
Financial Risk Management of

Guaranteed Minimum Income

Benefits Embedded in Variable

Annuities

by

Claymore James Marshall

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2011

c© Claymore James Marshall 2011



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Claymore James Marshall

ii



Abstract

A guaranteed minimum income benefit (GMIB) is a long-dated option that can be em-

bedded in a deferred variable annuity. The GMIB is attractive because, for policyholders

who plan to annuitize, it offers protection against poor market performance during the

accumulation phase, and adverse interest rate experience at annuitization. The GMIB

also provides an upside equity guarantee that resembles the benefit provided by a look-

back option.

We price the GMIB, and determine the fair fee rate that should be charged. Due to the

long dated nature of the option, conventional hedging methods, such as delta hedging,

will only be partially successful. Therefore, we are motivated to find alternative hedging

methods which are practicable for long-dated options. First, we measure the effectiveness

of static hedging strategies for the GMIB. Static hedging portfolios are constructed based

on minimizing the Conditional Tail Expectation of the hedging loss distribution, or min-

imizing the mean squared hedging loss. Next, we measure the performance of semi-static

hedging strategies for the GMIB. We present a practical method for testing semi-static

strategies applied to long term options, which employs nested Monte Carlo simulations

and standard optimization methods. The semi-static strategies involve periodically re-

balancing the hedging portfolio at certain time intervals during the accumulation phase,

such that, at the option maturity date, the hedging portfolio payoff is equal to or exceeds

the option value, subject to an acceptable level of risk. While we focus on the GMIB as

a case study, the methods we utilize are extendable to other types of long-dated options

with similar features.

iii



Acknowledgements

First and foremost, I extend my deepest gratitude to my supervisors, Professor Mary

Hardy and Professor David Saunders. They provided invaluable guidance, and insightful

comments, on all of the topics we explored. I thank Mary for her unwavering words of

encouragement, and enthusiasm towards what we were doing, particularly when I had

doubts about certain aspects of the research. I thank Dave for always being willing to

share with me his deep knowledge of quantitative finance and risk management. His

kindness was also very much appreciated. Finally, I thank both of my supervisors for

giving me opportunities to present our research at international conferences held in fasci-

nating parts of the world, China and Turkey. I could not have asked for better supervisors.

I thank all of the members of my thesis committee, for the time they spent reading my

thesis: Professor Phelim Boyle, Professor Justin Wan, Professor Alan White, and Profes-

sor Tony Wirjanto. In particular, I am grateful to Phelim for his constructive feedback

at earlier stages of the research.

My gratitude also goes to Mary Lou Dufton, the graduate studies co-ordinator, who made

commendable efforts on my behalf, on numerous occasions, in chasing up overdue funding

from various sources.

A very special thank you goes to my parents for their numerous forms of support during

my graduate studies. Furthermore, with the benefit of hindsight, I thank them for pro-

viding me with an environment, when I was growing up, in which I was able to thrive,

succeed, and consequently develop the confidence to set ambitious goals in life. They have

helped mould me into the person I am today.

I acknowledge generous financial support during my Ph.D. studies from the following

sources: the Institute of Actuaries of Australia (through the 2008 and 2009 A H Pol-

lard Ph.D. Scholarships); the Society of Actuaries; The Actuarial Foundation; Dominion

of Canada General Insurance Company; Empire Life Insurance Company; Dominion Life

Insurance Company; the Waterloo Research Institute in Insurance, Securities and Quanti-

iv



tative Finance (and its predecessor, the Institute for Quantitative Finance and Insurance);

and the Department of Statistics and Actuarial Science.

v



To my parents

vi



Contents

List of Tables xvii

List of Figures xxiii

1 Introduction 1

1.1 Variable annuity options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation for this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The GMIB maturity value . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Generalized form of the GMIB maturity value . . . . . . . . . . . . 11

1.3.2 GMIB maturity value using a term certain annuity . . . . . . . . . 17

1.4 Hypothetical scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Valuation of a Guaranteed Minimum Income Benefit 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The valuation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Models for the financial variables . . . . . . . . . . . . . . . . . . . 27

2.2.2 Pricing equation for the GMIB . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Other fee charges in practice . . . . . . . . . . . . . . . . . . . . . . 33

vii



2.2.4 Alternative view of the pricing equation . . . . . . . . . . . . . . . 34

2.3 Valuation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Choice of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Fair fee rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Valuing the benefits and the fees separately . . . . . . . . . . . . . 43

2.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Stock volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Impact of interest rate assumptions . . . . . . . . . . . . . . . . . . 45

2.4.3 Correlation between the underlying processes . . . . . . . . . . . . 52

2.4.4 Varying the GMIB contract parameters . . . . . . . . . . . . . . . . 53

2.5 Decomposing the GMIB price . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Contributions of each component to the GMIB price . . . . . . . . 55

2.5.2 Valuing simplified GMIBs . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.3 Upfront fair fee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Impact of lapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7 Continuous versus discrete fee structure . . . . . . . . . . . . . . . . . . . . 63

2.8 Allowing for other fee charges in practice . . . . . . . . . . . . . . . . . . . 65

2.9 Monte Carlo simulation of the GMIB price . . . . . . . . . . . . . . . . . . 68

2.9.1 An efficient simulation method . . . . . . . . . . . . . . . . . . . . 68

2.9.2 A control variate for variance reduction . . . . . . . . . . . . . . . . 72

2.10 History of the GMIB in the U.S. since 2007 . . . . . . . . . . . . . . . . . . 77

2.11 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Measuring the Effectiveness of Static Hedging Strategies for a Guaran-

teed Minimum Income Benefit 81

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



3.2 Models for the financial variables . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Implementing the static hedging strategies . . . . . . . . . . . . . . . . . . 90

3.3.1 Universe of instruments . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.2 The hedging loss statistics . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.3 CTE minimization problem . . . . . . . . . . . . . . . . . . . . . . 102

3.3.4 MSHL minimization problem . . . . . . . . . . . . . . . . . . . . . 104

3.4 Benchmark parameter assumptions . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Hedging with the stock only . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Portfolios minimizing the CTE . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.1 Portfolio C1: stock and ZCB(10) . . . . . . . . . . . . . . . . . . . 113

3.6.2 Portfolio C2: Put(0.8S(0)), stock and ZCB(10) . . . . . . . . . . . 114

3.6.3 Portfolio C3: Put(0.8S(0)), stock and multiple ZCBs . . . . . . . . 117

3.6.4 Portfolios C4A, C4B: lookback and put options, stock and ZCBs . . 120

3.7 Portfolios minimizing the MSHL . . . . . . . . . . . . . . . . . . . . . . . . 126

3.7.1 Portfolio M1: Put(1.6S(0)), stock and ZCBs . . . . . . . . . . . . . 127

3.7.2 Portfolios M2A, M2B: lookback and put options, stock and ZCBs . 127

3.8 Interest rate risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.9 Hedging simplified GMIBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.9.1 Hedging the embedded lookback option . . . . . . . . . . . . . . . . 134

3.9.2 Hedging the embedded guaranteed return option . . . . . . . . . . . 135

3.10 Charging the fair fee rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.11 Backtesting the static hedging strategy . . . . . . . . . . . . . . . . . . . . 142

3.12 Impact of increasing the option prices . . . . . . . . . . . . . . . . . . . . . 147

3.13 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.13.1 Stability of the optimal hedging portfolios . . . . . . . . . . . . . . 150

ix



3.13.2 Changing the confidence level in CTE minimization problems . . . 152

3.14 Practical risks with using a static hedging strategy . . . . . . . . . . . . . 152

3.15 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4 An Investigation of Periodic Rebalancing Hedging Strategies for a Guar-

anteed Minimum Income Benefit 157

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.1 Preliminary notation . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.1.2 How the semi-static hedging strategy is implemented . . . . . . . . 161

4.1.3 Contribution to the literature on hedging methods . . . . . . . . . . 164

4.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.2.1 Simulating the hedging loss distribution . . . . . . . . . . . . . . . 166

4.2.2 Calculating the hedging target values . . . . . . . . . . . . . . . . . 168

4.2.3 The optimization problems . . . . . . . . . . . . . . . . . . . . . . . 170

4.2.4 The total hedging portfolio payoff . . . . . . . . . . . . . . . . . . . 173

4.2.5 Testing for arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.3 Issues surrounding implementing the method . . . . . . . . . . . . . . . . . 175

4.3.1 Speeding up the simulations . . . . . . . . . . . . . . . . . . . . . . 175

4.3.2 Comments on the range of hedging instruments . . . . . . . . . . . 180

4.3.3 Avoiding arbitrage in each hedging horizon . . . . . . . . . . . . . . 181

4.4 Benchmark parameter assumptions . . . . . . . . . . . . . . . . . . . . . . 185

4.5 Understanding the format of the results . . . . . . . . . . . . . . . . . . . . 185

4.5.1 Tables describing the hedging loss distribution . . . . . . . . . . . . 186

4.5.2 Tables describing the behavior of a strategy . . . . . . . . . . . . . 187

4.6 Semi static hedging of a 10-year call option . . . . . . . . . . . . . . . . . . 190

4.6.1 Assuming constant interest rates . . . . . . . . . . . . . . . . . . . 192

x



4.6.2 Allowing for the one-factor short rate model . . . . . . . . . . . . . 197

4.7 Hedging strategy types for the GMIB . . . . . . . . . . . . . . . . . . . . . 199

4.8 Using MSHE minimization hedging strategies . . . . . . . . . . . . . . . . 202

4.8.1 Assuming constant interest rates . . . . . . . . . . . . . . . . . . . 203

4.8.2 Allowing for the one-factor short rate model (the benchmark example)209

4.8.3 Permitting short selling of options . . . . . . . . . . . . . . . . . . . 217

4.8.4 Examples of simulated scenarios . . . . . . . . . . . . . . . . . . . . 220

4.9 CTE minimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4.10 Using P -valuation hedging targets . . . . . . . . . . . . . . . . . . . . . . . 239

4.11 Assessing the impact of model risk . . . . . . . . . . . . . . . . . . . . . . 245

4.12 Hedging effectiveness when the fee rate is low . . . . . . . . . . . . . . . . 251

4.13 Stability of the semi-static hedging method . . . . . . . . . . . . . . . . . . 257

4.14 Summary of the results and concluding remarks . . . . . . . . . . . . . . . 260

5 Conclusions and Potential Research Directions 263

5.1 Summary of key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

5.2 Comments on the GMIB option design . . . . . . . . . . . . . . . . . . . . 266

5.3 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Bibliography 276

xi



List of Tables

1.1 Average proportion of U.S. variable annuity buyers electing each guaran-

teed living benefit option when the insurer offers the option. . . . . . . . . 6

1.2 U.S. industry statistics for GMIBs in-force beyond the minimum waiting

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Analysis of the GMIB maturity value Y (T ) for the hypothetical scenarios,

assuming g = 6.5% and rg = 5%. . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Fair value of g for a 20 year term certain annuity with annual payments in

advance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Fair fee rates and their standard errors for values of g for which a fair fee

rate exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 The upfront fair fee rate and its standard error for various values of g. . . . 62

3.1 Hedging loss statistics for the stock only portfolio. . . . . . . . . . . . . . . 111

3.2 Hedging loss statistics for Portfolio C1. . . . . . . . . . . . . . . . . . . . . 115

3.3 Hedging loss statistics for Portfolio C2. . . . . . . . . . . . . . . . . . . . . 116

3.4 Hedging loss statistics for Portfolio C3. . . . . . . . . . . . . . . . . . . . . 119

3.5 Hedging loss statistics for Portfolio C4A. . . . . . . . . . . . . . . . . . . . 123

3.6 Hedging loss statistics for Portfolio C4B. . . . . . . . . . . . . . . . . . . . 125

3.7 Hedging loss statistics for Portfolio M1. . . . . . . . . . . . . . . . . . . . . 128

3.8 Hedging loss statistics for Portfolio M2A. . . . . . . . . . . . . . . . . . . . 130

xii



3.9 Hedging loss statistics for Portfolio M2B. . . . . . . . . . . . . . . . . . . . 132

3.10 Hedging loss statistics for Portfolio E1. . . . . . . . . . . . . . . . . . . . . 136

3.11 Hedging loss statistics for Portfolio E2. . . . . . . . . . . . . . . . . . . . . 138

3.12 Real-world probabilities of the lookback, guaranteed return and investment

account components being exercised for different GMIB contract parameter

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.13 Hedging loss statistics for Portfolio F1. . . . . . . . . . . . . . . . . . . . . 141

3.14 Hedging loss statistics for Portfolio F2. . . . . . . . . . . . . . . . . . . . . 142

3.15 Optimal hedging instrument positions at time 0 for GMIBs issued from

1997 to 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.16 Hedging loss statistics at the start of 2011 for GMIBs issued at the start

of each year from 1997 to 2011. . . . . . . . . . . . . . . . . . . . . . . . . 147

3.17 Hedging instrument prices for different implied volatilities. The benchmark

assumption is σi = 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.18 Hedging loss statistics and optimal instrument positions for portfolios in-

cluding 10-year put options, in the case where the fee rate is 1%. The

results for σi = 20% correspond to PC3. . . . . . . . . . . . . . . . . . . . 148

3.19 Hedging loss statistics and optimal instrument positions for portfolios in-

cluding 10-year put options, in the case where the fair fee rate is charged.

The results for σi = 20% correspond to PF1. . . . . . . . . . . . . . . . . . 149

3.20 Hedging loss statistics and optimal instrument positions for portfolios in-

cluding the lookback options, in the case where the fair fee rate is charged.

The results for σi = 20% correspond to PF2. . . . . . . . . . . . . . . . . . 149

3.21 Hedging loss statistics and optimal instrument positions for portfolios in-

cluding the lookback options, in the case where the fee rate is 1% and a

mean constraint of 0 is included in the optimization problem. The results

for σi = 20% correspond to PC4B. . . . . . . . . . . . . . . . . . . . . . . . 149

3.22 Mean and variance of optimal hedging instrument positions and hedging

loss statistics for PC3, obtained using 20 independent Monte Carlo simu-

lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xiii



3.23 Mean and variance of optimal hedging instrument positions and hedging

loss statistics for PC4B, obtained using 20 independent Monte Carlo sim-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.24 Hedging loss statistics for PC3 using different CTE confidence levels. . . . 152

3.25 Hedging loss statistics for PC4B using different CTE confidence levels. . . 152

4.1 The range of τ -year call option strike prices available at the i-th horizon

for different rebalancing frequencies. . . . . . . . . . . . . . . . . . . . . . . 191

4.2 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

Black-Scholes 10-year call option. . . . . . . . . . . . . . . . . . . . . . . . 193

4.3 Behavior of Strategy 1 for hedging the Black-Scholes 10-year call option,

using annual rebalancing and allowing for the benchmark transaction costs. 196

4.4 Behavior of Strategy 2 for hedging the Black-Scholes 10-year call option,

using annual rebalancing and allowing for the benchmark transaction costs. 196

4.5 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

10-year call option (under the one-factor interest rate model). . . . . . . . 198

4.6 Behavior of Strategy 1 for hedging the 10-year call option (assuming stochas-

tic interest rates), using annual rebalancing and allowing for the benchmark

transaction costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.7 Behavior of Strategy 2 for hedging the 10-year call option (assuming stochas-

tic interest rates), using annual rebalancing and allowing for the benchmark

transaction costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.8 The range of τ -year and T -year option strike prices available at the i-th

horizon for different rebalancing frequencies. . . . . . . . . . . . . . . . . . 201

4.9 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

GMIB, assuming constant interest rates. . . . . . . . . . . . . . . . . . . . 204

4.10 Hedging loss distribution statistics derived from Strategy 3 for the GMIB,

assuming constant interest rates. . . . . . . . . . . . . . . . . . . . . . . . 205

4.11 Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (assuming interest rates

are constant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xiv



4.12 Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (assuming interest rates

are constant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.13 Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (assuming interest rates

are constant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.14 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

GMIB (benchmark example). . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.15 Hedging loss distribution statistics derived from Strategy 3 for the GMIB

(benchmark example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.16 Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (benchmark example). . 215

4.17 Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (benchmark example). . 215

4.18 Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (benchmark example). . 216

4.19 Hedging loss distribution statistics derived from Strategy 2 for the GMIB,

when option short selling is allowed. . . . . . . . . . . . . . . . . . . . . . . 218

4.20 Behavior of Strategy 2 for hedging the GMIB when option short selling

is permitted, using annual rebalancing and allowing for the benchmark

transaction costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.21 Hedging loss distribution statistics derived from Strategies 1 and 2, based

on minimizing the CTE, for hedging the GMIB. . . . . . . . . . . . . . . . 235

4.22 Hedging loss distribution statistics derived from Strategy 3, based on min-

imizing the CTE, for hedging the GMIB. . . . . . . . . . . . . . . . . . . . 236

4.23 Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing and

allowing for the benchmark transaction costs (based on CTE minimization).236

4.24 Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing and

allowing for the benchmark transaction costs (based on CTE minimization).237

xv



4.25 Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing and

allowing for the benchmark transaction costs (based on CTE minimization).238

4.26 Hedging loss distribution statistics derived from Strategies 1 and 2, using

P -valuation targets, for hedging the GMIB. . . . . . . . . . . . . . . . . . 241

4.27 Hedging loss distribution statistics derived from Strategy 3, using P -valuation

targets, for hedging the GMIB. . . . . . . . . . . . . . . . . . . . . . . . . 242

4.28 Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (using the P -valuation

target). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4.29 Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (using the P -valuation

target). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

4.30 Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing

and allowing for the benchmark transaction costs (using the P -valuation

target). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.31 Different parameter set assumptions for the RSLN2 model. . . . . . . . . . 246

4.32 The stock price distribution under different parameter set assumptions. . . 246

4.33 Hedging loss statistics derived from Strategy 1 for the GMIB, under differ-

ent parameter assumptions for the RSLN2 model. . . . . . . . . . . . . . . 248

4.34 Hedging loss statistics derived from Strategy 2 for the GMIB, under differ-

ent parameter assumptions for the RSLN2 model. . . . . . . . . . . . . . . 249

4.35 Hedging loss statistics derived from Strategy 3 for the GMIB, under differ-

ent parameter assumptions for the RSLN2 model. . . . . . . . . . . . . . . 250

4.36 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

GMIB (when the fee rate is 1%, and hedging target is the GMIB price). . . 253

4.37 Hedging loss distribution statistics derived from Strategy 3 for the GMIB

(when the fee rate is 1%, and hedging target is the GMIB price). . . . . . . 254

4.38 Hedging loss distribution statistics derived from Strategies 1 and 2 for the

GMIB (when the fee rate is 1%, and P -valuation hedging targets are used). 255

xvi



4.39 Hedging loss distribution statistics derived from Strategy 3 for the GMIB

(when the fee rate is 1%, and P -valuation hedging targets are used). . . . . 256

4.40 Results of three common simulations of the hedging loss distribution for

Strategy 2, using annual rebalancing and negligible transaction costs, for

the cases where N = 100, 200, 300 (M = 200 in all of the simulations). In

each simulation, common random numbers are used for the actual values

of the stock and interest rate variables. . . . . . . . . . . . . . . . . . . . . 258

xvii



List of Figures

1.1 The left (right) panel displays U.S. variable annuity assets (sales), measured

in $ billions, for the period 1998-2009. . . . . . . . . . . . . . . . . . . . . 3

1.2 Hypothetical scenarios for the evolution of the investment account during

the accumulation phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 GMIB price V (c) as a function of the fee rate c. Each curve corresponds

to a particular value of g. For the curves that intersect with the horizontal

dotted line, the fee rate at the intersecting point corresponds to the fair fee

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 G(c), F (c) and H(c) = G(c) − F (c) as functions of the fee rate c, for

particular values of g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 The left panel displays the GMIB price without fee charges V (0) as a

function of stock volatility σS. The right panel displays the GMIB price as

a function of stock volatility when the fair fee rate is charged. Each curve

corresponds to a particular value of g. . . . . . . . . . . . . . . . . . . . . . 44

2.4 The left panel displays the GMIB price without fee charges V (0) as a

function of interest rate volatility σr. The right panel displays the GMIB

price as a function of interest rate volatility when the fair fee rate is charged.

Each curve corresponds to a particular value of g. . . . . . . . . . . . . . . 46

2.5 The top panels display the distribution of the 20 year term certain annuity

for σr = 0.5% and σr = 1.5%. The bottom panels display the distribution

of r(10) for σr = 0.5% and σr = 1.5%. . . . . . . . . . . . . . . . . . . . . 47

xviii



2.6 The left panel displays the GMIB price without fee charges V (0) as a

function of the speed of reversion a in the Hull-White model. The right

panel displays the GMIB price as a function of a when the fair fee rate is

charged. Each curve corresponds to a particular value of g. . . . . . . . . . 48

2.7 A set of zero coupon bond yield curves used for testing the sensitivity of

the GMIB price to the underlying assumed yield curve. Figure 2.8 shows

the corresponding GMIB prices. . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 GMIB price V (c) as a function of the fee rate c, assuming g = 6.5% (g =

7.5%) for each curve in the left (right) panel. Each curve plots the GMIB

price using the corresponding yield curve displayed in Figure 2.7. . . . . . 50

2.9 Relationship between GMIB price V (c) and the fee rate c for various con-

stant continuously compounded annual interest rates r, assuming g = 6.5%

for each curve in the left panel and g = 7.5% for each curve in the right

panel. Each curve corresponds to a particular value of r. . . . . . . . . . . 52

2.10 Relationship between GMIB price V (c) and the fee rate c for various values

of ρ, assuming g = 6.5% (g = 7.5%) for each curve in the left (right) panel.

Each curve corresponds to a particular value of ρ. . . . . . . . . . . . . . . 53

2.11 The left panel displays the GMIB price without fees V (0) as a function of

the guaranteed annual return rg. The right panel displays the GMIB price

as a function of rg when the fair fee rate is charged. Each curve corresponds

to a particular value of g. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.12 Relationship between GMIB price V (c) and the fee rate c for T = 10, 20, 30

assuming g = 6.5% (g = 7.5%) in the left (right) panel. Each curve

corresponds to a particular maturity date T . . . . . . . . . . . . . . . . . . 55

2.13 Each panel displays the contributions to the GMIB price from yi, i = 1, 2, 3,

(the maximum component, guaranteed return component and investment

account component respectively) as functions of the fee rate for a particular

value of g. The top left (right) panel displays the contributions for g = 5.5%

(g = 6.5%), and the bottom left (right) panel displays the contributions

for g = 7.5% (g = 8.5%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xix



2.14 The values of EQ[Yi] i = 1, 2, 3, (the lookback component, guaranteed re-

turn component and investment account component respectively) as func-

tions of the fee rate. The top left (right) panel displays the values for

g = 5.5% (g = 6.5%), and the bottom left (right) panel displays the values

for g = 7.5% (g = 8.5%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.15 The left (right) panel displays z1 (lookback or investment account), z2

(guaranteed return or investment account), and the GMIB price as func-

tions of the fee rate for g = 6.5% (g = 7.5%). . . . . . . . . . . . . . . . . . 61

2.16 Relationship between GMIB price V L(c) and the fee rate c for various

constant lapse rates p, assuming g = 6.5% (g = 7.5%) for each curve in the

left (right) panel. Each curve corresponds to a particular value of p. . . . . 63

2.17 The left panel compares the GMIB price V (c) under the continuous and dis-

crete fee structures as a function of the fee rate c, for g = 5.5%, 6.5%, 7.5%.

The right panel compares the EPV Q of the GMIB benefits G(c) and the

EPV Q of the fees paid F (c) as functions of the fee rate c under the con-

tinuous and discrete fee structures, for g = 5.5%, 6.5%, 7.5%. . . . . . . . . 66

2.18 GMIB price V (c) as a function of the (GMIB) fee rate c allowing for variable

annuity fees of q = 2.5%. Each curve corresponds to a particular value of

g. For the curves that intersect with the horizontal dotted line, the fee rate

at the intersecting point corresponds to the fair fee rate. . . . . . . . . . . 67

2.19 Standard errors of estimators θ̂0 (standard Monte Carlo estimator), θ̂1 (con-

trol variate estimator), θ̂2 (improved control variate estimator) as functions

of the fee rate c for the cases g = 5.5%, 8.5%. In each case, θ̂1 and θ̂2 are

close. Each simulation is based on M = 105 scenarios. . . . . . . . . . . . . 76

3.1 The top panel displays the hedging loss distribution for the stock only

portfolio. The middle panel shows the simulated GMIB maturity values

yn and the value of the hedging portfolio as functions of the stock value

at time T , S(T ). The bottom panel shows the simulated hedging losses en

as functions of S(T ). The yn and en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 109

xx



3.2 The left panel displays the hedging loss distribution for Portfolio C1. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.3 The left panel displays the hedging loss distribution for Portfolio C2. The

right panel shows the simulated hedging losses en as functions of S(T ). The

en are individually marked according to which component is exercised. . . 116

3.4 The left panel displays the hedging loss distribution for Portfolio C3. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5 The left panel displays the hedging loss distribution for Portfolio C4A. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.6 The left panel displays the hedging loss distribution for Portfolio C4B. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.7 The left panel displays the hedging loss distribution for Portfolio M1. The

right panel shows the simulated hedging losses en as functions of the stock

value at time T , S(T ). The en are individually marked according to which

component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.8 The left panel displays the hedging loss distribution for Portfolio M2A. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.9 The left panel displays the hedging loss distribution for Portfolio M2B. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxi



3.10 The right (left) panel shows the simulated hedging losses en for PC3 (PC4B)

as functions of the short rate at maturity, r(T ). The en are individually

marked according to which component is exercised. . . . . . . . . . . . . . 133

3.11 The left panel displays the hedging loss distribution for Portfolio E1. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.12 The left panel displays the hedging loss distribution for Portfolio E2. The

right panel shows the simulated hedging losses en as functions of the stock

index value at time T , S(T ). The en are individually marked according to

which component is exercised. . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.13 Hedging loss statistics for Portfolio F1. . . . . . . . . . . . . . . . . . . . . 141

3.14 Hedging loss statistics for Portfolio F2. . . . . . . . . . . . . . . . . . . . . 143

3.15 U.S. zero coupon bond yield curves for a selection of calendar years. . . . . 144

3.16 Evolution of the S&P 500 Total Return Index from the start of 1997 to the

end of 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.1 The hedging loss distributions derived from Strategies 1, 2 and 3, using

annual rebalancing and allowing for transaction costs (benchmark example).213

4.2 Hedging losses en as functions of the stock price at time T , S(T ), and as

functions of the maximum stock price on a policy anniversary, maxn=1,...,T S(n),

derived from Strategies 1, 2 and 3, based on annual rebalancing and the

benchmark transaction costs (benchmark example). . . . . . . . . . . . . . 214

4.3 Evolution of Strategy 2 for Scenario A, where the Lookback component X1

exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

4.3 Evolution of Strategy 2 for Scenario A, where the Lookback component X1

exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

4.3 Evolution of Strategy 2 for Scenario A, where the Lookback component X1

exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4.4 Evolution of Strategy 2 for Scenario B, where the Guaranteed return com-

ponent X2 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

xxii



4.4 Evolution of Strategy 2 for Scenario B, where the Guaranteed return com-

ponent X2 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.4 Evolution of Strategy 2 for Scenario B, where the Guaranteed return com-

ponent X2 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.5 Evolution of Strategy 2 for Scenario C, where the Investment account com-

ponent X3 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4.5 Evolution of Strategy 2 for Scenario C, where the Investment account com-

ponent X3 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.5 Evolution of Strategy 2 for Scenario C, where the Investment account com-

ponent X3 exercised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

4.6 Evolution of Strategy 2 for one particular scenario, in the case where in-

terest rates are constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.6 Evolution of Strategy 2 for one particular scenario, in the case where in-

terest rates are constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

4.7 The hedging losses of 25 scenarios for Strategy 2, based on annual re-

balancing and negligible transaction costs, generated by each of the three

common simulations, for the cases where N = 100, 200, 300. The scenarios

are independent of each other. . . . . . . . . . . . . . . . . . . . . . . . . . 259

xxiii



Chapter 1

Introduction

This thesis investigates the valuation and financial risk management of the guaranteed

minimum income benefit (GMIB). A GMIB is an option that can be embedded in a de-

ferred variable annuity. This option usually has a term to expiry of at least 10 years. The

GMIB is attractive because, for policyholders who plan to annuitize, it offers protection

against poor market performance during the accumulation phase, and adverse interest rate

experience at annuitization. The GMIB also provides an upside equity guarantee that re-

sembles the benefit provided by a lookback option, which allows policyholders to benefit

from strong market performance during the accumulation phase, which subsequently de-

teriorates before maturity. Furthermore, in the case where a GMIB is embedded in a

life annuity, the GMIB helps protect against individual longevity risk by guaranteeing

a minimum annuity payment rate at annuitization (which may be higher than the fair

annuity payment rate at annuitization, if mortality improves significantly more than ex-

pected during the accumulation phase). These features make the GMIB an interesting

option to price, and a very challenging option to hedge.

In the context of this thesis, financial risk management involves understanding the risks

associated with selling the GMIB, how the risks can be mitigated or controlled, and de-

vising feasible hedging strategies for the GMIB. While this thesis focuses on the GMIB as

a case study, the valuation and financial risk management methods we use are extendable

to other types of long term options with similar features. One of the aims of this thesis is

to be practitioner friendly. The methods are dependent on Monte Carlo simulation, which
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is flexible, and widely used in practice by practitioners for analyzing complex financial

problems. Understanding the risks involved in providing a complex financial guarantee,

and how they can be managed, are the cornerstones to financial risk management. Hope-

fully, some readers will be able to adopt the methods we employ as templates for their

own financial problems, making appropriate adjustments as necessary on a case by case

basis. We present decompositions of the risks of the GMIB, quantitatively and visually,

in order to understand how the risks affect the value of the option and the performance

of the hedging strategies. Analogous decompositions may be possible for other long term

options.

The structure of Chapter 1 is as follows. In Section 1.1, we discuss the range of popular

variable annuity options offered in the U.S. variable annuity market. Section 1.2 discusses

the motivation for this thesis. In Section 1.3, we define the maturity value of a variable

option with an embedded GMIB option, and discuss the assumptions adopted in order

to make the pricing and risk management of the GMIB a manageable task. To give the

reader an intuitive understanding of how the GMIB operates, in Section 1.4, we show

how the GMIB maturity value behaves for five distinct plausible hypothetical scenarios.

Section 1.5 presents the contributions of this thesis concisely. Section 1.6 outlines the

structure of this thesis.

1.1 Variable annuity options

With a deferred variable annuity policy, the policyholder pays a large upfront (annuity)

premium to the insurance company, which is then invested in the financial markets for

many years (the accumulation phase). During the accumulation phase the policyholder

may make partial withdrawals or pay further premiums. The accumulation phase ends

when the policyholder decides to either receive the balance of their investment account as

a lump sum benefit, or annuitize their investment to provide retirement income. We refer

to the time point at which this occurs, which is random and depends on the policyholder’s

behavior, as the maturity date.

A deferred variable annuity (frequently simply referred to as a “variable annuity”, and
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thus we henceforth omit “deferred”) is one form of investment before retirement. There

are tax incentives available in the U.S. if retirement income is received from a variable

annuity. In particular, investment gains are tax deferred until the funds are withdrawn or

annuity payments are received. In the late 1990s, U.S. insurance companies started selling

variable annuities with options that could be embedded for additional fees. These options

offered guaranteed living benefits and/or guaranteed death benefits. They were designed

to increase the attractiveness of variable annuities to potential buyers; variable annuities

are sold, not bought. These options have proven to be very popular, as demonstrated by

the increase in demand for variable annuities since they were first introduced. In Figure

1.1, the left panel displays U.S. variable annuity assets by year, and the right panel dis-

plays U.S. variable annuity sales by year.1 Both assets and sales increased significantly

from 2002 to 2007. However, both assets and sales slumped when the global financial

crisis struck in late 2007.
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Figure 1.1: The left (right) panel displays U.S. variable annuity assets (sales), measured in $ billions,
for the period 1998-2009.

Common variable annuity options in the U.S. market today include (different insurers

may use different names for each option):

• The Guaranteed Minimum Death Benefit (GMDB). Most variable annuity

issuers guarantee that if the policyholder dies during the accumulation phase, the

1Data sources: “Sales of fixed and variable annuities”, Insurance Information Institute,
URL: www.iii.org/media/facts/statsbyissue/annuities , and
“Responding to the variable annuity crisis”, McKinsey and Company,
URL: www.mckinsey.com/clientservice/financialservices/pdf/Responding to the Variable Annuity Crisis.pdf
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policyholder’s beneficiaries will receive the total premiums invested (less any with-

drawals). The GMDB increases the value of the death benefit. A common death

benefit may be the greater of the investment account value at the date of death

and either of the following benefits (sometimes the GMDB may include both of the

following benefits):

1. The value of the premium(s) invested at a rate of r per year (r = 5% is common)

until either the date of death or the policyholder reaches some threshold age x

(x is typically somewhere between 80 and 90); or

2. The highest investment account value over all of the policy anniversaries up

until either the date of death or the policyholder reaches some threshold age

x.

• The Guaranteed Minimum Maturity Benefit (GMMB). This option provides

a guaranteed minimum lump sum at the end of the accumulation phase. The exact

form of the GMMB varies among issuers. Typically the minimum maturity date

must be at least 10 years. One version of the GMMB guarantees that the minimum

lump sum received by the policyholder is the greater of either:

1. A return of the initial investment; or

2. The maximum investment account value on prespecified policy anniversaries

during the accumulation phase.

• The Guaranteed Minimum Withdrawal Benefit (GMWB). This option is

designed for policyholders who need to make periodic withdrawals (for example,

monthly or annually) from their investment, but want a guarantee that they can

withdraw at a minimum the total value of the premiums they invested, regardless

of poor market performance. Depending on the particular insurer, the policyholder

can typically withdraw a maximum of 5-10% of the total value of the premiums

they invested, per year without penalty. The policyholder is guaranteed to be able

to withdraw the total value of their premiums. After the guaranteed total amount

(of the premiums) has been withdrawn, any further withdrawals depend on the

remaining balance of the investment account.

• The Guaranteed Lifetime Withdrawal Benefit (GLWB). This option is rel-

atively new, introduced to the market a few years ago. It is similar to the GMWB
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except that the guaranteed withdrawals are paid for life, regardless of whether the

investment account value reaches 0, and withdrawal payment rates are lower. The

withdrawals cease when the policyholder dies. The guaranteed annual withdrawal

amount is typically 4-7% of the total withdrawal base. The value of the total with-

drawal base is determined at the time of the first withdrawal. The total withdrawal

base is usually the greater of:

1. The value of the premium(s) accumulated at a compound rate of r per year (r

is usually between 4-6%) for a maximum of 10 years, with the compounding

period stopping on the date of the first withdrawal (if the first withdrawal date

is less than 10 years from inception); or

2. The highest investment account value over all of the policy anniversaries be-

tween time 0 and the first withdrawal date.

• The Guaranteed Minimum Income Benefit (GMIB). The benefits provided

by this option are described in detail in Section 1.3.

Variable annuity options transfer the risks associated with investing in the financial mar-

kets from the policyholder to the insurance company. The insurance company does not

charge an upfront premium for these options, as is traditionally the case for options

traded in financial markets. Rather, periodic fees are charged by the insurance company

for each option included in a variable annuity policy, during the accumulation phase. In

practice, the insurance company makes a profit at the expiry date of the option if the

value of the benefits provided by the option are less than the accumulated value of the

fees earned (including returns on fee cash flows reinvested by the insurer). The URL

www.annuityFYI.com provides a frequently updated list of the most competitive variable

annuity options sold by U.S. insurance companies, describing in detail the exact benefits

provided by the options of each of the sellers, and the fee rates charged.

Publicly available data on variable annuity options in the U.S. is difficult to obtain.

However, the consulting firm Milliman periodically publishes surveys on the dynamics of

the U.S. guaranteed living benefit market. Table 1.1 summarizes the relative popularity

of the guaranteed living benefit options based on the 2008 Milliman survey (the table

is reproduced from Saip (2009)). Twenty one insurance companies participated in the
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2008 survey, 13 of whom were ranked in the top 20 based on new variable annuity sales

(according to Morningstar, Inc.’s The VARDS Report), representing over 41% of total

variable annuity sales for the first half of 2008. The first column of Table 1.1 displays

the approximate percentage of insurers that offered each option in the first half of 2008.

The remaining columns show the average proportion of policyholders electing each option

when the insurer offers the option. Since 2005, the GLWB is the only option which has

increased in popularity in each year. The popularity of GMIB declined between 2004 to

2008, although several insurers reported maintaining strong election rates.

Option election rate
Option offered by First half

Option insurer in 2008 2004 2005 2006 2007 2008
GMAB with GMWB or GLWB 30% 58% 63% 63% 37% 28%

GMIB 70% 49% 42% 36% 28% 25%
GLWB 90% 51% 21% 38% 47% 57%
GMWB 70% 25% 19% 23% 19% 14%

Combination GMWB/GLWB 95% N/A 58% 51% 41% 37%
GMAB 85% 21% 16% 12% 11% 10%

Table 1.1: Average proportion of U.S. variable annuity buyers electing each guaranteed living benefit
option when the insurer offers the option.

There are some practical details related to variable annuity investments that are worth

mentioning. Each insurance company selling these variable annuity options has specific

rules and restrictions on how the policyholder may split the balance of their investment

into sub-accounts, related to different fund managers with different risk/return profiles

and investment styles. The specifics of these restrictions can be found in variable annuity

prospectuses.2 Invariably these rules are designed to help limit the insurer’s exposure

to the risks associated with the variable annuity options. In particular, they limit the

overall volatility of the investment account returns (which affects the values of the variable

annuity options). Notable rules include:

• Insurance companies typically require that at least x% of the investment account

balance be invested in fixed income portfolios (for example, two large players in

the U.S. market set a minimum of 30%). This is often not in the best interests of

the policyholder. In the case of the GMIB, we show that it is in the policyholder’s

2Examples include (as at November 2010) the AXA Equitable (U.S.) Accumulator Series Annuity
Prospectus, and the Metlife Class A Variable Annuity Prospectus.
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interest to maximize the account volatility if they want to maximize the option value

(see Section 2.4.1).

• The range of fund managers the policyholder can choose to invest with is chosen

by the insurance company. Some of the fund managers are in-house to the insurer,

while others are external managers. Outsourcing of funds management avoids the

possibility of perverse incentives for the insurer acting as fund manager.

• One representative major insurance company’s prospectus specifically states that

at any time it has the right to limit or terminate the policyholder’s contributions

and allocations to any of the fund managers, and to limit the number of fund

managers the policyholder may select. In effect, these rules mean that the insurer

has additional control over the investment account volatility.

Although the impact of these rules on the variable annuity option values is difficult to

quantify, it is important to be aware of their existence. We approximate the real life

situation of investing in many sub-accounts by simply modeling the overall policyholder’s

investment account balance.

The insurer also typically gives itself certain rights in the variable annuity contract regard-

ing additional premiums. There may also be maximum limits on premium contributions

(e.g. $1.5 million), and after the initial premium is invested, the insurer can refuse to ac-

cept any additional (typically smaller) premiums at later dates. These rights may protect

the insurer in certain situations. For example, if returns on most assets are poor for an

extended period of time, the policyholder may have the incentive to invest further pre-

miums to take advantage of the guarantees provided by the variable annuity options, at

the expense of the insurer (in particular, the guaranteed return component of the GMIB

option, which we describe later in this chapter, could be exploited).

1.2 Motivation for this thesis

As the U.S. variable annuity market is highly competitive, each company tries to dif-

ferentiate itself from its competitors by making its guarantees appear more attractive,
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and often more valuable. Furthermore, each company does not want to charge unmar-

ketable fee rates for their guarantees. As a consequence, insurance companies may not

be properly pricing the guarantees, or accurately assessing the risks involved with the

guarantees. It can be particularly dangerous if the insurance company offers seemingly

“cheap” teaser guarantees to attract more business, without actually considering proper

risk management of the guarantee, particularly in the product design phase. Waiting until

the guarantee approaches maturity deep in-the-money, before implementing an effective

hedging program for the guarantee, can be very costly and financially dangerous.

History has demonstrated that the consequences of an insurance company mismanaging

guarantees that it offers with its products can be fatal. The failure of Equitable Life

Assurance Society in 2000, the oldest mutual insurer in the U.K., provides a very sober-

ing example. For many decades, Equitable Life sold retirement savings products which

included guaranteed annuitization options (GAOs). GAOs guaranteed the policyholder

that they could convert their retirement investment into an annuity at a guaranteed mini-

mum payment rate. When interest rates are high, GAOs are out-of-the-money. It is when

interest rates are low that GAOs become valuable. GAOs were popular in retirement

savings products issued in the 1970s and 1980s. During that period long term interest

rates reached very high levels (ranging between 8-17%). Actuaries valuing the GAOs

apparently believed that interest rates would remain high, in which case the GAOs would

not be exercised. However, in the 1990s, with inflation now hovering at low levels, inter-

est rates fell to historically low levels of 4-6%. The GAOs were now deep in the money,

and policyholders who had been saving for decades were starting to annuitize their in-

vestments. The liabilities generated by the GAOs were significantly underestimated and

inadequately reserved for, which ultimately led to the downfall of Equitable Life. U.S.

insurance companies selling variable annuity options would be wise to learn from the mis-

takes of Equitable Life and other U.K. life insurance companies.

At the end of the fourth quarter of 2009, U.S. variable annuity assets totalled $1.4 tril-

lion, and in 2009 total sales were $127 billion. According to the 2008 Milliman Survey of

the U.S. guaranteed living benefit market, 96% of variable annuities offered include some

form of guaranteed living benefit option. Clearly, understanding the risks associated with

variable annuity guarantees is of significant financial importance. There is growing field of
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research on the valuation and hedging of variable annuity options. Ledlie et al. (2008) pro-

vide a detailed overview of the variable annuity options offered in each the major markets

around the world. Several authors have priced the popular GMWB ((Chen et al., 2008),

(Chen and Forsyth, 2008), (Dai et al., 2008)), some suggesting that insurance companies

may be underpricing this guarantee (Milevsky and Salisbury, 2006). Liu (2010) finds that

basic forms of GMWBs are priced correctly by the market, and explores the effectiveness

of semi-static hedging strategies for GMWBs. Liu finds that semi-static hedging strate-

gies are at least as effective, if not better, than a delta-hedging strategy. Bauer et al.

(2008) propose a universal pricing framework for guaranteed minimum benefits in vari-

able annuities, presenting numerical results for the GMxBs (GMDB, GMAB, GMWB and

GMIB), all based on a model in which the investment account is modeled as a geometric

Brownian motion. Benhamou and Gauthier (2009) employ stochastic interest rate and

stochastic (equity) volatility models to price GMxBs, finding that the fair fee rates for

GMxBs are higher in their models than those obtained using simpler constant volatility

models. Literature on the pricing of GMDBs includes Milevsky and Posner (2001), Ulm

(2010) and Belanger et al. (2009). Piscopo and Haberman (2011) prices the GLWB in a

no-arbitrage model, with a particular emphasis on measuring the sensitivity of the option

to mortality risk.

Currently, there does not seem to be much in the academic literature on the valuation and

risk management of GMIBs. The GAO in the U.K. has some features that are similar to

a GMIB; namely a guaranteed minimum annuity payment rate. Boyle and Hardy (2003)

obtain an analytical pricing formula for the GAO using a one factor interest rate model.

They also discuss in detail the feasibility of hedging the three major types of risks in

GAOs, namely equity, interest rate and mortality risks, which are the same risk factors

for the GMIB. Pelsser (2003) derives a formula for the value of a GAO as a portfolio

of long-dated receiver swaptions. The swaptions are shown to be effective instruments

for managing the interest rate risk of GAOs. However, as pointed out by Boyle and

Hardy (2003), the swaption pricing approach does not deal with the equity or longevity

risks. Wilkie et al. (2003) and Hardy (2003) investigate the actuarial approach for the

risk management of GAOs, which involves measuring the quantile and conditional tail

expectation reserves required, based on projections of the real world GAO liability distri-

butions. They also explore the feasibility of dynamically hedging the GAO. In the case of
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dynamic hedging, Wilkie et al. stress that it is important to empirically test how well the

hedging strategy might perform, taking into account transaction costs and model risks.

Furthermore, Wilkie et al. argue that contingency reserves need to be set up to allow for

all probable hedging errors. Ballotta and Haberman (2003) obtain analytical formulae for

the price of a GAO using the one-factor Heath-Jarrow-Morton interest rate term struc-

ture model. Ballotta and Haberman (2006) extend the model of Ballotta and Haberman

(2003) by incorporating a stochastic mortality model. They find that the inclusion of

stochastic mortality may actually lead to a reduction in the price of the GAO. Ruowei

(2007) prices the GAO using the Vasicek and CIR (Cox et al., 1985) (one factor) interest

rate models, estimating each model’s parameters using maximum-likelihood estimation

applied to historical U.S. interest rate data. Van Haastrecht et al. (2009) obtain closed-

form formulas for pricing GAOs using a stochastic equity volatility model. They show

that GAO prices are much higher using a stochastic volatility model in comparison to us-

ing a constant volatility model, particularly for GAOs with out of the money strike prices.

Although GAOs resemble GMIBs through the guaranteed minimum annuity payment

rate, the equity risk associated with GMIBs is much more complicated than with GAOs.

Specifically, the GMIB is based on annuitizing an amount of funds equal to the benefit

base (defined shortly), whereas the GAO is based on (the much simpler situation of)

annuitizing the value of the policyholder’s investment at maturity. Therefore, findings on

GAOs cannot be directly applied to GMIBs. In particular, GAOs are very sensitive to

interest rate risk, but as we show in Chapter 3, for GMIBs the equity risk dominates the

interest rate risk.

This thesis focuses on the valuation and financial risk management of the GMIB, from

the point of view of the insurance company selling the option. Bauer et al. (2008) pro-

vide numerical results relating to the valuation of GMIBs, but the depth of the results

is limited; there are many other questions that can be asked and answered about the

valuation of GMIBs. We are not aware of any comprehensive quantitative research on

hedging GMIBs. Identifying effective methods for hedging GMIBs is at least as important

as pricing GMIBs, and is a much more challenging task. It is hoped that this thesis will

provide some useful insights about the GMIB option.
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1.3 The GMIB maturity value

We refer to the issuance date of a variable annuity with an embedded GMIB option as

time 0. We refer to the time point at which the policyholder decides to annuitize or

receive a lump sum benefit as the maturity date, or time T . We assume T is a positive

integer (the maturity date is on a policy anniversary). This is a reasonable assumption as

some insurance companies state that the policyholder may only choose to exercise their

GMIB option within the 30 days following each policy anniversary (a penalty fee may

occur if they wish to annuitize at other points within the year). The insurance company

requires that the policyholder invest their funds for a certain period of time, called the

waiting period, before they can exercise the GMIB option (annuitizing beforehand forfeits

the GMIB option). The most common waiting period is 10 years. The insurance com-

pany recovers the cost of the GMIB by deducting fees periodically from the policyholder’s

investment account. We assume the fees are paid annually on each policy anniversary,

which is a common practice for the GMIB option.

In this section, we first define the generalized form of the maturity value of a variable

annuity with an embedded GMIB option. Next, we define a special case of the maturity

value. The special case is the maturity value of a 20 year term certain annuity with an

embedded GMIB option. It is a function of the key financial variables – equity returns

and interest rates – but not mortality. We use the special case to price the GMIB in

Chapter 2. Then in Chapters 3 and 4, we use the special case as the ultimate hedging

target for the hedging strategies we explore.

1.3.1 Generalized form of the GMIB maturity value

At maturity a variable annuity with an embedded GMIB option gives the policyholder

the following choices:

1. Annuitize the accumulated value of the investment account at annuity payment

rates offered by the insurer at maturity.

2. Take the accumulated value of the investment account as a lump sum. The policy-

holder might buy an immediate annuity from a different insurer with this sum, if
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the annuity payment rates offered are more favorable.

3. Annuitize a guaranteed amount of funds at a guaranteed payment rate of g per year.

It is usually optimal to choose Choice 1 or Choice 2 when investment performance is

strong during the accumulation phase, or interest rates are high at maturity. It is usually

optimal to choose Choice 3 when investment performance is poor during the accumulation

phase and/or interest rates are low at maturity.3 Choices 1 and 2 have the same financial

value. They correspond to the policyholder receiving the investment account value at

maturity.

The benefits provided by the GMIB option vary slightly between insurance companies,

but the core benefits are essentially the same for each company. Based on publicly avail-

able information about GMIBs sold by major insurance companies in the U.S. market

(www.annuityFYI.com), the generalized form of the maturity value of a variable annuity

with an embedded GMIB option is

Z(T ) = max

{
B(T )g

∞∑
j=T

%(j)P (T, j)p(j), A(T )

}
, (1.1)

where:

• A(T ) is the value of the policyholder’s investment account at time T , after deducting

the option fee for the T -th policy year.

• B(T ) is the value at time T of the benefit base of the GMIB, defined as

B(T ) = max{A(0)(1 + rg)
T , max

n=1,2,...,T
A(n−)} (1.2)

where A(0) is equal to the policyholder’s initially investment at time 0 (the annuity

premium), A(n−) is the value of the investment account on the n-th policy anniver-

3The guaranteed payment rate g provides a minimum payment rate that protects against low interest
rates at maturity. Low interest rates at time T mean the market values of annuities at time T will be
higher, and hence the immediate annuity payment rates (which, if fairly priced, are roughly equal to the
inverses of the market values of annuities with annual payments of $1 per year) offered by insurers will
be lower.
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sary, just before the fee for the n-th policy year is deducted, and rg is a guaranteed

annual rate, which is typically set somewhere in the range of 4-6% per annum.

• g is the guaranteed annual annuity payment rate at time j, specified by the insurance

company at time 0. It is set conservatively by the insurer with respect to future

mortality and interest rate assumptions.

• %(j) is an inflation adjustment factor applied to g in year j > T . Generally %(j) = 1

for all j. However, the underlying annuity may allow payments to increase with by

say x% per year to help adjust for inflation, in which case %(j) > 1 for j > T .

• P (T, j) is the price at time T of a zero coupon bond maturing at time j > T with

unit face value. Note that P (T, T ) = 1. The term structure of interest rates at time

T is described by the function {P (T, j), j > T}, which is assumed to be known at

time T .

• p(j) is the probability that an annuity payment is made at time j. For example,

if the variable annuity is an M year term certain annuity and a for life annuity

thereafter, then {p(j) = 1, j = T, T + 1, . . . , T + M − 1}, and {p(j), j > T + M}
will depend on future mortality/longevity assumptions.

The values of {f(j)}, {P (T, j)}, {p(j)}, all depend on what kind of variable annuity is

elected by the policyholder at time 0. The variable annuity may be term certain, a life

annuity, 5 year term certain with payments contingent on survival in each year thereafter,

joint life and last survivor with 10 year certain, et cetera.

Equation (1.2) is also a slight simplification of a typical benefit base. Inevitably, the

insurer imposes age limits on accumulation of the guaranteed benefits. A more formal

expression for the benefit base is

B(T ) = max{A(0)(1 + rg)
min(T,y−x), max

n=1,2,...,min(T,z−x)
A(n−)}

where x is the age of the policyholder at inception, and y, z > x are specific policyholder

ages set arbitrarily by the issuer at the inception of the contract. The actual benefit age

limits for a representative insurer are z = 80 and y = 90. Henceforth, we do not concern
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ourselves with the age limits because we price and hedge the GMIB option over a decade,

and it seems likely that most policyholders will annuitize before their 80th birthday (if

the annuity is one of their main sources of retirement income). However, allowing for the

benefit age limits is important if there are reasons for believing that policyholders will

delay annuitization for an extended period of time.

Equations (1.1) and (1.2) combined illustrate the attractiveness of a GMIB to variable

annuity buyers. If investment returns are strong during the accumulation phase, then

the policyholder is likely to annuitize the sum A(T ) at annuity payment rates offered

by the insurer at maturity. Recall that the guaranteed payment rate g is set conserva-

tively, so the annuity payment rate(s) available at time T are likely to be more favorable.

Alternatively, the policyholder may want to receive the lump sum A(T ). If investment

returns are poor during the accumulation phase, then the policyholder is able to convert

a guaranteed minimum amount of funds – the benefit base B(T ) – into an annuity with

payments of B(T )g per year. The benefit base provides a guaranteed return of rg per year

on the inital investment. As of 2010, the most competitive GMIB sellers are offering a

guaranteed return of 5% per year. The benefit base also provides the right to receive the

maximum value of the investment account on any previous policy anniversary, giving the

policyholder the opportunity to lock in gains when investment returns are strong during

the accumulation phase. However, these gains will be slightly penalized by the conserva-

tive value of g set by the insurance company at time 0 (g is not set equal to its fair value

at time 0, based on future interest rate and mortality assumptions used at time 0).

Equation (1.1) makes the following assumptions:

• The policyholder pays a single premium at time 0 and does not make any cash

withdrawals before time T . In practice, the policyholder is usually able to pay

additional premiums (usually up to a total investment limit of say $2 million),

which may be covered by the GMIB option after these funds have been invested for

at least the waiting periods beginning from the point at which they are invested.

The policyholder is also usually able to make withdrawals of up to a maximum pre-

specified percentage of the benefit base each year without paying withdrawal penalty

charges (any withdrawals also reduce the value of the benefit base). As noted in
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Ledlie et al. (2008), the majority of variable annuity business in the U.S. is by single

premium. Therefore assuming there is one single premium seems reasonable.

• In the past (before 2009), to attract large annuity premiums from policyholders,

some variable annuity sellers credited a bonus of say 1-5% on the initial premium π

to the investment account at time 0. Specifically, this means A(0) = bπ, where b is

in the range of 1.01-1.05. We simply assume b = 1.

• The policyholder does not lapse or die before time T . In the context of this thesis, by

lapsing we mean that the policyholder cancels their variable annuity policy at some

point during the accumulation phase, and receives back the value of their investment,

subject to any penalty fees charged by the insurer. If a policyholder does lapse

during the waiting period, then the GMIB option is forfeited, and the insurance

company keeps all the GMIB fees earned. Assuming no possibility of lapsing is

a strong assumption, partly because the policyholder may need to withdraw their

invested funds for some unforeseen reason (which may or may not be related to the

prevailing economic conditions) at some point during the waiting period which is

usually 10 years. Allowing for lapses will reduce the GMIB price. However, lapses

are notoriously difficult to predict, as there is little data, and because they tend to

be correlated to the prevailing economic conditions. Notwithstanding, in Section

2.6, we explore the impact of a constant annual lapse rate on the GMIB price.

• Some companies include “step-up” options in their GMIB contracts. The step-up

option allows the policyholder to adjust upwards the guaranteed return component

of the benefit base, on a prespecified set of policy anniversaries, if investment perfor-

mance is strong. For example, suppose the GMIB contract grants the policyholder

a step-up option at time m. If A(m) > A(0)(1 + rg)
m, then the policyholder can

step-up the benefit base at time m, such that at time T

B(T ) = max{A(m)(1 + rg)
T−m, max

n=1,2,...,T
A(n−)}.

However, there are drawbacks to exercising the step-up options. First, the waiting

period is restarted. Second, some insurers give themselves the right to revise the

GMIB option fee upwards to the fee rate applicable to new policies at the time

of exercise, up to a prespecified maximum rate (the maximum fee rate for one
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representative insurer is 1.5% per year). It is noted that usually no step-up options

are offered once the policyholder reaches age 80. The additional complexity of

the step-up option is not considered in this thesis, but such a feature only further

increases the value of the GMIB option.

• We ignore the impact of ongoing expenses associated with the variable annuity

policy.

• Annuity payments are often monthly, or quarterly, but we assume payments occur

annually in advance. Varying the payment assumption will not lead to a significant

difference in the GMIB price.

First half
2004 2005 2006 2007 2008

Average % of in-force GMIB policies beyond the waiting period 0% 4% 19% 23% 22%
Average % of in-force GMIB policies beyond the waiting period

where the GMIB was in-the-money N/A 72% 64% 72% 65%
Average % of in-force GMIB policies beyond the waiting period
that began income payments in the following calendar period N/A 4% 6% 5% 2%

Table 1.2: U.S. industry statistics for GMIBs in-force beyond the minimum waiting period.

Saip (2009) reports some U.S. industry statistics for GMIBs in-force beyond the minimum

waiting period, based on the 2008 Milliman survey of guaranteed living benefit options,

which are reproduced in Table 1.2. Recall that these statistics are based on the experience

of 21 U.S. insurers (see Section 1.1 for the survey details). The first year for which there

were variable annuity policies with GMIBs that had been in-force for more than the

minimum waiting period was 2005. As shown in Table 1.2, the average percentage of

in-force policies beyond the waiting period grew from 3.7% in 2005 to 21.7% in the first

half of 2008. For in-force policies beyond the waiting period in each year between 2005

and 2008, the GMIB option is in-the-money at least 60% of the time, on average. The

percentage of in-force policies beyond the waiting period that annuitized in the following

calendar period, as shown in the bottom portion of Table 1.2, is quite small. The low

annuitization rates suggest that:

• Most policyholders are not experiencing personal cash flow pressures during the

waiting period and therefore do not need to annuitize as soon as the waiting period

expires. Moreover, many policyholders may take the view that they will not annu-

itize until they actually need the annuity income stream. In other words, they are
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drawing down on other savings and selling significant personal assets, before turning

to their variable annuity for income in their older ages.

• Many policyholders may be relatively young when they buy variable annuity policies

with a GMIB, and the accumulation phase may be quite long. For example, a 40

year old who buys a variable annuity is unlikely to annuitize until they are at least

age 65.

The low annuitization rates also indicate that the insurer is exposed to significant model

risk related to policyholder exercise behavior. The time of exercise of the GMIB option

is at the policyholder’s discretion. The accumulation phase could end up being say 20-30

years. The insurer must ensure that it has sufficient funds to meet annuity payments going

forward when the policyholder chooses to annuitize. From the insurer’s perspective, the

“random” exercise time could turn into a big problem in some situations. For example,

consider an insurer which has a large group of policies with GMIBs, and say 80% of the

policyholders decide to annuitize in a particular year due to an economic crisis. If the

insurer has not adequately hedged the GMIBs and they are in-the-money, it exposed to

the risk of cash flow shortages in the short term, as it must meet the annuity payments in

each year henceforth, and the risk of bankruptcy in the long term if the GMIBs are deep

in-the-money. For the more popular GMWB and GLWBs, policyholder behavior is much

more easily modeled and projected. This is because the insurer can influence policyholder

behavior by imposing penalty charges if the policyholder wants to withdraw more than

the maximum guaranteed annual withdrawal amount in each year. The unknown exercise

date of the GMIB is one reason why the GMIB is less popular among variable annuity

sellers today. With the GMWB and GLWBs, the insurer has a much better idea about

policyholder behavior.

1.3.2 GMIB maturity value using a term certain annuity

In Chapters 2, 3 and 4, we study the GMIB assuming that, if the option is exercised, the

type of the underlying annuity is a 20 year term certain annuity with annual payments in

advance. The justification for using a 20 year term certain annuity is discussed in Section

2.2. In short, this assumption is adopted in order to simplify the analysis without de-

tracting much from the practical usefulness of the results. However, we are not suggesting
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that longevity/mortality risk is an unimportant consideration in the valuation of GMIBs.

Many policyholders will choose a life-related annuity, and so measuring longevity risk is

an important part of the overall picture. Modeling mortality risk is outside of the scope

of this thesis, but it is a potentially fruitful research topic in itself.

The maturity value of a variable annuity with an embedded GMIB option given by equa-

tion (1.1) simplifies to

Y (T ) = max {B(T )gä20 (T ), A(T )} , (1.3)

where B(T ) is still defined by equation (1.2), and ä20 (T ) is the market value of a 20 year

term certain annuity at time T . In addition to the assumptions listed in Section 1.3.1

for the generalized maturity value, we adopt another assumption relating to the maturity

date T . The GMIB cannot be exercised until the policy has been in-force for longer than

the waiting period. In most cases the waiting period is 10 years from inception. Beyond

the waiting period, the policyholder may be able to exercise the GMIB at any time, or

there may be restrictions such as exercise is allowed within the 30 days following each

policy anniversary; the option is American or Bermudan. The maturity date T > 10 is

a random variable that is dependent on policyholder behavior which may or may not be

influenced by the prevailing economic conditions. Moreover, there is very little data avail-

able on GMIB exercise behavior. As shown in Table 1.2, data is only available from 2005

onwards. Boyle and Hardy (2003) assume there are 10 years to maturity when valuing

the guaranteed annuity options, which have features that are similar to GMIBs. In this

thesis, we assume the maturity date is fixed at the 10-th policy anniversary, T = 10.4

It is noted that in Section 2.4.4, we briefly explore the sensitivity of the GMIB price to

different values of T .

Several important, but perhaps not so obvious, points regarding the GMIB option include:

• The value of g, which is set by the insurance company at the outset, has a large

influence on the value of the GMIB.

4In passing we note that the investigation of the optimal maturity date, in terms of maximizing the
the GMIB maturity value with respect to the financial variables, could be an interesting topic for future
research.
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• The benefit base B(T ) is only used for calculating the guaranteed minimum annuity

payments, and cannot be withdrawn as a cash lump sum.

• At time T , even if B(T ) > A(T ), the policyholder may still be better off taking

the lump sum A(T ) rather than exercising the GMIB option, because insurance

companies explicitly state in their variable annuity prospectuses that they set g

conservatively with respect to future mortality and interest rate assumptions. In

other words, it would be expected that gä20 (T ) < 1 at time T .

The maturity value of a variable annuity with an embedded GMIB is the maximum of

three components:

Y (T ) = max(X1, X2, X3) (1.4)

where

X1 = max
n=1,...,T

A(n−)gä20 (T ), X2 = A(0)(1 + rg)
Tgä20 (T ), X3 = A(T ). (1.5)

Throughout this thesis we refer to Y (T ) as the GMIB maturity value (although strictly

speaking Y (T ) is the value of a variable annuity with an embedded GMIB option at time

T ), X1 as the lookback component, X2 as the guaranteed return component and X3 as the

investment account component. When we say that a particular component is exercised,

we mean that it has the highest value among all three components at maturity, and it is

optimal for the policyholder to receive the benefit provided by this component at maturity.

The lookback and guaranteed return components appear in slightly modified forms in

some of the other variable annuity options discussed in Section 1.1. Therefore, our find-

ings in Chapters 2, 3 and 4, on the pricing and hedging of these components may provide

useful information for the financial risk management of other variable annuity options

which include similar types of components. It is noted that the payoff of a GAO forms a

subset of the event defined by X1. The GAO payoff is given by A(T−)gä20 (T ) (ignoring

the complication of whether the fee deduction at time T should be allowed for).

As previously mentioned, in Chapter 2, we price the GMIB option based on equation
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(1.3). In Chapter 3, we measure the effectiveness of static hedges, where we attempt

to hedge the value as given by equation (1.3). In Chapter 4, we use equation (1.3) in

the development of the hedging targets for the semi-static hedging strategies. Although

equation (1.3) is a special case of the value of a variable annuity with an embedded GMIB,

the results we illustrate using this equation provide useful insights into the valuation and

risk management of the GMIB with respect to the financial variables that drive it. These

insights will still apply when the underlying annuity is life-related (more complex).

1.4 Hypothetical scenarios

As noted in Section 1.3.2, our focus is on valuing and hedging the GMIB option ignor-

ing longevity risk. Therefore the factors driving the GMIB value are investment account

(equity) returns during the accumulation phase, and the term structure of interest rates

at maturity. In this section, we show how the GMIB maturity value behaves for five

distinct plausible hypothetical scenarios. We do this in order to give the reader an intu-

itive feeling for how the GMIB maturity value varies with equity returns and interest rates.

Figure 1.2 displays the assumed evolution of the investment account during the accu-

mulation phase for each scenario, and Table 1.3 shows the numerical results, using the

notation of equations (1.4) and (1.5). To keep things simple, we assume the term structure

of interest rates is a flat curve at maturity. We let r denote the annually compounded

interest rate at maturity, which varies by scenario (r drives the value of ä20 (T )). In all

of these hypothetical scenarios, we assume g = 6.5% and rg = 5%. Scenarios 1 and 2 use

the actual evolution of the total returns for the S&P 500 index over the decade starting

January 1 2000 and ending 1 January 2010, but assume different interest rates of 5% and

10% respectively. Scenario 3 assumes there is a bull market that persists to maturity,

with the interest rate set at the plausible level of 7% to curb any inflationary pressures.

Scenario 4 assumes there is an equity bubble which bursts at the end of year 3, and there-

after a bear market persists for many years. To stimulate growth, the interest rate is set

at a very low level of 2%. Scenario 5 describes the situation where equity markets remain

relatively stable, with interest rates set at 5%.
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In scenarios 1 and 2 the guaranteed return component X2 is exercised due to poor equity

performance. These scenarios show how sensitive the lookback and guaranteed return

components, X1 and X2, are to changes in the level of interest rates at maturity. In

Scenario 3 it is optimal for the policyholder to receive the proceeds of the investment

account (X3 is exercised). The GMIB option is not exercised. Scenario 4 illustrates a

situation where the GMIB option is very valuable to the policyholder. This scenario

reflects a “perfect storm” for the GMIB liability. The GMIB locks in the gains of bull

market, the stock market crashes and does not recover by the maturity date, and interest

rates are very low at maturity. The lookback component is exercised. Scenario 4 loosely

reflects the situation for GMIBs sold a few years before the global financial crisis. Scenario

5 demonstrates the point discussed in Section 1.3.1 that B(T ) > A(T ) does not always

imply that the GMIB option is exercised. In Scenario 5 it is optimal to exercise the

investment account component since B(T )gä20 (T ) < A(T ), when g = 6.5%.
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Figure 1.2: Hypothetical scenarios for the evolution of the investment account during the accumulation
phase.

maxn=1,...,T A(n−) A(T ) B(T ) int. rate r X1 X2 X3 Y (T )
1150 900 1629 5% 978 1385 900 1385
1150 900 1629 10% 700 992 900 992
3000 3000 3000 7% 2210 1200 3000 3000
2000 650 2000 2% 2168 1766 650 2168
1450 1450 1629 5% 1233 1385 1450 1450

Table 1.3: Analysis of the GMIB maturity value Y (T ) for the hypothetical scenarios, assuming g = 6.5%
and rg = 5%.
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1.5 Contributions of this thesis

This thesis makes the following contributions:

1. We present a valuation method for the GMIB. Furthermore, an analysis of the GMIB

option design is conducted.

2. We present a method for constructing static hedging strategies for a GMIB. A

hedging portfolio is set up at time 0 and held until maturity, with the aim of

minimizing the loss to the insurer at maturity.

3. We present a method for designing and testing a semi-static hedging strategy, where

the hedging portfolio is rebalanced at particular time intervals.

We illustrate the results of each method under reasonable model (and parameter) assump-

tions. This thesis aims to be practical in nature. The results elucidate the importance of

careful policy design for complex options with very long expiration dates. We focus on

the GMIB option as a particular case study. However, practitioners designing and selling

long-dated options may find the methods presented in this thesis useful for the financial

risk management of the options they are dealing with.

1.6 Outline of this thesis

In Chapter 2, we value the GMIB, and determine the fair fee rate for the option. The

factors influencing the value of the GMIB are investment account (equity) returns, inter-

est rates and mortality. We focus on the sensitivity of the GMIB value to the financial

variables. Mortality is not incorporated into the valuation. We present a comprehensive

sensitivity analysis of the model employed. We decompose the value of the GMIB at

the maturity date, which is rather complicated, to analyze what drives the value of a

GMIB. Our approach offers a simple but effective way for insurers to measure the value

of the GMIBs they offer, and provides some insights into the risk management of GMIBs

and other guarantees that provide similar payoffs. Our model suggests that the fee rates

charged by insurance companies for the GMIB option may be too low.
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In Chapter 3, we measure the effectiveness of static hedging strategies for the GMIB. Us-

ing Monte Carlo simulation, the effectiveness of a static hedging strategy is measured by

the empirical hedging loss distribution, where each hedging loss is defined as the difference

between the GMIB payoff and the hedging portfolio payoff at the maturity date. Hedging

portfolios are constructed by minimizing the Conditional-Tail-Expectation (CTE) of the

hedging loss distribution, or minimizing the mean squared hedging loss (MSHL). The

positions in the hedging portfolio instruments are determined at the outset from solving

either portfolio optimization problem, and are held fixed until the maturity date.

The methods presented in Chapter 3 provide a template for how an insurance company

can develop static hedging strategies for groups of variable annuity policies which include

GMIBs. Our results suggest which instruments are most important to achieve the best

results. Based on the (benchmark) models and assumptions adopted, the performance

of the static hedge for the GMIB is imperfect at best. The hedging portfolios do not

adequately simultaneously hedge the upside and downside equity guarantees provided by

the GMIB. We backtest the performance of static hedging strategies for the period 1997

to 2011. We demonstrate that if the design of the GMIB is simplified, then the static

hedges are more effective.

In Chapter 4, we investigate the performance of semi-static hedging strategies for the

GMIB option. Semi-static strategies involve periodically rebalancing the hedging portfo-

lio at certain time points during the accumulation phase, such that, at the option maturity

date, the hedging portfolio payoff is equal to or exceeds the option value, subject to an

acceptable level of risk. We present a practical method for implementing semi-static

strategies for the GMIB option, which employs nested Monte Carlo simulations and stan-

dard optimization methods. It is noted that this method is versatile, and can be applied

to other types of long-dated options. Several examples, illustrating the effectiveness of

semi-static hedging strategies for the GMIB, are presented. The performances of the

semi-static and static hedging strategies are compared.

Chapter 5 presents our conclusions. We end with suggestions for future research.
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Chapter 2

Valuation of a Guaranteed Minimum

Income Benefit

2.1 Introduction

As mentioned in Section 1.2, there seems to be little in the academic literature on pricing

or hedging GMIBs. Bauer et al. (2008) propose a universal pricing framework for guar-

anteed minimum benefits in variable annuities, presenting numerical results for GMxBs

(including the GMIB), based on a model in which the investment account is modeled as

a geometric Brownian motion. In this chapter, we consider the valuation of the GMIB

in more detail, and focus on the design elements of GMIBs. The model we use for our

valuations is an extension of that in Bauer et al. (2008), as we allow interest rates to

follow a random process. Given that the accumulation phase must exceed a decade as

part of the contract requirements for the GMIB, the stochastic feature of interest rates

has a stronger impact on the GMIB option price. Therefore, incorporating a stochastic

interest rate model seems worthwhile. Bauer et al. also assume the fee rate charged for

the GMIB option is a percentage of the investment account, but the GMIB fee structure

for most U.S. insurers is usually a fixed percentage of the benefit base, rather than the

investment account (the fee structure is defined later by equation (2.2)). In constrast

to Bauer et al., in our valuations we adopt the fee structure commonly used in practice.

Assuming the same fee rate is applied to the investment account and the benefit base,

the fees charged based on the benefit base are always at least as large as those based on
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the investment account. It is noted that Bauer et al. present results on the impact of the

inclusion of a GMDB with a GMIB, whereas we consider the valuation of the GMIB in

isolation. We present a comprehensive sensitivity analysis of our model parameters. We

decompose the maturity value of a variable annuity with an embedded GMIB option, and

measure the contributions to the total value from the lookback and guaranteed return

components (see equation (1.5)). We conclude that GMIBs appear to be underpriced by

insurance companies, which agrees with the existing GMIB pricing results of Bauer et al.

It seems that the fair fee rates we obtain are higher than those reported by Bauer et al.

However, Bauer et al. present the fair fee rates that should be charged for each of the

individual benefit components provided by the GMIB but not for the GMIB as a whole,

whereas we calculate the fair fee rates for the GMIB as a whole.

In this chapter we value the GMIB, and determine the fair fee rate that should be charged,

based on plausible model assumptions. The value of the GMIB is affected by investment

account returns, interest rates and mortality. We focus on the sensitivity of the GMIB

price to the financial variables. Mortality is not incorporated into the valuation. We

present a comprehensive sensitivity analysis of the model employed. The numerical re-

sults presented provide a benchmark for GMIB valuations that use more sophisticated

models and complex assumptions. Since the GMIB maturity value is rather complicated,

we price the individual components of the GMIB to analyze what drives the GMIB price.

The techniques we use to value the GMIB are simple, but they are effective at generating

meaningful information for insurers selling GMIBs (such as whether the fee rates they

are charging for the GMIB in practice make sense in a highly simplified model of reality).

Furthermore, the techniques act as a guide as to things that can be done by insurance

companies when they are valuing and monitoring the risks associated with other complex

options with similar benefits.

The structure of Chapter 2 is as follows. Section 2.2 describes the models we use to price

the GMIB. In Section 2.3, we illustrate the results of this model. Specifically, we calculate

the fair fee rates for GMIBs with different contract parameters. In Section 2.4, we provide

a sensitivity analysis of all of the model parameters. In Section 2.5, the GMIB price is

decomposed, facilitating an understanding of the drivers of its value. In particular, we

measure the contributions of the lookback and guaranteed return components to the total
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GMIB price. Section 2.6 explores the impact of lapses on the GMIB price. In Section

2.7, we measure the differences in the GMIB price when a continuous fee rate, charged as

a percentage of the investment account, is adopted, rather than charging discrete annual

fees that are a percentage of the benefit base. In Section 2.8, we illustrate the impact on

the GMIB fair fee rate when underlying variable annuity charges are included. Section

2.9 discusses an efficient Monte Carlo simulation method for valuing the GMIB. A control

variate for the GMIB is also provided. Section 2.10 gives a summary of the history of

GMIBs sold in the U.S. by the major competitive sellers over the past few years. It seems

that the U.S. industry underpriced this GMIB, and impact of the global financial crisis led

to a wide scale reassessment of the benefits provided by GMIB, and the fee rates charged

for the option. Concluding remarks are given in Section 2.11.

2.2 The valuation model

This section discusses the model used to price the GMIB. The GMIB maturity value that

we price is given by equation (1.3). The valuation depends on the key financial factors

but mortality factors are not incorporated. If we introduced a life related annuity, the

theory for pricing becomes complicated. Currently, there are a few very actively traded

financial instruments which could be used to hedge the longevity risk associated with a

GMIB associated with a life annuity; q-forwards are simple capital market instruments

that might provide a basic hedge against mortality risk. However, it seems highly un-

likely that we would be able to construct a replicating portfolio in practice which consists

of liquid securities. Nevertheless, longevity risk, which is a non-diversifiable risk, is an

important consideration for life annuities. The mortality assumptions employed would be

a key driver of the value of a GMIB associated with a life annuity.

One justification for assuming that the underlying annuity is a 20 year term certain an-

nuity is that at age 65 the life expectancies for males and females in the 2005 U.S. period

life table are 16.7 and 19.5 years respectively (Social Security Online, 2009), and age 65

is a likely retirement age for many variable annuity policyholders. Buying a 20 year term

certain annuity will cover the expected number of payments that a retiree at age 65 will

need for the remainder of their life. Another justification is that the term certain annuity
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is also actually one of the choices of annuity type that a variable annuity policyholder

may choose, where the term may be of 20 to 30 years.

We value the GMIB using the well known no-arbitrage (risk-neutral) pricing approach.

The risk-neutral valuation approach for equity-linked insurance contracts was first pre-

sented in the pioneering work of Boyle and Schwartz (1977). Under this approach, there

exists a self-financing replicating portfolio which generates a payoff at maturity which ex-

actly matches the GMIB maturity value, and we are calculating the price of the replicating

portfolio at time 0.

2.2.1 Models for the financial variables

The policyholder’s investment account is the most important financial variable that must

be modeled. In reality, the policyholder has a choice of splitting their investment among

several fund managers with different risk/reward profiles. As discussed in Section 1.1,

there are often restrictions on the percentage that can be invested with riskier asset

classes (for example, a maximum of 70% of the premium can be invested in equities and

the remaining must be in fixed interest). For simplicity, we assume the policyholder has

requested the insurer to invest their annuity premium in a managed portfolio that offers

returns perfectly matching the returns of a major stock index. Henceforth, we refer to

this portfolio as the stock. Changes in the value of the stock are modeled under the risk-

neutral probability measure, which we denote by Q, by the stochastic differential equation

(SDE)

dS(t) = r(t)S(t)dt+ σSS(t)dWQ
S (t) (2.1)

where S(t) is the stock value at time t, r(t) is the short rate at time t, σS > 0 is the

(annualized) instantaneous volatility of the stock and {WQ
S (t), t ∈ [0, T ]} is a standard

Brownian motion under Q.1

Further notation is introduced in order to define the policyholder’s investment account

process, {A(t), t ∈ [0, T ]}. The insurance company does not receive an option premium

1Some readers might be tempted to refer to the stochastic process defined by equation (2.1) as a
geometric Brownian motion (GBM), but strictly speaking it is not GBM because part of the definition
of GBM is that the (annualized) instantaneous expected return is constant for all t.
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from the policyholder at the outset for providing the GMIB option. Rather, the insurer

deducts a fee from the policyholder’s investment account on each policy anniversary. We

assume A(0) = S(0) = π, where π is the value of the single annuity premium invested by

the policyholder at time 0. After the first fee is deducted, the stock value is always greater

than the investment account value. The size of the fee charged at the end of policy year

n is

f(n) = min{cB(n), A(n−)} n = 1, 2, . . . , T, (2.2)

where:

• A(n−) is the value of the investment account on the n-th policy anniversary, just

before the fee for the n-th policy year is deducted;

• c > 0 is the annual fee rate charged by the insurance company for the GMIB;

• B(n) is the value of the benefit base on the n-th policy anniversary, calculated as

B(n) = max{A(0)(1 + rg)
n, max
m=1,2,...,n

A(m−)}.

Note that f(n) > cA(n−) if f(n) > A(n−) for n = 1, 2, . . . , T ; cA(n−) is the size of

the annual fee charged when it is computed as a percentage of the investment account,

which is a common fee structure for many investment products. As of the middle of 2010,

many of the competitive GMIB sellers are charging fee rates somewhere between 0.8-1%

(www.annuityFYI.com).

Define the stock accumulation factor over the time interval [n− 1, n) as

R(n) =
S(n)

S(n− 1)

= e
∫ n
n−1 r(s)ds−σ

2
S/2+σS(WQ

S (n)−WQ
S (n−1)), n = 1, 2, . . . , T. (2.3)

Using this notation,

A(n−) = A(n− 1)R(n). (2.4)
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The value of the investment account on the n-th policy anniversary after the annual fee

is deducted is given by

A(n) = A(n− 1)R(n)− f(n)

= A(n−)− f(n) n = 1, 2, . . . , T. (2.5)

Also, for t ∈ (n− 1, n), n = 1, 2, . . . , T ,

A(t−) = A(t) = A(n− 1)e
∫ t
n−1(r(s)−σ2

S/2)ds+σS(WQ
S (t)−WQ

S (n−1)).

When pricing any option with a long maturity date (such as 10 years for the GMIB),

the stochastic feature of interest rates has a stronger impact on the option price. If the

maturity date is long, it is advisable that a stochastic interest rate model be employed

instead of assuming deterministic interest rates. We use the Hull-White model for mod-

elling the term structure of interest rates (Hull and White, 1990, 1994). This model is

also known as the extended Vasicek model, from the Vasicek (1977) model. Namely, the

instantaneous short rate is modeled under the risk-neutral probability measure Q by the

SDE

dr(t) = a{Θ(t)/a− r(t)}dt+ σrdW
Q
r (t) (2.6)

where a > 0 is a constant, Θ(t) is a deterministic function of time that is chosen such that

the model term structure matches the market term structure at the start of the projection,

σr > 0 is the (annualized) instantaneous volatility of the short rate and {WQ
r (t), t ∈ [0, T ]}

is a standard Brownian motion under Q that may be correlated with {WQ
S (t), t ∈ [0, T ]}.

Define ρ as the linear correlation coefficient between {WQ
S (t), t ∈ [0, T ]} and {WQ

r (t), t ∈
[0, T ]} such that

CovQ(dWQ
S (t), dWQ

r (u)) =

ρ dt if t = u,

0 if t 6= u,
(2.7)

where CovQ denotes the covariance under Q. When ρ 6= 0, the SDEs of the stock and

the short rate can be expressed in terms of two independent standard Brownian motions
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{WQ
r (t)} and {W̃Q(t)} under Q, using a Cholesky decomposition (Glasserman, 2004):

dr(t) = {Θ(t)− ar(t)}dt+ σrdW
Q
r (t) (2.8)

dS(t) = r(t)S(t)dt+ σSS(t){ρdWQ
r (t) + (1− ρ2)1/2dW̃Q(t)} (2.9)

where

dWQ
S (t) = ρdWQ

r (t) + (1− ρ2)1/2dW̃Q(t).

In the valuations presented in this chapter, we simply assume ρ = 0 unless otherwise

stated. The actual correlation between these two processes is difficult to estimate accu-

rately in practice, and changes for different periods of data.

The function Θ(t) in equation (2.6) depends on σr and a (Brigo and Mercurio, 2006). It

is defined as

Θ(t) =
∂fM(0, t)

∂t
+ afM(0, t) +

σ2
r

2a
(1− e−2at), (2.10)

where fM(0, t) is the market instantaneous forward rate at time 0 for the maturity t. By

definition,

fM(0, t) = −∂ log(PM(0, t))

∂t
,

where PM(0, t) is the market price at time 0 of a zero coupon bond with face value of $1

and maturity date t.

Clearly, more sophisticated models for the underlying processes are available, such as stock

price processes that allow for jumps or stochastic volatility and multi-factor interest rate

processes. However, the main motivation for our choices is that the models we employ are

well understood benchmarks, and their use allows us to isolate and focus on the influence

of the contract features rather than idiosyncrasies of the assumed processes. Moreover,

note that we only require the investment account values on each policy anniversary. In

other words, we only need to model the annual returns. Assuming the annual returns

are normally distributed is not unreasonable. One of the well-known stylized facts of

empirical stock return data is aggregational normality (Cont, 2001). As we increase the
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length of the intervals over which stock returns are calculated, the empirical distributions

of the returns tend to appear more normally distributed. Furthermore, the shape of the

return distribution changes at different time scales. Well known features of stock returns

observed over consecutive time intervals of a month, week, day, hour, minute, such as

stochastic volatility, large jumps, and volatility clustering, are largely “washed away” in

annual return data. Therefore, in a sense, there is not a strong incentive to use a more

complicated model for the investment account, such as Heston-type models (Heston, 1993)

which are popular equity return models among practitioners.

2.2.2 Pricing equation for the GMIB

Let EQ[·] indicate that an expectation is computed under a risk-neutral probability mea-

sure Q. Furthermore, let Ft denote all of the information available at time t. More

formally,

F [0,T ] = {Ft, 0 6 t 6 T}

is the filtration generated by the stock and short rate processes from time 0 to time T .

In the Hull-White model the price of a zero coupon bond at time t, maturing at time T

with unit face value has an analytical formula, conditional on the value of r(t). It is given

by the formula (Brigo and Mercurio, 2006)

P (t, T ) = A(t, T )e−B(t,T )r(t), (2.11)

where

B(t, T ) =
1

a
[1− e−a(T−t)],

A(t, T ) =
PM(0, T )

PM(0, t)
exp

{
B(t, T )fM(0, t)− σ2

r

4a
(1− e−2at)B(t, T )2

}
.
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Therefore, the value at time 0 of the GMIB maturity value can be calculated as

V (c) = EQ
[
e−

∫ T
0 r(t)dt max{B(T )gä20 (T ), A(T )}

]
= EQ

[
e−

∫ T
0 r(t)dt max{B(T )g

T+19∑
j=T

P (T, j), A(T )}

]
. (2.12)

For ease of exposition we henceforth refer to V (c) as the GMIB price (although strictly

speaking V (c) is the price of a variable annuity with an embedded GMIB option). If the

issuer wants to hedge the GMIB by investing in a replicating portfolio, the fee rate c = c∗

is fair if

V (c∗) = π, (2.13)

where π is the single annuity premium invested at time 0.

Using the model specified in Section 2.2.1, the market is complete if we can trade in

the stock and at least one bond at all times. If the market is complete, the risk neutral

measure Q is unique. Later, in Section 3.2 we discuss the conditions on the measure

changes between the risk-neutral and the real-world (objective) probability measures for

the stock and interest rate processes, that must be satisfied for the market to be complete.

In understanding equation (2.13), it is useful to recall the justification for why the

arbitrage-free GMIB price is equal to π when c is equal to the fair fee rate. From derivative

pricing theory (Björk (2004), Hull (2008), Joshi (2008), Musiela and Rutkowski (2004)),

it is known that, in a complete market, the GMIB maturity value can be replicated by

investing in a portfolio consisting of the stock and zero coupon bonds costing π dollars at

time 0, and then rebalancing this portfolio dynamically in a self-financing way until time

T . More succinctly, the payoff of the derivative can be reproduced exactly by investing

π dollars at time 0 and following a pre-defined replicating strategy. We emphasize that

this replicating strategy is distinct from the concept of the insurer physically investing

the policyholder’s premium in the stock index portfolio at the outset, and then physically

periodically withdrawing fees from the policyholder’s investment account.

If the equality given by equation (2.12) does not hold, then the insurer has either made a
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profit or loss at time 0. Let H(c) denote the cost of hedging, which is the excess amount

of funds needed by the insurer to hedge the GMIB maturity value, when the fee rate

charged is c:

H(c) = V (c)− π. (2.14)

Equation (2.14) is the pricing equation for a variable annuity with an embedded GMIB.

If H(c) is positive (negative), the insurance company is undercharging (overcharging) the

policyholder for the GMIB.

2.2.3 Other fee charges in practice

It is important to note that administrative and investment management fees associated

with the underlying variable annuity contract are not incorporated into our valuations.

The actual size of these fees (in total) can be somewhere between 0.5-3% of the policy-

holder’s investment account per year, during the accumulation phase. While the impact

of these fees on the GMIB price is not negligible, the actual size of these fees varies with

insurance company, the policyholder’s choice of investment managers, and mortality as-

sumptions (which we have not incorporated). Making allowances for fees related to the

underlying variable annuity contract is rather subjective, and we do not allow for them

in our model. Our interest is in determining a fair fee rate for the GMIB option. In other

words, we want to calculate the “pure” fair fee rate that should be charged for the benefits

provided by the GMIB option. It is noted that incorporating the underlying fees into our

model can be easily done, if the sizes of these fees are known with reasonable certainty.

How these additional fees will affect the GMIB option is not entirely clear. The value

of the lookback and investment account components will be reduced by the additional

fees. However, the guaranteed return component is more likely to be exercised in the real

world. We briefly explore the impact of additional underlying contract fee charges on the

fair fee rates in Section 2.8.
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2.2.4 Alternative view of the pricing equation

We can decompose the GMIB price V (c) in order to gain an alternative view of equation

(2.14). Equation (2.12) can be expanded to

V (c) = EQ
[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
+ EQ

[
e−

∫ T
0 r(t)dtA(T )

]
. (2.15)

The first term on the right hand side of equation (2.15) equals the total value of the benefits

provided by the GMIB option. The second term on the right hand side of equation (2.15)

is the risk-neutral expected present value of the maturity value of the investment account.

We proceed by decomposing the second term. Recall that f(n) = min{cB(n), A(n−)}
denotes the size of the fee deducted on the n-th policy anniversary (if c is sufficiently

large, f(n) = 0 is possible). The following recursive relationship holds for t = 2, 3, . . . , T :

A(t) = A(t− 1)R(t)− f(t)

= [A(t− 2)R(t− 1)− f(t− 1)]R(t)− f(t)

= [[A(t− 3)R(t− 2)− f(t− 2)]R(t− 1)R(t)− f(t− 1)R(t)− f(t)

...

= A(0)
t∏

n=1

R(n)−

[
t−1∑
n=1

f(n)[
t∏

i=n+1

R(i)] + f(t)

]

where R(n) is defined by equation (2.3). Since A(0) = S(0),

A(t) = S(t)−

[
t−1∑
n=1

f(n)[
t∏

i=n+1

R(i)] + f(t)

]
. (2.16)
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Combining equations (2.15) and (2.16) yields

V (c) = EQ
[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
+ EQ

[
e−

∫ T
0 r(t)dtS(T )

]
− EQ

[
e−

∫ T
0 r(t)dt

{
T−1∑
n=1

f(n)[
T∏

i=n+1

Ri] + f(T )

}]
= EQ

[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
+ S(0)

− EQ

[
e−

∫ T
0 r(t)dt

{
T−1∑
n=1

f(n)[
T∏

i=n+1

Ri] + f(T )

}]
. (2.17)

We have used the result that

EQ
[
e−

∫ T
t r(s)dsS(T )

∣∣Ft] = S(t) (2.18)

in equation (2.17). Equation (2.18) can be shown as follows. Applying Ito’s Lemma to

f(S(t)) = log(S(t)) and integrating yields

S(T ) = S(t)e
∫ T
t r(s)ds−σ2

S(T−t)/2+σS(WQ
S (T )−WQ

S (t)).

Therefore,

EQ
[
e−

∫ T
t r(s)dsS(T )

∣∣Ft]
= EQ

[
S(t)e−

∫ T
t r(s)ds+

∫ T
t r(s)ds−σ2

S(T−t)/2+σS(WQ
S (T )−WQ

S (t))
∣∣Ft]

= S(t)EQ
[
e−σ

2
S(T−t)/2+σS(WQ

S (T )−WQ
S (t))

∣∣Ft] . (2.19)

Now WQ
S (T )−WQ

S (t)
∣∣Ft ∼ N(0, T − t), and thus by knowing the mean of the lognormal

distribution,

EQ
[
e−σ

2
S(T−t)/2+σS(WQ

S (T )−WQ
S (t))

∣∣Ft] = e−σ
2
S(T−t)/2 · eσ2

S(T−t)/2 = 1. (2.20)

Thus equation (2.19) simplifies to equation (2.18).
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Rearranging equation (2.17) yields

V (c)− S(0) = EQ
[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
− EQ

[
T−1∑
n=1

e−
∫ T
0 r(t)dtf(n)[

T∏
i=n+1

R(i)] + e−
∫ T
0 r(t)dtf(T )

]

Using the fact that

T∏
i=n+1

R(i) = e
∫ T
n r(s)ds−σ2

S(T−n)/2+σS(WQ
S (T )−WQ

S (n))

we obtain

V (c)− S(0)

= EQ
[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
− EQ

[
T−1∑
n=1

e−
∫ n
0 r(t)dtf(n)e−σ

2
S(T−n)/2+σS(WQ

S (T )−WQ
S (n)) + e−

∫ T
0 r(t)dtf(T )

]
= EQ

[
e−

∫ T
0 r(t)dt max {B(T )gä20 (T )− A(T ), 0 }

]
− EQ

[
T−1∑
n=1

e−
∫ n
0 r(t)dtf(n)

]
· EQ

[
e−σ

2
S(T−n)/2+σS(WQ

S (T )−WQ
S (n))

]
− EQ

[
e−

∫ T
0 r(t)dtf(T )

]
.

(2.21)

The last step follows from the fact that for n > 0, e−
∫ n
0 r(t)dtf(n) is independent of

WQ
S (T )−WQ

S (n). Furthermore, using equation (2.20),

EQ
[
e−σ

2
S(T−n)/2+σS(WQ

S (T )−WQ
S (n))

]
= 1.

Using the fact that π = S(0), equation (2.21) can be rearranged into the form of the

pricing equation given by equation (2.14):

H(c) = V (c)− π = G(c)− F (c) (2.22)
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where

G(c) = EQ
[
e−

∫ T
0 r(t)dt max {B(T, c)gä20 (T )− A(T, c), 0 }

]
, (2.23)

F (c) = EQ

[
T∑
n=1

e−
∫ n
0 r(t)dtf(n, c)

]
. (2.24)

For clarity of exposition, we have explicitly identified all terms in equations (2.23) and

(2.24) that are functions of the fee rate c. The function G(c) is equal to the expected

present value under Q (EPV Q) of the benefits provided by the GMIB option. Loosely

speaking, the GMIB benefits resemble an equity put option on the investment account

with a random strike price (and a random maturity date T , which we have assumed is

a constant in order to simplify the GMIB valuation). The function F (c) is equal to the

EPV Q of the fees paid for the GMIB option during the accumulation phase. The GMIB

pricing equation (2.22) says that the price of a variable annuity with the GMIB option

minus the initial annuity premium, is equal to the EPV Q of the benefits provided by the

GMIB minus the EPV Q of the fees paid. We emphasize that the EPV Q of the benefits

provided by the GMIB option requires the policyholder to annuitize their investment at

maturity (and thus receive a stream of income over 20 years), rather than receiving a lump

sum benefit at maturity. (However, in theory the policyholder could sell the retirement

income stream provided by the GMIB to another party in exchange for a lump sum.)

When the GMIB is priced fairly H(c) = 0, and G(c) = F (c).

2.3 Valuation results

In this section, we illustrate how the GMIB price varies as a function of the fee rate. The

fair fee rate is determined for a realistic set of values of the parameter g. Due to the

complexity of the GMIB, we use Monte Carlo simulation to value the GMIB. All of the

estimates we compute in this chapter are based on 105 scenarios, unless stated otherwise.

The following benchmark parameter assumptions are used, unless indicated otherwise:

T = 10, rg = 5%, A(0) = S(0) = π = 1000, σS = 20%, a = 0.35, σr = 1.5% ρ = 0, and

Θ(t) depends on a linear approximation of the shape of the U.S. zero coupon bond yield
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curve halfway through 2008 (the curve is displayed later in Figure 2.7 as the one labeled

“Benchmark”). We now briefly explain our choices of parameter values for the stock and

short rate models. Our value of π was chosen for neatness in illustrating the results. If

we changed the value of the premium from π to mπ, for some m > 0, leaving all other

parameters unchanged, then the GMIB price will change from V (c) to mV (c). However,

the fair fee rate will not change. Setting σS = 20% is a common assumption. We set

σr = 1.5% because this value corresponds roughly to the volatility of the cash rate set by

the U.S. Federal Reserve Bank for the past 10-20 years. We set a = 0.35 as this value for

the speed of reversion is broadly comparable with speed of reversion estimates obtained

from several one-factor continuous time short-rate models fitted to U.K. and U.S. data

over several decades (for example, see Nowman (1997) and Yu and Phillips (2001)). Boyle

and Hardy (2003) also use the Hull-White model to value guaranteed annuity options,

and they also assume a = 0.35. We set ρ = 0 because, as previously mentioned, the actual

correlation between these two processes is difficult to estimate accurately in practice. The

yield curve we use to calibrate Θ(t) is one that we believe is representative of a common

upward sloping yield curve in a stable, low inflation, economic environment.

2.3.1 Choice of g

The lookback and guaranteed return components are proportional to the guaranteed pay-

ment rate g. Therefore, the GMIB price is highly sensitive to the value of g. The insurance

company sets the value of g they are prepared to offer at the time the contract is sold.

The value of g must be competitive and should be equitable. Its magnitude also depends

on the type of annuity, selected by the policyholder at time 0, for which the GMIB offers

income protection. For a 20 year term certain annuity, g is likely to be in the range

5-10%. The justification for this range is as follows: if g is set fairly then it should be

approximately equal to the inverse of the value of a 20 year term certain annuity. The

value of the annuity depends on the assumed interest rate term structure over a 20 year

period.

Table 2.1 displays values of 20 year term certain annuities with annual payments made in

advance, for various annually compounded interest rates, assuming the interest rate term

structure remains flat and constant. In actuarial notation, these are values of ä20 . The
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estimates of g in the table are equal to 1/ä20 . The table shows that values of g between

5% and 10%, correspond to the range of flat interest rate term structures between 0% and

10%. If interest rates do not exceed say 9% over the long term (plausible based on recent

history in the U.S.), then a competitive/equitable value for g seems to be somewhere

between 5% to 8%. In making our choice of g for the valuations, we keep in mind that

insurance companies explicitly state, in their variable annuity prospectuses, that they

set g conservatively with respect to future mortality and interest rate assumptions. It is

difficult to say what the exact value of g should be. Therefore, in this chapter we present

numerical results typically for g of 5.5%, 6.5%, 7.5% and 8.5%, which correspond to cheap

through to expensive valuation assumptions, from the insurance company’s perspective.

It is noted that, based on the benchmark parameter assumptions, EQ[ä20 (T )] = 12.78.

Therefore, a reasonable upper bound for the appropriate value of g is given by g = 1/ä20 <

1/12.78 = 7.82%. The author considers values of g between 6.5% and 7.5% to be equitable

for the policyholder, based on historical U.S. interest rate levels over the past decade. The

range also balances the interests of the insurer, who wants to offer a competitive value of

g, but also wants some conservatism in setting g.

Constant interest rate r 0% 0.5% 1% 1.5% 2% 2.5% 3% 4% 5% 6% 7% 8% 9%
ä20 using r 20 19.1 18.2 17.4 16.7 16.0 15.3 14.1 13.1 12.2 11.3 10.6 10
g = 1/ä20 5% 5.2% 5.5% 5.7% 6% 6.3% 6.5% 7.1% 7.6% 8.2% 8.8% 9.4% 10.1%

Table 2.1: Fair value of g for a 20 year term certain annuity with annual payments in advance.

2.3.2 Fair fee rates

Figure 2.1 illustrates the relationship between the GMIB price V (c) and the fee rate c for

a realistic range of values of g. The standard errors of the GMIB price estimates in Figure

2.1 lie in the range 0.4-2.4. Setting g < 5% is unlikely to be competitive or equitable. If

g > 10%, then the insurer is offering very generous benefits; no insurer is likely to offer

a rate so high. Each curve corresponds to the GMIB price for a particular g, and the fee

rate at the intersecting point of a curve with the horizontal dotted line corresponds to the

fair fee rate for the curve. For any given fee rate, the vertical distance between a curve

and the horizontal dotted line corresponds to H(c), the cost of hedging. When any of

the curves lie below the horizontal dotted line, the cost of hedging is negative, which can

be thought of as profit for the insurer (in an ideal world where the option can be hedged
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perfectly). For g > 7%, it is not possible for the insurance company to break even at any

fee rate (based on the benchmark parameter assumptions); hedging the GMIB using a

replicating portfolio requires the insurer to obtain funds from elsewhere. For g > 7%, fair

fee rates do not exist because the guaranteed return component, A(0)(1 + rg)
Tgä20 (T ), is

very valuable at maturity, and this component does not decrease in value as the fee rate

increases – it is independent of the fee rate.
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Figure 2.1: GMIB price V (c) as a function of the fee rate c. Each curve corresponds to a particular
value of g. For the curves that intersect with the horizontal dotted line, the fee rate at the intersecting
point corresponds to the fair fee rate.

Using Figure 2.1, we can roughly approximate the fair fee rate for each g to within a

few basis points. However, it is always preferable to obtain statistical estimates from the

output of a Monte Carlo simulation whenever possible. Since the GMIB price cannot be

computed analytically, it is not immediately obvious how we would calculate an estimate

of the fair fee rate, and the standard error of this estimate, for a given value of g. As it

turns out, an estimate of the fair fee rate and its standard error are easily computed by

recognizing that the GMIB price can be estimated once we have simulated N observations

from the random vector

W̃ =

(∫ T

0

r(t)dt, r(T ), R(n) n = 1, 2, . . . , T

) ∣∣∣F0,
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where R(n) is defined by equation (2.3). None of the random variables in W̃ depend on

the fee rate c. Given N observations of W̃ and any value of c > 0, we can compute N

values of

φ(W̃ , c) = e−
∫ T
0 r(t)dt [max{B(T )gä20 (T ), A(T )}]

using equations (2.2), (2.4) and(2.5). Let φn(c), n = 1, . . . , N denote the N observations

of φ(c). For a given c, we can estimate the GMIB price from the usual Monte Carlo

estimator

V̂ (c) =
1

N

N∑
n=1

φn(c). (2.25)

When g is not so large that a fair fee rate does not exist (the actual value of g at which a

fair fee rate no longer exists will depend on the all of the parameter assumptions), there

exists a true fair fee rate c such that

EQ[φ(W̃ , c)] = π.

Using Monte Carlo simulation, we know that

1

N

N∑
n=1

φn(c)→ EQ[φ(W̃ , c)], as N →∞.

Therefore, for sufficiently large N , we can approximately estimate the fair fee rate by

solving the equation

1

N

N∑
n=1

φn(c)− π = 0 (2.26)

with respect to c. The approximation improves as N increases. Because equation (2.25)

is a continuous function with respect to c, equation (2.26) can be solved numerically. For

example, it is easily solved in MATLAB using the “fsolve” function. If a solution cannot

be found, then it probably means a fair fee rate does not exist for the parameter assump-

tions chosen. It is noted the Delta Method could also be used to obtain the standard

deviation of the fair fee rate (Casella and Berger, 2001).
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To obtain the standard deviation of the fair fee rate, we solve equation (2.26) for J

independent Monte Carlo simulations. Let cj denote the fair fee rate obtained from

solving equation (2.26) for the j-th simulation. A more stable estimate of the fair fee rate

can be calculated as c̄ = 1
J

∑J
j=1 cj. The standard error of the fair fee rate is calculated

as

σ̂c =
1

J1/2

{
1

J − 1

J∑
j=1

(
cj − c̄2

)}1/2

.

Table 2.2 reports the fair fee rates and their standard errors for values of g for which a

fair fee rate exists, based on J = 100 Monte Carlo simulations and N = 105 scenarios

within each simulation. The standard errors of the fair fee rates increase with g.

g 5% 5.5% 6% 6.5% 7%
Fair fee rate 1.19% 1.82% 2.80% 4.50% 8.84%

Std error of fair fee rate 0.0023% 0.0024% 0.0027% 0.0032% 0.0073%

Table 2.2: Fair fee rates and their standard errors for values of g for which a fair fee rate exists.

As of the middle of 2010, competitive insurance companies are charging fees of 0.8-1%

for GMIB options (www.annuityFYI.com). Our simple model suggests that insurance

companies may be underpricing GMIBs for equitable values of g. However, our valua-

tions have ignored policyholder lapse assumptions. The policyholder must wait at least 10

years from inception if they wish to annuitize using the GMIB option. It seems probable

that some policyholders would lapse before the minimum maturity date, in which case the

fair fee rate would be reduced. Section 2.6 examines the issue of lapses in further detail.

Furthermore, as mentioned in Section 2.2.3, our analysis has not allowed for fees relating

to the underlying variable annuity contract, which can be somewhere between 0.5-3% of

the investment account per year. Allowing for these fees would also reduce the fair fee

rate for the GMIB option. Section 2.8 briefly explores the impact on the fair fee rate from

allowing for these underlying variable annuity contract fees.

The fair fee rates we have obtained for a GMIB seem to be slightly higher than the fair fee

rates reported in Bauer et al. (2008) for GMIBs. However, Bauer et al. (2008) value each

of the benefits provided by a GMIB in isolation and determine the fair fee rates for each
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individual benefit separately but not for the GMIB as a whole. They also use a different

fee structure.

2.3.3 Valuing the benefits and the fees separately

Based on the alternative view of the pricing equation discussed in Section 2.2.4, it is

possible to measure G(c), the EPV Q of the benefits provided by the GMIB, and F (c),

the EPV Q of the fees paid for the option, as functions of the fee rate c. Figure 2.2 depicts

the cost of hedging H(c) = V (c)−π, G(c) and F (c) and as functions of the fee rate c, for

particular values of g. The standard errors of the H(c), G(c) and F (c) estimates lie in the

ranges 0.4-2.4, 0.5-1.1 and 0.0-1.7 respectively. Note that F (c) is independent of g. This

figure highlights a tricky issue with the design of the GMIB. Both G(c) and F (c) increase

with the fee rate c. Why G(c) increases with c is worth explaining in more detail. As c

increases, B(T ) and A(T ) both decrease. Therefore, since G(c) increases with c because

the difference B(T )gä20 (T )−A(T ) increases, it must be the case that B(T ) decreases at

a slower rate than A(T ) with respect to c. The GMIB design would be much less risky

if the benefits provided by the GMIB option did not increase so sharply as a function

of the fee rate. Ideally, it would be better, from the point of view of controlling risk, if

the benefits provided by a variable annuity option were insensitive to the fee rate (or a

monotone decreasing function of the fee rate).

2.4 Sensitivity analysis

In this section we perform a sensitivity analysis of the parameter values in our models.

The benchmark parameter values are listed at the start of Section 2.3.

2.4.1 Stock volatility

The left panel of Figure 2.3 displays the relationship between V (0), the GMIB price when

the fee rate is zero, and the stock volatility σS, for various of g. The right panel of Figure

2.3 shows the GMIB price as a function of the stock volatility when the fair fee rate is

charged, for values of g < 7% (fair fee rates do not exist for g > 7%, and the fair fee
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Figure 2.2: G(c), F (c) and H(c) = G(c)− F (c) as functions of the fee rate c, for particular values of
g.
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Figure 2.3: The left panel displays the GMIB price without fee charges V (0) as a function of stock
volatility σS. The right panel displays the GMIB price as a function of stock volatility when the fair fee
rate is charged. Each curve corresponds to a particular value of g.
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rate for g = 7% is too high to ever realistically be charged). For example, when g = 6%,

the fair fee rate is 1.85% and the corresponding curve plots the GMIB price using this

fee rate as a function of the stock volatility. The standard errors of the GMIB price

estimates lie in the range 0.2-9.9, and increase as the volatility increases. As expected,

the GMIB price is a monotonically increasing function of σS. A higher volatility gives

greater probability to larger values of B(T ) and A(T ) at time T . In the left panel, starting

at a conservative volatility of 10%, each 5% increase in volatility leads to an increase in

V (0) of about 4-8%, where the percentage increases in V (0) are gradually increasing. In

practice, the policyholder must decide how their money is invested. The insurer provides

the policyholder with a range of fund managers with different risk/return profiles (e.g.

growth, capital stable, fixed interest). Subject to the insurer charging the same fee rate

for a given set of fund managers, the policyholder should allocate their money to fund

managers with the highest volatilities, if they want to maximize the value of their GMIB

option.

2.4.2 Impact of interest rate assumptions

The Hull-White model is employed for modeling interest rates. In this section we explore

the sensitivity of the GMIB price to the parameter values in the Hull-White model. It is

shown that the yield curve assumptions have a significant influence on the GMIB price.

Interest rate volatility

The left panel of Figure 2.4 displays the GMIB price without fee charges V (0) plotted

against interest rate volatility σr for various values of g. The right panel of Figure 2.4

displays the GMIB price as a function of interest rate volatility when the fair fee rate

is charged, for lower values of g where the fair fee rate exists. The standard errors of

the GMIB price estimates lie in the range 0.9-5.2. The GMIB price is a monotonically

increasing function of σr. The GMIB maturity value is sensitive to the level of the short

rate at time T through ä20 (T ), and thus it makes sense that the value of the GMIB option

increases as σr increases. Note that a higher interest rate volatility leads to greater vari-

ability in the discounting factor, and in the drift term of the stock SDE given by equation

(2.1). In the left panel, each 1% increase in interest rate volatility leads to an increase
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in V (0) of about 0.2-1.5% (for σr in the range 0-5%), where the percentage increases in

V (0) are gradually increasing. Changes in the interest rate volatility have a much smaller

influence on the GMIB price compared to changes in the stock volatility. For interest rate

volatilities of less than 2%, which are arguably realistic values for the past decade, the

GMIB price remains fairly constant. The fact that the GMIB price is relatively insensitive

to the interest rate volatility assumption is consistent with the results of Boyle and Hardy

(2003). They find that the guaranteed annuity option is also relatively insensitive to the

interest rate volatility assumption for long periods.

The GMIB option is partially an interest rate option through the value of ä20 (T ). In

our model, the uncertainty of interest rates is encapsulated through the parameter σr.

The top panels of Figure 2.5 exhibit the distribution of ä20 (T ) = ä20 (10) for σr = 0.5%

and σr = 1.5%. Since ä20 (10) is a function of r(T ) = r(10), the bottom panels display

the distribution of r(10) for σr = 0.5% and σr = 1.5%. The probability of r(10) < 0

is approximately 0% for σr = 0.5%, and 0.14% for σr = 1.5%. Figure 2.5 is primarily

presented to give the reader a feel for the magnitude of ä20 (T ) based on our model

assumptions. This figure also gives a sense of how interest rate risk is captured in our

valuation model.
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Figure 2.4: The left panel displays the GMIB price without fee charges V (0) as a function of interest
rate volatility σr. The right panel displays the GMIB price as a function of interest rate volatility when
the fair fee rate is charged. Each curve corresponds to a particular value of g.
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Figure 2.5: The top panels display the distribution of the 20 year term certain annuity for σr = 0.5%
and σr = 1.5%. The bottom panels display the distribution of r(10) for σr = 0.5% and σr = 1.5%.
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Speed of reversion

The left panel of Figure 2.6 shows the relationship between the GMIB price without fees

V (0) and the speed of reversion a in the SDE given by equation (2.6), for the benchmark

values of g. The right panel of Figure 2.6 displays the GMIB price as a function of a when

the fair fee rate is charged, for lower values of g where the fair fee rate exists (note the

range of the y-axis is narrow in the right panel, so the estimation errors are conspicuous).

The standard errors of the GMIB price estimates lie in the range 1.7-2.6, and decrease

as a increases. We note that in equation (2.12) the term ä20 (T ) =
∑T+19

j=T p(T, j) is a

function of a. For our calibration of the yield curve, captured in Θ(t), the GMIB price is

relatively insensitive to the value of a for a > 0.25. The GMIB price increases as a → 0

because the probability of r(T ) < 0 increases to a level that has a noticeable impact on

the GMIB price. If r(T ) < 0, the discounting factor tends to be larger in magnitude,

and ä20 (T ) > 20, which drives up the discounted GMIB maturity value. The probability

of r(T ) < 0 is close to 0 for all a > 0.25 (i.e. negligible), but as a → 0 the probability

increases sharply to a few percentage points.
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Figure 2.6: The left panel displays the GMIB price without fee charges V (0) as a function of the speed
of reversion a in the Hull-White model. The right panel displays the GMIB price as a function of a when
the fair fee rate is charged. Each curve corresponds to a particular value of g.

Underlying yield curve shape

Figure 2.7 displays five different zero coupon bond yield curves that are used for testing

the sensitivity of the GMIB price to the underlying yield curve shape. The yield curve
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shape affects Θ(t) in equation (2.6). The curve labeled “Benchmark” is the curve applied

to all of the valuations presented in this chapter unless stated otherwise (it is a linear ap-

proximation of the shape of the U.S. zero coupon bond yield curve halfway through 2008).

The curves labeled “3% Shift” and “6% Shift” are parallel upward shifts of the Bench-

mark curve, where the sizes of the shifts are 3% and 6% respectively. The shifted curves

could occur in practice under different economic conditions to the present (e.g. when

inflation rates are high). The curve labeled “Change in Convexity” represents a change in

convexity of the Benchmark curve. The shape of the Change in Convexity curve is convex

rather than concave as for the Benchmark curve, but to facilitate a comparison with the

Benchmark curve the level of the Change in Convexity curve is roughly the same as the

Benchmark curve at the short and long maturity dates. The curve labeled “Inverse” cap-

tures the shape of an inverted yield curve, where the level of this curve is kept close to the

Benchmark curve at the shorter maturity dates. It is noted that the prominent features

of each yield curve are deliberately concentrated in the first 10 years of the term structure.
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Figure 2.7: A set of zero coupon bond yield curves used for testing the sensitivity of the GMIB price
to the underlying assumed yield curve. Figure 2.8 shows the corresponding GMIB prices.

The panels in Figure 2.8 display the GMIB price as a function of the fee rate for each of the

yield curves shown in Figure 2.7, for g = 6.5% and g = 7.5%. Each curve corresponds to

the GMIB price for a given yield curve. The standard errors of the GMIB price estimates

lie in the range 0.5-3.2. All else being constant, as the level of the yield curve increases

the GMIB price decreases. In Figure 2.8, the 3% Shift curve is uniformly lower than the

Benchmark curve, and similarly the 6% Shift curve is uniformly lower than the 3% Shift
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Figure 2.8: GMIB price V (c) as a function of the fee rate c, assuming g = 6.5% (g = 7.5%) for
each curve in the left (right) panel. Each curve plots the GMIB price using the corresponding yield curve
displayed in Figure 2.7.

curve. This observation makes sense, but it is important to realize that there are several

factors affecting the GMIB price in opposite directions when the yield curve is shifted:

(1) The short rate reverts to Θ(t)/a, and Θ(t) is larger for all t when the yield curve

is shifted upwards. Thus the discounting factor will be larger, reducing the GMIB

price.

(2) A higher yield curve reduces ä20 (T ), scaling down the values of the lookback and

guaranteed return components. Clearly, this also reduces the GMIB price.

(3) The drift coefficient in the SDE of the stock depends on the short rate, and the short

rate will tend to follow higher paths during the accumulation phase when Θ(t) is

larger for all t. Hence the investment account will also tend to follow higher paths

during the accumulation phase, increasing the GMIB price.

Figure 2.8 shows that the effects of (1) and (2) overwhelm the effect of (3). Figure 2.9,

discussed shortly, also shows that as interest rates increase, the GMIB price decreases.

By comparing the Change in Convexity and Benchmark curves in Figure 2.8, it is clear

that the convexity of the yield curve has a significant impact on the GMIB price. Figure

2.7 shows that the Change in Convexity curve is lower than the Benchmark curve for all
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but the longest maturities; this is the reason why in Figure 2.8 the GMIB prices related

to the Change in Convexity curve are higher than GMIB prices related to the Benchmark

curve. The Inverse curve in Figure 2.8 is the highest of all the curves, demonstrating that

the level of the long end of the yield curve significantly affects the GMIB price. Notice

that in Figure 2.7, the yields at the long end of the Inverse curve are the lowest among all

the curves. Hence, if the long end of a yield curve decreases, the GMIB price will increase

sharply. This occurs because when the long end of the curve falls, the bond prices with

maturity dates beyond time T increase, and the value of ä20 (T ) increases in turn.

Impact of constant interest rates

It is clear that assumptions for the underlying yield curve shape have a large influence

on the GMIB price, largely due to the long time until expiry of the GMIB option. Before

moving on to other issues, we consider the impact on the GMIB price from removing the

complication of stochastic interest rates. The panels in Figure 2.9 display the GMIB price

V (c) as a function of the fee rate c, for g = 6.5% and g = 7.5%. Each curve assumes the

term structure of interest rates is flat and constant through time at a particular contin-

uously compounded annual rate r; r takes the values 2%, 3%, 4%, 5%, 6% and 7%. The

standard errors of the GMIB price estimates lie in the range 0.3-2.1. Clearly, when the

term structure is flat and shifted upwards, the GMIB price decreases. As the interest rate

r increases, the discounting factor and the annuity value both decrease in value, reducing

the GMIB price. The outcome of effects (1), (2) and (3) is again demonstrated in Figure

2.9, where a higher interest rate r corresponds to shifting up the yield curve structure.

For a given fee rate c, each 1% increase in the interest rate r leads to a decrease in the

GMIB price V (c) of about 6-11%.

The results in Figure 2.9 can be loosely compared to those of Bauer et al. (2008) since the

short rate is deterministic, although Bauer et al. use different values for T and σS, and

set rg = 6% (rg = 6% used to be a common guaranteed rate offered by the major GMIB

issuers until the global financial crisis struck – this point is discussed further in Section

2.10). Bauer et al. (2008) report that, using r = 4%, no fair fee rate exists for a GMIB

when g is above a certain value2. In the left panel of Figure 2.9, where g = 6.5%, the fair

2Bauer et al. (2008) actually show there is no fair fee rate for what we call the guaranteed return
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fee rate for r = 4% does not exist, which agrees with the results of Bauer et al. (2008).
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Figure 2.9: Relationship between GMIB price V (c) and the fee rate c for various constant continuously
compounded annual interest rates r, assuming g = 6.5% for each curve in the left panel and g = 7.5% for
each curve in the right panel. Each curve corresponds to a particular value of r.

2.4.3 Correlation between the underlying processes

The results presented thus far have assumed that the short rate and stock processes evolve

independently over time. This section considers the impact on the GMIB price when these

processes are correlated. Recall that we have defined ρ as the linear correlation coefficient

between {WQ
S (t), t ∈ [0, T ]} and {WQ

r (t), t ∈ [0, T ]} such that

CovQ(dWQ
S (t), dWQ

r (u)) =

ρ dt if t = u,

0 if t 6= u.

The panels in Figure 2.10 compare the GMIB price V (c) as a function of the fee rate

c using various values of ρ, for g = 6.5% and g = 7.5%. The standard errors of the

GMIB price estimates lie in the range 0.6-1.9. The GMIB price is a monotone increasing

function of ρ. It is difficult to give a clear explanation for this observed behavior because,

regardless of whether the correlation is positive or negative, there are always multiple

effects which influence the GMIB price in opposite directions. Consider when ρ < 0. In

this case, the short rate tends to increase when the stock price decreases. However, when

component of the GMIB, not the entire GMIB contract, but the implications are the same.
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the short rate increases the drift term of the stock SDE (see equation (2.1)) also increases.

Hence the overall change in the value of the stock is not obvious when ρ < 0. However, a

partial explanation for the observed behavior is suggested: If ρ > 0, the Brownian motion

components in the SDEs of both processes tend to move in the same direction, and in

the stock SDE there is a magnifying effect on the movement of the stock price since the

drift term also moves in the same direction as the random term driven by the Brownian

motion. This compounding effect causes the overall volatility of the stock to be slightly

higher, and in Section 2.4.1 we have already shown that the GMIB price is sensitive to

the stock volatility. If ρ < 0, the opposite effect occurs.
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Figure 2.10: Relationship between GMIB price V (c) and the fee rate c for various values of ρ, assuming
g = 6.5% (g = 7.5%) for each curve in the left (right) panel. Each curve corresponds to a particular value
of ρ.

2.4.4 Varying the GMIB contract parameters

Guaranteed payment rate

Each GMIB seller must decide what guaranteed annual rate rg it will offer for the guar-

anteed return component. Typically rg is set somewhere between 4-6%, though 5% is

currently very common. We have assumed rg = 5% in our valuation assumptions. In

this section we measure the change in the GMIB price from varying rg. The left panel

of Figure 2.11 displays the GMIB price without fees V (0) as a function of rg for various

values of g. The right panel of Figure 2.11 displays the GMIB price as a function of rg
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when the fair fee rate is charged, for lower values of g where the fair fee rate exists. The

standard errors of the GMIB price estimates lie in the range 1.7-2.2. The GMIB price

increases monotonically with rg. In the left panel, each 0.5% increase in the guaranteed

rate of return increases V (0) by 1-2% if g is 5.5%, 1.5-3% if g is 6.5% or 7.5%, and 2-3.5%

if g is 8.5%, where the percentage increases in V (0) are gradually increasing.
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Figure 2.11: The left panel displays the GMIB price without fees V (0) as a function of the guaranteed
annual return rg. The right panel displays the GMIB price as a function of rg when the fair fee rate is
charged. Each curve corresponds to a particular value of g.

Maturity date

In this thesis we make the simplifying assumption that the maturity date is T = 10 years.

In reality the policyholder is able to exercise their GMIB option at any time after the

waiting period has elapsed (although there may be restrictions on when they can annuitize

without incurring penalty charges, such as within 30 days of each policy anniversary).

The panels in Figure 2.12 plot the GMIB price V (c) as a function of the fee rate c for

T = 10, 20, 30, for g = 6.5% and g = 7.5%. The standard errors of the GMIB price

estimates when T = 10, 20, 30 lie in the ranges 0.7-1.8, 0.5-3.3 and 0.6-4.9 respectively.

The zero coupon bond yield curve used in the short rate model is still the Benchmark

curve up to 30 years, and then from 30 to 50 years the zero coupon bond yield curve is

assumed to increase linearly, very gradually, from 4.88% to 5% per year. As T increases,

the benefit base B(T ) increases (increasing the GMIB price), but the discounting factor
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decreases in value (decreasing the GMIB price), and a larger number of (annual) fee

deductions from the investment account are made (decreasing the GMIB price). Figure

2.12 indicates that the GMIB price increases as T increases. The price increases are driven

by the larger benefit base values B(T ). The guaranteed return component of the benefit

base is very valuable as T increases, particularly when the fee rate charged exceeds say

1% per year.
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Figure 2.12: Relationship between GMIB price V (c) and the fee rate c for T = 10, 20, 30 assuming
g = 6.5% (g = 7.5%) in the left (right) panel. Each curve corresponds to a particular maturity date T .

2.5 Decomposing the GMIB price

This section explores why the GMIB appears to be quite valuable. The GMIB price is

decomposed, facilitating an understanding of the drivers of its value. This analysis also

provides useful information for risk management purposes.

2.5.1 Contributions of each component to the GMIB price

Our goal is to measure the contributions of the maximum and guaranteed return compo-

nents to the total GMIB price. This concept is important from hedging, risk management

and (future) product design perspectives. Recall that we can define the GMIB maturity
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value as the maximum of three components:

X1 = max
n=1,...,T

A(n−)gä20 (T ), X2 = A(0)(1 + rg)
Tgä20 (T ), X3 = A(T ).

Let

Yi = e−
∫ T
0 r(t)dtXi, i = 1, 2, 3.

Define the indicator random variable

1A =

1 if event A occurs,

0 if event A does not occur.

The contribution of each component to the GMIB price V (c) can be obtained by re-

expressing the GMIB price as the sum of three terms:

V (c) = EQ[Y11[X1>X2,X3]] + EQ[Y21[X2>X1,X3]] + EQ[Y31[X3>X1,X2]], (2.27)

It is noted that in Equation (2.27), the events Xi = Xj, i 6= j, i, j = 1, 2, 3 have probability

zero and are ignored.

Define

y1 = EQ[Y11[X1>X2,X3]], y2 = EQ[Y21[X2>X1,X3]]ä20 (T )], y3 = EQ[Y31[X3>X1,X2]]. (2.28)

In words, y1 is the contribution from the lookback component, y2 is the contribution from

the guaranteed return component, y3 is the contribution from the investment account

component. The panels in Figure 2.13 display yi, i = 1, 2, 3 as functions of the fee rate

for g of 5.5%, 6.5%, 7.5% and 8.5%. The standard errors of the yi estimates lie in the

range 0.5-4.2. In each panel, the sum of the values of the three curves for any given fee

rate equals the GMIB price at that fee rate. As the fee rate increases, the sum of the

three curves for each particular g must decrease to a lower bound, as seen in Figure 2.1.

In the top left panel of Figure 2.13, when g = 5.5%, it is clear that most of the GMIB

price comes from the contribution from the investment account component y3 for fee
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rates below 2%, and from the contribution of the guaranteed return component y2 for

fee rates above 2%. For low fee rates, the contributions of the guaranteed return and

lookback components are each worth less than the contribution of the investment account

component, suggesting the GMIB option is not very valuable when g = 5.5%. However,

for high (but unrealistic/unmarketable) fee rates exceeding 5%, the guaranteed return

component y2 of the GMIB becomes valuable because of “fee drag” (most of the funds in

the investment account are eaten up by high fees). When g = 5.5%, the fair fee rate is

1.82%. At this fair fee rate, the investment account component y3 contributes the most

to the GMIB price. However, g = 5.5% is fairly conservative and in practice g is likely

to be higher. The top left panel, which displays the contributions for a more equitable

g of 6.5%, indicates that for fee rates above 0.5%, the guaranteed return component y2

contributes the most to the GMIB price. At the fair fee rate of 4.65%, y2 is worth 70%

of the GMIB price, while the lookback component y1 is worth 16% of the GMIB price.

The bottom panels illustrate that as g gets larger, the lookback component y1 contributes

more to the GMIB price than the investment account y3 for any fee rate. As shown in

the bottom right panel, when g is sufficiently large the investment account component y3

has negligible value while the lookback component y1 becomes very valuable.

A number of important observations are made from Figure 2.13:

• It is clear that the guaranteed return component y2 is the dominant contribution to

the GMIB price for average/equitable values of g. However, when g is sufficiently

large the lookback component y1 becomes at least as valuable as the guaranteed

return component y2 at lower fee rates. The investment account component y3 is

also valuable for lower values of g.

• As g increases, the contribution of the investment account component y3 to the

GMIB price decreases sharply. This occurs because as g increases, the values of the

lookback component (X1) and guaranteed return component (X2) are scaled up,

and thus both components are more likely to be worth more relative to the value of

the investment account component.

• As the fee rate increases, the contribution of the guaranteed return component y2

increases while the contribution of the lookback component y1 decreases. This is
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expected since the guaranteed return component is independent of the fee rate, while

the lookback component is a decreasing function of the fee rate.

• The lookback component y1 is less sensitive to the fee rate than the investment ac-

count component y3, indicating that increasing the fee rate reduces the GMIB price

primarily through reducing the contribution from the investment account compo-

nent y3, rather than the contribution from the lookback component y1.
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Figure 2.13: Each panel displays the contributions to the GMIB price from yi, i = 1, 2, 3, (the maximum
component, guaranteed return component and investment account component respectively) as functions of
the fee rate for a particular value of g. The top left (right) panel displays the contributions for g = 5.5%
(g = 6.5%), and the bottom left (right) panel displays the contributions for g = 7.5% (g = 8.5%).

A different but closely related perspective as to the drivers of the GMIB price is obtained

by valuing the three components in isolation. The panels in Figure 2.14 display EQ[Y1]

(EPV Q of the lookback component), EQ[Y2] (EPV Q of the guaranteed return component)
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and EQ[Y3] (EPV Q of the investment account component) as functions of the fee rate

for g of 5.5%, 6.5%, 7.5% and 8.5%. The standard errors of the EQ[Yi] estimates lie in

the range 0.7-2.1. It is noted that the EQ[Y3] curve is the same in each panel as it does

not depend on g. Each panel illustrates that when the lookback and guaranteed return

components are valued in isolation, the latter is more valuable except for very low fee rates.

The value of the lookback component decreases as the fee rate increases, but the rate of

decrease becomes smaller as the fee rate increases. Clearly, the observations drawn from

Figure 2.13 are reinforced by Figure 2.14. For average values of g, the guaranteed return

component has the highest value, when the three components are valued in isolation.
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Figure 2.14: The values of EQ[Yi] i = 1, 2, 3, (the lookback component, guaranteed return component
and investment account component respectively) as functions of the fee rate. The top left (right) panel
displays the values for g = 5.5% (g = 6.5%), and the bottom left (right) panel displays the values for
g = 7.5% (g = 8.5%).
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2.5.2 Valuing simplified GMIBs

Suppose an insurance company selling GMIBs wanted to offer simpler guarantees for their

variable annuities. Specifically, suppose the GMIB maturity value is simplified so that it

consisted of the maximum of the investment account component and either the lookback

component or the guaranteed return component, but not both. It is useful to know how

much difference there is between the values of these simpler guarantees and the total

GMIB price. The panels in Figure 2.15 display

z1 = EQ
[
e−

∫ T
0 r(t)dt max{X1, X3}

]
,

z2 = EQ
[
e−

∫ T
0 r(t)dt max{X2, X3}

]
,

and for comparison purposes the GMIB price V (c), as functions of the fee rate for g = 6.5%

and g = 7.5%. The standard errors of the zi estimates lie in the range 0.5-2.8. In words,

z1 is the value of a “lookback only variable annuity option”, and z2 is the value of a

“guaranteed return only variable annuity option”. A striking observation is that z2 is

closer to V (c) than one might expect. However, V (c) is substantially larger than z1. This

suggests the lookback component does not contribute much to the GMIB price in excess

of the guaranteed return component, which is also supported by Figure 2.13. Obviously,

the inclusion of the lookback component increases the appeal of a GMIB to variable

annuity buyers. It might be argued that variable annuity buyers perceive the lookback

component to be quite valuable, but in fact this guarantee contributes little to the value

of a GMIB which already includes a guaranteed return component. Nevertheless, in spite

of the lookback component appearing to be a cheap benefit for the insurance company to

provide, in terms of price, it has the potential to be a very large liability at time T when it

is in-the-money. Specifically, if the stock increases sharply in a volatile manner during the

accumulation phase, and then sharply declines before time T , the lookback component

will be very valuable relative to the other components, and thus should not be ignored

when considering hedging strategies for the GMIB. Put another way, a small contribution

to the overall price does not imply the risk associated with the lookback component is

also negligible.
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Figure 2.15: The left (right) panel displays z1 (lookback or investment account), z2 (guaranteed return
or investment account), and the GMIB price as functions of the fee rate for g = 6.5% (g = 7.5%).

2.5.3 Upfront fair fee

The GMIB seller earns the equivalent of an option premium by charging annual fees during

the accumulation phase. A simpler, but probably somewhat less marketable alternative,

would be to charge one upfront fee, with no fees paid thereafter. This section determines

the magnitude of such a fee. The magnitude of the fee gives another measure of the value

of the GMIB, and unlike the annual fee payments approach, a fair upfront fee can be

calculated for g > 7%. Let ϕ denote the upfront fee rate charged as a percentage of the

annuity premium. Recall that π is the policyholder’s annuity premium. The insurance

company receives a fee of πϕ at the outset, and invests π(1 − ϕ) for the policyholder.

Define the function V (0;ϕ), which is identical in form to the function V (c) given by

equation (2.12), except that c = 0 and A(0) = S(0) = π(1− ϕ). The benefit base is now

B(T ) = max{π(1− ϕ)(1 + rg)
T , max

n=1,2,...,T
A(n)}.

The upfront fee rate ϕ = ϕ∗ is fair if π = V (0;ϕ∗). By charging ϕ∗ the insurance company

has the exact amount of funds needed to construct the replicating portfolio for the GMIB.

Table 2.3 presents the upfront fair fee rate ϕ∗ and its standard error for various values

of g. We can calculate the upfront fair fee and its standard error following the same

technique that was used to obtain the fair fee rate and its standard error (except we are

now solving for ψ instead of c). For an equitable value of g in the range of 6.5-7.5%, the
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fair upfront fee ϕ∗ is about 18-25% of the annuity premium π. Variable annuity buyers

may find it far less appealing to pay an upfront fee of this magnitude compared to the

alternative of paying smaller annual fees during the accumulation phase.

g 5% 5.5% 6% 6.5% 7% 7.5% 8% 8.5% 9% 9.5% 10%
Upfront fair fee rate 9.09% 11.94% 14.91% 18.19% 21.54% 25.05% 28.88% 32.95% 36.65% 40.00% 42.97%

Std error of fair fee rate 0.07% 0.06% 0.07% 0.05% 0.05% 0.05% 0.04% 0.04% 0.04% 0.04% 0.04%

Table 2.3: The upfront fair fee rate and its standard error for various values of g.

2.6 Impact of lapses

Lapses have been ignored in the valuations thus far. Allowing for lapses will reduce the

GMIB price. It is difficult to say what an appropriate set of withdrawal rate assumptions

during the accumulation phase should be. We consider the change in the GMIB price

from simply assuming a constant annual lapse rate. Let p denote the probability that the

policyholder lapses over a given policy year. The GMIB price allowing for lapses is

V L(c) = V (c)(1− p)T +
T∑
n=1

EQ
[
e−

∫ n
0 r(t)dtA(n−)

]
(1− p)n−1p (2.29)

where V (c) is still given by equation (2.12). In equation (2.29) we assume that if the

policyholder lapses during the n-th policy year, they receive the value of the investment

account at the end of year n, just before the annual fee for the GMIB option is deducted.

The panels in Figure 2.16 display the GMIB price V L(c) as a function of the fee rate c

using various values of p, for g = 6.5% and g = 7.5%. The standard errors of the V L(c)

estimates lie in the range 0.5-1.9. The curves labeled p = 0% are identical to the curves

for g of 6.5% and 7.5% presented in Figure 2.1. The left panel shows that the fair fee

rate drops significantly even for small lapse rates. For example, a conservative lapse rate

of 2.5% p.a. reduces the fair fee rate to about 3.15%. The right panel demonstrates

that, while there is no fair fee rate when g = 7.5% and p = 0, if a small constant lapse

rate is introduced then it is possible for a fair fee rate to exist when g = 7.5%. These

observations show that the fair fee rate is highly sensitive to lapse assumptions. Therefore,

if policyholder lapse behavior can be reliably measured, it should be incorporated into the
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valuations of GMIBs. A complicating factor is that lapses depend on economic conditions

in ways that may not be clearly understood, given the short history of these products.

It is noted that assuming an annual lapse rate as high as 10% still does not reduce the

fair fee rate for g = 6.5% to a level that lies in the range of fee rates being charged by

competitive GMIB sellers (0.8-1%).
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Figure 2.16: Relationship between GMIB price V L(c) and the fee rate c for various constant lapse rates
p, assuming g = 6.5% (g = 7.5%) for each curve in the left (right) panel. Each curve corresponds to a
particular value of p.

2.7 Continuous versus discrete fee structure

In our model we have assumed that fee payments are made at discrete time intervals of

one year. Each fee is a fixed percentage of the benefit base at the time of payment. Recall

that the size of the fee charged at the end of policy year n is

f(n) = min{A(n−), cB(n)} n = 1, 2, . . . , T.

This fee structure is consistent with how fees for the GMIB are calculated by many insur-

ance companies.3 This fee structure is somewhat unique. For many investment products,

fees are charged as a percentage of the underlying asset account value (usually at discrete

time intervals such as quarterly or yearly). It is common practice for academic researchers

3For example, see the variable annuity prospectus of AXA Equitable Life Insurance Company.
URL: www.axa-equitable.com/annuities/accumulator/product-fact-sheets.cfm
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valuing options associated with investment products to assume fees are deducted contin-

uously from the asset account at a rate of c per year. This assumption often allows for

tractable analytical results, and in general simplifies the implementation of the models.

For example, Bauer et al. (2008) used a continuous fee structure to price the GMIB. In

most cases, the continuous fee approximation is appropriate for pricing, and leads to re-

sults that are close to those obtained assuming discrete fee payments. However, for the

GMIB, the fees are calculated as a percentage of the benefit base, and therefore the model

more closely resembles reality if the discrete fee structure is adopted. Nevertheless, it is of

interest to measure the impact on the GMIB price and fair fee rate from using a contin-

uous fee structure, where fees are deducted from the investment account at a continuous

rate of c per year. In this situation, the SDE of the investment account process under Q

can be explicitly written as

dA(t) = (r(t)− c)A(t)dt+ σsA(t)dWQ
S (t). (2.30)

The fee rate c is analogous to a continuous dividend yield on a stock. It is noted that the

stock and short rate SDEs are unchanged.

Under the continuous fee structure, the following recursive relationship holds:

A(T ) = A(T − 1)R(T )− A(T − 1)(1− e−c)R(T )

...

= A(0)
T∏
n=1

R(n)−
T−1∑
n=0

A(n)(1− e−c)[
T∏

i=n+1

R(i)] (2.31)

where R(n) is defined by equation (2.3). Substituting equation (2.31) into equation (2.15)

and following the steps presented in section 2.2.4 we obtain

V (c)− π = G(c)− F (c) (2.32)
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where

F (c) = EQ

[
T−1∑
n=0

A(n)(1− e−c)[
T∏

i=n+1

R(i)]

]
, (2.33)

and G(c) has the same form as equation (2.23), except that the sampling of the maximum

in the benefit base changes slightly such that

B(T ) = max{ max
n=1,2,...,T

A(n), A(0)(1 + rg)
T}. (2.34)

In Figure 2.17, the left panel compares the GMIB price V (c) as a function of the fee rate c

under the continuous and discrete fee structures, for the cases g = 5.5%, 6.5%, 7.5%. The

standard errors of the V (c) estimates under the discrete and continuous fee structures

lie in the ranges 0.5-1.9 and 0.5-2.0 respectively. The GMIB price is marginally higher

under the continuous fee structure, but the difference shrinks to a negligible amount as

g increases. For the curves that intersect with the horizontal dotted line, the fee rate at

the intersecting point corresponds to the fair fee rate. The fair fee rates are slightly lower

under the discrete fee structure, but the differences are relatively small, lying somewhere

between 0-0.5%.

The right panel of Figure 2.17 displays the EPV Q of the benefits provided by the GMIB

option G(c), and the EPV Q of the fees paid F (c), as functions of the fee rate c under the

continuous and discrete fee structures, for the cases g = 5.5%, 6.5%, 7.5%. The standard

errors of the G(c) and F (c) estimates under the discrete (continuous) fee structures lie

in the ranges 0.6-1.1 (0.6-0.9) and 0.0-1.7 (0.0-1.4) respectively. The expected GMIB

benefits and fees earned are significantly higher under the discrete fee structure. Despite

the differences in the G(c) and F (c) values under the two fee structures, the fair fee rates,

corresponding to the points where G(c) = F (c) (for g = 5.5%, 6.5%), are relatively close.

2.8 Allowing for other fee charges in practice

We have not allowed for various fee charges related to the underlying variable annuity

contract in the results we have presented. The charges cover administrative expenses,
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Figure 2.17: The left panel compares the GMIB price V (c) under the continuous and discrete fee
structures as a function of the fee rate c, for g = 5.5%, 6.5%, 7.5%. The right panel compares the EPV Q

of the GMIB benefits G(c) and the EPV Q of the fees paid F (c) as functions of the fee rate c under the
continuous and discrete fee structures, for g = 5.5%, 6.5%, 7.5%.

expenses related to mortality risk, portfolio management fees, cost of capital, expense

uncertainty loadings and of course variable annuity profit loadings. Moreover, part of the

charges may be for covering the cost of implicit guarantees provided to the policyholder,

such as a put option expiring at time T , with a strike price equal to the value of the

initial investment (i.e. compulsory protection against a loss of principal). There may also

be additional fee charges if other types of variable annuity options are included in the

variable annuity contract (e.g. the guaranteed minimum death benefit). Including these

charges will reduce the investment account value, and this will influence the value of the

GMIB option. The total value of these fees is likely to be between 0.5-3% per year. These

charges are deducted from the investment account on a periodic basis (perhaps daily). We

now illustrate the impact on the GMIB fair fee rate when these variable annuity charges

are allowed for.

We assume the variable annuity fees are deducted continuously at a rate of q per year.

The only adjustment to the valuation model is in the investment account accumulation

factor in each time interval [n−1, n). The investment account equations defined in Section
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2.2.1 become

A(n−) = A(n− 1)R(n)e
∫ n
n−1 qds − f(n)

= A(n− 1)R(n)e−q,

A(n) = A(n− 1)R(n)e−q − f(n) n = 1, 2 . . . , T,

and for t ∈ (n− 1, n), n = 1, 2, . . . , T ,

A(t−) = A(t) = A(n− 1)e
∫ t
n−1(r(s)−q−σ2

S/2)ds+σS(WQ
S (t)−WQ

S (n−1)).
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Figure 2.18: GMIB price V (c) as a function of the (GMIB) fee rate c allowing for variable annuity
fees of q = 2.5%. Each curve corresponds to a particular value of g. For the curves that intersect with
the horizontal dotted line, the fee rate at the intersecting point corresponds to the fair fee rate.

We assume a relatively high variable annuity fee rate of q = 2.5% in the following results.

Figure 2.18 depicts the GMIB price V (c) as a function of the fee rate c allowing for variable

annuity fees of q = 2.5%. The fair fee rates are lower because the fee drag reduces X1 and

X3 (while X2 is unaffected). It turns out that for g = 5% and g = 5.5%, the GMIB price

is always less than the premium; the insurer can offer the GMIB at c = 0 and still make

a profit. The GMIB fair fee rates (with standard errors) for g of 6%, 6.5% and 7% are
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0.54% (0.0028%), 2.18% (0.0035%) and 6.35% (0.0066%). The variable annuity fee rate

of q = 2.5% plus the adjusted GMIB fair fee rate exceed the GMIB fair fee rate when

no variable annuity fees are allowed for by 0.24%, 0.18% and 0.01% for g of 6%, 6.5%

and 7%. These differences make sense in light of the results in Section 2.7, which showed

that the GMIB fair fee rates under both the discrete and continuous fee structures were

fairly close to each other. As a rule of thumb, the GMIB fair fee rate calculated when

no variable annuity fees are allowed for, is approximately equal to variable annuity fee

rate q plus the adjusted GMIB fair fee rate. Figure 2.18 suggests that the GMIB is not

underpriced if the underlying variable annuity charges are sufficiently high.

2.9 Monte Carlo simulation of the GMIB price

2.9.1 An efficient simulation method

A straightforward method for simulating the GMIB price involves discretization of the

SDEs given by equations (2.1) and (2.6) using the Euler approximation (McLeish, 2005),

(Glasserman, 2004). However, this method entails discretization errors, and may be time

consuming if the number of time steps used is large. We now describe a Monte Carlo

simulation method for pricing the GMIB that is efficient, in the sense that it does not

involve any discretization errors and is much faster.

Recall that

F [0,T ] = {Ft, 0 6 t 6 T} (2.35)

is the filtration generated by the stock and short rate processes from time 0 to time T .

In order to compute the GMIB price using Monte Carlo simulation, we must be able to

sample from the joint distribution of

χ̃ =

(∫ T

0

r(t)dt, max
n=1,2,...,T

A(n−), A(T ), r(T )

) ∣∣∣F0.

Note that we require the value of r(T ) since ä20 (T )|FT is a function of r(T ) in the Hull-

White model. Now, we can sample from χ̃ directly if we are able to sample from the joint
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distribution of

W̃ =

(∫ T

0

r(t)dt, r(T ), S(n) n = 1, 2, . . . , T

) ∣∣∣F0.

Sampling from W̃ is not straightforward as there is dependence between the random

variables in the random vector. However, we can sample from W̃ by sampling sequentially

from M̃1, M̃2, . . . , M̃T , where

M̃n =

(∫ n

n−1

r(t)dt, r(n), S(n)

) ∣∣∣Fn−1 n = 1, 2, . . . , T.

We now outline how we can sample from M̃n. First, equations (2.1) and (2.6) can be solved

over the time interval [v, w] to give S(w)|Fv and r(w)|Fv. We use the SDEs defined by

equations (2.8) and (2.9) in what follows. Applying Ito’s Lemma to f(S(t)) = log(S(t))

and integrating yields

S(w) = S(v) exp

(∫ w

v

r(t)dt− σ2
S

2
(w − v) + σSρ

∫ w

v

dWQ
r (t) + σS(1− ρ2)1/2

∫ w

v

dW̃Q(t)

)
.

(2.36)

Multiplying equation (2.8) on both sides by the integrating factor eat and rearranging

leads to

eatdr(t) + eatar(t)dt = eatΘ(t)dt+ eatσrdW
Q
r (t). (2.37)

The left hand side of equation (2.37) is equal to

eatdr(t) + d(eat)r(t) = d(eatr(t))

using the stochastic calculus product rule. Thus, integrating equation (2.37) yields

r(w) = r(v)e−a(w−v) + α(w)− α(v)e−a(w−v) + σr

∫ w

v

e−a(w−t)dWQ
r (t) (2.38)

where

α(t) = fM(0, t) +
σ2
r

2a2
(1− e−at)2.

Equation (2.38) indicates that r(w)|Fv is a normal random variable.
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It can be shown that (Brigo and Mercurio, 2006)∫ w

v

r(t)dt = B(v, w)[r(v)− α(v)] + log

(
PM(0, w)

PM(0, v)

)
+

1

2
[V (0, w)− V (0, v)] +

σr
a

∫ w

t=v

(1− e−a(w−t))dWQ
r (t) (2.39)

where

B(v, w) =
1

a

(
1− e−a(w−v)

)
,

V (v, w) =
σ2
r

a2

(
w − v +

2

a
e−a(w−v) − 1

2a
e−2a(w−v) − 3

2a

)
. (2.40)

Thus, we see that
∫ w
v
r(t)dt|Fv is a normal random variable. This in turn implies S(w)|Fv

is a lognormal random variable. From equation (2.36), we see that S(w)|Fv depends on the

random quantities
∫ w
v
r(t)dt|Fv,

∫ w
v

dWQ
r (t)|Fv and

∫ w
v

dW̃Q(t)|Fv, which are all normally

distributed. Therefore, sampling from M̃n can be obtained by sampling from the following

multivariate normal random vector:

G̃n =

(∫ n

n−1

r(t)dt, r(n),

∫ n

n−1

dWQ
r (t),

∫ n

n−1

dW̃Q(t)

) ∣∣∣Fn−1 n = 1, 2, . . . , T. (2.41)

In order to simulate from G̃n, we require the mean and variance of each random variable,

and the covariances between all of the random variables. Over the time interval [v, w],
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the means, variances and covariances are

µ(1)
v,w = EQ

[∫ w

v

r(t)dt|Fv
]

= B(v, w)[r(v)− α(v)] + log

(
PM(0, v)

PM(0, w)

)
+

1

2
[V (0, w)− V (0, v)],

µ(2)
v,w = EQ [r(w)|Fv] = r(v)e−a(w−v) + α(w)− α(v)e−a(w−v),

µ(3)
v,w = EQ

[∫ w

v

dWQ
r (t)|Fv

]
= 0,

µ(4)
v,w = EQ

[∫ w

v

dW̃Q(t)|Fv
]

= 0,

Σ(11)
v,w = VarQ

[∫ w

v

r(t)dt|Fv
]

= V (v, w),

Σ(22)
v,w = VarQ [r(w)|Fv] =

σ2
r

2a

(
1− e−2a(w−v)

)
,

Σ(33)
v,w = VarQ

[∫ w

v

dWQ
r (t)|Fv

]
= w − v,

Σ(44)
v,w = VarQ

[∫ w

v

dW̃Q(t)|Fv
]

= w − v,

Σ(12)
v,w = CovQ

[∫ w

v

r(t)dt, r(v)|Fv
]

=
σ2
r

2
B(v, w)2,

Σ(13)
v,w = CovQ

[∫ w

v

r(t)dt,

∫ w

v

dWQ
r (t)|Fv

]
=
σr
a

[(w − v)−B(v, w)] ,

Σ(14)
v,w = CovQ

[∫ w

v

r(t)dt,

∫ w

v

dW̃Q(t)|Fv
]

= 0,

Σ(23)
v,w = CovQ

[
r(w),

∫ w

v

dWQ
r (t)|Fv

]
= σrB(v, w),

Σ(24)
v,w = CovQ

[
r(w),

∫ w

v

dW̃Q(t)|Fv
]

= 0,

Σ(34)
v,w = CovQ

[∫ w

v

dWQ
r (t),

∫ w

v

dW̃Q(t)|Fv
]

= 0.

Hence G̃n has a multivariate normal distribution, G̃n ∼ N(µn−1,n,Σn−1,n), with mean

71



vector

µn−1,n = [µ
(1)
n−1,n, µ

(2)
n−1,n, µ

(3)
n−1,n, µ

(4)
n−1,n]′

and covariance matrix

Σn−1,n =


Σ

(11)
n−1,n Σ

(12)
n−1,n Σ

(13)
n−1,n Σ

(14)
n−1,n

Σ
(12)
n−1,n Σ

(22)
n−1,n Σ

(23)
n−1,n Σ

(24)
n−1,n

Σ
(13)
n−1,n Σ

(23)
n−1,n Σ

(33)
n−1,n Σ

(34)
n−1,n

Σ
(14)
n−1,n Σ

(24)
n−1,n Σ

(34)
n−1,n Σ

(44)
n−1,n

 .

We can directly compute A(n−) and A(n) if we have realizations from G̃1, G̃2, . . . , G̃n. To

compute the GMIB price, we sample in sequence from G̃1, G̃2, . . . , G̃T for each scenario.

2.9.2 A control variate for variance reduction

Variance reduction techniques can be used to reduce the standard errors of the estimates

of option prices obtained by Monte Carlo simulation. In other words, it is possible to ob-

tain estimates with the same standard errors, using a much smaller number of scenarios

(and hence simulation time may be considerably reduced). One such technique involves

the use of a control variate in simulation (Boyle et al., 1997).

We now outline the logic for deriving a control variate for the GMIB. The control variate

should generate a value that is close as possible to the estimate of V (c), while still having

an analytical formula. First of all, an analytical formula will require us to approximate the

discrete annual payments of cB(n) by a continuously paid fee applied to the investment

account, at an annual rate of c. Let the investment account process for the control variate

satisfy the following SDE under Q:

dAc(t) = (r(t)− c)Ac(t)dt+ σsAc(t)dW
Q
S (t), (2.42)

where Ac(0) = A(0) = π. The short rate is still assumed to satisfy the SDE given by

dr(t) = {Θ(t)− ar(t)}dt+ σrdW
Q
r (t). (2.43)

Let ρ denote the linear correlation coefficient between {WQ
S (t)} and {WQ

r (t)}.
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Assuming fees are paid continuously, the GMIB maturity value is still a complicated

function of r(T ), maxn=1,2,...,T A(n), and A(T ). We need to simplify the function at

maturity. Figure 2.15 indicates that if the lookback component is removed from the

GMIB price V (c), the value of the now simplified GMIB, z2, is only marginally smaller.

On the other hand, if the guaranteed return component is removed from V (c), the value

of the now simplified GMIB, z1, is considerably smaller than z2. Therefore, a potentially

useful control variate involves removing the lookback component. The maturity value of

a variable annuity with the guaranteed return option is

Y(T ) = max{Ac(0)(1 + rg)
Tgä20 (T ), Ac(T )}

= max{Ac(0)(1 + rg)
Tgä20 (T )− Ac(T ), 0}+ Ac(T ) (2.44)

In the Hull-White model, ä20 (T ) =
∑T+20−1

i=T P (T, i) is a function of r(T ) through the

P (T, i) for i > T . To obtain a control variate, we replace ä20 (T ) by an estimate of

EQ [ä20 (T )|F0] = EQ [ä20 (T )] which can obtained from a separate (prior) Monte Carlo

simulation (this simulation takes a few seconds at most). Alternatively, we can compute

EQ [ä20 (T )] using numerical integration, since it is an integral with respect to a normal

probability density function. Equation (2.44) simplifies to

Ycv(T ) = max{Ac(0)(1 + rg)
TgEQ [ä20 (T )]− Ac(T ), 0}+ Ac(T ), (2.45)

which is the payoff of a European put option on the investment account value at maturity

with a strike price of

K = Ac(0)(1 + rg)
TgaEQ [ä20 (T )],

plus the investment account value at maturity. Given thatEQ[e−
∫ T
0 r(t)dtAc(T )] = Ac(0)e−cT ,

the expected present value under Q of the expression in equation (2.45) is evaluated an-

alytically as

EQ[e−
∫ T
0 r(t)dtYcv(T )] = P(T,K) + Ac(0)e−cT , (2.46)

where P(T,K) is the formula for the price at time 0 of the European put option with

strike price K and maturity date T , in a model where the stock follows equation (2.42),
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and the short rate follows equation (2.43) (Brigo and Mercurio, 2006). Specifically,

P(T,K) = KP (0, T )Φ

− log
{

Ac(0)
KP (0,T )

}
− cT − 1

2
v2(0, T )

v(0, T )


− Ac(0)e−cTΦ

− log
{

Ac(0)
KP (0,T )

}
− cT + 1

2
v2(0, T )

v(0, T )


where

v2(0, T ) = V (0, T ) + σ2
ST + 2

ρσrσS
a

(
T − 1

a
(1− e−aT )

)
and V (0, T ) is defined by equation (2.40).

Now we discuss how the control variate is implemented in the Monte Carlo simulation.

Recall from Section 2.9.1 that G̃n ∼ N(µn−1,n,Σn−1,n). This 4-dimensional multivariate

normal random variable is generated by simulating from a 4-dimensional standard uniform

random vector U = [U1, U2, U3, U4]′, where U1, . . . , U4 are independent and uniformly dis-

tributed on [0,1]. In order to simulate from G̃n, we first simulate Zi = Φ−1(Ui) ∼ N(0, 1),

where Φ−1 is the inverse of the standard normal cumulative distribution function, ob-

taining a standard normal random vector Z = [Z1, Z2, Z3, Z4]′. Next we calculate the

Cholesky square root matrix Cn for which CnC
′
n = Σn−1,n (Glasserman, 2004). Then we

are able to calculate G̃n = µn−1,n +CnZ.

In order to simulate the present value of the GMIB maturity value for a particular scenario

m, we must sample from G̃1, G̃2, . . . , G̃T . Therefore, we require a sample from the 4× T
dimensional matrix

−→
U = (U 1,U 2, . . . ,UT ) (2.47)

where Un denotes the 4-dimensional standard uniform random vector that generates G̃n.
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Define

f(
−→
U ) = e−

∫ T
0 r(t)dt [max{B(T )gä20 (T ), A(T )}]

and

fcv(
−→
U ) = e−

∫ T
0 r(t)dtYcv(T ), (2.48)

where Ycv(T ) is given by equation (2.45).

Let M denote the number of scenarios in the Monte Carlo simulation. Define

−→
Um = (U 1,m,U 2,m, . . . ,UT,m) m = 1, 2, . . . ,M

as the realization of
−→
U for the m-th scenario. The standard (crude) Monte Carlo estimator

of the GMIB price is

θ̂0 =
1

M

M∑
m=1

f(
−→
Um).

An unbiased estimator using the control variate is

θ̂1 = EQ[fcv(
−→
U )] +

1

M

M∑
m=1

(
f(
−→
Um)− fcv(

−→
Um)

)
,

where EQ[fcv(
−→
U )] is given by equation (2.46). If the control variate is effective, the

variance of this estimator will be significantly smaller than the variance of the standard

Monte Carlo estimator. The closer the values of f(
−→
Um) and fcv(

−→
Um) for each m, the

more efficient the estimator θ̂1 will be in terms of minimizing the standard error for a

fixed M .

It is possible to find a linear function of fcv(
−→
U ) that is a better control variate than fcv(

−→
U )

itself. For sufficiently large M , an improved unbiased estimator using the control variate
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is (Glasserman, 2004)

θ̂2 = β̂EQ[fcv(
−→
U )] +

1

M

M∑
m=1

(
f(
−→
Um)− β̂fcv(

−→
Um)

)
where

β̂ =

∑M
m=1

[(
f(
−→
Um)− 1

M

∑M
m=1 f(

−→
Um)

)(
fcv(
−→
Um)− 1

M

∑M
m=1 fcv(

−→
Um)

)]
∑M

m=1

(
fcv(
−→
Um)− 1

M

∑M
m=1 fcv(

−→
Um)

)2 . (2.49)
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Figure 2.19: Standard errors of estimators θ̂0 (standard Monte Carlo estimator), θ̂1 (control variate

estimator), θ̂2 (improved control variate estimator) as functions of the fee rate c for the cases g =

5.5%, 8.5%. In each case, θ̂1 and θ̂2 are close. Each simulation is based on M = 105 scenarios.

Figure 2.19 displays (estimates of) the standard errors of the unbiased GMIB price esti-

mators θ̂0, θ̂1 and θ̂2 as functions of the fee rate c. All standard errors are computed using

M = 105 scenarios. The standard errors of the GMIB price are higher when g is higher.

For any fee rate, the standard error of θ̂2 is marginally smaller than the standard error

for θ̂1. The standard error of θ̂2 is 45-90% smaller than the standard error of θ̂0 across

the fee rate range 0-10%.

As noted in McLeish (2005), when we compare two different Monte Carlo estimators

(of the same expectation/option price), the ratio of the variances of the estimators corre-

sponding to a fixed number of function evaluations can be interpreted as roughly the ratio
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of computational time required for a predetermined accuracy. Explicitly, the efficiency

gain of the control variate estimator θ̂j is defined as the variance of the crude Monte Carlo

estimator, θ̂0 divided by the variance of θ̂j, where both estimators are calculated using

the same number of scenarios (function evaluations/observations). An efficiency gain of

x indicates that the control variate estimator only requires M/x scenarios to achieve the

same variance as the crude Monte Carlo estimator using M scenarios. The efficiency gains

of θ̂2 over θ̂0 range from 4 to 115, depending on the fee rate. The efficiency gains decrease

as the fee rate increases. Clearly, incorporating the control variate into the simulations is

well worth the extra effort.

Finally, we note that further reductions in the standard errors of θ̂0, θ̂1 and θ̂2 might be

achieved by using an appropriate low-discrepancy sequence (Joy et al., 1996), (Tan and

Boyle, 2000). In fact, the author has tested using the low discrepancy sequence suggested

by Lemieux and Faure (2009) in conjunction with the control variate estimators, and it

was found that additional, albeit small, efficiency gains were made.

2.10 History of the GMIB in the U.S. since 2007

In the past decade there seems to have been widespread underpricing of GMIBs in the

U.S. market. A universal pricing correction was observed in the first half of 2009. All ma-

jor GMIB issuers in the U.S. increased the fees for GMIB option, and reduced the benefits

offered by the the GMIB option.4 Before the correction in 2009, it was very common for

guaranteed return component of the benefit base to guarantee 6% per year on the premi-

ums invested. Moreover, the fee rates being charged were about 0.4-0.6% per year – no

competitive GMIB seller charged a fee rate close to 1% per year or higher. In the first half

of 2009, with the full impact of the global financial crisis unfolding, significant changes

were made to the GMIB option (on new policies sold). The guaranteed rate on premiums

was almost universally reduced to 5% by the major and most competitive GMIB issuers.

At the same time as reducing the GMIB benefits, the fee rates for the GMIB were in-

creased to about 0.9-1% per year, across all competitive issuers. Moreover, restrictions

4The following observations were noted by the author of this thesis, who has been monitoring
www.annuityFYI.com since the start of 2007.
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on the percentage of funds invested with riskier fund managers became standard (for

further details see Section 1.1). It seems likely that these adjustments were partly due

to issuers realizing that they were exposed to significantly higher liabilities than expected.

It is interesting to note one particular case. In 2007, ING U.S.A. offered a highly compet-

itive GMIB (highly recommended by www.annuityFYI.com at the time), which provided

a very generous benefit base relative to its competitors. ING U.S.A. guaranteed an annual

rate of return on premiums invested of 7% per year, and allowed the policyholder to lock

in the highest investment account value at the end of each quarter (most other issuers

only allowed the policyholder to lock in gains on each policy anniversary). It charged a fee

rate of 0.75% per year for this option. Our analysis suggests this fee rate may have been

too low. In 2009, ING U.S.A. ceased selling the GMIB option altogether. Today ING

U.S.A. still sells the other variable annuity options, including the increasingly popular

GLWB.

In fact, it appears that most GMIB sellers got the pricing of the GMIB very wrong. Only

when the market started to collapse did the issuers take actions to correct the benefits

and pricing of the GMIB. On the other hand:

• Insurers may have been aware that the fee rates being charged were too low, but due

to competitive pressures, were unable to charge a higher fee rate without reducing

their market share of new variable annuity business;

• The GMIB may have been a loss leader product for some companies, if the overall

variable annuity charges were profitable;

• Perhaps the fees being earned were profitable, but only while there was not a sharp

and sustained drop in equity returns.

The false sense of security that comes from following the majority, assuming that they

have got the pricing right (without verifying for yourself), may have played a role.
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2.11 Concluding remarks

In this chapter, we proposed a pricing equation for the GMIB, which allows us to de-

termine the fair fee rate for the option. The GMIB was valued using straightforward

benchmark models, avoiding complex models with idiosyncracies. It has been shown that

interest rate assumptions have a significant influence on the GMIB price. Taken at face

value, the model suggests that, based on reasonable parameter assumptions, the fee rates

being charged by insurance companies for GMIBs (currently about 0.8-1% per year) may

be too low. Specifically, the fee rates being charged are lower than what is needed to

dynamically hedge the GMIB. However, we caution that our analysis has not allowed for

lapses and underlying variable annuity fee charges. Allowing for these factors reduces the

fair fee rate. Sections 2.6 and 2.8 illustrate how these factors affect the fair fee rate. Of

the two guarantees provided by the GMIB, namely the guaranteed return and lookback

components, the guaranteed return component is the most valuable in terms of pricing.

Moreover, the lookback component seems to be a relatively cheap guarantee for the insur-

ance company when paired with the guaranteed return component, and potential buyers

may perceive the value of this guarantee to be much higher than what has been calculated

in this chapter.

Assumptions made to simplify the analysis included no policy lapses, no cash withdrawals

or additional premiums, no lapses, and no underlying variable annuity fees. It is also as-

sumed that the maturity date is on the 10th policy anniversary. Varying each of these

assumptions will lead to changes in the fair fee rates and GMIB prices we have presented.

In practice insurance companies may be making profits from selling GMIB options partly

because of policyholder lapses – the minimum 10 year accumulation phases may end up

being too long for some cash-tight policyholders. Section 2.6 showed that the GMIB price

is highly sensitive to lapse behavior.

Features of GMIBs that may be worth exploring include assessing the value of step-up

options (the step up option was briefly discussed in Section 1.3.1; it gives the policyholder

the right to reset the value of the guaranteed return component at specific points dur-

ing the accumulation phase), measuring the cost of mortality improvement for GMIBs

associated with life annuities, and exploring the optimal time, in a purely financial sense,
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for exercising the GMIB beyond the 10-th policy anniversary. The challenging issue of

hedging GMIBs is an important one that needs investigating, but to date does not seem

to have been touched on much in the literature. Investigating the effectiveness of possible

static hedges is a first step.
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Chapter 3

Measuring the Effectiveness of Static

Hedging Strategies for a Guaranteed

Minimum Income Benefit

3.1 Introduction

The standard assumptions for pricing derivatives include (Hull (2008), Joshi (2008)):

• The ability to rebalance the replicating portfolio on a continuous basis;

• No transaction costs incurred on any trades; and

• The ability to correctly model the underlying asset price dynamics.

These assumptions must hold for a complete market model. In an ideal world where the

market is complete, there exists a risk-free delta hedging strategy, such that the GMIB

maturity value is equal to the payoff of a replicating portfolio. The annuity premium is

invested according to a pre-defined replicating strategy, in such a way that no additional

funds are needed for the replicating portfolio payoff to match the GMIB liability at ma-

turity. In Chapter 2, we priced the GMIB using a complete market model. The prices

we obtained assume that the standard assumptions listed above are fulfilled in reality.

The prices correspond to the costs of employing delta hedging strategies. However, in
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practice, there are significant difficulties with delta hedging the GMIB option, including

the following issues:

• The term to expiry is very long, with a minimum of 10 years. Delta hedging requires

frequent rebalancing of the replicating portfolio. The transaction costs will not be

negligible if the hedge is to be reasonably accurate from inception to the expiration

date. Furthermore, continuous rebalancing is a requirement if the hedge is to be

risk-free. In reality, rebalancing is only possible at discrete time intervals.

• The asset price dynamics cannot be modeled precisely; we regularly see sudden

large market movements that cannot be accurately predicted by models. When the

underlying asset prices feature jumps and/or stochastic volatility, any delta hedge

will only be partially successful, in general.

• Rebalancing a large portfolio, (at the same time as other insurers are doing the same

thing, perhaps) may cause large price movements in the market, making rebalancing

more expensive than anticipated.

• Delta hedging is model dependent. In particular, the calculations of the Greeks

(Delta, Gamma, Vega, Rho, etc.) depend on the choices of the stock and interest

rate models. If the models do not reasonably approximate movements in stock prices

and interest rates in reality, then the hedge may not work as projected.

• There is systemic longevity risk associated with GMIBs embedded in life annuities.

Finding liquid financial instruments to adequately hedge the longevity risk may be

a difficult or impossible task. In this chapter, we do not model mortality/longevity

risk, but rather assume a term certain annuity is selected at maturity. However,

we note that longevity risk is a key driver of the value of GMIBs associated with

life-contingent annuities. Hedging the longevity risk of GMIBs is a research topic

in itself.

An alternative to delta hedging is a static hedging strategy. A static hedging strategy in-

volves selecting an appropriate combination of different financial instruments at inception.

This portfolio is then held to the maturity date without rebalancing. The instruments

are chosen to generate a combined payoff at maturity that matches the payoff of the
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GMIB as closely as possible. The static hedging strategy avoids or mitigates the difficul-

ties involved with implementing delta hedging strategies. Carr et al. (1998) and Derman

et al. (2000) provide examples of static hedging strategies applied to exotic option payoffs.

A minimally dynamic approach that extends the concept of the static hedge is the semi-

static strategy, under which the hedge portfolio is rebalanced once (say) before the expira-

tion date of the payoff being hedged. Carr and Wu (2004) and Liu (2010) have examined

the effectiveness of semi-static hedging strategies for standard options and guaranteed

minimum withdrawal benefits respectively. In this chapter, we measure the effectiveness

of static hedging strategies for a guaranteed minimum income benefit. In Chapter 4, we

will explore the effectiveness of semi-static hedging strategies.

Define the hedging loss as the difference between the GMIB value and the hedging portfolio

payoff at maturity. Using Monte Carlo simulation, the effectiveness of a static hedging

strategy is measured by the empirical hedging loss distribution. Several assumptions are

required to develop appropriate static hedging strategies:

1. The range of hedging instruments assumed to be available needs to be specified.

We explore the use of a range of standard financial instruments that should all be

available in practice, either on exchanges or over-the-counter: the underlying stock

index portfolio, zero coupon bonds and long-dated European options with various

strike prices. We also explore the addition of lookback options to mitigate one

feature of the GMIB maturity value.

2. Given a budget constraint, the optimal positions in each of the hedging instruments

must be determined based on minimizing some specified objective function, and

there are many possible objective functions to choose from. We illustrate the hedging

effectiveness of two distinct objective functions. First, in Section 3.6, we analyze

the optimal portfolios obtained from minimizing the Conditional Tail Expectation

(CTE) (also known as Conditional Value at Risk, Tail Value at Risk or Expected

Shortfall) of the hedging loss distribution. Second, in Section 3.7, we explore the

results based on minimizing the mean squared hedging loss (MSHL).

The methods presented provide a template for how an insurance company can develop

static hedging strategies for groups of variable annuity policies which include GMIBs.
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Our results suggest which instruments are most important to achieve the best results.

However, we also illustrate that, based on the (benchmark) models and assumptions de-

scribed, the performance of the static hedge for the GMIB is imperfect at best. Based on

the GMIB option fee rates currently being charged in practice, the hedging portfolios do

not adequately simultaneously hedge the upside and downside equity guarantees provided

by the GMIB. Changing the model assumptions and parameter values will produce differ-

ent hedging loss statistics to those reported in this chapter, but the underlying message,

that the static hedge approach may not adequately mitigate the risks, is unlikely to change.

The structure of Chapter 3 is as follows. In Section 3.2, we discuss the models employed

for the financial variables. In Section 3.3, we describe the method for constructing a static

hedging portfolio. We discuss the hedging loss statistics, which measure the performance

of a static hedging strategy. Useful decompositions of the hedging loss statistics are

proposed, which assist in the risk analysis of a strategy. The CTE and MSHL minimization

problems are defined. Section 3.4 lists the benchmark parameter assumptions we adopt

for illustrating most of the results in this chapter. Section 3.5 illustrates the effectiveness

of a simple hedging portfolio, in which the entire initial investment is invested in a stock

index portfolio from time 0 to maturity. The hedging loss statistics for this portfolio

act as a benchmark for the hedging loss statistics obtained using more sophisticated

static hedging portfolios. Sections 3.6 and 3.7 present the hedging loss statistics for

various portfolios, containing different instruments, obtained from minimizing the CTE

and MSHL. Section 3.8 shows that hedging the interest rate risk associated with the GMIB

option is secondary to hedging the equity risk. Section 3.9 explores the effectiveness of

static hedging portfolios when the design of the GMIB option is simplified. In Section

3.10, we illustrate how the performance of the static hedging portfolios change if the fair

fee rate for the GMIB option is charged. In Section 3.11, we investigate how a static

hedging strategy would have performed if it had been in place for a GMIB issued in each

year from 1997 to 2011. This is a challenging backtest, given the nature of the financial

market crises experienced during the period. In Section 3.12, we measure the impact on

the hedging loss distribution when significant loadings are added to the prices of options

included in the hedging portfolios. In Section 3.13, we present a sensitivity analysis of

key parameters. Section 3.14 covers some practical risks associated with static hedging

strategies, which we have not allowed for in our results. Section 3.15 presents concluding
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remarks.

3.2 Models for the financial variables

We assume the policyholder has requested the insurer to invest their annuity premium in

a managed portfolio that offers returns perfectly matching the returns of a major stock

index. Furthermore, it is assumed that options on this stock index are traded. Henceforth,

we refer to this managed portfolio as simply the stock. Under the real-world (objective)

probability measure, which we denote by P , changes in the value of the stock are modeled

as a geometric Brownian motion. Namely,

dS(t) = µS(t)dt+ σSS(t)dW P
S (t) (3.1)

where µ is the (annualized) instantaneous expected return, σS > 0 is the (annualized) in-

stantaneous volatility of the stock, and {W P
S (t), t ∈ [0, T ]} is a standard Brownian motion

under P . We assume that the short rate satisfies the Hull-White model under both the P

measure, and the risk-neutral measure Q. Explicitly, the short rate under P is assumed

to evolve according to the SDE given by

dr(t) = {Θ̆(t)− ăr(t)}dt+ σrdW
P
r (t), (3.2)

where ă > 0 is a constant that measures the speed of mean reversion, Θ̆(t) is a deter-

ministic function of time, σr > 0 is the (annualized) instantaneous volatility of the short

rate and {W P
r (t), t ∈ [0, T ]} is a standard Brownian motion under P . The stock and

short rate processes may be dependent on each other. The parameter ρ denotes the linear

correlation coefficient between {W P
S (t), t ∈ [0, T ]} and {W P

r (t), t ∈ [0, T ]}.

Under P , the policyholder’s investment account still satisfies equation (2.5), but all of the

random variables are computed based on equations (3.1) and (3.2).

We now want to determine the SDEs of the stock and short rate processes under a risk
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neutral measure, denoted by Q. Using a Cholesky decomposition,

dW P
S (t) = (1− ρ2)1/2dZP

(1)(t) + ρdZP
(2)(t) (3.3)

dW P
r (t) = dZP

(2)(t) (3.4)

where {ZP
(1)(t)} and {ZP

(2)(t)} are independent standard Brownian motions under P . Using

equations (3.3) and (3.4),

dS(t) = µS(t)dt+ σSS(t){(1− ρ2)1/2dZP
(1)(t) + ρdZP

(2)(t)} (3.5)

dr(t) = {Θ̆(t)− ăr(t)}dt+ σrdZ
P
(2)(t). (3.6)

The Girsanov Theorem tells us that the process {Z(i)(t), Z(i)(0) = 0}, i = 1, 2, defined by

dZQ
(i)(t) = dZP

(i)(t)− λ(i)(t)dt, (3.7)

where λ(i)(t) is some real function (satisfying certain technical conditions (Musiela and

Rutkowski, 2004)), is a standard Brownian motion under Q. The market is arbitrage free

if there exists at least one risk-neutral measure. For the measure Q to be a risk-neutral

measure, the discounted price processes of all assets must be martingales. Under the

measure Q, the short rate satisfies the SDE

dr(t) = {Θ̆(t)− ăr(t) + λ(2)(t)σr}dt+ σrdZ
Q
(2)(t). (3.8)

Equation (3.8) follows from combining equations (3.6) and (3.7).

Under the measure Q, the stock satisfies the SDE

dS(t) =
(
µ+ λ(1)(t)σS

√
1− ρ2 + λ(2)(t)σSρ

)
S(t)dt

+ σSS(t){
√

1− ρ2dZQ
(1)(t) + ρdZQ

(2)(t)}. (3.9)

Equation (3.9) follows from combining equations (3.5) and (3.7). ForQ to be a risk-neutral

measure, we require

µ+ λ(1)(t)σS
√

1− ρ2 + λ(2)(t)σSρ = r(t). (3.10)
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Now, the Hull-White model is actually defined under a risk-neutral measure Q′, not the

real-world measure P . Under Q′, the short rate, by definition, satisfies the SDE

dr(t) = {Θ(t)− ar(t)}dt+ σrdZ
Q′

(2)(t), (3.11)

where a > 0, Θ(t) is a deterministic function of time that is chosen such that the model

term structure matches the market term structure at the start of the projection, and

{ZQ′

(2)(t)} is a standard Brownian motion under Q′. Equation (3.8) can expressed in the

form of equation (3.11) if we set

λ(2)(t) =
(Θ(t)− ar(t))− (Θ̆(t)− ăr(t))

σr
. (3.12)

In fact, if we assume that the short rate process satisfies the Hull-White model under

P , and that at least one zero coupon bond is traded, then λ(2)(t) must satisfy equation

(3.12), otherwise there will be arbitrage opportunities.

We now explain why there would be arbitrage opportunities if λ(2)(t) does not satisfy

equation (3.12) for all t. In the Hull-White model the price at time t of a zero coupon bond

maturing at time T has the form P (t, T ) = F (r(t), t, T ), where F is a smooth function

with respect to the three chosen arguments. Under these conditions Ito’s Lemma can be

used to determine the dynamics of P (t, T ). Let P T
t be shorthand notation for P (t, T ).

For Q to be a risk-neutral measure, every discounted zero bond price process must be

a martingale, otherwise there are arbitrage opportunities. Let {M(t) = e−
∫ t
0 r(s)dsP T

t }
denote the discounted price process for the zero coupon bond maturing at time T . This

process is a martingale if the drift term of the SDE for {M(t)} is zero. Now, the short

rate follows equation (3.8) under the measure Q. Using Ito’s Lemma, it can be shown

that

dM(t) = e−
∫ t
0 r(s)ds

[
∂P T

t

∂t
+ {Θ̆(t)− ăr(t) + λ(2)(t)σr}

∂P T
t

∂r
+

1

2
σ2
r

∂2P T
t

∂r2
− r(t)P T

t

]
dt

+ e−
∫ t
0 r(s)dsσr

∂P T
t

∂r
dZQ

(2)(t). (3.13)

In the Hull-White model, defined by equation (3.11), the fundamental PDE for the zero
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coupon bond maturing at time T is (Musiela and Rutkowski, 2004)

∂P T
t

∂t
+ {Θ(t)− ar(t)}∂P

T
t

∂r
+

1

2
σ2
r

∂2P T
t

∂r2
− r(t)P T

t = 0, (3.14)

with boundary condition P T
T = 1. In an arbitrage free bond market, P T

t must satisfy this

PDE. Substituting equation (3.14) into equation (3.13) yields

dM(t) =
(

(Θ̆(t)− ăr(t))− (Θ(t)− ar(t)) + λ(2)(t)σr

) ∂P T
t

∂r
dt+ σr

∂P T
t

∂r
dZQ

(2)(t).

Clearly, {M(t)} is a martingale if and only if λ(2)(t) satisfies equation (3.12).

Given equation (3.12), we can rearrange equation (3.10) to obtain a unique solution for

λ(1)(t). In summary, assuming that short rate process satisfies the Hull-White model

under P , and that a zero coupon bond can be traded, then the risk-neutral measure Q is

unique. Hence, the market is also complete.

In this thesis, we assume that the Hull-White model parameters are identical under mea-

sures P and Q, implying λ(2)(t) = 0. When λ(2)(t) = 0, equation (3.10) can be rearranged

to show that, for all t,

λ(1)(t) =
−(µ− r(t))
σS
√

1− ρ2
.

In our setting, the stock process satisfies the following SDE under Q:

dS(t) = r(t)S(t)dt+ σSS(t)dWQ
S (t), (3.15)

where {WQ
S (t) = {

√
1− ρ2ZQ

(1)(t) + ρZQ
(2)(t)} is a standard Brownian motion under Q.

Furthermore, under Q the short rate process satisfies the SDE given by

dr(t) = {Θ(t)− ar(t)}dt+ σrdW
Q
r (t) (3.16)

where {WQ
r (t) = ZQ

(2)(t)} is a standard Brownian motion under Q.
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Analytical formulas exist for zero coupon bond prices in the Hull-White model. The

price at time t of a zero coupon bond maturing at time T , P (t, T ), is given by equation

(2.11). Options in the hedging portfolio are valued at time 0 using analytical formulas

where possible, otherwise we use Monte Carlo simulation. Analytical formulas for the

European put and call options exist when the stock and the short rate are assumed to

evolve according to equations (3.15) and (3.16). In order to present the analytical formulas

in their full form, let us temporarily extend the stock SDE given by equation (3.15) to

allow for a continuous divided yield at rate y per year. The SDE of the stock price under

Q becomes

dS(t) = (r(t)− y)S(t)dt+ σSS(t)dWQ
S (t).

The price at time t of a European call/put option written on the stock with maturity

date T and strike price K is given by (Brigo and Mercurio, 2006)

O(t, T,K) = ψS(t)e−y(T−t)Φ

ψ log
{

S(t)
KP (t,T )

}
− y(T − t) + 1

2
v2(t, T )

v(t, T )


− ψKP (t, T )Φ

ψ log
{

S(t)
KP (t,T )

}
− y(T − t)− 1

2
v2(t, T )

v(t, T )

 (3.17)

where ψ = 1 corresponds to a call, and ψ = −1 corresponds to a put. In equation (3.17)

v2(t, T ) = V (t, T ) + σ2
S(T − t) + 2

ρσrσS
a

(
T − t− 1

a
(1− e−a(T−t))

)
and V (t, T ) is defined by equation (2.40). We continue to assume y = 0 for simplicity,

but it is trivial to adjust the model in order to obtain results with y > 0. It is emphasized

that the call and put options are valued as functions of the stock, not the policyholder’s

investment account (which is periodically reduced by fees).

It is noted that more sophisticated models for the dynamics of the stock (which allow for

stochastic volatility and jumps), and the term structure of interest rates, could be easily

be implemented using the approach in this chapter. We choose a simple model without
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any idiosyncrasies to set a benchmark. If the static hedge does not work well using a

simple model, it will do an even worse job in reality.

3.3 Implementing the static hedging strategies

Recall that we are hedging the GMIB maturity value, defined by equation (1.3), which is

Y (T ) = max {B(T )gä20 (T ), A(T )} ,

where

B(T ) = max{A(0)(1 + rg)
T , max

n=1,2,...,T
A(n−)}.

Now,

ä20 (T ) =
T+19∑
j=T

P (T, j) (3.18)

where P (T, j) is defined by equation (2.11) in the Hull-White model. At time T , ä20 (T ) is

a deterministic function of r(T ). Recall that the assumptions include ignoring longevity

risk and policy lapses (see Section 1.3).

Let:

• α denote the confidence level of the CTE.

• N denote the number of scenarios.

• K denote the number of hedging instruments.

• y = [y1, y2, . . . , yN ]′ denote the vector of simulated GMIB maturity values. The

n-th component yn is the GMIB maturity value for the n-th scenario.

• x = [x(1), x(2), . . . , x(K)]′ denote the vector of hedging instrument positions. The

k-th component x(k) is the number of units of hedging instrument k held long in

the portfolio.
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• zn = [zn(1), zn(2), . . . , zn(K)]′ denote the vector of simulated hedging instrument

payoffs for the nth scenario. The k-th component zn(k) is the payoff of the k-th

instrument for the n-th scenario. Furthermore, let Z = [z1, z2, . . . ,zN ]′ denote the

N ×K market payoff matrix containing the instrument payoffs for all N scenarios.

• φ = [φ(1), φ(2), . . . , φ(K)]′ denote the vector of hedging instrument prices at time

0. The k-th component φ(k) is the price of the k-th instrument.

• c = [c(1), c(2), . . . , c(K)]′ denote the vector of transaction costs. The k-th compo-

nent c(k) is the transaction cost per unit of instrument k bought/sold.

• u = [u(1), u(2), . . . , u(K)]′ denote a vector of real numbers introduced to solve the

optimization problems.

We can measure the effectiveness of a given hedging portfolio by analyzing the distribution

of the difference between the GMIB maturity value and the hedging portfolio payoff,

which we refer to as the hedging loss distribution. We can sample from the hedging loss

distribution using the following algorithm:

(1) Compute the hedging instrument prices φ. All option prices are computed using

the Q-measure models.

(2) Simulate yn and zn for n = 1, . . . , N , using the P -measure models. It should always

be checked that the securities market model generated by φ and Z is arbitrage

free. Certain instruments might introduce arbitrage opportunities. Later, in Section

4.2.5, we define a test which should be performed at this step to ensure that arbitrage

opportunities do not exist. As it turns out, none of the combinations of hedging

instruments that we consider in this chapter permit arbitrage opportunities.

(3) Solve the optimization problem to obtain the vector of optimal instrument positions,

which we denote by x = x̂.

(4) Calculate the hedging loss observations (henceforth referred to as simply the hedging

losses), defined as

en = yn − z
′

nx̂, n = 1, . . . , N. (3.19)
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In Step (4), when N is not large, to avoid biases in the results, a different set of real-

izations of {yn, zn}Nn=1, not used to obtain x̂, should be used when computing {en}Nn=1.

Nevertheless, when N is sufficiently large, the output of Step (2) can be used in Step

(4) without introducing any significant bias. As we demonstrate in Section 3.13.1, using

N > 10,000 is sufficient for producing stable results with low sampling error bias. In

Sections 3.5, 3.6 and 3.7, we use the same set of realizations of {yn, zn}Nn=1 for each set

of results that we illustrate. This allows us to compare the portfolio statistics for each

portfolio using the same underlying “sampling variability”. In particular, we can “rank”

the CTE values and the MSHL1/2 values for different portfolios, without worrying about

sampling variability that arises from using different sets of realizations of {yn, zn}Nn=1.

If the hedging portfolio payoff closely matches the GMIB maturity value, then the hedging

losses should be small in absolute magnitude. When en > 0 (en < 0), the insurance

company experiences a loss (profit) at time T . It is emphasized that if the insurer utilizes

static hedges for the GMIB, then the premium is not physically invested in the stock,

but rather in a combination of hedging instruments. In the remainder of this section, we

discuss the universe of instruments, the hedging loss statistics that we use to measure

the effectiveness of a particular portfolio, and define the CTE and MSHL optimization

problems.

3.3.1 Universe of instruments

In order to implement a hedging portfolio using an optimization problem, the universe

of available hedging instruments must first be defined. To be practical, the instruments

should be available in practice. We assume the following financial instruments can be

bought or sold in any quantity:

• A stock index portfolio (stock) that offers returns perfectly matching the returns

of the broad stock index in which the policyholder is invested. Without loss of

generality, we assume that the value of one unit of the stock at time 0 is π = 1000;

this allows us to illustrate the results more neatly.1

1If the initial value of the stock is set equal to aS(0) for a > 0, then the optimal positions in the stock
and the options, shown in the tables in this chapter, will be scaled by the constant 1/a.
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• Zero coupon bonds (ZCBs) with maturity dates ranging between 10 and 29 years.

This range corresponds to the range of annuity payment dates. We refer to a zero

coupon bond with a maturity date of T years starting from time 0 as ZCB(T ).

Without loss of generality, we assume that each bond has a face value of π = 1000

per unit.

• European put options on the stock index, with expiration dates of T = 10 years

and judiciously chosen strike prices. We refer to a put option with strike price K

as Put(K).

• European (annually sampled) lookback call options at a particular strike price K,

which we refer to as LBC(K), and European (annually sampled) lookback put op-

tions, which we refer to as LBP. We define the payoffs of these instruments in Section

3.6.4.

Put and lookback options with 10 year exercise dates are uncommon, and their presence

on public exchanges is limited. However, historically these types of options have been

actively traded over-the-counter; common option writers include investment banks. The

motivations for using these options to hedge the GMIB are discussed in Sections 3.5 and

3.6.

3.3.2 The hedging loss statistics

The effectiveness of an optimal strategy x̂ is measured by the hedging loss distribution that

it generates. The statistics (some being standard risk measures) we compute to describe

the hedging loss distribution include the sample mean, sample standard deviation, 1%-

percentile, median, Value at Risk (99%-percentile) and the Conditional Tail Expectation.

To facilitate comparisons between the results for portfolios minimized using different

objective functions, we also compute an estimate of the square root of the mean squared

hedging loss (MSHL1/2) for each example, which is calculated as

M̂SHL
1/2

=

(
1

N

N∑
n=1

e2
n

)1/2

. (3.20)
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The MSHL1/2 is a measure of how closely the hedging portfolio payoff matches the GMIB

maturity value.

The Value at Risk (VaR) and Conditional Tail Expectation (CTE) form our measures of

(tail) risk, for a given static hedging strategy. They are estimated as follows. Let

e(1), e(2), . . . , e(N)

denote the ordered hedging losses, sorted in ascending order. In other words, e(n) is the

n-th smallest hedging loss. The estimate of the VaR at a confidence level of α ∈ (0, 1)

is given by V̂aR(α) = e(Nα), provided Nα is an integer. The estimate of the CTE at a

confidence level of α ∈ (0, 1) is

ĈTE(α) =
N∑

n=Nα+1

e(n)

N(1− α)
. (3.21)

VaR is a used extensively used in the finance industry, particularly in the measurement of

trading risk over fixed time horizons (Hull, 2009). However, the CTE is becoming the pre-

ferred risk measure in the insurance industry, particularly for setting liability provisions

(American Academy of Actuaries, 2005). Wirch and Hardy (1999) study the properties of

VaR and CTE in the context of equity-linked guarantees in insurance contracts. Unlike

VaR, the CTE is a coherent risk measure in the sense of Artzner et al. (1999). Further-

more, the optimization problems for minimizing the CTE are easier to implement than

for VaR, when they are scenario-based; VaR optimization problems are non-convex, and

may have many local minima (Gaivoronski and Pflug, 2005). Partly for these reasons, we

focus on the CTE as our central measure of risk.

Confidence intervals for the statistics

Whenever Monte Carlo simulation is used to compute statistics of interest, the uncertainty

of the estimates, due to sampling variability, should be quantified. The uncertainty of

an estimate is often quantified by the standard error of the estimate, or by a confidence

interval. We now outline how we can calculate measures of uncertainty for each of our

estimates. Let:
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• Φ−1 denote the inverse of the standard normal cumulative distribution function;

• εn be the random variable denoting the hedging loss for the n-th scenario;

• ē and σ̂2
e denote the estimates of the mean and variance of εn;

• ω̄ and σ̂2
ω denote the estimates of the mean and variance of ε2

n.

Applying the central limit theorem, an approximate 100β percent confidence interval for

E[εn] is given by

ē± Φ−1

(
1 + β

2

)
σ̂e√
N
.

By applying the Delta Method (Casella and Berger, 2001) to f(σ̂2
e) = (σ̂2

e)
1/2, we can

obtain an approximate 100β percent confidence interval for V ar[εn]1/2. It is given by

σ̂e ± Φ−1

(
1 + β

2

)
(σ̂2

U)1/2

2σ̂e
√
N

where σ̂2
U is the estimate of the variance of (εn − E(εn))2.

Because {εn}Nn=1 are independent and identically distributed, so are {ε2
n}Nn=1. Hence

1
N

∑N
n=1 ε

2
n converges to a normal distribution as N increases. Therefore, we can also

apply the Delta Method to f(ω̄) = (ω̄)1/2 to obtain an approximate 100β percent confi-

dence interval for MSHL1/2. It is given by

ω̄1/2 ± Φ−1

(
1 + β

2

)
(σ̂2

ω)1/2

2ω̄1/2
√
N
.

In the special case where the hedging loss mean is close to 0, ω̄1/2 and σ̂e will be close in

value, and the corresponding confidence intervals will be very similar.

Let e(1), e(2), . . . , e(N) denote the ordered hedging losses from smallest to largest. Thus, e(n)

is the n-th smallest hedging loss. A nonparametric (approximate) 100β percent confidence

interval for the γ-quantile hedging loss, estimated as e(Nγ) assuming Nγ is an integer, is

95



given by (Hardy, 2003) (
e(Nγ−θ), e(Nγ+θ)

)
where

θ = Φ−1

(
1 + β

2

)√
Nγ(1− γ).

It is usual to round θ to the nearest integer. As this confidence interval is based on the

normal approximation to the binomial distribution, we should ensure that Nγ > 30 and

N(1− γ) > 30.

The standard error of the CTE estimator is difficult to determine, for reasons outlined in

(Hardy, 2003). Recall that the CTE is the mean hedging loss, given that the hedging loss

exceeds the α-quantile of the underlying hedging loss distribution. If the α-quantile of

the underlying hedging loss distribution was known with certainty, the standard error of

the CTE estimate would be the sample standard deviation of the observations in excess

of the α-quantile, divided by the number of observations in excess of the α-quantile.

However, in practice the α-quantile is unknown. Using simulation to estimate the α-

quantile introduces a second source of uncertainty in the CTE estimate. If the second

source of uncertainty is ignored, then a biased low estimate of the standard error of the

CTE estimate is given by

σ̃ =

(
σ̂2(e(n) : n > Nα)

N(1− α)

)1/2

,

where σ̂2(e(n) : n > Nα) denotes the sample variance of the hedging loss observations

in excess of e(Nα), {e(n)}Nn=Nα+1. A more accurate estimate of the standard error can

be obtained by repeated Monte Carlo simulation. Repeating the (entire) simulation of a

strategy many times provides a range of CTE estimates. The standard deviation of the

sample of CTE estimates (one CTE estimate per entire simulation) provides an estimate

of the standard error of the CTE estimator. This approach is not always feasible if one

entire simulation takes many hours. In particular, in Chapter 4, where computation time

is a critical issue, repeated Monte Carlo simulation of a semi-static hedging strategy is
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not a viable option.

Manistre and Hancock (2005) develop an estimator for the variance of the CTE estimator

that is valid as the sample size approaches infinity. They also present empirical results

that suggest the asymptotic CTE variance estimator is a good approximation to the true

variance for finite sample sizes, even for high confidence (alpha) levels. The asymptotic

CTE variance estimate is

σ̂2(ĈTE(α)) =
σ̂2(e(n) : n > Nα)

N(1− α)
+

α

N(1− α)

(
ĈTE(α)− e(Nα)

)2

.

This estimate is intuitively appealing as it simplifies to the variance of a mean estimator

when α = 0. An approximate 100β percent confidence interval for CTE(α) is given by

ĈTE(α)± Φ−1

(
1 + β

2

)√
σ̂2(ĈTE(α)). (3.22)

We use expression (3.22) in the calculation of confidence intervals for reported CTE esti-

mates.

It is noted that the confidence intervals presented here do not capture all sources of

uncertainty associated with the hedging loss statistics of a given static hedging strategy.

The confidence intervals are calculated conditional on the vector of optimal instrument

positions x̂. But x̂ is a random variable that depends on the selection of scenarios used in

the optimization problem. The random variability associated with x̂ can be measured by

utilizing repeated Monte Carlo simulations. In Section 3.13.1, we illustrate the sensitivity

of the optimal value of x̂ for different selections of scenarios and values of N . As it turns

out, the variability of x̂ is reasonably small if N is sufficiently large (N = 20000 seems

appropriate). Therefore, although the confidence intervals we report for each example

in the following sections do not account for the variability of x̂, the intervals are still

reasonably accurate.
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Useful decompositions of the statistics

Recall that the GMIB maturity value is the maximum of three components:

Y (T ) = max(X1, X2, X3)

where

X1 = max
n=1,...,T

A(n−)gä20 (T ), X2 = A(0)(1 + rg)
Tgä20 (T ), X3 = A(T ).

We refer to X1 as the lookback component, X2 as the guaranteed return component and

X3 as the investment account component. When we say that a particular component

is exercised (for a particular real-world scenario), we mean that it is the most valuable

component among all three components. To assist in the risk analysis of a particular

strategy, useful information may be obtained by decomposing some of the hedging loss

statistics. In particular, insights into what instruments effectively hedge the GMIB are

gained by decomposing the mean and CTE(99%) into contributions related to when each

of the three components are exercised. Here we outline some informative decompositions,

which we will calculate for our examples.

Define the indicator function

1[A](n) =

1 if event A occurs for the n-th scenario

0 if event A does not occur for the n-th scenario.
(3.23)

The mean hedging loss estimate ē can be decomposed as the sum of the contributions
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from each of the components of the GMIB and the hedging instruments:

ē =
1

N

N∑
n=1

en

=
1

N

N∑
n=1

[
(yn −

K∑
k=1

zn(k)x(k))(1[X1>X2,X3](n) + 1[X2>X1,X3](n) + 1[X3>X1,X2](n))

]

= ȳM1 + ȳM2 + ȳM3 −
K∑
k=1

(θM1 (k) + θM2 (k) + θM3 (k)) (3.24)

where

ȳM1 =
1

N

N∑
n=1

yn1[X1>X2,X3](n),

ȳM2 =
1

N

N∑
n=1

yn1[X2>X1,X3](n),

ȳM3 =
1

N

N∑
n=1

yn1[X3>X1,X2](n),

θM1 (k) =
1

N

N∑
n=1

zn(k)x(k)1[X1>X2,X3](n), k = 1, . . . , K,

θM2 (k) =
1

N

N∑
n=1

zn(k)x(k)1[X2>X1,X3](n), k = 1, . . . , K,

θM3 (k) =
1

N

N∑
n=1

zn(k)x(k)1[X3>X1,X2](n), k = 1, . . . , K.

The larger the value of ȳMj , j = 1, 2, 3, the more that component Xj contributes to ē for

the given hedging portfolio. The term θMj (k), k = 1, . . . , K, j = 1, 2, 3, is a measure of

the effectiveness of the k-th hedging instrument at offsetting the GMIB maturity value

when Xj is exercised. The larger the value of θMj (k), the more effective instrument k is

at reducing ē.
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Let y(n) and z(n)(k), k = 1, . . . , K, denote the GMIB maturity value and hedging in-

strument payoffs corresponding to the n-th smallest simulated hedging loss e(n), for

n = Nα + 1, . . . , N . The CTE estimate can be decomposed in a similar manner to

the mean hedging loss:

CTE(α) = ȳC1 + ȳC2 + ȳC3 −
K∑
k=1

(θC1 (k) + θC2 (k) + θC3 (k)) (3.25)

where

ȳC1 =
1

N(1− α)

N∑
n=Nα+1

y(n)1[X1>X2,X3](n),

ȳC2 =
1

N(1− α)

N∑
n=Nα+1

y(n)1[X2>X1,X3](n),

ȳC3 =
1

N(1− α)

N∑
n=Nα+1

y(n)1[X3>X1,X2](n),

θC1 (k) =
1

N(1− α)

N∑
n=Nα+1

z(n)(k)x(k)1[X1>X2,X3](n), k = 1, . . . , K,

θC2 (k) =
1

N(1− α)

N∑
n=Nα+1

z(n)(k)x(k)1[X2>X1,X3](n), k = 1, . . . , K,

θC3 (k) =
1

N(1− α)

N∑
n=Nα+1

z(n)(k)x(k)1[X3>X1,X2](n), k = 1, . . . , K.

The larger the value of ȳCj , j = 1, 2, 3, the more that component Xj contributes to CTE(α)

for the given hedging portfolio. The term θCj (k), k = 1, . . . , K, j = 1, 2, 3, is a measure

of the effectiveness of the k-th hedging instrument at reducing CTE(α) when Xj is ex-

ercised. A large value for θCj (k) may suggest instrument k is important for reducing

CTE(α). However, it is important to realize that the relationship is not straightforward;

even if instrument k produces a small value for θCj (k), it may still be important for reduc-

ing CTE(α). The θCj (k) should not be interpreted in isolation, but in conjunction with

the θMj (k). A concrete example demonstrating this point is given in Section 3.6.4.
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We can also decompose the standard deviation estimate into contributions from each of

the three components. The sample variance σ̂2
e can be expressed in the following form:

σ̂2
e =

1

N − 1

N∑
n=1

(en − e)2

=
1

N − 1

N∑
n=1

(en − e)2(1[X1>X2,X3](n) + 1[X2>X1,X3](n) + 1[X3>X1,X2](n)). (3.26)

Dividing equation (3.26) by the sample standard deviation, which is
√
σ̂2
e = σ̂e > 0,

we obtain the sample standard deviation as the sum of three terms related to the three

components:

σ̂e = SDX1 + SDX2 + SDX3

where

SDX1 =
1√

σ̂2
e(N − 1)

N∑
n=1

(en − e)21[X1>X2,X3](n),

SDX2 =
1√

σ̂2
e(N − 1)

N∑
n=1

(en − e)21[X2>X1,X3](n),

SDX3 =
1√

σ̂2
e(N − 1)

N∑
n=1

(en − e)21[X3>X1,X2](n).

The term SDXj
, j = 1, 2, 3 measures the contribution of component Xj to the standard

deviation for the given hedging portfolio. It is possible to further decompose the standard

deviation by expanding the squared differences, but we choose to omit further decompo-

sitions.

The MSHL1/2 estimate, given by equation (3.20), can also be decomposed in a similar

manner to the standard deviation estimate:

M̂SHL
1/2

=
√
MSX1 +

√
MSX2 +

√
MSX3
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where

√
MSX1 =

1

M̂SHL
1/2
N

N∑
n=1

e2
n1[X1>X2,X3](n),

√
MSX2 =

1

M̂SHL
1/2
N

N∑
n=1

e2
n1[X2>X1,X3](n),

√
MSX3 =

1

M̂SHL
1/2
N

N∑
n=1

e2
n1[X3>X1,X2](n).

The term
√
MSX1 , j = 1, 2, 3 measures the contribution of component Xj to the MSHL1/2

for the given hedging portfolio.

3.3.3 CTE minimization problem

Rockafellar and Uryasev (2000) present a method for minimizing the Conditional Tail

Expectation (CTE) of a portfolio’s loss distribution. Alexander et al. (2006) extend the

CTE minimization problem by allowing for a cost function that penalizes large positions

in any of the financial instruments in the portfolio. Alexander et al. find that, by in-

cluding a cost function, it is possible to construct an optimal portfolio with significantly

fewer financial instruments, without any significant deterioration in the CTE. The cost

function prevents the optimal portfolio from including unrealistically large positive or

negative instrument positions. For our problem, this cost function can be interpreted as

the transaction costs involved in constructing the hedging portfolio. Specifically, there is

a transaction cost for each long or short position in an instrument which is proportional

to the number of units in the position.

It can be shown that the optimization problem for minimizing the CTE(α) of the hedging

loss distribution is equivalent to a (convex) constrained piecewise linear minimization

problem (Alexander et al., 2006):

min
(δ,x)∈R×RK

(
δ +

1

N(1− α)

N∑
n=1

max {yn − z′nx− δ, 0}+
K∑
k=1

c(k)|x(k)|

)
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subject to: φ′x+
K∑
k=1

c(k)|x(k)| 6 π.

We note that the solution to this optimization problem jointly minimizes the CTE and

the transaction costs. Therefore, strictly speaking we are simultaneously minimizing the

CTE and the transaction costs involved in constructing the portfolio (for conciseness, we

do not mention the transaction costs). The reason transaction costs are included in the

objective function is to ensure that the optimization problem is stable when the optimizer

searches for the solution. If we do not include the transaction costs in the objective func-

tion, we find that occasionally no reasonable solution can be obtained (this issue applies

much more so in the optimization problems defined in Chapter 4). The budget constraint

says that the cost of constructing the hedging portfolio at time 0, allowing for transaction

costs, must not exceed the invested annuity premium π = S(0). We allow short selling of

the hedging instruments.

Let v = [v1, v2, . . . , vN ]′ be a vector of real numbers. The solution to the CTE minimiza-

tion problem is obtained by solving an equivalent linear programming program of the

following form:

min
(δ,x,v,u)∈R×RK×RN×RK

(
δ +

1

N(1− α)

N∑
n=1

vn +
K∑
k=1

c(k)u(k)

)

subject to:

φ′x+
K∑
k=1

c(k)u(k) 6 π,

vn > yn − z′nx− δ, vn > 0, n = 1, . . . , N,

u(k)− x(k) > 0, u(k) + x(k) > 0, k = 1 . . . , K.

We can add a further constraint to the CTE minimization problem. We can choose to

minimize the CTE subject to the mean hedging loss being equal to some real number R.
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The additional constraint has the form

ȳ − z̄′x = R, (3.27)

where ȳ = 1/N
∑N

n=1 yn and z̄ = [z̄(1), z̄(2), . . . , z̄(K)]′ is a vector containing the mean

payoffs of each hedging instrument, where z̄(k) = 1/N
∑N

n=1 zn(k). Setting R = 0 will

produce optimal portfolios with mean hedging losses of 0, implying that the insurer will

break-even on average. By not including this constraint we are obtaining the minimum

CTE among all possible values of R.

Due to the nature of this optimization problem, and our parameter assumptions, which

are listed in Section 3.4, at the optimal solution we always find

φ′x̂+
K∑
k=1

c(k)|x̂(k)| = π.

It is noted that if the transaction cost assumptions were increased significantly (to unrea-

sonable levels), this equality may not hold.

3.3.4 MSHL minimization problem

This optimization problem minimizes the mean squared hedging loss (MSHL), allowing

for transaction costs and the budget constraint. It is a quadratic programming problem

of the following form:

min
(x,u)∈RK×RK

(
1

N

N∑
n=1

(yn − z′nx)
2

+
K∑
k=1

c(k)u(k)

)

subject to:

φ′x+
K∑
k=1

c(k)u(k) 6 π,

u(k)− x(k) > 0, u(k) + x(k) > 0, k = 1 . . . , K.
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Just like the CTE minimization problem, the solution to the MSHL optimization problem

jointly minimizes the MSHL and the transaction costs. Therefore, strictly speaking we are

simultaneously minimizing the MSHL and the transaction costs involved in constructing

the portfolio (for conciseness, we do not mention the transaction costs). It is also possi-

ble to include the mean hedging loss constraint, given by equation (3.27), in the MSHL

minimization problem.

Unlike the CTE minimization problem, equality in the budget constraint may not hold

when π is sufficiently large. We define the portfolio cost as the optimal portfolio value

plus the transaction costs involved in constructing the portfolio:

ψ̂ = φ′x̂+
K∑
k=1

c(k)|x̂(k)|. (3.28)

Define the excess funds as

ξ̂ = π − ψ̂.

If ξ̂ > 0 for a particular portfolio, the hedging loss observations, calculated using equation

(3.19), should be adjusted. It is reasonable to assume that the excess funds should be

invested in the risk free asset, ZCB(10). Suppose the b-th instrument in the hedging

portfolio corresponds to ZCB(10). Then φ(b) denotes the price of ZCB(10), and c(b)

denotes the corresponding transaction cost per unit of ZCB(10). The number of units of

ZCB(10) bought with the excess funds is given by

x̂ξ = ξ̂/(φ(b) + c(b)) > 0. (3.29)

At the optimal solution,

φ′x̂+
K∑
k=1

c(k)|x̂(k)|+ x̂ξ(φ(b) + c(b)) = π.
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The adjusted hedging losses are then calculated as

en = yn − z
′

nx̂− x̂ξπ, n = 1, . . . , N, (3.30)

where φ(b) denotes the price of ZCB(10), which has a face value of π dollars.

The CTE and MSHL minimization problems are readily solved using a numerical pro-

gramming environment such as MATLAB. For an introduction to optimization methods,

with applications in MATLAB, see Brandimarte (2006). It is noted that the objective

function of the MSHL minimization problem can be written in matrix notation as follows

(the objective functions for quadratic optimization problems must be expressed using

matrices if the they are to be solved in MATLAB):(
1

N

N∑
n=1

(yn − z′nx)
2

+
K∑
k=1

c(k)u(k)

)
=

1

N
(y −Zx)′(y −Zx) + c′u

=
1

N
y′y − 2

N
y′Zx+

1

N
x′Z ′Zx+ c′u.

3.4 Benchmark parameter assumptions

The following benchmark parameter assumptions are used in this chapter, unless indi-

cated otherwise: N = 20,000, π = S(0) = A(0) = 1000, T = 10, rg = 5%, µ = 9%,

σs = 20%, ă = a = 0.35, σr = 1.5%, ρ = 0 and Θ̆(t) = Θ(t) depends on the zero coupon

yield shape labeled “Benchmark” in Figure 2.7. The parameter values for the Q-measure

models are identical to those used in Chapter 2. We use the same parameter values of

α, and Θ(t) for both the P and Q measure models of the short rate. For the P -measure

model of the stock, we must pick a value for µ. Merton (1980) explained the difficulties

involved with estimating mean returns. It is difficult to justify any particular percentage

return for µ, but invariably the value of µ will have an impact on the shape of the hedging

loss distribution. Since 9-11% is often publicly cited as the long term average total (an-

nual) return for U.S. equity markets, we set µ = 9% (giving an expected annual return of

eµ − 1 = 9.42%).
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We set α = 99% because we are concerned with minimizing the risk of extreme hedging

losses. The results of a sensitivity test for α, presented in Section 3.13.2, suggest that

α = 99% is a good choice.

For the GMIB contract parameters we assume g = 6.5% and c = 1%. We consider

g = 6.5% to be an equitable guaranteed payment rate based on our assumptions (see Sec-

tion 2.3.1 for the reasoning). We set the fee rate equal to c = 1%, as this is currently one of

the highest fee rates being charged in practice by many major U.S. insurance companies.

However, we stress that c = 1% is well below the fair fee rate of 4.5%, calculated using the

valuation model of Chapter 2. Therefore, in the examples we present, we are modeling

an insurer that has underpriced the GMIB, with respect to the model of Chapter 2. In

a perfect world where the assumptions of the pricing model are fulfilled, the insurer will

experience a loss when c = 1%, if it follows a delta hedging strategy. We are interested

in exploring whether the insurer can construct a static hedge that, using a representative

industry fee rate, offers a reasonable likelihood of making a profit at maturity, while man-

aging the downside risk.

The objective function and the budget constraint of each optimization problem allow for

transaction costs. The transaction costs for each instrument are assumed to be propor-

tional to the amount bought or sold. If instrument k is the stock or an option, we set

c(k) = 0.5%φ(k). If instrument k is a bond, we set c(k) = 0.1%φ(k). By including

transaction costs, the optimal solutions do not include excessively large positive/negative

instrument positions. Without the transaction costs, the optimal solutions may yield

x(k)→ ±∞ for any k. Such solutions have little practical meaning, other than indicating

arbitrage opportunities may exist in the model.2 Another obvious reason for including

transaction costs is that the optimization problems more closely reflect reality.

Let pX1 , pX2 and pX3 denote the real-world probabilities of exercising the lookback, guar-

anteed return and investment account components, respectively. We can calculate these

2Another more direct way to prevent excessively large positions in any instrument is to include upper
and lower limits on the instrument positions in the optimization problem constraints. But it may be
difficult to determine what limits are reasonable.
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probabilities by simulating under the P -measure models. Using the benchmark param-

eter values, we find that pX1 = 20%, pX2 = 27% and pX3 = 53%. The GMIB option is

exercised about 47% of the time. We note that the pXi
depend on the contract parameter

assumptions, g and c, but they are independent of the actual hedging portfolio.

As part of the benchmark parameter assumptions, all portfolios assume implied option

price volatilities of 20%. For completeness, Table 3.17 in Section 3.12 displays, in the row

corresponding to σi = 20%, the prices of all of the hedging instruments included in at

least one optimized portfolio example in this chapter.

3.5 Hedging with the stock only

Before using portfolio optimization methods to construct static hedging portfolios, we

first consider the effectiveness of a basic, easy to implement, naive static hedging port-

folio. This is to invest the policyholder’s premium, π, in the stock at time 0 and hold

this long position until maturity. The hedging loss statistics for this hedging portfolio

form a set of benchmark values, which can be compared with the hedging loss statistics

of more sophisticated hedging portfolios presented in the following sections. In order to

be consistent with the examples in the following sections, we assume transaction costs of

0.5% per unit invested in the stock.

The top panel of Figure 3.1 displays the probability density function of the hedging loss

distribution obtained from using the naive hedging portfolio. The mean hedging loss is

-45, indicating that the insurance company will on average make a small profit from im-

plementing this hedge. However, the right tail indicates that occasionally the hedging

loss will be very large.

The middle panel of Figure 3.1 offers another perspective on how to hedge the GMIB

effectively. The markers in the middle panel plot the GMIB maturity values yn from

each scenario as functions of the stock value at time T , S(T ). The ‘diamond’, ‘×’ and

‘+’ markers correspond to when the lookback, guaranteed return and investment account

components are exercised, respectively. We refer to the ‘diamond’, ‘×’ and ‘+’ markers
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Figure 3.1: The top panel displays the hedging loss distribution for the stock only portfolio. The middle
panel shows the simulated GMIB maturity values yn and the value of the hedging portfolio as functions
of the stock value at time T , S(T ). The bottom panel shows the simulated hedging losses en as functions
of S(T ). The yn and en are individually marked according to which component is exercised.
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as the lookback, guaranteed return and investment account markers. The solid line in the

middle panel plots the value of the long position in the stock at maturity. When a marker

lies above (below) the solid line, the insurance company makes a loss (gain) at time T for

that scenario.

In Figure 3.1, when S(T ) is between 0 and A(0)(1 + rg)
T ≈ 1630, the guaranteed return

component X2 generates a floor for the GMIB maturity values, as shown by the dense

region of guaranteed return markers. Note that S(T ) < A(0)(1 + rg)
T does not imply

that the guaranteed return component is always exercised; when the stock price is low at

time T , the guaranteed return component is exercised if A(T ) < A(0)(1 + rg)
Tgä20 (T ).

The investment account markers cluster in a region that increases linearly with S(T ).

Notice that all of the investment account markers lie below the solid line, which is be-

cause S(T ) > A(T ) (when c > 0). The investment account evolves in the same way as

the stock index, but is slightly lower in value due to the discrete fee payments. The in-

vestment account markers correspond to the scenarios where annuitizing using the GMIB

option is not as valuable as receiving the lump sum benefit A(T ). The lookback compo-

nent X1 is exercised in scenarios where the account value {A(t)}Tt=0 is very high on any

particular policy anniversary during the accumulation phase. Some of the hedging losses

corresponding to when X1 is exercised are very large, as shown by the outlying lookback

markers. If interest rates are low at maturity (such that gä20 (T ) is close to or exceeds 1),

the lookback and guaranteed return components are more likely to be exercised.

The bottom panel of Figure 3.1 displays the hedging losses en, individually marked ac-

cording to which component is exercised, as functions of S(T ). This panel is useful for

highlighting the weaknesses of the hedging portfolio; if most of the largest hedging losses

are generated by a particular component, then this suggests the hedging portfolio is un-

able to hedge that component effectively. The markers which correspond to hedging losses

included in the CTE calculation are highlighted with black circles around them. The ma-

jority of circled markers are lookback markers. None of the investment account markers

are circled, indicating that the CTE calculation never includes hedging losses correspond-

ing to when the investment account component is exercised.

It is noted that the horizontal axis is restricted to 0-6,000 in the middle and bottom
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panels of Figure 3.1, in order to improve their readability. However, there are a small

number of scenarios, not shown in the panels, for which S(T ) ranges between 6,000-25,000,

and the corresponding GMIB maturity value ranges between 5,000-10,000. The middle

and bottom panels illustrate clearly that the stock only portfolio performs poorly in two

situations:

• If S(T ) < A(0)(1 + rg)
T , the guaranteed return component provides a floor for the

GMIB maturity value. When the guaranteed return component is exercised, the

lower the value of S(T ), the larger the hedging loss.

• If the stock index increases sharply in a volatile manner during the accumulation

phase, and then sharply declines before time T , the lookback component can gen-

erate a GMIB maturity value that is significantly larger than the hedging portfolio

payoff at time T . The bottom panel shows that the lookback component generates a

small number of very large positive hedging losses, that are much larger than any of

the hedging losses generated from the guaranteed return component. The lookback

component is driving the CTE value.

Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 388 69 144 176 -771 -186 956

(384, 392) (−801,−748) (−189,−184) (936, 976)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 385 73 156 156 -48 1121
(380, 390) (−53,−43) (1083, 1159)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 1416

ȳi2 (Guar. return) 369 725
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 2141
Stock 0.995 1.000 −θi1(1) (Lookback) -400 -835

(1) −θi2(1) (Guar. return) -277 -185
−θi3(1) (Inv. account) -1757 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2435 -1020

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 33 581

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 92 540

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -172 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.1: Hedging loss statistics for the stock only portfolio.

In this chapter, for each hedging portfolio we consider, we present a table of statistics

describing the (empirical) hedging loss distribution. The following paragraphs explain

how to interpret the numbers in each of these tables, by way of example for the current
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hedging portfolio.

The top section of Table 3.1 displays the hedging loss statistics, and the decompositions

of the standard deviation and MSHL1/2. The numbers in brackets below each statistic

display the corresponding 95% confidence intervals. How these confidence intervals are

computed was discussed in Section 3.3.2. The mean hedging loss is -48, meaning that

a small hedging profit is expected. However, the standard deviation is 385, indicating

a large amount of uncertainty in the realized value of the hedging loss. The MSHL1/2,

which is a measure of how closely the hedging portfolio payoff matches the GMIB matu-

rity value, is 388. The standard deviation and MSHL1/2 decompositions indicate that the

guaranteed return and investment account components contribute the most to these two

statistics. This is partly because these two components are exercised more often than the

lookback component (see the real world exercise probabilities, pXi
, which are given at the

start of this section). The VaR and CTE at a confidence level of 99% are 956 and 1121

respectively. Thus, even in a simplified model of reality where the stock price process is

modeled as a geometric Brownian motion, at least 1% of the time the hedging loss (after

spending all of the annuity premium to buy the stock only hedging portfolio) is at least

956, which is almost as much as the entire initial investment, π = 1000. This may be

unacceptable risk for some insurance companies. The portfolio cost, φ̂, displayed in the

top left corner, is computed using equation (3.28).

The lower left section of Table 3.1 shows the optimal number of units in each hedging

instrument k. The quantity ŵ(k) = x̂(k)φ(k)/(x̂′φ) is the proportion of the total port-

folio value invested in instrument k. The lower right section of Table 3.1 displays the

decompositions of the mean and CTE(99%). The mean and CTE are decomposed into

the contributions from each of the components, and the contributions from the hedging

instruments (just the stock in this particular portfolio) when each component is exer-

cised. How the numbers in the mean and CTE columns are obtained was discussed in

Section 3.3.2. The lowest section of the table summarizes the effectiveness of the hedging

instruments at hedging each of the components. It is informative to compare the values

of Ci,Di,Ei, i = C,M, for the different hedging portfolios presented in the following

sections.
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The decompositions of the mean and the CTE provide useful information about the

effectiveness of the instruments in the hedging portfolio. For example, in the case of the

mean decomposition, EM = −172 (a negative contribution to the mean hedging loss),

suggesting that the stock is an effective hedge for the investment account component.

However, CM = 33 and DM = 92, indicating that the stock provides a poor hedge

when the lookback or guaranteed return components are exercised. Similar calculations

based on the CTE decomposition indicate that both the guaranteed return and lookback

components drive the value of the CTE, and that the stock is not effective at hedging

either component.

3.6 Portfolios minimizing the CTE

In this section, we measure the effectiveness of several hedging portfolios with different

combinations of instruments. In all of the examples, the optimal positions in the hedging

instruments are obtained from solving the CTE minimization problem. By finding the

portfolio that minimizes the CTE, we are obtaining the portfolio which minimizes the

risk of unacceptably large hedging losses.

Recall that we use N = 20,000 scenarios. Each time a new set of scenarios is simulated,

the hedging loss statistics will change slightly. However, we find that the results are rea-

sonably stable for N > 10, 000 scenarios. To give the reader a feel for the stability of the

results, a sensitivity test of the hedging loss statistics is reported in Section 3.13.1.

3.6.1 Portfolio C1: stock and ZCB(10)

Consider a portfolio consisting of the stock and 10 year zero coupon bond (ZCB(10)) with

face value of S(0) per unit at time T (it is a risk-free asset). We refer to the optimized

portfolio as Portfolio C1 (PC1). The optimal portfolio consists of x̂(1) = 0.943 units of

the stock index and x̂(2) = 0.078 units in the bond. Expressed another way, ŵ(1) = 94.8%

of the total portfolio value is in the stock, and ŵ(2) = 5.2% of the total portfolio value is

in the bond. Compared to the stock only portfolio, PC2 generates a slightly lower CTE
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at the cost of a slightly higher mean. The VaR, standard deviation and MSHL1/2 are

smaller. On the other hand, the potential for hedging profits has been reduced, as seen

by the increase in the 1%-quantile. The left panel of Figure 3.2 displays the hedging loss

distribution. Comparing the right panels of Figures 3.1 and 3.2, we see that the locations

of the markers are somewhat similar.
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Figure 3.2: The left panel displays the hedging loss distribution for Portfolio C1. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

Table 3.2 presents the hedging loss statistics for PC1. An explanation of the numbers

in the table was given in Section 3.5; the only difference is that Table 3.2 includes the

decompositions for multiple instruments in the hedging portfolio. Compared to the stock

only hedging portfolio, PC1 generates a similar mean decomposition, but the CTE de-

composition is somewhat different. The smaller stock position increases the lookback

component contribution to the CTE (see ȳC1 and CC), and the long ZCB(10) position

causes the guaranteed return component contribution, ȳC2 , to decrease. Sensitivity tests

indicate that if we increase g or rg, then the optimal position in the stock increases. In

particular, if g > 7%, a leveraged postion in the stock is needed to minimize the CTE.

3.6.2 Portfolio C2: Put(0.8S(0)), stock and ZCB(10)

The middle panel of Figure 3.1 suggests that a put option with a strike price of around

0.5S(0)-2S(0), exercisable at time T , may help reduce the guaranteed return component
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 326 84 150 93 -420 -167 921

(322, 330) (−429,−410) (−169,−166) (906, 943)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 326 84 150 93 1 1107
(322, 330) (−4, 5) (1064, 1150)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 2048

ȳi2 (Guar. return) 369 561
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 2610
Stock (1) 0.943 0.948 −θi1(1) (Lookback) -379 -1294

−θi2(1) (Guar. return) -263 -130
−θi3(1) (Inv. account) -1666 0

ZCB(10) (2) 0.078 0.052 −θi1(2) (Lookback) -15 -46
−θi2(2) (Guar. return) -21 -32
−θi3(2) (Inv. account) -42 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2386 -1503

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 38 707

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 85 399

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -122 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.2: Hedging loss statistics for Portfolio C1.

contribution to the CTE. We have explored adding puts with strike prices of 0.1nS(0),

n = 5, 6, . . . , 25 to the hedging portfolio. We found that, by trial and error (i.e. run-

ning the optimization problem many times, for different combinations of instruments),

the smallest CTE is obtained from the addition of a put with a strike price of 0.8S(0)

(results based on other strikes are not shown), which we abbreviate by Put(0.8S(0)). We

also considered simultaneously including two or more puts with different strikes to the

hedging portfolio, but found there was no noticeable improvement over the addition of

just Put(0.8S(0)). A quick procedure for finding the optimal put strike price, in terms of

minimizing the CTE, involves initially including many puts with different strikes in the

portfolio and identifying which ones have the largest (long) positions. The puts with the

largest positions are then each individually included in an existing portfolio consisting

of the stock and ZCB(10). The optimal strike price corresponds to the put which helps

generate the smallest possible CTE.

Here we report the results obtained from using a portfolio which includes the instruments

in PC1 and Put(0.8S(0)). We refer to the optimized portfolio as Portfolio C2 (PC2). In

Figure 3.3, the left panel displays the hedging loss distribution for PC2. In the right panel

we see that there is a kink in the region of guaranteed return markers, which is caused
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Figure 3.3: The left panel displays the hedging loss distribution for Portfolio C2. The right panel shows
the simulated hedging losses en as functions of S(T ). The en are individually marked according to which
component is exercised.

Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 403 73 134 196 -910 -155 832

(399, 407) (−947,−880) (−158,−152) (815, 852)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 401 77 144 179 -41 1056
(396, 405) (−46,−35) (1007, 1104)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 2409

ȳi2 (Guar. return) 369 152
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 2560
Put(0.8S(0)) 0.682 0.027 −θi1(1) (Lookback) 0 -9

(1) −θi2(1) (Guar. return) -9 -32
−θi3(1) (Inv. account) 0 0

Stock (2) 1.021 1.027 −θi1(2) (Lookback) -411 -1506
−θi2(2) (Guar. return) -284 -37
−θi3(2) (Inv. account) -1804 0

ZCB(10) (3) -0.080 -0.054 −θi1(3) (Lookback) 16 71
−θi2(3) (Guar. return) 22 8
−θi3(3) (Inv. account) 42 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2428 -1505

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 38 965

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 97 90

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -176 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.3: Hedging loss statistics for Portfolio C2.
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by the inclusion of Put(0.8S(0)). Table 3.3 displays the hedging loss statistics for PC2.

Compared to PC1, PC2 generates a smaller VaR and CTE. Unlike PC1, PC2 is expected

to generate a small profit. However, the standard deviation of PC2 is 23% larger, imply-

ing greater uncertainty in the realized hedging loss. Comparing the CTE decompositions

in Tables 3.2 and 3.3, we see that the inclusion of the Put(0.8S(0)) markedly reduces

the guaranteed return total DC , but the lookback total CC increases. The increase in

the CC figure is also partly due to the short position in ZCB(10). In the right panel of

Figure 3.3, it is clear that the majority of circled markers are lookback markers. The

Put(0.8S(0)) reduces all of the hedging losses generated when S(T ) < 0.8S(0), most of

which are generated from the guaranteed return component being exercised. The CTE is

still large because the lookback component is not being hedged effectively.

Before moving on, we note that adding call options with various strike prices to a portfolio

already including put options, does not improve the hedging loss statistics. This is because

the put-call parity relationship holds approximately. The relationship is not exact because

of the presence of transaction costs in the optimization problems.

3.6.3 Portfolio C3: Put(0.8S(0)), stock and multiple ZCBs

The GMIB payoff is a function of the short rate at maturity. Therefore, including interest

rate sensitive hedging instruments may improve the static hedges. Consider a portfolio

which includes the instruments in PC2 and zero coupon bonds with maturity dates of

Ti = 10, 15, 20, 29. We refer to the optimized portfolio as Portfolio C3 (PC3). The matu-

rity dates of the bonds lie in the range of the GMIB annuity payment dates. In our model,

ZCB(10) is a risk-free asset, but any ZCB with maturity date Ti > 10 is a function of

r(T ) at time T = 10. Thus, any improvement in the hedging loss statistics would suggest

that the additional ZCBs with different maturities, are hedging against the interest rate

risk component of the GMIB.

Table 3.4 exhibits the hedging loss statistics for PC3. The optimal positions in ZCB(15)

and ZCB(20) are both 0, and thus are excluded from Table 3.4 for conciseness. The

optimal portfolio includes a long position of 3.338 units in ZCB(29), and a short position

of -1.35 units in ZCB(10). The reason why only one ZCB with Ti > 10 is necessary, is
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because the ZCBs with Ti > 10 are all comonotonic with respect to r(T ). The sensitivity

of the ZCBs to r(T ) increases with Ti. The longest dated bond, ZCB(29), which offers

the greatest sensitivity to r(T ), always appears to be included in the optimal portfolio.3

The positions in Put(0.8S(0)) and the stock are close to those for PC2. Therefore, the

increase in short position in ZCB(10) is used primarily to fund the long position in the

interest sensitive instrument, ZCB(29).

We have experimented with adding different combinations of ZCBs, expiring at different

times, to hedging portfolios already including the instruments of PC2. Sensitivity tests

indicate that adding a ZCB with maturity Ti > 10 to a portfolio which already includes

ZCB(10), will help reduce the CTE slightly. For the current example, we find that in-

cluding ZCB(29) generates the smallest CTE, and no other distinct ZCBs are needed to

reduce the CTE any further. In all of our experiments with different ZCB combinations,

the same pattern emerges; a non-zero position in the longest dated bond exists, and a

non-zero position in the shortest dated option (ZCB(10)) may also exist, but all other

ZCBs with intermediate maturity dates have optimal positions of 0.
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Figure 3.4: The left panel displays the hedging loss distribution for Portfolio C3. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

PC3 offers a small improvement over PC2. The mean, 1%-quantile, VaR and CTE are

3If a ZCB with maturity date Ti > 29 was added to the portfolio, then the optimal portfolio would
include a long position in this instrument, and the position in ZCB(29) would then be 0.
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 414 71 135 208 -960 -134 815

(409, 418) (−997,−938) (−138,−129) (803, 832)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 411 75 146 191 -43 1039
(407, 416) (−49,−38) (991, 1087)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 2427

ȳi2 (Guar. return) 369 114
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 2542
Put(0.8S(0)) 0.664 0.026 −θi1(1) (Lookback) 0 -9

(1) −θi2(1) (Guar. return) -8 -31
−θi3(1) (Inv. account) 0 0

Stock (2) 1.028 1.036 −θi1(2) (Lookback) -414 -1528
−θi2(2) (Guar. return) -286 -22
−θi3(2) (Inv. account) -1816 0

ZCB(10) (3) -1.350 -0.908 −θi1(3) (Lookback) 264 1236
−θi2(3) (Guar. return) 367 115
−θi3(3) (Inv. account) 719 0

ZCB(29) (4) 3.338 0.846 −θi1(4) (Lookback) -247 -1157
−θi2(4) (Guar. return) -343 -106
−θi3(4) (Inv. account) -666 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2430 -1503

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 36 969

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 99 70

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -178 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.4: Hedging loss statistics for Portfolio C3.
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slightly smaller, but the standard deviation and MSHL1/2 are slightly larger. Comparing

the left panels of Figure 3.4 and 3.3, we see that the general shapes of the hedging loss

distributions for PC2 and PC3 are similar. However, there are distinct differences between

the right panels of Figures 3.4 and 3.3 in terms of the locations of the different types of

markers. There is remarkably less variability in the locations of the guaranteed return

markers for PC3. This observation makes sense because the only source of variability

in the guaranteed return component is through r(T ). ZCB(29) is partially hedging the

guaranteed return component. Meanwhile, the variability in the locations of the invest-

ment account markers has increased considerably; this observation is also supported by

the standard deviation decomposition. This occurs for two reasons. Firstly, the inclusion

of the interest rate sensitive instrument increases the variability of the hedging portfolio

payoff. Secondly, the investment account component payoff is independent of r(T ). Com-

paring Tables 3.3 and 3.4, we see that PC3 has a slightly larger CC value, and a smaller

DC value. The reduction in the CTE is mainly derived from reducing the largest hedging

losses generated by the guaranteed return component.

3.6.4 Portfolios C4A, C4B: lookback and put options, stock and

ZCBs

All of the portfolios we have considered so far have difficulties with hedging the look-

back component. Lookback options, which are traded over-the-counter in practice, may

be useful for hedging the lookback component of the GMIB. The payoff of a European

lookback put option with expiration date T is (Björk, 2004)

ν1(T ) = max

(
max
06t6T

S(t)− S(T ), 0

)
.

The payoff of a forward European lookback call option with expiration date T is

ν2(T ) = max

(
max
06t6T

S(t)−K, 0
)
.

Unfortunately, lookback options are expensive. However, it does not seem unreasonable

that an insurer could arrange to buy, over-the-counter, modified versions of conventional

lookback options which sample on an annual basis, reflecting the features of the lookback
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component, rather than on a continuous basis. These modified options would be con-

siderably cheaper to buy, and less risky for the option writers. Specifically, suppose an

insurer can buy European annually sampled lookback put options and forward lookback

call options on the stock, maturing in T = 10 years, with payoffs given by

υP (T ) = max

(
max

n=0,1,...,T
S(n)− S(T ), 0

)
and

υC(T ) = max

(
max

n=0,1,...,T
S(n)−K, 0

)
,

respectively. Henceforth, we refer to the annually sampled lookback put as LBP, and

the annually sampled forward lookback call option with strike price K as LBC(K). The

largest difficulty with finding writers for these options is the long term to expiry. Further

practical issues related to these options are discussed in Section 3.14. No analytical for-

mulas exist for these annually sampled lookback options. Their prices, under the model

in Section 3.2, must be obtained using simulation.

In the following two examples, the portfolio includes the stock, ZCB(10), ZCB(29), LBP,

LBC(KL) and Put(KP ), where KL and KP are appropriately chosen to minimize the CTE.

The optimal strike prices for the options are found heuristically. They can be identified

by rerunning the optimization problem many times for different strike prices, and finding

which strike prices produce the lowest CTE. Sensitivity tests indicate that including two

or more LBCs in the portfolio is unnecessary; the CTE will not noticeably shrink any

further if one LBC, with an optimal strike price, is already in the portfolio. We note that

if ZCBs with maturity dates 11, . . . , 28, are included in the portfolio, they will all have

optimal positions of 0 (see Section 3.6.3).

In the first example, the hedging portfolio is optimized to obtain the smallest possible

CTE, allowing for all possible instrument combinations, just as for the previous examples.

It turns out that the CTE is minimized by including LBC(1.6S(0)) and Put(1.1S(0)). We

refer to the optimized portfolio as Portfolio C4A (PC4A). PC4A yields drastic reductions

in the CTE, but at a cost of generating a mean loss of 178 and a median loss of 210.
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Obviously, a hedging strategy is not particularly appealing if a material loss is expected.

Therefore, in the second example, the hedging portfolio is designed to minimize the CTE,

subject to a mean hedging loss constraint of 0. It turns out that the CTE is minimized,

subject to a mean constraint of 0, by including LBC(1.6S(0)) and Put(1.3S(0)). We

refer to the optimized break-even portfolio as Portfolio C4B (PC4B). The higher CTE

obtained with PC4B reflects the trade-off between minimizing the CTE and achieving a

mean hedging loss of 0. The optimal strike price of 1.6S(0) for the LBC, for both PC4A

and PC4B, may be partially explained by the fact that S(0)(1 + rg)
T ≈ 1.63S(0). This

optimal strike price is also a result of assuming g = 6.5%. If g is increased (decreased),

the optimal strike price will increase (decrease).

PC4A: optimizing without a mean constraint

The left panel of Figure 3.5 shows the hedging loss distribution for PC4A.4 It is infor-

mative to compare the left panels of Figures 3.4 and 3.5. Comparing PC4A to PC3, we

see that both the left and right tails have thinned significantly, and the median and the

mode have increased. Table 3.5 shows that there are huge reductions in the standard

deviation, MSHL1/2, VaR and CTE. However, there is a trade off in that the mean and

median hedging losses are positive and large. But the VaR and CTE for PC4A are much

smaller than for any of the previous portfolios. Furthermore, both risk measures are close

in magnitude, indicating that the (right) tail risk has been significantly ameliorated. It

seems that LBC(1.6S(0)) is very effective at hedging the lookback component, and the

LBP is not needed in the portfolio.

The right panel of Figure 3.5 shows drastic changes in the locations of the different types

of markers, compared to the previous portfolios. Contrary to the previous portfolios,

the majority of the investment account markers correspond to positive hedging losses.

Moreover, the CTE decomposition includes, for the first time, a positive contribution from

4In our experience, optimizers which use large-scale algorithms to solve linear/quadratic programming
problems have difficulties in successfully solving the problems in this section. The optimization problems
may be unbounded, using a large-scale algorithm. The difficulties arise from the inclusion of the lookback
options. In MATLAB, the CTE minimization problem can be solved using the built in function linprog,
which by default uses a large-scale algorithm. To obtain portfolios like PC4A and PC4B in MATLAB,
it may be necessary to switch to the simplex algorithm in the options to the function linprog. The only
disadvantage with using the simplex algorithm is that it takes longer to find the solution.
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Figure 3.5: The left panel displays the hedging loss distribution for Portfolio C4A. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 224 28 95 101 -314 210 327

(222, 225) (−337,−293) (209, 212) (326, 329)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 135 31 58 46 178 339
(132, 139) (176, 180) (336, 342)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 260

ȳi2 (Guar. return) 369 670
ȳi3 (Inv. account) 1585 895

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 1825
LBC(1.6S(0)) 0.704 0.208 −θi1(1) (Lookback) -169 -106

(1) −θi2(1) (Guar. return) -1 0
−θi3(1) (Inv. account) -667 -196

LBP (2) 0.020 0.004 −θi1(2) (Lookback) -3 -3
−θi2(2) (Guar. return) -1 -3
−θi3(2) (Inv. account) -1 0

Put(1.1S(0)) 0.200 0.022 −θi1(3) (Lookback) 0 -1
(3) −θi2(3) (Guar. return) -9 -34

−θi3(3) (Inv. account) 0 0
Stock (4) 0.228 0.229 −θi1(4) (Lookback) -92 -32

−θi2(4) (Guar. return) -63 -75
−θi3(4) (Inv. account) -402 -227

ZCB(10) (5) 0.000 0.000 −θi1(5) (Lookback) 0 0
−θi2(5) (Guar. return) 0 0
−θi3(5) (Inv. account) 0 0

ZCB(29) (6) 2.127 0.538 −θi1(6) (Lookback) -158 -83
−θi2(6) (Guar. return) -218 -407
−θi3(6) (Inv. account) -424 -319

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2209 -1486

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 12 35

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 75 151

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) 91 153

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.5: Hedging loss statistics for Portfolio C4A.
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the investment account component, ȳC3 . A much smaller proportion of circled markers

are lookback markers. The lookback component no longer drives the CTE value; the

LBC(1.6S(0)) seems to be very effective at hedging this component. It seems that all

three components can be hedged reasonably well using the available instruments, because

there are no longer any large hedging loss outliers. It appears that reducing the CTE

further requires more funds to be added to the budget constraint. Recall that the fee

rate being charged is also below the fair fee rate obtained from the valuation model of

Chapter 2. If a higher fee rate is charged, then the results will improve. In Section 3.10

we investigate how the results change when the fair fee rate, obtained from the model of

Chapter 2, is charged.

PC4B: optimizing with a mean constraint of 0

The CTE minimization problem now includes the constraint given by equation (3.27),

where R = 0. The left panel of Figure 3.6 shows that the hedging loss distribution for

PC4B has a much thicker left tail, compared to PC4A. Table 3.6 shows the mean is now

0, but the CTE has increased by 19% to 404. This is the trade-off between minimizing the

CTE and achieving a mean of 0. The standard deviation and VaR are also higher. The

lookback component contributes the most to the standard deviation, which is partly ex-

plained by the fact that pX3 = 53%, and by looking at the spread of the lookback markers

in the right panel of Figure 3.6. Significant changes in the optimal instrument positions

include larger positions in the LBC(1.6S(0)), the put option, stock and ZCB(29), which

are funded by a short position in ZCB(10). The mean decomposition indicates that the

LBC(1.6S(0)), stock and ZCB(29) are the instruments primarily responsible for shifting

the mean toward 0. Comparing the right panels of Figures 3.5 and 3.6, we see that the

outlying hedging profits (below the dashed line) obtained with PC4B are significantly

larger than the outlying profits obtained with PC4A.

Note that the θCj (1), j = 1, 2, 3, which are supposed to be measures of the effectiveness

of LBC(1.6S(0)) at reducing the CTE, are very small. If the CTE decomposition was

considered in isolation, these measures might be interpreted by the reader as saying that

LBC(1.6S(0)) is not effective at minimizing the CTE. However, the LBC(1.6S(0)) is vital

for reducing the CTE and the mean, but in this case this instrument is primarily used
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Figure 3.6: The left panel displays the hedging loss distribution for Portfolio C4B. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 476 69 84 323 -1748 141 399

(464, 488) (−1795,−1681) (134, 148) (399, 399)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 476 69 84 323 0 404
(464, 488) (−7, 7) (402, 405)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 101

ȳi2 (Guar. return) 369 1044
ȳi3 (Inv. account) 1585 314

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 1460
LBC(1.6S(0)) 0.770 0.228 −θi1(1) (Lookback) -185 -35

(1) −θi2(1) (Guar. return) -1 0
−θi3(1) (Inv. account) -729 -9

LBP (2) 0.000 0.000 −θi1(2) (Lookback) 0 0
−θi2(2) (Guar. return) 0 0
−θi3(2) (Inv. account) 0 0

Put(1.3S(0)) 0.419 0.074 −θi1(3) (Lookback) -3 -3
(3) −θi2(3) (Guar. return) -35 -146

−θi3(3) (Inv. account) 0 0
Stock (4) 0.419 0.422 −θi1(4) (Lookback) -169 -21

−θi2(4) (Guar. return) -117 -257
−θi3(4) (Inv. account) -740 -148

ZCB(10) (5) -0.619 -0.416 −θi1(5) (Lookback) 121 28
−θi2(5) (Guar. return) 168 458
−θi3(5) (Inv. account) 329 133

ZCB(29) (6) 2.733 0.693 −θi1(6) (Lookback) -203 -50
−θi2(6) (Guar. return) -280 -804
−θi3(6) (Inv. account) -545 -200

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2387 -1056

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) -4 19

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 104 295

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -100 89

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.6: Hedging loss statistics for Portfolio C4B.
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in the optimization problem to meet the constraint of a mean of 0, rather than focusing

only on minimizing the CTE, as demonstrated by PC4A. It happens to be the case that

the largest hedging losses for PC4B are effectively hedged by ZCB(29), but these hedging

losses would not be the largest ones if LBC(1.6S(0)) was not included in the portfolio.

Therefore, it is important to realize that the θCj (i) should not be interpreted in isolation,

but in conjunction with the θMj (i).

Before continuing, we note that it is possible to construct an efficient frontier mapping the

minimized CTE as a function of the mean hedging loss. That is, we could determine the

minimum CTE for a range of plausible values of the mean hedging loss. The insurer could

then decide what level of risk (as measured by the CTE) it is willing to accept, and identify

the level of expected profit/loss it will make for accepting that level of risk. However, it

must be remembered that the minimum CTE for a given level of expected return varies

with the combinations of instruments in the portfolio. At different levels of expected

hedging loss, the optimal portfolio will most likely consist of different instruments, and in

particular, different optimal strike prices. For example, consider PC4A and PC4B, which

use different optimal put option strike prices. The optimal instruments are found by trial

and error for each level of expected return. Constructing an efficient frontier may be time

consuming.

3.7 Portfolios minimizing the MSHL

In this section, we measure the effectiveness of static hedging portfolios obtained from

solving the MSHL minimization problem. By finding the portfolio that minimizes the

MSHL, we are obtaining a portfolio which severely penalizes against both very large

positive and negative hedging losses. The payoff of the hedging portfolio is matched as

closely as possible to the GMIB maturity value over as many scenarios as possible. Any

excess funds are invested in the risk free asset until maturity. As it turns out, in our

examples, there are never any excess funds. However, if for example the fair fee rate was

charged, then there would most likely be positive excess funds.
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3.7.1 Portfolio M1: Put(1.6S(0)), stock and ZCBs

A benchmark portfolio for minimizing the MSHL consists of the stock, ZCB(10), ZCB(29)

and a put option. We have analyzed adding puts with strike prices of 0.1nS(0), n =

5, 6, . . . , 25 to the hedging portfolio. We found that the smallest MSHL is obtained from

the addition of Put(1.6S(0)). Note that S(0)(1 + rg)
T ≈ 1.63S(0), which may partially

explain why the strike price 1.6S(0) is optimal. We refer to the optimized portfolio

as Portfolio M1 (PM1). The left panel of Figure 3.7 indicates that the hedging loss

distribution has a thick right tail. In the right panel we see that the locations of the

markers are noticeably different compared to those obtained from minimizing the CTE.

All of the circled markers are lookback markers. Table 3.7 displays the hedging loss

statistics for PM1. Compared to PC3, which includes similar instruments, PM1 generates

a MSHL1/2 which is 39% smaller, a standard deviation which is roughly 48% smaller, a

CTE that is about 14% larger, and a mean hedging loss of 136 instead of a profit.
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Figure 3.7: The left panel displays the hedging loss distribution for Portfolio M1. The right panel shows
the simulated hedging losses en as functions of the stock value at time T , S(T ). The en are individually
marked according to which component is exercised.

3.7.2 Portfolios M2A, M2B: lookback and put options, stock

and ZCBs

In the following two examples, the portfolio includes the stock, ZCB(10), ZCB(29), LBP,

LBC(KL) and Put(KP ), where KL and KP are appropriately chosen to minimize the
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 252 157 93 2 -61 33 907

(246, 257) (−64,−58) (32, 34) (857, 947)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 212 144 68 0 136 1187
(207, 217) (133, 139) (1130, 1244)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 3657

ȳi2 (Guar. return) 369 0
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 3657
Put(1.6S(0)) 0.376 0.112 −θi1(1) (Lookback) -8 -35

(1) −θi2(1) (Guar. return) -59 0
−θi3(1) (Inv. account) 0 0

Stock (2) 0.907 0.912 −θi1(2) (Lookback) -365 -2467
−θi2(2) (Guar. return) -253 0
−θi3(2) (Inv. account) -1602 0

ZCB(10) (3) -0.404 -0.271 −θi1(3) (Lookback) 79 404
−θi2(3) (Guar. return) 110 0
−θi3(3) (Inv. account) 215 0

ZCB(29) (4) 0.977 0.247 −θi1(4) (Lookback) -72 -372
−θi2(4) (Guar. return) -100 0
−θi3(4) (Inv. account) -195 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2251 -2470

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 67 1187

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 67 0

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) 3 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.7: Hedging loss statistics for Portfolio M1.

128



MSHL. As it turns out, in both portfolios the MSHL is minimized when LPC(1.6S(0))

and Put(1.6S(0)) are included (found by trial and error). Just like in Section 3.6.4, we

first present the results from using Portfolio M2A (PM2A), which achieves the smallest

possible MSHL1/2 without a mean constraint. Then we display the results from using

Portfolio M2B (PM2B), which minimizes MSHL1/2 subject to a mean constraint of 0.

PM2A: optimizing without a mean constraint

The left panel of Figure 3.8 displays the hedging loss distribution for PM2A. The right tail

has thinned with the addition of the LBC(1.6S(0)) and LBP. The right panel indicates

that guaranteed return component is driving the CTE value. Comparing the hedging loss

statistics of PM2A, shown in Table 3.8, with those of PC4A, we see that PM2A has a

significantly larger standard deviation, VaR and CTE, but a smaller mean and MSHL1/2.
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Figure 3.8: The left panel displays the hedging loss distribution for Portfolio M2A. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

PM2B: optimizing with a mean constraint of 0

The MSHL minimization problem now includes the constraint given by equation (3.27),

where R = 0. The left panel of Figure 3.9 indicates the hedging loss distribution for PM2B

has a thicker right tail, compared to PM2A. Table 3.9 shows that the MSHL1/2 has in-

creased by 45%, and the standard deviation has doubled. The VaR and CTE have also
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 193 37 128 28 -205 106 510

(191, 195) (−217,−192) (105, 107) (504, 518)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 141 32 106 3 132 562
(139, 143) (130, 134) (551, 574)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 743

ȳi2 (Guar. return) 369 1040
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 1783
LBC(1.6S(0)) 0.427 0.126 −θi1(1) (Lookback) -103 -219

(1) −θi2(1) (Guar. return) -1 0
−θi3(1) (Inv. account) -405 0

LBP (2) 0.064 0.014 −θi1(2) (Lookback) -10 -33
−θi2(2) (Guar. return) -5 -31
−θi3(2) (Inv. account) -2 0

Put(1.6S(0)) 0.055 0.016 −θi1(3) (Lookback) -1 -4
(3) −θi2(3) (Guar. return) -9 -50

−θi3(3) (Inv. account) 0 0
Stock (4) 0.487 0.489 −θi1(4) (Lookback) -196 -196

−θi2(4) (Guar. return) -136 -142
−θi3(4) (Inv. account) -861 0

ZCB(10) (5) 0.026 0.018 −θi1(5) (Lookback) -5 -7
−θi2(5) (Guar. return) -7 -20
−θi3(5) (Inv. account) -14 0

ZCB(29) (6) 1.332 0.337 −θi1(6) (Lookback) -99 -130
−θi2(6) (Guar. return) -137 -388
−θi3(6) (Inv. account) -266 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2255 -1221

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 20 154

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 75 408

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) 38 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.8: Hedging loss statistics for Portfolio M2A.
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significantly increased. This is the trade-off between minimizing the MSHL and obtaining

a mean of 0. The optimal instrument positions have changed for all of the instruments.

In the right panel of Figure 3.9, all of the circled markers are guaranteed return markers.

It seems that the MSHL is minimized, the CTE still remains relatively large because the

guaranteed return component is not hedged effectively.
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Figure 3.9: The left panel displays the hedging loss distribution for Portfolio M2B. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

It appears that portfolios obtained from minimizing the MSHL have a much higher tail

risk than the portfolios obtained from minimizing the CTE. Comparing PC4B to PM2B,

PC4B is much more desirable as the hedging loss distribution does not exhibit a thick right

tail, whereas PM2B does. We therefore conclude that static hedging portfolios constructed

by minimizing the CTE are preferable to portfolios constructed by minimizing the MSHL.

3.8 Interest rate risk

Some readers may naturally think of the GMIB option as an interest rate option, as it is

related to the annuity payment rate at maturity (which is a function of the interest rate

term structure). In all of the portfolios we looked at thus far, we have largely focussed on

the equity risk. The reason for this is because the equity risk associated with the GMIB

option dominates the interest rate risk. To see why the interest rate risk is secondary to
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 280 38 184 58 -462 -102 813

(277, 283) (−480,−448) (−104,−101) (800, 832)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 280 38 184 58 0 888
(277, 283) (−4, 4) (875, 901)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 433 0

ȳi2 (Guar. return) 369 1370
ȳi3 (Inv. account) 1585 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2387 1370
LBC(1.6S(0)) 0.316 0.093 −θi1(1) (Lookback) -76 0

(1) −θi2(1) (Guar. return) -1 0
−θi3(1) (Inv. account) -299 0

LBP (2) 0.186 0.041 −θi1(2) (Lookback) -28 0
−θi2(2) (Guar. return) -14 -119
−θi3(2) (Inv. account) -6 0

Put(1.6S(0)) -0.337 -0.100 −θi1(3) (Lookback) 7 0
(3) −θi2(3) (Guar. return) 53 406

−θi3(3) (Inv. account) 0 0
Stock (4) 0.616 0.619 −θi1(4) (Lookback) -248 0

−θi2(4) (Guar. return) -171 -245
−θi3(4) (Inv. account) -1087 0

ZCB(10) (5) 0.166 0.111 −θi1(5) (Lookback) -32 0
−θi2(5) (Guar. return) -45 -166
−θi3(5) (Inv. account) -88 0

ZCB(29) (6) 0.934 0.236 −θi1(6) (Lookback) -69 0
−θi2(6) (Guar. return) -96 -357
−θi3(6) (Inv. account) -186 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2387 -482

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) -13 0

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 94 888

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -82 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.9: Hedging loss statistics for Portfolio M2B.
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the equity risk, consider Figure 3.10. The left panel plots the hedging losses as a function

of the short rate at maturity, r(T ), for PC3. Similarly, the right panel shows PC4B.

In both cases, there is no discernable pattern between r(T ) and the different types of

markers. All three types of markers are spread across all plausible values of the short rate

at maturity, r(T ). The majority of the markers are clustered around EP [r(T )] = 5.35%.

Large outlying hedging losses are driven by the behavior of equity returns, not the be-

havior of the short rate.

Although not documented here, we have tested including standard interest rate related

options within Hull-White model, such as caps and floors. They do not help reduce the

CTE by any noticeable amount. However, we have not considered the use of hybrid

equity-interest rate type options. For example, knock out put options, where the knock

out feature is related to some aspect of the interest rate term structure (such as the cash

rate rising above a certain level), may be useful as they are cheaper than standard put

options. The GMIB option is generally less valuable when interest rates increase, all else

being equal. Therefore, knock out features may be related to increases in interest rates.

If hybrid options were considered, it is advisable to use a more sophisticated interest rate

model (for a survey of standard interest rate models, see Brigo and Mercurio (2006)).
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Figure 3.10: The right (left) panel shows the simulated hedging losses en for PC3 (PC4B) as functions
of the short rate at maturity, r(T ). The en are individually marked according to which component is
exercised.
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3.9 Hedging simplified GMIBs

The GMIB option has a complex benefit structure. It provides a downside equity guaran-

tee (guaranteed return component) and an upside equity guarantee (lookback component).

In this section, we demonstrate that if the benefit structure of the GMIB is simplified, then

it is easier to hedge with a static portfolio. We illustrate the hedging loss distributions for

two simplified versions of the GMIB. The first version, referred to as the embedded lookback

option, has a maturity value given by Yl(T ) = max(X1, A(0)gä20 (T ), X3). The second

version, referred to as the embedded guaranteed return option, has a maturity value given

by Ygr(T ) = max(X2, X3). The hedging portfolios are designed to minimize the CTE,

subject to a mean constraint of 0. The hedging instruments are those of PC4B. To be

consistent with the previous examples, the same fee structure is used; note that the fee

rate of 1% is now being applied to less valuable options. The hedging loss statistics in

this section can be referenced against the statistics for PC4B.

3.9.1 Hedging the embedded lookback option

This simplified GMIB does not contain the guaranteed return component. We recognize

that this simplified option may be unattractive to many policyholders because the (im-

plicit) downside equity guarantee will be significantly lower if there is a downward trend

in the stock over the accumulation phase. However, it is of interest to see how well the

upward equity guarantee can be hedged with a static portfolio, when the hedging portfolio

does not have to be concerned about allocating resources to hedge the guaranteed return

component.

We refer to the optimized portfolio as Portfolio E1 (PE1). In Figure 3.11, the left panel

indicates the hedging loss distribution has a left tail, but no right tail. All of the hedging

loss statistics for PE1, shown in Table 3.10, are smaller than the corresponding statistics

for PC4B. In particular, the CTE has decreased by 64%. The locations of the different

types of markers in the right panel are similar to those in the corresponding right panel

for PC4B (Figure 3.6). There are no large hedging loss outliers, and the VaR and CTE

are close in value, which suggests that the embedded lookback option is hedged well using

the available instruments. It seems that when X2 = 0, the LBP effectively hedges any
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large GMIB maturity values generated by the lookback component, and LBC(1.6S(0)) is

not needed for hedging this component. The reverse situation occurs for PC4B; in PC4B

a large position in LBC(1.6S(0)) is held, while the LBP position is 0.
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Figure 3.11: The left panel displays the hedging loss distribution for Portfolio E1. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

3.9.2 Hedging the embedded guaranteed return option

This simplified GMIB does not contain the lookback component. We refer to the op-

timized portfolio as Portfolio E2 (PE2). The left panel of Figure 3.12 shows that the

hedging loss distribution for PE2 has a left tail, but no right tail. Table 3.11 displays the

hedging loss statistics. All of the hedging loss statistics are lower than the corresponding

statistics for PC4B, but not by as much as those for PE1. In the right panel of Figure

3.12, the majority of circled markers are guaranteed return markers. Similarly to the

hedging loss distribution for PE1, there are no large hedging loss outliers, and the VaR

and CTE are close in value, suggesting that the embedded guaranteed return option is

hedged reasonably well using the available instruments. However, the CTE is still rela-

tively large. It appears that more funds are needed to reduce the CTE further.

The value of the CTE is dependent on the value of the guaranteed return component X2,

which is extremely sensitive to the assumed ZCB yield curve structure. Now, X2 decreases
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 140 82 0 58 -534 44 136

(135, 144) (−559,−513) (43, 46) (135, 137)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 140 82 0 58 0 146
(135, 144) (−2, 2) (144, 148)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 626 639

ȳi2 (Guar. return) 0 0
ȳi3 (Inv. account) 1681 791

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2308 1430
LBC(1.6S(0)) -0.054 -0.016 −θi1(1) (Lookback) 13 6

(1) −θi2(1) (Guar. return) 0 0
−θi3(1) (Inv. account) 51 7

LBP (2) 0.848 0.187 −θi1(2) (Lookback) -189 -304
−θi2(2) (Guar. return) 0 0
−θi3(2) (Inv. account) -31 0

Put(1.3S(0)) 0.080 0.014 −θi1(3) (Lookback) -7 -25
(3) −θi2(3) (Guar. return) 0 0

−θi3(3) (Inv. account) 0 0
Stock (4) 0.983 0.990 −θi1(4) (Lookback) -560 -357

−θi2(4) (Guar. return) 0 0
−θi3(4) (Inv. account) -1845 -870

ZCB(10) (5) -0.553 -0.372 −θi1(5) (Lookback) 212 277
−θi2(5) (Guar. return) 0 0
−θi3(5) (Inv. account) 341 277

ZCB(29) (6) 0.777 0.197 −θi1(6) (Lookback) -113 -161
−θi2(6) (Guar. return) 0 0
−θi3(6) (Inv. account) -179 -133

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2308 -1285

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) -18 75

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 0 0

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) 18 71

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.10: Hedging loss statistics for Portfolio E1.
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as the yield curve shifts upwards. In all of our examples, we have assumed the ZCB yield

curve structure follows the Benchmark curve in Figure 2.7 (in the current economic en-

vironment, this curve is very plausible). If the fitted ZCB curve was changed to, say, the

ZCB curve in 2007, which is higher (see Figure 3.15), then the prices of ZCB(10) and

ZCB(29) would be cheaper; more money can be invested in the bond instruments. The

maturity value of the embedded guaranteed return option will also decrease (we assume

interest rates and the stock returns are independent under P ). The CTE would decrease.

In fact, using the 2007 curve, the CTE is actually negative (about -200). Profits are highly

likely within the model, since the ZCB yields are about 5.25-5.5% p.a. across all maturi-

ties while the guaranteed return rate rg is 5% per annum. The positions in ZCB(10) and

ZCB(29) increase, while the other instrument positions remain about the same. From Ta-

ble 3.11 we see that the LBP is not useful for the guaranteed return option. However, the

position in LBC(1.6S(0)) is 0.592 units, which suggests that it contributes significantly to

hedging large embedded guaranteed return option maturity values. The spreads between

the guaranteed rate rg and the 10 and 29 year ZCB yields heavily influence the location

of the hedging loss distribution, and in particular, the value of the CTE.

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500 1000 1500
0

0.5

1

1.5

2

2.5
x 10

−3

Hedging loss

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

0 1000 2000 3000 4000 5000 6000
−2500

−2000

−1500

−1000

−500

0

500

Stock value at time T

H
ed

gi
ng

 lo
ss

 a
t t

im
e 

T

 

 

Guar. return exercised
Inv. account exercised
CTE contribution

Figure 3.12: The left panel displays the hedging loss distribution for Portfolio E2. The right panel
shows the simulated hedging losses en as functions of the stock index value at time T , S(T ). The en are
individually marked according to which component is exercised.

The results in this section send a message to insurers regarding option policy design. If

the GMIBs had simpler benefit structures, by providing a downside guarantee (guaran-

teed return component) or an upside guarantee (lookback component), but not both, then
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 382 0 91 292 -1308 87 359

(373, 391) (−1372,−1262) (82, 93) (359, 359)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 382 0 91 292 0 360
(373, 391) (−5, 5) (359, 361)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 0 0

ȳi2 (Guar. return) 452 1274
ȳi3 (Inv. account) 1876 104

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 2328 1378
LBC(1.6S(0)) 0.592 0.175 −θi1(1) (Lookback) 0 0

(1) −θi2(1) (Guar. return) -17 0
−θi3(1) (Inv. account) -687 -3

LBP (2) 0.000 0.000 −θi1(2) (Lookback) 0 0
−θi2(2) (Guar. return) 0 0
−θi3(2) (Inv. account) 0 0

Put(1.3S(0)) 0.510 0.089 −θi1(3) (Lookback) 0 0
(3) −θi2(3) (Guar. return) -45 -186

−θi3(3) (Inv. account) 0 0
Stock (4) 0.510 0.513 −θi1(4) (Lookback) 0 0

−θi2(4) (Guar. return) -181 -431
−θi3(4) (Inv. account) -1067 -59

ZCB(10) (5) -0.703 -0.472 −θi1(5) (Lookback) 0 0
−θi2(5) (Guar. return) 234 653
−θi3(5) (Inv. account) 469 49

ZCB(29) (6) 2.745 0.695 −θi1(6) (Lookback) 0 0
−θi2(6) (Guar. return) -345 -977
−θi3(6) (Inv. account) -688 -64

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2328 -1018

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) 0 0

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 97 334

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -97 26

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.11: Hedging loss statistics for Portfolio E2.
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static hedges are more effective. The right tails are cut off. However, we see that the

guaranteed return component is very valuable when interest rates are low. In particular,

this component is difficult to hedge in the current economic environment, with a budget

constraint of π = 1000. Hopefully insurance companies, when designing long-dated em-

bedded options in their products, carefully take into consideration the difficulties involved

with developing static-type hedges for the options, particularly when they must simul-

taneously hedge equity risks at both ends of the spectrum. Effective risk management

starts at the product design phase.

3.10 Charging the fair fee rate

In all of the results illustrated thus far, we have assumed that the fee rate for the GMIB

option is c = 1% per year. However, using the valuation model in Chapter 2, we found

that the fair fee rate is 4.5% when g = 6.5%. The notion of a fair fee rate for a static

hedge is slightly different to that using the no-arbitrage pricing model in Chapter 2. In

Chapter 2, the fair fee rate was defined as the rate that should be charged in a perfect

world where the standard assumptions of option pricing theory hold. Using the fair fee

rate, the insurer will break even. In practice, those assumptions do not hold. The results

of Chapter 2 should be considered as a benchmark, but do not provide the final answer

for making decisions in practice. A fair fee rate for a static hedging strategy is a fee rate

that the insurer is comfortable with charging, which depends on its risk and expected

loss/profit preferences. Other considerations also come into play, such as marketing con-

siderations (e.g. a lower fee rate will attract more annuity business). Given that there is

a range of fee rates which might be considered fair by the insurer, we use the fair fee rate

of Chapter 2 as our benchmark “fair” fee rate in this section (and in Chapter 4).

We now illustrate how the performances of the static hedging portfolios change if the fair

fee rate is charged. As we discussed in Chapter 2, it is not clear whether insurers are

charging a fair fee rate for the GMIB option; allowing for lapses or additional underlying

variable annuity contract fees reduces the fair fee rate by noticeable amounts. When

the fair rate changes, the real-world probabilities of exercising the lookback, guaranteed

return and investment account components change. Table 3.12 shows the real-world ex-
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ercise probabilities for the benchmark case, where g = 6.5% and c = 1%, and for the fair

fee case, where g = 6.5% and c = 4.5%.

g c pX1 pX2 pX3

Benchmark case 6.5% 1% 0.20 0.27 0.53
Fair fee case 6.5% 4.5% 0.23 0.49 0.28

Table 3.12: Real-world probabilities of the lookback, guaranteed return and investment account compo-
nents being exercised for different GMIB contract parameter values.

We consider two portfolios. Both portfolios are designed to minimize the CTE, without

a mean constraint. The first portfolio we consider includes a put option, the stock, and

ZCBs. The instruments in this portfolio are of the same type as PC3. We refer to the

optimized portfolio as Portfolio F1 (PF1). Table 3.13 displays the hedging loss statistics

and the optimal hedging instruments (including optimal strike prices) for PF1. Compar-

ing the results in this table to the results for PC3 (Table 3.4) gives a sense of how the

static hedge changes when the fair fee is charged. The mean is -382, so there is no obvious

need to introduce a mean constraint, if the insurer measures risk by the CTE. Introducing

a mean constraint different to -382 will lead to a larger minimized CTE. If the fair fee

rate is charged, the insurer can expect to make a profit. However, the standard deviation

and MSHL1/2 are large. Both statistics are driven by the investment account component,

which generates large hedging profits that are consistently far away from the mean hedg-

ing loss. In the left panel of Figure 3.13, we see that the distribution has several local

maxima, with noticeable left and right tails. In the right panel, the majority of circled

markers are clearly lookback markers. Clearly, even when the fair fee rate is charged, it

is still difficult to hedge the lookback component without a lookback option.

The instruments in the second portfolio are of the same type as PC4A/PC4B. We refer

to the optimized portfolio as Portfolio F2 (PF2). Table 3.14 displays the hedging loss

statistics and the optimal hedging instruments (including optimal strike prices) for PF2.

Again we see the same story as for PC4A and PC4B. The LBC is very effective at hedging

the lookback component, which when not hedged, produces large CTE values. Given that

there is no mean constraint, PF2 can be directly compared to PC4A. We see that when

the fair fee rate is charged a profit of 122 is expected, when the objective is to simply

to minimize the CTE. Furthermore, the 1%-quantile is much smaller than for PC4A.
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Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 707 101 101 505 -1838 -358 478

(700, 715) (−1893,−1792) (−371,−343) (478, 490)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 595 69 117 409 -382 646
(589, 601) (−391,−374) (610, 683)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 471 2033

ȳi2 (Guar. return) 664 119
ȳi3 (Inv. account) 715 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 1850 2152
Put(0.8S(0)) 0.803 0.032 −θi1(1) (Lookback) 0 -12

(1) −θi2(1) (Guar. return) -10 -35
−θi3(1) (Inv. account) 0 0

Stock (2) 0.807 0.812 −θi1(2) (Lookback) -495 -1202
−θi2(2) (Guar. return) -545 -19
−θi3(2) (Inv. account) -951 0

ZCB(10) (3) -0.794 -0.533 −θi1(3) (Lookback) 186 726
−θi2(3) (Guar. return) 390 67
−θi3(3) (Inv. account) 218 0

ZCB(29) (4) 2.724 0.690 −θi1(4) (Lookback) -241 -940
−θi2(4) (Guar. return) -503 -91
−θi3(4) (Inv. account) -280 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -2232 -1506

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) -80 605

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) -5 41

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -298 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.13: Hedging loss statistics for Portfolio F1.
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Figure 3.13: Hedging loss statistics for Portfolio F1.
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Compared to PF1, PF2 generates a smaller standard deviation and a smaller MSHL1/2.

Overall the hedging loss distribution for PF2 would appear to be more desirable than the

distribution for PF1, in terms of risk and reward, for most insurers.

Port. Cost MSHL1/2 =
√

MSX1 +
√

MSX2 +
√

MSX3. 1%-quantile Median VaR(99%)
1000 245 82 50 113 -600 -148 137

(242, 247) (−619,−585) (−153,−143) (137, 137)
Excess funds Std. Deviation = SDX1 + SDX2 + SDX3. Mean CTE(99%)

0 212 64 65 83 -122 149
(210, 213) (−125,−119) (145, 154)

Instrument (k) x̂(k) ŵ(k) Mean/CTE Contributions i = M i = C
GMIB ȳi1 (Lookback) 471 681

ȳi2 (Guar. return) 664 953
ȳi3 (Inv. account) 715 0

Ai = ȳi1 + ȳi2 + ȳi3 (GMIB total) 1850 1634
LBC(1.6S(0)) 0.623 0.183 −θi1(1) (Lookback) -237 -264

(1) −θi2(1) (Guar. return) -53 0
−θi3(1) (Inv. account) -464 0

LBP (2) 0.012 0.003 −θi1(2) (Lookback) -2 -3
−θi2(2) (Guar. return) -1 -1
−θi3(2) (Inv. account) 0 0

Put(0.8S(0)) -0.017 -0.001 −θi1(3) (Lookback) 0 0
(3) −θi2(3) (Guar. return) 0 1

−θi3(3) (Inv. account) 0 0
Stock (4) 0.000 0.000 −θi1(4) (Lookback) 0 0

−θi2(4) (Guar. return) 0 0
−θi3(4) (Inv. account) 0 0

ZCB(10) (5) 0.180 0.120 −θi1(5) (Lookback) -42 -52
−θi2(5) (Guar. return) -88 -128
−θi3(5) (Inv. account) -49 0

ZCB(29) (6) 2.754 0.695 −θi1(6) (Lookback) -243 -310
−θi2(6) (Guar. return) -509 -728
−θi3(6) (Inv. account) -283 0

Bi = −
∑K

k=1

∑3
j=1 θ

i
j(k) (Hedge port. total) -1972 -1484

Ci = ȳi1 −
∑K

k=1 θ
i
1(k) (Lookback total) -54 52

Di = ȳi2 −
∑K

k=1 θ
i
2(k) (Guar. return total) 13 97

Ei = ȳi3 −
∑K

k=1 θ
i
3(k) (Inv. account total) -82 0

Mean = AM +BM = CM +DM +EM CTE(99%) = AC +BC = CC +DC +EC

Table 3.14: Hedging loss statistics for Portfolio F2.

3.11 Backtesting the static hedging strategy

In this section, we backtest the performance of a static hedging portfolio which includes

lookback options. The first GMIB option was introduced in the U.S. variable annuity

market in 1996-1997. GMIBs typically have a waiting period of 10 years before exercise

is possible. We assume the GMIB is exercised on the 10-th policy anniversary in this

backtest. We are able to determine the actual hedging loss/profit of the static strategies
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Figure 3.14: Hedging loss statistics for Portfolio F2.

for GMIBs issued between 1997 and 2001. For GMIBs issued in 2002 and beyond, we can

measure the performance of the static strategy at the start of 2011, based on the hedging

portfolio and liability values at that time.

We calculate static hedging portfolios for GMIBs issued at the start of each year. The

fee rate is set at 1% for all issue years. The available hedging instruments include the

LBC(1.7S(0)), LBP, Put(1.3S(0)), stock, ZCB(10) and ZCB(29). Each portfolio is opti-

mized to minimize the CTE(99%) subject to a mean constraint of 0. Most insurers are

likely to want the hedging strategy to at least break-even on average, even if this results

in a slightly higher CTE. The portfolios are optimized at the start of each issue year based

on the observed ZCB yield curve at that time (the one-factor interest rate model is fitted

to the prevailing ZCB yield curve). Over the period 1997-2011, a broad spectrum of ZCB

yield curve shapes existed in the U.S. Figure 3.15 displays a selection of historical yield

curves (all calculated at the start of the calendar year), capturing the range of shapes

observed between 1997-2011. Of particular noteworthiness is the yield curve shape at the

start of 2011. This curve is an input in determining the hedging portfolio and liability

values as at 2011. All other model parameters are set equal to the benchmark param-

eter assumptions. Hence, the optimal instrument positions for each issue year will vary

primarily because of different ZCB yield curve assumptions (the other source of variation

comes from the selection of the scenarios in the optimization problem). Table 3.15 dis-

plays the optimal portfolio instrument positions for each issue year.
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Figure 3.15: U.S. zero coupon bond yield curves for a selection of calendar years.

Time 0 Time T LBC(1.6S(0)) LBP Put(1.3S(0)) Stock ZCB(10) ZCB(29)
1997 2007 0.59 0.05 0.28 0.38 0.13 1.72
1998 2008 0.57 0.06 0.32 0.40 0.15 1.52
1999 2009 0.71 0.01 0.36 0.38 -0.31 2.43
2000 2010 0.40 0.16 0.36 0.51 0.47 0.13
2001 2011 0.63 0.03 0.29 0.35 0.26 1.39
2002 2012 0.62 0.03 0.32 0.37 0.17 1.54
2003 2013 0.60 0.05 0.37 0.46 -0.27 2.22
2004 2014 0.58 0.07 0.37 0.45 -0.06 1.72
2005 2015 0.69 0.00 0.36 0.39 -0.15 2.06
2006 2016 0.76 0.00 0.40 0.40 -0.57 2.75
2007 2017 0.71 0.00 0.41 0.41 -0.49 2.69
2008 2018 0.74 0.00 0.42 0.42 -0.56 2.73
2009 2019 1.52 0.00 0.00 0.00 -0.49 2.18
2010 2020 0.79 0.00 0.40 0.40 -0.60 2.66
2011 2021 0.87 0.00 0.33 0.33 -0.55 2.61

Table 3.15: Optimal hedging instrument positions at time 0 for GMIBs issued from 1997 to 2011.

In this backtest, the investment returns of the policyholder’s investment account are as-

sumed to match the returns on the S&P 500 Total Return Index. Furthermore, we assume

that 10-year put and lookback options on the S&P 500 Total Return Index are available.

Figure 3.16 displays the evolution of the S&P 500 Total Return Index over the period of

interest. The circles on the curve denote the GMIB issue dates and policy anniversaries.

The sharp drops in the index correspond to the dot-com bubble crash (starting in 2000),

and the credit crunch (starting in 2007).

For GMIBs issued in 1997-2001, the hedging losses are known. For GMIBs issued in 2002
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Figure 3.16: Evolution of the S&P 500 Total Return Index from the start of 1997 to the end of 2011.

and beyond, we simulate the hedging loss distributions as at 1 January 2011 conditional

on past experience. This gives us a forecast of how the hedging strategy is expected to

perform when the option is exercised. For a GMIB issued at the start of year s 6 2011,

the hedging losses, valued at 1 Jan 2011, are calculated as

en,(2011) = yn,(2011) − z
′

n,(2011)xs, n = 1, . . . , N,

where:

• yn,(2011) is the GMIB maturity value for the n-th scenario, valued at 1 Jan 2011

conditional on historical experience.

• zn,(2011) is the vector of hedging instrument payoffs in year T for the n-th scenario,

valued at 1 Jan 2011 conditional on historical experience.

• xs is the vector of the optimal instrument positions set at the start of year s.

The top portion of Table 3.16 displays the actual hedging losses for GMIBs issued in 2001

or earlier. The bottom portion of the table shows the hedging loss statistics at 1 Jan 2011

for GMIBs issued in the last decade. For each issue year, the value of the policyholder’s
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investment account as at 2011 is shown. Furthermore, the real-world probabilities of ex-

ercising the lookback, guaranteed return and investment account components, conditional

on actual experience up to 2011, are reported for each issue year.

Studying Table 3.16 in conjunction with Figure 3.16 helps explain the hedging loss statis-

tics. It is difficult to make any general statements based on Table 3.16. There are a

number of factors influencing the performance of each hedging strategy including the

ZCB yield curve shape in the issue year, the prevailing interest rates at the maturity

date, and the peaks and troughs in the index over time. Notwithstanding, we make the

following observations:

• The static hedge occasionally produces large losses and profits, as seen for issue

years 1997 and 1999.

• The real world probabilities for each issue year make sense when one looks at Figure

3.16.

• In all issue years except 2009, the right tail risks have been hedged effectively. The

sharp appreciation of the index since 2009 has generated the large tail risk measures

for GMIBs issued in 2009.

• The static hedges tend to produce negative mean hedging losses when the index

rises sharply over the accumulation phase, as seen for issue years 2003, 2009, and

2010. However, this is not always the case, as seen for issue year 1997, where the

index did rise significantly over the accumulation phase.

Overall, the static hedges perform reasonably well, allowing for the fact that the GMIB

option is underpriced. A variety of economic conditions were experienced between 1997-

2011, and the static hedges appear to be robust in the majority of circumstances. Charging

the fair fee will improve the performance of the static strategies in this backtest. However,

we do not explore the impact of charging the fair fee rate, because it will vary with each

issue year due to different ZCB yield curve assumptions. For an indication of how the

yield curve shape impacts the fair fee rate, see Section 2.4.2.
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Time 0 Time T MSHL1/2 1%-quantile Median VaR(99%) Std dev Mean CTE(99%) A(2011) pX1 pX2 pX3

1997 2007 381 0 0 1
1998 2008 127 0 0 1
1999 2009 -452 0 1 0
2000 2010 50 0 1 0
2001 2011 -71 0 1 0
2002 2012 95 -100 95 148 63 71 154 1169 0.00 0.83 0.17
2003 2013 109 -334 -35 94 98 -47 101 1531 0.41 0.00 0.59
2004 2014 94 -233 54 147 89 32 156 1201 0.07 0.47 0.46
2005 2015 131 -358 102 175 120 52 184 1094 0.07 0.48 0.45
2006 2016 220 -574 197 279 187 116 305 1053 0.09 0.46 0.45
2007 2017 185 -571 166 201 173 67 228 916 0.08 0.53 0.39
2008 2018 229 -746 179 225 218 70 250 877 0.09 0.51 0.40
2009 2019 1127 -4190 166 1003 1119 -134 1018 1426 0.29 0.11 0.60
2010 2020 475 -1810 66 318 468 -80 345 1139 0.23 0.22 0.55
2011 2021 498 -1872 161 388 498 -6 418 1000 0.21 0.28 0.51

Table 3.16: Hedging loss statistics at the start of 2011 for GMIBs issued at the start of each year from
1997 to 2011.

3.12 Impact of increasing the option prices

There are potential difficulties with implementing a static hedge of the type presented in

this chapter. Unfortunately, there are unlikely to be many natural sellers of 10 year put

options. That is, few investors are likely to naturally gain from being short on a broad

stock index over a decade. Furthermore, any party willing to write/sell lookback options

of the types we have considered (possibly an investment bank), is going to charge signifi-

cant loadings for the risks involved with hedging their own short positions. Therefore, it

is interesting to explore how much the static hedge deteriorates when significant loadings

are added to the option prices.

The implied volatilities of the options in all the strategies presented thus far have been

= 20%. This section assesses the impact on the hedging loss distribution when the the

implied volatilities, denoted by σi, for all of the options are increased to 25% or 30%. It

is emphasized that we are not changing the stock volatility parameter σS = 20% used

to simulate the paths of the stock under P . Only the option prices are increased. Table

3.17 displays the hedging instrument prices for different option implied volatilities. The

lookback option prices are computed using Monte Carlo simulation, based on 200,000

scenarios. The standard errors for the lookback option prices are shown in brackets. An-

alytical formulas exist for the put options and the ZCBs.
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Tables 3.18, 3.19, 3.20 and 3.21 illustrate the impact of different implied volatilities, σi,

on various portfolios which minimize the CTE. In these tables, the results for σi = 20%

correspond to PC3, PF1, PF2 and PC4B, respectively.5 The hedging loss statistics in

Tables 3.18, 3.19 and 3.20 display common characteristics as σi increases. The 1% quan-

tile, median, mean, VaR(99%) and CTE(99%) all increase as σi increases. There do not

appear to be any consistent patterns in the structure of the optimal portfolio positions as

σi increases. The portfolios in Table 3.21 are designed to minimize the CTE and satisfy a

mean constraint of 0, so the results show different behavior as σi increases. The tail risk

measures increase rapidly, but there do not appear to be any other obvious patterns.

In passing, it is noted that a more realistic version of this analysis may use higher implied

volatilities for the lookback options compared to the plain vanilla put options.

Implied vol. LBC(1.6S(0)) LBP Put(0.8S(0)) Put(1.1S(0)) Put(1.3S(0)) Stock ZCB(10) ZCB(29)
σi = 20% 293.7 (1.3) 219.4 (0.5) 39.4 109.0 174.4 1000 667.8 251.8
σi = 25% 392.6 (1.8) 317.2 (0.7) 68.5 154.7 227.8 1000 667.8 251.8
σi = 30% 503.3 (2.6) 420.9 (0.9) 100.6 200.5 280.1 1000 667.8 251.8

Table 3.17: Hedging instrument prices for different implied volatilities. The benchmark assumption is
σi = 20%.

Implied vol MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
σi = 20% 477 -1283 -157 794 470 -77 1011

(461, 492) (−1415,−1187) (−166,−147) (782, 826) (455, 485) (−90,−64) (921, 1101)
σi = 25% 462 -1201 -125 839 460 -41 1046

(447, 476) (−1320,−1104) (−134,−116) (828, 869) (446, 474) (−54,−28) (959, 1132)
σi = 30% 342 -552 -119 898 342 18 1072

(334, 350) (−610,−526) (−125,−113) (866, 925) (334, 350) (9, 28) (997, 1148)

Put(0.8S(0)) Stock ZCB(10) ZCB(29)
σi = 20% x̂(k) 0.819 1.067 -0.846 1.825

ŵ(k) 0.032 1.074 -0.569 0.463
σi = 25% x̂(k) 0.718 1.059 -0.979 2.142

ŵ(k) 0.050 1.066 -0.658 0.543
σi = 30% x̂(k) 0.254 0.965 -0.679 1.815

ŵ(k) 0.026 0.970 -0.456 0.460

Table 3.18: Hedging loss statistics and optimal instrument positions for portfolios including 10-year
put options, in the case where the fee rate is 1%. The results for σi = 20% correspond to PC3.

5The results for PC3, PF1, PF2 and PC4B are based on N = 5,000. The hedging loss statistics are
slightly different to those shown in earlier tables. The different statistics arise from two sources: sampling
error from different selections of scenarios, and slightly different optimal instrument positions.
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Implied vol MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
σi = 20% 589 -1334 -331 424 491 -325 609

(579, 599) (−1393,−1293) (−357,−307) (424, 429) (483, 498) (−339,−311) (522, 695)
σi = 25% 555 -1232 -294 450 477 -284 641

(546, 564) (−1283,−1207) (−319,−272) (450, 468) (470, 484) (−297,−271) (553, 729)
σi = 30% 490 -1009 -252 483 431 -232 673

(483, 497) (−1054,−984) (−275,−235) (476, 499) (425, 437) (−244,−220) (586, 761)

Put(0.8S(0)) Stock ZCB(10) ZCB(29)
σi = 20% x̂(k) 0.739 0.739 -0.700 2.758

ŵ(k) 0.029 0.743 -0.470 0.698
σi = 25% x̂(k) 0.723 0.728 -0.727 2.790

ŵ(k) 0.050 0.732 -0.488 0.706
σi = 30% x̂(k) 0.590 0.691 -0.743 2.940

ŵ(k) 0.060 0.695 -0.499 0.744

Table 3.19: Hedging loss statistics and optimal instrument positions for portfolios including 10-year
put options, in the case where the fair fee rate is charged. The results for σi = 20% correspond to PF1.

Implied vol. MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
σi = 20% 245 -600 -148 137 212 -122 149

(242, 248) (−619,−585) (−153,−143) (137, 137) (210, 214) (−125,−119) (145, 154)
σi = 25% 206 -463 -41 229 205 -20 246

(203, 209) (−486,−449) (−51,−27) (229, 229) (202, 208) (−26,−15) (235, 257)
σi = 30% 221 -358 61 330 205 82 350

(218, 224) (−383,−344) (51, 76) (330, 330) (202, 208) (77, 88) (338, 363)

Implied vol. LBC(1.6S(0)) LBP Put(0.8S(0)) Stock ZCB(10) ZCB(29)
σi = 20% x̂(k) 0.623 0.012 -0.017 0.000 0.180 2.754

ŵ(k) 0.183 0.003 -0.001 0.000 0.120 0.695
σi = 25% x̂(k) 0.616 0.020 -0.029 0.000 0.087 2.755

ŵ(k) 0.242 0.006 -0.002 0.000 0.058 0.695
σi = 30% x̂(k) 0.616 0.011 -0.017 0.000 -0.013 2.753

ŵ(k) 0.311 0.005 -0.002 0.000 -0.009 0.695

Table 3.20: Hedging loss statistics and optimal instrument positions for portfolios including the lookback
options, in the case where the fair fee rate is charged. The results for σi = 20% correspond to PF2.

Implied vol. MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
σi = 20% 482 -1807 147 397 482 0 397

(457, 507) (−2029,−1658) (134, 159) (397, 397) (457, 507) (−13, 13) (397, 398)
σi = 25% 826 -3157 257 666 826 0 669

(782, 869) (−3391,−2817) (233, 279) (666, 666) (782, 869) (−23, 23) (666, 671)
σi = 30% 796 -2848 173 951 796 0 999

(758, 834) (−3178,−2550) (154, 193) (943, 965) (758, 834) (−22, 22) (980, 1018)

Instrument (k) LBC(1.6S(0)) LBP Put(1.3S(0)) Stock ZCB(10) ZCB(29)
σi = 20% x̂(k) 0.789 0.000 0.404 0.404 -0.603 2.746

ŵ(k) 0.233 0.000 0.071 0.406 -0.404 0.695
σi = 25% x̂(k) 0.733 0.000 0.680 0.680 -1.232 2.751

ŵ(k) 0.290 0.000 0.156 0.685 -0.829 0.698
σi = 30% x̂(k) 0.467 -0.074 0.508 0.898 -1.379 2.655

ŵ(k) 0.237 -0.032 0.143 0.906 -0.928 0.674

Table 3.21: Hedging loss statistics and optimal instrument positions for portfolios including the lookback
options, in the case where the fee rate is 1% and a mean constraint of 0 is included in the optimization
problem. The results for σi = 20% correspond to PC4B.
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3.13 Sensitivity Analysis

This section is presented to give the reader a sense of the stability of the results illustrated

in this chapter.

3.13.1 Stability of the optimal hedging portfolios

The number of scenarios N is the key parameter that drives the stability of the results of

a given strategy. Here we report the sensitivity of the hedging loss distributions for PC3

and PC4B using 1,000, 10,000 and 20,000 scenarios. Since the distributions depend on

the variability of the optimal instrument positions, we also report the sensitivity of the

optimal instrument positions. We measure the stability of the results by using repeated

Monte Carlo simulations. For 20 independent Monte Carlo simulations, each consisting

of N scenarios, we record the key hedging loss statistics and the optimal instrument posi-

tions. Then we calculate the mean and standard deviation of the 20 repeated simulation

estimates of the key statistics and optimal instrument positions. It is noted that in each

independent Monte Carlo simulation, the set of scenarios used to compute the optimal

instrument positions is different to the set of scenarios used to calculate the hedging loss

statistics; recall that this is done to remove any bias in the hedging loss distribution.

Tables 3.22 and 3.23 display the mean and variance of the key statistics and optimal

instrument positions for PC3 and PC4A, based on different values of N . The hedging

loss statistics and optimal instrument positions of PC3 and PC4B shown in Tables 3.4

and 3.6 respectively, are within a reasonable distance of the reported mean statistics in

Tables 3.22 and 3.23. The hedging loss statistics and the optimal instrument positions

exhibit much lower variability in PC4B. The lookback call options play a major role in

stabilizing the hedging loss distribution.

For both PC3 and PC4B, the statistics appear to be relatively stable for N > 10,000.

We conclude that the statements we have made in the analysis of each portfolio in this

chapter are robust to the selection of the scenarios.
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MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
N = 1,000 Mean 508 -1344 -155 867 495 -83 1096

Std dev 252 1093 61 61 229 133 45
N = 10,000 Mean 512 -1428 -161 834 502 -96 1067

Std dev 91 388 19 21 83 48 24
N = 20,000 Mean 506 -1415 -159 831 497 -94 1066

Std dev 42 197 10 15 39 30 28

Put(0.8S(0)) Stock ZCB(10) ZCB(29)
N = 1,000 Mean 0.75 1.07 -1.13 2.58

Std dev 0.38 0.15 0.80 1.94
N = 10,000 Mean 0.80 1.09 -1.21 2.71

Std dev 0.12 0.06 0.20 0.51
N = 20,000 Mean 0.80 1.09 -1.26 2.85

Std dev 0.06 0.03 0.15 0.38

Table 3.22: Mean and variance of optimal hedging instrument positions and hedging loss statistics for
PC3, obtained using 20 independent Monte Carlo simulations.

MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(99%)
N = 1,000 Mean 464 -1710 143 387 464 7 395

Std dev 28 119 5 7 28 13 7
N = 10,000 Mean 477 -1769 140 391 477 0 397

Std dev 10 41 4 3 10 6 2
N = 20,000 Mean 475 -1769 140 390 475 0 397

Std dev 6 37 4 2 6 4 2

LBC(1.6S(0)) LBP Put(1.3S(0)) Stock ZCB(10) ZCB(29)
N = 1,000 Mean 0.77 0.00 0.40 0.40 -0.59 2.73

Std dev 0.03 0.00 0.03 0.03 0.05 0.01
N = 10,000 Mean 0.77 0.00 0.41 0.41 -0.60 2.74

Std dev 0.01 0.00 0.01 0.01 0.01 0.00
N = 20,000 Mean 0.77 0.00 0.41 0.41 -0.60 2.74

Std dev 0.01 0.00 0.01 0.01 0.01 0.00

Table 3.23: Mean and variance of optimal hedging instrument positions and hedging loss statistics for
PC4B, obtained using 20 independent Monte Carlo simulations.
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3.13.2 Changing the confidence level in CTE minimization prob-

lems

Tables 3.24 and 3.25 display the hedging loss statistics for PC3 and PC4B using different

CTE confidence levels α in the CTE minimization problem. To better understand how

the choice of α influences the right tail risk, we report the CTEs at 90%, 95% and 99%

confidence levels for all cases. For both portfolios, α = 0.99 seems to offer favorable

results, in terms of minimizing the risk of extremely large hedging losses. Setting α too

low increases the risk of larger hedging losses when extremely adverse scenarios with low

probability occur.

α MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(90%) CTE(95%) CTE(99%)
0.99 414 -960 -134 815 411 -43 719 794 1039
0.95 283 -239 -49 845 273 76 636 715 1108
0.90 274 -171 59 891 238 136 618 734 1187
0.85 276 -143 70 907 234 147 621 748 1206
0.80 275 -127 63 902 233 145 625 752 1205

Table 3.24: Hedging loss statistics for PC3 using different CTE confidence levels.

α MSHL1/2 1%-quantile Median VaR(99%) Std Dev Mean CTE(90%) CTE(95%) CTE(99%)
0.99 470 -1766 139 387 471 0 387 387 391
0.95 474 -1771 142 386 474 0 387 387 393
0.90 476 -1771 145 386 476 0 386 388 396
0.85 482 -1793 150 400 482 0 390 396 409
0.80 475 -1786 150 428 475 0 400 415 443

Table 3.25: Hedging loss statistics for PC4B using different CTE confidence levels.

3.14 Practical risks with using a static hedging strat-

egy

Risks associated with the use of a static hedging strategy, which we have not modeled,

include basis risk and counter-party risk. These risks are difficult to measure and model

reliably. However, it is important to be aware of their existence.

In our context, basis risk occurs because the returns on the stock index that we are mod-

eling are unlikely to coincide with the returns of the policyholder’s investment account.
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We have assumed that the returns are identical. As mentioned in Section 1.1, the poli-

cyholder may split the balance of their investment into sub-accounts related to different

fund managers. If the returns of the stock index process tend to differ considerably from

the returns of the investment account, the static hedge may not work as intended. To

further complicate the problem, each individual policyholder may split their investment

differently. Therefore, developing a static hedge for a portfolio of GMIBs, where each

policy experiences different investment account returns, is a rather complex task. Basis

risk is obviously difficult to model. Basis risk can be reduced if the policyholder is forced

to invest at least x% (e.g. x = 50) of their premium with managed funds that have a track

record of producing returns which are strongly positively correlated with the returns on

the stock index.

Counter-party risk arises because the hedging portfolio may include one or more long

positions in derivatives with long terms to expiry. Given that the term to expiry is 10

years, the possibility that the option seller fails to meet its obligations at maturity is

not negligible. History has repeatedly shown that, over a decade, market conditions may

change significantly. The seller could go bankrupt, or a severe downgrade in its credit

rating over the period may occur, for a variety of reasons. Consider the hypothetical

example where an insurance company bought, say, a 10 year lookback call option from the

investment bank Lehman Brothers, as part of a static hedge for a GMIB. The hedge would

most likely fail miserably. The counter-party risk in the examples we have considered,

is much higher than in the situation where say one year options are used in a hedging

portfolio which is rebalanced annually. To mitigate counter-party risk, the insurer should

carefully investigate the long term creditworthiness of any party involved in an over-the-

counter transaction. In the case where the option is traded on an exchange, which may be

a possibility for long-dated plain vanilla options such as 10 year put options, counter-party

risk is significantly reduced because of margin calls (but as exchange based contracts are

standardized, the basis risk might be higher).
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3.15 Concluding remarks

This chapter has measured the effectiveness of various static hedging strategies for the

GMIB. Under the assumption that the GMIB is underpriced (the fee rate being set at 1%,

one of the highest rates currently charged), the performance of static hedging strategies

for the GMIB is imperfect at best. The hedging portfolios do not adequately simulta-

neously hedge the upside and downside equity guarantees (the lookback and guaranteed

return components respectively). We discovered that a particular hedging instrument,

the lookback call option, is very effective at hedging the GMIB, particularly when the

lookback component is exercised. The results from Portfolios C4A and C4B, in Section

3.6.4, demonstrate this point clearly. Without the lookback call option, the lookback

component is responsible for generating a very large CTE for the hedging loss distribu-

tion. We then demonstrated that when the fair fee rate is charged, the static hedging

strategies produce much more favorable hedging loss distributions. However, significant

tail risk still exists even when the fair fee rate is charged, unless the lookback call option

is included in the hedging portfolio.

We backtested the performance of static hedging strategies for GMIBs issued in each year

from 1997 to 2011, under the assumption that the GMIB is underpriced. Overall, most

of the static hedges generated, or are expected to generate, small hedging losses.

The following modeling issues will decrease the effectiveness of static hedging strategies:

1. We assumed the stock follows a geometric Brownian motion process, which is well

known to produce thin-tailed equity return distributions (Hardy, 2003). In practice,

equity return distributions exhibit much fatter negative return tails. Using a fatter-

tailed model for the stock is likely to produce hedging loss distributions with thicker

right tails (the likelihood of larger losses increases).

2. The implied volatilities of options with terms to expiry of 10 years may be higher

than what we have assumed (i.e. option prices will be higher) due to the higher

inherent risks of long-dated options – particularly for the lookback options. This

means smaller instrument positions for the same budget constraint, which in turn

will shift the hedging loss distribution to the right (higher hedging losses). Given
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the importance of this issue, in Section 3.12 we investigated the impact of higher

implied volatilities for the options.

Lapse assumptions have also not been taken into consideration. Allowing for the possi-

bility of the policyholder lapsing during the accumulation phase will reduce the cost of a

static hedging strategy. Static hedges may be more profitable. If the policyholder lapses,

they forfeit the GMIB option, and they may, say, only be entitled to receive the value of

their investment account when they lapse. The hedging portfolio could be sold at that

point, most likely for a profit as the liability is reduced, or held until a later date if it seems

optimal to do so. The potential profits from lapses are difficult to measure because policy-

holders are more likely to lapse when the GMIB option value is low. If a policyholder does

lapse, there is also the issue of liquidity risk. If the hedging portfolio is to be liquidated,

it may be difficult for an insurer to sell any long-dated options it holds at reasonable prices.

We have explored the addition of up-and-out put options in the hedging portfolio, in

order to improve the hedging strategies in situations where the stock performs poorly

during the accumulation phase, and the stock value at maturity is low. These options

are cheaper than put options, and thus more downside protection can be included in the

portfolio, provided that the stock stays below the knock-out barrier during the term to

expiry of these options. We have found that the addition of such options does not offer

any material improvement for the static hedging strategies.

Hybrid option instruments, which have payoffs that are functions of the stock process and

interest rates, may be useful for static hedging strategies. For example, a hybrid knock-in

put option which has a positive payoff only if interest rates are below some predetermined

level at maturity, may be cheap and useful for hedging the guaranteed return component

when it is deep-in-the-money (the guaranteed return component has a higher payoff when

interest rates are low at maturity). We have not investigated the usefulness of such in-

struments.

There is an interesting point to be made about the pricing and hedging of GMIBs (that

may not be well known to actuaries). In Chapter 2, we showed that the value of a simplified

GMIB, consisting of just the guaranteed return and investment account components (we
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referred to this guarantee as the embedded guaranteed return option in Section 3.9.2),

increases only slightly when the lookback component is also included to “complete ” the

GMIB option. However, this chapter has shown that when the GMIB is hedged with

a static portfolio, the lookback component contributes significantly to the risk of large

hedging losses – particularly if a lookback call option is not included in the hedging

portfolio. In other words, a small contribution to the price of a guarantee does not

necessarily imply a small contribution to the risks involved in hedging the guarantee (the

risks may increase substantially).
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Chapter 4

An Investigation of Periodic

Rebalancing Hedging Strategies for a

Guaranteed Minimum Income

Benefit

4.1 Introduction

In Chapter 3, we discussed in detail the shortcomings of delta-hedging strategies for op-

tions with long maturity dates. We are motivated to find alternative hedging methods

which work well in practice for long-dated options, but which do not rely heavily on the

standard assumptions of option pricing theory. The effectiveness of static hedges for the

GMIB option was illustrated in Chapter 3. In this chapter, we investigate the perfor-

mance of semi-static hedging strategies for the GMIB option.

In general, the goal of a semi-static hedging strategy for a long-dated option is to construct

a hedging portfolio that is rebalanced at particular time points during the accumulation

phase, such that, at the option maturity date, the hedging portfolio payoff is equal to

or exceeds the option value, subject to an acceptable level of risk. We refer to the time

interval between two rebalancing points as the hedging horizon. The choice of the length
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of each hedging horizon depends on several factors including:

• The trade-off between the transaction costs involved in rebalancing, and the risk of

large positive deviations between the option price and the portfolio value at the end

of each hedging horizon;

• The expiration dates of options that can be included in the hedging portfolio.

A semi-static hedging strategy should be self financing: no additional external funds

should be required at any rebalancing point to reduce shortfalls between the option price

and the hedging portfolio value. Furthermore, any reasonable semi-static hedging strategy

is designed subject to some measure of risk. There are no universally accepted risk mea-

sures associated with semi-static hedging strategies. In this chapter, we consider trading

strategies based on minimizing the mean square hedging error (MSHE) in each horizon,

and minimizing the conditional-tail-expectation of the hedging error distribution in each

horizon.

The investigation is done from the perspective of an insurer who has sold a variable an-

nuity with an embedded GMIB option. The insurer wishes to hedge the option from

inception to maturity, using just the annuity premium. We illustrate the effectiveness

of semi-static hedging strategies through several examples. Many of the examples are

based on rebalancing the hedging portfolio in such a way that the hedging portfolio value

matches the GMIB price at the end of each hedging horizon, as closely as possible. By

matching the GMIB price at the end of a hedging horizon, the insurer could, at least in

theory, sell the GMIB to another party at that time without incurring a loss (by trans-

ferring the funds provided by the hedging portfolio to the buyer of the GMIB liability).

Long computation times are often a major challenge with implementing semi-static hedg-

ing strategies. The method we use requires nested simulations, which in general can be

very computationally expensive (time consuming). As a first stepping stone to tackling

the complex problem of developing, and forecasting the performance of, semi-static hedg-

ing strategies, we work within the model framework presented in Section 3.2. Using this

model framework enables us to exploit the speed of the efficient simulation method dis-

cussed in Section 2.9.1, which is vital for completing the nested simulations in reasonable

158



time frames.1 Using the efficient simulation method, we can produce fast simulations of

the hedging loss distribution at maturity, based on our choice of semi-static hedging strat-

egy. The use of more complicated SDEs for the stock and the interest rate, which must be

discretized in order to simulate trajectories, leads to problems in respect of computation

time. Because nested simulations are necessary, the generation of a sufficient number of

scenarios for making meaningful inferences could take a very long time (e.g. simulating

1,000 scenarios may take days or longer).

The structure of Chapter 4 is as follows. The remainder of Section 4.1 outlines the method

we use to test semi-static hedging strategies for the GMIB, and discusses the contribution

of this chapter to the literature on hedging methods. Section 4.2 describes the steps

involved in implementing the method. Although the method is described specifically for

the case of the GMIB, the steps involved can easily be adjusted to accommodate for any

long-dated option. In Section 4.3, we deal with numerical stability issues related to the

implementation of the method. Section 4.4 lists the benchmark parameter assumptions we

adopt for illustrating most of the results in this chapter. For each semi-static strategy that

we investigate, we report the key statistics summarizing the hedging loss distribution in

a table. We also present detailed tables summarizing the behavior of certain semi-static

strategies. Section 4.5 explains how to the interpret the numbers in the tables spread

throughout the latter part of this chapter. Before investigating semi-static strategies for

the GMIB option, we first test the strategies for a simple derivative, the 10 year call option,

in Section 4.6. The purpose of investigating the performance of the semi-static strategies

for the 10-year call option is to build some intuition as to how the semi-static strategies

behave for different hedging horizon lengths and transaction cost assumptions, and various

choices of allowable hedging instruments. Section 4.7 describes the hedging strategy types

that we consider for the GMIB, which are used in the examples presented in the remainder

of the chapter. Sections 4.8 and 4.9 illustrate the performance of MSHE minimization

and CTE minimization hedging strategies for the GMIB. Section 4.10 investigates the

change in performance of the semi-static strategies when the hedging target is changed

from the GMIB price to the real-world expected present value of the benefits provided

1For the author, during the writing of this chapter, a Monte Carlo simulation which is complete in
a “reasonable time frame” is one that is done in less than 24 hours. All simulations were performed in
MATLAB on a 64-bit laptop with the following specifications: Intel i7-2600 (4 cores) CPU @2Ghz, 8GB
RAM.
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by the GMIB. In Section 4.11, we assess the impact of model risk for the semi-static

strategies. We assume the real-world stock returns follow a 2-state regime switching

lognormal process, rather than the benchmark lognormal return process. This section

gives some indication of the robustness of the semi-static strategies. Section 4.13 gives an

indication of the stability of the results obtained by using the semi-static hedging method.

Section 4.14 provides a summary of the results in the chapter.

4.1.1 Preliminary notation

In this chapter, we present equations that combine simulated paths of the stock, short

rate and short rate accumulation factor processes under both a risk-neutral probability

measure, denoted by Q, and the real-world probability measure, denoted by P . Therefore,

for clarity of exposition, we mark all random variables simulated under the risk-neutral

measure with tildes above their symbols. For brevity, we collectively refer to the short

rate and short rate accumulation factor processes as the interest rate processes.

Let us partition the interval from time 0 to time T into I hedging horizons/intervals. Let

ti denote the i-th rebalancing time point such that

0 = t0 < t1 < . . . < tI−1 < tI = T.

We always assume equally spaced hedging horizons; ti − ti−1 = τ, i = 1, . . . , I, for some

constant τ , which implies I = T/τ .

Define

S(ti) = [S(t1), S(t2), . . . , S(ti)]
′,

and

D(ti) = [e
∫ t1
t0
r(s)ds, e

∫ t2
t1
r(s)ds, . . . , e

∫ ti
ti−1

r(s)ds
]′, i = 1, 2, . . . , I.
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The GMIB price at time ti is

V (ti) = V (ti,S(ti),D(ti), r(ti)) = EQ
[
e
−

∫ T
ti
r̃(s)ds

max{B̃(T )g˜̈a20 (T ), Ã(T )}
∣∣Fti] , (4.1)

where Fti denotes all information available at time ti. In equation (4.1), we must know

the value of r(ti) in order to simulate the value of r̃(T ), and hence evaluate ˜̈a20 (T ).

Note that we can express the GMIB price at time ti < T in an alternative form:

V (ti) = EQ

[
exp{−

∫ T

ti

r̃(s)ds}max{B̃(T )g˜̈a20 (T )− Ã(T ), 0}
∣∣∣∣Fti]+ S(ti)

−
btic∑
n=1

e
∫ ti
n r(s)ds−σ2

S(ti−n)/2+σS(WP
S (ti)−WP

S (n))f(n)

− EQ

e− ∫ T
ti
r̃(s)ds

 T−1∑
n=btic+1

[
T∏

i=n+1

R̃(i)]f̃(n) + f̃(T )

∣∣∣∣Fti
 ,

where:

• btic denotes the largest integer less than or equal to ti;

• f(n) is defined by equation (2.2);

• R(i) is defined by equation (2.3).

At maturity,

V (T ) = max{B(T )gä20 (T ), A(T )}. (4.2)

4.1.2 How the semi-static hedging strategy is implemented

The implementation of a semi-static hedging strategy depends on whether the goal of the

strategy is to either:

(1) Generate a hedging portfolio payoff at maturity which matches (or exceeds) the

GMIB maturity value, subject to an acceptable level of risk;
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(2) Generate a hedging portfolio value which matches (or exceeds) the GMIB price at

the end of each hedging horizon, subject to an acceptable level of risk.

Goal (1) would be chosen if the insurer intends to hold the GMIB liability to maturity,

and they are only concerned with the risk associated with the final realized hedging loss

(profit). Goal (2) would be chosen by an insurer who may want to transfer the GMIB

liability to another party at some future time point before maturity. Goal (2) might also

be necessary for reporting and solvency purposes. As a special case, both goals coincide

over the last hedging horizon. The two distinct goals are mentioned because, prior to the

last rebalancing point before maturity, a trading strategy designed to meet Goal (2) may

not be the best strategy for meeting Goal (1). The reason for the distinction between

the goals is that the choice of goal may affect the choice of the hedging target for each

horizon, and the criteria for rebalancing the hedging portfolio in an optimal way.

The semi-static hedging strategy is implemented as follows. Suppose we are at the start

of the i-th hedging horizon, time ti−1. We have a short position in a variable annuity with

an embedded GMIB option, and we wish to hedge the liability using a budget constraint

of b(ti−1) dollars. We must choose a vector of hedging instrument positions at time ti−1,

denoted by x(ti−1), in such a way that we maximize the chance of meeting either Goal

(1) or (2). Let

• Y (ti)|Fti−1
denote the hedging target over the i-th hedging horizon. The aim of the

hedging strategy is to produce a hedging portfolio value at time ti which meets the

hedging target. A natural candidate for the hedging target is the GMIB price at

time ti, given by equation (4.1).

• Z(ti)|Fti−1
denote the vector of hedging instrument payoffs at time ti.

• Y (ti)− x(ti−1)′Z(ti)|Fti−1
denote the hedging error for the i-th horizon.

Criteria must be defined for choosing the instrument positions x(ti−1). There are many

possibilities. In this chapter, we illustrate the results from choosing x(ti−1), i = 1, . . . , I

by minimizing the following objective functions:
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1. The mean square hedging error (MSHE) of Y (ti) − x(ti−1)′Z(ti)|Fti−1
over each

horizon. This objective function is a natural choice for minimizing the difference

between the hedging target and the hedging portfolio payoff over each horizon.

2. The Conditional Tail Expectation (CTE) of Y (ti) − x(ti−1)′Z(ti)|Fti−1
over each

horizon. Strategies obtained from minimizing this objective function are designed

to minimize the likelihood of large positive hedging errors.

Minimizing the chosen objective function produces an optimal trading strategy for hori-

zon i, denoted by x̂(ti−1), set in place at the start of the horizon.

In the last hedging horizon, the hedging target is always set equal to the GMIB maturity

value, given by equation (4.2). We refer to the hedging error distribution at time tI = T

as the hedging loss distribution. A hedging loss (profit) is realized if the GMIB maturity

value exceeds (is less than) the hedging portfolio payoff at time T . For Goal (1), the

successfulness of a particular strategy is measured by the shape of the hedging loss distri-

bution. Monte Carlo simulation is used to sample from the hedging loss distribution. Let

ej, j = 1, 2, . . . , J denote observations from the hedging loss distribution at time T . To

be clear, these hedging loss observations (which we refer to as the “hedging losses”) are

the realized losses (profits) at time T from implementing the semi-static hedging strategy

over I hedging horizons, between time 0 and time T , for J distinct scenarios.

If an insurer aims to meet Goal (2), then, in the context of this chapter, it should mini-

mize the MSHE using the GMIB price as the hedging target. However, if an insurer plans

to meet Goal (1), then there is flexibility in the choice of hedging target and objective

function. In this chapter, all of our hedging loss results are presented assuming that the

insurer has Goal (1) in mind; we present comprehensive results of each strategy as at the

maturity date. However, some useful information for meeting Goal (2) is also presented.

In particular, for many examples, we show the mean hedging error, and the hedging er-

ror standard deviation, for each hedging horizon between time 0 and time T . Further

information related to Goal (2), such as the shapes of the hedging error distributions at

particular rebalancing points of interest, is easily obtained using the method described

here.
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As we illustrate in our results, the choice of hedging target materially impacts on the

hedging loss distribution at time T . Goal (1) could be met by using any appropriate

hedging target, which does not unreasonably increase the risk of large hedging losses. We

consider two hedging targets for meeting Goal (1):

• The GMIB price calculated using option pricing theory. We calculate the GMIB

price using the model in Chapter 2.

• The expected present value of the benefits provided by the GMIB under the real-

world measure P . That is we are valuing the GMIB liability under P instead of

Q. We refer to this hedging target as the P -valuation target. In Section 4.10, we

show how the hedging loss distribution changes when the hedging target is the P -

valuation target instead of the GMIB price. The reader is reminded that in perfect

world where the market is complete, trading the GMIB liability at a price equal

to the real-world expectation of the future benefits (instead of pricing using the

risk-neutral measure) will generate an arbitrage opportunity.

4.1.3 Contribution to the literature on hedging methods

Standard option hedging strategies are based on frequently rebalancing the hedging port-

folio with respect to movements in one or more of the Greeks of the option (delta-hedging

being the simplest case). There is a broad field of literature on the properties associated

with alternative hedging strategies. These alternative strategies are designed to deal with

hedging options in incomplete markets. In incomplete markets, the intrinsic risk of an

option cannot be fully hedged. Each alternative hedging strategy is based on some form

of risk-minimization criterion. Some of these strategies are now outlined.

Quantile hedging involves constructing a hedging strategy which maximizes the proba-

bility of a successful hedge under the real-world measure P , given a constraint on the

required cost (Föllmer and Leukert, 1999). The MSHE minimization strategy we analyze

is related to the intertwined subjects of mean-variance hedging and quadratic hedging

methods. These methods often involve minimizing the squared difference between the

terminal payoffs of a derivative and a self-financing trading strategy (i.e. quadratic risk

minimization). Pioneering studies on quadratic hedging criteria for pricing and hedging
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general contingent claims include Föllmer and Sondermann (1986), Föllmer and Schweizer

(1989), Duffie and Richardson (1991), Schweizer (1992) and Schäl (1994). Schweizer

(2001) provides an general overview of quadratic hedging approaches, with further refer-

ences to earlier work. Today, the literature on quadratic hedging methods is vast, and

it continues to proliferate. For more recent developments on quadratic hedging methods

see, for example, Černý and Kallsen (2007, 2009). As an alternative to hedging methods

based on quadratic risk minimization, Coleman et al. (2003) investigate hedging strategies

obtained by piecewise linear risk minimization.

Some hedging strategies have been investigated for variable annuity options. Coleman

et al. (2006) analyze local risk minimization (quadratic risk minimization) hedging strate-

gies for a variable annuity with an embedded GMDB, allowing for equity jump risk (using

Merton’s jump diffusion model (Merton, 1976)) and interest rate risk (using the Vasicek

model (Vasicek, 1977)). They investigate hedging with the underlying stock, and hedging

with standard options. Hedging with standard options performs better than annual or

monthly hedging with the underlying stock, particularly when equity jump risk is allowed

for. Furthermore, they show that ignoring stochastic interest rate risk in the calculations

of hedging strategies may generate large hedging errors, and the benefits of hedging with

options over hedging with just the underlying stock may be lost. It is shown that it is

possible to reduce interest rate risk by including a stochastic interest rate model in the

calculations of hedging strategies. In a related paper on hedging variable annuities with

embedded GMDBs, Coleman et al. (2007) find that when implied volatility risk is mod-

eled, local risk minimization hedging strategies which use standard options still tend to

be more effective at reducing risk, compared to strategies which use the underlying stock.

Liu (2010) measures the performance of semi-static strategies for the GMWB. However,

Liu restricts the performance measurement to one hedging horizon. In this chapter, we

measure the performance of semi-static strategies for the GMIB, based on accumulating

the horizon by horizon hedging profits/losses over the entire accumulation phase. This

approach is more complex to implement, and requires much more computation time.

There seems to be a dearth of literature, accessible to the majority of practitioners, on the

computational implementation of hedging strategies of the semi-static type. The main

contribution of this chapter is to provide a bridge between the complex mathematical
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theory of hedging strategies based on rebalancing at discrete fixed time points, and the

actual implementation of such strategies. We use the GMIB option as a case study. We

show the results obtained from using semi-static strategies for the GMIB. Our target au-

dience includes risk managers responsible for the hedging programs of long-dated complex

financial guarantees.

4.2 The method

In this section, we describe the method used to implement the semi-static hedging strate-

gies for the GMIB. We emphasize that this method is flexible and can be extended to

any long-dated option. However, if the option has features which make pricing difficult

or time consuming, such as an American option, this approach may become very time

consuming. The exact amount of computation time is problem specific.

4.2.1 Simulating the hedging loss distribution

The j-th hedging loss ej is calculated using the following algorithm, which we refer to as

the hedging loss simulation algorithm (HLS algorithm).

Starting at i = 1:

(1) The information available at time ti−1 includes the realized values of the random

vector

Ω(ti−1) = (S(ti−1),D(ti−1), r(ti−1)) .

Given Ω(ti−1) = ω(ti−1), simulate (under P ) N sub-scenarios representing possi-

ble paths of the stock and interest rate processes from time ti−1 to time ti. Let

{ωn(ti|ti−1)}Nn=1 denote the realized values of

Ω(ti|ti−1) = Ω(ti)|Fti−1
= (S(ti),D(ti), r(ti)) |Fti−1

for each sub-scenario.
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(2) Simulate an observation of the hedging target Y (ti)|Fti−1
for each ωn(ti|ti−1), n =

1, . . . , N . Let {yn(ti)}Nn=1 denote the hedging target values for each of the N sub-

scenarios of the i-th hedging horizon. Using the GMIB price or the P -valuation

target as the hedging target requires the use of nested simulations. Section 4.2.2

discusses the details of how the hedging target values are calculated.

(3) Calculate the prices of the instruments in the hedging portfolio at time ti−1.

(4) Calculate the hedging instrument payoffs (prices) at time ti for each sub-scenario.

It is emphasized that the instrument payoffs are functions of {ωn(ti|ti−1)}Nn=1.

(5) Check that the single-period market model described by the combination of the set

of simulated instrument payoffs, and the set of instrument prices, does not permit

arbitrage opportunities. Section 4.2.5 describes how to test for arbitrage within the

model.

(6) Determine the hedging portfolio x(ti−1) = x̂(ti−1), based on the hedging targets

and hedging instrument payoffs for the N sub-scenarios, which minimizes the cho-

sen objective function over the current hedging horizon. Section 4.2.3 describes the

process for obtaining the optimal portfolio positions. The cost of the optimal hedg-

ing portfolio constructed at time ti−1, denoted by b̂(ti−1), cannot exceed the funds

available at time ti−1, denoted by b(ti−1). If b̂(ti−1) < b(ti−1), then the excess funds

ξ̂(ti−1) = b(ti−1) − b̂(ti−1) are invested in zero coupon bonds (risk-free assets) over

the interval [ti−1, ti]. In the case of the GMIB option, initially b(0) = S(0) = π,

where π is the policyholder’s premium.

(7) Simulate under P one trajectory for each random process, denoted by Ω(ti|ti−1) =

ωA(ti|ti−1) which represents the actual (realized) movement of the process over the

interval [ti−1, ti]. Note that this step is independent of the simulated sub-scenarios.

(8) Using the output of Step (7), compute the actual hedging target, denoted by yA(ti),

and the actual total hedging portfolio payoff (which includes any excess funds in-

vested in zero coupon bonds), denoted by ψA(ti). We explicitly define ψA(ti) in

Section 4.2.3 after further notation is defined. The actual total hedging target error

167



at time ti is defined as

ηA(ti) = yA(ti)− ψA(ti).

The actual total hedging target error is not a realized loss for the insurer unless

either:

• ti = T , and V (T )− ψA(T ) < 0; or

• ti < T , and the insurer transfers the liability to another party when V (ti) −
ψA(ti) < 0

(9) Set b(ti) = ψA(ti).

(10) Repeat Steps (1) to (9) for i = 2, 3, . . . , I.

(11) Evaluate ej = V (T )− ψA(T ).

The HLS algorithm is used to compute ej for j = 1, . . . , J . Strictly speaking the notation

in the above steps should include j subscripts as the variables are different for each

simulated scenario j. However, in order to keep the notation clean, we only include the j

subscripts in the notation when we define equations that relate to observations of variables

from more than one particular scenario j.

4.2.2 Calculating the hedging target values

This section provides the details of Step (2) of the HLS algorithm described in Section

4.1.2. Recall that at the start of the i-th horizon, the method involves estimating the

hedging target for each of the N simulated sub-scenarios. To be clear, the n-th hedging

target value (estimate) is calculated conditional on one possible path of the underlying

random processes over the horizon, given by ωn(ti|ti−1). Each hedging target value is

calculated using the following algorithm, which we refer to as the conditional hedging

target simulation algorithm (CHTS algorithm). We describe the CHTS algorithm for

the natural case where the hedging target is the GMIB price. By using the CHTS al-

gorithm within the HLS algorithm, we have constructed a nested Monte Carlo simulation.
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The steps involved in generating {yn(ti)}Nn=1 for the i-th horizon (of the j-th scenario),

when i < I, are as follows, starting at n = 1:

(1) Given ωn(ti|ti−1), simulate (under Q) M conditional-paths of the stock and interest

rate processes from time ti to time T . Define

W (n) = e
−

∫ T
ti
r̃(s)ds

max{B̃(T )g˜̈a20 (T ), Ã(T )}
∣∣∣ (Ω(ti|ti−1) = ωn(ti|ti−1)) . (4.3)

Let {Wm(n)}Mm=1 denote the observations of W (n) based on the M conditional-

paths.

(2) The hedging target value for the n-th sub-scenario is given by

yn(ti) =
1

M

M∑
m=1

Wm(n), n = 1, . . . , N. (4.4)

(3) Repeat Steps (1) to (2) for n = 2, 3, . . . , N .

At the last horizon, when i = I, the hedging target value for the n-th scenario is defined

as yn(T ) = Vn(T ), where Vn(T ) is the observed value of the random variable given by

equation (4.2). When i = I, no nested simulations are needed.

In the case where the hedging target is the P -valuation target (as mentioned in Section

4.1.2), the only change to the CHTS algorithm is in Step (1). The random processes are

simulated under P and equation (4.3) is replaced by

W (n) = e
−

∫ T
ti
r(s)ds

max{B(T )gä20 (T ), A(T )}
∣∣∣ (Ω(ti|ti−1) = ωn(ti|ti−1)) . (4.5)

The description of the CHTS algorithm applies to the GMIB option, but it equally applies

to any option which is valued using simulation. We make the obvious comment that if

the hedging target observations for a particular option can be calculated using numerical

integration (or analytically), then it is usually computationally more efficient to use such

an approach, instead of introducing a nested simulation.
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4.2.3 The optimization problems

At the start of the i-th hedging horizon, the optimal hedging portfolio x(ti−1) must be

constructed, given the budget b(ti−1) > 0. We illustrate the effectiveness of the two

optimization problems for constructing semi-static hedging strategies:

1. Minimizing the mean squared hedging error (MSHE) over each hedging horizon;

2. Minimizing the conditional-tail-expectation (CTE) of the hedging error distribution

for each hedging horizon.

We assume proportional transaction costs are incurred when instruments are traded.

Further notation

Let

• α be the confidence level of the CTE associated with the CTE minimization problem.

• N denote the number of hedging target observations for each hedging horizon.

• yn(ti) denote the hedging target observation for the n-th sub-scenario of the i-th

hedging horizon.

• Ki denote the number of instruments included in the hedging portfolio for the i-th

hedging horizon.

• x(ti−1) = [x(1, ti−1), x(2, ti−1), . . . , x(Ki, ti−1)]′ denote the vector of hedging instru-

ment positions specified at time ti−1. The k-th component x(k, ti−1) is the number

of units of hedging instrument k held long over the i-th horizon.

• c(ti−1) = [c(1, ti−1), c(2, ti−1), . . . , c(Ki, ti−1)]′ denote the vector of hedging instru-

ment transaction costs. The k-th component c(k, ti−1) is the transaction cost per

unit of instrument k bought/sold at time ti.

• u(ti−1) = [u(1, ti−1), u(2, ti−1), . . . , u(Ki, ti−1)]′ denote a vector of real numbers in-

troduced to solve the optimization problems.
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• zn(ti) = [zn(1, ti), zn(2, ti), . . . , zn(Ki, ti)]
′ denote the vector of simulated hedging

instrument payoffs for the n-th sub-scenario over the i-th hedging horizon.

• φ(ti−1) = [φ(1, ti−1), φ(2, ti−1), . . . , φ(Ki, ti−1)]′ denote the vector of hedging instru-

ment prices at time ti−1.

• xL(k) and xU(k) denote the lower and upper limits on the position for hedging

instrument k.

Instruments and transaction costs

The stock and zero coupon bonds expiring at the end of each hedging horizon are included

as instruments in all hedging portfolios. Henceforth, we assign the instrument indexes

s and b as unique references to the stock and the zero coupon bond (risk-free bond)

respectively. Over the i-th horizon we set

φ(s, ti−1) = S(ti−1), zn(s, ti) = Sn(ti),

φ(b, ti−1) = πP (ti−1, ti), zn(b, ti) = π,

where P (ti−1, ti) is defined by equation (2.11).

Other instruments we consider in certain portfolios include:

• European call and put options tradable at each rebalancing point, which expire

precisely at the end of the current hedging horizon (the term to expiry is τ years).

The strike prices of these instruments are set as functions of S(ti−1). We refer to

these instruments as τ -year options.

• European call and put options which expire at the maturity date of the GMIB

option, time T . The strike prices of these instruments are set at time 0. We refer to

these instruments as T -year options. In the i-th horizon, the set of T -year option

payoffs (given by {zn(k, ti)}Nn=1, where k is a T -year option) are the prices of the

option at time ti for each sub-scenario.
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Section 4.3.2 discusses further details relating to the inclusion of option instruments in

hedging portfolios.

Additional notation is necessary to clearly describe the transaction costs for a semi-static

strategy, because some instrument positions set up at time ti−1 do not expire at time ti.

Each hedging instrument belongs to one of two mutually exclusive sets. The Rebalance

Set, denoted by R, includes all instruments for which active (non-zero) positions set up

at time ti−2 still exist at time ti−1. Changes to the active positions will incur transaction

costs. The stock and T -year options belong to R. The Buy Set, denoted by B, includes all

instruments for which active positions at time ti−1 must be bought/sold. The instrument

positions expire at time ti. The zero coupon bond and the τ -year options belong to R. By

default, at time t0 all instruments belong to the Buy Set. The transaction costs incurred

in obtaining the optimal portfolio position at the start of the i-th hedging horizon are

given by

θTC(i) =
∑
k∈B

c(k, ti−1)|x(k, ti−1)|+
∑
k∈R

c(k, ti−1)|x(k, ti−1)− x̂(k, ti−2)|. (4.6)

Optimization problem definitions

The two optimization problems are similar to the optimization problems defined in Chap-

ter 3. Slight adjustments to the transaction cost constraints are made to ensure that

equation (4.6) is satisfied at the optimal solution. The MSHE minimization problem for

the i-th hedging horizon is

min
(x,u)∈RKi×RKi

(
N∑
n=1

(yn(ti)− zn(ti)
′x(ti−1))

2
+ c(ti−1)′u(ti−1)

)
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subject to:

φ(ti−1)′x(ti−1) + c(ti−1)′u(ti−1) 6 b(ti−1),

u(k, ti−1)− x(k, ti−1) > 0, u(k, ti−1) + x(k, ti−1) > 0, if k ∈ B,
u(k, ti−1)− x(k, ti−1) + x̂(k, ti−2) > 0, u(k, ti−1) + x(k, ti−1)− x̂(k, ti−2) > 0, if k ∈ R,
xL(k) 6 x(k, ti−1) 6 xU(k), k = 1, . . . , Ki.

Let CTE(α) denote the Conditional Tail Expectation of the hedging loss distribution at a

confidence level of α ∈ (0, 1). Let v denote an N×1 vector of real numbers. The CTE(α)

minimization problem for the i-th horizon is

min
(δ,x,v,u)∈R×RKi×RN×RKi

(
δ +

1

N(1− α)

N∑
n=1

vn(ti) + c(ti−1)′u(ti−1)

)

subject to:

φ(ti−1)′x(ti−1) + c(ti−1)′u(ti−1) 6 b(ti−1),

vn(ti) > yn(ti)− zn(ti)
′x(ti−1)− δ, vn(ti) > 0, n = 1, . . . , N,

u(k, ti−1)− x(k, ti−1) > 0, u(k, ti−1) + x(k, ti−1) > 0, if k ∈ B,
u(k, ti−1)− x(k, ti−1) + x̂(k, ti−2) > 0, u(k, ti−1) + x(k, ti−1)− x̂(k, ti−2) > 0, if k ∈ R,
xL(k) 6 x(k, ti−1) 6 xU(k), k = 1, . . . , Ki.

4.2.4 The total hedging portfolio payoff

At the end of the i-th hedging horizon, the actual hedging portfolio payoff can be cal-

culated. Recall that if the optimal hedging portfolio cost, b̂(ti−1), is less than the funds

available at time ti−1, b(ti−1), then the excess funds, denoted by ξ̂(ti−1) = b(ti−1)− b̂(ti−1)

are invested in zero coupon bonds until time ti. Investing excess funds in bonds gives a
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cushion against possible hedging losses in subsequent hedging horizons. Let

x̂ξ(ti−1) =
ξ̂(ti−1)

φ(b, ti−1) + c(b, ti−1)

denote the number of zero coupon bonds bought at time ti−1, using the excess funds. The

MSHE minimization problem may permit ξ̂(ti−1) > 0, but the CTE minimization prob-

lem, because of the nature of the objective function (and our use of reasonable transaction

cost rate assumptions), always uses all funds available such that ξ̂(ti−1) = 0.

Once the actual trajectory for each random process is simulated (under P ), the actual

total hedging portfolio payoff at time ti is calculated as

ψA(ti) = x̂(ti−1)′zA(ti) + x̂ξ(ti−1)zA(b, ti), (4.7)

where the notation zA(ti) represents the actual vector of hedging instrument payoffs at

time ti. This payoff is used to construct the hedging portfolio for the (i + 1)-th horizon.

To be clear, the total amount of funds invested in the zero coupon bonds at time ti−1 is

(x̂(b, ti−1) + x̂ξ(ti−1))πP (ti−1, ti).

4.2.5 Testing for arbitrage

The simulations of the hedging instrument payoffs should not permit arbitrage opportu-

nities in any given hedging horizon. The fundamental theorem of asset pricing states that

a single-period securities market model is arbitrage free if and only if there exists a state

price vector (Panjer et al., 1998). In the current context, a state price vector is a strictly

positive vector

ψ(ti) = [ψ1(ti), ψ2(ti), . . . , ψN(ti)]
′

such that

φ(ti−1) = Z(ti)
′ψ(ti),
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where Z(ti) = [z1(ti), . . . ,zN(ti)]
′ is the N ×Ki matrix containing the instrument payoffs

for all N scenarios over the i-th horizon.

To test whether the securities market model for the current hedging horizon has a state

price vector, we solve the following linear programming problem:

max
(c,ψ(ti))∈R×RN

C

subject to:

φ(ti−1) = Z(ti)
′ψ(ti),

ψn(ti) > C, n = 1, . . . , N.

If a solution exists such that C is strictly positive, then the model is arbitrage free. If

C 6 0, or a solution does not exist, then arbitrage opportunities exist. If the model

is not arbitrage free, then certain securities within the model should be removed such

that the model becomes arbitrage free. Section 4.3.3 discusses this issue further. In

particular, arbitrage opportunities are more likely to exist if N is small and several deep

out-of-the-money options are included in the hedging portfolio.

4.3 Issues surrounding implementing the method

Here we deal with numerical stability issues related to the implementation of the method.

This section can be skipped by readers who are not concerned with implementation issues.

4.3.1 Speeding up the simulations

The computation time for each scenario j depends on the number of sub-scenarios N

(generated for each hedging horizon), and the number of simulated conditional paths M

used in the calculation of the hedging target value for each sub-scenario. The choices for

M and N are discretionary. Choosing larger values for each parameter will improve the
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accuracy of the optimal hedging portfolio positions chosen over each hedging horizon.

As N increases, the number of hedging target values increases. We obtain a more accurate

description of the distribution of the hedging target in each hedging horizon. As a result,

the output of the optimization problem in a given horizon is an optimal hedging portfolio

which more accurately meets the hedging objective in that horizon, provided sufficient

funds are available, particularly with respect to the tails of the hedging target distribu-

tion. Hence the actual total hedging portfolio payoff is more likely to match the actual

hedging target, particularly when the actual hedging target is an outlier. Furthermore,

a larger N means that the single-period market model (for each horizon) is more likely

to be arbitrage free when deep out-of-the-money options are included in the single-period

market model.

As M increases, the variances of the hedging target estimates decrease. For example,

if the hedging target is the GMIB price, then the standard error of the estimate of the

GMIB price decreases. In other words, the hedging target values used in the optimization

problems are more accurately estimated.

Unfortunately, a larger value for either N or M significantly increases the computation

time of each scenario. However, if we can reduce the standard errors of the N hedging

target estimators using a variance reduction technique, we can reduce M for a predeter-

mined level of accuracy in the hedging target estimators. In other words, we will be able

to speed up the simulations. For example, we may want to set M such that at least x%

(e.g. 95%) of the N hedging target estimates (for any given horizon) have standard errors

which are less than some upper bound ε∗. It is noted that while it would be nice to choose

M such that all of the standard errors are less than some small ε∗, this is not practical

unless we can set M very large (which we cannot, as it will be too time consuming). A

variance reduction technique may greatly assist in achieving this accuracy objective. A

clear way to express this idea is through a simple example. Suppose in a given horizon the

N hedging target estimates range between 900 and 1300, and the standard errors of these

estimates range from 5 to 50, for at least 0.95N of the target estimates, using M = 250

scenarios. Less than 0.05N of the target estimates may have standard errors that are

larger than 50. And suppose we want the standard errors of the hedging target estimates
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to be less than ε∗ = 25 at least 95% of the time. One way to approximately achieve

this result is to set M = 1000 (to halve the standard error of an estimator based on n

observations, we need 4n observations). Another possible solution is to use an effective

variance reduction technique, in which case it may be possible to achieve ε∗ = 25 (at least

95% of the time) using say M 6 250.

We can only test whether x% of the hedging target estimates have standard errors less

than ε∗ by trial and error, so we cannot always be sure that the level of accuracy we desire

will always be met. But for practical purposes, we simply want to be confident that the

accuracy objective is satisfied in most hedging horizons. We now briefly explain why the

standard errors of the hedging target estimates vary in different situations. The standard

error of the n-th hedging target estimate for the i-th horizon depends on ωn(ti|ti−1). The

standard errors of the hedging target estimates increase in the cases where, projecting

to maturity, X1 (lookback component) or X3 (investment account component) have high

exercise probabilities. These cases tend to occur when the stock price has risen sharply

up to the current horizon. The standard errors of the hedging target estimates are smaller

in the cases where, projecting to maturity, X2 (guaranteed return component) has a high

exercise probability. This case tends to occur when the stock price has fallen sharply up

to the current horizon. All else being equal, the GMIB maturity value is less variable

when X2 is deep in-the-money. This is because X2 depends on just one random variable

at time T , r(T ), and is not influenced by the stock price path.

Fortunately, we have an effective variance reduction technique for when the hedging target

is the GMIB price. The standard errors of the hedging target estimates can be reduced

significantly by using the control variate we proposed in Section 2.9.2. Adjustments to

the notation in Section 2.9.2 are needed in order to precisely define the control variate

estimator of the hedging target for the n-th sub-scenario of the i-th horizon.

Define

−→
U (ti) = (U i,U i+1, . . . ,U I),

where U i denotes the 4-dimensional standard uniform random vector that generates the
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movements in the stock and interest rate processes between time ti−1 and time ti, using the

efficient simulation method discussed in Section 2.9.1.
−→
U (ti) is analogous to expression

(2.47), allowing for adjustments in notation.
−→
U (ti) contains all of the uniform random

variables used to evaluate the hedging target at time ti.

At the start of the i-th horizon, time ti−1, the method involves simulating N sub-scenarios

which represent possible movements of the stock and interest rate processes over the inter-

val [ti−1, ti]. We use the notation x′n(ti) to denote the realization of some random variable

X ′(ti) for the n-th sub-scenario, conditional on the information known at time ti−1.

For the n-th sub-scenario of the i-th horizon, we define the following random variables at

time ti:

fn(
−→
U ) = W (n) = e

−
∫ T
ti
r̃(t)dt

[
max{B̃(T )gä20 (T ), Ã(T )}

] ∣∣∣ (Ω(ti|ti−1) = ωn(ti|ti−1)) ,

(4.8)

and

fcv,n(
−→
U ) = e

−
∫ T
ti
r̃(t)dtYcv(n, ti, T )

∣∣∣ (Ω(ti|ti−1) = ωn(ti|ti−1)) , (4.9)

where Ycv(n, ti, T ) is given by

Ycv(n, ti, T ) = max{Ãc(ti)(1 + rg)
TgEQ

[˜̈a20 (T )|rn(ti)
]
− Ãc(T ), 0}+ Ãc(T ). (4.10)

In equation (4.10), {Ãc(s)}Ts=ti satisfies the SDE given by equation (2.42). The initial

starting point for {Ãc(s)}Ts=ti is Ãc(ti) = An(ti).

Now, EQ
[
fcv,n(

−→
U )
]

has an analytical formula that is analogous to equation (2.46):

EQ
[
fcv,n(

−→
U )
]

= Pn(ti, T,Kn(ti)) + An(ti)e
−c(T−ti)

where Pn(ti, T,Kn(ti)) is the formula for the price at time ti of a European put option
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expiring at time T with strike price given by

Kn(ti) = A(0)(1 + rg)
TgEQ

[˜̈a20 (T )|rn(ti)
]
.

The analytical formula for Pn(ti+1, T,Kn(ti+1)) is given by equation (3.17).

Define

−→
Um(ti) = (U i,m,U i+1,m, . . . ,U I,m) m = 1, 2, . . . ,M,

as the realization of
−→
U (ti) which generates the m-th set of conditional-paths of the stock

and interest rate processes from time ti to time T . An unbiased estimate of the hedging

target for the n-th sub-scenario of the i-th horizon, allowing for the control variate, is

given by

yn(ti) = β̂EQ[fcv,n(
−→
U )] +

1

M

M∑
m=1

(
fn(
−→
Um)− β̂fcv,n(

−→
Um)

)
(4.11)

where β̂ is given by equation (2.49). The expressions f(
−→
Um) and fcv(

−→
Um) in equation

(2.49) are replaced by expressions (4.8) and (4.9). Equation (4.11) replaces equation (4.4)

in Step (2) of the CHTS algorithm.

We find that, based on M = 200, this control variate estimator provides average effi-

ciency gains that range between between 4-50 (for each sub-scenario of each horizon)2.

The efficiency gains of some hedging target estimators exceed 100. Hence it is certainly

worthwhile to use the control variate estimator.

The control variate estimator also provides significant efficiency gains when the hedging

targets are P -valuation targets instead of GMIB prices. To use the control variate esti-

mator in the case where the hedging targets are P -valuation targets, only one change to

2Efficiency gains are defined in Section 2.9.2
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equation (4.11) is needed. The expression fn(
−→
U ), given by equation (4.8), is replaced by

fn(
−→
U ) = e

−
∫ T
ti
r(s)ds

max{B(T )gä20 (T ), A(T )}
∣∣∣ (Ω(ti|ti−1) = ωn(ti|ti−1)) .

4.3.2 Comments on the range of hedging instruments

The range of hedging instruments that a semi-static strategy may use is an important

issue. As already mentioned, the universe of instruments we consider includes the stock,

zero coupon bonds, τ -year options and T -year options. Our motivation for using strategies

with τ -year options is that they are practical, and, depending on the underlying, liquid

instruments. For example, exchange traded options on the S&P500 Index are natural

instruments for hedging GMIBs that are directly linked to, or are highly correlated with

the returns of the S&P500 Index. Our motivation for using strategies with T -year options

is based on the principle of matching asset and liability cashflows as closely as possible,

in order to reduce risk. Of course, trading in T -year options may be problematic in prac-

tice. The liquidity of these long-dated instruments is questionable (making rebalancing

complicated), and it is likely that the implied volatilities of these options will be higher

than the 20% implied volatility assumption that we use in our examples. Furthermore, it

may not be possible to trade T -year options across a wide range of strike prices. Despite

the fact that strategies using T -year options may be difficult to implement in practice, we

still investigate the performances of such strategies for insights.

For the τ -year options, the put-call parity equation holds at the end of each hedging

horizon. The equation is not exact, however, because of the presence of transaction costs.

This equation introduces approximate linear dependence between the options, stock and

the zero coupon bond. When linear dependence is present, it can be difficult to interpret

the economic meaning of the optimal instrument positions. Furthermore, the numerical

optimization process often fails. Therefore, we avoid including τ -year call and put op-

tions with identical strike prices. Because put-call parity holds approximately, there is no

material benefit from including puts and calls with identical strikes in hedging portfolios.

In the model framework of Section 3.2, the prices of zero coupon bonds, τ -year and

T -year vanilla options can be calculated using analytical formulas at each rebalancing
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time point. If more sophisticated models are employed for either the stock or interest

rates, then analytical formulas may not exist for the relevant option prices. If the option

prices cannot be obtained using numerical integration, it may be necessary to add another

set of Monte Carlo simulations, in each hedging horizon, to compute the option prices.

Furthermore, if the options do not expire at the end of the hedging horizon, then another

layer of nested Monte Carlo simulations may be needed to compute the instrument payoffs,

which are the option prices at the end of the horizon, for every sub-scenario. These extra

simulation layers will significantly increase the computation time of each scenario. These

complications partly explain why we have used simple benchmark models for the stock

and interest rate processes.

4.3.3 Avoiding arbitrage in each hedging horizon

Section 4.2.5 described a test for arbitrage that should be conducted at the start of each

hedging horizon. If the test reveals that arbitrage opportunities exist for the set of sub-

scenarios of horizon i, then the single-period market model should be adjusted to remove

these arbitrage opportunities. One of the most direct ways to remove arbitrage opportu-

nities is to remove the instruments which are generating the arbitrage opportunities from

the model. In our examples, it is fairly easy to identify the instruments which should be

removed; specifically, deep in-the-money and deep out-of-the-money options. In this sec-

tion, we discuss an adjustment to the method for situations where arbitrage opportunities

exist.

Each hedging strategy we investigate is constructed from a given universe of hedging in-

struments. The universe of instruments must yield an arbitrage-free single-period market

model. We refer to the available universe of hedging instruments as all of the instruments

that can be potentially included in a hedging portfolio at a particular rebalancing point.

Each strategy type we illustrate depends on an available universe of hedging instruments.

In each hedging horizon, a subset of instruments from the available universe which gener-

ates an arbitrage free single-period market model is referred to as a permissible universe

of instruments.

When the available universe consists of just the stock and a risk-free bond, the available
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universe is identical to the permissible universe, for reasonable stock price parameter val-

ues (e.g. non-zero volatility). However, when the universe includes deep out-of-the-money

options, arbitrage opportunities may exist for a particular horizon. We now describe one

way to obtain a permissible universe of instruments when the available universe permits

arbitrage. There are two relevant cases. The first corresponds to the case where the

available universe includes τ -year options. The second corresponds to the case where the

available universe includes T -year options.

If T -year options are used, we set the strike prices of these options at time 0. Specifically,

we choose the strike prices for a set of T -year options, as KT equally spaced values between

appropriate upper and lower end points, XL and XU . Namely, the strike price for the

k-th consecutive T -year option strike price is given by

X(k) =


XL if k = 1,

X(k − 1) + ∆ if k = 2, . . . , KT − 1,

XU if k = KT .

Suppose we are at the start of the i-th horizon. Let Sn(ti−1, ti) denote the value of the

stock at time ti for the n-th sub-scenario, given the value of S(ti−1). Step (1) of the

HLS algorithm includes simulating the sample {Sn(ti−1, ti)}Nn=1. Let S(α)(ti−1, ti) denote

the α-quantile of the sample {Sn(ti−1, ti)}Nn=1. The stock quantiles are used to determine

reasonable upper and lower limits to the option strike prices for the i-th horizon. Let ~α(p)

denote the p-th component of the following 1× 7 vector:

~α = [0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.4].

Let Xi denote the set of instruments included in the single-period market model for

horizon i. The stock and the risk-free bond are included in Xi by default. To determine a

permissible universe for a given hedging strategy we use the following algorithm, starting

at p = 1:

(1) Set the stock price confidence level corresponding to the lower end point of the

range of feasible strike prices, αp = ~α(p). (The confidence level corresponding go
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the upper end point of the range of feasible strike prices is then set equal to (1−αp).

(2) Screen the strike prices of the options in the available universe for feasible initial

conditions.

• For τ -year option strategies: If instrument k is a τ -year option with strike price

X(k), then k ∈ Xi if

S(αp)(ti−1, ti) < X(k) < S(1−αp)(ti−1, ti) (4.12)

• For T -year option strategies: At the start of each hedging horizon, if instrument

k is a T -year option with strike price X(k), then k ∈ Xi if

S(αp)(ti−1, ti)−∆δc < X(k) < S(1−αp)(ti−1, ti) + ∆δp, if i < I (4.13)

S(αp)(ti−1, ti) < X(k) < S(1−αp)(ti−1, ti) if i = I,

where δc = 1 if k is a call (δc = 0 if k is a put), and δp = 1 if k is a put (δp = 0

if k is a call).

(3) Test the market model generated by Xi for arbitrage. If the market model is arbi-

trage free, then Xi is the permissible universe. If arbitrage exists and p < 7, then

p = p + 1 and go back to Step (1). Else if arbitrage exists and p = 7, then the

permissible universe consists of just the stock and the risk-free bond.

As αp increases in the above algorithm, fewer out-of-the-money options will end up in

the permissible universe. We note that our specific choice of feasible initial conditions is

not unique; many variations are possible. Also, the feasible initial conditions in Step (2)

do not guarantee that the market model is arbitrage-free – Step (3) is necessary. The

market model may still permit arbitrage because we have simulated a finite number of

sub-scenarios for the instrument payoffs. In particular, arbitrage is most likely to exist in

the case where deep out-of-the money options (which already satisfy the feasible initial

conditions) are included in the market model. However, as the number of sub-scenarios

N increases, arbitrage opportunities are less likely to exist in the cases where Xi contains

deep out-of-the money options. Unfortunately, N cannot be set too large if computation

time is an issue.
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The reasoning for equation (4.12) in the case of τ -year options is as follows. If instrument

k is a put option with X(k) < S(αp)(ti−1, ti), then for any hedging horizon there is a

material probability that this instrument will produce a payoff of 0 for every sub-scenario

(i.e. arbitrage exists). If X(k) > S(1−αp)(ti−1, ti) then arbitrage opportunities may exist

between instrument k, the stock and other deep in-the-money puts. In particular, deep

in-the-money puts are likely to produce non-zero payoffs for all sub-scenarios, and there

may be linear dependence between the payoffs of these puts (and the stock) which pro-

duces arbitrage opportunities.3 When instrument k is a call option, the reverse arguments

apply for equation (4.12).

The reasoning for equation (4.13) in the case of T -year options is similar to the reason-

ing for τ -year options. The main difference is that the strike price boundaries can be

wider without introducing arbitrage opportunities. If instrument k is a put option with

X(k) < S(αp)(ti−1, ti), then its price at time ti−1 will be negligible (tending towards 0,

using a price based on option pricing theory), which may cause numerical problems when

solving the optimization problems. The test for arbitrage often fails without the lower

strike boundary constraint. If X(k) > S(1−αp)(ti−1, ti)+∆, approximate linear dependence

may arise between the payoffs (prices at time ti) of deep in-the-money put options and

the stock, leading to arbitrage opportunities.4 At the last hedging horizon, the reasoning

for the τ -year options applies. The reverse arguments apply when instrument k is a call

option.

We emphasize to less informed readers that setting reasonable feasible initial conditions

is very important. It is usually not possible to numerically solve the optimization prob-

lems when the hedging portfolio includes options which do not satisfy the feasible initial

conditions.

3MATLAB reports that, for the no-arbitrage optimization problem (defined in Section 4.2.5), the
optimizaton problem constraints are overly stringent, and thus no feasible starting point can be found.

4MATLAB reports the optimizaton problem constraints are overly stringent.
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4.4 Benchmark parameter assumptions

In the remainder of this chapter, we will illustrate the performance of a variety of semi-

static hedging strategies for the GMIB option. The benchmark parameter values we use

are the same as the benchmark values adopted in Chapters 2 and 3. Unless stated oth-

erwise, π = b(0) = A(0) = S(0) = 1000, T = 10, rg = 5%, σS = 20%, ă = a = 0.35,

σr = 1.5% ρ = 0, and Θ̆(t) = Θ(t) depends on a linear approximation of the shape

of the U.S. zero coupon bond yield curve halfway through 2008 (the curve is displayed

in Figure 2.7 as the one labeled “Benchmark”). The transaction cost rate for the zero

coupon bond is set to c(b, ti) = 0.05%φ(b, ti).
5 For any other instrument k, k 6= b we

set c(k, ti) = 0.5%φ(k, ti). A lower transaction cost rate is adopted for the zero coupon

bond as, in practice, transaction costs for risk-free assets tend to be lower. We do not

set constraints on the limits for the stock and zero coupon bond positions. For any op-

tion instruments, no short selling is allowed (xL(k) = 0 if instrument k is an option) but

there are no upper limit constraints. However, in Section 4.8.3 we briefly explore how the

semi-static strategies are affected when option short selling is permitted.

The number of scenarios we use is a trade off between stability of the hedging loss distri-

bution and computation time. Unless stated otherwise, J = 1000 and N = 200. Because

we use a control variate in estimating the hedging targets, we set M = 200. These values

for N and M appear to produce relatively stable results, while not producing excessively

large computation times for simulating each scenario. If a control variate is not used, we

advise setting M > 1000. We show in Section 4.13 that our choice for N is sufficiently

large to produce stable results. If computation time is less of an issue, increasing J is

always desirable.

4.5 Understanding the format of the results

For each hedging strategy that we investigate, we report the key statistics summarizing the

hedging loss distribution in a table. In many cases we also present tables summarizing the

5 Including a transaction cost constraint for the zero coupon bond, even if it is very small, helps
stabilize the optimization problem when we search for a solution.
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behavior of the hedging strategy for particular hedging horizons during the accumulation

phase. In this section, we explain how to interpret the numbers in the tables. We explain

by example, referring to Tables 4.2 and 4.3 in Section 4.6, to assist the reader in quickly

grasping the meanings of the numbers. Tables in later sections follow the same format

as Tables 4.2 and 4.3. We note that in Tables 4.2 and 4.3, the liability being hedged is

a 10-year European call option, not the GMIB option, but the numbers have the same

interpretations.

4.5.1 Tables describing the hedging loss distribution

Table 4.2 reports the hedging loss statistics describing the hedging loss distribution at

time T , for different types of hedging strategies. Each strategy type involves a different

combination of hedging instruments. For each strategy type, the hedging loss statistics

are compared for different rebalancing frequencies. Furthermore, for each strategy type,

we measure the impact of transaction costs by comparing the results of the case where

the benchmark transaction costs are included to the case where the transaction costs are

negligible (where we set c(k, ti−1) = 0.01%φ(k, ti−1) for all k). We present the results for

the negligible transaction cost case in order to more clearly understand the relationship

between rebalancing frequency and the hedging loss statistics, with particular emphasis

on the tail risk measures. When transaction costs are allowed for, the relationship be-

tween rebalancing frequency and the hedging loss statistics may become blurry.

For each strategy and rebalancing frequency combination of interest, we describe the key

features of the resulting hedging loss distribution. Table 4.2 shows the estimates of the

square root of the mean squared hedging loss (MSHL1/2), 5%-quantile hedging loss, me-

dian hedging loss, Value at Risk at a 95% confidence level (i.e. 95%-quantile hedging

loss), standard deviation, mean, CTE(95%) and CTE(99%). The numbers in brackets

below each estimate are the corresponding 95% confidence intervals for the estimate. The

confidence intervals are calculated using the formulas presented in Section 3.3.2, where N

in the formulas now corresponds to J . The CTE(99%) provides a conservative measure of

tail risk (the high confidence level accommodates for model risk), but unfortunately it is

subject to considerable sampling error as it is only based on 0.01J hedging loss observa-

tions. Given that we use J = 1000 (due to time constraints), our CTE(99%) estimates are
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based on just 10 observations. Therefore we also report the CTE(95%) estimate, which

is a more stable estimate.

When the hedging loss statistics for multiple rebalancing frequencies are shown, the hedg-

ing losses for each frequency are produced using common random numbers, for the actual

stock and interest rate processes, for each scenario j. By this we mean that, for each sce-

nario j, the hedging loss observations for each rebalancing frequency are produced using

the same actual stock and short rate paths. Specifically, we simulate the actual paths

of the stock and interest rate processes at time intervals corresponding to the highest

rebalancing frequency (which is quarterly in our examples, except for one case). This

way we have all the relevant variates for the lower rebalancing frequency calculations.

For a particular scenario j, the differences between the three rebalancing frequencies in

terms of simulated random variables, allowing for common random numbers, come from

different simulated sub-scenarios over each horizon. The output of Steps (1) to (6) and

(8) to (10) in the HLS algorithm will be different, even with common random numbers.

Using common random numbers reduces the influence of sampling errors when comparing

the the hedging loss statistics for the different rebalancing frequencies. It is particularly

important to use common random numbers when the total number of scenarios generated,

J , is small.

4.5.2 Tables describing the behavior of a strategy

Table 4.3 is designed to give the reader a feel for the expected behavior of a particular

strategy over the accumulation phase. It can be explained precisely by introducing further

notation. Let r
(j)
A denote the actual realization of some random variable R for the j-th

scenario. The random variable we are observing from, although not explicitly defined,

will be clear from the notation.

The actual total hedging target error for the i-th hedging horizon of the j-th scenario is

given by

θ
(j)
TE(i) = y

(j)
A (ti)− [z

(j)
A (ti)

′x̂(j)(ti−1) + x̂
(j)
ξ (ti−1)z

(j)
A (b, ti)]

= y
(j)
A (ti)− ψ(j)

A (ti), i = 1, . . . , I − 1.
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At the final hedging horizon,

θ
(j)
TE(I) = V

(j)
A (T )− ψ(j)

A (T ) = ej,

where V
(j)
A (T ) is the maturity value of the liability (given by equation (4.2) in the case of

the GMIB). For ti < T , the actual hedging target error θ
(j)
TE(i) measures the amount of

mismatch between the actual hedging target and the actual total hedging portfolio pay-

off for the i-th horizon. This statistic is particularly important to monitor if the insurer

wants to meet Goal (2), as outlined in Section 4.1.2, and the hedging target is the liability

price. In Table 4.3, the “Mean total target error” and “Std total target error” for the

i-th horizon correspond to the mean and standard deviation of {θ(j)
TE(i)}Jj=1. Note that

the values for horizon I are the same as the mean and standard deviation in Table 4.2 for

the corresponding strategy and rebalancing frequency combination.

For each hedging horizon, it is useful to know how well the objective function is minimized

over each hedging horizon. Let

γ(j)
n (ti) = y(j)

n (ti)− z(j)
n (ti)

′x̂(j)(ti−1), n = 1, . . . , N,

denote the n-th hedging error observation for the i-th hedging horizon of the j-th scenario.

In the case of a MSHE minimization strategy, we define the square root of the minimized

MSHE (objective function) for the i-th hedging horizon of the j-th scenario as

θ
(j)
MS(i) =

(
1

N

N∑
n=1

(γ(j)
n (ti))

2

)1/2

.

In Table 4.3, the “Mean min obj. (MSHE1/2)” and “Std min obj. (MSHL1/2)” for the

i-th horizon correspond to the mean and standard deviation of {θ(j)
MS(i)}Jj=1. The Mean

min obj. MSHL1/2 is a measure of the average degree of mismatch between the optimized

hedging portfolio payoff (excluding excess funds) and the hedging target at the end of

each horizon.
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Let

γ
(j)
(1)(ti), γ

(j)
(2)(ti), . . . , γ

(j)
(N)(ti)

denote the ordered hedging error observations, sorted in ascending order. In the case of

a CTE minimization strategy, we define the minimized CTE (objective function) for the

i-th hedging horizon of the j-th scenario as

θ
(j)
CTE(i) =

1

N(1− α)

N∑
n=Nα+1

γ
(j)
(n)(ti).

In forthcoming tables related to CTE minimization strategies, “Mean min obj. (CTE)”

and “Std min obj. (CTE)” for the i-th horizon correspond to the mean and standard

deviation of {θ(j)
CTE(i)}Jj=1. The Mean min obj. (CTE) indicates how well the optimized

hedging portfolio can minimize the CTE hedging error distribution at the end of each

horizon, on average.

In the case of a MSHE minimization strategy, it may be possible to minimize the MSHE

for the i-th horizon using a portfolio that costs less than the amount of funds available.

The actual excess funds for the i-th hedging horizon of the j-th scenario are given by

θ
(j)
EF (i) = ξ̂(j)(ti−1) = (φ(j)(k, ti−1) + c(j)(k, ti−1))x̂

(j)
ξ (ti−1), i = 1, . . . , I.

The excess funds are invested in zero coupon bonds. The excess funds provide security

against unfavorable movements between the hedging target and the portfolio value over

future hedging horizons. In Table 4.3, the “Mean excess funds” and “Std excess funds”

for the i-th horizon correspond to the mean and standard deviation of {θ(j)
EF (i)}Jj=1.

The actual total transaction costs for the i-th hedging horizon of the j-th scenario are
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given by

θ
(j)
TC(i) =

∑
k∈B

c(j)(k, ti−1)|x̂(j)(k, ti−1)|

+
∑
k∈R

c(j)(k, ti−1)|x̂(j)(k, ti−1)− x̂(j)(k, ti−2)| i = 1, . . . , I.

In Table 4.3, the “Mean trans. costs” and “Std trans. costs” for the i-th horizon corre-

spond to the mean and standard deviation of {θ(j)
TC(i)}Jj=1. The transaction costs at time

0 are often larger than subsequent rebalancing points because the portfolio is constructed

from scratch.

In Table 4.3, the section titled “Mean x̂(ti−1)” displays the means of the optimal posi-

tions in each of the hedging instruments, for the given hedging horizons. Specifically, for

instrument k, the cell for the i-th horizon contains the mean of {x̂(j)(k, ti−1)}Jj=1. Simi-

larly, the section titled “Std Dev x̂(ti−1)” displays the standard deviations of the optimal

positions in each of the hedging instruments, for the given hedging horizons.

4.6 Semi static hedging of a 10-year call option

Before investigating semi-static hedging strategies for the GMIB option, we first test

the MSHE minimization strategies for a simple derivative. The liability is a European

call option with a 10 year expiry date. It has a strike price of X = 2000. The initial

budget for the hedging portfolio is set equal to the price of the option (the option price

is determined using option pricing theory). We consider the hedging strategies using two

different models:

(1) In a simplified model where interest rates are deterministic. The continuously com-

pounded interest rate is set equal to r per year for all maturities, and is assumed to

be constant over time. In this case we are operating in the standard Black-Scholes

framework.

(2) Using the model adopted in this thesis for pricing the GMIB option; the short rate

satisfies the SDE given by equation (3.2).
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A semi-static hedging strategy is characterized by the following factors:

• The type of objective function being optimized in each horizon;

• The type of hedging target;

• The available hedging instruments at each rebalancing point.

To aid our exposition, we organize strategies into types based on these factors. For each

strategy type, we present the results for different rebalancing frequencies. We consider

the effectiveness of two strategy types for the 10-year call option:

• Strategy 1: This type minimizes the MSHE. The hedging target is the call option

price. (At horizon I the hedging target is the option payoff.) The hedging portfolio

consists of the stock and the risk-free bond. These are the instruments used in a

delta-hedging strategy. This strategy should resemble the delta hedging strategy as

the rebalancing frequency increases.

• Strategy 2: This type minimizes the MSHE. The hedging target is the call option

price. The hedging portfolio consists of the stock, risk-free bond and up to eight

τ -year call options. The τ -year call option strike prices available at time ti−1 are

chosen as evenly spaced values between S(0.025)(ti−1, ti) and S(0.975)(ti−1, ti) (this

notation was defined in Section (4.3.3). Table 4.1 displays the strike prices for

various rebalancing frequencies, measured in units of S(ti−1).

Rebalancing frequency Strike prices measured in units of S(ti−1)
Annual 0.72 0.85 0.97 1.09 1.22 1.34 1.46 1.59

Half-Yearly 0.78 0.87 0.95 1.03 1.12 1.20 1.28 1.37
Quarterly 0.84 0.89 0.95 1.01 1.07 1.12 1.18 1.24
Monthly 0.90 0.93 0.96 1.00 1.03 1.06 1.09 1.13

Table 4.1: The range of τ -year call option strike prices available at the i-th horizon for different
rebalancing frequencies.

We do not claim that Strategy 2 is the best type of strategy for hedging the 10-year call

option. Many variations of Strategy 2 are possible, such as using a different group of strike

prices. The optimal available universe of hedging instruments is unknown. However, the

selection of options in Strategy 2 should be adequate for the hedging portfolio payoff
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distribution to closely match the hedging target distribution over each horizon, provided

sufficient funds are available.

The purpose of considering the simplified examples in this section is to build some intuition

as to how the strategies behave for different hedging horizon lengths and transaction cost

assumptions, and various choices of allowable hedging instruments. In the case of more

complex options, such as the GMIB, the relationships may not be so clear. Also, by

comparing the results based on deterministic and stochastic interest rate models, we

obtain insight into how interest rate risk affects the quality of the hedging strategies.

4.6.1 Assuming constant interest rates

In this simplified model the stock price process is a geometric Brownian motion under Q:

dS(t) = rS(t)dt+ σSS(t)dW̃ (t),

where {W̃ (t), t ∈ [0, T ]} is a standard Brownian motion under Q. An advantage of work-

ing in this simple setting is that at each rebalancing point, nested simulations are not

necessary to compute the hedging target values. The hedging target values can be com-

puted analytically using the Black-Scholes call option formula. Thus, the computation

time for each scenario is significantly reduced. We use parameter assumptions that are

similar to those for the GMIB. We set S(0) = 1000, σS = 20%, µ = 9%, T = 10, r = 4%.

The price at time 0 of a 10 year call option with a strike price of X = 2000 is 149.50.

Therefore the initial budget is b(0) = 149.50.

Table 4.2 displays the hedging loss distribution statistics obtained using Strategies 1 and 2

for the Black-Scholes 10-year call option. We report the results for the monthly rebalanc-

ing frequency as a one-off case. This is because the common random number simulations

of each scenario, allowing for the monthly rebalancing case, only takes a few seconds.

Unfortunately, for all of the subsequent examples, reporting the common random num-

ber simulations with the monthly rebalancing frequency, for 1000 scenarios, is too time

consuming.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 130 -234 -31 170 126 -34 283 469

(122, 138) (−251,−220) (−40,−19) (142, 199) (117, 134) (−41,−26) (239, 327) (376, 562)
Half-yearly 91 -164 -15 123 89 -19 204 305

(86, 96) (−186,−150) (−22,−8) (111, 153) (83, 94) (−24,−13) (175, 232) (254, 355)
Quarterly 66 -126 -9 90 65 -12 151 228

(62, 70) (−136,−112) (−13,−5) (81, 122) (61, 69) (−16,−8) (129, 172) (191, 266)
Monthly 39 -68 -5 54 39 -5 102 166

(36, 43) (−75,−61) (−7,−3) (47, 77) (36, 43) (−7,−2) (84, 119) (130, 203)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 130 -230 -13 184 128 -19 303 492

(120, 139) (−259,−217) (−20,−6) (167, 217) (118, 138) (−27,−11) (254, 351) (358, 625)
Half-yearly 94 -151 3 149 94 1 243 406

(86, 102) (−165,−133) (−2, 7) (133, 184) (86, 102) (−5, 7) (205, 282) (308, 503)
Quarterly 74 -87 8 131 72 14 225 374

(66, 82) (−99,−77) (5, 11) (110, 165) (65, 80) (9, 18) (188, 262) (287, 462)
Monthly 53 -25 18 111 45 27 169 261

(48, 58) (−31,−19) (15, 20) (100, 130) (41, 50) (24, 30) (147, 191) (236, 286)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 6 -9 0 7 6 -1 13 25

(6, 7) (−12,−7) (−1, 0) (6, 8) (6, 7) (−1, 0) (10, 15) (17, 32)
Half-yearly 6 -6 0 6 6 0 15 35

(5, 8) (−7,−5) (0, 0) (5, 8) (5, 8) (−1, 0) (10, 19) (17, 54)
Quarterly 5 -4 0 4 5 0 12 32

(3, 7) (−4,−3) (0, 0) (3, 6) (3, 7) (0, 0) (7, 17) (14, 51)
Monthly 2 -2 0 4 2 0 8 14

(2, 3) (−2,−1) (0, 0) (3, 5) (2, 3) (0, 1) (6, 9) (7, 21)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 18 -5 9 33 15 11 50 80

(17, 20) (−8,−1) (8, 9) (31, 36) (13, 17) (10, 12) (43, 57) (64, 97)
Half-yearly 25 -8 11 44 21 13 64 93

(21, 29) (−13,−3) (10, 12) (42, 49) (16, 26) (12, 15) (56, 71) (77, 109)
Quarterly 39 -11 14 74 33 21 108 164

(35, 42) (−20,−6) (13, 16) (69, 85) (29, 37) (19, 23) (95, 122) (128, 200)
Monthly 88 -16 22 195 75 45 283 425

(79, 96) (−24,−11) (20, 26) (161, 220) (67, 83) (40, 50) (250, 317) (350, 501)

Table 4.2: Hedging loss distribution statistics derived from Strategies 1 and 2 for the Black-Scholes
10-year call option.
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Comments on Strategy 1 with negligible transaction costs:

• On average small profits are expected, but the average profit tends toward 0 as the

rebalancing frequency increases. The median also tends toward 0 as rebalancing

frequency increases, as expected.

• The right tail risk is substantial, for annual rebalancing, as indicated by the VaR

and CTE risk measures. However, these risk measures decrease rapidly as the

rebalancing frequency increases.

• The potential for large profits reduces as the rebalancing frequency increases, as

indicated by the 5%-quantiles.

• Overall, as the rebalancing frequency increases, the spread of the hedging loss dis-

tribution narrows.

All of the above observations are inevitable if transaction costs are negligible.

Comments on Strategy 1 allowing for the benchmark transaction costs:

• The impact of additional transaction costs for higher rebalancing frequencies is

clearly demonstrated. Annual rebalancing produces a mean hedging profit of 19,

but higher rebalancing frequencies generate mean hedging losses.

• Even with transaction costs incurred, increasing the rebalancing frequency reduces

the right tail risk. However, compared to Strategy 1 with negligible transaction

costs, the right tail risk is higher at each rebalancing frequency.

Comments on Strategy 2 with negligible transaction costs:

• Strategy 2 is expected to break-even at each rebalancing frequency. Furthermore,

compared to Strategy 1, the standard deviation and MSHL1/2 are vastly smaller.

These observations suggest that Strategy 2 provides a very good fit to the hedging

target most of the time.

• The tails of the distribution are much smaller, compared to Strategy 1.

194



• Comparing the annual and half-yearly results, we see that increasing the rebalancing

frequency does not necessarily reduce the right tail risk. Furthermore, we see that

the half-yearly and quarterly right tail risk measures are similar. These differences

are not consequences of sampling error, because the same observations arise from

re-running the simulations for another 1000 scenarios. Hence, we suggest that when

τ -year options are including in the hedging portfolio, increasing the rebalancing

frequency does not necessarily reduce the right tail risk. This behavior will present

itself again for the much more complex case of the GMIB option.

Comments on Strategy 2 allowing for the benchmark transaction costs:

• Unlike Strategy 1, the negative impact of transaction costs is much more pro-

nounced. For example, the tail risk measures of the monthly rebalancing case are

more than double the corresponding measures for the quarterly rebalancing case,

because of transaction costs.

• The transaction costs cause the standard deviation of the hedging loss distribution

to increase, as the rebalancing frequency increases.

Table 4.3 illustrates the behavior of Strategy 1 over the accumulation phase, using annual

rebalancing and allowing for the benchmark transaction costs, for hedging the Black-

Scholes 10-year call option. For Strategy 1, the mean total target error decreases over

each horizon. The optimal hedging strategy involves borrowing funds to invest in the

stock; the hedging strategy is similar to the delta hedging strategy for a call option. As

previously mentioned, the purpose of this type of table is to provide the reader with an in-

dication of how a strategy performs over each hedging horizon. Due to space constraints,

we only illustrate the annual rebalancing case.

Table 4.4 illustrates the behavior of Strategy 2, using annual rebalancing. Unlike Strategy

1, the mean total target error increases over time. On average, funds are now borrowed

to invest in a combination of the stock and all of the available call options.
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 2 1 -1 -4 -8 -8 -11 -13 -16 -19
Std total target error 20 30 38 48 58 72 82 89 104 128

Mean min obj. (MSHE1/2) 19 26 30 34 38 43 49 53 57 67

Std min obj. (MSHE1/2) 3 13 17 21 26 29 40 44 48 64
Mean excess funds 0 7 11 16 22 28 32 38 42 48
Std excess funds 0 6 13 19 25 33 40 49 55 64

Mean transaction costs 2 1 1 1 1 1 1 1 1 1
Std transaction costs 0 1 1 1 1 1 1 1 1 1

Mean x̂(ti−1)
Stock 0.49 0.50 0.50 0.51 0.52 0.54 0.54 0.54 0.55 0.56

Risk-free bond -0.34 -0.40 -0.46 -0.52 -0.60 -0.68 -0.76 -0.84 -0.93 -1.05
Std Dev x̂(ti−1)

Stock 0.02 0.12 0.18 0.21 0.25 0.28 0.31 0.34 0.37 0.41
Risk-free bond 0.02 0.16 0.24 0.31 0.39 0.46 0.54 0.62 0.71 0.82

Table 4.3: Behavior of Strategy 1 for hedging the Black-Scholes 10-year call option, using annual
rebalancing and allowing for the benchmark transaction costs.

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 1 2 2 3 4 5 6 8 9 11
Std total target error 1 3 4 5 6 8 8 9 11 15

Mean min obj. (MSHE1/2) 1 2 3 4 5 6 7 8 10 14

Std min obj. (MSHE1/2) 0 1 3 4 5 6 8 8 9 12
Mean excess funds 0 0 0 0 0 0 0 0 0 0
Std excess funds 0 1 1 1 1 1 1 1 2 2

Mean transaction costs 1 1 1 1 1 1 1 1 2 2
Std transaction costs 0 1 1 1 1 1 2 2 2 3

Mean x̂(ti−1)
Stock 0.07 0.11 0.13 0.14 0.16 0.17 0.18 0.18 0.19 0.19

Risk-free bond -0.02 -0.04 -0.07 -0.09 -0.13 -0.16 -0.20 -0.24 -0.29 -0.35
Call(0.72S(ti−1)) 0.20 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.12 0.11
Call(0.85S(ti−1)) 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.09
Call(0.97S(ti−1)) 0.08 0.08 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08
Call(1.09S(ti−1)) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08
Call(1.22S(ti−1)) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06
Call(1.34S(ti−1)) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
Call(1.46S(ti−1)) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Call(1.59S(ti−1)) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07
Std Dev x̂(ti−1)

Stock 0.05 0.06 0.08 0.11 0.14 0.17 0.19 0.23 0.26 0.32
Risk-free bond 0.03 0.05 0.06 0.10 0.15 0.20 0.26 0.33 0.42 0.57

Call(0.72S(ti−1)) 0.05 0.10 0.12 0.14 0.15 0.16 0.16 0.17 0.19 0.21
Call(0.85S(ti−1)) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.11 0.24
Call(0.97S(ti−1)) 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.10 0.22
Call(1.09S(ti−1)) 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.08 0.22
Call(1.22S(ti−1)) 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.06 0.08 0.19
Call(1.34S(ti−1)) 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.07 0.19
Call(1.46S(ti−1)) 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.06 0.16
Call(1.59S(ti−1)) 0.04 0.04 0.05 0.06 0.06 0.07 0.07 0.09 0.10 0.21

Table 4.4: Behavior of Strategy 2 for hedging the Black-Scholes 10-year call option, using annual
rebalancing and allowing for the benchmark transaction costs.
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4.6.2 Allowing for the one-factor short rate model

The purpose of this section is to obtain a sense of the change in performance of the hedging

strategies when a second source of uncertainty is introduced. The hedging target values

can be computed analytically using the formula given by equation (3.17). We use the

same parameter assumptions as for the GMIB option, listed in Section 4.4, except for the

initial budget b(0) . Under this model, the price of a 10-year European call option with

a strike price of X = 2000 is 153.57. Thus, the initial budget is b(0) = 153.57. Table 4.5

displays the hedging loss distribution statistics for Strategies 1 and 2.

Comments on Strategy 1:

• In the case of negligible transaction costs, the comments made for the constant

interest rate case still apply.

• For each rebalancing frequency, the tail risk measures are higher compared to the

corresponding constant interest rate cases. Similarly, the 5%-quantiles are lower.

The tails are wider because of the additional interest rate uncertainty.

Comments on Strategy 2:

• Annual rebalancing generates the lowest tail risk measures, regardless of transac-

tion costs. Thus, increasing the rebalancing frequency, when the hedging portfolio

includes τ -year options, increases the risk of extreme hedging losses.

• Compared to the results of the corresponding constant interest rate cases, the stan-

dard deviation and tail risk measures are much higher.

The hedging loss distribution for Strategy 2 changes markedly when interest rates are

stochastic. Its tails become thicker and wider. This is an important observation. It

suggests that a robust analysis of the performance of semi-static hedging strategies for a

long-dated option should allow for stochastic interest rates. Any results obtained from a

model with deterministic interest rates may not be adequately capturing the risk associ-

ated with a particular hedging strategy.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 152 -268 -28 221 149 -30 336 507

(144, 161) (−294,−249) (−39,−15) (182, 258) (140, 158) (−39,−20) (292, 380) (403, 610)
Half-yearly 122 -190 -14 209 122 -9 302 439

(115, 129) (−204,−184) (−19,−5) (182, 231) (115, 129) (−16,−1) (267, 336) (393, 484)
Quarterly 108 -167 -1 181 108 -1 267 438

(100, 116) (−184,−158) (−6, 4) (157, 207) (100, 116) (−8, 6) (229, 304) (323, 554)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 154 -262 -16 231 153 -18 356 577

(145, 163) (−285,−240) (−28,−7) (205, 268) (143, 163) (−28,−9) (307, 406) (446, 709)
Half-yearly 124 -189 4 208 124 5 318 501

(114, 135) (−202,−173) (−3, 9) (193, 241) (114, 135) (−3, 13) (272, 364) (359, 643)
Quarterly 113 -131 15 229 110 27 317 452

(106, 121) (−152,−120) (7, 21) (212, 254) (103, 117) (21, 34) (284, 351) (399, 505)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 73 -113 -5 111 73 -2 188 337

(66, 80) (−127,−103) (−8,−2) (97, 131) (66, 80) (−7, 2) (155, 221) (246, 428)
Half-yearly 80 -122 -5 132 80 -1 221 364

(73, 87) (−138,−110) (−9,−2) (107, 166) (73, 87) (−6, 4) (187, 255) (292, 437)
Quarterly 87 -126 -7 148 87 -1 241 415

(76, 97) (−135,−112) (−10,−4) (123, 170) (76, 97) (−6, 5) (199, 283) (280, 549)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 83 -95 5 150 82 16 242 411

(74, 92) (−111,−83) (2, 7) (133, 175) (73, 90) (11, 21) (204, 281) (300, 522)
Half-yearly 96 -96 8 197 93 23 294 478

(86, 106) (−112,−86) (5, 11) (167, 221) (83, 103) (17, 29) (252, 335) (369, 588)
Quarterly 111 -86 13 223 106 35 350 607

(98, 125) (−107,−73) (9, 17) (188, 268) (93, 119) (29, 42) (295, 405) (422, 792)

Table 4.5: Hedging loss distribution statistics derived from Strategies 1 and 2 for the 10-year call option
(under the one-factor interest rate model).
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Table 4.6 shows the behavior of Strategy 1, using annual rebalancing, for hedging the 10-

year call option under the one-factor interest rate model. The results are similar to those

for the constant interest rate case in Table 4.3. In particular, the expected instrument

positions over each hedging horizon are almost identical. The standard deviations of the

total target error, minimized MSHE and excess funds are higher, for most horizons, under

the one-factor interest rate model.

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error -2 -3 -4 -6 -6 -10 -11 -17 -17 -18
Std total target error 29 40 52 65 76 88 102 115 130 153

Mean min obj. (MSHE1/2) 23 30 35 42 48 53 59 65 70 79

Std min obj. (MSHE1/2) 3 13 20 28 34 40 47 54 61 78
Mean excess funds 1 10 16 21 28 32 39 45 52 59
Std excess funds 1 12 19 27 34 41 49 59 68 78

Mean transaction costs 3 1 1 1 1 1 1 1 1 2
Std transaction costs 0 1 1 1 1 1 1 1 1 2

Mean x̂(ti−1)
Stock 0.50 0.52 0.53 0.55 0.57 0.57 0.57 0.58 0.57 0.58

Risk-free bond -0.36 -0.43 -0.50 -0.58 -0.66 -0.75 -0.83 -0.93 -1.01 -1.14
Std Dev x̂(ti−1)

Stock 0.02 0.12 0.17 0.21 0.24 0.28 0.30 0.33 0.36 0.41
Risk-free bond 0.02 0.16 0.24 0.31 0.39 0.47 0.54 0.62 0.72 0.84

Table 4.6: Behavior of Strategy 1 for hedging the 10-year call option (assuming stochastic interest
rates), using annual rebalancing and allowing for the benchmark transaction costs.

Table 4.7 illustrates the behavior of Strategy 2, using annual rebalancing. The total target

errors, minimized objective function values and excess funds all tend to be higher and

more variable than in the constant interest rate case.

4.7 Hedging strategy types for the GMIB

We consider the effectiveness of three strategy types for the GMIB:

• Strategy 1: The hedging portfolio consists of the stock and the zero coupon bond.

• Strategy 2: The hedging portfolio consists of the stock, zero coupon bond, and

τ -year call and put options. The put and call option strike prices available at time

ti−1 are chosen as equally spaced values in the intervals [S(0.05)(ti−1, ti), S(ti−1)] and

[S(ti−1), S(0.95)(ti−1, ti)], respectively. Table 4.8 displays the strike prices for various

rebalancing frequencies, measured in units of S(ti−1).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 1 2 2 3 5 4 9 9 13 16
Std total target error 22 28 35 39 49 55 63 72 79 82

Mean min obj. (MSHE1/2) 13 16 21 24 28 32 34 36 37 37

Std min obj. (MSHE1/2) 1 8 14 18 24 30 36 42 52 63
Mean excess funds 0 4 7 9 11 13 15 16 18 18
Std excess funds 0 8 12 15 19 23 28 31 34 35

Mean transaction costs 1 1 1 1 1 1 1 2 2 2
Std transaction costs 0 1 1 1 1 2 2 2 2 3

Mean x̂(ti−1)
Stock 0.10 0.14 0.17 0.18 0.19 0.20 0.21 0.21 0.21 0.20

Risk-free bond -0.03 -0.07 -0.11 -0.14 -0.17 -0.21 -0.26 -0.30 -0.35 -0.39
Call(0.72S(ti−1)) 0.19 0.16 0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.12
Call(0.85S(ti−1)) 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Call(0.97S(ti−1)) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.10
Call(1.09S(ti−1)) 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08
Call(1.22S(ti−1)) 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07
Call(1.34S(ti−1)) 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
Call(1.46S(ti−1)) 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05
Call(1.59S(ti−1)) 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06
Std Dev x̂(ti−1)

Stock 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.26 0.29 0.35
Risk-free bond 0.04 0.07 0.11 0.17 0.23 0.29 0.37 0.43 0.54 0.69

Call(0.72S(ti−1)) 0.08 0.14 0.16 0.16 0.17 0.18 0.18 0.19 0.20 0.26
Call(0.85S(ti−1)) 0.04 0.06 0.07 0.07 0.08 0.08 0.09 0.10 0.12 0.22
Call(0.97S(ti−1)) 0.04 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.11 0.24
Call(1.09S(ti−1)) 0.05 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.10 0.22
Call(1.22S(ti−1)) 0.05 0.06 0.05 0.06 0.06 0.06 0.07 0.07 0.09 0.20
Call(1.34S(ti−1)) 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.19
Call(1.46S(ti−1)) 0.07 0.06 0.07 0.06 0.07 0.07 0.07 0.07 0.08 0.19
Call(1.59S(ti−1)) 0.11 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.12 0.19

Table 4.7: Behavior of Strategy 2 for hedging the 10-year call option (assuming stochastic interest
rates), using annual rebalancing and allowing for the benchmark transaction costs.
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• Strategy 3: The hedging portfolio consists of the stock, zero coupon bond and

T -year call and put options. The available strike prices for the T -year call and put

options, which are determined at time 0, are displayed in Table 4.8, measured in

units of S(0). At time 0, the probability of the future stock price at time T being

between 0.8 and 6.4 is 89.4%.

τ-year option strike prices
Measured in units of S(ti−1)

Rebalancing frequency Puts Calls
Annual 0.77 0.85 0.92 1.00 1.12 1.25 1.37 1.49

Half-Yearly 0.82 0.88 0.94 1.00 1.08 1.15 1.23 1.31
Quarterly 0.86 0.91 0.95 1.00 1.05 1.10 1.15 1.20

T -year option strike prices
Measured in units of S(0)

Puts Calls
0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40

Table 4.8: The range of τ -year and T -year option strike prices available at the i-th horizon for different
rebalancing frequencies.

With Strategy 2, we choose to use out-of-the-money and at-the-money options. We do

not claim that the instruments we have chosen will yield the best results. We do not have

a formal criterion for choosing the optimal strike prices. The put options are designed to

help keep the hedging portfolio value in line with the hedging targets which occur when

the stock price jumps downwards. The call options are designed to help in a similar way

when the stock price jumps upwards. Developing a criterion for choosing the optimal

available universe of hedging instruments, for the semi-static hedging strategy of a long-

dated option, is, perhaps, an avenue for future research.

We compare the hedging loss distributions for each semi-static strategy type to the hedg-

ing loss distributions obtained from two static hedging strategies. Both static strategies

are designed to minimize the CTE(99%). The first static strategy corresponds to Port-

folio F1 (shown in Section 3.10, for the case of stochastic interest rates); it includes a

Put(0.8S(0)), the stock, ZCB(10) and ZCB(29). The second static strategy corresponds

to Portfolio F2 (also shown in Section 3.10); it includes LBC(1.6S(0)), LBP, Put(0.8S(0)),

the stock, ZCB(10) and ZCB(29). Henceforth, these strategies are referred to as the static

put strategy and the static lookback strategy. In practice, the static put strategy should be

relatively straightforward to implement (the put is out of the money). However, it may
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not be possible to implement the optimal static lookback strategy without substantial

additional funds, because the lookback options may have much higher implied volatilities

than the 20% implied volatility assumption we have assumed (i.e. the lookbacks may sell

at much higher prices). Recall that Section 3.12 has explored the decrease in effectiveness

of the static strategies from higher than expected option prices. Thus, even though the

static put strategy is less favorable than the static lookback strategy in terms of risk, we

show the results for the static put strategy because it is more practicable than the static

lookback strategy. To allow for consistent comparisons with the semi-static results, we

use the common random numbers in each scenario to obtain the hedging losses from the

static put and lookback strategies. Given that the number of scenarios is J = 1000, the

hedging loss statistics for the static strategies are expected to moderately vary with each

example; our best estimates of the statistics for the static put and lookback strategies are

given in Section 3.10, because the estimates there are based on 20,000.6

For each strategy that we illustrate, the highest rebalancing frequency considered is quar-

terly. This is partly due to balancing the trade off between transaction costs and reducing

tail risk, and partly due to time constraints. A strategy can easily be implemented at a

higher rebalancing frequency if desired. However, as illustrated in the following results,

higher transaction costs do significantly erode the quality of a hedging strategy.

4.8 Using MSHE minimization hedging strategies

In this section, we investigate the performance of MSHE minimization hedging strategies

for the GMIB, using the benchmark parameter assumptions. MSHE minimization strate-

gies are intuitively appealing. In each hedging horizon, the hedging portfolio payoff is

matched closely to the locations where the hedging targets occur with high probabilities.

For all of the strategies, the hedging target is the GMIB price. In Section 4.8.1, we test

hedging strategies in the simplified setting where interest rates are constant. In Section

4.8.2, we test the strategies under the one-factor interest rate model. Comparing the

results allows us to isolate the impact of any additional complications which arise when

6As a side issue, the reader can gain a sense of the sensitivity of the hedging loss statistics for the static
strategies, for small sample sizes, by comparing the results for each relevant example in this chapter.
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interest rates are stochastic. Section 4.8.3 briefly explores how the results are affected by

permitting option short selling. In Section 4.8.4, we illustrate through figures how Strat-

egy 2 behaves under different scenarios for the stock and interest rate processes. These

figures are designed to give the reader another perspective on how the semi-static strategy

works.

4.8.1 Assuming constant interest rates

Section 2.4.2 displayed the fair fee rates for the GMIB for constant parallel yield curves.

In this section we assume r = 5%, for which the fair fee rate is c = 3% (which we adopt

here). We note that the static hedging strategies (which up until now we have not used

in a constant interest rate model) include ZCB(10), but ZCB(29) is redundant. Tables

4.9 and 4.10 display the results from applying Strategies 1, 2 and 3.

Comments on Strategy 1:

• With negligible transaction costs, the mean and median are negative, and both

tend toward 0 as the rebalancing frequency increases. However, if we account for

transaction costs, the mean and median are positive for the half-yearly and quarterly

cases.

• Allowing for transaction costs significantly increases the VaR(95%) and CTE risk

measures.

• The static lookback strategy appears to yield the most desirable hedging loss dis-

tribution.

Comments on Strategy 2:

• The hedging portfolio matches the GMIB liability remarkably closely, as indicated

by the MSHL1/2. Introducing the options vastly reduces the tail risk measures,

compared to Strategy 1. However, the sharp reduction in risk comes at cost. A

small loss is expected.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 148 -260 -20 209 146 -26 322 533

(139, 157) (−284,−248) (−28,−10) (182, 238) (137, 155) (−35,−17) (277, 368) (439, 628)
Half-yearly 110 -188 -8 154 109 -13 252 388

(102, 117) (−208,−176) (−14,−2) (133, 188) (102, 116) (−19,−6) (216, 288) (318, 458)
Quarterly 76 -132 -4 102 75 -9 169 270

(71, 81) (−143,−117) (−8, 1) (94, 121) (70, 81) (−13,−4) (144, 194) (225, 315)
Static w/ 561 -1000 -247 533 511 -234 611 824
10-yr put (538, 585) (−1045,−942) (−301,−191) (523, 548) (490, 531) (−265,−202) (560, 663) (592, 1057)
Static w/ 156 -301 -49 129 151 -39 130 132
lookback (148, 164) (−331,−275) (−59,−37) (129, 129) (144, 158) (−49,−30) (129, 131) (126, 139)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 154 -252 -7 260 154 -7 374 535

(145, 162) (−266,−234) (−15, 1) (228, 307) (145, 162) (−16, 3) (334, 415) (463, 608)
Half-yearly 111 -157 10 200 111 10 295 453

(103, 119) (−175,−145) (4, 16) (176, 230) (103, 118) (3, 17) (259, 331) (378, 529)
Quarterly 87 -98 27 165 82 30 241 325

(82, 93) (−107,−88) (22, 32) (151, 196) (77, 87) (25, 35) (215, 267) (280, 371)
Static w/ 586 -1044 -334 530 519 -272 594 758
10-yr put (561, 611) (−1141,−977) (−389,−283) (516, 540) (498, 540) (−304,−240) (557, 631) (603, 912)
Static w/ 158 -311 -68 129 149 -52 129 129
lookback (150, 166) (−328,−301) (−77,−56) (129, 129) (143, 156) (−61,−42) (129, 129) (129, 129)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 13 -16 3 18 12 2 30 59

(11, 14) (−20,−14) (2, 3) (16, 21) (11, 14) (2, 3) (24, 36) (38, 80)
Half-yearly 13 -14 2 20 12 3 35 61

(11, 14) (−17,−13) (2, 3) (18, 24) (11, 14) (2, 3) (29, 42) (47, 76)
Quarterly 15 -18 2 23 15 3 41 85

(13, 17) (−21,−15) (1, 2) (20, 26) (12, 17) (2, 3) (32, 50) (56, 115)
Static w/ 588 -1041 -303 536 532 -250 638 953
10-yr put (558, 617) (−1103,−988) (−367,−240) (523, 550) (506, 559) (−283,−217) (573, 702) (661, 1245)
Static w/ 157 -312 -42 129 152 -39 131 140
lookback (149, 166) (−343,−290) (−59,−29) (129, 129) (145, 160) (−48,−30) (127, 135) (119, 161)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 24 -4 14 45 17 17 65 99

(22, 26) (−8,−1) (13, 15) (42, 51) (15, 19) (16, 18) (56, 73) (72, 127)
Half-yearly 30 3 17 63 20 23 85 121

(28, 32) (2, 4) (16, 18) (59, 70) (18, 22) (21, 24) (77, 94) (108, 133)
Quarterly 39 5 24 77 25 30 106 148

(36, 41) (4, 6) (22, 25) (71, 87) (23, 27) (28, 31) (95, 117) (121, 175)
Static w/ 561 -1004 -334 521 491 -272 591 756
10-yr put (540, 581) (−1070,−933) (−407,−268) (512, 535) (473, 509) (−302,−242) (541, 640) (530, 982)
Static w/ 167 -330 -67 129 157 -58 129 129
lookback (158, 176) (−356,−305) (−77,−56) (129, 129) (149, 164) (−67,−48) (129, 129) (129, 129)

Table 4.9: Hedging loss distribution statistics derived from Strategies 1 and 2 for the GMIB, assuming
constant interest rates.
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• When transaction costs are included, the 5%-quantiles are roughly around 0. This

indicates that at least 95% of the time Strategy 2 will yield a small hedging loss.

Furthermore, the VaR and CTE risk measures increase significantly for each rebal-

ancing frequency, when transaction costs are included.

• Regardless of transaction costs, it seems that the tail risk measures increase with

rebalancing frequency. Recall that in the case of hedging the 10-year call option,

where we assumed constant interest rates and negligible transaction costs, we found

that increasing the rebalancing frequency of strategies involving options did not

reduce the right tail risk.

• When transaction costs are included, annual rebalancing yields better results than

half-yearly or quarterly rebalancing.

• The annual rebalancing strategy produces smaller tail risk measures than the static

lookback strategy, even when transaction costs are included.

Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 44 -52 5 48 43 2 80 156

(32, 55) (−62,−46) (4, 6) (42, 55) (32, 55) (−1, 5) (60, 100) (70, 243)
Half-yearly 36 -44 4 45 36 3 74 129

(27, 45) (−50,−36) (3, 5) (41, 54) (27, 45) (0, 5) (63, 86) (101, 156)
Quarterly 28 -29 4 35 28 3 64 117

(22, 33) (−34,−25) (3, 4) (32, 42) (22, 33) (2, 5) (52, 76) (86, 149)
Static w/ 577 -1024 -325 535 510 -271 623 883
10-yr put (553, 602) (−1097,−959) (−371,−278) (521, 547) (489, 532) (−302,−239) (571, 675) (658, 1107)
Static w/ 155 -300 -66 129 146 -51 130 133
lookback (147, 163) (−317,−286) (−73,−51) (129, 129) (140, 153) (−60,−42) (128, 132) (125, 142)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 64 -42 22 75 60 22 142 341

(34, 94) (−46,−36) (20, 24) (68, 83) (29, 91) (18, 26) (85, 200) (69, 613)
Half-yearly 54 -30 21 75 49 24 124 255

(29, 80) (−36,−25) (20, 24) (69, 83) (21, 76) (21, 27) (78, 169) (34, 476)
Quarterly 54 -14 23 90 46 29 140 280

(38, 70) (−22,−12) (22, 25) (83, 98) (28, 64) (26, 32) (102, 178) (101, 459)
Static w/ 575 -990 -329 520 507 -271 602 800
10-yr put (551, 599) (−1082,−939) (−393,−280) (510, 540) (487, 528) (−303,−240) (563, 641) (664, 937)
Static w/ 171 -319 -62 129 162 -55 129 129
lookback (157, 185) (−353,−304) (−73,−51) (129, 129) (149, 175) (−66,−45) (129, 129) (129, 129)

Table 4.10: Hedging loss distribution statistics derived from Strategy 3 for the GMIB, assuming constant
interest rates.

Comments on Strategy 3:
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• The tail risk measures are lower than the corresponding values for Strategy 1, but

higher than the corresponding values for Strategy 2.

• Compared to Strategy 2, there is a higher likelihood of making a small profit, as

indicated by the 5%-quantiles.

Some readers may initially find it surprising that, in the case of Strategy 2 with negli-

gible transaction costs, increasing the rebalancing frequency leads to a deterioration in

performance. A strategy which has more opportunities to rebalance, in a setting where

transaction costs are negligible, is not expected to be worse off than a strategy with fewer

opportunities to rebalance.7 If rebalancing less often produces better results, the more

flexible strategy could choose to rebalance only at the time points of the less flexible strat-

egy. However, under the method we use, this type of forward decision making is not taken

into consideration. In the method we use, at each rebalancing point a new optimization

problem is solved, and these optimization problems are myopic. The problems are solved

with respect to movements over the current hedging horizon. The optimal solutions are

not forward horizon looking. In Section 4.8.4, we provide some reasoning for why increas-

ing the rebalancing frequency, for semi-static hedging strategies using options, may lead

to a deterioration in performance.

Tables 4.11, 4.12 and 4.13 display the behavior of Strategies 1, 2 and 3 respectively, using

annual rebalancing. Strategies 2 and 3 minimize the objective function, the MSHE, much

more effectively than Strategy 1. On average, Strategy 1 accumulates excess funds over

time. Strategies 2 and 3 do not offer any excess funds; all available funds are invested in

the options in order to minimize the objective function. With Strategy 3, a significant

proportion of the funds at each rebalancing point are invested in the 10-year put options

with strike prices of 1.6S(0) and 2.4S(0). These strike prices are in the vicinity of the

GMIB maturity value, in the case where there is a high probability of the guaranteed

return component being exercised.

7In making this statement we are ignoring the complication (in our implementation) that by changing
the rebalancing frequency from, say, annually to half-yearly, the term to expiry of the τ -year options
changes from one year to half a year.
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 5 6 5 3 3 1 -2 -3 -3 -7
Std total target error 37 45 53 61 69 80 90 111 132 154

Mean min obj. (MSHE1/2) 22 28 33 39 44 51 57 67 79 102

Std min obj. (MSHE1/2) 3 15 21 26 31 34 42 51 68 89
Mean excess funds 0 5 10 14 18 23 29 35 43 52
Std excess funds 0 5 11 17 23 29 36 44 55 68

Mean transaction costs 3 1 1 1 1 1 1 1 1 2
Std transaction costs 0 0 0 0 1 1 1 1 1 1

Mean x̂(ti−1)
Stock 0.55 0.56 0.55 0.53 0.50 0.48 0.44 0.41 0.38 0.35

Risk-free bond 0.4472 0.4273 0.42 0.45 0.49 0.53 0.60 0.67 0.75 0.84
Std Dev x̂(ti−1)

Stock 0.02 0.13 0.18 0.20 0.22 0.23 0.23 0.24 0.24 0.26
Risk-free bond 0.02 0.16 0.22 0.25 0.27 0.29 0.31 0.34 0.38 0.47

Table 4.11: Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (assuming interest rates are constant).

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 5 7 7 8 7 10 12 13 15 17
Std total target error 29 30 33 35 34 32 31 30 25 17

Mean min obj. (MSHE1/2) 9 10 11 12 13 14 15 16 16 19

Std min obj. (MSHE1/2) 1 3 4 5 7 8 9 11 13 13
Mean excess funds 0 0 0 0 0 0 0 0 0 0
Std excess funds 0 0 1 1 2 2 2 2 1 1

Mean transaction costs 3 1 1 1 1 1 1 1 2 2
Std transaction costs 0 1 1 1 1 1 1 1 2 3

Mean x̂(ti−1)
Stock 0.48 0.51 0.50 0.49 0.46 0.44 0.40 0.37 0.33 0.30

Risk-free bond 0.51 0.48 0.47 0.48 0.52 0.56 0.63 0.69 0.78 0.85
Put(0.77S(ti−1)) 0.08 0.08 0.09 0.08 0.09 0.08 0.08 0.07 0.06 0.01
Put(0.85S(ti−1)) 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.08
Put(0.92S(ti−1)) 0.07 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.15
Put(1.00S(ti−1)) 0.01 0.07 0.08 0.10 0.10 0.10 0.11 0.12 0.12 0.07
Call(1.12S(ti−1)) 0.11 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.07
Call(1.25S(ti−1)) 0.04 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
Call(1.37S(ti−1)) 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04
Call(1.49S(ti−1)) 0.13 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06
Std Dev x̂(ti−1)

Stock 0.02 0.12 0.18 0.22 0.25 0.26 0.27 0.28 0.28 0.33
Risk-free bond 0.02 0.14 0.22 0.28 0.32 0.36 0.39 0.44 0.53 0.76

Put(0.77S(ti−1)) 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.04
Put(0.85S(ti−1)) 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.14
Put(0.92S(ti−1)) 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.22
Put(1.00S(ti−1)) 0.02 0.07 0.07 0.06 0.07 0.07 0.08 0.09 0.10 0.17
Call(1.12S(ti−1)) 0.03 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.16
Call(1.25S(ti−1)) 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.15
Call(1.37S(ti−1)) 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.14
Call(1.49S(ti−1)) 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.15

Table 4.12: Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (assuming interest rates are constant).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 7 9 10 9 12 11 12 14 18 22
Std total target error 31 31 32 34 33 36 36 33 31 60

Mean min obj. (MSHE1/2) 11 13 13 14 15 17 19 21 23 38

Std min obj. (MSHE1/2) 1 4 5 6 8 10 12 15 20 36
Mean excess funds 0 0 0 0 1 1 1 1 1 1
Std excess funds 0 0 1 1 2 3 4 5 7 5

Mean transaction costs 5 1 1 1 1 1 1 2 2 4
Std transaction costs 1 1 1 0 1 1 4 7 6 9

Mean x̂(ti−1)
Stock 0.80 0.85 0.85 0.84 0.82 0.79 0.75 0.70 0.66 0.49

Risk-free bond 0.05 -0.07 -0.10 -0.11 -0.10 -0.07 -0.02 0.09 0.21 0.62
Put(0.80S(0), T ) 1.70 0.78 0.29 0.09 0.01 0.00 0.00 0.00 0.00 0.01
Put(1.60S(0), T ) 0.45 0.81 0.98 1.07 1.06 0.92 0.71 0.50 0.34 0.22
Put(2.40S(0), T ) 0.00 0.00 0.01 0.04 0.10 0.21 0.29 0.34 0.35 0.29
Put(3.20S(0), T ) 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.11 0.14 0.11
Call(4.00S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02
Std Dev x̂(ti−1)

Stock 0.07 0.09 0.10 0.11 0.11 0.13 0.17 0.23 0.27 0.35
Risk-free bond 0.12 0.16 0.17 0.17 0.19 0.26 0.46 0.83 1.22 1.36

Put(0.80S(0), T ) 0.84 0.76 0.47 0.23 0.07 0.03 0.01 0.01 0.03 0.05
Put(1.60S(0), T ) 0.34 0.35 0.32 0.40 0.47 0.53 0.51 0.43 0.37 0.38
Put(2.40S(0), T ) 0.00 0.02 0.09 0.21 0.33 0.44 0.42 0.37 0.30 0.32
Put(3.20S(0), T ) 0.00 0.00 0.00 0.04 0.11 0.20 0.32 0.36 0.34 0.22
Call(4.00S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.08 0.06 0.14
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.10 0.11
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.02 0.02 0.05 0.06 0.08 0.08
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.10 0.17 0.14

Table 4.13: Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (assuming interest rates are constant).
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4.8.2 Allowing for the one-factor short rate model (the bench-

mark example)

The results illustrated in this section form the benchmark for comparing the performance

of semi-static hedging strategies for the GMIB. We provide a comprehensive analysis.

These results can be compared to those of other strategy types in the following sections,

such as strategies based on minimizing the CTE. Tables 4.14 and 4.15 display the results

from applying Strategies 1, 2 and 3.

Comments on Strategy 1:

• The tail risk measures tend to be higher, and the mean hedging losses tend to be

lower, compared to the corresponding results for the constant interest rate cases.

These observations reflect the additional interest rate uncertainty.

• When transaction costs are included, the mean and median hedging losses from

half-yearly and quarterly rebalancing are negative, unlike the corresponding results

for the constant interest rate case.

Comments on Strategy 2:

• Strategy 2 exhibits less risk than Strategy 1, but this comes at a cost of a lower

mean hedging profit.

• The tail risk measures and the MSHL1/2 are significantly larger than the correspond-

ing results for the constant interest rate cases.

Comments on Strategy 3:

• The MSHL1/2 is much lower, compared to Strategies 1 and 2.

• The tail risk measures are much lower than for Strategies 1 and 2. In particular,

the VaR(95%) for Strategy 3 is considerably smaller than for Strategies 1 and 2.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 189 -351 -60 234 179 -61 356 549

(180, 198) (−371,−335) (−76,−47) (204, 269) (170, 188) (−72,−50) (310, 402) (467, 632)
Half-yearly 161 -301 -46 196 151 -54 269 372

(153, 168) (−326,−282) (−64,−36) (169, 221) (144, 159) (−63,−45) (242, 295) (319, 424)
Quarterly 147 -280 -40 168 140 -46 263 416

(140, 155) (−311,−258) (−52,−25) (152, 194) (132, 148) (−55,−38) (226, 300) (358, 475)
Static w/ 715 -1353 -371 477 597 -394 531 740

10-yr put (PF1) (683, 746) (−1431,−1311) (−435,−325) (476, 477) (573, 620) (−431,−357) (492, 570) (577, 903)
Static w/ 254 -458 -156 136 217 -131 139 148

lookback (PF2) (242, 265) (−498,−448) (−180,−130) (136, 136) (208, 226) (−144,−118) (136, 142) (134, 162)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 183 -339 -55 233 175 -55 376 610

(173, 194) (−360,−315) (−64,−42) (191, 269) (164, 186) (−66,−44) (320, 432) (473, 747)
Half-yearly 159 -280 -36 207 155 -37 325 565

(148, 171) (−311,−257) (−45,−23) (183, 242) (143, 168) (−47,−28) (269, 381) (375, 756)
Quarterly 146 -234 -14 210 145 -15 333 610

(133, 158) (−258,−222) (−21,−2) (191, 238) (132, 158) (−24,−6) (274, 392) (427, 794)
Static w/ 714 -1250 -372 477 601 -385 512 652

10-yr put (PF1) (680, 747) (−1420,−1207) (−430,−302) (477, 477) (575, 627) (−422,−348) (482, 543) (499, 806)
Static w/ 245 -474 -150 136 213 -122 138 146

lookback (PF2) (236, 255) (−487,−449) (−174,−121) (136, 136) (206, 219) (−135,−109) (135, 141) (131, 161)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 116 -216 -29 151 112 -31 228 344

(110, 122) (−234,−205) (−36,−24) (137, 178) (106, 118) (−38,−24) (199, 257) (274, 415)
Half-yearly 124 -230 -32 150 119 -35 244 406

(118, 131) (−249,−215) (−39,−24) (136, 172) (112, 127) (−42,−27) (207, 280) (319, 494)
Quarterly 126 -245 -35 150 120 -38 234 369

(119, 133) (−266,−225) (−45,−25) (132, 171) (113, 127) (−46,−31) (201, 267) (282, 456)
Static w/ 701 -1265 -392 477 582 -391 492 549

10-yr put (PF1) (669, 733) (−1408,−1217) (−456,−324) (476, 477) (557, 607) (−427,−355) (480, 503) (490, 608)
Static w/ 243 -445 -156 136 209 -126 140 153

lookback (PF2) (234, 252) (−470,−419) (−175,−129) (136, 136) (202, 215) (−139,−113) (136, 144) (134, 172)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 110 -212 -18 164 108 -21 231 332

(104, 116) (−225,−189) (−25,−11) (142, 186) (103, 114) (−27,−14) (206, 256) (292, 373)
Half-yearly 113 -207 -18 165 112 -19 242 370

(107, 120) (−230,−192) (−24,−10) (154, 185) (106, 118) (−26,−12) (213, 272) (306, 434)
Quarterly 115 -203 -3 182 115 -7 271 384

(109, 122) (−223,−190) (−11, 3) (166, 218) (109, 122) (−14, 0) (240, 302) (336, 433)
Static w/ 706 -1281 -407 476 573 -414 507 628

10-yr put (PF1) (675, 738) (−1351,−1214) (−470,−345) (450, 477) (548, 597) (−449,−378) (477, 538) (473, 783)
Static w/ 250 -462 -172 136 211 -135 139 148

lookback (PF2) (241, 259) (−474,−442) (−196,−149) (136, 136) (205, 217) (−148,−122) (135, 143) (127, 169)

Table 4.14: Hedging loss distribution statistics derived from Strategies 1 and 2 for the GMIB (benchmark
example).
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Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 73 -94 -1 89 73 -3 145 284

(61, 85) (−106,−86) (−5, 2) (79, 102) (61, 85) (−8, 1) (115, 175) (165, 402)
Half-yearly 71 -88 -3 75 71 -6 124 223

(60, 83) (−105,−74) (−7, 1) (70, 87) (59, 83) (−11,−2) (101, 147) (144, 302)
Quarterly 68 -97 -4 65 67 -8 127 285

(57, 78) (−107,−88) (−7,−1) (59, 72) (57, 78) (−12,−3) (92, 161) (150, 419)
Static w/ 731 -1411 -344 477 620 -388 536 766

10-yr put (PF1) (694, 768) (−1589,−1291) (−421,−277) (477, 477) (590, 650) (−426,−349) (470, 603) (440, 1092)
Static w/ 240 -448 -153 136 208 -120 142 163

lookback (PF2) (231, 249) (−469,−426) (−178,−112) (136, 136) (202, 215) (−132,−107) (136, 147) (136, 191)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 70 -71 20 116 67 20 177 305

(62, 79) (−93,−62) (16, 22) (103, 126) (59, 76) (16, 24) (148, 206) (207, 404)
Half-yearly 73 -56 23 125 66 30 195 354

(61, 84) (−63,−48) (21, 27) (115, 139) (55, 78) (26, 34) (157, 232) (207, 502)
Quarterly 71 -30 29 135 60 38 203 351

(63, 79) (−37,−25) (26, 33) (120, 149) (52, 68) (34, 42) (171, 235) (256, 446)
Static w/ 714 -1250 -372 477 601 -385 512 652

10-yr put (PF1) (680, 747) (−1420,−1207) (−430,−302) (477, 477) (575, 627) (−422,−348) (482, 543) (499, 806)
Static w/ 245 -474 -150 136 213 -122 138 146

lookback (PF2) (236, 255) (−487,−449) (−174,−121) (136, 136) (206, 219) (−135,−109) (135, 141) (131, 161)

Table 4.15: Hedging loss distribution statistics derived from Strategy 3 for the GMIB (benchmark
example).

The results clearly illustrate that using a stochastic interest rate model can significantly

alter the performance of a semi-static hedging strategy for a long-dated option. This is

an important consideration for future research related to semi-static hedging strategies.

The literature on hedging methods for derivatives often assumes that interest rates are

constant. The results here show that it is advisable to use a model which captures the

stochastic nature of interest rates, even for options driven by equity risk (such as the

GMIB option).

Additional useful information about the hedging strategies can be obtained from appro-

priate figures. Figure 4.1 displays the hedging loss distributions for Strategies 1, 2 and

3, using annual rebalancing and allowing for transaction costs (all on the same scale, for

ease of comparison). The shapes of the distributions are intuitive. As more tail risk is

hedged, the mean hedging loss increases.

In Figure 4.2, the left panels illustrate the relationship between the hedging losses and the

corresponding stock prices at maturity, S(T ). We note that the horizontal axis in each

panel is restricted to 0-6000, but occasionally there are hedging losses for S(T ) > 6000.
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The right panels display the relationship between the hedging losses and the maximum

stock price, sampled on each policy anniversary, maxn=1,...,T S(n). The latter relationship

is explored because it is related to the value of the lookback component of the GMIB.

For Strategy 1, the largest losses are generated by the lookback component. For Strategy

2, the largest losses are attributed to the guaranteed return component, and to a lesser

extent, the lookback component. For Strategy 3, the lookback component is responsible

for producing a few very large hedging loss outliers. All of the semi-static strategies are

effective at minimizing the hedging losses generated by the investment account component.

Tables 4.14 and 4.15 show that all of the semi-static strategies are less risky than the

static put strategy. However, Strategies 1 and 2 are unable to reduce the right tail risk to

levels obtained using the static lookback strategy. Strategy 3 with annual rebalancing is

able to produce a smaller VaR(95%) than the static lookback case. However, as indicated

by the CTE measures, in rare circumstances Strategy 3 produces large hedging losses.

The static lookback strategy does a remarkable job of literally cutting off the right tail.

In passing, we note that Strategy 3 and the static strategies may not be practicable. The

implied volatilities (prices) of the T -year vanilla and lookback options may be higher than

expected. On the other hand, Strategies 1 and 2 can easily be implemented in practice;

τ -year options (for τ 6 1) on stock indices are likely to be actively traded securities. But

Strategy 2 offers much lower tail risk than Strategy 1.

Tables 4.16, 4.17 and 4.18 display the behavior of Strategies 1, 2 and 3 respectively, using

annual rebalancing and allowing for transaction costs. Comparing these tables to the

corresponding constant interest rate tables (Tables 4.11, 4.12 and 4.13) illustrates the

impact of stochastic interest rates on the strategies. Overall, the standard deviations of

the total target errors, minimized objective function values and excess funds are higher

with variable interest rates. For Strategies 1 and 2, less funds are invested in the stock, on

average, with variable interest rates. The negative mean total target errors for Strategy

2 appear to be generated partly by the mean excess funds. The behavior of Strategy 3 is

consistent with its behavior in the corresponding constant interest rate case.
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Figure 4.1: The hedging loss distributions derived from Strategies 1, 2 and 3, using annual rebalancing
and allowing for transaction costs (benchmark example).
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Figure 4.2: Hedging losses en as functions of the stock price at time T , S(T ), and as functions of the
maximum stock price on a policy anniversary, maxn=1,...,T S(n), derived from Strategies 1, 2 and 3, based
on annual rebalancing and the benchmark transaction costs (benchmark example).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 0 -2 -6 -12 -17 -23 -32 -39 -44 -55
Std total target error 40 52 65 73 86 99 112 127 148 175

Mean min obj. (MSHE1/2) 33 41 45 51 55 60 67 72 81 96

Std min obj. (MSHE1/2) 3 13 21 26 28 34 42 52 61 77
Mean excess funds 1 13 21 28 35 44 51 61 71 83
Std excess funds 1 17 26 34 41 50 61 70 80 94

Mean transaction costs 2 1 1 1 1 1 1 1 1 1
Std transaction costs 0 1 0 1 1 1 1 1 1 1

Mean x̂(ti−1)
Stock 0.39 0.41 0.41 0.40 0.38 0.35 0.32 0.29 0.26 0.23

Risk-free bond 0.62 0.57 0.57 0.58 0.60 0.65 0.72 0.80 0.91 1.01
Std Dev x̂(ti−1)

Stock 0.02 0.13 0.16 0.18 0.20 0.21 0.21 0.21 0.21 0.22
Risk-free bond 0.02 0.17 0.22 0.25 0.28 0.31 0.32 0.34 0.38 0.46

Table 4.16: Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (benchmark example).

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 2 -2 -2 -6 -10 -11 -12 -16 -18 -21
Std total target error 34 44 49 55 63 75 82 91 100 108

Mean min obj. (MSHE1/2) 26 31 34 37 39 42 46 48 52 55

Std min obj. (MSHE1/2) 1 10 15 18 21 24 31 35 40 47
Mean excess funds 0 8 14 17 22 27 31 36 41 46
Std excess funds 1 13 20 24 30 35 42 49 55 62

Mean transaction costs 2 1 1 1 1 1 1 1 2 2
Std transaction costs 0 1 1 1 1 1 1 1 1 3

Mean x̂(ti−1)
Stock 0.34 0.37 0.38 0.37 0.35 0.33 0.31 0.28 0.25 0.22

Risk-free bond 0.67 0.61 0.59 0.59 0.62 0.66 0.72 0.78 0.89 0.98
Put(0.77S(ti−1)) 0.10 0.10 0.10 0.09 0.09 0.09 0.08 0.07 0.07 0.04
Put(0.85S(ti−1)) 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.04 0.04
Put(0.92S(ti−1)) 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.10
Put(1.00S(ti−1)) 0.04 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.06
Call(1.12S(ti−1)) 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.06 0.05
Call(1.25S(ti−1)) 0.06 0.07 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.05
Call(1.37S(ti−1)) 0.05 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.04 0.04
Call(1.49S(ti−1)) 0.18 0.11 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05
Std Dev x̂(ti−1)

Stock 0.04 0.13 0.18 0.20 0.21 0.22 0.22 0.23 0.22 0.26
Risk-free bond 0.04 0.17 0.24 0.28 0.32 0.35 0.39 0.43 0.49 0.74

Put(0.77S(ti−1)) 0.14 0.15 0.14 0.13 0.13 0.14 0.13 0.12 0.12 0.10
Put(0.85S(ti−1)) 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.10
Put(0.92S(ti−1)) 0.07 0.07 0.06 0.06 0.07 0.07 0.07 0.06 0.07 0.18
Put(1.00S(ti−1)) 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.13
Call(1.12S(ti−1)) 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.13
Call(1.25S(ti−1)) 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.07 0.13
Call(1.37S(ti−1)) 0.07 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.07 0.10
Call(1.49S(ti−1)) 0.11 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.13

Table 4.17: Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (benchmark example).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 0 -1 -3 -5 -12 -14 -20 -25 -33 -36
Std total target error 35 47 57 63 72 79 89 99 106 133

Mean min obj. (MSHE1/2) 26 30 35 37 40 43 46 48 50 51

Std min obj. (MSHE1/2) 1 9 16 23 24 28 30 36 40 44
Mean excess funds 1 10 16 21 26 31 37 43 51 57
Std excess funds 1 15 22 29 35 42 50 57 67 73

Mean transaction costs 0 0 0 0 0 0 0 0 0 0
Std transaction costs 0 0 0 0 0 0 0 0 0 0

Mean x̂(ti−1)
Stock 0.34 0.37 0.37 0.36 0.33 0.31 0.29 0.25 0.23 0.21

Risk-free bond 0.66 0.62 0.60 0.61 0.65 0.69 0.75 0.84 0.94 1.00
Put(0.77S(ti−1)) 0.07 -0.05 -0.04 -0.17 -0.09 -0.18 -0.11 -0.17 -0.32 -0.23
Put(0.85S(ti−1)) 0.03 0.09 0.07 0.12 0.06 0.10 0.06 0.11 0.13 0.13
Put(0.92S(ti−1)) 0.07 0.03 0.02 0.02 0.04 0.02 0.03 -0.01 -0.03 0.03
Put(1.00S(ti−1)) 0.04 0.05 0.07 0.07 0.05 0.06 0.06 0.07 0.09 0.08
Call(1.12S(ti−1)) 0.06 0.07 0.06 0.06 0.07 0.06 0.05 0.07 0.05 0.03
Call(1.25S(ti−1)) 0.07 0.07 0.06 0.06 0.04 0.05 0.05 0.03 0.03 0.05
Call(1.37S(ti−1)) 0.01 0.05 0.06 0.05 0.04 0.03 0.03 0.04 0.05 0.03
Call(1.49S(ti−1)) 0.22 0.10 0.06 0.06 0.05 0.06 0.04 0.01 0.02 0.02
Std Dev x̂(ti−1)

Stock 0.08 0.16 0.21 0.25 0.25 0.27 0.25 0.26 0.27 0.34
Risk-free bond 0.08 0.19 0.26 0.31 0.34 0.39 0.42 0.47 0.53 0.80

Put(0.77S(ti−1)) 0.38 0.70 0.94 1.42 1.19 2.34 1.12 1.71 3.47 1.62
Put(0.85S(ti−1)) 0.36 0.51 0.83 0.88 0.82 1.16 0.88 1.10 1.53 1.11
Put(0.92S(ti−1)) 0.30 0.37 0.60 0.57 0.52 0.75 0.64 0.64 0.88 0.87
Put(1.00S(ti−1)) 0.20 0.23 0.31 0.34 0.32 0.46 0.39 0.35 0.41 0.56
Call(1.12S(ti−1)) 0.14 0.16 0.20 0.24 0.21 0.29 0.24 0.25 0.27 0.34
Call(1.25S(ti−1)) 0.15 0.17 0.21 0.25 0.22 0.29 0.29 0.30 0.36 0.32
Call(1.37S(ti−1)) 0.18 0.21 0.23 0.35 0.28 0.34 0.35 0.37 0.43 0.40
Call(1.49S(ti−1)) 0.17 0.22 0.24 0.32 0.27 0.31 0.36 0.53 0.45 0.49

Table 4.18: Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (benchmark example).
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4.8.3 Permitting short selling of options

As part of the benchmark parameter assumptions, we do not permit short selling of op-

tions. Our justification for this restriction is because short selling increases the risks

associated with trading strategies. Nevertheless, for completeness, we briefly explore

what happens if short selling is allowed for Strategy 2 (i.e. no constraint is made for

xL(k), k = 1, . . . , Ki).

Table 4.19 displays the hedging loss statistics for Strategy 2, when short selling is permit-

ted. To measure the impact of short selling, these statistics should be compared to the

corresponding results for Strategy 2 when short selling is not permitted, in Table 4.14. It

is clear that short selling markedly increases the CTE measures, but interestingly, the VaR

measures tend to be slightly lower. The mean hedging losses and 5% quantiles also tend

to be slightly lower, as a result of selling deep out-of-the money options. As expected,

the standard deviations are significantly higher. A very small number of the hedging

losses exceeded 1000; losses of this magnitude were not seen when short selling was not

permitted.

Table 4.20 displays the behavior of Strategy 2 when short selling is permitted, using

annual rebalancing and allowed for transaction costs. On average, the optimal strategy

involves a short position in the deepest out-of-the-money put option. Thus, when the

stock price crashes during the accumulation phase, the hedging losses are more likely to

be larger.

Permitting short selling of options does not help improve the hedging loss distribution, in

the sense of minimizing the risk of very large losses which occur with small probability. As

expected, short selling substantially increases the risk of large hedging losses, as measured

by the increases in the CTE.
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Strategy 2 (with short selling)
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 138 -229 -31 136 133 -36 269 593

(117, 159) (−250,−213) (−39,−24) (112, 154) (111, 156) (−45,−28) (190, 347) (263, 922)
Half-yearly 174 -244 -36 139 170 -37 382 1012

(137, 212) (−271,−226) (−43,−27) (119, 178) (131, 210) (−48,−26) (247, 517) (467, 1558)
Quarterly 153 -247 -40 120 145 -47 318 755

(136, 169) (−274,−228) (−47,−33) (103, 165) (127, 164) (−56,−38) (229, 407) (503, 1007)
Static w/ 711 -1293 -404 476 585 -406 512 651

10-yr put (PC3) (677, 746) (−1405,−1237) (−465,−344) (476, 477) (557, 612) (−442,−369) (478, 545) (481, 820)
Static w/ 252 -463 -159 136 216 -129 144 171

lookback (PC4B) (241, 262) (−494,−438) (−180,−129) (136, 136) (209, 223) (−142,−116) (137, 150) (136, 207)

Strategy 2 (with short selling)
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 128 -222 -20 142 124 -25 271 442

(119, 136) (−244,−187) (−26,−12) (125, 156) (115, 133) (−32,−18) (228, 314) (319, 566)
Half-yearly 134 -212 -15 165 132 -21 310 665

(117, 151) (−233,−186) (−24,−11) (135, 183) (114, 150) (−29,−13) (236, 383) (396, 933)
Quarterly 134 -195 -12 177 133 -12 346 677

(118, 150) (−220,−180) (−21,−6) (145, 212) (117, 150) (−20,−4) (272, 420) (455, 899)
Static w/ 730 -1403 -394 477 606 -407 501 594

10-yr put (PC3) (694, 766) (−1501,−1326) (−460,−330) (476, 477) (578, 634) (−445,−370) (482, 520) (498, 689)
Static w/ 243 -427 -156 136 209 -125 141 158

lookback (PC4B) (234, 252) (−453,−417) (−176,−137) (136, 137) (202, 215) (−138,−112) (135, 147) (129, 188)

Table 4.19: Hedging loss distribution statistics derived from Strategy 2 for the GMIB, when option
short selling is allowed.
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 4 1 1 -1 -5 -8 -12 -16 -20 -25
Std total target error 36 44 55 62 72 82 90 108 113 124

Mean min obj. (MSHE1/2) 26 31 35 39 42 45 49 51 53 56

Std min obj. (MSHE1/2) 1 10 15 23 25 32 37 45 63 62
Mean excess funds 0 9 13 17 22 27 32 37 43 48
Std excess funds 1 15 20 27 32 39 46 53 60 67

Mean transaction costs 2 1 1 1 1 1 1 2 2 2
Std transaction costs 0 1 1 1 1 1 1 1 1 2

Mean x̂(ti−1)
Stock 0.33 0.37 0.37 0.38 0.36 0.34 0.31 0.28 0.24 0.23

Risk-free bond 0.67 0.62 0.60 0.60 0.62 0.66 0.72 0.80 0.90 0.96
Put(0.77S(ti−1)) 0.03 -0.04 -0.11 -0.13 -0.20 -0.14 -0.06 -0.12 -0.19 -0.33
Put(0.85S(ti−1)) 0.05 0.05 0.10 0.08 0.11 0.07 0.01 0.06 0.00 0.09
Put(0.92S(ti−1)) 0.07 0.06 0.02 0.01 0.00 0.01 0.02 0.00 0.07 0.10
Put(1.00S(ti−1)) 0.02 0.04 0.07 0.08 0.09 0.09 0.09 0.10 0.07 0.06
Call(1.12S(ti−1)) 0.08 0.07 0.06 0.04 0.04 0.03 0.03 0.02 0.03 0.02
Call(1.25S(ti−1)) 0.07 0.06 0.07 0.06 0.05 0.05 0.04 0.07 0.05 0.06
Call(1.37S(ti−1)) 0.01 0.06 0.04 0.03 0.04 0.05 0.05 0.03 0.03 0.02
Call(1.49S(ti−1)) 0.21 0.09 0.08 0.07 0.05 0.03 0.03 0.02 0.02 0.00
Std Dev x̂(ti−1)

Stock 0.07 0.13 0.17 0.20 0.21 0.23 0.23 0.23 0.24 0.27
Risk-free bond 0.08 0.16 0.23 0.27 0.31 0.35 0.38 0.41 0.48 0.71

Put(0.77S(ti−1)) 0.39 0.69 0.90 1.15 1.46 1.47 1.56 1.62 3.31 1.85
Put(0.85S(ti−1)) 0.36 0.45 0.50 0.79 0.68 0.74 1.04 0.95 1.60 1.04
Put(0.92S(ti−1)) 0.27 0.30 0.34 0.50 0.42 0.47 0.52 0.55 0.93 0.85
Put(1.00S(ti−1)) 0.18 0.20 0.21 0.22 0.25 0.29 0.29 0.29 0.49 0.39
Call(1.12S(ti−1)) 0.13 0.14 0.16 0.18 0.17 0.22 0.20 0.21 0.21 0.25
Call(1.25S(ti−1)) 0.14 0.16 0.18 0.22 0.22 0.28 0.27 0.26 0.26 0.32
Call(1.37S(ti−1)) 0.17 0.21 0.23 0.26 0.29 0.33 0.34 0.34 0.42 0.40
Call(1.49S(ti−1)) 0.17 0.21 0.24 0.28 0.34 0.37 0.39 0.45 0.67 0.57

Table 4.20: Behavior of Strategy 2 for hedging the GMIB when option short selling is permitted, using
annual rebalancing and allowing for the benchmark transaction costs.
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4.8.4 Examples of simulated scenarios

In this section, we present a set of figures that are designed to give the reader some insight

into how the hedging target distribution evolves under different scenarios for the stock and

interest rate processes. We also give some reasoning for why, using Strategy 2, increasing

the rebalancing frequency may lead to a deterioration in the hedging loss distribution.

Figures 4.3, 4.4 and 4.5 display the behavior of Strategy 2, using annual rebalancing and

allowing for transaction costs, for three different scenarios, labeled A, B and C. In Sce-

nario A, the stock price rises sharply during the accumulation phase, but crashes just

before maturity, and the lookback component is exercised (the hedge roughly breaks even

at maturity). In Scenario B, the stock price trends downwards, and the guaranteed return

component is exercised (a loss occurs at maturity). In Scenario C, there is a persistent

rise in the stock price, and thus the investment account component is exercised (a profit

occurs at maturity). In each figure, the left panels show the optimal hedging portfolio

payoff and the hedging targets as functions of the end of horizon stock price. The right

panels display the hedging targets and the actual portfolio payoff as functions of the end

of horizon short rate.

For comparison, Figure 4.6 displays the behavior of Strategy 2 for one particular scenario

in the case where interest rates are constant. In this particular scenario the investment

account component is exercised. Comparing the panels of Figure 4.6 and those for Sce-

narios A, B and C, provides a feel for how stochastic interest rates influence semi-static

strategies. We see that when interest rates are constant, the hedging targets are bunched

much more closely together, and the hedging portfolio is able to more closely match the

hedging target distribution across the range of plausible stock price values.

Our results have shown that when the GMIB option is hedged using Strategy 2, increasing

the rebalancing frequency does not improve the results. In fact, increasing the rebalanc-

ing frequency appears to lead to a deterioration in the results. This occurs even when

transaction costs are assumed to be negligible. When we hedge with the τ -year options,

part of the budget in each horizon is usually spent on buying out-of-the-money options,

to reduce the hedging errors in the tails of the hedging target distribution. This can be
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seen in the left panels of Figures 4.3, 4.4 and 4.5. However, most of the time, the actual

hedging target is not among the hedging target values in the tails. The money spent

on buying tail risk protection could otherwise be part of the excess funds invested in

risk-free bonds, increasing the cushion against hedging error shortfalls in future hedging

horizons. For example, in Figure 4.5, consider the left panels for the first and second

hedging horizons; the put option with a strike of 770 expires worthless at time 1. When

the rebalancing frequency increases from, say, annually to half-yearly, the tail risk pro-

tection is adjusted twice as often. There are more opportunities for hedging the outlying

hedging target values, and the cost of buying the deep out-of-the-money eats away at the

excess funds. It seems that hedging tail risk with deep out-of-the-money options, at a

rebalancing frequency higher than annually, is counterproductive. The same reasoning is

applied to Strategy 3.
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Figure 4.3: Evolution of Strategy 2 for Scenario A, where the Lookback component X1 exercised.
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Figure 4.3 (Continued): Evolution of Strategy 2 for Scenario A, where the Lookback component X1

exercised.
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Figure 4.3 (Continued): Evolution of Strategy 2 for Scenario A, where the Lookback component X1

exercised.

224



0 1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

Year

V
al

ue

 

 

Actual stock path
Actual investment account path

400 600 800 1000 1200 1400 1600 1800 2000 2200

200

400

600

800

1000

1200

1400

1600

1800

2000

Stock value at time 1

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

1

Hedge from time 0 to 1

 

 
Hedging targets
Total port. payoff
Port. payoff without excess funds
Funds available at time 0
Actual portfolio value at time 1
Realized hedging target

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
800

900

1000

1100

1200

1300

1400

Short rate at time 1

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

1

Hedge from time 0 to 1

 

 
Hedging targets
Funds available at time 0
Actual portfolio value at time 1
Realized hedging target

600 800 1000 1200 1400 1600 1800 2000 2200 2400

400

600

800

1000

1200

1400

1600

1800

2000

2200

Stock value at time 2

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

2

Hedge from time 1 to 2

 

 
Hedging targets
Total port. payoff
Port. payoff without excess funds
Funds available at time 1
Actual portfolio value at time 2
Realized hedging target

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

Short rate at time 2

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

2

Hedge from time 1 to 2

 

 
Hedging targets
Funds available at time 1
Actual portfolio value at time 2
Realized hedging target

200 400 600 800 1000 1200 1400 1600 1800 2000

400

600

800

1000

1200

1400

1600

1800

2000

2200

Stock value at time 3

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

3

Hedge from time 2 to 3

 

 
Hedging targets
Total port. payoff
Port. payoff without excess funds
Funds available at time 2
Actual portfolio value at time 3
Realized hedging target

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
800

1000

1200

1400

1600

1800

2000

2200

Short rate at time 3

F
un

ct
io

n 
va

lu
e 

at
 ti

m
e 

3

Hedge from time 2 to 3

 

 
Hedging targets
Funds available at time 2
Actual portfolio value at time 3
Realized hedging target

Figure 4.4: Evolution of Strategy 2 for Scenario B, where the Guaranteed return component X2 exer-
cised.
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Figure 4.4 (Continued): Evolution of Strategy 2 for Scenario B, where the Guaranteed return com-
ponent X2 exercised.
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Figure 4.4 (Continued): Evolution of Strategy 2 for Scenario B, where the Guaranteed return compo-
nent X2 exercised.
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Figure 4.5: Evolution of Strategy 2 for Scenario C, where the Investment account component X3

exercised.
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Figure 4.5 (Continued): Evolution of Strategy 2 for Scenario C, where the Investment account
component X3 exercised.
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Figure 4.5 (Continued): Evolution of Strategy 2 for Scenario C, where the Investment account
component X3 exercised.
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Figure 4.6: Evolution of Strategy 2 for one particular scenario, in the case where interest rates are
constant.
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Figure 4.6 (Continued): Evolution of Strategy 2 for one particular scenario, in the case where interest
rates are constant.
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4.9 CTE minimization strategies

The examples shown so far have all been based on minimizing the MSHE in each hedg-

ing horizon. In this we illustrate the results from using strategies designed to minimize

the CTE of the hedging error distribution in each horizon. The hedging target is still the

GMIB price. If we use a CTE minimization objective function, we must specify the desired

confidence level, α, for the CTE. Using different values for α produces slightly different

results. Based on a preliminary set of simulations at different confidence levels, we set

the confidence level at the value which approximately provides the lowest VaR(95%) and

CTE(95%), subject to a reasonable hedging loss mean. Of the confidence levels we tested

(ranging from 0.5 to 0.99), we found that α = 0.85 yielded the most favorable results for

Strategies 2 and 3. Strategy 1 produced similar results for any α > 0.75 (it is difficult to

accurately hedge the tail risk with just the stock). It is noted that setting α > 0.95 for

Strategies 2 and 3 seems to produce slightly higher tail risk measures, after taking into

consideration sampling errors. This may be partly because a relatively small sample of

N = 200 observations is used in minimizing the CTE objective function, and thus very

high confidence levels lead to minimized objective functions that are very sensitive to the

small number of observations in the right tail.

Tables 4.21 and 4.22 display the hedging loss results from applying Strategies 1, 2 and 3.

Strategy 1 is not well-suited to minimize the CTE, as the stock is not a natural instrument

for hedging the tail risk. However, the results for Strategy 1 are shown for completeness.

The results in the tables suggest that semi-static strategies for the GMIB, based on CTE

minimization, produce reasonable hedging loss distributions.

It is informative to compare the differences between the results of the CTE minimization

strategies and MSHE minimization strategies in Section 4.8.2. For Strategies 1 and 2, the

tail risk measures are higher for the CTE minimization strategies. The means also tend

to be slightly higher for the CTE minimization strategies. For Strategy 3, the means and

CTE measures are lower for the CTE minimization strategies, but the VaR measures are

comparable. We see that the MSHL1/2 estimates for the MSHE minimization strategies

tend to be lower than the corresponding MSHL1/2 estimates for the CTE minimization

strategies, as expected.
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Tables 4.23, 4.24 and 4.25 display the behavior of Strategies 1, 2 and 3 respectively,

based on minimizing the CTE objective function, using annual rebalancing and allowing

for transaction costs. The behavior of Strategy 1 is slightly different for the MSHE and

CTE minimization cases. For Strategy 2, the CTE minimization case produces smaller

stock positions compared to the MSHE minimization case. For Strategy 3, the CTE

minimization case uses higher stock positions, compared to the MSHE case. Furthermore,

the positions in each of the T -year put options follow similar patterns in the CTE and

MSHE minimization cases.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 198 -356 -57 244 189 -57 390 622

(188, 208) (−370,−340) (−68,−44) (208, 291) (178, 200) (−69,−46) (334, 447) (487, 756)
Half-yearly 168 -309 -33 217 163 -40 323 503

(159, 177) (−334,−286) (−49,−27) (195, 243) (154, 172) (−50,−30) (280, 366) (391, 615)
Quarterly 156 -276 -25 233 154 -27 301 419

(149, 164) (−301,−255) (−37,−12) (207, 250) (146, 161) (−37,−18) (273, 328) (344, 495)
Static w/ 698 -1295 -339 477 588 -377 521 693

10-yr put (PF1) (665, 731) (−1400,−1216) (−390,−278) (476, 477) (562, 613) (−414,−341) (489, 553) (548, 837)
Static w/ 238 -428 -139 136 209 -114 137 141

lookback (PF2) (228, 247) (−454,−414) (−166,−96) (136, 136) (202, 215) (−127,−101) (136, 139) (135, 147)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 199 -352 -41 285 195 -42 398 607

(189, 210) (−383,−340) (−56,−22) (228, 316) (185, 205) (−54,−30) (350, 446) (487, 727)
Half-yearly 167 -280 -14 258 166 -14 345 469

(159, 175) (−313,−257) (−24,−1) (233, 290) (158, 174) (−25,−4) (314, 377) (409, 528)
Quarterly 155 -248 11 264 155 10 348 464

(148, 163) (−263,−224) (−5, 20) (242, 292) (148, 163) (0, 19) (318, 379) (418, 510)
Static w/ 685 -1248 -338 477 585 -356 539 780

10-yr put (PF1) (656, 713) (−1337,−1208) (−400,−265) (477, 477) (564, 606) (−393,−320) (497, 581) (617, 942)
Static w/ 244 -450 -139 136 213 -121 140 153

lookback (PF2) (235, 253) (−470,−436) (−167,−112) (136, 136) (207, 219) (−134,−108) (136, 144) (131, 175)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 127 -244 -18 178 125 -20 229 307

(121, 133) (−272,−219) (−28,−4) (165, 202) (120, 131) (−28,−12) (210, 248) (264, 349)
Half-yearly 137 -258 -21 191 135 -20 248 334

(130, 143) (−271,−241) (−32,−10) (176, 208) (129, 142) (−29,−12) (227, 270) (294, 374)
Quarterly 143 -264 -10 203 142 -17 264 342

(136, 149) (−285,−244) (−23,−3) (186, 231) (135, 148) (−25,−8) (243, 285) (301, 383)
Static w/ 679 -1271 -367 477 573 -366 524 711

10-yr put (PF1) (649, 709) (−1312,−1191) (−417,−306) (477, 477) (549, 596) (−401,−330) (480, 568) (486, 937)
Static w/ 241 -454 -144 136 211 -117 138 146

lookback (PF2) (231, 251) (−482,−431) (−162,−118) (136, 136) (204, 218) (−130,−104) (136, 141) (134, 158)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 124 -213 -11 188 124 -8 246 341

(118, 131) (−229,−199) (−20,−4) (176, 205) (118, 130) (−16,−1) (223, 269) (284, 398)
Half-yearly 132 -209 -5 214 132 -2 274 370

(126, 139) (−238,−195) (−12, 3) (196, 238) (126, 139) (−10, 6) (252, 297) (329, 411)
Quarterly 139 -208 11 243 138 13 305 414

(132, 146) (−235,−184) (2, 23) (223, 266) (131, 145) (4, 21) (280, 330) (350, 478)
Static w/ 705 -1371 -377 477 594 -381 522 698

10-yr put (PF1) (675, 736) (−1430,−1279) (−420,−311) (476, 477) (571, 616) (−418,−344) (488, 555) (532, 864)
Static w/ 249 -470 -140 136 218 -120 140 155

lookback (PF2) (238, 259) (−496,−454) (−158,−110) (136, 136) (211, 226) (−133,−106) (136, 144) (134, 177)

Table 4.21: Hedging loss distribution statistics derived from Strategies 1 and 2, based on minimizing
the CTE, for hedging the GMIB.
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Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 78 -163 -1 76 77 -15 102 155

(70, 86) (−188,−128) (−6, 2) (71, 82) (69, 85) (−20,−10) (89, 115) (109, 201)
Half-yearly 80 -141 -6 70 79 -16 110 206

(70, 91) (−175,−120) (−9,−1) (66, 76) (69, 89) (−21,−11) (85, 135) (97, 314)
Quarterly 69 -119 -6 76 68 -12 108 163

(60, 78) (−146,−109) (−9,−3) (70, 87) (60, 76) (−16,−8) (95, 121) (124, 202)
Static w/ 714 -1330 -360 477 606 -379 560 875

10-yr put (PF1) (684, 745) (−1443,−1263) (−408,−322) (477, 477) (582, 629) (−417,−342) (494, 626) (590, 1160)
Static w/ 239 -442 -153 136 208 -118 139 151

lookback (PF2) (230, 248) (−464,−426) (−169,−116) (136, 136) (202, 214) (−131,−105) (134, 144) (125, 176)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 88 -106 26 119 86 15 152 205

(73, 102) (−151,−90) (21, 30) (109, 131) (71, 101) (10, 21) (138, 166) (163, 248)
Half-yearly 74 -97 26 120 71 21 159 219

(69, 79) (−122,−83) (21, 30) (113, 132) (65, 76) (17, 25) (144, 173) (197, 241)
Quarterly 71 -79 23 133 67 23 169 229

(67, 76) (−96,−69) (18, 28) (124, 145) (63, 72) (19, 27) (153, 185) (179, 279)
Static w/ 703 -1274 -407 476 576 -403 509 636

10-yr put (PF1) (667, 739) (−1388,−1207) (−462,−347) (476, 477) (546, 607) (−439,−367) (480, 538) (490, 782)
Static w/ 242 -438 -151 136 207 -126 140 155

lookback (PF2) (232, 251) (−465,−413) (−175,−131) (136, 136) (200, 214) (−139,−113) (133, 147) (118, 191)

Table 4.22: Hedging loss distribution statistics derived from Strategy 3, based on minimizing the CTE,
for hedging the GMIB.

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error -2 -7 -9 -11 -16 -19 -24 -29 -37 -42
Std total target error 41 56 69 83 97 109 129 147 164 195

Mean min obj. (CTE(85%)) 81 84 84 88 93 98 105 113 118 135
Std min obj. (CTE(85%)) 12 38 55 70 87 104 124 144 163 188

Mean transaction costs 2 1 1 1 1 1 1 1 1 1
Std transaction costs 0 0 0 0 1 1 1 1 1 1

Mean x̂(ti−1)
Stock 0.41 0.42 0.41 0.39 0.37 0.34 0.31 0.28 0.24 0.22

Risk-free bond 0.60 0.58 0.59 0.61 0.64 0.71 0.79 0.88 1.00 1.10
Std Dev x̂(ti−1)

Stock 0.04 0.14 0.18 0.20 0.21 0.22 0.22 0.21 0.20 0.20
Risk-free bond 0.04 0.17 0.22 0.25 0.27 0.29 0.31 0.32 0.34 0.37

Table 4.23: Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (based on CTE minimization).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 2 1 -1 -2 -2 -3 -6 -6 -7 -8
Std total target error 34 46 54 64 72 83 93 104 113 124

Mean min obj. (CTE(85%)) 42 43 45 45 46 48 49 48 49 44
Std min obj. (CTE(85%)) 4 29 42 51 62 72 84 96 108 120

Mean transaction costs 2 1 1 1 1 1 1 1 1 2
Std transaction costs 0 1 1 1 1 1 1 1 1 2

Mean x̂(ti−1)
Stock 0.31 0.35 0.36 0.35 0.34 0.31 0.28 0.25 0.22 0.20

Risk-free bond 0.70 0.65 0.64 0.65 0.67 0.72 0.79 0.88 0.98 1.03
Put(0.77S(ti−1)) 0.10 0.09 0.09 0.09 0.09 0.08 0.08 0.06 0.06 0.03
Put(0.85S(ti−1)) 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.02
Put(0.92S(ti−1)) 0.02 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.10
Put(1.00S(ti−1)) 0.00 0.04 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.08
Call(1.12S(ti−1)) 0.12 0.09 0.08 0.06 0.06 0.05 0.05 0.05 0.04 0.04
Call(1.25S(ti−1)) 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.04
Call(1.37S(ti−1)) 0.05 0.07 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03
Call(1.49S(ti−1)) 0.15 0.10 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05
Std Dev x̂(ti−1)

Stock 0.04 0.11 0.16 0.19 0.21 0.22 0.22 0.22 0.22 0.25
Risk-free bond 0.04 0.14 0.21 0.26 0.30 0.35 0.38 0.42 0.49 0.72

Put(0.77S(ti−1)) 0.15 0.16 0.15 0.15 0.15 0.14 0.13 0.12 0.11 0.09
Put(0.85S(ti−1)) 0.07 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07
Put(0.92S(ti−1)) 0.05 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.19
Put(1.00S(ti−1)) 0.01 0.06 0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.14
Call(1.12S(ti−1)) 0.08 0.09 0.09 0.08 0.08 0.07 0.07 0.08 0.07 0.10
Call(1.25S(ti−1)) 0.08 0.08 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.12
Call(1.37S(ti−1)) 0.09 0.09 0.09 0.09 0.09 0.08 0.07 0.08 0.07 0.11
Call(1.49S(ti−1)) 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.12

Table 4.24: Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (based on CTE minimization).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 3 4 3 2 4 5 4 5 10 15
Std total target error 23 27 30 30 37 39 46 48 63 86

Mean min obj. (CTE(85%)) 17 18 18 18 19 19 21 24 35 78
Std min obj. (CTE(85%)) 1 6 9 13 17 25 35 38 52 80

Mean transaction costs 5 1 0 1 1 2 2 3 5 5
Std transaction costs 0 0 0 0 1 1 1 2 4 4

Mean x̂(ti−1)
Stock 0.77 0.80 0.80 0.81 0.80 0.81 0.83 0.92 1.16 0.70

Risk-free bond -0.06 -0.14 -0.18 -0.22 -0.27 -0.35 -0.47 -0.68 -1.22 0.01
Put(0.80S(0), T ) 0.28 0.20 0.02 0.00 0.01 0.01 0.00 0.02 0.04 0.05
Put(1.60S(0), T ) 0.92 1.05 1.17 1.19 1.00 0.69 0.38 0.23 0.25 0.16
Put(2.40S(0), T ) 0.01 0.02 0.04 0.09 0.20 0.35 0.48 0.50 0.55 0.34
Put(3.20S(0), T ) 0.00 0.00 0.00 0.02 0.06 0.13 0.21 0.33 0.48 0.19
Call(4.00S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01
Std Dev x̂(ti−1)

Stock 0.02 0.05 0.05 0.06 0.08 0.10 0.12 0.25 0.57 0.57
Risk-free bond 0.03 0.09 0.12 0.13 0.15 0.17 0.20 0.39 1.09 1.51

Put(0.80S(0), T ) 0.30 0.39 0.13 0.06 0.11 0.12 0.07 0.24 0.38 0.31
Put(1.60S(0), T ) 0.08 0.17 0.29 0.39 0.48 0.52 0.47 0.47 0.66 0.44
Put(2.40S(0), T ) 0.03 0.03 0.13 0.21 0.26 0.27 0.31 0.37 0.53 0.45
Put(3.20S(0), T ) 0.00 0.00 0.02 0.08 0.21 0.35 0.48 0.56 0.65 0.29
Call(4.00S(0), T ) 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.11
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.06
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.09 0.08

Table 4.25: Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (based on CTE minimization).

238



4.10 Using P -valuation hedging targets

Up to this point we have assumed that the hedging target is the GMIB price, calculated

using option pricing theory. In this section, we investigate the effect of changing the

hedging target to the P -valuation target. All of the results we illustrate are based on

strategies minimizing the MSHE. The purpose of the results presented in this section is

to show how changing the hedging target (to some thing meaningful other than the GMIB

price) may produce hedging loss distributions with very different risk and profit profiles.

Recall that the P -valuation target is the expected present value of the benefits provided

by the GMIB under the real-world measure. This hedging target might be used by an

insurer who wants to meet Goal (1); in other words, the insurer does not plan to trade

the liability before maturity. Using the P -valuation target will change the shape of the

hedging loss distribution. In the case of the GMIB option, the P -valuation target is usu-

ally higher than the GMIB price, because, loosely speaking, the expected present values

of the lookback and investment account components are higher under P than under Q

(because most of the time µ > r(t) in the drift component of the stock SDE), while the

expected present value of the guaranteed return component is unchanged (we assumed

the market price of interest rate risk is 0). As it turns out, using the P -valuation target

will decrease the mean hedging loss, but increase the tail risk measures.

Tables 4.26 and 4.27 display the results from applying Strategies 1, 2 and 3, using the

P -valuation target. Large hedging profits are expected for each strategy, but the tail

risk measures are considerably larger than any of the tail risk measures for the strate-

gies shown in the previous sections. Furthermore, the results for Strategies 1 and 2 are

very similar under the same transaction cost assumptions. The tail risk measures for

Strategy 3 are lower than for Strategies 1 and 2, but still considerably higher than the

corresponding tail risk measures for Strategy 3 when the hedging target is the GMIB price.

Tables 4.28, 4.29 and 4.30 display the behavior of Strategies 1, 2 and 3, respectively,

using the P -valuation target, annual rebalancing and allowing for transaction costs. It

is informative to compare these tables with the corresponding tables where the hedging

target is the GMIB price (Tables 4.16, 4.17 and 4.18). For all of the strategies, the average
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positions in the stock (over time) are higher when the P -valuation target is used.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 472 -940 -239 289 388 -270 470 728

(448, 497) (−1019,−861) (−267,−216) (253, 326) (367, 409) (−294,−246) (403, 537) (598, 858)
Half-yearly 484 -961 -249 276 393 -284 484 748

(458, 511) (−1024,−911) (−277,−222) (221, 342) (369, 416) (−308,−260) (409, 559) (607, 888)
Quarterly 497 -987 -262 282 402 -292 488 879

(468, 525) (−1061,−938) (−287,−233) (239, 335) (376, 428) (−317,−267) (403, 572) (684, 1073)
Static w/ 698 -1321 -337 477 596 -364 572 936

10-yr put (PF1) (663, 732) (−1436,−1231) (−402,−266) (476, 477) (567, 625) (−400,−327) (503, 642) (620, 1251)
Static w/ 243 -460 -133 136 214 -116 140 155

lookback (PF2) (234, 253) (−478,−435) (−155,−102) (136, 136) (207, 221) (−129,−102) (134, 147) (122, 189)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 470 -914 -237 307 394 -258 561 939

(448, 492) (−980,−879) (−266,−191) (251, 362) (374, 413) (−282,−233) (465, 657) (830, 1048)
Half-yearly 480 -936 -223 322 404 -259 577 1068

(456, 505) (−1008,−876) (−257,−190) (265, 389) (380, 428) (−284,−234) (464, 690) (745, 1391)
Quarterly 483 -929 -210 319 412 -252 625 1220

(459, 506) (−1014,−879) (−253,−178) (275, 365) (388, 436) (−277,−226) (497, 753) (940, 1500)
Static w/ 714 -1250 -372 477 601 -385 512 652

10-yr put (PF1) (680, 747) (−1420,−1207) (−430,−302) (477, 477) (575, 627) (−422,−348) (482, 543) (499, 806)
Static w/ 245 -474 -150 136 213 -122 138 146

lookback (PF2) (236, 255) (−487,−449) (−174,−121) (136, 136) (206, 219) (−135,−109) (135, 141) (131, 161)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 463 -894 -247 262 379 -266 476 896

(437, 488) (−979,−818) (−274,−219) (222, 306) (355, 402) (−289,−242) (387, 566) (692, 1099)
Half-yearly 507 -991 -264 278 412 -296 497 898

(478, 535) (−1087,−904) (−292,−232) (225, 329) (386, 437) (−321,−270) (409, 585) (719, 1077)
Quarterly 536 -1019 -281 278 435 -313 559 1106

(506, 566) (−1133,−986) (−311,−249) (225, 352) (406, 464) (−340,−286) (439, 680) (752, 1460)
Static w/ 719 -1334 -385 477 599 -398 573 952

10-yr put (PF1) (687, 751) (−1403,−1259) (−451,−324) (476, 477) (573, 625) (−435,−361) (491, 655) (570, 1335)
Static w/ 244 -447 -153 136 209 -126 136 137

lookback (PF2) (234, 253) (−476,−425) (−176,−126) (136, 136) (202, 216) (−139,−113) (136, 137) (137, 137)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 428 -822 -196 293 362 -229 548 945

(408, 448) (−871,−784) (−224,−170) (231, 358) (343, 380) (−251,−206) (451, 645) (829, 1062)
Half-yearly 450 -868 -205 305 379 -243 540 959

(429, 472) (−938,−825) (−234,−177) (263, 366) (359, 399) (−267,−220) (445, 636) (756, 1163)
Quarterly 474 -902 -215 340 407 -242 657 1296

(450, 498) (−948,−866) (−245,−174) (264, 430) (382, 433) (−268,−217) (521, 792) (901, 1692)
Static w/ 714 -1250 -372 477 601 -385 512 652

10-yr put (PF1) (680, 747) (−1420,−1207) (−430,−302) (477, 477) (575, 627) (−422,−348) (482, 543) (499, 806)
Static w/ 245 -474 -150 136 213 -122 138 146

lookback (PF2) (236, 255) (−487,−449) (−174,−121) (136, 136) (206, 219) (−135,−109) (135, 141) (131, 161)

Table 4.26: Hedging loss distribution statistics derived from Strategies 1 and 2, using P -valuation
targets, for hedging the GMIB.

241



Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 448 -909 -204 261 373 -250 380 558

(419, 478) (−1005,−819) (−230,−178) (220, 311) (347, 398) (−273,−227) (336, 424) (477, 639)
Half-yearly 482 -1009 -209 251 399 -270 407 689

(452, 512) (−1125,−934) (−237,−174) (210, 295) (374, 425) (−295,−246) (339, 474) (480, 897)
Quarterly 506 -1049 -215 263 422 -279 517 1030

(475, 537) (−1163,−950) (−244,−189) (212, 323) (392, 453) (−305,−253) (395, 640) (619, 1440)
Static w/ 713 -1366 -412 477 585 -409 502 602

10-yr put (PF1) (683, 744) (−1467,−1265) (−458,−365) (476, 477) (562, 607) (−445,−373) (482, 522) (504, 699)
Static w/ 247 -458 -158 136 209 -133 140 152

lookback (PF2) (238, 257) (−490,−445) (−178,−138) (136, 136) (202, 216) (−146,−120) (135, 144) (129, 176)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 386 -761 -155 294 336 -190 414 565

(362, 410) (−862,−713) (−187,−133) (269, 336) (316, 357) (−211,−169) (371, 457) (486, 645)
Half-yearly 393 -807 -139 298 347 -186 437 650

(370, 416) (−897,−779) (−161,−110) (266, 347) (327, 366) (−207,−164) (385, 489) (536, 763)
Quarterly 382 -809 -72 341 350 -152 488 743

(357, 406) (−906,−723) (−101,−51) (296, 377) (329, 372) (−174,−130) (431, 546) (647, 838)
Static w/ 698 -1326 -329 476 593 -367 546 821

10-yr put (PF1) (664, 731) (−1454,−1274) (−396,−254) (476, 477) (567, 619) (−404,−331) (490, 602) (537, 1105)
Static w/ 234 -414 -140 136 205 -112 139 151

lookback (PF2) (225, 244) (−443,−399) (−168,−111) (136, 136) (198, 212) (−125,−100) (136, 143) (134, 168)

Table 4.27: Hedging loss distribution statistics derived from Strategy 3, using P -valuation targets, for
hedging the GMIB.

Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 173 120 69 16 -34 -81 -132 -175 -214 -258
Std total target error 83 105 132 157 189 225 258 294 336 394

Mean min obj. (MSHE1/2) 186 141 114 104 98 96 97 97 100 114

Std min obj. (MSHE1/2) 5 63 74 84 83 88 98 102 109 117
Mean excess funds 0 2 15 44 83 126 166 209 248 289
Std excess funds 0 9 33 67 103 139 173 210 249 292

Mean transaction costs 5 1 1 1 1 1 1 1 1 2
Std transaction costs 0 1 1 1 1 1 1 1 1 1

Mean x̂(ti−1)
Stock 1.03 0.91 0.78 0.68 0.59 0.51 0.44 0.38 0.31 0.26

Risk-free bond -0.04 0.09 0.23 0.32 0.40 0.49 0.60 0.71 0.85 0.99
Std Dev x̂(ti−1)

Stock 0.05 0.09 0.13 0.17 0.20 0.23 0.28 0.31 0.30 0.33
Risk-free bond 0.05 0.10 0.13 0.17 0.23 0.28 0.32 0.37 0.43 0.52

Table 4.28: Behavior of Strategy 1 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (using the P -valuation target).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 173 122 72 21 -27 -72 -118 -158 -193 -229
Std total target error 82 104 130 154 183 218 248 279 317 362

Mean min obj. (MSHE1/2) 185 141 113 100 92 88 86 82 77 77

Std min obj. (MSHE1/2) 5 61 72 80 82 87 96 100 107 118
Mean excess funds 0 2 15 42 78 117 154 191 227 262
Std excess funds 0 11 35 69 102 136 168 202 235 273

Mean transaction costs 5 1 1 1 1 1 1 2 2 2
Std transaction costs 0 1 1 1 1 1 1 1 2 2

Mean x̂(ti−1)
Stock 1.01 0.92 0.80 0.68 0.58 0.49 0.42 0.35 0.29 0.24

Risk-free bond -0.02 0.07 0.20 0.30 0.40 0.49 0.60 0.72 0.85 0.96
Put(0.77S(ti−1)) 0.16 0.15 0.16 0.15 0.14 0.14 0.12 0.11 0.09 0.05
Put(0.85S(ti−1)) 0.02 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.04
Put(0.92S(ti−1)) 0.01 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.11
Put(1.00S(ti−1)) 0.00 0.06 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06
Call(1.12S(ti−1)) 0.05 0.01 0.01 0.03 0.04 0.05 0.06 0.06 0.06 0.05
Call(1.25S(ti−1)) 0.02 0.01 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.05
Call(1.37S(ti−1)) 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.03 0.04
Call(1.49S(ti−1)) 0.04 0.05 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.05
Std Dev x̂(ti−1)

Stock 0.09 0.09 0.13 0.16 0.21 0.25 0.28 0.29 0.28 0.35
Risk-free bond 0.09 0.10 0.13 0.18 0.25 0.32 0.38 0.44 0.53 0.74

Put(0.77S(ti−1)) 0.34 0.33 0.28 0.24 0.26 0.29 0.23 0.27 0.18 0.19
Put(0.85S(ti−1)) 0.10 0.19 0.16 0.14 0.12 0.10 0.13 0.20 0.12 0.11
Put(0.92S(ti−1)) 0.05 0.10 0.11 0.10 0.09 0.09 0.09 0.08 0.10 0.19
Put(1.00S(ti−1)) 0.00 0.12 0.12 0.11 0.10 0.09 0.08 0.08 0.09 0.13
Call(1.12S(ti−1)) 0.10 0.03 0.03 0.05 0.07 0.07 0.07 0.09 0.10 0.14
Call(1.25S(ti−1)) 0.06 0.03 0.05 0.06 0.06 0.06 0.06 0.07 0.08 0.13
Call(1.37S(ti−1)) 0.07 0.06 0.06 0.07 0.07 0.07 0.07 0.06 0.07 0.12
Call(1.49S(ti−1)) 0.09 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.12

Table 4.29: Behavior of Strategy 2 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (using the P -valuation target).
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Horizon i 1 2 3 4 5 6 7 8 9 10
Mean total target error 172 120 71 26 -18 -55 -96 -130 -165 -190
Std total target error 80 97 111 137 165 192 226 260 299 336

Mean min obj. (MSHE1/2) 185 131 98 80 71 66 67 66 67 80

Std min obj. (MSHE1/2) 4 67 79 81 85 85 90 93 95 98
Mean excess funds 0 1 12 35 67 101 135 168 198 224
Std excess funds 0 8 30 61 95 127 158 191 227 260

Mean transaction costs 7 2 2 2 2 2 2 3 4 7
Std transaction costs 2 2 2 2 2 2 2 2 4 7

Mean x̂(ti−1)
Stock 1.20 1.26 1.23 1.16 1.07 1.00 0.94 0.90 0.93 0.43

Risk-free bond -0.39 -0.71 -0.84 -0.85 -0.80 -0.75 -0.69 -0.64 -0.72 0.66
Put(0.80S(0), T ) 0.24 0.33 0.26 0.20 0.12 0.05 0.02 0.01 0.02 0.04
Put(1.60S(0), T ) 0.02 0.10 0.16 0.23 0.30 0.34 0.32 0.34 0.27 0.09
Put(2.40S(0), T ) 0.23 0.39 0.37 0.32 0.23 0.18 0.19 0.25 0.38 0.24
Put(3.20S(0), T ) 0.00 0.10 0.22 0.28 0.33 0.37 0.39 0.39 0.40 0.12
Call(4.00S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02
Std Dev x̂(ti−1)

Stock 0.14 0.13 0.12 0.12 0.13 0.14 0.13 0.17 0.36 0.35
Risk-free bond 0.30 0.34 0.36 0.37 0.38 0.38 0.38 0.52 1.13 1.37

Put(0.80S(0), T ) 0.65 0.72 0.57 0.43 0.31 0.20 0.11 0.08 0.22 0.17
Put(1.60S(0), T ) 0.10 0.23 0.29 0.34 0.36 0.34 0.33 0.36 0.44 0.34
Put(2.40S(0), T ) 0.22 0.33 0.37 0.37 0.33 0.30 0.31 0.35 0.41 0.28
Put(3.20S(0), T ) 0.00 0.25 0.35 0.38 0.38 0.39 0.42 0.47 0.48 0.21
Call(4.00S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
Call(4.80S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09
Call(5.60S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.07
Call(6.40S(0), T ) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.09 0.14

Table 4.30: Behavior of Strategy 3 for hedging the GMIB, using annual rebalancing and allowing for
the benchmark transaction costs (using the P -valuation target).
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4.11 Assessing the impact of model risk

There is a large amount of statistical evidence showing that log stock returns are not in-

dependent, identically distributed (IID) normal random variables (i.e. stock prices do not

satisfy the geometric Brownian motion process). Stock returns exhibit stochastic volatil-

ity and jumps. Given that equity risk dominates the GMIB option, it is of great interest

to assess the impact of stock return model risk. In this section, we measure the impact on

the performance of the semi-static strategies if the actual stock return distribution under

P does not satisfy the IID normal assumption. If the strategies perform very differently

under a different equity price model, then the semi-static strategies may not be robust in

practice.

An alternative model for stock price returns, which has gained some acceptance as a better

model for stock returns at low and high frequencies, is the regime switching lognormal

(RSLN) model. The RSLN model assumes the stock return process, under P , lies in one

of Ks states over a given time interval. Let E[t,t+τ) be a random variable denoting the

state in the interval [t, t+ τ). Under the RSLN model

log

(
S(t+ τ)

S(t)

) ∣∣∣ (E[t,t+τ) = k
)
∼ N(uk, σ

2
k), k = 1, . . . , Ks.

The Ks-state Markov chain transition matrix P contains the probabilities of moving

between states. The component in the i-th row at the j-th column corresponds to

pij = P [E[t,t+τ) = j|E[t−τ,t) = i] i, j = 1, . . . , Ks.

Hardy (2001) finds the 2-state regime switching lognormal (RSLN2) model provides a

reasonable fit to S&P 500 monthly log total return data.

We assess the impact of model risk by assuming the actual stock return distribution un-

der P satisfies the RSLN2 model (Ks = 2). An advantage of using a lognormal regime

switching model is that it is computationally fast, at simulating returns between rebal-

ancing time points, in the existing semi-static model framework. We fit the RSLN2

model to monthly time intervals (τ = 1/12). Hence the parameters of the model,
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Θ = {µ1, µ2, σ1, σ2, p1,2, p2,1}, are measured on a monthly basis. At time 0, the prob-

ability of being in State 1 is set equal to the long-run 2-state Markov chain equilibrium

probability given by π1 = p21/(p12 + p21) (For State 2, π2 = 1−π1). Methods for estimat-

ing the parameters include maximum likelihood estimation (Hardy, 2001) and Bayesian

Markov Chain Monte Carlo estimation (Hartman and Heaton, 2011). Table 4.31 displays

the parameter sets we use to assess the impact of model risk. State 1 corresponds to a

positive, strong equity market, while State 2 corresponds to a negative, weak equity mar-

ket. Parameter set A corresponds to the values obtained by Hardy (2001). These RLSN2

parameter values are broadly consistent with the parameter estimates in Hartman and

Heaton (2011). Parameter set B is a variation of set A, which allows for a higher transition

probability of 10% from the strong to the weak market state. Parameter set C allows for

much more adverse outcomes than sets A and B. For comparison purposes, we also show

the benchmark parameter values, used in all previous examples of this chapter, expressed

on a monthly basis. Table 4.32 displays the key statistics of the stock price distribution

at the end of year 5 and year 10 under each parameter set (assuming the stock price at

time 0 is 1000). These statistics were obtained using simulation, based on 106 scenarios.

This table is provided to give the reader a sense of the stock price distribution features

for each parameter set.

Parameter Set µ1 µ2 σ1 σ2 p12 p21

A 0.0126 -0.0185 0.035 0.0748 0.0398 0.3798
B 0.0126 -0.0185 0.035 0.0748 0.1 0.4
C 0.0126 -0.0185 0.035 0.09 0.1 0.2

Benchmark Assumptions 0.0058 0 0.0577 0 0 0

Table 4.31: Different parameter set assumptions for the RSLN2 model.

Parameter Set Mean Std dev 1%-quantile 5%-quantile Median 95%-quantile 99%-quantile
Distribution at end of year 5

A 1888 638 748 995 1807 3049 3755
B 1580 616 550 751 1489 2717 3449
C 1305 677 290 454 1181 2573 3445

Benchmark Assumptions 1569 739 501 679 1419 2963 4027
Distribution at end of year 10

A 3566 1753 962 1404 3228 6869 9259
B 2494 1429 550 842 2181 5203 7336
C 1704 1331 197 360 1351 4233 6528

Benchmark Assumptions 2462 1729 461 711 2015 5705 8776

Table 4.32: The stock price distribution under different parameter set assumptions.
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Adjusting the implementation of the method for testing semi-static strategies, to allow

for a different actual stock return distribution model, is straightforward. The only change

to the HLS algorithm occurs in Step (7); the stock returns are now simulated using the

RLSN2 model. The hedging targets are still simulated using the existing models (geo-

metric Brownian motion for the stock). This situation reflects reality, where the modeler

(user of the results) does not know the true underlying distributions of the stock returns,

but simulates the returns using, in our case, a normal distribution. Here, the “true”

underlying distribution is the RLSN2 model. We do not adjust the strike prices of the

options because the actual stock return distribution under P over each hedging horizon

has changed; the modeler does not know what the actual return distribution is.

Tables 4.33, 4.34 and 4.35 illustrate the performances of Strategies 1, 2 and 3 under each

of the parameter assumption sets for the RSLN2 model. All of the results in this section

are based on strategies minimizing the MSHE, where the hedging target is the GMIB

price, b(0) = π, and transaction costs are included. For each strategy type, the results

under parameter set A are the most favorable, while the results under set C are the least

favorable. This observation suggests that semi-static hedging strategies for the GMIB

tend to perform better when equity returns are on average higher. Interestingly, Strategy

1 performs poorly under set C, but the relative performance of Strategy 2 under set C

is much better. Strategy 3 is the best performer at minimizing the tail risk under all of

the parameter sets, but this comes at a cost; the mean hedging losses are all positive for

Strategy 3.

Each table also shows how the static hedging strategies behave under the RSLN2 model.

Note that in Chapter 3, we did not test the static strategies for their robustness against

model misspecification. Hence, the results in this section supplement the findings in Chap-

ter 3. The static lookback strategy appears to be remarkably robust under each model, in

terms of controlling the risk of extreme losses, although the mean hedging profit decreases

when equity returns are on average lower. In contrast, the tail risk of the static put strat-

egy is quite variable under different return distributions. It is noted that by comparing

the hedging loss statistics in each of Tables 4.33, 4.34 and 4.35, for a particular static

strategy and a certain parameter set, the reader can gain a sense of the sensitivity of

the results of that static strategy under that parameter set (for statistics based on 1000
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scenarios).

Overall, it appears that the Strategies 2 and 3, and the static lookback strategy, are ro-

bust against model misspecification. The results give credibility to the use of the method

in this chapter for testing semi-static strategies for the GMIB.

The way we have tested model misspecification in this section is an important risk man-

agement technique. Any hedging strategy for a long-dated option should be tested for

its robustness against model misspecification, using an approach similar to what we have

described here.

Strategy 1, using parameter set A
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 245 -413 -204 59 148 -195 149 280

(238, 252) (−426,−404) (−216,−196) (34, 98) (141, 156) (−204,−186) (115, 183) (193, 368)
Half-yearly 225 -389 -180 68 142 -175 149 279

(218, 232) (−413,−373) (−193,−173) (49, 99) (135, 149) (−184,−166) (117, 181) (202, 355)
Quarterly 206 -361 -163 56 132 -159 130 247

(199, 213) (−377,−343) (−171,−153) (48, 79) (126, 139) (−167,−150) (101, 160) (168, 326)
Static w/ 914 -1487 -837 19 444 -799 252 460

10-yr put (PF1) (889, 939) (−1533,−1410) (−858,−809) (−31, 127) (419, 468) (−826,−771) (177, 326) (419, 501)
Static w/ 248 -410 -219 131 138 -206 135 137

lookback (PF2) (241, 255) (−427,−386) (−225,−214) (98, 135) (130, 146) (−215,−198) (134, 136) (137, 137)

Strategy 1, using parameter set B
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 207 -385 -122 177 173 -115 276 463

(199, 215) (−398,−373) (−133,−111) (159, 205) (164, 181) (−125,−104) (236, 316) (357, 568)
Half-yearly 182 -346 -97 168 155 -95 256 421

(174, 189) (−357,−335) (−108,−86) (142, 189) (147, 162) (−105,−86) (220, 292) (346, 496)
Quarterly 162 -309 -83 148 142 -79 238 390

(156, 169) (−330,−294) (−97,−70) (135, 173) (135, 149) (−88,−71) (203, 274) (306, 475)
Static w/ 672 -1170 -504 405 505 -444 486 566

10-yr put (PF1) (649, 695) (−1222,−1116) (−563,−445) (366, 475) (488, 522) (−476,−413) (456, 515) (467, 664)
Static w/ 232 -393 -182 136 188 -136 137 137

lookback (PF2) (225, 239) (−423,−382) (−199,−165) (136, 136) (183, 194) (−148,−124) (136, 137) (137, 137)

Strategy 1, using parameter set C
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 223 -289 7 396 222 25 624 1053

(203, 243) (−310,−266) (−8, 19) (348, 455) (203, 241) (11, 38) (530, 718) (807, 1298)
Half-yearly 212 -248 15 369 210 32 599 1060

(187, 238) (−278,−239) (2, 31) (314, 434) (186, 234) (19, 45) (494, 704) (702, 1418)
Quarterly 234 -245 25 376 229 44 643 1219

(172, 296) (−270,−224) (14, 39) (321, 436) (168, 291) (30, 59) (487, 799) (572, 1866)
Static w/ 553 -1059 107 478 551 -41 621 1009

10-yr put (PF1) (529, 576) (−1115,−1010) (64, 144) (478, 479) (530, 573) (−75,−6) (544, 698) (801, 1217)
Static w/ 201 -406 73 137 198 -33 145 178

lookback (PF2) (192, 210) (−422,−384) (25, 99) (136, 137) (191, 206) (−46,−21) (135, 155) (125, 232)

Table 4.33: Hedging loss statistics derived from Strategy 1 for the GMIB, under different parameter
assumptions for the RSLN2 model.
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Strategy 2, using parameter set A
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 89 -165 -9 105 86 -21 159 251

(83, 94) (−180,−152) (−16,−4) (97, 124) (81, 91) (−26,−15) (138, 180) (204, 298)
Half-yearly 90 -166 -7 112 88 -16 174 287

(84, 95) (−184,−153) (−12,−2) (104, 125) (83, 94) (−21,−11) (149, 199) (230, 345)
Quarterly 94 -157 3 141 94 -6 218 331

(88, 101) (−179,−148) (−2, 7) (124, 176) (88, 101) (−12, 0) (190, 247) (272, 390)
Static w/ 908 -1440 -850 26 441 -794 216 502

10-yr put (PF1) (883, 933) (−1509,−1378) (−872,−824) (−31, 93) (417, 465) (−821,−767) (146, 286) (389, 615)
Static w/ 256 -418 -229 105 141 -214 133 137

lookback (PF2) (249, 263) (−445,−397) (−240,−223) (69, 132) (134, 149) (−222,−205) (125, 140) (136, 137)

Strategy 2, using parameter set B
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 104 -178 -16 152 103 -18 225 342

(98, 111) (−208,−162) (−25,−12) (132, 169) (96, 110) (−24,−12) (196, 254) (282, 401)
Half-yearly 108 -187 -11 150 107 -13 240 361

(101, 114) (−212,−174) (−18,−4) (135, 180) (100, 114) (−20,−6) (207, 272) (310, 413)
Quarterly 109 -179 -5 188 109 -1 262 379

(103, 116) (−214,−155) (−12, 4) (166, 211) (103, 116) (−8, 5) (235, 290) (346, 412)
Static w/ 697 -1199 -540 428 522 -462 475 498

10-yr put (PF1) (670, 725) (−1291,−1144) (−594,−476) (396, 476) (500, 545) (−495,−430) (460, 489) (467, 529)
Static w/ 230 -395 -175 136 189 -132 136 137

lookback (PF2) (220, 241) (−411,−377) (−190,−155) (136, 136) (180, 198) (−143,−120) (136, 137) (137, 137)

Strategy 2, using parameter set C
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 134 -231 -9 203 133 -10 300 484

(123, 145) (−248,−205) (−16,−1) (180, 227) (122, 144) (−19,−2) (254, 346) (324, 644)
Half-yearly 148 -230 -7 231 148 -7 361 622

(137, 160) (−254,−213) (−16, 3) (201, 263) (137, 160) (−16, 3) (306, 417) (459, 784)
Quarterly 151 -235 3 242 151 2 386 668

(137, 164) (−263,−211) (−5, 10) (208, 294) (137, 164) (−7, 11) (324, 449) (467, 869)
Static w/ 562 -1074 106 478 559 -62 591 875

10-yr put (PF1) (538, 587) (−1174,−1010) (41, 146) (478, 479) (537, 581) (−96,−27) (533, 649) (695, 1056)
Static w/ 210 -406 49 137 205 -44 137 137

lookback (PF2) (199, 220) (−438,−384) (22, 84) (136, 137) (197, 213) (−57,−32) (137, 137) (137, 137)

Table 4.34: Hedging loss statistics derived from Strategy 2 for the GMIB, under different parameter
assumptions for the RSLN2 model.
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Strategy 3, using parameter set A
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 53 -62 14 87 51 13 138 263

(47, 59) (−71,−55) (11, 16) (79, 98) (45, 57) (10, 16) (113, 163) (174, 351)
Half-yearly 51 -45 19 94 46 21 133 216

(46, 55) (−53,−37) (17, 21) (88, 101) (41, 51) (18, 24) (115, 151) (160, 273)
Quarterly 58 -29 25 119 49 31 156 221

(53, 64) (−37,−23) (23, 27) (109, 131) (43, 55) (28, 34) (141, 170) (179, 263)
Static w/ 931 -1499 -853 48 451 -815 265 514

10-yr put (PF1) (905, 957) (−1574,−1434) (−872,−834) (−36, 140) (424, 478) (−843,−787) (190, 339) (423, 605)
Static w/ 254 -409 -227 132 142 -210 135 137

lookback (PF2) (244, 264) (−424,−399) (−235,−219) (99, 134) (130, 155) (−219,−201) (134, 136) (136, 137)

Strategy 3, using parameter set B
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 53 -57 17 105 49 20 139 192

(50, 56) (−66,−49) (14, 19) (95, 117) (46, 52) (17, 23) (126, 152) (162, 222)
Half-yearly 55 -35 23 111 46 29 150 213

(51, 58) (−46,−30) (21, 26) (102, 124) (43, 50) (26, 32) (135, 165) (180, 246)
Quarterly 62 -21 31 129 48 39 165 233

(58, 66) (−27,−15) (28, 33) (120, 141) (44, 52) (36, 42) (149, 181) (183, 282)
Static w/ 684 -1190 -500 473 515 -450 480 493

10-yr put (PF1) (658, 710) (−1271,−1126) (−562,−434) (426, 476) (495, 535) (−482,−418) (474, 486) (464, 522)
Static w/ 230 -409 -166 136 190 -129 136 137

lookback (PF2) (222, 238) (−421,−395) (−186,−147) (136, 136) (184, 195) (−141,−118) (136, 137) (136, 137)

Strategy 3, using parameter set C
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 66 -76 23 117 63 21 152 219

(61, 72) (−85,−64) (19, 26) (109, 126) (57, 69) (17, 25) (137, 166) (175, 263)
Half-yearly 64 -46 27 127 56 32 173 261

(58, 70) (−57,−39) (24, 30) (115, 140) (50, 62) (28, 35) (151, 196) (177, 344)
Quarterly 70 -21 36 133 55 43 195 317

(64, 76) (−30,−14) (33, 39) (119, 147) (49, 61) (40, 47) (168, 222) (237, 397)
Static w/ 570 -1086 122 479 567 -58 589 830

10-yr put (PF1) (543, 597) (−1136,−1031) (59, 158) (478, 479) (542, 592) (−93,−23) (539, 639) (713, 947)
Static w/ 198 -387 66 137 196 -31 137 138

lookback (PF2) (189, 207) (−412,−366) (40, 103) (136, 137) (188, 203) (−43,−19) (137, 137) (137, 138)

Table 4.35: Hedging loss statistics derived from Strategy 3 for the GMIB, under different parameter
assumptions for the RSLN2 model.
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4.12 Hedging effectiveness when the fee rate is low

The GMIB price is a monotone decreasing function of the fee rate. Furthermore, as illus-

trated in Figure 2.1, the GMIB price approaches a lower boundary as the fee rate grows,

because of the guaranteed return component. The performance of a semi-static (or static)

strategy will improve as the fee rate increases, because the GMIB maturity value will be

smaller, on average. But the marginal improvement of a semi-static strategy will decrease

as the fee rate gets larger, because the guaranteed return component is independent of

the fee rate. The results shown thus far in this chapter are based on the fee rate being

4.5%, which corresponds to the fair fee rate under the pricing model of Chapter 2. In

this section, we provide an indication of the deterioration in the performance of the semi-

static strategies from using a fee rate of 1%; this fee rate corresponds to a representative

industry fee rate.

Tables 4.36 and 4.37 display the results from applying Strategies 1, 2 and 3, when the fee

rate is 1%. The strategies are based on a MSHE minimization objective, and the hedg-

ing target is the GMIB price. Note that the static hedging strategies now correspond to

Portfolios C3 and C4B from Chapter 3. It is informative to compare the results in Tables

4.36 and 4.37 with the corresponding results for when the fee rate is 4.5% (Tables 4.14

and 4.15). By reducing the fee rate, all of the hedging loss statistics for the semi-static

strategies increase. In particular, the tail risk measures are much higher. When the fee

rate is 1%, Strategy 2 appears to offer the lowest tail risk measures. This is in contrast

to the results based on a fee rate of 4.5%, where Strategy 3 offered the lowest tail risk

measures.

For completeness, Tables 4.38 and 4.39 show the corresponding results when the P -

valuation targets are used. The major differences in the hedging loss distributions, com-

pared to the cases where the GMIB price is the hedging target, are that the mean hedging

losses are lower, but the tail risk measures are much higher. Lower means and higher tail

risk measures were also seen in the results in the case where the fee rate is 4.5%, in Section

4.10.

In this chapter, we have used the fair fee rate c = 4.5% as the benchmark fee rate. But
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in Chapter 3, the benchmark fee rate was c = 1%. We briefly explain the reasoning

for using the fair fee rate in Chapter 4. When c = 1%, there are not enough funds at

time 0 to construct a hedging portfolio payoff that can adequately match the hedging

targets at the end of the first hedging horizon. Thus, appropriate option positions are

unaffordable, at least in the earlier hedging horizons. The semi-static strategy is at a

disadvantage from the start. A favorable hedging result can only occur if the stock price

increases at various stages during the accumulation phase, in such a way that at least one

rebalancing point, sufficient funds are available to construct a hedging portfolio that has

a payoff, at the end of the next hedging horizon, that adequately matches the hedging

targets. In other words, under the assumption of c = 1%, it is not possible to see the true

potential of a semi-static strategy. In contrast, when c = 4.5%, at time 0 the hedging

portfolio has enough funds to reasonably match the range of hedging targets (when the

hedging target is set equal to the GMIB price) at the end of the first horizon. This point

is best understood by inspecting, in Figures 4.3, 4.4 and 4.5, the panels displaying the

hedging targets as functions of the stock price for time 0 to time 1. Loosely speaking, the

playing field is roughly even at inception, when the fee rate is set around 4.5%. If the

semi-static strategy does not perform well, then it is not because that the strategy has

an unreasonably low amount of funds at time 0 to adequately complete the task.
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 204 -158 51 421 187 82 576 833

(190, 218) (−189,−146) (37, 62) (375, 461) (175, 199) (71, 94) (516, 637) (729, 938)
Half-yearly 184 -136 59 392 162 86 527 741

(171, 196) (−154,−120) (52, 70) (352, 415) (152, 173) (76, 96) (475, 578) (638, 844)
Quarterly 179 -108 62 366 154 91 519 787

(165, 193) (−120,−92) (55, 70) (336, 409) (142, 167) (82, 101) (458, 581) (660, 915)
Static w/ 441 -698 -128 679 439 -43 819 1131

10-yr put (PC3) (404, 478) (−750,−624) (−146,−99) (647, 708) (403, 475) (−71,−16) (755, 884) (939, 1322)
Static w/ 574 -1030 162 399 574 -12 400 406

lookback (PC4B) (457, 692) (−1174,−892) (129, 190) (399, 399) (458, 691) (−48, 23) (398, 402) (396, 416)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 227 -164 64 427 206 95 646 1088

(207, 247) (−198,−143) (50, 77) (402, 491) (187, 224) (83, 108) (554, 739) (838, 1339)
Half-yearly 205 -112 68 403 177 102 595 942

(185, 224) (−131,−103) (59, 79) (378, 448) (159, 196) (91, 113) (513, 676) (704, 1180)
Quarterly 209 -67 81 424 170 121 631 983

(189, 228) (−77,−58) (73, 89) (383, 463) (152, 188) (110, 131) (547, 715) (803, 1164)
Static w/ 425 -684 -153 682 419 -72 768 946

10-yr put (PC4) (406, 444) (−774,−634) (−178,−130) (658, 704) (400, 439) (−98,−46) (726, 809) (789, 1103)
Static w/ 510 -1083 104 399 509 -37 400 402

lookback (PC4B) (464, 555) (−1312,−930) (70, 138) (399, 399) (464, 553) (−68,−5) (399, 400) (398, 406)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 179 -43 71 364 144 107 544 846

(163, 195) (−58,−35) (64, 80) (342, 428) (129, 158) (98, 116) (474, 615) (672, 1019)
Half-yearly 183 -49 72 382 149 105 562 913

(165, 200) (−67,−41) (64, 78) (352, 417) (133, 165) (96, 114) (488, 637) (740, 1087)
Quarterly 193 -61 61 436 163 104 614 933

(175, 212) (−88,−54) (55, 70) (380, 460) (146, 180) (94, 114) (542, 687) (759, 1108)
Static w/ 440 -659 -139 700 438 -45 825 1098

10-yr put (PC4) (417, 463) (−736,−594) (−155,−117) (666, 718) (415, 461) (−72,−18) (768, 882) (955, 1241)
Static w/ 540 -963 139 399 540 -24 399 399

lookback (PC4B) (478, 603) (−1181,−819) (110, 172) (399, 399) (479, 601) (−57, 10) (399, 399) (398, 400)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 185 -32 77 396 147 113 557 860

(169, 201) (−46,−26) (74, 82) (359, 437) (131, 162) (104, 122) (489, 624) (684, 1036)
Half-yearly 196 -33 75 417 159 116 606 984

(177, 216) (−45,−25) (68, 82) (367, 457) (140, 177) (106, 125) (525, 687) (769, 1199)
Quarterly 204 -41 72 427 167 116 645 1060

(183, 225) (−56,−33) (65, 80) (383, 495) (148, 187) (106, 127) (556, 734) (829, 1291)
Static w/ 396 -562 -130 664 394 -39 778 1054

10-yr put (PC4) (377, 414) (−615,−529) (−152,−106) (649, 690) (375, 413) (−64,−15) (716, 841) (802, 1305)
Static w/ 439 -812 136 399 439 13 399 401

lookback (PC4B) (401, 478) (−945,−714) (109, 167) (399, 399) (400, 479) (−14, 40) (399, 400) (398, 405)

Table 4.36: Hedging loss distribution statistics derived from Strategies 1 and 2 for the GMIB (when
the fee rate is 1%, and hedging target is the GMIB price).
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Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 189 -39 81 392 147 119 548 851

(173, 204) (−59,−25) (74, 91) (367, 424) (132, 161) (110, 128) (482, 613) (681, 1020)
Half-yearly 186 -33 77 403 145 116 538 784

(172, 200) (−49,−24) (71, 85) (362, 435) (133, 158) (107, 125) (483, 593) (642, 925)
Quarterly 204 -28 71 401 167 118 638 1098

(181, 227) (−40,−20) (63, 78) (367, 437) (144, 189) (108, 129) (538, 739) (851, 1345)
Static w/ 435 -657 -156 691 430 -67 809 1087

10-yr put (PC4) (413, 456) (−751,−604) (−175,−133) (665, 708) (408, 451) (−93,−40) (750, 867) (869, 1305)
Static w/ 516 -974 106 399 515 -39 399 400

lookback (PC4B) (464, 569) (−1146,−844) (76, 140) (399, 399) (465, 566) (−71,−7) (399, 399) (398, 401)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 205 -16 91 415 154 135 611 901

(188, 221) (−40,−3) (86, 101) (384, 455) (139, 169) (125, 144) (537, 685) (792, 1010)
Half-yearly 206 -2 95 410 153 138 615 969

(187, 225) (−17, 3) (88, 100) (371, 474) (134, 172) (128, 147) (533, 698) (737, 1201)
Quarterly 220 -1 103 401 166 145 673 1198

(197, 244) (−9, 9) (93, 109) (356, 439) (142, 190) (135, 155) (561, 784) (966, 1429)
Static w/ 421 -595 -140 697 419 -45 801 1025

10-yr put (PC3) (401, 441) (−727,−555) (−158,−113) (671, 717) (399, 439) (−71,−19) (751, 850) (849, 1201)
Static w/ 492 -898 132 399 492 -7 401 408

lookback (PC4B) (441, 543) (−1149,−737) (100, 161) (399, 399) (442, 543) (−38, 23) (398, 403) (396, 421)

Table 4.37: Hedging loss distribution statistics derived from Strategy 3 for the GMIB (when the fee
rate is 1%, and hedging target is the GMIB price).
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Strategy 1
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 703 -1264 -276 812 656 -255 1412 2276

(666, 741) (−1326,−1224) (−317,−211) (718, 921) (613, 698) (−296,−215) (1188, 1637) (1825, 2727)
Half-yearly 728 -1326 -289 756 670 -285 1391 2412

(680, 775) (−1432,−1233) (−336,−245) (662, 929) (615, 725) (−327,−244) (1128, 1654) (1613, 3210)
Quarterly 788 -1369 -339 783 728 -303 1621 3239

(729, 847) (−1452,−1299) (−366,−292) (678, 993) (657, 799) (−348,−258) (1267, 1974) (2301, 4177)
Static w/ 421 -595 -140 697 419 -45 801 1025

10-yr put (PC3) (401, 441) (−727,−555) (−158,−113) (671, 717) (399, 439) (−71,−19) (751, 850) (849, 1201)
Static w/ 492 -898 132 399 492 -7 401 408

lookback (PC4B) (441, 543) (−1149,−737) (100, 161) (399, 399) (442, 543) (−38, 23) (398, 403) (396, 421)

Strategy 1
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 665 -1235 -256 820 613 -258 1201 1815

(630, 699) (−1314,−1154) (−292,−219) (674, 927) (577, 648) (−296,−220) (1056, 1347) (1496, 2135)
Half-yearly 686 -1270 -261 845 632 -267 1244 1904

(650, 721) (−1371,−1166) (−311,−219) (680, 956) (594, 669) (−306,−228) (1085, 1404) (1539, 2269)
Quarterly 706 -1307 -272 871 654 -269 1382 2221

(669, 744) (−1401,−1180) (−310,−243) (693, 1049) (612, 695) (−309,−228) (1190, 1574) (1855, 2586)
Static w/ 395 -603 -135 674 393 -41 770 971

10-yr put (PC3) (380, 411) (−645,−555) (−150,−113) (658, 697) (377, 410) (−66,−17) (725, 816) (812, 1130)
Static w/ 428 -833 158 399 428 24 399 399

lookback (PC4B) (399, 458) (−997,−743) (127, 185) (399, 399) (398, 458) (−2, 51) (399, 399) (399, 399)

Strategy 2
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 640 -1215 -241 755 592 -244 1150 1924

(605, 675) (−1293,−1132) (−300,−213) (648, 855) (554, 630) (−280,−207) (978, 1322) (1443, 2404)
Half-yearly 720 -1303 -302 800 663 -281 1342 2404

(652, 789) (−1415,−1208) (−335,−270) (631, 927) (584, 743) (−322,−240) (1053, 1631) (1264, 3544)
Quarterly 768 -1324 -328 948 711 -291 1582 2841

(703, 833) (−1461,−1257) (−360,−284) (813, 1086) (635, 788) (−335,−247) (1277, 1888) (1740, 3943)
Static w/ 416 -639 -147 689 413 -55 775 942

10-yr put (PC3) (398, 434) (−687,−592) (−173,−127) (672, 720) (394, 431) (−80,−29) (739, 811) (831, 1053)
Static w/ 486 -933 125 399 486 -15 399 400

lookback (PC4B) (435, 538) (−1059,−858) (97, 150) (399, 399) (435, 537) (−45, 15) (399, 399) (399, 401)

Strategy 2
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 675 -1164 -221 904 643 -208 1466 2341

(638, 713) (−1232,−1109) (−257,−182) (758, 1073) (601, 685) (−248,−168) (1252, 1680) (1990, 2693)
Half-yearly 696 -1224 -249 853 656 -234 1405 2330

(656, 737) (−1306,−1152) (−290,−196) (746, 1011) (610, 702) (−275,−194) (1180, 1629) (1742, 2918)
Quarterly 770 -1267 -262 970 735 -230 1722 3133

(714, 826) (−1361,−1189) (−316,−222) (877, 1209) (671, 799) (−276,−185) (1408, 2037) (2238, 4029)
Static w/ 421 -595 -140 697 419 -45 801 1025

10-yr put (PC3) (401, 441) (−727,−555) (−158,−113) (671, 717) (399, 439) (−71,−19) (751, 850) (849, 1201)
Static w/ 492 -898 132 399 492 -7 401 408

lookback (PC4B) (441, 543) (−1149,−737) (100, 161) (399, 399) (442, 543) (−38, 23) (398, 403) (396, 421)

Table 4.38: Hedging loss distribution statistics derived from Strategies 1 and 2 for the GMIB (when
the fee rate is 1%, and P -valuation hedging targets are used).
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Strategy 3
Negligible transaction costs

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 662 -1202 -210 826 627 -212 1225 1784

(626, 698) (−1313,−1110) (−246,−175) (708, 953) (591, 663) (−251,−173) (1081, 1369) (1618, 1950)
Half-yearly 725 -1305 -242 944 689 -228 1466 2285

(685, 765) (−1432,−1222) (−276,−210) (766, 1119) (646, 731) (−271,−185) (1273, 1660) (2069, 2501)
Quarterly 773 -1346 -275 905 727 -263 1585 2951

(725, 822) (−1540,−1261) (−323,−235) (760, 1072) (673, 782) (−308,−218) (1306, 1865) (2348, 3555)
Static w/ 432 -693 -132 694 429 -50 810 1083

10-yr put (PC3) (408, 455) (−744,−617) (−151,−108) (672, 726) (406, 452) (−77,−23) (757, 863) (923, 1243)
Static w/ 528 -1035 141 399 528 -24 400 402

lookback (PC4B) (462, 594) (−1134,−888) (108, 164) (399, 399) (463, 593) (−57, 8) (399, 400) (398, 406)

Strategy 3
Transaction costs: c(k, ti−1) = 0.5%φ(k, ti−1) k 6= b, c(b, ti−1) = 0.05%φ(b, ti−1)

Rebal freq MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
Annual 640 -1085 -183 854 616 -175 1226 1826

(603, 677) (−1200,−1047) (−217,−142) (727, 955) (579, 653) (−213,−137) (1084, 1367) (1603, 2050)
Half-yearly 683 -1194 -181 928 660 -178 1357 1919

(644, 723) (−1339,−1111) (−226,−143) (852, 1079) (621, 700) (−218,−137) (1206, 1507) (1763, 2076)
Quarterly 704 -1190 -142 1102 691 -136 1571 2205

(662, 745) (−1266,−1113) (−174,−86) (914, 1245) (648, 733) (−179,−93) (1401, 1740) (1913, 2496)
Static w/ 442 -608 -131 692 441 -36 826 1112

10-yr put (PC3) (421, 464) (−739,−573) (−154,−114) (669, 721) (419, 463) (−63,−9) (766, 886) (970, 1254)
Static w/ 527 -1009 164 399 527 -8 399 401

lookback (PC4B) (471, 582) (−1190,−857) (124, 195) (399, 399) (472, 582) (−41, 25) (399, 400) (398, 403)

Table 4.39: Hedging loss distribution statistics derived from Strategy 3 for the GMIB (when the fee
rate is 1%, and P -valuation hedging targets are used).
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4.13 Stability of the semi-static hedging method

The purpose of this section is to provide the reader with a sense of the stability of the

results of each scenario generated by the semi-static hedging method. Recall that each

scenario involves nested simulations, and optimizing the hedging portfolio based on the

nested simulation output, for each hedging horizon; variability in the results arises from

several sources. The optimization hedging portfolios for each hedging horizon will be more

stable as N , the number of sub-scenarios, increases. Furthermore, the hedging target es-

timate for each sub-scenario will have a lower standard error as M increases.

For a specific semi-static strategy, we can test the stability of the results of each scenario

by running common Monte Carlo simulations (for fixed N and M). Each common simula-

tion is based on the same strategy type and rebalancing frequency, and common random

numbers are used for generating the actual stock and interest rate processes. Specifically,

Step (7) of the HLS algorithm is the same for each common simulation, but all of the

other steps in the algorithm will have different output. In theory, the results of each

common simulation should give identical results as N and M approach infinity. However,

as already mentioned, there is a balance between accuracy and computation time in using

the semi-static hedging method. Thus, here we show how the results vary for different

values of N . Numerical results suggest that, if the control variate discussed in Section

4.3.1 is used, then, when N is sufficiently large, M does not need to be set any higher

than 200 to produce relatively stable results. Hence, we do not show how the results vary

with M , because the value of N has a much larger influence on the stability of the results.

Table 4.40 displays the results of three common Monte Carlo simulations of the hedg-

ing loss distribution for Strategy 2, using annual rebalancing and negligible transaction

costs, for the cases where N = 100, N = 200 and N = 300. Comparing the hedging loss

statistics of each simulation, for a specific value of N , gives an indication as to how stable

the results are. Differences between the hedging losses of the three common simulations

arise from different optimal instrument positions in each hedging horizon (because the

set of hedging target values vary), which in turn affect the portfolio payoffs and budget

constraints of subsequent hedging horizons.
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Figure 4.7 provides another perspective on the stability of the results of each scenario.

The top, middle and bottom panels, display the hedging losses for 25 scenarios, generated

by the three common simulations, for N = 100, N = 200 and N = 300, respectively. It is

noted that the scenarios are independent of each other. As expected, the hedging losses

for each simulation tend to be closer in value as N increases.

Overall, the results for N = 200 and N = 300 are fairly close to each other, while the

results for N = 100 are noticeably more variable. This gives us confidence that N = 200 is

sufficient for reasonably accurate results. Because the computation time of each scenario

using N = 300 is significantly more than for N = 200, we have opted for using N = 200

in the examples presented in this chapter. (Although not shown here, Strategy 3 also

shows fairly stable results for N > 200.)

N = 100

Common simulation number MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
#1 130 -225 -28 160 126 -34 247 439

(121, 139) (−257,−211) (−34,−20) (143, 180) (116, 135) (−42,−26) (205, 290) (282, 596)
#2 129 -240 -28 144 124 -35 231 425

(120, 139) (−267,−220) (−35,−21) (132, 170) (114, 134) (−43,−28) (187, 275) (264, 585)
#3 127 -225 -28 149 123 -34 241 417

(118, 136) (−243,−214) (−37,−20) (134, 170) (113, 132) (−42,−27) (200, 283) (279, 555)
N = 200

Common simulation number MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
#1 116 -212 -26 139 111 -31 203 288

(109, 122) (−247,−192) (−35,−18) (124, 159) (105, 118) (−38,−25) (180, 226) (258, 318)
#2 117 -218 -22 147 113 -32 205 293

(110, 125) (−250,−196) (−30,−15) (129, 168) (106, 120) (−39,−25) (184, 227) (253, 334)
#3 117 -219 -25 137 113 -34 211 314

(110, 124) (−252,−193) (−32,−20) (123, 166) (106, 120) (−41,−27) (184, 238) (274, 355)
N = 300

Common simulation number MSHL1/2 5%-quantile Median VaR(95%) Std dev Mean CTE(95%) CTE(99%)
#1 120 -237 -26 138 114 -36 206 334

(113, 127) (−246,−215) (−33,−19) (126, 161) (107, 122) (−43,−29) (176, 236) (237, 431)
#2 122 -235 -25 144 117 -35 229 387

(114, 129) (−249,−216) (−34,−18) (126, 165) (109, 124) (−42,−28) (193, 264) (295, 479)
#3 119 -233 -25 142 114 -36 210 343

(112, 127) (−252,−215) (−33,−20) (123, 159) (107, 121) (−43,−29) (179, 241) (244, 442)

Table 4.40: Results of three common simulations of the hedging loss distribution for Strategy 2, using
annual rebalancing and negligible transaction costs, for the cases where N = 100, 200, 300 (M = 200 in
all of the simulations). In each simulation, common random numbers are used for the actual values of
the stock and interest rate variables.
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Figure 4.7: The hedging losses of 25 scenarios for Strategy 2, based on annual rebalancing and
negligible transaction costs, generated by each of the three common simulations, for the cases where
N = 100, 200, 300. The scenarios are independent of each other.
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4.14 Summary of the results and concluding remarks

This chapter has measured the performance of several types of semi-static hedging strate-

gies for the GMIB option. Three types of semi-static strategies were considered for the

GMIB (Section 4.7). Strategy 1 involves hedging with just the stock (and bonds). Under

Strategy 2, the hedging portfolio may include options which expire at the end of each

horizon (which we referred to as τ -year options). Under Strategy 3, the hedging portfolio

may include T -year options, which expire at the maturity date of the GMIB, time T .

In Section 4.8, we demonstrated that the results of any semi-static strategy are much

more favorable in a model where interest rates are constant, compared to a model in

which interest rates are stochastic. The results are more favorable in the sense that the

hedging portfolios more closely match the GMIB liability over time, and the tail risk

measures are smaller. This observation suggests that investigations of the effectiveness of

semi-static strategies for long-dated options should employ stochastic interest rate models.

If the hedging target is the GMIB price, Strategies 1 and 2 perform best using a MSHE

minimization objective (Section 4.8.2), while Strategy 3 performs best using a CTE mini-

mization objective (Section 4.9). Changing the hedging target from the GMIB price to the

P -valuation target markedly changes the hedging loss distribution (Section 4.10). Using a

P -valuation target produces a hedging loss distribution with a much higher mean hedging

profit (i.e. lower mean loss), and much higher tail risk measures. Overall, setting the hedg-

ing target equal to the GMIB price gives a better trade-off between risk and expected loss.

The semi-static strategies appear to be robust against model risk (Section 4.11). We found

the semi-static, and static lookback, strategies performed well if the modeler implemented

the strategies assuming the actual stock return distribution was normally distributed,

when in fact the true stock return distribution satisfied the RSLN2 model. However, the

semi-static strategies are far less effective if the fee rate charged for the GMIB option is

1%, rather than the fair fee rate of 4.5% (Section 4.12).

Comparing the performances of the semi-static and static hedging strategies for the GMIB,

we find that the static lookback strategy outperforms the semi-static strategies in most
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situations. The T -year lookback options are able to cut-off the right tail risk. However, as

previously mentioned in Chapter 3, in practice, implementing the static lookback strat-

egy will be problematic. The implied volatilities of the lookback options are likely to

be much higher than the 20% implied volatility assumption we adopted. Moreover, it

may be difficult to find a seller for a lookback option with such a long term to expiry.

Therefore, we conclude that the semi-static strategies offer viable, practical alternative

hedging strategies for the GMIB.

We argue that Strategy 2, using annual rebalancing, with the MSHE minimization ob-

jective and the hedging target set equal to the GMIB price, is the most effective, and

practical, semi-static hedging strategy for the GMIB option. However, Strategy 2 is by

no means perfect. Although Strategy 2 is feasible in practice, it may not work well in pe-

riods where financial markets are highly turbulent. Option implied volatilities rise sharply

when market conditions are unfavorable, particularly for out-of-the-money put options.

Higher option costs will reduce the effectiveness of Strategy 2 at mitigating the tail risk

of the hedging loss distribution.

We now end with some more general comments. Semi-static hedging strategies mitigate

many of the problems associated with dynamic hedging strategies (such as delta hedging).

Dynamic hedging strategies usually assume continuous time trading is possible. In prac-

tice, rebalancing of the hedging portfolio can only be achieved at discrete time points, and

in volatile markets being unable to trade continuously increases the risk of hedge slippage.

Furthermore, transaction costs incurred by frequent rebalancing increases hedge slippage.

Large jumps in the prices of the underlying securities may also increase the likelihood of

large hedging errors for dynamic hedging strategies. A semi-static hedging strategy can

be implemented with a fixed, small number of rebalancing time points. Transaction costs

can be limited. Temporary asset price fluctuations between rebalancing time points do

not impact on the hedging portfolio. The risks surrounding extreme liquidity events are

also lessened.

Note that none of the strategies we have considered include interest sensitive instruments.

This is an issue that may be worth exploring further. We have some preliminary findings.

Although not shown here, we have investigated including an instrument corresponding to
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a bank account which earns a floating rate of interest. The payoff of the bank account at

the end of each horizon varies mildly with changes in the short rate over the horizon. Our

investigations suggest that none of the strategies considered here noticeably benefit from

the inclusion of a bank account instrument. Similarly, we have tested the inclusion of a

long term zero coupon bond which matures at time T , or slightly afterwards. Again no

material differences in the hedging loss distributions were observed for strategies with and

without the long term zero coupon bond. As noted in Chapter 3, it seems that hedging

the equity risk of the GMIB is paramount.

The semi-static hedging method, proposed in this chapter, is a versatile hedging method

for long-dated options. It can be used to hedge all kinds of long-dated options. However,

one considerable drawback of this method is the considerable computation times involved

in generating a sufficient number of scenarios, for making reliable inferences. But, given

the rapid pace at which computing power is increasing, the computation time barrier will

become less of an issue over time.
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Chapter 5

Conclusions and Potential Research

Directions

5.1 Summary of key findings

In Chapter 2, a pricing equation for the GMIB option was derived, which allowed us to

determine the fair fee rate that should be charged for the GMIB, based on plausible pa-

rameter assumptions. At first glance, it seems that the GMIB option may be underpriced

by insurers. That is, the fee rates being charged by insurers may be too low. However,

when we account for policy lapses and/or make allowances for underlying variable annu-

ity fees, the fair fee rate reduces to levels that are more comparable with the fee rates

currently being charged by insurers. A decomposition of the GMIB price was presented,

which enabled us to determine the drivers of its value. We found that the guaranteed

return component provides the largest contribution to the GMIB price, and that the

lookback component does not contribute much to the value of the GMIB option when the

guaranteed return component is already included.

In Chapter 3, we comprehensively assessed the performance of static hedging strategies

designed to minimize the CTE of the hedging loss distribution at maturity. For stan-

dard static hedging portfolios including long-dated put options, the CTE value is driven

by large hedging losses related to the lookback component. Even though the lookback
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component does not necessarily contribute much to the GMIB price, it is the dominant

factor driving the tail risk of static hedging strategies, if left unhedged. We showed that

the addition of a lookback call option to the hedging portfolio was crucial for hedging

the lookback component, and hence minimizing the CTE of the hedging loss distribution.

The CTE minimization strategies were compared to static hedging strategies designed

to minimize the mean squared hedging loss at maturity. We found that static hedging

strategies optimized to minimize the CTE generated hedging loss distributions that were

much more desirable, particularly because they addressed the tail risk. It was shown that

hedging the equity risk of the GMIB option was much more important than hedging the

interest rate risk.

In many of the examples we illustrated, we set the fee rate equal to 1%, in line with

fee rates currently being charged in practice for the GMIB option. This fee rate is far

below the fair fee rate, with respect to the model of Chapter 2. The performance of each

static hedging strategy was imperfect at best, when a fee rate of 1% was used. We then

demonstrated that when the fair fee rate is charged, the results significantly improved.

However, significant tail risk still exists even when the fair fee rate is charged, unless the

lookback call option is included in the hedging portfolio.

In Chapter 4, we investigated whether semi-static hedging strategies could outperform

static hedging strategies, in terms of reducing risk, as measured by the VaR and CTE.

Key observations were:

(1) Semi-static hedging strategies which use τ -year options (options which have a term

to expiry of one hedging horizon) or T -year options show considerably less tail risk

than semi-static hedging strategies using just the stock.

(2) The semi-static strategies appear to be robust against model risk. We found the

semi-static and static lookback strategies performed well if the modeler imple-

mented the strategies assuming the actual stock return distribution was normally

distributed, when in fact the true stock return distribution satisfied the 2-state

lognormal regime switching model.

(3) For the semi-static strategies to be effective, the fair fee rate needed to be charged.
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If a low fee rate of 1% was charged, the semi-static strategies did not perform too

well.

Overall, we found that a static hedging strategy using lookback options outperforms the

semi-static strategies, in most situations. However, in practice, T -year lookback option

prices are likely to be much higher than the prices we obtained in using our model. Thus,

the static strategy using lookback options is unlikely to be as effective in practice, as the

insurer will not have enough funds to buy the optimal lookback positions (unless they

obtain funds from elsewhere). We concluded that the semi-static strategies using τ -year

options offer viable, practical hedging strategies for the GMIB. Section 4.14 comments

on the advantages of using semi-static hedging methods, as opposed to dynamic hedging

methods (e.g. delta hedging), for long-dated options.

This thesis has investigated the financial risk management of the GMIB option as a case

study. However, the methods presented in this thesis can be applied to other complex long-

dated options. Our results should also be instructive in determining what to investigate

when pricing and hedging other long-dated options. Specifically, the following issues

should be considered:

• For an embedded option that can be valued at a certain point in time (European

options in particular), which is offered in exchange for periodic fees (specified by

some fee rate), we can develop a pricing equation for the option, that is a function

of the fee rate. Using the pricing equation, fair fee rates can be determined. Often,

alternative views of the pricing equation can be derived, as demonstrated in Sections

2.2.2 and 2.2.4. Analyzing different forms of the pricing equation may provide

additional insights into what drives the option value.

• The prices of options with complex payoffs can be decomposed in a similar manner

to the approach outlined in Section 2.5.

• It is important to explore the impact of policyholder lapses, as they may significantly

affect the price of the option (consider Section 2.6). It is noted that lapses are not

usually investigated in the (academic) literature on pricing embedded options in

long term insurance products.
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• If static hedging strategies are investigated, decompositions of the hedging loss

statistics helps identify what hedging instruments are useful. Appropriately con-

structed figures, such as those shown in Chapter 3, may also help in identifying and

understanding the risks. The figures can be instructive in determining whether the

right kind of hedging instruments are included in the hedging portfolio, in order to

adequately mitigate the tail risks. In some ways, the figures can be just as useful as

the numbers. Figures are certainly more helpful and effective than numbers when

attempting to explain to an audience the risks involved with hedging an option.

• The semi-static hedging method, proposed in Chapter 4, is a versatile hedging

method for long-dated options. It can be used to hedge all kinds of long-dated

options. The results obtained from using this method appear to be promising. The

choice of hedging target, and the choice of the objective function that is to be op-

timized in each hedging horizon, are important issues to consider when using this

method. Unfortunately, a significant drawback of this method is the considerable

computation times involved in generating a sufficient number of scenarios, for mak-

ing reliable inferences.

5.2 Comments on the GMIB option design

The exercise time of the GMIB option is random, after the 10 year waiting period ex-

pires. Valuing the GMIB as an American or Bermudan option is a challenging task.

Monte Carlo simulation methods for pricing American options could be used to value the

GMIB (Longstaff and Schwartz, 2001). But the problem is that the exercise date for each

policyholder will depend on the personal circumstances of the policyholder (e.g. ill-health

in old age, death of spouse, family issues), which may or may not be influenced by the

prevailing economic conditions. The policyholder is less likely to be concerned about when

it is optimal to exercise the GMIB, from the point of view of maximizing the financial

value of the option, after locking up their funds for at least 10 years, particularly if the

optimal strategy involves waiting another couple of years.

If insurers simplified the GMIB by say, restricting the exercise times to every 5-th policy

anniversary after the waiting period expires (with penalties for exercising at other times),
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then the valuation and risk management of the GMIB becomes a much more manageable

task. The unattractiveness of these restrictions could be mitigated by charging lower fee

rates. An alternative approach is to give the policyholder the choice, at inception, of

when they would like to set the exercise date of the GMIB. They might for example pick

the date at which they plan to retire.

As noted in Section 2.3.3, the GMIB would be less risky if the benefits provided by the

option did not increase sharply as a function of the fee rate charged for the option. From

the point of view of controlling risk, an option should be designed such that the benefits

provided by the option do not increase as the fee rate (which is supposed to cover the

benefits provided by the option) increases. The benefits provided by the option should

be insensitive to the fee rate, or a monotone decreasing function of the fee rate. One

way to circumvent this problem is to charge an upfront fee at time 0 for the option,

instead of annual fees, as discussed in Section 2.5.3. But obviously an upfront fee may be

unattractive to the policyholder, if it is a significant proportion of their initial investment.

5.3 Future research directions

Future research directions that may be fruitful include:

• Testing the static and semi-static hedging strategies using more com-

plex equity price and interest rate models. In particular, it is worthwhile

testing semi-static hedging strategies using a stochastic volatility model for equity

prices. Given that option prices in such a model also depend on volatility levels,

an additional factor, volatility, must be allowed for in the construction of hedging

portfolios. Additional instruments, which are sensitive to volatility, may need to be

added to the hedging portfolios. Examples include equity options that have expiry

dates which are further than the next portfolio rebalancing time point; at the next

rebalancing time point, the option prices will be a function of stock and volatility

levels. Liu (2010) has investigated this concept over a single-period hedging horizon.

• Developing a method for pricing the GMIB in a generalized setting where

the policyholder can choose to annuitize (with the option) on any future
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policy anniversary date, once the waiting period has expired. It would be inter-

esting to see the optimal exercise strategy, which will depend on the realized path of

the investment account, and the term structure of interest rates that exists on each

policy anniversary. The findings may help existing GMIB policyholders in deciding

whether they should annuitize with the GMIB option on their policy anniversary in

the current calendar year, or hold off and wait say another 5 years to maximize their

potential stream of annuity payments. Note that the optimal exercise strategy will

be based purely on the financial value of the option, and will not take into account

individual policyholder behavior, which is difficult, or impossible, to capture in a

model.

• Testing the effectiveness of stratified sampling techniques in the semi-

static hedging method. In Chapter 4, we set the hedging target values in each

hedging horizon based on the simulated values of the stock and interest rate pro-

cesses over the hedging horizon. It was important to have simulated a few outlying

hedging target values (as a function of the stock price; see Figures 4.3, 4.4 and 4.5),

in order to reduce the (potential) hedging errors in the tails of the hedging target

distribution. The optimal hedging portfolios might be improved by using a strat-

ified sampling technique (in each horizon) which simulates an appropriate number

of hedging target values in the tails of the hedging target distribution.

• Applying the semi-static hedging method to other types of long-dated

options. Given that the GLWB is becoming increasingly popular, there is likely

to be considerable interest in illustrations of the performance of semi-static hedging

strategies for the GLWB.

• Devising semi-static hedging methods that explicitly incorporate dy-

namic decision rules for rebalancing the hedging portfolio. For example,

within a given hedging horizon, if the stock increases or decreases by more than x%,

then the portfolio is immediately reassessed and rebalanced if necessary.

• Studying the longevity risk associated with the GMIB. Like the guar-

anteed annuity option, longevity risk is a key driver of the value of the GMIB.

Longevity risk is also significant for the GLWB. Investigating hedging strategies for

the GMIB/GLWB, that also somehow hedge the longevity risk, perhaps only par-

tially at best, is an area certainly worth exploring. A stochastic mortality model
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will be needed (for a review of such models, see Cairns et al. (2008)). Given that

the Lee–Carter model (Lee and Carter, 1992) is considered a benchmark model for

mortality projection, the use of a Bayesian form of the Lee–Carter model (Czado

et al. (2005), Pedroza (2006)), which adequately models all sources of uncertainty,

may be one starting point for incorporating longevity risk.

• Measuring how lapse assumptions impact on hedging strategies for the

GMIB (and other variable annuity options). In the literature, there has not

been much investigation of lapse assumptions in the pricing or hedging of variable

annuity options. However, as we have demonstrated in Chapter 2, accounting for

lapses can materially change the results.

• Pricing the step-up options associated with some GMIB options. These

step-up options were briefly discussed in Section 1.3.1.
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