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Abstract 

Manufachiring industries are now expected to have substantiai increases in flexibibty, productivity 

and reliability as well as increasing quaiity and value of their products. Automatic Data Pracessing 

(ADP), sensitive microprocessor, and power electronic equipment are becoming an essential part to 

control and automate different assembly lines. However, due to the growing economic pressure, 

modem electrical equipments are designed to meet their operating limits. This fact means chat 

different equipment rnanufacturers face a dud responsibility to both desensitize against power 

disturbances and protect their equipment from power faults. This incompatibility issue, between 

power system disturbance levels and imrnunity of equipment, results in a severe impact on the 

industriai processes, which is known as power quality problem. 

To conml and improve electric power quaiity, the sources and causes of any disturbance must be 

determined. However in order to achieve this, monitoring devices must have the capability to detect, 

locaiize those disturbances and further classify and quantify different types of power quality problems 

for a proper mitigation method. 

Different monitoring devices and disturbance anaiyzers are ûvailable that can detect and collect large 

amount of power quality data However, there are general problems that exist when dealing with these 

disturbance anaiyzers. Off-line anaiysis is always required. This is due to the design criteria for 

detection and classification the disturbance. If we utilize the point-by-point comparison technique it is 

often difficult to build automated recognition system that can on an on-line basis classify the power 

quality problems such as transient, oscillatory, or non-stationary disturbances. Using this monitoring 

strategy, one cannot monitor certain class of disturbances or distinguish arnong similar ones. 

Furthemore, the selected threshold values (high or low) to be used in detecting different 

disturbances, may lead to large dimensionality of stored data or undetected important disturbances. 

The limited capability of Fast Fourier Transform (FFT), while dealing with non-stationûry 

disnubances, is another drawback in the cxisting monitoring devices. 

The goal of this thesis is to overcome the deficiencies that exist in monitoring devices and to design 

diable, accurate and a wide-scaie power quality monitoring system with superior characteristics. 

S o m  of the characteristics in the proposeci technique are: 



Fast detection and localization of disturbances that may overlap in time and frequency in a noisy 

environment. 

On-line classification by extracting discriminative, translation invariant features with small 

dimensionality, which can represent efficiently the voluminous size of distoned data. 

Analysis of different non-stationary disturbances and measure their indices. 

De-noising ability and high efficiency in data compression and storing. 

A wavelet-based power quality automated recognition system is proposecl in this thesis. This system 

will assist in the automated detecting, classifying, and measuring different power system 

disturbances. This system cm overcome the drawback in the existing monitoring devices. 
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Chapter 1 

Introduction and Objectives 

1.1 Introduction 

Manufacturing industries are now expected to have substantial increases in flexibility, 

productivity and reliability as well as increasing quality and value of their products. Automatic 

Data Processing (ADP), sensitive mimprocessor, and power electronic equipment are becoming 

an essential part to control and automate different assembly lines. However, due to the growing 

economic pressure, modern electrical equipments are designed to meet their opemting limits. 

This fact means that different equipment manufacturers face a dual responsibility to both 

desensitize and protect their equipment. This incompatibility issue. between power system 

disturbance levels and immunity of equipment, results in a severe impact on industriai processes. 

Futthemore, the increasing trend towards deregulation pushes generation-transmission- 

distribution owners to exchange clean power at different ownership locations and to supply high 

quality power to their custorners. With such a multiswnership generation-transmission- 

dism%ution chain, identifjing a source of any disturbance, that may affect the customers, 

becoaies a difficult task This emphasizes the need to identify a baselirw of the etecuic-quiility 

levels at each physical location where the electric power ownership changes. 
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Monitoring of power quality levels has received a considerable attention in recent years, This 

interest is even increasing nowadays due to the increasing use of sensitive equipment in customer 

loads and the impact of the open market trend. in order to monitor power quality problems, 

traditional disnubance recording systems have been upgraded with real time sampling and 

analysis features. The ability to extract information rather than data from system response is an 

important requirement for modem power quality monitors. 

Powec Quaiity is the combination of voltage quality and current quality. It is defined according 

to its effect on different parts of the power system. It is defined as the reliability of the system 

from the electric utility point of view. Equipment manufacturecs defined it as the changes in the 

characteristics of the power supply. The customers, who are most affected by power quality 

issues, defined it as any power problem manifested in voltage, current, or frequency deviations 

that results in the failure or misoperation of their equipment [l -23 1. 

Poor quality of the electric power is normally caused by power line disturbances, shown in Figure 

1.1, such as oscillatory and impulsive transients, glitches, sags, swells, over voltages, and 

h m n i c  distortion. As indicated in [6], what were considered as an ignored variation in power 

supply may now bring whole factories to stand-still. A power interruptions or 30% voltage sag 

lasting mere hundredths of a second, for example, can reset programmable controllers for an 

assembly line, while adjustable-speed drivers for motorized equipment on the assembly line may 

themselves be sensitive to voltage harrnonics or transients. 

It is not easy to make a good estimation of the cost of pollution in the quality of power. 

According to [6] and (151, poor power quality in the United States causes about $13.3 billion in 

damage per year. Foilowing a voltage sag, for example, the restûning of the assembly lines may 

required clearing the Iines of damaged work, restarting boilers, and reprogrmming automatic 

contmls for a typical cost of $ 50,000 per incident. One glas  plant estimates chat a five cycle 

interruption - an outage of less than a tenth of a second- can cost about $200,000, and a major 

cornputer centre reports that a two second outage c m  cost some $600,000. 
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Figure 1.1: Electric power quality probf ems 
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Thus, while only a few short yem ago, power quality monitoring was a rare feature to be found 

in instruments, it is becoming much more cornmonplace in comrnercially available equipment. 

The products and services related to power quaiity now represent a multibillion-dollar market in 

the United States alone [15]. 

Power quality monitoring is an important action to quantify the baseline of the elecuicquality 

levels throughout the generation-transmission-distribution chain and customers coupling points. 

To control and improve electric power quality, the sources and causes of any disturbance must ùe 

detemhed. However in order io achieve this, monitoring devices must have the capability to 

detect and laçalize those disturbances and then further classify and quantify different types of 

power quaiity problems. 

Different monitoring devices and dis~rbance analyzers are available that can detecc and 

collect large amounts of power quality data. However, there are general problems that 

exist when dealing with these disturbance analyzers. Off-line anaiysis is always required. 

This is due to the design criteria for detection and classification of the disturbance. If we 

utilize the point-by-point cornparison technology it is often difficult to build an 

automated recognition system that cm, on an on-line basis, classify the power qudity 

problems such as transient, oscillatory, or non-stationary disturbances. Using this 

monitoring strategy, one cannot rnonitor certain classes of disturbances or distinguish 

among similar ones. FurtIiermore, the selected threshold values (high or low) to be used 

in detecting different disturbances, may either leaà to a large dimensiondity of stored 

data or to undetected important disturbances. The limited capability of the Fast Fourier 

Transfocm (Fm, when dealing with non-stationary disturbances, is another drawback in 

existing monitoring devices. 

1.2 Research Objectives 
The goal of this thesis is to design a sophisticated power quality monitoring system with 

improved detection characteristics. S o m  of the characteristics in the proposed technique 

are: 
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Fast detection and localization of disturbances that may overlap in cime and 

frequency in a noisy environment. 

On-line classification by extracting discriminative, translation invariant features with 

small dimensionality, which can represent efficientiy the voluminous size of 

distorted data. 

Analysis of diffetent non-stationary disturbances and measures of their indices. 

De-noising ability and high efficiency in data compression and storing. 

A wavelet-based power quaiity automated recognition system is proposed in this thesis. 

This system wiil assist in the automated detection, classification, and measurement of 

different power system disturbances. This system can overcome the drawbacks in 

existing monitoring devices. 

1.3 Thesis Layout 

Chapter 2 presents a general review of power quality problems and their effects on a power 

system. Classification of different power quality problems, according to EEE standard 1159 

[16], is reviewed. A sumrnary of the utilized detection techniques in different monitoring devices 

is aisa discussed in this chapter..in Chapter 3 a cornprehensive survey of the wwelet transform 

and its application to power systems is discussed. The efficiency of wavelet trünsfonn and multi- 

resolution signal decomposition for transient anaiyses, system protection, equipment testing, and 

monitoring power quality problems are discussed. The mathematical background of the wavelet 

transform and rnulti-resolution anaiysis is presented in Chapter 4. The andysis and synthesis 

procedure for implementing multi-resolution andysis is discussed, This Chapter presents 

different signal processing techniques chat are used to implement wavelet transform and multi- 

resolution analysis. The property of time-frequency localization and the partitioning of a distoned 

signai's energy at different resolution levels are dso presented in this chapter. 



The goal of this thesis is to design a reliable, accurate and wide-scde power quality monitoring 

system with superior characteristics. Utilizing the wavelet-based techniques to constmct the 

proposed automated recognition system is presented in Chapters 5, 6, 7 and 8. Chapter 5 

highlights the procedure to map the distorted signai into the wavelet domain. A wavelet-based 

procedure to detect and localize any disturbance, in a noisy environment, is presented. Cn Chapter 

6, a new technique is proposed that has the ability to decompose any distorted signal into 

different building blocks and exnact time-frequency features simultaneously from each block, 

The dimensionality of data is mapped into a smdl number of interpretable features. These 

features are proven to be very efficient in auto-classifying different power quality problems that 

overlap in time and frequency. Chapter 7 presents a new measurement technique chat can 

measure accuntely a wide range of.different power quality problerns. The proposed technique is 

implemented to measure different parameters in a power system. This chapter also introduces a 

new wavelet-based procedure to monitor the non-rectangular variation of RMS value in the 

signd. Chapter 8 is devoted to develop a new procedure chat will compress and store the 

distonion event efficiently. This procedure is based on wavelet analysis, where a small set of 

wavelet coefficients represents the disturbances will assist in achieving this goal. This procedure 

will replace the existing technique of storing ail sampling points of a disturbance. Finally, 

Chapter 9 offers the main conclusions of this work and suggests topics for future research. 
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Chapter 2 

Power Quality Problems 

2.1 Introduction 

A Power Quaiity Problem is defined as: Any power problem manifested in voltage, current. or 

frequency deviations that results in the failure or miss-operation of customer equipment. It h a  

been documented in [l] that power-related problems cost U.S. companies approximately f 26 

billion a yew in lost time and revenue. As a result there is increasing interest in the power 

quality problems. The sources of power quaiity problems ye many and in the following sections 

we will discuss some of these problems. 

There are fundamental changes that taire place in the loads. Current electronic and power 

electronic equipment has become much more sensitive than their counterparts 10 or 20 years 

ago. Furthemore, some of this equipment may generate disturbances and reduce the power 

quaiity level of the system. This causes a significant impact on the quality of the power. Such 

equipment, which utilize micrwlectronics, are responsible for a growing category of loads 

(residentiai, commercial, and industrial) that are sensitive to variations of the power supplied. 

Large-scaie integration @SI) and very large scale integration (VLSI) of modem chips have 

resulted in faster and more complex components. An additionai advantage for such equipment is 

higher memory per unit surface, with fewer requirements of voltage and power levels, thus 

reducing energy consumption and ventilation needs. Unfortunately, these types of equipment are 

becoming more easily disturbed as the voltage levei is reduced. 



Power electronics have produceci a new generdn  of low-cost, high-capacity equipment, thus 

expanding its use. Nevertheless, this same equipment is responsible for disturbances in the power 

system, to which micmlecvonic equipment is susceptible. It is estimated that the portion of 

electnc energy generated for microelecvonic 104s that are processed by power electronics will 

increase from the present level of 10%-20% up to 50%-60% by the year 2010 [6][81[ 141. 

While these changes in the loads are taking place, utilities and industries are continuing to install 

capacitor banks for voltage control and loss reduction. These capacitors have a significant 

influence on power quality problems, since they rue working as a "sink" for high frequency 

currents and can worsen the situation by increasing harmonic resonance levels in the systern. 

The open cornpetition power market is another factor that increûses the interest in power quality 

and increases the need for standiudization. Elecuicity is now being viewed as a product with 

certain chmcteristics, which have to be measured, predicted, gumnteed, improved, etc. The 

elecuic customer can buy elecvic energy fmm one company, transmit it thmugh the 

triuisrnission lines of another company and pay the local utility for the actual connection to the 

system. It is no longer clear who is responsible for the reliability and the quality of the supply. 

Designing a system with high quality of supply, for lirnited cost, is a technical challenge that 

appeals to many in the power indusuy. 

Finally, the era of digital signal processing techniques and the availability of electronic devices 

to measure and show wavefoms has cenainly contributed to the interest of improving power 

quality and finding its indices. Different techniques can be implernented in hardware and 

installed on a system to give on-line "reai-time" applications. 

2.2 Classifications of Power Quality 
In order to be able to classify different types of power quality problems, the chmcteristics of 

each type must be lcnown. in general, power quality phenornena are divided into two groups: 

steady state and non steady state. Diierent power quality problems are classified as in [2] and 

[la and will be discussed below: 



2.2.1 Transients 
Transients refer to variations in the voltage wûvefocm, which results in over-voltage conditions 

for a fraction of a cycle of the fundamental frequency. Transients are clrissified as impulsive or 

oscillatory. 

2.2.1.1 Impulsive transient 
It is a sudden change in the steady-state condition of the voltage or current. It is unidirectional in 

polarity. Impulsive transients are normally characterized by their rise and decay times. The most 

common cause of impulsive transients is lightning. The general characteristics of impulsive 

transients are summarized in Table 2.1 and shown in Figure 2.1 [2] and [ 161. 

Table 2.1: Characteristics of impulsive transient and typical causes and solutions 

Typical 

Duration 

< 50 ns 

50ns - L ms 

< 1 ms 

A - impulsive 

Transient 

1 - Nanosecond 

2 - Microsecond 

3 - Millisecond 

Typical 

Spectral 

5 n s rise 

1 psrise 

0.1 ms tise 

Method of 

Charactenation 

Typical Causes 

Examples of 

solutions 

Peak magnitude, rise time, duration 

Lightning, Electro-Sutic Discharge, Load switching 

Surge anesters, Filters, Isolation Transformers. 



Time (s) 

Figure 2.1 : Impulsive transient 

2.2.1.2 Oscillatory transient 
It is a sudden change in the steady-state condition of the voltage or current. It includes both 

positive and negative poliuity values. It is described by its spectral content, duration, and 

magnitude. Using the spectral content the oscillritory transient is classified into three subclasses: 

High-frequency oscillatory mnsient 

Medium-frequency osciHatory transient 

Low-ftequency oscillatory tnnsient 

The general characteristics of different oscillritory transients are summ;uized in Table 2.2 and 

show in Figun 2.2 as indicated in [2] and [16]. 
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Time (s) 

Figure 2.2: Oscillatory uansient 

Table 2.2: Characteristics of oscillatory trident and typical causes and solutions 

I I I 

I Method of l Waveforms, Peak Magnitude, Frequency components 

Typicûl voltage Magnitude 

0.4 pu 

0.8 pu 

B - Oscillatory 

Transient 

1 - Low Frequency 

2 - Medium 

Frequency 

3 - High Frequency 

I 

I Solutions I Swge arresten, Fiiters, Isolation Transformers. 

Typical 

Spectral 

Content 

c 5 W  

5.500 kHz 

0.5 - 5 M Hz 

Characterization 

Typical Causes 

Typicd 

Duration 

3-Som 

20us 

LindCable switching, Capacitor switching, Load switching 

Sus 0.4 pu 



2.2.2 Long-Duration Voltage Variation 
A Longduration variation is describcd as a mot-man-square ( c m )  devivion at power 

frequencies for a durûtion longer than one minute. It is caused by load variations on the system 

or system switching operations It can be either over-voltage or under-voltage. 

Over-voltage is an increase in the nns ac voltage to greater than i 10% at the power frequency 

for ri duration longer than 1 minute. 

Under -voliage is a decrease in the nns ac voltage to less than 90% at the power frequency for 

duration longer than 1 minute. 

2.2.2.3 Sustained Interruptions 
Sustained interruption is a zero supply voltage for duntion longer than one minute. The genenl 

characteristics of the over-voltage, the under-voltage, and the sustained interruptions are 

summiuized in Table 2.3 as indicated in [2] and [161. 

Table 2.3: Characteristics of over voltage, under voltage, and sustained interruptions 

1 1 1 

1-Over-voltage 1 - > 1 min I 1.1 - 1 . 2 ~ ~  1 
1 I I 

2 - Under-voltage 1 - 1 > 1 min 1 0.8 - 0.9 pu 1 

Typicd voltage Magnitude Typical 

Duration PQ Trpe 
Spectral 

Content 

1 1 1 I 
Interruption 

Characterization 

> 1 min I 0.0 pu 3- Sustained 

RMS vs Time, Statistics, 
1 

I - 

Typical Causes 

I 
Motor starting, Load variations 

Solutions 
I 

Voltage regulators, Fenoresonance Transformer I 
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2.2.3 Short-Duration Voltage Variations 
This category includes voltage sags, swells, and shon interruptions. Each type of variation can 

be designated as instantaneous, momentary, or ternporary, depending on its duration ris defined 

in Table 2.4. 

2.2.3.1 Interruption 
It is a reduction in the supply voltage or load current to less than 0.1 pu for a period of time not 

exceeding one minute. The interruptions are rnesured by their duration since the voltage 

magnitude is always less than 10% of the nominal. Figure 2.3 shows a voltage interruption in the 

power signal. 

Time (s) 

Figure 2.3: Voltage interruption 



2.2.3.2 Sags (dips) 
Sag is a decrease in rms voltage or currents to between 0.1 and 0.9 pu at the power frequency for 

a duntion of from 0.5 cycles to 1 minute. Voltage sags are usually associated with system faults 

but can dso be caused by connecting of heavy lods or starting of large motors. Figure 1.4 

shows a voltage sag in the power signal. 

Time (s) 

Figure 2.4: Voltage sag 

A swell is defined as an increase in mis voltage or current to between 1.1 and 1.8 pu at the 

power frequency for a duration of from 0.5 cycles to 1 minute. As with sags, swells are usually 

associaied with system fault conditions, but they are not as common as sags. Figure 2.5 shows 

a voltage sweIl in the power signal. 
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The general characteristics of the interruptions. voltage-sag and voltage-swell are summarized in 

Table 2.4 and shown in Figures 2.3,2.4 and 2.5 as in [SI and [16]. 

Time (SI 

figure 2.5: Voltage swell 

2.2.4 Voltage Unbalance 
It is defined as the ratio of either the negative- or zero-sequence component to the positive- 

sequence component, Single-phase loads on three-phase circuits are the primary source of 

voltage unbalance. 

2.2.5 Waveform Distortion 
Waveform distortion is defined as a steady-state deviaiion from an ideal sine wave of power 

frequency. It is characterized by the spectral content of the distocted signal. There rire five types 

of waveform distortion: 



Table 2.4: Characteristics of voltage sag, voltage swell, and interruptions 

voltage variation in 1 Content 1 Duration I 
Short Duration 

I I I 

Swell I - 1 0.5 - 30 cycles 1 1.1 - 1.8 pu 

Spectral 

Electric Power 

A - Instantaneous 

sag 

I I 1 

1 - Interruption I - 1 3 s - l m i n  1 c0.1 pu 

Typical 

- 

1 - Interruption 

2 - Sag 

3 - Swell 

Typicd voltage Magnitude 

I 3 - S W ~ I I  I - 1 3s-Lmin 1 1.1 - 1.2 pu 

0.5 - 30 cycles 

- 
- 
- 

1 I 1 

I 

0.1 - 0.9 pu 

2 - Sag 

0.5 cycles - 3 s 

30 cycles - 3 s 

30 cycles - 3 s 

- 0.1 - 0.9 pu 

Characterization 

cO.1 pu 

0.1 - 0.9 pu 

1.1 - 1.2 pu 

I I 

RMS vs Time, Magnitude, and Duration 

Sags and Swells 

Typical Causes Remote Systern Faults, large loads, and non lineu 

Examples of 

solutions 

Characterization 

I solutions 1 Backup Genentors, Energy storage technologies, UPS 

loads for short duration 

Ferrotesonance Transformers, Energy storage 

technologies, UPS 

RMS vs Tirne, Magnitude, and Duration 

Interruptions 

Typicd Causes 

2.2.5.1 DC offset: 

System Protection (Breakers and Fuses), Maintenance 

DC offset is defîned as the presence of dc voltage in on ac power system. It wcucufs as a result of 

a geornagnetic disturbance or due to the effect of half-wave rectification. DC offset cm cause 
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transformer saturation chat can increase the transformer tempenture and reduce its life. Direct 

current may also cause the electrolytic erosion of grounding electrodes and other connections. 

A hannonic distortion is a sinusoidal voltage or current with frequencies that are integer 

multiples of the frequency at which the supply system is designed to operate. It originates from 

non-linear characteristics of devices and loads. Hmonic distortion levels are described by the 

harmonic spectrum with magnitudes and phase angles of each individual harmonic component. 

Total harmonic distonion (THD) is used as a mesure to calculate the harmonic distonion within 

the signai. The THD can be c JcuIated as: 

where V,, is the rms value of hanonic component h of the quantity V . Figure 2.6 illustrates a 

hmonic distoned signai. 

Inter-harmonics are defined as voltages or currents having frequency components chat are not 

multiples of the frequency ar which the supply system is designed to operate. The main source of 

inter-harmonic wave-form distortion are static frequency conveners, induction motors, and 

arcing devices. 

The general characteristics of the DC offset, harmonic, and inter-harmonic are summarized in 

Table 2.5 as in (21 and [16]. 
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Time (s) 

Figure 2.6: Hmonic distorted signal 

Distortion 1 Spgtrnl 1 Duration I 

Table 2.5: Characteristics of DC offset, hmonics, and inter hmonics 

Waveform 

1 - DC offset 

2 - Harmonies 

1 1 1 

Method of 1 Hmonic  Spectrum. Total Humonic Distonion, Swistics 

Typical 

3 - Inter-Harmonies 

Typical 1 Typicd voltage Magniiude 

Content 

0-100'%monic 

0.6 kHz 

Characterization 

Typical Causes 

steady state 

steady state 

Non-Linear Lods, System Resonance 

Examples of 

soIutions 

0-0.1 W 

O-20% 

steady state 

Active and Passive Filters, Transfomers 

0-2s 
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2.2.5.4 Notching 
Notching is defined as periodic voltage disturbance caused by normal operation of power 

efecuonic devices when current is commutated fmm one phase to another. Figure 2.7 shows a 

voltage notching in the power signal. 

Time (s) 

Figure 2.7: Voltage notching 

2.2.5.5 Noise 
It is defined as unwanted electrical signals with wide-band spectral content lower than 2001rHz 

superimposed upon the power system voltages or currents in the phase conductors, or neutnl. [t 

can be caused by power elecuonic devices, control circuits, arcing equipment, loads with solid- 

state nctifiers, and switching power supplies. Noise problems are often due to improper 

grounding that fails to conduct noise away from the power system. Using filters, isolation 

uansfomrs, and line conditioners can mitigate the noise problem. Figure 2.8 shows a 

distorting noise superimposed on the power signal. 
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Time (s) 

Figure 2.8: Elecuic noise 

2.2.6 Voltage Fluctuation (Flicker) 
Voltage fluctuations are systematic variations of the voltage envelope or a series of nndom 

voltage changes. Their magnitude do not normally exceed 0.9 to 1.1 pu. The main sources of 

voltage fluctuations are continuous rapid variations of loads. The continuous variation in the 

current magnitudes can cause voltage variations chat are often refereed to as flicker. One of the 

most common causes of voltage flickers is the arc furnace. The flicker signal is defined by its 

rms magnitude expressed as a percent of the fundamentai. Figure 2.9 illustrates the voltage 

flicker wave shape. 

2.2.7 Power frequency variation 
It is defined as the variation of the power system fundamental frequency from its nominal value 

(e-g., 50 or 60 Hz). The power frequency is directly related to the rotationai speed of the 

generators. Frequency variations can be caused by faults on the bulk power transmission system, 

a large block of load king disconnected, or a large source of generation going off line. 
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2 25 
Time (s) 

Figure 2.9: Voltage Fluctuation 

Table 2.6: characteristics of voltage imbalance, notching, noise, 

voltage fluctuation, and power frequency variations 

Typical 

PQ type spectral 
Content 

Voltage Imbalance - 
Notching 

Noise broad-band 

Voltage 

Fluctuations 

Power Frequency - 

Typical 1 Typical voltage 

Magnitude 

steady state 0.5 - 2.0% 

steady state 

steady sute 0 -  1 % 

Intermittent 0.1 -7% 
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2.8 Costs of interruptions 
The frequency of intemption and its duntion can influence the interruption costs. Reliability of a 

system is not a singledimensionai quantity. An increase in the nurnber of components in the 

system cm reduce its reliability. A more reliable system is more expensive to build and operate. 

The cost of an interruption consists of a iiurnber of ternis as follows: 

Direct costs which are directly attributable to the interruption. This comes in the form of 

lost of taw material, lost of production, and salary costs during the non-productive 

period. 

lndirecr cosrs which is not easy to evaluate. A company can lose future orders when an 

interruption leads to a delay in delivering product. This might lead the customer to cake 

insurance against loss of its raw materiai or it might install a battery backup or even 

move the plant to an area with less supply interruptions. nie niain problem with the 

indirect costs is that it cannot be attributed to ri single interruption, but to the quality of 

the whole supply. 

Non-mareriai inconvenience that cannot be expressed in money. A radio station 

interruption that prevents the listeners from being able to enjoy the broad casting is an 

example of such inconvenience. 

For large industriai and commercial customers an inventory of al1 direct and indirect costs can be 

made, and this cm be then used in the system design and opention. However, for small domestic 

customers it is often the non-matecial inconvenience that has a larger influence on the dccision 

than the direct or indirect costs. 

Due to the increasing cos& of the power quality problems, different manufactures introduce a 

wide range of monitoring devices. These devices are implemented to detect and monitor different 

disturbances that may affect the quaiity of the power systems. The following section describes 

different power quality monitoring devices used for measuring a wide range of disturbances, (see 

Figure 2.10)- 
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2.9 Review of Monitoring Techniques 
The monitoring cequicement depends on the type of power quality problem. Some problems 

require monitoring for several months and others for several hours. The most important 

monitoring devices are: 

2.9.1 Disturbance Analyzers 
Disturbance analyzers have been developed specifically for power quality measurements. They 

typically measure a wide variety of system disturbances from very short duration transient 

voltages to long variations, outages ot under-voltages. As indicated in [2]. these devices basically 

fail into two categories: 

Power qualify 
ni oniforing 

1 Disturbance Analyzers 

= 

2 Haimonic anaipers: 
dis furbance 

Figure 2.10 Different methads for monitoring power quality levels 
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1 - Conventional analyzers that surnmarize events with specific information such as overlunder- 

voltage magnitudes, sags/surge magnitude and duration, transient magnitude and duration, 

etc. 

2 - Graphies-based analyzers that Save and print the actual waveform along with the descriptive 

information, which would be generated, by one of the conventional anaiyzers. 

However, using these devices, it is often difficult to classify the type of the disturbance or 

transient from the available information. Therefore, to overcome this pmblem, Graphics 

analyzers must be used with the conventional one. 

2.9.2 Harmonie analyzers 
Disturbance analyzers have very limited harmonic analysis capabilities. Fast Fourier Transform 

(FFï) caiculations capability has k e n  added to some disturbance analyzers to obtain a clear 

picture of the harmonic content within the distorted signal. As indicated in [2], three categories of 

instruments are considered for harmonic analysis: 

1 - Simple meters: for rnaking a quick check of hmonic content, up to the 50Ih harmonic, as 

well as the total hmonic distortion (THD) at the problem location. 

2 - General-purpose spectmm analyzers: Used for general harmonic signal analysis. They are 

designed to pecform spectrum analysis for a wide range of applications. 

3 - Speciai-purpose power system harmonic analyzers: Designed for power system harmonic 

analysis. These are based on the FFT with sampling rate specifically designed for 

determinhg harmonic components in power signals. They can genemlly be left in the 

field and inchde communications capability for remote monitoring. 
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29.3 Combination 

analy zers 

dis turbance and harmonic 

The most ment instmments combine limited hmonic sampling with disturbance monitoring. 

The output is graphically based and the data zue gathered over telephone lines into a central 

database. Statistical analysis can then be performed on the data. It monitors three phase voltages 

and currents plus the neutrai simultaneously, which is very important for diagnosing power 

quality problems. 

2.10 Summary and Comments on Currently 
Used Monitoring Devices 

Different monitoring devices (data loggers) are available that can collect luge rimount of data. 

The tciggering stntegies used by these instruments are based on a set of thresholds. The 

sensitivity of these loggers depends on a selected threshold level. High threshold levels result in 

missing desired disturbances and low threshold levels result in capturing a large number of 

waveforms. Using this monitoring strategy, one cannot monitor certain classes of disturbances or 

distinguish among similar ones. Off-line analysis is always required which use different 

disturbance analyzers to extract the disturbances of interest and classify them [2]. 

There are general problems that exist when dealing with disturbance analyzers to classify 

different power qudity problems. Some of these problems are discussed below: 

a The criteria for distortion detection and classification. This method is based on point-by- 

point comparison of the rms vdues of sampling points of the distorted signal with its 

corresponding pure signal. if the difference is larger than a pre-set threshold, then the monitor 

will start detecting this disturbance. These types of monitors can provide the ability to detect on- 

Iine any disturbance, however, it is often difticult to determine on an on-line bases the 

characteristics of transient, oscillatory, or non-stationary disturbances. Therefore, it is imperative 

to have the waveform capture capability of the graphic based disturbance anolyzers for a detailed 

off-Iine analysis of different stored distucbances. For the sake of discussion, the following ihree 



cases present such type of disturbances which need more detded maiysis for classification and 

can not be dassified an an on-line bases using the existing disturbance andyzers: 

Case 1: Cagacitor Swiiching phenomena: Figure 2.1 1 shows a capaci tor-switching phenomenon. 

The frequency content in the signal durhg the distonion event and its duration are two imporiant 

features to classify ir  as an oscillatory transient with low, medium, or high frequency as indicated 

in EEE Std.1159 [t6]. Using point-by-point cornpackon, off-line analysis is alwûys required to 

classify such disturbances. 

Time (s) 

Figure 2.11: Capacitor switching phenomena 

Case 2: Two disturbances ar the same window: The signal is contaminrited with low and high 

frequency components and a one-cycle sag phenomenon at 0.5s as shown in Figure 2.12. These 

disturbances can be detected and Iocalized on-line, however, detailed off-line analysis is also 

necessary CO classify them. The Fast Fourier Transfonn (FFT) will be used to rnonitor the 

harmonic content in the signai and point-by-point cornparison is needed to detect the sag event. 

Furthennoce, the duration of this disturbance can not precisely determined. 



Case 3: Commutation Failure event: Figure 2.13 shows a distortion event detected and localized 

on the inverter ac-side of HVDC system. This disturbance is due to a commutation failure in the 

inverter of the HVDC systern. Again using existing techniques, which implement point-by-point 

comparison, this disturbance is classified as a swell phenomenon. However, there is no 

information that can be extracted during the non-stationary part of the signal ( 1.01 2s to 1.05 1s). 

This information represents important features to be used to distinguish among similar powrr 

quality problems and it can help in identifying the source of the disturbance. 

Time (s) 

Figure 2.12: Sag event in a harmonic distoned signal 

Time (s) 

Figure 2.13: Commutation failure at invener AC side of HVDC system 
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O The second problem is the large dimensionaiity of the stored data. This is due to the 

selected threshold values to be used in detecting different disturbances. Smail threshold values 

will generate large amounts of data and large threshold values will allow cenain disturbances to 

escape from the detection process, It has been documented in [9] that a survey of power quality 

data of distribution system results in 40MB per day or about 15 GB per year for a modest 200 

PQNodes. A major concem arising from the auto-classification of such a large data is the 

complicity of the discrimination process. The parameters in the discriminate mode1 becorne 

highly variable. This leads to a substantial deterioration in performance of traditionally favoured 

classifiers (Neural net and other pattem recognition techniques). To overcome this problem it is 

necessary to decrease the number of variables to a manageable size and use an automated 

technique to classify different power quality problerns. All the three signals presented in Figures 

2.1 1 to 2.13 can be captured by the existing devices and stored in high capacity memory; 

however the engineer musc then son through these data to analyze these disturbances, which is a 

tirne consuming job. 

Limited capability of the Fast Fourier Transform (FFT). Some of the power analyzers 

have dd-on models chat can be used for computing an FFT to determine the harmonic content in 

the signai [24-271. However, the functions e'"' used to analyze the signal are global functions. 

By this we mean any disturbance on the signal at any point dong the i -uis  influences every 

point on the o-axis. This is due to the selected bases of the transform (sine and cosine 

functions), which are not lacalized in time. Therefore, the FFT will not provide any information 

about the time domain, Time-frequency information is very important, since in power quality 

analysis we are interested in some particular portion of the signal (distortion event) and we need 

tirne-frequency information simultaneously for this particular portion of the signal. To correct 

this deficiency, a windowing FFT or short t h e  Fourier transfon (STFT) is also implemented to 

get time-frequency information of the distortion event. This can be done by separating the desired 

portion of the signal by multiplying the original signal by another function (selected window) that 

has zero magnitude out side the intervai desired (windowing the signal for tirne information) and 

computes its FFî (for frequency information). However there is a deficiency in S m  that cornes 

from selecting the size of the window. Using a wide window will result in a good frequency 

cesoiution and û bad time resolution. This means chat we get accunte infomtion on the 

specvum of the distortion event but we cannot localize this distortion in time. As the window size 

gets smaller, we wiII lwse the frequency resolution and obtain a better tirne resolution. This 
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means that utilizing the STFï we cannot get tirne-frequency information simultaneously to 

classify this disturbance according to IEEE Std.1159. 

To illustrate the above fact we will discuss the following example. Using Matlab code, a distorted 

signal f (r) , shown in Figure 2.14, is simuhted with the following parameters: 

where, t, =6.25ms, t z  =18.1Sms, f = 5OHr ,and f, = 1.SkHz ; and B = -273.75 and A = 600. The 

distorted signal is sampled ( f,,,) at 240 kHz. 

The FFT has a limited capability to analyze the signal and give tirne-frequency information. This 

is due to its use of the globai Functions e M  to transfonn the signal from the time-axis into the 

frequency-axis. As a result, al1 information in the time domain, which can help in detecting the 

starting timet, and the duration of the distuhance, is lost. This is illustrated in Figure 2.15. 

Time (s) 

Figure 2.14: Simulated distorted signal 
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O MO 1OOO 1500 2000 250 3000 
Froquoncy (Hz) 

Figure 2.15: Fourier Tnnsform 

In order to achieve a high degree of localization, both in time and frequency, a window function 

with a sufficiently n m w  tiine and frequency window is required; this can be done with the 

windowing FFï or short-time Fourier transfocm S m .  This is done by sepmting the desired 

pomon of the signal (achieved by multiplying the original signal by another function that has 

zero magnitude outside the desired interval). The FFT of this portion of signai provides the 

frequency information. However, the method is limited due to the constnint on the size of the 

window. Using a wide window will tesult in good frequency resolution but poor time resolution, 

and using a n m w  window will result in p r  frequency resolution but good time cesolution, 

Furthemore, "Heisenberg's uncectainty principle imposes a theoretical lower bound on the area 

of the time-frequency window of any window function. This principle indicates that the 

function's feature (frequency component) and the featwe's location (position at which that 

fiequency component is found) cannot both be measured to an arbitrary degree of precision 

simul taneous ly [24-261. 
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Figure 2.16: Short-time Fourier tnnsform of the distorted signal 

Figure 2.16 shows the results of implementing the S m  on f (t) given by Equation 2.2. This 

exmple shows that as the size of the window increases (16, 64, 256, and 1024 samptes), 

different time-frequency features of the distortion event will result. Figure2.16a (16 samples 

window) shows good Ume resolution regarding the distortion event starting time: however, the 

duration of this distortion canot be easily measured. Furthemore, the frequency content of the 

distortion event shows a poor resolution due to the distribution of the spectrum over the whole 

frequency band. The frequency resolution increases and the time resolution decreases as the size 

of the window increases. Figure 2.16d (1024 samples window) shows more accunte localization 

of the frequency content in the signal but the time resolution becomes blumd. This means that, 

one should apply the STFT rnany times using different sized windows in order to get a clear time- 

frequency information. 



To overcome the limitations of the flexible window function capable of operating over a wide 

frequency range, a Wavelet transfocm is utilized [2440]. Using wavelet multi-resolution analysis 

the signal can be decomposed into different resolution levels. These resolution levels can extract 

the-frequency information of the signal chat can help in designing the wavelet-based automated 

recognition system. 

In this chapter, power quality indices are presented as defined by EEE std. 1159. The sources of 

such power quality problems are presented and an introduction to different mitigation techniques, 

for each disturbance. is discussed as indicated in Tables 2.1 to 2.6. The direct or indirect effects 

of interruptions on customers are presented and the cost of such interruptions is discussed. 

A detailed discussion of the existing monitoring devices shows the drawback of utiliung such 

devices in monitoring different disturbances. The limitation of the utilized tools are illustnted 

and presented by using simulated signais. The wavelet-based multi-resolution analysis is 

proposed as a cool that ciin be implemented to overcome the limitations in the existing monitoring 

devices. This Cool can be utilized to design an automated power quality monitoring system. 
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Chapter 3 

Wavelet Transform and 

Multi- resolution Analysis 

For Power System Applications 

3.1 Introduction 
The wavelet transform is a mathematical tool that cuts up data, functions or operators into 

different frequency components, and then studies each component with a resolution matched to its 

scale. For example, in signal analysis, the wavelet transform allows us to view a time history in 

terms of its frequency components, which means it maps a one-dimensional signal of time, f ( r )  , 

into a two dimensional signal function of time and frequency [24-401. The wavelet transform 

represents the signal as a sum of wavelets at different locations (positions) and scales (frequency 

bands). The wavelet coefficients essentially quantify the strength of the contribution of the 

wavelets at these locations and scales. 

This chapter is devoted to representing a general introduction to the wavelet transform and its 

appiications in power system areas. Wavelet types, conditions, and efficiency are illustrated. 

Wavelet and Fourier transforms is pcesented in Section 3.6. Finally, a review of wavelet 

applications in power systems and a chapter summary rire demonstrated in Sections 3.7 and 3.8. 
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The mathematical notations and tools that are usefui for understanding wavelet theory and multi- 

resolution analysis will be illustrated in Chapter 4. 

3.2 Wavelet and Multi-resolution 
A wavelet is a small wave, which has its energy concentrated in time to give a cool for analysing 

uansient, non-stationary, or time-varying phenomena. A wavelet still has oscillating wave-like 

characteristics but also has the ability to dlow simultaneous time and frequency analysis with a 

flexible mathematical foundation. Different wavelets are shown in Figure 3.1. 

The wavelet transfom can be accompüshed in three different ways namely as: the Continuous 

Wavelet Transfonn (CWT), the Wavelet Series (WS) and Discrete Wavelet Transfonn (DWT). In 

this research the DWT is implemnted where a discritized signal is mapped into different 

resolution levels. The DWT maps a sequence of numbers into a sequence of numbers much the 

same way the Discrete Fourier transform @Fi') does. 

The discrete wavelet uansform (DWT) is sufficient for most practical applications in power 

systems and for reconstruction of the signal. It provides enough information, and offers an 

enormous reduction in the cornpuration tirne. It is considenbly easier to implement when 

compared to the continuous wavelet transfom. The discrete wavelet coefficients masure the 

similarity between the signai and the scaled and translated versions of a scaled wavelet, yl,, . 

On the other hand, multi-resolution analysis (MRA) is used to analyze a signal at different 

frequencies with different resolutions. The goal of MRA is to develop cepresentations of a 

complicated signal At) in t e m  of several simpler ones and study them separately. This goal wili 

help in achieving two important properties. The fint is the localization property in time of any 

transient phenornena, And the second is the presence of specific frequencies at different resolution 

levels. 

In this research, MRA is implemented as a twl itiat utilizes the DWT to represent a tirne-varying 

signal in terms of its frequency componenrs. 
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The DWT uses selected wavelets as digital Filters with different cutsff fiequencies to analyze a 

signai at different scaies. In MRA, the signal is passed h u g h  a series of discrete filters "selected 

mother wavelet" to analyze and locatize the high and the low frequencies that embedded in the 

signai. 

Figure 3.1: Examples of different wavelet functions 
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3.4 Wavelet Properties 
Wavelets have three main properties: 

They arr: building blocks to decompose and reconsvuct signals. This means complicated 

signds can be decomposed and represented as simple building blocks in terms of the selected 

wavelets. 

The wavelet expansion gives a cime-frequency localization of the signal. This means most of 

the energy of the signal is well represented by a few expansion coefficients chat are localized 

in the time and frequency domains. 

The calculation of the wavelet coefficients from the signal can be done efficiently. This 

means that by using orthogonal waveleis, the distorted signai coeficients in the wavelet 

domain are simply given as the inner product of the signai with the wavelet function, which 

greatly simplifies the transfocm algorithm [24-301, 

3.5 Wavelet efficiency 

Wavelet transforms have been proven to be very efficient in signal analysis. Due to the above- 

mentioned propenies of the wavelet transform, the following advantages cm be gained: 

1. Wavelet expansion coefficients represent a component that is itself local and are easier to 

interpret. Therefore, the location of these coefficients can be used to detect and localize any 

distortion in the signal. Furthemore, the energy of these coefficients will assist in extracting 

fatuces that cm classify the distortion event in terms of its magnitude, frequency 

components and duration. Detection and Classification of different distortion events will be 

discussed in Chapters 5 and 6. 



MRA that decomposes a signal at different resolution levels will dlow a sepantion of 

components that overlap in bah time and frequency. This property will be useful in detecting 

and classifying multiple distortion events that may take place in the same monitored window. 

This will be presented in Chapter 6. 

The wavelet uansfonn coefficients represent the energy of the distoned signal. These 

coefficients will be used to measure the magnitude of the distoned signal and qurintify its 

quality. This will be presented in Chapter 7. 

The rapidly drop off in the size of the coefficients, with increasing translation and scaling 

factors, will assist in representing the distortion event by using only small number of 

coefficients. This will help in designing an automated recognition system that has the ability 

to store a large number of distortion events using a small number of coefficients. This 

efficient storing property will be presented in detail in Chapter 8. 

MRA and DWT calculations are eficiently performed by digital computers. Discrete wavelet 

transform (DWT) computation relies on convolution and decimation or interpolation. These 

operations depend on addition and multiplication. Funhermore, the number of mathematical 

operations for DWT is in the order of (N) which is lower than that for the Fast Fourier 

Transform (FFï) aigorithm which needs (N log(N))operations. This computational speed 

feature of the DWT will help in implementing the automated recognition system on-line and 

for red tirne applications. 

3.7 Review of Wavelet Applications 

in Power Systems 

Wavelets have been successively applied in a wide variety of research areas such as signal 

anaiysis, image processing, data compression and de-noising, and numericai solution of 

differential equations. The power of wavelets cornes from their location at the crossroads of a 

wide variety of research areas. Recenîly, wavelet analysis techniques have k e n  proposeci 

extensively in the literature as a new cool for monitoring and anaiyzing different power systern 



disturbances. Other researchers proposed wwelet analysis as a new tool in different power 

engineering areas. Figure 3.2 summacizes the applications of wavelet transform in different 

power system areas, 

The following section summarizes some of the previous work of applying wavelets in a power 

system, with emphases on the power qudity and transient andysis areas [41-671. 

1  asl let l p p k a t i o n s  1 
In Po wer Systems 

detecLn classification / I md bcakal ion 

1 Da fa Compression C 
pi-"" 

compression 

fault location I 

Measuremen fs L4 
Transient and Harmonic 1 

Figure 3.2: Wavelet transform applications in power system 



3.7.1 Detection, Localization and Classification 

Wavelet multi-resolution signal decomposition was applied to detect and localize different power 

quality problerns. The squared wavelet coefficients were used to find a unique feature for 

different power quality problems. It was proposed chat a proper classification tool might then be 

used depending on tne unique feature to classify different power quality problems [4 11. 

In [42] Wavelet and Fourier transfonns were used to detect the number of notches per cycle and 

the harmonic content in the voltage in order to characterize the operation conditions of a 

converter. The squared wavelet coefficients (WTCI) of the first resolution level were used to 

detect and count the number of notches per cycle. However, for this to work the sampling rate 

should be very high in order to detect the notch impulses and therefore, the number of 

coefficients (WTC1) will be very large. Furthemore, the magnitude of the squared WTCl can 

be affected by the noise content in the signal and other dynamic operation conditions. 

In [43] multi-resolution analysis was proposed as a new tool that may be used to detect different 

disturbances, or to present the state of post-disturbances, and to identify their sources. 

In [44] a combination of wavelets and neural nets was implemented to classify a one-dimensional 

signal ernbedded in nomally distributed white noise. Noise signals were decomposed using the 

Haar wavelet basis and Daubechies 4 wavelet. A feed forward neural network was tnined on the 

wavelet series coefficients at various scales and the classification accuncy for h t h  wavelet 

bases was compared over multiple scales, several signal-to-noise ratios, and varying numbers of 

training epochs. This paper proposed using wavelets to c1;issify the noisy signals and nor 0 t h  

power quality problems. 

In [45] a wavelet transfonn approach, using the Morlet basis, was applied to detect and localize 

different kinds of power system disturbances. However, it could not be easily used to 

discriminate among different power quality problems. 



In [46] multi-resolution signal decomposition was ripptied to detect and monitor incipient faults 

during impulsive testing of a transformer. The neutrai current was monitored and decornposed 

into different detailed and smoothed versions to detect my fault during the testing process. The 

proposed methad was found to have many advantages over existing methods, 

3.7.2 Measurements 

in [47] a new technique was proposed to detect. localize, and estimate automatically the rnost 

relevant disturbances in a power system. The proposed method combines the use of the 

continuous wavelet transform, modulus maxima properties, multi-resolution signal 

decomposition, and reconstmciion by means of the D m .  This technique was used 10 measure 

steady sate magnitude of a harmonic distoned signal. 

In [48] a wavelet-based algorithm was used to measure the power and rms values of a steady- 

state harmonic distoned signal. The algorithm was applied on simulated and actual sets of 

periodic data. Frequency separation into the various wavelet levels was discussed using infinite 

impulsive response (üR) and finite impulsive response (FR) filters. The results were compued 

with that derived by using the Fourier Transfom. 

3.7.3 Data Compression 

In [49] wavelet transformation was applied as a compression cool for power system disturbances. 

Three simulated transient voltages were generiued and reconstructed by using a suitable mother 

waveIet and by using only 2% of the coefficients. This approach presented the efficiency of the 

wavelec transform to ceconsuuct non-stationary power system disturbances. 

In [50] the arc fumace current was decompsed into a series of 11 wavelet levels. A good 

approximation CO the original waveform was obiaineci by adding only five of the wavelet levels. 



In [51] wavelet analysis was applied to cornpress actual power quality data and the compression 

ratio achieved was in the range of 3-6 wirh nod ized  mean square errors of the order of 10"' to 

lu5. 

In [52] the results of cornpressing power system disturbances using the discrete wavelet 

transfomi and wavelet packets were presented- The wavelet transfocm offered compression ratios 

1 10 : 1 compared to that by the discrete cosine üansform. 

3.7.4 Transient and Harmonic Analysis 

In [53] the wavelet technique w u  proposed for analyzing the propagation of transients in power 

systems. The apprwch concluded that it is possible to use wavelets to calculate the transient 

within the system. The advancage of the method depends on the similarity of the existing 

transient to the selected mother wavelet. The wavelet transform was used to solve the differential 

equations as an example of the use of multi-resolution analysis. 

In (541 Daubechies wwelets have been used for the anaIysis of power system tmnsients, The 

method is based on the wavelet companion equivalent circuit of power system components, such 

as resistors, inductors, capacitors, luid disvibuted parcuneter Iines, This equivalent circuit is 

developed by applying the wavelet transfom on the integml-differential equations of the power 

system elernents. 

In [55] the wavelet transfocm was utilized to model the power system components. This model 

was used to analyze transient and s t d y  state events in a power systern. An actud iarc fumace 

system data was used to illustrate the efficiency of the proposed technique. 

3.7.5 System Protection 

In [56] wavelets were inmduced in the power system-relaying domain. It was shown chat 

wavelets may be empIoyed for analyzing mrded data to study effciently the faulted network. 

h this reference, it was dso proposed to implement the wavelet tmsform in ceal-time protection 



devices. The infofmatl'on of the vansient period analyzed by the wavelet cm help to improve the 

performance of the protection system 

In 1571 the wavelet transfonn was applied to identify the fault location in transmission systems. 

The wavelet transfonn was used to extract the traveling time information accurately for signûls 

traveling between the faulted point and the line terminais. The first two levels of high frequency 

wavelet transfom coefficients were shown to carry information directly related to the location of 

the transmission line fault. This information was then used to Find the location of the fault. 

In [58] Morlet waveletç were proposed to discriminate the high-impedance faults from normal 

switching events under different grounding conditions. The proposed technique shows the 

feasibility of the method as a potential alternative in the area of power system relaying. 

In [59] a wavelet-based rnethod was proposed as a rcliable and computationdly efficient tool for 

distinguishing between interna1 faults and innish currena of the transfomiers. The Neural 

network was proposed to irnprove the performance of the algorithm. 

3.8 Summary 
Wavelets have been successively applied in a wide vxiety of research areas. Recently, wavelet 

andysis techniques have been proposed extensively in the literature as a new twl to be 

implemented in different power engineering areas. The wavelet transform analysis w u  proposed 

as a new tool for monitoring power quality problems. However, most of the mentioned 

approaches that dealt with power quality problems did not present a red classification 

methodology that can be used to classify different power qudity problems or design a practicai 

on-line automated monitoring system. Most of the work done in the power quality area, deals 

with the power quality problem either h m  the detection and localization point of view or from 

the data compression Crame. 
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3.9 The Author Contribution 

Monitoring Techniques 

To overcome the deficiency in proposed monitoring techniques, the author of this thesis, in [60- 

671 used the wavelet transform and multi-resolution analysis of a distorted signal to design a new 

technique that cm monitor accurately a wide range of power quality problems. 

The proposed monitoring system has the ability to detect and localize any disturbances in the 

system. Using the localization property of the wavelet transform, the first detail version of the 

signal under anaiysis is used to detect any disturbance and locdize it in iime. The duration of the 

distonion event can be measured in this resolution level. Moreover, the energy of the detail 

coefficients in this resolution level can be used to give assessrnent of the noise content in the 

signai, The de-noising property of the wavelet tnnsform is used CO locdize the distorted signais 

in a noisy environment. Detailed information about the application of the detection and 

localization property of the proposed technique is presented in Chapter 5. 

A new technique that uses multi-resolution anaiysis is proposed that has the ability to decompose 

any distoned signal into different building blocks and extract tirne-frequency features 

simultaneously from erch block. The energy of the detail coefficients of each resolution level is 

used to conswuct the proposed feature vector. The dimensionaiity of data is mapped into a small 

size of interpretabb features. Different pattern recognition techniques are implemented on the 

proposed feature vector to design an on-line automated monitoring system. These features are 

proven to be very efficient in auto-classifying different power quality problems that overlap in 

time and frequency. Chapter 6 introduces the proposed auto-classification technique. 

Using the signai coefficients in the wavelet domain, a new measurement technique chat can 

measure accunteiy a wide range of signal characteristics is proposed. Different power quality 

problems that may overlap in time or frequency domains are measured. The proposed technique 

is implemented to measure different parameters in a power system under steady aate or transient 

conditions. A new wavelet-based procedure to monitor the non-rectanguIar variation of the RMS 
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value in the signal is dso introduced. The proposed rneasuring techniques are presented in 

Chapter 7. 

The reduction in the size of the detail coefficients, due to the decimation property, is used to 

represent the distorted signal in tenns of a srnall set of coefficients. A cornplete chapter, Chapter 

8, is devoted to develop a new procedure thar wilI cornpress and store the distonion event 

efficiently. This procedure is based on wavelet analysis, where a small set of wavelet coefficients 

that represents the disturbances will assist in achieving this goal. This procedure will replace the 

existing technique of storing al1 sampling points of the disturbance. 

A general layout of the design procedure of the wide-scale on-line automated power quality 

monitoring system is presented in Chapter 9. 
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Chapter 4 

Wavelet and Multi-resolution Analysis 

Mathematical Representation 

4.1 General Introduction 
The Wavelet transform was propased in this thesis as a tooi to solve power quality problems. 

Using wavelet propenies, detection and iocaiization of any transient distonion within the signal 

can be achieved. Furthermore. classification of the power quality problem can be obtained and 

quantification of the distortion level can be measured. 

These features can modify the existing monitoring devices and upgrade their ability to be used as 

an automated on-line base for rd-time applications. The Wavelet based multi-resolution 

analysis is used to decompose any complicated signal and represent it in terms of several simpler 

ones. Such analysis of any transient event will help in localizing the transient event in the time 

domain and clarifying the presence of any specific frequency components at different resolution 

levels. 

To achieve Our goal and consuuct an automated wavelet-based monitoring system the 

mathematical details of the propsed twl is highlighted. Tho mathematical concepts of the 

Wavelet transform (WT) and multi-resolution analysis (MM) are presented in this Chapter. The 

Analysis and Synthesis procedures of multi-resolution analysis are discussed and appiied on 

selectcd examples. The time-freqwncy "scale" plane and locdization and partitionhg of signal 

energy at different resoluùon Ievels are dm presenied in this chapter. Appendix A is added as a 

support for the mathematical derivaiions that are needed to cluify the main concepts of the 

wavelet theory. 



4.2 General Mathematical Preliminaries 
The purpose of this section is to introduce the mathematical notations and tools that are useful to 

present Wavelet Transfocm theory. S o m  definitions of vector spaces and related mathematical 

relations are introduced and more detailed discussions are presented in Appendix A. 

4.2.1 Vector Spaces 
The totality of vectors that cm be constmcted by scaiar multiplication, and vector addition form 

vectors in a given set is called a vector space. A set of vectors that is capable of generating the 

totality of vectors by these operations is said to span the space. If the set consist of the least 

number of vectors chat span the space, the set is called a Basis of the space. The number of 

vectors in the bais is called the dimension of the space. n-basis vectors generate an n- 

dimensional space. Any subset of r-basis vectors f o m  the bais of an r-dimensional siibspace. 

4.2.2 Norms 
The concept of the distance is genedized in the case of vectors through the use of norms. The 

nom of a vector x, IIxll. is a real non negative number such that: 

11 XII = O ifand only if x =  O 

II cx II = ICI llxll for al1 scalars c and vecrurs x 

Il xi + .Q 1141 xi 11 + 11 x2 II for 011 XI andxz 

There exist many norms for vectors. Three of the cornmonly used ones are: 



4.2.3 Inner Product 
It is a scalar "a" obtained from two vectors f(  r ) and g(r ) , by an integrai. It is denoted as: 

The length of a vector " nom" cm be defined in tenns of the inner product as: 

4.2.4 Hiibert Spaces 
It is a complete inner ptoduct space with orthogonal basis, where any signal 

f (t) E L*(R) satisfies the following condition: 

which means that the signal f (t)  has finite energy. 

4.2.5 Basis 
A set of vectors #k( t )  spans a vector spilce F if any element f ( t )  in that space can be 

expressed as a linear combination of members of that set. This means that f (t)can be written 

as: 

with k E Z the set of integers and a, t E R. &(i)is lcnown as the expansion set and a, is 

known as the expansion coefficients. 



The expansion set q t ( r  ) f u m  a basis set or basis if the set of expansion coefficients [a ,  } are 

unique for any particular f ( r )  E F . There my be more than one basis for a vector space. 

However, al1 of them have the same nurnber of vectors, and this number is known as the 

dimension of the vector space. 

The expansion set qk( t ) forms an orthogonal basis if its inner product is zero: 

The expansion set qbk(r ) foms an orthonormal h s i s  if the inner product can be represented as: 

This means that in addition of king orthogonal, the buis is n o d i z e d  io unity nom. 

For an orthonormal basis, the set of expansion coefficients [ a, } can be calculated using the 

inner produci, 

Therefore, having an orthonormal basis, any element in the vector space f (t) E F , cm be 

written as: 
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This expansion formulation is extremely valuable. The inner product of f (t) and Q k ( r )  

produce the set of coefficients a,. This set of coefficients a, can be used linearly with the bais 

vectors #,(t ) to give back the original signal f ( t )  . 

4.3 The Wavelet Transform (WT) and 

Multi-level representation 

The Wavelet Transfocm is a tool that can cut any signal into different frequency components. 

and then study each component at a cenain resolution level. The WT depends on two sets of 

functions known as scaling functions and wavelet functions. In order to irnplement a multi-level 

preseniation of a signal we will s m  by defining the scaling function and then use it to represent 

the wavelet function. 

4.3.1 The Scaling Function 
The scaling function $( t 1 is a function that belongs to the Hilben space. The scaling set @,( t  ) is 

defined as a set of integer translations of a basis scaling function @( t ) , where: 

h ( t ) = # ( t - k )  for k € Z  ; @ , E L ' ( R )  (4.13) 

and L?R) is the Hilben space, which can be represented by a set of subspaces (V,[ j E Z), 

where Z is the set of integew. 

The set of scaiing functions#,( t  ) span the subspace Vo defined as: 
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if jo is a finite energy signal ( / ( r )  E L'(R)), then an appmximated version of f ( I )  E V, , 

can be represented in tems of the scding function as shown in Figure 4.1 and cm be expressed 

according to Equation 4.7 as: 

I 1 I 
O 0.5 1 

Mie (sec) 

(4 

............................ 0 ........................ -i 
O 0.5 

cime (sac) 

Figure 4.1: Approximation of the input signal, a- the input signal, 

b- approximation of the input signal using Haar scaling function 

Keeping in rnined the containment property (See Appendix A), the scaling function @( t ) cm be 

expressed in terms of a weighted sum of shifted qî( 2t ) : 

where the coefficients h(n) are a sequence of mal or complex numben cdled the scaling function 

coefficients (or the scaiing filter coefficients) and the f i  maintains the unity nom of the 

scaiiog function with the scale of two. 



This equation is called the multi-resolution analysis equation. It can be utilized to represent the 

signal at different resolution levels. This is presented in the following subsection. 

4.3.2 Multi-level representation using 

the Scaling Function 

In order to represent a signal flr) at different resolution levels, the used scaling function 

$(t )  must be translated and scaled. Therefore, the two dimensional family of scaling 

function gi,(t ) is presented as: 

where, j is the scaling factor and k is the translation factor. This two dimensional family can 

span different subspaces (Vj 1 j E 2) as: 

This means that any signai f ( t )  E L'(R) can be approximated and represented at different 

resolution levels ( f ( t )  E Vj), as: 

The multi-level tepresentation of the signalxt) is shown in Figure 4.2. The Haar scaling function 

is scaled and translated to represent the input signal at five resolution levels. 
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As the scaie j changes in Equation 4.19 changes, mon details are added to the approximated 

version and a more similx version of the origind signal cm be achieved. These details, which 

exist in between each of the two approximiüed versions of the signal, are very important in 

analyzing and monitoring the original signal. These details c m  be extracted by using the wavelet 

function. 

The Input Siga a i  

Figure 4.2: MuItileveI representation of an input signal using the H a  scaiing function 
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4.3.3 The Wavelet Function 
More important features of a signal can be extracted by using a function chat spans the difference 

between various approximated versions obtained using the scaling function ei,( r ) . This can be 

achieved by using the wavelet function vjk (t) . 

As indicated by the containment property (See Appendix A), the subspace V, is embedded in the 

subspace VI, V, C V, . in order to rnove to a finer subspace V, from a coarser subspace V,, one 

must add another subspace in between, which is known as the complement subspace W, This is 

illustrated clearly in Figure 4.3. 

Since these wavelets reside in the space spanned by the next narrower scaling function. then they 

can be represented by a weighted sum of shifted scaling hnctions at that space. Far example 

~ ( t )  resides in the space W, , and W, c V, . Therefore, ~ ( t )  can be represented by a weighted 

sum of shifted scaling function @( 2t ). This is illustrated in Figure (4.3) and mathematically can 

be presented by: 

for some set of wavelet coefficients (wavelet Filter coefficients) hl In), where. 

h, (n) = (-lr h(1- n )  (4.2 1) 

Figure 4.3: Moving to a finer s p m  using the wavelet, vi, ( r )  , and scaling function, @,,(t ) 
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Again, the scaied wavelet function can ùe utilized to extract different details that reside in 

between different approximated versions of the signal. This will be discussed in the following 

subsection. 

Multi-level representation using 

the Wavelet Function 

As the scaling function &,( r  )spansV, and 4,(r)spansV,, there are a piinicular functions 

which span W, imd W,. Therefore, as the swling function~j,ospansv,()spunsV, , the wavelet function 

yj,(t)spansWj. Where Wj is the orthogonal cornplement V, . This means that al1 rnembers of 

Vj are orthogonal to ail mernbers of Wi , (Vj lWj  ). 

Therefore, the space V, can be represented in terms of a set of subsprices where each subspace 

cm be spanned using the scaling and wavelet functions. This is mthematicaily represented as: 

Therefore, my signal f ( t )  E L ' ( R ) c ~  be represented as a series expansion by using a 

combination of the scaling function and wavelets function: 

where, c, are the approximated coefficients of the last approximated version and d,, are the 

detail coefficients at different d e s .  

Equation 4.23 represents the signa1 f ( t )  at different resolution levels in terms of one 

approximated version and different deuils that exist in between different approxirnated versions. 

The fmt summaaon gives the approximated version of the signal f (t) in ternis of the scding 

function. The second summation gives differeot deiails that can be extracted in terrns of the 
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wavelet function at different scales. The summauon of the approximated version and the 

difierent detail versions will represent the original signalsj't). 

Figure 4.4 shows the details of the input signai at different resolution levels by using the Haar 

wavelet function. It is clear form the figure that as the scale changes more resolution is richieved. 

nie input Signd 

detad vusion 
at level 2 

Detd vusion 
atlevei 1 

-25 
O O5 1 

Detd vusion 
at ievei 0 

Figure 4.4: Multilevel representation of the input signal using the wavelet function 
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This ied to multi-resolution analysis and its application in monitoring different power quality 

disturbances chat exist in electrical systems. 

4.4 Multi-resolution Analysis (MRA) 
Multi-resolution analysis (MRA) is used to decompose any signal and represent it at different 

resolution levels. The goal of multi-resolution analysis (MRA) is to develop representations of a 

complicated signal fft) in t e m  of several simpler ones and study them sepmtely. This goal will 

help in achieving two important properties. The first is the localization property in time of any 

transient phenomena. And the second is the presence of specific frequencies at different 

resolution levels. In multi-resolution analysis, the signal is decomposed to find a time-frequency 

picture of the signal and then reconstnicted to get back the original signal. It essentidly maps a 1- 

D signal of time into a 2-D signal of time and frequency. This is explained in Figure 4.5, where ii 

1-D noisy sinusoidal signal is mapped into the wavelet domain and represented as a 2-D signal as 

shown in Figure 4.6. 

Time (s)  

Figure 4.5: One-dimensional signal in time dornain 



Figure4.6: Mapping one dimensional signal into a two dimensional signal in a wavelet domain 

The main advantage of this technique comes from its ability to exuact information chat overlaps 

in t h e  and frequency domains. The transient event in the signal is extracted and its energy is 

distributed at different tesolution levels in cime and frequency domains simultaneously. 

Using the scaling and wavelet functions the signal is mapped into the wavelet domain and 

analyzed into an approximated and different detail versions. This can be achieved by exuacting 

the approximared coefficients ci (k)  and the detail coefficients d,(k)  as follows: 



Chopter 4: Wovelet & Mufti-resolirlion Anulysis - Mathematical Representutions 

The reconstruction process uses the approximated and detail coefficients. c,(k)and dik)  iit 

resolution j to reconsmct the coefficients cj+,(k) at the next resolution, j+l. 

The mathematical derivation of the approximated and detail coefficients for analysis and 

reconstruction process is presented in Appendix A. 

Multi-resolution analysis Equations 4.25 and 4.26, shows that in order to get the expansion 

coefficients at level j, convolve the expansion coefficients at scale j+l  by the scaling filter 

coefficients h(n) and the wavelet filter coefficients hl(n) then down simple or decimate the 

result. This process cm be repeated to give a multi-level representation of the signal. On the 

other hand, to reconsmct the signal from the wavelet coefficients, up-sample the j-scde 

appronimated coefficients cj(n) and detail coefficients di(n), then convolve them with the 

scaling filter coefficient h(n) and the wavelet filter coefficient hr(n). 

This simplifies the wavelet based multi-resolution process of decompositionlsynthesis, which is 

known by Mallat's algorithm. 

4.5 Mallat's algorithm 
This algorithm simplifies the implementation of the Discrete Wûvelet Transfonn (DWT). It 

represents the DWT in terms of convolution and decimation (down-samphg) for the 

decomposition stage and convolution and interpolation (upsampling) for the synthesis process. 

The Mallat's transfocm analysis (decomposition) aigorithm for the data c,,(n) is achieved as 

follows: 
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Convolve data with h(n) and decirnate to get c j (n)  

Convolve data with hr(n) and decimate to get d,(n)  

The inverse Mallat's uansform implements the synthesis (reconstruction) process with the 

following steps: 

Up sampling by inserting zero between every sample in c,(n) and d,(n) 

Convolve the up sampled coefficients c,(n) with the filter h(n). 

Convolve the up sampled coefficients d,(n) with the filter hl (n). 

Add the results of the convolution to get the original data c,+,(n) 

if the sampling rate fsmof the signal is above the Nyquist rate (f,,, r 2 f,, where f,, is the 

highest frequency component in the signal), then these smples of the signal can be considered as 

the scaling coefficients c,+~ (n) . 

Decimation or down sampling is a multi-rate processing which is an efficient technique for 

changing the sampling frequency of a signai in digital domain and eff'ciently cornpressing the 

data [65-671. As indicated in the black diagram (Figure 4.7). the siunpling rate compression and 

data reduction in (di) rire achieved by discuding every second samples resulting from 

convolving approximated coefficients (ci+,) and the wavelet coefficients h,(n)  . 

digital antf-aliasing Sampling rate 
filter compressor 

Figure 4.7: Block diagram of decimation by factor 2 
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Sirnilarly, the approximated coefficients (ci) are achieved by convolving ci+, by the scding 

function coefficients h,(n) and decimate by two. Since hdf of the data is discarded (decimation 

by 2) there is a possibility of losing i n f o d o n  (aliasing), however the wavelet and scaling 

function coefficients (hl(  n ) and ho( n ) ) will work as digital filters that Iimit the band of the 

input ci+, and prevent aliasing. This is explained in Figure 4.8, which represent one stage of 

MRA. The samples of the signai are considered as the setci+, and decomposed into the sets 

d j  and ci. These coefficients can be used to reconstruct an approximated version A, and a 

detailed version Dl of f (1)  at that scale as shown in Figure 4.8a. 

Coiflet5 scaling and wavelet functions and their frequency response Ho (iv) and H ,  (iv) are shown 

in Figure 4.8b. The two functions are working ris a low and high pas  filters that divide the 

specuum of cl+, . The spectrum of f (1). O -f, . will be decomposed into the ( ro fm ) 
2 

band for d j  and the ( O  ro -) band for cj  . The rile of the data points will also be ceduccd to 
2 

(N  +n  -1)/2 as show in Figure 4.8~. Where, N is the number of f ( r )  sampling points and n is the 

number of filter coefficients ( n  =30 for coif5). As the scale changes, the shape of the wavelet 

becomes wider and the steps in tirne (translation) become larger, This allows representation of 

less details and or lower resohtion. In the second MRA stage, the approximated coefficients (c,) 

f fm can be funher decomposed into d j,t ( - fm 
CO -) and ci-, ( O  ro -) by convolution and 

4 2 4 

decimation. The decomposition of the approximated coefficients can be continues till no more 

details can be extracted. The Iast approximated coefficients c, will be reached at the final stage of 

MRA and f (1) can be presented as in Equation 4.23. 

In MRA, the first stage divides the specvum into two equal frequency bands; the second stage 

subdivides the lower frequency bond into quarters, and so on. In other words, the DWT 

coefficients for any signal, periodic or non-periodic, cm be computed by using a multi-rate filter 

bank. The total number of the resolutians that can be achieved J depends an the number of 

sampling points, which can be controlled by the sampling frequency and the window size of the 

data 
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coif5 scaling function coif 5 wavelet function 

z o .  1 
3 -0.2 

-0.1 
O 5 10 15 20 10 15 20 25 30 

Spectrum devirion Data Size oompression 

- - 

Figure 4.8: One stage of MRA and wavelet fiiters 

a- decomposing into detaii and oppmximated version, 

b- Coiflt 5 scaling and wavelet functions and their frequency response, 

c- specnum division and coefficients size compression. 

c (ml 1 d 

j+l cj (kI 0 -  f 4 2  j+l cl (k) c W l  (N+n- lW 



In other words, an analysis filter bank efficiently calculates the discrete wavelet transionn 

( D m  using banks of digital ftlters and down-samplers, and the synthesis filter bank calculates 

the inverse discrete wavelet transfocm (IDWT) to reconstnict the signal from the tnnsform. 

Figure (4.9) shows five-levels of multi-resolution signal decomposition using the Haar scriling 

and wavelet functions. 

Figure 4.9: Five level multi-resolution signal decomposition 
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4.6 Parseval's Theorem 
If the scaling function and wavelets form an onhonomial basis, there is Parseval's theorem that 

relates the energy of the signal to the energy in each of the components and their wavelet 

coefficients of the approxirnated and detail versions. This means that the nom or energy of the 

signal cm be phtioned in terms of the expansion coefficients [28]. 

Any function f ( t )  E L'(R) can be presented as a series expansion by using a combination of the 

scaling functions and wavelets. 

The Parseval's theorem is: 

with the energy in the expansion domain partitioned in time by k and in scale by j. 

4.7 Summary and Conclusion 

The wavelet transform and multi-resolution anaiysis is a prornising tool for satisfying our goal in 

designing an Automated Recognition System (ARS) for power quality monitoring. It can give 

good results in monitoring transient or steady state signds or both of them simultaneously. 

implementing MRA any distorted signai can be decomposed into different building blocks that 

represent the time-frequency information of the distorted signal. The coefficients that represent 

the signal in the wavelet domain can be used to extract classification features for classifying the 

different power quality pmblems. 
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The scaling property of the seiected wavelet function to be used in decomposing the signal will 

assure the ability of the MRA technique to detect any transient event and localize it in the tirne 

and frequency domains. 

Selecting onhonormal wavelets, multi-resolution anaiysis will have the ability to distribute the 

energy of the distorted signal in terms of the expansion coefficients of the wavelet domriin. 

Thecefore, both the expansion approximated and detail coefficients will give an indication about 

the energy content of the distorted signal in certain time and frequency bands. This feature can 

be used to ciassify different power quality problems. From the other side, the energy of the 

wavelet coefficients can be combined with the locaiization propeny to give a measure of the 

distortion event. 

The small values of the expansion coefficients will give us an indication about the resolution 

levels that contains low energy of the distorted signal and hence can be ignored for data 

compression purposes. This can reduce the large volume of disturbance data to a manageable 

size. It will provide a higher quaiity of information about the disturbance event to be analyzed by 

the planning engineers. 

Furthemore, the expansion coefficients of the highest resolution levels can be ignored for de- 

noising purposes. 

Using these properties of multi-resolution signal decomposition, an automated recognition 

system can be designed to detect, localize and classify different power quaiity problems. The 

wavelet coefficients at different resolution levels can be used to de-noise and compress the data 

of the distorted event. A complete discussion of the proposed Automated Recognition System 

will be pcesented in the following chapters. 



Chapter 5 

Detection and Locaiization 

5.1 Introduction 
In order to improve the electric power qudity the sources and causes of disturbances on the 

distribution system must be detennined. However in order to determine the causes and 

sources of disturbances, one must have the capability to detect and localize those 

disturbances. This chapter proposes a technique that has the itbility to detect and locdize ûny 

disturbances in a clean or noisy environment. This technique is based on wavelet-multi- 

resolution anal ysis (WMRA). 

This chapter is organized as follows. Section 5.2 highlights the procedure to map the distoned 

signal into the wavelet domain. The proposed procedure for disturbance detection and 

localization is presented in Section 5.3. Section 5.4 describes a wavelet-based procedure to 

quantif' the noise content in the monitored signal while Section 5.5 presents a detection and 

locaiization technique for different disturbances in a noisy environment. The applications of 

the proposeci technique are presented in Section 5.6. Findly, the assessrnent of this chapter is 

discussed in Section 5.7. 



5.2- Mapping Into The Wavelet Domain 

l e t  us assume that a distorted signal f ( t  ) has a finite length and consists of two components, 

The first component is the 60 Hz pure signal p(r land the second one is s( t ) that represents 

the distortion event superimposai on the pure signal. Therefore. the distorted signal can be 

presented as: 

Applying multi-resolution andysis, one cm decompose die signal f ( r )ai different resolution 

levels and present it as a series expansion by using a combination of scaling functions 

h(r )and wavelet functions wk( r )  . This can be mathematically presented as: 

where, di are the detail coefficients chat represent different detail versions of the signal 

f ( t  ) at different resolution Ievels (scdes), and c, is the 1st  approximated coefficients that 

represent the last approximated version of the signal f ( r )  where no more details can be 

exuacted. Since the selected wavelet and scding functions ;ire orthonormal (orthogonal and 

normalized), the expansion coefficients ci and d j  can be computed by the inner product of the 

signal f ( r ) md the scaling or wavelet functions. 

Since the sampling rate of f (  t )are above the Nyquist raie ( /,, 2 2 f- ), then the signal 

samples c m  be considered as the approximated coefficients cj,, and used to compute the 

approximated ci and detail dj  coefficients as: 



Therefore, using Equations 5.3 and 5.4, the distorted signal f ( t  ) is mapped into the wavelet 

domain and presented in terms of its expansion (approximated and detail) coefficients as: 

C,,,,=lcol dold, I .--..-.- d,J 1 (5.5) 

where c, are the last approximated coefficients and di are the detail coefficients at resolution 

level i of the distorted signal. 

in a similas way, the expansion coefficients of a pure signal C,,, can be generated and used 

as a reference for the purpose of classification and measurements. These coefficients are: 

c,, = b o p  1 d, Id,, I--d ,,-,,, 1 1 (5.6) 

where c,,are the last approximated coefficients and di, are the detail coefficients at 

resolution level i of the pure signal. 

Therefore, the expansion coefficients C,,that represent the distonion events(t)are 

formulated by subuacting Equation 5.6 h m  Equation 5.5. Therefore, 

where cdare the last approximated coefficients and d,  are the detail coefficients at 

resolution level i of the distortion event oniy. 



5.2 - Detection and Localization 

the Distortion 

Any changes in the pattern of the signal cm be detected and localized u the finer resolution 

levels. As far as detection and locaiimion is concerned. the wavelet coefficients of the first 

finer decomposition level of fl r )  are nocmally adequate to deiect and localize any 

disturbance in the signal. These coefficients are: 

For a pure signal, the set of coefficients di( k )  presented in Equation 5.6 rire equal to zero. 

Any changes in the signd cm be detected and locdized in tirne due to the changes in the 

magnitude of these coefficients. This property is  shown in Figure 5.1. An impulsive transient 

event, Figure 5.1% is detected and Localized due to the changes in the magnitude of the detail 

coefficientsdj(k) thiit represent the fint detail version D, . 

cm 

Figure 5.1: Transient detection 

a- impulsive transient phenornena, 

b- deiection and iocalization of the transient event at the first resolution level. 
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However, as the transient event magnitude decreases and the noise level increases, the 

coefficients chat represent the noise will mage with those representing the transient event. 

This will cause a failure in the wavelet detection and localization property. Figure 5 .k  shows 

a harmonic distoned signal where the total h o n i c  distonion equals to 26.6%. The signal is 

funher distoned with sag to 0.8 p.u. for one cycle. If the noise level is srnall then the first 

resolution level 4 can be used to detect and localize the sag event as shown in Figure 52b. 

However, as the noise level increases, the first resolution level can no longer detect and 

localize the transient event, Figure 5.2~. 

0.3 0.4 O S  0.6 0.7 [a] 

Figure 5.2: Steady state phenomena detection 

a- hannonic distorted signal with one cycle sag to 0.8, 

b- the highest rcsolution leveI with zero noise level, 

c- the highest resolution level with 2.0% noise level. 



Chapter 5: Detection & Localbtion 7 1 

A new technique relying on noise level assessment and an approximated version of the 

distortion event is proposed to de-noise and localize the transient event and to measure its 

duration, A r ,  in a noisy environment. 

5.3 - Noise Level Assessrnent 
In multi-resolution analysis, shown in Figure 5.3, the First stage will divide the spectrum of 

distortion into a low-pass and high-pass band, resulting in the scaling coefficients and wavelet 

coefficients at a lower scale c,,-, k ) and d, ,,,,,(k ) . The second stage then divides that 

low-pass band into another lower bw-pass band and a band-pas band. The first stage divides 

the spectnirn into two equal parts. The second stage divides the lower halves into quiuters and 

so on. 

0.46 0.48 O 5  O52 054 [SI 
Tbc input distortcd signai 

Figure 5.3: Multi-nsolution analysis of a distorted signal 



The noise is defined as an elecaical signal with wide-band spectral content lower than 

200kHz superimposed upon the distorted signal [3]. However, the principle noise sources in 

power system inject their noise components at high frequencies [2] [161. Therefore. great part 

of the noise energy is expected to appear at the highest resolution level d, ),, ,d as computed 

in Equation 5.8. This means chat the energy of the coefficients at the highest 

resolution level can give a good indication about the energy of the noise superimposed over 

the signal. 

For a pure signai, 

The variation of AE,, ,,,, with different white noise levels superimposed on a pure signal is 

presented in Table 5.1. 

Table 5.1: Coefficient's energy with white noise level variation in one-second pure signal. 

An assessrnent of the noise level can be detemhed as the value of A&,-, , goes beyond 

zero or a certain threshold value of accepted noise level. 

1.0% 

0.6345 

Noise 

J I  

0.0% 

0.0 

0.50% 

0.3143 

0.25% 

0.1521 

0.75% 

0.4646 



5.4 - Detection and Localization in a Noisy 

Environment 

As the noise level increases, A&,,,-,, > O ,  the distonion event cm be localized by 

reconstnicting an approximated version of the distoned signal and ignoring the coefficients 

that represent the noise. This can be mathematicdly represented as: 

where F c J and J represents the total number of resolution leveis and F represents the 

subspace index or the highest resolution level to be used to reconstnict s ( t  1. The value of 

F depends on the noise level content and the energy distribution of the distortion event as 

indicated in Table 5.1. Squaring the distortion event and applying the following thresholds can 

accomplish further reduction for any existing harmonic components. 

where 

Utilizing Mt )the starting time ?,,and the ending time r, of the disturbance event can be 

localized. The dumion Ar is measured and used to categorize the disturbance as 

instantaneous, momentary, or tempocary. 
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5.5 - Applications and Results 

The proposed detection method is applied to detect, localize, and estimate the duration of the 

following power system disturbances with different noise levels: 

5.5.1 Oscillatory Transient phenornenon 

The proposed detection technique was applied to detect the duration of the simulated 

oscillatory transient as indicated by Equation 2.2 and shown in Figure 5.4. As indicated in 

Section 2.10 neither the STFT technique nor the point-by-point cornparison technique can 

monitor exactly the duntion of the oscillatory transient event. 

Applying MRA, the First Detail Version D, of the distorted signal was used to locaiize 

the distortion event in time. Even though, the oscillatory phenornena decayed to srnall 

values after 0.015s, the exact ending time of the distortion event was detected around 

0.018s. This is clearly shown in Figure 5.5. 

T h e  Cs) 

Figure 5.4: Simulated oscillatory distorted signal 
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Figure 5.5: The first detail version of the distoned signal 

5.5.2 Capacitor Switching Phenornenon 

The distorted signai f(t), shown in Figure 5.61 and its zwmed version Figure 5.6b. was 

simulated with the transient event. The actuai starting tirne of the distortion was 0.4901 s and 

the ending time was 0.4926 S. The pcoposed algorithm was used to estimate the time 

information of the distortion. The distonion event s( r ) was synthesized using the wavelet 

coefficients Cdht as shown in Figure 5.6~. The threshold measure Equation 5.14 was applied 

on [s(t)12and m(t)was consmcted to estimate the time information of the distonion 

(Figure 5.6d and 5.6e). 



-1.2 I I 

0.47 0.49 0.5 1 [sj 
(a) 

Figure 5.6: Detection and localization of a transient phenornenon in a noisy environment 

a- Distorted signal 

b- b m i n g  version of the distorted signal 

c- Distortion extraction 

d- The square of the reconstructed approximated version of the distortion event 

e- Distonion duration 



Table 5.2 presents the estimated starting and ending time of the capacitor-switching 

phenomenon with noise level variation from 0% to 1.2%. It can be seen that the estimated 

time error is increased considerably as the noise level magnitude was increased beyound 

1.0%. However. higher values of noise level larger than 1.0% are not normally expected in 

power systems [2]. 

Table 5.2: Estirnated starting and ending tirne of a transient phenomenon 

with noise level between O - 1.2% 

5.5.3 Sag phenornena 
Figure 5.7 shows a signal distoned with high and low frequency components and a sag 

phenomenon to 0.85 p.u. (of peak value). The total hmonic distonion (THD) is equal to 

18.24%. MRA was applied and the distoned signal was decomposed at different resolution 

levels. The duration for the sag phenomenon was detected and loçalized in the first detailed 

levei for 14.6 cycles as shown in Figure 5.8. 
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Figure 5.7: Hmonic distoned signal with sag phenomenon 

Figure 5.8: The first detail version of the distoned signal 

5.5.4 Sag in noisy environment 

The same technique was applied for detecting and Icxalizing a one-cycle sirnulated sag 

phenomenon, Figure 5.9a. The simulated signal was further distoned with harmonic and had 

a high noise level. The actual starting time of the distortion was 0.4917 s and the ending tirne 

was 0.5083 S. Due to the high noise level, 1.095, the first resolution level D, ,  Figure 5.9b, 

could not be used to detect and locaiize the distortion event. The distonion event s(t) was 

synthesized by ignoring the high-resolution levels, F =9 and J = 13, for de-noising purposes, 

Figure 5.9~. The threshold meiuure Equation 5.13 was applied on [s(t)12and m(t) was 

constructeci to estimate the tirne information of the distonion, Figure 5.9d and 5.9e. 

Table 5.3 presents the estimated RMS value and the starting and ending tirne of a sag 

phenomenon with noise Ievel variations from 0% to 2.0%. 



Table 5.3: Estimated RMS value and stiuting and ending time of sag phenomena. 

Figure 5.9: Detection and localization 

a- Sag phenomenon in a noisy environment, b- First detail version, c- Distortion extraction 

d- The square of the approximated version of the distortion, e- D ~ s c o ~ ~ o ~  duration 



5.7 Chapter Assessrnent 
In this chapter a new wavelet multi-cesolution analysis technique is proposed. This technique 

has the ability to detect and localize any disturbance in an electric power system. The first 

detail version of the decomposed signal can give accurate information about any variation in 

its pattern. As the noise level increases, the de-noising property of the wavelet-MRA can be 

implemented to detect and localize the distortion event. 

On-line classification is another feature that must be considered to monitor power qunlity 

disturbances. The classification procedure for different disturbances will be discussed in the 

following chapter. 
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Chapter 6 

Distortion Classification 

6.1 Introduction 

Energy companies rely on power quality monitoring data to ensure the reliability and enhanced 

delivery of their product. These monitoring devices altow energy companies to continually 

evaiuate the quaiity of their supply, assisting them in spotting and correcting system weaknesses 

before they create problems. The ability to extract information rather than just data from 

monitored signais is an important requirement for modern disturbance monitors. This information 

is essential to design an automated classification system for different power quality disturbances. 

A new technique is proposed in this Chapter chat has the abiiity to decompose any distoned 

signai into different building blocks and extract tirne-frequency features simultaneously from 

each block. The feature extraction method maps a d dimensionai vector into a d'dimensional 

vector, where d' « d whilst, at the same time reiaining as much discriminatory information as 

possible. The proposed feature extraction method is based on the distribution of the energy of the 

distorted signal in different fcequency bands by utilizing wavelet multi-cesolution anaiysis 

(MRA). The dimensionaiity of data is mapped into a small unmber of interpretable features. 

These features are proven to be very efficient in auto-dassifying different power quaiity 

problems that overlap in time and fnquency. This technique can be used to design an on-line 



automated power quality monitoring systern that has the ability to detect, localize, and classify 

different disturbances. It also can be used to auto-cluster large amount of data or classify it 

according to EEE Std.1159. The results of the proposed technique suggest that it will be able to 

be implemented on-line "in reai time" for ciassifimg different power quality disturbances. 

This chapter is organized as follows. After a brief introduction of this chapter, Section 6.2 

presents the MRA tool and its ability to distribute the energy of different distoned power signals 

(voltages or currents) at different resolution levels. The standard deviation of each detail version 

of the decomposed signal can be used to classify different disturbances. The proposed Wavelet- 

based methodology for feature extraction is discussed in Section 6.3. Section 6.4 utilizes pattern 

recognition techniques to design an automtic classifier based on the wavelet features. Evaluation 

of the proposed wavelet-based features is discussed in Section 5.5. Application of the proposed 

automatic classification technique is presented and evaluated in Section 6.5. Finally assessment 

of this chapter is presented in Section 6.7. 

6.2 Distribution of distorted signal energy 

in the wavelet domain 
Disturbance in any signal cm be consideced as a result of change in the energy status of that 

signal. if one can detect by a proper method these changes then he cm identify the disturbance 

type and magnitude. It is a known fact that for each type of disturbance there are some associated 

energy changes with the signal. The energy of the distorted signal will be partitioned at different 

resolution levels in different ways according to the power quality problem at hand. Therefore, 

having a twl that can decompose the energy of the signal and localize it in the time and 

fcequency domains could be used in classifjing different disturbances. 

Using MRA, any distorted signai can be decomposed into different resolution levels. The energy 

of the detail coefficients at each resohtion level is equivaient to the energy of the constmcted 

version of the signal at that level. This is because the selected wavelet function is orthonormal 

and therefore satisfies Parsival's theomn (Section 4.9). The distribution of energy of the 



coefficients at different resolution levels can be presented in terms of the standard deviation of 

the detail versions at each resolution level. This feature wil1 be defined as the std-MRA curve. 

To illustrate the efficiency of MRA in detecting and classifying power quality problerns, different 

disturbances is simulated using Mathb code and mapped into the wavelet domain. The distribution 

of the energy for each detail version (standard deviation) is computed for each resolution level. 

The results are used to detect, localize and classify different phenomena based on the following 

rules: 

6.2.1 Pure sine wave 

Figure 6.1 shows the pure sine wave (Figure 6.la) and the three finer decomposition levels 

(Figures. 6.lb, 6.1~. and 6.td)- The horizontal mis presents the time in seconds and the vertical 

axis presents the magnitude in volts. The std-MRA curve is shown in Figure 6. le. The horizontal 

axis presents the different resolution levels and the vertical axis presents the magnitude of the 

standard deviation of the detail versions ai different resolution levels. 

In this case, ail the finer resolution levels (Figures. 6.1b, 6 . k  and 6.ld) do not detect any 

changes. The pure sine wave std-MRA curve will be used as a reference in cornparison with other 

cases. It will appear as a dotted line in each of the foltowing cases. 

6.2.2 Sag in a pure sine wave 

The sag is detected and localized in al1 the finer three decomposition levels Figures 6.2b, 6.2c, 

and 6.2d. It is clear from the Figure that the duration of the sag cm be easily measured, and hence 

determined if the sag phenomenon is instmtaneous, momentary, or tempocary. The maximum 

value of the std-MRA curve is decreased with an amount related to the sag magnitude and 

duration as shown in Figure 6.2e. 



Figure 6.1: Detection, localization. and 

a- Pure signal, b-First detail version, 

c- Second detail version, d- Third 

detail version, e- std-MRA curve 

Figure 6.2: Detection, localization, and 

classification of a sag in a pure sine wave. 

a-Sag signal. b-First detail version, 

c-Second detail version, d- Third detail 

version, e- std-MRA curve 

6.2.3 Swell in a pure sine wave 

The swell is detected and localized in al1 the finer three decomposition levels, Figures 6.3b. 6,3c, 

and 6.3d. Similac to the sag case, the duration of the swell can be easily measured. The maximum 

value of the std-MRA curve is increcrsed with an amount related to the swell magnitude and 

duration as shown in Figure 6.3e. 
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6.2.4 Harmonic distortion 

Since hannonic distortion is stationary therefore, there is no localization property that can be 

detected at any of the finer levels, Figures 6.4b, 6.4~. and 6.4d. The lower left and nght parts of 

the std-MRA curve is changed according to the hannonic content of the signal. As shown in 

Figure 6.k. the lower left piut is changed according to the high frequency content of the distoned 

signal and the lower left part is changed according to the low frequency content of the distoned 

signal compiued with the power frequency (60 Hz). 

Figure 6.3: detection, localization, and 

classification of a swell in a pure sine wave. 

a-Sweli signai, b-Fm &tail version, 

c-Second detail version, d- Third detail 

Figure 6.4: detection, localization, and 

classification of harmonic distorted signal 

a- Harmonic signal, b-First detail version, 

c- Second detail version, d- Third detail 

version, e- std-MIW curve version. e- std-MRA curve 



6.2.5 Sag in a harmonic distorted signal 
The sag is detected and localized in the first finer level, Figure 6.5b. The number of 

decomposition levels can be increased to detect these phenomena at other finer levels. The 

amplitude of the decornposed signal is reduced during the sag intervai cornprited by its magnitude 

before the sag, Figure 6%. The maximum value of the std-MRA curve is decreiised with an 

amount related to the sag magnitude and duration as shown in Figure 6.5e. The lower left of the 

std-MRA curve is also changed according to the higii fequency content of the signal. 

Figure 6.5: detection, localization, and 

classification of a sag in a hannonic distorted 

signal 

a- Sûg in harmonic signal, b-First detd 

version, c- Second detail version, d- Third 

detail version, e- std-MRA cuve 

w or a 6  ol aü ab au11l 

(4) (11 

Figure 6.6: detection, localization, and 

classification of a swell in a harmonic 

distorted signal 

a- Swell in harmonic signal, b-First detail 

version, c- Second detail version, d- Third 

detaiI version, e- std-MRA curve 



6.2.6 SweU in harmonic distorted signal 
The swell is detected and localized in the fmt finer level, Figure 6.6b. The amplitude of the 

decomposed signal is increased during the swell interval compared with its magnitude before the 

swell, Figure 6.6~. The maximum value of the std-MRA curve is increased with an amount 

related to the swell magnitude and duration as shown in Figure 6.6e. The lower left of the std- 

MRA curve is also changed according to the harmonic content of the signal. 

Figure 6.7: detection, localization, and 

classification the presence of non lineiu lo& 

for short intervals 

a- Distorted signal, b-First detail version, c- 

Second detail version, d- Third detail version, 

e- std-MRA curve 

0.6 
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High fri 
i 

0.2 

O 

0 3 6 9 1 2  

std-MRA Curve 

Figure 6.8: std-MRA curve for different 

Power qudity problems. 



6.2.7 Transient distortion in pure sine wave 
This phenomenon is detected and localized at al1 the three finer decomposition levels, Figures 

6.7b, 6.7c, and 6.7d. The magnitude of the coefficient outside the transient event intervd is 

dmost equai to zero for all the finer levels. The lower part of the curve will be changed according 

to the harmonic content of the transient. 

Using the proposed niles extracted from the MRA technique at finer levels and the std-MRA 

curve one can detect, locûlize, and dassify different power quality problems. This is clear from 

Figure 6.8, where the solid std-MRA cuwe is for a pwe sine wave and the other curves are for: 

A - Voltage swell in harmonic distorted signal, dashed curve above the pure sine wave curve. 

B - Voltage sag in pure sine wave, dashed curre below the pure sine wave curve. 

C - Hmonic distorted signal. dotted curve on the lower left and right pms of the pure sine wave 

cuwe. 

These classification roles are so simple for the operator to detect, locaiize, and classify different 

power quaiity problems. The top part of the std-MRA curve is a good feature to classify the sag, 

swell, and interruption phenomena. The lower left part and the lower right part of the std-MRA 

curve are good indicators for any high or low frequency component embedded in the distorted 

signai. 

6.3 The Proposed Classification Methodology 

Feature extraction is a preprocessing operation that transforms a pattern from its original form to 

a new form suitable for further processing. Mapping the data of the distorted signal s ( t )  into a 

wavelet domain is the first step in performing the proposed feature extraction process. The 

distribution of the distoned signal enecgy at different resolution levels is computed to genente 

the proposed translation invariant features. The tenn "translation invariant" denotes that the 

f e a m s  remain unchanged if the power quality problem undergoes a change of position 

(translation). These features have the property of king able to effectively differentiate among 

different power quality ptoblems. 



According to Parseval's theorem, if the used scaling function and the wavelet function fonn an 

onhonomal basis, then Parseval's theorem relates the energy of the distorted signal to the energy 

in each of the expansion components and their wavelet coefficients. This means that the energy of 

the distorted signal can be partitioned in tenns of the expansion coefficients. Therefore, the 

energy of the distorted signal, ~ ' s i g d ,  will be partitioned at different cesoiution levels in different 

ways according to the power quality problem at hand. 

A set of discriminative. translation invariant features with smdl dimensiondity that present the 

energy distribution of f(t )at different resolution levels is generated. These features can be 

presented by computing the nom "11 . 11" of the wavelet coefficients (Csisw, computed in 

Equation 5.5) that represent the distorted signal f ( t  )at different resolution levels, as follows: 

where, 

in a sirnitar way, the wavelet coefficients of a pure signal C,,, cm be generated and used as a 

reference for the purpose of classification and measurements. These coefficients are: 

and their energy disiribution can be presented by the nom of the C,,,, using Equation 6.2 and 

Equation 6.3, the proposed feature vector x, that is used to classify the distonion event can be 

generated by finding the differencedE that represent the enecgy distribution of the distortion 

event, where: 



This feature vector can be represented in terms of the energy distribution of the distonion event 

on different resolution levels as: 

Or xo can be rnathematically represented as: 

Another component is added to the feature vector, Ar, that represents the duration of the distonion 

event. Using the fmt decomposition level of the distorted signai one can detect and localize my 

disturbance in the signai. The duration measurement of the distortion event is presented in the 

Chapter 5. The modified feature vector can then be presented as: 



where J represents the total number of resolution levels. 

Figure 6.10 shows the difference in energy distribution (a) at different resolution levels for 

1200 distorted signals with the following power quality problems: 

Sag in a pure sine wave, 

Swell in a pure sine wave, 

Sag in a harmonic distorted signai, 

Swell in a hmonic distoned signal. 

The sag and swell duration and magnitudes were randomly varied to cover the variation range 

indicated in iEEE std. 1159. The effective values of the hmonic distonion were rlso chosen 

randornly and ail the signals were funher compted by the addition of white gaussim noise. As 

the noise level increases from 0.5% to 3.58, the proposed classification technique will provide a 

translation invariant feature vector as shown in Figures 6.9 and 6.10. 
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:i 0.5% noise 

Figure 6.9: Feature vector for different power quality problems 
with noise levelOS% 

3.5% noise 

Egure 6.10: Feature vector for different power qdity problems 
with noise level3.5% 



6.4 Automatic classification of different 

disturbances 

Different pattern recognition techniques were used with the proposed features to design an 

automated recognition system. This system cm be instdled on-line to classify different 

disturbances according to IEEE std. 1159. The following sections give an introduction to 

different pattern recognition techniques that were implemented with the proposed features to 

classify different disturbances. Using the mentioned features one can classify power quality 

problems in noisy environment with or without dc offset. The proposed technique shows its 

ability to classify steady state and transient phenomena. It can be implemented to classify non- 

stationary signals or signals that are distorted with more than one power quality problem. 

6.4.1 Pattern Recognition Techniques 

Pattern recognition techniques are automared tools for decision-making processes. One of the 

important applications of pattern recognition is in waveform classifications, which is to predict 

the class membership of a distorted signal and to minimize the nsk of misclassification. In this 

section, a comprehensive study of the effectiveness of the proposed translation invariant features 

using the following pattern recognition techniques is studied in order that we can use them in the 

proposed automated disturbance classifier [7 1-78]: 

1. Minimum Euclidean distance Classifier 

2. k - nearest neighbor Classifier 

3. Neural network Classifier 

4. Rule-Based Classifier 



6.4.1.1 Minimum Euclidean Distance 

Classifier ( M . )  

For MED classification, the unknown feature xo is more tikely to beiong to the class r, if and 

only if the distance between .r, and a prototype (man p ) of class r; is less than the distance 

between x, and other class prototype. This is can be formulated as follows: 

where, the Euclidean distance is: 

6.4.13 K-nearest neighbour (WNR) Classifier 

The n e m t  neighbour (NNR) is a classification technique that assigns unknown pattern .r, to the 

class of its nearest neighbour. The NNR can be formulated as [71-721: 

where d is the distance between the set of classified learning data 

samgdes, 9 =[si,+...~N ), and the unknown sample to be classified x, . The k-nearest 

neighbour (kNNR) is an extension of the NNR, where the unknown sample %, is iissigned to 

the ciass of the majonty among the k-neamst neighbours. 



6.4.1.3 Neural Network Classifier (NN) 

A Neural network is a powerful pattern recognition cool [77-781. It is defined as software 

algorithms chat can be trained to leam the relationships that exist between input and output data, 

including non-linear relationships. Once they have learned by examples they can genenlize. 

Figure 6.11 shows a t h e  Iayers ieed-forward neural network classifier. The NN utilizes the 

proposed feature vector as an input to classify different power quality problerns according to 

IEEE std. 1159. 

CIasslllcation 

IEEE std. 1159 

Figure 6.1 1: Automatic power quality classification using Neural Net classifier 
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6.4.1.4 ~ u l e - ~ a s e d  Classifier (RBC) 

A set of rules is consuucted to classify different power quality problerns. These rules are simple 

combinations of propositions that can be evaluated to be either me or false. Each decision rule is 

associated with a particular class, and a rule that is satisfied, i.e., is evaluated as me. is an 

indication of particular class. These mies are as follows: 

IF CI AND AND CJ AND C4 Then Pure Signal 

IF Cs Then High Frequency Content 

IF C60R Cl Then Low Frequency Content 

cg Then s% 

IF c9 Then Swell 

G o  Then DC Offset 

The propositions are constructed using a set of conditions ( C l  -C,,). Each condition chat enters 

into the propositions making up a decision rule involves a simple logical openiion (Anding, 

Orïng). 

These conditions are as foltows: 

Cl xoi4 And x,,, And .r,,, And .roll And x,,, 

c2 x, And x,, 

Cs x,, And x, 

x,, And x, And xO3 And xO2 

Cs 4 1 4  Or xo,, Or x012 Or xo,, Or xo,, 

cti xo7 Or x, 

c, xo5 Or x, Or xO3 Or xO2 

C8 x, 

C9 4 8  

Cl0 .toi 



Where xoi represents the feature vector i extracted as indicated in Equation 6.10. 

The different threshold values (8, -8, ) are computed using the foilowing equation: 

where, 

According to Equation 6.14 and 6.15, al1 threshoId values are equal to zero in the case of a pure 

signal. To genente the worst condition, a pure signal contaminated with noise and phase shift 

angle is used. The maximum noise level was selected equal to 2.W6 and the phase shift angle was 

variai between O and z/2. The selected threshold vdues are show in Table 6.1. 



6.5 Feature Evaluation using Different Classifiers 

Table 6.1: The threshold values at different levels 

A confusion m ü i x  M is used as a masure for the classification accuncy, This type of rneuure 

is used to summarize both ovedl accuracy of classification and the relative fevels of viuious 

types of misclassification. The number of correct classification faits dong the diagonal of the 

matrix M and dl offdiagonal elements represent miss-classifications [7û-7 11. 

Features 

The classification accuracy or error percentage is computed as follows: 

l'hreshold 

ei mag. 



where NT,, is the total number of samples, N,,,, is the number of correctly classified samples, 

Ne,, is the number of errors, and p is the number of classes. 

6.6 Application and Results 

6.6.1 Osciiiatory Transient phenornenon 

The proposed classification technique is applied to classify the simulated oscillatory transient 

indicated by Equation 2.2 and shown in Figure 6.12. As indicated in Section 2.10 neither the 

STFC technique nor the point-by-point comparison technique can monitor exactly the duration or 

classify the oscillatory transient event. 

Timc (a) 

Figure 6.12: Simulated oscillatory distorted signal 

UtiliWng MRA, the signal is mapped into 2D and decornposed into 12 resolution levels (Table 6.2) 

covering the frequency band from O to f ,  (rl20kHz). 



Due to convolution with the wavelet filter followed by decimation by two the resulted spectrum 

will cover the frequency band ( f-/2 to f-). Thecefore. implementing the proposed 

technique, the First Detail Version DL (Figure 5.5) of the distorted signal (in frequency band 60 - 
120 W.) can be used to localize the distortion event in tirne as indicated in Section 5.5.1. 

Table 6.2: Different resolution levels and their frequency bands 

Level Band (Hz) 

Figure 6.13 shows the feature vector of the distoned signal compared CO the feature vector of a 

pure undistorted signal. The 7' resolution level (in frequency band 937.5-1875 Hz) shows a high- 

energy content (11 d, lhz 60); note chat the 7" resolution level includes the 1500 Hz component 

previously imbedded in the simulated signal f ( t )as in Equation 2.2. Part of the distonion event 

energy is leaked to the adjacent 6Ih (frequency band 1875-3750 Hz) and 8' (frequency band 

468.75-937.5 Hz) resolution levels. However, the magnitude of this lediage energy is very small 

compared with chat in the 7Ih resolution level due to the sh;rrp cut-off frequency of the selected 

wavelet filter (Daubechies 40). This leads to an important critecion in selecting the mother wavelet 

to be used for the analysis, which will be presented in Appendix B. 

Resolution 

Level 

7 

8 

9 

The results of MRA technique, where the energy of the distortion event concentrated at the 7Ih 

resolution Ievel (frequency band = 937.5-1875 Hz) and ducation= 12ms. rue compared wiîh the 

categocies of elecuomagnetic phenornena presented by IEEE Std.1159 and shown in Table 6.3. 

The distortion event is then classified as oscillatory transient with low frequency content. 

Frequency 

Band (Hz) 

937.5 - 1875 

468.75 - 937.5 

234.35 - 468.7 



Figure 6.13: Discrete Wavelet Transfomi 

Table 6.3: Typical chancteristics of vansient phenomena in 
power systems (Part of Table 2 -1EEE Sid.! 159-1995) 

I 3 - Millisecond 

B - Oscillatory Transient 

Typical 
Magnitude 

Typical 
Durafion 

c 5 0  ns 

Sons-l ins  

A - hpusive 

1 - Nanosecond 

2 - Microsecond 

Typical 
Spectral 

5ns  rise 

1 psfise 

1 - Low Frequency 

2 - Medium Freq. 

3 * Hi@ FWuency 

eskHz 

5-500 kHz 

0.5 - 5  M , 

0.3-50ms 

2 0 ~  s 

5 p s 

P4pu 

0-8 pu 

0-4 PU 



6.63 Feature extraction of a transient event 

Utilizing MRA, the distorted signal, a capacitor switching phenomena shown in Figure 6.14, is 

decomposed into several detail versions (building blocks). Some of these building blocks thar 

have imponant parts of the energy of the distorted signal are shown in Figure 6.i5. The shawn 

resolution levels include detriil versions of the first 4, second D2 , sixth D, , seventh û, , 

eighth D8,  tenth Dl,, eieventh Dl, , and twelve D12 as shown in Figure 6 . h - i  respectively. These 

versions of the signal are easier to study and interpret. 

The capacitor switching phenomena is siunpied at 165 kHz and a 3 cycles window size is selected 

(8266 sampling point). These sampling points (ci+,) are used as input for MRA and decomposed 

into 13 resolution levels. The frequency bands that represent each resolution level are 

sumrnxized in Table 6.4. Using the first detail version 4 (Figure 6.15a). any changes in the 

pattern of the signal can be detected and localized. The duration of the distonion event can be 

measured from the detail coefficients (di ) at this resolution level. The size of the coefficients 

( d ,  ) is equal to zero for a pure signal and they will have certain values for any disturbance event. 

MRA shows that most of the distonion eveni energy is concentnted at seventh resolution Ievel 

il, (645-1289 Hz) as shown in Figure 6.15d. The eleventh resolution leveI(40-80 Hz) presents 

the 6ûHz power signal as shown in Figure 6.15g. 

Figure 6.14: Capacitor switching phenomena 



Figure 6.15: Building blocks " different resolution levels" of the distorted signai 

a- First detail version, b- Second detail version, c- Sixth detail version. d- Seventh detail version, 

e- Eighth detaif version, f- Tenth detaii version, g- Eleventh detdl version, i- twelfth detail version 

Leakage of the signal energy will be seen at adjacent resolution levels. For example. pan of the 

60Hz energy of the signai, Figure 6.15g, will be l e led  to the adjacent resolutions; Figure 6.1Sf 

and Figure 6.15. This is due to the non-sharp cut-off frequencies of the wavelet filters. However, 

the magnitude of this leakage energy is very small compared with that in Figure 6.1Sg. The 

selection of the Filters will help in reducing this lealcage. As the nurnber of filter coefficients n 



increases, the cut-off frequency wiIl become more s h q  and the leakage energy is reduced. This 

is an important criterion in selecting the mother wavelet to be used for the analysis. 

Table 6.4: Different resoiution levels and their frequency bands 

The distribution of signal energy ot different resolution levels (building blocks) cm be used to 

extract important features that help in classifying different power quality problems. Furthemore, 

the localimtion property of the wavetet tnnsform coefficients of the first resolution level can give 

accunte information on classifying the type of distortion as continuous or trrinsienc, and stritionary 

or non-stationary- 

The proposed feature extraction technique is applied on the distorted signal f (  t in Figure 6.14 

(capacitor switching phenomena). The energy distribution for both the distorted signal (dashed 

line) and pure one (solid line) is shown in Figure 6.16a. The extracted feature vector for f ( t )  is 

shown in Figure 6.16b. The distorted signal (8266 sarnpling points) is rnapped into a smll 

number of features (13 numbers). This feature vector extracts the energy of the distonion event 

and distributes it across different resolution levels. Figure 6.16b shows that the distonion event 

energy is disuibuted across resolution levels 1 to 8. Most of the distonion energy is concentrateci 

in the 7' resolution level (645-1289 Hz). The time information of this distonion event is 

measured h m  the first resolution level and found to be 7 ms as shown in Figure 6.15;~ These 

results; resolution Ievel =7, frequency band = 645-1289 Hz, and duration= 7ms, are compared 

with the categories of electromagnetic phenomena presented by EEE Std. 1159. The distonion 

event is then classified as oscillatory transient with low frequency content. 
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Figure 6.16: Distribution of energy of the signal at different resolution levels 
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Wavelet Based Automated 

Recognition System 

In order to test the ability O€ the proposed classifier to distinguish between frequently 

encountered power quality problems, a set of pure signai and five different disturbances have 

been simulated using Matlab, in particulx 

1. Sags 

3. Harmonies 

5. Swells and harmonics 

2. Swells 

4. Sags and hmonics 

6. Pure signal 

6.7.1 Data Generation 

For each type of disturbance, a subset of 200 different signals was generated. Each signal is one- 

second long, sampled at 8.192 kHz, which corresponds to 8192 samples. The parameters of these 

disturbances were chosen according CO IEEE std. 1159 [16]. The sag and swell duration was 

randomly varied from 12.5 ms to 0.985 S. Their voltage magnitudes were selected randomly to 

cover the variation range from 0.9 to 1 pu and €rom 1.1 to 1.8 pu respectively. The effective 

values of the hmonic distortion was chosen randomly between 2.5% and 60% and include 

hmonic cornponents up to the 15' hmonic. Al1 signals were further compted by the addition 

of white gaussian noise with zero-mean and one-standard deviation and magnitude chat Vary 

between 0% and 3.5%. 

6.7.2 Simulated Results 
Three classification rnethods tht  can l e m  from d;ua and rnake prediction on new cases are 

applied. The performance of the different classification rnethods, using the proposed wavelet- 

feature extraction technique to recognize the menaoned power quality problems, is presented in 



this section. The variance methods were compared relative to each other using the confusion 

macrix and the error rate. 

6.7.3 Minimum Euciidean Distance Classifier 

Several data sets were generated for learning and testing purpose. A learning set of 1200 signals 

was divided into 6 subscts each of 200 signals. h c h  subset represents one of the mentioned 

power quality problems with different variables. The noise level for the learning set was equal to 

0.5%. Using the proposed feature extraction technique, each signal (8196 points) w;rs mapped 

into a, discriminative and mnslation invariant, feature vector of 15 elements. Using the learning 

set a prototype (mean p, ) for each class r, was computed. 

Another five sets, each of 6 subsets with similar size as the ones in the leaming set, were 

generated for the purpose of testing. The noise level for each testing set was increased to 0.58, 

1.096, 1.5%. 2.5%. and 3.5%. Feuures were exuacted from each signal and used to classify 

different power quality problems. The performance of MED classifier for 0.5% noise level testing 

data is presented in Table 6.5. 

Table 6.5: Confusion miitrix using MED Classifier 

True 

Rire 

Sag 
Swell 

Har. 

Sag& Har 

Swell & Har 

1 Classifier Accuracy 1 60.50 % I 



The MED classifier takes a small computation time compared with the othet methoâs, however it 

shows low classification performance. This is due to the non-spherical shrpe of the feature space. 

The confusion matcix shows a misclassification of the data that have mixed chmcteristics such 

as sag-hmonic and swell-harmonic cases. 

6.7.4 k-Nearest Neighbour (k-NNR) Classifier 

The same learning and testing sets were used for this classifier. The 31-nearest neighbours were 

selected to classify the unknown feature X, to the class of the majority r, mong the 3 1-nearest 

neighbours as indicilted in Equation 6.13. The performance of k-NNR classifier for 0.5% noise 

level testing data is presented in Table 6.6. 

The k-NNR classifier takes more computation tirne compared to the Mm. The method shows 

high classification accuracy for 0.5% noise level. The accuracy of the classifier was reduced as 

the noise leve1 incmed beyond OS%, see Table 6.9, The k-NNR shows good classification 

accuracy for mixed power quality problems such as the swell-hmonic case. 

Table 6.6: Classification Results using KNNR Classifier 

True 

Class 
Rire 

Sag 

Swell 

Har. 

Sag &Hat 

Sweii & fit 

C l d e r  Accuracy 1 95.8333 46 

O O 7 2 2 189 



6,7S Neural Network Classifier (NN) 

A three layers feed-forward neural network was used to classify different power quality 

problems. The single hidden layer is consuucied using 4 units. The NN classifier was trained on a 

large set of data consisting of 6 subsets each of 400 signals. The parameters for each subset were 

changed randomiy. The noise level was also randomly varied between 0-58. The feature vectors 

for different power quality problems (6 subsets) were extracted and used as an input data for 

training the NN classifier. 

Using the same testing data that was used for MED and k-NNR classifiers, the NN classifier 

shows high accuracy. The nndom noise Level was increased from 0.58 to 3.5% and the NN 

classifier still gave accurate results. The results of the classification process using NN for 1 .O% 

noise level data is presented in Table 6.7. 

Rule Based Classifier (RBC) 

Table 6.7: Classification Results using NN classifier 

Using the extracted features, a h  signal (8196 points) was mapped into a discriminative and 

translation invariant feature vector of 15 elements. Applying the classification rules, different 

power quality problems were ctassified. Table 6.8 shows the classification results for six subsets 

Har. 

Sag &Har 

Swell & Har 
r 

Classifier Accuracy I 95.333 % 

O 

O 

O 

1 

O 

1 

O 

O 

3 

199 

1 

19 

O 

197 

12 

O 

2 

165 



Chapfer 6: Disforiion Chsiflcalion 110 

(1200 signals, 200 each class) that present the above rnentioned power quality problems where the 

noise level is 1%. 

Table 6.8: The confusion matrix and the classification results 

Har. 

Sag &Har 

Swell & Har 

Classifier A 

Classification Results 1 
Sag& Swl& 

Pure Sag Swell Har. 
Har. Har. 

Performance Comparison 

While speed of cornputation and sirnplicity of solution may help in deciding which methods 

should be applied, the accuracy of the performance will always remain the primary criterion in 

choosing the classifier. The error rate (Equarion 6.17) is used in measuring the performance of 

each classifier. The results of the error rate at different noise levels are presented in Table 6.9. 

Fmm the tabulated results shown in Table 6.9, it is cleu that the error rate for Neural Network 

classifier is generally better than that for the others. Fmm the tabulated results shown in Table 

6.9, it seems that the error rate for the RB classifier is small particularly when the noise level is 

below 25%. This is due to the fact that when the noise level is increased beyond 2.5% the 

proposed threshold values listed in Table 6.1 caa no longer distinguish among different power 

quality problems. Furthemore, high noise level will cause problems in rneasuring the duration of 

the transient event from the tbcee higher resolution levels. The NN classifier shows higher overall 

performance even with high noise levels. The NN classifier is the least sensitive to noise level 

variation in the input data. The k-NNR classifier also shows a good performance for 0.5% noise 
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level. The MED classifier shows low classification performance due to the non-sphencal shape 

and the overlap in the features space. The MED classifier cannot classify an unknown sample that 

has several characteristics of rnixed classes such as sag-hannonic or swell-harmonie, while the k- 

NNR and NN classifiers can classify such cases. 

Table 6.9: cornparison the classification accuracy 

for different data groups using different classifiers 

Noise Level 

6.8 Chapter Assessrnent 

0.5% 

In this chapter a new technique to extract important features for distortion events that overlaps in 

tirne and frequency are propsed. This technique is based on both a wavelet multi-resolution 

anaiysis for feature extraction and pattern recognition techniques f& automated classificûtion. 

This technique cm be implemented as a new toot to overcome the limitations in the existing 

disturbance malyzers. The following points summarize the finding of this chapter: 

Error % 

MED 1 KNNR 1 Neural Net 

r MRA is used to generate a translation invariant feature vector that can be used to classify 

different power quality problems. The advantage of this technique lies in the feature 

vector which shows the same characteristics at different noise levels. 

RB 

Classifier 

39.50 

The size of the feature vector is very srnaII compared with that of the original signal. 

Classifier 

4.17 

Classifier 

4.67 

Classifier 

1.59 



The performance of the pattern recognition techniques, which is based on the genented 

features show excellent results in classifying different power quality problems, especially 

with RBC technique. 

The detection, localization, and classification capability of the proposed technique presents 

encouraging results which can be used to rnodify the present monitoring techniques in order to 

give superior capabilities for measuring different disturbances. This new memuring technique 

will be discussed in Chapter 7. 
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Chapter 7 

The New Measurement Technique 

7.1 Introduction 

This chapter presents a new measurement technique that can measure accurately a wide nnge of 

different power quality problems. The distortion event is mapped into the wavelet domriin and 

extracted from the raw data. The wavelet coefficients of the distortion event are then used 

combined with the measured duration (Chapter 5) to quantify the tme RMS. The proposed 

technique is implemented to measure the RMS, total harmonic distortion, dc content, and the 

phase shift angle. The coefficients are also used to compute the active and rerictive power in any 

system under steady state conditions. 

This chapter also introduces a new wavelet-based procedure to monitor the fast variation of RMS 

value in the signal. This procedure will help in monitoring the non-rectmgular variations of the 

sag phenumena. It can also be used to assist the quality of servicc presented in the distribution 

systems, as well as the quality of the mitigdon devices, and the characteristics of any load during 

RMS variations. The new rneasurement technique c m  be also implemented to monitor any new 

variations of the distortion event before it elapses. This information will help in finding the 

rectangular or non-rectangular voltage-tolerance curves for different equipment, 

The proposed techniques can be executed by transforming the distorted signal into the wavelet 

domain and extracting the distortion event. Knowing the wavelet coefficients that represent the 

distortion event we can calculate its energy. Furthemore, using the detail version of the first 
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resolution level we extract the duration of the distomon event. Using this information one cm 

measure the magnitude of the distortion event. 

The proposed measurement technique is implernented in two different ways. In the first 

measurement technique, the maximum change in the energy of the resolution level that represents 

the power frequency and the duration of this disturbance are used to construct a set of curves. 

These curves can be used to monitor and measure any changes in the magnitude of the signal. In 

the second proposed measurement technique, the coefficients that represent the signal in the 

wavelet domain are used to extract the distortion event and calculate its indexes. 

The proposed measurement technique, which is based on wavelet mulii-tesolution analysis, has 

the ability to give indices of signals that are distorted by more than one power quality event that 

overlap in tirne and frequency. The proposed measurement technique is used to measure and 

studying the following parameters under noisy conditions and multi-distortion events: 

Peak value during short duntion variations (SDV) 

Root mean square (RMS) and total harmonic distonion (THD) 

Active and Reactive power and power factor 

Non-rectangular RMS variations 

This chapter is organized as follows. After a brief introduction to the measurement in the wavelet 

domain, a proposed technique that utilizes the maximum value of std-MRA curves is presented in 

Section 7.2. A set of curves is genented to measure short duration variations (SDV) in elecuicd 

systems. In Section 7.3, the wavelet expansion coefficients are introduced as a measure of the 

RMS, THD, active, and reative power, and the power factor. A new wavelet based monitoring 

technique for the non-rectangular RMS vruidons is discussed in Section 7.5. The applications 

and resulis of the proposed measuring techniques iue presented in Sections 7.6. Fnally an 

assessment of the proposed masucernent technique is presented in Section 7.7. 
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7.2 Measurements of Short-duration 

variations Using s td-MRA curves 

Measuring the magnitude of the distortion within the s i g d  is an important factor in assisting the 

quality of the power and in making a decision CO store the signal or discard it. 

During short duration variations (SDV), the energy of the distorted signal will show changes in 

its magnitude for certain period of time. Therefore the std-MRA curve wilI present these 

variations at the resolution leve1 that covers the power frequency (60Hz) and the duration of this 

variation cm be monitored in the first detail version of the distoned signal. By monitoring the 

changes in the maximum point of the std-MRA curve, we can quantify the magnitude of the SDV 

of the signal. As the magnitude or duration of the signal changes during the SDV event, the 

maximum value of the sid-MRA curve will also change. Figure 7.1 shows the variation in the 

magnitude of the std-MRA curve for four signals: 

Pure sine wave of the power frequency signal 

10-cycle sag in a pure sine wave 

10-cycle swell in a pure sine wave 

30-cycle interruption in a pure sine wave 

The changes in magnitude and duration of the short duniion variation (SDV) events can be 

calculated by generating a set of curves that represent the variation in the std-MRA curve as the 

magnitude and duration of the SDV event changes, as seen in Figure 7.2. The rneasurement 

c w e s  are generated as follows: 



Pure 

Figure 7.1: Changes in the std-MRA curve for 

different short duration variation events 

Generate a group of signals distorted with sag phenomena started from pure wave to 

cornplete interruption with fixed duration (number of cycles). 

Apply multi-resolution analysis on each signal and find the standard deviation multi- 

resolution analysis curve (std-MM). 

For each case find the maximum value of the std-MRA curve. 

Using a curve fitting technique, find the best curve CO fit the geneented curve. 

Change the number of cycles of the SDV distorted signal and repeat the process again to 

generate other curves for different duration. 
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DU. 

O3 0.325 0.35 0375 0.4 0.425 0.4 0.475 0.5 0525 0.55 

Maximum value of std-MRA cuwe 

Figure 7.2: The variation of signal magnitude during different 

sag intervais with the changes in the maximum vdue of the std-MM curve 

Using a curve fitting technique, we found the polynomials that represent these cuwes; this is 

shown in Table 7.1. These polynomials rire genented for different intervals to cover dl the 

expected intervais of the voltage sag phenornenon. 

When the monitored signai is distorted with sag phenornena, the std-MM curve will show 

reduction in its maximum value and the first detail version will give a measure of the sag 

duration. Knowing the duration we select the best polynomiat and substitute the maximum vdue 

of the std-MRA curve to calculate the sag magnitude. The flow chart in Figure 7.3 shows the 

general steps used to generate the measurement curves. 



Table 7.1: Polynomial coefficients using curve Fitting technique 

Solact duration 6 
Select Sag magnitude + 

37 cycles 

-3.1674~+005 

8.5 144e+ûûS 

-9.4938e+005 

Max. std-MRA Q w 

29 cycles 

-1.9!We+Oû6 

5.6646e+006 

- 6 . 6 8 9 0 6  

Mu.  std-Mra & Sag 

c0~f.n 

1 

2 

3 

Figure 7.3: Flow chart for the generated curves 

15 cycles 

-1.8333e+008 

5.6309ec008 

-7.2034e+008 

7cy& 

-L.S189&ilO 

4.8308&10 

-6.401 l e 4  10 

used in the masurement 

22 cycles 

-1.6292ec007 

4.8 196e+Oû7 

-5.9345e+Oû7 
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7.3 Measurement Using Wavelet expansion 
Coefficients 

If the monitored signals (cunent i( t )and the voltage v( t )) represent square-inregnble density 

functions, then their wavelet transform can be formulated as follows: 

and 

C~ ' [ C V D  1 d~~ 1 d ~ . l  1 - - - . - - d ~ l  J-I I 1 1 

The RMS value of the current (i,, ) is: 

Due the orthonormality (orthogonal and nonnalized), then, 
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The enetgy can be calculated as: 

For a periodic wave, the average powar is: 

Using the wavelet coefficients of the cumnt and the voltage signais, then the phase shift angle can 

be presented as: 
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According to Parseval's theorem, if the used scding function and the wavelets form an 

orthonormal bais, then Parseval's theorem relates the energy of the distonion in the signal s(t) to 

the energy in each of the expansion components and their wavelet coefficients Cd,, . This rneans 

that the energy of the distortion W,,, cm be represented in terms of the expansion coefficients. 

In terms of the wavelet coefficients, the energy of the distortion W,,, is equal to the square of the 

nom of the wavelet coefficients Cd,, . 

where, Il&, Il2 is the nom of the distortion coefficients and can be rnathematically represented 

as: 

ka- 1 4  k=- 

Therefore, the m e  RMS value of the distonion s( t )cari be calculated using the wavelet 

coefficients as follows: 

where A r  is the duration of the distortion event measured from the localization process as 

mentioned in Chapter 5. 

In terms of the wavelet coefficients, the total harmonic distonion (THD) cm be cornputed as 

follows: 
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where, II C,,, 1 I, is the nom of the pure si@. 

Therefore, transforming the distorted signal into a set of coefficients in the wavelet domain can be 

used to consmct a monitoring device to masure different distortion events. 

7.4 Non-Rectangular RMS Variation 

The previous part of this chapter assumes that RMS variation changes in a rectangular fonn for a 

certain period of time. This phenomenon is not crue when a large part of the load consists of 

induction motors, or synchronous motors, or generators. It has been documented in [1 j and [19] 

that there are other RMS-variations with non-rectangular envelopes. These variations are difficult 

to charricterize because there is no single magnitude and duration that cm characterize them, sec: 

Figure 7.4a. 

There are two existing techniques for presenting the non-rectangular variations in the RMS value. 

The following is the summary of these existing techniques [l]: 

1. The first technique defines the magnitude as the minimum RMS voltage during the 

disturbance. The duration is defined as the tirne during which the RMS voltage is below a 

certain threshold, typically 90% of the nominal voltage. This method is used in most 

power quality monitors. The disadvantage of this method is that the non-rectangular 

RMS variations are considered more severe than what they actually are. 

2. The second technique chuacterizes the voltage quality by the number of tirnes the 

voltage dmps below a given value for longer chan a given time, This technique became 

part of the JEEE std. 493 [23]. Using this method we cm quantify the number of sags, 

however, we cannot characterize each sag event individually. Furthemore, implementing 

this method to assess the influence of non-rectangular sages on a piece of equipment is 

prone to uncertainties no matter which definition of magnitude and duration is used. 
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In the following proposed technique we present a method that can rneasure non-rectangular RMS 

variations and simultaneously detect and classify any disturbances that may exist. 

Proposed technique for the of 

Measurement Non-Rectangular RMS 

Variations 

in this section, a new wavelet-based procedure is proposed to characterize RMS variations. This 

procedure can help in assessing the quality of service presented in a distribution system. the 

quaiity of the mitigation devices, and the chatacteristics of any load during RMS variations. It cm 

also give important information about any new variations of the distortion during its elapse. This 

information will help in finding the rectangular or non-rectiuigular voltage-tolerance curves for 

different equipment. This can help in the design of a new CPEMA curve that considers non- 

rectangular RMS variations and other power quality problems that may take place 

sirnultaneously. A flow chat showing the executing steps of the proposed procedure is shown in 

Figure 7.5: 

Any changes in the pattern of the signal can be detected and localized at the finer resolution 

levels as presenced in Chapter 5. The set of coefficients d , , , , , ( k )  is used to monitor the 

number of changes in the signai during the selected window duration. 

The distorted signai is segmented into window frimes with respect to a fixed time interval as 

shown in Figure 7.4b. 

For each frarne, we find the wavelet coefficients C and C&, where 

and C are the wavelet coefficients of the signai, C,, are the wavelet coefficients of the 

distortion event and Cbfare the nference wavelet coefficients computed from c,,; 
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c- First detail version, d- Energy dismbution 

AERef( L, )> O a increasing in RMS value 

UR, f (  LI ) c O a decreasing in RMS value 

AE, ( Lf )= O a no change in RMS value 

The PL value is updated to be used for monitoring the new variation in RMS vdue in the 

second window frame. 

Pk,,= Pk,, .t T * Pk (7.2 1) 

and 

We use the proposed feature vector (Equation 6.10) to classify the type of distortion in the 

signal. 



& E 
pure I 

= E Pk 
~ig-r  NEW * E 

Pure 

Fig 7.5: Monitoring flow chart for RMS variation 
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7.6 Applications And Results 

7.6.1 Measurement of Short-duration 

variations using std-MRA curves 

Figure 7.6 shows an example of using the maximum value of the std-MICA curve to measure the 

voltage sag in the signal in a harmonic distorted environment. The signai is distoned with sag to 

0.85 pu (in peak value) as shown in Figure 7.6 a and the total hmonic distortion (THD) is equal 

to 18.24%. MRA is applied and the distoned signal is decomposed at different resolution levels. 

The sag phenomenon is detected due to the changes in the std-MRA curve in zone " B  as a 

reduction in its maximum value compared with chat of a pure sine wave (dotted line). The high 

and low harmonic distortions are detected in zones "A" and "C". The duration for the sag 

phenomenon is detected md 1uc;ilized in the first detailed level for 14.6 cycles (Figure 7.6 b). The 

maximum value of the std-MRA curve is 0.5303 (Figure 7.6 c). Using the polynomials for the 

generated curves for sag rneasurernents (Figure 7.6 d), the peak value of the signal dunng the sag 

phenomenon is equal to 0.8643 pu. On the other hand, the std-MRA curve shows the existing of 

high and low frequency components. The value of the hmonic distortion can be also measured. 

The main advantage of the proposed rnethod, compiued to previous rnethods, cornes from its 

ability to separate power quaiity problems that overlap in both tirne and frequency. It has the 

ability to separate the pure signal from any high or low frequency content, dc content, and noise 

distortion. The energy distribution of the distorted signal will be locdized in time and presented 

at different frequency bands. This time-frequency picture of the energy of the distorted signal will 

be used as a classification feature vector (std-MRA) that has srna11 dimensionality. The std-MRA 

feature vector presents a simple dassification mle for the operator to detect, localize, and classify 

different power quality problems or to give an accurate measurement for the magnitude and 

duration of the signal during short duration variation events. Furtherrnore, using the std-MRA, 
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we can distinguish between similar power quality problems and help in finding the source of the 

disturbance. 

The sarne procedure is applied on signds distorted with different magnitude and duration of swell 

phenomenon. The relation between the maximum value of the std-MRA curve and the 

magnitude of the voltage swell is plotted at different intervals. These curves can be used to 

measure the magnitude of the voltage swell in the signal. Figure 7.7 shows an example using the 

maximum value of the std-MRA curve IO calculate the voltage swell in the signal. 

The proposed technique was applied to measure different cases of voltage sag and swell 

phenomenon. The actual values and the derived ones are presented in Tables 7.2 and 7.3. 

Table 7.2: The actual and derived values of the voltage sag for different intervals 

Table 7.3: The actual and derived values of the voltage swell for different intervals 

L 

Case 

no. 

Case 

no. 

1 

2 

Actual 

Voltage 

No-of 

cycles 

No. of 

cycles 

15.16 

37.14 

Maximum 

std-MRA 

0.7099 

0.6892 

Maximum 

std-MRA 

Derived 

Voltage 

1.91 

1.39 

Derived 

Voltage 

Actual 

Voltage 

1.9146 

1.3939 
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Figure 7.6: Measuring the voltage sag 

a- Input signal, b- First detail level, 

c- std-MRA curve, d- Measurement curves. 

Maximum valw of std-MRA cum 

Figure 7.7: Measurement of the voltage swell magnitude 

for different distoned signals 
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7.6.2 Measurement under S teady S tate 
Conditions 

The CIGRE benchmark within the Electromagnetic Tnnsient Simulation Program EMTDC was 

utilized as a tentative modet of a typical HVDC system. For each signal, a window size of 8 

cycles was selected. k c h  signal is sampled at 4 kHz and decomposed into 9 resolution levels that 

represent several frequency bands. PSCAD simulation results on the CIGRE benchmark was 

utilized to measure currents, voltages, and active and reactive power at the inverter side as shown 

in Figure 7.8. 

Table 7.4: Comparison the PSCAD and Wavelet-based proposed technique 

Inverter side measurements PSCAD 
Proposeci 

Technique 

Phase A Voltage (RMS) kV 1 129.6895 1 129.450 

I I 

Phase A Cunent (RMS) kA 

I l 

Active Power (kW) 1 981.5279 1 956.141 

1 1 

L 

Reactive Power (kVAR) 1 U1.3ûû8 1 552.544 

2.8244 1 

The proposed MRA technique was implemented and similar results to those of the PSCAD 

simulator were achieved using the wavelet coefficients. A cornparison between the PSCAD 

results and the computed parameten in the wavelet domain are presented in Table 7.4. The 

proposed technique shows accurate results for masuring different variables in the HVDC 

system. 

2.843 

- 0.8658 Power Factor - 0.8607 
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Figure 7.8: Monitoring HVDC system 

a- Invenir phase A current, b- voltage, and c- power 

7.6.3 Measurements of Sag magnitude in noisy 
environment 

The sarne technique was applied for measuring a one-cycle simulated sag phenornenon. The 

simulated signal is further distorted with hannonic and has a high noise level. The actual starting 

tirne of the distortion is detected and localized as indicated in Chapter 5. The wavelet coefficients 

are used, as indicated in Equation 7.15 to compute the RMS vdue of the sag phenomena. Table 

7.5 presents the estimated RMS value of the sag phenornenon with noise level variation from 0% 

to 2.046. 
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Table 7.5: estimated RMS value and starting and ending time 
of a sag phenomena in a noisy environment 

1 Noise Levei 1 Derived Sag (RMS) 1 Error % 

The proposed technique shows accurate results of measunng the RMS value of the sag 
phenomena up to noise level 1%, which is the maximum noise expected in power systems. 

7.6.4 Measurement of Non-Rectangular RMS 
Variation 

A 21-cycle distoned signal f ( t )  was simulated. This signal under went six variations in its 

magnitude and duration. The distorted signai was segmented into 3-cycle window frames. The 

features exuacted from each window frarne were used to classify the type of distonion. The 

energy distribution dE( LI ) was used to classify the distonion event 
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The proposed technique, section (7.5), was used to monitor the EMS-variation during the 

d is to~on event and AE, ( LI ) was used to monitor the direction of the variation (increased or 

decreased). 

Figure 7.9 shows the process of classifying and monitoring the RMS-variations during any 

distortion event. This process stms with inputting the distorted signal. Figure 7.9a shows the 

distorted signal contaminated with the RMS-variations that are shown in Table 7.6. Then we 

constmct suitable window frames. Figure 7.9b shows the different window frame; each fmme 

presents 3 cycles of the distoried signal. The third step is the extraction phase. The time 

locaiization pcoperty for different variations was extracted from the detail version of the distoned 

signal 4 for each frame as shown in Figure 7.9~. As the noise level increased, the proposed 

algorithm for the noisy anvironment (section 5.4) was used to localize the distonion event. In the 

last phase, we monitored the energy variation in the resolution level of the power signal (60 Hz). 

Figure 7.9d shows the variation of distoned signal energy distribution AE with respect to the 

power frequency resolution level L I .  The four Iines in Figure 7.9d are: 

1 .  E n ,  ( L ) the solid line on the top. 

2. Eh( Lf ) the dotted line on the top 

3. auf ) the dashed line on the top. 

4, dERe ( Lf ) the solid line on the bottom. 

The first frame in Figure 7.9d shows that the signal AE( Lf )andAERef( Lf )are coincident with 

each other. AE( Lf ) is greater than zero which represents a swell phenomenon and 

A& ( Lf )ais0 greater than zero which represents an increase in the RMS vdue. The second 

frame shows SR, f (  Lf ) is less than zero, representing a reduction in the RMS of the signal and 
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A&( Lf )is greater than zero, representing a swell phenomenon. The third frame represents a 

reduction in RMS value and sag phenomenon. 

The proposed technique is implemented in different sets of sirnulated data. The results of 

applying the technique to the distorted signal, shown in Figure 7.9a. are sumrnarized in Table 7.6. 

The results of the table indicate very clearly the effectiveness of applying our proposed technique 

for monitoring and classifications. The emrs between the actual and the measured using the 

proposed technique are very small for both the magnitudes and duntions. 

I 
0.0 0.05 O. 1 0.15 0.25 0.3 

(a) 

Figure 7.9: Monitoring of the RMS variation 

a-Distorted signal. b- Windowing the distorted signai, 
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c- First detail version, d- Energy distribution 

Table 7.6: Non-Rectangular RMS- variation measurements 

The proposed technique is utilized for monitoring non-stationary variation in the RMS values of 

the following two cases shown in Figures 7.10 and 7.11. The estimated variations in the RMS 

vdues are monitared and instances of these vaiations are detected as indicated in Tables 7.7 and 

7.8. 

Figure 7.10: Monitoring of the RMS variation (case 1) 
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Table - 
Frame 

Figure 7.1 1: Monitoring of the RMS variation (case 2) 

.7: Non-Rectangular RMS - variation mewrements (case 1)  

Table - 
Frarne 

# 

Actual Variation 

Mag. (peak) 1 T'me (s) 

Estimated Variation 

Mag. (peak) 1 Time (s) ' 

.8: Non-Rectangular RMS- variation measurements (case2) 

Actual Variation 

Mag. Cpeak) 

0.5000 

0.2500 

O. 1875 

Estimated Variation 

Time (s) 

0.0268 

0.0346 

0.0 190 

Mag. (peak) 

0.4653 

0.2214 

0.1880 

Time (s) 

0.0269 

0.0349 

0.0020 
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7.7 Chapter Assessrnent 

in this chapter a new technique is pmposed to measure effectively and accurately the different 

distortion events under both steady state and short-duration disturbances. 

The main contribution in this chapter is thrit it provides a reliable procedure to measure the 

disturbances in a wavelet-based environment. This is an important feature that will assist in 

achieving our final goal of developing an automted classifier for the different power system 

disturbances. 

The la-aliation property of the wavekt transfomi (presented in Chapter 5) and the detail 

coefficients are used to merisure the distortion event magnitude. The proposed technique is 

further modified to give a measure of the RMS value during non-rectangular variations. 

A new wavelet-based procedure to chamterize RMS variations is presented in this Chapter. This 

procedure cm help in assessing the quaiity of service presenied in a distribution system, the 

qudity of the rnitigation devices, and the chamcteristic of the load during RMS variation. 

Utilizing this procedure, a clex picture of any further changes in the harmonic distortion, noise 

level, or RMS variations c m  be detected, localized, classified, and quantified inside the 

distortion event. 



Chapter 8 

Wavelet-Based Data Reduction 

8.1 Introduction 

As we mentioned in Chapter 1, the goal of this thesis is to design a reliable, accurate and 

wide-scale power quality monitoring system with superior characteristics. This chapter 

is devoted to develop a new procedure that will compress and store the distonion event 

efficiently. This procedure is based on wavelet analysis, where a small set of wavelet 

coefficients represents the disturbances to assist in achieving this goal. This procedure 

wili replace the existing technique of stonng al1 sampling points of the disturbance. 

The pmposed data reduction technique is presented in Section 8.2. Section 8.3 illustrates the 

performance evaluation of the proposed technique. The Application and Chapter assessments are 

presented in Sections 8.4 and 8.5, respectively. 
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8.2 Data Reduction and Representation 
The feature vector presented in Equation 6.10 and the rapid drop off in the number of the 

coefficients are two important characteristics that can be used for reducing the amount of data to 

be stored. The feature vector shows that the energy of the signal is concenuated at cenain 

resolution level (ch). Due to the rapid drop off in the size of the coefficients, the information in 

this resolution level can be represented by only a small number of detail coefficients. These 

coefficients can be stored and used, when needed, to reconsvuct the original signal. Figure 8.1 

shows the reduction in the size of detail dj(k)and approximated c,(k)expansion coefficients 

from ( N )  to (N+n-1)/2 in the first resolution level. Where N is the size of the sampling 

points of the input signal and n is the size of the selected wavelet filter coefficients. The size of 

these coefficients is further reduced to ( = N / 2'esd""0"'NC' )as the input signal is decomposed into 

different resolution levels. 

Figure 8.1: The rapidly drop off in the size of the coefficients in the wavelet domain 

The proposed data representation technique is summarized in the following steps and also shown 

in Figure 8.2: 



Figure 8.2: Data reduction and presentation 

Step 1: We use MRA to decompose the distorted signal (N sampling points) at different 

resolution levels as presented in Figure 8.21. 

Step 2: We find the difference (Ch ) between the wavelet coefficients of the distorted 

signal ( CW) and that for a pure one (Cpm) as shown in Figure 8.2b, 

The number of these coefficients at different resolution level is shown in Figure 8.2~. 

Step 3: We use the proposed feature vector to find the resolution level ( i )  where most of the 

energy of the distonion event is concentrated. This resolution level ( i )  will present al[ the 

important information that characterizes the distonion event 
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Step 4 We ignore d l  the other coefficients and store only the coefficients of the (i" ) 

resolution level where the size of these coefficients is equal to ( = N /2' ) cc ( N )  as shown 

in Figure 8 .2~  and d. 

resolution level* i 

resolution level = i 

Srep 5: We add the stored set of detail coefficients d i ( k )  to similar set of a pure signal at the 

same resolution level. 

Step 6: We use the new set of the coefficients d,(k) to reconsuuct the distorted signai f (  t 1. 

Figure 8.2f shows the reconstructed version of the distonion event by storing only ( N / ?  ) 

coefficients. 

By applying the above steps we store only the detail coefficients that represent the distortion 

event. And since the number of detail coefficients is reduced as the number of resolution levels 

increases, then the number of coefficients to be stored to represent the distortion event will be 

very small compared with the number of sampling points of the distorted signal. 

8.3 Performance Evaluation 
in many cases one can cornpress and store the data by very simple dgorithms. However, the 

ultimate judgement of how effective these techniques will depend on how much information is 



lost in storing the data. This is can be examined by reconstruction the original data from the 

compressed one. Mathematically we measure the qudity of compression by calculating the 

normalized mean squared error (NMSE) of the reconsüucted data. 

We will examine the performance of our proposed rnethod by evduating the reconst~cted signal 

?( t  ) and then calculating the normalized mean square error ( NMSE) between the original 

signal /( r ) uid the reconstructed one ?( t ) . Where NMSE is computed as follows: 

NMSE = I l  fW-.7W I I =  
I l  ffr)l12 

Where II f ( t  )II '  is the square of the nom for the original signal. which represents the energy of 

the signal. 

8.4 Application and Results 

The proposed technique was used to cornpress the data of the following power quality problems, 

and the effectiveness of the technique was examined by calculitting the NMSE using Equation 8.4. 

8.4.1 Case 1: Capacitor Switching Phenornena 

Srep 1: Utilizing MRA, the distoned signal (Figure 8.3) was decomposed into sevenl detail 

versions (building blocks). Some of these building blocks chat have important parts of the energy 

of the distorted signal are shown in Figure 8.4. The shown resolution levels include detail 

versions of the fmt D,, second Dl, sixth Dg,  seventh D,, eighth D,, tenth D,,, eleventh D,,  , and 

twelve D,z as shown in Figures 8.4a-i respctively. These versions of the signal are casier to 

study and interpret. The capacitor switching phenornena (Figure 8.3) was sarnpled at 16S)rHz and 

a 3 cycles window size was selected (8266 sampling point). These sampling points (ci+,) were 

used as input for MRA and decomposed into 13 resolution levels. The frequency bands that 

represent each resolution level are summarized in Table 8.1. 



Figure 8.3: Distorted Signal with a capacitor switching phenornena 

Table 8.1: Different resolution levels and their frequency bands 

1 Remlution 1 Frequency Band 1 Remlution 1 Frequency Band 1 

MRA shows that most of the energy in the distortion event is concentrated in the seventh 

resolution level D, (645-1289 Hz) as shown in Figures 8.4d. The eleventh resolution level(40-80 

Hz) presents the 60Hz power signal as shown in Figures 8.4g. Leakage of the signal's energy is 

seen at adjacent resolution levels. For example, part of the 60Hz energy of the signal, Figures 

8.4g, will be leaked to the adjacent resoiutions; Figures 8.4f and Figures 8.4i. This is due CO the 

non-shiup cut-off frequencies of the wavelet filters. However, the magnitude of this leakage 

energy is very small compared with that in Figures 8 4 .  The selection of the filtets will help in 

reducing this leakage. As the number of fiIter coefficients n increases, the cut-off frequency wiIl 

become more sharp and the leaicage energy is reduced. This is an important criterion in selecting 

the mother wavelet to be used for the malysis. This will be discussed in Appendix B "Selection 

of the mother wavelet". 
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Figure 8.4: MRA of the distorted signal 
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Step 2: The distrilution of distortion event energy at different resolution levels (building blocks) 

can be used to extract important features chat help in selecting the coefficients to k stored CO 

reconswuct the distortion event. Figure 8.5 shows that most of the energy of the distortion event is 

concenmted on the 7" resolution level. The sold line in Figure 8.5a represents the feaiure vector 

of a pure signal and the dashed üne represents the distorted signal. The energy distribution of the 

distortion event is shown in Figure &Sb. 

Figure 8.5: Feature vector of the distorted signal 

Step 3: This feature vector indicates chat most of the important information resides in the 7Ih 

resolution level. This resolution level can be represented using 93 detail coefficients. 

Step 4: Ignore al1 the other coefficients and store only the coefficients of the 7" resolution level 

(93 coefficients cc 8266) as indicated in Equation 8.2. 



Step 5: Using the new set of the coefficients q ( k ) .  one can ceconsmet the new set of wavelei 

coefficients that represent the distoned signal j( t ) as indicated in Equation 8.3. 

Srep 6: Rsconstcuct the distoned signal j (r)  using the new set of wavelet coefficients. The 

reconstcucced version of the signal T ( t  lis shown in Figure 8.6, which was genented from only 

the 93 coefficients stored to represent the distonion event. 

Figure 8.6: Reconsvucted version of the distoned signal 

The pcfomunce of the reconstructed signal j ( r  is evaluated by alculuing the normdized 

mean square e m r  ( NMSE) between the original signal f ( t ) and the reconstructed one j( r ) . 

The NMSE is computed and found equal to 0.00487, which shows that the constmcted signal is 

very close to the original signal. 

8.4.2 Case 2: Harmonic Distorted Signal 

The proposed data representation technique is implemented on a hmonic distoned signal shown 

in Figure 8.7a The energy of the distortion event is concentrated on the 9' cesolution level. Using 

the new set of the coefficients i , ( k ) .  one cm ceconsmicl the distorted signai ?( r )fmm storing 



only (45 coefficients cc 8266). The reconsmicted version of the signal f{ r)is show in Figure 

8.7b. 

Figure 8.7: Data representation, a: hmonic distorted signal, 
b: Reconstructed version of the distoned signal 

The performance of the reconsuucred signal f ( t  ) is evaiuated by cdculating the normalized 

rnean square emr ( NMSE ) , which is to 0.û224. 

8.5 Chapter Assessrnent 
In ibis chapter, a new data compression technique is proposed, which is based on wavelet 

andysis. This technique can be used ta store only a small number of coefficients that can be used 

to reconsmict the original signal. The proposeci technique will help in designing a comprehensive 



power quality automated recognition system that ha the ability to detect, locolize, classify. 

measure and store different distortion events, 
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Chapter 9 

Conclusions and Future Research 

9.1 Introduction 

In this thesis new automated power quality detection, classification, measuring, de-noising and 

data compression techniques are proposed. These techniques are based on wavelet theory and 

multi-resolution analysis. The localization property of the wavelet transfocm is used to detect and 

classify different disturbances. Any distorted event can be decomposed into different resolution 

levels, The energy of each resolution level can generate a translation invariant feature vector with 

small dirnensionality that cm be used to classify different disturbances according to EEE std. 

1159, 

Different monitoring devices are available that can measure the duration of a disturbances. The 

sensitivity of these devices depends on selected threshold levels that may result in missing desired 

disturbances or capturing large numbers of waveforms. The existence of noise cm further mislead 

the monitoring devices to capture and measure certain disturbances. In the proposed monitoring 

system, the duration of a distortion event can be measured using the information extracted from 

the first resolution level, which has the ability to detect any changes in the pattern of the signal 

and can be utilized to pwify the signal from any noise content. Chapter 5 shows a set of newly 

proposed techniques that detect and measure the duration of any transient event in a noisy or 

clean power system envirument without the need to specify certain thresholds. 
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Using the available monitoring devices, it is often difficult to determine on an on-line buis the 

characteristics of transient. oscillatory, or non-stationary disturbances. It is imperaiive to have in 

these monitoring devices a wavefonn capture capability for a detailed off-line analysis of 

different stored disturbances, which is a very time consuming process. This off-line analysis 

delays the rnitigation control process that may l e d  to catastrophic damage. 

In this thesis, the on-line based automated classification methodology of a distonion event is 

presented in Chapter 6. A wavelet-based feature extraction technique chat reduces the size of the 

monitoring signal to a srnall set of numbers contained in a feature vector is also proposed. The 

feature vector is used to classify different disturbances and it yields excellent results. The main 

advantage of the proposed technique comes from its ability to extract the distonion events chat 

overlap in time and frequency dornains. Because of the small dimension of this feature vector an 

on-line automated classifier can be designed. This classifier can classify on-line different 

disturbances according to IEEE std. 1 159, efficiently and accurately. 

The RMS value of the distortion event magnitude represents an important factor in designing an 

automated power quality recognition system. A wavelet-based technique is utilized in this thesis 

to measure different distortion events. The wûvelet expansion coefficients are used to compute 

the magnitude of the distoned signal and the root-mean-square (RMS) value. This technique is 

presented in Chapter 7 and it is implemented to mesure the RMS value of a steady-state 

distonion event or during short duration variations as indicated in EEE std. 1 159. 

The variations of the RMS value during a distonion event are also monitored and measured. A 

new wavelet-based technique is proposed to monitor the non-rectangular RMS variations. This 

technique is implemented for monitoring different signais that have non-stationary variations in 

their magnitudes. The proposed rneasurement technique shows its superiority compared with 

exiting techniques in ternis oE 

Its ability ta measure a large number of power quaiity problems such as sag, swell, 

harmonies, flickers, etc. 

Its ability to measure non-stationary disturbances that may overlap in the tirne and 

frequency domains. 
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Its ability to give a rneasure of more chan one power quality problem that may take place 

simultaneously. 

Its ability CO monitor and masure a low frequency disturbance and localize it in time. 

r Its ribility to mesure and determine other power system parameters such ris the phase 

shift mgle, active and reactive power and total h m n i c  distortion. 

Another problem ihat exists in the available monitoring devices is the luge dimension;ility of the 

stored data and the complicity of the discrimination proçess. This leads to a substaniial 

deteriontion in the performance of traditionaliy favourd classifiers. 

Data reduction is one of the nuin design factors for developing the automaied recognition 

system. A wavelet-based technique is proposed to represent the distonion events by using srnall 

set of coefficients. This set of coefficients can be stored to represent the original distorted signal 

rather than storing a large size vector of the sampling points of the distortion event. The proposed 

data reduction technique is utilized to store and reconstnict the original distoned signals of steady 

state and transient events. The propsed data reduction technique is presented in Chapter 8. 

The research in this thesis shows the capability of the wavelet-based technique for designing an 

automted wide-scale power qudity monitoring system with the following characteristics: 

Fast detection and localization of disturbances that may overlap in time and frequency in a 

noisy environment. 

On-line classification by extmting discriminuive, translation invariant features with smdl 

dimensionality, which can represent efficiently the voluminous amount of distorted data 

Analysis of different non-staiionary disturbances and measure of their indices. 

* De-noising ability and high efficiency in data compression and storing. 

A wavelet-based power quality automated recognition system is proposed in this thesis. This 

system can be irnplemented on-line for detecting, classiQing, measuring and storing different 

power system disturbances. This system can overcome many of the dnwbacks of existing 

monitoring devices. 
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9.2 Contributions 
The contribution of this work cornes frorn its ability to represent a single cool that can be used to 

construct an autornated monitoring systern. The design of the proposed automated monitoring 

system depends on five building blocks. These blocks can be constructed in piuallel or 

sequentially to design a real cime on-line automated monitoring system. Each block in the 

constructed system can perform superior better than existing monitoring systems. 

The original contribution of the work done in this thesis is summarized in the following points: 

Part A: Detection and duration measurement under noisy environment 
Any distortion in the signal can be detected and locaiized using wavelet coefficients at the 

highest resolution level. However, as the noise level increases and the transient event magnitude 

decreases, the coefficients that represent the noise will merge with those that represent the 

distortion, the wavelet detection and localization property will no longer be valid at this 

resolution level. In general the noise level in power system is low, which is about 1.0%. This 

proposed method is very adequate in this range. For higher noise levels a new wavelet-based 

technique is proposed for detection and duration measurement. 

The first step in the detection and duration mesisurement process in a noisy environment is to 

deiermine the noise level. An assessrnent of the noise level is measured by computing the energy 

of the coefficients at the highest resolution level. For high noise levels, the duration of the 

distortion event can be measured by reconsüucting an approximated version of the distonion 

event using a selected set of the wavelet expansion coefficients. 

Part B: Disturbance Classification 
The energy of the distonion event at different resolution levels is used in this new technique as a 

feature vector that can classify different disturbances. These discriminative, translation invariant 

features with small dirnensionality are used to classify different power quality problems that 

overlap in time and frequency. State of the art pattern recognition techniques were employed to 

evaiuate the extcacted features and classify different events. 
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Part C: Distortion Measurement 
Since the energy of the distorted event is represented by a set of coefficients in the wavelet 

domain. Therefore, the nonn of these coefficients is used to measure the energy in the distorted 

event. Combining the energy of the distortion event and its duration as measured in part A, the 

RMS value, dc content, phase shift and the THD% of the distorted signal can be cornputed. This 

technique is new and was implemented for the first time in measuring the RMS for power quality 

problems. 

Part D: Non-Rectangular RMS variation Measurement 
A new wavelet-based procedure to chiuacterize non-cectangular RMS variations is presented in 

this thesis. This procedure can help in assessing the quality of service presented in a distribution 

system, the quality of the rnitigation devices. and the characteristic of the load during RMS 

variation. Utilizing this procedure, a clear picture of any further changes in the harmonic 

distortion, noise level, or RMS variations can be detected, localized, classified, and quantified 

inside the distortion event. 

Part E: Data Reduction 
The feature vector presented in Equation 6.10 and the npid drop off in the size of the coefficients 

are two important characteristics chat can help in reducing the amount of data to be stored for the 

distortion event, as described in chapter 8, 

The proposed techniques in this thesis can be implemented in hardware and instailed on the 

system to give automatic detection, locaiization, and classification of any power quaiity 

phenomena accoding to IEEE std. 1159. These techniques are accurate, efficient. fast and 

diable compared wiih the existing techniques. Additionally, the proposed technique has the 

ability to ceduce the size of the data of the distorted event to a small size and store it. This 

technique can be implemented on-line and in real-tirne in the case of non-transient power quality 

problems. It can also be irnplemented in rd-rime for transient events by utilizing paralle1 

pracessors, where each ptocessor will take a r e  of a specified resolution level. A gened outline 

version of the automatai power quaiity monitoring systern is show in Figure 9.1. 
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Figure 9.1: Wavelet-Based Automated Recognition System 

for Power Quaiity Monitoring 



Chaptcr 9: Conclusion and Contribution 

9.3 Future Research 
The distinguisited advantage of this automated system is iis ability to be used readily in 

monitoring other complicated power quality problems thiu will arise from the dereplation of the 

power industry, such as: 

1. Monitoring and control of different disturbances chat may cake place in HVDC systems. 

A preliminary resuit of this application is presented in [65]. 

2. Monitoring the disturbances in multi-ownership generation-transmission-distribution 

chah and identifying the source of any disturbance under an open rnarket environment. 

3. Monitoring and control of the mitigation devices and asessing their quality. 

4. Monitoring the load chancteristics during any variations. 

5. Modifying voltage tolerance curves "CBEMA curve" to include high frequency content 

components and non-rectangular RMS variations. 

6. Using the MRA technique to control the switches for designing active filters. 

7. Using the feature vector to design a smm control and protection system. 
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Appendix A 

A.l General Properties For Wavelet Multi-resolution: 

In order to develop a multilevel representation of a signal f (r) that belongs to L'(R) we seek a 

sequence of embedded subspaces 4 with the following properties: 

1 - Containment property: 

The containment property imposes the subspace %., be completely contained in subspace V'j 

Since subspace 4.) is embedded in subspace 6, it follows that a signal in y., is blumer than the 

one in subspace Vk 

The containment property also implies that going to a finer subspace (higher resolution), one 

needs to add details to a signal and going to a coarser scde (lower resolution) one must give up 

details of the signal. This implies that in order to move a signal from one subspace to mother 

subspace, one should add or take out details from the signal. 

2 - Completeness property: 

The completeness pmperty indicates that the union of each subspace 4 will fom L~IR) and each 

subspace completely characterizes a signal in its subspace. Each subspace is spanned by integer 

translates of a single function, #(t) such that 



3 Scaling properties: 

#(t) E V j  E Vj+, For any function @ E L' (R) 

The scaling property relates how a function dilates or scales from one subspce to another. If 

#(t)  resides in 4 then #(a) exists in 4+,. This means that elements in a space are simply scded 

versions of the elements in the next space. Figure A.l shows that the subspacev, is spanned by 

integer translates of a single function #(a) , and the elements in the subspace Va are a scded and 

translated combination of the elements in space V, . 

Figure A.1: The completeness and scaling properties 

4- Basis property: 

There exists a scaling function # ( t ) ~  V, such that the translated and scded version set #i+ ( t )  

forms an o r thonod  basis that spans V,, i.e. 



A.2 The Multi-resolution Analysis process: 
Using the scaling and wavelet functions a signal is andyzed from fine to coarser scale. Removing 

the details from the approximated versions at different resolution levels can decompose the signal 

at different resolutions. 

The mathematical representation of the scding function is given by the following Equation. 

Scaling and translating the tirne variable ( t = P' t -k ), we get : 

let m=2k + n 

n=m-2k 

then 

#(2 r - k )  = h(m - 2k)fi@(2"' i - nt) 
m 

The subspace i$+, can be denoted as: 

The approximated version of f (t) E Vj+, can be expressed at sale J+I,  as: 

f ( t )  = ~ c ~ , , ( L ) ~ ( ~ + ~ ~ $  (Zi+'r - k) 
t 
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Where only the scaling hnction is us&, wiihout the wavelet function, to approximate the signal. 

At one scale lower resolution j, the wavelet function is necessq to represent the details that lue 

not available at =ale j. 

Therefore: 

Where the term maintains the unit nom of the basis functions at various scales. For 

orthonormal scaling and wavelet hnctions, the expansion coefficientsc,(k)md di(&) can be 

Fcom the previous cdculation one must consuuct f ( t )  io calculate the coefficient c,(k), 

however, one can obtain the coefficients c,(k)and dj(k)  without constructing f ( t ) .  This can 

be accomplished as follows: 

We have 

2 t - k = h(m - 2k)&(2j+'r - m )  , ne2 
R 

Therefore, 



And 

Therefore 
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I f (t)p+l"' #(2j+'r - m)dr =cj+,(m) 

By the sarne way the detailed version coefficient dj(k) can be presented without involving 

f (&) in the calculation. Therefore, the wavelet coefficient at scale j cm be presented as 

From the other hand, the detailed dj(k) and approximated cj(k) versions of the coefficients cm 

be used to reconstmct the signal. 

Consider a signal f (t)  E Vit,, then this signal can be expressed at scale Ji. I by using only 

scaiing function as: 

f (t) = c,, (k)2(jt"">@ (2'+'1- k )  
k 

Or in terms of a next scaie (which requires a wavelet function) as: 

Where the scaling and translating scaling function can be presented as 

And the wavelet function can be presented as: 
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Thecefore, 

f ( t )  = z e j ( k ) 2 j i '  h (n i )&(2"'r  - 2k - m) 
k AT 

Due to orthonormality, the approxirnated and detailed coefficients ( c ,  ( k )  and d , ( k )  ) cm be 

caiculated using the inner product as follows: 

cjtl  (k' ) = ( f ( t ) .  2(i"yl-(p(2i+Lt - k' )) 
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Due to orthonormality, the inner product tenns will be equal to zero and will be only equal to one 

if and only if: 

2 k + m = k 9  and 2 1 + n = k 1  

m = k l - 2 k  and n = k ' - 2 1  

Therefore, 

For convenience let k' = n, and 1 = k, 

Therefore, 
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Appendix B 

B.1 Choice of appropriate mother wavelet 

Different disturbances can be modeled and presented using different wavelet iy(t)and 

scaling$(r) functions. The accuracy of this presentation depends on the smoothness of the selected 

mother wavelet function. As the number of vanishing moments of the selected wavelet function 

increases, more smoothness can be achieved and more accurate representation of the distoned 

signal is obtained. It has been documented in [37] that the wavelet spectrum is meaningful only 

when the selected wavelet has enough vanishing moments. Furthemore. the FFï of the selected 

wavelet h;is to decrease faster near the on'gin. This will provide sharper cut-off frequency to the 

selected mother wavelet and reduces the amount of leokage energy to the adjacent resolution 

levels. 

Therefore, the critena for selecting a proper mother wavelet is to have a wavelet function with a 

sunicient number of vanishing moments in order CO represent the salient features of the 

disturbance. At the same time, this wavelet should provide sharp cut-off frequencies. Furthermore, 

the selected rnother wavelet should be orthonocmai. 

The magnitude of the leakage eiiergy of the analyzed pure signai at adjacent resolution levels due 

to utilizing different wavelets has been studied here with three types of orthonormal mother 

wavelets: 

Daubechies (dbl, db4, db10, db40), 

Coiflet (coifl-coifS), and 

Symlet (sym2-sym8). 

The frequency response of the Daubechies (db4, dbIO, db40) and Coiflet (coif5) wavelet functions 

(hi@ pass filters) and scaling functions (low pass filters) are shown in Figure B.1. Daubechies 40 



shows the sharper cut-off frequeiicy compared with the others and hence the leakiige energy 

between different resolution levels is reduced. The number of vanishing moments of the db40 

wavelet is large, and hence it gives a meaningful wavelet specuum of the analyzed signal. 

Figure B.l: Frequency response of the Wuelet filters 

Cornparison of the behavior of different wavelets for extracting the proposed features is 

implemented on the following signal: 

Pure Signai: The 50 Hz power frequency pure signal is analyzed using different wavelets, (Figure 

8.2). Using dbl, i.e. one vanishing moment, the energy of the pure signal is distributed over the 

different resolution levels (low and high frequency bands), Figure B.2a. This results from the wide 



cut-off frequency of the selected filter shown in Figure 5.la. However, as the number of vanishing 

moments of the selected wavelet function increilses (db40 with 40 vanishing moments), the energy 

of the analyzed pure signal is concentrated at the resolution Ievel that covers the power frequency 

range (6" resolution level), Figure B.2c. Only a srnail part of the signal energy is leaked to 

adjacent resolution levels 5" and 7'. 

IO 
Rawîution Lonl 

(8) dbl 

Rnolution Lowl 

(d) col5 

Figure 8.2: Wavelet Transfonn Spectnirn of 50Hz sine wave 
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