
Bayesian Unsupervised Labeling of

Web Document Clusters

by

Ting Liu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Ting Liu 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Information technologies have recently led to a surge of electronic documents in the for-

m of emails, webpages, blogs, news articles, etc. To help users decide which documents may

be interesting to read, it is common practice to organize documents by categories/topics. A

wide range of supervised and unsupervised learning techniques already exist for automated

text classification and text clustering. However, supervised learning requires a training set

of documents already labeled with topics/categories, which is not always readily available.

In contrast, unsupervised learning techniques do not require labeled documents, but as-

signing a suitable category to each resulting cluster remains a difficult problem. The state

of the art consists of extracting keywords based on word frequency (or related heuristics).

In this thesis, we improve the extraction of keywords for unsupervised labeling of doc-

ument clusters by designing a Bayesian approach based on topic modeling. More precisely,

we describe an approach that uses a large side corpus to infer a language model that im-

plicitly encodes the semantic relatedness of different words. This language model is then

used to build a generative model of the cluster in such a way that the probability of gen-

erating each word depends on its frequency in the cluster as well as the frequency of its

semantically related words. The words with the highest probability of generation are then

extracted to label the cluster.

In this approach, the side corpus can be thought as a source of domain knowledge or

context. However, there are two potential problems: processing a large side corpus can

be time consuming and if the content of this corpus is not similar enough to the cluster,

the resulting language model may be biased. We deal with those issues by designing a

Bayesian transfer learning framework that allows us to process the side corpus just once

offline and to weigh its importance based on the degree of similarity with the cluster.

iii

Acknowledgements

First and foremost I would like to offer my deepest gratitude to my supervisor, Pascal

Poupart. This thesis would not have been possible without him. His guidance in the area

of Machine Learning and his support from the beginning to the end has enabled me to

develop this thesis. His encouragement also helped me to overcome all difficulties through

the bulk of this work.

I would like extend my appreciation to Ruitong Huang. He deserves particular acknowl-

edgement for his math expertise that helped me clear my confusion on several occasions.

Moreover, I would like to thank him for his constant encouragement and support.

Many thanks go in particular to my project colleagues, Andy Chiu and Finnegan

Southey, at Google Inc. They offered much valuable advice and insight throughout my

work.

I gratefully thank Professor Charles Clarke and Doctor Finnegan Southey for their con-

structive comments regarding my thesis. I am thankful that they accepted to be members

of the reading committee.

I would like to show my gratitude to my friends, Hongsen Liu, Ying Liu, Wenjie Xiao,

Johan Harjono and all those who have made invaluable comments about the thesis. They

have offered their support in a number of ways. Their friendship helped me to never feel

alone when facing some challenges.

Lastly, I want to say thank you to my mother, Liyun Liu, my husband, Xiaodong

Zhou and my son, Jason Zhou. Your unlimited support allowed me to understand the true

meaning of life.

iv

Dedication

I would like to dedicate my thesis to my beloved grandmother.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Research Contribution . 2

1.2 Thesis Organization . 3

2 Background 4

2.1 Language Modeling . 4

2.2 Bayesian Learning and Plate Notation . 5

2.3 Frequency models . 6

2.3.1 Tf-Idf . 6

2.3.2 A metric of word relevance . 7

2.3.3 Alternative scoring functions . 8

2.4 n-gram Models . 10

2.4.1 Uni-gram Model . 11

2.4.2 Bi-gram Model . 12

2.4.3 Bayesian Smoothing . 12

vi

2.5 Topic models . 13

2.5.1 Latent Dirichlet Allocation . 14

2.5.2 Online LDA . 17

2.5.3 Hierarchical Dirichlet Processes (HDP) 22

2.6 Beyond Topic Model . 25

3 Language Modeling for Transfer Learning 28

3.1 Transfer Learning . 28

3.2 Corpus Perplexity . 30

3.3 LDA Transfer Model . 31

3.4 HDP Transfer Model . 34

3.5 Experiments . 36

3.5.1 Experiments Dataset . 36

3.5.2 Comparisons . 37

3.6 Running Time . 43

4 Cluster Labeling 45

4.1 Experiments . 46

5 Conclusion 50

5.1 Summary . 50

5.2 Future Directions . 52

Bibliography 53

vii

List of Tables

3.1 Size and properties of each dataset . 37

3.2 Parameters for each dataset . 40

3.3 Running time . 43

4.1 Labels for each data set . 47

viii

List of Figures

2.1 Uni-gram and Bi-gram . 11

2.2 plate notation of LDA . 14

2.3 plate notation of HDP . 23

2.4 plate notation of Beyond Topic Model . 26

3.1 LDA on Large Side Corpus A - ALUM . 38

3.2 LDA on Large Side Corpus A - ACQ . 39

3.3 LDA on Large Side Corpus A - Industry Test Case 39

3.4 Perplexity - ALUM . 41

3.5 Perplexity - ACQ . 41

3.6 Perplexity - Industry . 42

4.1 LDAs topic mixture θ̄ for the industry cluster. 48

4.2 HDPs topic mixture θ̄ for the industry cluster. 49

ix

Chapter 1

Introduction

How many years did it take for the radio to reach 50 millions users? The answer is: 38

years. TV took 13 years, the Internet took 4 years, and the iPod took 3 years. Facebook

accumulated 100 millions users in less than nine months 1. With the advent of the World

Wide Web (a.k.a. WWW), the internet acts as an accelerator to reshape human lives.

More and more people use the internet for reading news, exchanging ideas, sharing pictures,

shopping and so on. Today, social networks have become an important part of people’s daily

life. There are amazing web services supplied by so many companies. For instance, Google

allows us to retrieve information quickly via her powerful search engine, Amazon created an

e-commerce web application that provides an online shopping platform, and Facebook has

features, such as the “like” button, to allow individuals to share what they like. The number

of web users grows fast, at the same time, information on web grows fast too. How can this

web data be used? Most web service vendors use a wide variety of clustering algorithms to

group web pages with similar content. Clustering is an important task, however, it is not

fully automatized because the developers must still look at the documents to understand

the main idea of each cluster. Cluster labeling is the main obstacle that prevents the

deployment of new web services that would automatically analyze and label groups of web

pages. Currently, how to automatically and efficiently to label a cluster is a hot topic in

Artificial Intelligence (AI) and Information Retrieval (IR). In order to analyze text data

1http://searchenginewatch.com/article/2066771/Social-Media-Fad-or-Revolution

1

and generate a label, we consider machine learning techniques. More precisely, in this

thesis, we design Bayesian machine learning models for text analysis and cluster labeling.

To tackle this problem, we assume that a search engine company has a large text corpus

which consists of indexed web pages. Although each web page may contain a title, some

text, pictures and hyperlinks, we just focus on the basic case where the data is a sequence

of words. And, in this thesis, we will call this kind of web content as a document. As

new web pages are created every day, a search engine company collects new documents

and groups them into several clusters. We propose an efficient method to generate a word

for labeling each one of those new clusters within an acceptable amount of time. This

label word should help developers to understand what is the cluster “talking” about. For

example, if the new cluster contains some documents related to baseball, some documents

related to swimming, and the rest related to cycling, ideally we would like to generate

“sport” as a label for this new cluster. Furthermore, the word “sport” may not exist in the

new cluster at all. However, we would most likely find that word in the large side corpus.

1.1 Research Contribution

In Artificial Intelligence, there are a lot of models for text analysis. Two new Transfer

Learning models are introduced in this thesis. They are LDA-Transfer learning model

(LDA-Trans) and HDP-Transfer learning model (HDP-Trans). Both of them are based on

topic modeling and Bayesian data analysis. The main idea is to use a large side corpus

to learn a topic distribution for each word. This topic distribution can be thought as

characterizing the semantics of each word. Next, we transfer the semantics implied by the

topic assignments to the new cluster. Furthermore, we automatically weigh the implied

semantics based on the degree of similarity between the side corpus and the cluster to

be labeled as a prior to analysis the target cluster. During this step, the LDA-Trans

model uses Latent Dirichlet Allocation (LDA), which assumes a fixed number of topics to

estimate topic distributions, and HDP-Trans uses Hierarchical Dirichlet Processes (HDP),

which modifies the number of topics according to the data. There are three benefits to this

approach. First, when the cluster to be labeled is small, the transferred topic distributions

2

improve the robustness of the language model of the cluster. Second, since the topic

distributions can be pre-computed on the large side corpus off line, new clusters can be

processed efficiently. Three, given a topic distribution for each word, we estimate the most

important topics of the cluster and label the cluster according to the word that is the most

likely to be generated by those topics. As a result, this word may not exist in the cluster

itself, but may come from the side corpus.

1.2 Thesis Organization

This thesis consists of five chapters. Chapter one introduces the problem and domain.

Chapter two reviews several existing language models, such as frequency based models,

N-gram models, topic models and some variants of these models. Chapter three introduces

the theoretical motivations and intuitions of our new models: LDA-Trans and HDP-Trans.

The accuracy will be evaluated with perplexity graphs. Chapter four describes how to use

LDA-Trans and HDP-Trans to label a cluster of documents by producing a list of candidate

words. Chapter five concludes our research with a brief summary and some directions for

future work.

3

Chapter 2

Background

2.1 Language Modeling

Language modeling can be used for speech recognition, handwriting recognition, spelling

correction, foreign language reading/writing aid, machine translation and so on. A lan-

guage model is defined as a probability distribution over word sequences. In “Foundations

of Statistical Natural Language Processing” [11], Manning and Schutze point out that

words in a corpus can be thought as random discrete data, which is generated according

to some unknown probability distribution. For example, if we have a string “I like Chinese

food” denoted as w = “w0w1w2w3”, the language model is P (w). In other words, the

language model attempts to reflect how frequently a string w occurs as a sentence.

Nowadays, a popular class of models is based on frequency. This class of models uses

term occurrence to weight each word while ignoring any relationship between words. Since

words do not occur in a random order, another class of language models consists of n-grams,

such as uni-gram, bi-gram and tri-gram, which predict each word given the n− 1 previous

words. The parameter n−1 indicates how many previous words are used to model the next

word. However, the n-gram models only focus on the likelihood of short sequences of words,

they ignore how words are semantically related to each other. Another class of language

models consists of topic models. Topic models are based on the “bag-of-word” assumption,

which means that words can be thought as sampled from a set (i.e. bag) of words without

4

any order. For example, the vector representation of “Lucy is taller than Sam” is same with

the vector representation of “Sam is taller than Lucy”. Topic models also include latent

components which are often referred to as topics since they tend to cluster together words

related to the same topic. Such latent topics can serve as a basis to measure how closely

related words are by meaning. While there are many ways of modeling topics, Bayesian

approaches provide a principled statistical framework to do this. Moreover, a hierarchical

non parameter data model can provide more precise result. In particular, we will review

Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Processes (HDP), which will

be used in our new transfer learning models in this thesis.

Throughout this thesis, we assume that there is a corpus (a set of documents) and that

each document consists of a list of words. The following notation will be used. Upper case

letters will denote variables: T for topics, W for the sequence of words, and D for docu-

ments. The calligraphic versions of the same letters denote their domain: T = dom(T),

W = dom(W), and D = dom(D). Lower case letters indicate values for the variables:

t ∈ T , w ∈ W , and d ∈ D. Sets are denoted by bold letters: T = {T0, T1, ..., TK−1} is a set

of variables and t = {t0, t1, ..., tK−1} is a joint assignment of values for T. We reserve K to

indicate the number of topics and N to indicate the number of words in each document. A

set subscripted by a negative index denotes all items in the set except the one subscripted:

T−k = {T1, ..., Tk−1, Tk+1, ..., TK}. Some specific lower case letters will be used as indices

in this thesis. For example, i is used as an index for words in a document (or sequence); d

is used as an index for the documents in a corpus or a cluster; and k is used as an index

for topics.

2.2 Bayesian Learning and Plate Notation

The essential characteristic of Bayesian methods is their explicit use of probabilities to

quantify uncertainty in inferences based on data [5]. In information retrieval, when we

analyze a corpus D, it is very useful to build a language model.

Let θ =< θ0, ..., θN−1 > be the set of parameters of the language model. Since we don’t

know the values of the parameters initially, we treat them as random variables. Once we

5

have observed some data (i.e. a sequence of words w), then we can compute a posterior

distribution P (θ|w). More precisely, this posterior can be computed by Bayes’ rules:

p(θ|w) =
p(θ,w)

p(w)
=
p(θ)p(w|θ)
p(w)

, (2.1)

where p(w) =
∑

θ p(θ)p(w|θ), and the sum is over all possible values of θ. Since p(w) does

not depend on θ, we can get the unnormalized posterior density:

p(θ|w) ∝ p(θ)p(w|θ). (2.2)

These equations are at the core of Bayesian inference. Most models in this thesis describe

a joint distribution p(θ,w) and perform the necessary computations to summarize p(θ|w)

in appropriate ways.

The plate notation, as in Figure 2.1, is a compact graphical representation to denote

Bayesian networks with identical subgraphs that repeat. Instead of repeatedly drawing

variables with the same dependency structure, this method uses a plate (or a rectangle) to

group variables in a subgraph with an index in the bottom right corner. Each unknown

(latent) variable is represented as a circle, and each observed variable, such as wdi, is

represented as a shaded circle. Edges indicate probabilistic dependencies between variables.

In this thesis, the plate notation is used to illustrate several n-gram models and topic

models.

2.3 Frequency models

2.3.1 Tf-Idf

In information retrieval (IR), researchers developed many techniques to extract relevant

keywords. A popular approach is called Tf-Idf [13]. There are many forms for term

frequency Tf , the basic one is using raw term frequency of each word wi in each document

d as follows:

Tf wi,d
= nwi,d, (2.3)

6

where nwi,d is the number of occurrences of word wi in document d. In some situations, it

would be preferable for Tf to grow at a slower rate than linear, so Salton created another

from that is logarithmic:

Tf wi,d
=

{
log(nwi,d) + 1, if nwi,d > 0;

0, otherwise.
(2.4)

By this equation, if a word has higher frequency in a specific document, that word

should have higher Tf weight.

Idf stands for Inverse document frequency. The classic equation of Idf is:

Idf wi
= log10(|D|/|{d : wi ∈ d, d ∈ D}|), (2.5)

where |D| is the number of documents in corpus D and |{d : wi ∈ d, d ∈ D}| is the number

of documents that include the word wi. For instance, the word “the” happens in every

document in corpus D. If there are 1,000,000 documents in D, and |{d : wi ∈ d, d ∈ D}| =
1, 000, 000 too, then the Idf value of “the” is 0. On the other hand, if a word occurs only

in some of documents, the Idf value of that word should be higher.

In the end, the Tf-Idf value is obtained as follows:

Tf-Idf = Tf ∗ Idf . (2.6)

This method uses Tf value to find more frequent words in a document, and Idf value to

prune common words that are meaningless in the corpus. However, if the corpus is related

to only one topic, then the most relevant word may happen in every document, but it will

be pruned by Idf . As a result, Tf-Idf is not suitable to label a cluster of documents.

2.3.2 A metric of word relevance

A metric of word relevance is proposed by Zhou and Slater in [19]. This method estimates

the relevance of uni-grams (or single words). Since meaningful words tend to cluster in

certain parts of the text instead of being randomly distributed throughout the text, this

method computes a measure of the tightness of the clusters of each word. Words that

7

tend to cluster more frequently are given a higher relevance score. The approach starts

by building a list of positions lw = −1, t1, t2, ..., tm, n where ti denotes the position of the

ith occurrence of word w and n is the total number of words in the document. Then we

compute the average distance µ̂ between successive occurrences of w as follows:

µ̂ =
n+ 1

m+ 1
, (2.7)

where m is the number of occurrences of word w. We can compare this global average

distance to a local average distance d(ti) for each position ti:

d(ti) =
ti+1 + ti−1

2
, i = 1, ...,m. (2.8)

Occurrences of w where d(ti) < µ̂ are said to be part of a cluster since they are closer to

their neighbours than average. More precisely, we denote by σ(ti) a function that verifies

whether position ti is part of a cluster as follows:

σ(ti) =

{
1, if d(ti) < µ̂;

0, otherwise.
(2.9)

Next, we measure the reduction ν(ti) in average distance of the cluster points with respect

to the global average distance as follows:

ν(ti) =
µ̂− d(ti)

µ̂
. (2.10)

Finally, we estimate the relevance of a word by computing the average reduction in average

distance for the cluster:

Γ(w) = 1/m ∗
m∑
i=1

σ(ti) ∗ ν(ti) (2.11)

While this method is simple and efficient it tends to give low scores to relevant words that

are frequent or rare because they tend not to cluster.

2.3.3 Alternative scoring functions

Ventura and Silva [17] also proposed some scoring functions to measure the relevance of

uni-grams. In this section we describe their Score function, SPQ function and Islands

method.

8

Since relevant words tend to co-occur with a small set of predecessor and successor

words, the Score function estimates the relevance of a word by measuring the variation of

the frequency of its immediate neighbors. This is done by first defining the successor Score

function Scsuc(w) for the words that immediately follow w:

Scsuc(w) =

√
1

‖ γ ‖ −1

∑
yi∈γ

(
p(w, yi)− p(w, ·)

p(w, ·)
)2 (2.12)

Here, the γ is the set of distinct words in the corpus and ‖ γ ‖ denotes the size of γ.

Also, p(w, yi) is the probability that yi follows w and p(w, ·) is the average probability of

the successor words of w. The joint term p(w, yi) is defined as follows:

p(w, yi) =
f(w, yi)

N
(2.13)

and

p(w, ·) =
1

‖ γ ‖ −1

∑
yi∈γ

p(w, yi) (2.14)

Here, N denotes the number of occurrences of word w in the corpus and f(w, yi) is the

frequency of bi-gram (w, yi). Similarly, we can define a predecessor score function:

Scpre(w) =

√
1

‖ γ ‖ −1

∑
yi∈γ

(
p(yi, w)− p(·, w)

p(·, w)
)2 (2.15)

Finally, by taking the average of the predecessor and successor scores, we obtain an overall

score that can be used to estimate the relevance of words:

Sc(w) =
Scpre(w) + Scsuc(w)

2
. (2.16)

According to this method, if the word w is followed or following a lot of different words,

then the score of this word is pretty low; if the word is frequent and has a small set of

successors and predecessors, then the score will be high.

The Successor-Predecessor Quotient (SPQ) measure is another statistical metric that

measures the importance of the word w based on the quotient between its number of distinct

9

successors and its number of distinct predecessors. The SPQ value can be obtained by the

equation:

SPQ(w) =
Nsuc(w)

Nant(w)
, (2.17)

where Nsuc(w) and Nant(w) represent the number of distinct successors and predecessors

of word w in the corpus. Experimental results in [17] show that SPQ is better than Sc.

The Islands method extracts a word if it is more relevant than its neighbor words.

In this approach we compute the average relevance of the predecessors and successors as

follows:

Avgpre(w) =
∑

yi∈{predecsofw}

p(yi, w) ∗ r(yi), (2.18)

Avgsuc(w) =
∑

yi∈{succesofw}

p(w, yi) ∗ r(yi), (2.19)

where p(yi, w) means the probability of occurrence of bigram (yi, w) and r(yi) is the rele-

vance value given by some generic r(·) metric, which could be the Score function or SQP

function. A word is considered relevant if it satisfies:

r(w) ≥ 0.9 ∗max(Avgpre(w), Avgsuc(w)). (2.20)

The above techniques identify potentially relevant words based on different properties

than frequency. While these properties are interesting, it is not clear that they extract

good words for the labels. Ideally, the computer should understand the meaning of the

words, sentences and documents to extract good labels. To that effect, the section 2.5

reviews topic models that take a step in this direction.

2.4 n-gram Models

An n-gram is a subsequence of n words (w0, ..., w(n−1)) from a given sequence w = (w0, ..., w(N−1)).

Since it is generally difficult to model P (w) directly, we can apply the chain rule as follows:

P (w) = P (w0)P (w1|w0)...P (wN−1|w0...wN−2). (2.21)

When we condition each word on at most n−1 previous words, we obtain an n-gram model.

The uni-gram and bi-gram models are illustrated in Figure 2.1 using the plate notation.

10

Figure 2.1: Uni-gram and Bi-gram

2.4.1 Uni-gram Model

If n equals one, it is called a uni-gram model. When we get a word sequence w with N

tokens, we can denote it as w = “w0w1...wN−1”. Then the likelihood of this sequence is

assumed to be the product of the probabilities of each word separately:

P (w) =
N−1∏
i=0

P (wi), (2.22)

It is common to approximate P (wi) by the relative frequency of wi:

P (wi) =
Nwi

N
, (2.23)

Here, Nwi
is the frequency of word wi in corpus D. This model makes a strong assumption

that each word is sampled independently and identically. Hence, this model ignores the

relationship between words. For example, when analyzing the capitalization of some words,

such as “new”, it is important to consider neighboring words, ”new” is widely used as an

adjective, but, it can also be used in a compound noun, for instance, “New York”. So,

higher level n-gram models are needed to consider short sequences of several words that

will avoid this kind of concern.

11

2.4.2 Bi-gram Model

When n equals two, we get a bi-gram model. Consider a sequence of words w of length

N . The probability of this sequence is computed as follows for the bi-gram model:

P (w) = P (w0)P (w1|w0)...P (wN−1|wN−2) (2.24)

= P (w0)
N−1∏
i=1

P (wi|wi−1), (2.25)

Let Nwi
be the frequency of word wi in w, and let Nwi|wi−1

be the number of occurrences

of word wi following word wi−1 in w. When training by maximum likelihood P (wi|wi−1) =

Nwi|wi−1
/Nwi−1

. So, with a bi-gram model, “new” and “New” could be separated because

of their neighbor words.

For higher order of n-grams, such as tri-gram where n = 3, we need to calculate the

likelihood by taking a product of larger conditionals P (wi|wi−2, wi−1).

2.4.3 Bayesian Smoothing

After training a uni-gram or a bi-gram model by maximum likelihood, it is possible that

some words or some pairs of words in the test set do not occur in the training set, leading

to zero probabilities in the test step. There are some Bayesian smoothing techniques that

can be used to avoid this problem. We start with a prior over θ, which we assume to be a

Dirichlet distribution with hyperparameters α =< α0, ..., α|W |−1 >. For uni-gram, we get:

P (w = wi|D) =
Nwi

+ αi

N +
∑|W|

i=0 αi
, (2.26)

Similarly, for a bi-gram model, we can get:

P (wi|wi−1) =
Nwi|wi−1

+ αi

Nwi−1
+
∑|W|

i=0 αi
, (2.27)

12

Lidstone [9] and Jeffreys [7] proposed to use αi = 1 for each i, which corresponds to a

uniform prior, so we get the following equation:

P (wi|wi−1) =
P (wi−1wi)

P (wi−1)
(2.28)

=
Nwi|wi−1

+ 1

Nwi−1
+ |W|

. (2.29)

When we consider two sequences w = “w0w1” and w′ = ”w0w2”, if both of them do

not occur in the training set, by the above smoothing method, P (w1|w0) and P (w2|w0) are

the same. However, if word w1 occurs more frequently in the training set than word w2,

it is natural to expect that w should be generated with higher probability than w′. So,

another simple smoothing technique consists of using a weight λ to smooth n-grams via

(n-1)-grams, such as smoothing a bi-gram via a uni-gram [8]. We can create a predictive

distribution smoothed by weight λ as follows:

P (wi|wi−1,W) = λNwi
/N + (1− λ)Nwi|wi−1

/Nwi−1
(2.30)

= λfwi
+ (1− λ)fwi|wi−1

. (2.31)

Here, we can use cross validation to estimate the weight λ.

2.5 Topic models

When writing a document, it is common practice to first jot down (perhaps in point form)

what are the main ideas/topics that we want to write. After that, we flesh out those

ideas with full sentences and paragraphs. Inspired by this two step approach, topic models

consist of formal probabilistic generative models that first sample some topics from which

some words are sampled. Here topics, really correspond to abstract latent components,

however in many situations they can be interpreted as topics. In this section, we introduce

some popular topic models and their variants.

13

Figure 2.2: plate notation of LDA

2.5.1 Latent Dirichlet Allocation

When we get a corpus, and we know that certain topics characterize the documents, it

is an interesting problem to classify the words into topics, which indicate their possible

meanings. Latent Dirichlet Allocation is a popular model based on Bayesian networks to

infer the underlying topics of text data.

Latent Dirichlet Allocation (LDA) was introduced by Blei et al. [1]. It is a three level

generative probabilistic model for a collection of discrete data such as a text corpus D of

documents d. In this model, there is a set T of topics t where each topic is a multinomial

distribution over a dictionary W of words w. Moreover, each document d is a multinomial

mixture over the topic set T . As Figure 2.2 shows, the variable wdi is the only observed

variable in this model. Here, wdi denotes the ith word in document d. The latent variable

tdi is the topic assignment for the word wdi. θd is the topic vector < θd1, θd2, ..., θd|T | >

for document d. Finally, φ is a k × |W| matrix where each row is denoted by φt which

corresponds to a distribution over words for each topic t. Here, the ranges of θ and φ is

[0, 1]. The prior for the word distribution of each topic is typically set to a symmetric

Dirichlet with hyperparameters (β, ..., β) ∈ R|W|+ and the prior for the topic distribution of

each document is also set to a symmetric Dirichlet with hyperparameters (α, ..., α) ∈ R|T |+ .

The Dirichlet distribution is the conjugate prior distribution for the parameters of the

multinomial distribution [5]. Let θ denote a random vector with K elements such that the

sum of all elements in this vector is one. So, each element θk is the probability of event k.

14

Then, under the Dirichlet model with parameter vector α, the probability density is:

f(θ1, ..., θK ;α1, ..., αK) =
1

Beta(α)

K∏
k=1

θαk−1
k , (2.32)

and, the Beta function can be expressed in terms of Gamma functions as:

Beta(α) =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
. (2.33)

The generative process for each document d in corpus D is:

• sample θd from the symmetric Dirichlet prior (with hyperparameter α).

• for each of the words wdi where 1 ≤ i ≤ N , N is the length of the sequence of words

in document d

1. sample topic tdi from Multinomial(θ)

2. sample a word wdi from P (wdi|tdi, β)

Given a corpus of documents, we can use Gibbs sampling for inference and to estimate

the parameters. In Gibbs sampling, the next state is reached by sequentially sampling

all variables from their distribution when conditioned on the current values of all other

variables and the data [10]. A collapsed Gibbs sampler for LDA is introduced by Griffiths

and Steyvers in [6]. We can sample the topic assignment for each word in the corpus as

follows:

P (Tdi = t|t−wdi
,w) ∝ P (Tdi = t, t−wdi

,w) (2.34)

∝ P (wdi|t,w−di)P (Tdi = t|t−wdi
) (2.35)

=
n

(wdi)
−wdi,t

+ β

n
(·)
−wdi,t

+ |W| ∗ β
×

n
(d)
−wdi,t

+ α

n
(d)
−wdi,· + |T | ∗ α

, (2.36)

where t−wdi
is the topic assignments for word wdi except the current word,n

(wdi)
−wdi,t

is the

number of times that the word at location i in document d is assigned with topic t except

the current word. Similarly, n
(·)
−wdi,t

is the total number of words assigned to topic t except

15

the current word. Also, n
(d)
−wdi,t

is the number of occurrences of word wdi that are assigned

to topic t in document d. Similarly, n
(d)
−wdi,· is the number of words in document d except the

current word. At last, the term
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β
can be thought as φ̂wdi

t which is the probability

of the word wdi under topic t. The term
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α
can also be thought as θ̂dt which is

the probability of the topic t in document d. Moreover, hyperparameters β and α control

the prior of φ and θ. The pseudo code for LDA is shown in Algorithm 1. Here, Nd is the

total number of words in the document d and ITERR is the number of iteration for Gibbs

Sampling.

Algorithm 1 LDA
Function: LDA

Inputs: D, T and ITER

Output: θ, φ

Initialize Tdi for each word wdi randomly from T
iteration = 0;

while iteration < ITER do

for each d ∈ D and i ∈ 1, ..., Nd do

sample a new topic Tdi from

Pr(Tdi = t|t−di,w) ∝
n

(wdi)
−wdi,t

+ β

n
(·)
−wdi,t

+ |W| ∗ β
×

n
(d)
−wdi,t

+ α

n
(d)
−wdi,· + |T | ∗ α

end for

iteration++;

end while

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

Because LDA assumes a finite number of hidden components, this algorithm needs to

know the number of topics K before running.

16

2.5.2 Online LDA

In some situations it is desirable to incrementally update the model as new data (i.e.

documents) become available. Ideally, we’d like this update to be fast and perhaps with

time that does not depend on the amount of data that we already have.

While there are no known online algorithm that can do an update in constant time

without impacting the quality of the update, we review three algorithms that provide

different tradeoffs between runtime and accuracy. These algorithms are variants of Gibbs

sampling and try to reduce the number of topic assignments in the previous data that need

to be re-sampled at each update. More precisely, they perform regular Gibbs sampling (for

LDA) on the current corpus, then sample the topic assignments of the new data given the

corpus and re-sample a small set of topic assignments in the corpus.

The first algorithm is called “o-LDA” and is described in Song et al. [15]. This algorithm

applies regular LDA to an initial topic assignment to the data set, then samples each new

word by conditioning on the previous results. Suppose that the set of all documents

received so far is called A and some new documents arrive that we refer as B. First, we

run LDA on A according to Algorithm1. Then we estimate a topic-word distribution φA

as follows:

φA =
n

(wdi)
−wdi,t

+ β

n
(·)
−wdi,t

+ |W| ∗ β
. (2.37)

Second, sample a topic assignment for each word in B that takes into account the topic-

word distribution φA. The equation is:

P (Tdi = t|TA
⋃
B

<di ,WA
⋃
B) ∝

n̂
(wdi)
wdi,t

+ β

n̂
(·)
wdi,t

+ |W| ∗ β
×

n(d)−wdi,t
+ α

n(d)−wdi,· + |T | ∗ α
(2.38)

∝ φA ×
n(d)−wdi,t

+ α

n(d)−wdi,· + |T | ∗ α
(2.39)

where n̂ comes from corpus A. The algorithm “o-LDA” is summarized in Algorithm 2:

17

Algorithm 2 o-LDA
Inputs: A,B, T
Output: θ, φ

Perform regular LDA with input parameters: A and T .

Estimate φA =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β
from data set A.

for each d ∈ B and each i ∈ {1, ..., Nd} do

sample a new topic Tdi from Pr(Tdi = t|tA
⋃
B

<di ,wA
⋃
B) ∝ φA ×

n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α
.

end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

This algorithm’s accuracy depends on the accuracy of regular LDA on dataset A. If

the latent structure of the documents in dataset B is different from the latent structure of

the document in dataset A, the result won’t be good.

Another online algorithm is called “Incremental Gibbs Sampler” which is an instance

of the delayed MCMC framework [12]. It is an extension of “o-LDA”. There is an extra

step after sampling the topic of each word wdi in B. The algorithm re-samples the topic

assignments of some words that occur in A or in B before the word wdi. This re-sampling

tries to adjust the topic assignments to take into account all of A
⋃
B instead of only

the words in A. To do this we set a “Rejuvenation sequence”, R(i), which is a sequence

of words related to wi. After we sample the topic for the word wi, we need to sample

each word wj where j ∈ R(i) according to P (Tj = t|ti\j,wi). The pseudo code of this

incremental Gibbs sampler is provided in Algorithm 3:

18

Algorithm 3 incremental-LDA
Inputs: A,B, and T
Output: θ, and φ

Perform regular LDA with input parameters: A, T .

Estimate φA

for each d ∈ B and each i ∈ {1, ..., Nd} do

sample a new topic Tdi from Pr(Tdi = t|tA
⋃
B

<di ,wA
⋃
B) ∝ φA ×

n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α
.

for j ∈ R(i) do

Sample Pr(Tj = t|ti\j ,wi)

end for

end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

In this algorithm, if enough resampling steps are performed, we can approximate the

posterior distribution P (tdi|wdi) for each word in the corpus availably closely. If we do not

re-sample enough then the accuracy may suffer.

The author of [2] designed a more precise algorithm, which uses Particle filtering (a.k.a.

sequential Monte Carlo). We will call this algorithm p-LDA. Most of the time, Particle

filtering is used to approximate a distribution conditioned on a sequence of observations.

In particular, it can be used to estimate the distribution P (t0:i|w0:i), where t0:i is the

hidden state sequence corresponding to the topic assignment up to word i, and w0:i is

the sequence of observations from word 0 to word i. Let p denote a particle, the author

represents P (t0:i|w0:i) by a collection of N weighted samples (a.k.a. particles), t
(p)
0:i , c

(p)
i

N

p=1,

where the c
(p)
i is the weight of t

(p)
1:i . A particle representation of this density is:

P (t0:i|w0:i) ≈
∑
p

c
(p)
0:i−1δ(t0:i − t(p)0:i−1). (2.40)

The integral is:

P (t0:i|w0:i) = αP (wi|ti)
∫
P (t0:i−1|w0:i−1)P (ti|t0:i−1, w0:i)dt0:i−1 (2.41)

19

which approximates to

P (t0:i|w0:i) ≈ αP (wi|ti)
∑
p

c
(p)
i−1P (ti|t(p)0:i−1, w0:i). (2.42)

In p-LDA model, we need to compute P (t0:i|w0:i) recursively from P (t0:i−1|w0:i−1) after

word wi is observed. Suppose one samples ti from P (t
(p)
i |t

(p)
0:i−1, w0:i), which we denoted by

Q(t
(p)
i |t

(p)
0:i−1, w0:i) to emphasize that this is the proposal distribution [3]. We obtain the

important weight as follows:

c
(p)
i =

P (t
(p)
0:i |w1:i)

Q(t
(p)
i |t

(p)
0:i−1, w1:i)× P (t

(p)
0:i−1|w1:i−1)

. (2.43)

We can compute the importance weight c
(p)
i recursively from c

(p)
i−1:

c
(p)
i

c
(p)
i−1

∝
P (wi|tpi ,wi−1)P (t

(p)
i |t

(p)
i−1)

Q(t
(p)
i |t

(p)
i−1,wi)

(2.44)

= P (wi|t(p)
i−1,wi−1), (2.45)

Once the weights are normalized to one. the particle filter approximates the posterior

distribution over topic assignments according to the following equation:

P (ti|wi) =
P∑
p=1

c
(p)
i δti(t

(p)
i), (2.46)

where p ∈ P , and δti(·) is the indicator function for ti. Then, we could say:

δti(t
(p)
i) =

{
1, if t

(p)
i ∈ ti;

0, otherwise.
(2.47)

The pseudocode of the Particle Filtering-LDA algorithm is described in Algorithm 4:

20

Algorithm 4 Particle Filtering-LDA
Inputs: A,B, T
Output: θ, φ

Initialize weights c
(p)
0 = 1

|P | for p = 1, ..., P

for each d ∈ A
⋃
B and i ∈ {1, ..., Nd} do

for p = 1, ..., |P | do
set c

(p)
i = c

(p)
i−1P (wi|t(p)

i−1,wi−1)

sample t
(p)
i from Q(t

(p)
i |t

(p)
i−1,wi)

end for

normalize weights ci to sum to 1.

if ‖ci‖−2 ≤ ESS threshold then

resample particles

for j ∈ R(i) do

for p = 1, ..., P do

sample t
(p)
j from Pr(t

(p)
j |t

(p)
i\j ,wi)

end for

end for

set c
(p)
i = |P |−1(p = 1, ..., P).

end if

end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

Here, the ESS is the effective sample size, which is a constant value, and the definition

of R(i), “Rejuvenation Sequence”, is the same as for the previous algorithm. In this

algorithm, how we set |P | and ESS will directly affect the accuracy for this model. If the

number of topics is large, we need a large number of particles for sampling. Also, if ESS

is small then some particles may dominate and reduce the diversity in the estimate of the

topic assignment.

21

2.5.3 Hierarchical Dirichlet Processes (HDP)

LDA is very efficient when we know the number of latent topics. However, most of the

time, the number of topics for a corpus is unknown. In that case, a non-parametric model

is a good choice since the number of parameters (such as the number of topics) is not set

a priori, but learned from data. This model can adapt the number of topics based on the

data.

Let’s first review the Dirichlet process [4]. A Dirichlet process is a prior used in Bayesian

modeling of data. It is a distribution over infinite multinomials. A Dirichlet process is also

known as an infinite mixture model, which has Dirichlet distributed finite dimensional

marginal distributions. Distributions drawn from a Dirichlet process are discrete, however,

they cannot be described by a finite number of parameters. Thus, the Dirichlet Process

is a non-parametric model. For example, if a random variable G is distributed according

to a DP, its marginal distributions are Dirichlet distributed. Let θ be a continuous space

and A1, ..., Ar be a partition of θ. Then for every finite measurable partition A1, ..., Ar of

θ the vector 〈G(A1), ..., G(Ar)〉 is random since G is random. In particular, when G is

distributed according to a Dirichlet process with base distribution H and concentration

parameter α, written as G ∼ DP (α,H) then:

(G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar) (2.48)

for every finite measurable partition A1, ..., Ar of θ.

Back to HDP which was described by Teh et al. [16], it is a model derived from

LDA, but the number of topics is not assumed to be given. Instead, it is learned from

the data. Since the number of topics is unknown a priori and could be arbitrarily large,

one could replace the finite topic mixture of each document by an infinite topic mixture

θd = 〈θd1, ..., θd∞〉 with a Dirichlet process as a prior. While this is fine in theory, the

documents would almost certainly not share any topic in practice. This is an artefact

of the way Dirichlet processes are defined. Consider a symmetric Dirichlet process with

concentration α and a uniform mean measure. Since there are infinitely many possible

topics, the probability of any topic under a uniform measure is 0. Hence, when a new

topic is sampled for a document, it will almost certainly be different from all the topics

22

Figure 2.3: plate notation of HDP

sampled in other documents. An elegant solution to this problem consists of using a two-

level hierarchical Dirichlet process (see Figure 2.3). More precisely, the mean measure

of the Dirichlet process over each document’s topic mixture is replaced by a corpus level

topic mixture θ̄, which is itself distributed according to a Dirichlet process (with some

mean H often chosen to be uniform). This construction ensures that the topic mixtures

of all documents share the same topics defined at the corpus level. Even though there are

infinitely many topics in the corpus-level mixture, the probability of each topic is non-zero.

Hence, when each document samples a new topic, the probability that it is the same as

some other document’s topic is non-zero.

While it is possible to define a generative process that follows the graphical model of the

HDP topic model in Figure 2.3, in practice it is difficult to sample infinite topic mixtures.

An alternative generative process samples the words of each document in sequence by

following an urn model. To distinguish between the topic mixtures at the document and

corpus levels, we will refer to group mixtures at the document level and topic mixture

at the corpus level. Note however that each group will be associated with a topic and

therefore a group can be thought as identifying a topic. We denote by wdi and gdi the word

and the group of the ith term in document d, and by tg the topic of group g. First, we

choose an existing group g with probability
n<i
dg

i−1+α
or create a new group with probability

α
i−1+α

. Here, n<idg is the number of terms in group g of document d that precede the ith

23

term. When a new group is created, an existing topic t is selected with probability m·t
m··+γ

or

a new topic is created with probability γ
m··+γ

. Here, m·t is the number of groups assigned

to topic t in the corpus so far and m·· is the total number of groups in the corpus so far.

When a new topic is created, a distribution over words φt is sampled from a Dirichlet prior

with hyperparameter β. Finally the ith word of document d is sampled from φwdi,t. This

process is repeated for the next word of document d and so on.

Similar to LDA, Gibbs sampling can be used to infer a likely topic assignment. A

simple way of doing Gibbs sampling is by sampling the group and topic of each word. The

algorithm is as follows:

Algorithm 5 HDP
Inputs: D, T and ITER

Output: θ, and φ

Initialize Tdi for each wdi

iteration =0;

while iteration < ITER do

for each d ∈ D and i ∈ {1, ..., Nd} do

Sample topic from Pr(Tdi = t|t−di, θ̄) =

{
(n

(wdi)
−wdi,t

+ αθ̄t)f
−wdi
t (wdi), if t already exists;

αθ̄uf
−wdi
t (wdi), Otherwise.

Sample mdt from Pr(Mdt = m|t,m−dt, θ̄) ∝ Γ(αθ̄t)

Γ(αθ̄t+n
(wdi)
−wdi,t

)
s(n

(wdi)
−wdi,t

,m)(αθt)
m.

Sample θ̄ from (θ̄1, ..., θ̄k, θ̄u) ∼ Dir(m·1, ...,m·k, γ)

end for

iteration++;

end while

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

Here, θ̄u is the probability of the new topic, f−wdi
t (wdi) =

n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|β
where the n

(wdi)
−wdi,t

is the number of terms with word wdi assigned to topic t except the ith term of document d

and n
(·)
−wdi,t

is the total number of terms assigned to topic t except the ith term in document

24

d, and the s(n,m) functions are Stirling numbers. More precisely, the Stirling numbers are

defined as follows::
s(0, 0) = s(1, 1) = 1,

s(n, 0) = 0, if n > 0;

s(n,m) = 0, if m > n;

s(n+ 1,m) = s(n,m− 1) + ns(n,m), otherwise.

(2.49)

The main difference between HDP and LDA is that LDA assumes a fixed number of topics

whereas HDP learns the number of topics from data. HDP’s ability to adjust the number

of topics will be particularly useful in the next chapter when we develop an approach for

transfer learning between a side corpus and a small cluster. When the cluster is very

different from the corpus, it will make sense to create additional topics to capture the

content of the cluster.

2.6 Beyond Topic Model

There are language models that combine the latent topic and some previous words from

an n-gram model to enhance the performance [18]. We review a model that gives the

same importance to the latent topic assignment and the previous word to predict the next

word. Given a text corpus D with document d, and a word sequence of N tokens in each

document, let i be the location of word wi in document d, and let word wi−1 be the word

preceding wi. The range of i is from 1 to N − 1. The first method introduced by Hanna

M. Wallach [18] is to use the same hyperparameters α and β are as for LDA, and both of

them are vectors. The second method introduced in the same paper is to set β differently

for each topic given the current word wi. The graphical model for the first method is

shown in Figure 2.4. Here, the word wdi is not only related to its topic assignment tdi, but

also related to its previous word wd(i−1). Moreover, the topic-word distribution is changed

from φt to φwt which is a matrix with |W||T |(|W| − 1) free parameters. This matrix has

|W||T | rows for the previous word and topic, and (|W|− 1) columns for the current word.

The document-topic distribution θ is the same as for regular LDA, which has |D||T | free

parameters. The generative flow for a text corpus D is:

25

Figure 2.4: plate notation of Beyond Topic Model

• Sample φwt from the symmetric Dirichlet prior (with hyperparameter β)

• Sample θd from the symmetric Dirichlet prior (with hyperparameter α)

• For each word wdi

1. Draw a topic assignment tdi from Multinomial θd

2. Draw a word wdi from P (wdi|tdi, φwt, wd(i−1))

An Expectation Maximization (EM) algorithm is used in this paper. Nowadays, EM

is a popular algorithm in statistical estimation problems involving incomplete data. Each

iteration of the EM algorithm consists of two steps:

• E-step (Expectation): the missing data is estimated given observed data and the

current estimate of the parameters.

• M-step (Maximization): the likelihood function is maximized under the assumption

that the missing data is known.

In this model, by method one, given text corpus D, the EM algorithm is executed as

follows:

26

Algorithm 6 BI-GRAM LDA
Inputs: D, T , and iteration

Output: θ, and φ

Initialize topic assignment z, U = (α, β) and r = 0. Here, variable r is used for the iteration.

for r = 1 to iteration do

E-step: Draw |S| samples z(s)|S|
s=1 from P (z|w, U (r−1)).

M-step: U (r) = arg max
U

1
|S|

∑|S|
s=1 logP (w, zs|U).

end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α

This model can obtain lower perplexity than a regular topic model because it uses

bi-grams instead of uni-grams. More precisely, the frequency of the occurrence of a pair

of words is lower than the occurrence of a single word. The results show that some com-

mon words, such as “the” and “a”, do not exist in the key word list anymore since their

generative probability is lower due to the fact that they have a lot of different previous

words.

27

Chapter 3

Language Modeling for Transfer

Learning

3.1 Transfer Learning

Recently, numerous researchers have focused on Transfer Learning, which studies how pre-

vious knowledge can be generalized and reused in different, but similar contexts. Transfer

Learning is widely used in mental base activities, such as spelling and movement assistance.

In this chapter, we use some current generative models, such as LDA, and HDP, to create

some new Transfer Learning models for our cluster labeling task.

Suppose we have a large side corpus A and a small cluster B that we would like to

label. The simplest approach is to ignore A and to build a language model for B (with

LDA or HDP), from which we can extract keywords with the highest generation probability.

However, since B is small, the latent structure of B may not be correct because the model

can be easily affected by abnormal occurrences of some words. Another way is to build

our language model based on A
⋃
B. But there are two possible pitfalls:

• Since we do not know the relationship between A and B, if A is quite different from

B, then there may be some negative learning. In other words, the label may be good

for A but not for B since A is much bigger than B .

28

• The efficiency is another issue. When training with A (which should be as large as

possible), Gibbs sampling for either LDA or HDP may take hours or days to converge.

Many web pages are updated on a daily or even hourly bases, so it is too expensive

to label the large set of rapidly changing web pages.

Ideally, we would like to learn a generic language model from A only once, which is

similar to a child learning his (or her) native language. Assuming A is large, this may take

a long time. This procedure is similar to a child going through several years of education

to grasp grammar and meaning of each word in his (or her) vocabulary. When children

get a cluster of documents to label, they would naturally use their previous knowledge to

understand the words they have already seen, and then synthesize the topic of the cluster.

We use a similar idea to build our Transfer Learning models in this chapter. We import (or

transfer) some information, as prior knowledge, from A′s language model to quickly build

a new tailored language model each time a new cluster must be labeled. The importance

of the language model of A to improve the language model of B depends on how close A
is to B.

As explained in chapter two, there are three outputs generated after a topic model

is built from a data set. They are the document-topic distribution θ, the topic-word

distribution φ, and the topic assignment for each word at the last sampling step. Then,

we need to decide which output is good to transfer knowledge to the new cluster. θ is the

topic distribution for each document. Since we don’t know the new cluster’s document

structure, we cannot pass θ for transfer learning. If we pass φ to the new cluster, then

it seems like we assume that the topic-word distributions are the same in A and B, and

this will correspond to o-LDA in chapter two. So, we pass the words’ topic assignments to

the new cluster as a previous sample result that is used to set the hyperparameters of a

Dirichlet prior over the topic-word distribution. This allows us to bias the language model

of B without necessarily making it equal to A’s language model. Let’s use nwt to denote

the frequency with which word w is assigned to topic t. To compensate for the differences

between A and B, we introduce another parameter c ∈ [0, 1] as the weight of A in the prior

of B (i.e., the frequencies nwt are multiplied by c in the hyperparameters of the Dirichlet

priors). When c = 0, this means that we assume A and B are totally unrelated and so

29

ignore A. The result is same as apply LDA on B only. When c = 1 then A and B are

from the same corpus and contain documents with roughly the same statistics. The result

of this case is same as apply LDA on A
⋃
B. So, as we could obtain the weight c between

these two values, we could let data to claim how many knowledge, which the model learned

from A, need to be transfer to the language model on B. Since the perplexity curve with

respect to c is generally convex, it is possible to use a binary search to find the best weight

faster.

In this chapter, we will show how to find the best weight c using binary search algorithm,

and how to use LDA, and HDP combined with the weight to transfer knowledge from one

language model to another.

3.2 Corpus Perplexity

The metric used to evaluate the fitness of language models is the standard perplexity from

the information retrieval literature. Perplexity is a measure of how “surprised” the model

would be to see a sequence of words, which is related to the probability that the model

would produce a sequence of words [14]. For example, suppose we have a test set Dtest of

documents, let us use wd to denote the sequence of words w in each document d in Dtest
and w̃ denotes the entire word sequence in Dtest (w̃ = w1 + ...+w|Dtest|). Also, let’s denote

our model by M. The perplexity of w̃ is:

perplexity(w̃|M) =
∏

d∈Dtest

P (wd|M)
− 1

nd (3.1)

= exp(−
∑

d∈Dtest
logP (wd|M)∑
d∈Dtest

nd
) (3.2)

where nd is the number of words in document d. Since P (wd|M) is the conditional proba-

bility of the word sequence given the language model M , we can compute it as follows:

P (wd|M) =

nd∏
n=1

K∑
k=1

P (wn = w|tn = k) · P (tn = k|d = d) (3.3)

=
V∏
i=1

[
K∑
k=1

φkwi
· θdk]n

wi
d (3.4)

30

Here, V is the dictionary size of the test data set, and wi is the ith word in the dictionary,

where i is from 1 to V . In contrast, wn is the word in the nth location in a document,

tn is the topic assignment for word wn, and K is the total number of topics. Taking the

logarithm, we obtain:

logP (wd|M) =
V∑
i=1

nwi
d log(

K∑
k=1

φkwi
· θdk). (3.5)

The above equation shows that the perplexity is the geometric average of the reciprocal

probability over all words in the test data set. So, we can see that without the constant

factor (− 1∑
d∈Dtest

nd
), the term

∑
d∈Dtest

logP (wd|M) is the average conditional log proba-

bility or log likelihood of the test corpus. So, a lower value of perplexity implies a high data

likelihood for text analysis. We use perplexity as the main measure to compare transfer

learning models in this thesis.

3.3 LDA Transfer Model

We introduce how to use LDA to build the LDA-Transfer model (LDA-Trans) in this sec-

tion. For cross validation, we separate the new cluster in two parts. 90% of the documents

are chosen at random and denoted by B. The remaining 10% is denoted by C. In this way,

B is used for learning and C is used for testing. To generate the Transfer Learning model

based on A, B and C, we propose the following approach. Suppose that we have already

built a language model with |T | topics for A and stored the frequencies nw,t (number of

terms with word w assigned to topic t). However, we need to weigh the frequencies of A
with the weight c, which indicates implicitly our belief of similarity between A and B.

At the first step, we apply batch LDA on the side corpus A, then, we store the topic

assignment for each word in a matrix FA where each element is nwt. Next, we obtain a

weight c based on the perplexity. Although we don’t know how similar the side corpus A
and the new cluster B

⋃
C are, we know that if c = 0 then our transfer learning model

will do the same thing as applying batch LDA on the cluster. In other words, there is

no knowledge passed to the cluster to improve the accuracy. If c = 1, then the topic

31

assignments will be passed to the cluster under the assumption that A and B have the

same latent structure. We do a search for the weight c between 0 and 1. Since we observed

that the perplexity curves generated by our transfer learning models for the new cluster

are convex with respect to c, a binary search described in Algorithm 7 can quickly find the

weight c with the lowest perplexity:

Algorithm 7 FindWeight
Inputs: ACC

Output: weight c

Set wL = 0, wM = 0.5, wR = 1

Evaluate pL = TransModel(wL); pM = TransModel(wM), pR = TransModel(wR);

repeat

Set wLM = (wL + wM)/2; Evaluate pLM = TransModel(wLM);

Set wMR = (wM + wR)/2; Evaluate pMR = TransModel(wMR);

Set x∗ = argminx∈{L,LM,M,MR,R}px;

Set c = wx∗ ;

if c == wL then

wM = wLM ;wR = wM ;

pM = pLM ; pR = pM ;

else if c == wR then

wM = wMR;wL = wM ;

pM = pMR; pL = pM ;

else

wM = c; wL = LeftNeighbor(wM); wR = RightNeighbor(wM);

pM = px∗ ; pL = pwL ; pR = pwR ;

end if

until |wL − wM | < ACC or |wR − wM | < ACC

return c

Here, the function TransModel(w) is used to call LDA-Trans model or HDP-Trans

model with the weight w and return the corresponding perplexity value. The function

LeftNeighbor(w) is used to return the weight on the left hand side of w andRightNeighbor(w)

returns the right hand side of w.

32

For the LDA-Trans model, we initialize the prior distribution over topic assignments

in B with the posterior distribution (based on A) weighted by c. In other words, we set

the hyperparameters of the prior to c times nAwdi,t
. We use Gibbs sampling to repeatedly

re-sample each Tdi as follows:

P (Tdi = t|t−di,w) ∝ P (wdi|Tdi = t, t−di,w−di)P (Tdi = t|t−di) (3.6)

∝
c · nAwdit

+ nwdi
−wdi,t

+ β

c · nA·,t + n·−wdi,t
+ |W|β

nd−wdi,t
+ α

nd−wdi,· + |T |α
(3.7)

Here nAwdi,t
is the number of terms with word wdi assigned to topic t in corpus A and

nwdi
−wdi,t

is the number of terms with word wdi assigned to topic t in B excluding the ith

term of document d. LDA-Trans is described in Algorithm 8.

Algorithm 8 LDA-Transfer Model
Inputs: FA, B, C, T , and weight c

Output: θ, φ and perplexityc

for each d ∈ B, i ∈ {1, ..., Nd} do
Apply weight c to sample the topic of each word:

P (Tdi = t|t−di,w) ∝ P (wdi|Tdi = t, t−di,w−di)P (Tdi = t|t−di)

∝
c · nAwdit

+ nwdi
−wdi,t

+ β

c · nA·,t + n
(·)
−wdi,t

+ |W|β

n
(d)
−wdi,t

+ α

n
(d)
−wdi,· + |T |α

end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α
Apply LDA on Test data set C with φ

Calculate Perplexity of Test data set C via

perplexityc = perplexity(w̃|M) = exp(−
∑

d∈C logP (wd|M)∑
d∈C nd

)

return perplexityc

Note that the running time of the algorithm is dominated by the time to search for the

33

best weight c which is O(2 log n) that of LDA. Here, n is the number of possible values that

are considered for c. For example, we set ACC (accuracy) to 0.001 in this thesis. Hence,

there are 1000 values between 0 and 1, however, we only need to evaluate the perplexity

of about 20 weights need to ensure an accuracy of 0.001.

We will show in the experiment section of this chapter that by using A in this fashion,

we obtain a perplexity for c that is much better than training based on B only and almost

the same as training with A
⋃
B, but in less time.

3.4 HDP Transfer Model

If we already know the number of topics in the language, then LDA-Trans is an efficient

model for transfer learning. However, if we don’t know the number of topics in the language,

then LDA-Trans is quite slow because we need to try several numbers of topics to find the

best one. Moreover, after we generate a language model for A and we get the topic set tA,

we still don’t know whether the topic set in B will be covered by tA. In other words, if

there is a new topic tnew in B, it cannot be found by LDA-Trans. Hence, we consider HDP

to build an alternative transfer model. In addition to weighting the importance of A, we

allow the number of topics to vary. This is quite useful when B is significantly different

from A. In order to apply HDP, we need more information from A.

Besides the term frequencies, we also need to know how many groups mdt in each

document d are assigned to each topic t. Because we use LDA to generate a language

model for A, there is no variable to store the information about the groups. However, we

can sample Mdt, the number of groups to be assigned with topic t in document d, from

the average topic distribution over documents, denoted as θ̄. When the language model is

obtained by LDA, we do not have a cluster-level topic mixture. However, the document

level topic mixtures θd are sampled i.i.d. from some Dirichlet for each document, so we

construct a cluster-level topic mixture by taking the average: θ̄ =
∑

d θd. So, Mdt can be

sampled as follows:

P (MA
dt = m|mA−dt, θ̄) ∝

Γ(αθ̄t)

Γ(αθ̄t + nd·t)
s(nAd·t,m)(αθ̄t)

m. (3.8)

34

Here, nAd·t is the number of words assigned to topic t in document d in A. Also, the

weight c in HDP-Trans can be generated by the same method as LDA-Trans. Then, we

can apply HDP to learn a language model for the new cluster as Algorithm 9.

Algorithm 9 HDP-Transfer Learning
Inputs: FA, B, C, T and weight c

Output: φ, θ, and perplexityc

for each d ∈ B, and i ∈ {1, ..., Nd} do

Compute f−wdi
t (wdi) =

cnAwdi,t
+n−di

wdi,t
+β

cnA·,t+n
−di
·,t +|W|β

Sample the topic tdi of the ith word in the document d in B by :

P (Tdi = t|t−di,m, t̄) ∝

{
αθ̄uf

−wdi
t (wdi), if t is new;

(n−did·t + αθ̄t)f
−wdi
t (wdi), otherwise.

Sample mdt for document d in B by

P (Mdt = m|t,m−dt, θ̄) ∝ Γ(αθ̄t)

Γ(αθ̄t + nd·t)
s(nd·t,m)(αθ̄t)

m;

Sample θ̄ according to (θ̄1, ..., θ̄k, θ̄u) ∼ Dir(m·1, ...,m·k, γ)

calculate m·t =
∑

dmdt + c ·mA·t .
end for

Compute topic-word distribution φ =
n
(wdi)
−wdi,t

+β

n
(·)
−wdi,t

+|W|∗β

Compute document-topic distribution θ =
n
(d)
−wdi,t

+α

n
(d)
−wdi,·

+|T |∗α
Apply LDA on Test data set C with φ

Calculate Perplexity of Test data set C via

perplexityc = perplexity(w̃|M) = exp(−
∑

d∈C logP (wd|M)∑
d∈C nd

)

return perplexityc

In the step that samples topic tdi, a new topic may be generated with a probability,

that depends on the hyperparameter γ. Hence, HDP-Trans can generate new topics for

35

the new cluster. Moreover, if there exist more topics than necessary, HDP will also delete

extra topics that have not been assigned any word and that do not exist in A. In this way,

HDP-Trans can generate a suitable number of topics for A, B and C.

3.5 Experiments

3.5.1 Experiments Dataset

We use three different data sets to evaluate our models: two from Reuters and one provided

by our industry partner, Google Inc. The Reuters data set (“Reuters 21578, Distribution

1.0”) can be obtained via Lewis’ professional home page 1. This data set is widely used

in information retrieval, machine learning, and other corpus-based research areas. The

data was originally collected and labeled by Carnegie Group, Inc. and Reuters, Ltd. in

the course of developing the CONSTRUE text categorization system. The documents in

the Reuters-21578 collection appeared on the Reuters newswire in 1987. The documents

were assembled and indexed with categories (or topics) by personnel from Reuters Ltd.

and Carnegie Group, Inc. There are 135 topics in this data set. Considering the hardware

available and the model complexity, we just choose part of the data set to build our test

cases.

Each test case consists of a large side corpus A and a new cluster B
⋃
C, which needs

to be labeled. The new cluster is divided in a training subset B and a testing subset C.
Moreover, the subset B includes 90% of the documents from the new cluster, and the subset

C includes 10% of the documents.

For the first case, we use a large data set A as our prior knowledge, which consists of

random documents from the ACQ (acquisition), AUSTDLR (Australian Dollar), BARLEY,

CARCASS, COCOA and WHEAT categories. We randomly choose some documents from

the ALUM (aluminium) cluster to be our new cluster B
⋃
C. This is an example of a

situation where the new cluster is quite different from the large side corpus.

1http://www.research.att.com/̃lewis

36

Properties ALUM ACQ Industry

number of docs in A 454 195 1047

number of docs in B 53 31 45

number of docs in C 5 4 4

size of dictionary 5473 2587 43154

number of terms in A 38124 11851 456298

number of terms in B
⋃

C 4555 2172 17948

Labeling word alum acq N/A

Table 3.1: Size and properties of each dataset

The cluster B
⋃
C of the second Reuters data set consists of 35 documents from the ACQ

(aluminium) cluster, while the side corpus A owns 195 documents from ACQ (different

from those in B
⋃
C). This is an example of a situation where the cluster and corpus share

similar content.

The cluster B
⋃
C of the industry data set consists of web pages from a set of jewelry

shopping sites, while the side corpus A consists of web pages from other clusters assembled

by our industry partner. From now on, we will refer to these data sets by ALUM, ACQ

and Industry. Table 3.1 indicates the size of the documents, the dictionary, the number of

terms, and labeling word for each data set.

3.5.2 Comparisons

In the first step of our labeling task, we build a language model for each large side corpus

A in each data set using LDA. We separate the corpus A in two parts: one part that

contains 90% of the documents for training, and the rest for testing. Since the number

of topics of each data set is unknown, we denote |TLDA| to be the number of topics set

a priori for LDA. The range of |TLDA| is from 1 to 100. Also, we set α = 5/(3 ∗ |TLDA|)
and β = 0.01 for each data set. After we generated a perplexity curve in function of the

number of topics, we found that the perplexity goes down as the number of topics increases

without any sign of overfitting. The reason for this is that each document is allowed to

37

have its own mixture of topics, which means that the more topics the better the fit will be.

In other words, we can think of the topics as basis functions and the mixture of topics as

coefficients of the basis functions. So, to keep the number of topics in a reasonable range,

we set a penalty function for our LDA models. The purpose of this penalty function is to

increase perplexity as the number of topics increases. For example, we use perplexity + 2 *

thenumberoftopic as a penalty function in this thesis. Also, we use “penalized perplexity”

to denote the perplexity value after apply a penalty function. The perplexity curves for

the three data sets are shown in Figures 3.1, 3.2, and 3.3.

Figure 3.1: LDA on Large Side Corpus A - ALUM

38

Figure 3.2: LDA on Large Side Corpus A - ACQ

Figure 3.3: LDA on Large Side Corpus A - Industry Test Case

The results suggest that the best number of topics for ALUM is 28, for ACQ is 24, and

for the Industry Test Case is 42. At the same time, we also obtain the frequencies nwt of

the topic-word assignment for A.

The second step is to transfer the language model learned from the large side corpus

to the new cluster. More specifically, we use the frequencies nwt of A’s topic assignment

weighted by the best weight c found for each cluster to set the prior for each cluster. This

39

Parameters ALUM ACQ Industry

|TLDA| 28 24 42

αLDA 5/(3 ∗ |TLDA|) 5/(3 ∗ |TLDA|) 5/(3 ∗ |TLDA|)
β 0.01 0.01 0.01

αHDP 5/3 5/3 5/3

γ 0.1 0.01 0.1

Table 3.2: Parameters for each dataset

process summarizes the LDA-Trans and HDP-Trans models for the new text cluster. The

parameters for these models are shown in Table 3.2.

The perplexities of LDA-Trans and HDP-Trans for each test data set are shown in

Figures 3.4, 3.5, and 3.6. In those figures, we show the perplexity of 4 language

modeling techniques for the cluster of each dataset. In all cases, testing is done on the

subset C of each cluster. The first technique uses LDA and trains only on B, which is

fast, but not robust when the cluster is small. The second technique uses LDA to train on

A
⋃
B, which may improve or worsen the quality of the language model depending on the

content similarity ofA and B. Furthermore, training takes much longer due to the inclusion

of the side corpus (the run time is reported in the next section). The third and fourth

approaches train with LDA and HDP respectively on B with the weighted frequencies of

A included in the prior.

For the ALUM dataset, since the content of the cluster and corpus are quite different,

there is no advantage to include A in the training. Figure 3.4 confirms that training only

on B yields lower perplexity than training on A
⋃
B for a small number of topics. As the

number of topics increases, all techniques eventually perform similarly. The best weight

found to scale the frequencies of A in the prior of LDA and HDP was lower than 0.1,

confirming again that A provides no relevant information to the language model of B. In

addition to ignoring A, the HDP-Trans technique increased the number of clusters to 29

to better fit cluster B and to obtain a slightly lower perplexity.

For the ACQ dataset, since all of the documents of the side corpus are from the same

40

Figure 3.4: Perplexity - ALUM

Figure 3.5: Perplexity - ACQ

41

Figure 3.6: Perplexity - Industry

homogeneous set as the cluster, including A in the training improves the quality of the

language model. This is confirmed in Figure 3.5 where the perplexity of training on A
⋃
B

is clearly lower than training on B only. However, the training time was much longer as

shown in Table 3.3. The approaches that include the weighted frequencies of A in the prior

for LDA and HDP achieved a lower perplexity than only training on B. While the best

weight is small (i.e., 0.195), note that it is more than 30 times larger than the best weight

for the ALUM cluster and the resulting weighted frequencies had a clear effect since the

perplexity was decreased to much lower than the perplexity obtained by training on B only.

Since the LDA-Trans and HDP-Trans techniques perform the training on A in a separate

initial off-line phase, they only need to train on B at the time of labeling the cluster. The

fact that the weighted frequencies of A are included in the prior does not affect the running

time since Gibbs sampling only needs to re-sample the topic assignments of the words in

B. As a result, HDP-Trans and LDA-Trans obtain a language model of close quality to

training on A
⋃
B, but at a much lower cost.

For the industry dataset, the cluster and side corpus include web pages of various

sites, but it wasn’t clear to us initially how related their content would be. This is also

42

confirmed in Figure 3.6 where training only on B has lower perplexity than training on

A
⋃
B. While LDA-Trans does a bit worse than training only on B, HDP-Trans obtains a

similar perplexity.

3.6 Running Time

In order to deploy our transfer model in an industrial environment, we not only focus on

the accuracy, but also consider the run time. Since the size of a cluster to be labeled may

not be large enough to produce a robust language model, our transfer learning models

use a large side corpus as prior knowledge to complement the cluster. However, since

the side corpus is processed offline once, our transfer learning approaches have the benefit

that the online time to learn the language model of the cluster depends only on the size

of the cluster. This is particularly useful when we consider the fact that new clusters of

documents are generated every day on the web and there is a need to process them as they

arise.

Table 3.3: Running time

Table 3.3 reports the online running time of building a language model for a new cluster

B with 4 different approaches. The simplest approach consists of running LDA on B (first

column of Table 3.3). Since the number of topics is unknown for LDA, LDA the time

reported is for 100 runs of LDA for 1 to 100 topics where the best number of topics is

selected by minimizing the perplexity with a penalty term that acts as a regularizer. This

is our first baseline, which has a fast running time, but may not be robust when B is small

as demonstrated in the previous section. Our second baseline consists of running LDA on

43

the union of A and B to improve the robustness of the language model. Again, LDA is run

100 times to find the best number of topics. Since the running time scales linearly with

the size of the dataset and A is a large side corpus, it takes much longer to run. When the

side corpus is really large (Terabytes or even Petabytes), this approach does not scale. We

compared those two baselines to our proposed transfer learning models: LDA-Trans and

HDP-Trans. Here only the online time is reported. Although the side corpus is used in

both models, Gibbs sampling is performed only with respect to B. The frequencies of A
are included in the prior of the models, but they do not affect the running time of Gibbs

sampling. As a result, LDA-trans is much faster than LDA on A
⋃
B. It is also faster

than LDA on B only because the number of topics is optimized offline based on A. HDP-

Trans takes about the same amount of time as LDA on A
⋃
B and is slower than LDA

on B because it adjusts the number of topics online. Note here that HDP-Trans would be

faster than LDA on A
⋃
B had we considered larger side corpus since the running time

of HDP-Trans is not affected by the size of A. Recall also from the previous section that

the transfer models produce robust language models that weigh the side corpus according

to the degree of similarity of A and B, and HDP-Trans also adjusts the number of topics.

In the next chapter we will show how to generate labels based on the language models

obtained by LDA-Trans and HDP-Trans.

44

Chapter 4

Cluster Labeling

For our labeling task, we would like to return the words with the highest probability of

being generated by the language model for B. When the language model is obtained by

HDP, we use the corpus level topic mixture θ̄ and the word distribution φt for each topic

to compute the probability of generating word w as follows:

P (w) =
∑
t∈T

θ̄tφtw (4.1)

Note that the words with the highest probability of being generated are similar to those

with the highest frequency in B. However, the language model smooths out the frequencies

in a way that words that do not appear frequently, but are semantically related to other

frequent words, will see their generation probability boosted. For instance, a cluster of web

pages about jewelry shopping may repeat the words of specific items such as ring, gold and

diamond frequently, but may not include the word jewelry as frequently, although it is the

unifying concept. Since jewelry is closely related to these items, we expect its generation

probability to be boosted and therefore to rank higher among the top keywords.

In general, selecting words with highest generation probability is not perfect. Ideally,

we would like the keywords to be representative of the cluster, but also to distinguish the

cluster from other clusters. Common words will often have a high generation probability,

but won’t be specific enough to the cluster to distinguish it. Such common words tend to be

part of every topic. So to bias the labels towards words that are more specific, we consider

45

only the dominating topics. More precisely, we modify the above equation to include the

most likely topics up to a cumulative probability which is denoted as CPV . Without loss of

generality, assuming that the topics are ranked in decreasing order of mixture probability

(i.e., θ̄1 ≥ θ̄2 ≥ ... ≥ θ̄|T |) then we can score words as follows:

Score(w) =
k∑
t=1

θ̄tφtw, (4.2)

and
k−1∑
t=1

θ̄t < CPV and

k∑
t=1

θ̄t ≥ CPV (4.3)

4.1 Experiments

The label results are shown in Table 4.1. It compares the labels found by selecting the

19 words that are the most likely to be generated by the language models obtained by

LDA-Trans and HDP-Trans to the 19 most frequent words of each cluster (after removal

of the stop words) and the 19 words found by LDA when trained on B only (training on

the union of A and B is not practical for large side corpora as discussed in the previous

chapter). We manually bolded the keywords that are the most representative for each

cluster.

For the ALUM data set, the cluster consists of financial news articles about the alu-

minium industry. Here HDP-Trans ranks the two spellings “aluminium” and “aluminum”

at the top, which is optimal. HDP-Trans and LDA-Trans both decreased the rank of the

generic words “reuters” and “tonne” despite having the second and third highest frequency.

In comparison to LDA trained on B only, the results for LDA-Trans and HDP-Trans are

similar. This is exactly what we want since as explained in the previous chapter that A and

B have no relationship for the ALUM case. So the danger is that by using A, LDA-Trans

and HDP-Trans may end up producing worse results, but they effectively ignored A and

produced good results.

For the ACQ data set, the documents consist of financial news articles about acquisi-

tions and mergers. In this case, A and B are from the same set of documents and therefore

46

Table 4.1: Labels for each data set

47

we expect LDA-Trans and HDP-Trans to do better than basic frequencies and LDA trained

on B only. In fact, HDP-Trans obtained the keyword, “acquire”, which was generated from

the side corpus since the cluster doesn’t contain that word. Also, HDP-Trans ranked “ten-

der” fairly high even though this word appears only twice in the cluster. LDA-Trans

improved the ranking of “merger” in comparison to the ranking based on Frequency and

LDA.

Finally, the industry cluster consists of web pages from jewelry shopping sites. The

last table includes the keywords currently used by our industry partner in the ”Industry

Ref-Labels” column. While many keywords denoting specific pieces of jewelry have higher

frequency than “jewelry” itself, both LDA-Trans and HDP-Trans improved the ranking of

“jewelry” in comparison to the ranking based on frequency.

Figure 4.1: LDAs topic mixture θ̄ for the industry cluster.

48

Figure 4.2: HDPs topic mixture θ̄ for the industry cluster.

We can gain some insights into the performance of HDP-Trans and LDA-Trans by

comparing the topic mixtures θ̄ of their language models. According to the pseudocode

for HDP, HDP-Trans does not only sample a topic for each word in the document, but it

also samples mdt for each document. So, HDP-Trans tends to produce topic mixtures that

are concentrated in fewer topics as illustrated in Figures 4.1 and Figures 4.2. This may

explain the better language models and better labels obtained by HDP-Trans.

49

Chapter 5

Conclusion

5.1 Summary

Our objective is to design a new approach for efficiently labeling a bunch of text documents

in a cluster. In this thesis, we studied and reviewed n-gram language models, frequency

models, topic models and some related models for text analysis. Among those approaches,

the n-gram model considers a previous subsequence of n−1 words to predict the next word.

To improve the robustness of the predictions, it is common to smooth n-gram models

by combining them with lower order gram models or setting the prior with a weighted

combination of lower-order gram models. We borrowed this idea to design our transfer

learning models for topic modeling. N-gram methods obtain low perplexity because they

consider the word order, however, they are not suitable for cluster labeling because they

do not capture any notion of semantics. The frequency model uses term frequency and

document frequency to calculate and create a score metric for each word in the text data set.

This kind of method can find some important words, but, it ignores any latent relationship

between words. The topic model creates a topic distribution based on observed variables

(words) for each document. This kind of model also generates document-topic distributions

for each cluster in a data set. Since topic models focus on the semantic relatedness of words

while n-gram models focus on the ordering of words induced by the syntactic structure of

sentences, some researchers combined topic models with n-gram models to obtain lower

50

perplexity. While this hybrid approach does yield lower perplexity, it is mostly due to

the n-gram part of the model since syntactic structure is usually much more informative

than semantic information to predict future words. In fact the latent variables that used

to be interpreted as topics do not correspond anymore to topics. They simply capture

additional statistics beyond syntax to refine the prediction of future words. Unfortunately,

because the latent variables do not seem to capture any notion of semantic relatedness,

the resulting language model is not useful for cluster labeling. In the end, topic models

seem to be the most suitable for cluster labeling. However, to ensure that the topic models

are robust, it is often necessary to use a large amount of data such as a side corpus. Two

issues may arise when using a side corpus: it may take too long to process the side corpus

each time we want to label a cluster and the side corpus may not be related to the cluster.

Hence, this thesis explores transfer modeling techniques that can process the side corpus

once offline and weigh the importance of the side corpus based on the degree of similarity

of the cluster and the corpus.

In chapter three, we proposed two unsupervised techniques to achieve this goal. The

approaches, LDA-Trans and HDP-Trans, are based on topic modeling and transfer informa-

tion from a side corpus that is processed offline in order to reduce the online computation

to the cluster itself. The first step is to build a language model that implicitly quantifies

the semantic relatedness of words from a large side corpus, which is employed in addition

to the cluster itself. Let us use “knowledge” to denote the relationships between words.

Then we transfer this “knowledge” to the prior of the language model of the cluster and

automatically weight it based on the degree of similarity between the side corpus and the

cluster. Finally, we use the resulting language model to label the cluster. More precisely,

LDA-trans labels the cluster by reusing the topics learned from the side corpus. In con-

trast, HDP-trans may delete and generate new topics if the latent structure of the cluster

is different from the side corpus.

As the results show in chapter three, the complexity of these new transfer learning

models can be low. Moreover, as shown in chapter four, the transfer models rank better

keywords higher than by using raw term frequencies. Furthermore, our transfer models

permit extensive off line processing of the side corpus, but rapid labeling of new clusters.

51

5.2 Future Directions

This work could be extended in several directions. For instance, similar to online LDA, we

could grow the side corpus by adding new documents as we label clusters. So, instead of

keeping the topic assignments of the side corpus fixed, we could re-sample them according

to a “rejuvenation” sequence [2] each time we label a new cluster. This would have the

benefit of allowing the side corpus to grow, but more computation would be required each

time a cluster needs to be labeled. However, the incorporation of the cluster into the side

corpus could be done at a later time when some computing resources are available.

Another extension could consist of an alternative technique to determine the degree of

similarity between the side corpus and the cluster. Instead of optimizing a weight by cross

validation, which is time consuming, one could compare the topic distributions of the side

corpus A and the cluster B. More precisely, after generating the topic distribution for each

word, we could get a topic-document distribution θd : d ∈ A for each document d inside

corpus A. Let θA be the sum of the θd’s in A and similarly, let θB be the sum of the θd’s

in B. Then, the similarity between A and B could be calculated as:

Similarity = cos(θ) =
θA ∗ θB

||θA|| ∗ ||θB||
(5.1)

Our approaches’ performances are good for web content text. As cloud computing

becomes widely used, there is a great amount of data stored in various forms in the cloud.

I believe extending our transfer models to label clusters of files with various data types,

such as binary files or jpg files, should be a very interesting topic in the future.

52

Bibliography

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.

Journal of Machine Learning Research, 3:993–1022, 2003. 14

[2] Kevin R. Canini, Lei Shi, and Thomas L. Griffiths. Online inference of topics with

latent dirichlet allocation. Journal of Machine Learning Research - Proceedings Track,

5:65–72, 2009. 19, 52

[3] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On Sequential Monte Carlo

Sampling Methods for Bayesian Filtering. Statistics and computing, 10(3):197–208,

2000. 20

[4] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of

Statistics, 1(2):209–230, 1973. 22

[5] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data

Analysis. Chapman and Hall/CRC, 2nd edition, 2004. 5, 14

[6] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National

Academy of Sciences, 101(Suppl. 1):5228–5235, April 2004. 15

[7] H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, 1948. 2nd edn Section

3.23. 13

[8] Fred Jelinek and Robert L. Mercer. Interpolated estimation of Markov source param-

eters from sparse data. In Edzard S. Gelsema and Laveen N. Kanal, editors, Proceed-

ings, Workshop on Pattern Recognition in Practice, pages 381–397. North Holland,

Amsterdam, 1980. 13

53

[9] G.J. Lidstone. Note on the general case of the Bayes-Laplace formula for inductive or

a posteriori probabilities. Transactions of the Faculty of Actuaries, 8:182–192, 1920.

13

[10] D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I. Jordan, editor,

Learning in Graphical Models, NATO Science Series, pages 175–204. Kluwer Academic

Press, 1998. 15

[11] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural lan-

guage processing. MIT Press, 2001. 4

[12] Bhaskara Marthi, Hanna Pasula, Stuart J. Russell, and Yuval Peres. Decayed MCMC

Filtering. In UAI, pages 319–326, 2002. 18

[13] G. Salton. Automatic information organization and retrieval. New York: McGraw-

Hill, 1968. 6

[14] Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty, Dan

Melamed, Franz-Josef Och, David Purdy, Noah A. Smith, and David Yarowsky. Sta-

tistical Machine Translation. Final Report, JHU Summer Workshop, 1999. 30

[15] Xiaodan Song, Ching-Yung Lin, Belle L. Tseng, and Ming-Ting Sun. Modeling and

predicting personal information dissemination behavior. In KDD, pages 479–488, 2005.

17

[16] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Sharing

clusters among related groups: Hierarchical Dirichlet Processes. In NIPS, 2004. 22

[17] João Ventura and Joaquim Ferreira da Silva. Ranking and Extraction of Relevant

Single Words in Text. InTech Education and Publishing, Austria, 2008. 8, 10

[18] Hanna M. Wallach. Topic modeling: beyond bag-of-words. In ICML, pages 977–984,

2006. 25

[19] H. Zhou and G. Slater. A metric to search for relevant words. Physica A: Statistical

Mechanics and its Applications., 329(1):309–327, 2003. 7

54

	List of Tables
	List of Figures
	Introduction
	Research Contribution
	Thesis Organization

	Background
	Language Modeling
	Bayesian Learning and Plate Notation
	Frequency models
	Tf-Idf
	A metric of word relevance
	Alternative scoring functions

	n-gram Models
	Uni-gram Model
	Bi-gram Model
	Bayesian Smoothing

	Topic models
	Latent Dirichlet Allocation
	Online LDA
	Hierarchical Dirichlet Processes (HDP)

	Beyond Topic Model

	Language Modeling for Transfer Learning
	Transfer Learning
	Corpus Perplexity
	LDA Transfer Model
	HDP Transfer Model
	Experiments
	Experiments Dataset
	Comparisons

	Running Time

	Cluster Labeling
	Experiments

	Conclusion
	Summary
	Future Directions

	Bibliography

