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Abstract

The Erdős-Turán Conjecture, posed in 1941 in [10], states that if a subset B of
natural numbers is such that every positive integer n can be written as the sum of
a bounded number of terms from B, then the number of such representations must
be unbounded as n tends to infinity. To put it in more precise terms, if rB,h(n)
denotes the number of ways that the positive integer n can be written as a sum of
h elements of B, then the Erdős-Turán Conjecture states that lim sup

n→∞
rB,h(n) = ∞.

The origin of this conjecture can be traced back to Sidon [22][1], who asked whether
there exist additive bases such that rB,h(n) = no(1). The case for h = 2 was given a
positive answer by Erdős in 1956 [6], who proved the existence of additive bases B
and positive numbers c1, c2 such that c1 log(n) ≤ rB,2(n) ≤ c2 log(n). The case for
arbitrary h was given by Erdős and Tetali [9] in 1990. Both of these proofs use the
probabilistic method, and so the result only shows the existence of such bases but
such bases are not given explicitly. I. Ruzsa used the probabilistic method to prove a
partial converse to the Erdős-Fuchs Theorem, which is to say that there exists there

a subset A ⊂ N, not necessarily a basis, such that
∑
n≤N

rA,2(n) = cN+O(N1/4 log(N))

for some positive constant c > 0. Kolountzakis [17] gave an effective algorithm that
is polynomial with respect to the digits of n to compute such bases. We will discuss
these results in the following work.

Erdős, following his 1956 result, strengthened his conjecture to the following form:
if B is an additve basis for the natural numbers, then lim sup

n→∞
rB,h(n)/ log(n) > 0.

Essentially, he conjectured that the thin bases he constructed are as thin as possible
in general. Dirac [3] showed that rB,2(n) is eventually non-constant, while Borwein,
Choi, and Chu [2] showed that rB,2(n) cannot be bounded by 7. More importantly,
Borwein, Choi, and Chu have shown that the Erdős-Turán conjecture is true if certain
classes of polynomials are finite sets. The Erdős-Turán conjecture is known to be true
for multiplicative bases, and known to be false if we consider additive bases for all of
the integers rather than the natural numbers. In particular, Nathanson [19] proved
the following striking result: if f(n) is any arithmetic function, then there exists for
all positive integers h > 1 an additive basis B such that rB,h(n) = f(n) for all n ∈ Z.

Certainly, a main ingredient of a proof of the Erdős-Turán conjecture would be to
decompose a given basis into ‘nice’ parts, each of which we can deduce that the con-
jecture holds. More specifically, if it can be shown that each additive basis can be
decomposed into a part that approximates an arithmetic progression (for example,
containing arbitrarily long arithmetic progressions) and another that is uniform (sim-
ilar to a random set), then in each case we have known results that will establish the
conjecture for that part. Thus it is natural to ask if it is possible to extract a thin
basis from a given basis. The first non-trivial result along this direction was given by
Wirsing [26], and we will discuss Van Vu’s [24] proof that the Waring bases contain
thin subbases.

iii



Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Cameron Stew-
art, for his insightful suggestions and for bringing to my attention to various results
that were subsequently included in this thesis. I would like to thank Camellia Chung,
Gloria Mak, and Nicole Ngai for their help pointing out grammatical and spelling
issues. Lastly, I would like to thank the Pure Mathematics Department at the Uni-
versity of Waterloo for providing me with support during the writing of this thesis.

iv



Dedication

This is dedicated to my parents and my girlfriend, Camellia, whose patience with
me was necessary for the completion of this thesis.

v



Table of Contents

1 Introduction 1

2 The Probabilistic Method - Part I 4
2.1 Basics and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Thin bases of order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 1

Introduction

A central question in additive number theory is the following: Given an infinite subset
B ⊂ N, can we write every element of N as a sum of a bounded number of elements
in B? The first non-trivial result obtained in this topic is Lagrange’s Theorem that
every natural number can be written as the sum of four squares (and not all positive
integers can be written as the sum of three squares or less). Hilbert proved that
for every positive integer k, every element of N can be written as a bounded sum of
kth powers. I.M. Vinogradov proved that every sufficiently large odd positive integer
can be written as the sum of three primes. The infamous Goldbach Conjecture is
equivalent to the assertion that every positive integer greater than one can be written
as the sum of at most three primes.

Instead of considering a fixed and somewhat well-known set such as the squares,
higher integer powers, the polygonal numbers, and the primes, we are concerned with
a general set. Here we provide some definitions.

Definition 1.0.1. Let B ⊂ N be an infinite subset of the natural numbers and let
h ≥ 2 be a positive integer. Define rB,h(n) = #{(a1, · · · , ah) ∈ Bh|a1+ · · ·+ah = n}.
We say that B is an additive basis of order h if there exists N ∈ N such that for all
n ≥ N , rB,h(n) > 0.

The function rB,h(n) counts the number of ways (order matters) that n can be
represented as a sum of h elements of B. Usually we make the convention of assuming
0 ∈ B, so that if B is an additive basis of order g < h, then it is also an additive
basis of order h. In many proofs that a given set of natural numbers is an additive
basis of finite order, one does not show that rB,h(n) ≥ 1 but instead proves the much
more powerful statement that there exists a function f with lim

n→∞
f(n) = ∞ such

that rB,h(n) ≫ f(n). In particular, in many cases it is not known how to prove that
rB,h(n) > 0 without showing that rB,h(n) tends to infinity.

This compels an interesting problem, which is the main discussion of this paper.
Following the paradigm above, it seems that it is impossible to show that rB,h(n) > 0
for all sufficiently large n without rB,h(n) being unbounded as a function of n. Indeed,
Erdős and Turán conjectured the following in 1941 [10]:
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Conjecture 1.0.2. (Erdős and Turán) If B is an additive basis of order h, then
lim sup
n→∞

rB,h(n) = ∞.

The language used above is modern and not precisely the same as in the origi-
nal paper. It is noted that Erdős and Turán remarked that “we may mention that
the corresponding result for g(n), the number of representations of n as aiaj, can be
proved.” [10]. This latter result was proved by Erdős in 1938.

In the original paper of Erdős and Turán in 1941, they proved some estimates on
how many terms a Sidon sequence can have up to n. A Sidon sequence is a sequence
A = {a1, a2, · · · } ⊂ N0 such that each n ∈ N can only be written as a sum of two
elements of A in at most one way. In other words, rA,2(n) ≤ 1 for all n ≥ 1. See for
example [21] for some recent advances on studying Sidon sets.

Indeed, the Erdős-Turán conjecture is motivated by a question posed by Sidon in the
1930’s, due to the importance of Sidon sequences in Fourier analysis. If b1 + b2 = n,
then b1, b2 ≤ n so that

n ≤
∑
j≤n

rB,2(j) ≤ |B ∩ [1, n]|2. (1.0.1)

Sidon asked whether or not one can find additive bases of order 2 of “good quality”.
Specifically those bases such that |B ∩ [1, n]| = n1/2+o(1), which means that B is
nearly as ‘thin’ as possible by equation (1.0.1). If rB,2(n) = O(log n), then equation
(1.0.1) is surely satisfied, so we would have a ‘thin’ basis. This question was answered
positively by Erdős in 1956, and together with Tetali in 1990 generalized to account
for additive bases of arbitrary order h > 2. We will discuss these results in sections
2 and 3. The existence of thin bases of all orders motivated Erdős to strengthen his
conjecture to the following:

Conjecture 1.0.3. (Erdős) Let B be an additive basis of order h. Then lim sup
n→∞

rB,h(n)

log(n)
>

0.

Erdős’s proof of the existence of a thin basis in the sense noted above, done in [6],
is probabilistic, and no explicit example has ever been found.

An easier problem is to examine the ‘average’ of rB,h(n) when summed over the
first N integers for some additive basis B. In other words, we examine the sum∑

n≤N

rB,h(n).

If the Erdős-Turán conjecture is true, then this sum should not be too regular; mean-

ing that
∑
j≤n

rB,h(j) should not be too similar to cn for some positive number c. To

this end, Erdős and Fuchs proved in [8] the following result:
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Theorem 1.0.4. (Erdős-Fuchs Theorem) Let B ⊂ N be an infinite subset. Then∑
j≤n

rB,2(n) = cn+ o(n1/4 log−1/2(n))

cannot hold for any constant c > 0.

Unfortunately, this result is far from being able to settle the Erdős-Turán con-
jecture, since a slightly larger error term is allowed. This was proven by I. Ruzsa

in [20]. Ruzsa gave a square-like random set such that the sum
∑
j≤n

rB,h(j) =

cn+O(n1/4 log n). We will give Ruzsa’s result in chapter 2.

As is suggested by the Erdős conjecture, bases where rB,h(n) = O(log n) and rB,h(n) >
c log n infinitely often are essentially as thin as possible. A natural question along
these lines is to ask whether ‘thicker’ bases that cannot be any thinner exist. That
is, if B is an additive basis, is it always possible to find a subset C of B such that C
is an additive basis, and rC,h(n) = O(log n). In other words, can every additive basis
B such that rB,h(n) is large infinitely often be reduced to a thin basis. The general
problem is not yet resolved. However, in [26] Wirsing proves that the primes contains
a thin sub-basis of any order, and in [25] Van Vu showed that the Waring bases (set
of kth powers) contain thin sub-bases of all sufficiently large orders. Vu’s approach
uses the probabilistic method of Erdős and the Hardy-Littlewood Circle Method. We
will examine this result in chapter 4 of this paper.

Lastly, the most definitive and concrete approach to the Erdős-Turán Conjecture
is computational. Kolountzakis gave in [17] a fast algorithm to compute an Erdős
base, in the sense that at the nth iteration the algorithm generates a set En in poly-
nomial time with respect to the number of digits of n, and such that as n → ∞, En

tends towards a thin additive basis in the Erdős sense with probability 1. Borwein,
Choi, and Chu in [2] used a computational approach to prove that if B is an additive
basis of order 2, then rB,2(n) cannot be bounded by 7. We will discuss these results
in chapter 5.
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Chapter 2

The Probabilistic Method - Part I

In this chapter we will discuss the probabilistic method, with the intention of ap-
plying it to prove Erdős’s 1956 theorem [6], which asserts that thin bases of order
2 exist. We will also use the techniques developed in this section to prove Ruzsa’s
theorem [20]. In this first section, the main result will be Chernoff’s Inequality. Cher-
noff’s Inequality applies when one can decompose a random variable into a sum of
independent indicator random variables, as we will see in both Erdős’s theorem and
Ruzsa’s theorem. It fails when one cannot decompose a random variable as such; and
a more powerful tool is needed to resolve such cases. This will be discussed in the
next section in the context of the Erdős-Tetalli theorem [8].

2.1 Basics and preliminaries

The probabilistic method is based on a very simple idea. If we wish to prove that a
certain object B exists with property P , then it suffices to show that in some suitably
defined probability space (definition 2.1.2) the event “B has property P” occurs with
positive probability. This method was first introduced by Paul Erdős in 1947 when he
proved the existence of a graph with a certain Ramsey property without constructing
it. Since then, Erdős has proven many significant results in finite mathematics by
employing the probabilistic method. In this first subsection we give some of the basic
ideas, results, and techniques used in the probabilistic method. Of course, what we
cover here is far from complete. The interested reader is recommended to consult [1].

We begin with some definitions and results from elementary probability theory and
number theory. We will only give definitions and results that we need for the rest of
this paper, and not give statements in their full generality. The interested reader is
referred to [13] for a more thorough and comprehensive treatement.

Definition 2.1.1. (asymptotic notations) Let Θ, O, o be defined as follows: Given
two functions f, g : R → R+, we say that g = O(f) if there exists some C > 0

such that g(x) ≤ Cf(x) for all x, that g = o(f) if lim
x→∞

g(x)

f(x)
= 0, that g = Ω(f) if

there exists a constant C > 0 such that g(x) ≥ cf(x) for all sufficiently large x, and
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g = Θ(f(x)) if there exist constants c1, c2 > 0 such that c1f(x) ≤ g(x) ≤ c2f(x) for
all x.

Definition 2.1.2. Let Ω be a non-empty set. We say F ⊂ P(Ω), where P(Ω) is the
power set of Ω, is a σ- algebra over Ω if F satisfies the following:

(i) ∅,Ω ∈ F ;
(ii) If A ∈ F , then the complement of A in Ω is also in F ; and

(iii) If A1, A2, · · · , is a countable collection of sets in Ω, then
∞∪
n=1

An ∈ F .

Together we say that the pair (Ω,F) is a measureable space. We say that µ : F → R+

is a measure on (Ω,F) (or if the σ-algebra F is understood, simply Ω) if µ satisfies
the following:

(i) µ(∅) = 0;

(ii) If A1, A2, · · · are pairwise disjoint subsets of Ω, then µ

(
∞∪
n=1

An

)
=

∞∑
n=1

µ(An).

If in addition µ(Ω) = 1, we say that µ is a probability measure. Generally, the
space (Ω,F , µ) is a measure space, if µ = P is a probability measure, then (Ω,F ,P)
is a probability space. In this case we call Ω the sample space and F the event space.

We will not need the full strength and generality of the above definition in this
paper. Indeed, usually Ω will be the set of non-negative integers, F will be the
power-set of Ω. For more details about measure spaces, please refer to [11].

Definition 2.1.3. Let X : Ω → R be a function. We say that X is a (real-valued)
random variable if {ω : X(ω) ≤ r} ∈ F for all r ∈ R. We say that X is a discrete
random variable if the range of X is the integers. We say that X is an indicator
random variable if X(B) = 1 for some B ∈ F , and X = 0 otherwise.

Indeed, one can show that a random variable is the same idea as a measureable
function on F . Also, we usually denote indicator random variables as I to separate
from the typical random variable.

We now define some central objects in probability, which will be used frequently
in this paper.

Definition 2.1.4. Let (Ω,F ,P) be a probability space and X be a random variable.
Define its expectation to be the quantity

EX =

∫
Ω

XdP.

If E|X| < ∞, we say that X has finite first moment, and say that EX is the first
moment. Analogously we say X has finite nth moment if E|Xn| < ∞, and the nth
moment is EXn.
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Definition 2.1.5. Let (Ω,F ,P) be a probability space and let X be a random vari-
able. Define the variance of X to be

Var(X) = E[(X − EX)2] = E[X2]− E[X]2.

Let σ =
√

Var(X) be the standard deviation of X.

It is clear from the definition above that regardless of how a (finite) set of random
variables X1, · · · , Xn are related, by the linearity of the integral, we must have E[X1+
· · · +Xn] = EX1 + · · · + EXn. This is not so for higher order moments. Indeed the
concept of independence must be introduced. According to Gerald Folland [11], the
idea of independence is truly unique to the field of probability and has no analogue
in analysis. Thus we will give a definition of independence below and discuss some
immediate consequences.

Definition 2.1.6. Suppose F1, · · · , Fn ∈ F are a set of events. Let F be the event
that F1, · · · , Fn all happen. We say that the events F1, · · · , Fn are jointly independent
if

P(F ) = P(F1) · · ·P(Fn).

Let Fi,j be the event that both Fi, Fj happen. If for all i ̸= j, 1 ≤ i, j ≤ n we have
P(Fi,j) = P(Fi)P(Fj), then F1, · · · , Fn are said to be pairwise independent.

Definition 2.1.7. Let X1, · · · , Xn be a set of real-valued random variables. Then
X1, · · · , Xn are said to be jointly independent if the events F1 = {ω : X1(ω) ≤
a1}, F2 = {ω : X2(ω) ≤ a2}, · · · , Fn = {ω : Xn(ω) ≤ an} are jointly independent for
all (a1, · · · , an) ∈ Rn. Pairwise independence is defined analogously.

Note that joint independence implies pairwise independence, but not conversely
(page 13 in [13]). A principal component of our investigations in the following two
sections will rely on the concept of independence. In most cases below we will obtain
our desired result by showing that a given random variable X will be near its expec-
tation with high probability. To do this, we will attempt to decompose our random
variable X into a sum of independent random variables. The idea is that a sum of
independent random variables will be tightly concentrated to its mean because it is
difficult for independent random variables to ’work together’ to significantly deviate
from the mean. This is not always possible; as we will see in section 3. In such
cases when it is not possible we will have to settle with decomposing X into a sum of
random variables that are only ’weakly’ related. To measure such a relation, we will
need the following definition:

Definition 2.1.8. Let X1, X2 be real-valued random variables. Define their covari-
ance by

Cov(X1, X2) = E[(X1 − EX1)(X2 − EX2)].

An immediate observation of the above definition is that ifX1, X2 are independent,
then Cov(X1, X2) = 0. Thus, covariance gives a way to measure how the random
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variables X1, X2 are related. Note also that if X1, · · · , Xn are random variables, then
we have for X = X1 + · · ·+Xn, the equation

Var(X) =
n∑

j=1

Var(Xj) +
∑
i̸=j

Cov(Xi, Xj).

In particular, we see that pairwise independence is the crucial idea when one desires
linearity of the second moment. As we will see, however, pairwise independence is
not a sufficiently strong notion to carry on with our results.

We will concern ourselves for the rest of this subsection with various probabilistic
methods involving these concepts. In the subsection below and for the rest of the
paper, we will not explicitly define our probability space (Ω,F ,P), as that level of
precision is unnecessary. Indeed, issues such as measureability will not come up be-
cause we are working with discrete random variables.

The first method we discuss is known as the First Moment Method [1][22] and is
based on the following simple but extremely useful observation: If X1, · · · , Xn are
any random variables in some probability space and c1, · · · , cn any scalars, then the
expected value is linear, namely if we set X = c1X1 + · · · cnXn, then

EX = c1EX1 + c2EX2 + · · · cnEXn

The power of this observation lies in the fact that linearity of expectation does not
depend on the random variables X1, · · · , Xn being independent. In applications,
frequently we want to consider some sets we are interested in with some random
structure which allow us to express it as some random variable. Then we carefully
decompose this random variable into simple random variables, usually indicator vari-
ables, and apply linearity of expectation to obtain a specific point in the probability
space X such that X ≥ EX or X ≤ EX, depending on the question being asked. We
demonstrate this technique with a simple example given by Erdős in [7].

Example 2.1.9. Suppose that A is a finite set of non-zero integers. Then there exists
a subset B of A such that |B| > |A|/3 and such that B is sum-free, that is there do
not exist three elements x, y, z in B such that x+ y = z.

Proof. Since A is finite and does not contain zero, there exists a large prime p of the
form p = 3k + 2 (that such primes exist follows from Dirichlet’s Theorem) such that
A ⊂ [−p/3, p/3]\{0}. Now we can view A as a subset ofG = Z/pZ instead. If x, y ∈ A
are such that x+y ∈ A, then it does not matter whether one views x+y as an integer
or as an element of G. Hence B is sum-free in A in the sense of the integers if and only
if B is sum-free in G. Note that the interval [k+1, 2k+1] = {k+1, k+2, · · · , 2k+1}
is sum-free in G.

Now choose an element g ∈ G \ {0} such that each element in G \ {0} has an equal
probability of being chosen, and form the random set

B = {a ∈ A : g−1a ∈ {k + 1, · · · , 2k + 1}}.
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Now it is clear that g[k+1, 2k+1] = {g(k+1), g(k+2), · · · , g(2k+1)} is sum-free in
G since [k+1, 2k+1] is. But B = A∩ (g[k+1, 2k+1]) and hence B is also sum-free.
Now |B| is a random variable taking on values in integers from 0 to k, so it suffices to

show that the expectation of |B| is greater than |A|
3
. By the linearity of expectation,

we have
E|B| =

∑
a∈A

P(a ∈ B) =
∑
a∈A

P(g−1a ∈ [k + 1, 2k + 1]).

By the definition of A, we know that for all a ∈ A, a is an invertible element of G,
and so since g is uniformly distributed in G \ {0} we have that g−1a is also uniformly

distributed in G\{0}. Now note that |[k+1, 2k+1]| = k+1 >
3k + 2− 1

3
=

(p− 1)

3
,

so that for all a ∈ A, we have

P(g−1a ∈ [k + 1, 2k + 1]) =
k + 1

3k + 1
>

1

3
.

This implies that

E|B| =
∑
a∈A

P(x−1a ∈ [k + 1, 2k + 1]) >
∑
a∈A

1

3
=

|A|
3
.

Hence there exists a specific point B in our probability space that satisfies |B| > |A|/3,
and we are done.

We now introduce another simple yet profoundly powerful tool that arose from
measure theory, that of the Borel-Cantelli Lemma. In probabilistic terms, the lemma
can be stated as:

Theorem 2.1.10. (Borel-Cantelli Lemma): Let A1, A2, · · · be a sequence of events,

possibly dependent, such that
∞∑
n=1

P(An) < ∞. Define

A =
∞∩
n=1

∞∪
m=n

Am.

Then P(A) = 0.

Proof. Aforementioned this is a result that arose from measure theory, and is proved
as such. The events A1, A2, · · · are simply sets of elements in some sample space, and

it is clear that A ⊂
∞∪

m=n

Am for all n ≥ 1. By the subadditivity of the probability

measure, it follows that P(A) ≤
∞∑

m=n

P(Am). Since
∞∑
n=1

P(An) < ∞ it follows that

lim
n→∞

∞∑
m=n

P(Am) = 0, and hence P(A) = 0 as desired.
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This result essentially says the following: if a sequence of events A1, A2, · · · , possi-

bly dependent, are such that
∞∑
n=1

P(An) < ∞, then with probability 1 at most finitely

many of these events occur. This is very powerful and will be used in the next two
chapters to establish the existence of thin additive bases of the natural numbers. In-
deed in applications we want to say that a random set B satisfies a certain property
by proving that the sum of the probabilities of ‘bad events’ that B does not satisfy
the given property is finite. Unfortunately, this result does not give insight into the
probability of finitely many bad events occurring and only through careful analysis
of the specific problem does one obtain good estimates.

Our next technique is called, unsurprisingly, the Second Moment Method. As the
title suggests the second moment method uses information on the variance of a ran-
dom variable to obtain better estimates. The main tool in the second moment method
is the Chebyshev Inequality, which we state here and provide a short proof.

Theorem 2.1.11. (Chebyshev’s Inequality) Let X be a real valued random variable.
For any λ > 0 we have the inequality

P(|X − EX| > λVar(X)1/2) ≤ 1

λ2
.

Proof. We have the trivial inequality X ≥ λI(X ≥ λ), where I is the indicator
function. Taking expectation of both sides yields EX ≥ λP(X ≥ λ) and re-arranging
yields

P(X ≥ λ) ≤ EX
λ

. (2.1.1)

This inequality is known as Markov’s Inequality.

Now suppose that Var(X) = 0. By the definition of variance, this is equivalent
to E(X − EX)2 = 0. Since X is a real-valued random variable, this implies that
P(X ̸= EX) = 0, so that P(|X − EX| > λVar(X)1/2) = P(|X − EX| > 0) = 0 which

is surely less than
1

λ2
for any λ > 0. Hence we suppose that Var(X) > 0. From

inequality (2.1.1), we obtain

P(|X − EX| > λVar(X)1/2) = P(|X − EX|2 > λ2Var(X)) ≤ E|X − EX|2

λ2Var(X)
=

1

λ2
.

This is what we wished to prove.

The second moment allows us to control the expected value of a desired quantity
in a stronger way, since the upper bound is stronger than if we only considered the
expected value. However, we no longer have linearity unless we assume the (rather
strong) condition of independence. That is, Var(X1 + · · · +Xn) = Var(X1) + · · · +
Var(Xn) only when the random variables X1, · · · , Xn are independent. We give a
famous example, a theorem originally produced by Hardy and Ramanujan, given by
Turán in 1934 [23].
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Example 2.1.12. Let ω(n) denote the number of distinct prime divisors of n. Let
f : N → N be an arithmetic function that tends to infinity. Then the number of
integers x satisfying 1 ≤ x ≤ n and |ω(x)− log log(x)| > f(n)

√
log log(n) is o(n).

Proof. Let n ∈ N and define Sn = {x ∈ {1, 2, · · · , n} : |ω(x) − log log(x)| >
f(n)

√
log log(n)}. Then our goal is to show that |Sn| = o(n). Now choose x from

[1, n] = {1, 2, · · · , n} uniformly. Then we have

P(|ω(x)− log log(x)| > f(n)
√

log log(n)) =
|Sn|
n

.

And so it suffices to show that

P(|ω(x)− log log(x)| > f(n)
√

log log(n)) = o(1).

Define Bn(x) = {p : p ≤ n1/10, p|x} where p represents a prime. Since x ≤ n, x cannot
have 10 distinct prime divisors larger than n1/10 and so |Bn(x)| ≤ ω(x) ≤ |Bn(x)|+10.
Thus it suffices to show that

P(||Bn(x)| − log log(n)| ≥ f(n)
√

log log(n)) = o(1).

We can replace P(||Bn(x)|−log log(x)| ≥ f(n)
√

log log(n)) with P(||Bn(x)|−log log(n)| ≥
f(n)

√
log log(n)) by the following: consider for a large n and fixed positive con-

stant m > 0, the probability of picking x ∈ [1, n] uniformly such that log log(x) <
log log(n)−m. Since the exponential function is injective, this inequality is equivalent
to log(x) < e−m log(n), which is then equivalent to x < ee

−m log(n) = ne−m
. Since we as-

sumedm > 0, we see that the probability P(log log(x) < log log(n)−m) ≤ ne−m

n
which

tends to 0 as n → ∞. That is, the probability P(log log(x) < log log(n) + O(1)) =
1− o(1).

Now we obtain some estimates on E|Bn(x)|,Var(|Bn(x)|). First notice that |Bn(x)| =∑
p≤n1/10

I(p|x) and taking expectations yields

E|Bn(x)| =
∑

p≤n1/10

P(p|x).

Likewise, we can estimate the variance by (p, q denote primes)

Var(|Bn(x)|) =
∑

p≤n1/10

(P(p|x)− P(p|x)2)−
∑

p,q≤n1/10,p̸=q

Cov(I(p|x), I(q|x)).

Now note that I(p|x)I(q|x) = I(pq|x), since p, q are distinct primes and hence coprime.

But P(p|x) = 1

p
+O

(
1

n

)
, and we note that we have the definition of covariance

Cov(I(p|x), I(q|x)) = E[(I(p|x)− E[I(p|x)])(I(q|x)− E[I(q|x)])]

10



And thus we get the estimate

Cov(I(p|x), I(q|x)) = 1

pq
+O

(
1

n

)
−
(
1

p
+O

(
1

n

))(
1

q
+O

(
1

n

))
= O

(
1

n

)
.

Hence we obtain the estimates

E|Bn(x)| =
∑

p≤n1/10

1

p
+O(n−9/10)

Var(|Bn(x)|) =
∑

p≤n1/10

(
1

p
− 1

p2

)
+O(n−8/10).

We now use a classic theorem of Mertens, which we do not prove, which states that∑
p≤n

1

p
= log log(n) + O(1). Now let f be a function such that lim

n→∞
f(n) = ∞. By

Chebyshev’s Inequality, we have

P(||Bn(x)| − E|Bn(x)| > f(n)Var(|Bn(x))
1/2) ≤ 1

f(n)2

Which implies for large n

P(||Bn(x)− log log(n)| ≥ f(n)
√

log log(n)) ≤ 1

f(n)2
= o(1).

This finishes the proof of the example.

A main theme with the first and second moment methods is that if one can obtain
good estimates on the first and second moments of a random variable, we can often
obtain non-trivial estimates on the random variable itself. Indeed, there is a method
to control all moments simultaneously, and that is the topic of the next subsection;
that of the Exponential Moment Method.

We start with the definition of the moment generating function, defined as E[etX ]
for some real-valued random variable X, provided that it exists. By the Law of the
Unconscious Statistician [13], we have that

E[etX ] =
∞∑
n=0

tnE[Xn]

n!
.

Similar to the central role that Chebyshev’s Inequality plays in the second moment
method, there is an analogously important inequality in applications of the exponen-
tial moment method. This is Chernoff’s Inequality. Roughly speaking, Chernoff’s
Inequality gives bounds that are much better than those in Chebyshev’s Inequality,
but requires a much stronger assumption of the joint independence of the random
variables involved. In practice it is sometimes possible to massage the problem in the
case when the random variables involved are not independent but interact in a weak
way. We present Chernoff’s Inequality and a proof.

11



Theorem 2.1.13. (Chernoff’s Inequality) Suppose X1, · · · , Xn are independent real-
valued random variables with finite first moment such that |Xi − EXi| ≤ 1 for all
1 ≤ i ≤ n. Set X = X1 + · · · +Xn and let σ =

√
Var(X) be the standard deviation

of X. Then for all λ > 0 we have

P(|X − EX| ≥ λσ) ≤ 2max(e−λ2/4, e−λσ/2).

Proof. By replacing each Xi with Xi − EXi we can assume that EXi = 0 for all 1 ≤
i ≤ n. Begin with the observation that P(|X| ≥ λσ) = P(X ≥ λσ) + P(X ≤ −λσ).
ReplacingX with −X we see that it suffices to show that P(X ≥ λσ) ≤ e−tλσ/2, where
t = min(λ/2σ, 1). By the monotonicity of the exponential function and Markov’s
Inequality, we obtain

P(X ≥ λσ) = P(etX ≥ etλσ) ≤ e−tλσE[etX ] = e−tλσE[etX1 · · · etXn ].

By the independence of X1, · · · , Xn we obtain

P(X ≥ λσ) ≤ e−tλσE[etX1 ]E[etX2 ] · · ·E[etXn ].

For x ∈ [0, 1], the Taylor series expansion of f(x) = ex yields that ex =
∞∑

m=0

xm

m!
≤

1 + x + x2. Apply this to the random variable tXi, which takes values in [0, 1]
for 0 ≤ t ≤ 1, we obtain etXi ≤ 1 + tXi + t2X2

i . Taking expectations yields that
E[etXi ] ≤ 1+ tE[Xi] + t2E[X2

i ]. By the assumption of E[Xi] = 0 we see that E[etXi ] ≤
1 + t2Var(Xi). Now again looking at f(x) = ex we notice the trivial inequality
1 + x ≤ ex for x positive, so that 1 + t2Var(Xi) ≤ exp(t2Var(Xi)). Hence we obtain

P(X ≥ λσ) ≤ e−tλσ exp(t2Var(X1)) · · · exp(t2Var(Xn)).

By independence, we have that exp(t2Var(X1)) · · · exp(t2Var(Xn)) = exp(t2Var(X)) =
et

2σ2
. But since t ≤ λ/2σ, we have that e−tλσeσ

2t2 ≤ e−λ2/4. Thus the claim is veri-
fied.

We will need the following corollary to Chernoff’s Inequality for later use.

Corollary 2.1.14. Suppose X1, X2, · · · , Xn are independent indicator random vari-
ables. Set X = X1 + · · ·+Xn. Then for any ε > 0 we have

P(|X − EX| ≥ εEX) ≤ 2 exp(−min(ε2/4, ε/2)EX).

In particular, with ε = 1/2, we have

P(|X − EX| = Θ(EX)) ≥ 1− 2 exp(−EX/16)

Proof. It is clear that |Xi−EXi| ≤ 1, since Xi is an indicator random variable. Note
also that Var(Xi) = EX2

i − (EXi)
2 = EXi − (EXi)

2 ≤ EXi. Thus by independence
and the linearity of expectation we have Var(X) ≤ EX. Now apply Chernoff’s
Inequality with λ = εEX/σ to obtain the result.

We are now ready to proceed to the next section.
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2.2 Thin bases of order 2

The study of additive bases in the natural numbers is classical. It began with such
curious questions as which numbers can be written as the sum of two squares. It
is clear that not all positive integers can be written as the sum of two squares; for
example the number 11 has no such representation. This is clear: if a positive integer
n can be written as n = x2 + y2 where x, y are integers, then n ≡ 0, 1 (mod 4). A
slightly harder problem is to determine which positive integers can be written as the
sum of three squares. Again there are positive numbers that cannot be written as the
sum of three squares, though these are much rarer and difficult to find than those that
cannot be written as the sum of two squares. Gauss gave a complete characterization
of such integers, which we give as the following theorem. For a proof, see [19].

Theorem 2.2.1. (Gauss) A positive integer N can be represented as the sum of three
squares if and only if N is not of the form

N = 4a(8k + 7).

It is striking then that Lagrange proved that in fact every positive integers can be
written as the sum of at most four squares (or exactly four squares if one allows 0 in
the sum). This is considered the first major result in additive number theory.

In modern notation, Lagrange’s Theorem is equivalent to the following: Let B =
{n2 : n ∈ N}, then rB,4(n) > 0 for all n ∈ N. In other words, B is an additive basis of
order 4 (it is in fact a basis). Theorem 2.2.1 show that B is not a basis of any smaller
order. Consider the elementary estimate∑

j≤n

1 ≤
∑
j≤n

rB,4(j) ≤ |B ∩ [1, n]|4 ≤
∑
j≤4n

rB,4(j).

This gives a lower bound on the size of |B∩ [1, n]|, which is n1/4. We know that this is
a rather poor estimate; since we know that |B ∩ [1, n]| ∼ n1/2. In other words the set
of squares is a ‘thick’ basis because it contains many more elements than the lower
bound would suggest. In the 1930s, Sidon asked the question of whether there exist
‘thin’ bases that come arbitrarily close to the lower bound. In other words, bases B
of order h such that |B∩ [1, n]| = n1/h+o(1). This question was first answered by Erdős
in 1954 with the paper [5]. Soon after in 1956, Erdős would produce a refinement of
this result [7], which is the main subject of this section.

Theorem 2.2.2. (Erdős 1956) There exist a subset B ⊂ N and positive constants
c1, c2 such that for all sufficiently large n ∈ N, c1 log(n) ≤ rB,2(n) ≤ c2 log(n).

Notice that this theorem implies that |B ∩ [1, n]| = Θ(n1/2 log1/2(n)), which is
certainly equal to n1/2+o(1) and so such a basis is thin in Sidon’s sense.

To prove this theorem we will need a fairly elementary but powerful tool in ana-
lytic number theory, that of partial summation. We give it as a proposition.
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Proposition 2.2.3. (Partial Summation) Let f, g : R → R be two functions such

that f is differentiable. Define A(x) =
∑
n≤x

g(n). Then

∑
n≤x

f(n)g(n) = f(x)
∑
n≤x

g(n)−
∫ x

1

f ′(t)A(t)dt.

Proof. We have∑
n≤x

f(n)g(n) =
∑
n≤x

f(n)[A(n)− A(n− 1)]

= f(⌊x⌋)A(x)−
∑

n≤x−1

A(n)(f(n+ 1)− f(n))

= f(⌊x⌋)A(x)−
∑

n≤x−1

A(n)

∫ n+1

n

f ′(t)dt

= f(⌊x⌋)A(x)−
∫ ⌊x⌋

1

A(t)f ′(t)dt

We are done if x is a positive integer. But we can consider the general case by setting
⌊x⌋ = N , so that A(t) = A(N) for N ≤ t ≤ x, and note that∫ x

N

A(t)f ′(t)dt = A(x)[f(x)− f(⌊x⌋)) = A(x)f(x)− f(⌊x⌋)A(x)

Which implies that

f(⌊x⌋)A(x)−
∫ N

1

A(t)g′(t)dt = f(x)A(x)−
∫ x

N

A(t)f ′(t)dt−
∫ N

1

f ′(t)A(t)dt

= f(x)A(x)−
∫ x

1

A(t)f ′(t)dt.

This proves the required result.

Now we can begin the proof of Erdős’s theorem in earnest.

Proof. (Erdős’s Theorem) Define the random set B by the following: for each x ∈ N,

we have P(x ∈ B) = px = min

{
10

√
log(x)

x
, 1

}
and for distinct x, y the events

x ∈ B, y ∈ B are independent. Then rB,2(n) is an integer valued random variable,

and we have rB,2(n) =
∑

x+y=n

I(x ∈ B)I(y ∈ B). Taking expectations, we see that

E[rB,2(n)] =
∑

x+y=n

pxpy.
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We can simplify this sum by writing

E[rB,2(n)] =
1

2

∑
x+y=n
x<y

pxpy +O(1).

This is because the probability pn/2pn/2 = 100
log(n/2)

n/2
= o(1).

Now we apply partial summation to obtain

50
∑
x≤n/2

√
log(x) log(n− x)

x(n− x)

= 50 log(n/2)
∑
x≤n/2

1√
x(n− x)

−50

∫ n/2

1

(n− t) log(n− t)− t log(t)

t(n− t)[log(t) log(n− t)]1/2

∑
x≤t

1√
t(n− t)

dt.

In particular, the latter term is negligible for large n, and we have

50
∑
x≤n/2

√
log(x) log(n− x)

x(n− x)
∼ 50 log(n)

∑
x≤n/2

1√
x(n− x)

.

Now note that
∑
x≤n/2

1√
x(n− x)

=
∑
x≤n/2

1

n

1√
(x/n)(1− x/n)

is the Riemann sum for

the integral

∫ 1

0

dt√
t(1− t)

= π, which can be readily evaluated through elementary

calculus with the substitution t = (1 + sin(θ))/2. Hence we obtain

E[rB,2(n)] ∼ 50π log(n).

Now note that since we required x < n/2, the random variables I(x ∈ B)I(n−x ∈ B)
for 1 ≤ x < n/2 are independent. This is easy to see; knowing the value of
I(x ∈ B)I(n−x ∈ B) for some value x in the range does not give information for any
other value, since we required the events x ∈ B to be independent and n− x > n/2.

For simplicity and clarity set µ = E[rB,2(n)]. Now suppose we choose ε > 0. By
the corollary to Chernoff’s Inequality, which applies by the independence established
in the previous paragraph, we can choose a positive constant cε such that

P(|rB,2(n)− µ| ≥ εµ) ≤ 2 exp(−cεµ).

In particular, for ε = 0.9, we have min(ε2/4, ε/2) = 0.2025 and we can choose cε =
0.1 < 0.2025, so that exp(−cε) < exp(−0.2025). In this case we obtain the bound

P(|rB,2(n)− µ| ≥ εµ) ≤ 2 exp(−0.1µ).
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Note that µ ∼ 50π log(n), so that for n sufficiently large we have µ > 40π log(n) and
thus exp(−cεµ) < exp(−4π log(n)) < n−2 for n sufficiently large.

Now set c1 = 5π, c2 = 95π. Let An be the event that either rB,2(n) < c1 log(n)
or rB,2(n) > c2 log(n). Then An is a subset of the event |rB,2(n) − µ| ≥ 0.9µ, and
thus P(An) < n−2 for n sufficiently large. In other words, we have

∞∑
n=1

P(An) ≤
∞∑
n=1

1

n2
< ∞.

Now the Borel-Cantelli Lemma applies and so with probability 1 at most finitely
many of the A1, A2, · · · occur. Hence there exists a specific set B in our probability
space that has the desired property for all n sufficiently large. That is, a specific set
B such that c1 log(n) ≤ rB,2(n) ≤ c2 log(n) for all sufficiently large n.

Notice that this proof seems quite innocuous, and that the requirement for inde-
pendence seems to be just brushed over and is for convenience rather than necessity.
This is not so. It turns out that when the independence assumption cannot be made,
that is when we are looking at sums of three elements or more, that Chernoff’s In-
equality no longer applies and we cannot proceed with the proof as written above.
Historically, Erdős proved the above theorem in 1956 but had to wait until 1990 be-
fore proving the case for bases of higher order. This will be discussed in the next
section.

We give an example to illustrate the necessity of the joint independence assumption
in Chernoff’s Inequality.

Example 2.2.4. Colour the elements of [1, n] = {1, 2, · · · , n} either black or white
independently and with equal probability. For each A ⊂ [1, n], let sA denote the parity
of the black elements of A, so that sA = 1 if the number of black elements in A is odd,

and sA = 0 otherwise. Let X =
∑

A⊂[1,n]

sA. Then the sA’s are pairwise independent,

and we have EX = 2n−1 − 1/2 and Var(X) = 2n−2 − 1/4. Further, P(X = 0) =
2−n where the upper bound in Chernoff’s Inequality would be 2 exp (−2n−2). Hence
Chernoff’s Inequality fails for sufficiently large n.

Proof. We first establish the pairwise independence of the sA’s. Let A,B be two
distinct subsets of [1, n]. If A ∩ B = ∅, then clearly sA, sB are independent. We first
consider the case when A ⊂ B. Suppose we know that sA = 1, so A has an odd
number of black elements. Then P(sB = 1|sA = 1) is equal to P(sB\A = 0) = 1/2,
since B \ A ̸= ∅. Hence P(sB = 1|sA = 1) = P(sB = 1). Analogous conditions also
hold, so that sA, sB are independent. It is now clear that if A is not a subset of B,
A \ B has no bearing on sB, so we can apply the same analysis above to C = A ∩B
to obtain that sA, sB are also independent in this case.

It is now a trivial matter to compute the variance and expectation, since the lin-
earity of variance only depends on pairwise independence. Note that P(s∅ = 1) = 0,
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since there is no way to obtain an odd number black elements in the empty set. Oth-
erwise, P(sA = 1) = 1/2. By the linearity of expectation and pairwise independence
then we have that

EX =
∑

A⊂[1,n],A ̸=∅

1/2 = 2n−1 − 1/2,

Var(X) =
∑

A⊂[1,n],A ̸=∅

(1/2− 1/4) = 2n−2 − 1/4.

Also, we have X = 0 if and only if all of the elements were coloured white, so that
P(X = 0) = 2−n. But then we have for λ = 2n/2

P(|X − EX| ≥ 2 · 2(n−2)/2
√

2n−2 − 1/4) ≥ P(X = 0) = 2−n ≥ 2 exp(−2n−2)

This shows that Chernoff’s Inequality fails.

So as the above example demonstrates, a much more powerful idea and set of
tools is needed to overcome the hurdle of dependence. It is no wonder that even
Erdős could not find a solution for 34 years. We will introduce the solution for higher
order thin bases in the following section.

Remark 2.2.5. In [5], Erdős actually employed a very different argument to produce
an additive basis B with 0 < rB,2(n) < c log n for some c > 0. This argument
can be converted to give an explicit algorithm to produce a thin basis with almost
sure certainty. However, as we will allude to in section 5, Erdős’s original argument
produces an algorithm that is exponential in nature. The main content of the first
half of chapter 5 is to produce an algorithm which furnishes a thin basis that is of
polynomial time.

2.3 Ruzsa’s converse to the Erdős-Fuchs Theorem

We conclude this section with a discussion of the famous Erdős-Fuchs Theorem.
Roughly speaking, this theorem states that the ‘average’ behaviour of the repre-
sentation function rB,2(n) for some B ⊂ N cannot be too close to a constant. We
state the theorem in more precise terms below.

Theorem 2.3.1. (Erdős-Fuchs Theorem) Let B ⊂ N be an infinite subset. Then∑
n≤N

rB,2(n) = cN + o(N1/4 log−1/2(N))

cannot hold for any constant c > 0.

Note that there is no assertion that B is an additive basis. Indeed, in most well-

known examples of bases it is plain that
∑
n≤N

rB,2(n) is much larger. For example,

if B is a thin basis as constructed in the previous subsection, then we would have
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∑
n≤N

rB,2(n) ≫ N log(N). On the other hand, it is easy to construct a set B for which

1

N

∑
n≤N

rB,2(n) tends to 0 (for example, B = {10n! : n ∈ N}).

We will not study this theorem much further in this paper, since it is only tan-
gentially related to additive bases and the probabilistic method. What we will study,
however, is a partial converse to this theorem by I. Ruzsa given in 1997. In particular,
Ruzsa proved the following:

Theorem 2.3.2. (Ruzsa) There exists B ⊂ N such that∑
n≤N

rB,2(n) = cN +O(N1/4 log(N)).

We will prove this theorem in this section. What is interesting is that such an
example is furnished using the probabilistic method. Another interesting aspect of
this theorem is that there is a very nice, simple subset of N that might serve as a
concrete example of such a set, namely the set of squares. The verification of whether
the squares is such a set boils down to the famous Gauss Circle Problem, which can
be stated as follows:

Conjecture 2.3.3. (Gauss Circle Problem) Let N(r) be the number of solutions
(x, y) ∈ Z2 to the inequality

x2 + y2 ≤ r.

Then for all ε > 0 we have

N(r) = πr +O(r1/3+ε).

To date there has been no final resolution to this problem. The best current known
error bound is O(r131/416), due to Martin Huxley in [14].

Before we prove Ruzsa’s Theorem, we first give another probabilistic lemma, known
as Hoeffding’s Inequality.

Proposition 2.3.4. (Hoeffding Inequality) Suppose X1, · · · , Xn are bounded inde-
pendent random variables, so that aj ≤ Xj ≤ bj for each j and constants aj, bj, and
that

n∑
j=1

(bj − aj)
2 ≤ D2.

Set X =
n∑

j=1

Xj and µ = EX. Then

P(|X − µ| ≥ λD) ≤ exp(−2λ2).
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Note the similarity between this result and Chernoff’s Inequality. Here the σ term
has been replaced with the upper bound D. In the case of Chernoff’s Inequality this
would provide a cruder bound, since if X1, · · · , Xn were all indicator random variables
then D =

√
n whereas σ could be much smaller. We now proceed with the proof of

this proposition.

Proof. Since the quantity (bj − aj)
2 is unchanged if we shift the interval [aj, bj], it

suffices to assume that EXj = 0 for 1 ≤ j ≤ n. We first show that if Z ∈ [a, b] and
EZ = 0, then

E[etZ ] ≤ exp

(
t2(b− a)2

8

)
.

To see this, note that f(z) = etz is a convex function. Hence it follows that etz ≤
z − a

b− a
etb +

b− z

b− a
eta. Taking expectations on both sides and considering the linearity

of expectation and the fact that EZ = 0, we obtain

E[etZ ] ≤ −a

b− a
etb +

b

b− a
eta.

Now set x =
−a

b− a
to obtain

b

b− a
eta − a

b− a
etb = (1− x+ xet(b−a))e−xt(b−a).

Now set t(b− a) = u and φ(u) = −xu+ log(1− x+ xeu) so that

eφ(u) = (1− x+ xeu)e−xu.

For u sufficiently small, the Taylor series for φ(u) centered at 0 exists. Hence by
Taylor’s Theorem we have that

φ(u) = φ(0) + φ′(0)u+
u2

2
φ′′(v)

for some v ∈ [0, u]. Note that φ(0) = φ′(0) = 0, so we simply need to find a good
bound for φ′′(v). But

φ′′(v) =
xeu

1− x+ xeu
− x2e2u

(1− x+ xeu)2
= ρ(1− ρ)

where ρ =
xeu

1− x+ xeu
. Clearly, ρ(1 − ρ) is maximized when ρ = 1/2, so we obtain

the bound

φ(u) ≤ u2

2

1

4
=

u2

8
.

Applying this to our original inequality, we obtain

E[etZ ] ≤ exp

(
t2(b− a)2

8

)
,
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as desired.

Now we use the same trick as in the proof of Chernoff’s Inequality, namely the ob-
servation that

P(X ≥ λD) ≤ e−tλDE[etX ].

Thus we obtain the bound

P(X ≥ λD) ≤ e−tλD

n∏
j=1

exp

(
t2(bj − aj)

2

8

)
≤ exp(−tλD) exp

(
t2

n∑
j=1

(bj − aj)
2

8

)
.

Setting t =
4λD∑n

j=1(bj − aj)2
and noting that

n∑
j=1

(bj − aj)
2 ≤ D2 yields the desired

result. Note that everything we have done applies to −X as well, and hence we obtain
the desired inequality. This completes the proof.

Now we proceed to prove Ruzsa’s Theorem.

Proof. (Ruzsa’s Theorem) We will define a random set A as follows. Suppose αi is
a uniformly distributed random variable in the interval [i, i + 1]. Set ai = ⌊α2

i ⌋. Set
A = {ai}i≥1. We will show that with probability 1, A satisfies∑

n≤N

rA,2(n) = cN +O(N1/4 log(N)),

for some c > 0.

Set δij = 1 if α2
i + α2

j ≤ n, and δij = 0 otherwise. Set σn =
∑
i,j

δij to be the

number of ordered pairs (i, j) such that α2
i +α2

j ≤ n. Now set dij to be the area of the
intersection of the square [i, i+1]× [j, j+1] with the circle disc {(x, y) : x2+y2 ≤ n}.
Clearly then

∑
i,j

dij =
πn

4
. Thus we obtain

σn −
πn

4
=
∑
i,j

(δij − dij).

Note that since α2
i + α2

j ≥ i2 + j2, if i2 + j2 ≥ n then δij = 0 with probability 1. At
the same time if i2 + j2 ≥ n, then dij = 0. Conversely, if (i+1)2 + (j +1)2 ≤ n, then
α2
i +α2

j ≤ n with probability 1 and hence δij = 1. Similarly, if (i+1)2 + (j +1)2 ≤ n
then the square [i, i+1]× [j, j +1] is contained inside the disc {(x, y) : x2 + y2 ≤ n},
and hence dij = 1. Hence the only interesting case is

i2 + j2 < n < (i+ 1)2 + (j + 1)2.

Now define

I = {(i, j) : 0 ≤ i < j, i2 + j2 < n < (i+ 1)2 + (j + 1)2}.
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Note that if i2 + j2 < n < (i+1)2 +(j+1)2, then either (i, j) ∈ I or (j, i) ∈ I, unless
i = j which happens for at most one value, namely the i such that 2i2 < n < 2(i+1)2,
if n/2 is a non-square. Hence we have

σn −
πn

4
= 2

∑
(i,j)∈I

(δij − dij) +O(1).

Set
∑

(i,j)∈I

(δij − dij) = τ . If i ̸= j, then (αi, αj) is uniformly distributed on the

square [i, i + 1]× [j, j + 1]. By the definition of δij, we see that the probability that
δij = 1 is precisely the area of the intersection of [i, i + 1] × [j, j + 1] and the disc
{(x, y) : x2 + y2 ≤ n}, in other words dij. This implies that E[δij] = dij, and by the
linearity of expectation, we have

Eτ = 0.

We would be able to apply Hoeffding’s inequality right away, since δij are indicator
random variables. Unfortunately, δij : 1 ≤ i < j are not independent. Thus we would
need to first decompose τ into a sum of independent random variables. The following
construction does exactly that and is quite ingenious.

If (i, j) ∈ I, then surely j2 < i2 + j2 < n < (i + 1)2 + (j + 1)2 ≤ j2 + (j + 1)2.
Let k1, k2 denote respectively the minimum and maximum value of j such that
j2 < n < j2 + (j + 1)2. Then it is clear that k1 ∼

√
n/2, k2 ∼

√
n. Observe

that i ≤ k1 − 1. This follows from i2 + (i+ 1)2 ≤ i2 + j2 < n. For each k1 ≤ j ≤ k2,
let

Ij = {i : i2 + j2 < n < (i+ 1)2 + (j + 1)2, i < j}.

Note that Ij (as the notation suggests) is an interval. Set βj =
∑
i∈Ij

(δij − dij). Then

we have

τ =

k2∑
j=k1

βj.

Now define
τ0 =

∑
j≡0 (mod 2)

βj

τ1 =
∑

j≡1 (mod 2)

βj.

So we have τ = τ0 + τ1. The key now is to show that both τ0 and τ1 are sums of
independent random variables, so that Hoeffding’s Inequality applies. To this end
we show that for l = 0, 1 we have that for j ≡ l (mod 2), βj depends on disjoint
sets of αi’s. It is clear that βj depends on Ij ∪ {j}, so that our goal is to show if
j1 ≡ j2 (mod 2) and j1 ̸= j2, we have (Ij1 ∪{j1})∩ (Ij2 ∪{j2}) = ∅. Since we verified
that Ij1 , Ij2 ⊂ [1, k1 − 1] and j1, j2 ≥ k1, it follows that we only need to check that
Ij1 ∩ Ij2 = ∅.
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We may assume without loss of generality that j2 > j1, so that j2 ≥ j1 + 2 since
they have the same parity. If i ∈ Ij1 , then n < (i + 1)2 + (j1 + 1)2. If i ∈ Ij2 , then
i2 + (j1 + 2)2 ≤ i2 + j22 < n and if i ∈ Ij1 ∩ Ij2 , then both hold simultaneously. This
implies that i2+(j1+2)2 < (i+1)2+(j1+1)2 or equivalently 2j1+3 < 2i+1, which
contradicts the assumption that i < j1. Hence Ij1 ∩ Ij2 = ∅ as desired.

To apply Hoeffding’s Inequality, we would need a bound D such that
∑
j≥1

|max βj −

min βj| ≤ D2. Since βj ≤
∑
i∈Ij

1 = |Ij|, it follows that we can choose D such that

D2 =
∑
j≥1

|Ij|2.

Since i ∈ Ij if and only if i2+ j2 < n < (i+1)2+(j+1)2, it follows for j < k2 we have

that i <
√
n− j2 and i >

√
n− (j + 1)2−1.Hence Ij ⊂ [

√
n− (j + 1)2−1,

√
n− j2],

and so
|Ij| ≤ 2 +

√
n− j2 +

√
n− (j + 1)2.

For j = k2, we use the bound |Ij| = |Ik2 | ≤ 1 +
√
n− j2 instead. Recall that k2 was

defined to be the largest integer j such that k2
2 < n, so that k2 = ⌊

√
n− 1⌋. Hence

|Ik2 | ≤ 1 +
√

n− k2
2 ≤ 1 +

√
2k2 + 1 ≤ 2

√
k2.

For j < k2, we write j = k2 − r for 1 ≤ r ≤ k2 − k1. Then we have

n− j2 ≥ k2
2 − (k2 − r)2 = 2k2r − r2 ≥ k2r.

Consequently, we have√
n− j2 −

√
n− (j + 1)2 =

2j + 1√
n− j2 +

√
n− (j + 1)2

≤ 2j + 1√
n− j2

≤ 2(j + 1)√
k2r

≤ 2

√
k2
r
.

In particular, we obtain the bound |Ij| ≤ 2+2
√
k2/r. Summing, we obtain the bound

for D2:

D2 =
∑
j≥1

|Ij|2 ≤ 4k2 +

k2−k1∑
r=1

(2 + 2
√

k2/r)
2 ≤ C

√
n log(n),

for some C > 0, since k2 ∼
√
n, k1 ∼

√
n/2.

Now we apply Hoeffding’s Inequality with λ = 3
√
log(n) and D = n1/4

√
C log(n).

Thus we obtain

P(|τ | ≥ λD) = P(|τ | ≥ 3n1/4
√
C log(n)) ≤ exp(−2(9 log(n))) = n−18.
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Recall that σ − πn

4
= 2τ +O(1), so the above inequality implies that

P
(∣∣∣σ − πn

4

∣∣∣ > C ′n1/4 log(n)
)
≤ n−18

for some suitably chosen constant C ′ > 6
√
C. Now letAn be the event that

∣∣∣σ − πn

4

∣∣∣ >
C ′n1/4 log(n). Then since P(An) ≤ n−18, the Borel-Cantelli Lemma applies and with
probability one at most finitely many of the An’s occur. In particular, with probability
one we have

σ = σn =
πn

4
+O(n1/4 log(n)).

Now, from the definition of ai, we have that α2
i − 1 < ai ≤ α2

i , and so

α2
i + α2

j − 2 < ai + aj ≤ α2
i + α2

j .

This implies that

σN+2 ≤
∑
n≤N

rA,2(n) ≤ σN .

Hence with probability 1, there exists a set A that satisfies∑
n≤N

rA,2(n) =
πn

4
+O(n1/4 log(n)),

and this completes the proof.

We discuss briefly the motivation for this construction. If instead of a random set
A we consider the set of all squares, then we know (almost trivially) that∑

n≤N

rN2,2(n) = πN +O(
√
N).

The last term is not an optimal error term. Indeed it is conjectured that∑
n≤N

rN2,2(n) = πN +O(N1/4+ε),

for any given ε > 0. This conjecture is known as the Gauss Circle Problem, since
Gauss was the first one to investigate it. Unfortunately, the problem seems to remain
unresolved, though in 2007 a paper by Cappell and Shaneson appeared on the arXiv
claiming to have resolved the problem. Their proof is not currently accepted by the
mathematical community, though no retraction has been made. If this conjecture is
true, then the set of squares themselves give an example of Ruzsa’s thin sumset.

Indeed, it is clear that Ruzsa’s insight was to notice that the set of squares have
the correct main term, and conjecturally the correct error term. Hence he attempted
and succeeded in generating a ‘square like’ random set that actually does the job.
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Unfortunately, one can see that Ruzsa’s construction relies much on the same machin-
ery that was used in Erdős’s theorem. Namely, the approach is to define a suitable
random set B, calculate E[rB,2(n)], break rB,2(n) (or something sufficiently close to
it, as in Ruzsa’s theorem) into a sum of independent indicator random variables,
then apply something like Chernoff’s Inequality to show that the ‘bad’ events have
summable probability, and then apply the Borel-Cantelli Lemma to finish the job.
The key difficulty that Ruzsa did not circumvent in his theorem is how to deal with
the case when rB,k(n) (when k could be larger than 2) cannot be decomposed into
a sum of independent indicator random variables, but nonetheless correlation of the
summands remain ’small’. The key insight needed to overcome this difficulty is dis-
cussed in the next chapter, where we discuss the proof of the Erdős-Tetali Theorem.
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Chapter 3

The Probabilistic Method - Part II

3.1 Two needed inequalities

Before we present the Erdős-Tetali theorem, we will need to introduce the significant
breakthrough that allowed the aforementioned authors to make the jump from the
k = 2 case to the general case, that of Janson’s Inequality. Roughly speaking, if
X1, · · · , Xn are independent, then X = X1 + · · · +Xn is a sum of independent ran-
dom variables. However we may wish to consider other polynomials of X1, · · · , Xn.
Namely, if X = X(X1, · · · , Xn) is a convex polynomial of X1, · · · , Xn, then we wish
to obtain some sort of statement saying that X should be close to(or concentrated
near) its mean. From this perspective, we can view Janson’s Inequality as a general-
ization of Chernoff’s Inequality.

We first begin with a correlation inequality due to Fortuin, Kasteleyn, and Ginibre
[12].

3.1.1 FKG Inequality

The FKG inequality, a fundamental inequality in the study of lattices in combi-
natorics, has a clear generalization in the context of independent random variables.
The idea here is that X,Y are two monotone functions of jointly independent random
variables X1, X2, · · · , Xn, then X(X1, · · · , Xn), Y (X1, · · · , Xn) should be positively
correlated. We give the following definition:

Definition 3.1.1. LetX1, · · · , Xn be jointly independent indicator random variables.
Let X = X(X1, · · · , Xn) be a function of the variables X1, · · · , Xn. We say that X
is monotone increasing if X(X1, · · · , Xn) ≥ X(X ′

1, · · · , X ′
n) whenever Xj ≥ X ′

j, for
1 ≤ j ≤ n. Say that X is monotone decreasing if −X is monotone increasing.

With this definition, we can state the FKG inequality needed for our context.

Proposition 3.1.2. (FKG Inequality) Suppose X1, · · · , Xn are independent indicator
random variables. Then if X, Y are monotone increasing random variables, then

E[XY ] ≥ E[X]E[Y ]
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or equivalently
Cov(X, Y ) ≥ 0.

The same holds if X, Y are both monotone decreasing.

Proof. By replacing X and Y with −X,−Y if necessary, it suffices to assume that
X,Y are monotone increasing. Note that by definition, X, Y are functions of the set
of independent variables {X1, · · · , Xn}. We thus establish the truth of the inequality
by induction on n. If n = 0 then the set of independent random variables is empty,
hence X, Y are deterministic and the inequality is vacuously true. If n ≥ 1, assume
that the inequality is proved for n − 1. We now show that this implies the truth of
the inequality for n as well.

By the inductive hypothesis, it suffices to assume that P(Xn = 0),P(Xn = 1) are
non-zero. Otherwise the random variable Xn is a constant and so X(X1, · · · , Xn) =
X(X1, · · · , Xn−1). By the inductive hypothesis, we are done. Now note that since
Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] is unaffected if X, Y are shifted, we may as-
sume without loss of generality that the conditional expectations E[X|Xn = 0],E[Y |Xn =
0] = 0. By the monotonicity assumption, it follows that E[X|Xn = 1],E[Y |Xn] ≥ 0.
By monotonicity again and the inductive hypothesis, we have that

E[XY |Xn = 0] ≥ E[X|Xn = 0]E[Y |Yn = 0] = 0.

Likewise, we have

E[XY |Xn = 1] ≥ E[X|Xn = 1]E[Y |Xn = 1].

By the law of total probability, we have

E[XY ] = E[XY |Xn = 1]P(Xn = 1) + E[XY |Xn = 0]P(Xn = 0)

≥ E[X|Xn = 1]E[Y |Xn = 1]P(Xn = 1).

On the other hand, we have E[X] = E[X|Xn = 0]P(Xn = 0) + E[X|Xn = 1]P(Xn =
1) = E[X|Xn = 1]P(Xn = 1) and similarly E[Y ] = E[Y |Xn = 1]P(Xn = 1). Here we
used the fact that E[X|Xn = 0] = E[Y |Xn = 0] = 0. Together, these imply that

E[X]E[Y ] = E[X|Xn = 1]E[Y |Xn = 1]P(Xn = 1)2.

But P(Xn = 1) ≤ 1, and hence

E[XY ] ≥ E[X]E[Y ],

as desired.

Now we proceed to prove Janson’s Inequality. Note that the result we prove here
is an improved version of the original. To see a statement and proof of the original
Janson’s Inequality, see [1]. This new Janson’s Inequality is taken from [15] and [22].
Janson’s Inequality is part of a larger scheme called Poisson’s paradigm, which deals
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with the case when a random variable can be decomposed into a sum of ’mostly in-
dependent’ indicator random variables. This is precisely the context that is needed
to overcome the difficulty of dependence when dealing with a basis of order k > 2.

The Poisson paradigm has spawned a large amount of research that cannot be covered
in this paper. See [1] and [22] for more details. We now introduce Janson’s Inequality.

3.1.2 Janson’s Inequality

Proposition 3.1.3. (Janson’s Inequality) Suppose X1, · · · , Xn are independent in-
dicator random variables. Let A be a collection of non-empty subsets of [1, n] =
{1, 2, · · · , n}. Define

X =
∑
A∈A

∏
j∈A

Xj,

and

∆(X1, · · · , Xn) =
∑

A,B∈A,A∩B ̸=∅

E

( ∏
j∈A∪B

Xj

)
.

Then for any real number 0 ≤ x ≤ EX, we have the inequality

P(X ≤ EX − x) ≤ exp

(
−x2

2∆

)
,P(X = 0) ≤ exp

(
−E[X]2

2∆

)
.

Proof. We will establish Janson’s Inequality using techniques from the exponential
moment method from the first sub-section of this chapter. If P(Xj = 1) = 0, then
E[X ′] = E[X1 + · · ·+Xj−1 +Xj+1 + · · ·+Xn] = E[X] and we can instead look at the
random variable X ′ = X1 + · · ·+Xj−1 +Xj+1 + · · ·+Xn. If P(Xj = 0) = 0 then we
see that

P(X ≤ E[X]− x) = P(X ′ + 1 ≤ E[X] + 1− x) = P(X ′ ≤ E[X ′]− x),

and from the definition of ∆ it is clear that ∆(X1, · · · , Xn) = ∆(X1, · · · , Xj−1, Xj+1, · · · , Xn).
Hence it suffices to assume that P(Xj = 0) > 0,P(Xj = 1) > 0 for all j.

Define the function F (t) = E[e−tX) for positive t. Recall Markov’s Inequality im-
plies that for any random variable and λ > 0, we have

P(X ≤ −λ) = P(e−tX ≥ etλ) ≤ E[e−tX ]

etλ
.

This implies that

P(X ≤ E[X]− x) ≤ F (t)

exp(−t(E[X]− x))
.

Thus it suffices to show, after taking logarithms, that the stronger inequality log(F (t))+

t(E[X]− x) ≤ −x2

2∆
holds for some t > 0. Because the summands in X, being

∏
j∈A

Xj
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are no longer independent necessarily when two index sets A,B ∈ A intersect non-
trivially, we cannot hope for an easy factorization of E[e−tX ] as we did with Chernoff’s
Inequality. Getting around this difficulty with dependence is the crucial insight that
allowed Erdős and Tetalli to show the existence of thin bases of arbitrary order. We
will bypass the difficulty of dependence as follows. It is clear that F (0) = 1. By the
Fundamental Theorem of Calculus, we have

log(F (t)) =

∫ t

0

F ′(s)

F (s)
ds.

By the chain rule, we have
F ′(t) = −E[Xe−tX ]

which implies that

F ′(t) = −
∑
A∈A

E

(
e−tX

∏
j∈A

Xj

)
.

Clearly,
∏
j∈A

Xj = 1 if and only if Xj = 1 for all j ∈ A. Thus we can define EA to be

the event that Xj = 1 for all j ∈ A. Then we obtain the following equality

F ′(t) = −
∑
A∈A

E[e−tX |EA]P(EA).

Making this substitution into the equation logF (t) =

∫ t

0

F ′(s)

F (s)
ds, we obtain

− logF (t) =

∫ t

0

∑
A∈A E[e−sX |EA]P(EA)

F (s)
ds =

∑
A∈A

P(EA)

∫ t

0

E[e−sX |EA]

F (s)
ds.

The exchange of the sum and the integral is trivial, due to the sum being finite. It
thus suffices to show the inequality∑

A∈A

P(EA)

∫ t

0

E[e−sX |EA]

F (s)
ds+ t(E[X]− x) ≥ x2

2∆
.

Again, recall that the summands of X are not necessarily independent. However,

if A,B ∈ A are such that A ∩ B = ∅, then
∏
j∈A

Xj,
∏
j∈B

Xj are independent. Thus

it is natural to introduce the ancillary random variables YA =
∑

B∈A:A∩B ̸=∅

∏
j∈B

Xj and

ZA =
∑

B∈A:A∩B=∅

∏
j∈B

Xj.

By the FKG inequality, we have

E[e−tX |EA] = E[e−t(YA+ZA)|EA] ≥ E[e−tYA|EA]E[e−tZA|EA].
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But ZA is independent from EA, hence E[e−tZA|EA] = E[e−tZA ]. Since X ≥ ZA, we
have that e−tX ≤ e−tZA and so E[e−tZA ] ≥ F (t). Now, we can replace∑

A∈A

P(EA)

∫ t

0

E[e−sX |EA]

F (s)
ds+ t(E[X]− x) ≥ x2

2∆

with ∑
A∈A

P(EA)

∫ t

0

E[e−sYA|EA]ds+ t(E[X]− x) ≥ x2

2∆
.

Now for any positive number t, the function f(z) = e−tz is convex. Now we can apply
Jensen’s Inequality, which states for any convex function φ, we have E[φ(X)] ≥
φ(E[X]). In particular, we have

E[e−sYA|EA] ≥ exp (−sE[YA|EA]) .

Now, we apply the classic, finite version of Jensen’s Inequality to the convex function

f(u) = exp(−su) and noting that E[X] =
∑
A∈A

P(EA) to obtain

∑
A∈A

P(EA) exp(−sE[YA|EA]) ≥ E[X] exp

(
−s
∑
A∈A

P(EA)E[YA|EA]

E[X]

)
.

On the other hand, we have∑
A∈A

P(EA)E[YA|EA] =
∑
A∈A

∑
B∈A:A∩B ̸=∅

E

(
I(EA)

∏
j∈B

Xj

)
= ∆(X1, · · · , Xn) = ∆.

This implies that ∫ t

0

∑
A∈A

P(EA)E[e−sYA|EA]ds+ t(E[X]− x)

≥ E[X]

∫ t

0

exp

(
−s

∆

E[X]

)
ds− t(E[X]− x)

=
E[X]2

∆

(
1− exp

(
−t

∆

E[X]

))
− t(E[X]− x).

Now set t = x/∆ so that
t∆

E[X]
=

x

E[X]
≤ 1, and thus we obtain

1− exp

(
−t

∆

E[X]

)
= 1− exp

(
−x

E[X]

)
≥ x

E[X]
− x2

2E[X]2
.

Finally, we obtain ∫ t

0

∑
A∈A

P(EA)E[e−sYA|EA]ds+ t(E[X]− x)

≥ xE[X]

∆
− x2

2∆
− x

∆
(E[X]− x) =

x2

2∆
.

This completes the proof.
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The FKG inequality showed that if X,Y are two increasing functions of the ran-
dom variables X1, · · · , Xn then their covariance is non-negative. Janson’s Inequality
asserts that one can obtain an exponential type bound for a specific type of convex
polynomial of independent indicator random variables. Note however that with the
case of Chernoff’s Inequality, we were able to obtain a bound on |X − EX|, not just
X − EX. This turns out to be crucial if we are to obtain a thin basis. For example,
with the k = 2 case we saw that both ends of the inequality were needed to obtain the
Θ(log(n)) behaviour. In the next subsection some better estimates will be obtained
to deal with the general case.

3.2 Thin bases of order k > 2

We present here the original argument of Erdős and Tetali in their 1990 paper, [9]. It
is noted that an alternative proof has since been discovered using more refined machin-
ery on polynomial concentration, which can be seen as generalizing both Chernoff’s
bounds and Janson’s Inequality. We direct the reader to [22] for such results. We
begin with the classic sunflower lemma.

Definition 3.2.1. We say a collection of sets S is a sunflower if there exists a set G
such that for every Ai, Aj ∈ S we have Ai ∩ Aj = G. The sets Ai are called petals of
the sunflower. G is then called the core of the sunflower.

Proposition 3.2.2. (Sunflower Lemma) Let F be a finite collection of sets, each
containing n elements. Suppose that for some positive integer l > 0 we have |F| >
(l − 1)nn!. Then F contains l sets that form a sunflower.

Proof. We proceed by induction on n. For the n = 1 case, F contains at least l
singletons, no two are the same, so their pairwise intersection is ∅. Pick any l elements
in F and they form a sunflower with core ∅. Now suppose that n > 1 and that the
claim has been verified for all values less than n. Let A = {A1, · · · , As} ⊂ F be a
collection of disjoint sets that is maximal, in other words A ∪ {B} is not a disjoint
family for any B ∈ F . If s ≥ l, then we are done since we can find a sunflower

with core the empty set. Hence suppose that s ≤ l − 1. Set B =
s∪

j=1

Aj. Then

|B| ≤ n(l−1). By the maximality of A, B intersects non-trivially with every element
in F . By the pigeon hole principle there is an x ∈ B that is contained in at least
|F|
|B|

>
n!(l − 1)n

n(l − 1)
= (n− 1)!(l − 1)n−1 many elements of F . Now consider the family

Fx = {S \ {x} : S ∈ F}. By the inductive hypothesis, since each of the elements in
Fx contains n− 1 elements, it follows that Fx contains a sunflower with l petals, say
C1, · · · , Cl. But then C1 ∪ {x}, · · · , Cl ∪ {x} is still a sunflower with l petals, and
each Cj ∪ {x} ∈ F . This completes the proof of the proposition.

We will now establish the Erdős-Tetali Theorem in the following manner. We
define a random set B as per the proof of Erdős’s theorem for the case k = 2, with
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a suitable probability. Next we define rB,k(n) to be the number of ways of writing
n as k elements of B, and show that the expected value of rB,k(n), which we denote
µ, is Θ(log(n)). Next we will be done if we can show that if An is the event that
|rB,k(n) − µ| ≥ (1 − ε)µ then the probabilites P(An) are summable as a series, and
hence with probability one at most finitely many of the An’s occur. This will establish
the theorem. For technical reasons, we want to work with a slightly modified defini-
tion for rB,k(n); where we want to only consider the sum of k DISTINCT elements.
This choice is largely to simplify the discourse. For detailed discussions on how to
deal with the case when repeat summands are allowed, see [22].

We now construct the random set B as follows. Fix the absolute constant

Dk =

(
kk−1

k − 1

) k−1
k

k−2∏
j=1

((j + 1)
1
k − j

1
k ).

Choose C so that CkDk > 3. Define P(x ∈ B) = px = C
log1/k(x)

x1−1/k
if the right hand

side is at most 1/2, and 0 otherwise. Notice with this definition, if n is sufficiently

large, then we only need to consider summands x where px = C
log1/k(x)

x1−1/k
.

We are now ready to state our first result.

Proposition 3.2.3. With the notation as in the above definition, we have µ =
Θ(log(n)).

Proof. First note that

µ =
∑

x1+···+xk=n
1≤x1<···<xk

px1 · · · pxk

=
∑

x1+···+xk=n
1≤x1<···<xk

(
C
log1/k(x1)

x
1−1/k
1

)(
C
log1/k(x2)

x
1−1/k
2

)
· · ·

(
C
log1/k(xk)

x
1−1/k
k

)
.

We now break the sum into two parts. Let

F1 =

{
(x1, · · · , xk) ∈ Bk :

n

log n
≤ x1 < · · · < xk

}
and

F2 =

{
(x1, · · · , xk) ∈ Bk : x1 < · · · < xk, x1 ≤

n

log n

}
.

Then define

µ1 =
∑
F1

(
C
log1/k x1

x
1−1/k
1

)(
C
log1/k x2

x
1−1/k
2

)
· · ·

(
C
log1/k xk

x
1−1/k
k

)
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and

µ2 =
∑
F2

(
C
log1/k x1

x
1−1/k
1

)(
C
log1/k x2

x
1−1/k
2

)
· · ·

(
C
log1/k xk

x
1−1/k
k

)
.

Then it is clear that µ = µ1 + µ2. Thus to show that µ = Θ(log n) it suffices to show
that µ1 = Θ(log n) and µ2 = o(log n).

By partial summation, we have

µ1 =
∑
F1

(
C
log1/k x1

x
1−1/k
1

)(
C
log1/k x2

x
1−1/k
2

)
· · ·

(
C
log1/k xk

x
1−1/k
k

)

= Ck(1 + o(1))(log n)
∑
F1

1

(x1 · · ·xk)(k−1)/k
.

Now set S1 =
∑
F1

1

(x1 · · ·xk)(k−1)/k
. It suffices to show that S1 = Θ(1).

Now note that since xk is the largest of the xi’s, and the summands are distinct,

we have xk >
n

k
. Hence we obtain the trivial bound

S1 <
1

(n/k)(k−1)/k

∑
F1

1

(x1 · · · xk−1)(k−1)/k
.

We can bound this latter sum by summing over all possible tuples (x1, · · · , xk) ∈
[1, n]k, and hence

S1 <
1

(n/k)(k−1)/k

∑
1≤xi≤n

1

(x1 · · ·xk)(k−1)/k
=

1

(n/k)(k−1)/k

( ∑
1≤x≤n

1

x(k−1)/k

)k−1

.

Now note that the function f(x) =
1

x(k−1)/k
is strictly decreasing, and hence we can

approximate the above sum by an integral. An elementary argument yields that

S1 <
1

(n/k)(k−1)/k

( ∑
1≤x≤n

1

x(k−1)/k

)k−1

≤
(
k

n

)(k−1)/k (∫ n

1

dx

x(k−1)/k
+O(1)

)k−1

Evaluating the integral, we obtain(∫ n

1

dx

x(k−1)/k
+O(1)

)k−1

= (kn1/k +O(1))k−1 = kk−1(n(k−1)/k + o(n(k−1)/k)).

Thus we obtain the bound

S1 <

(
k

n

)(k−1)/k

(kk−1n(k−1)/k + o(n(k−1)/k)) = (1 + o(1))k(k2−1)/k.
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This shows that µ1 = O(log n). Now we seek to obtain a lower bound for µ1. Note
that xk < n vacuously, and hence the (also trivial) lower bound for S1:

S1 >
1

n(k−1)/k

∑
F1

1

(x1 · · ·xk−1)(k−1)/k
.

The objective again is to have a good lower bound for
∑
F1

1

(x1 · · ·xk−1)(k−1)/k
. Since

the range of summation F1 is defined for
n

log n
≤ x1 < · · · < xk, we can only

obtain a smaller sum by replacing F1 with the more restricting range G1 which is
n

log n
< x1 <

n

k(k − 1)
,

n

k(k − 1)
< x2 <

2n

k(k − 1)
, · · · , (k − 2)n

k(k − 1)
< xk−1 <

n

k
. Note

that this restriction automatically forces xk >
n

k
, and so xk > xk−1. Note that the

sum ∑
G1

1

(x1 · · ·xk−1)(k−1)/k

can be factored into ∑
n

logn
<x1<

n
k(k−1)

1

x
(k−1)/k
1

· · ·
∑

(k−2)n
k(k−1)

<xk−1<
n
k

1

x
(k−1)/k
k−1

.

Note that each of the sums involving xi can be approximated by an integral that is
easy to evaluate, and we obtain∑

n
logn

<x1<
n

k(k−1)

1

x
(k−1)/k
1

· · ·
∑

(k−2)n
k(k−1)

<xk−1<
n
k

1

x
(k−1)/k
k−1

=

(∫ n
k(k−1)

n
logn

dx1

x
(k−1)/k
1

+O(1)

)
· · ·

(∫ n
k

(k−2)n
k(k−1)

dxk−1

x
(k−1)/k
k−1

+O(1)

)

= (1+o(1))kk−1

(
n

k(k − 1)

)(k−1)/k

[1−(n/k(k−1) log(n))1/k][21/k−1] · · · [(k−1)1/k−(k−2)1/k].

Dividing by n(k−1)/k and recalling the definition of Dk yields that

S1 > Dk + o(1)

Which is a non-trivial lower bound indeed, since Dk > 0.

The above calculations combined yields the following information:

Ck(Dk + o(1)) log n ≤ µ1 ≤ Ck(k(k2−1)/k + o(1)).

Now we direct our attention to µ2. Recall that

µ2 = Ck
∑
F2

(log(x1) log(x2) · · · log(xk))
1/k

(x1x2 · · ·xk)(k−1)/k
.
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Clearly, we have the inequality

µ2 < Ck log n
∑
F2

1

(x1 · · · xk)(k−1)/k
.

Set

S2 =
∑
F2

1

(x1 · · ·xk)(k−1)/k
.

Then we want to show that S2 = o(1), as that would imply that µ2 = o(log n) which
is what we want. The approach is very similar to getting the upper bound for S1.

Indeed, we can allow 1 ≤ x1 ≤ n

log n
, and 1 ≤ xi ≤ n for 2 ≤ i ≤ k − 1, and bound

1

xk

<
k

n
. We hence obtain the upper bound

S2 <

(
k

n

)(k−1)/k
 ∑

1≤x1≤ n
logn

1

x
(k−1)/k
1

( ∑
1≤x2≤n

1

x
(k−1)/k
2

)k−2

.

Again we approximate by integrals to obtain

S2 <

(
k

n

)(k−1)/k
(∫ n

logn

1

dx1

x
(k−1)/k
1

+O(1)

)(∫ n

1

dx2

x
(k−1)/k
2

+O(1)

)k−2

=

(
k

n

)(k−1)(k−2)/k [
1

log1/k n
n(k−1)/k + o

(
1

log1/k(n)
n(k−1)/k

)]
.

This implies that

S2 = O

(
1

log1/k n

)
= o(1).

Hence µ2 = o(log(n)), as desired.

Combining the estimates for µ1, µ2, we get that C
k(Dk+o(1)) log n ≤ µ ≤ Ck(k(k2−1)/k+

o(1)) log(n). This completes the proof of this propostion.

Now that we have established that the expected value µ of our random variable
rB,k(n) is of the right size, namely Θ(log n), we have to prove that rB,k(n) is close
to its expected value with high probability. Our next step will be to show that
rB,k(n) = O(log n) with high probability. We will finish the proof of the Erdős-Tetalli
Theorem by showing that rB,k(n) = Ω(log n) as well.

To show that rB,k(n) = O(log n) with high probability, let An be the event that
|rB,k(n) > dµ| for some constant d > 0. We will show that with an appropriate choice

of d, we have
∞∑
n=1

P(An) < ∞. Then the Borel-Cantelli Lemma will apply to show
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that with probability one at most finitely many of the An’s occur.

We follow a similar strategy as in the proof of the previous proposition, namely
we will break rB,k(n) into two components. First, we consider representations of n
that are totally disjoint; meaning they do not share even one summand. Then we
will consider representations with at least one overlap. The idea is to show that the
disjoint representations make up the bulk of the representations, and the ones with
overlap are negligible.

To do this, we first consider disjoint representations; that is, two representations
n = a1+ · · ·+ ak = b1+ · · ·+ bk, and ai ̸= bj for 1 ≤ i, j ≤ k. To do this we first need
another probabilistic lemma, which is called the disjointness lemma.

Proposition 3.2.4. (Disjointness Lemma) Suppose that A1, A2, · · · is a sequence of

events such that
∞∑
n=1

P(An) ≤ u < ∞. Then

∑
{A1,··· ,Al}

P(A1∩···∩Al)=P(A1)···P(Al)

P(A1 ∩ · · · ∩ Al) ≤
ul

l!
.

Proof. The proof is elementary, but we provide it here for completeness. By indepen-
dence, it follows that∑

{A1,··· ,Al}
P(A1∩···∩Al)=P(A1)···P(Al)

P(A1 ∩ · · · ∩ Al) =
∑

{A1,··· ,Al}
P(A1∩···∩Al)=P(A1)···P(Al)

P(A1) · · ·P(Al).

The latter is certainly bounded above by the sum over all A1, · · · , Al where each set
is distinct, as opposed to only mutually independent ones, and hence we obtain∑

{A1,··· ,Al}
P(A1∩···∩Al)=P(A1)···P(Al)

P(A1) · · ·P(Al) ≤
∑

{A1,··· ,Al}

P(A1)P(A2) · · ·P(Al).

Since the latter sum is indexed by sets instead of tuples, we can adjust it to include

permutations of A1, · · · , Al by multiplying by
1

l!
. Hence we obtain∑

{A1,··· ,Al}

P(A1)P(A2) · · ·P(Al) =
1

l!

∑
(A1,··· ,Al)

P(A1) · · ·P(Al).

By the convergence of the series
∞∑
n=1

P(An) ≤ u < ∞, we obtain

1

l!

∑
(A1,··· ,Al)

P(A1) · · ·P(Al) =
1

l!

(
∞∑
n=1

P(An)

)l

≤ ul

l!
.

This completes the proof.
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Before we can use the disjointness lemma, we have to give some definitions. Es-
sentially, to bypass the fact that our random variable rB,k(n) cannot be decomposed
into a sum of independent random variables, we will pursue the following idea: first
consider collections of representations n = a1 + · · ·+ ak = b1 + · · ·+ bk where ai ̸= bj
for 1 ≤ i, j ≤ k, then show that contributions made by non-disjoint representations
is small. Hence we are motivated to make the following definition:

Definition 3.2.5. Suppose T1 = {a1, · · · , ak}, T2 = {b1, · · · , bk} with T1, T2 ⊂ B
where B is the random set we defined at the beginning of this section. Suppose that
n = a1 + · · · + ak = b1 + · · · + bk. We say that T1, T2 are disjoint representations if
T1 ∩ T2 = ∅.

The idea of the following propositions is to show that there cannot be a collection of
pairwise disjoint collections Tj. In particular, we will show that a maximal collection
is of size O(log(n)). We now prove the following corollary to the disjointness lemma.

Corollary 3.2.6. Let T be a collection of pairwise disjoint sets Tj such that
∑
x∈Tj

x =

n. Then ∑
T

P(T1 ∩ · · · ∩ T6µ) ≤
µ6µ

(6µ)!
.

Where we understand Tj to be the event that all elements of Tj are chosen to be in
our random set B.

Proof. This is just the disjointness lemma with u = µ, l = 6µ.

Set r∗B,k(n) to be the size of a maximal collection of pairwise disjoint representa-
tions. We will show that with the appropriate choice of our constant C, that r∗B,k(n)
is bounded above by an absolute multiple of µ with high probability.

Proposition 3.2.7. Choose C > (1/3Dk)
1/k. Then for all sufficiently large n we

have r∗B,k(n) ≤ 6µ with probability 1.

Proof. Let An denote the event that r∗B,k(n) > 6µ. Let T be as in the corollary above.
Then surely, we have

P(An) <
∑
T

P(T1 ∩ · · · ∩ T6µ) ≤
µ6µ

(6µ)!
.

Now using Stirling’s Formula [11], we have m! ∼
√
2πm

(m
e

)m
. We also have m! >

mme−m for m = 1, 2, · · · . Using this estimate, we obtain

P(An) <
1

(6µ/e)(6µ)
=
(e
6

)(6µ)
.

Since we e/6 < 1, it follows that we have the bound (e/6)6µ < (e/6)6(C
k(Dk+o(1))) log(n).

Hence, we obtain
P(An) < n−6CkDk+o(1).
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By our choice of C, we see that CkDk > 1/3, so that

P(An) < n−2+o(1).

Now the Borel-Cantelli Lemma applies, and we see that
∞∑
n=1

P(An) < ∞, so with

probability one at most finitely many of the An’s occur. This completes the proof.

Remark 3.2.8. Our next step is to obtain a non-trivial bound on the number of
representations of n as a sum of k− 1 elements of our random set B. To see why this
is needed, note the following argument: Let T be a maximal collection of disjoint
representations. Then, we have proven that |T | = r∗B,k(n) < 6µ. Since each represen-

tation contains exactly k elements, it follows that

∣∣∣∣∣ ∪
T∈T

T

∣∣∣∣∣ < 6µk. If we set rB,k−1(n)

to be the number of ways that n can be written as the sum of k − 1 elements of B,
then for each x the number of representations that contain x is precisely rB,k−1(n−x).
Thus if we obtain a uniform upper bound c on rB,k−1(n), then we can conclude that
rB,k(n) < 6µkc = (6Ckk(k2−1)/kc+ o(1)) log(n).

Thus to prove the appropriate upper bound for rB,k(n), it remains to show that
rB,k−1(n) is bounded above. In fact, we will prove the following:

Proposition 3.2.9. There exists a constant c > 0 such that rB,k−1(n) < c for all n
almost surely.

Proof. For 2 ≤ l ≤ k − 1, define µl = E[rB,l(n)]. We will follow the same general
strategy: we will show that µl has the right size, and then show that rB,l(n) is close
to µl with high probability. Let Fl denote the set {(x1, · · · , xl) ∈ Bl : x1 + · · ·+ xl =
n, 1 ≤ x1 < · · · < xl < n}. Then we have

µl =
∑
Fl

P(x1 ∈ B) · · ·P(xl ∈ B)

=
∑
Fl

C

(
log(x1)

xk−1
1

)1/k

· · ·C
(
log(xl)

xk−1
l

)1/k

.

By arguments similar to those presented earlier, we can obtain the cruder estimate
that

µl = no(1)
∑
Fl

(
1

xk−1
1

)1/k

· · ·
(

1

xk−1
l

)1/k

= no(1)Sl.

Using the bound n/l < xl, we see that

Sl = n−(k−1)/k+o(1)
∑
Fl

1

(x1 · · ·xl−1)(k−1)/k
.
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Again, we can estimate by replacing summation over Fl to summation over all 1 ≤
xi ≤ n, to obtain the bound

Sl < n−(k−1)/k+o(1)
∑

1≤xi≤n
i=1,··· ,l−1

1

(x1 · · · xl−1)(k−1)/k

= n−(k−1)/k+o(1)

( ∑
1≤x≤n

1

x(k−1)/k

)l−1

= n−(k−1)/k+o(1)(n1/k+o(1))l−1 = n−1+l/k+o(1).

Since µl = no(1)Sl, it follows that µl ≤ n−1+l/k+o(1).

Now we will use another application of the disjointness lemma and the Borel-Cantelli
Lemma to prove that, in fact, r∗B,k−1(n) < c almost surely. First, denote T l

i denote

a representation of n as the sum of l distinct numbers. Then, if T l
i , T

l
j are disjoint,

then they are in fact independent events (recall earlier that by an abuse of nota-
tion we treat the set T l

i and the event that all elements in T l
i are in B the same).

Hence the disjointness lemma applies, and we see that summing over all collections
of {T l

1, · · · , T l
2k}, we obtain∑

P(T l
1 ∩ · · · ∩ T l

2k) <
µ2k
l

(2k)!
.

From this we obtain

P(r∗B,l(n) > 2k) ≤
∑

P(T l
1 ∩ · · · ∩ T l

2k)

<
µ2k
l

(2k)!

<
(n−1+l/k+o(1))2k

(2k)!
= n−2k+2l+o(1).

Recall that l ≤ k − 1, and so −2k + 2l ≤ −2, and hence

P(r∗B,l(n) > 2k) < n−2+o(1).

Applying the Borel-Canteli Lemma to the events An such that r∗B,l(n) > 2k, we obtain
that almost surely r∗B,l(n) ≤ 2k for n sufficiently large. Choosing a larger constant cl
if necessary, we also obtain that r∗B,l(n) ≤ cl almost surely.

Next we will show that rB,k−1(n) is bounded above by a constant almost surely.
This will involve a clever application of the Sunflower Lemma, which was covered
earlier in this section. Without further ado, we state and prove our next result.

We have established that for all 2 ≤ l ≤ k − 1 we have r∗B,l(n) < cl almost surely for

all n. Set cmax = max
2≤l≤k−1

{cl}. We claim that it suffices to set c = (cmax)
k−1(k − 1)!.
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We will establish this by contradiction. If the claim is false, then there exists a
positive integer N for which rB,k−1(N) > c with positive probability. In particu-
lar, there are more than (cmax)

k−1(k − 1)! representations T k−1
i of N with positive

probability, and hence by the Sunflower Lemma there exists cmax + 1 representations
{T k−1

1 , · · · , T k−1
cmax+1} forming a sunflower, with core R. Let R = {x1, · · · , xr}, with

0 ≤ r ≤ k− 2. If x1+ · · ·+xr = m, then removing R from each of the T k−1
i will yield

at least cmax+1 representations of N−m as a sum of k−r−1 elements, contradicting
the choice of cmax. Hence the claim follows.

By the remark earlier, we have now successfully proved that rB,k(n) = O(log(n)).
To complete the proof of the Erdős-Tetali Theorem, it remains to show that rB,k(n) =
Ω(log(n)).

To do this, we would like to apply Janson’s Inequality. To apply our version of
Janson’s Inequality, we define the random variables Xi such that Xi = 1 if i ∈ B,
and Xi = 0 otherwise. By our definition of the random set B, it follows that the
Xj’s are jointly independent indicator random variables. Now, if we are interested
in representations of n as a sum of k distinct numbers, denote Tj a representation of

n as a sum of k distinct elements of B, and consider X(n) =
∑
Tj

∏
i∈Tj

Xi. Note that∏
i∈Tj

Xi = 1 if and only if Tj ⊂ B, and hence X(n) = r∗B,k(n). Let µ∗ = E[r∗B,k(n)].

Then, by the notation used in proposition 3.2 (Janson’s Inequality), we set x = εµ∗

and δ =
∆

µ∗ . We can then conclude the following:

P(r∗B,k(n) ≤ (1− ε)µ∗) ≤ exp

(
−2ε2µ∗

2δ

)
≤ exp

(
−2ε2µ∗

1 + δ

)
.

We can then use this form of Janson’s Inequality to prove that r∗B,k(n), and conse-
quently rB,k(n), is Ω(log(n)) almost surely. To do this, we need a good bound on ∆.
Indeed, we will show in the next proposition that ∆ = o(1).

Proposition 3.2.10. Let Tj, Xi be as above. Recall that we have ∆(X1, · · · , Xn)

=
∑

Ts,Tt,Ts∩Tt ̸=∅

E

( ∏
i∈Ts∪Tt

Xi

)
. In this setting we have

∆ = o(1).

Proof. Say Ts ∼ Tt if they share at least one element in common and at most k − 2
elements in common (for if they share k − 1 elements in common then they are in
fact the same). Then we can rewrite ∆ as

∆ =
∑
Ts∼Tt

P(Ts ∩ Tt).
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To see this, note that
∏

i∈Ts∪Tt
Xi = 1 if and only if i ∈ B for every i in Ts ∪ Tt, in

other words Ts ∪ Tt ⊂ B, or that the events Ts, Tt both happened. Thus the proba-
bility that

∏
i∈Ts∪Tt

Xi = 1 is precisely the probability that both Ts, Tt ⊂ B.

Now, we can organize the sum by the size of the intersection of Ts ∩ Tt. Indeed,
we have ∑

Ts∼Tt

P(Ts ∩ Tt) =
k−2∑
l=1

∑
|Ts∩Tt|=l

P(Ts ∩ Tt).

Now consider Ts, Tt such that |Ts ∩ Tt| = l. Write Ts = {z1, · · · , zl, x1, · · · , xk−l}
and Tt = {z1, · · · , zl, y1, · · · , yk−l}. Write z1 + · · · + zl = m. Then x1 + · · · + xl =
y1 + · · ·+ yl = n−m. Thus, we have the rather unpleasant decomposition∑

|Ts∩Tt|=l

P(Ts ∩ Tt) =
∑
m

∑
z1+···+zl=m

x1+···+xk−l=n−m
y1+···+yk−l=n−m

[pz1 · · · pzl ][px1 · · · pxk−l
][py1 · · · pyk−l

].

By disjointness and hence independence, we can rewrite the right hand side as

∑
m

( ∑
z1+···+zl=m

pz1 · · · pzl

) ∑
x1+···+xk−l=n−m

px1 · · · pxl

2

=
∑
m

µl(m)[µk−l(n−m)]2.

As shown in proposition 3.11, for ε < l/2k we can choose m0 such that µl ≤ n−1+l/k+ε

for 1 ≤ l ≤ k− 1 and all m > m0. Then we will break the latter sum into four pieces:
s1, s2, s3, s4, respectively over the ranges m ≤ m0, m0 < m ≤ n/2, n/2 < m < n−m0,
and n − m0 ≤ m. Note that since m0 is fixed, we have µl(m) < M for some fixed
constant M . The first sum is

s1 =
∑

m≤m0

µl(m)[µk−l(n−m)]2 < n−2+2(k−l)/k+o(1)
∑

m≤m0

M = n−2+2(k−l)/k+o(1) = o(1),

since l < k.

The second sum is

s2 =
∑

m0<m≤n/2

µl(m)[µk−l(n−m)]2 < n−2+2(k−l)/k+o(1)
∑

m0<m≤n/2

m−1+l/k+ε.

We can estimate the last sum by an integral, as usual, by noting that∑
m0<m≤n/2

m−1+l/k+ε <
∑
m≤n

m−1+l/k+ε =

∫ n

0

x−1+k/l+εdx+O(1) = nl/k+ε +O(1).

Using this estimate, we get
s2 < n−l/k+ε+o(1),
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and since ε < l/2k we see that s2 = o(1).

Now we estimate s3 by

s3 =
∑

n/2<m≤n−m0

µl(m)[µk−l(n−m)]2 < n−1+l/k+o(1)
∑

n/2<m≤n−m0

(n−m)−2+2(k−l)/k+2ε.

Again, by bounding the last sum from above by a very generous integral estimate,
we get∑
n/2<m≤n−m0

(n−m)−2+2(k−l)/k+2ε <

∫ n

0

(n−x)−2+2(k−l)/k+2εdx+O(1) = n1−2l/k+2ε+O(1).

And so, we get
s3 < n−l/k+2ε+o(1).

But ε < l/2k, so s3 = o(1).

Finally, we estimate s4.

s4 =
∑

m>n−m0

µl(m)[µk−l(n−m)]2 < n−1+l/k+o(1)
∑

m>n−m0

M2.

But since m ≤ n, we see that there are only finitely many choices of m (depending
on m0 only) such that m > n−m0, and so the last sum is a constant. Thus, s4 = o(1).

Since ∆ = s1 + s2 + s3 + s4, we see that ∆ = o(1), which is what we wanted to
prove.

Now that we have shown that the Ti’s are ‘weakly’ correlated, we can apply
Janson’s Inequality to finish the proof of the Erdős-Tetali Theorem.

Proof. (Lower bound on rB,k(n)) By proposition 3.5, we have µ > Ck(Dk+o(1)) log(n).
Let 0 < ε < 1. Apply Janson’s Inequality to get

P(r∗B,k(n) ≤ (1− ε)µ) ≤ P(rB,k(n) ≤ (1− ε)µ) ≤ exp

(
−ε(Ck(Dk + o(1)) log(n))

1 + δ

)
.

Since δ = ∆/µ∗, we have δ = o(1). Thus, by choosing CkDk > 4 and controlling ε, we
see that P(rB,k(n) ≤ (1−ε)µ) < n−2+o(1) eventually, so that by Borel-Cantelli at most
finitely many of these events occur. Hence almost surely we have rB,k(n) > C ′ log(n)
for some constant C ′, which establishes our lower bound.

Hence we have shown that rB,k(n) = Θ(log(n)) almost surely, and so there exists
a particular set B that is in fact a thin basis.

However, there are some further questions that remains to be answered. First, can
we improve the Θ to an asymptotic? That is, does there exist a thin basis B such
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that rB,k(n) ∼ c log(n) for some constant c > 0? Or we can ask a weaker question
and see if there exist a thin basis B such that c1 log(n) ≤ rB,k(n) ≤ c2 log(n), but
c1, c2 can be made arbitrarily close. Neither of these questions have been answered
in the literature. The difficulty it seems is that the probabilistic method of Erdős
remains the only effective way to generate a thin basis, and unfortunately when using
exponential type bounds such as Janson’s Inequality or Chernoff’s Inequality, the
constants c1, c2 matter as one needs to achieve a n−α, α > 1 type bound on the bad
events to apply Borel-Cantelli. Because one requires the control of the constants c1, c2
to use the Borel-Cantelli Lemma, it does not seem easy to answer either of the two
questions above without a stronger inequality.

Another question is whether one can explicitly construct a thin basis B. This seems
to be a very difficult problem. It seems a notoriously difficult problem in additive
number theory to prove that an explicitly given set is indeed a basis, since it is often
an extremely non-trivial task to find a good lower bound (at the very least, even-
tually positive) for the function rB,k(n). Indeed, finding a non-trivial lower bound
for rP,2(n) where P is the set of primes amounts to resolving the infamous Goldbach
Conjecture. The two most famous bases in the literature, being the Waring bases and
the primes, are both very ‘thick’ bases. Hence one can see the difficulty in showing
that a specific set is indeed a thin basis, since it would likely be extremely hard to
get a good lower bound on something that is already very small.

Though it seems difficult to give a specific example of a thin basis, one can hope
that a thin basis can be computed effectively. Indeed this is possible, and we will give
Kolountzakis’ proof that an effective thin basis exists in section 5.

As per conjecture 1.3, we see that Erdős conjectured that in fact bases cannot be
arbitrarily thin in the sense that rB,k(n) cannot approach infinity much slower than
log n. Thus another important question to ask is the following: given a set A that is
known to be a basis of order k, can we then show that it must necessarily contain a
thin basis B? Of course, one cannot hope for rB,k(n) = Θ(log(n)) since there are easy
obstructions to this (take, for example, the set A = {1} ∪ {2} ∪ {3k : k ∈ N}. Then
A is clearly an additive basis of order 2; but rA,2(3k + 1) = rA,2(3k + 2) = 1 for all
k ≥ 1). However, one might hope for a sub-basis B with rB,k(n) = O(log(n)). Even
this modest question is very difficult. Fortunately, there has been some progress on
this, and we will give Van Vu’s application of the probabilistic method to show that
there is a thin sub-basis in any Waring basis in the next chapter.
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Chapter 4

Thin Subbases of Waring Bases

4.1 A relatively thin sub-basis for the set of squares

In this chapter we identify some progress made towards resolving Erdős’s stronger
conjecture (Conjecture 1.0.3), namely to show that the representation function of an
additive basis cannot tend arbitrarily slowly towards infinity. One way to address
this problem is to extract a thin basis B from a given basis A, which may not be
thin. This turns out to be a very difficult problem in general, but if the given basis A
is sufficiently thick, then it is possible to extract a thin basis from it. In this section
we will present some results by Nathanson, Erdős, and Vu regarding the existence of
thin subbases in the Waring bases.

By classical results of Hardy, Littlewood, and Vinogradov, we can see that if B = Nr

for some r > 1, we can choose k > r such that B is an additive basis of order k and
rB,k(n) is large. In particular, we have the following result due to Vinogradov [19]

Theorem 4.1.1. For any fixed positive integer r ≥ 2, there exists a constant k1(r)
such that for all k > k1(r) then

rNr,k(n) = Θ(n
k
r
−1)

for every n ∈ N.

The integer powers are attractive because they provide natural examples of addi-
tive bases with relatively low density. In all of the results presented in this section,
the number theoretic properties of Nr = {nr : n ∈ N} will be essential; and so there
is little hope of generalizing these ideas to relatively sparse additive bases B whose
number theoretic properties are not well understood or available without some sig-
nificant paradigm shift.

Meanwhile, Wirsing in [26] gave a general result that proves any additive basis B
with a sufficiently high natural density while satisfying some regularity conditions
also contain thin sub-bases, but in order for his results to be relevant the function
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rB,k(n) has to be very large. Nevertheless, the primes satisfy the hypotheses in Wirs-
ing’s theorem. We will discuss Wirsing’s result in the next section.

We begin the discourse in this section with a result due to Nathanson, Choi, and
Erdős, found in [19]. Recall what is widely accepted as the first result in additive
number theory, which is Lagrange’s theorem that N2 is an additive basis of order 4.
Also recall that the set of squares is a ‘thick’ basis in the following sense: if B is an
additive basis of order h, then we would expect that∑

n≤N

rB,h(n) ≤ |B ∩ [1, N ]|h ≤
∑
n≤hN

rB,h(n)

or in other words
N1/h ≤ |B ∩ [1, N ]|.

If B = N2, we have h = 4 and |B ∩ [1, N ]| = N1/2+o(1). This is much larger than
the lower bound of N1/4, which justifies why the squares are not ‘thin’. Indeed, it
was asked whether it is possible to find a subset B of the squares that is thin in the
sense that |B∩ [1, N ]|/N1/2 → 0. This is a much weaker requirement then the desired
result of |B ∩ [1, N ]| = N1/4+o(1), but nonetheless represents an advancement. We
will present the following result due to Nathanson, Choi, and Erdős [19]. Here we
work with a slightly different context, more similar to the previous subsection. In
particular, instead of asserting that a set A is an additive basis for N, we look at sets
AN which are additive bases for the set {1, · · · , N}. We begin with a definition along
these lines.

Definition 4.1.2. Let N, h ≥ 1 be a positive integer. Let AN,h ⊂ {0, · · · , N}, and
rAN,h

(n) be the number of ways of writing n as a sum of h elements from AN,h. We
say that AN,h is an additive basis of order h for N if rA,N,h(n) > 0 for n = 1, · · · , N .
If h is understood, then we simply write AN or rAN

(n).

The essence of this theorem is to start with all of the squares up to 4N2/3, then
show that only a small portion of squares between 4N2/3 and N is needed to form
a basis for N . This proof heavily relies on the number theoretic properties of the
squares. However, the benefit is that we obtain an explicit construction, which is
preferable to the existential proofs obtained via the probabilistic method.

Theorem 4.1.3. For every N ≥ 2, there exists a set AN ⊂ N2 such that AN is an
additive basis of order 4 for N and

|AN | ≤
(

4

log 2

)
N1/3 logN.

Proof. Note that this proof is quite elementary and does not appeal to the probabilis-
tic method. We will begin by stating that A2 = A3 = {0, 1} and A4 = A5 = {0, 1, 4}
satisfies the requirements of the theorem for N = 2, 3, 4, 5. It suffices to assume that
N ≥ 6 from now on.
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By the characterization of those numbers that are the sum of three squares (see
Theorem 2.2.1), we see that if l ≡ 1, 2 (mod 4) then l can be written as the sum of
three squares. a2 ≡ 0 (mod 4) if a is even and a2 ≡ 1 (mod 4) if a is odd, it follows
that if m ̸≡ 0 (mod 4) and a is a positive integer such that a2 ≤ m, then either m−a2

is the sum of three squares or m− (a− 1)2 is the sum of three squares.

For N ≥ 6, denote by A
(1)
N the set of squares of all non-negative integers up to

2N1/3. Then it is plain that
|A(1)

N | ≤ 2N1/3 + 1.

Let A
(2)
N be the set of squares of all integers of the form

⌊k1/2N1/3⌋, ⌊k1/2N1/3⌋ − 1,

where
4 ≤ k ≤ N1/3.

Then
|A(2)

N | ≤ 2(N1/3 − 3) = 2N1/3 − 6.

Set A
(0)
N = A

(1)
N ∪ A

(2)
N . Then we have

|A(0)
N | < 4N1/3.

Since A
(0)
N contains all of the squares up to 4N2/3, then Lagrange’s Theorem implies

that every non-negative integer up to 4N2/3 is the sum of four squares in A
(0)
N .

Let m be an integer satisfying

4N2/3 < m ≤ N,m ̸≡ 0 (mod 4).

We now find a0 ∈ A
(2)
N such that

0 ≤ m− a20 ≤ 4N2/3

and m− a20 is the sum of three squares. We have

4 ≤ k =
⌊ m

N2/3

⌋
≤ N1/3.

Set a = ⌊k1/2N1/3⌋. Then a2 ∈ A
(2)
N , (a− 1)2 ∈ A

(2)
N ,

a2 ≤ kN2/3 ≤ m < (k + 1)N2/3,

with
a > k1/2N1/3 − 1.
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It now suffices to choose a20 ∈ {a2, (a − 1)2} ⊂ A
(2)
N so that m − a20 is a sum of three

squares, which is possible by the remark at the beginning of this proof. Since N ≥ 6
we have 4 < 3N1/6, so we have

0 ≤ m− a2 ≤ m− a20 ≤ m− (a− 1)2

< (k + 1)N2/3 − (k1/2N1/3 − 2)2

< (k + 1)N2/3 − kN2/3 + 4k1/2N1/3

= N2/3 + 4k1/2N1/3

≤ N2/3 + 4N1/2

< 4N2/3.

This shows thatm−a20 is the sum of three squares in A
(1)
N . Consequently, if 0 ≤ m ≤ N

and m ̸≡ 0 (mod 4), then m is the sum of four squares belonging to A
(0)
N . Now set

AN =

{
(2ia)2 : 0 ≤ i ≤ logN

log 4
, a ∈ A

(0)
N

}
.

Therefore AN is a set of squares and

|AN | ≤
(
logN

log 4
+ 1

)
|A(0)

N |

<

(
2 logN

log 4

)
4N1/3

=

(
4

log 2

)
N1/3 logN.

Let n ∈ {0, 1, · · · , N}. If n ̸≡ 0 (mod 4), then we demonstrated that n is the sum

of four squares in A
(0)
N ⊂ AN . If n ≡ 0 (mod 4), then n = 4im,m ̸≡ (mod 4) and

0 ≤ i ≤ log(N)/ log(4). Then

m = a21 + a22 + a23 + a24, a1, a2, a3, a4 ∈ A
(0)
N .

This shows that

n = 4im = (2ia1)
2 + (2ia2)

2 + (2ia3)
2 + (2ia4)

2.

Hence n is the sum of four squares belonging to AN . This completes the proof.

The above example shows that specific number theoretic information about the
squares is essential. After some success in find thin sub-bases of the squares, Nathanson
asked [25] whether there exist a thin sub-basis of all sufficiently large orders for all
Waring bases. The question was partially answered by Wirsing in [26] but was con-
clusively answered by Vu in [25]. In subsequent subsections we will introduce Vu’s
work proving that all Waring bases Nr contain thin sub-bases of all sufficiently large
orders.
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4.2 Polynomial concentration results

The construction of thin sub-bases in the Waring bases is part of a much more gen-
eral framework. The fundamental breakthrough that allowed Erdős and Tetali to
generalize Erdős’s method used to prove a thin basis of order 2 exists to all orders
k and Vu’s proof of the existence of thin sub-bases in the Waring bases relies on
proving results stating when certain polynomials of indicator random variables are
tightly concentrated about their mean. The results in this subsection can be seen as
generalizations of Chernoff’s Inequality as well as Janson’s inequality.

The results in this subsection are motivated by the following classical inequality found
in [22].

Theorem 4.2.1. (Lipschitz concentration inequality) Let Y : {0, 1}n → R be a
function such that |Y (s) − Y (t)| ≤ K whenever s, t ∈ {0, 1}n differ in only one
coordinate. Then if X1, · · · , Xn are independent indicator random variables, we have

P(|Y (X1, · · · , Xn)− E[Y (X1, · · · , Xn)]| ≥ λK
√
n) ≤ 2e−λ2/2

for all λ > 0.

This result can be compared with Hoeffding’s inequality (proposition 2.21) in that
if we have a good bound on the influence of each indicator random variable Xj on
Y , then Y is concentrated within O(K

√
n) of its mean. A proof of this result can be

found in [22].

However, the Lipschitz-type control over the random variable Y is very stringent.
One can see that if we have good control over the partial derivatives of Y with re-
spect to each Xj, then the conditions of the theorem would apply. This is often not
the case in applications to number theory, particularly with thin bases. Hence we will
need to weaken the hypotheses and obtain good bounds in more specific settings. We
will now present a few definitions and results due to Vu in [25].

Definition 4.2.2. Let X1, · · · , Xn be indicator random variables. We say that Y is
totally positive if all of its coefficients are non-negative, and that Y is regular if all of
its coefficients are between 0 and 1. We also say that Y is simplified if its monomials
are square-free, that is does not contain a term of the form X2

j for any 1 ≤ j ≤ n.
We say that Y is homogeneous if all of its monomials have the same degree.

Definition 4.2.3. For any non-negative integers α1, · · · , αn define the multi-index α
by α = (α1, · · · , αn). Define the partial derivative ∂α(Y ) with respect to the multi-
index α as

∂α(Y ) =

(
∂

∂X1

)α1

· · ·
(

∂

∂Xn

)αn

Y (X1, · · · , Xn),

and denote the order of α to be

|α| = α1 + · · ·+ αn.
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Definition 4.2.4. Let d ∈ N ∪ {0}. Denote by Ed[Y ] the maximum value of all
expected values of partial derivatives of Y of order d. That is,

Ed[Y ] = max
α:|α|=d

E[∂αY ].

One sees immediately that E0[Y ] = EY and Ed[Y ] = 0 for d exceeding the degree of
Y .

Theorem 4.2.5. (Vu) Let n, k ∈ N and β, ξ, ε > 0. Consider jointly independent
indicator random variables X1, · · · , Xn. Let Q = Q(k, ε, β, ξ) be a large constant
independent of n. If Y = Y (X1, · · · , Xn) is a regular homogeneous polynomial (not
necessarily simplified) of degree k and satisfies the expectation bounds

Q log n ≤ EY ≤ n/Q; E1(Y ), · · · ,Ek−1(Y ) ≤ n−ξ,

then
P(|Y − EY | ≥ εEY ) ≤ n−β.

As a consequence to the proof of the above theorem is the following, which will
be the main tool to establish thin sub-bases in Waring bases.

Theorem 4.2.6. Suppose X1, · · · , Xn are jointly independent indicator random vari-
ables. Set ∂α

∗ Y (t) = ∂αY (t)−∂αY (0). Let Y = Y (X1, · · · , Xn) be a simplified regular
(not necessarily homogeneous) polynomial such that for all multi-index α and some
γ > 0

E(∂α
∗ Y ) ≤ n−γ.

Then, for any β > 0 we can find a constant K = Kβ,γ, independent of n and Y , such
that we have the bound

P(Y ≥ Kβ,γ) < n−β.

The above two results are consequences of the main theorem in [25]. Since the
main theorem and its proof is highly technical and only the theorems mentioned above
are needed for showing the existence of thin sub-bases in the Waring bases, we refer
the reader to [16] and [25] for details on the proof.

We note that the above theorems can be adapted to prove the Erdős-Tetali theo-
rem. Indeed, one can easily see that the Erdős-Tetali theorem is simply a special case
of Vu’s result in [24]. We now proceed to present the main result of this section.

4.3 Thin Waring bases

Due to the length of this proof, we begin this subsection with some comments. The
main ingredients of the proof here are the probabilistic method of Erdős, Vinogradov’s
Theorem giving an asymptotic for rNr,k(n) [19], the polynomial concentration results
of Kim and Vu [16][25], and a technical lemma in [24] that gives a bound on the
number of solutions in “boxes” [1, P1]× · · · × [1, Ps] for positive integers P1, · · · , Ps.
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Let r ≥ 2 be fixed, and consider Nr
0. We begin with introducing a random sub-

set B ⊂ Nr
0 defined as follows

Definition 4.3.1. For r ≥ 2, r ∈ N define the random set B ⊂ Nr
0 by the following

x ∈ N0; px = P(xr ∈ B) = x−1+k/r log1/k(x).

Here k > r is a large positive integer such that Nr
0 is an additive basis of order k.

Definition 4.3.2. Let B be the random set defined above. Let Xj be the indicator
random variable such that Xj = 1 if and only if jr ∈ B.

Now we can see that we can write rB,k(n) as a polynomial in {X1, · · · , X⌊n1/r⌋}.
In particular, we have

rB,k(n) =
∑

xr
1+···+xr

k=n

k∏
j=1

Xxj
.

As was done in the case of the Erdős-Tetalli theorem, we proceed as follows. First,
we break up rB,k(n) into two parts µ1 and µ2, and show that µ1 = Θ(log n) while
µ2 = o(log n). Then we show, for some small ε > 0, that with probability at least
1−O(1/n2) we have

1− ε ≤ rB,k(n)

E[rB,k(n)]
≤ 1 + ε.

The Borel-Cantelli Lemma then applies at once, showing that B is indeed an additive
basis of order k.

We examine E[rB,k(n)] to see what issues arise as we write µ = E[rB,k(n)] and see
that

µ =
∑

xr
1+···+xr

k=n

ck
k∏

j=1

x
−1+r/k
j log1/k(xj).

Heuristically, one expects that since xr
1 + · · · + xr

k = n that each of the xj to be of

order Θ(n1/r). Hence, we would expect the term ck
k∏

j=1

x
−1+r/k
j log1/k(xj) be of order

Θ(nk/r(−1+r/k) log n) = Θ(n−k/r+1 log n). This together with Vinogradov’s Theorem

that there should be Θ(n
k
r
−1) summands, yields that µ = Θ(log n). This naive ap-

proach is dashed when one considers sums of the form xr
1 + · · ·+ xr

k = n where x1 is
very small, say x1 = O(nδ) for some δ < 1/r. The remedy for this problem is to split
µ into two parts.

Vu in [24] circumvented the problem with sums xr
1 + · · · + xr

k = n with small x1

by obtaining estimates for the number of tuples (x1, · · · , xk), x
r
1 + · · · + xr

k = n in
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boxes. That is, for any positive integers P1, · · · , Pk, we obtain estimates for the num-
ber of solutions to xr

1 + · · · + xr
k = n with 1 ≤ x1 ≤ P1, · · · , 1 ≤ xk ≤ Pk. We

denote

R(P1, · · · , Pk)(n) = #{(x1, · · · , xk) : x
r
1+· · ·+xr

k = n, 1 ≤ x1 ≤ P1, · · · , 1 ≤ xk ≤ Pk}.

The main work horse for our approach is the following result, which is the main
lemma in [24]. Due to its length and technicality we will not present the full proof,
but rather a sketch of the main ideas, including applying the Hardy-Littlewood circle
method.

Theorem 4.3.3. (Vu’s main lemma in [24]) For fixed r ≥ 2, there exists a constant
k3(r) = O(8kk2) such that the following holds: For any k > k3(r) there is a positive
constant δ = δ(r, k) such that for every finite sequence of positive integers P1, · · · , Pk

and all n ∈ N, we have

R(P1, · · · , Pk)(n) = O

(
n−1

k∏
j=1

Pj +
k∏

j=1

P
1−r/k−δ
j

)
.

As mentioned before, the proof of the above result relies on the Hardy-Littlewood
circle method. In fact, the circle method was originally introduced to tackle Waring’s
problem, which was first solved by Hilbert. The idea is that one can naturally encode
additive problems using generating functions. In particular, if we start with a set
A = {a0, a1, · · · , } ⊂ N0, we can consider the generating function of A as

f(z) =
∞∑
n=0

zan .

Then one can easily see that

(f(z))k =

(
∞∑
n=0

zan

)k

=
∞∑
n=0

rA,k(n)z
n.

We can restrict f(z) to the unit circle (hence the term ‘circle method’). Set e2πiα =
e(α). Note that rA,k(n) is the n-th Fourier coefficient of the series f(e(α))k. That is,
we have the equality

rA,k(n) =

∫ 1

0

f(e(α))ke(−nα)dα.

The key to applying this method is to evaluate the integral on the right hand side.
This technique was devised by Hardy and Littlewood (hence its namesake) but vastly
improved by Vinogradov [19]. Vinogradov’s key insight was that one can replace the
series f(z) with a finite truncation, say

fN(z) =
N∑

n=0

zan .
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For fixed n, we can choose a large N so that the j-th coefficient of (fN(z))
k for

0 ≤ j ≤ n is equal to rA,k(j). This truncation allows one to forget about issues
of convergence and usually makes estimating the integral much easier. Nonetheless,
Hardy and Littlewood’s original insight was to break the unit circle into ‘major arcs’
and ‘minor arcs’. The idea is that the integral over the major arcs is the main con-
tribution to rA,k(n) and the integral over the minor arcs is negligible.

Let P1, · · · , Pk be positive integers. Define, for each j, the function fj(α) =

Pj∑
m=1

e(αmr).

Then we have

R(P1, · · · , Pk)(n) =

∫ 1

0

k∏
j=1

fj(α)e(−nα)dα.

The difficulty of estimating this integral is the possibility that the sequence P1, · · · , Pk

can be very irregular. Thus a good definition of major and minor arcs has to account
for any information available regarding the Pj’s. This leads to a convoluted definition
below. First, we introduce some constants. Let ν, τ, χ be defined as follows

ν =
1

2(26(2r−1) + 17)
, τ =

7ν

2r
, χ =

(26(2r−1) + 4)ν

r
.

Set k3(r) = d23r−3r2 = O(8rr2), where d is chosen so that for all k > k3(r) the
following inequality holds

τνk∑k
j=1

1
j

≥ 2r−1(r + 1). (4.3.1)

We will need the following lemma in order to properly define the major and minor
arcs.

Proposition 4.3.4. Let k > k3(r) and P1, · · · , Pk be positive integers, with τ, ν, χ

defined as above. Set P =
k∏

j=1

Pj. Then there is a 1 ≤ j ≤ k such that

Pj ≥ P
1
k
(1−τ)+

2r−1(r+1)
νk(k−j+1) .

Proof. We will prove this by contradiction. Suppose that the inequality fails for all
1 ≤ j ≤ k. Then, multiplying from j = 1 to j = k we obtain

P < P (1−τ)+
2r−1(r+1)

νk

∑k
j=1

1
k−j+1 = P (1−τ)+

2r−1(r+1)
νk

∑k
j=1

1
j .

This implies that τ <
2r−1(r + 1)

νk

k∑
j=1

1

j
, which contradicts equation (4.3.1).

Let l be the smallest index j that satisfies the inequality in the above proposition.
It follows at once that

P
(k−l+1)ν
l ≥ P 2r−1(r+1)/k, Pl ≥ P

1
s
(1−τ). (4.3.2)
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Finally, we are ready to define the arcs. Set ρ = P ν
l and B = P r−ν

l . For 1 ≤ a < q ≤ ρ
with (a, q) = 1, define Ia,q = (a/q − B−1, a/q + B−1). The intervals Ia,q will be the
major arcs, and M will be their union. The set m = [0, 1]\M is called the minor arcs.

We will prove that the contribution of the minor arcs is of the same order of magnitude
as the second term in the estimate in theorem 4.12. For the major arc contributions
please refer to [24]. We will need to first state a classic result due to Weyl [19].

Theorem 4.3.5. (Weyl’s inequality) Let f(x) = αxr + · · · be a polynomial of degree
r ≥ 2 with real coefficients, and suppose that α has the rational approximation a/q
with q ≥ 1, (a, q) = 1 and ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
.

Let S(f) =
N∑

m=1

e(f(m)) and set ε > 0. Then

S(f) ≪ N1+ε(N−1 + q−1 +N−rq)1/2
r−1

.

In particular, the result holds for f(x) = αxr.

The proof of this result can be found in [19]. We now proceed to prove the bound
for the minor arcs.

Proposition 4.3.6. Let fj(α) =

Pj∑
m=1

e(αmr), and set g(α) =
k∏

j=1

fj(α). Then there

is a positive constant δ = δ(r, k) such that∣∣∣∣∫
m

g(α)e(−nα)dα

∣∣∣∣ = O(P 1−r/k−δ).

Proof. Suppose α ∈ m. Then by Dirichlet’s lemma, there exists a, q such that (a, q) =
1, ρ ≤ q ≤ B and |a/q − α| ≤ 1/q2. By Weyl’s inequality, for all j ≥ l we have

|fj(α)| ≤ Pj(q
−1 + P−1

j + qP−r
j )1/2

r−1

= O(Pjq
−1/2r−1

).

On the other hand, for j < l we have |fj(α)| ≤ Pj. We now have∣∣∣∣∫
m

g(α)e(−nα)dα

∣∣∣∣ ≤ max
α∈m

|g(α)|

= O

(
l−1∏
j=1

Pj

k∏
j=l

(Pjq
−1/2r−1

)

)
= O(Pq−(k−l+1)/2r−1

).

Since q ≥ ρ = P ν
l , by (4.2) we have

q−(k−l+1)/2r−1 ≤ P
−ν(k−l+1)/2r−1

l ≤ P−(r+1)/k.

It now suffices to set δ = 1/k. This completes the proof.
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The major arcs estimate requires a series of very technical and tedious lemmas,
which is why the constants ν, τ, χ were chosen the way that they were. The details
are found in [25]. Nevertheless, the result obtained is recorded here

Proposition 4.3.7. There is a positive constant δ = δ(r, k) such that for every

sequence 2 ≤ P1 ≤ P2 ≤ · · · ≤ Pk = n1/r and P =
k∏

j=1

Pj we have

∣∣∣∣∫
M

g(α)e(−nα)dα

∣∣∣∣ = O(Pn−1 + P 1−r/k−δ).

We proceed now in the same manner as in proposition 3.2.3 to establish the
estimate for µ = E[rB,k(n)]. We will require some preliminary definitions. As always,
we adopt the convention that x1 ≤ x2 ≤ · · · ≤ xk.

Definition 4.3.8. Define

S1 = {(x1, · · · , xk) :
k∑

j=1

xr
j = n, xj ∈ N0, x1 ≥ n1/kr}

and

S2 = {(x1, · · · , xk) :
k∑

j=1

xr
j = n, xj ∈ N0, x1 < n1/kr}.

Further, we will set
F1 = S1 ∩B,F2 = S2 ∩B

where B ⊂ Nr
0 is our random set.

Definition 4.3.9. Define

µ1 =
∑
S1

ck
k∏

j=1

x
−1+r/k
j log1/k(xj),

and

µ2 =
∑
S2

ck
k∏

j=1

x
−1+r/k
j log1/k(xj).

It is clear that µ = µ1 + µ2.

We write F (X1, · · · , X⌊n1/r⌋) =
∑

(x1,··· ,xk)∈S1

k∏
j=1

Xxj
. We will apply the polynomial

concentration results to control the size of F . We proceed to prove some necessary
propositions first.

Proposition 4.3.10. If k > k3(r), then for all m

Yk,m =
∑

m=xr
1+···+xr

k

(
k∏

j=1

xj

)−1+r/k

= O(1).
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Proof. We will decompose Yk,m into dyadic subsums. Let P denote the set of k-tuples
{P1, · · · , Pk} where Pj ∈ {2, 4, · · · , 2t} where 2t is the smallest power of 2 larger than
m1/r. If A = {P1, · · · , Pk} ∈ P , let σA denote the subsum of Yk,m taken over all
k-tuples (x1, · · · , xk) satisfying Pj/2 ≤ xj ≤ Pj for all 1 ≤ j ≤ k. It follows that

Yk,m ≤
∑
A∈P

σA.

Let PA =
∏
Pj∈A

Pj. By definition, we see that each term in σA is of order Θ(P
−1+r/k
A ).

By Theorem 4.3.3, the number of terms in σA is O(PAm
−1 + P

1−r/k−δ
A ). Hence, we

have
σA = O(P

r/k
A m−1 + P−δ

A ).

We can improve the second term by the following argument. If PA < (m/k)1/r, then
σA = 0 since there are no solutions to xr

1 + · · ·+ xr
k = m with x1 ≤ P1, · · · , xk ≤ Pk.

Hence we lose nothing by assuming PA ≥ (m/k)1/r and so P−δ
A ≤ (m/k)−δ/r. This

shows that for some η > 0 we have

σA = O(P
r/k
A m−1 +m−η).

Now, by construction, there are at most O(logk m) elements in P . This implies

∑
A∈P

σA = O

(
m−1

∑
A∈P

P
r/k
A +m−η logk m

)
.

The second term on the right hand side is o(1). The first term can be estimated as
follows: ∑

A∈P

P
r/k
A ≤

(
2r/k + 22(r/k) + · · · 2t(r/k)

)k
<

(
2(t+1)(r/k)

2r/k − 1

)k

≪ 2r(t+1) < (4m1/r)r = O(m).

This proves the required estimate.

Again, just like in the proof of the Erdős-Tetali theorem, we show that rB,s(n) is
small when s < k. We formalize this as the following proposition.

Proposition 4.3.11. Suppose k > rk3(r). Then there is a positive constant γ > 0
such that E[rB,s(m)] = O(m−γ) for 1 ≤ s < k.

Proof. It suffices to show that there exists γ > 0 such that

Zs,m =
∑

m=xr
1+···+xr

s

(
s∏

j=1

xj

)−1+r/k

= O(m−γ),
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since the log terms are negligible compared to m−γ. If s > k3(r), the previous
proposition applies and we have xs ≤ (m/s)1/r, so

Zs,m ≤ Ys,m

(m
s

) 1
r
(r/k−r/s)

= O(m−(k−s)/ks)

and we are done. If s ≤ k3(r), then since k > rk3(r) we see that s/k < 1/r. Again,
from xs ≥ (m/s)1/r we obtain

Zs,m = O

m
1
r
(−1+r/k)

m1/r∑
x=1

x−1+r/k

s−1 .

This is an upper bound. As in the case with the Erdős-Tetali theorem we can ap-
proximate the sum by an integral. To wit, we have

m1/r∑
x=1

x−1+r/k =

∫ m1/r

1

x−1+r/kdx+O(1) = O(m1/k).

So we have
Zs,m = O(m−1/r+1/k+(s−1)/k) = O(m−(1/r−s/k)).

Since s/k < 1/r, we are done.

Proposition 4.3.12. With k sufficiently large, we have µ1 = Θ(log n).

Proof. Note that
k∏

j=1

log1/k(xj) ≤ log n for all x1 ≤ · · · ≤ xk such that xr
1+· · ·+xr

k = n.

Hence, µ = O(log n) follows from proposition 4.3.10.

To get the lower bound, by convexity we have that the contribution of a term
(x1, · · · , xk) with xj ̸= 0, 1 is

k∏
j=1

cx
−1+r/k
j log1/k(xj) ≥ ck(n/k)

k
r (

r
k
−1) log(n/k).

By Vinogradov’s Theorem, there are Θ(n
k
r
−1) terms that do not contain xj = 0, 1,

and we are done.

Remark 4.3.13. We note that by choosing c large, we can assume that µ1/ log(n)
is arbitrarily large.

Recall that F (X1, · · · , X⌊n1/r⌋) =
∑

(x1,··· ,xk)∈S1

k∏
j=1

Xxj
. We will now prove that F =

Θ(log n).
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Theorem 4.3.14. Almost surely, we have

F (X1, · · · , X⌊n1/r⌋) =
∑

(x1,··· ,xk)∈S1

k∏
j=1

Xxj
= Θ(log n).

Proof. From proposition 4.3.12, we see that there exist constants c1, c2 such that

c1 log n ≤ E[F ] ≤ c2 log n.

Consider a set A = {i1, · · · , is}, with ij ∈ {1, 2, · · · , ⌊n1/r⌋} and s ≤ k − 1. Let

m = n−
∑
y∈A

yk and l = k − |A|. Consider the partial derivative of F with respect to

A

∂A(F ) =
∂|A|F

∂Xi1 · · · ∂Xis

.

From the definition of Zl,m, we see that

E[∂A(F )] = E

 ∑
(x1,··· ,xk)∈F1A⊂{x1,··· ,xk}

∏
xj∈{x1,··· ,xk}\A

Xxj


= O(Zl,m log n) = O(m−γ)

for some positive γ. Recall that S1 consists of solutions with xr
1 ≥ n1/k, it follows

that if |A| < k then m ≥ xr
1 ≥ n1/k. This implies that

E[∂A(F )] = O(n−γ/k) = O(n−ξ)

for all A with 1 ≤ |A| ≤ k − 1 and ξ = γ/k.

Now we are ready to apply Theorem 4.2.5. By remark 4.3.13, we can choose c and
consequently c1 so that

c1 > Q(k, ε, 2r, ξ)

In which case we get
P(|F − E[F ]| ≥ εE[F ]) ≤ n−2r

Then the Borel-Cantelli Lemma applies and we see that almost surely F = Θ(log n)
for all sufficiently large n. This completes the proof.

We now show that µ2 is small.

Proposition 4.3.15. There exists a positive constant γ > 0 such that µ2 = O(n−γ).

Proof. Recall that if (x1, · · · , xk) ∈ S2, then x1 < n1/rk. Hence, we have

µ2 = O(log n)
∑

(x1,··· ,xk)∈S2

k∏
j=1

x
r/k−1
j
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= O

log n
n1/rk∑
x=1

x−1+r/k max
n−n1/k≤m≤n

Zk−1,m

 .

By proposition 4.20 and the fact that m > n/2, we see that Zk−1,m = O(n−1/k(k−1)).
We can also approximate the sum in the above estimate by integrals to yield

n1/rk∑
x=1

x−1+r/k = O(n1/k2).

Since
1

k(k − 1)
− 1

k2
> 0, we see that µ2 = O(n−γ) as desired.

Now an application of the disjointness lemma and the sunflower lemma as in the
proof of the Erdős-Tetali theorem in section 3 yields the main result. For the specific
details, see [24].

Currently, this is the best result we have on extracting a thin basis from a ‘not-
so-thick’ additive basis. It is not known if other additive bases with similar densities
as Nr

0 contain thin subbases, since the highly technical and essential number theoretic
arguments here would not apply. Another point to note is that the threshold that
is essential in this proof, namely k3(r) = O(8rr2), is far from optimal. In a 2003
paper [27], T. D. Wooley proved that in fact one can take the threshold down to only
O(r log r). His arguments essentially refined the circle method arguments used by Vu.

The results presented here can be adapted to prove the Erdős-Tetali theorem. How-
ever, the proof is not much simpler in this case. The main difference is the use of
polynomial concentration results instead of appealing to Janson’s Inequality.

We now turn our attention to the final section of this paper where we discuss computa-
tional aspects of the Erdős-Turán conjecture. In particular, we will see Kolountzakis’
result that one can compute a set in polynomial time, where with probability one the
resulting set will be an additive basis of order 2. Next we will see Borwein, Choi,
and Chu’s decisive result that if B is an additive basis of order 2, then rB,2(n) cannot
be bounded above by 7. This is the most conclusive result we have regarding the
Erdős-Turán conjecture to date. Their arguments are somewhat similar to the circle
method arguments we gave above, but resort to computation rather than estimating
integrals over major and minor arcs.
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Chapter 5

Computational and Algorithmic
Results

5.1 Effective thin basis of order 2

In the previous sections we established the existence of additive bases B with the
property that rB,2(n) = Θ(log(n)). However, it is not clear what any particular B
looks like. Indeed, a large part of the arguments to show the existence of such bases is
to use the Borel-Cantelli Lemma, which asserts that almost surely only finitely many
of the bad events occur. However, there is no information on how big the threshold
is after which the bad events no longer happen.

Prior to his 1956 result, proved using the probabilistic method, Erdős was able to
use a counting argument to produce an additive basis B with 0 < rB,2(n) < c log n
for some c > 0 in [5]. One can convert this argument into an algorithm to produce
such a basis. Unfortunately, it is clear from the proof that such an algorithm is expo-
nential in complexity. In this subsection we give a result that shows a thin basis B can
in fact be computed effectively in polynomial time. The result is due to Kolountzakis
in [17]. We note, however, that there does not seem to be an analogous result for
bases of higher order.

The main result of this subsection will be to construct an algorithm which gives
the elements of a thin basis B one by one, so that the time it takes to generate all
elements of B∩ [1, k] is polynomial in k. To this end, define g(n) = n1/2 log1/2(n) and
RB(n) = #{(x, y) ∈ B2 : g(n) ≤ x ≤ y, x+ y = n}. Then we claim the following:

Proposition 5.1.1. There exist positive constants c1, c2, c3 with c2 < c3 such that
one can find a set B with the following two properties simultaneously:

c2 log(n) ≤ RB(n) ≤ c3 log(n),

for sufficiently large n, and

|B ∩ [n− g(n), n]| ≤ c1 log(n).
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Proof. As usual, we first define the random set B by setting

P(x ∈ B) = px = C

(
log(x)

x

)1/2

.

Where the event x ∈ B is independent for distinct x ∈ N. The strategy, of course,
is to show that with high probability the random set so defined satisfies the two
conditions in the proposition with appropriately chosen constants. Again, we define

µ = E[RB(n)] =

n/2∑
x=g(n)

pxpn−x.

We introduce another notation to deal with the second condition in the proposition,
namely

s(n) = |B ∩ [n− g(n), n]|.
Further, it is convenient to define

ν = E[s(n)] =
n∑

x=n−g(n)

px.

Now, we will follow a familiar strategy: we will show that µ, ν are the sizes that we
want, and show that the two random variables are both tightly concentrated to their
means, and thus establish the proposition.

We first obtain an estimate for µ. Note that for large n, we have g(n) <
n

log(n)
,

and hence

µ ≥
n/2∑

x=n/ logn

C

(
log x

x

)1/2

C

(
log(n− x)

n− x

)1/2

≥ C2 log

(
n

log n

) n/2∑
x=n/ logn

(x(n− x))−1/2.

But we see that

n/2∑
x=n/ logn

(x(n−x))−1/2 =

∫ 1/2

0

(x(1−x))−1/2dx+O(1), as per our our

results in section 2, and choosing k2 < C2

∫ 1/2

0

(x(1− x))−1/2dx we obtain the lower

bound
µ ≥ k2 log n.

Likewise, we see that

µ ≤ C2 log(n/2)

n/2∑
x=1

(x(n− x))−1/2
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Thus, choosing k3 > C2(x(1− x))−1/2dx we see that

µ ≤ k3 log(n).

This confirms that µ is of the right size.

The estimates for ν are even easier, as we see that

Cg(n)

(
log(n− g(n))

n

)1/2

≤ ν ≤ Cg(n)

(
log n

n− g(n)

)1/2

.

This shows immediately that ν = (1 + o(1))C log n.

Now define An to be the event that |RB(n) − µ| > εµ and Cn to be the even that
|s(n)− ν| > εν. Since RB(n), s(n) are sums of jointly independent indicator random
variables, we can apply Chernoff’s Inequality to obtain

P(An) ≤ 2 exp(−cεµ) = 2n−α,

and
P(Cn) ≤ 2 exp(−cεν) = 2n−β,

where α =
1

2
cεC

2

∫ 1/2

0

(x(1 − x))−1/2dx and β =
1

2
cεC. Choose ε = 1/2 and C

sufficiently large so that α, β > 1. Recall from chapter 1 that cε depends only on and
can be effectively computed given ε, and hence C can also be effectively computed
given ε. Then, we have that

∞∑
n=1

[P(An) + P(Cn)] < ∞,

and consequently the Borel-Cantelli Lemma applies, and so with probability 1 at
most finitely many of the events An, Cn occur. And so there exists n0 such that
for all n ≥ n0 we have µ/2 ≤ RB(n) ≤ 3µ/2 and s(n) ≤ 3ν/2. Since n0 depends
solely on C, ε, it can be effectively computed given these two quantities. Also, in the

language of the proposition, we may set c1 = C/2, c2 =
C

2

∫ 1/2

0

(x(1− x))−1/2dx, and

c3 =
3C

2

∫ 1/2

0

(x(1− x))−1/2dx. This completes the proof.

Now that we have established that a candidate set B exists with positive proba-
bility, we give an algorithm to compute such a B. To do this, we identify B as an
element of {0, 1}N. Our algorithm will output either a 0 or 1 at the n-th iteration to
indicate whether n is in B or not.

Let χ = {χ1, χ2, · · · } ∈ {0, 1}N be a generic element, and let E(a1, · · · , ak) be the
event that χ1 = a1, χ2 = a2, · · · , χk = ak, where a1, · · · , ak ∈ {0, 1}. Let n0 be the
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threshold for which
∑
n≥n0

[P(An) + P(Cn)] < 1. Now, we wish to construct a sequence

{ak} so that

{bk} = bk(a1, · · · , ak) =
∑
n≥n0

[P(An|E(a1, · · · , ak)) + P(Cn|E(a1, · · · , ak))]

is non-increasing. Since {bn} is constructed to be monotone (non-increasing), we see
from the condition that P(An) + P(Cn) being summable that∑

n≥n0

[P(An|E(a1, · · · , ak, · · · )) + P(Cn|E(a1, · · · , ak, · · · ))] < 1.

But each of the probabilities P(An|E(a1, · · · , ak, · · · )),P(Cn|E(a1, · · · , ak, · · · )) ∈ {0, 1},
so this inequality implies that they are all zero. In particlar, the point χ = (a1, · · · , ak, · · · )
is not in the union of “bad” events

∪
n≥n0

(An ∪ Cn).

Hence our task is to choose {ak} so that {bk} does not increase. Notice that we
have the following recursion for {bk}:

bk−1(a1, · · · , ak−1) = pkbk(a1, · · · , ak−1, 1) + (1− pk)bk(a1, · · · , ak−1, 0).

Since all quantities above are non-negative, it follows that at least one of bk(a1, · · · , ak−1, 1)
and bk(a1, · · · , ak−1, 0) is not greater than bk−1(a1, · · · , ak−1). Choose ak = 1 if the
first is smaller than the latter, and ak = 0 otherwise.

Define ξ = bk(a1, · · · , ak−1, 1)− bk(a1, · · · , ak−1, 0). Let G(k) be the largest integer x
such that g(x) ≤ k. Then we obtain

ξ =

G(k)∑
n=k

[P(An|E(a1, · · · , ak−1, 1))− P(An|E(a1, · · · , ak−1, 0))]

+

G(k)∑
n=k

[P(Cn|E(a1, · · · , ak−1, 1))− P(Cn|E(a1, · · · , ak−1, 0))].

To see this, note that An, Cn with n > G(k) are independent of a1, · · · , ak, by the
definition of the random variables RB(n), s(n). Hence their contribution to the sum

cancels. Note that G(k) =
(1 + o(1))k2

log(k)
, and that ξ contains

(1 + o(1))k2

log(k)
summands.

Our objective is to decide if ξ ≥ 0 in polynomial time in k. This is possible as long as
we can compute each summand in polynomial time. We will show that this is indeed
possible in the next proposition.

Proposition 5.1.2. Let X = X(k) = X1 + · · ·+Xk be a sum of jointly independent
indicator random variables, where P(Xj = 1) = pj for j = 1, 2, · · · , k. Then the
distribution of X can be computed in polynomial time in k.
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Proof. Note that P(X = k) =
k∏

j=1

pj, and P(X = 0) =
k∏

j=1

(1 − pj). Otherwise, we

have the recursion P(X = j) = pkP(X(k − 1) = j − 1) + (1 − pk)P(X(k − 1) =
j). We can eventually reduce this expression into a polynomial in p1, · · · , pk, which
can certainly be computed in polynomial time in k, say O(f(k)) where f(k) is a
polynomial. Further, X takes on values in {0, 1, · · · , k}, and the distribution of X
can be computed in polynomial time, namely O((k + 1)f(k)).

Now, as we noted, both RB(n), s(n) are sums of jointly independent indicator
random variables. This means that the events [An|E(a1, · · · , ak)], [Bn|E(a1, · · · , ak)]
can be computed efficiently, and this establishes the existence of the desired algorithm.

Again, we see that the requirement of expressing a desired random variable as the sum
of jointly independent indicator random variables. This immediately means that the
same argument will not work verbatim for bases of higher order, unless proposition
5.2 can be generalized in a non-trivial way to cases where X is not the sum of jointly
independent indicator random variables but nonetheless the correlation between sum-
mands is small, akin to how Janson’s Inequality extends Chernoff’s Inequality.

5.2 A partial Erdős-Turán result: rB,2(n) cannot be

bounded by 7

So far, we have discussed many results relating to the probabilistic argument of Erdős,
while only tangentially touching on the main conjectures we are concerned with. This
difficulty cannot be avoided as it is probably fair to say that currently no one has
a clue as to how to attack either of the main conjectures (Conjectures 1.2 and 1.3).
However, there is a rather old result of Dirac [3] that states rB,2(n) cannot be eventu-
ally constant. A much more recent result by Borwein, Choi, and Chu in 2006 asserts
that in fact, rB,2(n) cannot be bounded from above by 7. We give this result in this
subsection.

We can rephrase the Erdős-Turán conjecture as follows: if B ⊂ N ∪ {0} is an ad-
ditive basis, and let B = {βn}∞n=0. Then the generating function for B is simply

f(z) =
∞∑
n=0

zβn .

It is clear that

f 2(z) =

(
∞∑
n=0

zβn

)2

=
∞∑
n=0

rB,2(n)z
n.

And, as we will see more of in section 5 when we discuss the Hardy-Littlewood circle
method, we can in fact replace f with a polynomial trunction, namely fN(z) =
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N∑
n=0

zβn , and we see that

f2
N(z) = a0 + · · ·+ a2βN

z2βN ,

and an = rB,2(n) for all n ≤ βN . This is the key simplification that allows the
arguments of this subsection to work. In fact, our main result in this section is the
following:

Theorem 5.2.1. Let B ⊂ N ∪ {0} be an additive basis. Then rB,2(n) ≥ 8 for all
sufficiently large n.

The proof of this theorem is remarkably simple. The idea is to show that an upper
bound k on rB,2(n) is equivalent to showing that a certain class E(k) of polynomials
contains infinitely many members. One can use an exhaustive computer search to
verify that E(7) is in fact finite, and thus obtaining the bound. This will also give a
program to prove the Erdős-Turán conjecture, which we will give later in this section.
We will proceed with a few propositions.

Proposition 5.2.2. Consider the truncated polynomial fN(z) =
N∑

n=0

zβn and (fN(z))
2 =

2βN∑
n=0

an(N)zn. Then for all n we have an(N) ≤ an(N +1), and an(N) = an(N +1) for

n = 0, 1, · · · , βN .

Proof. The proof is almost entirely clear. By increasing N , the number of represen-
tations can only increase, and for n = 0, 1, · · · , βN we see that n cannot be written
as anything bigger than βN , and hence increasing N would not increase the number
of representations of n.

As we remarked earlier, proving the main theorem of this subsection amounts to
counting certain classes of polynomials. To this end, we have the following definition
and proposition.

Definition 5.2.3. Let EN(k) denote the set of polynomials with the following prop-
erties: each element of EN(k) is of the form

fN(z) =
N∑

n=0

zβn ,

where 0 = β0 < β1 < · · · < βN . Also we have for

(fN(z))
2 =

2βN∑
n=0

an(N)zn,

that an(N) > 0 for n = 0, 1, · · · , βN , and an(N) ≤ k for 0 ≤ n ≤ 2βN .
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Proposition 5.2.4. With EN(k) defined as above, each element p(z) ∈ EN(k) is an
extension of an element q(z) ∈ EN−1(k) of at most one more than twice the degree.
That is, we have

p(z) = zγ + q(z),

where deg(q) < γ ≤ 2 deg(q) + 1. In particular, for all p(z) ∈ EN(k), we have
deg(p) ≤ N2 + 2N − 2 and

|EN(k)| ≤ (N2 − 2)|EN−1(k)|.

Proof. Suppose fN(z) = 1 + zβ1 + · · · + zβN ∈ EN(k), with 0 = β0 < β1 < · · · < βN ,
then from the previous lemma we have that an(N − 1) ≤ an(N) ≤ k for all n
and an(N − 1) = an(N) > 0 for n = 1, 2, · · · , βN−1. In particular, fN−1(z) =
1 + zβ1 + · · · + zβN−1 ∈ EN−1(k), and fN(z) = zβN + fN−1(z). Now suppose that
βN > 2βN−1+1. Then βi+βj < 2βN−1+1 for 0 ≤ i, j ≤ N−1 and βn+βN > 2βN−1+1
for 0 ≤ n ≤ N − 1, and so βi + βj ̸= 2βN−1 + 1 for any 0 ≤ i, j ≤ N . Hence, we have
a2βN−1+1(N) = 0. This contradicts fN(z) ∈ EN(k), since βN > 2βN−1 + 1. Thus, we
established the inequality

βN−1 < βN ≤ 2βN−1 + 1.

On the other hand, we have the trivial equality

(N + 1)2 = f 2
N(1)

=

2βN∑
n=0

an(N)

≥ (a0(N) + · · ·+ aβN
(N)) + aβN+β1(N) + a2βN

(N).

Note that on the right hand side, we have aβN
(N), aβN+β1(N), a2βN

(N) ≥ 1, and also
(a0(N) + · · ·+ aβN−1(N)) ≥ βN , so we have

(N + 1)2 − 3 ≥ βN .

Now, we also obtain that βN−1 ≤ N2 − 3, and so the number of admissible βN is at
2βN−1+1−βN−1 = βN−1+1 ≤ N2−2, which completes the proof of the proposition.

We are now ready to present the main theorem of this subsection, then discuss
computational aspects.

Theorem 5.2.5. Let k ≥ 1 be fixed. Set

E(k) =
∞∪

N=0

EN(k).

If for some N ∈ N we have EN(k) = ∅, or equivalently if E(k) is finite, then no series
of the form

f(z) =
∞∑
n=0

zβn
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where

f2(z) =
∞∑
n=0

anz
n

with 0 < an ≤ k for all n can exist. If E(k) is a finite set for every k ≥ 1, then the
Erdős-Turán conjecture on additive bases is true.

Remark 5.2.6. This theorem essentially translates this immensely difficult problem
on arbitrary additive bases into a computation problem involving exhaustively finding
all elements of certain classes of polynomials. Unfortunately, we will soon see that
E(k), if finite, grows very rapidly; and computing even E(8) seems an extremely
difficult task.

Proof. If f(z) =
∞∑
n=0

zβn is such a series such that f 2(z) =
∞∑
n=0

anz
n has coefficients

satisfying 0 < an ≤ k, then any truncation fN(z) =
∞∑
n=0

zβn with f 2
N(z) =

2βN∑
n=0

an(N)zn

will have 0 < an(N) ≤ k for n = 0, 1, · · · , βN and an(N) ≤ k for all n ≥ 0, and so
fN(z) ∈ EN(k). Since this holds for any N ≥ 1, we see that EN(k) is non-empty for
any N and hence E(k) is infinite.

Now we can go on to verify that E(k) is a finite set for k = 2, · · · , 7. Aforemen-
tioned, the size of E(k) grows very rapidly; with |E(7)| = 1, 268, 361, 281, 038.

We have E0(2) = {1}, E1(2) = {x + 1}, E2(2) = {1 + x + x3}. To see this, clearly
E0(2), E1(2) are as stated. The maximal degree of an element in E2(2) is 3. Clearly
the constant and linear terms are needed, and so the only candidates for elements in
E2(2) are 1 + x + x2, 1 + x + x3. We quickly check that 1 + x + x2 does not work
because (1 + x + x2)2 = x4 + 2x3 + 3x2 + 2x + 1, so the coefficient of x3 is greater
than 2. Now, if E3(2) is non-empty, then g ∈ E3(2) would look like 1 + x+ x3 + xβ,
where 4 ≤ β ≤ 7. If β = 4, then a4(2) = 4 > 2, if β = 5, 6, then a6(2) = 3 > 2, and if
β = 7, then a5(2) = 0. Hence E3(2) is empty, and we are done.

We now give a list of E0(3), E1(3), E2(3), E3(3), E4(3). Also, it is verified that EN(3) =
∅ for all N > 4.

E0(3) = {1}

E1(3) = {1 + x}

E2(3) = {1 + x+ x2, 1 + x+ x3}

E3(3) = {1 + x+ x2 + x4, 1 + x+ x2 + x5, 1 + x+ x3 + x5}

E4(3) = {1 + x+ x2 + x4 + x7, 1 + x+ x2 + x5 + x8}

Below gives the sizes of E(2), · · · , E(7):

|E(2)| = 3
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|E(3)| = 9

|E(4)| = 404

|E(5)| = 6, 355

|E(6)| = 11, 482, 910, 373

|E(7)| = 1, 268, 361, 281, 038

We are also interested in how many terms can an element of E(k) have, and what
is the maximal degree. Define m(k) to be the maximal number of summands of an
element in E(k), and define M(k) to be the maximum degree of an element in E(k).
Then we have:

m(2) = 3,m(3) = 5,

m(4) = 12,m(5) = 14

m(6) = 35,m(7) = 41

And
M(2) = 3,M(3) = 8

M(4) = 40,M(5) = 52

M(6) = 264,M(7) = 328

The above data is extracted from [2]. Notice that the jumps in all of these values
seem to be much larger when going from 2k − 1 to 2k. This is likely due to the fact
that two representations of N are gained when zi, zj, i + j = N are added, but only
one representation if N = 2s and zs is added. However, it is unknown whether this
effect will persist for larger values of k.

It remains a challenge to find an effective algorithm to compute the size of E(k)
when k is large, since the growth seems at least expontential. It is possible through
extensive computer search to be able to compute the size of E(k) for k = 8, 9, · · ·
up to some relatively small upper bound, but it seems infeasible at this point to gen-
erate compelling evidence that the Erdős-Turán conjecture in fact holds. It seems
that working with polynomial truncations, when N is large, is not much easier than
working with the Erdős-Turán conjecture in full generality. Nevertheless, this is to
date the most conclusive result regarding the classical Erdős-Turán conjecture.
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Chapter 6

Concluding Remarks

The Erdős-Turán conjecture remains mysterious and largely unresolved despite sig-
nificant attention. There are several different approaches to tackle the problem, as we
have exhibited throughout this paper. The problem arose from studying how thin an
additive basis of N can be in the sense of natural density, and it is known that there
exist additive bases of all orders that are essentially as thin as possible. Another way
to think about thin bases is not in terms of natural density but in terms of the size
of the representation function rB,k(n). Erdős and Tetali proved that there are bases
of all orders for which rB,k(n) = Θ(log n). The probabilistic method developed by
Erdős remains the only effective tool to generate thin bases to date. However, the
probabilistic method is only good for showing that thin bases exist, but is powerless
to address whether a given basis is thin or not.

Many authors later applied Erdős’s method to work with bases that are known to
be thick. For one, Wirsing and Vu independently adapted Erdős’s method to prove
that in certain cases one can find thin sub-bases in certain ‘thick’ additive bases. In
particular, Vu in [24] showed that one can find thin sub-bases of all sufficiently large
order k in any Waring base Nr

0. Wooley in [27] improved on how big k has to be
to only r log r. By comparison, Vu required k to be as large as O(8rr2). However,
these results are either too crude to apply to interesting cases (for example, Wirsing
required bases to be much thicker than optimal to deal with more sensitive cases) or
too reliant on the specific number theoretic properties of a set to apply in general. It
would appear that a significant new idea would be needed to advance this direction
further.

One critical weakness of the probabilistic method is that it only allows us to prove
thin bases (or other objects of interest) exist but cannot give us an explicit example.
It is still not known whether or not it is possible to rigorously prove a specific set
A ⊂ N0 is such that rA,k(n) = Θ(log n). A partial result in this direction is Kol-
untzaki’s algorithmic result [17] that produces the terms of a thin basis in polynomial
time in terms of k.

Of course, it is very natural to consider the Erdős-Turán conjecture as a computational
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problem. Since it is an easy observation that for any set A = {a1, a2, · · · } ⊂ N0, the
representation function rA,k(n) only depends on the first finitely many terms where
the exact dependence is determined by A and n. Hence we can get a good idea of
how small rA,k(n) can be while still satisfying rA,k(m) > 0 for 1 ≤ m ≤ n. This is the
exact motivation behind the work of Borwein, Choi, and Chu in [2]. Their results are
to date the most conclusive, but nonetheless their work did not give an idea on how
to prove the conjecture in general.

It would appear that with the study of the Erdős-Turán conjecture one would need
to understand how to decompose a given basis into ‘ordered‘ and ‘random parts’. As
the probabilistic method demonstrates, suitably ‘random’ sets A are very likely to
be additive bases, and that rA,k(n) grows in a fairly uniform fashion. On the other
hand, there exist sets that very closely approximate arithmetic progressions which
have very non-uniform representation functions. An easy example of such a set is say
B = {1, 2} ∪ {3k : k ∈ N0}. Then it is clear that rB,2(3k + 1) = rB,2(3k + 2) = 1 for
all k ≥ 0. Due to these obstructions, some decomposition of this type is necessary. If
one does have such a decomposition for an additive basis A of order k into an ordered
set A1 and a random set A2, then one can hopefully use different theorems to show
that rAj ,k(n), j = 1, 2 is unbounded in both cases and thus establish the theorem.
Unfortunately, to date no fruitful results are available in this direction.

The interested reader might note that there are two other natural settings in which
to consider the Erdős-Turán conjecture; additive bases of Z, and multiplicative bases
of N. For the former, since Z is a group under addition, many tools become available.
Unfortunately the conjecture is decisively false. In particular, Nathanson proved in
[18] that for any function f : Z → N0 and any h > 1 one can find a subset B ⊂ Z
such that rB,h(n) = f(n) for all n ∈ Z. To state the multiplicative case, we first
define what it means to be a multiplicative basis.

Definition 6.0.7. Let A = {a1, a2, · · · } ⊂ N. Say that A is a multiplicative basis of
order 2 of N if there exists a finite set C such that

N \ C = {aiaj : ai, aj ∈ A}.

The analogous question for multiplicative bases was settled by Erdős in 1938 [4].
In particular, if RA(n) denotes the number of ways n can be written as the product
of two elements of A, then lim sup

n→∞
RA(n) = ∞.

For applications of the probabilistic method and other additive methods discussed
in this paper, readers are recommended to peruse [1] and [22].
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[8] P. Erdős and W. H. J. Fuchs, On a problem of addditive number theory, Journal
of the London Mathematical Society, 31 (1956), 67-73.
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