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ABSTRACT 

Shipment consolidation is a logistics strategy whereby many small shipments 

are combined into a few larger loads. The economies of scale achieved by 

shipment consolidation help in reducing the transportation costs and improving 

the utilization of logistics resources.  

The fundamental questions about shipment consolidation are i) to how large a 

size should the consolidated loads be allowed to accumulate? And ii) when is the 

best time to dispatch such loads? The answers to these questions lie in the set of 

decision rules known as shipment consolidation policies.  

A number of studies have been done in an attempt to find the optimal 

consolidation policy. However, these studies are restricted to only a few types of 

consolidation policies and are constrained by the input parameters, mainly the 

order arrival process and the order weight distribution. Some results on the 

optimal policy parameters have been obtained, but they are limited to a couple of 

specific types of policies.  

No comprehensive method has yet been developed which allows the 

evaluation of different types of consolidation policies in general, and permits a 

comparison of their performance levels. Our goal in this thesis is to develop such 

a method and use it to evaluate a variety of instances of shipment consolidation 

problem and policies.  
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In order to achieve that goal, we will venture to use matrix-analytic methods 

to model and solve the shipment consolidation problem. The main advantage of 

applying such methods is that they can help us create a more versatile and 

accurate model while keeping the difficulties of computational procedures in 

check. 

More specifically, we employ a discrete batch Markovian arrival process 

(BMAP) to model the weight-arrival process, and for some special cases, we use 

phase-type (PH) distributions to represent order weights. Then we model a 

dispatch policy by a discrete monotonic function, and construct a discrete time 

Markov chain for the shipment consolidation process.  

Borrowing an idea from matrix-analytic methods, we develop an efficient 

algorithm for computing the steady state distribution of the Markov chain and 

various performance measures such as i) the mean accumulated weight per load, ii) 

the average dispatch interval and iii) the average delay per order. Lastly, after 

specifying the cost structures, we will compute the expected long-run cost per unit 

time for both the private carriage and common carriage cases.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background to Shipment Consolidation 

Shipment consolidation is a logistics strategy used by shippers to gain 

potential economies of scale in transportation. The basic idea is that instead of 

shipping individual loads whenever an order arrives, the shipper will hold the 

outbound shipments for a period of time, and combine several small loads with 

the same general destination into one larger load, and then dispatch them on the 

same vehicle. As a result, even though the shipper will incur greater inventory 

carrying costs, the potential savings in transportation costs due to freight volume 

discounts or better utilization of vehicles might prevail, and lead to reduced total 

cost. 

A good shipment consolidation strategy must take into consideration the 

following key factors: the frequency of order arrivals, the weight and size of 

shipments, the availability and capacity of vehicles, and the service level 

requirement of customers. Since most of these factors are represented by random 

variables or stochastic processes, shipment consolidation is generally considered 

as a stochastic problem. The fundamental question here is: what is the optimal 

level of accumulation before dispatch in order to achieve the lowest total cost per 

unit time? Therefore, the shipment consolidation problem can also be classified as 
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an optimization problem, with the objective of minimizing the expected total 

logistics (transportation plus inventory holding) cost per unit time. 

We will now illustrate two simple practical applications of shipment 

consolidation. Through these examples, we will try to identify some necessary 

conditions for shipment consolidation to be effective, and demonstrate its benefit. 

At the same time, we will also make distinctions between the notions of “private 

carriage” and “common carriage” in shipment consolidation problems. 

In our first example, we assume that transportation will be done by the 

shipper’s own fleet; this is commonly referred to as the “private carriage” case. 

Suppose that a company selling custom-made furniture makes their own 

deliveries to customers free of charge. They only have one truck available for 

delivery, but have sufficient warehouse space to hold inventory. Thus, the 

delivery cost for each trip consists of fuel cost and labor cost, while the inventory 

holding cost is minimal. It usually takes the factory one day to build an order, but 

instead of delivering the furniture upon completion, the company chooses to hold 

the furniture and deliver them on the coming Monday. Therefore, all the orders 

from the previous week will be delivered on the following Monday.  

This is a desirable application of shipment consolidation since the inventory 

holding cost for the company is almost negligible. It would be costly and 

inefficient if the company decided to make individual deliveries. By combining 

the deliveries, economies of scale are achieved, so the total delivery cost will be 
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reduced. From the management perspective, it is also beneficial because, by 

setting a fixed delivery date, it is easier to schedule the delivery route and 

personnel. The fixed date can also provide buffer time for the factory if there are 

multiple orders arriving on the same day. From the customers’ perspective, 

receiving custom-made furniture the next week free of delivery charges is usually 

acceptable.  

In our second example, we consider transportation by an outside trucking 

company available for hire. This is commonly referred to as the “common 

carriage” case. This particular example was originally described by Higginson 

(1993), and states the following. Suppose there are 6000 pounds of roofing 

material required to be shipped every day. Inventory holding cost for this type of 

material is estimated by the manufacturer to be $0.10/cwt (hundred pounds). The 

trucking company hired by the manufacturer to ship this material has offered a 

freight rate of $2.95/cwt. Therefore, the total transportation and inventory holding 

cost each day can be calculated as: 

 Transportation cost:   TCT = 60 cwt × $2.95 / cwt = $177 / day 

 Inventory holding cost:   TCH = 60 / 2 cwt × $0.10 / cwt = $3 / day 

 Total cost:   TC = $180 / day 

According to the previous result, the total weekly transportation and inventory 

holding cost is $180 × 5 = $900 / week (assuming five work days per week). 



4 
 

On the other hand, suppose the shipper chooses to use a consolidation 

strategy, in which they hold five daily shipments and dispatch them together at the 

end of each week on a 300 cwt load. The total weight of this single, larger 

shipment will enable the shipper to qualify for a volume discount with their 

carrier. As a result, the freight charge is now determined by the lower “volume 

rate”. Assuming that the applicable volume freight rate is $2.07 / cwt, based on 

this arrangement, the weekly transportation cost becomes  

  TCT = 300 cwt × $2.07 / cwt = $621 / week . 

However, due to the longer holding period, weekly inventory holding cost 

increases to 

  TCH = 300 / 2 cwt × $0.10 / cwt × 5 = $75 / week . 

Using this shipment consolidation strategy, the shipper will benefit from the 

freight rate volume discount and reduce the total logistical cost from $900 / week 

to $696 / week. The shipper will gain a saving of $204 / week, equivalent to 

almost 24% reduction over that with daily shipments. 

 

1.2 Shipment Consolidation Policies 

According to Higginson (1993), shipment consolidation can be carried out by 

the shipper, the consignee, the carrier, or by a third party such as a freight 

forwarder. This thesis focuses on shipper-performed consolidation. In this case, 

shipment consolidation is performed at the shipper’s premises. The consolidated 
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load will be transported either by the shipper’s own fleet or by a common carrier. 

The shipper’s main concern is to select an appropriate shipment consolidation 

policy which determines when to terminate the consolidation process and dispatch 

a load.  

In the private carriage case, the shipper usually has its own logistic division 

and manages a private fleet of trucks. The transportation cost is an internal cost 

and is subjected to the shipper’s logistical capability, such as vehicles, fleet 

capacity, transportation personnel and facility locations. The shipper will typically 

incur a fixed charge per shipment that is independent of the weight of the load. 

The shipper’s objective is to consolidate shipments while trying to maintain a 

relatively low inventory holding cost and satisfactory service level. The primary 

component of cost saving comes from the reduced total dispatch cost if fewer 

trips are required to deliver the same amount of product. 

In the common carriage case, transportation is by an outside trucking 

company available for hire. The shipper will be charged by the carrier according 

to the weight of its shipment. Suppose c(w) is the tariff charged by the carrier for 

a given shipment of weight w. The common carrier’s tariff function has been 

defined by Çetinkaya and Bookbinder (2003) as 
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,
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Here cV and cN are the volume and non-volume freight rates, respectively, and cV 

< cN. MWT is the minimum weight required to qualify for a volume discount, as 

specified by the carrier.  

In this situation, the shipper will often try to consolidate up to a weight 

greater than MWT. However, in practice, it is not always preferable to do so, 

because that will prolong the service time even though there simply may not be 

enough orders to accumulate to that weight level. If the actual consolidated 

weight, w, is slightly under MWT, and cNw > cVMWT, the shipper will choose to 

over declare the weight of its load as MWT, thus qualifying for the volume 

discount to lower the total cost. This effect is labeled as the shipment of “phantom 

freight” (Tyworth, 1987). It is also commonly referred to as the “bumping clause”, 

whereby the actual weight is bumped into a higher weight category in order to 

receive the volume discount (Çetinkaya and Bookbinder, 2003). 

Three types of policies for shipper-performed shipment consolidation have 

been reported in the logistics literature. They are quantity-based, time-based and 

time-and-quantity (TQ)-based consolidation policies. Newbourne and Barrett 

(1972) and Pollock (1978) identified them as practical policies initially. 

Subsequently, these policies have become popular industry practices. Assuming 

stochastic demand/order arrivals, analytical models have been developed for these 

policies. A common goal of those models is to examine the expected long-run 

cost per unit time. 
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According to Mütlü, Çetinkaya and Bookbinder (2010), “Under a quantity-

based policy, customer orders are held/combined until a target load, assuring scale 

economies, is accumulated”. In a quantity policy model, the main decision 

variable is the target load Q. We seek the optimal value Q* of that critical weight 

(Çetinkaya and Bookbinder, 2003). A consolidation cycle begins immediately 

after the previous dispatch, and ends upon arrival of the order which causes the 

cumulative weight to reach Q (or exceed Q for the first time). The cycle length is 

random, depending on the interarrival times between orders, and the load 

dispatched will often be greater than Q because of excess. 

Similarly, “Under a time-based policy, consolidated shipments are released at 

periodic intervals; orders that arrive between the release epochs are combined” 

(Mütlü, Çetinkaya and Bookbinder, 2010). In a time policy model, the shipments 

are consolidated and dispatched on schedule every T units of time (the unit of 

time can be hours, days, or weeks, etc. depending on the characteristics of the 

order frequency). T is the main decision variable and it is also the constant cycle 

length. Naturally, the load dispatched is random, depending on the weight of the 

individual orders accumulated.   

A TQ-based policy is actually a hybrid between the first two, thus we will 

refer to it as the “hybrid” policy from now on. It has two parameters: a target load 

Q and a maximum waiting time T. “Under this policy, a consolidated shipment is 

released either when the target load is accumulated or when the waiting time of an 
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order exceeds a certain threshold before the target load is consolidated” (Mütlü, 

Çetinkaya and Bookbinder, 2010). Therefore, in a hybrid policy model, the 

decision variables are Q and T.  

This policy has been regarded as a practical and effective alternative to the 

previous two classes of policies. “It is aimed at realizing both the scale economies 

inherent under quantity-based policies and the timely delivery benefits of time-

based policies” (Mütlü, Çetinkaya and Bookbinder, 2010). In fact, hybrid policies 

are widely adopted in real-life for managing day-to-day operations associated 

with expedited orders.  

In addition to the three well-documented consolidation policies, there have 

been other consolidation policies utilized by the shippers in practice. A majority 

of these policies take into account both the accumulated weight and the waiting 

time, but unlike the hybrid policy, the target load may vary over time. For 

instance, the shipper may aim to consolidate up to 200 cwt (hundred pounds) 

before dispatch within the first two days after the previous dispatch. If that is not 

achieved, during the next two days, a dispatch will be triggered when the 

accumulated weight exceeds 100 cwt And if that is still not attained, everything 

will be shipped on the fifth day.  

Thus, the target load for these policies is typically a non-increasing step 

function of the time since last dispatch. Such a policy makes sense intuitively 

because as time passes and the accumulated weight remains low, it becomes less 
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likely to attain the initial target load, hence the shipper should lower the target. In 

this thesis, we will refer to such policies as the “general” consolidation policies. It 

should be noted that the first three classes of policies are essentially special cases 

of this general policy.  

 

1.3 Benefits and Drawbacks of Shipment Consolidation 

The most significant benefit of shipment consolidation is the reduction in 

transportation cost. These cost savings can be achieved in several ways in 

different scenarios. The first type of cost saving is the “reduced cost of private 

carriage due to spreading of fixed transportation charges” (Higginson, 1993). 

Since private carriers operate their own fleet of vehicles, the total transportation 

cost for private carrier depends mainly on the distance and time. This cost may 

include fuel consumption, driver labor hours, vehicle maintenance and 

depreciation, etc. Thus, for a given distance, most of the transportation cost is 

fixed whether the vehicle is full or empty. Therefore, a fixed charge per load will 

be incurred, independent of the weight of the load. By the notion of economy of 

scale, if the shipper chooses to consolidate the shipments and dispatch larger 

loads, it will be able to reduce the total as well as the per-unit transportation cost. 

The second form of cost saving is the reduced common-carrier freight rates 

due to freight volume discount. As we mentioned in the previous section, the 

shipper may choose to consolidate several shipments to increase the total weight 
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of a load beyond the minimum weight required for a discounted freight rate, 

specified by the common carrier. Even if the shipper cannot attain the minimum 

volume weight, it may still obtain the volume discount by declaring “phantom 

freight” under the “bumping clause”. The volume rates of common carriers are 

usually significantly lower than the non-volume rates. Newbourne and Barret 

(1972) remarked that the average less-than-truckload (LTL) freight rate is 

approximately twice the corresponding truckload rate. Higginson (1993) 

concluded through statistical sampling of freight rates from the U.S. Rail Uniform 

Freight Classification and the U.S. Motor Carrier Freight Classification, that the 

mean carload/truckload rate was approximately 60% of the mean  LTL rate. 

The benefits of shipment consolidation are not limited to financial gains only; 

consolidation also enhances the utilization of logistical resources and elevates the 

customer service level. Both private and common carriers handling consolidated 

shipments benefit from better utilization of vehicles and personnel because of the 

larger load sizes (Higginson, 1993). This has become an increasingly valuable 

aspect of shipment consolidation because in the last two decades, government 

legislators and environmental groups have identified the transportation industry as 

a main source of green house gas emission and global warming. The industry is 

under tremendous pressure to reduce its carbon footprint. Shipment consolidation 

has provided them with a viable option to do so.  
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From the accounting point of view, especially in the case of private carrier, 

shipment consolidation would allow the carrier to purchase fewer transportation 

assets, mainly vehicles. This would improve the liquidity of the company and help 

the company to stay lean, which is a popular management philosophy.  

In terms of improved customer service level, shipment consolidation will 

result in more direct deliveries on dedicated vehicles, especially in the common 

carrier case (Higginson, 1993). This is because if a shipper tenders a small load to 

a common carrier, the carrier will usually consolidate it with other small 

shipments from other customers in an attempt to make a full truck load. However, 

these shipments will have different destinations; as a result, the full load will be 

transported to a local terminal for sorting and reloading on delivery vehicles. This 

shows that even though the shipper wishes to make frequent small deliveries, 

probably according to the demand by customers, the result is increased 

transportation time and less shipper control.  

On the contrary, if the shipper chooses to consolidate some shipments into a 

larger load, the common carrier will be more likely to make a direct delivery right 

away, upon receiving that load. This will help the shipper to decrease the 

transportation time, reduce the handling of goods, increase his control over the 

shipments, and improve his position when negotiating with carriers (Higginson, 

1993). The direct shipment of a consolidated load will also enhance service by 
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lowering the chance of damage, loss or pilferage; allow for easier tracing of 

shipments; and lessen the administrative work relating to claims. 

Despite its various advantages, shipment consolidation still has its 

disadvantages. Firstly, shipment consolidation will increase inventory levels and 

inventory holding costs. This is because the consolidation process requires the 

shipper to delay shipments in order to create effective consolidated loads; it also 

requires the consignee to hold larger safety stocks on their site to compensate for 

a possibly longer or more uncertain order lead time. Greater inventories also mean 

additional space is required for storage.  

Another problem of shipment consolidation is that orders do not always come 

frequently or on a regular basis. A consolidation program may require that goods 

to be held until a minimum weight or volume has been reached, hence there will 

be additional holding time, depending on the interarrival times between orders. If 

that pattern is irregular, lengthy and erratic holding times could result, causing 

prolonged total lead times and order cycle lengths. 

To effectively manage the shipment consolidation process, the shipper must 

keep thus track of customer orders presently waiting for shipment and those 

expected within a near term in the future. To achieve that will require more 

complicated administrative work and more frequent communication with 

customers. The consolidation process itself also requires close coordination 
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between order processing, inventory control and transportation. All these will 

result in more administrative work and higher costs. 

 

1.4 Literature Review on Shipment Consolidation Problem 

In the last three decades, there have been many studies concerning shipment 

consolidation. Their common goal has been to discover accurate and effective 

ways to derive the optimal dispatch decisions. Researchers have used different 

techniques such as simulation, stochastic modeling or empirical analysis to solve 

this problem.   

Some early publications on shipment consolidation focused on simulation-

based cost comparison between the different consolidation policies. They include 

works by Masters (1980), Jackson (1981), Cooper (1984), and Closs and Cook 

(1987). Based on these preliminary works and through a more extensive 

simulation study, Higginson and Bookbinder (1994) examined the cost 

effectiveness of the three commonly used dispatch strategies, namely the time 

policy, the quantity policy and the time-and-quantity (TQ) policy. Their 

simulation results were based on a large range of the relevant parameters, long-

run order arrival rates and maximum holding times. Using these results, they 

computed the cost per load, cost per hundredweight, and average order delay for 

each policy; and they made recommendations on how to choose the appropriate 

policy under different situations.  
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In his paper about “recurrent” decision approaches to shipment-release timing, 

Higginson (1995) made a distinction between the “recurrent approaches” and 

“non-recurrent approaches” to determining the optimal consolidation policy. The 

word “recurrent” means to re-evaluate the shipment-release question several times 

within an order accumulation cycle, in order to obtain the current optimal dispatch 

decision. In contrast, a non-recurrent approach “sets a target time or weight prior 

to accumulating orders and dispatches when the target is reached” (Higginson, 

1995). 

Many early analytical models were based on non-recurrent shipment 

consolidation approaches. These models tended to focus on the quantity policy 

and have often applied the concept of a deterministic economic shipment quantity 

(ESQ). That was intended to be the target dispatch weight which minimizes the 

total cost. The ESQ was also used to determine the long-run average cost. 

Examples of such works include Blumenfeld et al. (1985), Burns et al. (1985), 

Hall (1987), Daganzo (1988), Abdelwahab and Sargious (1990) and Russel and 

Krajewski (1991). These models could not address the issues of the occasional 

prolonged consolidation cycle which led to poor customer service. These 

difficulties are usually the result of variations in the order arrival process and 

order weight distributions. 

Higginson (1995) presented two probabilistic models (for the cases of private 

carriage and common carriage respectively). By comparing the performance of 
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these models with the non-recurrent dispatching policies, he concluded that the 

recurrent decision heuristic would outperform the non-recurrent ones when the 

economic shipment weight is close to vehicle capacity. 

Higginson and Bookbinder (1995) proposed a Markovian Decision Process 

(MDP) approach to determine when to release consolidated loads, recurrently. In 

other words, whenever an order arrives, a choice must be made between 

dispatching this order plus all previously accumulated orders, or continuing to 

consolidate until at least the arrival of the next order. They constructed a discrete 

time Markov chain to represent the MDP model, and applied the fixed-weight 

aggregation technique to define a finite number of states for that Markov chain. 

Through some small but realistic numerical examples, their work has provided 

some inspiration on the potential of utilizing Markov chains to help solve 

shipment consolidation problems. 

Other stochastic modeling techniques have been found useful in solving 

shipment consolidation problems. Gupta and Bagchi (1987) used stochastic 

clearing system theory to model shipment consolidation. They built a stochastic 

model for the quantity policy. Bookbinder and Higginson (2002) extended that 

idea to a hybrid policy and built a probabilistic model.  

Çetinkaya and Bookbinder (2003) applied renewal theory to the quantity 

policy and time policy. They derived analytical expressions and explicit formulas 

to compute the optimal policy parameters. Even though their work was mainly 
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based on the assumption of a Poisson order arrival process and exponentially 

distributed order weights, the results can be extended to some other order arrival 

processes or weight distributions. Recently, Mütlü, Çetinkaya and Bookbinder 

(2010) have extended the renewal theory model to the hybrid policy, and also 

extended its scope to cover the integrated inventory/consolidation problem. 

Dispatch decisions in shipment consolidation problems depend heavily on the 

nature of the order arrival process and the weight distribution of orders. The 

weight of each order and the interarrival times between orders have often been 

modeled as independent and identically distributed (i.i.d.) random variables. 

In the previous analytical studies about shipment consolidation, researchers 

have made different assumptions about the order arrival process. In their 

simulation model (1994), their MDP model (1995), and their probabilistic model 

(2002), Bookbinder and Higginson assumed that arrivals of orders follow a 

Poisson process (hence the interarrival times are exponentially distributed). In her 

two papers about freight consolidation and warehouse strategies, Cooper (1983, 

1984) also assumed an exponential distribution for interarrival times between 

orders. On the other hand, Masters (1980) modeled interarrival times as a uniform 

distribution, while Ha, Khasnabis and Jackson (1988) used empirical distributions. 

In general, the majority of past studies have assumed the order arrival process to 

follow a Poisson process. Consequently, this has been regarded as a reasonable 

assumption by many researchers, supported by evidence gathered by shippers.  
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There are greater disparities in the published literature among the 

assumptions of order weight distribution. Empirical data suggest that the 

distributions of order weights not only vary among products, but they also vary 

between the different perspectives of shippers, carriers and purchasers. Therefore, 

there has not been any attempt to generalize the order weight distribution for 

shipment consolidation problems. Researchers have made their own assumptions 

based on the setting of their individual problems. For instance, Masters (1980) 

modeled order weight as a normal distribution; while Cooper (1984) and Ha, 

Khasnabis, and Jackson (1988) used truncated normal distributions.  

In their series of papers on shipment consolidation, Bookbinder and 

Higginson (1994, 1995, 2002) have utilized an unshifted gamma distribution to 

model order weights. Their empirical data came from a medium-size national 

packaged goods distributor. After comparing the empirical plots with other data 

sets from the industry, they observed a common skewness towards lower weights 

in the empirical data. Thus, they used this property to justify their assumption. 

Very few attempts have been made to fit theoretical probability distributions 

to empirical order weights, and those attempts did not provide satisfactory results. 

Akaah and Jackson (1988) tried to fit empirical data with the normal, uniform, 

and Poisson distributions. However, only about a quarter of their data sets actually 

fitted those distributions, and they did not suggest or test any better-fitting 

distributions.  
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Areas of concern for conducting analytical studies on shipment consolidation 

problems have thus been the choice of appropriate distributions for interarrival 

times and order weights. Previous literature has concentrated on developing and 

comparing models for only a few types of order arrival processes and order 

weight distributions. These are highly case sensitive and have limited application 

values. A more sophisticated model that is applicable to a wider range of order 

arrival processes and order weight distributions would be a breakthrough in 

research on shipment consolidation problems. We hope our studies in this thesis 

will shed some light on this matter. 

 

1.5 Thesis Overview 

The main objective of this thesis is to develop a method to evaluate any 

particular shipment consolidation policy, given an order arrival process and order 

weight distribution. Our goal is to make this method versatile and accurate so it 

can be applied to a variety of problem instances. We will also try to make this 

method computationally efficient and easy to use. 

To achieve these goals, we need to find a way to accurately model any 

combinations of order arrival processes and order weight distributions; we also 

must be able to incorporate different types of consolidation policies; finally, some 

efficient algorithms must be developed to speed up the calculation procedures in 

our model.  
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The rest of this thesis is arranged as follows. In Chapter Two, we will 

introduce the basic ideas of matrix analytic methods and relate them to our 

problem. In Chapter Three, we will give a formal definition of our model and 

discuss its performance measures. Then in Chapter Four, we will present a 

Markov chain for our model and demonstrate how to compute its steady state 

distribution, among other long-run statistics.  

Useful model modifications for special cases of interest will be presented in 

Chapter Five. In Chapter Six, we will show the formulas for measuring the costs 

under both private and common carriage. Finally, in Chapter Seven, we will 

present our numerical results, while Chapter Eight contains some concluding 

remarks about our model and future research directions.        
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CHAPTER TWO 

INTRODUCTION TO MATRIX-ANALYTIC METHODS 

 

Since we are going to use matrix analytical methods to model and solve the 

shipment consolidation problem, we need to provide some background and 

describe some basic techniques of those methods. Pertaining to this thesis, we will 

first introduce the concept of a Markovian arrival process (MAP) and its extension, 

the batch Markovian arrival process (BMAP). We will also introduce a versatile 

class of probability distribution called the phase-type (PH) distribution. Lastly, we 

will briefly describe the algorithmic approach for matrix geometric solutions.  

 

2.1 Markovian Arrival Process  

The Markovian Arrival Process (MAP) is a useful tool for modeling arrival 

processes. It was first introduced by Neuts (1979) as “an arrival process in which 

customers arrive at the epochs of transitions of an irreducible K-state Markovian 

process”. More specifically, a MAP is a counting process that is defined on top of 

a finite state Markov chain (a.k.a. the underlying Markov chain).  

Arrivals are typically associated with the transitions between states in the 

underlying Markov chain. However, in some cases, arrivals can also occur during 

the stay in certain states of the underlying Markov chain. For a discrete MAP, 

transitions and arrivals take place in discrete time epochs. 
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Let us now give a more formal definition of a discrete MAP. According to He 

(2009), if we have only one type of arrival event, we can find a pair of matrices 

( D0 , D1 ) of order m, such that D0 = [ d0,ij ] and D1 = [ d1,ij ], where i, j = 1, 2, …, 

m. Each element d0,ij can be interpreted as the transition probability for the 

underlying Markov chain to go from state i to state j without any arrival, and d1,ij 

can be interpreted as the transition probability from state i to state j with an arrival.  

We can also get D = D0 + D1, which is the transition probability matrix for 

the underlying Markov chain { I(t), t ≥ 0 }, where I(t) is the current state of that 

underlying chain at time t. If we let N(t) be the number of arrivals in the interval 

[0, t] and N(0) = 0, then { N(t), I(t), t ≥ 0 } is called a Markovian Arrival Process. 

It can be shown that { ( N(t), I(t) ), t ≥ 0 } is also a Markov chain with transition 

probability matrix 

                            



















=

O

OO

10

10

DD

DD

P  .                                      (2.1) 

For each MAP, we can define its steady-state arrival rate as λ = θθθθD1e, where 

θθθθ is the steady state distribution vector of D, i.e., θθθθD = θθθθ and θθθθe = 1, and e is a 

column vector of ones (He 2009).  At any arbitrary time, if the underlying Markov 

chain is in state i, the arrival rate at the moment is the ith element of D1e.  By 
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conditioning on the state at that epoch, the average arrival rate at the epoch is 

θθθθD1e. This explains why λ is called the “steady-state” arrival rate. 

Now let us view MAP in the context of the shipment consolidation problem. 

It is often assumed that for a shipper that has a large customer base and frequent 

orders, the interarrival times of orders are i.i.d.. This is a general assumption 

about the order arrival process found in much previous research.  

However, in some cases, it is necessary to consider the possibility that there 

exist some correlations between consecutive order arrivals. For instance, in 

certain industries, purchasing decisions are influenced by factors such as 

seasonality, actions by competitors, and economic conditions. MAP can be used to 

capture the correlations between consecutive interarrival times. 

Consider an example of a MAP defined as  

                          







=








=

00

1.09.0
,

9.01.0

00
10 DD  .                        (2.2)  

It can be observed that, if the process is in state 1, there is a high probability (0.9) 

for an arrival to occur while the process remains in that state, and a low 

probability (0.1) for the process to transit to state 2 with an arrival. On the other 

hand, if the process is in state 2, no arrival will occur and there is a high 

probability (0.9) to remain in state 2.  
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In this particular example, the expected times between transitions are roughly 

the same (around 10); these intervals can also be interpreted as the average time 

spent in each state. Therefore, according to He (2009), this MAP has a distinctive 

‘bursty’ nature, with alternating ‘busy’ periods (time in state 1 with frequent 

arrivals) and ‘idle’ periods (time in state 2 with no arrivals). Figure 2.1 shows the 

sample paths of N(t) and I(t) in a single realization of this MAP. 

 

Figure 2.1:   Plot of MAP Path and State Changes  
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Similar to Poisson processes, MAPs can be combined or decomposed. To 

demonstrate the decomposition (otherwise known as “marking”) of MAPs, let us 

assume that { ( N(t), I(t) ), t ≥ 0 } is a MAP with matrix representation ( D0 , D1 ). 

If for some probabilities ( p , 1 – p ) we can mark arrivals independently as two 

types, we can then obtain a marked Markovian arrival process { ( N1(t), N2(t), 

I(t) ), t ≥ 0 } with matrix representation ( D0, pD1, (1 – p)D1 ). Breaking it into 

individual processes, { N1(t), t ≥ 0 } and { N2(t), t ≥ 0 } are two MAPs with matrix 

representations ( D0 + (1 – p)D1 , pD1 ) and ( D0 + pD1 , (1–p)D1 ). 

 

2.2 Batch Markovian Arrival Process 

A Batch Markovian arrival process (BMAP) is a direct generalization of MAP. 

The idea is based on interpretation of the transition / arrival probabilities. For a 

MAP ( D0 , D1 ), elements of D0 are interpreted as the transition probabilities 

without an arrival, while elements of D1 are interpreted as transition probabilities 

with an arrival. We can define more complicated arrival processes by dividing the 

elements in D1, and assigning different meanings to those probabilities.  

Recall that for MAPs, we only allow at most one order to arrive in each 

period, but for BMAPs, we allow more than one order. When more than one order 

(but at most N) does arrive in any period, we group them into batches. Thus, to 

distinguish the arrival of different batch sizes, we break D1 into N matrices, such 
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that D1 = D’1 + D’2 + … + D’N. Each element in matrix D’i, for i = 1, 2, …, N, 

represents the transition probabilities of an arrival of  batch size i.  

Many BMAPs are explicitly defined in terms of matrices Di . Suppose, 

however, that the batch sizes are independent of the arrival process and there 

exists a probability pi for the occurrence of batch size i, such that 1
1

=∑ =

N

i ip . 

We can then simply decompose ( D0 , D1 ) into ( D0 , p1D1 , p2D1 , …, pND1 ), 

which becomes a BMAP. Note that in this case, N does not necessarily have to be 

finite; if N = ∞, the BMAP will have infinitely many batch sizes.  

Similar to MAPs, the counting process { N(t), t ≥ 0 } still records the number 

of arrivals for a BMAP within interval [0, t]; { I(t), t ≥ 0 } still represents the 

underlying Markov chain. If we express the BMAP as ( D0, D1, D2, …, DN ), then 

D = D0 + D1 + D2 + … + DN is the transition probability matrix of the underlying 

Markov chain. { ( N(t), I(t) ), t ≥ 0 } is a Markov chain with transition probability 

matrix 

                         



















=

OOO

OOOO

L

L
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DDD

DDD
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.                        (2.3) 



26 
 

The arrival rate of batches (not the total number of arrivals) is given by 

e








= ∑

=

N

j
jD

1

ˆ θθθθλ .  The arrival rate of a batch of size j is thus ejj Dθ=λ (He 

2009). 

A very important theorem about BMAPs states that any stochastic arrival 

process can be approximated closely by a BMAP (Asmussen and Koole, 1993). 

The latter will therefore be an extremely versatile tool for modeling order arrival 

processes in shipment consolidation problems.  

In conclusion, MAP and BMAP can both be used to approximate any arrival 

process to a high precision. They are also useful in terms of modeling special 

characteristics such as a business cycle, seasonality, and busy/idle periods in order 

arrival processes. For more details on MAPs and BMAPs, see, for example Neuts 

(1979, 1981, 1992), Lucantoni (1991), He and Neuts (1998), Latouche and 

Ramaswami (1999) and Latouche, Remiche and Taylor (2003). 

 

2.3 Phase-Type Distribution  

Phase-type distributions (PH-distributions) were first introduced by Neuts 

(1975) as an extension of the Erlang distribution. Due to the ease of generating 

explicit matrix geometric solutions (Neuts, 1981), PH is a highly versatile class of 

probability distributions that is widely used in the analysis of queueing models 
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and other complex stochastic models. The class can be divided into two 

subgroups: continuous and discrete phase-type distributions.  

Since we are dealing with discrete time and discrete quantity in this thesis, 

we will focus on the discrete phase-type distribution. We can think of it as a 

probability distribution that arises from a system of one or more interrelated 

geometric distributions occurring in some sequence. A discrete PH-distribution is 

also the distribution of the time until absorption of a Markov chain with finitely 

many states, where all states are transient except for one absorbing state. 

According to Neuts (1981), a discrete PH-distribution can be defined by a 

Markov chain with m + 1 states that has the transition probability matrix of the 

following form 

                                                    







=

1

0

0

SS
P ,                                             (2.4) 

where S0 = e – Se, and e is a column vector of ones.  

Note that S is a substochastic matrix, such that all entries in S are non-

negative; 1
1

0 =+∑ =

m

j iijS S , for each row i (or this can be expressed as 

eSe ====++++ 0S ); and I – S is nonsingular. The initial probabilities are given by 

( )1, +mββ , with 11 =+ +mββe .  

http://en.wikipedia.org/wiki/Discrete_phase-type_distribution
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/First_passage_time
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Based on the definition given by He (2009), a discrete PH-distribution can be 

represented as ( )SY ,~ β . Its probability mass function is defined as 

                       ( ) ( ) 1
01 0 and 1, +

− =≥= m
t ftStf βSβ ;                        (2.5) 

its distribution function is given by  

                                      ( ) { } eβ tStXPtF −=≤= 1 ;                                (2.6) 

and its probability generating function is expressed as 

                                     ( ) ( ) 01
1 Sβ −
+ −+= zSIzZP mβ .                            (2.7) 

The kth factorial moments are thus                      

              
(((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))[[[[ ]]]] 1,111

!1 1

≥≥≥≥++++−−−−−−−−====

−−−−==== −−−−−−−−

kkXXXEP

SISkP
k

kkk

L

eβ
.                        (2.8) 

From the moment functions, we can derive the mean and variance as 

                                  [ ] ( )( ) ( ) eβ 11 1 −−== SIPXE ;                                 (2.9) 

              

(((( )))) (((( )))) (((( )))) (((( ))))(((( )))) (((( ))))(((( ))))(((( ))))
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))2112

2112

2

111

eβeβeβ −−−−−−−−−−−− −−−−−−−−−−−−++++−−−−====

−−−−++++====

SISSISSISXVar

PPPXVar
.    (2.10) 
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Neuts (1981) stated that in the analysis of even very simple stochastic models, 

the increasing complexity of the ensuing conditional probability distributions 

would constitute a barrier for obtaining any explicit solutions. Similar to the 

exponential distribution and the Poisson process, the MAP, BMAP and PH-

distributions all share the Markov property. That will improve the ease of 

conditioning, a valuable property for them to be used in stochastic modeling. It 

will help reduce the difficulty in deriving exact and detailed numerical results 

about the steady-state properties of a model. Many probability models that have 

matrix-geometric solutions involve MAPs, BMAPs or PH-distributions in one way 

or another. 

Neuts (1981) also mentioned another advantage for utilizing MAP, BMAP or 

PH-distributions in stochastic modeling. Due to the growing importance of 

qualitative modeling, many models endeavor to capture the true nature of 

stochastic processes, such as fluctuating arrival rates, seasonal patterns of 

inventories, priority rules, etc, as opposed to imposing restrictive distributional 

assumptions. General distributions tend to fail or become too complicated and 

intractable in such models. Fortunately, probability distributions of point 

processes, which are well represented by MAP, BMAP and PH-distributions, can 

be used to reflect the qualitative features of such a model, and yet still remain 

mathematically elementary and computationally tractable.  
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Perhaps the most notable advantage of employing PH-distributions in 

stochastic modeling is the fact that they are dense in the set of all probability 

distributions on [0, ∞). This property was first noted by Neuts (1975), and it 

allows PH-distributions to approximate all other positive valued distributions. 

Asmussen, Nerman and Olsson (1996) further commented that “due to the 

denseness, one can view phase-type modeling as a semi-parametric density 

estimation procedure with a built-in smoothing”; the degree of smoothness was 

said to be determined by the number of phases m. The phases would have no 

physical interpretation under such applications. However, in some other 

applications, we may find meaningful probabilistic interpretations for the phases.  

The procedure to estimate the parameters of a PH-distribution according to 

some empirical data, or with respect to some other known distribution, is 

commonly known as “PH-fitting”. There have been many previous publications 

concerning PH-fitting techniques and their effectiveness (see, for example, 

Johnson and Taaffe (1990a, 1990b), Asmussen and Nerman (1991), Bobbio and 

Cumani (1992), Horvath and Telek (2002) and Thummler, Buchholz and Telek 

(2006)).   

The above mentioned advantages of PH-distributions indicate that they can 

be useful in modeling shipment consolidation problems. Since order weights are 

usually i.i.d. and tend to have arbitrary empirical distributions, PH-distributions 

can be used to approximate them. This allows us to model each problem with a 
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distinctive PH-distribution of order weights, as opposed to being restricted by the 

limited parameter choices of exponential or gamma distributions, which were 

traditionally used to model order weights. 

When the quantity policy is employed in practice, one cannot guarantee that 

each load dispatched will have the precise weight of the target load. “Excess 

weight” occurs frequently. Previous studies such as Çetinkaya and Bookbinder 

(2003) modeled order weights as an exponential distribution. Thus, by applying 

the memory-less property of exponential distributions, the distribution of excess 

weight is also shown to be exponential, with the same parameter as the order 

weight distribution. Under such an assumption, the expected excess weight is thus 

equal to the expected order weight. This is not true in practice, where the excess 

weight is usually much smaller than the average order weight.  

Our model aims to capture the distribution of excess weight more precisely, 

and PH-distributions will provide an effective solution. If we treat the sequence of 

order weights as a PH-renewal process, according to the memoryless property, the 

future phases of this process depend only on present phases but not on past phases. 

Thus, if we can find the distribution of phases at the time when accumulated 

weight reaches the target load, we can then find an explicit PH-distribution for the 

excess weight. 
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2.4 Matrix Geometric Solution  

In stochastic modeling, we often encounter Markov chains of large dimension, 

for which we have to solve for their steady state distributions (i.e. obtain the 

limiting probabilities). Consider a discrete time Markov chain with transition 

probability matrix P. Even if P is sparse, but has very large dimension, it can be 

challenging to solve for its steady state distribution π. However, if P also has 

some special block structures, we can use an algorithmic approach to compute π.  

For instance, suppose P is defined as 
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P  ,                          (2.11) 

where { A0, A1,  A2,  A0,0,  A0,1,  A1,0 } are nonnegative matrices of size m; and we 

must have ( A0 + A1 + A2 )e = e,  A1,0e + A1,1e + A0e = e  and  A0,0e + A0,1e = e. 

This type of Markov chain represents what is commonly known as a Quasi Birth-

and-Death (QBD) process. For more detail on QBD, please refer to Neuts (1981) 

and Latouche and Ramaswami (1999). 
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When the limiting probabilities π exist, we need to solve the linear system πP 

= π and πe = 1 to find π. Taking advantage of the diagonal block structure, we 

expand the first equation as 

                         

.2,

;

;

21101

221,111,001

0,110,000

≥++=

++=

+=

+− nAAA

AAA

AA

nnnn ππππ

ππππ

πππ

                       (2.12) 

According to Neuts (1981), equations (2.12) have a matrix-geometric 

solution of the form πn = π1Rn–1 for n ≥ 1. Substituting that solution back into the 

equations, we obtain, for n ≥ 2, 0)( 2
2

10
2

1 ====−−−−−−−−−−−−−−−− ARRAARR nπ . A 

nonnegative matrix R can be found, satisfying equation 2
2

10 ARRAAR ++= ; 

R is usually referred to as the rate matrix. Limiting probabilities π0 and π1 can be 

found accordingly by solving the first two equations. A more formal definition of 

the matrix-geometric solution follows.  

 

Theorem 2.1   The stationary distribution of a QBD is given by Neuts (1981) as 

                                   1,1
1 ≥= − nR n

n ππ  ;                                             (2.13)  

where the rate matrix R is the minimal nonnegative solution of the nonlinear 

equation 
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                                  2
2

10 ARRAAR ++=  .                                            (2.14) 

Vectors π 0 and π 1 are the unique positive solutions to 
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);(
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+=
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                               (2.15) 

The matrix-geometric solution is a fundamental result in matrix-analytic 

methods. The approach of using the rate matrix R to compute the steady state 

distribution has been extended to other Markov chains with special structures 

such as the M/G/1 or GI/M/1 type Markov chains. In this thesis, we will also take 

advantage of that algorithmic approach. For more about the matrix-geometric 

solution and matrix-analytic methods in general, see, for example Neuts (1981, 

1989a, 1989b), Lucantoni and Ramaswami (1985), Hsu and He (1991), Gail, 

Hantler and Taylor (1994, 1997) and Latouche and Ramaswami (1993, 1999). 
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CHAPTER THREE 

THE DISCRETE SHIPMENT CONSOLIDATION MODEL 

 

Recall that in Chapter One, we introduced the shipment consolidation 

problem, and in Chapter Two, we showed some basic techniques of matrix-

analytic methods. In this chapter, we will model the discrete version of the 

shipment consolidation problem using matrix-analytic methods. More specifically, 

we will discuss how to model the order arrival process and weight distribution 

using a single BMAP, how to define a consolidation policy as a discrete function, 

and will note which performance measures to record for a shipment consolidation 

process.  

 

3.1 Model Introduction 

The main function of our model is to evaluate a specific shipment 

consolidation policy by either private or common carriage. Due to the randomness 

in the order arrival process and order weight, we utilize a Markov chain to mimic 

the actual shipment consolidation process. To exploit some existing 

methodologies for discrete time Markov chains, we assume that both the time and 

the weight of orders are discrete. 

At the beginning of each period, orders are received by the shipper who then 

decides whether or not to dispatch a shipment by the end of that period. This 
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decision is based on the total accumulated weight of all outstanding orders and the 

total time elapsed since the last dispatch. If the accumulated weight exceeds a 

threshold or the elapsed time surpasses a certain point, these orders are 

consolidated into one load and promptly dispatched. After that, a new cycle of 

accumulation and dispatch commences in the following period with zero initial 

weight. 

To begin constructing our model, we first need to establish the order arrival 

process and identify the order weight distribution. This can be done through 

fitting empirical data or approximation by known stochastic processes and 

probability distributions. Next, we need to define a policy to govern the shipment 

consolidation process and find a suitable representation for it. Then, we can model 

the process as a discrete time Markov chain and solve for its steady state 

distribution. From those results, we can eventually measure the effectiveness of 

that particular shipment consolidation policy, and compute the cost of having it 

implemented by either private or common carrier.  

 

3.2 The Weight-Arrival process 

Unlike many previous studies which used a Poisson process to model the 

order arrival process, we choose to use the discrete BMAP. This allows us to 

combine the order weight distribution and the order arrival process through a 
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convolution. (From now on, when we use the term “weight-arrival process,” we 

shall mean this convolution.)  

There are several advantages behind our choice of BMAP. One worth noting 

is that BMAP lets us model situations in which order weights are correlated with 

order frequency. Another is that, as mentioned in Section 2.2, the BMAP is 

capable of approximating almost any stochastic arrival process, which we hope 

will make our model more versatile and accurate. 

Without loss of generality, we assume that at most one order can arrive in any 

period. The weight of orders accumulates according to a BMAP representing the 

weight-arrival process. Recall from Chapter Two, a BMAP can be denoted by a 

matrix-representation ( D0, Dn, n = 1, 2, … ), where D0 and Dn are m × m 

nonnegative matrices and m is a positive integer. For n > 0, the matrices Dn 

contain the probabilities that an order of weight n will arrive in a period. On the 

other hand, the matrix D0 contains the probabilities of no order arriving during 

that period. 

Since the weight-arrival process is defined by a BMAP, it has an underlying 

Markov chain with m states. We denote that process as{ Ia(t), t = 0, 1, 2, … }, 

where Ia(t) is the state of this underlying Markov chain at the beginning of period 

t and ( ) { }mtI a ,,2,1 L∈ . The transition probability matrix for that chain is 

given as ∑
∞

=
=

0n nDD . If we assume that the underlying Markov chain is 
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irreducible, then so is D. By definition of BMAP, the row sums of D are all equal 

to one, so D is stochastic.  

The intuition behind the underlying Markov chain is that the weight-arrival 

process alternates between m states. For instance, if order-arrival frequencies vary 

under different business scenarios, then the weight-arrival process may change 

from one period to the next as the scenario changes. The probability that an order 

arrives in a given period may vary, depending on the scenario, and so may the 

order weight distribution. If we denote each entry in matrices Dn, n = 1, 2, …  as 

[ Dn ]ij , then each entry represents the probability for an order of weight n to 

arrive. Following this arrival, the scenario changes from i to j.  

D is stochastic and irreducible. By the property of discrete time Markov 

chains, there exists a steady state distribution for the underlying Markov chain, 

denoted by the row vector θa = ( θa,1,  θa,2, …, θa,m ). Consequently, θa is the 

unique solution to the linear system θaD = θa and θae = 1, where � is a column 

vector of ones.  

To learn more about the weight-arrival process in the long run, let us denote 

by λwt the rate at which the weight accumulates. Denote the rate at which orders 

arrive by λav. Then we have  

( )
( ) .

1

1

eθ

eθ

∑
∑

∞

=

∞

=

=

=

n naav

n nawt

D

nD

λ

λ
                                        (3.1) 
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The probabilistic interpretation of these two equations can be given as 

follows. Since θa,i = P{ the BMAP is in state � in steady state }, and ( Dne )i = 

P{ an order of weight � will arrive in the period | the BMAP is currently in state 

i }, therefore θaDne = P{ an order of weight � arrives in this period } in the 

steady state. Summing up these probabilities will give us P{ an order of any 

weight arrives per period in steady state }, which is equivalent to λav. Similarly, 

multiplying θaDne by n and then summing them together will yield the expected 

weight accumulated in each period in steady state, which equals  λwt. 

Now we will present several examples of using BMAP to model the weight-

arrival process. Some of these cases will lead to interesting model structures and 

results, so we will keep referring back to them throughout the rest of this thesis. 

 

Example 3.1   Orders arrive according to a discrete MAP with a matrix 

representation ( D0 , D1 ). The weight of each order has a general discrete 

distribution { p1 , p2 , … } that is independent of the order arrival process, where 

pn, for n > 0,  is the probability for the order to have weight n. In this case, the 

weight-arrival process can be modeled as a BMAP with matrix representation 

( D0 , pnD1 , n = 1, 2, … ).  
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Example 3.2   Suppose there is only one state for the underlying Markov chain (m 

= 1), then Dn , n = 0, 1, 2, … are just the probabilities for an order of weight n to 

arrive in a period and ∑
∞

=
=

0
1

n nD . If we let d0 = D0 and ∑
∞

=
=

11 n nDd , 

then the interarrival times between orders are geometrically distributed with 

parameter d1, which is the probability that an order of any positive weight to 

arrive in each period. The distribution of order weights, pn , can be obtained from 

a general discrete distribution independent of the arrival process, or computed as 

pn = Dn / d1 if the Dn are all known. Therefore, the weight-arrival process is 

actually a compound geometric distribution with representation ( d0 , pnd1 , n = 1, 

2, … ). 

 

Example 3.3   Orders arrive according to a discrete MAP with a matrix 

representation ( D0 , D1 ). Order weights have an independent discrete PH-

distribution ( β , S ). Thus, the distribution of order weights is given by 

( ) L,2,1,1 =−= − nSISp n
n eβ . Again, the process under consideration 

can be modeled as a BMAP with matrix representation ( D0 , pnD1 , n = 1, 2, … ). 

 

Example 3.4   Orders arrive according to a PH-renewal process whose interarrival 

times have a common PH-distribution ( α , T ). Note that any PH-renewal process 

can also be summarized as the MAP representation ( D0 = T, D1 = T0α ), where  
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T0 = e – Te. Similar to Example 3.3, if order weights are independent discrete PH-

random variables denoted by ( β, S ) then ( ) L,2,1,1 =−= − nSISp n
n eβ , 

and the process can be modeled as a BMAP with matrix representation ( D0 , pnD1 , 

n = 1, 2, … ). 

 

3.3 Shipment Consolidation Policies 

In Chapter One, we described the three commonly used shipment 

consolidation policies, which are the quantity policy, the time policy and the 

hybrid policy. We also mentioned that in practice, some shippers use a more 

general policy which reduces the target load as the waiting time elapses. Since our 

goal is to create a model capable of evaluating all these policies, we will try to 

express them in a common form.  

Let us represent a shipment consolidation policy by a discrete function f(j), 

where j is the time elapsed since the last dispatch. At the end of period j, if the 

accumulated weight reaches or exceeds f(j), all outstanding orders are 

consolidated and a shipment is dispatched. Therefore, this function relates the two 

main decision variables of a shipment consolidation policy: the time elapsed since 

the previous dispatch and the current accumulated weight. 

To enable the function f(·) to be a realistic representation of consolidation 

policies in practice, we make the following assumptions without loss of generality: 

• f(j) = q ≥ 0, for j ≥  jq, where jq is a given positive integer. 
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• jq ≥ 2 and f(j) > 1 for j = 1, 2, …,  jq - 1. 

• f(j) is non-increasing. 

These three assumptions are intuitive and typically used. The first translates 

to the fact that if there has not been a dispatch for the past jq units of time, the 

target load will be set to a constant q. This q could be equal to zero, which would 

then immediately trigger a dispatch. The second assumption, needed due to a 

technical reason which will be explained in Theorem 4.1, states that before the 

elapsed time reaches jq, the target load must exceed one. The third assumption 

suggests that shippers should not raise the target load as the elapsed time 

increases, since even the previous target has not even been achieved. 

The following examples demonstrate how different consolidation policies are 

represented by the function f(·). 

 

Example 3.5   Quantity policy: Suppose a shipper sends out orders only when the 

accumulated weight reaches 150 cwt (target load Q = 150). This policy can be 

modeled as 

                                  ( )




=≥=

==
=

2,150

1,150

qjjQ

jQ
jf   . 

Example 3.6   Pseudo-time policy: Suppose a shipper dispatches a shipment once 

every seven days (maximum waiting time T = 7). For modeling reasons (see 
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Theorem 4.1), we will still set a target load Q as an upper bound for the total 

accumulated weight. Then if Q is very large, this policy approximates a time 

policy. If we set Q = 400 cwt, which is often the capacity of a truck, it can be 

expressed as 

                    ( ) .
7,0

71,400
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Tjj
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Example 3.7   Hybrid policy: Suppose a shipper decides that order deliveries will 

be held back until either T days have passed since the last dispatch, or the total 

accumulated weight reaches the target load Q. If T is very large, this policy 

approximates a quantity policy; on the other hand, if Q is very large, similar to 

Example 3.6, this policy approximates a time policy. In a reasonable case where Q 

= 180 cwt and T = 5, the shipment consolidation policy can be expressed as 

                   ( ) .
5,0

51,180
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Example 3.8   General policy: Suppose that during the first day after a previous 

dispatch, the target load is 200 cwt, and that target will be reduced by 20 cwt for 

each of the next four days. On the sixth day, if there still has not been a dispatch, 

all outstanding orders will be consolidated and shipped. This policy can be 

modeled by the following function 
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                  ( )
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Note that the function for the general policy can be modified to resemble the 

other three policies and they can all be characterized as “step functions that move 

downward and to the right”. Figure 3.1 illustrates those functions defined in 

Examples 3.5 through 3.8. 

 

Figure 3.1:   Functions Representing Shipment Consolidation Policies 
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3.4 Performance Measures 

The next important step in our model formulation is to identify the 

performance measures that can be used to evaluate the effectiveness of different 

consolidation policies. In an analytical model, upon selecting a shipment 

consolidation policy, we often use criteria that are the expected values of weight 

per load, excess per load, consolidation cycle length, delay per order, or number 

of orders per load to measure the performance of that policy.  

The expected weight per load can help us determine the vehicle utilization 

rate for private carrier, and can be used to estimate the transportation cost by 

common carrier. In the case of a quantity policy, the mean weight of each load is 

approximately the target load; for a hybrid policy, a load weighing less than the 

target load can be dispatched if the allowed waiting time for consolidation has run 

out first. As for the general policy, the weight of each load depends on the elapsed 

time; but for a time policy, not much can be said about the expected weight per 

load.  

As observed previously, when a dispatch is triggered by a target load, the 

actual load does not usually weigh exactly that much. In fact the actual load is 

equal to the effective target load (the value of f(j) at the moment of dispatch) plus 

some excess. For example, suppose the accumulated weight at the end of period  

t – 1 was 100 cwt and in period t, an order of 60 cwt had arrived. Given that f(t) = 

150, a consolidated load weighing 160 cwt would be dispatched at the end of 
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period t, and there would be an excess of 10 cwt. We will call this excess the 

“excess over target load”. (In some other shipment consolidation literature, for 

example, Bookbinder and Higginson (2002) and Çetinkaya and Bookbinder 

(2003), this excess is referred to as the “overshoot” of a policy.) Ideally, the 

excess over target load should be close to zero; however, that is often not the case, 

since the excess is sensitive to the weight-arrival process, especially if the order 

weight distribution has large variance. 

There exists another type of excess for a load, which we will call the “excess 

over vehicle capacity”. This measures the amount by which a load exceeds the 

capacity of its transportation medium. It is more crucial for the private carrier 

since going over the capacity would require the dispatch of another vehicle which 

will incur a sizeable fixed charge. In the common carriage case, this becomes less 

important since there usually is no fixed dispatch cost. The two types of excesses 

we mentioned are recorded over the long run, so again we are interested in finding 

their expected values. 

Let us consider one round of weight accumulation plus dispatch as a cycle in 

the shipment consolidation process. This cycle keeps repeating itself as long as 

the weight-arrival process and shipment consolidation policy remain the same. 

Breaking down the shipment consolidation process into many identical 

consolidation cycles, we would then be able to use renewal-reward theory to 
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analyze it. In order to do so, we need to find the expected cycle length, which is 

equivalent to the average time between consecutive dispatches.  

By its nature, shipment consolidation will cause delays to order deliveries. 

From the customer service perspective, we want to find out whether this will 

result in an unacceptable service level. Some consolidation policies like the time 

policy and hybrid policy have an inherent advantage in terms of preventing order 

delays over the others. However, those delays also depend on the weight-arrival 

process. Therefore, for each consolidation cycle in the long run, we would like to 

estimate the expected delay per order, which is equal to the average time between 

an order’s arrival and its eventual dispatch. 

Another interesting measure is the expected number of orders per load in the 

long run. This value is particularly useful for the shipper if there is extra handling 

or processing cost attributed to each order. For instance, in the furniture delivery 

example in Chapter One, moving furniture into the homes of customers requires 

time and labor, so the number of orders per load affects the delivery cost for that 

load. Combined with the weight of the load and the consolidation cycle length, 

this value can also give us some insights about the weight-arrival process.  

So far all we have discussed are examples of non-financial performance 

measures, and they are independent of the type of carrier. Although each shipment 

consolidation policy can be employed by either a private or common carrier, the 

type of carrier has no effect on the weight-arrival process and how the policy is 
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carried out. However, when it comes to financial performance measures, there is a 

big distinction between private carriage and common carriage.    

One of the biggest motivations for shipment consolidation lies in its potential 

to reduce total logistics cost (transportation plus inventory holding cost); hence 

we choose cost as our main financial performance measure. Due to the different 

cost structures of the two types of carrier, we have two different cost functions. 

Because of the differences in expected cycle length and expected weight per load 

with respect to different policies, we cannot simply compare their total costs per 

load. Instead, we will use a standardized measure of expected long-run cost per 

unit time, denoted as C(f)k, for each combination of carrier type k and policy f. 

Applying renewal-reward theory by treating each consolidation cycle as a renewal 

interval, we can obtain C(f)k as 

( ) [ ] [ ]
[ ] .

Length  Cycle 
 Cycleper Cost  HoldingInventory   Cycleper Cost tion Transporta 

E
EE

fC k

+
=    (3.2) 

Similar cost functions have been used by Çetinkaya and Bookbinder (2003) and 

Mütlü, Çetinkaya and Bookbinder (2010). We will analyze this cost function in 

greater detail in Chapter Six. A summary of all the performance measures is 

shown in List 3.1. 
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List 3.1:   Summary of Performance Measures 

1. Expected long-run cost per unit time 

2. Expected weight per load 

3. Excess weight beyond target load 

4. Excess weight beyond vehicle capacity 

5. Expected consolidation cycle length 

6. Expected delay per order 

7. Expected number of orders per load 
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CHAPTER FOUR 

A DISCRETE TIME MARKOV CHAIN FOR THE MODEL 

 

For the model defined in Chapter 3, we will now construct a discrete time 

Markov chain and its transition probability matrix for the shipment consolidation 

process. Those will allow us to find the steady state distribution of the process and 

calculate other long-run statistics. 

 

4.1 The Markov Chain of Interest 

We begin constructing the Markov chain by defining two system variables: 

• Let W(t) be the accumulated weight of all outstanding orders at the 

beginning of period t (orders arriving during period t are not included).  

• Let J(t) be the time elapsed since the last dispatch if that is less than or 

equal to jq; otherwise, let J(t) = jq + 1. 

Then we can represent the status of the system at the beginning of period t by 

( J(t), W(t), Ia(t) ), where Ia(t) is the current state of the underlying Markov chain 

for the BMAP weight-arrival process. At the start of each new consolidation cycle, 

J(t) = 1 and W(t) = 0. This implies that there was a shipment dispatched at the end 

of the previous period. Also note that at the beginning of each period, the total 

weight includes only those orders accumulated in previous periods.   
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Recall that if f(jq) = 0, then all outstanding orders must be shipped when the 

elapsed time has reached jq. In this case, the elapsed time cannot increment further 

but instead must be reset to one, so J(t) can never reach jq+1. However, for 

technical reasons (see Theorem 4.1), if f(jq) = 0, we can still have a system state 

as ( J(t) = jq+1, W(t) = 0, Ia(t) ).  

The stochastic process { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } has state space: 







+≤=≤×−−×

=××

.1)(2for    },...,,2,1{}}1)1(,0max{...,,2,1,0{}{
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qjjtJmjfj

tJm
 

This can be understood by noting that to begin each consolidation cycle, the 

system state must be initialized as ( J(t) = 1, W(t) = 0, Ia(t) ); while in any other 

period � of that cycle, the accumulated weight must be non-negative and smaller 

than the target load of the previous period. Let us call J(t) the “level” variable and 

( W(t), Ia(t) ) the “phase” variable; we can then refer to the set of phases with J(t) 

= j as “level j”.  

Now we need to prove that { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } is indeed a 

Markov chain. This is readily seen because all system variables satisfy the 

Markov property, which requires the future states of the system to be independent 

of the past. In other words, future states depend solely on current states and future 

events. First we see that { Ia(t), t = 0, 1, 2, … } is a Markov chain, so it 

automatically satisfies this condition. Then we know that W(t) depends only on 
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the current accumulated weight and future order arrivals, and J(t) depends only on 

W(t) and Ia(t). Therefore, they all satisfy the Markov property. 

 

4.2 Transition Probability Matrix  

Now we can present the transition probability matrix for this discrete time 

Markov chain. 

 

Theorem 4.1   The process { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } is a Markov chain 

with transition probability matrix 
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where )1(1,1 fDA = , ( )1)1(2102,1 −= fDDDDA LL ;  for 12 −≤≤ qjj ,   
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for j = jq and j = jq + 1, if f(jq) > 0, the matrices 1,qj
A , 1, +qq jjA , 1,1+qj

A , and 

1,1 ++ qq jjA  are given by equation (4.2); if f(jq) = 0, then only 1,qjA  is given by 

equation (4.2), while 01, =+qq jjA , 01,1 DA
qj =+ , and 01,1 =++ qq jjA .  

Note that L,1,0, == ∑
∞

=
nDD

nj jn  . 

 

Proof   The transitions between levels j = 1, 2, …, jq can be identified based on 

the following observations:  

• The value of J(t) always increases by 1, except for possible transitions to 

level 1 when a shipment is dispatched. 

• The value of W(t) is non-decreasing, except for possible transitions to 

level 1 when a shipment is dispatched.   
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• If J(t) = j, the initial weight in period t is between 0 and f(j – 1) – 1, and 

the ending weight is between 0 and f(j) – 1.   

The transitions associated with level jq + 1 are based on the fact that for policy f(j), 

the dispatch quantity is the same for j ≥  jq.  If f(jq) = 0, a shipment must be 

dispatched once the time elapsed since the last shipment reaches jq.  Thus, there is 

no transition from level jq to level jq + 1.  The transition probabilities are obtained 

accordingly.                                                                                                                       ���� 

 

There are a few comments we can make about the structure of PTW. First, 

transitions from level j to level j + 1 are governed by the probability matrix Aj,j+1 , 

while those from level j back to level 1 are governed by Aj,1. We again divide each 

level j into sub-levels 0 through f(j) – 1, (note that f(0) = 1). These sub-levels 

represent different accumulated weights at the beginning of period j.  

Second, the matrix component Dk in Aj,j+1, where 0 ≤ k ≤ f(j)-1, can be 

interpreted as the probability matrix for the accumulated weight to increase by k 

units without triggering a dispatch in period j. In the block matrix Aj,1, the 

component ∑
∞

=
=

nj jn DD , where n = 0, 1, …,  f(j), is the probability matrix 

that the weight of the next order is greater than or equal to n units, and leading to 

a dispatch.   
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Third, in Chapter Three, we made assumptions about the shipment 

consolidation policy function stating that jq ≥ 2 and f(j) > 1 for j = 1, 2, …, jq – 1. 

This was necessary because we needed to have at least two levels in the matrix 

PTW to explicitly represent both level j = 1 (whereby the cycle is reset), and level j 

= jq (at which the elapsed time reaches its threshold).  

Fourth, the formula for PTW given in Theorem 4.1 does not allow us to model 

the time policy directly. This is because that policy has an infinitely large target 

load before the elapsed time threshold is reached, resulting in infinitely many sub-

levels for levels 1 through jq – 1. As a result, we had to use a “pseudo-time” 

policy to approximate the time policy, where a sufficiently large upper bound Q 

for the accumulated weight will restrict the size of matrix PTW.    

Fifth, that formula for PTW of Theorem 4.1 is sufficient to model the other 

classes of policies described in Section 3.3. However, for quantity policies, we 

can simplify the structures of PTW to improve computational efficiency. We will 

discuss this in more detail in Chapter Five. 

 

4.3 Steady State Distribution 

Denote by row vector θθθθTW the steady state distribution of the Markov chain 

{ ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … }. Then according to the properties of discrete 

time Markov chains, θθθθTW is the unique solution of the linear system θθθθTWPTW = θθθθTW 

and θθθθTWe = 1. For the transition probability matrix PTW defined by Theorem 4.1, 
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the following algorithm can efficiently compute its steady state distribution θθθθTW, if 

it exists. 

 

Algorithm I 

I.1)  Compute the matrices 
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I.2)  Solve the linear system θθθθ1P1 = θθθθ1 and ( )eθ ∑
+

=

1

11
qj

j jR  = 1 for θθθθ1. 

I.3)  Calculate θθθθj = θθθθ1Rj , for j = 1, 2, …, jq + 1. 

 

Note that, due to the special structure within the matrix 1,1 ++ qq jjA , the 

inversion of 1,1 ++−
qq jjAI  can be done efficiently even if )( qjfm ⋅  is large. 

The validity of Algorithm I is guaranteed by the finiteness of the number of states 

and the fact that states in level 1 can be reached from all other states. Utilization 

of the R matrix to obtain the steady state distribution is a classic approach in 

matrix-analytic methods; it follows the same idea as that for QBD in Section 2.4. 
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Having found a valid algorithm to determine θθθθTW, we now need to show that θθθθTW 

does exist and is indeed the steady state distribution of the Markov chain.  

 

Theorem 4.2   The steady state distribution of the Markov chain { ( J(t), W(t), 

Ia(t) ), t = 0, 1, 2, … } exists and is given by θθθθTW.  

 

Proof   First, it is easy to verify that θθθθTW is a solution to the linear system θθθθTWPTW 

= θθθθTW and θθθθTWe = 1.  We check the first equation by substituting the formula from 

Algorithm I into the left-hand side then expand it to derive the right-hand side. We 

do not need to check the second equation because it is used in the Algorithm I to 

obtain θθθθTW.  

Since the underlying Markov chain { Ia(t), t = 0, 1, 2, … } is irreducible and 

the process can reach any level j and weight w within the state space, the Markov 

chain { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } has a single closed set that is recurrent. 

Consequently, limiting probabilities exist and are unique. This then implies that 

the solution to the linear system is unique. Thus, θθθθTW is the steady state 

distribution. This completes the proof.                                                                    ���� 

 

Let us decompose θθθθTW as follows: θθθθTW = ( θθθθ1, θθθθ2, …, 1, +qq jj θθ  ), and then θθθθj = 

( θθθθj,0, θθθθj,1, …, θθθθj, max{0, f (j – 1) – 2}, θθθθj, max{0, f (j – 1) – 1} ), for j = 2, 3, …, jq + 1. Note that 



58 
 

all vectors { θθθθ1, θθθθj,w, w=0,1,…, max{0, f(j – 1) – 1 }, for j = 2, 3, …, jq+1 } are 

row vectors of size m. As an immediate consequence of Theorem 4.2, we see that  

                           ∑ ∑
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1

}1)1(,0max{
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j
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w wja θθ ,  

which can be used for checking the accuracy in computation.  

                                                                                                                                                                                                        

4.4 Long-Run Accumulated Weight and Excess Weight Distributions 

A number of steady state performance measures can be found directly or 

indirectly from θθθθTW. First let us denote by Ow the amount of weight over a 

threshold function g(j) at a dispatch epoch.  If we let g(·) = f(·), then Ow represents 

the long-run excess over target load defined in Section 3.4; if we let g(j) = Qo for 

all j, where Qo is the truck capacity, then Ow represents the long-run excess over 

vehicle capacity.  

Next we denote by W the accumulated weight at the beginning of an arbitrary 

period when the system is in steady state. Since W is also equivalent to the 

inventory level for an arbitrary period in the steady state, if we can find the 

distribution of W, we can then directly calculate the expected inventory holding 

cost per unit time in steady state.  

Similarly, let Wc be the accumulated weight of an arbitrary shipment (i.e., the 

total weight accumulated during an arbitrary cycle). This can be used to find the 

mean weight per shipment and the mean weight shipped per unit time. In addition, 
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we can denote by PS the probability that a shipment takes place in an arbitrary 

period in the long run. The distributions of Ow, W, Wc and the probability PS can 

be obtained from θθθθTW in a rather straightforward manner.   

 

Corollary 4.3   For the shipment consolidation model defined in Chapter 3, we 

have 
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The means E[W], E[Wc], and E[Ow] can be obtained from the distributions 

accordingly. 
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Proof  Since W corresponds to the system state variable W(t) in the Markov chain, 

part (i) is obtained by summing the steady state distribution over the two other 

system state variables J(t) and Ia(t) for every value of W(t).  For PS, we have  
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                      (4.4) 

This equation can be interpreted as follows. Suppose the system is currently 

in state ( J(t) = j, W(t) = w, Ia(t) ), which has the steady state probabilities θθθθj,w . 

The arrival of an order with weight greater than max{ f(j) – w, 0 } will lead to a 

dispatch in this period, which occurs with probability }0,)(max{ wjfD − . By 

definition of conditional probability, we can multiply the two sets of probabilities 

and sum them over all system states to obtain PS, which incidentally equals the 

probability of the system returning to level 1.  

Parts (iii) through (v) can be found directly from equation (4.4). Conditioning 

on the event that a shipment takes place, part (iii) is the steady state probability 

for the shipment to have some specific weight i. Parts (iv) and (v) measure the 

excess weight over the threshold function g(j). If g(j) is set to Qo , the excess is 

measured against the vehicle capacity, but if g (j) is equal to the function of the 
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dispatch policy, f(j), excess over target load is measured. Part (iv) is the 

probability for the shipment to have an excess of weight i; while part (v) is the 

probability for any size of excess to occur. Note that part (v) is equal to the 

summation of part (iv) over all values of i.                                                             ���� 

 

Remark 4.1:  By definition, immediately after a shipment takes place, the clock 

for a new consolidation cycle is set to 1 ( i.e., J(t) = 1).  Thus, the probability PS 

that a shipment takes place is equal to the probability that the elapsed time since 

the last shipment is one (i.e., θθθθ1e).  This gives an intuitive interpretation to part (ii) 

of Corollary 4.3.   

 

4.5 Expected Cycle Length and Order Delays   

Next, we construct an absorbing Markov chain to investigate the length of a 

consolidation cycle Lc and the waiting time Lw of an arbitrary order. Lc is of 

particular interest because it is needed to compute the expected long-run cost per 

unit time. Lw can be used to determine the customer service level (i.e. average 

order delay) for each consolidation policy. Define  
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(4.5) 

and 01))(0,,0,( ccc TIIP T−−= L .   

It is readily seen that PTW = Tc + ( 0
cT , 0,…,0 ). Let us create an artificial 

absorbing level 1’ and treat levels 1 through jq + 1 as transient levels. We can 

rewrite PTW as  

                                     







====

1

0

0

Tcc
TW

T
P .  

A consolidation cycle always starts from level 1, and completion of a cycle is 

equivalent to absorption into level 1’. Therefore, the probability for any 

consolidation cycle to start from level 1 and get absorbed into level 1’ upon 

completion is given by 01))(0,,0,( ccc TIIP T−−= L . 

When the system returns to level 1, the state of the underlying Markov chain 

might have changed. The matrix Pc is a stochastic matrix that governs the 

transitions of that underlying chain { Ia (t), t = 0, 1, 2, … } at the start of any 

consolidation cycle. In other words, it is the embedded Markov chain for the state 
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of the underlying Markov chain at the beginnings of consolidation cycles. Each 

transition in Pc coincides with the start of a new consolidation cycle and 

determines the state of the underlying chain at that moment.  

Denote by ηηηηc the steady state distribution associated with Pc. Then ηηηηc is the 

unique solution of the linear system ηηηηc Pc = ηηηηc and ηηηηce = 1.   

 

Theorem 4.4   The distribution ηηηηc is given by ηηηηc = θθθθ1 / (θθθθ1e).  In steady state, the 

distribution of the length of a consolidation cycle Lc has a discrete PH-distribution 

with matrix representation ( ( ηηηηc, 0, …, 0 ), Tc ).  The distribution of Lw + 1 also 

has a discrete PH-distribution with matrix representation ( θθθθTW, Tc ). In addition, 

we have 

    
.1e)(ee][

);e/(1][

1
1,111

1

1

−−−−−−−−++++++++====

====

−−−−
++++++++++++++++

====
∑∑∑∑ qqqq

q

jjjjq

j

j
jw

c

AIjjLE

LE

θθθ

θ

        (4.6) 

Proof   Due to the special structure within the matrix Tc, the first row of the 

inverse of I – Tc can be found explicitly as ( R1, R2, …, 1+qj
R  ), given by equation 

(4.3). Immediately, we obtain ∑
+

=
=

1

1 1,
qj

j jjc ARP . The vector ηηηηc can be 

interpreted as the steady state distribution of the underlying Markov chain of the 

arrival process at dispatch epochs (or at the beginning of a consolidation cycle), 
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which is the unique solution to the linear system ( ) c

j

j jjc
q AR ηηηηηηηη =∑
+

=

1

1 1,  

and ηηηηce = 1. 

Existence of the steady state distribution is again guaranteed by the fact that 

Pc has a single closed set of states.  From Algorithm I, it is easy to see that ηηηηc =   

θθθθ1 / (θθθθ1e), because Pc = P1 and θθθθ1P1 = θθθθ1. The initial probability distribution of 

the Markov chain { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } at the beginning of a 

consolidation cycle is given by ( ηηηηc, 0, …, 0 ), since J(t) = 1 at the beginning of 

any cycle.  Thus, the length of a consolidation cycle has a PH-distribution.   

The mean cycle length is obtained by straightforward simplification of the 

expression eη 1))(0,...,0,( −− cc TI , which leads to  

     
( ) )/(1)e/()...(][ 11121

1

1
eθθeθθθeη =+++== +

+

=∑ q

q

j

j

j jcc RLE .                   

For Lw, at the beginning of a period in which an order arrives, the system can 

be in any state according to the steady state distribution θθθθTW. The sum of the delay 

of the order plus its period of arrival is equal to the absorption time for the 

absorbing Markov chain whose initial probabilities are θθθθTW. Note that the delay is 

zero if an order arrives and a shipment is dispatched in the same period. By some 

routine calculations, the mean of the PH-distribution is eθ 1)( −− cTW TI , and 

the results can be obtained.                                                                                      ���� 
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Remark 4.2   i) ( )e1/1][ θθθθ=cLE  can be explained intuitively. From 

Corollary 4.3, we know that the probability that the system is at the beginning of 

a consolidation cycle is equal to PS = θθθθ1e. Thus, if we consider dispatch as an 

event that may occur in each period with probability PS, then the time between 

consecutive dispatches has a geometric distribution and its mean is given by         

1 / (θθθθ1e).   

ii) With the expected weight per cycle E[Wc] (Corollary 4.3) and the 

expected cycle length E[Lc] (Theorem 4.4), the average weight shipped per unit 

time can be obtained as E[Wc] / E[Lc]. As indicated in Section 3.2, the weight 

arrival rate is given by λwt. Then we must have λwt = E[Wc] / E[Lc].  Such a 

relationship is useful for checking the accuracy of numerical computations.  

 

4.6 Expected Number of Orders per Load 

Finally in this section, we introduce a terminating Markovian arrival process 

(He and Neuts (1998)) to study the number of orders Nc received in a 

consolidation cycle. First, we decompose matrices Tc and T0
c defined in equation 

(4.5) as 
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By definition, we must have Aj,j+1 = Aj,j+1,0 + Aj,j+1,1, Aj,1 = Aj,1,0 + Aj,1,1, Tc = 

Tc,0 + Tc,1, and 0
1,

0
0,

0
ccc TTT += . We consider a terminating Markovian arrival 

process defined by (Tc,0, Tc,1, T0
c,0, T0

c,1), where Tc,1 and T0
c,1 correspond to 

transitions with order arrivals, and Tc,0 and T0
c,0 correspond to transitions without 

order arrivals. This Markovian arrival process is called a terminating process 

since we count only the number of order arrivals before or at the time the process 

enters level one.   

 

Theorem 4.5   Given an initial probability distribution ( θθθθ1 / (θθθθ1e), 0, …, 0 ), the 

number of orders that occur in a consolidation cycle Nw equals the total number of 

arrivals in the terminating Markovian arrival process (Tc,0, Tc,1, T0
c,0, T0

c,1).  

Consequently, in steady state, we have 
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        (4.8) 

The mean number of orders per cycle is given by  
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Proof   The terminating process (Tc,0, Tc,1, T0
c,0, T0

c,1) is a special discrete version 

of the terminating Markovian arrival process defined in He and Neuts (1998) (See 

also Latouche et al. (2003)).  The distribution of Nc is obtained routinely. First, by 

using a renewal argument, the moment generating function of Nc can be expressed 

as  

    
( ) .10,e)(0...,,0,

e
][ 0

1,
0

0,
1

1,0,
1

1 <<+−−







= − zzzTTIzE cccc

Nc TT
θ
θ

     (4.10) 

It is straightforward to obtain equation (4.8) from equation (4.10).  The latter 

equation leads to equation (4.9) by noticing (again) that the first row of the matrix 

( ) 11
1,0, )( −− −=−− ccc TITTI  is (R1, R2, …, 1+qj

R ).                                     ���� 

 

 

Remark 4.3   i) Equation (4.9) can be interpreted intuitively. The sum of the 

numerators in that equation is the probability that an order arrives in an arbitrary 

time period, which is also the expected number of order arrivals in that period.  

Multiplying that sum by the mean cycle length yields the total number of order 

arrivals in an arbitrary cycle.  
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ii) By Theorems 4.4 and 4.5, the number of order arrivals per unit time is 

given by E[Nc] / E[Lc].  Then we must have λav = E[Nc] / E[Lc], again useful for 

checking computational accuracy.   
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CHAPTER FIVE 

MODEL MODIFICATIONS FOR SPECIAL CASES OF INTEREST 

 

The Markov chain, algorithm and theorems in Chapter Four are designed for 

general problem instances. They are applicable in most cases but may be 

inefficient for some. In this chapter, we will identify particular special cases and 

demonstrate how to customize the model to boost its efficiency and accuracy.  

 

5.1 A Simplified Algorithm for Quantity Policy Models 

For a model with a quantity policy, f(j) = Q for all j.  Let us ignore the 

assumption we made earlier that jq ≥ 2; instead, we set jq = 1. Then the Markov 

chain { ( J(t), W(t), Ia(t) ), t = 0, 1, 2, … } can be reduced to having two levels: J(t) 

= 1 and 2, and PTW is reduced to 
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Based on this simplified transition probability matrix PTW, a more efficient 

algorithm can be used to determine its steady state distribution θθθθTW = (θθθθ1,0, θθθθ2,0, 

θθθθ2,1, …, θθθθ2,Q–1). 

 

Algorithm I(Q) 

I(Q).1)  Compute the matrices 

 

.
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(5.2) 

I(Q).2)  Solve linear system θθθθ1,0P1 = θθθθ1,0 and ( )eθ ∑
−

=
+

1

00,1

Q

n wHI  = 1 for θθθθ1,0. 

I(Q).3)  Obtain θθθθ2,w = θθθθ1,0Hw, for w = 0, 2, …, Q-1. 

 

When we use Algorithm I for a quantity policy, the calculation of matrices of 

size Q·m is required. In comparison, Algorithm I(Q) deals only with matrices of 

size m, which is independent of the consolidation threshold Q. This implies that, if 

the algorithms are used to search for the optimal consolidation weight Q* (which 

minimizes the expected long-run cost per unit time C(f)k for carrier type k), 

Algorithm I(Q) has computational advantages.   
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Corollary 5.1   For a quantity policy system, we have 

(i) P{ W  = 0 } = θθθθ1,0 ( I+H0 ) e = ( θθθθ1,0+θθθθ2,0 ) e;   

P{ W = w } = θθθθ1,0 Hw e = θθθθ2,w e, w = 1, 2, …, Q – 1; and ∑
−

=

=
1

1
0,1][
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(vi) eθ 0,1/1][ =cLE  

 

Remark 5.1   The proof of Corollary 5.1 is similar to that of Corollary 4.3, hence 

details are omitted here. It is easy to see that the excess over vehicle capacity is 
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equal to },0max{ ocw QWO −=  for the quantity policy. If we replace Qo 

with Q in (vi), then we get the excess over target load. We then have 

][][ wc OEQWE +=  if QQ o = , a relationship that can be used for  an 

accuracy check in the computation.  

 

5.2 A Revised Model for the Quantity Policy and PH-Weight Case 

In this case, let us consider a quantity policy model f(j) = Q for all j ≥ 1. The 

weight-arrival process is given by ( D0, ββββSn-1(I–S)eD1, n = 1, 2, … ), like that 

defined in Examples 3.3 and 3.4. We will use an alternative approach to analyze 

this case. By taking advantage of the partial memoryless property of the PH-

distributions, a new discrete time Markov chain can be introduced for the weight 

process.   

The idea is: After every order arrival, stop the clock of the order arrival 

process and start a fictitious clock for the underlying Markov chain of the PH-

weight distribution. The fictitious clock is stopped, and the clock of the order 

arrival process resumes, when the underlying Markov chain of the PH-

distribution reaches its absorbing state.   

More specifically, let { Iw(t), t = 0, 1, 2, … } be the phase of the underlying 

Markov chain for the PH-distribution ( ββββ, S ) before absorption. Then a new 

Markov chain can be constructed as follows. 
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• If an order arrives, the underlying Markov chain { Iw(t), t = 0, 1, 2, … } is 

turned on immediately, initialized by ββββ, and the underlying Markov chain 

{ Ia(t), t = 0, 1, 2, … } is frozen. 

• If the underlying Markov chain { Iw(t), t = 0, 1, 2, … } enters its 

absorption state, it is terminated, and the underlying Markov chain { Ia(t), 

t  = 0, 1, 2, … } is unfrozen.   

Define  

)(ˆ tIa :  )()(ˆ tItI aa = , if the clock of the order arrival process is on; otherwise, 

)(ˆ tIa  is the last value of Ia(t) before Ia(t) is frozen. 

)(ˆ tIw : )()(ˆ tItI ww = , if the clock of the PH-weight distribution is on; but 

0)(ˆ =tIw , if the clock of the order arrival process is on. 

)(ˆ tW :  )()(ˆ tWtW = , if the clock of the order arrival process is on; otherwise, if 

the clock of the PH-weight distribution is on, )(ˆ tW  increases by one per 

unit time if )1(ˆ −tW <  Q – 1, and becomes 0 if 1)1(ˆ −=− QtW . 

 

Note that W(t) takes values { 0, 1, 2, …, Q – 1 }. Then the process 

)),(ˆ),(ˆ),(ˆ{( tItItW wa t =0, 1, 2, …} is a Markov chain with transition 

probability matrix PTW = D for Q = 1, and, for Q ≥ 2, 
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In each of the subsequent periods, with probabilities 0D , no order will arrive 

and the clock of the arrival process continues while the clock of the weight 

distribution remains off. On the other hand, with probabilities β⊗1D , an order 

will arrive. The accumulated weight then increases by one, the clock of the arrival 

process stops, and the clock of the PH-weight distribution will be turned on. 

Once the clock of the weight distribution is on, the accumulated weight will 

continue to grow with probabilities SI ⊗  until it reaches Q – 1, whereby it will 

stop with probabilities 0S⊗I , which means the weight of an order has been fully 

generated and the order arrival process resumes. 

When the accumulated weight reaches Q – 1, if the clock of the arrival 

process is on, the weight will remain unchanged with transition probabilities D0 

(no order arrives). Alternatively, an order will arrive with matrix probabilities D1, 

which will then trigger a dispatch and initialize a new consolidation cycle. If the 

clock of the weight distribution is on, either the accumulated weight stops 

growing with probabilities 0S⊗I , or it grows by one more unit and completes 

the consolidation cycle with probabilities )( eSI ⊗ . 

Let ππππTW be the steady state distribution of PTW, i.e., ππππTWPTW = ππππTW and ππππTWe = 

1.  We decompose ππππTW as follows: ππππTW = (ππππ0, (ππππ1,a, ππππ1,w), (ππππ2,a, ππππ2,w), …, (ππππQ–2,a, 

ππππQ–2,w), (ππππQ–1,a, ππππQ–1,w)). The steady state distribution ππππTW can be found by using 

the following algorithm.  
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Algorithm I(PH) 

I(PH).1)  Compute the matrices 
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   (5.4) 

I(PH).2)  Solve the linear system ππππ0P1 = ππππ0 and ( )e∑
−

=

1

00

Q

j jXππππ  = 1 for ππππ0. 

I(PH).3)  Determine ( ππππi,a, ππππi,w ) = ππππ0Xi, for i = 1, 2, …, Q–1. 

 

Compared to Algorithm I, Algorithm I(PH) computes matrices only of the 

size ma or mamb, where ma is the number of phases in the underlying Markov 

chain of the order arrival process, and mb is the number of phases in the 

underlying Markov chain of the PH-weight distribution. Performance measures 

can be obtained accordingly. First, similar to Theorem 4.4, the expected cycle 

length between shipments can be found as follows.   
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Theorem 5.2   The average time between two consecutive entrances to level zero 

from level Q–1 of the Markov chain )),(ˆ),(ˆ),(ˆ{( tItItW wa t = 0, 1, 2, … } is 

given by ( )e10/1 Dππππ . Consequently, the expected cycle length of consolidated 

shipments is ( ) QDLE c −+= 1/1][ 10 eπ .  

 

Proof   Following the same approach used in the proof of Theorem 4.4, the 

transition probability matrix of the embedded Markov chain at the end of each 

consolidation cycle is given by 








⊗
−= −

−

eSI
D

XDIP Q
1

1
1

02 )( . Let ηηηη0 be 

the invariant vector of P2, i.e., ηηηη0P2 = ηηηη0 and ηηηη0e = 1. Then ηηηη0 can be interpreted 

as the probability distribution of the state of the order arrival process at the 

beginning of a consolidation cycle.   

By equation (5.4), it can be shown that ηηηη0(I – D0)–1 = δππππ0, which leads to ηηηη0 

= ππππ0(I – D0) / (ππππ0(I – D0)e) and δ = 1 / (ππππ0(I – D0)e).  Similar to Theorem 4.4, the 

average time between two consecutive entrances from level Q–1 to level zero can 

be obtained as ( ))e00 (/1 DI −ππππ . Intuitively, the probability that the Markov 

chain just entered level zero is ππππ0(I – D0)e, and thus the result follows.   

Since the fictitious time between two consecutive visits to level zero from 

level Q – 1 is exactly Q – 1 (i.e., the accumulated weight increases to Q), the 
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expected cycle length is obtained as ( ) )1()(/1][ 00 −−−= QDILE c eππππ , 

which, together with (D0 + D1)e = e, leads to the theorem’s result.                        ���� 

 

Next, we show that, for this special case, explicit results can be obtained for 

the excess Ow.   

 

Theorem 5.3   Assume that the excess threshold function is g(j) = Qo ≥ Q for all j.  

The excess at a dispatch epoch has a phase-type distribution with matrix 

representation ( 110 )( +−−+ QQQ oSS ββββββββ S , S ).  In addition, we have 

eS 1110 )()(][ −+−− −+= SISSOE QQQ
w

oββββββββ , and P{Ow > 0} = 

eS 110 )( +−−+ QQQ oSS ββββββββ .  

 

Proof   Consider a Markovian arrival process with matrix presentation ( S, S0ββββ ) 

(i.e., a PH-renewal process).  If we treat Q as a time, then the excess at Q is the 

time until the next arrival of that Markovian arrival process.  The distribution of 

phases at Q is 110 )( +−−+ QQQ oSS ββββββββ S . Then the excess at Q has a discrete 

PH-distribution with matrix representation ( 110 )( +−−+ QQQ oSS ββββββββ S , S ). The 

expected excess and the probability that an excess occurs are obtained 

accordingly. This completes the proof.                                                                          ���� 



80 
 

 

By Theorem 5.3, the consolidated weight per cycle is equal to Q plus the 

excess Ow. That excess has a PH-distribution ( SS Q 10 )( −+ ββββββββ S , S ). The 

expected weight per cycle is then given by 

                          eββ 110 )()S(][ −− −++= SISSQWE Q
c .                    (5.5) 

To find the accumulated weight at an arbitrary time, we consider the steady 

state distribution for the process {(W(t), Ia(t)), t = 0,1,2,…} (i.e., censoring out all 

the phases associated with the underlying Markov chain {Iw(t), t = 0,1,2,…}).  

Define  

     ππππTW,a = ( φφφφ0 , φφφφ1 , φφφφ2 , …, φφφφQ–2 , φφφφQ–1 )                                                               (5.6) 

     = ( ππππ0 , ππππ1,a , ππππ2,a , …, ππππQ-2,a , ππππQ-1,a ) / ( ππππ0 + ππππ1,a + ππππ2,a + … + ππππQ–2,a + ππππQ–1,a )e.  

By definition, ππππTW,a is the steady state distribution of the accumulated weight 

W(t) at an arbitrary time. Then we obtain ∑∑∑∑
−−−−

====
φφφφ====

1

0
][

Q

i iiWE e .  In addition, we 

must have θθθθa = φφφφ0 + φφφφ1 + φφφφ2 + … + φφφφQ–2 + φφφφQ–1 , which is useful for checking 

computational accuracy.  
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5.3 Independent-Weights Model 

Consider the weight-arrival process defined in Example 3.1. The order 

weights are independent of the order arrival process. Then we have (note p0 = 0) 

100 DDD += and 1121 )...1( DpppD nn −−−−−= , n = 1, 2, ….        (5.7) 

Denote by wo the weight of an arbitrary order. First we see that equation (3.1) can 

be modified as 

                                         
[ ]

( ) .
1

eθ ∑
∞

=
=

=

n naav

oavwt

D

wE

λ

λλ
                                       (5.8) 

Consequently, construction of the transition probability matrix and all 

expressions given in Corollary 4.3 can be reduced to finite summations. The 

expressions for the average weight per cycle and average overshoot per 

occurrence can be simplified as shown in equations (5.9) and (5.10). 

Although it seems complicated, equation (5.9) can be derived from Corollary 

4.3 and explained intuitively. Conditioned on the fact that a dispatch will occur by 

the end of the period and the system is currently in level j with accumulated 

weight w, we first calculate the expected weight at the end of the period if an 

order has arrived. We then remove the cases in which the weight of the arrived 

order is not sufficient to trigger a dispatch. Lastly, we add the cases in which no 

order has arrived but a dispatch still occurred because of the lowered target load.  
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CHAPTER SIX 

EVALUATING A SHIPMENT CONSOLIDATION POLICY FOR 

PRIVATE OR COMMON CARRIAGE 

 

 Although we have established formulas to calculate several performance 

measures in Chapter Four, we have not yet discussed how to compute the cost to 

carry out a shipment consolidation policy in the long run. In this chapter, we will 

describe how to measure such cost by either the private or common carriage. In 

the end, to assist potential users of our model, we will summarize it as a set of 

procedures for evaluating a particular shipment consolidation policy.  

 

6.1 The Cost of Shipment Consolidation by Private Carriage 

As discussed in Section 3.4, cost is an important performance measure for 

any shipment consolidation policy. When that policy is employed by a private 

carrier, its cost structure is different from that of a common carrier. We wish to 

measure the expected long-run cost per unit time. Let us define this cost in its 

basic form for the private carriage case as C(f)p . From equation (3.2), we know 

that 

( ) [ ] [ ]
[ ]Length  Cycle 

 Cycleper Cost  HoldingInventory   Cycleper Cost tion Transporta 
E

EE
fC p

+
= . 



84 
 

First let us take a look at the transportation cost per cycle. We can break it 

down into three categories: weight-based costs, order-based costs and dispatch 

cost. Some typical examples that are weight-based include the costs of packing, 

staging, loading and unloading products. Together, they are commonly referred to 

as “shipment-handling cost”. These are usually variable costs proportional to the 

weight of the shipment, so we can assign to them an overall rate of KW per unit 

weight. Since every order received will eventually be handled, the choice of 

shipment consolidation policy and the expected cycle length will be unaffected by 

this cost. In the long run, the average weight-based costs per unit time are equal to 

KWλwt, where λwt is the long-run weight arrival rate defined in Section 3.2. 

Order-based costs account for the costs of receiving, processing and 

managing orders. They usually have standard rates associated with each order; 

together they can be denoted as KO. Similar to the weight-based costs, they do not 

affect the choice of consolidation policy, nor the expected cycle length because 

every order received will require processing. The average order-related cost per 

unit time can be obtained as KOλav, where λav is the long-run order arrival rate of 

the MAP for the weight-arrival process. (recall that λav was defined in Section 3.2.) 

From our introduction of private carriage in Section 1.2, we know that there 

is a fixed charge for dispatching a shipment, which can be denoted as KD. This 

cost will only be charged when a consolidated load is shipped. Since the expected 



85 
 

cycle length, denoted by E[Lc], varies depending on the consolidation policy, our 

model will calculate the long-run average dispatch cost per unit time as KD / E[Lc].  

There is no need to actually compute the expected inventory holding cost per 

cycle. Instead, as mentioned in Section 4.4, suppose we can find E[W] . That is, 

the expected inventory level for any arbitrary period when the system is in steady 

state. Its product with the holding cost rate h will thus yield the expected 

inventory holding cost per unit time as hE[W].  

Therefore, we can rewrite equation (3.2) for the private carriage case as 

                    [ ] .
][

)( avOwtW
c

D
p KK

LE
K

WhEfC λλ +++=                   (6.1) 

Note that KD, KW, KO and h are all given as cost parameters of the private 

carriage shipment consolidation problem. Once we have found a BMAP 

representation of the weight-arrival process, we can immediately obtain λav and 

λwt by equation (3.1). For general model instances, we can use Corollary 4.3 to 

obtain E[W] and follow Theorem 4.4 to get E[Lc]; for those special cases 

mentioned in Chapter Five, we can calculate E[W] and E[Lc] by using their 

modified formulas presented in that chapter. 
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6.2 The Cost of Shipment Consolidation by Common Carriage 

In Section 1.2, we briefly introduced the cost structure of a common carrier. 

Recall that a common carrier charges transportation cost according to the weight 

of each shipment. The standard (non-volume) freight rate cN is usually employed 

to calculate the transportation cost, but when the weight of a shipment exceeds 

MWT, the minimum weight qualifying for a volume discount, the common carrier 

will offer that discount by lowering its freight rate to cV. The transportation cost 

function c(w) for common carrier, where w is the weight of the shipment, is given 

by equation (1.1) as 

                            ( ) .
,

,





≥

<
=

MWTwwc

MWTwwc
wc

V

N
                         

We also introduced the notion of the “bumping clause”, which refers to the 

action taken by the shipper to over-declare the weight of their shipment as MWT , 

so that firm can qualify for the volume discount. This is only worthwhile when 

cNw > cVMWT. Therefore, if the bumping clause is allowed, the transportation 

cost function c(·) should be updated by an effective transportation cost function 

( )wc~ , defined by Çetinkaya and Bookbinder (2003) as 

                ( )








>

≤<

≤

=

,,

,,

,,
~

MWTwwc

MWTwWBTMWTc

WBTwwc

wc

V

V

N

                      (6.2) 
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where WBT = cVMWT / cN is the weight at which the bumping clause becomes 

effective. 

 

It is worth pointing out that unlike the private carriage case, when we 

calculate transportation cost for common carrier, we do not consider the fixed 

costs associated with each order or shipment. However, those still often exist in 

practice, but they are usually incorporated into the freight charges by the common 

carrier.   

Recall that in Section 4.4 we defined Wc as the accumulated weight of an 

arbitrary shipment in steady state, and in Corollary 4.3 we provided a formula for 

the probability density function of Wc. If we substitute the random variable Wc for 

w in equation (6.2), we can calculate the expected common carriage transportation 

cost per shipment using equation (6.3). 

Note that for the independent-weight cases that have an explicit formula for 

E[wo], we can use the idea from equation (5.9) to eliminate the infinite summation 

in equation (6.3) and rewrite it as equation (6.4). 
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Even if there is no explicit formula for E[wo] or the order weights are 

correlated with the arrival process, in most of these cases, Wc will be finite 

because individual order weights are finite. This is particularly true in practice 

because by its nature, shipment consolidation is more effective when the weights 

of individual orders are relatively small. Otherwise, it makes more sense to ship 

large orders individually. Therefore, computation of equation (6.3) is feasible in 

most situations. 

For common carriage, inventory holding cost can be calculated in the same 

way as in the private carriage case. Together with the transportation cost, we can 

write the common carriage cost function as 

                                  [ ] ( )[ ]
][

~
)(

c

c
c LE

WcE
WhEfC += .                                        (6.5) 

To compute equation (6.5), freight rates cN and cV, holding cost rate h and 

MWT are given as parameters, which allow us to obtain WBT. We then use 

equations (6.3) or (6.4) to evaluate ( )[ ]cWcE ~  and Corollary 4.3 to calculate 

E[W] and P{ Wc = i }, for i = 1, 2, … . 
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6.3 Procedures to Evaluate a Shipment Consolidation Policy 

Now we are ready to summarize our model as a set of procedures to evaluate 

the performance of a shipment consolidation policy by either private carriage or 

common carriage.  

 

Procedure SCP (Shipment Consolidation Policy) 

1) Define (D0, Dn, n = 1,2,…); compute θa, λwt and λav. [Section 3.2] 

2) Define a consolidation policy function f(·). [Section 3.3] 

3) Model the shipment consolidation process by PTW. [Sections 4.1 - 4.2] 

4) Compute the steady state distribution θθθθTW. [Section 4.3] 

5) Obtain the non-financial performance measures: E[W], E[Wc], E[Ow], E[Lc], 

E[Lw] and E[Nc]. [Sections 4.4 - 4.6] 

6) For private carrier, specify cost parameters KD, KW, KO and h, then calculate 

C(f)p; for common carrier, specify cN, cV, MWT and h, then compute C(f)c. 

[Sections 6.1 - 6.2] 

 

The square bracket at the end of each step indicates the earlier sections in 

which more details about the step can be found. A detailed summary of the 

notation that appears in Procedure SCP can be found in Table 6.1.  
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Table 6.1:   Summary of Notation 

Notations: Interpretations: Formulas: 

(D0, Dn, n=1,2,…) BMAP weight-arrival process N/A 

θa Steady state distribution for the BMAP N/A 

λwt Long-run weight arrival rate Equation (3.1) 

λav Long-run order arrival rate Equation (3.1) 

PTW 
Transition probability matrix for the shipment 
consolidation process Markov chain Theorem 4.1 

θθθθTW Stationary distribution for PTW Algorithm I 

E[W] Expected inventory level per period Corollary 4.3 

E[Wc]  Expected weight per shipment Corollary 4.3 

E[Ow] Expected excess per shipment Corollary 4.3 

E[Lc] Expected cycle length Theorem 4.4 

E[Lw] Expected order delay Theorem 4.4 

E[Nc] Expected number of orders per shipment Theorem 4.5 

KD Private carrier dispatch cost N/A 

KW Private carriage weight related transportation rate N/A 

KO  Private carriage order related transportation rate N/A 

h Holding cost rate N/A 

cN Common carriage non-volume freight rate N/A 

cV  Common carriage volume freight rate N/A 

MWT Minimum weight qualifying for volume discount N/A 

C(f)p Private carriage long-run average cost per unit time Equation (6.1) 

C(f)c Common carriage long-run average cost per unit time Equation (6.5) 
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Combined with results of the previous chapters, Procedure SCP will provide 

detailed instructions on how to model the shipment consolidation process under a 

particular policy, the way to obtain the steady state statistics, and how to compute 

the various performance measures. Be aware that this set of procedures is 

designed for general model instances. For the special cases shown in Chapter 

Five, substitute the modified formulas, theorems and algorithms accordingly. 
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CHAPTER SEVEN 

NUMERICAL ANALYSIS 

 

After illustrating the theoretical components of our model in the last few 

chapters, we are now ready to put it through numerical tests. We will run it 

against a variety of test cases involving different weight-arrival processes and 

consolidation policies. We will also attempt to search for the optimal 

consolidation policy parameters for each weight-arrival process. Through these 

analyses, we hope to find out more about which class of policies is more suitable 

for a particular weight-arrival process. 

 

7.1 Examples of Weight-Arrival processes and Cost Parameters 

We begin our numerical analysis by specifying five different examples of 

weight-arrival processes. We will use them to evaluate each type of consolidation 

policy. Every example represents a typical convolution between the order arrival 

process and the order weight distribution, and it has certain distinctive features. 

Together, they can cover a fairly broad range of weight-arrival processes.  

 

Example 7.1   Our first example is a typical BMAP weight-arrival process. Its 

matrix representation is 
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Example 7.2   This example is an extension of Example 3.1. Orders arrive 

according to a MAP with a matrix representation 

 






















=























=

00003.0

4.00000

05.0000

007.000

0008.00

,

1.00006.0

5.01.0000

04.01.000

002.01.00

0002.00

10 DD .   (7.2) 

The order weights have a normalized Riemann Zeta distribution (Alexander, 

Baclawski and Rota, 1993) with probability density function { pn = 1/(ζ2.5n2.5), 

n=1, 2, … }, where ζ2.5 = 1.3415 is the normalization factor. The weight 

distribution is independent of the order arrival process. In this case, the weight-

arrival process can also be modeled as a BMAP with matrix representation ( D0, 

pnD1, n = 1, 2, … ). Note that the standard deviation of the order weights is 

significantly larger than other cases.  

 

Example 7.3   This example extends Example 3.2, in which the underlying 

Markov chain had only one phase. Here the arrival process is modeled as D0 = 0.5 

and D1 = 0.5, i.e. in each period an order can arrive with probability 0.5. The 

distribution of order weights now follows an empirical distribution given by 

{ p1=0.45, p2=0.3, p3=0.1, p4=0.1, p5=0.05 and 0 otherwise }, that is independent 

of the order arrival process. Therefore, the weight-arrival process now has a 
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compound geometric distribution and can be represented by a BMAP as ( D0 = 

0.5 ,  p1D1 = 0.225 ,  p2D1 = 0.15 ,  p3D1 = 0.05 ,  p4D1 = 0.05 , and  p5D1 = 

0.025 ).  

 

Example 7.4   This example corresponds to Example 3.3 and the order arrival 

process is the same MAP given by equation (7.2). The order weights have a PH-

distribution with matrix representation  

                              ( ) 







==

3.02.0

3.015.0
,9.01.0 Sββββ .                        (7.3) 

It is well-known that PH-distributions are light tailed. The distribution of order 

weights can be expressed as { ( ) L,2,1,1 =−= − nSISp n
n eβ }, which 

can then be used to form a BMAP ( D0 , pnD1 , n = 1, 2, … ). 

 

Example 7.5   This example corresponds to Example 3.4 in which the orders 

arrive according to a PH-renewal process. The interarrival times have a common 

PH-distribution  

                            ( ) 







==

1.035.0

5.00
,5.05.0 Tα  .                        (7.4)  

If we transform it into a MAP representation, we would have 
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     







==








==

275.0275.0

25.025.0
,

1.035.0

5.00
10 αT 0DTD  .       (7.5) 

Order weights have the same discrete PH-distribution defined in Example 7.4, 

which is denoted by { ( ) L,2,1,1 =−= − nSISp n
n eβ }. A BMAP can 

again be formed as ( D0 , pnD1 , n = 1, 2, … ). 

 

In Table 7.1, we provide a summary of the five examples we gave above. The 

table shows their respective long-run order arrival rate λav, long-run weight arrival 

rate λwt, mean order weight E[wo] and the standard deviation of order weights 

std(wo). According to equation (5.8), for the independent weight cases such as 

Examples 7.2, 7.4 and 7.5, the long-run weight arrival rate can be computed as λwt 

= λavE[wo].  

Note that we have purposely manipulated the parameters so that their long-

run weight arrival rates λwt are all close to one. Therefore, although these weight-

arrival processes may differ in order arrival frequencies and sizes, their overall 

rates in steady state are roughly the same. This allows us to establish some 

consistencies in comparing the five processes.  
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Table 7.1:   Summary of Weight-Arrival-Process Examples 

 Example  7.1 Example  7.2 Example  7.3 Example  7.4 Example  7.5 

Arrival Process 
BMAP 

MAP 
Compound 

Geometric 

MAP PH 

Weight 

Distribution 
Riemann 

Zeta 
PH PH 

λλλλav 0.3354 0.5347 0.5 0.5347 0.5273 

λλλλwt 1.0354 1.0333 1 1.0444 1.0299 

E[wo] N/A 1.9325 2 1.9533 1.9533 

std(wo) N/A 12.0100 1.1832 1.3458 1.3458 

 

 

Also note that for Examples 7.2 to 7.5, because the order weight distribution 

is independent of the order arrival process, we can use the model modifications 

described in Section 5.3. For Examples 7.4 and 7.5, since the order weights follow 

a PH-distribution, we can take advantage of the revised model from Section 5.2 if 

a quantity policy is applied in these cases.  

Now we still need to define a set of private carriage cost parameters to be 

used for all test cases. Suppose KD = $10, h = $0.1, KW = $0 and KO = $0. We set 

the last two costs to be zero because they have no effect on the consolidation 

policies.  
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We can define another set of cost parameters for common carriage: Let cN = 

$5, cV = $4 (equivalent to 20% quantity discount), MWT = 15 cwt, and hence WBT 

= 12 cwt. In addition, we will set Qo = 20 as the vehicle capacity constraint. In our 

subsequent numerical analysis, we shall interpret Ow as the excess over vehicle 

capacity. 

Keep in mind that these weight-arrival processes and the cost parameters are 

conjured merely for the purpose of numerical analysis, so some of them may not 

be the most realistic representations of practical cases. 

 

7.2 Evaluating Individual Policies 

Now we will choose a particular instance for each consolidation policy and 

evaluate them individually for all five weight-arrival processes. 

 

Quantity Policy:   Suppose we have a particular quantity policy defined as  

                                      ( ) .
2,13

1,13





=≥=

==
=

qjjQ

jQ
jf     

We can use the simplified algorithm for quantity policy models (Section 5.1) for 

Examples 7.1 to 7.3, and we can use the modified model (Section 5.2) for 

Examples 7.4 and 7.5. The results for performance measure are given in Table 7.2. 
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Table 7.2:   Performance Measure Results for Quantity Policy 

 Example  7.1 Example  7.2 Example  7.3 Example  7.4 Example  7.5 

C(f)p 1.2415 1.1789 1.2836 1.3086 1.2982 

C(f)c 5.7071 5.3554 5.5616 5.6383 5.5678 

E[W] 5.2999 5.5479 5.6157 5.5944 5.5944 

E[Wc] 14.5517 16.5574 13.8500 13.9403 13.9403 

P{Ow>0} 0 0.0849 0 0.0029 0.0029 

E[Ow] 0 2.1784 0 0.0056 0.0056 

E[Lc] 14.0540 16.0239 13.8500 13.3476 13.5355 

E[Lw] 7.5912 8.6534 7.2504 6.9404 7.1012 

E[Nc] 4.7139 8.5679 6.9250 7.1369 7.1369 

 

 

Pseudo-Time Policy:   Suppose a particular pseudo-time policy is defined as  

                        ( ) .
11,0

111,100







==≥

==<≤=
=

Tjj

TjjQ
jf

q

q
    

The performance measure results are given in Table 7.3.  
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Table 7.3:   Performance Measure Results for Pseudo-Time Policy 

 Example  7.1 Example  7.2 Example  7.3 Example  7.4 Example  7.5 

C(f)p 1.4268 1.3896 1.4091 1.4313 1.4240 

C(f)c 5.5381 5.1484 5.4021 5.2894 5.2126 

E[W] 5.1771 4.7914 5 5.2220 5.1495 

E[Wc] 11.3896 11.3492 11 11.4884 11.3290 

P{Ow>0} 0.0390 0.0708 0.0223 0.0354 0.0358 

E[Ow] 0.0809 5.1293 0.0446 0.2263 0.2323 

E[Lc] 11 10.9835 11 11 11 

E[Lw] 5 4.9969 5 5 5 

E[Nc] 3.6896 5.8728 5.5 5.8816 5.8000 

 

 

Hybrid Policy:   Suppose a particular hybrid policy is defined as  

                             ( ) .
14,0

141,30







==≥

==<≤=
=

Tjj

TjjQ
jf

q

q
    

The performance measure results are given in Table 7.4. 
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Table 7.4:   Performance Measure Results for Hybrid Policy 

 Example  7.1 Example  7.2 Example  7.3 Example  7.4 Example  7.5 

C(f)p 1.3867 1.2880 1.3641 1.3922 1.3828 

C(f)c 5.4749 5.0353 5.3777 4.9628 4.9062 

E[W] 6.7221 5.6125 6.4971 6.7760 6.6813 

E[Wc] 14.4913 14.2180 13.9983 14.6143 14.4112 

P{Ow>0} 0.1481 0.1198 0.0983 0.1249 0.1226 

E[Ow] 0.2988 3.3169 0.1999 1.0996 1.0986 

E[Lc] 13.9957 13.7598 13.9983 13.9930 13.9927 

E[Lw] 6.4981 6.4465 6.4993 6.4972 6.4971 

E[Nc] 4.6944 7.3573 6.9992 7.4820 7.3780 

 

 

General Policy:   Suppose a particular general policy is defined as  

                                ( ) .

16,0

1511,10

106,15

51,20










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=≥
≤≤

≤≤
≤≤

=

qjj

j

j

j

jf     

The performance measure results are given in Table 7.5. 
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Table 7.5:   Performance Measure Results for General Policy 

 Example  7.1 Example  7.2 Example  7.3 Example  7.4 Example  7.5 

C(f)p 1.3029 1.2249 1.3282 1.3519 1.3424 

C(f)c 5.6077 5.2673 5.4838 5.5444 5.4713 

E[W] 4.6227 4.3697 4.9062 4.9813 4.9426 

E[Wc] 12.3173 13.1146 11.9389 12.2324 12.1438 

P{Ow>0} 0.00005 0.0591 0.00009 0.0035 0.0035 

E[Ow] 0.00007 1.6427 0.00013 0.0068 0.0068 

E[Lc] 11.8960 12.6920 11.9389 11.7123 11.7911 

E[Lw] 5.7034 6.1970 5.6814 5.5712 5.6223 

E[Nc] 3.9901 6.7863 5.9695 6.2625 6.2171 

 

 

The correctness of the algorithm can be checked by using the following 

relationships: λwt = E[Wc] / E[Lc] (Remark 4.2) and λav = E[Nc] / E[Lc] (Remark 

4.3). When we applied the pseudo-time policy to Example 7.2, the expected cycle 

length E[Lc] is close but not equal to 11. This is mainly because the order weight 

distribution is heavy tailed, so the chances of an extremely large order to arrive 
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and force the accumulated weight to exceed its limit are significant. Thus, 

sometimes dispatch may occur before period 11. 

In Example 7.2, the probability of a shipment exceeding the vehicle capacity 

and the expected weight of such excess are significantly higher than that in the 

other examples. This is most likely due to the fact that this MAP has a higher 

standard deviation of order weights. On the other hand, Example 7.3, which has 

the smallest standard deviation of order weights, has the lowest “excess measures” 

for all policies. Therefore, our numerical results are consistent with the intuition 

that a more volatile weight-arrival process is more likely to cause vehicle capacity 

to be exceeded.  

 

7.3 Optimal Policy Parameters 

Our previous results are insufficient to find the optimal policy for each 

weight-arrival process. To obtain that, we will first try to find the optimal policy 

parameters for each class of policies, and then compare their respective costs.  

Since our current model is only capable of evaluating a single policy instance, 

more extensive research is required to reveal the optimality properties of this 

problem. For now, we will simply examine a certain range of policies and find the 

local optima. We will do so by enumerating these policies and use our model to 

compute their costs. 
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We tested all quantity policies for [ ]50,2∈Q  against the five weight-arrival 

processes; their results are plotted in Figure 7.1. We also tested pseudo-time 

policies for [ ]30,2∈T ; their results are presented in Figure 7.2. We used mesh 

plots (Figure 7.3) to show the results for the range of hybrid policies where 

[ ]30,2∈Q  and [ ]20,2∈T .  

Unfortunately, there are too many feasible general policies even for a very 

small range, thus the method of enumeration becomes very inefficient. We need 

to develop a more sophisticated search algorithm to find the optimum. As a result, 

we did not perform such a search for the general policy.  

The policies with the lowest costs are recorded in Table 7.6. The ones that 

gave the lowest cost overall are highlighted in grey. From Table 7.6, we see that 

under both private carriage and common carriage, the quantity policy 

outperformed the other two classes of policies for our five weight-arrival 

processes.    



106 
 

Table 7.6:   Summary of Lowest-Cost Policies 

  
 Example  

7.1 

Example  

7.2 

Example  

7.3 

Example  

7.4 

Example  

7.5 

Quantity 

Policies 

Private 

Carriage 

Q* 13 12 13 14 13 

C*(f)p 1.2415 1.1773 1.2836 1.3081 1.2982 

Common 

Carriage 

Q* 19 19 19 19 19 

C*(f)c 4.9689 3.6700 4.8603 3.6776 3.6286 

Pseudo-

Time 

Policies 

Private 

Carriage 

T* 14 15 14 14 14 

C*(f)p 1.3873 1.3111 1.3643 1.3931 1.3837 

Common 

Carriage 

T* 2 27 2 22 22 

C*(f)c 5.2289 4.5493 5.0500 4.4422 4.4082 

Hybrid 

Policies 

Private 

Carriage 

(Q*, T*) (13, 20) (12, 20) (13, 20) (14, 20) (14, 20) 

C*(f)p 1.2594 1.1863 1.2894 1.3126 1.3031 

Common 

Carriage 

(Q*, T*) (2, 2) (19, 20) (2, 2) (19, 20) (19, 20) 

C*(f)c 5.6910 4.5730 5.0130 4.1532 4.1331 
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Figure 7.1:   Quantity Policy Cost Functions 
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Figure 7.2:   Pseudo-Time Policy Cost Functions 
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Figure 7.3-1:   Hybrid Policy Cost Functions for Example 7.1 

 

Figure 7.3-2:   Hybrid Policy Cost Functions for Example 7.2 

 

Figure 7.3-3:   Hybrid Policy Cost Functions for Example 7.3 
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Figure 7.3-4:   Hybrid Policy Cost Functions for Example 7.4 

 

Figure 7.3-5:   Hybrid Policy Cost Functions for Example 7.5 
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In terms of common carriage, there are more noticeable differences in the 

results. For the quantity policy, there is a steep drop in cost once the target load is 

more than MWT. For a pseudo-time policy, a milder decrease in cost occurs when 

the maximum waiting time is long enough to allow sufficient accumulation of 

order weights to obtain the quantity discount. The shapes of the mesh plots for the 

hybrid policy indicate that lower cost is achieved when the target load is above 

MWT and the maximum waiting time is long enough for orders to accumulate 

until that level so that the quantity discount can be rewarded.  

After evaluating our test cases, we shifted our focus to analyze the compound 

geometric weight-arrival process. We generated many more examples of this 

process and found the costs for the optimal quantity, pseudo-time and hybrid 

policies. We also calculated the costs for a variety of manually selected general 

policies in each case. All of our test results indicate that quantity policy 

dominated over the other classes of policies. Our numerical experiments led us to 

believe that for all cases with the compound geometric weight-arrival process, the 

optimal policy is a quantity policy. More theoretical research is required to prove 

this hypothesis. 

 

Although the quantity policy appears to be the least expensive one in all of 

our previous test cases, we have not yet compared it with the optimal general 

policy. In fact, it is not uncommon to discover that a certain general policy can be 
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better that the optimal quantity policy. To show that a general policy can indeed 

out-perform the other policies, consider the following order arrival process 

       ,
1.00

1.08693.0
,

8.01.0

00307.0
10 








====






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==== DD

               

(7.6) 

Consider the private carriage case with cost parameters KD = $2 and h = $0.1. 

Suppose the order weights are independent of the order arrivals and they follow 

the same Riemann Zeta distribution as that in Example 7.2. The optimal quantity, 

pseudo-time and hybrid policies and their corresponding costs are shown in the 

table below. By a manual search, a general policy is found to be better than the 

respective optima for the other three classes of policies.   

 

 Policy C*(f)p 

General policy 
f (j) = 6, for j = 1, 2, …, 5 

f (j) = 4, for j ≥ 6. 
0.3970 

Optimal quantity policy Q* = 10 0.4139 

Optimal pseudo-time policy  T* = (9, 300) 0.4361 

Optimal hybrid policy (Q*, T*) = (12, 20) 0.4095 
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We found a few other examples in which a certain general policy 

outperforms the optima for the other three classes. Suppose the order arrival 

process is defined by the following MAP 
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10 DD  .              (7.7) 

With the same order weight distribution and cost parameters, we found that a 

general policy again has a smaller expected long-run cost per unit time than the 

best policies from the other three classes. 

 

 Policy C*(f)p 

General policy 
f (j) = 5, for j = 1, 2, …, 4 

f (j) = 4, for j ≥ 5. 
0.3265 

Optimal quantity policy Q* = 4 0.3357 

Optimal pseudo-time policy  T* = 10 0.3671 

Optimal hybrid policy (Q*, T*) = (4, 25) 0.3346 

 

Both examples demonstrated that for certain weight-arrival processes, it is 

possible to have a general policy as the optimal policy. Intuitively, this makes 

sense because if the accumulation process becomes idle prior to reaching the 
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target load, it would be better to ship out early instead of racking up the inventory 

cost. Based on these results, we intend to determine under what circumstances (in 

terms of the weight-arrival process) would the general policy be preferable.  
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CHAPTER EIGHT 

CONCLUDING REMARKS 

 

8.1 Thesis Summary 

Let us recap what we have been able to achieve through our studies on the 

discrete shipment consolidation problem. First and foremost, by utilizing matrix-

analytic methods, more specifically through the use of BMAPs, MAPs and PH-

distributions, we made it possible to model a greater variety of problem instances 

in terms of the weight-arrival process.  

Modeling the weight-arrival process by a BMAP enabled us to take into 

consideration the potential correlations between the order arrival process and the 

order weight distribution, as well as any correlations between consecutive arrivals. 

The BMAP has also been proven to be a powerful modeling tool because of its 

ability to approximate any arbitrary arrival process from empirical data. In 

addition, the convolution between a MAP and an independent weight distribution 

can be easily expressed as a BMAP. Therefore, when the order arrival process and 

the order weight distribution are uncorrelated, they can be modeled by a MAP and 

a discrete positive distribution, respectively.  

Our general model can thus accommodate any discrete weight distribution. 

When that distribution cannot be expressed in a closed form, one can employ the 

more versatile PH-distribution. We showed that the PH-distribution can 
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approximate almost any distribution of non-negative weights. This improves upon 

the previous research, in furnishing a more general way to model the vast range of 

order weight distributions. Together with the MAP and BMAP, the PH-

distribution gives us greater flexibility when we need to model an arbitrary 

weight-arrival process. 

Another feature worth mentioning is that our modeling approach provides a 

set of procedures to evaluate a variety of performance measures. Beside the two 

widely studied performance measures, i.e. average cost per unit time and mean 

cycle length (see, for example, Higginson, (1993), Çetinkaya and Bookbinder 

(2003) and Mütlü, Çetinkaya, and Bookbinder (2010)), we showed how to obtain 

other measures such as expected excess over target load / vehicle capacity, 

expected order delay and expected number of orders per shipment. Our model 

provides a wider range of evaluation tools for a shipment consolidation policy. 

Note that some previous research on shipment consolidation used renewal 

theory to construct the common carriage cost function (see, for example 

Çetinkaya and Bookbinder (2003)). This approach is often hindered by integrals 

that are difficult to evaluate. As a result, the solution needs be obtained through 

approximation. Fortunately, matrix-analytic methods enable us to obtain an 

explicit and relatively easy-to-compute formula for the cost function of common 

carriage (see equation (6.4)). A precise solution can thus be calculated from this 

formula. 
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In general, our model can determine the performance measures and costs of 

any consolidation policy to a high precision, while still remaining efficient. In 

addition, some useful relationships between results have been established so we 

can check them effectively (see remarks 4.2, 4.3 and 5.1). The set of procedures 

presented in Chapter Six is a guideline on how to apply our model in practice.  

Our third achievement is that our model is capable of evaluating almost any 

consolidation policy that can be found in practice. Beside the quantity, time and 

hybrid policies which were studied by others before, we found a way to evaluate 

the more-general policies sometimes used by practitioners. This is perhaps the 

most important and novel feature of our research. 

 

8.2 Further Comments 

Although we have made some progress and contributions in solving the 

shipment consolidation problem in this thesis, there are still some difficulties that 

remain to be addressed. First, we have not yet determined which class of 

consolidation policies is more likely to contain the optimal policy for different 

weight-arrival processes. Even if we could study the class of all general policies, 

we lack an efficient search algorithm to locate the optimal one. This is a crucial 

problem because our ultimate goal is to be able to find that optimal policy 

efficiently and accurately. 
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The preceding limitations are even more striking when it is realized that we 

restricted our model to discrete time and discrete quantity. The discrete nature of 

those parameters limits the precision of our model solutions. If we try to improve 

this precision by switching to smaller units, we will create challenges in 

computation by enlarging the state space of the Markov chain. Consider the size 

of the target load, first in cwt and then in lbs. That change increases the number of 

states by a factor of 100. The computation required will thus increase significantly.  

However, the following should be kept in mind. In practice, the target weight 

is limited by the vehicle capacity. The state space of our Markov chain is thus 

usually a reasonable size, although the preceding comparison between cwt and lbs 

is still relevant. But eventually, we hope to extend the matrix-analytic 

methodology to the case of continuous quantity.  

Although the BMAP and PH-distribution can be used to approximate 

arbitrary weight-arrival processes and distributions, we did not present algorithms 

to do that. Given an empirical order weight distribution, one must fit it by a PH-

distribution before using our model. Therefore, methods are required to fit 

BMAPs or PH-distributions. This fitting process itself can be complicated and 

time consuming (e.g. Asmussen and Nerman, 1991; Horvath and Telek, 2002). 

The quality of the fit will of course directly impact the accuracy of solutions to 

the model.  
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8.3 Future Research 

We have considered the target load to be a function only of elapsed time 

since the last dispatch. What if that target load were also determined by the phase 

of the underlying Markov chain, i.e. the dispatch decision were contingent on the 

business scenario or seasonality? In that case, we would need to revamp our 

model and potentially take a new approach to the problem. 

Our current model is a useful tool for more systematic studies of the shipment 

consolidation problem. The next important questions are to determine the 

optimality properties of the cost functions. More specifically, does there truly 

exist an optimal policy in terms of cost? Does the class of optimal policies depend 

on the weight-arrival process? 

We have observed certain numerical trends and properties that shed some 

light on the issue of optimality. For example, of all the compound geometric 

weight-arrival processes we tested, the optimal policy always turned out to be a 

quantity policy. In those cases, there seems to be a direct link between the form of 

the optimal policy and the steady state distribution of the process. The next step in 

our research is to explore this relationship and give a formal proof.  

We tested a variety of weight-arrival processes that are more general than the 

compound geometric. The identity of the optimal policy became more ambiguous. 

The quantity policy was still best for Examples 7.1 – 7.5 (Table 7.6). However, in 
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Section 7.3, other more-general policies were found to outperform the best 

quantity policy for different instances of weight-arrival processes.  

Ideally, we would like to derive the form of the optimal shipment 

consolidation policy. We would then need a search strategy to find its optimal 

parameters in a particular case. More extensive research and a formal proof are 

warranted if we wish to generalize the optimality properties to an arbitrary 

weight-arrival process.   
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