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ABSTRACT 

 The purpose of this study was to investigate whether skeletal muscle sarcoplasmic 

reticulum (SR) Ca2+ transport efficiency and expression levels of major SR Ca2+ regulatory 

proteins are associated with resting metabolic rate (RMR) in humans. Twenty five healthy and 

weight stable participants with mean age, height and weight of 22±3.6 years, 174.6±8.0 cm 

and 72.8±21 kg respectively, were recruited for the study. RMR was calculated using the Weir 

equation based upon measures of VO2 and VCO2, which were collected using the Vmax breath 

by breath indirect calorimetry system. Ca2+-ATPase activity, Ca2+ uptake and Ca2+ leak analyses 

were performed in vitro on homogenates that were prepared from vastus lateralis muscle 

biopsies. Ionophore (IONO) ratio was assessed by measuring Ca2+-ATPase activity in the 

presence and absence of Ca2+ Ionophore. The coupling ratio, a measure of SR Ca2+ transport 

efficiency, was calculated by taking the ratio of Ca2+ uptake to Ca2+-ATPase activity. Expression 

levels of the major SR Ca2+ regulatory proteins, including SERCA1a, SERCA2a, phospholamban 

(PLN), and calsequestrin (CSQ) were assessed using Western blotting techniques. Pearson 

correlation coefficient analysis demonstrated a weak but significant negative correlation 

between coupling ratio and RMR (r2= 0.2108, p =0.0240). Content of the SR Ca2+ regulatory 

proteins, IONO ratio and Ca2+ leak were not found to be significantly related to either RMR or 

coupling ratio, with the exception of the ratio of SERCA1a to SERCA2a, which showed a weak 

but significant positive relationship with RMR (r2=0.1781, p=0.0400).  Thus, the relationship 

between coupling ratio and RMR is not influenced by Ca2+ leak, SERCA pump efficiency or the 

SR Ca2+ regulatory proteins. Overall, these results suggest that the efficiency of SR Ca2+ 

transport is weakly related to whole body RMR. Further analysis is needed to assess this 
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relationship, and to determine which SR Ca2+ handling properties are influencing the 

relationship between coupling ratio and RMR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

 I have spent 6 years of my life at the University of Waterloo, and have met and gotten 

to know so many great people who really made my experiences here great. I have been 

surrounded by amazing professors and friends who have made my years at U of W some of 

the best of my life.  

 Thank you very much to my supervisor, Dr. Russell Tupling. Dr. Tupling has been 

instrumental in my learning process and in my success here at U of W. He has spent many 

hours discussing the details of my research project with me, and has always been a great 

influence and mentor to me. I really appreciate all you have done for me over the years I have 

spent at U of W. 

 Thank you to my lab mates Chris Vigna, Dr. Eric Bombardier, Ryan Sayer, Dan Gamu, 

Ian Smith and Anton Trinh. I was always sure to have an exciting day working with this group 

of people. All of my lab mates have spent a great deal of time discussing my project with me 

and providing support where it was needed, and have been great friends as well. I especially 

need to thank Chris Vigna for all of the time he spent with me, teaching me essentially all the 

lab skills that I have gained and I would not have been able to complete this research project 

if not for him.  

 I also want to thank all of the professors and graduate students on the 2nd floor 

research labs of BMH. I have learned so much from all of these individuals and have been 

surrounded with a great atmosphere to work in thanks to them. Thank you to Dr. Mourtzakis, 

Dr. Quadrilatero, Dr. Rush, Dr. Stark and Dr. Hughson, and to all of my friends and colleagues 

in their laboratories.  



vi 
 

 Thank you to Marg Burnett, Dr. John Moule, Jing Ouyang, Ashley Patterson and Janice 

Skafel, who have helped me carry out my research in a number of different ways. You have 

been very supportive and helpful. 

 Finally, thank you very much to my family and loved ones for their continued support 

and encouragement. I was able to attend U of W because I have such a great and supportive 

family who have spent many hours throughout the past 6 years encouraging and cheering me 

on. I definitely cannot thank them enough. Thank you to all of my friends for the support as 

well, and for many fun times over the last 6 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

DEDICATION 

 I dedicate this thesis to my family and loved ones, whose love and support has helped 

me a great deal throughout my academic career. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

LIST OF FIGURES                  x 
 
LIST OF ABBREVIATIONS                                        xi
   
CHAPTER ONE: INTRODUCTION               1 

• Overview                                    1 
• Metabolism Foundations                                                                                                   2 
• Variability in Metabolic Rate – Possible Role of Skeletal Muscle          6 
• Calcium Handling in Resting Skeletal Muscle             9 
• SR Ca2+ Leak, SERCA Pump Efficiency and Coupling Ratio         11 
• SERCA Isoforms and SERCA Pump Efficiency               16 
• Regulation of SERCA Activity and Efficiency by PLN and SLN         19 
• Objectives               21 
• Specific Hypotheses              21 

CHATPER TWO: METHODS              23 

• Recruitment of Participants             23 
• Study Design               23 
• Analytical Procedures              25 
• Diet and Activity Logs and Sensewear Arm Bands          25 
• Resting Metabolic Rate             27 
• Body Compositional Measures            27 
• Biopsy Procedure              29 
• Cholesterol, FFA, TG, Glucose and Insulin           30 
• Expression of SR Ca2+ Handling Proteins           30 
• SERCA Activity               31 
• SERCA Ca2+ Uptake, Ca2+ Leak and Coupling Ratio          32 
• Statistical Analysis              32 

CHAPTER THREE: RESULTS              35 

• Participant Characteristics             35 
• DXA Body Compositional Measures            37 
• Energy Balance Assessment Using Diet and Activity Log Data        37 
• Energy Balance Assessment Using Sensewear Arm Band Energy Expenditure Data     39 
• Cholesterol, FFA, TG, Glucose and Insulin           40 
• Relationship Between RMR and Fat Free Mass          41 
• Ca2+ Handling Properties in Skeletal Muscle           44 
• Expression of PLN, CSQ and SERCA Isoforms           45 
• Relationship Between RMR and Ca2+ Handling Properties         45 



ix 
 

• Relationship Between Coupling Ratio and SR Ca2+ handling Properties        52 

 
CHAPTER FOUR: DISCUSSION              61 

• Relationship Between RMR and Coupling Ratio          64 
• RMR and SR Ca2+ Leak              65 
• RMR and SERCA Pump Efficiency            66 
• Relationship Between Coupling Ratio and SR Ca2+ Handling Properties             68 
• Regulation of SERCA Isoform Distribution           71 
• Limitations               73 
• Future Studies               75 
• Conclusion and Significance of Findings           77 

 

REFERENCES                80 

APPENDICES 

• Appendix A: Participant Characteristics           92 
• Appendix B: Body Compositional Measures           93 
• Appendix C: Energy Balance Analysis            95 
• Appendix D: Cholesterol, FFA, TG, Glucose and Insulin         97 
• Appendix E: Ca2+-ATPase Assay Data          100  
• Appendix F: Ca2+ Uptake and Leak Assay Data        101 
• Appendix G: Coupling Ratio Data          102 
• Appendix H: Western Blot Analysis Data         103 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

Figure 1: SERCA Reaction Cycle             13 

Figure 2: SERCA Reaction Cycle Showing Passive Leak Reactions, Uncoupled ATPase      14 
                 Activity and Slippage 
   
Figure 3: Frequency Plot for BMI             36 

Figure 4A: Correlation of RMR and Body Weight            43 

Figure 4B: Correlation of RMR and FFM            43 

Figure 5: Western Blots for SERCA1a, SERCA2a, PLN and CSQ         47 

Figure 6: Correlation of RMR and Coupling Ratio           48 

Figure 7: Correlation of RMR and Ca2+ Leak            49 

Figure 8: Correlation between RMR and Total SERCA          49 

Figure 9: Correlation of RMR and CSQ            50 

Figure 10: Correlation of RMR and IONO Ratio           51 

Figure 11: Correlation of RMR and SERCA1a/SERCA2a Ratio          52 

Figure 12: Correlation of RMR and PLN Expression           54 

Figure 13: Coupling Ratio and Ca2+ Leak            55 

Figure 14: Coupling Ratio and CSQ             56 

Figure 15: Coupling Ratio and Total SERCA            57 

Figure 16: Coupling Ratio and IONO Ratio            58 

Figure 17: Coupling Ratio and SERCA Distribution           59 

Figure 18: Coupling Ratio and PLN Content            60 

 

 

 

 

 



xi 
 

LIST OF ABBREVIATIONS 
 
[Ca2+]f   Cytosolic free Calcium concentration 
ATP   Adenosine triphosohate 
ATP2A1-3  Genes which encode for SERCA pumps 
BIA   Bioelectrical impedance analysis 
BMR   Basal metabolic rate 
BW   Body weight 
Ca2+   Calcium 
CPA   Cyclopiazonic acid 
CSQ   Calsequestrin 
DXA   Dual energy x-ray absorptiometry 
EC50   Ca2+ concentration needed for 50% of maximal SERCA activity 
EDL   Extensor digitorum longus 
EGTA   Ethylene glycol tetraacetic acid 
FFA   Free fatty acids 
FFM   Fat free mass  
FM   Fat mass 
GI   Gastrointestinal tract 
HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HDL   High density lipoprotein 
Ht2   Height squared 
IONO    Ca2+ ionophore    
KCl   Potassium chloride 
LDH   Lactate dehydrogenase 
LDL   Low density lipoprotein 
MET   Metabolic equivalent 
MgCl2   Magnesium chloride 
NADH   Nicotinamide adenine dinucleotide 
pCa   Negative logarithm of [Ca2+]f  
PEP   Phosphoenol pyruvate 
PLN   Phospholamban 
PK   Pyruvate kinase 
R50   Resistance 
RMR   Resting metabolic rate 
RyR   Ryanodine receptor 
SERCA   Sarco(endo)plasmic reticulum Ca2+-ATPase 
SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
SLN   Sarcolipin 
SMR   Sleeping metabolic rate 
SR   Sarcoplasmic reticulum 
T3   Triiodothyronine 
T4   Thyroxine 



xii 
 

T-tubule  Transverse tubule 
VCO2   Volume of carbon dioxide 
VO2   Volume of oxygen 
Vmax   Maximal Ca2+-ATPase activity 
Wt   Weight 
Xc   Reactance 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER ONE: INTRODUCTION  

OVERVIEW 

Studies examining resting metabolic rate (RMR) have shown significant variability 

between individuals (Boothby and Sandiford, 1922; Bogardus et al, 1986). It has been found 

that skeletal muscle metabolism contributes significantly to this variability (Zurlo et al, 1990). 

In skeletal muscle the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA) plays a critical role in 

contraction and relaxation, but it also has an underappreciated role in energy metabolism and 

daily energy expenditure. The overall objective of this study was to investigate the 

relationship between the efficiency of SR Ca2+ transport and other SR properties, and resting 

metabolic rate in humans. Specifically, cross-sectional analyses were performed on muscle 

samples obtained from a group of healthy individuals, who were considered to be weight-

stable and in energy balance, to determine whether RMR is associated with skeletal muscle 

SR Ca2+ transport efficiency (assessed by measuring the ratio of Ca2+ uptake:ATP hydrolysis, 

which is called the coupling ratio) and protein expression levels of major SR Ca2+ regulatory 

proteins that are thought to be involved in the regulation of the coupling ratio. It was 

hypothesized that RMR would be 1) negatively correlated with coupling ratio, 2) positively 

correlated with SR Ca2+ leak, and 3) negatively correlated with SERCA pump efficiency 

(assessed by the ratio of SR Ca2+-ATPase activity measured with/without the Ca2+ ionophore, 

which is called the ionophore (IONO) ratio). Furthermore, it was hypothesized that any SR 

protein that is known to influence SR Ca2+ leak and/or SERCA pump efficiency would also be 

correlated with RMR. Finally, the assumptions regarding the role of different SR proteins in 

the regulation of the coupling ratio in skeletal muscle were assessed by correlational analyses. 
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The significance of this study is that it is the first study to examine the relationships between 

RMR and the various SR Ca2+ handling properties not only in humans, but in any species. The 

findings of the present study could lead to an improved understanding of the contribution of 

SR Ca2+ handling energetics to whole body RMR in humans, and could lead to the examination 

of SR Ca2+handling energetics as a means of prevention and/or treatment for obesity. 

 

BACKGROUND 

Metabolism Foundations: 

Both humans and other mammals alike use a substantial amount of energy in a basal 

state, that being when no net work is being done and all the free energy is dissipated (Rolfe 

and Brown, 1997). Studies examining the components of metabolism prove useful in 

understanding where energy is directed in the human body, what controls the usage of 

energy by different systems, what functions basal energy serves biologically and the possible 

reasons for differences in energy usage between individuals. Pinpointing these differences in 

energy storage, usage and the processes that function towards basal metabolism can provide 

much insight into the processes which contribute to the differences in metabolic rate seen 

between individuals. 

Different states of metabolism can be measured in human beings, such as ‘resting 

state’ or during digestion. Basal metabolic rate (BMR), sleeping metabolic rate (SMR) and 

resting metabolic rate (RMR) are common terms used in the study of metabolism. RMR is the 

steady-state rate of production of heat by a human being under a set of standard conditions. 

These conditions include having the individual awake but resting, stress free, post-absorptive, 
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and having a temperature that does not bring about a thermoregulatory effect of heat 

production (Blaxter, 1989; Speakman, 2003). RMR can be accurately quantified by using 

indirect calorimetry to measure O2 consumption rates which are then converted to energy 

expenditure using a standard equation (Schutz, 1995; Speakman, 2003). BMR is similar to 

RMR, however, it is the rate of energy metabolism of an individual which is needed to sustain 

the functioning of the vital organs and is measured when the participant has just awoken 

from a restful state (Henry, 2005). SMR is the energy expenditure of an individual while 

sleeping (Zurlo, 1990).  

Total daily energy expenditure can be divided into three main components which 

include RMR, thermic effect of exercise, and thermic effect of food (Wu et al, 2011). The 

extent to which a process is coupled to oxygen consumption quantifies the energy flux 

through the process (Rolfe and Brown, 1997). The energy that is used in a basal state is 

sometimes identified as the fixed requirement for the basic functioning and maintenance of 

the individual (ie. functioning of the organs). Further energy usage is elicited from physical 

activity or muscle usage, feeding, growth, reproduction, and cold exposure (Rolfe and Brown, 

1997). However, these factors are not always in addition to baseline RMR because the 

metabolic processes underlying RMR may increase or decrease in response to the additional 

energy demand which can be placed on the individual during one of these conditions (Wieser, 

1989). For example, the metabolic rate of certain organs, such as the gut actually decreases 

due to the commencement of exercise and the metabolic rate of skeletal muscle increases. It 

can be taken from this that the processes which compose RMR can change under various 

conditions. Furthermore, metabolic rate has been shown to decrease by approximately 10 
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percent during sleep and decrease approximately 40 percent during long-term starvation, 

relative to RMR in humans (Blaxter, 1989).  

 Free energy is obtained from the oxidation of food molecules such as fats, protein and 

carbohydrates. This process is coupled to the reduction of NAD. The electron transport chain 

in the mitochondria is responsible for the oxidation of NADH, and this is coupled to the 

production of an electrochemical gradient across the inner membrane of the mitochondria 

(Lowell and Spiegelman, 2000). The synthesis of ATP is coupled to the channelling of protons 

through the ATP synthase with the concentration gradient. Protein synthesis, maintenance of 

the ion gradients and other processes such as muscle contraction are coupled to ATP 

hydrolysis (Lowell and Spiegelman, 2000; Rolfe and Brown, 1997).  There is also a significant 

flux through the system which occurs through reactions that uncouple metabolism. Examples 

of uncoupling reactions include protein degradation, ion leaks, and muscle relaxation and 

these uncoupling processes also account for RMR (Rolfe and Brown, 1997). Furthermore, it is 

known that not all oxygen consumption is mitochondrial and thus coupled to oxidative 

phosphorylation, and that a significant proportion of mitochondrial respiration is not coupled 

to ATP synthesis (Lowell and Spiegelman, 2000; Zorratti et al, 1986; Brown and Brand, 1986)  

 The processes that contribute to RMR take place in different tissues throughout the 

body. The oxygen consumption rates and therefore the heat production by different organs 

within the human body during RMR have been measured in human beings using data taken 

from in vivo tissue respiration. There is not one specific organ that is responsible for the 

majority of an individual’s metabolic rate, however, there are some organs which contribute a 

much larger fraction of the total RMR than their fractional mass or volume of the body. These 
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include the brain, kidney, heart and gastrointestinal (GI) tract (Altman and Dittmer, 1968; 

Aschoff, 1971; Field, 1939; Folke and Neil, 1971; Jansky, 1965; Lambertson, 1961; Schmidt-

Nielsen and Scaling, 1984). However, some organs contribute much less to RMR. These 

include bone, white adipose tissue and skin. The relatively large contribution of skeletal 

muscle to RMR is based on the large amount of this tissue present in the body. The 

percentage of oxygen usage for different organs relative to whole body usage in humans can 

be found in table 1.  

 

Table 1: Percent Tissue Oxygen Use in Humans: 

Tissue Percent Body Mass Percent Oxygen Usage 

Liver 2 17 

GI Tract 2 10 

Kidney 0.5 6 

Lungs 0.9 4 

Heart 0.4 11 

Brain 2 20 

Skeletal Muscle 42 20 

This table is modified from Rolfe and Brown (1997) and the actual values are based on 
experimental data from references therein (Altman and Dittmer, 1968; Aschoff, 1971; Field, 
1939; Folke and Neil, 1971; Jansky, 1965; Lambertson, 1961; Schmidt-Nielsen and Scaling, 
1984). Abbreviation: GI, gastrointestinal. 

 

 The values give a total percentage body oxygen usage of 88%. It is evident that 

skeletal muscle accounts for a fairly high percentage of body oxygen use. As mentioned 
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above, this is due to the fact that skeletal muscle accounts for 42% of body mass. The oxygen 

consumption and mitochondrial content in skeletal muscle are higher in red muscle (more 

oxidative or slow twitch muscle) than in white muscle (fast twitch muscle), and decreases in 

the order type I> IIA> IIX fibres (Conley et al, 2007).    

RMR contributors can be quantified in terms of coupling to oxygen consumption, ATP 

turnover, and uncoupling. At the whole body level, in resting state, the mitochondria is 

responsible for using approximately 90% of mammalian oxygen consumption of which 

approximately 20% is uncoupled by the mitochondrial proton leak and 80% is coupled to ATP 

synthesis (Rolfe and Brown, 1997). Of the 80 percent that is coupled to ATP production, 

protein synthesis accounts for approximately 28%, Na+-K+- ATPase accounts for 19-28%, Ca2+-

ATPase accounts for 4-8% (however this value has recently been shown to be an 

underestimation, as disputed by new and more accurate methods), actinomyosin ATPase 

accounts for 2-8%, gluconeogenesis accounts for 7- 10%, and ureagenesis accounts for 3%. 

Furthermore, mRNA synthesis and substrate cycling also contribute. It is important to note, 

however, that there has been considerable variability in metabolic rate found between 

individuals but the underlying metabolic processes and specific tissues involved remain 

unknown. 

 

Studies examining metabolic rate have shown significant variability between 

individuals. Only a portion of this variability among individuals was accounted for by 

differences in body weight; fat free mass (FFM) was found to be the best determinant of BMR 

Variability in Metabolic Rate - Possible Role of Skeletal Muscle: 
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and 24 hour energy expenditure but only accounted for 60-80% of the variability between 

individuals (Persaghin, 2001; Roffey et al, 2006; Widdowson, 1954; Boothby and Sandiford, 

1922; Ravussin, 1988). It has been shown that some individuals have BMRs which are >300 

kcal/day below or above the value predicted based on their FFM (Bogardus, 1986). These 

studies examining the variability in metabolism were performed decades ago, and there has 

yet to be in depth analysis of the possible causes of this variability. To the author’s knowledge 

there are limited studies assessing the relationship between variability in RMR and specific 

processes which may contribute to this variability within different tissues in the body, 

especially in human subjects. Furthermore, it is not clear which tissues and organs may 

account for this variability.  

The metabolic rates of brain and kidney tissues are fairly stable and vary little 

throughout the day. However, the metabolism of skeletal muscle can change quite 

substantially from rest to maximal physical activity. For example, early reports indicated that 

approximately 87% of body oxygen consumption is used by skeletal muscle during heavy work 

in humans and 5% is used by the heart (Wade and Bishop, 1962; McGilvery, 1979). Zurlo et al, 

in 1990, assessed the importance of skeletal muscle metabolism as a determinant of BMR, 

SMR and 24 hour energy expenditure (all measured by indirect calorimetry) and compared 

these measures to forearm oxygen uptake. It was found that adjusted BMR and SMR, 

expressed as deviations from the predicted values (based on 4 covariates: FFM, fat mass, age 

and sex), were significantly correlated with resting forearm oxygen uptake. The findings 

suggested that differences in resting muscle metabolism account for part of the variance in 

metabolic rate between individuals. However, since these findings, there have been minimal 
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studies looking into what specific energy requiring processes in the muscle may account for 

this variability in metabolic rate.  

One energy requiring process in skeletal muscle which could potentially account for 

the variability in whole body metabolic rate is Ca2+ handling. The biology of this process will 

be discussed in more detail later in this chapter. Since the SR Ca2+-ATPase (SERCA) pump is an 

energy consumer and plays a very large role in Ca2+ handling, the investigation of SERCA and 

its relationship to metabolic rate could prove to be worthwhile. Early studies examined the 

energy contribution of SERCA based on measurements of the rate of Ca2+ efflux from isolated 

SR vesicles and then the amount of ATP required to reuptake that given amount of Ca2+ was 

calculated with the assumption that there was an optimal 2:1 Ca2+:ATP coupling ratio. This 

method resulted in an energetic cost of 3.4-8 % of resting muscle metabolism attributable to 

SERCA activity (Briggs et al, 1992; Hasselbach, 1983). There is now evidence to suggest that 

this value is underestimated greatly. Another approach that has been used to determine the 

relative contribution of SR Ca2+ cycling to resting energy expenditure in skeletal muscle was to 

measure the decrease in energy expenditure following exposure of the muscle to chemicals 

that indirectly inhibit SERCAs by inhibiting Ca2+ leakage from SR Ca2+ release channels or 

ryanodine receptors (RyRs). Using this approach with direct calorimetry, Chinet and 

colleagues found that approximately 12–24% of resting energy expenditure in mouse soleus is 

related to Ca2+ cycling across the SR membrane (Chinet, 1992). A similar study on mouse 

soleus and extensor digitorum longus (EDL) muscles found that 18–22% of resting energy 

expenditure in both muscles is related to SR Ca2+ uptake (Dulloo, 1994). Given that SERCA 

activity accounts for a significant percentage of resting energy expenditure in skeletal muscle, 
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and skeletal muscle metabolism contributes 20-30% of whole body resting metabolic rate, it 

is possible that differences in SERCA efficiency between different individuals could explain at 

least part of the variability in whole body RMR between individuals. Therefore, examining the 

relationship between whole body RMR and the efficiency of SR Ca2+ transport in skeletal 

muscle will be the focus of the present study. 

 

Calcium plays a role in many different processes which take place in cells within the 

body. The movement of Ca

Calcium Handling in Resting Skeletal Muscle: 

2+ from one compartment in the cell to another has an integral role 

in signalling various cellular processes. The maintenance of Ca2+ gradients across cell 

membranes is important for maintaining a potential difference across the membrane of 

excitable cells (Vander, 1990; Henquin, 2009). In skeletal muscle, Ca2+ plays a very important 

role in excitation-contraction coupling, energy expenditure, second messenger signalling, 

controlling the activities of numerous enzymes, and many other processes (Berchtold, 2000). 

Skeletal muscle contraction, referred to as excitation-contraction coupling, and 

relaxation consist of a series of energy requiring processes. The stimulation of the motor end 

plate by the neurotransmitter acetylcholine leads to the depolarization of the sarcolemma 

membrane which propagates along the transverse tubule (t-tubule) into the interior of the 

muscle cell. This is followed by rapid membrane repolarization. The propagation of the action 

potential along the t-tubules activates and triggers a conformational change in the voltage 

sensitive dihydropyrodine receptors, which, in turn, triggers the opening of the RyRs in the 

SR. Opening of the RyRs results in Ca

  

2+ release from the SR and this leads to muscle 
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contraction. Skeletal muscle relaxation occurs upon the termination of the action potential 

and the resulting closure of the RyRs, and is induced by the SR Ca2+-ATPase which pumps Ca2+

In skeletal muscle, the regulation of intracellular free Ca

 

from the cytosol into the SR, ultimately leading to skeletal muscle relaxation.  

2+ levels, denoted as [Ca2+]f , 

During resting conditions, it is well established that SERCA pumps maintain a greater 

than 10

is 

maintained by the RyRs and SERCA pumps found in the membrane of the SR (Dulhunty, 2006). 

SERCA pumps are 95-110 kDa membrane proteins which are made up of 10 transmembrane 

helices (M1-10) and 3 cytoplasmic domains (Toyoshima, 2008). These domains consist of the 

actuator, nucleotide binding and phosphorylation domains. The main isoforms found in adult 

skeletal muscle are SERCA1a, consisting of 1001 amino acids and found predominately in fast 

twitch skeletal muscle, and SERCA2a, consisting of 997 amino acids and found predominately 

in slow twitch skeletal muscle and in the heart (Wu and Lytton, 1993).  

4-fold Ca2+ concentration gradient across the membrane of the SR and are responsible 

for keeping [Ca2+]f  below a value of 100-200 nM (Toyoshima, 2008). Using energy from the 

hydrolysis of ATP, SERCAs pump Ca2+ from the cytosol into the lumen of the SR. Under 

optimal conditions, SERCAs hydrolyze 1 mol of ATP to transport 2 mol of Ca2+ across the 

membrane of the SR (Smith, 2002; De Meis, 2001b; Inesi, 1978). However, under certain 

experimental conditions, partial uncoupling of Ca2+

 

 transport from ATP hydrolysis can occur as 

a result of changes in the reaction cycle of SERCA (Smith, 2002; Mall, 2006; Reis, 2002; Inesi 

and de Meis, 1989; de Meis, 1998; de Meis, 2000; Arruda, 2003).  
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SR Ca2+

Theoretically, the two major factors which determine the efficiency of SR Ca

 Leak, SERCA Pump Efficiency and Coupling Ratio: 

2+ 

transport (amount of Ca2+ transported from the cytoplasm and sequestered in the lumen of 

the SR per ATP hydrolyzed) in resting skeletal muscle are the rate of Ca2+ leakage out of the SR 

and the efficiency of SERCAs in pumping the Ca2+ back into the SR. Fast and slow twitch 

skeletal muscle have different SR Ca2+ leak rates and SERCA coupling ratios; this translates 

into differences in the efficiency of SERCA pumping and heat production/energy utilization by 

SERCAs (Reis et al, 2001; Reis et al 2002; Murphy et al, 2009). Theoretically, several factors 

could influence the rate of SR Ca2+ leak in resting skeletal muscle but two primary factors 

known to influence Ca2+ leak are total SERCA content and CSQ content. It is known that there 

is a higher density of SERCA pumps and a lower [Ca2+] within the SR in fast twitch skeletal 

muscle because of the higher volume of SR and concentration of CSQ relative to slow twitch 

skeletal muscle (Murphy et al, 2009). The high density of SERCA pumps likely accounts for the 

higher Ca2+ leak rates found in fast twitch muscle as the SERCA pumps themselves appear to 

be the major pathway for leakage of Ca2+ out of the SR (Inesi and de Meis, 1989; Murphy et 

al, 2009). Of course, with higher SR Ca2+ leak, more ATP are hydrolyzed by SERCA pumps in 

order to maintain the >104-fold Ca2+ concentration gradient. Therefore, a higher rate of Ca2+ 

leak from the SR in fast twitch muscle could potentially contribute to the lower coupling ratio 

and hence greater heat production in fast muscle compared to slow muscle (Reis et al, 2001).  

The high concentration of CSQ in fast twitch muscle is necessary in order to prevent even 

greater SR Ca2+ leak in those muscles (Murphy et al, 2009). Hence, CSQ content could be an 

important factor in determining the rate of SR Ca2+ leak with lower CSQ content leading to 
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greater SR Ca2+ leak. Leakage of Ca2+ can also occur through the RyRs, which ultimately will 

have an effect on the efficiency of SR Ca2+ handling (Arruda et al, 2007). Furthermore, a high 

fat diet which is composed of high amounts of saturated fatty acids has been shown to alter 

the phospholipid membrane composition in skeletal muscle (Janovska et al, 2010). An altered 

phospholipid membrane composition of the SR can alter membrane fluidity and, therefore, 

Ca2+ leak rate from the SR (Vangheluwe et al, 2005b). Another study examining Ca2+ 

dependent heat production in both red- and white-fibre muscles from mice found that those 

fed a high fat diet rich in fish oils had significantly lower Ca2+ dependent heat production than 

other groups fed high fat diets rich in saturated fat (hydrogenated coconut oil) or n-6 

polyunsaturated fats (corn oil) and a group fed a low-fat diet (Dulloo et al, 1994). These 

studies reveal the specific effect of fish oil on muscle-cell energy metabolism through 

interference with SR Ca2+

As mentioned, the other factor which influences the efficiency of SR Ca

 homeostasis.  

2+ transport (ie. 

the coupling ratio) is SERCA pump efficiency. Under optimal conditions, the stoichiometry of 

SERCA pumps is 2 Ca2+:1 ATP due to the stoichiometry of two Ca2+ binding sites and one ATP 

binding site on each SERCA pump subunit (Smith et al, 2002; Inesi et al, 1978; de Meis, 2001a; 

MacLennan et al, 1997; Toyoshima and Inesi, 2004). Figure 1 shows the reactions by which 

SERCA pumps Ca2+

  

 into the SR. 
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Figure 1: SERCA Reaction Cycle. Note: Figure modified from Inesi, 1985; de Meis and Vianna, 
1979. 
 

Two cytoplasmic Ca2+ bind (high affinity) to the Ca2+ binding sites which are formed by 

transmembrane helices M4-6 and M8 in the E1 conformation of the SERCA pump (Lee, 2002). 

ATP then binds to the nucleotide binding domain and is hydrolyzed. This results in the 

formation of a high energy phosphoprotein intermediate which can be viewed in reactions 1-

2. Once the phosphorylation of the SERCA pump has occurred, a resulting conformational 

change in the cytoplasmic/transmembrane domain occurs due to alterations in the stalk 

domain of SERCA. These alterations are such that the 2 Ca2 + binding sites change to a state of 

low Ca2+ binding affinity and face the lumen, causing the Ca2+

The stoichiometry of SERCA pumps has been found to vary under physiological 

conditions similar to resting skeletal muscle where a Ca

 ions to be released into the 

lumen of the SR. This can be viewed in reactions 3-4. The recycling of SERCA from the E2 

conformation back to the E1 conformation is completed once dephosphorylation occurs. This 

can be viewed in reactions 5-6.  

2+ gradient across the SR membrane is 
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present. Previous in vitro studies with rabbit fast and slow twitch hind limb skeletal muscle SR 

vesicles showed that when a Ca2+ gradient is present, the Ca2+:ATP stoichiometry could vary 

between 0.3 and 0.6 for fast twitch, and up to 1.0 for slow twitch skeletal muscle (de Meis, 

2001b; Reis et al, 2001; McWhirter et al, 1987; Reis et al, 2002). A reduction in the 

stoichiometry of SERCA pumps such that less Ca2+

 

 is taken up into the SR for every ATP 

hydrolyzed can occur in 3 ways as a result of changes in the SERCA reaction cycle. These 

mechanisms can be viewed in figure 2. 

Figure 2: SERCA reaction cycle showing passive leak reactions (7-9), uncoupled ATPase 
activity (reaction 10) and slippage (reaction 11). Note: Figure modified from de Meis, 2001 
and Mall et al 2006. 

 

First, uncoupled Ca2+ efflux or passive leak can occur. This is when a high Ca2+ 

concentration in the lumen of the SR promotes the binding of Ca2+ to the E2 conformation of 

the enzyme prior to conversion back to the E1 conformation (Malls et al, 2006; Inesi and de 
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Meis, 1989; de Meis, 2001a; Berman, 2001). Secondly, uncoupled ATPase activity can occur. 

This happens when there is an increased concentration of Ca2+ in the SR lumen which slows 

down the forward conformational reaction between the E1Ca2~P and the E2Ca2~P 

conformations. This leads to an increased number of SERCA pumps which are in the E1Ca2~P 

state, thus promoting the cleavage of Pi prior to the translocation of Ca2+ (de Meis, 2001a; 

Berman, 2001; Yu and Inesi, 1995). The third mechanism is known as slippage. Slippage occurs 

when there is a premature release of the Ca2+ to the cytoplasmic side of the SR during the 

conformational change between E1Ca2~P and E2Ca2~P (Smith et al 2002; Malls et al, 2006; 

Berman, 2001). Slippage is believed to result from the E1Ca2~P conformation having a lower 

affinity for Ca2+ due to increased Ca2+ in the lumen and possibly to the presence of proteins 

which physically interact with the SERCA pumps (discussed below). Regardless of the 

mechanism, a reduced stoichiometry of SERCA pumps (i.e. <2Ca2+:ATP) would decrease the 

coupling ratio and could result in a higher RMR, since relatively more ATP would be required 

to maintain the >104-fold Ca2+ concentration gradient. Currently, our laboratory cannot 

directly assess or quantify the stoichiometry of SERCA pumps; however, the IONO ratio can be 

used to indirectly measure SERCA efficiency. The IONO ratio is the Ca2+-ATPase activity 

measured with IONO (a Ca2+ ionophore)/ Ca2+

 

-ATPase activity without IONO. A lower ratio 

means that the SR vesicle is more leaky (ie. due to passive leak, slippage and/or uncoupled 

ATPase activity).  
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 The major SERCA isoforms expressed in skeletal muscle differ with respect to their 

Ca

SERCA Isoforms and SERCA Pump Efficiency: 

2+ pumping efficiency with SERCA2a being the more efficient isoform, relative to SERCA1a 

(Reis et al, 2002). Therefore, SERCA2a requires less ATP turnover to pump the amount of Ca2+ 

needed to maintain the >104-fold Ca2+ concentration gradient. Examining the factors that 

regulate the expression of SERCA isoforms in skeletal muscle may improve our understanding 

of the relationship between Ca2+

 SERCA expression is both tissue specific as well as developmentally regulated. Isoform 

switching occurs throughout the process of skeletal muscle cell maturation; however, the 

regulatory process that is responsible for this is not well understood even though this process 

is fairly well documented (Periasamy, 2006; Olivetti et al, 1980; Lompre et al, 1991; Hoerter et 

al, 1981). Studies looking at embryonic development of rats have found that both SERCA2a 

 handling energetics and whole body metabolic rate. SERCA 

pumps are encoded by a family of genes, ATP2A1-3, which are highly conserved but localized 

on different chromosomes (Hovnanian, 2007). The SERCA isoform distribution/diversity is 

enhanced by alternative splicing of the transcripts, and this occurs mainly at the COOH-

terminus (Periasamy, 2006). ATP2A1 is expressed in fast-twitch skeletal muscle and is 

alternatively spliced to encode for SERCA1a (1001 amino acids, adult) and SERCA1b (1011 

amino acids, fetal) (Brandl CJ, 1987; Brandl CJ, 1986). ATP2A2 encodes for SERCA2a (997 

amino acids), and is expressed in slow-twitch skeletal muscle and cardiac muscle (MacLennan, 

1985; Wuytack, 1995). SERCA isoform distribution exhibits developmental regulation and in 

adults, SERCA expression can be regulated by neurohumoral factors (Periasamy, 2006; Sayen 

et al, 1992; van der Linden, 1996).  
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and SERCA1b are co-expressed in fetal stages of type II (fast-twitch) skeletal muscle 

development but are replaced completely by SERCA1a in adult fast-twitch muscle fibres 

(Anger, 1994). SERCA2a is the predominant isoform expressed in type I (slow-twitch) skeletal 

muscle in both the fetal and adult stages, however, SERCA2a disappears from other fibre 

types (Anger, 1994). The function of this isoform switching during development is not well 

understood.  

SERCA expression can also be regulated by neurohormonal factors. Thyroid hormone 

regulates SERCA expression in a fibre-specific manor (Sayen, 1992; Van der Linden, 1996). 

Thyroid hormone increases SERCA activity of the SR in skeletal muscle, which in turn increases 

the energy-turnover associated with Ca2+ cycling during rest (Simonides et al, 2000). Studies 

have found there to be a 2-fold difference in resting O2 consumption of muscle preparations 

between hypothyroid and hyperthyroid rats, which could be primarily due to SR Ca2+ cycling 

(van Hardeveld, 1986; Simonides, 1992, Clausen, 1986). These studies also found there to be 

a triiodothyronine (T3)-dependent increase in SERCA activity. A 2-fold increase in muscle 

SERCA activity from hypo- to euthyroidism (normal level) was found for slow muscle and a 

further doubling was observed in the transition to hyperthyroidism. On the other hand in fast 

muscle, T3 induced a maximal 50 % increase from hypo- to euthyroidism, with little effect in 

hyperthyroidism. In a study using a rat model to determine changes in SERCA isoform with 

different levels of thyroid hormone, it was found that hypothyroidism (a state of decreased 

T4 hormone) produced a large decrease in SERCA1a and SERCA2a mRNA levels in soleus 

muscle, whereas in EDL muscle it was found that SERCA1a mRNA decreased, and SERCA2a 

mRNA increased to 175 % of control values (Sayen, 1992). Also occurring with hypothyroidism 
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is a decrease in SERCA activity. This same study showed that muscle-specific, as well as SERCA 

gene-specific changes occur with acute administration of T3 to hypothyroid rats. In soleus 

muscle, T3 had a small effect on SERCA1a and SERCA2a mRNA levels, but in EDL T3 was seen 

to increase SERCA1a mRNA levels by 3-fold from its hypothyroid level and decrease SERCA2a 

mRNA to 75 % of control levels. It is important to note that a major inclusion criteria for our 

study was that the participants could not have either hypo- or hyper-thyroidism, since it has 

been previously found that RMR in hypothyroid mammals is 70 % of euthyroid (control) 

values, and hyperthyroidism is 150 % of euthyroid values (van Hadeveld, 1986). Thus although 

plasma T3 levels were not measured in this study it was assumed that the participants were in 

a euthyroid state.   

Exercise training has also been shown to alter SERCA isoform expression.  In a study 

looking at SERCA isoform expression in human vastus lateralis after 5 weeks of endurance 

cycling training, a significant down regulation of SERCA2a protein and a tendency (p=0.055) to 

have a lower SERCA1a content resulted (Majerczak, 2008). This was also accompanied by 

lower plasma thyroid hormone concentration. This reinforces the idea that thyroid hormone 

is a major regulator of the expression of SERCA isoforms in skeletal muscle.  Another study 

found significant increases in the gastrocnemius SERCA2a mRNA expression after both 

moderate and high intensity exercise training but no significant changes in SERCA1a 

expression (Kubo et al, 2003). It should be noted that individuals in the present study had 

various levels of physical activity, although none of them were taking part in any kind of 

endurance or fitness training. One of the inclusion criteria was that participants cannot take 

part in more than 30 minutes of exercise, >3 times per week on average. 
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Regulation of SERCA Activity and Efficiency by PLN and SLN: 

Sarcolipin (SLN) and PLN are known SERCA regulatory proteins which have been 

shown to physically interact with the transmembrane domain of SERCA molecules (Morita et 

al, 2008; Bhupathy et al, 2007; Odermatt et al, 1998). Two of these helices (M4 and M6) 

which make up part of the transmembrane domain also specifically make up part of the Ca2+ 

binding site. Thus, when either SLN or PLN are bound to SERCA, the Ca2+ binding affinity is 

altered which leads to increased slippage and Ca2+ being released to the cytosol before it has 

a chance to be sequestered into the SR lumen.  

PLN is a 52 amino acid transmembrane protein that binds with SERCA2a and lowers 

the apparent Ca2+ affinity for the PLN-SERCA2a complex (Simmerman and Jones, 1998). More 

specifically, dephosphorylated PLN has been shown to interact with SERCA2a and reduce its 

apparent affinity for Ca2+ (Hicks, 1979; MacLennan, 1997).  Phosphorylation of PLN removes 

its inhibition on SERCA and facilitates Ca2+ transport into the SR lumen (Lindemann, 1983; 

Kranias, 1985). One study found that dephosphorylated PLN reduces the affinity of SERCA as 

well as the apparent efficiency of the Ca2+ transport system in cardiac SR, especially at low 

[Ca2+] (ie. resting muscle) (Frank et al, 2000). Furthermore, the phosphorylation of PLN was 

shown to enhance the SR Ca2+

SLN, a 31 amino acid protein, has a fairly similar sequence identity and gene structure 

as PLN (Wawrzynow et al 1992; Odermatt et al, 1997) and is also an inhibitor of SERCAs 

 transport coupling ratio (Frank et al, 2000). A recent study from 

our laboratory showed that PLN protein is not expressed in mouse skeletal muscle (Tupling et 

al, 2011); however, PLN protein is abundant in human skeletal muscle where it plays an 

important role in the regulation of SERCA activity (Damiani et al, 2000; Rose et al, 2006).  
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(Odermatt et al, 1998; Asahi et al, 2002; Asahi et al, 2003). Like PLN, SLN has also been shown 

to cause the uncoupling of Ca2+ uptake from ATP hydrolysis by the SERCA pumps (Smith et al., 

2002; Mall et al., 2006). In two separate in vitro studies by the same group, it was found that 

the presence of SLN in reconstituted membrane vesicles containing SERCA resulted in 

uncoupled ATP hydrolysis (Smith et al., 2002) and increased the amount of heat released per 

mol of ATP hydrolyzed (Mall et al., 2006). In a more recent unpublished study from our 

laboratory, SERCA activity and Ca2+ uptake in muscle homogenates from the soleus were 

compared between SLN-null and wild-type mice under conditions of a Ca2+ gradient 

(Bombardier, 2010 unpublished data).  In that study, the calculated transport efficiency (ie. 

the coupling ratio) was increased by roughly 20% in the SLN-null mice compared with wild 

type suggesting that SLN causes slippage of SERCA pumps and lowers their efficiency in vivo. 

The fact that both SLN and PLN have been shown to uncouple ATP from Ca2+ transport 

by SERCA and increase the amount of heat released per mol of ATP hydrolyzed through 

slippage during the reaction cycle of SERCA means that these regulatory proteins are playing a 

role in the efficiency of the SERCA pumps, and could ultimately be related to whole body 

metabolic rate. Currently, our laboratory is in the process of establishing Western blotting 

procedures for the detection of SLN protein in human skeletal muscle samples. Since this 

procedure was not available in time for this thesis, SLN protein content could not be 

examined at this time. However, PLN protein content was assessed for this thesis and future 

analyses on the samples collected for this thesis will include measurement of SLN protein 

content.  
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Objectives: 

The primary objective of this thesis was to investigate whether there is a relationship 

between the efficiency of SR Ca2+ transport (assessed by the coupling ratio) and RMR in 

humans by performing cross-sectional analyses on muscle samples obtained from a group of 

healthy, weight-stable individuals. Theoretically, the main factors which influence coupling 

ratio are Ca2+ leak and SERCA pump efficiency, so examination of the relationship between 

RMR and these two factors were carried out. Furthermore, the factors which influence Ca2+ 

leak and SERCA pump efficiency were examined, in order to determine which factors may 

play a significant role in influencing the coupling ratio and the relationship between coupling 

ratio and RMR. Two main properties that could influence Ca2+ leak are total SERCA expression 

and CSQ content. The main factors which determine the efficiency of SERCA pumps are 

slippage, passive leak and uncoupled ATPase activity. Currently, our laboratory is unable to 

directly assess or quantify the efficiency of SERCA pumps; however, the IONO ratio can be 

used as a surrogate marker of SERCA efficiency. Furthermore, SERCA isoform distribution (as 

assessed by SERCA1a/SERCA2a expression) and PLN content, two major SR properties which 

may influence the efficiency of SERCAs, were also assessed in the present study. 

 

Specific Hypotheses:  

It was hypothesized that:  

1) Coupling ratio (amount of Ca2+ transported into the lumen of the SR from the cytoplasm 

per ATP hydrolyzed) would be negatively correlated with RMR 
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2) SR Ca2+ leak would be negatively correlated with coupling ratio and positively correlated 

with RMR 

3) IONO ratio would be positively correlated with coupling ratio and negatively correlated 

with RMR 

4) Total SERCA content would be negatively correlated with coupling ratio and positively 

correlated with RMR  

5) CSQ content would be positively correlated with coupling ratio and negatively correlated 

with RMR  

6) The ratio of SERCA1a/SERCA2a expression would be negatively correlated with coupling 

ratio and positively correlated with RMR 

7) PLN content would be negatively correlated with coupling ratio and positively correlated 

with RMR 

 

 

 

 

 

 



23 
 

CHAPTER TWO: METHODS 

Recruitment of Participants: 

Recruitment for the study was from the University of Waterloo and from the general 

Kitchener-Waterloo population. For the first 3 weeks of recruitment, the advertisements 

stated that the study was looking for individuals who have either a “very fast metabolic rate, 

who tended to stay at a low weight, or a very slow metabolic rate, who tended to have 

trouble losing weight”. This was done initially in an attempt to recruit a study population with 

a large spread of RMR values. A sample size of 9 participants was obtained using this strategy. 

However, 3 weeks into the recruitment, the advertisement was changed to state that the 

study was looking for “healthy normal weight and overweight individuals”. This was done in 

order to obtain a group of participants with a broad range of BMI and RMR. A sample size of 

16 participants was obtained using this strategy. Thus, individuals of all BMI’s were accepted 

into the study. In total, twenty five individuals (5 females and 20 males) were recruited for 

the study through class announcements and advertisements. Group and individual participant 

characteristics are presented in the Results and Appendices, respectively.  

  

Study Design: 

The participants came in for an introductory session where height, weight, waist and 

hip circumference, and BMI were assessed. The participants read and signed the Informed 

Consent letter and filled out a Health Status Form. The purpose of the Health Status Form was 

to screen the participants for any contraindications for participation in the study. After the 

introductory session the participants came in on three separate occasions spanning 
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approximately 3 weeks in total, for different protocols and procedures. On the first day, RMR 

was measured by indirect calorimetry and body composition was assessed using bioelectrical 

impedance analysis (BIA). The second session involved measurement of body composition 

using dual energy x-ray absorptiometry (DXA). However, body composition was only assessed 

using BIA for the first nine participants that completed the study, because the DXA scanner 

was not available initially. However, 5 of the participants were able to come in 2 to 3 months 

after they completed the study to reassess their body composition using a DXA scan. As an 

alternative for the 4 participants who were not able to come in, DXA values were calculated 

for these subjects from a regression analysis between BIA and DXA measures from all 

participants as described below. This was done for participants 2, 5, 6 and 9. The third and 

final session involved collection of muscle biopsy and blood samples. Blood samples were 

analyzed for cholesterol (total, LDL and HDL), free fatty acids (FFA), triacylglycerols, glucose 

and insulin, to verify normal levels for each parameter. Participants were also asked to wear 

an activity arm band and fill out a 3 day diet and activity logs on their own time. It is 

important to note that data collected on all females took place during the follicular stage of 

their menstrual cycles.   

The exclusion criteria for the study were as follows: 1) diabetes (type I or II), 2) 

diagnosed with abnormal thyroid function, such as hyper or hypo-thyroidism, 3) current use 

of antidepressants, birth control or other medication that may cause weight-gain, 4) smoking 

or use of illegal drugs, 5) allergies to dental freezing or any other local aesthetic, 6) allergies to 

rubbing alcohol or iodine, 7) previous leg muscle biopsies, 8) previous abnormal scarring or 

trouble healing, 9) current participation in physical exercise for more than 30 min/day, 3 
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times/week. The key inclusion criterion was that the participants were weight stable in the 

five months prior to starting the study and for the duration of the study. Participants were 

asked to maintain their current normal diet and activity patterns for the duration of the study. 

The protocols received clearance by the Office of Research Ethics at the University of 

Waterloo.  

 

ANALYTICAL PROCEDURES 

Diet and Activity Logs and Sensewear Arm Bands: 

In order to verify that the participants maintained a state of caloric balance during the 

study, as they were instructed to do so that no metabolic adaptive processes would be 

activated that could confound the main results, the participants were each given diet and 

activity log sheets to record a detailed account of their daily diet and activity for 3 days. The 

participants were instructed to provide detailed logs of their caloric intake and expenditure, 

and were given detailed instructions on how to record the intensities and durations of their 

daily activities. They were asked to record their food intake using measuring cups at the time 

of the meal and to include all condiments, spices and sauces. Participants recorded the 

amount and detailed description of the food they were consuming over 1 weekend day and 2 

week days, in order to get a measure of the caloric intake each day. The diet log was analyzed 

using the Food Processor SQL V. 10.8.0 dietary analysis software which provided a detailed 

analysis of the caloric intake of the participants. Participants recorded the amount their 

activity levels over 1 weekend day and 2 week days in two categories, activities of daily living 

and physical activity. The number of hours spent doing each activity was recorded and 
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analysis was completed to obtain a daily energy expenditure in kcal/day. The energy 

expenditure (per minute) was computed using both the individual’s body weight and the 

number of metabolic equivalents (METS) required to perform the activity (Ainsworth et al, 

2000). Specifically, one MET is equal to 0.0175 kcal/kg/min. Thus, the formula to compute 

caloric expenditure during the activity is: 

Energy Expenditure (kcal/min) = 0.0175 kcal/kg/min/MET * METS * body weight (kg) 

In order to obtain an energy expenditure expressed in kcal/day, the energy expenditure in 

kcal/min was multiplied by the time the activity was performed (in minutes) and resulting 

energy expenditures for each activity were summed. In addition to the self-reported daily 

activity, the participants were asked to wear a Sensewear arm band during the same 3 days 

that the activity log was filled out. The arm band, which was worn on the back of the 

participant’s upper arm (ie. on the triceps muscle) for 3 full days, contains an accelerometer 

to measure motion and several other sensors to measure electrical conductivity and 

temperature of the skin and the rate of heat dissipation from the body. The armband data 

was analyzed using the Sensewear software to provide a quantitative measure of daily energy 

expenditure, hours spent doing physical activity (and the level of the physical activity), hours 

spent sleeping, number of steps and METS. The energy balance was determined by 

subtracting the energy expenditure (quantified from both the activity logs and the Senseware 

armbands) from the energy intake (quantified from the diet logs) to generate 2 energy 

balance values that could be compared.  Furthermore, the body weight of each participant 

was measured during 3 sessions over approximately 3 weeks of participation in the study to 
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determine if participants remained weight-stable throughout the study which should be the 

case if the participants maintained a state of energy balance during the study. 

 

Resting Metabolic Rate: 

 RMR was quantified using indirect calorimetry. Resting VO2 and VCO2 were measured 

using the Vmax breath by breath system. The participants were asked to come to the lab 

between 6:30-8:30 am in a fasted state to have their resting metabolic rate measured. 

Participants were connected to the Vmax system with a face mask and laid in a still position 

for 50 minutes while the expired gas concentrations of O2 and CO2 were measured. Note that 

the participant was in a dark room and was told to stay as still as possible for the duration of 

the test, without falling asleep. The most stable 10 minutes of the test time were selected for 

analysis and the averages at every 20 seconds were used to determine VO2 and VCO2. These 

values were plugged into the Weir Equation,  

kcal/min = [(3.941*VO2*1000)+(1.106*VCO2*1000)],  

to determine the participants energy expenditure (Weir and De, 1949). The RMR values were 

then normalized to FFM, since FFM has been shown to be the best predictor of energy 

expenditure (Ravussin et al, 1981).  

 

Body Composition Measures: 

The body composition of the participants was determined using dual energy X-ray 

absorptiometry (DXA), which provides quantitative measures of lean tissue mass (or fat free 

mass, FFM) and fat mass (FM) for the whole body and specific regions. The scan was 
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completed and analyzed by the Medical X-ray Technologist. The main values of interest were 

the whole body FM and FFM. Due to the fact that the DXA scan was not available during the 

time that 4 of the participants took part in the study, some calculations for DXA values had to 

be completed using bioelectrical impedance analysis (BIA). BIA determines the electrical 

impedance to flow of an electric current which is passed through the tissues of the body via 

electrodes. This can be used to calculate an estimate of total body water, which can in turn be 

used to estimate FFM and FM. For the BIA test the participant was connected to the BIA 

machine by placing 2 electrodes on the participant’s right hand and 2 electrodes on their right 

foot. The participant was then asked to lay supine with their hands placed to the sides of the 

body. Once the participant was connected, the machine was turned on and the resistance 

(R50) and reactance (Xc) measures were recorded. These values are plugged into the Kyle 

Equation,  

fatt free mass (FFM) = -4.104+(0.518Ht2/R50

where male=1 and female=0, Ht

)+(0.231*Wt)+0.130*Xc)+(4.229*sex),  

2

 DXA uses x-rays with two different energy levels; high energy x-rays to measure bone 

mineral composition and low energy x-rays to measure and differentiate between fat tissue 

 is height squared, Wt is weight (Kyle et al, 2004). This 

equation was used for the analysis of FFM in this study because of the age group it 

incorporates and the fact that the participants are healthy individuals (not a clinical 

population). Fat mass is then calculated by subtracting the participant’s fat free mass from 

their body weight. Individuals were asked to be in a fasted state and to void their bladder 

prior to the assessment as extra fluid affects the accuracy of the measurements. Every 

participant in the study had BIA completed.  
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(FM) and lean tissue (FFM). As mentioned above, since 4 of the participants did not have 

access to a DXA scan, some calculations for DXA values had to be completed using 

bioelectrical impedance analysis (BIA). The calculated DXA FM and FFM values were 

determined using equations based on the line of best fit when BIA and DXA values for FM and 

FFM were plotted against one another. This approach yielded the following equations:  

FM:  Y= 0.8579x + 1.766,  

FFM: Y=1.138x + (-11.16),  

where, x is the value in kg for BIA.  

These equations were used to predict DXA values for FM and FFM for the 4 participants that 

did not have DXA measures of FM and FFM. In order to test the validity of these equations, 

the actual DXA values for FM and FFM were subtracted from the calculated DXA values for 

the participants that had measures from both DXA and BIA (see Appendix B).  

 

Biopsy Procedure: 

 Muscle tissue samples were obtained from the vastus lateralis from one leg with use 

of the needle biopsy technique. The tissue was obtained by a trained technician using sterile 

equipment under sterile conditions with the following procedures.  A 1 cm incision was made 

in the skin and fascia and 2 samples were removed using the biopsy needle (approximately 

60-100 mg of tissue per sample). The tissue was homogenized using a procedure previously 

described (Green et al, 2008). Homogenates were frozen in liquid N2 and stored at -80◦C for 

later analysis. Homogenates were used to measure SERCA activity, SR Ca2+ uptake, SR Ca2+ 

leak, and expression of various SR Ca2+ regulatory proteins.  
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A venous blood sample was collected using a closed, sterile vacutainer system. Venous 

blood sampling was performed only by a trained/licensed technician. One blood sample of 

approximately 10 ml was taken, and centrifuged at 5000g for 8 min, and the resulting serum 

was stored at -80◦C until further analysis. The blood samples were analyzed for cholesterol 

(total, LDL and HDL), free fatty acids (FFA), triacylglycerols, glucose and insulin. For cholesterol 

and triglyceride analysis, a blood sample was sent to LifeLabs. Insulin was analyzed using a 

Coat-A-Count Insulin kit, using a solid-phase radioimmunoassay procedure (Siemens). FFA 

were analyzed using a Free Fatty Acids NEFA C Wako 990-75401 procedure using a 

spectrophotometer (Wako, HR Series NEFA-HR (2)). Blood glucose was also measured using a 

Glucose monitor stick (Roche, Accu-view). 

Analysis of Cholesterol, FFA, TG, Glucose and Insulin: 

 

Expression of SR Ca2+ Handling Proteins: 

 Western blot analyses were used to assess the expression of SERCA1a, SERCA2a, PLN, and 

CSQ. Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was performed 

on samples to separate proteins of interest by size (Laemmli, 1970). Equal quantities of 

protein were loaded into each well. For the analysis of each of the proteins, 2 gels were run, 

one containing samples from participant 1-13 and the other containing samples from 

participants 14-25. A ladder and blank were also loaded into each gel. Due to the large 

discrepancy in size between the proteins to be measured, different densities and types of gels 

were used. The density of the gel for SERCA1a, SERCA2a and CSQ was 7.5 % and the density of 
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the gel for the PLN western blot was 13 %. Following separation of the proteins, they were 

transferred to a polyvinylidene difluoride membrane (PVDF membrane, Bio-Rad, Canada) 

using a semi dry transfer unit at 23mV for 45 min (Trans-Blot Cell, Bio-Rad, Canada). After 

blocking with 5% skim milk in Tris-buffered saline (pH 7.5) for 1 hour at room temperature, 

the membranes were incubated with the appropriate primary antibodies. SERCA2a analysis 

was done with a clone 2A7-A1 antibody, PLN analysis was done with a clone 2D12 antibody 

and CSQ analysis was done with a clone VIIID12 antibody (Pierce Antibodies). SERCA1a 

analysis was done as previously described (Zubrzycka-Gaarn, 1984). After washing in Tris-

buffered saline 0.1% Tween, the membranes were treated with the appropriate secondary 

antibody for 1 hour. The membranes were then washed again and the signals were detected 

with an enhanced chemiluminescence kit (Amersham Pharmacia Biotech, Piscataway, NJ) 

using a bio-imaging system and densitometric analysis performed using the GeneSnap 

software. All proteins were normalized to α-actin. 

 

SERCA Activity: 

Homogenates were used to determine the Ca2+-ATPase activity using a 

spectrophotometric assay developed by Simonides & Van Hardeveld (1990) and modified by 

Duhamel et al to accommodate a 96-well plate (Duhamel et al., 2004). A reaction buffer (200 

mM KCl, 20 mM HEPES (pH 7.0), 15 mM MgCl2, 1 mM EGTA, 10 mM NaN3, 5 mM ATP and 10 

mM PEP) containing 18 µL of both lactate dehydrogenase (LDH) and pyruvate kinase (PK), as 

well as homogenate were added to test tubes containing 15 different concentrations of Ca2+, 

ranging between 7.6 and 4.7 pCa units in the presence and absence of the Ca2+ ionophore 
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A23817. In the absence of the ionophore, Ca2+ accumulates inside the SR vesicle and causes 

back-inhibition of SERCA pumps, which is more relevant to the physiological system found in 

skeletal muscle. The ionophore allows the Ca2+ ions to be transported across the SR 

membrane, and thus makes the SR more ‘leaky’. This results in less back-inhibition of the 

SERCA pumps to occur. Aliquots of 100 μl were transferred in duplicate to a clear bottom 96-

well plate, and NADH was added to start the reaction. The plate was read at a wavelength of 

340 nm for 30 min at 37°C. Cyclopiazonic acid (CPA), a highly specific SERCA inhibitor (Seidler 

et al, 1989), was used to determine background activity which is then subtracted from the 

total Ca2+-ATPase activity measured in muscle homogenate. All activity data were then 

plotted against the negative logarithm of [Ca2+]f (pCa) using basic statistatical software 

(GraphPad PrismTM version 4) to determine maximal SERCA activity (Vmax), and EC50 (the 

concentration of Ca2+ needed to elicit 50 % of the maximum Ca2+-ATPase activity). The IONO 

ratio, which was used as a surrogate marker of SERCA pump efficiency, was calculated as Ca2+-

ATPase activity with IONO/ Ca2+-ATPase activity with no IONO. The IONO ratio reflects the 

amount of slippage, passive leak and uncoupled ATPase activity because if there is a high 

amount of slippage occurring, then even in the absence of the ionophore the SR vesicles will 

fill with Ca2+ relatively more slowly. This slowed filling of Ca2+

 

 would result in less back-

inhibition and thus the SERCA activity will be closer to the SERCA activity measured in the 

presence of the ionophore.  
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SR Ca2+ Uptake, Ca2+ leak and Coupling Ratio:  

 Muscle homogenates were used to determine SR Ca2+ uptake using the Ca2+ fluorophore, 

indo-1 as has been described in detail previously (Duhamel et al, 2007). Fluorescence signals 

produced by Indo-1 were collected on a dual emission wavelength spectrofluorometer 

(RatiomasterTM system, Photon Technology International, Birmingham, NJ). Two ml of 

reaction buffer (200 mM KCl, 20 mM HEPES, 10mM NaN3, 5 μM TPEN, 5 mM oxalate and 

15mM MgCl2, pH 7.0 at 37 °C) were added to a four sided cuvette and mixed with 1.5 μM 

Indo-1. Then 3 µl of CaCl2 were added to achieve an initial [Ca2+]f between 3 and 3.5 μM. Prior 

to the addition of homogenate (approx. 500 μg protein), data collection was initiated using 

Felix software (Photon Technology International, Birmingham, NJ), and then ATP (5mM) was 

added to initiate Ca2+ uptake. Measurements of Ca2+ uptake in the muscle homogenates were 

made with the Ca2+ precipitating anion, oxalate. The curve ([Ca2+]f versus time) was generated 

and linear regression performed on values ranging ±100nM at [Ca2+]f of 500 nM and 1500 nM 

and the rate of Ca2+ uptake determined by differentiating the linear fit curve and expressed as 

μmoles/g protein/min. Ca2+ leak was assessed by the addition of CPA to the above protocol. 

The coupling ratio was determined by dividing SR Ca2+ uptake/Ca2+-ATPase activity, at a 

matching pCa value which ranged between 5.96 and 6.74 for each participant.  

 

Statistical Analysis: 

Statistical analysis was performed using Graph Pad Prism software. The relationships 

between RMR and SR Ca2+ handling properties and between coupling ratio and other SR 
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properties were examined using the Pearson product-moment correlation coefficient.  A one-

way repeated measures ANOVA was used to determine whether the participant body weights 

fluctuated significantly over the course of the study. 
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CHAPTER THREE: RESULTS 

 Since this is a correlational study, data reported in the results section will be primarily 

group means and standard deviations (SD) and r2 values. Individual data for each of the 

participants, as well as supplementary data can be found in the Appendix. 

 

Participant Characteristics: 

 A total of 25 participants were recruited for the present study. Of these, 6 were 

females and 19 were males. Participant values for weight, height, BMI, and waist and hip 

circumference were collected on 3 different occasions to ensure that all participants were 

weight stable throughout the duration of the study. The participant descriptive characteristics 

mean values are presented in Table 2. Individual participant descriptive characteristics are 

also presented in Appendix A.  

 
Table 2: Participant Descriptive Characteristics 
 

Weight Height BMI Hip 
Circumference 

Waist 
Circumference 

Age RMR 

72.8 174.6 23.9 99.0 81.4 22.2 29.9 
(21) (8.0) (6.2) (9.1) (6.2) (3.6) (3.4) 

Data are means ± (SD). Weight is expressed in kg, height is expressed in cm, BMI is expressed  
In kg/m2, waist and hip circumference are expressed in cm, age is expressed in years and RMR 
is expressed in kcal/kg lean/day. Abbreviations: BMI, body mass index; RMR, resting  
metabolic rate. 
 

  A frequency plot of values for BMI can be found in Figure 3.  Our recruitment strategy 

resulted in a study population which is slightly oversampled at the low/lean end of BMI with 

12% (3/25) of the participants considered underweight (i.e. BMI<18.5), 52% (13/25) 
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considered normal weight (i.e. BMI 18.5 – 24.9), 20% (5/25) considered overweight (i.e. BMI 

25.0 – 29.9), 8% (2/25) considered obese class I (i.e. BMI 30.0 – 34.9) and 8% (2/25) 

considered obese class II (i.e. BMI 35.0 – 39.9) according to the Health Canada issued 

guidelines for body weight classification in adults (Katzmarzyk and Mason, 2006). According 

to Statistics Canada 2007-2009, the distribution of BMI for 18 to 39 year old men was found 

to be 44.2 % normal weight, 36.2 % overweight and 18.4 % obese class I, II, and III. The 

distribution of BMI for 18 to 39 year old women was found to be 5.0 % underweight, 52.4 % 

normal weight, 22.9 % overweight and 19.7 % obese class I, II, and III.    

 

 

Figure 3: Frequency Plot for BMI (kg/m2). Abbreviation: BMI, body mass index.  
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DXA Body Compositional Measures: 

 DXA scans were only completed for 23 of the 27 participants in this study due to the 

fact that 4 participants did not have access to the DXA scanner at the time of their 

participation in the study. Therefore, a computed DXA value was completed for these 4 

subjects using the calculation described in the methods section. The mean values for the DXA 

scan body compositional measures are presented in Table 3 and the individual participant 

values can be found in Appendix B.  

 

Table 3: DXA Body Compositional Measures. 

FM FFM %Fat %Lean Lean 
mass/Ht2 

Appendicular 
lean 

mass/Ht2 
18.0 50.0 24.0 71.4 9.0 17.8 
(11) (12) (9.0) (9.1) (2) (3.1) 

Data are means ± SD. FM is expressed in kg, FFM is expressed in kg, %Fat is expressed as a 
percentage of total body mass, %Lean is expressed as a percentage of total body mass, lean 
mass/Ht2 is expressed in kg/m2 and appendicular lean mass/Ht2 is expressed in kg/m2. 
Abbreviations: FM, fat mass; FFM, fat free mass; Ht, height. 
 

Energy Balance Assessment Using Diet and Activity Log Data: 

 At the time of this study, participants reported that they had been weight stable for a 

period of at least 5 months and they were instructed to maintain their habitual diet and 

physical activity levels throughout the study. Participants had their weight measured each 

time they came in for a study session and it was found that there were no significant 

differences in weight between all 3 measures for all individual participants spanning a period 

of approximately 3 weeks as assessed by one way repeated ANOVA (p=0.13). Thus, body 
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weight was stable over the course of the study which suggests that participants were in a 

weight and energetic steady state. Therefore, it can be assumed that the study 

measurements were not influenced by acute changes in energy balance.  

Diet and Activity logs were also completed by each of the participants over 3 days in 

order to verify the assumption that energy balance (intake – expenditure) of the participants 

was maintained over the course of the study. The mean daily caloric intake and expenditure 

data for the participants can be found in Table 4 and the individual participant values can be 

found in Appendix C.  

 

Table 4: Diet and Activity Log Data. 

Day 1: 

Intake 

 

Expen 

 

Balance 

Day2: 

Intake 

 

Expen 

 

Balance 

Day 3: 

Intake 

 

Expen 

 

Balance 

Average 

Balance  

2503 3084 -581 2881 2957 -215 2198 3095 -897 -564 

(987) (1119) (1210) (3120) (978) (3442) (753) (1011) (920) (1500) 

Data were collected over a 3 day period (1 weekend and 2 week days) for both diet and 
activity logs in order to determine the energy balance of the participants. A description of the 
diet and activity logs can be found in the Methods section. Data are means ± SD. Caloric 
intake, expenditure and balance are expressed in kcal/day. The average balance is the energy 
balance over a 3 day period in kcal. Abbreviations: Expen., expenditure.  
  

The mean calorie intake for a 3 day period was found to be 2527 ± 1180 kcal and the 

mean caloric energy expenditure for a 3 day period was found to be 3046 ± 1010 kcal 

(Appendix C). The goal was to have the participants in a state of energy balance for the 

duration of the study. Based on the diet and activity logs, the participants had a net negative 

daily energy balance of -564 ± 1500 kcal on average. However, these logs can be inaccurate 

depending on how vigilant the participants are in filling them out correctly. Studies have 



39 
 

shown that participants tend to under-report their energy intake and over-report their energy 

expenditure through physical activity (Garriquet, 2008; Scaqlius, 2009).  

 

Energy Balance Assessment Using Sensewear Arm Band Energy Expenditure Data: 

Daily energy expenditure of the participants was also assessed using Sensewear arm 

bands as described in the Methods. The mean daily caloric expenditure data for the 

participants from the Sensewear arm band recordings can be found in Table 5 and the 

individual participant values can be found in Appendix C. An average energy balance of 

42.6±2045 kcal over a two day period was demonstrated (Appendix 6). There was found to be 

a statistically significant difference between energy balance values generated from the 

activity logs versus the sensewear armband (p = 0.007). This also suggests that the activity log 

likely over-estimated the energy expenditure. Assessment of energy expenditure with the 

Sensewear arm band is described in the Methods section.  The Sensewear data likely 

quantifies energy expenditure more accurately than activity logs since it better reflects body 

weight measurements and verifies that participants maintained energy balance during the 

study period (Mackey, 2011). 
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Table 5: Sensewear Data: 

Total Energy 
Expenditure: 

Day 1 

 
 

Day 2 

Average 
METS: 
Day 1 

 
 

Day 2 

Energy 
Balance 

Day 1 

 
 

Day 2 

Average 
Energy 
Balance  

2759 2720 1.6 1.5 -21.6 629.5 42.6 

(586) (596) (0.3) (0.3) (961) (3580) (2045) 

Data are in means ± SD. Energy Balance is energy intake (assessed from diet log) - Sensewear 
armband energy expenditure. Total daily energy expenditure is expressed in kcal, Average 
METS is the MET values averaged over ~24 hours, Duration on Body is the number of hours 
the armband was recording values of the body (it is not water proof, thus could not be worn 
in the shower), and energy balance is ‘energy intake (as assessed by the analysis of the diet 
log, shown in the first table in Appendix C) – total energy expenditure (assessed by the 
armband). Energy expenditure and balance are expressed in kcal/day. Abbreviations: METs, 
metabolic equivalents.  
 

Cholesterol, FFA, TG, Glucose and Insulin: 

 The participant blood metabolite and hormone mean values are presented in Table 6. 

Individual blood metabolite and hormone values are also presented in Appendix D.  

Blood measures were taken in order to verify that the participants did not have any abnormal 

blood values, such as high insulin or blood glucose levels, and to get baseline values to 

characterize the health status of the participants.  The majority of participant blood 

metabolite and hormone values were in the normal/healthy range, with the exception of 

approximately 2 participants being slightly over the desired range in each of the blood 

measures (see Appendix D) (Canadian Diabetes Association, 2008; Insulin Coat-A-Kit; NEFA C 

Wako 990-75401). Note that different participants were over the desired range for various 

blood metabolite and hormone measures. The participants who were just slightly above the 

normal/healthy range were in the borderline category (ie. did not have un-healthy values) 

and were included in all of the analyses.  
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Table 6: Cholesterol, TG, FFA, Glucose and Insulin. 

Cholesterol LDL HDL Cholesterol/HDL 
Ratio 

Triglycerides FFA Glucose Insulin 

3.94 2.25 1.29 3.14 0.90 0.40 4.65 8.23 

(0.8) (0.7) (0.3) (0.8) (0.6) (0.3) (0.5) (5.5) 

Data are means ± SD. Cholesterol, LDL, HDL, triglycerides, and glucose are expressed in 
mmol/L. FFA is expressed in mEq/L and insulin is expressed in μlU/ml. Descriptions of blood 
analysis techniques can be viewed in the Methods section. Abbreviations: LDL, low density 
lipoprotein; HDL, high density lipoprotein; FFA, free fatty acids.  
 

Relationship Between RMR and Fat Free Mass: 

 FFM was assessed using the DXA scanner and RMR was calculated based on a 

standard equation (see `Methods’ section for details) using values from a Vmax breath by 

breath system. RMR is strongly dependent on body size and body composition (Ravussin et al, 

1981; Poehlman, 1992; Cunningham, 1980; Poehlman, 1993; Ravussin, 1986). Thus, to 

compare individuals differing in body size and composition, it is necessary to remove their 

confounding influence, or to normalize metabolic rate for differences in body weight (BW) or 

FFM. The relationships between RMR (kcal/day) and both BW (kg) and FFM (kg) for our study 

population were assessed using the Pearson product-moment correlation coefficient (Fig. 4).  

As expected, a significant strong positive correlation was found between RMR and both BW 

(Fig. 4A) and FFM (Fig. 4B).  Although the relationship between BW and RMR tended to be 

slightly stronger than the relationship between FFM and RMR in this study, it is generally 

accepted that lean body tissues (i.e. FFM) have the highest metabolic activity relative to non-

lean tissues (i.e. FM) and it is common to normalize RMR to FFM both in clinical and research 

settings (Poehlman, 1992; Cunningham, 1980; Poehlman, 1993; Ravussin, 1986; Himms-
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Hagen J, 1997; Keys, 1973; Tzankoff, 1977). In a hallmark study in this field, it was reported 

that FFM was the best predictor of energy expenditure and explains more of the variability in 

RMR between individuals than body mass (Ravussin et al, 1981).  Therefore, RMR was 

normalized to FFM in the present study; however, it should be noted that normalization of 

RMR to BW produces similar results with respect to the relationship between RMR and Ca2+ 

handling properties (data not shown).  Finally, as seen in Figure 4, participants recruited for 

this study tended to be over sampled at the low end of FFM and RMR but there is a large 

spread of RMR values, which ranged from 985 kcal/day to 2479 kcal/day, with a fairly 

continuous distribution. Thus, the Pearson product-moment correlation coefficient was used 

to assess the relationship between RMR and the SR Ca2+ handling properties.  
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Figure 4: Correlation of RMR (kcal/day) and Body Weight (kg) (A) and RMR (kcal/day) and 
FFM (kg) (B). The correlation coefficient (r2) is 0.82 (p<0.0001)  for A, and the r2 is 0.74 (p˂ 
0.0001) for B. VO2 and VCO2 values were collected using a Vmax breath by breath gas 
collection system, and then RMR was calculated using the Weir equation as described in the 
Methods section. Abbreviations: RMR, resting metabolic rate; FFM, fat free mass. 
 

r2= 0.82 
p < 0.0001 
 
 
 

r2= 0.74 
p < 0.0001 
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Ca2+Handling Properties in Skeletal Muscle: 

 SR Ca2+ handling properties were assessed in vitro in muscle homogenates. Values for 

Ca2+-ATPase activity (Vmax and EC50) and IONO ratio (at Vmax) were determined using a 

Ca2+-ATPase activity assay and values for Ca2+ uptake and leak were determined using a Ca2+ 

uptake assay (see Methods section). The apparent coupling ratio was calculated by dividing 

Ca2+ uptake (µmol/g protein/min) by Ca2+-ATPase activity (µmol/g protein/min) at a matching 

pCa value which ranged between 6.74 and 5.96, which is just above resting pCa and thus 

simulates resting conditions as close as possible. The participant mean values for the SR Ca2+ 

handling properties are presented in Table 7. Individual participant SR Ca2+ handling 

properties are presented in Appendix E-G. All values for the SR Ca2+ handling properties are 

comparable to published values from our laboratory (Duhamel et al, 2007; Holloway et al, 

2005; Green et al, 2000; Duhamel et al, 2005; Tupling et al, 2003) and others (Leppik et al, 

2004; Li et al, 2002; Ortenblad et al, 2000). 

 

Table 7: Ca2+Handling Properties in Skeletal Muscle. 
Vmax EC50  IONO Ratio Coupling Ratio Ca2+ Leak  

200.44 5.15 8.00 0.13 0.42 
(43.10) (0.19) (2.6) (0.1) (0.3) 

Data are presented in means ± SD. Vmax was assessed with IONO and is expressed in μmol/g 
protein/min , IONO ratio is assessed at Vmax, EC50 is expressed in pCa, Ca2+ uptake is 
expressed in μmol/g protein/min, Ca2+ leak is expressed in μmol/g protein/min, and the 
coupling ratio is Ca2+ uptake/ Ca2+-ATPase activity. Abbreviations: EC50, [Ca2+]f concentration 
to elicit 50 % of maximal Ca2+-ATPase acitivty; IONO, Ca2+ Ionophore; IONO ratio, Ca2+-ATPase 
acitivty with IONO/ Ca2+-ATPase acitivty with no IONO.   
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Expression of PLN, CSQ and SERCA Isoforms: 

Expression (via densitometry) of PLN, CSQ and SERCA isoforms was determined using 

Western Blot analysis procedures which are described in the Methods section. Mean values 

for expression on PLN, CSQ and SERCA isoforms are presented in Table 8 and individual values 

can be found in Appendix H. Expression of PLN is reported as the PLN monomer since it is the 

monomer that physically binds to SERCA molecules and, presumably, causes reduced SERCA 

pump efficiency. Note, that all values for protein expression are normalized to α-actin. Figure 

5 shows the Western Blots for PLN, CSQ and SERCA isoforms on all participants. As explained 

earlier, expression of these SR proteins could influence the coupling ratio and may thus be 

associated with RMR. 

 

Table 8: Expression of PLN, CSQ and SERCA Isoforms. 

PLN 
(monomer) 

CSQ SERCA1a SERCA2a SERCA1a/SERCA2a 
Ratio 

SERCAtotal 

0.35 3.50 4.80 4.46 1.32 9.26 
(0.4) (1.2) (1.7) (1.9) (0.74) (2.6) 

Data are presented in means ± SD All proteins are analyzed with Western Blot techniques and 
are normalized to α-actin. Densities of the various proteins are expressed in arbitrary units. 
Abbreviations: PLN, phospholamban; CSQ, calsequestrin; SERCA, sarco(endo)plasmic 
reticulum Ca2+-ATPase.   
 

Relationship between RMR and Ca2+ Handling Properties: 

 The primary objective of this study was to determine if RMR is associated with skeletal 

muscle SR Ca2+ transport efficiency in humans. SR Ca2+ transport efficiency was quantified by 

measuring the coupling ratio as described in the Methods.  A lower coupling ratio would 

reflect a lower efficiency of SR Ca2+ transport. Individual values for coupling ratios can be 

viewed in Appendix G. The relationship between RMR and coupling ratio was assessed using 
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the Pearson product-moment correlation coefficient (Figure 6). There was a weak but 

significant negative correlation between RMR and coupling ratio (r2= 0.21, p =0.024).  As 

hypothesized, participants with the lowest coupling ratios tended to have higher RMRs than 

the participants who had the highest coupling ratios.  

Given the relationship between RMR and coupling ratio, it was of interest to 

determine the relationship between RMR and other Ca2+ handling properties that have been 

shown to influence coupling ratio as this could provide some insight into the underlying 

factors that explain the relationship between RMR and coupling ratio. Theoretically, coupling 

ratio is determined by SR Ca2+ leak and the efficiency of the SERCA pumps. SR Ca2+ leak was 

measured in the absence of SERCA pump activity and, therefore, quantifies the rate of resting 

Ca2+ leak through RyR and other Ca2+ channels. The efficiency of the SERCA pumps was 

assessed indirectly by measuring the IONO ratio as described in the Methods.  
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A)

 

B)         

 

Figure 5: Western Blots for SERCA1a, SERCA2a, PLN and CSQ. Data are shown for participants 
1-13 (a) and 14-27 (b). α-actin was used as a loading control. The loading control sample from 
only one of the membranes is shown. Note that * is indicating that this participant was not 
assessed in the study due to the fact that  their homogenate contained a large amount of 
blood, which results in inaccurate measures of SR Ca2+ handling properties. Densities of the 
various proteins are expressed in arbitrary units. Abbreviations: PLN, phospholamban; CSQ, 
calsequestrin; SERCA, sarco(endo)plasmic reticulum Ca2+-ATPase; kD, kilodalton.   

Ladder  1     2      3     4      5     6     7     8     9    10  11   12    13  

Ladder 14   15   16   17    18   19   20   21   *    22   23   24    25   
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Figure 6: Correlation of RMR (kcal/kg lean/day) and Coupling Ratio. The correlation 
coefficient is -0.21 (p =0.024). Coupling ratio is Ca2+ uptake/Ca2+-ATPase Activity. 
Abbreviations: RMR, resting metabolic rate.  

 

RMR was found not to be significantly correlated with SR Ca2+ leak (r2=0.061, p=0.24) 

(Figure 7). Theoretically, total SERCA content and CSQ expression are two properties that 

influence SR Ca2+ leak. Those who have increased total SERCA expression would be expected 

to have a higher RMR due to more Ca2+ leakage from the SERCA pump and those with lower 

CSQ may be expected to have a higher RMR due to higher free Ca2+ levels inside the SR which 

would increase the drive for SR Ca2+ leak (Inesi and de Meis, 1989; Murphy et al, 2009).  

However, since there was no relationship found between RMR and SR Ca2+ leak, no significant  

r2= 0.21 
p= 0.024 
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Figure 7: Correlation of RMR (kcal/kg lean/day) and Ca2+ Leak (uM/g protein/min). The 
correlation coefficient is 0.061, p =0.24. Ca2+ leak was assessed by completion of a Ca2+uptake 
assay as described in the Methods section. Abbreviations: RMR, resting metabolic rate. 

 

Figure 8: Correlation between RMR (kcal/kg lean/day) and total SERCA. Total SERCA is 
SERCA1a + SERCA2a. SERCA expression is normalized to α-actin. SERCA expression is protein 
density expressed in arbitrary units. Abbreviations: RMR, resting metabolic rate; SERCA, 
sarco(endo)plasmic reticulum Ca2+-ATPase.  

r2= 0.00032 
p= 0.93 

r2= 0.083 
p= 0.16 
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Figure 9: Correlation of RMR (kcal/kg lean/day) and CSQ. The correlation coefficient is 0.057, 
p =0.72. CSQ content was assessed using Western Blot Techniques and was normalized to α-
actin. CSQ expression is protein density expressed in arbitrary units. Abbreviations: RMR, 
resting metabolic rate; CSQ calsequestrin.   

 

relationship between RMR and total SERCA or CSQ contents would be expected in this study. 

Not surprisingly then, neither total SERCA content (r2=0.083, p=0.16, Figure 8) nor CSQ 

content (r2=0.0057, p=0.72, Figure 9) were found to be significantly related to RMR.   

These results suggest that SERCA efficiency rather than SR Ca2+ leak may have a larger 

influence on the relationship between RMR and coupling ratio. However, the non-significant 

results of the correlational analysis between RMR and IONO ratio did not support that 

hypothesis (r2=0.027, p=0.43) (Figure 10).  It has been shown that SERCA1a is less efficient  

r2= 0.0057 
p= 0.72 
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Figure 10: Correlation of RMR (kcal/kg lean/day) and IONO ratio. The IONO ratio was 
assessed at Vmax and is the ratio of the Ca2+-ATPase activity with IONO/ Ca2+-ATPase activity 
without IONO. Abbreviations: IONO, Ca2+ ionophore; RMR, resting metabolic rate; Vmax, 
maximal Ca2+-ATPase activity. 
 

than SERCA2a (Reis et al, 2002) and that PLN reduces the apparent efficiency of SERCA Ca2+ 

handling (Frank et al, 2000).  However, since there was no relationship found between RMR 

and IONO ratio in this study, it would not be expected that SERCA isoform distribution (as 

assessed by SERCA1a/SERCA2a expression) or PLN content would be related to RMR. The 

correlation for RMR and SERCA1a/SERCA2a can be seen in Figure 11.  Surprisingly, there was a 

weak but significant positive correlation between RMR and SERCA1a/SERCA2a (r2=0.18, 

p=0.04).  This means that those participants with higher RMRs tended to have a higher 

expression of SERCA1a relative to SERCA2a.  On the other hand, PLN (monomer) expression 

was not related to RMR (r2= 0.044, p=0.32, Figure 12).  

r2= 0.027 
p= 0.43 
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Figure 11: Correlation of RMR (kcal/kg lean/day) and SERCA1a/SERCA2a Ratio. SERCA 
isoform expression is normalized to α-actin. The correlation coefficient is 0.18, p=0.04. Note 
that there was one outlier which had to be removed. SERCA expression is protein density 
expressed in arbitrary units. Abbreviations: RMR, resting metabolic rate; SERCA, 
sarco(endo)plasmic reticulum Ca2+-ATPase.   

 

Relationship Between Coupling Ratio and Other SR Ca2+ Handling Properties: 

 Given that no relationships were found between RMR and either SR Ca2+ leak or SERCA 

pump efficiency, or the other SR Ca2+ handling properties that have been known to play a role 

in influencing the coupling ratio, it was an important next step to assess whether these SR 

Ca2+ handling properties are in fact related to coupling ratio, as we and others have assumed 

from interpreting results of previous studies.   

 
 
r2= 0.18 
p= 0.04 
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A higher relative amount of SR Ca2+ leak would result in a lower coupling ratio and 

thus less efficient SR Ca2+ handling (Inesi and de Meis, 1989; Murphy et al, 2009). However, 

our analyses revealed no significant relationship between coupling ratio and SR Ca2+ leak 

(r2=0.099, p=0.13) (Figure 13). Increased CSQ content is known to result in a lower free [Ca2+] 

within the SR, and thus would likely result in less SR Ca2+ leak out of the SR which would be 

expected to result in a higher coupling ratio (Murphy et al, 2009). However, there was no 

significant relationship found between CSQ content and coupling ratio (r2=0.00082, p=0.89) 

(Figure 14). It is also important to assess the relationship between coupling ratio and total 

SERCA content, since SERCA pumps themselves have been shown to be a pathway for Ca2+ 

leak out of the SR (Inesi and de Meis, 1989; Murphy et al, 2009). Thus, it would be expected 

that increased total SERCA would lead to a lower coupling ratio due to increased Ca2+ leakage 

from the SR. However, this was not the case, as there was no significant relationship found 

between coupling ratio and total SERCA content (r2=0.00046, p=0.92) (Figure 15). 

A lower IONO ratio is reflective of a ‘leaky’ SR which would equate to lower SR Ca2+ 

transport efficiency. Thus, it would be expected that the lower the IONO ratio the lower the 

relative coupling ratio would be. However, there was no relationship found between coupling 

ratio and IONO ratio (r2=0.085, p=0.17) (Figure 16). Theoretically, a higher SERCA1a to 

SERCA2a ratio would result in a lower coupling ratio since the SERCA1a isoform is relatively 

less efficient than SERCA2a and this would lead to less efficient SR Ca2+ handling. Although 

SERCA1a/SERCA2a was significantly correlated to RMR, surprisingly SERCA1a/SERCA2a was 

not found to be significantly related to coupling ratio (r2=0.085, p=0.18) (Figure 17).  
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Theoretically, a higher PLN content would lead to a lower relative coupling ratio due 

to the fact that PLN reduces the apparent efficiency of SERCA Ca2+ handling (Frank et al, 

2000). However, there was no relationship found between coupling ratio and PLN content 

(r2=0.0042, p=0.76) (Figure 18). 

 

Figure 12: Correlation of RMR (kcal/kg lean/day) and PLN (monomer) Expression. PLN 
expression is normalized to αActin. The correlation coefficient is 0.044, p=0.32. PLN 
expression is protein density expressed in arbitrary units. Abbreviations: RMR, resting 
metabolic rate; PLN, phospholamban.   

 

 

r2= 0.04 
p= 0.32 
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Figure 13: Coupling Ratio and Ca2+ Leak. Ca2+ Leak is measured in μmol/g protein/min.  
 

  

r2= 0.099 
p= 0.13 
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Figure 14: Coupling Ratio and CSQ. CSQ content is assessed with Western Blot techniques 
and is normalized to α-actin. CSQ expression is protein density expressed in arbitrary units. 
Abbreviations: CSQ, calsequestrin. 
 

r2= 0.00082 
p= 0.89 
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Figure 15: Coupling Ratio and Total SERCA. SERCA total is SERCA1a + SERCA2a. SERCA 
isoforms were assessed using Western Blot techniques and are normalized to α-actin. SERCA 
expression is protein density expressed in arbitrary units. Abbreviations: SERCA, 
sarco(endo)plasmic reticulum Ca2+-ATPase. 
 

r2= 0.00046 
p= 0.92 
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Figure 16: Coupling Ratio and IONO Ratio. IONO ratio is Ca2+-ATPase activity with IONO/ Ca2+-
ATPase activity with no IONO and is assessed at Vmax. Abbreviations: IONO, Ca2+ ionophore. 
 

r2= 0.085 
p= 0.17 
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Figure 17: Coupling Ratio and SERCA Distribution. SERCA1a and SERCA2a are assessed using 
Western Blot techniques and are normalized to α-actin. SERCA expression is protein density 
expressed in arbitrary units. Abbreviations:SERCA, sarco(endo)plasmic reticulum Ca2+-ATPase. 
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Figure 18: Coupling Ratio and PLN Content. PLN (monomer) content is assessed using 
Western blot techniques and is normalized to α-actin. PLN expression is protein density 
expressed in arbitrary units. Abbreviations: PLN, phospholamban. 
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CHAPTER FOUR: DISCUSSION 

 In the present study, cross-sectional analyses were completed on skeletal muscle samples 

obtained from a group of healthy, weight-stable individuals to determine whether RMR is 

related to skeletal muscle SR Ca2+ transport efficiency. RMR was determined using a breath by 

breath system, and correlated with various SR Ca2+ handling measures. The primary SR Ca2+ 

handling property that represented the SR Ca2+ transport efficiency was the coupling ratio, 

which was calculated from measurements of homogenate SR Ca2+ uptake and Ca2+-ATPase 

activity (i.e. Ca2+ uptake/Ca2+-ATPase activity). It was also of interest to examine the 

relationship between RMR and other Ca2+ handling properties which have been shown to 

influence the coupling ratio. Specifically, it was of interest to assess SR Ca2+ leak and SERCA 

pump efficiency (as assessed by IONO ratio), as these properties are theoretically the main 

determinants of coupling ratio. It was hypothesized that RMR would be negatively correlated 

to coupling ratio; positively correlated to SR Ca2+ leak; and negatively correlated to IONO 

ratio. The main finding of the study, as hypothesized, was that a weak but significant negative 

relationship between RMR and coupling ratio exists, such that as RMR increases, coupling 

ratio decreases (r2= 0.21, p =0.024) (Figure 6). However, in contrast to the hypotheses, RMR 

was not found to be significantly related to either SR Ca2+ leak or IONO ratio and, 

unexpectedly, these properties were also not associated with the coupling ratio.  Overall, 

based on these findings, the significance of any relationship between RMR and skeletal 

muscle SR Ca2+ transport efficiency in humans remains uncertain. However, the subtle 

relationship observed between coupling ratio and RMR in this study warrants further 

examination.  
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Correlational analysis was used to assess the relationships between RMR and SR 

properties, which appears to be appropriate based on the continuous spread of RMR data 

observed in our study population. Nevertheless, it is important to recognize that the study 

population was over-sampled at the low end of BMI and RMR, partly due to the recruitment 

procedures that were employed and partly due to random selection of the participants who 

volunteered for the study. Therefore, it is possible that the results of this study may not be 

generalizable to a larger population including individuals with higher BMIs and RMRs. 

However, to account for differences in BMI/body weight between participants, RMR is usually 

normalized to body weight or FFM in kg, which takes into account the lean tissue mass 

differences of each individual. Interestingly, in the present study body mass and FFM were 

correlated to RMR with very similar r2 values, showing that normalizing RMR to either body 

mass or FFM may have been appropriate. However, FFM is generally considered to be the 

best predictor of energy expenditure and explains more of the variability in RMR between 

individuals than body mass explains (Ravussin et al, 1981; Poehlman, 1992; Cunningham, 

1980; Poehlman, 1993; Ravussin, 1986). Therefore the RMR data reported in the present 

study and used for the correlational analyses were expressed normalized to FFM (kcal/kg). 

Completion of a health status form was completed to rule out any contraindications to 

participation in the study. Measurements of blood lipids, glucose and insulin were taken in 

order to verify that the participants fell within a normal range. No participants were allowed 

to take part in the study if they had a medical condition or were taking medications which 

may have altered the results of the study in any way. The participants were also required to 

fill out a 3 day diet and activity log which provides information on the energy balance of the 



63 
 

individuals. The goal was to have the participants in a state of energy balance for the duration 

of the study, as well as five months prior to the study. Valid energy intake and expenditure 

data from self-reported diet and activity logs requires that participants are very vigilant in 

accurately filling out the logs. It is well established that participants tend to under-report their 

energy intake and over-report their energy expenditure through physical activity (Garriquet, 

2008; Scaqlius, 2009). These methodological limitations associated with diet and activity logs 

likely explain why some of the participants in this study reported energy balance values that 

were up to plus or minus 2000 kcal/day (Appendix C).  

The Sensewear data likely quantifies energy expenditure more accurately than activity 

logs since it better reflects body weight measurements and verifies that participants 

maintained energy balance during the study period (Mackey, 2011). A study examining 

evaluation of total energy expenditure (TEE) using both doubly labelled water and the 

Sensewear armband found no significant difference in TEE values between the two methods 

(Mackey, 2011). In support of the view that the energy balance results from the diet and 

activity logs or the sensewear arm bands are inaccurate, body weight of the participants was 

measured on 3 separate occasions over the course of the study and there were no significant 

differences observed between time points. Thus, the weight of the participants was stable for 

the duration of the study indicating that the participants must have maintained energy 

balance during the study. For the purpose of obtaining accurate results, it is important that 

adaptive thermogenesis is not occurring in any of the participants for the duration of the 

study.  
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Relationship Between RMR and Coupling Ratio:  

The main research question was whether or not a relationship exists between RMR 

and Ca2+ transport efficiency (i.e. coupling ratio) in skeletal muscle in humans. It was 

hypothesized that RMR would be negatively correlated with coupling ratio. Although, only a 

relatively weak inverse relationship was found (r2= 0.21), it was statistically significant 

(p=0.024) as hypothesized (figure. 6). The relationship between RMR and coupling ratio was 

not expected to be a strong relationship given that many organs other than skeletal muscle 

and many different cellular processes contribute to RMR. This finding is also particularly 

noteworthy given the small sample size used for this study. Under optimal conditions, the 

coupling ratio is 2 Ca2+:1 ATP, due to the stoichiometry of two Ca2+ binding sites and one ATP 

binding site on each SERCA pump subunit (Smith et al, 2002; Inesi et al, 1978; de Meis, 2001a; 

MacLennan et al, 1997; Toyoshima and Inesi, 2004). A lower coupling ratio means that there 

is less Ca2+ transported into the lumen of the SR from the cytoplasm per ATP hydrolyzed 

relative to the amount of Ca2+ transported into the SR under optimal ‘stoichiometric’ 

conditions. Previous in vitro studies with rabbit fast and slow twitch hind limb skeletal muscle 

SR vesicles showed that when a Ca2+ gradient is present the coupling ratio could vary between 

0.3 and 0.6 for fast twitch, and up to 1.0 for slow twitch skeletal muscle (de Meis, 2001b; Reis 

et al, 2001; McWhirter et al, 1987; Reis et al, 2002). The values for coupling ratio in the 

present study range from 0.02 to 0.36, which are fairly close to the values stated above, 

considering a mixed skeletal muscle (vastus lateralis) was studied in humans in the present 

study. It should be noted that all values for the SR Ca2+ handling properties, including coupling 

ratio values, are comparable to published values from our laboratory (Duhamel et al, 2007; 
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Holloway et al, 2005; Green et al, 2000; Duhamel et al, 2005; Tupling et al, 2003) and others 

(Leppik et al, 2004; Li et al, 2002; Ortenblad et al, 2000). 

The relationship between RMR and coupling ratio observed in this study likely reflects 

the fact that individuals who have a lower coupling ratio would require higher ATP turnover 

by the SERCA pumps under resting conditions in order to pump the needed amount of Ca2+ 

into the SR to maintain the >104-fold Ca2+ concentration gradient that exists in resting muscle. 

The next logical question was to determine which factors that influence the coupling ratio are 

important for the relationship between coupling ratio and RMR. The main factors that play a 

role in the coupling ratio are SR Ca2+ leak and SERCA pump efficiency (Frank et al, 2000; Reis et 

al, 2001; Reis et al 2002; Murphy et al, 2009).  Assessing these factors thus leads to a better 

understanding of which SR properties may be influencing the relationship seen between RMR 

and coupling ratio.  

 

RMR and SR Ca2+ Leak:  

 SR Ca2+ leak results in a greater demand on SERCAs to pump Ca2+ back into the SR 

lumen from the cytosol. If we assume a constant SERCA pump efficiency, then the more Ca2+ 

leaking out of the SR, the more hydrolysis of ATP must occur in order to maintain the Ca2+ 

gradient across the SR in resting muscle. Of the several factors which could influence SR Ca2+ 

leak, total SERCA content and CSQ content are thought to be of primary importance. For 

example, there is a higher density of SERCA pumps and a lower [Ca2+] within the SR in fast 

twitch skeletal muscle because of the higher volume of SR and concentration of CSQ relative 

to slow twitch skeletal muscle (Murphy et al, 2009). The high density of SERCA pumps likely 
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accounts for the higher SR Ca2+ leak rates found in fast twitch muscle as the SERCA pumps 

themselves appear to be the major pathway for leakage of Ca2+ out of the SR (Inesi and de 

Meis, 1989; Murphy et al, 2009). Therefore, higher rates of SR Ca2+ leak from the SR in fast 

twitch muscle could account for the lower coupling ratio and hence greater heat production 

in fast muscle compared to slow muscle, due to increased ATP hydrolysis by SERCA pumps 

(Reis et al, 2001).  Therefore, it was hypothesized that RMR would be positively correlated 

with both SR Ca2+ leak and total SERCA content. High concentrations of CSQ in fast muscle are 

thought to be necessary in order to prevent even higher rates of SR Ca2+ leak and heat 

production (Murphy et al, 2009). This would be consistent with the hypothesis that CSQ 

content would be negatively correlated with SR Ca2+ leak and thus positively correlated with 

RMR.  However, given that no significant relationship was found between RMR and SR Ca2+ 

leak in this study, it was actually not surprising to find that neither total SERCA content or CSQ 

content were significantly related to RMR either. These findings lead to the conclusion that SR 

Ca2+ leak is not a significant underlying factor involved in the relationship between RMR and 

coupling ratio which suggests that SERCA pump inefficiency may be the primary factor 

contributing to this relationship in humans.  

 

RMR and SERCA Pump Efficiency: 

A reduction in the coupling ratio as a result of altered SERCA pump efficiency, such 

that less Ca2+ is taken up into the SR for every ATP hydrolyzed, can occur as a result of passive 

leak, uncoupled ATPase activity and slippage. SERCA pump efficiency in skeletal muscle has 

been shown to be influenced by SERCA isoform expression as well as the presence of PLN.  
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SERCA2a is the more efficient SERCA isoform relative to SERCA1a (Reis et al, 2002), but it is 

unknown if the differences in efficiency between SERCA1a and SERCA2a are due to 

differences in passive leak, uncoupled ATPase activity, slippage or a combination of more 

than one of those uncoupling reactions. PLN has been shown to reduce the apparent 

efficiency of SERCA Ca2+ handling (Frank et al, 2000) probably by causing increased slippage of 

SERCA pumps as has been demonstrated for SLN (Smith et al, 2002; Mall et al, 2006), a 

structural and functional homologue of PLN (MacLennan, 2004). Of particular significance for 

this study, dephosphorylated PLN exerts its effects on SERCA efficiency under conditions that 

would exist in resting skeletal muscle (ie. at low [Ca2+

SERCA pump efficiency is defined as the fraction of free energy derived from ATP 

hydrolysis by the pump that is converted to osmotic energy which is used to drive ion 

transport with the remainder of free energy being released as heat.  The amount of heat 

released per mol of ATP hydrolyzed by SERCA pumps can be measured with a calorimeter 

(Mall et al, 2006). This technique is not available in our laboratory however, so the IONO ratio 

is used as a surrogate marker of SERCA efficiency. A lower relative IONO ratio indicates that 

the SR vesicle is more leaky (ie. more slippage, passive leak and uncoupled ATPase activity 

occurring) and thus SR Ca2+ transport is less efficient. In contrast to the hypothesis, there was 

no relationship found between RMR and IONO ratio in this study (r2=0.027, p=0.43) (Figure 

10). Consistent with this finding was the fact that PLN was also not significantly correlated 

with RMR (r2= 0.044, p=0.32) (Figure. 12). On the other hand, a weak but significant positive 

]) (Frank et al, 2000). Therefore, it was 

hypothesized that individuals with higher relative PLN expression would have a lower 

coupling ratio, due to less efficient SERCA pumping, and a higher relative RMR as a result.  
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correlation between RMR and SERCA isoform distribution was observed, such that RMR 

tended to increase as the ratio of SERCA1a/SERCA2a increased (r2=0.18, p=0.04) (Figure 11). 

Although this later finding supports the original hypothesis, the interpretation is complicated 

since the relationship between SERCA isoform expression and RMR should reflect isoform 

differences in SERCA efficiency, yet IONO ratio, which is thought to be a marker of SERCA 

efficiency, was not related to RMR. One possibility is that SERCA isoform expression is 

strongly related to some other factor that influences RMR independent of coupling ratio and 

IONO ratio. Another possibility is that the IONO ratio is not a very valid marker of SERCA 

efficiency so that SERCA isoform expression could actually be an important factor that 

influences the relationship between coupling ratio and RMR. To help clarify these results, it 

was important to test the assumption that coupling ratio is indeed related to the various SR 

Ca2+ handling properties, including IONO ratio and SERCA isoform distribution.  

 

Relationship Between Coupling Ratio and SR Ca2+ Handling Properties: 

 As mentioned earlier, a higher relative amount of SR Ca2+ leak should result in a lower 

coupling ratio (Inesi and de Meis, 1989; Murphy et al, 2009); however, surprisingly there was 

no relationship found between coupling ratio and SR Ca2+ leak in skeletal muscle 

homogenates prepared from human vastus lateralis (r2=0.099, p=0.13) (Figure 13). This 

finding supports the conclusion that SR Ca2+ leak is not an influential factor involved in the 

relationship between RMR and coupling ratio. Furthermore, assuming that the sensitivity of 

the methods used in this study to measure coupling ratio and SR Ca2+ leak was sufficiently 
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high, it also strongly suggests that SERCA pump efficiency, rather than SR Ca2+ leak, is the 

major determinant of coupling ratio. 

 Increased CSQ content is known to result in a lower [Ca2+] within the SR, and thus 

would likely result in less Ca2+ leak out of the SR (Murphy et al, 2009). This should result in a 

higher coupling ratio, however, there was no relationship found between CSQ content and 

coupling ratio (r2=0.0057, p=0.72) (Figure 14). The relationship between coupling ratio and 

total SERCA content is also important to assess, since SERCA pumps themselves have been 

shown to be a pathway for Ca2+ leak out of the SR (Inesi and de Meis, 1989; Murphy et al, 

2009). Having a higher relative total SERCA content would theoretically lead to a lower 

coupling ratio due to relatively more SR Ca2+ leak. There was also no significant relationship 

found between coupling ratio and total SERCA content (r2=0.00046, p=0.92) (Figure 15). These 

findings further support the finding that SR Ca2+ leak is not a significant factor which 

modulates the relationship seen between coupling ratio and RMR.  

 A major methodological assumption is that IONO ratio is a valid surrogate measure for 

SERCA pump efficiency. If that is true and if SERCA pump efficiency is the major determinant 

of coupling ratio as suggested by the lack of relationship observed between SR Ca2+ leak and 

coupling ratio, then IONO ratio should be significantly correlated with coupling ratio. As 

mentioned above, a lower IONO ratio reflects an SR vesicle that is relatively more leaky to 

Ca2+, presumably due to greater passive leak, slippage and/or uncoupled ATPase activity. 

Thus, it would be expected that the coupling ratio would decrease as IONO ratio decreases 

but this was not the case; there was no relationship found between coupling ratio and IONO 

ratio (r2=0.085, p=0.17) (Figure 16). This finding points out a possible weakness in the 
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assumption that IONO ratio is a valid measure of SERCA pump efficiency. It may be that a 

limitation to the present study is that it is not possible, due to methodological constraints, to 

assess the contribution of SERCA pump efficiency to the relationship between RMR and 

coupling ratio.  

To further examine this, PLN content and SERCA distribution, two main factors which 

determine SERCA pump efficiency, were assessed. Theoretically, a higher PLN content would 

lead to a lower relative coupling ratio due to the fact that PLN reduces the apparent efficiency 

of SERCA Ca2+ handling (Frank et al, 2000). However, there was no significant relationship 

found between coupling ratio and PLN content (r2=0.0042, p=0.76) (Figure 17). Theoretically, 

a higher SERCA1a to SERCA2a ratio would result in a lower coupling ratio since the SERCA1a 

isoform is relatively less efficient than SERCA2a and this would lead to less efficient SR Ca2+ 

handling. Importantly, a significant negative correlation between SERCA1a/SERCA2a and 

coupling ratio would lend support to the view that efficiency differences between the SERCA 

isoforms could at least partly explain the significant positive relationship that was observed 

between SERCA1a/SERCA2a and RMR.  However, there was found to be no significant 

relationship between coupling ratio and SERCA1a/SERCA2a ratio (r2=0.085, p=0.18) (Figure 

17). The lack of any relationships between coupling ratio and other SR properties measured in 

this study, that have been reported to play a role in determining coupling ratio, highlights the 

need to establish more sensitive and direct methods for measuring SERCA efficiency and SR 

Ca2+ leak. The fact that there was no relationship seen between coupling ratio and SERCA 

isoform distribution but there was a relationship seen between RMR and SERCA isoform 

distribution suggests that SERCA isoform distribution may only be indirectly associated with 
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RMR which could occur if SERCA isoform distribution was associated with some other 

metabolic mechanism taking place in skeletal muscle that does influence RMR directly.  

 

Regulation of SERCA Isoform Distribution: 

Examining the factors that play a role in expression of SERCA isoforms in skeletal 

muscle may lead to increased understanding of why there was a relationship seen between 

RMR and SERCA distribution, but not coupling ratio and SERCA distribution. Details pertaining 

to the regulation of SERCA isoform expression were covered in the Introduction.  Recall that 

SERCA isoform distribution can be regulated by development and aging, neurohormonal 

factors, and exercise training. Development and aging would not be playing a role in the 

present study since the participants were all similar in age, being approximately 22 years on 

average. With respect to exercise training, individuals in the present study had various levels 

of physical activity, although none of them were taking part in any kind of endurance or 

fitness training. One of the inclusion criteria was that participants cannot take part in more 

than 30 minutes of exercise, >3 times per week on average. Some participants stated that 

they fit this inclusion criteria, but then listed more than 30 minutes of exercise, >3 times per 

week, on their activity log. This theoretically could influence SERCA expression, however, it is 

not likely that the amount of physical activity the participants were taking part in would cause 

any significant alterations in SERCA isoform distribution. 

SERCA expression is strongly regulated by neurohormonal factors, such as thyroid 

hormone levels. The genes encoding SERCA1a and SERCA2a are transcriptionally regulated by 

T3 with most studies showing increased SERCA1a expression and decreased SERCA2a 
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expression with increases in T3, especially in slow-twitch muscle fibres (Simonides et al, 

2001). Although plasma T3 levels were not measured in this study it was assumed that the 

participants were in a euthyroid state as this was a requirement for participation in the study. 

Nevertheless, it is likely that SERCA isoform expression differences between participants 

could be related to differences in thyroid hormone levels. This could possibly explain why 

RMR was positively correlated with SERCA1a/SERCA2a but there was no relationship between 

coupling ratio and SERCA1a/SERCA2a, because thyroid hormone can influence RMR through 

other mechanisms that are independent of SERCA gene expression. 

 In adult humans the thyroid hormone accelerates energy expenditure, and shown in 

many hypo- and hyperthyroidism studies (Oppenheimer et al, 1987). In patients with severe 

hypothyroidism, total body energy expenditure has been shown to fall as much as 50 %, and 

in thyrotoxic patients, it can be increased by approximately 50 %, which totals a 3-fold 

induction over a hypothyroid baseline (Bianco et al, 2005). Thyroid hormone levels have been 

shown to play a role in adaptive thermogenesis. Adaptive thermogenesis is a mechanism 

involved in regulating energy expenditure by increasing the heat production during prolonged 

periods of excess energy intake (i.e. high fat diet; Levine et al., 1999) or cold exposure (Lowell 

and Spiegelman, 2000). This can occur in skeletal muscle through the uncoupling of protons 

from the electron transport chain by membrane bound uncoupling proteins (UCPs), resulting 

in the conversion of osmotic energy into heat (Lowell and Spiegelman, 2000). An increase in 

the levels of mRNAs for uncoupling protein 2 (UCP2) and 3 (UCP3) have been shown to occur 

with hyperthyroidism (Gong et al, 1997). Administration of T3 to rodents has been shown to 

lead to increased expression of UCP2 and UCP3 in heart and skeletal muscle (Gong et al, 1997; 
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Lanni et al, 1997; Lanni et al 1999). In the transition from hypo- to hyper-thyroidism, 

increases in UCP3 mRNA expression occur in skeletal muscle as well as in mitochondrial 

uncoupling activity (Lanni et al, 1999). Furthermore, T3 has been shown to regulate UCP2 and 

UCP3 mRNA expression in human skeletal muscle and adipose tissue both in vivo and in vitro 

(Barbe et al, 2001). In the same study it was found that the increase in T3 levels that occurred 

following T3 injection was associated with an increase in RMR, thus pointing towards a role 

for UCP3 in the effect of T3 on resting metabolism (Barbe et al, 2001).  These findings 

highlight the alternative mechanism, besides SERCA isoform expression, which can explain the 

effects of thyroid hormone on RMR, since thyroid hormone can influence RMR through other 

mechanisms that are independent of SERCA gene expression. 

 

Limitations: 

 With any human study, there are limitations to how well controlled the study is. For 

example, although there were strict inclusion criteria regarding the amount of activity per 

week the individuals took part in, the medical conditions affecting hormone levels, RMR or 

skeletal muscle physiology, and medications taken, it is not possible to control for the 

numerous factors and hormone interactions that can occur in different individuals which may 

have affected the results of the study. It was not in the scope of this study to examine the 

thyroid hormone levels of the participants since these individuals did not have any thyroid 

conditions and the main objective of the study was to investigate the relationship between SR 

Ca2+ handling variables and RMR (and not as much causation of any of the findings); however, 
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it may be helpful in future studies to assess to the levels of thyroid hormone to determine if 

differences are modulating the results seen.  

The limited accuracy of assessing energy balance through diet and activity logs is 

another limitation to the study. Although diet and activity log analysis was not a primary aim 

of the study, the participants should be roughly in a state of energy balance and weight 

stability for the duration of the study. It was clear that some of the participants were not very 

thorough in filling out their logs, and as a result their calculated daily caloric intake and 

expenditures are questionable. The participants were all weight stable throughout the study 

however. In future studies, it would be helpful to have a more detailed analysis of both caloric 

intake and expenditure, in order to ensure a steady state metabolism for the duration of the 

study. This could be done by having the participants stay in the laboratory for the duration of 

the study (ie. an ‘in-participant’ study) in order to strictly monitor their caloric intake, and the 

use of doubly labelled water to assess energy expenditure. Another limitation is that FFM had 

to be calculated (as described in the methods section) for 4 of the individuals because they 

did not have access to a DXA scanner at the time of their completion of the study. This is not a 

major limitation however because FFM was only used to characterize the participants, and 

was not a primary measure in the study. Furthermore, because of the selection method used 

initially to gather a sample population that had a large spread of RMRs, there was an over-

sampling of participants with a low BMI, although for the primary variable studied, RMR, 

there was a good spread/continuous data achieved. For any human study, it is also important 

to have a fairly large sample size, so that the power can be higher. The sample size was 

limited to 25 participants for this thesis due to the time constraints and resources available.  
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It was found that a limitation of this study was likely that the IONO ratio may not be 

an accurate method to assess the SERCA pump efficiency and thus may not accurately assess 

the relationship between SERCA pump efficiency and coupling ratio. A future study could use 

a gold standard method (ie. direct calorimetry) to assess the role of slippage, passive leak, 

and uncoupled ATPase activity on the relationship between coupling ratio and RMR. This 

would involve analysis of SERCA pump efficiency by measuring the heats of reaction of the 

Ca2+-ATPase with ATP using isothermal calorimetry (Mall et al, 2006; Smith et al, 2002). 

Another limitation is that SLN and phosphorylated-PLN were not assessed in the present 

study. Phosphorylation of PLN removes its inhibition on SERCA and facilitates Ca2+ transport 

into the SR lumen and thus enhances the SR Ca2+ transport coupling ratio (Frank et al, 2000; 

indemann, 1983; Kranias, 1985). Like PLN, SLN has also been shown to cause the uncoupling 

of Ca2+ uptake from ATP hydrolysis by the SERCA pumps (Smith et al., 2002; Mall et al., 2006). 

In two separate in vitro studies by the same group, it was found that the presence of SLN in 

reconstituted membrane vesicles containing SERCA resulted in uncoupled ATP hydrolysis 

(Smith et al., 2002) and increased the amount of heat released per mol of ATP hydrolyzed 

(Mall et al., 2006). These specific measures could influence the relationship between coupling 

ratio and RMR, and thus should be assessed in a future study.  

 

Future Studies: 

 The present study only looked at the role of SR Ca2+ handling in RMR under steady-

state conditions. A future study examining diet-induced thermogenesis would be an 

important next step to see how the SR Ca2+ handling system may adapt to changes in diet. 
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Thus, in addition to the future directions/studies mentioned in the Conclusions and 

Limitations sections, other future studies could examine a similar primary research question, 

but with a much larger sample population and more measures to explain the relationships 

found between RMR and SR Ca2+ handling variables which may include looking at thyroid 

hormone levels, and adaptive thermogenesis measures such as UCP levels. To have more 

control numerous variables and to minimize the error of the study, it would be ideal to have 

an ‘in-participant’ study, where the individuals are in the lab for the duration of the study (ie 

sleeping, eating, doing activities of daily living) in the lab facilities. This study would have a 

large sample population, and would take baseline measures of all the variables which have 

been measured in the present study. Then the participants would all be given a high fat diet 

for a number of weeks, and post high fat diet measures would be taken on all the variables. 

The aim of this study would be to look at whether there were any differences in expression or 

levels of major SR Ca2+ handling variables and changes in RMR, and how these correlate. For 

example, one primary question may be ‘are individuals who have a higher relative expression 

of PLN at baseline more protected from high fat diet-induced weight gain due to less efficient 

Ca2+ handling systems’. This type of study would allow more accurate measures of activity 

levels and diet during the study, would provide more control, and would provide more insight 

on the relationship between SR Ca2+ handling properties, RMR and whether any energy 

imbalance that are occurring or leading to weight gain are modulated by differences in levels 

of these given variables.   
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Conclusion and Significance of Findings: 

 The findings of the present study demonstrate that there is a weak but significant 

negative correlation between coupling ratio and RMR, such that as coupling ratio decreases, 

RMR increases. It was not expected to be a strong relationship given that many cellular 

processes contribute to RMR, so this finding is particularly noteworthy, especially given the 

small sample size. The two main factors which influence the coupling ratio, SR Ca2+ leak and 

SERCA pump efficiency (as assessed by IONO ratio), showed no significant relationship to 

either coupling ratio or RMR. Furthermore, two major factors that determines SR Ca2+ leak, 

namely total SERCA and CSQ content, were also not significantly related to coupling ratio or 

RMR. These findings lead to the conclusion that SR Ca2+ leak is not influencing the relationship 

seen between coupling ratio and RMR. Therefore, coupling ratio and IONO ratio were strongly 

expected to be related but were not found to be, suggesting that the IONO ratio may not be a 

valid surrogate measure of SERCA pump efficiency. Further studies will need to be completed 

to determine whether the main factors directly influencing SERCA pump efficiency, slippage, 

passive leak and uncoupled ATPase activity, are related to RMR.  

The other factors which influence the SERCA pump efficiency, PLN content and SERCA 

isoform distribution, showed no significant relationship with coupling ratio. PLN content was 

not related to RMR, however, SERCA isoform distribution was significantly related to RMR, 

such that as SERCA1a/SERCA2a ratio increase, RMR increases. It is likely that SERCA isoform 

expression differences are the result of thyroid hormone levels, which also increases RMR, 

likely independent of differences in SR Ca2+ handling energetics/efficiency. Due to the small 

sample size and the fact that there was a weak relationship between coupling ratio and RMR, 
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it is not surprising that there were no significant relationships between other SR Ca2+ handling 

variables and RMR. The influence of these SR Ca2+ handling variables could be minimal 

enough that a small sample size would not be significant enough to show any relationship 

between the various SR properties and RMR, due to the numerous other cellular mechanisms 

that could be influencing RMR. Therefore, overall, the findings of the present study do not 

rule out the possibility that the relationship between RMR and coupling ratio is physiologically 

and clinically significant in humans, and if so, further work is required to determine what the 

underlying mechanisms are that explain this relationship in order to determine potential 

therapeutic targets for the treatment of various metabolic diseases. 

Since SERCA activity accounts for at least 18-24 % of resting energy expenditure in 

skeletal muscles, and since skeletal muscle metabolism contributes 20-30% of whole body 

resting metabolic rate, the differences in SERCA efficiency between different individuals could 

manifest in differences in relative whole body RMR, such that those with less efficient SR Ca2+ 

handling systems tend to have a higher RMR due to an increased energy turnover for SR Ca2+ 

handling for a given amount of time. In contrast, those with more efficient SR Ca2+ handling 

systems tend to have lower relative RMRs, and thus may be more prone to diet induced 

weight gain, or inability to maintain a desired weight, due to the accumulation of relatively 

small energy imbalances over time. The finding that coupling ratio is negatively related to 

RMR could pose significance to the field because it could lead to the development of more 

studies which examine SR Ca2+handling energetics as a means of prevention and/or treatment 

for obesity. For example, in those with less efficient SR Ca2+ handling systems, prescribing 

something which could increase the coupling ratio, could lead to increased RMR, and thus 
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result in a more balanced energy level over time. This could have implications for prevention 

of diseases which result from a negative energy balance, such as type II diabetes. Further 

studies would have to be done to determine which SR Ca2+ handling properties are 

influencing the relationship between coupling ratio and RMR, in order to target possible 

obesity prevention/treatment strategies which could work on the SR Ca2+ handling system.  
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Appendix A 
Participant Characteristics: 

Participant Weight 
(kg) 

Height 
(cm) 

BMI 
(kg/m2) 

Waist 
(cm) 

Hip 
(cm) 

Sex Age 
(years) 

RMR 

(kcal/kg 
lean/ 
day) 

1 76.9 181 23.47 81.7 105 male 21 33.74 
2 52.5 174 17.14 68.2 91.2 male 22 28.88 
3 50.3 168 17.82 68.8 89.3 female 19 33.08 
4 60.8 172 20.55 72.2 88 male 20 27.26 
5 50.9 162.8 19.2 65.2 93.7 female 22 33.69 
6 63.7 174.2 20.99 86.5 102.6 female 19 30.12 
7 57.7 172 19.5 76.7 92.4 male 29 30.66 
8 64.7 182.6 19.4 75.7 92.5 male 20 32.47 
9 55.5 170.6 19.07 70 87.2 male 21 23.91 
10 57.3 181.2 17.05 75.1 91.5 female 22 24.08 
11 68.4 181.2 20.85 74.5 92.7 male 20 29.62 
12 60.6 165.4 22.12 78.5 89.4 male 28 33.81 
13 73.4 167.8 26.07 87.1 105.8 female 31 31.38 
14 87.9 169.2 30.7 90.8 105.8 male 28 29.41 
15 136.2 188 38.54 123.1 128.6 male 23 32.46 
16 84.5 173.2 28.17 92.8 101.3 male 25 30.54 
17 76.7 160.4 29.81 92.2 113.6 female 20 34.81 
18 93.8 182.2 28.26 89.1 110.2 male 23 22.06 
19 81.8 166.4 29.5 94.3 105.5 male 22 32.88 
20 116 179.2 36.12 106.1 118.2 male 21 31.37 
21 62.9 181 19.2 75.2 94.2 male 18 30.20 
22 92.6 166.4 33.44 103.2 111.1 male 20 29.9 
23 65 178.4 20.42 72.6 93.1 male 25 26.45 
24 70.6 189.2 19.7 73.8 97.7 male 19 27.24 
25 65.5 182.6 19.64 76.3 93.6 male 18 27.7 
Average 72.8 

 
174.6 

 
23.9 

 
81.4 

 
99.0 

  
22.2 

 
29.91 

Standard 
Deviation 

201 
 

7.97 
 

6.2 
 

6.2 
 

9.1 
  

3.6 
 

3.35 
 

Weight is expressed in kg, height is expressed in cm, BMI is expressed in cm, age is expressed in years, 
RMR is normalized to FFM (expressed as kcal/kg lean/day). RMR was calculated using the Weir 
equation (see Methods) using VO2 and VCO2 values collected using a breath by breath indirect 
calorimetry system.  
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Appendix B 
Body Composition Measures 

DXA Body Compositional Measures: 

Participant Fat 
Mass 
(kg) 

Fat Free 
Mass (kg) 

% Fat % Lean  Lean Mass/Ht2 

(kg/m2) 
Appendicular 
Lean Mass/Ht2 

(kg/m2) 
1 11.99 55.12 17.20 78.86 8.78 17.9 
2 10.61 37.76 20.73 73.80 12.49 N/A 
3 15.09 33.65 29.80 66.48 5.42 12.6 
4 8.56 51.53 13.70 82.24 8.92 18.3 
5 12.40 31.97 25.00 64.42 12.03 N/A 
6 16.88 35.93 27.23 57.94 12.62 N/A 
7 11.30 43.42 19.80 76.29 6.94 15.3 
8 8.25 50.98 13.30 82.16 7.39 16.1 
9 5.90 45.75 10.92 84.61 15.68 N/A 
10 13.22 40.89 23.40 72.44 5.95 13.3 
11 12.87 52.45 18.90 77.19 8.24 16.8 
12 14.29 42.96 24.20 72.61 7.81 16.4 
13 28.16 39.52 40.20 56.38 6.11 14.9 
14 19.43 60.26 23.40 72.61 10.7 22.2 
15 50.71 76.36 38.60 58.19 10.3 22.5 
16 24.19 54.62 29.50 66.69 8.82 19.2 
17 28.15 42.03 38.80 57.90 8.12 17.3 
18 16.16 76.17 16.90 79.43 10.9 24 
19 25.37 50.38 32.40 64.34 9.13 19.3 
20 42.59 66.55 37.84 59.13 9.28 21.5 
21 12.01 47.24 19.40 76.47 7.01 15.2 
22 30.95 57.72 33.90 63.18 10.7 22.1 
23 9.34 50.90 14.90 80.95 7.83 16.8 
24 11.63 55.05 16.70 79.04 7.44 16.2 
25 9.11 51.78 14.40 81.64 7.54 16.2 
Average 18.0 

 
50.0 

 
24.0 

 
71.4 

 
9.0 

 
17.8 

 
Standard 
Deviation 

11 
 

12 
 

9 
 

9.1 
 

2 
 

3.1 
 

Fat mass is expressed in kg, fat free mass is expressed in kg, %fat and %lean are expressed as 
percentages of whole body weight, Ht2 is height squared, lean mass/Ht2 is the total FFM in the 
body/height squared (expressed as mg/m2), appendicular lean mass/Ht2 is the sum of the arm and leg 
lean tissue masses/height squared (expressed in kg/m2).  
 



94 
 

 

Data for Calculation of FM and FFM using DXA and BIA Body Composition Measures:  

Part. FM 
(BIA) 

FM 
(DXA) 

Calculated 
FM 

DXA – 
DXA 
Calc 
(FM) 

FFM 
(BIA) 

FFM 
(DXA) 

Calculated 
FFM 

DXA – 
DXA Calc 

(FFM) 

1 16.62 11.99 16.03 -4.04 60.48 55.12 57.66 -2.54 
2 10.31 - 10.61 - 42.99 - 37.76 - 
3 12.67 15.09 12.63 2.46 37.48 33.65 31.49 2.16 
4 7.50 8.56 8.20 0.37 53.90 51.53 50.18 1.34 
5 12.40 - 12.40 - 37.90 - 31.97 - 
6 17.62 - 16.88 - 41.38 - 35.93 - 
7 9.61 11.30 10.01 1.29 47.02 43.42 42.35 1.07 
8 11.41 8.25 11.55 -3.31 52.39 50.98 48.46 2.52 
9 4.82 - 5.90 - 50.01 - 45.75 - 
10 15.19 13.22 14.79 -1.57 42.11 40.89 36.77 4.13 
11 12.74 12.87 12.70 0.17 56.26 52.45 52.86 -0.41 
12 10.82 14.29 11.05 3.24 49.78 42.96 45.49 -2.53 
13 28.73 28.16 26.42 1.74 44.67 39.52 39.67 -0.15 
14 23.57 19.43 21.99 -2.56 64.33 60.26 62.04 -1.78 
15 55.36 50.71 49.26 1.45 80.84 76.36 80.84 -4.48 
16 23.03 24.19 21.53 2.67 61.47 54.62 58.79 -4.16 
17 32.48 28.15 29.63 -1.48 44.22 42.03 39.16 2.87 
18 24.04 16.16 22.39 -6.24 69.79 76.17 68.22 7.95 
19 25.86 25.37 23.95 1.42 55.94 50.38 52.50 -2.12 
20 49.77 42.59 44.47 -1.88 66.23 66.55 64.20 2.34 
21 12.21 12.01 12.42 -0.23 50.69 47.24 46.53 0.71 
22 34.11 30.95 31.03 -0.08 58.49 57.72 55.40 2.31 
23 11.45 9.34 11.59 -2.24 53.55 50.90 49.78 1.12 
24 14.00 11.63 13.78 -2.15 56.60 55.05 53.25 1.79 
25 10.95 9.11 11.16 -2.05 54.55 51.78 50.92 0.87 
Average 19.18 18.0 

 
18.22 -0.14 52.91 50.0 

 
49.05 0.15 

SD 12.4 11 
 

10.6 4.0 10.3 12 
 

11.7 3 

The calculated FM and FFM were determined using the equations base on the line of best fit when BIA 
and DXA values for FM and FFM were plotted against one another. The equations for calculated DXA 
were: FM:  Y= 0.8579x + 1.766, FFM: Y=1.138x + (-11.16), where, x is the value in kg for BIA. The DXA-
DXA Calc (FM) is the resulting value from the calculation: FM assessed by DXA – Calculated FM (based 
on the above equation). The DXA-DXA Calc (FFM) is the resulting value from the calculation: FFM 
assessed by DXA – Calculated FFM (based on the above equation). Abbreviation: Part, participant; SD, 
standard deviation. 
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Appendix C 

Energy Balance Analysis 

Caloric Intake, Expenditure and Balance (kcal): 

Part. Day 1: 
Intake 

 
Expen 

 
Diff. 

Day2: 
Intake 

 
Expen 

 
Diff. 

Day 3: 
Intake 

 
Expen 

 
Diff. 

Avg 
Diff.  

1 5406 3066 2339 2311 3000 752 2293 3058 -766 775 
2 2298 1690 608 2866 1905 1038 2109 1828 281 642 
3 1535 1909 -375 1704 1928 -168 1339 1872 -534 -359 
4 2281 4001 -1721 1818 4038 -2559 1505 4376 -2871 -2383 
5 1419 2006 -588 1842 2006 -176 1461 2010 -550 -438 
6 2512 2595 -83 2243 2313 -877 3253 3120 132 -276 
7 2526 2799 -273 17368 2342 15236 2036 2133 -96 4955 
8 1786 2925 -1139 3719 2799 743 3034 2976 58 -112 
9 1669 2400 -731 2072 2220 -544 1077 2617 -1539 -938 
10 1750 2302 -552 2800 2461 579 1745 2221 -476 -150 
11 2696 2365 331 1488 2510 -1062 1937 2550 -612 -448 
12 3192 2765 427 1547 2221 -457 2067 2004 63 11 
13 1848 2573 -725 1291 2778 -2137 1452 3428 -1977 -1613 
14 1970 3362 -1392 3030 3396 -371 2958 4301 -443 -735 
15 3701 6886 -3185 2952 6217 -3122 3779 6074 -2295 -2867 
16 3078 3052 26 3887 3629 302 1875 3584 -1710 -461 
17 1668 4212 -2544 1201 3076 -2914 1886 4115 -2229 -2562 
18 2902 4555 -1654 2707 4073 -927 1910 3634 -1724 -1435 
19 1780 3393 -1613 1619 3328 -1705 2124 3324 -1200 -1506 
20 1821 4275 -2455 1716 4226 -2645 2740 4360 -1621 -2240 
21 1401 2216 -815 1862 2224 -790 3401 2652 749 -285 
22 4529 4147 393 2097 3826 -2317 3605 4414 -809 -911 
23 3281 2860 422 2544 2256 156 1778 2389 -611 -11 
24 2606 2368 238 1304 2643 -1444 1399 2748 -1349 -852 
25 2915 2380 82 2535 2521 38 2193 2497 -303 90 
 
Avg 

 
2503 

 
3084 

 
-581 

 
2881 

 
2957 

 
-215 

 
2198 

 
3095 

 
-897 

 
-564 

 
SD 

 
987 

 
1119 

 
1210 

 
3120 

 
978 

 
3442 

 
753 

 
1011 

 
917 

 
1499 

Energy intake, expenditure and energy difference (or balance, as assessed by ‘Intake – Expenditure’) 
are expressed as Intake, Expen, and Diff, respectively, and are in kcal/day (for day 1-3). The Average 
Diff is the average difference (or energy balance) over the 3 days and is expressed in kcal. Data taken 
from diet and activity logs. Abbreviation: Part, participant; Avg, Average; SD, standard deviation.  
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Sensewear Armband Data: 

Part Total 
Energy 
Expen: 
Day 1 

 
 
 

Day 2 

Avg 
METS: 

 
Day 1 

 
 
 

Day 2 

Duration 
on Body: 

 
Day 1 

 
 
 

Day 2 

Energy 
Balance 

 
Day 1 

 
 
 

Day 2 

Avg 
Energy 
Balance  

1 - - - - - - - - - 
2 - - - - - - - - - 
3 1917 1752 1.6 1.5 23:42 23:35 -382 -48 -215 
4 2718 2862 1.8 1.9 23:54 23:49 -437 -1044 -740.5 
5 - - - - - - 1419 1842 - 
6 - - - - - - 2512 2243 - 
7 1950 1887 1.4 1.4 24:00 23:53 576 15481 8028.5 
8 2219 2291 1.5 1.5 23:44 23:51 -433 1248 497.5 
9 - - - - - - 1669 2072 - 
10 2504 2541 1.8 1.9 23:32 22:27 -754 259 -247.5 
11 2699 2668 1.6 1.6 23:34 23:34 -3 -1180 -591.5 
12 3771 4057 1.6 1.8 23:36 23:16 -579 -2510 -1544.5 
13 1957 2906 1.1 1.7 24:00 22:42 -109 -1615 -862 
14 3264 3205 1.6 1.5 23:46 24:00 -1294 -175 -734.5 
15 3070 3788 1.9 1.3 11:30 21:24 631 -836 -102.5 
16 2954 2199 1.5 1.1 23:44 23:15 124 1688 906 
17 2206 2641 1.2 1.4 23:41 23:26 -538 -1440 -989 
18 3093 2984 1.4 1.3 23:38 24:00 -191 -277 -234 
19 2524 2678 1.3 1.4 23:33 23:42 -744 -1059 -901.5 
20 2912 3129 1.1 1.1 23:40 23:02 -1091 -1413 -1252 
21 2754 2741 1.8 1.8 23:18 23:51 -1353 -879 -1116 
22 4117 2560 1.9 1.2 24:00 23:38 412 -463 -25.5 
23 2818 2072 1.8 1.3 23:45 23:46 463 472 467.5 
24 2980 - 1.8 - 23:50 - -374 1304 465 
25 - - - - - - - - - 
Avg 2759 2720 1.6 1.5   -21.6 629.5 42.6 
SD 586 596 0.3 0.3   961 3580 2045 

Note: Energy Balance is energy intake (assessed from diet log) - Sensewear armband energy 
expenditure. Total daily energy expenditure is expressed in kcal, Average METS is the MET values 
averaged over ~24 hours, Duration on Body is the number of hours the armband was recording values 
of the body (it is not water proof, thus could not be worn in the shower), and energy balance is 
‘energy intake (as assessed by the analysis of the diet log, shown in the first table in Appendix C) – 
total energy expenditure (assessed by the armband). Abbreviations: Part, participant; Avg, average; 
SD, standard deviation; Expen, expenditu 
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Appendix D 
Cholesterol, FFA, TG, Glucose and Insulin: 

Participant Blood Cholesterol and TG Data: 

Participant Cholesterol 
(mmol/L) 

LDL 
(calculated) 
(mmol/L) 

HDL 
(mmol/L) 

Cholesterol/HDL 
Ratio (mmol/L) 

Triglycerides 
(mmol/L) 

1 3.63 2.04 1.31 2.8 0.62 
2 2.62 1.24 1.16 2.3 0.48 
3 3.05 1.62 1.18 2.6 0.56 
4 4.23 2.52 1.44 2.9 0.59 
5 3.7 1.81 1.61 2.3 0.62 
6 5.53 2.05 1.84 3 1.41 
7 3.49 2.14 0.92 3.8 0.95 
8 4.01 2.57 1.12 3.6 0.7 
9 4.63 2.64 1.61 2.9 0.83 
10 4.92 3.24 1.42 3.5 0.58 
11 2.79 1.6 0.95 2.9 0.53 
12 4.9 3.22 1.04 4.7 1.4 
13 3.1 1.68 1.17 2.6 0.54 
14 4.03 1.85 1.52 2.7 1.46 
15 3.46 1.9 1.15 3 0.9 
16 5.43 3.67 1.1 4.9 1.46 
17 3.08 1.64 1.34 2.3 0.23 
18 4.48 2.43 1.87 2.4 0.4 
19 3.39 1.67 1.5 2.3 0.48 
20 4.57 1.98 1.25 3.7 2.94 
21 3.13 1.68 1.17 2.7 0.62 
22 4.76 2.79 1.03 4.6 2.07 
23 4.36 2.69 1.32 3.3 0.76 
24 2.94 1.54 1.07 2.7 0.73 
25 4.33 2.97 1.11 3.9 0.54 
Average 3.94 2.25 1.29 3.14 0.90 
Standard 
Deviation 

0.84 0.7 0.3 0.8 0.6 

Cholesterol is expressed in mmol/L, LDL is expressed in mmol/L, HDL is expressed in mmol/L, 
cholesterol/HDL ratio is expressed in mmol/L, and triglycerides are expressed in mmol/L.  
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Participant Blood FFA, Glucose and Insulin Data: 

Participant Glucose (mmol/L)  FFA (mEq/L) Insulin (μlU/ml) 
1 4.3 0.753 5.98 
2 4.2 0.229 6.68 
3 4.7 0.481 5.62 
4 3.1 0.123 5.01 
5 5.2 0.246 3.58 
6 4.2 0.348 7.89 
7 4.4 0.365 6.26 
8 4.8 1.183 5.89 
9 4.8 1.141 9.75 
10 4.4 0.198 3.78 
11 4.6 0.231 5.95 
12 4.2 0.164 N/A 
13 4.6 0.168 9.66 
14 4.6 0.296 7.79 
15 4.9 0.239 29.3 
16 5.3 0.228 6.91 
17 4.2 N/A 2.62 
18 5.3 0.055 8.11 
19 4.7 0.412 9.36 
20 5.5 0.502 10.00 
21 4.6 0.172 7.42 
22 5.2 0.498 19.68 
23 4.6 0.262 6.761 
24 4.6 0.798 6.57 
25 5.3 0.566 6.90 
Average 4.65 0.40 8.23 
Standard 
Deviation 

0.51 0.3 5.5 

Glucose is expressed in mmol/L, FFA is expressed in mEq/L, and insulin is expressed in μlU/ml. 
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Normal Blood Metabolite and Hormone Values: 

A) 

Cholester
ol 
(mmol/L) 

LDL 
(calculated
) (mmol/L) 

HDL 
(mmol/L
) 

Cholesterol/HDL 
Ratio (mmol/L) 

Triglycerides 
(mmol/L) 

<5.2 <3.4 >1.6 <3.5 <2.3 
 

B) 

Glucose (mmol/L)  FFA (mEq/L) Insulin (μlU/ml) 
3.8-5.5 0.1-0.6 Median of 7.8 

 

Cholesterol, LDL, HDL, cholesterol/HDL ratio, triglycerides and glucose expressed in mmol/L. FFA 
expressed in mEq/L and insulin expressed in μlU/ml. Insulin values from study of 126 serum samples 
provided by the Coat-A-Kit, which yielded a median of 7.8 μlU/ml with 95% of the results being 29.4 
μlU/ml or less. Values from Canadian Diabetes Association, Insulin Coat-A-Kit and NEFA C Wako 990-
75401.  

 

 

 

 

 

 

 



100 
 

Appendix E 
Ca2+-ATPase Assay Data 

Participant Values for Ca2+-ATPase, IONO Ratio, Vmax, and EC50: 

Participant Vmax with 
IONO (μM/mg 
protein/min) 

EC50 (nM) IONO Ratio  
(at Vmax) 

Ca2+-ATPase Activity  with 
IONO (μM/mg 
protein/min ) 

1 301.2 5.65 11.50 16 
2 236 5.78 9.11 7.2 
3 174.3 5.63 10.02 12.8 
4 241.3 5.63 7.09 8.5 
5 168.5 5.42 5.62 12.1 
6 164.8 5.70 7.39 8.7 
7 146.8 5.44 7.27 7.9 
8 193.9 5.42 11.41 2.6 
19 208.3 5.63 10.01 7.3 
10 162.9 5.05 7.79 4.5 
11 219.8 5.64 7.09 6.6 
12 215.5 5.50 6.91 3.9 
13 197.1 5.62 11.26 11.2 
14 170.7 5.37 2.27 19.9 
15 162.1 5.42 9.65 11.3 
16 181.5 5.27 8.68 6.6 
17 329.4 5.29 5.96 33.9 
18 155.6 5.19 7.37 2.1 
19 191.4 5.72 6.99 9.8 
20 162.9 5.45 8.48 19.1 
21 207.7 5.71 8.41 22.3 
22 207.9 5.75 13.41 4.4 
23 197.5 5.71 3.67 15.9 
24 191.4 5.54 3.39 9.5 
25 222.6 5.34 9.16 2.4 
Average 200.44 5.15 8.00 10.66 
Standard 
Deviation 

43.10 0.19 3 7.36 

Ca2+-ATPase Activity is assessed with IONO and is expressed in μM/mg protein/min, IONO ratio is 
Ca2+-ATPase activity with IONO/ Ca2+-ATPase activity with no IONO and is assessed at Vmax, Vmax  is 
assessed with IONO and expressed in μM/mg protein/min, and EC50 is the Ca2+ concentration 
when the Ca2+-ATPase activity is 50% of Vmax (and is expressed in nM). . A description of the Ca2+-
ATPase assay is found in the Methods section.  
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Appendix F 

Ca2+ Uptake and Leak Assay Data 

Participant Values for Ca2+ Uptake and Leak: 

Participant Ca2+ Uptake (μM/g 
protein/min) 

Ca2+ Leak (μM/g 
protein/min) 

1 1.0 0.3 
2 1.8 0.3 
3 0.3 0.5 
4 0.4 0.4 
5 0.9 0.2 
6 0.6 0.2 
7 0.5 0.3 
8 0.6 0.2 
9 1.0 0.1 
10 0.8 1.1 
11 1.2 0.3 
12 0.4 0.4 
13 0.8 0.3 
14 0.6 0.6 
15 0.5 0.6 
16 0.8 0.5 
17 3.2 0.4 
18 0.7 0.4 
19 1.2 0.5 
20 2.2 0.3 
21 0.5 0.1 
22 1.3 0.3 
23 2.0 0.5 
24 N/A 1.6 
25 0.9 0.2 
Average 1.01 0.42 
Standard Deviation 0.69 0.3 

Ca2+ uptake is expressed in μM/g protein/min, and Ca2+ leak is expressed in μM/g protein/min. A 
description of the Ca2+ uptake and leak assay is found in the Methods section.  
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Appendix G 
Coupling Ratio Data 

Participant Values for Coupling Ratio: 

Participant Coupling Ratio 
1 0.07 
2 0.26 
3 0.02 
4 0.05 
5 0.08 
6 0.07 
7 0.07 
8 0.25 
9 0.14 
10 0.18 
11 0.18 
12 0.10 
13 0.07 
14 0.03 
15 0.05 
16 0.13 
17 0.10 
18 0.33 
19 0.12 
20 0.11 
21 0.02 
22 0.29 
23 0.13 
24 N/A 
25 0.36 
Average 0.13 
Standard Deviation 0.1 

The coupling ratio is assessed as Ca2+ uptake/ Ca2+-ATPase activity, at a matching pCa value which 
ranged between 5.96 and 6.74. 
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Appendix H 
Western Blot Analysis Data 

Participant Values for PLN (monomer), SERCA1a, SERCA2a and SERCA1a/SERCA2a Ratio: 

Participant PLN 
(monomer) 

CSQ SERCA1a SERCA2a SERCA1a/SERCA2a 
Ratio 

SERCAtotal 

1 0.469 3.72 4.33 2.74 1.58 7.07 
2 0.075 3.12 6.05 2.40 2.52 8.45 
3 0.058 2.57 4.72 3.29 1.43 8.01 
4 0.687 4.05 5.04 6.73 0.75 11.77 
5 0.093 4.08 5.70 2.45 2.33 8.15 
6 0.046 2.53 3.36 3.15 1.07 6.51 
7 0.076 3.83 3.75 2.70 1.39 6.45 
8 0.050 3.10 4.78 1.92 2.49 6.70 
9 0.041 2.63 5.11 1.56 3.27 6.67 
10 1.151 3.23 4.52 6.41 0.71 10.93 
11 1.563 4.67 10.46 6.48 1.61 16.95 
12 0.091 3.46 6.08 3.20 1.90 9.28 
13 0.153 2.27 3.15 4.15 0.76 7.30 
14 0.468 1.94 2.46 5.34 0.46 7.80 
15 0.260 1.62 2.67 6.09 0.44 8.76 
16 0.289 3.52 5.44 4.62 1.18 10.07 
17 0.387 4.41 7.27 4.81 1.51 12.08 
18 0.283 2.61 4.30 6.46 0.67 10.76 
19 0.109 3.32 6.03 4.56 1.32 10.59 
20 0.370 3.16 4.31 6.63 0.65 10.94 
21 0.211 3.52 5.11 5.93 0.86 11.04 
22 0.447 3.24 4.67 5.19 0.90 9.86 
23 0.359 5.19 4.16 4.30 0.97 8.46 
24 0.932 7.97 3.42 8.53 0.40 11.95 
25 0.118 3.19 3.16 1.78 1.77 4.95 
Average 0.35 3.50 4.80 4.46 1.32 9.26 
Standard 
Deviation 

0.4 1 2 1.89 0.74 2.6 

All proteins were analyzed using Western Blot techniques and are expressed in densitometry units and 
all proteins are normalized to αActin. PLN content is the PLN monomer, and SERCAtotal is SERCA1a + 
SERCA2a. A description of Western Blot procedures and analysis is found in the Methods section. 
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