admit a similarity solution. Since these depend on the specific
option problem, we will provide the examples for the maximum drawdown and
maximum relative drawdown.

6.2 Observation Conditions

When pricing discretely observed options, the similarity reduction must also be
maintained under observation conditions. Namely, we assume the reduction
holds before the update at t+,

V (S, t+, Z+1 , Z+2 ) =
1

ζn V (ζS, t+,ζZ+1 , Z+2 ), (6.3)

and need to prove that it holds after the update. As a result we must show that

V (S, t−, Z−1 , Z−2 ) =
1

ζn V (ζS, t+,ζZ+1 , Z+2 ). (6.4)

Once again, since the observation conditions depends on the specific problem,
we will provide examples for the maximum drawdown and maximum relative
drawdown.

6.3 Maximum Drawdown

Although the solution to Equation (3.2) for the maximum drawdown requires the
use of three state variables (S, M , MD), and is hence a three-dimensional problem,
it can often be reduced to a two-dimensional problem through a similarity
reduction of degree one. Using the notation of this chapter, we define Z1 =
{M , MD}, Z2 = ; and n= 1.

To show that the problem admits a similarity reduction, we first show that the
reduction holds at maturity. Namely, for the cases of no strike, K = 0, we have at
maturity, from Equation (5.6),

V (S, T, M , M D) =MD=
1

ζ
V (ζS, T,ζM ,ζMD). (6.5)
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Furthermore, the PIDE given in Equation (3.2) admits a similarity solution, as
mentioned in Section 6.1.

Finally, we show that the similarity reduction is maintained under the obser-
vation update rule in Equations (4.7). Given a similarity solution, the observation
condition is,

V (ζS, t−,ζM−,ζMD−) = V (ζS, t+, M+(ζS,ζM−,ζMD−), MD+(ζS,ζM−,ζMD−)),
(6.6)

where from conditions (4.5 and 4.6) we have,

M+(ζS,ζM−,ζMD−) = ζM+(S, M−, MD−), (6.7)

and
MD+(ζS,ζM−,ζMD−) = ζMD(S, M−, MD−). (6.8)

Hence, Equation (6.6) becomes,

V (ζS, t−,ζM−,ζM+) = V (ζS, t+,ζM+,ζMD+)

= ζV (S, t+, M+, MD+)

= ζV (S, t−, M−, MD−), (6.9)

by Equation (6.3) and the observation condition of Equation (4.7). As a result, we
have that the similarity reduction is preserved under the observation conditions.

Since the similarity reduction holds for the payoff at time t = T , and is
preserved under the PIDE and observation conditions, we have that the reduction
holds for all time 0≤ t ≤ T ,

V (S, t, M , MD) =
1

ζ
V (ζS, t,ζM ,ζMD). (6.10)

By choosing ζ= M∗/M , we have that,

V (S, t, M , MD) =
M

M∗
V (S

M

M∗
, t, M∗,

M∗

M
M D). (6.11)

As a result, we can solve for one particular value of M , namely M∗, and find the
solution for all values of M solving a two-dimensional problem. Note that for an
arbitrary strike, the option value does not have this scaling property, and the full
three-dimensional problem must be solved.

6.4 Maximum Relative Drawdown

For the maximum relative drawdown we define Z1 = {M} and Z2 = {MRD, K},
this allows a similar argument to be made for the MRD using Equations (3.2),
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(4.9) and (4.11) which gives that for arbitrary strike K,

V (S, t, M , MRD, K) = V (ζS, t,ζM , MRD, K). (6.12)

Using the same value for ζ, we obtain

V (S, t, M , MRD, K) = V (S
M

M∗
, t, M∗, MRD, K). (6.13)

As a result, even in the case of arbitrary strike, the MRD case can still be reduced
to two-dimensions. Note that the strike K is a parameter induced by the payoff,
and does not add to the dimensionality of the problem.
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Chapter 7

Numerical Solution

The focus of this thesis is on the numerical solution of the maximum drawdown
and maximum relative drawdown options, and the finite difference method used
for the solution is described in this Chapter. We will discuss the localization,
discretization, convergence and also the choice of grid type and interpolation
method for the observation conditions.

7.1 Localization

In order to solve the problem numerically, we first localize to a finite domain. For
the maximum drawdown, we solve the problem on 0≤ S ≤ Smax, 0≤ M ≤ Mmax,
and 0 ≤ MD ≤ MDmax. For the maximum relative drawdown, we solve the
problem on the localized domain, with 0≤ S ≤ Smax, 0< Mmin ≤ M ≤ Mmax, and
0≤MRD≤ 1. Forcing Mmin > 0 ensures that the MRD is defined and bounded on
our localized domain. Given that we localize the problem to a finite domain, it
is necessary to discuss adjustments to the observation conditions and boundary
conditions presented in Sections 4.4 and 5. In addition, we need be sure to
select Smax, Mmax, and MDmax sufficiently large to avoid introducing significant
localization error in the interior. Similarly, for the maximum relative drawdown,
we select sufficiently large MRDmax and sufficiently small Mmin.

7.1.1 Observation Condition Localization

For both the maximum drawdown and maximum relative drawdown, if Smax >

Mmax, then it is possible that M+ > Mmax, in which case the observation condition
on M given in Equation (4.5) uses information outside the localized domain.
Instead of extrapolating, we simply obtain information from the largest available
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node,
M+ =min

�

max(M−, S), Mmax

�

. (7.1)

The effect of this is similar to localizing the domain and has an insignificant
impact on solution values for Mmax large. This is verified computationally by
increasing the value of Mmax and showing an insignificant change, relative to the
discretization error, to the solution in the interior.

In addition, for the maximum drawdown it is possible that MD+ >MDmax, so
we make the modification

MD+ =min
�

max(MD−, M+− S), MDmax

�

. (7.2)

Similarly as for the maximum relative drawdown, it is possible that MRD+ >
MRDmax, so we modify the observation condition to

MRD+ =min
�

max(MD−, M+− S), MRDmax

�

. (7.3)

Again in these instances we verify computationally that MDmax and MRDmax are
sufficiently large so that the error introduced to the interior is insignificant
relative to the discretization error.

7.1.2 Boundary Condition Localization

We also need to localize the boundary condition as S→∞ to S = Smax. Here we
make the same assumption that Smax is sufficiently large so that our assumptions
in Section 5 hold. Namely we expect one of Equations (5.4), (5.8) or (5.10) to
hold at S = Smax.

7.2 Discretization

A finite difference method results in a specific discretized form of the PIDE in
Equation (3.3). Given a discretization of the localized interval of each variable,
we can then discretize the PIDE. Between the observation dates, we can use
either Crank-Nicolson (CN) or fully-implicit timestepping to solve the 1-D PDE.
For the full-jump diffusion model we follow the method presented by d’Halliun
et al. [24] which uses a fixed point iteration and FFT evaluation of the jump
integral.

Specifically, the discretized form of Equation (3.3) is,

V n+1− V n

∆τ
= Lh

�

θV n+1+ (1− θ)V n
�

+λJ h
�

θV n+1+ (1− θ)V n
�

, (7.4)
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where θ = 1 for implicit timestepping, θ = 1/2 for CN timestepping, and V n is
the column-vector

V n =
�

V n
1 ... V n

i ... V n
NS

�T
, (7.5)

where V n
i = V (Si , tn, M , M D). In matrix form, we write LhV n as

LhV n =−AV n, (7.6)

where A is anM-matrix with entries

Ai j =















−αi j = i− 1

r +λ+αi + βi j = i

−βi j = i+ 1

0 otherwise

, (7.7)

Here αi and βi are given in [25] and depend on the type of finite-difference
approximations used. Note that we use central differencing as much as possible,
but apply forward or backward differencing to ensure αi ,βi ≥ 0. The discrete
jump term, J hV n is given precisely in [24] but is an approximate FFT evaluation
of the integral,

I(S) =

∫ ∞

0

V (Sη, tn, M , MD)g(η)dη. (7.8)

To avoid solving a dense matrix, we use the fixed point iteration scheme in
[24]. Let V̂ k be the kth iterate for V n+1. We solve for V n+1 using the iteration,

[I + θ∆τA] V̂ k+1 = [I − (1− θ)∆τA]V n+θ∆τλJ hV̂ k+(1−θ)∆τλJ hV n, (7.9)

where we use an FFT method [24] to evaluate the dense matrix vector multiply
J hV̂ k.

7.2.1 Maximum Drawdown

For the particular case of the maximum drawdown, the state variables M and MD
are discretized on the intervals [0, Mmax] and [0, MDmax], respectively, where Mmax

and MDmax are chosen to be sufficiently large to avoid significant localization
error. We denote the number of nodes in the S, M , and MD directions by NS, NM

and NMD respectively. By solving Equation (3.3) for each grid node, (M j , MDk) we
advance the solution to each observation date, where we apply the observation
conditions given in Section 4.4.
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7.2.2 Maximum Relative Drawdown

The methodology is similar for the maximum relative drawdown as for the
maximum drawdown in Section 7.2.1, but here we take special care to ensure
that the discretization for M does not include zero as described in Section 7.1. As
a result, we discretize M on the interval [Mmin, Mmax] and MRD on the interval
[0,1], where Mmax is chosen sufficiently large and Mmin sufficiently small to
avoid localization error. As for the maximum drawdown case, we denote the
number of nodes in each direction as NS, NM , and NMRD. The discretized PIDE and
boundary conditions are the same as in Section 7.2.1, and we use the localized
observation conditions for the maximum relative drawdown given in Section
7.1.1 and Equation 4.11.

7.3 Convergence

In order to guarantee convergence for our discretization, we refer to [26], which
states that stability, monotonicity, and consistency are sufficient conditions. Fur-
thermore, [27] establishes monotonicity and consistency for a general jump-
diffusion PIDE of the form in Equation (3.2). Following this it is clear that our
scheme also satisfies monotonicity and consistency and we simply need to show
that our scheme is also stable.

7.4 Stability

Between observation times, the discretization used is unconditionally stable for
the case of fully implicit timestepping between observation dates as discussed in
[24], since we use a positive coefficient method. Similarly, the Crank-Nicolson
timestepping is algebraically stable as shown in [24]. In order to guarantee
stability for the entire scheme, we must also show that the observation conditions
and similarity reduction preserve stability.

7.4.1 Observation Conditions

The observation conditions preserve stability if we can bound the observation
conditions as described in Section 7.1.1. For the full three dimensional problem,
it is easily shown that

V (S, d−i , M−, MD−)≤ ||V (S, d+i )||∞, (7.10)

where ||V (S, d+i )||∞ = max
M ,MD

V (S, d+i , M , MD) over all (M , MD) grid pairs.
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7.4.2 Observation Conditions with Similarity Reduction

Using the similarity reduction however, the impact of the observation conditions
require further analysis. In particular, if M+ > M∗, then ζ < 1, from Equation
(6.9) and Equation (7.10) may not hold.

Instead, we modify the update condition of Equation (4.7) slightly to become,

V (S, t−, M−, M D−) =min(V (S, t+, M+, MD+), MDmax). (7.11)

In this case we trivially have V (S, t−, M , M D)≤MDmax and stability is therefore
guaranteed.

The cap on V is chosen to be MDmax, because without similarity reduction
this is the largest value the numerical solution can have when restricted to the
finite domain [0, Smax]× [0, Mmax]× [0, MDmax]. The effect of this is similar to
the localization conditions described in Section 7.1 and in Section 8.3 we will
show that this has an insignificant impact on solution values away from the
boundary. This is further verified by increasing the value of MDmax and showing
an insignificant change to the solution.

7.4.3 Maximum Relative Drawdown

For the full three dimensional problem, the maximum relative drawdown is also
unconditionally stable under observation conditions, where we have

V (S, d−i , M−, MRD−)≤ ||VMRD(S, d+i )||∞, (7.12)

with ||VMRD(S, d+i )||∞ = max
M ,MRD

V (S, d+i , M , MRD) over all (M ,MRD) grid pairs. It is

also trivially stable under observation conditions with the similarity reduction
since the reduction is homogeneous of degree zero as given by Equation (6.13).

7.5 Grid

Before choosing a grid, it is important to identify the characteristics of the look-up
operation at each observation date. From Equations (4.5) and (4.6), as illustrated
in Figures 7.1 and 7.2, all look-up operations draw from a single line. When
M+ = M− or MD+ = MD− we say that the look-up in the given direction is
stationary. Since one of Equations (4.5) and (4.6) will always be stationary, at
most one of M or MD will change. Although we can avoid any interpolation by
using a uniform grid as depicted in Figure 7.2, a non-uniform grid can allow for
faster convergence to the particular region of the desired solution.

Furthermore, to achieve no interpolation, we would need identical nodes
for S, M , and MD, which is only practical for M and S, since MD values are
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Figure 7.1: Information flow diagram for M . The square points represent values
that once updated, take on the value of the diagonal line (grey). The arrows
show the direction of the look-up, and the circular points are stationary, which
remain unchanged across the observation date.

Figure 7.2: Information flow diagram for MD. The square points represent values
that once updated, take on the value of the diagonal line (grey). The arrows
show the direction of the look-up, and the circular points are stationary, which
remain unchanged across the observation date.
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significantly different in magnitude. Since options are initially sold at asset price
S = S0, it is desirable to scale the S-nodes near this value. As a result, we use a
non-uniform grid in the S-direction, which is dense near S0 and sparse near zero
and Smax. For a first approach, we use an M grid identical to S, namely, given

Sg = {Sg
1 , ...,Sg

i , ...Sg
NS
}= M g = {M g

1 , ..., M g
j , ...M g

NM
}, (7.13)

where Sg
i = M g

j , and NS = NM is the number of S or M grid nodes. Using a simple
uniform grid in the M D direction and taking the Cartesian product with Mg and
Sg, we achieve a simple full grid which we will refer to as the repeated grid. The
M − S plane of this grid is depicted in Figure 7.3, where the nodes are more
dense near S = S0. There will be no interpolation error from the update rule in
Equation (4.5), since either the look-up is stationary in M , or M+ = S, which is
guaranteed to exist since we use the same nodes for S and M (Sg = Mg).

Due to the discrete nature of the problem, and the fact that update rules
draw frequently from the values near the diagonal, it has been shown that better
convergence can be obtained by further increasing the density near the diagonal
[18]. As a result, we extend the repeated grid to be more dense near S = M .
This focuses the nodes near the look-up diagonal shown in the M − S plane of
Figure 7.2, which should improve the rate of convergence. We use the standard
set of S-nodes from the repeated grid at M = S0, MD= 0, and scale this with M
elsewhere, ensuring that the M = S node exists, and that the S grid is highest in
density at this point. Given the Sgrid used in the repeated grid, which is focused
around S0, the grid at a given M is,

SM =
�

Sg
1

M

S0
, ...., Sg

i

M

S0
, ..., Sg

NS

M

S0

�

. (7.14)

Note that although this scaling may improve accuracy due to increased density
of nodes near the diagonal, it may cause a trade-off of increased interpolation
error, which we will attempt to remedy in Section 7.6. This grid will be referred
to as the scaled grid. and is depicted in Figure 7.4.

7.6 Observation Condition Interpolation

At each observation date the observation conditions are used to update the
grid values, and interpolation may be necessary. Depending on the grid used,
interpolation may occur more or less frequently. Interpolation is necessary when
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Figure 7.3: Depiction of the repeated grid in the M -S plane. The repeated grid is
a Cartesian product where a fixed Sgrid for both M and S is used.

Figure 7.4: Depiction of the scaled grid in the M -S plane. The scaled grid has the
modification that Sgrid is scaled with S according to Equation (7.14).
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Figure 7.5: Depiction of linear interpolation method used for observation condi-
tion look-up.

(S, M−, MD−) is between grid nodes as depicted in Figure 7.2. In particular,
when using the repeated grid described in Section 7.5, no interpolation in the M
direction will be necessary. It is evident that standard trilinear interpolation can
be used, as shown in Figure 7.5, interpolating along the S, M , and MD directions
as necessary. Although this may be suitable for the repeated grid, we also consider
diagonal interpolation, as shown in Figure 7.6 since it has been shown to be
effective when using the scaled grids discussed previously [18]. For the M update
rule, since nodes are dense near the diagonal where the interpolation occurs at
M = S, we can interpolate along the direction of the line M = S using

V (S, M = S) = V (Slo, M = Slo) +
V (Shi, Shi)− V (Slo, Slo)

(Shi− Slo)
p

2
(S− Slo)

p
2, (7.15)

where, given M , Slo and Shi are the closest nodes to S such that Slo ≤ S ≤ Shi.
This is illustrated in Figure 7.6.

7.7 Alterations for Similarity Reduction Problem

In the case that the similarity reduction holds where we choose ζ= M∗/M , we
require a two-dimensional grid in only MD and S. As a result, we can use a
similar repeated grid mentioned already, using Sg and a uniform MD grid, in a
similar fashion to the full three-dimensional problem. Given that our only update
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Figure 7.6: Depiction of diagonal interpolation method used for observation
condition look-up.

interpolation is along MD = M∗ − S, it is desirable to create a grid with nodes
dense around this line, as in Section 7.5 for the M = S line. To achieve this, we
instead scale according to M D, (see Figure 7.2)

SMD =

¨

Sg
1

M∗−MD

S0
, ...., Sg

i

M∗−MD

S0
, ..., Sg

NS

M∗−MD

S0

«

, (7.16)

and apply an analogous diagonal interpolation as described in Section 7.6 along
the line MD= M∗− S,

V (S, M D = M∗−S) = V (Slo, M∗−Slo)+
V (Shi, M∗− Shi)− V (Slo, M∗− Slo)

(Shi− Slo)
p

2
(S−Slo)

p
2.

(7.17)
We will refer to this as the MD-scaled grid.

7.8 Alterations for Maximum Relative Drawdown

In the case of the maximum relative drawdown problem, a few minor adaptation
are necessary. Both the repeated and scaled grids mentioned in Section 7.5 are
directly analogous, and only the values of the MD need to be replaced with
appropriate MRD values.

The similarity reduction is also slightly different for the maximum relative
drawdown, as given in Equation (6.13). As a result, we can create a MRD-scaled
grid by scaling appropriately,

SMRD =

¨

Sg
1

M∗(1−MRD)
S0

, ...., Sg
i

M∗(1−MRD)
S0

, ..., Sg
NS

M∗(1−MRD)
S0

«

, (7.18)
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and by applying an analogous diagonal interpolation

V (S, MRD= 1−S/M∗) = V
�

Slo, 1−
Slo

M∗

�

+
V
�

Shi, 1−
Shi

M∗

�

− V
�

Slo, 1− Slo

M∗

�

(Shi− Slo)
p

2
(S−Slo)

p
2.

(7.19)
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Chapter 8

Results

In this Chapter we give results for various problem parameters and study the
effects of grid choice, similarity reduction and timestepping. All convergence
studies are performed for a discretely observed option unless otherwise stated.

8.1 Effect of Grid / Interpolation Type

We investigate the effects of the scaled grids mentioned in Section 7.5, as well as
the type of interpolation from update conditions. The results of this convergence
testing are given in Table 8.2, using the data in Table 8.1 modelled without jumps.
We start with a coarse grid of 35 S and M nodes, and 20 MD nodes. At each
refinement, we double the number of timesteps and insert new nodes half way
between each existing pair of nodes.

The results show that the scaled grids achieve better convergence when
compared to the repeated grids, despite the additional interpolation error from
the M update rule. On the other hand, unlike [18], we observe that diagonal
interpolation does not improve the convergence. In fact, this is reasonable since
in the case of the cliquet option in [18], under the similarity reduction the
interpolation was exact, which is not the case for the maximum drawdown here.
As a result, we will use scaled grids with linear interpolation unless otherwise
specified.

8.2 Localization Error

Using the data in Table 8.1 once more, we investigate the effects of a finite Smax,
Mmax and MDmax. Specifically, we use the scaled grid from Section 8.1 with the
largest node in each direction scaled by a factor of 10. If we denote the new grid
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Parameter Value
S0 100
T 1.5
σ 0.2
r 0.04

Nobs 5
λ 0

Smax 1800
Mmax 1800

MDmax 1000

Table 8.1: Parameters used for Black-Scholes model without jumps.

NS , NM , NMD N Scaled Grids Scaled Grids Repeated Grid
(diagonal interp) (linear interp)

35,35,20 60 15.4197 15.9271 14.6272
70,70,40 120 15.9193 16.0744 15.6249

140,140,80 240 16.0785 16.1204 16.0049

Table 8.2: Comparison of grid type and interpolation methods for the discrete
MD no-jump case using the parameters in Table 8.1. Full three dimensional grid.
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NS , NM , NMD Timesteps Value
35,35,20 60 15.9271
64,64,40 120 16.0744

128,128,80 240 16.1204

Table 8.3: Results using scaled grid with linear interpolation with increased Smax,
Mmax, and MDmax (see Equation (8.1)). The values for the MD with no-jumps are
in agreement to at least six significant digits compared with Table 8.2.

maximums, Ŝmax, M̂max, and M̂Dmax, then,

Ŝmax = 10Smax

M̂max = 10Mmax

M̂Dmax = 10MDmax. (8.1)

Note that in the scaled grid, the Smax also varies with M .
From the results for the enlarged grid shown in Table 8.3, we see that the

solution is the same as in Table 8.2 to at least six significant digits. This indicates
that the localization error is significantly smaller than the discretization error.

8.3 Effect of Similarity Reduction

In the case of constant volatility, the similarity reduction is valid for the maximum
drawdown with K = 0, and for the maximum relative drawdown with arbitrary
strike, K. In these cases we can reduce both the computational and spatial
complexity. We investigate the convergence with the similarity reduction applied
for the same data given in Table 8.1 (no jumps). Table 8.4 shows the results
using the similarity reduction. Although under the similarity reduction we use
the MD-scaled grids as opposed to the standard scaled grids, the results are similar
to Table 8.2 and we therefore use the analagous MD-scaled grids with linear
interpolation for the similarity reduction.

Comparing the results in Table 8.4 with Table 8.2, we can see that both
methods, as expected, appear to be converging to the same solution. Crank-
Nicolson (CN) timestepping is also examined and the results are given in Table
8.5.

Table 8.4 shows a first order convergence rate (fully implicit timestepping),
while Table 8.5 shows a second order rate (CN timestepping). The results with
CN timestepping also appear to be converging to the same solution.
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NS , NMD Timesteps Value Change Ratio
35,20 60 15.9125 - -
70,40 120 16.0586 0.1460 -

140,80 240 16.1138 0.0551 2.65
280,160 480 16.1386 0.0248 2.22
560,320 960 16.1500 0.0114 2.18

1120,640 1920 16.1554 0.0054 2.09

Table 8.4: Fully-Implicit timestepping results for the discretely observed maxi-
mum drawdown using similarity reduction under no-jumps. MD-scaled grids and
linear interpolation are used. The model parameters are given in Table 8.1.

NS , NMD Timesteps Value Change Ratio
35,20 60 16.0517 - -
70,40 120 16.1350 0.0833 -

140,80 240 16.1536 0.0186 4.49
280,160 480 16.1589 0.0053 3.49
560,320 960 16.1602 0.0013 4.07

1120,640 1920 16.1605 0.0003 3.92

Table 8.5: Crank-Nicolson timestepping is examined for the MD option using
similarity reduction under Black-Scholes without jumps. MD-scaled grids and
linear interpolation are used and parameters are given in Table 8.1. Convergence
is approximately second-order.
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Parameter Value
S0 100
T 1.0
σ 0.19
r 0.04
λ 0

Table 8.6: Parameters used for continuously observed Black-Scholes model for
comparison with Pospisil et al.

NS , NMD N = Nobs Value Change Ratio
35,20 20 16.5941 - -
70,40 80 19.2355 2.6414 -

140,80 320 20.5546 1.3191 2.00
280,160 1280 21.2165 0.6619 1.99

Extrapolated 21.8784

Table 8.7: Fully-implicit timestepping is examined for the maximum drawdown
option using similarity reduction under Black-Scholes without jumps. Conver-
gence to the continuously observed case is examined. MD-scaled grids and linear
interpolation are used and parameters are given in Table 8.6 The last row shows
the extrapolated value assuming a consistent rate of convergence.

8.4 Comparison with Previous Work

The maximum drawdown option has been previously studied by Pospisil and
Vecer for the continuously observed case without jumps[15]. By setting Nobs = N ,
where N is the number of timesteps and Nobs is the number of observation dates,
we can converge to the continuously observed case by letting Nobs → ∞, as
the grid is refined. The values in Table 8.7 appear to agree with the graphical
solution in [15]. However, convergence to the continuously observed limit is
rather slow, as in the case of lookback options [28]. As in [28] for the lookback,
we observe approximately square root convergence in terms of Nobs and as a
result we increase the number of observations by a factor of four in each row of
Table 8.7.

8.5 Validation with Monte Carlo
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Parameter Value
S0 100
σ 0.095
r 0.04
λ 0.77
γ 0.094
µJ -0.149

Table 8.8: Parameters used for full jump-diffusion model [1].

NS , NMD N Value Change Ratio
35,20 60 13.3382 - -
70,40 120 13.1909 -0.1473 -

140,80 240 13.1206 -0.0703 2.10
280,160 480 13.0986 -0.022 3.20
560,320 960 13.0921 -0.0065 3.38

Table 8.9: PIDE results for the discretely observed maximum drawdown option
under jump-diffusion, using the parameters in Table 8.8 with K = 0, T = 1.5 and
Nobs = 5. Crank-Nicolson timestepping is used.

We price the discretely observed maximum drawdown option with K = 0
under jump-diffusion using the parameters in Table 8.8 with T = 1.5 and Nobs = 5.
These results are shown in Table 8.9.

For validation of our algorithm and these results, we compare the values
in Table 8.9 with Monte Carlo (MC) simulation with jump-diffusion for the
maximum-drawdown option with K = 0 and the same parameters in Table 8.8.
We use forward Euler timestepping with M simulations, each having N timesteps.
The MC results are given in Table 8.10, where we give the 95% confidence
interval for the MC estimate. As expected, the PIDE solution appears to be
converging to the same value as the MC estimate.
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M (millions) N MC Value 95% Confidence
5 60 13.0251 0.0105
5 120 13.0556 0.0106
5 240 13.0701 0.0106

10 480 13.0842 0.0075
10 960 13.0842 0.0075

Table 8.10: Monte Carlo (MC) results for the discretely observed maximum
drawdown option under jump-diffusion, using the parameters in Table 8.8 with
K = 0. The 95% confidence interval is given on the MC estimate. M is the number
of MC simulations, and N is the number of timesteps.
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Chapter 9

Maximum Relative Drawdown Results

Here we show numerical results for the maximum relative drawdown option
problem, where we demonstrate the advantage of the similarity reduction for
arbitrary strike. We also test the jump model against a Monte Carlo simulation,
and provide a possible rationalization for mutual fund fees.

9.1 Grid Type

We repeat the investigation done for the maximum drawdown case in Section
8.1 for the maximum relative drawdown without jumps using the data in Table
8.1. Table 9.1 indicates that the best convergence is obtained by using MRD-
scaled grids with linear interpolation, which has a significant advantage over the
repeated grid despite the inherent increase in interpolation error. As in Section
8.2, we ensure that the numerical localization error introduced by Mmin, Mmax,
and Smax is insignificant compared to the discretization error. Specifically, we
observe no change to six significant digits when increasing Mmax and Smax by a
factor of ten, and decreasing Mmin by a factor of 10.

9.2 Strike

Although the maximum drawdown option with arbitrary strike K does not satisfy
a similarity reduction, the maximum relative drawdown is homogeneous of
degree zero (as seen in Equation 6.13), hence this permits similarity reduction.
As a result, we investigate the convergence for the maximum relative drawdown
with parameters given in Table 8.1, with in addition K = 0.15. Comparing
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NS , NMD N Scaled Scaled Repeated
(diagonal interp) (linear interp)

35,18 60 0.146847 0.147339 0.141638
70,36 120 0.147794 0.147963 0.146480

140,72 240 0.148068 0.148113 0.147725
280,144 480 0.148149 0.148164 0.148074
560,288 960 0.148175 0.148180 0.148158

Table 9.1: Comparison of grid type and interpolation methods for the maximum
relative drawdown under Black-Scholes without jumps. The parameters used
are in Table 8.1. As for the maximum drawdown, faster convergence is obtained
when using both scaled grids and linear interpolation.

NS , NMD N Scaled Ratio Scaled Ratio
(strike node) (no strike node)

35,18 40 0.041578 - 0.041740 -
70,36 80 0.041832 - 0.041941 -

140,72 160 0.041886 4.67 0.041906 -5.75
280,144 320 0.041908 2.51 0.041914 -4.36
560,288 640 0.041914 3.22 0.041916 4.10

1120,576 1280 0.041916 3.38 0.041917 2.01

Table 9.2: Results for the maximum relative drawdown with strike K = 0.15
under Black-Scholes without jumps using a scaled grid with linear interpolation.
The parameters used are in Table 8.1. When the strike node is removed from the
scaled grid (S = (1− K)S0) we observe erratic convergence.

Table 9.2 and 9.3, the convergence of the MRD-scaled grid is superior to the
repeated grid. Note that if the node at the strike (S = (1− K)S0) is removed,
the convergence is somewhat erratic for the MRD-scaled grid as shown in Table
9.2. This behaviour is well documented in the literature and is due to the
non-smoothness of the payoff at the strike [29].

9.3 Comparison of Jump-Diffusion to GBM

We now obtain the value of a maximum relative drawdown option under jump-
diffusion with arbitrary strike K. The values are obtained using the parameters of
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NS , NMD N Repeated Ratio

35,18 40 0.037965 -
70,36 80 0.040888 -

140,72 160 0.041627 3.96
280,144 320 0.041850 3.31
560,288 640 0.041900 4.50

1120,576 1280 0.041913 3.78

Table 9.3: Results for the maximum relative drawdown with strike K = 0.15 under
Black-Scholes without jumps using a repeated grid with linear interpolation. The
parameters used are in Table 8.1.

σI
NJ(T = 1) 0.1765

σI
NJ(T = 1.5) 0.1780
σI

NJ(T = 5) 0.1796

Table 9.4: Implied volatility solved from Equation (9.1) for the given expiration
time T and parameters used in Table 8.8.

Table 8.8. The plot in Figure 9.2 shows the MRD value plotted against the strike,
K, with values accurate to three decimal places.

We determine the implied volatility σI
NJ for the no jump model (λ = 0) by

solving,

V (σI
NJ, r, T,λ= 0,γ= 0,µJ = 0, S0,τ= 0) = V (σ, r, T,λ,γ,µJ , S0,τ= 0), (9.1)

with a European call payoff, where {r, T,λ,σJ ,γ,µJ , S0} are given in Table 8.8.
Given the value for σI

NJ, which is given in Table 9.4, we compare the value
of a maximum relative drawdown option under jump-diffusion to that of the
no-jump case using the implied volatility for the given T , σI

NJ(T). Figures 9.1
and 9.2 show the value of each case against the strike, K for T = 1 and T = 5,
respectively.

With no strike (K = 0) the option under the jump-diffusion model is cheaper
compared to the Black-Scholes. On the other hand, for larger strike values,
the situation is reversed, and the option is more expensive when priced under
jump-diffusion. The latter effect can be explained intuitively since the jumps in
our case are generally large, which increases the probability of large drawdowns
significantly. The changeover at lower strike is due to the significantly higher
implied volatility for the no-jump model, which increases the likelihood of small
drawdowns. This is illustrated in Figures 9.3 and 9.4, where we simulated ten
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Figure 9.1: Values for MRD options with expiry time T = 1 as a function of
the strike, K are compared for both jump-diffusion and a no-jump model with
implied volatility calculated from Equation (9.1). Parameters are given in Table
8.8 where Nobs = 5T . Values are accurate to three decimal places.

Figure 9.2: Values for MRD options with expiry time T = 5 as a function of
the strike, K are compared for both jump-diffusion and a no-jump model with
implied volatility calculated from Equation (9.1). Parameters are given in Table
8.8 where Nobs = 5T . Values are accurate to three decimal places.
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Figure 9.3: Monte Carlo simulation under jump-diffusion using parameters given
in Table 8.8. The no jump model has higher average drawdown than the jump
model shown in Figure 9.4.

Monte Carlo paths of the implied volatility under the no-jump case, and the jump-
diffusion case. It is evident that significantly larger drawdowns can occur under
jump-diffusion, with low probability, while smaller, more moderate drawdowns
occur with the larger implied volatility (no-jump case) with high probability.

9.4 Application to Mutual Fund Fees

As discussed in Chapter 1, buying a maximum drawdown or maximum relative
drawdown option can be viewed as a rationalization for mutual fund fees. Fol-
lowing the idea suggested by Guercio et al. [14] that investors are paying such
fees for a service they value, which is unrelated to performance, investors may
believe that the fund manager protects them from large drawdowns, effectively
providing them with a drawdown option. Following this logic, assuming the fund
holder pays a proportional fee of f S, we show the equivalent strike K for which
the maximum relative drawdown has the same value. The option value is then
given by,

Vτ = LfV +λJ V − f S, (9.2)

where LfV = LV − f SVS and the modifications to Eq. (3.3) account for the
continuous proportional fee as described in [30]. Note that Equation (9.2) is no
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Figure 9.4: Monte Carlo simulation under jump-diffusion using parameters given
in Table 8.8. The jump-diffusion model has much larger drawdowns (which occur
less frequently) than the no-jump model in Figure 9.3.

T 1 2 5 10
K 16 18 19 15

Table 9.5: Equivalent strike K for which the maximum relative drawdown has
price equal to the mutual fund fee of 3% per year. The parameters used for the
option are given in Table 8.8, with modified expiry time T .

longer homogeneous of degree 0, and the similarity reduction does not hold for
the maximum relative drawdown. In particular, Table 9.5 shows these results for
a fee of f = 3%.

As the length of the contract increases the equivalent option first tends to
provide less protection (higher strike). This is somewhat intuitive; if you buy
two separate one year options you can expect this to be cheaper than a two year
option since the maximum drawdown will be at least as large as both one year
drawdowns. On the other hand, as the time to maturity increases even further
(above 5 years in Table 9.5), we see the discounted value of the fee becomes
sufficiently large that it offsets this effect and the equivalent option provides
more protection.

Table 9.5 indicates that a fee of about 3% per year would provide maximum
relative drawdown insurance for any drawdowns larger than 15− 20%. In other
words, a possible explanation of why Canadian mutual fund fees are so high is
that investors believe that active fund management protects them against large
drawdowns.
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Chapter 10

Conclusion

The maximum drawdown has been proposed as an ideal risk measure for captur-
ing downside risk and is widely used in practice. Furthermore, investors are often
drawdown averse and want to avoid large drawdowns. Although numerical meth-
ods exist for pricing continuous drawdowns under geometric Brownian motion
[15], this does not solve the discretely observed problem under jump-diffusion.

In this thesis we developed a formulation to price both maximum drawdown
options and maximum relative drawdown options. We extend the work of [15]
using the general path-dependent formulation in [18]. We solve a set of one-
dimensional problems under jump-diffusion for each discretized M and MD node,
updating at discrete observation dates. In addition, we show that a similarity
reduction can reduce the overall three-dimensional problem to two dimensions.

The key contributions of this thesis are:

• As in the cliquet case [18], scaled grids improve convergence over simple
repeated grids by increasing node density near the update diagonals.

• Unlike the cliquet, diagonal interpolation proves ineffective.

• The similarity reduction holds under constant volatility for the maximum
drawdown option with K = 0.

• Under constant volatility, the similarity reduction holds for the maximum
relative drawdown option with arbitrary strike K.

We compare the option values with and without jumps, and show that the
price is significantly different depending on the strike K. This demonstrates the
importance of choosing an appropriate model for the valuation. At low strike, the
no-jump option becomes more expensive, since a higher implied volatility leads
to more moderate drawdowns. On the other hand, at high strike, the option

53



priced under jump-diffusion becomes more expensive since infrequent jumps
may still cause large drawdowns. This also demonstrates that a moderate strike
can reduce the costs of protection against large drawdowns.

Lastly, we compare the price of the relative drawdown option with that of
mutual fund fees. A fee of 3% is not uncommon in the Canadian mutual fund
marketplace. Hence, a possible explanation for these high fees is that investors
are under the impression that active fund management will provide protection
against maximum drawdowns of 20% or more.

10.1 Future Work

Possible future work could continue in a variety of directions.

• An extension of the financial model including a stochastic volatility jump-
diffusion (SVJD) model. This would be a combination of Equation 2.8 and
Equation 2.10. Recent work in this area includes [31].

• A formal proof that the similarity reduction maintains the stability of the
scheme without the modification in Section 7.4.2. Since it is observed to
remain stable, it is suspected that such a proof exists.

• An application of the maximum drawdown to wind energy could be ex-
plored. Wind generation has been modelled stochastically [32], and the
drawdown describes the remaining charge in a battery. This may give rise
to a variety of interesting problems, from optimizing battery capacity, to
setting a fair price on the stablishment of wind turbines.
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