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Abstract

Manufacturing industries are now expected to have substantial increases in flexibility, productivity
and reliability as well as increasing quality and value of their products. Automatic Data Processing
(ADP), sensitive microprocessor, and power electronic equipment are becoming an essential part to
control and automate different assembly lines. However, due to the growing economic pressure,
modem electrical equipments are designed to meet their operating limits. This fact means that
different equipment manufacturers face a dual responsibility to both desensitize against power
disturbances and protect their equipment from power faults. This incompatibility issue, between
power system disturbance levels and immunity of equipment, results in a severe impact on the

industrial processes, which is known as power quality problem.

To control and improve electric power quality, the sources and causes of any disturbance must be
determined. However in order to achieve this, monitoring devices must have the capability to detect,
localize those disturbances and further classify and quantify different types of power quality problems
for a proper mitigation method.

Different monitoring devices and disturbance analyzers are available that can detect and collect large
amount of power quality data. However, there are general problems that exist when dealing with these
disturbance analyzers. Off-line analysis is always required. This is due to the design criteria for
detection and classification the disturbance. If we utilize the point-by-point comparison technique it is
often difficult to build automated recognition system that can on an on-line basis classify the power
quality problems such as transient, oscillatory, or non-stationary disturbances. Using this monitoring
strategy, one cannot monitor certain class of disturbances or distinguish among similar ones.
Furthermore, the selected threshold values (high or low) to be used in detecting different
disturbances, may lead to large dimensionality of stored data or undetected important disturbances.
The limited capability of Fast Fourier Transform (FFT), while dealing with non-stationary

disturbances, is another drawback in the existing monitoring devices.
The goal of this thesis is to overcome the deficiencies that exist in monitoring devices and to design

reliable, accurate and a wide-scale power quality monitoring system with superior characteristics.

Some of the characteristics in the proposed technique are:

iv



o Fast detection and localization of disturbances that may overlap in time and frequency in a noisy
environment.

¢ On-line classification by extracting discriminative, translation invariant features with small
dimensionality, which can represent efficiently the voluminous size of distorted data.

¢ Analysis of different non-stationary disturbances and measure their indices.

¢ De-noising ability and high efficiency in data compression and storing.

A wavelet-based power quality automated recognition system is proposed in this thesis. This system
will assist in the automated detecting, classifying, and measuring different power system

disturbances. This system can overcome the drawback in the existing monitoring devices.
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Chapter 1: Introduction and Objectives

Chapter 1

Introduction and Objectives

1.1 Introduction

Manufacturing industries are now expected to have substantial increases in flexibility,
productivity and reliability as well as increasing quality and value of their products. Automatic
Data Processing (ADP), sensitive microprocessor, and power electronic equipment are becoming
an essential part to control and automate different assembly lines. However, due to the growing
economic pressure, modern electrical equipments are designed to meet their operating limits.
This fact means that different equipment manufacturers face a dual responsibility to both
desensitize and protect their equipment. This incompatibility issue, between power system

disturbance levels and immunity of equipment, results in a severe impact on industrial processes.

Furthermore, the increasing trend towards deregulation pushes generation-transmission-
distribution owners to exchange clean power at different ownership locations and to supply high
quality power to their customers. With such a multi-ownership generation-transmission-
distribution chain, identifying a source of any disturbance, that may affect the customers,
becomes a difficult task. This emphasizes the need to identify a baseline of the electric-quality
levels at each physical location where the electric power ownership changes.
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Monitoring of power quality levels has received a considerable attention in recent years. This
interest is even increasing nowadays due to the increasing use of sensitive equipment in customer
loads and the impact of the open market trend. In order to monitor power quality problems,
traditional disturbance recording systems have been upgraded with real time sampling and
analysis features. The ability to extract information rather than data from system response is an

important requirement for modern power quality monitors.

Power Quality is the combination of voltage quality and current quality. It is defined according
to its effect on different parts of the power system. It is defined as the reliability of the system
from the electric utility point of view. Equipment manufacturers defined it as the changes in the
characteristics of the power supply. The customers, who are most affected by power quality
issues, defined it as any power problem manifested in voltage, current, or frequency deviations

that results in the failure or misoperation of their equipment [1-23).

Poor quality of the electric power is normally caused by power line disturbances, shown in Figure
1.1, such as oscillatory and impulsive transients, glitches, sags, swells, over voltages, and
harmonic distortion. As indicated in [6], what were considered as an ignored variation in power
supply may now bring whole factories to stand-still. A power interruptions or 30% voltage sag
lasting mere hundredths of a second, for example, can reset programmable controllers for an
assembly line, while adjustable-speed drivers for motorized equipment on the assembly line may

themselves be sensitive to voltage harmonics or transients.

It is not easy to make a good estimation of the cost of pollution in the quality of power.
According to {6] and [15], poor power quality in the United States causes about $13.3 billion in
damage per year. Following a voltage sag, for example, the restarting of the assembly lines may
required clearing the lines of damaged work, restarting boilers, and reprogramming automatic
controls for a typical cost of $ 50,000 per incident. One glass plant estimates that a five cycle
interruption - an outage of less than a tenth of a second- can cost about $ 200,000, and a major

computer centre reports that a two second outage can cost some $ 600,000.
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Power Quality
Problems

1- Transients

Impulsive Transient

Oscillatory transient

High frequency Medium frequency

Low frequency |~

2- Long-Duration Voltages

Overvoltage

Undervolitage

Sustained Interruptions

3- Short-Duration Voltage Variations

Interruption

Sags

Swells

4- Voitage Imbalance

5- Waveform Distortion

DC Offset Harmonics
Interharmonics Notching
Noise —
6- Flicker

7- Power Frequency Variations

Figure 1.1: Electric power quality problems
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Thus, while only a few short years ago, power quality monitoring was a rare feature to be found
in instruments, it is becoming much more commonplace in commercially available equipment.
The products and services related to power quality now represent a multibillion-dollar market in
the United States alone (15].

Power quality monitoring is an important action to quantify the baseline of the electric-quality
levels throughout the generation-transmission-distribution chain and customers coupling points.
To control and improve electric power quality, the sources and causes of any disturbance must be
determined. However in order to achieve this, monitoring devices must have the capability to
detect and localize those disturbances and then further classify and quantify different types of
power quality problems.

Different monitoring devices and disturbance analyzers are available that can detect and
collect large amounts of power quality data. However, there are general problems that
exist when dealing with these diswrbance analyzers. Off-line analysis is always required.
This is due to the design criteria for detection and classification of the disturbance. If we
utilize the point-by-point comparison technology it is often difficult to build an
automated recognition system that can, on an on-line basis, classify the power quality
problems such as transient, oscillatory, or non-stationary disturbances. Using this
monitoring strategy, one cannot monitor certain classes of disturbances or distinguish
among similar ones. Furthermore, the selected threshold values (high or low) to be used
in detecting different disturbances, may either lead to a large dimensionality of stored
data or to undetected important disturbances. The limited capability of the Fast Fourier
Transform (FFT), when dealing with non-stationary disturbances, is another drawback in

existing monitoring devices.

1.2 Research Objectives

The goal of this thesis is to design a sophisticated power quality monitoring system with
improved detection characteristics. Some of the characteristics in the proposed technique
are:
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o Fast detection and localization of disturbances that may overlap in time and
frequency in a noisy environment.

o On-line classification by extracting discriminative, translation invariant features with
small dimensionality, which can represent efficiently the voluminous size of
distorted data.

¢ Analysis of different non-stationary disturbances and measures of their indices.

o De-noising ability and high efficiency in data compression and storing.

A wavelet-based power quality automated recognition system is proposed in this thesis.
This system will assist in the automated detection, classification, and measurement of
different power system disturbances. This system can overcome the drawbacks in

existing monitoring devices.

1.3 Thesis Layout

Chapter 2 presents a general review of power quality problems and their effects on a power
system. Classification of different power quality problems, according to IEEE standard 1159
[16], is reviewed. A summary of the utilized detection techniques in different monitoring devices
is also discussed in this chapter..In Chapter 3 a comprehensive survey of the wavelet transform
and its application to power systems is discussed. The efficiency of wavelet transform and multi-
resolution signal decomposition for transient analyses, system protection, equipment testing, and
monitoring power quality problems are discussed. The mathematical background of the wavelet
transform and multi-resolution analysis is presented in Chapter 4. The analysis and synthesis
procedure for implementing multi-resolution analysis is discussed. This Chapter presents
different signal processing techniques that are used to implement wavelet transform and multi-
resolution analysis. The property of time-frequency localization and the partitioning of a distorted

signal’s energy at different resolution levels are also presented in this chapter.



Chapter 1: Introduction and Objectives 6

The goal of this thesis is to design a reliable, accurate and wide-scale power quality monitoring
system with superior characteristics. Utilizing the wavelet-based techniques to construct the
proposed automated recognition system is presented in Chapters S, 6, 7 and 8. Chapter 5
highlights the procedure to map the distorted signal into the wavelet domain. A wavelet-based
procedure to detect and localize any disturbance, in a noisy environment, is presented. In Chapter
6, a new technique is proposed that has the ability to decompose any distorted signal into
different building blocks and extract time-frequency features simultaneously from each block.
The dimensionality of data is mapped into a small number of interpretable features. These
features are proven to be very efficient in auto-classifying different power quality problems that
overlap in time and frequency. Chapter 7 presents a new measurement technique that can
measure accurately a wide range of different power quality problems. The proposed technique is
implemented to measure different parameters in a power system. This chapter also introduces a
new wavelet-based procedure to monitor the non-rectangular variation of RMS value in the
signal. Chapter 8 is devoted to develop a new procedure that will compress and store the
distortion event efficiently. This procedure is based on wavelet analysis, where a small set of
wavelet coefficients represents the disturbances will assist in achieving this goal. This procedure
will replace the existing technique of storing all sampling points of a disturbance. Finally,

Chapter 9 offers the main conclusions of this work and suggests topics for future research.
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Chapter 2

Power Quality Problems

2.1 Introduction

A Power Quality Problem is defined as: Any power problem manifested in voltage, current, or
frequency deviations that results in the failure or miss-operation of customer equipment. It has
been documented in [1] that power-related problems cost U.S. companies approximately $ 26
billion a year in lost time and revenue. As a result there is increasing interest in the power
quality problems. The sources of power quality problems are many and in the following sections

we will discuss some of these problems.

There are fundamental changes that take piace in the loads. Current electronic and power
electronic equipment has become much more sensitive than their counterparts 10 or 20 years
ago. Furthermore, some of this equipment may generate disturbances and reduce the power
quality level of the system. This causes a significant impact on the quality of the power. Such
equipment, which utilize microelectronics, are responsible for a growing category of loads
(residential, commercial, and industrial) that are sensitive to variations of the power supplied.
Large-scale integration (LSI) and very large scale integration (VLSI) of modemn chips have
resulted in faster and more complex components. An additional advantage for such equipment is
higher memory per unit surface, with fewer requirements of voltage and power levels, thus
reducing energy consumption and ventilation needs. Unfortunately, these types of equipment are

becoming more easily disturbed as the voltage level is reduced.
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Power electronics have produced a new generation of low-cost, high-capacity equipment, thus
expanding its use. Nevertheless, this same equipment is responsible for disturbances in the power
system, to which microelectronic equipment is susceptible. It is estimated that the portion of
electric energy generated for microelectronic loads that are processed by power electronics will
increase from the present level of 10%-20% up to 50%-60% by the year 2010 [6](8](14).

While these changes in the loads are taking place, utilities and industries are continuing to install
capacitor banks for voltage control and loss reduction. These capacitors have a significant
influence on power quality problems, since they are working as a “sink™ for high frequency

currents and can worsen the situation by increasing harmonic resonance levels in the system.

The open competition power market is another factor that increases the interest in power quality
and increases the need for standardization. Electricity is now being viewed as a product with
certain characteristics, which have to be measured, predicted, guaranteed, improved, etc. The
electric customer can buy electric energy from one company, transmit it through the
transmission lines of another company and pay the local utility for the actual connection to the
system. It is no longer clear who is responsible for the reliability and the quality of the supply.
Designing a system with high quality of supply, for limited cost, is a technical challenge that

appeals to many in the power industry.

Finally, the era of digital signal processing techniques and the availability of electronic devices
to measure and show waveforms has certainly contributed to the interest of improving power
quality and finding its indices. Different techniques can be implemented in hardware and

installed on a system to give on-line “real-time" applications.

2. 2 Classifications of Power Quality

In order to be able to classify different types of power quality problems, the characteristics of
each type must be known. In general, power quality phenomena are divided into two groups:
steady state and non steady state. Different power quality problems are classified as in 2] and
{16] and will be discussed below:
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2.2.1 Transients

Transients refer to variations in the voitage waveform, which results in over-voltage conditions
for a fraction of a cycle of the fundamental frequency. Transients are classified as impulsive or

oscillatory.

2.2.1.1 Impulsive transient

It is a sudden change in the steady-state condition of the voltage or current. It is unidirectional in
polarity. Impulsive transients are normally characterized by their rise and decay times. The most
common cause of impulsive transients is lightning. The general characteristics of impulsive

transients are summarized in Table 2.1 and shown in Figure 2.1 [2] and {16].

Table 2.1: Characteristics of impulsive transient and typical causes and solutions

A - Impulsive Typical Typical
Transient Spectral Duration
1 - Nanosecond Snsrise <50 ns
2 - Microsecond 1 usrise 50ns -1 ms
3 - Millisecond 0.1 ms rise <ims
Method of Peak magnitude, rise time, duration
Characterization
Typical Causes Lightning, Electro-Static Discharge, Load switching
Examples of Surge arresters, Filters, Isolation Transformers.
solutions
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Figure 2.1: Impulsive transient

2.2.1.2 Oscillatory transient

It is a sudden change in the steédy-state condition of the voltage or current. It includes both
positive and negative polarity values. [t is described by its spectral content, duration, and
magnitude. Using the spectral content the oscillatory transient is classified into three subclasses:
o High-frequency oscillatory transient
o Medium-frequency oscillatory transient

e Low-frequency oscillatory transient

The general characteristics of different oscillatory transients are summarized in Table 2.2 and

shown in Figure 2.2 as indicated in [2] and [16].
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Figure 2.2: Oscillatory transient
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Table 2.2: Characteristics of oscillatory transient and typical causes and solutions

Typical Typical Typical voltage Magnitude
B - Oscillatory .
. Spectral Duration
Transient
Content
1 - Low Frequency <5kHz 3-50ms 0.4 pu
2 —Medium 5.500 kHz 20us 0.8 pu
Frequency
3 - High Frequency | 05-5MHz Sus 04 pu
Method of Waveforms, Peak Magnitude, Frequency components
Characterization
Typical Causes Line/Cable switching, Capacitor switching, Load switching
Solutions Surge arresters, Fiiters, Isolation Transformers.
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2.2.2 Long-Duration Voltage Variation

A Long-duration variation is described as a root-mean-square (rms) deviation at power
frequencies for a duration longer than one minute. It is caused by load variations on the system

or system switching operations. It can be either over-voltage or under-voltage.

2.2.2.1 Over-voltage

Over-voltage is an increase in the rms ac voltage to greater than 110% at the power frequency

for a duration longer than 1 minute.

2.2.2.2 Under-voltage

Under -voltage is a decrease in the rms ac voltage to less than 90% at the power frequency for

duration longer than 1 minute.

2.2.2.3 Sustained Interruptions

Sustained interruption is a zero supply voltage for duration longer than one minute. The general
characteristics of the over-voltage, the under-voltage, and the sustained interruptions are

summarized in Table 2.3 as indicated in [2] and [16].

Table 2.3: Characteristics of over voltage, under voltage, and sustained interruptions

Spectral Typical Typical voltage Magnitude
PQ Type X
Content Duration
1- Over-voltage - > 1 min 1.1-1.2pu
2 - Under-voltage - > | min 08-09pu
3- Sustained - > | min 0.0pu
Interruption
Characterization RMS vs Time, Statistics,
Typical Causes Motor starting, Load variations
Solutions Voltage regulators, Ferroresonance Transformer -
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2.2.3 Short-Duration Voltage Variations

This category includes voltage sags, swells, and short interruptions. Each type of variation can
be designated as instantaneous, momentary, or temporary, depending on its duration as defined
in Table 2.4.

2.2.3.1 Interruption

It is a reduction in the supply voltage or load current to less than 0.1 pu for a period of time not
exceeding one minute. The interruptions are measured by their duration since the voltage
magnitude is always less than 10% of the nominal. Figure 2.3 shows a voltage interruption in the

power signal.

Magnitude
o N

.....

Figure 2.3: Voltage Interruption
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2.2.3.2 Sags (dips)

Sag is a decrease in rms voltage or currents to between 0.! and 0.9 pu at the power frequency for
a duration of from 0.5 cycles to | minute. Voltage sags are usually associated with system faults
but can also be caused by connecting of heavy loads or starting of large motors. Figure 2.4

shows a voltage sag in the power signal.
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Figure 2.4: Voltage sag

2.2.3.3 Swells

A swell is defined as an increase in rms voltage or current to between 1.1 and 1.8 pu at the
power frequency for a duration of from 0.5 cycles to 1 minute. As with sags, swells are usually
associated with system fault conditions, but they are not as common as sags. Figure 2.5 shows

a voltage swell in the power signal.



Chapler 2: Power Quality Problems 15

The general characteristics of the interruptions, voltage-sag and voltage-swell are summarized in
Table 2.4 and shown in Figures 2.3, 2.4 and 2.5 as in [2] and [16].

Ll
; J IR A,

Figure 2.5: Voltage swell

2.2.4 Voltage Unbalance

It is defined as the ratio of either the negative- or zero-sequence component to the positive-
sequence component. Single-phase loads on three-phase circuits are the primary source of

voltage unbalance.

2.2.5 Waveform Distortion

Waveform distortion is defined as a steady-state deviation from an ideal sine wave of power
frequency. It is characterized by the spectral content of the distorted signal. There are five types

of waveform distortion:
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Table 2.4: Characteristics of voltage sag, voltage swell, and interruptions

Short Duration Spectral Typical Typical voltage Magnitude
voltage variation in Content Duration
Electric Power
A - Instantaneous
Sag - 0.5 - 30 cycles 0.1-09pu
Swell - 0.5 - 30 cycles 1.1-1.8pu
B - Momentary
1 - Interruption - 05cycles-3s <0.1 pu
2-Sag - 30cycles-3s 0.1- 09pu
3 -Swell - 30cycles-3s L1-12pu
C - Temporary
1 - Interruption - 3s-1 min <0.1pu
2-Sag - 3s-1min 0.1-09pu
3 - Swell - 3s- 1 min 1.1-1.2pu
Characterization RMS vs Time, Magnitude, and Duration
Sags and Swells
Typical Causes Remote System Faults, large loads, and non linear
loads for short duration
Examples of Ferroresonance Transformers, Energy storage
solutions technologies, UPS
Characterization RMS vs Time, Magnitude, and Duration
Interruptions
Typical Causes System Protection (Breakers and Fuses), Maintenance
solutions Backup Generators, Energy storage technologies, UPS

2.2.5.1 DC offset:

DC offset is defined as the presence of dc voltage in an ac power system. It occurs as a result of

a geomagnetic disturbance or due to the effect of half-wave rectification. DC offset can cause



Chapter 2: Power Quality Problems 17

transformer saturation that can increase the transformer temperature and reduce its life. Direct

current may also cause the electrolytic erosion of grounding electrodes and other connections.

2.2.5.2 Harmonic

A harmonic distortion is a sinusoidal voltage or current with frequencies that are integer
multiples of the frequency at which the supply system is designed to operate. It originates from
non-linear characteristics of devices and loads. Harmonic distortion levels are described by the
harmonic spectrum with magnitudes and phase angles of each individual harmonic component.
Total harmonic distortion (THD) is used as a measure to calculate the harmonic distortion within
the signal. The THD can be calculated as:

h
THD= Jf(v,,)l /vl 2.1
h=2

where V, is the rms value of harmonic component 4 of the quantity V . Figure 2.6 illustrates a

harmonic distorted signal.

2.2.5.3 Inter-harmonics:

Inter-harmonics are defined as voltages or currents having frequency components that are not
multiples of the frequency at which the supply system is designed to operate. The main source of
inter-harmonic wave-form distortion are static frequency converters, induction motors, and

arcing devices.

The general characteristics of the DC offset, harmonic, and inter-harmonic are summarized in
Table 2.5 as in [2] and [16].
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Figure 2.6: Harmonic distorted signal
Table 2.5: Characteristics of DC offset, harmonics, and inter harmonics
Waveform Typical Typical Typical voltage Magnitude
Distortion Spectral Duration
Content
1 - DC offset steady state 0-01%
2 - Harmonics 0-100" harmonic | steady state 0-20 %
3 - Inter-Harmonics 0.6 kHz steady state 0-2%
Method of Harmonic Spectrum, Total Harmonic Distortion, Statistics
Characterization
Typical Causes Non-Linear Loads, System Resonance
Examples of Active and Passive Filters, Transformers

solutions

18
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2.2.5.4 Notching

Notching is defined as periodic voltage disturbance caused by normal operation of power
electronic devices when current is commutated from one phase to another. Figure 2.7 shows a

voltage notching in the power signal.
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Figure 2.7: Voltage notching

2.2.5.5 Noise

It is defined as unwanted electrical signals with wide-band spectral content lower than 200kHz
superimposed upon the power system voltages or currents in the phase conductors, or neutral. It
can be caused by power electronic devices, control circuits, arcing equipment, loads with solid-
state rectifiers, and switching power supplies. Noise problems are often due to improper
grounding that fails to conduct noise away from the power system. Using filters, isolation
transformers, and line conditioners can mitigate the noise problem. Figure 2.8 shows a

distorting noise superimposed on the power signal.
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Magnitude

Figure 2.8: Electric noise

2.2.6 Voltage Fluctuation (Flicker)

Voltage fluctuations are systematic variations of the voltage envelope or a series of random
voltage changes. Their magnitude do not normally exceed 0.9 to 1.1 pu. The main sources of
voltage fluctuations are continuous rapid variations of loads. The continuous variation in the
current magnitudes can cause voltage variations that are often refereed to as flicker. One of the
most common causes of voltage flickers is the arc furnace. The flicker signal is defined by its

rms magnitude expressed as a percent of the fundamental. Figure 2.9 illustrates the voltage
flicker wave shape.

2.2.7 Power frequency variation

It is defined as the variation of the power system fundamental frequency from its nominal value
(e.g., 50 or 60 Hz). The power frequency is directly related to the rotational speed of the
generators. Frequency variations can be caused by faults on the bulk power transmission system,

a large block of load being disconnected, or a large source of generation going off line.
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Magnitude

Figure 2.9: Voltage Fluctuation

Table 2.6: characteristics of voltage imbalance, notching, noise,

voltage fluctuation, and power frequency variations

Typical Typical Typical voltage
PQ type Spectral Duration Magnitude
Content
Voltage Imbalance - steady state 0.5-2.0%
Notching - steady state
Noise broad-band steady state 0-1%
Voltage <25Hz Intermittent 0.1-7%
Fluctuations (non-stationary)
Power Frequency - <10s
Variations
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2.8 Costs of interruptions

The frequency of interruption and its duration can influence the interruption costs. Reliability of a
system is not a single-dimensional quantity. An increase in the number of components in the

system can reduce its reliability. A more reliable system is more expensive to build and operate.
The cost of an interruption consists of a uumber of terms as follows:

1. Direct costs which are directly attributable to the interruption. This comes in the form of
lost of raw material, lost of production, and salary costs during the non-productive

period.

2. Indirect costs which is not easy to evaluate. A company can lose future orders when an
interruption leads to a delay in delivering product. This might lead the customer to take
insurance against loss of its raw material or it might install a battery backup or even
move the plant to an area with less supply interruptions. The main problem with the
indirect costs is that it cannot be attributed to a single interruption, but to the quality of

the whole supply.

3. Non-material inconvenience that cannot be expressed in money. A radio station
interruption that prevents the listeners from being able to enjoy the broad casting is an

example of such inconvenience.

For large industrial and commercial customers an inventory of all direct and indirect costs can be
made, and this can be then used in the system design and operation. However, for small domestic
customers it is often the non-material inconvenience that has a larger influence on the decision

than the direct or indirect costs.

Due to the increasing costs of the power quality problems, different manufactures introduce a
wide range of monitoring devices. These devices are implemented to detect and monitor different
disturbances that may affect the quality of the power systems. The following section describes
different power quality monitoring devices used for measuring a wide range of disturbances, {(see
Figure 2.10).



Chapter 2: Power Quality Problems 23

2. 9 Review of Monitoring Techniques

The monitoring requirement depends on the type of power quality problem. Some problems
require monitoring for several months and others for several hours. The most important

monitoring devices are:

2.9.1 Disturbance Analyzers

Disturbance analyzers have been developed specifically for power quality measurements. They
typically measure a wide variety of system disturbances from very short duration transient
voltages to long variations, outages or under-voltages. As indicated in [2], these devices basically

fall into two categories:

Power quality

monitoring
devices

L ——

1 -Disturbance Analyzers:|{ 2 -Harmonic analyzers:

3 - Combination of
disturbance
and harmonic analyzers

ﬁ
Graphics-based anaiyzers Generalpurpose
spectum analyzers
Speciakpumase pawer
sysiem hamaonic analyzers

Figure 2.10: Different methods for monitoring power quality levels
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1 - Conventional analyzers that summarize events with specific information such as over/under-

voltage magnitudes, sags/surge magnitude and duration, transient magnitude and duration,

etc.

2 - Graphics-based analyzers that save and print the actual waveform along with the descriptive

information, which would be generated, by one of the conventional analyzers.

However, using these devices, it is often difficult to classify the type of the disturbance or
transient from the available information. Therefore, to overcome this problem, Graphics

analyzers must be used with the conventional one.

2.9.2 Harmonic analyzers

Disturbance analyzers have very limited harmonic analysis capabilities. Fast Fourier Transform
(FFT) calculations capability has been added to some disturbance analyzers to obtain a clear
picture of the harmonic content within the distorted signal. As indicated in [2], three categories of

instruments are considered for harmonic analysis:

| - Simple meters: for making a quick check of harmonic content, up to the 50" harmonic, as

well as the total harmonic distortion (THD) at the problem location.

2 - General-purpose spectrum analyzers: Used for general harmonic signal analysis. They are

designed to perform spectrum analysis for a wide range of applications.

3 - Special-purpose power system harmonic analyzers: Designed for power system harmonic
analysis. These are based on the FFT with sampling rate specifically designed for
determining harmonic components in power signals. They can generally be left in the

field and include communications capability for remote monitoring.
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2.9.3 Combination of disturbance and harmonic

analyzers

The most recent instruments combine limited harmonic sampling with disturbance monitoring.
The output is graphically based and the data are gathered over telephone lines into a central
database. Statistical analysis can then be performed on the data. It monitors three phase voltages
and currents plus the neutral simultaneously, which is very important for diagnosing power

quality problems.

2.10 Summary and Comments on Currently
Used Monitoring Devices

Different monitoring devices (data loggers) are available that can collect large amount of data.
The triggering strategies used by these instruments are based on a set of thresholds. The
sensitivity of these loggers depends on a selected threshold level. High threshold levels result in
missing desired disturbances and low threshold levels result in capturing a large number of
waveforms. Using this monitoring strategy, one cannot monitor certain classes of disturbances or
distinguish among similar ones. Off-line analysis is always required which use different

disturbance analyzers to extract the disturbances of interest and classify them [2].

There are general problems that exist when dealing with disturbance analyzers to classify

different power quality problems. Some of these problems are discussed below:

* The criteria for distortion detection and classification. This method is based on point-by-
point comparison of the rms values of sampling points of the distorted signal with its
corresponding pure signal. If the difference is larger than a pre-set threshold, then the monitor
will start detecting this disturbance. These types of monitors can provide the ability to detect on-
line any disturbance, however, it is often difficult to determine on an on-line bases the
characteristics of transient, oscillatory, or non-stationary disturbances. Therefore, it is imperative
to have the waveform capture capability of the graphic based disturbance analyzers for a detailed

off-line analysis of different stored disturbances. For the sake of discussion, the following three
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cases present such type of disturbances which need more detailed analysis for classification and

can not be classified on an on-line bases using the existing disturbance analyzers:

Case 1: Capacitor Switching phenomena: Figure 2.11 shows a capacitor-switching phenomenon.
The frequency content in the signal during the distortion event and its duration are two important
features 10 classify it as an oscillatory transient with low, medium, or high frequency as indicated
in IEEE Std.1159 {16]. Using potnt-by-point comparison, off-line analysis is always required to
classify such disturbances.
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Figure 2.11: Capacitor switching phenomena

Case 2: Two disturbances at the same window: The signal is contaminated with low and high
frequency components and a one-cycle sag phenomenon at 0.5s as shown in Figure 2.12. These
disturbances can be detected and localized on-line, however, detailed off-line analysis is also
necessary to classify them. The Fast Fourier Transform (FFT) will be used to monitor the
harmonic content in the signal and point-by-point comparison is needed to detect the sag event.

Furthermore, the duration of this disturbance can not precisely determined.
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Case 3: Commuiation Failure event: Figure 2.13 shows a distortion event detected and localized
on the inverter ac-side of HVDC system. This disturbance is due to a commutation failure in the
inverter of the HVDC system. Again using existing techniques, which implement point-by-point
comparison, this disturbance is classified as a swell phenomenon. However, there is no
information that can be extracted during the non-stationary part of the signal (1.012s to 1.051s).
This information represents important features to be used to distinguish among similar power

quality problems and it can help in identifying the source of the disturbance.

12 T

[
Oon

Magnitude
o

03 04 0.3 06 07
Time (s)

Figure 2.12: Sag event in a harmonic distorted signal
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Figure 2.13: Commutation failure at inverter AC side of HVDC system
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. The second problem is the large dimensionality of the stored data. This is due to the
selected threshold values to be used in detecting different disturbances. Small threshold values
will generate large amounts of data and large threshold values will allow certain disturbances to
escape from the detection process. It has been documented in [9] that a survey of power quality
data of distribution system results in 40MB per day or about 15 GB per year for a modest 200
PQNodes. A major concern arising from the auto-classification of such a large data is the
complicity of the discrimination process. The parameters in the discriminate model become
highly variable. This leads to a substantial deterioration in performance of traditionally favoured
classifiers (Neural net and other pattern recognition techniques). To overcome this problem it is
necessary to decrease the number of variables to a manageable size and use an automated
technique to classify different power quality problems. All the three signals presented in Figures
2.11 to 2.13 can be captured by the existing devices and stored in high capacity memory;
however the engineer must then sort through these data to analyze these disturbances, which isa

time consuming job.

° Limited capability of the Fast Fourier Transform (FFT). Some of the power analyzers

have add-on models that can be used for computing an FFT to determine the harmonic content in

the signal [24-27]. However, the functions ¢’ used to analyze the signal are global functions.
By this we mean any disturbance on the signal at any point along the r-axisinfluences every
point on the w-axis. This is due to the selected bases of the transform (sine and cosine
functions), which are not localized in time. Therefore, the FFT will not provide any information
about the time domain. Time-frequency information is very important, since in power quality
analysis we are interested in some particular portion of the signal (distortion event) and we need
time-frequency information simultaneously for this particular portion of the signal. To correct
this deficiency, a windowing FFT or short time Fourier transform (STFT) is aiso implemented to
get time-frequency information of the distortion event. This can be done by separating the desired
portion of the signal by multiplying the original signal by another function (selected window) that
has zero magnitude out side the interval desired (windowing the signal for time information) and
computes 1ts FFT (for frequency information). However there is a deficiency in STFT that comes
from selecting the size of the window. Using a wide window will result in a good frequency
resolution and a bad time resolution. This means that we get accurate information on the
spectrum of the distortion event but we cannot localize this distortion in time. As the window size

gets smaller, we will loose the frequency resolution and obtain a better time resolution. This
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means that utilizing the STFT we cannot get time-frequency information simultanecusly to
classify this disturbance according to [EEE Std.1159.

To illustrate the above fact we will discuss the following example. Using Matlab code, a distorted

signal f(r), shown in Figure 2.14, is simulated with the following parameters:

sin(ax) (<t and t>1,
fo= { ' :

sin(ar) + B *sin(@ct)* e~ 1, S1<1,

where, t, =6.25ms ,t, =18.15ms, f=50Hz and f-=1.5kHz; and B=-27375 andA=600. The
distorted signal is sampled ( f,,,.) at 240 kHz.

The FFT has a limited capability to analyze the signal and give time-frequency information. This

is due to its use of the global functions e’ to transform the signal from the time-axis into the
frequency-axis. As a result, all information in the time domain, which can help in detecting the

starting time:, and the duration of the disturbance, is lost. This is illustrated in Figure 2.15.
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Figure 2.14: Simulated distorted signal
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Figure 2.15: Fourier Transform

In order to achieve a high degree of localization, both in time and frequency, a window function
with a sufficiently narrow time and frequency window is required; this can be done with the
windowing FFT or short-time Fourier transform STFT. This is done by separating the desired
portion of the signal (achieved by multiplying the original signal by another function that has
zero magnitude outside the desired interval). The FFT of this portion of the signal provides the
frequency information. However, the method is limited due to the constraint on the size of the
window. Using a wide window will result in good frequency resolution but poor time resolution,
and using a narrow window will result in poor frequency resolution but good time resolution.
Furthermore, “Heisenberg’s uncertainty principle imposes a theoretical lower bound on the area
of the time-frequency window of any window function. This principle indicates that the
function’s feature (frequency component) and the feature’s location (position at which that
frequency component is found) cannot both be measured to an arbitrary degree of precision
simuitaneously [24-26].
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Figure 2.16: Short-time Fourier transform of the distorted signal

Figure 2.16 shows the results of implementing the STFT on f(r) given by Equation 2.2. This

example shows that as the size of the window increases (16, 64, 256, and 1024 samples),
different time-frequency features of the distortion event will result. Figure2.16a (16 samples
window) shows good time resolution regarding the distortion event starting time; however, the
duration of this distortion cannot be easily measured. Furthermore, the frequency content of the
distortion event shows a poor resolution due to the distribution of the spectrum over the whole
frequency band. The frequency resolution increases and the time resolution decreases as the size
of the window increases. Figure 2.16d (1024 samples window) shows more accurate localization
of the frequency content in the signal but the time resolution becomes blurred. This means that,
one should apply the STFT many times using different sized windows in order to get a clear time-
frequency information.
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To overcome the limitations of the flexible window function capable of operating over a wide
frequency range, a Wavelet transform is utilized [24-40). Using wavelet multi-resolution analysis
the signal can be decomposed into different resolution levels. These resolution levels can extract
time-frequency information of the signal that can help in designing the wavelet-based automated

recognition system.

2.11 Summary

In this chapter, power quality indices are presented as defined by [EEE std. 1159. The sources of
such power quality problems are presented and an introduction to different mitigation techniques,
for each disturbance, is discussed as indicated in Tables 2.1 to 2.6. The direct or indirect effects

of interruptions on customers are presented and the cost of such interruptions is discussed.

A detailed discussion of the existing monitoring devices shows the drawback of utilizing such
devices in monitoring different disturbances. The limitation of the utilized tools are illustrated
and presented by using simulated signals. The wavelet-based multi-resolution analysis is
proposed as a tool that can be implemented to overcome the limitations in the existing monitoring

devices. This tool can be utilized to design an automated power quality monitoring system.
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Chapter 3

Wavelet Transform and
Multi-resolution Analysis

For Power System Applications

3.1 Introduction

The wavelet transform is a mathematical tool that cuts up data, functions or operators into
different frequency components, and then studies each component with a resolution matched to its
scale. For example, in signal analysis, the wavelet transform allows us to view a time history in

terms of its frequency components, which means it maps a one-dimensional signal of time, f(r),

into a two dimensional signal function of time and frequency [24-40]. The wavelet transform
represents the signal as a sum of wavelets at different locations (positions) and scales (frequency
bands). The wavelet coefficients essentially quantify the strength of the contribution of the

wavelets at these locations and scales.

This chapter is devoted to representing a general introduction to the wavelet transform and its
applications in power system areas. Wavelet types, conditions, and efficiency are illustrated.
Wavelet and Fourier transforms is presented in Section 3.6. Finally, a review of wavelet

applications in power systems and a chapter summary are demonstrated in Sections 3.7 and 3.8.

34
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The mathematical notations and tools that are useful for understanding wavelet theory and multi-

resolution analysis will be illustrated in Chapter 4.

3.2 Wavelet and Multi-resolution

A wavelet is a small wave, which has its energy concentrated in time to give a tool for analysing
transient, non-stationary, or time-varying phenomena. A wavelet still has oscillating wave-like
characteristics but also has the ability to allow simultaneous time and frequency analysis with a

flexible mathematical foundation. Different wavelets are shown in Figure 3.1.

The wavelet transform can be accomplished in three different ways namely as: the Continuous
Wavelet Transform (CWT), the Waveler Series (WS) and Discrete Wavelet Transform (DWT). In
this research the DWT is implemented where a discritized signal is mapped into different
resolution levels. The DWT maps a sequence of numbers into a sequence of numbers much the

same way the Discrete Fourier transform (DFT) does.

The discrete wavelet transform (DWT) is sufficient for most practical applications in power
systems and for reconstruction of the signal. It provides emough information, and offers an
enormous reduction in the computation time. It is considerably easier to implement when
compared to the continuous wavelet transform. The discrete wavelet coefficients measure the

similarity between the signal and the scaled and translated versions of a scaled wavelet,y, , .

On the other hand, multi-resolution analysis (MRA) is used to analyze a signal at different
frequencies with different resolutions. The goal of MRA is to develop representations of a
complicated signal f{r) in terms of several simpler ones and study them separately. This goal will
help in achieving two important properties. The first is the localization property in time of any
transient phenomena. And the second is the presence of specific frequencies at different resolution
levels.

In this research, MRA is implemented as a tool that utilizes the DWT to represent a time-varying
signal in terms of its frequency components.
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The DWT uses selected wavelets as digital filters with different cut-off frequencies to analyze a
signal at different scales. In MRA, the signal is passed through a series of discrete filters “selected
mother wavelet” to analyze and localize the high and the low frequencies that embedded in the
signal.
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Figure 3.1: Examples of different wavelet functions
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3.4 Wavelet Properties

Wavelets have three main properties:

They are building blocks to decompose and reconstruct signals. This means complicated
signals can be decomposed and represented as simple building blocks in terms of the selected

wavelets.

The wavelet expansion gives a time-frequency localization of the signal. This means most of
the energy of the signal is well represented by a few expansion coefficients that are localized

in the time and frequency domains.

The calculation of the wavelet coefficients from the signal can be done efficiently. This
means that by using orthogonal wavelets, the distorted signal coefficients in the wavelet
domain are simply given as the inner product of the signal with the wavelet function, which
greatly simplifies the transform algorithm {24-30}.

3.5 Wavelet efficiency

Wavelet transforms have been proven to be very efficient in signal analysis. Due to the above-

mentioned properties of the wavelet transform, the following advantages can be gained:

1.

Wavelet expansion coefficients represent a component that is itself local and are easier to
interpret. Therefore, the location of these coefficients can be used to detect and localize any
distortion in the signal. Furthermore, the energy of these coefficients will assist in extracting
features that can classify the distortion event in terms of its magnitude, frequency
components and duration. Detection and Classification of different distortion events will be
discussed in Chapters 5 and 6.
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2. MRA that decomposes a signal at different resolution levels will allow a separation of
components that overlap in both time and frequency. This property will be useful in detecting
and classifying multiple distortion events that may take place in the same monitored window.
This will be presented in Chapter 6.

3. The wavelet transform coefficients represent the energy of the distorted signal. These
coefficients will be used to measure the magnitude of the distorted signal and quantify its
quality. This will be presented in Chapter 7.

4. The rapidly drop off in the size of the coefficients, with increasing translation and scaling
factors, will assist in representing the distortion event by using only small number of
coefficients. This will help in designing an automated recognition system that has the ability
to store a large number of distortion events using a small number of coefficients. This

efficient storing property will be presented in detail in Chapter 8.

5. MRA and DWT calculations are efficiently performed by digital computers. Discrete wavelet
transform (DWT) computation relies on convolution and decimation or interpolation. These
operations depend on addition and multiplication. Furthermore, the number of mathematical

operations for DWT is in the order of (¥) which is lower than that for the Fast Fourier
Transform (FFT) algorithm which needs (N log(N))operations. This computational speed

feature of the DWT will help in implementing the automated recognition system on-line and

for real time applications.

3.7 Review of Wavelet Applications

in Power Systems

Wavelets have been successively applied in a wide variety of research areas such as signal
analysis, image processing, data compression and de-noising, and numerical solution of
differential equations. The power of wavelets comes from their location at the crossroads of a
wide variety of research areas. Recently, wavelet analysis techniques have been proposed

extensively in the literature as a new tool for monitoring and analyzing different power system
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disturbances. Other researchers proposed wavelet analysis as a new tool in different power
engineering areas. Figure 3.2 summarizes the applications of wavelet transform in different

power system areas.

The following section summarizes some of the previous work of applying wavelets in a power

system, with emphases on the power quality and transient analysis areas [41-67].

Wavelet Applications
in Power Systems

Detection & Classification Measurements |
detection classification measurement denoizing
and localization
Data Compression Transient and Harmonic |
Analysis ‘
data modeling Analysis
compression
Syatem Protection
fault location

Figure 3.2: Wavelet transform applications in power system
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3.7.1 Detection, Localization and Classification

Wavelet multi-resolution signal decomposition was applied to detect and localize different power
quality problems. The squared wavelet coefficients were used to find a unique feature for
different power quality problems. It was proposed that a proper classification tool might then be

used depending on the unique feature to classify different power quality problems [41].

In [42] Wavelet and Fourier transforms were used to detect the number of notches per cycle and
the harmonic content in the voltage in order to characterize the operation conditions of a
converter. The squared wavelet coefficients (WTC!) of the first resolution level were used to
detect and count the number of notches per cycle. However, for this to work the sampling rate
should be very high in order to detect the notch impuises and therefore, the number of
coefficients (WTC1) will be very large. Furthermore, the magnitude of the squared WTC! can

be affected by the noise content in the signal and other dynamic operation conditions.

In [43] multi-resolution analysis was proposed as a new tool that may be used to detect different

disturbances, or to present the state of post-disturbances, and to identify their sources.

In [44] a combination of wavelets and neural nets was implemented to classify a one-dimensional
signal embedded in normally distributed white noise. Noise signals were decomposed using the
Haar wavelet basis and Daubechies 4 wavelet. A feed forward neural network was trained on the
wavelet series coefficients at various scales and the classification accuracy for both wavelet
bases was compared over multiple scales, several signal-to-noise ratios, and varying numbers of
training epochs. This paper proposed using wavelets to classify the noisy signals and not other
power quality problems.

In [45] a wavelet transform approach, using the Morlet basis, was applied to detect and localize
different kinds of power system disturbances. However, it could not be easily used to

discriminate among different power quality problems.
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In [46] multi-resolution signal decomposition was applied to detect and monitor incipient faults
during impuisive testing of a transformer. The neutral current was monitored and decomposed
into different detailed and smoothed versions to detect any fault during the testing process. The

proposed method was found to have many advantages over existing methods.

3.7.2 Measurements

In [47] a new technique was proposed to detect, localize, and estimate automatically the most
relevant disturbances in a power system. The proposed method combines the use of the
continuous wavelet transform, modulus maxima properties, multi-resolution signal
decomposition, and reconstruction by means of the DWT. This technique was used to measure

steady state magnitude of a harmonic distorted signal.

In [48] a wavelet-based algorithm was used to measure the power and rms values of a steady-
state harmonic distorted signal. The algorithm was applied on simulated and actual sets of
periodic data. Frequency separation into the various wavelet levels was discussed using infinite
impulsive response (IIR) and finite impulsive response (FIR) filters. The results were compared

with that derived by using the Fourier Transform.

3.7.3 Data Compression

In [49) wavelet transformation was applied as a compression tool for power system disturbances.
Three simulated transient voltages were generated and reconstructed by using a suitable mother
wavelet and by using only 2% of the coefficients. This approach presented the efficiency of the

wavelet transform to reconstruct non-stationary power system disturbances.

In [50] the arc furnace current was decomposed into a series of 11 wavelet levels. A good

approximation to the original waveform was obtained by adding only five of the wavelet levels.
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In [51] wavelet analysis was applied to compress actual power quality data and the compression
ratio achieved was in the range of 3-6 with normalized mean square errors of the order of 10 to
10°.

In [52] the results of compressing power system disturbances using the discrete wavelet
transform and wavelet packets were presented. The wavelet transform offered compression ratios

<10:1 compared to that by the discrete cosine transform.

3.7.4 Transient and Harmonic Analysis

In [53] the wavelet technique was proposed for analyzing the propagation of transients in power
systems. The approach concluded that it is possible to use wavelets to calculate the transient
within the system. The advantage of the method depends on the similarity of the existing
transient to the selected mother wavelet. The wavelet transform was used to solve the differential

equations as an example of the use of multi-resolution analysis.

In [54] Daubechies wavelets have been used for the analysis of power system transients. The
method is based on the wavelet companion equivalent circuit of power system components, such
as resistors, inductors, capacitors, and distributed parameter lines. This equivalent circuit is
developed by applying the wavelet transform on the integral-differential equations of the power

system elements.

In [55] the wavelet transform was utilized to model the power system components. This model
was used to analyze transient and steady state events in a power system. An actual arc furnace

system data was used to illustrate the efficiency of the proposed technique.
3.7.5 System Protection

In [56] wavelets were introduced in the power system-relaying domain. It was shown that
wavelets may be employed for analyzing recorded data to study efficiently the faulted network.

In this reference, it was also proposed to implement the wavelet transform in real-time protection
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devices. The information of the transient period analyzed by the wavelet can help to improve the
performance of the protection system.

In [57] the wavelet transform was applied to identify the fault location in transmission systems.
The wavelet transform was used to extract the traveling time informatian accurately for signals
traveling between the faulted point and the line terminals. The first two tevels of high frequency
wavelet transform coefficients were shown to carry information directly related to the location of

the transmission line fault. This information was then used to find the location of the fault.

In [58] Morlet wavelets were proposed to discriminate the high-impedance faults from normal
switching events under different grounding conditions. The proposed technique shows the

feasibility of the method as a potential alternative in the area of power system relaying.

In [59] a wavelet-based method was proposed as a reliable and computationally efficient tool for
distinguishing between intenal faults and inrush currents of the transformers. The Neural

network was proposed to improve the performance of the algorithm.

3.8 Summary

Wavelets have been successively applied in a wide variety of research areas. Recently, wavelet
analysis techniques have been proposed extensively in the literature as a new tool to be
implemented in different power engineering areas. The wavelet transform analysis was proposed
as a new tool for monitoring power quality problems. However, most of the mentioned
approaches that dealt with power quality problems did not present a real classification
methodology that can be used to classify different power quality problems or design a practical
on-line automated monitoring system. Most of the work done in the power quality area, deals
with the power quality problem either from the detection and localization point of view or from

the data compression frame.
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3.9 The Author Contribution to

Monitoring Techniques

To overcome the defictency in proposed monitoring techniques, the author of this thesis, in [60-
67] used the wavelet transform and multi-resolution analysis of a distorted signal to design a new

technique that can monitor accurately a wide range of power quality problems.

The proposed monitoring system has the ability to detect and localize any disturbances in the
system. Using the localization property of the wavelet transform, the first detail version of the
signal under analysis is used to detect any disturbance and localize it in time. The duration of the
distortion event can be measured in this resolution level. Moreover, the energy of the detail
coefficients in this resolution level can be used to give assessment of the noise content in the
signal. The de-noising property of the wavelet transform is used to localize the distorted signals
in a noisy environment. Detailed information about the application of the detection and

localization property of the proposed technique is presented in Chapter 5.

A new technique that uses multi-resolution analysis is proposed that has the ability to decompose
any distorted signal into different building blocks and extract time-frequency features
simultaneously from each block. The energy of the detail coefficients of each resolution level is
used to construct the proposed feature vector. The dimensionality of data is mapped into a small
size of interpretable features. Different pattern recognition techniques are implemented on the
proposed feature vector to design an on-line automated monitoring system. These features are
proven to be very efficient in auto-classifying different power quality problems that overlap in

time and frequency. Chapter 6 introduces the proposed auto-classification technique.

Using the signal coefficients in the wavelet domain, a new measurement technique that can
measure accurately a wide range of signal characteristics is proposed. Different power quality
problems that may overlap in time or frequency domains are measured. The proposed technique
is implemented to measure different parameters in a power system under steady state or transient

conditions. A new wavelet-based procedure to monitor the non-rectangular variation of the RMS
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value in the signal is also introduced. The proposed measuring techniques are presented in
Chapter 7.

The reduction in the size of the detail coefficients, due to the decimation property, is used to
represent the distorted signal in terms of a small set of coefficients. A complete chapter, Chapter
8, is devoted to develop a new procedure that will compress and store the distortion event
efficiently. This procedure is based on wavelet analysis, where a small set of wavelet coefficients
that represents the disturbances will assist in achieving this goal. This procedure will replace the

existing technique of storing all sampling points of the disturbance.

A general layout of the design procedure of the wide-scale on-line automated power quality
monitoring system is presented in Chapter 9.
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Chapter 4

Wavelet and Multi-resolution Analysis

Mathematical Representation

4.1 General Introduction

The Wavelet transform was proposed in this thesis as a tool to solve power quality problems.
Using wavelet properties, detection and localization of any transient distortion within the signal
can be achieved. Furthermore, classification of the power quality problem can be obtained and

quantification of the distortion level can be measured.

These features can modify the existing monitoring devices and upgrade their ability to be used as
an automated on-line base for real-time applications. The Wavelet based multi-resolution
analysis is used to decompose any complicated signal and represent it in terms of several simpler
ones. Such analysis of any transient event will help in localizing the transient event in the time
domain and clarifying the presence of any specific frequency components at different resolution

levels.

To achieve our goal and construct an automated wavelet-based monitoring system the
mathematical details of the proposed tool is highlighted. The mathematical concepts of the
Wavelet transform (WT) and muiti-resolution analysis (MRA) are presented in this Chapter. The
Analysis and Synthesis procedures of multi-resolution analysis are discussed and applied on
selected examples. The time-frequency “scale” plane and localization and partitioning of signal
energy at different resolution levels are also presented in this chapter. Appendix A is added as a
support for the mathematical derivations that are needed to clarify the main concepts of the
wavelet theory.
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4.2 General Mathematical Preliminaries

The purpose of this section is to introduce the mathematical notations and tools that are useful to
present Wavelet Transform theory. Some definitions of vector spaces and related mathematical

relations are introduced and more detailed discussions are presented in Appendix A.

4.2.1 Vector Spaces

The totality of vectors that can be constructed by scalar multiplication, and vector addition form
vectors in a given set is called a vector space. A set of vectors that is capable of generating the
totality of vectors by these operations is said to span the space. If the set consist of the least
number of vectors that span the space, the set is called a Basis of the space. The number of
vectors in the basis is called the dimension of the space. n-basis vectors generate an n-

dimensional space. Any subset of r-basis vectors forms the basis of an r-dimensional subspace.

4.2.2 Norms

The concept of the distance is generalized in the case of vectors through the use of norms. The

norm of a vector x, ||x]|, is a real non negative number such that:
ix] = 0 ifandonlyif x=0
lexil =le} ||xl| forall scalars ¢ and vectors x

fa+xld sl +lnl forall x andx

There exist many norms for vectors. Three of the commonly used ones are:

A @.1

Vil 4.2)

max x| (4.3)

Il

=l
-l
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4.2.3 Inner Product

It is a scalar “a” obtained from two vectors f(¢) and g(¢), by an integral. It is denoted as:

a=(fuhgr)) =] fierg)a (4.4)
The length of a vector * norm” can be defined in terms of the inner product as:

| £C) | = VI{F@) FN (4.5)

4.2.4 Hilbert Spaces

It is a complete inner product space with orthogonal basis, where any signal

f(t) € L(R) satisfies the following condition:

J:If (1)Pdr <oo (4.6)

which means that the signal f(¢) has finite energy.

4.2.5 Basis

A set of vectors ¢,(t) spans a vector space F if any element f(f) in that space can be
expressed as a linear combination of members of that set. This means that f(¢)can be written

as:

F0=Ya, 0.(1) @7
k

with k € Z the set of integers and a,t € R. ¢,(t }is known as the expansion set and a, is

known as the expansion coefficients.
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The expansion set ¢,(7) forms a basis set or basis if the set of expansion coefficients (a, } are
unique for any panicular f (¢) € F . There may be more than one basis for a vector space.

However, all of them have the same number of vectors, and this number is known as the

dimension of the vector space.

The expansion set ¢,(¢) forms an orthogonal basis if its inner product is zero:

<P,(1).9(1)>=0 forall k#l 4.8)

The expansion set ¢,{¢) forms an orthonormal basis if the inner product can be represented as:

0 k#l
<¢,,(U.¢,(t)>=6(k—-l)=[l el (4.9)

This means that in addition of being orthogonal, the basis is normalized to unity norm.
lec(zil=1 forall & (4.10)

For an orthonormal basis, the set of expansion coefficients {q, } can be calculated using the

inner product,
a, =< ¢ (t), f(t)> 4.1

Therefore, having an orthonormal basis, any element in the vector space f (¢)€ F, can be

written as:

FO)=Y <olt), FO> d(1) @.12)

k
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This expansion formulation is extremely valuable. The inner product of f(¢) and ¢.(¢)
produce the set of coefficients a, . This set of coefficients a, can be used linearly with the basis

vectors ¢, (¢ )to give back the original signal f(r).

4.3 The Wavelet Transform (WT) and

Multi-level representation

The Wavelet Transform is a tool that can cut any signal into different frequency components,
and then study each component at a certain resolution level. The WT depends on two sets of
functions known as scaling functions and wavelet functions. In order to impiement a multi-level
presentation of a signal we will start by defining the scaling function and then use it to represent

the wavelet function.

4.3.1 The Scaling Function

The scaling function ¢ ¢ }is a function that belongs to the Hilbert space. The scaling set ¢,(t) is

defined as a set of integer translations of a basis scaling function ¢(¢ ), where:

o.(t)=¢(1t—k) forkeZ; ¢o,e*(R) 4.13)

and L*(R)is the Hilbert space, which can be represented by a set of subspaces (V,|j€&Z},

where Z is the set of integers.

The set of scaling functions¢,(¢) span the subspace V, defined as:

Vo=span,(9.(t})]= span {§(1~k), keZ) 4.14)
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If fir) is a finite energy signal (f(¢) € L*(R)), then an approximated version of f(1)eV, ,

can be represented in terms of the scaling function as shown in Figure 4.1 and can be expressed

according to Equation 4.7 as:

fi)=Y ad,(t) (4.15)
k

s
0
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Figure 4.1: Approximation of the input signal, a- the input signal,

b- approximation of the input signal using Haar scaling function

Keeping in mined the containment property (See Appendix A), the scaling function ¢(¢ jcan be

expressed in terms of a weighted sum of shifted ¢(2r ):

o(1)=Y hnN2(2~n) neZ (4.16)

where the coefficients i(n) are a sequence of real or complex numbers called the scaling function

coefficients (or the scaling filter coefficients) and the v2 maintains the unity norm of the

scaling function with the scale of two.
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This equation is called the multi-resolution analysis equation. It can be utilized to represent the

signal at different resolution levels. This is presented in the following subsection.

4.3.2 Multi-level representation using

the Scaling Function

In order to represent a signal f{r) at different resolution levels, the used scaling function

¢(t) must be translated and scaled. Therefore, the two dimensional family of scaling

functiong; () is presented as:

0..(1)=2"92't k) @.17

where, j is the scaling factor and & is the translation factor. This two dimensional family can

span different subspaces {le J€Z) as:

V. = span,(9;,(t)]= span, (2129, (2t k)] 4.18)

for all integers &.

This means that any signal f(¢) € L*(R) can be approximated and represented at different

resolution levels ( f(¢) € V), as:
f)=Y,a,2"¢ (21-k) (4.19)
k

The multi-level representation of the signal f{z) is shown in Figure 4.2. The Haar scaling function

is scaled and translated to represent the input signal at five resolution levels.
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As the scale j changes in Equation 4.19 changes, more details are added to the approximated

version and a more similar version of the original signal can be achieved. These details, which

exist in between each of the two approximated versions of the signal, are very important in

analyzing and monitoring the original signal. These details can be extracted by using the wavelet

function.
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Figure 4.2: Multilevel representation of an input signal using the Haar scaling function
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4.3.3 The Wavelet Function

More important features of a signal can be extracted by using a function that spans the difference

between various approximated versions obtained using the scaling function ¢;,(r ). This can be

achieved by using the wavelet function ¥/, (2).

As indicated by the containment property (See Appendix A), the subspace V, is embedded in the

subspace V;, V, CV,. In order to move to a finer subspace V; from a coarser subspace V,, one

must add another subspace in between, which is known as the complement subspace W,. This is

illustrated clearly in Figure 4.3.

Since these wavelets reside in the space spanned by the next narrower scaling function, then they
can be represented by a weighted sum of shifted scaling functions at that space. For example

W (¢) resides in the space W,, and W, C V| . Therefore, ¥ (r) can be represented by a weighted

sum of shifted scaling function ¢f 2¢ ). This is illustrated in Figure (4.3) and mathematically can

be presented by:
wit)= 3 hinN29(2-n) nez (4.20)
for some set of wavelet coefficients (wavelet filter coefficients) t; (n), where,
h(n)=(=1)"h(1-n) 4.21)
pe-»t Vo
e F ¢(2t _ k)

P (-K) " Vo ]

Figure 4.3: Moving to a finer space using the wavelet, ¥, (¢) , and scaling function, ¢;,(¢)
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Again, the scaled wavelet function can be utilized to extract different details that reside in
between different approximated versions of the signal. This will be discussed in the following

subsection.

4.3.4 Multi-level representation using

the Wavelet Function

As the scaling function ¢,,( ¢ )spansV, and @, (s)spansV,, there are a particular functions
which span W, and W),. Therefore, as the scaling function@,, (r)spansV, the wavelet function
V¥ ;4 (t)spansW,. Where W, is the orthogonal complement V. This means that all members of

Vj are orthogonal to all members of W! . (VjJ.Wj ).

Therefore, the space V; can be represented in terms of a set of subspaces where each subspace

can be spanned using the scaling and wavelet functions. This is mathematically represented as:

Vj= V_ ®W

i1 J=1

=V,OW,OW,OW,D..0W,

1 (4.22)
Therefore, any signal f()€ L*(R)can be represented as a series expansion by using a
combination of the scaling function and wavelets function:
fi)= chfp(r ~k)+ Ezdﬁ,‘w(?t— k) (4.23)
k=—ce k== j=0

where, ¢, are the approximated coefficients of the last approximated version and d;, are the

detail coefficients at different scales.

Equation 4.23 represents the signal f(r) at different resolution levels in terms of one
approximated version and different details that exist in between different approximated versions.
The first summation gives the approximated version of the signal f(¢) in terms of the scaling

function. The second summation gives different details that can be extracted in terms of the
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wavelet function at different scales. The summation of the approximated version and the

different detail versions will represent the original signals f{1).

Figure 4.4 shows the details of the input signal at different resolution levels by using the Haar

wavelet function. It is clear form the figure that as the scale changes more resolution is achieved.
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Figure 4.4: Multilevel representation of the input signal using the wavelet function
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This led to multi-resolution analysis and its application in monitoring different power quality

disturbances that exist in electrical systems.

4.4 Multi-resolution Analysis (MRA)

Multi-resolution analysis (MRA) is used to decompose any signal and represent it at different
resolution levels. The goal of multi-resolution analysis (MRA) is to develop representations of a
complicated signal f{r) in terms of several simpler ones and study them separately. This goal will
help in achieving two important properties. The first is the localization property in time of any
transient phenomena. And the second is the presence of specific frequencies at different
resolution levels. In multi-resolution analysis, the signal is decomposed to find a time-frequency
picture of the signal and then reconstructed to get back the original signal. It essentially maps a 1-
D signal of time into a 2-D signal of time and frequency. This is explained in Figure 4.5, where a
t-D noisy sinusoidal signal is mapped into the wavelet domain and represented as a 2-D signal as

shown in Figure 4.6.

Magnitude

e

0 0.005 0.01 0.018 0.02 0.625 0.03 0.035

Time (s)

Figure 4.5: One-dimensional signal in time domain
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Figure4.6: Mapping one dimensional signal into a two dimensional signal in a wavelet domain

The main advantage of this technique comes from its ability to extract information that overlaps
in time and frequency domains. The transient event in the signal is extracted and its energy is

distributed at different resolution levels in time and frequency domains simultaneously.
Using the scaling and wavelet functions the signal is mapped into the wavelet domain and

analyzed into an approximated and different detail versions. This can be achieved by extracting

the approximated coefficients ¢ j(k) and the detail coefficients d j(k) as follows:

¢, (k)= (f(1),0,,(0)) = X, h(m~2k) c,,(m) (4.25)
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d, (k) = (f(O) W5 (1) = 3, h(m=2k) ¢, (m) 4.26)

The reconstruction process uses the approximated and detail coefficients, cfkjand dfk} at

resolution j to reconstruct the coefficients c;.,(k) at the next resolution, j+1.

Cjun) = D,c;(k) h(n=2k) + ¥, d;(k) b(n~21) @27
k k

The mathematical derivation of the approximated and detail coefficients for analysis and

reconstruction process is presented in Appendix A.

Muiti-resolution analysis Equations 4.25 and 4.26, shows that in order to get the expansion
coefficients at level j, convolve the expansion coefficients at scale j+!/ by the scaling filter
coefficients h(n) and the wavelet filter coefficients h;(n) then down sample or decimate the
result. This process can be repeated to give a multi-level representation of the signal. On the
other hand, to reconstruct the signal from the wavelet coefficients, up-sample the j-scale

approximated coefficients ¢;(n) and detail coefficients d;(n}, then convolve them with the

scaling filter coefficient h(n) and the wavelet filter coefficient i;(n).

This simplifies the wavelet based multi-resolution process of decomposition/synthesis, which is

known by Mallat’s algorithm.

4.5 Mallat’s algorithm

This algorithm simplifies the implementation of the Discrete Wavelet Transform (DWT). It
represents the DWT in terms of convolution and decimation (down-sampling) for the

decomposition stage and convolution and interpolation (up-sampling) for the synthesis process.

The Mallat’s transform analysis (decomposition) algorithm for the data ¢, (n) is achieved as

follows:
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° Convolve data with A(n) and decimate to get ¢;(n)

o Convolve data with k() and decimate to get d (n)

The inverse Mallat's transform implements the synthesis (reconstruction) process with the

following steps:

. Up sampling by inserting zero between every sample in ¢;(n) and d;(n)
. Convolve the up sampled coefficients ¢;(n) with the filter h(n).

o Convolve the up sampled coefficients d;(n) with the filter ; (n).

° Add the results of the convolution to get the original data ¢ j,l(n)

If the sampling rate f,,,of the signal is above the Nyquist rate ( f,,, 2 2fm, Where f, is the
highest frequency component in the signal), then these samples of the signal can be considered as

the scaling coefficients c;,,(n).

Decimation or down sampling is a multi-rate processing which is an efficient technique for
changing the sampling frequency of a signal in digital domain and efficiently compressing the
data [65-67]. As indicated in the block diagram (Figure 4.7), the sampling rate compression and

data reduction in (d;) are achieved by discarding every second samples resulting from

convolving approximated coefficients (c;,,) and the wavelet coefficients &, (n).

digital anti-aliasing Sampling rate
filter compressor

o
Joe il | /2

¢ (m) dj(k)

j+l

Figure 4.7: Block diagram of decimation by factor 2
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Similarly, the approximated coefficients (c;) are achieved by convolving c;,, by the scaling

function coefficients h,(n) and decimate by two. Since half of the data is discarded (decimation

by 2) there is a possibility of losing information (aliasing), however the wavelet and scaling

function coefficients (h,(n) and h,(n)) will work as digital filters that limit the band of the

input c;,, and prevent aliasing. This is explained in Figure 4.8, which represent one stage of
MRA. The samples of the signal are considered as the setc;,,and decomposed into the sets
d;and c;. These coefficients can be used to reconstruct an approximated version A, and a

detailed version D, of f(r)at that scale as shown in Figure 4.8a.

Coiflet$ scaling and wavelet functions and their frequency response H,(w)and H,(w) are shown

in Figure 4.8b. The two functions are working as a low and high pass filters that divide the

spectrum of ¢, . The spectrum of f(:), 0 - fr,, , Will be decomposed into the ( me 10 froo )

band for d; and the (0 to me) band for ¢;. The size of the data points will also be reduced to

(N +n-1)/2 as shown in Figure 4.8c. Where, N is the number of f(r) sampling points and n s the

number of filter coefficients (n=30 for coif5). As the scale changes, the shape of the wavelet
becomes wider and the steps in time (translation) become larger. This allows representation of

less details and or lower resolution. In the second MRA stage, the approximated coefficients (c;)

Smax

> ) and c; (0 0 fT"‘“) by convolution and

can be further decomposed into d;_; (f—":"- to

decimation. The decomposition of the approximated coefficients can be continues till no more

details can be extracted. The last approximated coefficients ¢, will be reached at the final stage of

MRA and £(r) can be presented as in Equation 4.23.

In MRA, the first stage divides the spectrum into two equal frequency bands; the second stage
sub-divides the lower frequency band into quarters, and so on. In other words, the DWT
coefficients for any signal, periodic or non-periodic, can be computed by using a multi-rate filter
bank. The total number of the resolutions that can be achieved J depends on the number of

sampling points, which can be controlled by the sampling frequency and the window size of the
data.
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Figure 4.8: One stage of MRA and wavelet filters
a- decomposing into detail and approximated version,
b- Coiflt 5 scaling and wavelet functions and their frequency response,

c- spectrum division and coefficients size compression.
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In other words, an analysis filter bank efficiently calculates the discrete wavelet transform
{(DWT) using banks of digital filters and down-samplers, and the synthesis filter bank calculates

the inverse discrete wavelet transform (IDWT) to reconstruct the signal from the transform.

Figure (4.9) shows five-levels of multi-resolution signal decomposition using the Haar scaling

and wavelet functions.

The npu Sigual

v apte(l) —
gz (§)

Figure 4.9: Five level multi-resolution signal decomposition
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4.6 Parseval’s Theorem

If the scaling function and wavelets form an orthonormal basis, there is Parseval’s theorem that
relates the energy of the signal to the energy in each of the components and their wavelet
coefficients of the approximated and detail versions. This means that the norm or energy of the

signal can be partitioned in terms of the expansion coefficients [28].

Any function f(r) € [*(R)can be presented as a series expansion by using a combination of the

scaling functions and wavelets.

fn= ch(p(l-k)-i- ZZdj.,w(Z"t-k) (4.28)

k= km—n ju()

The Parseval’s theorem is:

fl fafdr= Y letof + i‘, ildi(k)lz (4.29)

kx—e jal kn-e

with the energy in the expansion domain partitioned in time by & and in scale by j.

4.7 Summary and Conclusion

The wavelet transform and multi-resolution analysis is a promising tool for satisfying our goal in
designing an Automated Recognition System (ARS) for power quality monitoring. It can give

good results in monitoring transient or steady state signals or both of them simultaneously.

Implementing MRA any distorted signal can be decomposed into different building blocks that
represent the time-frequency information of the distorted signal. The coefficients that represent
the signal in the wavelet domain can be used to extract classification features for classifying the

different power quality problems.
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The scaling property of the selected wavelet function to be used in decomposing the signal will
assure the ability of the MRA technique to detect any transient event and localize it in the time

and frequency domains.

Selecting orthonormal wavelets, multi-resolution analysis will have the ability to distribute the
energy of the distorted signal in terms of the expansion coefficients of the wavelet domain.
Therefore, both the expansion approximated and detail coefficients will give an indication about
the energy content of the distorted signal in certain time and frequency bands. This feature can
be used to classify different power quality problems. From the other side, the energy of the
wavelet coefficients can be combined with the localization property to give a measure of the

distortion event.

The small values of the expansion coefficients will give us an indication about the resolution
levels that contains low energy of the distorted signal and hence can be ignored for data
compression purposes. This can reduce the large volume of disturbance data to a manageable
size. It will provide a higher quality of information about the disturbance event to be analyzed by

the planning engineers.

Furthermore, the expansion coefficients of the highest resolution levels can be ignored for de-

noising purposes.

Using these properties of multi-resolution signal decomposition, an automated recognition
systemn can be designed to detect, localize and classify different power quality problems. The
wavelet coefficients at different resolution levels can be used to de-noise and compress the data
of the distorted event. A complete discussion of the proposed Automated Recognition System

will be presented in the following chapters.
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Chapter 5

Detection and Localization

5.1 Introduction

In order to improve the electric power quality the sources and causes of disturbances on the
distribution system must be determined. However in order to determine the causes and
sources of disturbances, one must have the capability to detect and localize those
disturbances. This chapter proposes a technique that has the ability to detect and localize any
disturbances in a clean or noisy environment. This technique is based on wavelet-multi-
resolution analysis (WMRA).

This chapter is organized as follows. Section 5.2 highlights the procedure to map the distorted
signal into the wavelet domain. The proposed procedure for disturbance detection and
localization is presented in Section 5.3. Section 5.4 describes a wavelet-based procedure to
quantify the noise content in the monitored signal while Section 5.5 presents a detection and
localization technique for different disturbances in a noisy environment. The applications of
the proposed technique are presented in Section 5.6. Finally, the assessment of this chapter is
discussed in Section 5.7.
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5.2- Mapping Into The Wavelet Domain

Let us assume that a distorted signal f(¢) has a finite length and consists of two components.
The first component is the 60 Hz pure signal pf ¢ )and the second one is s(¢) that represents

the distortion event superimposed on the pure signal. Therefore, the distorted signal can be

presented as:

f(t)=p(t) + s(t) é.D

Signal pure Distortion

Applying multi-resolution analysis, one can decompose the signal f( ¢ )at different resolution

levels and present it as a series expansion by using a combination of scaling functions

9,(1 )and wavelet functions w, (r) . This can be mathematically presented as:

J-
f)=Nc (ki (1-k)+ 3 Y d (kR e-k) (52)
=0

Signal & &

where, d; are the detail coefficients that represent different detail versions of the signal

f(1 )at different resolution levels (scales), and ¢, is the last approximated coefficients that
represent the last approximated version of the signal f(7) where no more details can be

extracted. Since the selected wavelet and scaling functions are orthonormal (orthogonal and

normalized), the expansion coefficients ¢; and d; can be computed by the inner product of the

signal f(t} and the scaling or wavelet functions.

Since the sampling rate of f(¢)are above the Nyquist rate ( f,,, 2 2f,.. ), then the signal

samples can be considered as the approximated coefficients c;,;and used to compute the

approximated ¢; and detail d; coefficients as:
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(k)= h(m=2k)c;,(m) (5.3)

dyk)=Y h(m-2k)c;(m) (5.4)

Therefore, using Equations 5.3 and 5.4, the distorted signal f(¢)is mapped into the wavelet

domain and presented in terms of its expansion (approximated and detail) coefficients as:

Coga =S| d,1d, |.oeon... d,|] (3.5)
where c, are the last approximated coefficients and d, are the detail coefficients at resolution

level i of the distorted signal.

In a similar way, the expansion coefficients of a pure signal C,,,, can be generated and used

pure

as a reference for the purpose of classification and measurements. These coefficients are:

Cpure=[cop| dop[dlp l """" d{l-l)p[ I (56)
where c,are the last approximated coefficients and 4, are the detil coefficients at

resolution level i of the pure signal.

Therefore, the expansion coefficients C that represent the distortion events(r)are

formulated by subtracting Equation 5.6 from Equation 5.5. Therefore,
Cuin = Csignat ~ Cpure 5.0
Con=lcyl dyyldy |- daall (5.8)

where c,are the last approximated coefficients and d,, are the detail coefficients at

resolution level i of the distortion event only.
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5.2 - Detection and Localization
the Distortion

Any changes in the pattem of the signal can be detected and localized at the finer resolution
levels. As far as detection and localization is concemned, the wavelet coefficients of the first

finer decomposition level of f{r) are normally adequate to detect and localize any

disturbance in the signal. These coefficients are:

dik)={f(0)Wp(t) =3 im=2k)c,fm) (5.9)

For a pure signal, the set of coefficients d;( k) presented in Equation 5.6 are equal to zero.

Any changes in the signal can be detected and localized in time due to the changes in the
magnitude of these coefficients. This property is shown in Figure 5.1. An impulsive transient
event, Figure 5.1a, is detected and localized due to the changes in the magnitude of the detail

coefficients d;(k) that represent the first detail version D, .

417!)

0.008S5 0.017 faf

Figure 5.1: Transient detection
a- impulsive transient phenomena,

b- detection and localization of the transient event at the first resolution level.
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However, as the transient event magnitude decreases and the noise level increases, the
coefficients that represent the noise will merge with those representing the transient event.
This will cause a failure in the wavelet detection and localization property. Figure 5.2a shows
a harmonic distorted signal where the total harmonic distortion equals to 26.6%. The signal is
further distorted with sag to 0.8 p.u. for one cycle. If the noise level is small then the first

resolution level D, can be used to detect and localize the sag event as shown in Figure 5.2b.

However, as the noise level increases, the first resolution level can no longer detect and

localize the transient event, Figure 5.2¢c.
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0.3 0.4 05 0.6 0.7 [s]
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Figure 5.2: Steady state phenomena detection
a- harmonic distorted signal with one cycle sag to 0.8,
b- the highest resolution level with zero noise level,

¢- the highest resolution level with 2.0% noise level.
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A new technique relying on noise level assessment and an approximated version of the
distortion event is proposed to de-noise and localize the transient event and to measure its

duration, A7, in a noisy environment.

5.3 - Noise Level Assessment

In multi-resolution analysis, shown in Figure 5.3, the first stage will divide the spectrum of
distortion into a low-pass and high-pass band, resulting in the scaling coefficients and wavelet

coefficients at a lower scale ¢, ,,(k) and d, (k). The second stage then divides that

low-pass band into another lower low-pass band and a band-pass band. The first stage divides

the spectrum into two equal parts. The second stage divides the lower halves into quarters and

soon.
v]
o detail 1
e ‘
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V46 0.8 us (1% 33 us [s)
vl (8] 3 T T
detail 2
I
J3 L L L
U6 043 o5 082 v.s
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o
M L 1

046 e} ns 082 uss (s) detail 4
{2 v . ; ‘j

40 [T ] L%} us usé

Approx. 4 [s]

046 048 0.5 0.52 0.54 (s}
The input distorted signal

Figure 5.3: Multi-resolution analysis of a distorted signal
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The noise is defined as an electrical signal with wide-band spectral content lower than
200kHz superimposed upon the distorted signal [3]. However, the principle noise sources in
power system inject their noise components at high frequencies [2] [16]. Therefore, great part

of the noise energy is expected to appear at the highest resolution level d,,_,; as computed
in Equation 5.8. This means that the energy of the coefficients AE, , ,at the highest

resolution level can give a good indication about the energy of the noise superimposed over

the signal.

AEy ;)= dpsapalk={ Zldu.”d(")l2 ] (5.10)

k==

For a pure signal,

AE, =0 (5.11)

The variation of AE,,_,with different white noise levels superimposed on a pure signal is

presented in Table 5.1.

Table 5.1: Coefficient’s energy with white noise level variation in one-second pure signal.

Noise | 0.0% | 0.25% | 0.50% | 0.75% | 1.0%
Ay sy 0.0 0.1521 | 03143 | 0.4646 | 0.6345

An assessment of the noise level can be determined as the value of AE, ,_,, goes beyond

zero or a certain threshold value of accepted noise level.
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5.4 - Detection and Localization in a Noisy

Environment

As the noise level increases, AE,; >0, the distortion event can be localized by

reconstructing an approximated version of the distorted signal and ignoring the coefficients

that represent the noise. This can be mathematically represented as:
F
s(1)= Y ek r=k)+ ¥ ¥ d (k2 w2t -k) (5.12)
£ £ j=0

where F </ and/ represents the total number of resolution levels and F represents the
subspace index or the highest resolution level to be used to reconstructs(z ). The vaiue of
F depends on the noise level content and the energy distribution of the distortion event as

indicated in Table 5.1. Squaring the distortion event and applying the following thresholds can

accomplish further reduction for any existing harmonic components.

m(:):{o [(t)]” <6 (5.13)
1 [s(1)]* 26
where

O=sid(s(t)} (5.14)

Utilizing m( ¢ )the starting time 7, and the ending time t,,, of the disturbance event can be

localized. The duration AT is measured and used to categorize the disturbance as

instantaneous, momentary, or temporary.

AT =T,y T, (5.15)
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5.5 — Applications and Results

The proposed detection method is applied to detect, localize, and estimate the duration of the

following power system disturbances with different noise levels:

5.5.1 Oscillatory Transient phenomenon

The proposed detection technique was applied to detect the duration of the simulated
oscillatory transient as indicated by Equation 2.2 and shown in Figure 5.4. As indicated in
Section 2.10 neither the STFT technique nor the point-by-point comparison technique can

monitor exactly the duration of the oscillatory transient event.

Applying MRA, the First Detail Version D, of the distorted signal was used to localize

the distortion event in time. Even though, the oscillatory phenomena decayed to small
values after 0.015s, the exact ending time of the distortion event was detected around

0.018s. This is clearly shown in Figure 5.5.

Magnitude

o / ’/—\ 4
\
-2}
- i
0 0.005 0.01 0.015 0.02 0.028 0.03 0.035
Time (S8)

Figure 5.4: Simulated oscillatory distorted signal
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Figure 5.5: The first detail version of the distorted signal

5.5.2  Capacitor Switching Phenomenon

The distorted signal f(¢), shown in Figure 5.6a and its zoomed version Figure 5.6b, was

simulated with the transient event. The actual starting time of the distortion was 0.4901 s and
the ending time was 0.4926 s. The proposed algorithm was used to estimate the time

information of the distortion. The distortion event s(r)was synthesized using the wavelet

coefficients C,,, as shown in Figure 5.6¢c. The threshold measure Equation 5.14 was applied

on [s( :)lzand m(t )was constructed to estimate the time information of the distortion

(Figure 5.6d and 5.6¢).
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Figure 5.6: Detection and localization of a transient phenomenon in a noisy environment
a- Distorted signal
b- Zooming version of the distorted signal
c- Distortion extraction
d- The square of the reconstructed approximated version of the distortion event

e- Distortion duration
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Table 5.2 presents the estimated starting and ending time of the capacitor-switching
phenomenon with noise level variation from 0% to 1.2%. It can be seen that the estimated
time error is increased considerably as the noise level magnitude was increased beyound
1.0%. However, higher values of noise level larger than 1.0% are not normally expected in

power systems [2].

Table 5.2: Estimated starting and ending time of a transient phenomenon

with noise level between 0~ 1.2%

Noise Starting Starting Ending Ending
Level time [s] Error % Time [s) Error %
00 % 0.4901 0.0 0.4919 0.1239
0.5% 0.4901 0.0 0.4919 0.1239
1.0% 0.4901 0.0 0.4919 0.1239
L1% 0.4901 0.0 0.8604 74.671
1.2% 0.1838 62.490 0.4919 72.961

5.5.3 Sag phenomena

Figure 5.7 shows a signal distorted with high and low frequency components and a sag
phenomenon to 0.85 p.u. (of peak value). The total harmonic distortion (THD) is equal to
18.24%. MRA was applied and the distorted signal was decomposed at different resolution
levels. The duration for the sag phenomenon was detected and localized in the first detailed

level for 14.6 cycles as shown in Figure 5.8.
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Figure 5.7: Harmonic distorted signal with sag phenomenon
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Figure 5.8: The first detail version of the distorted signal

354

The same technique was appiied for detecting and localizing a one-cycle simulated sag

Sag in noisy environment

78

phenomenon, Figure 5.9a. The simulated signal was further distorted with harmonic and had

a high noise level. The actual starting time of the distortion was 0.4917 s and the ending time

was 0.5083 s. Due to the high noise level, 1.0%, the first resolution level D,, Figure 5.9b,

could not be used to detect and localize the distortion event. The distortion event s(¢) was

synthesized by ignoring the high-resolution levels, F =9and J =13, for de-noising purposes,

Figure 5.9c. The threshold measure Equation 5.13 was applied on [s( t)]*and m(r) was

constructed to estimate the time information of the distortion, Figure 5.9d and 5.9.

Table 5.3 presents the estimated RMS value and the starting and ending time of a sag

phenomenon with noise [evel variations from 0% to 2.0%.
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Table 5.3: Estimated RMS value and starting and ending time of sag phenomena.

Derived Derived
Nolse Sa Error g v Error Derived Ecror
g larting
Level % % Ending (s) %
{RMS) is)

0.00% 0.1798 0.0150 0.4921t 0.0745 0.5082 0.0240
0.25% 0.1814 0.0240 0.4921 0.0745 0.5081 0.0430
0.50% 0.1840 0.0384 0.4921 0.0745 0.5082 6.0240
0.75% 0.1895 0.0706 0.4921 0.0745 0.5082 0.0240
LO0% 0.1954 0.1014 0.4921 0.0745 0.5082 0.0240
1.25% 0.2058 0.1622 04922 0.0993 0.5082 0.0240
1.50% 0.2179 0.2331 04921 0.0745 0.5081 0.0480
1L75% 0.2284 0.2926 0.4921 0.0745 0.5081 0.0480
L00% 0.2382 0.3400 0.4922 0.0993 0.5082 0.0240
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Figure 5.9: Detection and localization
a- Sag phenomenon in a noisy environment, b- First detail version, ¢- Distortion extraction

d- The square of the approximated version of the distortion, e- Distortion duration
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5.7 Chapter Assessment

In this chapter a new wavelet multi-resclution analysis technique is proposed. This technique
has the ability to detect and localize any disturbance in an electric power system. The first
detail version of the decomposed signal can give accurate information about any variation in
its pattern. As the noise level increases, the de-noising property of the wavelet-MRA can be

implemented to detect and localize the distortion event.

On-line classification is another feature that must be considered to monitor power quality
disturbances. The classification procedure for different disturbances will be discussed in the

following chapter.
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Chapter 6

Distortion Classification

6.1 Introduction

Energy companies rely on power quality monitoring data to ensure the reliability and enhanced
delivery of their product. These monitoring devices allow energy companies to continually
evaluate the quality of their supply, assisting them in spotting and correcting system weaknesses
before they create problems. The ability to extract information rather than just data from
monitored signals is an important requirement for modern disturbance monitors. This information

is essential to design an automated classification system for different power quality disturbances.

A new technique is proposed in this Chapter that has the ability to decompose any distorted
signal into different building blocks and extract time-frequency features simultaneously from

each block. The feature extraction method maps a d dimensional vector into a d dimensional
vector, where d << d whilst, at the same time retaining as much discriminatory information as

possible. The proposed feature extraction method is based on the distribution of the energy of the
distorted signal in different frequency bands by utilizing wavelet multi-resolution analysis
(MRA). The dimensionality of data is mapped into a small unmber of interpretable features.
These features are proven to be very efficient in auto-classifying different power quality
problems that overlap in time and frequency. This technique can be used to design an on-line

81
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automated power quality monitoring system that has the ability to detect, localize, and classify
different disturbances. It also can be used to auto-cluster large amount of data or classify it
according to [EEE Std.1159. The results of the proposed technique suggest that it will be able to

be implemented on-line “in real time” for classifying different power quality disturbances.

This chapter is organized as follows. After a brief introduction of this chapter, Section 6.2
presents the MRA tool and its ability to distribute the energy of different distorted power signals
(voltages or currents) at different resolution levels. The standard deviation of each detail version
of the decomposed signal can be used to classify different disturbances. The proposed Wavelet-
based methodology for feature extraction is discussed in Section 6.3. Section 6.4 utilizes pattern
recognition techniques to design an automatic classifier based on the wavelet features. Evaluation
of the proposed wavelet-based features is discussed in Section 5.5. Application of the proposed
automatic classification technique is presented and evaluated in Section 6.5. Finally assessment

of this chapter is presented in Section 6.7.

6.2 Distribution of distorted signal energy

in the wavelet domain

Disturbance in any signal can be considered as a result of change in the energy status of that
signal. If one can detect by a proper method these changes then he can identify the disturbance
type and magnitude. It is a known fact that for each type of disturbance there are some associated
energy changes with the signal. The energy of the distorted signal will be partitioned at different
resolution levels in different ways according to the power quality problem at hand. Therefore,
having a tool that can decompose the energy of the signal and localize it in the time and

frequency domains could be used in classifying different disturbances.

Using MRA, any distorted signal can be decomposed into different resolution levels. The energy
of the detail coefficients at each resolution level is equivalent to the energy of the constructed
version of the signal at that level. This is because the selected wavelet function is orthonormal

and therefore satisfies Parsival’s theorem (Section 4.9). The distribution of energy of the
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coefficients at different resolution levels can be presented in terms of the standard deviation of

the detail versions at each resolution level. This feature will be defined as the std-MRA curve.

To illustrate the efficiency of MRA in detecting and classifying power quality problems, different
disturbances is simulated using Matlab code and mapped into the wavelet domain. The distribution
of the energy for each detail version (standard deviation) is computed for each resolution level.
The results are used to detect, localize and classify different phenomena based on the following

rules:

6.2.1 Pure sine wave

Figure 6.1 shows the pure sine wave (Figure 6.1a) and the three finer decomposition levels
(Figures. 6.1b, 6.1c, and 6.1d). The horizontal axis presents the time in seconds and the vertical
axis presents the magnitude in volts. The std-MRA curve is shown in Figure 6.1e. The horizontal
axis presents the different resolution levels and the vertical axis presents the magnitude of the

standard deviation of the detail versions at different resolution levels.

In this case, all the finer resolution levels (Figures. 6.1b, 6.1c, and 6.1d) do not detect any
changes. The pure sine wave std-MRA curve will be used as a reference in comparison with other

cases. It will appear as a dotted line in each of the following cases.

6.2.2 Sag in a pure sine wave

The sag is detected and localized in all the finer three decomposition levels Figures 6.2b, 6.2c,
and 6.2d. It is clear from the Figure that the duration of the sag can be easily measured, and hence
determined if the sag phenomenon is instantaneous, momentary, or temporary. The maximum
value of the std-MRA curve is decreased with an amount related to the sag magnitude and

duration as shown in Figure 6.2e.
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Figure 6.1: Detection, localization, and Figure 6.2: Detection, localization, and

classification of a pure sine wave classification of a sag in a pure sine wave.

a- Pure signal, b-First detail version, a-Sag signal, b-First detail version,

c- Second detail version, d- Third ¢-Second detail version, d- Third detail

detail version, e- std_MRA curve version, e~ std_MRA curve

6.2.3 Swell in a pure sine wave

The swell is detected and localized in all the finer three decomposition levels, Figures 6.3b, 6.3c,
and 6.3d. Similar to the sag case, the duration of the swell can be easily measured. The maximum
value of the std-MRA curve is increased with an amount related to the swell magnitude and

duration as shown in Figure 6.3e.



Chapter 6: Distortion Classification 85

6.2.4 Harmonic distortion

Since harmonic distortion is stationary therefore, there is no localization property that can be
detected at any of the finer levels, Figures 6.4b, 6.4c, and 6.4d. The lower left and right parts of
the std-MRA curve is changed according to the harmonic content of the signal. As shown in
Figure 6.4¢, the lower left part is changed according to the high frequency content of the distorted
signal and the lower left part is changed according to the low frequency content of the distorted

signal compared with the power frequency (60 Hz).
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Figure 6.3: detection, localization, and Figure 6.4: detection, localization, and
classification of a swell in a pure sine wave. classification of harmonic distorted signal
a-Swell signal, b-First detail version a- Harmonic signal, b-First detail version,
c-Second detail version, d- Third detail ¢- Second detail version, d- Third detail

version, e- std_MRA curve version, e- std_MRA curve
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6.2.5 Sag in a harmonic distorted signal

The sag is detected and localized in the first finer level, Figure 6.5b. The number of
decomposition levels can be increased to detect these phenomena at other finer levels. The
amplitude of the decomposed signal is reduced during the sag interval compared by its magnitude
before the sag, Figure 6.5c. The maximum value of the std-MRA curve is decreased with an
amount related to the sag magnitude and duration as shown in Figure 6.5e. The lower left of the

std-MRA curve is also changed according to the high frequency content of the signal.
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Figure 6.5: detection, localization, and Figure 6.6: detection, localization, and
classification of a sag in a harmonic distorted classification of a swell in a harmonic
signal distorted signal
a- Sag in harmonic signal, b-First detail a- Swell in harmonic signal, b-First detail
version, c- Second detail version. d- Third version, ¢- Second detail version, d- Third

detail version. e- std MRA curve detail version, e- std_MRA curve
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6.2.6 Swell in harmonic distorted signal

The swell is detected and localized in the first finer level, Figure 6.6b. The amplitude of the
decomposed signal is increased during the swell interval compared with its magnitude before the
swell, Figure 6.6c. The maximum value of the std-MRA curve is increased with an amount
related to the swell magnitude and duration as shown in Figure 6.6e. The lower left of the std-

MRA curve is also changed according to the harmonic content of the signal.
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Figure 6.7: detection, localization, and std MRA Curve

classification the presence of non linear loads

for short intervals Figure 6.8: std-MRA curve for different

a- Distorted signal, b-First detail version, c- Power quality problems.

Second detail version, d- Third detail version,
e- std_MRA curve
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6.2.7 Transient distortion in pure sine wave

This phenomenon is detected and localized at all the three finer decomposition levels, Figures
6.7b, 6.7¢c, and 6.7d. The magnitude of the coefficient outside the transient event interval is
almost equal to zero for all the finer levels. The lower part of the curve will be changed according

to the harmonic content of the transient.

Using the proposed rules extracted from the MRA technique at finer levels and the std-MRA
curve one can detect, localize, and classify different power quality problems. This is clear from

Figure 6.8, where the solid std-MRA curve is for a pure sine wave and the other curves are for:

A - Voltage swell in harmonic distorted signal, dashed curve above the pure sine wave curve.
B - Voltage sag in pure sine wave, dashed curve below the pure sine wave curve.
C - Harmonic distorted signal, dotted curve on the lower left and right parts of the pure sine wave

curve.

These classification roles are so simple for the operator to detect, localize, and classify different
power quality problems. The top part of the std-MRA curve is a good feature to classify the sag,
swell, and interruption phenomena. The lower left part and the lower right part of the std-MRA
curve are good indicators for any high or low frequency component embedded in the distorted

signal.

6.3 The Proposed Classification Methodology

Feature extraction is a preprocessing operation that transforms a pattern from its original form to
a new form suitable for further processing. Mapping the data of the distorted signal s(¢) into a
wavelet domain is the first step in performing the proposed feature extraction process. The
distribution of the distorted signal energy at different resolution levels is computed to generate
the proposed translation invariant features. The term “translation invariant” denotes that the
features remain unchanged if the power quality problem undergoes a change of position
(translation). These features have the property of being able to effectively differentiate among
different power quality problems.
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According to Parseval’s theorem, if the used scaling function and the wavelet function form an
orthonormal basis, then Parseval’s theorem relates the energy of the distorted signal to the energy
in each of the expansion components and their wavelet coefficients. This means that the energy of

the distorted signal can be partitioned in terms of the expansion coefficients. Therefore, the
energy of the distorted signal, £2signar, will be partitioned at different resolution levels in different

ways according to the power quality problem at hand.

A set of discriminative, translation invariant features with small dimensionality that present the

energy distribution of f(¢)at different resolution levels is generated. These features can be
presented by computing the norm “|| . || of the wavelet coefficients (Cy,,, computed in

Equation 35.5) that represent the distorted signal f( ¢ )at different resolution levels, as follows:

Esippat ={lle, Il lld, Il Hdilf -ooere ol f 6.1)
where,
leolb=1 Yle,(k)f 172 6.2)
kz——
Nd; k=1 Yld;(k)f 1 6.3)

k=~

In a similar way, the wavelet coefficients of a pure signal C

sure €20 be generated and used as a

reference for the purpose of classification and measurements. These coefficients are:

Core=lcspl dypldiy |eondyyy) | ] (6.4)

and their energy distribution can be presented by the norm of the C,,,. using Equation 6.2 and

Equation 6.3, the proposed feature vector x, that is used to classify the distortion event can be

generated by finding the difference AE that represent the energy distribution of the distortion
event, where:
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A = Eypy - Eppe (6.5)

This feature vector can be represented in terms of the energy distribution of the distortion event

on different resolution levels as:

x,=[ AE,, AEd,, AE, ...AE,,., | (6.6)

Or x, can be mathematically represented as:

o1 Ak, Nlewlh ]
2 4k, ldog |k
=l =l 6.7)
’qo.j) AEd(j) “djd IL
 osay ] | AEy | LHETRY 1y
X = AEq,)=||co b= Zlc“,(k)lz " (6.8)
k=
%04 = 4By ;) =lldylb=1 Zldjd(k)lz " (6.9)

kz—en

Another component is added to the feature vector, At, that represents the duration of the distortion
event. Using the first decomposition level of the distorted signal one can detect and localize any
disturbance in the signal. The duration measurement of the distortion event is presented in the
Chapter 5. The modified feature vector can then be presented as:
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Vector Signal Signal
~ 1 - - o = - -
Xot Edo) Ec(o) AEc{o)
Xoz2 Ed{a) Edla) AEJ( o)
Xoi | =|Eap |=|Bauir |=|4Euj) (6.10)
X04) Eysa Exiay| |4Eysa,
_& 0.J+2) | _tdi:mnion_ _fpum § _AT _'

where J represents the total number of resolution levels.

Figure 6.10 shows the difference in energy distribution (AE') at different resolution levels for

1200 distorted signals with the following power quality problems:

o Sagin a pure sine wave,

Swell in a pure sine wave,

& Sag in a harmonic distorted signal,

& Swell in a harmonic distorted signal.

The sag and swell duration and magnitudes were randomly varied to cover the variation range
indicated in IEEE std. 1159. The effective values of the harmonic distortion were also chosen
randomly and all the signals were further corrupted by the addition of white gaussian noise. As
the noise leve! increases from 0.5% to 3.5%, the proposed classification technique will provide a

translation invariant feature vector as shown in Figures 6.9 and 6.10.
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Figure 6.9: Feature vector for different power quality problems
with noise level 0.5%
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Figure 6.10: Feature vector for different power quality problems
with noise level 3.5%
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6.4 Automatic classification of different

disturbances

Different pattern recognition techniques were used with the proposed features to design an
automated recognition system. This system can be installed on-line to classify different
disturbances according to IEEE std. 1159. The following sections give an introduction to
different pattern recognition techniques that were implemented with the proposed features to
classify different disturbances. Using the mentioned features one can classify power quality
problems in noisy environment with or without dc offset. The proposed technique shows its
ability to classify steady state and transient phenomena. It can be implemented to classify non-

stationary signals or signals that are distorted with more than one power quality problem.
6.4.1 Pattern Recognition Techniques

Pattern recognition techniques are automated tools for decision-making processes. One of the
important applications of pattern recognition is in waveform classifications, which is to predict
the class membership of a distorted signal and to minimize the risk of misclassification. In this
section, a comprehensive study of the effectiveness of the proposed translation invariant features
ﬁsing the following pattern recognition techniques is studied in order that we can use them in the
proposed automated disturbance classifier [71-78]:

1. Minimum Euclidean distance Classifier
2. k- nearest neighbor Classifier
3. Neural network Classifier

4. Rule-Based Classifier
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6.4.1.1 Minimum Euclidean Distance
Classifier (MED)

For MED classification, the unknown feature x,is more likely to belong to the class r if and
only if the distance between x, and a prototype (mean it} of class s is less than the distance

between x, and other class prototype. This is can be formulated as follows:

x€r iff dox,.u)<ddx,14) (6.11)

where, the Euclidean distance is;

. 12
ds(.ra,y,)=[2(,\:m. - U )2j| {6.12)

i=l

6.4.1.2 K-nearest neighbour (kKNNR) Classifier

The nearest neighbour (NNR) is a classification technique that assigns unknown pattern x, to the

class of its nearest neighbour. The NNR can be formulated as [71-72]:
x€r iff d{(s.x)=min(d(s,x,)) (6.13)

where d is the distance between the set of classified learming data

samples, §; ={ 5),5,.....8y /, and the unknown sample to be classified X,. The k-nearest

neighbour (kNNR) is an extension of the NNR, where the unknown sample X,, is assigned to

the class of the majority among the k-nearest neighbours.
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6.4.1.3 Neural Network Classifier (NN)

A Neural network is a powerful pattern recognition tool [77-78]. It is defined as software
algorithms that can be trained to learn the relationships that exist between input and output data,
including non-linear relationships. Once they have learned by examples they can generalize.
Figure 6.11 shows a three layers feed-forward neural network classifier. The NN utilizes the

proposed feature vector as an input to classify different power quality problems according to

IEEE std. 1159.
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6.4.1.4 Rule-Based Classifier (RBC)

A set of rules is constructed to classify different power quality problems. These rules are simple
combinations of propositions that can be evaluated to be either true or false. Each decision rule is
associated with a particular class, and a rule that is satisfied, i.e., is evaluated as true, is an

indication of particular class. These rules are as follows:

IF C ANDC,ANDC,ANDC, Then Pure Signal

IF G Then High Frequency Content
IF C,ORC, Then Low Frequency Content
F G Then Sag

F G Then Swell

I[F (g4 Then DC Offset

The propositions are constructed using a set of conditions (C,-C,,). Each condition that enters

into the propositions making up a decision rule involves a simple logical operation (Anding,

Oring).

These conditions are as follows:

G X And xo5 And xo, And xy, And x5, < 6
G Xgo And Xy < 6,
G X7 And Xy < 6
C: Xgs And xy And xo; And xy, < 6
Cs Xo1a Or xo3 Or Xo, Or Xoyy OF Xg > 6
Ce Xg7 Or xy6 > 6
oS Xos Or xo4 Or xg5 Or Xy, > 6,
G Xog < 00
G Xos > 00

Co Xot > 6
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Where x,, represents the feature vector i extracted as indicated in Equation 6.10.

The different threshold values (8, -8y) are computed using the following equation:

Threshold Threshold  Vectar
-6, 1 AEma)
62 Ma—d AEJ,( IJ) j= 0......3
6| =|MaqAE, ) j=45 (6.14)

6, Max( AE, ;) j=67
(Ss] | MaxqAE,;,} j=8,..12

where,

Pure with

naire and Pure

phaze shift Signal
AEMIJJ 1 Eda} Edo) W
AEdl’ o) Edr o} Ed!o)

= -1 (6.15)

AEdlf it Ed‘fj} Edf J)
_AE:MJ'-I) _Ed(!-{} Ed{!-l}

According to Equation 6.14 and 6.15, all threshold values are equal to zero in the case of a pure
signal. To generate the worst condition, a pure signal contaminated with noise and phase shift
angle is used. The maximum noise level was selected equal to 2.0% and the phase shift angle was
varied between 0 and 7 /2. The selected threshold values are shown in Table 6.1.
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Table 6.1: The threshold values at different levels

Threshold
Features
e, mag.
xoe - XO-, 93 0.15
xus - x® 94 0-0 15
X[nn - .\'m‘ 95 0.085

98

6.5 Feature Evaluation using Different Classifiers

A confusion matrix M is used as a measure for the classification accuracy. This type of measure
is used to summarize both overall accuracy of classification and the relative {evels of various
types of misclassification. The number of correct classification falls along the diagonal of the

matrix M and all off-diagonal elements represent miss-classifications {70-71].

The classification accuracy or error percentage is computed as follows:

Accuracy = Neomes 100 (6.16)
Total
Nzrmr
Error = * 100 6.17)
Total

N grece = 3, diag( M ) =§p: m, (6.18)
i=l
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Nermr = my; Vi .’ (6.19)

where Ny, is the total number of samples, N_,,,..,is the number of correctly classified samples,

N_,,.. is the number of errors, and p is the number of classes.

6.6 Application and Results

6.6.1 Oscillatory Transient phenomenon

The proposed classification technique is applied to classify the simulated oscillatory transient
indicated by Equation 2.2 and shown in Figure 6.12. As indicated in Section 2.10 neither the
STFT technique nor the point-by-point comparison technique can monitor exactly the duration or

classify the oscillatory transient event.

Magnitude

-2+

o] 0.005 Q.01 0.015 Q.02 0.02% 0.03 0.03%
Time (s)

Figure 6.12: Simulated oscillatory distorted signal

Utilizing MRA, the signal is mapped into 2D and decomposed into 12 resolution levels (Table 6.2)
covering the frequency band fromQto f,,. (=120kHz).
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Due to convolution with the wavelet filter followed by decimation by two the resulted spectrum

will cover the frequency band ( f,./2 to f,.). Therefore, implementing the proposed
technique, the First Detail Version D, (Figure 5.5) of the distorted signal (in frequency band 60 -

120 kHz.) can be used to localize the distortion event in time as indicated in Section 5.5.1.

Table 6.2: Different resolution levels and their frequency bands

Resolution | Frequency | Resolution | Frequency
Level Band (Hz) Level Band (Hz)

1 60-120k 7 937.5-1875
2 30-60k 8 468.75 - 937.5
3 15-30k 9 234.35-468.7
4 75-15k 10 117.17 - 234.35
5 3.75-75k 11 58.58 - 117.17
6 1.875-3.75k 12 29.29 —58.58

Figure 6.13 shows the feature vector of the distorted signal compared to the feature vector of a

pure undistorted signal. The 7" resolution level (in frequency band 937.5-1875 Hz) shows a high-
energy content (]| d, |, =60); note that the 7" resolution level includes the 1500 Hz component
previously imbedded in the simulated signal f(r)as in Equation 2.2. Part of the distortion event

energy is leaked to the adjacent 6" (frequency band 1875-3750 Hz) and 8" (frequency band
468.75-937.5 Hz) resolution levels. However, the magnitude of this leakage energy is very small
compared with that in the 7" resolution level due to the sharp cut-off frequency of the selected
wavelet filter (Daubechies 40). This leads to an important criterion in selecting the mother wavelet

to be used for the analysis, which will be presented in Appendix B.

The results of MRA technique, where the energy of the distortion event concentrated at the 7"
resolution level (frequency band = 937.5-1875 Hz) and duration= 12ms, are compared with the
categories of electromagnetic phenomena presented by IEEE Std.1159 and shown in Table 6.3.

The distortion event is then classified as oscillatory transient with low frequency content.
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Figure 6.13: Discrete Wavelet Transform

Table 6.3: Typical characteristics of transient phenomena in
power systems (Part of Table 2 -IEEE Std.1159-1995)

. . Typical Typical Typical
A - Impulsive Transient | g ovral | Duration Magnitude
L - Nanosecond Snsrise | <50 ns
2 - Microsecond I s rise 50ns - | ms
3 - Millisecond 0.1 ms rise <1l ms
B - Oscillatory Transient
I -Low Frequency <SkHz |03-50ms | 0-4pu
2 - Medium Freq. 5-500 kHz 0us 0-8 pu
3-HighFrequency  log sMpz | Sus 04 pu

101
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6.6.2 Feature extraction of a transient event

Utilizing MRA, the distorted signal, a capacitor switching phenomena shown in Figure 6.14, is
decomposed into several detail versions (building blocks). Some of these building blocks that
have important parts of the energy of the distorted signal are shown in Figure 6.15. The shown
resolution levels include detail versions of the first D,, second D,, sixthD,, seventh D,,
eighth Dy, tenth D,y , eleventh D, , and twelve D;, as shown in Figure 6.15a-i respectively. These

versions of the signal are easier to study and interpret.

The capacitor switching phenomena is sampled at 165 kHz and a 3 cycles window size is selected

(8266 sampling point). These sampling points (c;,, ) are used as input for MRA and decomposed

into 13 resolution levels. The frequency bands that represent each resolution level are
summarized in Table 6.4. Using the first detail version D, (Figure 6.15a), any changes in the
pattern of the signal can be detected and localized. The duration of the distortion event can be

measured from the detail coefficients (d ;) at this resolution level. The size of the coefficients

(d;) is equal to zero for a pure signal and they will have certain values for any disturbance event.

MRA shows that most of the distortion event energy is concentrated at seventh resolution level
D, (645-1289% Hz) as shown in Figure 6.15d. The eleventh resolution level (40-80 Hz) presents
the 60Hz power signal as shown in Figure 6.15g.

2 ] 1 ! |

mag. |
M. g

] 1 | L |

0 0.01 0.02 0.03 0.04 0.05

Figure 6.14: Capacitor switching phenomena
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Leakage of the signal energy will be seen at adjacent resolution levels. For example, part of the
60Hz energy of the signal, Figure 6.15g, will be leaked to the adjacent resolutions; Figure 6.15f
and Figure 6.15i. This is due to the non-sharp cut-off frequencies of the wavelet filters. However,
the magnitude of this leakage energy is very small compared with that in Figure 6.15g. The

selection of the filters will help in reducing this leakage. As the number of filter coefficients n
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increases, the cut-off frequency will become more sharp and the leakage energy is reduced. This

is an important criterion in selecting the mother wavelet to be used for the analysis.

Table 6.4: Different resolution levels and their frequency bands

Resolution | Frequency Band kHz | Resolution | Frequency Band kHz
Level Level

l 41.25 - 82.50 8 0.322 - 0.645
2 20.62-41.25 9 0.161-0.322
3 10.31 - 20.62 10 0.081 -0.161
4 5.150-10.31 11 0.040 - 0.081
5 2.570-5.150 12 0.020 - 0.040
6 1.289 -2570 13 0.010-0.020
7 0.645 - 1.289

The distribution of signal energy at different resolution levels (building blocks) can be used to
extract important features that help in classifying different power quality problems. Furthermore,
the localization property of the wavelet transform coefficients of the first resolution level can give
accurate information on classifying the type of distortion as continuous or transient, and stationary

or non-stationary.

The proposed feature extraction technique is applied on the distorted signal f(t) in Figure 6.14

{capacitor switching phenomena). The energy distribution for both the distorted signal (dashed

line) and pure one (solid line) is shown in Figure 6.16a. The extracted feature vector for f(r)is

shown in Figure 6.16b. The distorted signal (8266 sampling points) is mapped into a small
number of features (13 numbers). This feature vector extracts the energy of the distortion event
and distributes it across different resolution levels. Figure 6.16b shows that the distortion event
energy is distributed across resolution levels 1 to 8. Most of the distortion energy is concentrated
in the 7* resolution level (645-1289 Hz). The time information of this distortion event is
measured from the first resolution level and found to be 7 ms as shown in Figure 6.15a. These
results; resolution level =7, frequency band = 645-1289 Hz, and duration= 7ms, are compared
with the categories of electromagnetic phenomena presented by IEEE Std.1159. The distortion

event is then classified as oscillatory transient with low frequency content.
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6.7 Wavelet Based Automated

Recognition System

In order to test the ability of the proposed classifier to distinguish between frequently
encountered power quality problems, a set of pure signal and five different disturbances have

been simulated using Matlab, in particular:

1. Sags 2. Swells
3. Harmonics 4. Sags and harmonics
5. Swells and harmonics 6. Pure signal

6.7.1 Data Generation

For each type of disturbance, a subset of 200 different signals was generated. Each signal is one-
second long, sampled at 8.192 kHz, which corresponds to 8192 samples. The parameters of these
disturbances were chosen according to [EEE std. 1159 [16]. The sag and swell duration was
randomly varied from 12.5 ms to 0.985 s. Their voltage magnitudes were selected randomly to
cover the variation range from 0.9 to 1 pu and from 1.1 to 1.8 pu respectively. The effective
values of the harmonic distortion was chosen randomly between 2.5% and 60% and include
harmonic components up to the 15" harmonic. All signals were further corrupted by the addition
of white gaussian noise with zero-mean and one-standard deviation and magnitude that vary
between 0% and 3.5%.

6.7.2 Simulated Results

Three classification methods that can learn from data and make prediction on new cases are
applied. The performance of the different classification methods, using the proposed wavelet-

feature extraction technique to recognize the mentioned power quality problems, is presented in
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this section. The variance methods were compared relative to each other using the confusion

matrix and the error rate.

6.7.3 Minimum Euclidean Distance Classifier

Several data sets were generated for learning and testing purpose. A learning set of 1200 signals
was divided into 6 subsets each of 200 signals. Each subset represents one of the mentioned
power quality problems with different variables. The noise level for the learning set was equal to
0.5%. Using the proposed feature extraction technique, each signal (8196 points) was mapped
into a, discriminative and translation invariant, feature vector of 15 elements. Using the learning

set a prototype (mean K, ) for each class r; was computed.

Another five sets, each of 6 subsets with similar size as the ones in the learning set, were
generated for the purpose of testing. The noise level for each testing set was increased to 0.5%,
1.0%, 1.5%, 2.5%, and 3.5%. Features were extracted from each signal and used to classify
different power quality problems. The performance of MED classifier for 0.5% noise level testing
data is presented in Table 6.5.

Table 6.5: Confusion matrix using MED Classifier

Classification Results
True Pure | Sag | Swell| Har. Sag &) Swik
ql Har. | Har.
Pure 200 0 0 0 0 0
Sag 83 117 0 0
Swell 95 0 105 0 0
Har. n 0 0 128 1
Sag& Har 14 46 0 64 76 0
Swell & Har 20 0 p } 55 0 100
Classifier Accuracy 60.50 %
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The MED classifier takes a small computation time compared with the other methods, however it
shows low classification performance. This is due to the non-spherical shape of the feature space.
The confusion matrix shows a misclassification of the data that have mixed characteristics such

as sag-harmonic and swell-harmonic cases.

6.74 k-Nearest Neighbour (k-NNR) Classifier

The same learning and testing sets were used for this classifier. The 31-nearest neighbours were

selected to classify the unknown feature X, to the class of the majority r, among the 31-nearest

neighbours as indicated in Equation 6.13. The performance of k-NNR classifier for 0.5% noise
level testing data is presented in Table 6.6.

The k-NNR classifier takes more computation time compared to the MED. The method shows
high classification accuracy for 0.5% noise level. The accuracy of the classifier was reduced as
the noise level increased beyond 0.5%, see Table 6.9. The k-NNR shows good classification

accuracy for mixed power quality problems such as the swell-harmonic case.

Table 6.6: Classification Results using KNNR Classifier

Classification Results
True Pure | Sag | Swell | Har. Sag & | Swl&
Class Har. | Har.
Pure 200 0 0 0 0 0
Sag 0 197 0 0 0
Swell 0 0 196 0 0 4
Har. 2 0 0 194 3
Sag &Har 0 8 0 18 174 0
Swell & Har 0 0 7 2 2 189
Classifier Accuracy 95.8333 %
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6.7.5 Neural Network Classifier (NN)

A three layers feed-forward neural network was used to classify different power quality
problems. The single hidden layer is constructed using 4 units. The NN classifier was trained on a
large set of data consisting of 6 subsets each of 400 signals. The parameters for each subset were
changed randomly. The noise level was also randomly varied between 0-5%. The feature vectors
for different power quality problems (6 subsets) were extracted and used as an input data for
training the NN classifier.

Using the same testing data that was used for MED and k-NNR classifiers, the NN classifier
shows high accuracy. The random noise level was increased from 0.5% to 3.5% and the NN
classifier still gave accurate results. The results of the classification process using NN for 1.0%

noise level data is presented in Table 6.7.

Table 6.7: Classification Results using NN classifier

Classification Results

True Pure | Sag | Swell| Har. Sag&| Swl&

| Cl Har. | Har.
Pure 200 0 0 0 0 0
Sag 2 198 0 0 0
Swell 1L | 3 | 185 0
Har. 0 1 199 0 0
Sag &Har 0 0 0 1 197 2

Swell & Har 0 1 19 12 165
Classifier Accuracy 95.333 %

6.7.6 Rule Based Classifier (RBC)

Using the extracted features, each signal (8196 points) was mapped into a discriminative and
translation invariant feature vector of 15 elements. Applying the classification rules, different
power quality problems were classified. Table 6.8 shows the classification results for six subsets
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(1200 signals, 200 each class) that present the above mentioned power quality problems where the

noise level is 1%.

Table 6.8: The confusion matrix and the classification results

Classification Results
True Pure | Sag | Swell | Har. Sag& | Swi&
| Class Har. | Har.
Pure 200 0 0 0 0
Sag 0 196 1 0 0
Swell 0 0 200 0 0
Har. 6 0 194 0
Sag &Har 0 ¢ 0 0 199 1
Swell & Har 0 0 0 0 192
Classifier Accuracy 98.4167 %

6.7.7  Performance Comparison

While speed of computation and simplicity of soiution may help in deciding which methods
should be applied, the accuracy of the performance will always remain the primary criterion in
choosing the classifier. The error rate (Equation 6.17) is used in measuring the performance of

each classifier. The results of the error rate at different noise levels are presented in Table 6.9.

From the tabulated results shown in Table 6.9, it is clear that the error rate for Neural Network
classifier is generally better than that for the others. From the tabulated results shown in Table
6.9, it seems that the error rate for the RB classifier is small particularly when the noise level is
below 2.5%. This is due to the fact that when the noise level is increased beyond 2.5% the
proposed threshold values listed in Table 6.1 can no longer distinguish among different power
quality problems. Furthermore, high noise level will cause problems in measuring the duration of
the transient event from the three higher resolution levels. The NN classifier shows higher overall
performance even with high noise levels. The NN classifier is the least sensitive to noise level

variation in the input data. The k-NNR classifier also shows a good performance for 0.5% noise
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level. The MED classifier shows low classification performance due to the non-spherical shape
and the overlap in the features space. The MED classifier cannot classify an unknown sample that
has several characteristics of mixed classes such as sag-harmonic or swell-harmonic, while the k-

NNR and NN classifiers can classify such cases.

Table 6.9: comparison the classification accuracy

for different data groups using different classifiers

Error %
Noise Level MED KNNR | Neural Net RB
Classifier | Classifier | Classifier | Classifier
0.5% 39.50 4.17 4.67 1.59
1.0% 36.17 15.66 4.67 1.589
1.5% 38.17 11.92 6.00 2.00
2.5% 38.50 15.33 5.17 7.34
3.5% 36.58 1158 7.18 4792

6.8 Chapter Assessment

In this chapter a new technique to extract important features for distortion events that overlaps in
time and frequency are proposed. This technique is based on both a wavelet multi-resolution
analysis for feature extraction and pattern recognition techniques for automated classification.
This technique can be implemented as a new tool to overcome the limitations in the existing

disturbance analyzers. The following points summarize the finding of this chapter:
e MRA is used to generate a translation invariant feature vector that can be used to classify
different power quality problems. The advantage of this technique lies in the feature

vector which shows the same characteristics at different noise levels.

o The size of the feature vector is very small compared with that of the original signal.
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® The performance of the pattern recognition techniques, which is based on the generated
features show excellent results in classifying different power quality problems, especially
with RBC technique.

The detection, localization, and classification capability of the proposed technique presents
encouraging results which can be used to modify the present monitoring techniques in order to
give superior capabilities for measuring different disturbances. This new measuring technique

will be discussed in Chapter 7.
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Chapter 7

The New Measurement Technique

7.1 Introduction

This chapter presents a new measurement technique that can measure accurately a wide range of
different power quality problems. The distortion event is mapped into the wavelet domain and
extracted from the raw data. The wavelet coefficients of the distortion event are then used
combined with the measured duration (Chapter 5) to quantify the true RMS. The proposed
technique is implemented to measure the RMS, total harmonic distortion, dc content, and the
phase shift angle. The coefficients are also used to compute the active and reactive power in any

system under steady state conditions.

This chapter also introduces a new wavelet-based procedure to monitor the fast variation of RMS
value in the signal. This procedure will help in monitoring the non-rectangular variations of the
sag phenomena. It can also be used to assist the quality of service presented in the distribution
systems, as well as the quality of the mitigation devices, and the characteristics of any load during
RMS variations. The new measurement technique can be also implemented to monitor any new
variations of the distortion event before it elapses. This information will help in finding the

rectangular or non-rectangular voltage-tolerance curves for different equipment.

The proposed techniques can be executed by transforming the distorted signal into the wavelet
domain and extracting the distortion event. Knowing the wavelet coefficients that represent the

distortion event we can calculate its energy. Furthermore, using the detail version of the first

113
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resolution level we extract the duration of the distortion event. Using this information one can

measure the magnitude of the distortion event.

The proposed measurement technique is implemented in two different ways. In the first
measurement technique, the maximum change in the energy of the resolution level that represents
the power frequency and the duration of this disturbance are used to construct a set of curves.
These curves can be used to monitor and measure any changes in the magnitude of the signal. In
the second proposed measurement technique, the coefficients that represent the signal in the

wavelet domain are used to extract the distortion event and calculate its indexes.

The proposed measurement technique, which is based on wavelet mulii-resolution analysis, has
the ability to give indices of signals that are distorted by more than one power quality event that
overlap in time and frequency. The proposed measurement technique is used to measure and

studying the following parameters under noisy conditions and multi-distortion events:

¢ Peak value during short duration variations (SDV)
¢ Root mean square (RMS) and total harmonic distortion (THD)
e Active and Reactive power and power factor

o Non-rectangular RMS variations

This chapter is organized as follows. After a brief introduction to the measurement in the wavelet
domain, a proposed technique that utilizes the maximum value of std-MRA curves is presented in
Section 7.2. A set of curves is generated to measure short duration variations (SDV) in electrical
systems. In Section 7.3, the wavelet expansion coefficients are introduced as a measure of the
RMS, THD, active, and reactive power, and the power factor. A new wavelet based monitoring
technique for the non-rectangular RMS variations is discussed in Section 7.5. The applications
and results of the proposed measuring techniques are presented in Sections 7.6. Finally an

assessment of the proposed measurement technique is presented in Section 7.7.
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7.2 Measurements of Short-duration

variations Using std-MRA curves

Measuring the magnitude of the distortion within the signal is an important factor in assisting the

quality of the power and in making a decision to store the signal or discard it.

During short duration variations (SDV), the energy of the distorted signal wiil show changes in
its magnitude for certain period of time. Therefore the std_MRA curve will present these
variations at the resolution level that covers the power frequency (60Hz) and the duration of this
variation can be monitored in the first detail version of the distorted signal. By monitoring the
changes in the maximum point of the std-MRA curve, we can quantify the magnitude of the SDV
of the signal. As the magnitude or duration of the signal changes during the SDV event, the
maximum value of the std-MRA curve will also change. Figure 7.1 shows the variation in the

magnitude of the std-MRA curve for four signals:

o  Pure sine wave of the power frequency signal

o 10-cycle sag in a pure sine wave

e 0-cycle swell in a pure sine wave

¢ 30-cycle interruption in a pure sine wave

The changes in magnitude and duration of the short duration variation (SDV) events can be
calculated by generating a set of curves that represent the variation in the std-MRA curve as the

magnitude and duration of the SDV event changes, as seen in Figure 7.2. The measurement

curves are generated as follows:
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Figure 7.1: Changes in the std-MRA curve for

different short duration variation events

o Generate a group of signals distorted with sag phenomena started from pure wave to
complete interruption with fixed duration (number of cycles).

e Apply multi-resolution analysis on each signal and find the standard deviation multi-
resolution analysis curve (std-MRA).

o For each case find the maximum value of the std-MRA curve.

¢ Using a curve fitting technique, find the best curve to fit the generated curve.

¢ Change the number of cycles of the SDV distorted signal and repeat the process again to

generate other curves for different duration.
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Figure 7.2: The variation of signal magnitude during different

sag intervals with the changes in the maximum value of the std-MRA curve

Using a curve fitting technique, we found the polynomials that represent these curves; this is
shown in Table 7.1. These polynomials are generated for different intervals to cover all the

expected intervals of the voltage sag phenomenon.

When the monitored signal is distorted with sag phenomena, the std_MRA curve will show
reduction in its maximum value and the first detail version will give a measure of the sag
duration. Knowing the duration we select the best polynomial and substitute the maximum value
of the std_MRA curve to calculate the sag magnitude. The flow chart in Figure 7.3 shows the

general steps used to generate the measurement curves.
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Table 7.1: Polynomial coefficients using curve fitting technique
Coef.# 7 cycles 15 cycles 22 cycles 29 cycles 37 cycles
1 -1.5189e+010 | -1.8333e+008 | -1.6292e+007 | -1.9944e+006 | -3.1674e+005
2 4.8308e+010 | 5.6309e+008 | 4.8196e+007 | 5.6646e+006 | B.5144e+005
3 -6.4011e+010 | -7.2034e+008 | -5.9345e+007 | -6.6890e+006 | -9.4938e+005
4 4.5233e+010 | 4.9126e+008 | 3.8931e+007 | 4.2036e+006 | S5.6206e+005
5 -1.7978e+010 | -1.8838¢+008 | -1.4351e+007 | -1.4828e+006 | -1.8635e+005
6 3.8105¢+009 | 3.8511e+007 | 2.8184c+006 | 2.7836e+005 | 3.2814e+004
7 -3.3649e+008 | -3.2790e+006 | -2.3039e+005 | -2.1731e+004 | -2.3981e+003

Input Signal

Select duration

Select Sag magnitude

MRA

Max. std_MRA

Increase SIq

increase Duration

No

Yes

Curve Fit
Max. std_Mra & Sag

Figure 7.3: Flow chart for the generated curves

used in the measurement
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7.3 Measurement Using Wavelet expansion
Coefficients

If the monitored signals (current i( ¢ )and the voltage V(1)) represent square-integrable density

functions, then their wavelet transform can be formulated as follows:

J=l

(1)=Y e (k) (t=k)+ Y Y d; (kR (21 -k) a.n
k k j=0
and
J=t ]
W)=Y e, (kW (1-k)+ 3 Y d, (kR w2 1-k) 1.2)
k & j=0
C,-J_l(k)=(l'(l),¢“(l)) = Eh(m—Zk) c,-._,-{m) (73)
dyj(k)=GE)W () =Y h(m=2k)c, (m) (7.4)
Ci=lc,| di,ldyy | dysyl ] (1.5)
C,=lc,,| dyoldyy |ewerdyys)| ] (7.6)

The RMS value of the current (igs ) is:

i,,,,,,:#j’izu )dt

j' i*(t)dt = I [Zcm(k »(t-k )+Z§du(k 2 (2 e~k )}-dt
k t j=0

Due the orthonormality (orthogonal and normalized), then,
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J-1

2 ,p(kf+—227’d.,(k) .7

k §=0

J=l

vm=\l Yl rk)+-22‘,°'d,,(k) (7.8)
k

The energy can be calculated as:
w=[ict)we)dr= 2 6.0t €0k +2°"’“2 d (k)d, (k)

For a periodic wave, the average power is:

P, =% J. i) vir) dr

-1

P, = .;.Zz‘f’ (€ j6).C,. ;6N
J=0
C‘,_ =[cl.0 I o l il [ ........ df.U’” I] (7.9)
Cv =[C,,,,,| dv.n idv.l I """" dv.ll-l) I] (7.10)

Using the wavelet coefficients of the current and the voltage signals, then the phase shift angle can
be presented as:

{C;.C,)
=) el 711
cos(@) [uq N, n] (1)
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According to Parseval’s theorem, if the used scaling function and the wavelets form an

orthonormal basis, then Parseval's theorem relates the energy of the distortion in the signal s(r) to
the energy in each of the expansion components and their wavelet coefficients C;, . This means

that the energy of the distortion W, can be represented in terms of the expansion coefficients.

In terms of the wavelet coefficients, the energy of the distortion W, is equal to the square of the

norm of the wavelet coefficiemts C ., .

Wi =l Cae [ (7.12)

where, |C.. |2 is the norm of the distortion coefficients and can be mathematically represented

as:

| Catee Ib= \Ji(cdm » Caian? | (7.13)

1 Caa 1= 1 Dlcaal KIF+ Y, Dld kI 12 (7.19)

km—as )30 ' ET

Therefore, the true RMS value of the distortion s(¢)can be calculated using the wavelet

coefficients as follows:
RMS,,, = {ﬁncm ”z2 e (7.15)

where Atis the duration of the distortion event measured from the localization process as

mentioned in Chapter 5.

In terms of the wavelet coefficients, the total harmonic distortion (THD ) can be computed as

follows:
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N

THD % = L ax b 1100 o (7.16)
11 C pure [

where, || C,,.. b is the norm of the pure signal.

Therefore, transforming the distorted signal into a set of coefficients in the wavelet domain can be

used to construct a monitoring device to measure different distortion events.

7.4 Non-Rectangular RMS Variation

The previous part of this chapter assumes that RMS variation changes in a rectangular form for a
certain period of time. This phenomenon is not true when a large part of the load consists of
induction motors, or synchronous motors, or generators. It has been documented in (1} and [19]
that there are other RMS-variations with non-rectangular envelopes. These variations are difficult
to characterize because there is no single magnitude and duration that can characterize them, see

Figure 7.4a.

There are two existing techniques for presenting the non-rectangular variations in the RMS value.

The following is the summary of these existing techniques [1]:

1. The first technique defines the magnitude as the minimum RMS voltage during the
disturbance. The duration is defined as the time during which the RMS voltage is below a
certain threshold, typically 90% of the nominal voltage. This method is used in most
power quality monitors. The disadvantage of this method is that the non-rectangular

RMS variations are considered more severe than what they actually are.

2. The second technique characterizes the voltage quality by the number of times the
voltage drops below a given value for longer than a given time. This technique became
part of the IEEE std. 493 [23]. Using this method we can quantify the number of sags,
however, we cannot characterize each sag event individually. Furthermore, implementing
this method to assess the influence of non-rectangular sages on a piece of equipment is

prone to uncertainties no matter which definition of magnitude and duration is used.
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In the following proposed technique we present a method that can measure non-rectangular RMS

variations and simultaneously detect and classify any disturbances that may exist.

1.5 Proposed technique for the of
Measurement Non-Rectangular RMS

Variations

In this section, a new wavelet-based procedure is proposed to characterize RMS variations. This
procedure can help in assessing the quality of service presented in a distribution system, the
quality of the mitigation devices, and the characteristics of any load during RMS variations. It can
also give important information about any new variations of the distortion during its elapse. This
information will help in finding the rectangular or non-rectangular voltage-tolerance curves for
different equipment. This can help in the design of a new CPEMA curve that considers non-
rectangular RMS variations and other power quality problems that may take place
simultaneously. A flow chart showing the executing steps of the proposed procedure is shown in

Figure 7.5:

® Any changes in the pattern of the signal can be detected and localized at the finer resolution

levels as presented in Chapter 5. The set of coefficients d,,_,,(k) is used to monitor the

number of changes in the signal during the selected window duration.
o The distorted signal is segmented into window frames with respect to a fixed time interval as

shown in Figure 7.4b.

o For each frame, we find the wavelet coefficients Cand C,,,, where
Caix= C-Cry (7.18)

and C are the wavelet coefficients of the signal, C,, are the wavelet coefficients of the

distortion event and Cg. are the reference wavelet coefficients computed from C,,,.;
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CR¢I= Pknm * CP"" . (7.19)

where Pk,,, is the peak value of the distortion event. The initial value of Pk, is selected to be
equal to 1 for a pure signal.

o Weuse C,,,thenew RMS, ,, and its peak value ( Pk ) of the distorted signal is estimated.
o We use the energy measure AE,, (L, ) of the resolution level (L;), that covers the power

frequency band, to monitor the direction of variation in the RMS,,, of the distortion event, as

shown in Figure 7.4d, where
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Figure 7.4: RMS variation monitoring
a- Distorted signal, b- Windowing the distorted signal,



Chapter 7: Measurement in The Wavelet Domain

and

c- First detail version, d- Energy distribution

AEg, ((L; )>0 & increasing in RMS value

AEg, ((L; )<0 & decreasing in RMS value

AE,, (L, )=0 & nochange in RMS value

AERtf(Lf) = Ellng(Lf) - Pkllﬂv* E (Lf)

pure

(7.20)

o The Pk,, value is updated to be used for monitoring the new variation in RMS value in the

second window frame.

Pk,.= Pk +T*Pk

and

1 AER:](L])>0
T={ 0 AE,, (L, )=0

(1.21)

(7.22)

o We use the proposed feature vector (Equation 6.10) to classify the type of distortion in the

signal.
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1.6 Applications And Results

7.6.1 Measurement of Short-duration

variations using std-MRA curves

Figure 7.6 shows an example of using the maximum value of the std-MRA curve to measure the
voltage sag in the signal in a harmonic distorted environment. The signal is distorted with sag to
0.85 pu (in peak value) as shown in Figure 7.6 a and the total harmonic distortion (THD) is equal
to 18.24%. MRA is applied and the distorted signal is decomposed at different resolution levels.
The sag phenomenon is detected due to the changes in the std-MRA curve in zone “B” as a
reduction in its maximum value compared with that of a pure sine wave (dotted line). The high
and low harmonic distortions are detected in zones “A” and “C”. The duration for the sag
phenomenon is detected and localized in the first detailed level for 4.6 cycles (Figure 7.6 b). The
maximum value of the std-MRA curve is 0.5303 (Figure 7.6 c). Using the polynomials for the
generated curves for sag measurements (Figure 7.6 d), the peak value of the signal during the sag
phenomenon is equal to 0.8643 pu. On the other hand, the std_MRA curve shows the existing of

high and low frequency components. The value of the harmonic distortion can be also measured.

The main advantage of the proposed method, compared to previous methods, comes from its
ability to separate power quality problems that overlap in both time and frequency. It has the
ability to separate the pure signal from any high or low frequency content, dc content, and noise
distortion. The energy distribution of the distorted signal will be localized in time and presented
at different frequency bands. This time-frequency picture of the energy of the distorted signal will
be used as a classification feature vector (std-MRA) that has small dimensionality. The std-MRA
feature vector presents a simple classification rule for the operator to detect, localize, and classify
different power quality problems or to give an accurate measurement for the magnitude and

duration of the signal during short duration variation events. Furthermore, using the std-MRA,
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we can distinguish between similar power quality problems and help in finding the source of the

disturbance.

The same procedure is applied on signals distorted with different magnitude and duration of swell
phenomenon. The relation between the maximum value of the std-MRA curve and the
magnitude of the voltage swell is plotted at different intervals. These curves can be used to
measure the magnitude of the voltage swell in the signal. Figure 7.7 shows an example using the

maximum value of the std-MRA curve to calculate the voltage swell in the signal.

The proposed technique was applied to measure different cases of voltage sag and swell

phenomenon. The actual values and the derived ones are presented in Tables 7.2 and 7.3.

Table 7.2: The actual and derived values of the voltage sag for different intervals

Case |No.of |Maximum| Derived | Actual
no. [cycles |std-MRA | Voltage { Voltage
1 |14.82 | 0498 0.57 | 0.5649
365 | 0476 078 | 0.7815
226 | 0511 0.82 | 0.8176
29.35 | 0429 045 0.465

T B )

Table 7.3: The actual and derived values of the voltage swell for different intervals

Case |No. of [Maximum| Derived | Actual
no. |cycles |std-MRA| Voltage | Voltage
15.16 | 0.7099 1.91 1.9146
37.14 | 0.6892 1.39 1.3939
30.29 | 0.7332 1.62 1.605
14.53 | 0.6132 1.42 1.438

Sl W N -
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7.6.2 Measurement under Steady State
Conditions

The CIGRE benchmark within the Electromagnetic Transient Simulation Program EMTDC was
utilized as a tentative model of a typical HVDC system. For each signal, a window size of 8
cycles was selected. Each signal is sampled at 4 kHz and decomposed into 9 resolution levels that
represent several frequency bands. PSCAD simulation results on the CIGRE benchmark was
utilized to measure currents, voltages, and active and reactive power at the inverter side as shown

in Figure 7.8.

Table 7.4: Comparison the PSCAD and Wavelet-based proposed technique

Proposed
Inverter side measurements PSCAD
Technique
Phase A Current (RMS) kA 2.8244] 2.843
Phase A Voltage (RMS) kV 129.6895 129.450
Power Factor -0.8607 -0.8658
Active Power (kW) 981.5279 956.141
Reactive Power (kVAR) 551.3008 552.544

The proposed MRA technique was implemented and similar results to those of the PSCAD
simulator were achieved using the wavelet coefficients. A comparison between the PSCAD
results and the computed parameters in the wavelet domain are presented in Table 7.4. The

proposed technique shows accurate results for measuring different variables in the HVDC

system.
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Figure 7.8: Monitoring HVDC system

a- Inverter phase A current, b- voltage, and c- power

7.6.3 Measurements of Sag magnitude in noisy
environment

The same technique was applied for measuring a one-cycle simulated sag phenomenon. The
simulated signal is further distorted with harmonic and has a high noise level. The actual starting
time of the distortion is detected and localized as indicated in Chapter 5. The wavelet coefficients
are used, as indicated in Equation 7.15 to compute the RMS value of the sag phenomena. Table
7.5 presents the estimated RMS value of the sag phenomenon with noise level variation from 0%
t0 2.0%.
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Table 7.5: estimated RMS value and starting and ending time

ofa sag _phenomena in a noisy environment
Noise Level | Derived Sag (RMS) Error %
0.00% 0.1798 0.0150
0.25% 0.1814 0.0240
0.50% 0.1840 0.0384
0.75% 0.1895 0.0706
1.00% 0.1954 0.1014
1.25% 0.2058 0.1622
1.50% 0.2179 0.2331
1.75% 0.2284 0.2926
2.00% 0.2382 0.3400
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The proposed technique shows accurate results of measuring the RMS value of the sag

phenomena up to noise level 1%, which is the maximum noise expected in power systems.

7.64 Measurement of Non-Rectangular RMS
Variation

A 2l-cycle distorted signal f(t) was simulated. This signal under went six variations in its

magnitude and duration. The distorted signal was segmented into 3-cycle window frames. The

features extracted from each window frame were used to classify the type of distortion. The

energy distribution AE( L, ) was used to classify the distortion event

AE(L/ )<0 e Esignal( Lf )< Epu,,( Lf ) e Sﬂg

AE(L;)>0 & Egpu(L)> Epy(Ly ) e Swell

AE(L; )=0 = Eul(ly)= Ep,.(L; ) PureSignal
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The proposed technique, section (7.5), was used to monitor the RMS-variation during the

distortion event and AE,, (L, ) was used to monitor the direction of the variation (increased or

decreased).

Figure 7.9 shows the process of classifying and monitoring the RMS-variations during any
distortion event. This process starts with inputting the distorted signal. Figure 7.9a shows the
distorted signal contaminated with the RMS-variations that are shown in Table 7.6. Then we
construct suitable window frames. Figure 7.9b shows the different window frame; each frame
presents 3 cycles of the distorted signal. The third step is the extraction phase. The time
localization property for different variations was extracted from the detail version of the distorted

signal D, for each frame as shown in Figure 7.9c. As the noise level increased, the proposed

algorithm for the noisy environment (section 5.4) was used to localize the distortion event. In the
last phase, we monitored the energy variation in the resolution level of the power signal (60 Hz).
Figure 7.9d shows the variation of distorted signal energy distribution AE with respect to the

power frequency resolution level L, . The four lines in Figure 7.9d are:

L Egul(l;) the solid line on the top.

2. EpnlLy) the dotted line on the top

3. AE(L;) the dashed line on the top.

4. AE. (L;) the solid line on the bottom.

The first frame in Figure 7.9d shows that the signal AE( L, )and AE,, .( L, )are coincident with
each other. AE(L,) is greater than zero which represents a swell phenomenon and
AEg, (( L, )also greater than zero which represents an increase in the RMS value. The second

frame shows AE,, (L, )is less than zero, representing a reduction in the RMS of the signal and
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AE( L, )is greater than zero, representing a swell phenomenon. The third frame represents a

reduction in RMS value and sag phenomenon.

The proposed technique is implemented in different sets of simulated data. The results of
applying the technique to the distorted signal, shown in Figure 7.9a, are summarized in Table 7.6.
The results of the table indicate very clearly the effectiveness of applying our proposed technique
for monitoring and classifications. The errors between the actual and the measured using the

proposed technique are very small for both the magnitudes and durations.
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Figure 7.9: Monitoring of the RMS variation
a-Distorted signal, b- Windowing the distorted signal,
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¢~ First detail version, d- Energy distribution

Table 7.6: Non-Rectangular RMS- variation measurements

Frame Actual Variation Estimated Variation
# | Mag. (peak) | Time (s) | Mag. (peak) | Time (s)
1 1.3500 0.0296 1.3614 0.0296
2 0.8775 0.0864 0.8287 0.0864
3 0.1316 0.1391 0.1192 0.1391
4 0.5265 0.1599 0.5429 0.1600
5 0.8424 0.2180 0.8588 0.2184
6 1.0000 0.2702 1.0068 0.2703
7 1.0000 0.3000 0.9966 0.3010

The proposed technique is utilized for monitoring non-stationary variation in the RMS values of
the following two cases shown in Figures 7.10 and 7.11. The estimated variations in the RMS
values are monitored and instances of these variations are detected as indicated in Tables 7.7 and
1.8.

' | | | | |

0 005 Ol 0I5 02 025 03 0358

Figure 7.10: Monitoring of the RMS variation (case 1)
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Table 7.7: Non-Rectangular RMS - variation measurements (casel)

Frame Actual Variation Estimated Variation
# | Mag. (peak) | Time (s) | Mag. (peak) | Time (s)
1 3.8500 0.0207 3.9448 0.0207
2 0.5775 0.0102 0.4410 0.0103
3 3.4650 0.0129 3.5265 0.0129
4 1.6632 0.0207 1.6016 0.0207
] 0.7484 0.0271 0.6855 0.0272
6 1.0067 0.0336 1.0549 0.0349
mag.2 l | | [ ]
pu. | i
0 LA AR A AAA,
]k
!
_2 | | | I | l

0 005 01 0I5 02 025 03 0358

Figure 7.11: Monitoring of the RMS variation (case 2)

Table 7.8: Non-Rectangular RMS- variation measurements (case2)

Frame Actual Variation Estimated Variation
# | Mag. (peak) | Time (s) | Mag. (peak) | Time (s)
1 0.5000 0.0268 0.4653 0.0269
2 0.2500 0.0346 0.2214 0.0349
3 0.1875 0.0190 0.1880 0.0020
4 0.4688 0.0329 0.4998 0.0349
] 1.1719 0.0393 1.1777 0.0393
6 1.5762 0.0214 1.5849 0.0214
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7.7  Chapter Assessment

In this chapter a new technique is proposed to measure effectively and accurately the different

distortion events under both steady state and short-duration disturbances.

The main contribution in this chapter is that it provides a reliable procedure to measure the
disturbances in a wavelet-based environment. This is an important feature that will assist in
achieving our final goal of developing an automated classifier for the different power system

disturbances.

The localization property of the wavelet transform (presented in Chapter 5) and the detail
coefficients are used to measure the distortion event magnitude. The proposed technigue is

further medified to give a measure of the RMS value during non-rectangular variations.

A new wavelet-based procedure to characterize RMS variations is presented in this Chapter. This
procedure can help in assessing the quality of service presented in a distribution system, the
quality of the mitigation devices, and the characteristic of the load during RMS variation.
Utilizing this procedure, a clear picture of any further changes in the harmonic distortion, noise
level, or RMS variations can be detected, localized, classified, and quantified inside the

distortion event.
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Chapter 8

Wavelet-Based Data Reduction

8.1 Introduction

As we mentioned in Chapter 1, the goal of this thesis is to design a reliable, accurate and
wide-scale power quality monitoring system with superior characteristics. This chapter
is devoted to develop a new procedure that will compress and store the distortion event
efficiently. This procedure is based on wavelet analysis, where a small set of wavelet
coefficients represents the disturbances to assist in achieving this goal. This procedure

will replace the existing technique of storing all sampling points of the disturbance.

The proposed data reduction technique is presented in Section 8.2. Section 8.3 illustrates the
performance evaluation of the proposed technique. The Application and Chapter assessments are
presented in Sections 8.4 and 8.5, respectively.

138
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8.2 Data Reduction and Representation

The feature vector presented in Equation 6.10 and the rapid drop off in the number of the
coefficients are two important characteristics that can be used for reducing the amount of data to
be stored. The feature vector shows that the energy of the signal is concentrated at certain
resolution level (i). Due to the rapid drop off in the size of the coefficients, the information in
this resolution level can be represented by only a small number of detail coefficients. These
coefficients can be stored and used, when needed, 1o reconstruct the original signal. Figure 8.1
shows the reduction in the size of detail d,(k)and approximated c;(k Jexpansion coefficients
from (N) to (N+n-1)/2 in the first resolution level. Where N is the size of the sampling
points of the input signal and n is the size of the selected wavelet filter coefficients. The size of

N/ zmolution-lem

these coefficients is further reduced to (= )as the input signal is decomposed into

different resolution levels.

d(k)

‘lf;'") l-—l—- Nen-12 d; .(,k)
N I - (Ny4 dl sk)
[ .
c ) (Nen-1)2 — (N)y8
. ~ (Ny4
AL L - oe

1z

Figure 8.1: The rapidly drop off in the size of the coefficients in the wavelet domain

The proposed data representation technique is summarized in the following steps and also shown
in Figure 8.2:
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Figure 8.2: Data reduction and presentation

Step I: We use MRA to decompose the distorted signal (N sampling points) at different

resolution levels as presented in Figure 8.2a.

Step 2: We find the difference (C,, ) between the wavelet coefficients of the distorted
signal ( Cy;,y) and that for a pure one (C,,,, ) as shown in Figure 8.2b,

where

Cise = Cignat = Crure (8.1)

The number of these coefficients at different resolution level is shown in Figure 8.2c.

Step 3: We use the proposed feature vector to find the resolution level (i ) where most of the
energy of the distortion event is concentrated. This resolution level (i} will present all the

important information that characterizes the distortion event.
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Step 4: We ignore all the other coefficients and store only the coefficients of the (i*)

resolution level where the size of these coefficients is equal to (= N/2' ) << (N ) as shown

in Figure 8.2c and d.

0 resolution level # i
dy(k)= 82)
d(k) resolution level= i

Srep 5: We add the stored set of detail coefficients 4;(k ) to similar set of a pure signal at the

same resolution level.

d;(k)pye resolution level # i
dj(k)= 8.3)

di(k )y +di( K ) resolution level= |

Step 6: We use the new set of the coefficients d ;( k )to reconstruct the distorted signal fleh.

Figure 8.2 shows the reconstructed version of the distortion event by storing only (N/2 )

coefficients.

By applying the above steps we store only the detail coefficients that represent the distortion
event. And since the number of detail coefficients is reduced as the number of resolution levels
increases, then the number of coefficients to be stored to represent the distortion event will be

very small compared with the number of sampling points of the distorted signal.

8.3 Performance Evaluation

In many cases one can compress and store the data by very simple algorithms. However, the

ultimate judgement of how effective these techniques will depend on how much information is
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lost in storing the data. This is can be examined by reconstruction the original data from the
compressed one. Mathematically we measure the quality of compression by calculating the
normalized mean squared error (NMSE) of the reconstructed data.

We will examine the performance of our proposed method by evaluating the reconstructed signal

f(r) and then calculating the normalized mean square error ( NMSE ) between the original

signal f(r) and the reconstructed one f(1). Where NMSE is computed as follows:

I fee)lf

Where || f(t)]|* is the square of the norm for the original signal, which represents the energy of

the signal.

8.4 Application and Results

The proposed technique was used to compress the data of the following power quality problems,

and the effectiveness of the technique was examined by calculating the NMSE using Equation 8.4.

8.4.1 Case 1: Capacitor Switching Phenomena

Step ! Utilizing MRA, the distorted signal (Figure 8.3) was decomposed into several detail
versions {building blocks). Some of these building blocks that have important parts of the energy
of the distorted signal are shown in Figure 8.4. The shown resolution levels include detail
versions of the first D,, second D, , sixth Dg, seventh D, , eighth D;, tenth Dy, eleventh D, , and

twelve D, as shown in Figures 8.4a-i respectively. These versions of the signal are easier to
study and interpret. The capacitor switching phenomena (Figure 8.3) was sampled at 165kHz and

a 3 cycles window size was selected (8266 sampling point). These sampling points (¢;,, ) were

used as input for MRA and decomposed into 13 resolution levels. The frequency bands that

represent each resolution level are summarized in Table 8.1.
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Figure 8.3: Distorted Signal with a capacitor switching phenomena

Table 8.1: Different resolution levels and their frequency bands

Resolution Frequency Band Resolution Frequency Band

Level kHz Level kHz
1 41.25 - 82.50 8 0.322 - 0.645
2 20.62 - 41.25 9 0.161 -0.322
3 10.31 - 20.62 10 0.081 - 0.161
4 5.150 - 10.31 11 0.040-0.081
5 2.570-5.150 12 0.020 -0.040
6 1.289 -2.570 13 0.010 - 0.020
7 0.645 -1.289
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MRA shows that most of the energy in the distortion event is concentrated in the seventh
resolution level D, (645-1289 Hz) as shown in Figures 8.4d. The eleventh resolution level (40-80

Hz) presents the 60Hz power signal as shown in Figures 8.4g. Leakage of the signal’s energy is

seen at adjacent resolution levels. For example, part of the 60Hz energy of the signal, Figures

8.4g, will be leaked to the adjacent resolutions; Figures 8.4f and Figures 8.4i. This is due to the

non-sharp cut-off frequencies of the wavelet filters. However, the magnitude of this leakage

energy is very small compared with that in Figures 8.4g. The selection of the filters will help in

reducing this leakage. As the number of filter coefficients n increases, the cut-off frequency will

become more sharp and the leakage energy is reduced. This is an important criterion in selecting
the mother wavelet to be used for the analysis. This will be discussed in Appendix B “Selection

of the mother wavelet”.
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Figure 8.4: MRA of the distorted signal
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Step 2: The distribution of distortion event energy at different resolution levels (building blacks)
can be used to extract important features that help in selecting the coefficients to be stored to
reconstruct the distortion event. Figure 8.5 shows that most of the energy of the distortion event is
concentrated on the 7™ resolution level. The sold line in Figure 8.5a represents the feature vector
of a pure signal and the dashed line represents the distorted signal. The energy distribution of the

distortion event is shown in Figure 8.5b.

70 1 I I I L T

o -»L-—-L--“!'

0 2 4 6

Figure 8.5: Feature vector of the distorted signal

Step 3: This feature vector indicates that most of the important information resides in the 7"

resolution level. This resolution level can be represented using 93 detail coefficients.

Step 4: Ignore all the other coefficients and store only the coefficients of the 7" resolution level
(93 coefficients << 8266) as indicated in Equation 8.2.
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Step 5: Using the new set of the coefficients d /(k), one can reconstruct the new set of wavelet

coefficients that represent the distorted signal f(r) as indicated in Equation 8.3.

Step 6: Reconstruct the distorted signal f( t) using the new set of wavelet coefficients. The

reconstructed version of the signal f( t )is shown in Figure 8.6, which was generated from only

the 93 coefficients stored to represent the distortion event.
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Figure 8.6: Reconstructed version of the distorted signal

The performance of the reconstructed signal f(t ) is evaluated by calculating the normalized

mean square error ( NMSE ) between the original signal f(¢) and the reconstructed one f( t).

The NMSE is computed and found equal to 0.00487, which shows that the constructed signal is

very close to the original signal.

8.4.2 Case 2: Harmonic Distorted Signal

The proposed data representation technique is implemented on a harmonic distorted signal shown

in Figure 8.7a. The energy of the distortion event is concentrated on the 9" resolution level. Using

the new set of the coefficients d i k ), one can reconstruct the distorted signal f( t )from storing
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only (45 coefficients << 8266). The reconstructed version of the signal f(! )is shown in Figure

8.7b.
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Figure 8.7: Data representation, a: harmonic distorted signal,
b: Reconstructed version of the distorted signal

The performance of the reconstructed signal f(1) is evaluated by calculating the normalized

mean square error { NMSE ), which is to 0.0224.

8.5 Chapter Assessment

In this chapter, a new data compression technique is proposed, which is based on wavelet
analysis. This technique can be used to store only a small number of coefficients that can be used
to reconstruct the original signal. The proposed technique will help in designing a comprehensive
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power quality automated recognition system that has the ability to detect, localize, classify,

measure and store different distortion events.
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Chapter 9

Conclusions and Future Research

9.1 Introduction

In this thesis new automated power quality detection, classification, measuring, de-noising and
data compression techniques are proposed. These techniques are based on wavelet theory and
multi-resolution analysis. The localization property of the wavelet transform is used to detect and
classify different disturbances. Any distorted event can be decomposed into different resolution
levels. The energy of each resolution level can generate a translation invariant feature vector with
small dimensionality that can be used to classify different disturbances according to IEEE std.
1159.

Different monitoring devices are available that can measure the duration of a disturbances. The
sensitivity of these devices depends on selected threshold levels that may result in missing desired
disturbances or capturing large numbers of waveforms. The existence of noise can further mislead
the monitoring devices to capture and measure certain disturbances. In the proposed monitoring
system, the duration of a distortion event can be measured using the information extracted from
the first resolution level, which has the ability to detect any changes in the pattern of the signal
and can be utilized to purify the signal from any noise content. Chapter 5 shows a set of newly
proposed techniques that detect and measure the duration of any transient event in a noisy or

clean power system environment without the need to specify certain thresholds.

149
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Using the available monitoring devices, it is often difficult to determine on an on-line basis the
characteristics of transient, oscillatory, or non-stationary disturbances. It is imperative to have in
these monitoring devices a waveform capture capability for a detailed off-line analysis of
different stored disturbances, which is a very time consuming process. This off-line analysis

delays the mitigation control process that may lead to catastrophic damage.

In this thesis, the on-line based automated classification methodology of a distortion event is
presented in Chapter 6. A wavelet-based feature extraction technique that reduces the size of the
monitoring signal to a small set of numbers contained in a feature vector is also proposed. The
feature vector is used to classify different disturbances and it yields excellent results. The main
advantage of the proposed technique comes from its ability to extract the distortion events that
overlap in time and frequency domains. Because of the small dimension of this feature vector an
on-line automated classifier can be designed. This classifier can classify on-line different

disturbances according to IEEE std. 1159, efficiently and accurately.

The RMS value of the distortion event magnitude represents an important factor in designing an
automated power quality recognition system. A wavelet-based technique is utilized in this thesis
to measure different distortion events. The wavelet expansion coefficients are used to compute
the magnitude of the distorted signal and the root-mean-square (RMS) value. This technique is
presented in Chapter 7 and it is implemented to measure the RMS value of a steady-state

distortion event or during short duration variations as indicated in [EEE sid. 1159.

The variations of the RMS value during a distortion event are also monitored and measured. A
new wavelet-based technique is proposed to monitor the non-rectangular RMS variations. This
technique is implemented for monitoring different signals that have non-stationary variations in
their magnitudes. The proposed measurement technique shows its superiority compared with

exiting techniques in terms of:

o Iis ability to measure a large number of power quality problems such as sag, swell,
harmonics, flickers, etc.
o [is ability to measure non-stationary disturbances that may overlap in the time and

frequency domains.
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o Its ability to give a measure of more than one power quality problem that may take place
simultaneously.

¢ [ts ability to monitor and measure a low frequency disturbance and localize it in time.

e [is ability to measure and determine other power system parameters such as the phase

shift angle, active and reactive power and total harmonic distortion.

Another problem that exists in the available monitoring devices is the large dimensionality of the
stored data and the complicity of the discrimination process. This leads to a substantial

deterioration in the performance of traditionally favoured classifiers.

Data reduction is one of the main design factors for developing the automaied recognition
system. A wavelet-based technique is proposed to represent the distortion events by using small
set of coefficients. This set of coefficients can be stored to represent the original distorted signal
rather than storing a large size vector of the sampling points of the distortion event. The proposed
data reduction technique is utilized to store and reconstruct the original distorted signals of steady

state and transient events. The proposed data reduction technique is presented in Chapter 8.

The research in this thesis shows the capability of the wavelet-based technique for designing an

automated wide-scale power quality monitoring system with the following characteristics:

¢ Fast detection and localization of disturbances that may overlap in time and frequency in a
noisy environment.

¢ On-line classification by extracting discriminative, translation invariant features with small
dimensionality, which can represent efficiently the voluminous amount of distorted data.

¢ Analysis of different non-stationary disturbances and measure of their indices.

¢ De-noising ability and high efficiency in data compression and storing.

A wavelet-based power quality automated recognition system is proposed in this thesis. This
system can be implemented on-line for detecting, classifying, measuring and storing different
power system disturbances. This system can overcome many of the drawbacks of existing
moritoring devices.
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9.2 Contributions

The contribution of this work comes from its ability to represent a single tool that can be used to
construct an automated monitoring system. The design of the proposed automated monitoring
system depends on five building blocks. These blocks can be constructed in parallel or
sequentially to design a real time on-line automated monitoring system. Each block in the

constructed system can perform superior better than existing monitoring systems.

The original contribution of the work done in this thesis is summarized in the following points:

Part A: Detection and duration measurement under noisy environment

Any distortion in the signal can be detected and localized using wavelet coefficients at the
highest resolution level. However, as the noise level increases and the transient event magnitude
decreases, the coefficients that represent the noise will merge with those that represent the
distortion, the wavelet detection and localization property will no longer be valid at this
resolution level. In general the noise level in power system is low, which is about 1.0%. This
proposed method is very adequate in this range. For higher noise levels a new wavelet-based

technique is proposed for detection and duration measurement.

The first step in the detection and duration measurement process in a noisy environment is to
determine the noise level. An assessment of the noise level is measured by computing the energy
of the coefficients at the highest resolution level. For high noise levels, the duration of the
distortion event can be measured by reconstructing an approximated version of the distortion

event using a selected set of the wavelet expansion coefficients.

Part B: Disturbance Classification

The energy of the distortion event at different resolution levels is used in this new technique as a
feature vector that can classify different disturbances. These discriminative, translation invariant
features with small dimensionality are used to classify different power quality problems that
overlap in time and frequency. State of the art pattern recognition techniques were employed to
evaluate the extracted features and classify different events.
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Part C: Distortion Measurement

Since the energy of the distorted event is represented by a set of coefficients in the wavelet
domain. Therefore, the norm of these coefficients is used to measure the energy in the distorted
event. Combining the energy of the distortion event and its duration as measured in part A, the
RMS value, dc content, phase shift and the THD% of the distorted signal can be computed. This
technique is new and was implemented for the first time in measuring the RMS for power quality

problems.

Part D: Non-Rectangular RMS variation Measurement

A new wavelet-based procedure to characterize non-rectangular RMS variations is presented in
this thesis. This procedure can help in assessing the quality of service presented in a distribution
system, the quality of the mitigation devices, and the characteristic of the load during RMS
variation. Utilizing this procedure, a clear picture of any further changes in the harmonic
distortion, noise level, or RMS variations can be detected, localized, classified, and quantified
inside the distortion event.

Part E: Data Reduction

The feature vector presented in Equation 6.10 and the rapid drop off in the size of the coefficients
are two important characteristics that can help in reducing the amount of data to be stored for the
distortion event, as described in chapter 8.

The proposed techniques in this thesis can be implemented in hardware and installed on the
system to give automatic detection, localization, and classification of any power quality
phenomena according to IEEE std. 1159. These techniques are accurate, efficient, fast and
reliable compared with the existing techniques. Additionally, the proposed technique has the
ability to reduce the size of the data of the distorted event to a small size and store it. This
technique can be implemented on-line and in real-time in the case of non-transient power quality
problems. It can also be implemented in real-time for transient events by utilizing parallel
processors, where each processor will take care of a specified resolution level. A general outline

version of the automated power quality monitoring system is shown in Figure 9.1.
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9.3 Future Research

The distinguished advantage of this automated system is its ability to be used readily in

monitoring other complicated power quality problems that will arise from the deregulation of the

power industry, such as:

l.

Monitoring and control of different disturbances that may take place in HVDC systems.
A preliminary resuit of this application is presented in [65].

Monitoring the disturbances in multi-ownership generation-transmission-distribution

chain and identifying the source of any disturbance under an open market environment.

Monitoring and control of the mitigation devices and assessing their quality.

Monitoring the load characteristics during any variations.

Modifying voitage tolerance curves “CBEMA curve” to include high frequency content

components and non-rectangular RMS variations.

Using the MRA technique to control the switches for designing active filters.

Using the feature vector to design a smart control and protection systems.
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Appendix A

A.1 General Properties For Wavelet Multi-resolution:

In order to develop a multilevel representation of a signal f(¢)that belongs to L(R) we seek a

sequence of embedded subspaces V; with the following properties:

1 - Containment property:
Low-resoluion High=resoluion
Olc.V,cVv, cV,cV,cV,..cL}R)
LessDetail MoreDetail

The containment property imposes the subspace V., be completely contained in subspace V;
Since subspace V;.; is embedded in subspace V/, it follows that a signal in V;, is blurrier than the

one in subspace V.

The containment property also implies that going to a finer subspace (higher resolution), one
needs to add details to a signal and going to a coarser scale (lower resolution) one must give up
details of the signal. This implies that in order to move a signal from one subspace to another

subspace, one should add or take out details from the signal.

2 - Completeness property:
NV, =0 A |V, =L(R)

The completeness property indicates that the union of each subspace V; will form L¥(R) and each
subspace completely characterizes a signal in its subspace. Each subspace is spanned by integer
translates of a single function, ¢(z) such that

156
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o()eV, =o@+eV,

3 -Scaling properties:

p(neV; o o)e Via For any function g€ L2(R)

The scaling property relates how a function dilates or scales from one subspace to another. If

¢(r) resides in V; then ¢(2¢) exists in V},,. This means that elements in a space are simply scaled
versions of the elements in the next space. Figure A.1 shows that the subspaceV, is spanned by
integer translates of a single function ¢(2r) , and the elements in the subspace V, are a scaled and

translated combination of the elements in space V.

¢(2t)

.......

v : I
¢(2t‘1 ) l e

.......

Figure A.1: The completeness and scaling properties
4-  Basis property:

There exists a scaling function ¢(r)€ V, such that the translated and scaled version set ¢ mo

forms an orthonormal basis that spans V_, i.e.
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0
<¢j,t(t)v ¢j,l(t)>= 6("") ={l

A.2 The Multi-resolution Analysis process:

Using the scaling and wavelet functions a signal is analyzed from fine to coarser scale. Removing
the details from the approximated versions at different resolution levels can decompose the signal

at different resolutions.

The mathematical representation of the scaling function is given by the following Equation.

00) =Y hn2p(2t-ny, neZ
Scaling and translating the time variable ( t = 2 £ -k ), we get :
02/t -k) =Y hnW20Q22't-k)-n), ne Z

=Y 202" 1~ 2% ~n)

let m=2k+n
n=m-2k

then
02/t -ky =Y him - 2kW29Q2 7" 1~ m)

The subspace V},, can be denoted as:
V- - 2(j¢l1f2 2j+l -k
jot = Span, { o271 -k)}

The approximated version of f(r) €V, can be expressed at scale J+/, as:

f@)= Y, (k2929 (21~ k)
k
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Where only the scaling function is used, without the wavelet function, to approximate the signal.
At one scale lower resolution j, the wavelet function is necessary to represent the details that are

not available at scale /.

Therefore:

f(0)= Y c; (k2779 211 -k)+ X, d, (k2" y(2' 1~ k)
~k 4 \k o

Approvimated Detail
version version

Where the term 2*° maintains the unit norm of the basis functions at various scales. For

orthonormal scaling and wavelet functions, the expansion coefficientsc j(k)and d (k) can be

calculated using the inner product as follows:

e, (ky=(f(1).0,, () =(f().27" 921~ k)

¢ () =CF 00,00 = [ f0272 021~ ke

From the previous calculation one must construct f(¢) to calculate the coefficient c;(k),

however, one can obtain the coefficients ¢ j(k) and d j(k) without constructing f(¢). This can

be accomplished as follows:
We have

0Q2't~k) =Y h(m-2kN292""t-m) , neZ
Therefore,

=000 =] F©127 T hom - 202001 - myc

=Y hm=-2k) | F(0)272 g2 t - myde
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And [ F@0297 g2t - mydr =c ., (m)
Therefore

¢; (k) =(F 0.0, () = Y, h(m=2k) c;,,(m)

By the same way the detailed version coefficient d;(k) can be presented without involving

f(2) in the calculation. Therefore, the wavelet coefficient at scale j can be presented as
d;(k) = (f (W, () = X m=2k) ¢, (m)

From the other hand, the detailed d;(k) and approximatedc (k) versions of the coefficients can

be used to reconstruct the signal.

Consider a signal f(t)€V,,, then this signal can be expressed at scale J+I by using only
scaling function as:

fi= Eci+l(k)2um,2¢ (2j+lt -k)
k

Or in terms of a next scale (which requires a wavelet function) as:

FO1=Yc, (2770 2t -k)+ Y d, (12 y(2 1 - 1)
k !

Where the scaling and translating scaling function can be presented as

PQR/1-k) = Y, h(mW2p(2"™'t - 2k - m)
And the wavelet function can be presented as:

W2't-1) =Y h(nW2p2" 1 -2~ n)
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Therefore,

F@)= Y c,(k2" 3, hmW20(2™ 1 - 2k - m)
k m
+ 2d,(02" Y h(nW2p2" 1 -2l - n)
F@)=Y ¢ (1329 Y himpp(27* 1 - 2%k — m)
[ m

+ 2.d (1299 b (np(27*1 -2l - n)
1 L)

Due to orthonormality, the approximated and detailed coefficients (¢ j(k) and d;(k))canbe

calculated using the inner product as follows:

cm(k') = (f(1), 2""‘""tp(2"": -k
¢;u(k') =I Q) 25 @2 = k' )t

= j (X ¢, (k)2 ¥ h(m)p(2/ s -2k - m) +
k m

Y a2 Y b (np(2 =2 -y} 292" - k)t
! n

=Yec (k) Y h(m) [ W22 ~ 2k — m) 292 (2t - k' )it
k m

+2d (D )) h,(n)j' 222 s 21 =) 29 (2t - k' )dt
I r

= Y c;(k) X h(m)X2 R (2% 1 - 2k ~ m), 2 @27t ~ k')
k
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+ 2d, (1) Y k()25 @2 1 = 2 = n), 29 (2~ k')
{ n

Due to orthonormality, the inner product terms will be equal to zero and will be only equal to one
if and only if:
2k+m=k’ and A+n=k
m=k’-2k and n=k"-2l
Therefore,

cu(k) = Z:cf(") }mjh(m) + Zd,(l) AQ

cuk) = Y c;(k) h(k'=2k) + Y,d;(1) h(k=21)
k !

For convenience letk’ =n, and ! =k,

Therefore,

¢iuln) = 2cj(k) h(n-2k) + zk:dj(k) hy(n=20)
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Appendix B

B.1 Choice of appropriate mother wavelet

Different disturbances can be modeled and presented using different wavelet w(s)and
scaling ¢(¢) functions. The accuracy of this presentation depends on the smoothness of the selected

mother wavelet function. As the number of vanishing moments of the selected wavelet function
increases, more smoothness can be achieved and more accurate representation of the distorted
signal is obtained. It has been documented in [37] that the wavelet spectrum is meaningful only
when the selected wavelet has enough vanishing moments. Furthermore, the FFT of the selected
wavelet has to decrease faster near the origin. This will provide sharper cut-off frequency to the
selected mother wavelet and reduces the amount of leakage energy to the adjacent resolution

levels.

Therefore, the criteria for selecting a proper mother wavelet is to have a wavelet function with a
sufficient number of vanishing moments in order to represent the salient features of the
disturbance. At the same time, this wavelet should provide sharp cut-off frequencies. Furthermore,

the selected mother wavelet should be orthonormal.

The magnitude of the leakage energy of the analyzed pure signal at adjacent resolution levels due
to utilizing different wavelets has been studied here with three types of orthonormal mother

wavelets:

o Daubechies (dbl, db4, db10, db40),
e Coiflet (coifi-coif5), and
e Symlet (sym2-sym8).

The frequency response of the Daubechies (db4, db10, db40) and Coiflet (coif5) wavelet functions
(high pass filters) and scaling functions (low pass filters) are shown in Figure B.1. Daubechies 40

163
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shows the sharper cut-off frequency compared with the others and hence the leakage energy
between different resolution levels is reduced. The number of vanishing moments of the db40

wavelet is large, and hence it gives a meaningful wavelet spectrum of the analyzed signal.

H(w)
l ] f T 1]
0.8 Ho(m) Hyw)
0.6 | 4
0.4 | -
0‘(2) — db4 . . »
0 /2 TT
H(w) (a)
l 1 1§ 1N T
0.8 - HJ® Hy (@) -
0.6 |- .
0.4 -
o.g ~ db10 . , . .
o /2 TT
H(w) (b)
1 1§ 1 ) !
0.8} H(w) H, ()
o6k ° 1 _
0.4 | -
0-(2) - db40 . .
(0) n/2 T
H(w) ©
l T L] T ]
08 - H(w) H, (w) -
o6} ©° 1 _
0.4 | -
O-g — coifS ! A . -1
0 /2 Tt
(d)

Figure B.1: Frequency response of the Wavelet filters

Comparison of the behavior of different wavelets for extracting the proposed features is
implemented on the following signal:

Pure Signal: The 50 Hz power frequency pure signal is analyzed using different wavelets, (Figure
B.2). Using dbl, i.e. one vanishing moment, the energy of the pure signal is distributed over the
different resolution levels (low and high frequency bands), Figure B.2a. This results from the wide
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cut-off frequency of the selected filter shown in Figure B.1a. However, as the number of vanishing
moments of the selected wavelet function increases (db40 with 40 vanishing moments), the energy
of the analyzed pure signal is concentrated at the resolution level that covers the power frequency
range (6" resolution level), Figure B.2c. Only a small part of the signal energy is leaked to

adjacent resolution levels 5" and 7*.

20 T ] 1 4 ] 20 i T 1] 1
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Figure B.2: Wavelet Transform Spectrum of SOHz sine wave
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