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Abstract

Dynamic binary translation allows us to analyze a program during execution with-
out the need for a compiler or the program’s source code. In this work, we present two
applications of dynamic binary translation: tracematches and unread memory detection.

Libraries are ubiquitous in modern software development. Each library requires that its
clients follow certain conventions, depending on the domain of the library. Tracematches
are a particularly expressive notation for specifying library usage conventions, but have only
been implemented on top of Java. In this work, we leverage dynamic binary translation to
enable the use of tracematches on executables, particularly for compiled C/C++ programs.

The presence of memory that is never read, or memory writes that are never read during
execution is wasteful, and may be also be indicative of bugs. In addition to tracematches,
we present an unread memory detector. We built this detector using dynamic binary
translation.

We have implemented a tool which monitors tracematches on top of the Pin frame-
work along with unread memory. We describe the operation of our tool using a series of
motivating examples and then present our overall monitoring approach. Finally, we in-
clude benchmarks showing the overhead of our tool on 4 open source projects and report
qualitative results.
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Chapter 1

Introduction

In this work, we use dynamic binary translation [7, 17, 19] to enable runtime monitoring
of programs. Dynamic binary translation inspects a program’s binary code as its loaded
and allows changes in the code before execution. We present two applications of runtime
monitoring: tracematches and unread memory detection.

Runtime monitoring enables developers to specify and monitor a wide range of pro-
gram properties, including library usage constraints. An important class of library usage
constraints can be expressed in terms of sequences of events on library objects. Trace-
matches [1] are a powerful notation for expressing runtime monitoring constraints over
Java programs and libraries. In particular, they permit the specification of constraints in
terms of regular expressions over events, defined in terms of AspectJ pointcuts [2], and
enable developers to provide notification and recovery code to handle tracematch property
violations.

Current implementations of tracematches (or properties similar to tracematches) mon-
itor programs provided in the form of Java bytecode. Typically, they rewrite the Java
bytecode to include monitoring code, which is then executed at runtime alongside the orig-
inal program. Broadening the applicability of tracematches beyond Java programs would
enable their use in many more situations than are currently possible. Traditionally, they
allow users to easily specify safety properties about programs. In this work, we propose
the use of dynamic binary translation to implement tracematches, and explain our proto-
type implementation. Dynamic binary translation enables the monitoring of sophisticated
properties like tracematches, even if programs are written in languages such as C++ and
only available in binary form. In addition, we allow 3 different operating modes. The first
is the traditional mode, which allows users to easily specify satefy properties. The other
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modes are more suited for usage properties.

Valgrind [19] is a dynamic binary translator which includes a tool that checks for
common memory errors. These errors are as follows: accesses to unallocated memory,
uninitalized memory, memory leaks, double frees and overlapping memory. In this work,
we analyze another property—unread memory. This can come in two forms: memory
which is completely unread and writes to memory which are unread. Unread memory may
not indicate a bug in the software. However, they are another source of wasted resources.
Our tool detects and reports unread memory for any binary/library given by the user.

1.1 Approach

Our dynamic binary translation approach has several advantages over program-rewriting
approaches. First, whereas Java is generally relatively straightforward to compile, build
systems for C++ and other languages can be quite difficult to work with. Our approach
requires neither a compiler nor the program’s source code. Note that tracematches are
useful even in the absence of source code: for instance, they could be used in conjunction
with third-party libraries to verify proper library usage. When the source code is available,
for instance to the original developers during the development process, tracematches can
be used to diagnose problems: if the binary includes line number information, then our
tool can report the locations of tracematch property violations.

Our monitoring approach, for tracematches, inserts monitoring code into functions
which match the tracematch specification supplied by the user. Using the specification,
we construct a representation of the tracematch (in our case a finite state machine) and
initialize our environment. The specification also allows the user to associate function
calls with one or more objects. This allows sophisticated relationships between objects
given a trace. Our monitoring code resolves any objects and creates a callback to our tool.
Our tool then advances its current state, depending on the information from the monitor.
Our tracematches have three operating modes: all, which ensures we take no unknown
transition and the trace finishes in an ending state; only, which just ensures we take no
unknown transition; and never, which ensures the trace does not reach the ending state. If
any violation of the specification occurs, we report the violating trace along with debugging
information (if present).
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For unread memory, our monitoring tool inserts monitoring code into the standard
allocation functions available in C/C++. These include new and the malloc family of
functions. We only record memory allocations emanating from binaries/libraries specified
by the user. The intuition behind this is that a developer only has control over memory
they allocate. For C++ applications, we also monitor object constructors. This is so we
can report the class of an object to aid in debugging. Next, we monitor all memory reads
and writes. For all memory reads on currently allocated memory, we set the memory’s
block to be read. Also, if the memory location matches a write on the block, we set its
state to read. For memory writes, as with allocations, we only record writes which happen
in the developers binaries/libraries. For each write, we record the location and associate
it with its memory block. We record locations so we can check that they are later read. If
we overwrite a location which has an active write, we record that the previous write was
not read. Finally, we monitor deallocation functions, so we can determine when a memory
block was deallocated. When the program terminates, we report all memory which is either
unread or contains unread writes. For each entry, we report the debugging information
of the following: allocation location, deallocation location, class (if applicable) and any
unread writes.

1.2 Results

To validate our results, we selected 4 open source projects to run using our tool. For each
project, we ran it with dynamic tracematches and then unread memory detection. We also
ran each project with only the dynamic binary translator present in order to determine
the overhead solely from our tools.

First, we present a case study for one of the projects. The propose of the case study
is to investigate real problems our tool can detect, and how our tool may help developers.
We extract a usage constraint from the project along with an excerpt by a developer that
violated the constraint. We recreated the bug and specified the constraint using our tool,
to show we correctly the violation. For the unread memory detection, we used the same
project. We discuss our findings, and how they can be used.

Next, we formulated tracematch specifications for all of the projects. The specifications
came from the projects documentation, which showed common usage errors. We present
our tracematch for each project, and run it using our tool. We report our overhead due to
the dynamic binary translator and our tool.
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We have a similar approach for unread memory. For each project, we run it with our
unread memory detector and report our findings. We discuss possible causes of wasted
memory and possible solutions. We also report our overhead due to the dynamic binary
translator and our tool.

Finally, we present a summary of the overhead for our tool. We discuss the additional
overhead on top of dynamic binary translation for both tracematches and unread memory
detection.

1.3 Limitations

Our tool, presented in this thesis, has some limitations due to using dynamic binary trans-
lation. This section describes those limitations, and others present in our tool.

Dynamic binary translation itself imposes significant overhead, which may increase a
program’s runtime by two orders of magnitude. Also, since we may not have source code,
we have to identify and follow conventions which may differ from compiler to compiler.
During our testing, however, we found our tool can successfully resolve different calling
conventions.

Another limitation is that, in order for the output of our tool to help developers identify
the source of problems, we require the application to be compiled with debugging symbols.
However, we can still use our tool to identify tracematch violations and unread memory
without debugging information. In this case, we use the function name and memory offset
in place of line numbers.

Finally, the unread memory detector may report a large number of false positives for
C++ applications. This is because objects with virtual functions may have unread writes
to its virtual table. We use debugging information in order to ignore these writes, which
the developer cannot control. Without debugging information, we cannot determine which
writes are to a virtual table.
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1.4 Contributions

The contributions of this thesis include:

• Unread memory detection. We present a memory detector which ensures that all
memory and memory writes are read at least once. The absence of reads for memory
mean the memory is never used, hence wasteful; or may indicate a bug.

• Runtime monitoring. We present the concept for two types of runtime moni-
toring using dynamic binary translation. The first for finite-state properties using
tracematches. The second for unread memory detection..

• Implementation. We present an implementation of tracematches and unread mem-
ory detection. Our implemenation is in C++, on top of the Pin dynamic binary
translator.

• Experimental results. We applied our tools to 4 open source applications. We
present experimental results which show the applicability of our approach. We
present a case study which focuses on our tool’s usability. Finally, we discuss our
quantitative and qualitative results. We measure the overhead of each tool and com-
pare the results to just having the dynamic binary translator present.

1.5 Organization

The remainder of the thesis is organized as follows.

In Chapter 2, we present a overview of our tool and approach. First, we motivate the
problem with an example and present a high level overview of our tool. We then discuss
our overall approach using a series of examples.

In Chapter 3, we present the details of our implemenation. We begin by discussing our
tool’s framework. We then discuss our monitor for tracematches. Our description includes
details of the object resolution needed to handle C++ applications. We then explain our
handling of multiple objects, as may occur in tracematch specifications. Next, we discuss
our unread memory detector. We present the details our instrumentation and monitoring.

In Chapter 4, we present our experimental results. We present a case study that outlines
the usage of our tool. We explain how both tracematches and unread memory detection
reports help developers. Next, using 4 open source applications we benchmark our tool. We
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present results by running the programs with the dynamic binary translator, tracematches
and unread memory detection.

We present related work in Chapter 5. Finally, we present our conclusions and future
work in Chapter 6.
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Chapter 2

Tracerory

Tracerory implements dynamic analyses to verify tracematch specifications and detect
unread memory. Dynamic tracematches allow the user to specify a series of function calls
that should or should not happen. For instance, the user may specify usage constraints for
a library. The unread memory detection allows users to check for unused memory in their
binaries or libaries by specifying which images to watch. We detect any memory allocations
from watched images which are never read by the program, and also any memory writes
from watched images which are never read.

Figure 2.1 shows the workflow of our tool. We have two inputs: the user specifications
and the executable to run. We use dynamic binary translation to set up a monitor based on
the inputs. After the monitor is set up, we execute the program and continue monitoring
it until the program exits. We then record any violations of the specifications.

Dynamic
binary

translator

Tracerory

Specifications

Executable

Monitoring Execution

Figure 2.1: Tracerory workflow.

We provide a motivating example in the next section to demonstrate the application of
our tool. We explain both analyses by working through examples and explaining our tool
at a high level.
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2.1 Motivating Example: Tracematches

A tracematch consists of a set of symbols, a regular expression over the alphabet formed
by the set of symbols, and an operating mode which the regular expression should follow.
One such operating mode is all which means the regular expression should never take a
transition which does not exist, and the program should stop at an ending state. This
mode works well to specify usage constraints that program executions should not violate.
Traditional tracematches only execute code when the trace reaches an ending state.

Consider a program which converts RTF documents. Doucments may contain tables,
and we may want to verify that the program closes any opened table and does not manip-
ulate the cells after it has closed. Figure 2.2 presents a tracematch, applicable to the free
AbiWord1 word processor, which verifies proper table usage.

tracematch TableUsage ( IE Imp RTF r t f )
{

sym open before target ( r t f ) : IE Imp RTF : : OpenTable ;
sym c l o s e before target ( r t f ) : IE Imp RTF : : CloseTable ;
sym handle before target ( r t f ) : IE Imp RTF : : HandleCel l ;

( open handle+ c l o s e )∗
{ a l l }

}

Figure 2.2: AbiWord tracematch for table usage.

Note that while this particular tracematch definition contains only one variable, trace-
matches may, in general, bind multiple variables. This enables developers to state and
verify sophisticated relationships between multiple objects.

Symbols. Our tracematch implementation supports symbols, or events, defined using
the notion of a pointcut, drawn from aspect-oriented programming. We support a specific
subset of more general pointcut languages; we chose this subset because it is sufficiently
expressive for many useful tracematches. In this case, the before keyword indicates the
symbol occurs at the entry of the function

1http://abiword.org
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The alphabet of the example tracematch consists of three symbol declarations: open,
close and handle. Consider the open symbol. The declaration states that open occurs
before a call to the function IE Imp RTF::OpenTable and binds the tracematch variable
rtf to the receiver object (target) of the call. Symbols may simultaneously bind more than
one object.

Regular expressions. The set of declared symbols induce a so-called parametrized trace
in the program’s execution. We say that the trace is parametrized because each symbol
comes with a set of variable bindings. After choosing specific values for the tracematch
variables, it is possible to project a parametrized trace down to a set of bare symbols,
discarding symbols which do not match the chosen values. A program’s parametrized
trace matches the regular expression whenever there is some set of variable assignments
which causes the projected trace to match the regular expression.

For instance, the parametrized trace

open(rtf = o1) handle(rtf = o1) close(rtf = o2)

does not match the example tracematch, because of the different variables, while the fol-
lowing trace

open(rtf = o1) handle(rtf = o1) close(rtf = o1)

does. These bindings allow us to verify that the property holds for the RTF document.

With this tracematch specification we can run the program and our tool verifies the
proper table usage property. If the property does not hold, we output the trace along with
the debugging information of the symbol caller. Consider if we created an object and called
open then handle and terminated the application. We would report the call to open and
the caller’s line number and the call to handle with its caller’s line number. This allows
developers to debug tracematch violations.
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2.2 Specifications

In this section we discuss the specifications which the user may input for both unread
memory detection and tracematches. The specifications are read from an input file given
by the user. For our tool the input file must conform to the grammar in Figure 2.3.

input = [ unread memory ]
{ tracematch }

unread memory = ”unread” ”memory” ”{”
{ image name ” ; ” }
”}”

tracematch = ” tracematch” name ” ( ” [ v a r i a b l e s ] ” ) ” ”{”
symbol { symbol }
regex
”{” mode ”}”
”}”

v a r i a b l e s = name name { ” , ” name name }

symbol = ”sym” name kind [ ” t a r g e t ” ” ( ” name ” ) ” ]
” : ” funct ion name ” ; ”

kind = ” be f o r e ” | ” a f t e r ” [ ” r e tu rn ing ” ” ( ” name ” ) ” ]

regex = regex o r { r e g ex o r }

r e g ex o r = regex unary { ” | ” regex unary }

regex unary = regex term ( ”∗” | ”+” | ”?” | ” [ ” number ” ] ” )

regex term = name | ” ( ” regex ” ) ”

mode = ” a l l ” | ” only ” | ”never ”

Figure 2.3: Grammar for Tracerory specifications in EBNF.

The unread memory rule simply enables the unread memory detection portion of our
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tool. It uses the specified image names as the binaries to monitor for unread memory
detection.

Any occurrence of the tracematch rule enables the tracematch portion of our tool. A
tracematch consists of variables, symbols and regular expression and an operating mode.

As discussed previously, a tracematch may have any number of variables. A variable,
in the specification, must contain a class name, followed by a variable name.

A symbol is a name, followed by a kind (before or after), an optional target/returning
variable and a function name. The kind controls whether the symbol matches on function
entry or exit. The target controls whether or not to use the variable (which represents
an object, determined by “this”) as part of the match (binding) for the symbol. The
returning preforms the same function, only we determine the object by the return value of
the function.

The regular expression follows standard regular expression syntax. We support the
following operations: |, *, +, ?, [], () and the implicit concatenation.

Finally, we allow the user to set the operating mode for the tracematch. As a reminder,
the mode determines which violations of the regular expression to report. We discuss the
modes in more detail in the next section.

2.3 Tracematches

We next present tracematches by means of a pair of examples. First, we present a trace-
match which defines a safety property of C++ iterators (as implemented in the Standard
Template Library). Our property enforces the constraint that whenever a container (e.g.
vector) is modified, then all previously obtained iterators on that container become invalid.
We therefore verify that programs never access invalid iterators.
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tracematch Unsa f eVec to r I t e ra to r ( vec to r v , n o rma l i t e r a t o r i )
{

sym c r e a t e i t e r after returning ( i ) target ( v ) : vec to r : : begin ;
sym update vec after target ( v ) : vec to r : : push back ;
sym a c c e s s i t e r before target ( i ) : n o rma l i t e r a t o r : : operator ∗ ;

c r e a t e i t e r a c c e s s i t e r ∗ update vec+ a c c e s s i t e r
{ never }

}

Figure 2.4: Tracematch for unsafe iterator usage.

s0 s1 s2 s3
create update access

access update

Figure 2.5: Finite state machine for tracematch from Figure 2.4.

Figure 2.4 shows our encoding of this property as a tracematch, and Figure 2.5 shows
the corresponding finite state machine. Because we target programs compiled against
the GNU standard C++ library, we look for instances of the normal iterator class.
The tracematch declares two variables: the iterator, and its associated collection. The
tracematch also declares three symbols. The first symbol, “create iter”, matches a
vector’s begin function, which returns a new iterator. Next, “update vec” matches when
the vector is modified; in this case, we are interested in the push back function. Finally,
the “access iter” symbol matches the iterator’s dereference operator—our definition of
an access to an iterator is execution of the dereference operator.

The regular expression states that the trace will match if we create an iterator, access it
zero or more times, update the vector and attempt to access it again. A match implies that
the program has dereferenced an invalid iterator, which violates the iterator’s contract. In
the event of a complete match under the “never” mode, this tracematch prints the violating
trace along with its debugging information.

To monitor this particular property, the runtime monitor must bind together the vector
and iterator: a dereference of an iterator i is only invalid if i has been previously invalidated
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by an update to its associated vector v. Updates to vectors v′ 6= v should not invalidate
iterator i; conversely, however, iterators i′ which are also associated with v should also be
invalidated by writes to v.

2.3.1 Monitoring

In this section, we discuss Tracerory’s monitoring for tracematches. Recall the high-level
overview of our tool in Figure 2.1. Tracerory takes two inputs: a binary to be instrumented,
and a set of tracematches. It first parses the tracematches and determines which functions
should be monitored. It then intercepts these functions, using the dynamic binary trans-
lator, to insert monitoring code into the binary. This results in calls back to Tracerory;
these calls update the state of the runtime monitor.

While preparing for execution, Tracerory first reads the tracematch specification, so
that it knows what to monitor. It also creates data structures to track states of the various
objects involved in partial matches. Finally, it prepares a set of callbacks to be inserted
into the running program during the instrumentation phase, as alluded to above.

We represent the tracematch specification using a variable table, a class table, a symbol
table, and a finite state machine (representing the regular expression). Unlike a traditional
symbol table, our symbol table only contains entries for tracematch symbols. The variable
table maps the tracematch’s variables to their types (classes) and records a unique identifier
for each variable. For instance, the iterator example might give a class table mapping v to
〈vector, 1〉 and i to 〈 normal iterator, 2〉.

The symbol table similarly maps symbol names to information summarizing symbols.
In particular, it includes the kind of the symbol (before, after, or after returning),
the function names (potentially containing wildcards) associated with the symbol, and a
pointcut signature, which includes information on the targets, arguments, and returning
values to be matched, including their types, as well as a unique identifier for the symbol.
The update vec symbol would be associated with after, vector::push back and the fact
that it binds the target v (of the call to push back), which has type vector, along with a
symbol identifier from the tracematch symbol table.

Finally, Tracerory creates a finite state machine from the regular expression using stan-
dard techniques. The symbol identifiers are the labels on the edges of the finite state
machine.

At runtime, Tracerory maintains two data structures to track the progression of objects
through states. First, it updates a binding table, which stores all currently-bound variables
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and their states as in the FSM. New bindings are set to the initial state of the finite state
machine. Tracerory also maintains an object map, keyed by object addresses. This map
contains each object’s type.

We create callbacks to be invoked upon symbol execution. When the program executes
a callback (indicating that a finite state machine transition ought to occur), it passes the
symbol’s identifier and all relevant objects back to the runtime monitor.

We discuss three different kinds of callbacks: ones which handle no objects, ones which
handle one object, and ones which handle two or more objects.

A callback with zero objects corresponds to a symbol s0 without bindings. The runtime
monitor must advance all bindings in the binding table with the information that s0 has
occurred.

For a callback for symbol s1 with one object o, we look up o in the bindings and advance
all of o’s bindings. In the absence of any such bindings, we create a new binding at the
initial state, associate the new binding with o, and advance the binding appropriately for
an s1 execution.

We use a similar approach for a symbol s2 with two or more objects O. In such a case,
we first advance all bindings which also bind O. In the absence of complete matches, if we
find any bindings which bind a strict subset of O (leaving one or more variables unbound),
we copy the partial binding, add the previously unknown object, and advance the trace.
Finally, if no bindings at all match, we create a new binding with the initial state and
advance that.

2.3.2 Iterator Example

Figure 2.6 presents a simple program which exercises the iterator tracematch. This pro-
gram first creates a vector my vec, modifies the vector, and then creates an iterator iter

on my vec using vector::begin. It then modifies the vector using vector::push back

(invalidating the iterator), and tries to dereference the now-invalidated iterator.
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1 #include <vector>
2
3 using namespace std ;
4
5 int main ( )
6 {
7 vector<int> my vec ;
8 my vec . push back ( 7 ) ;
9 vector<int > : : i t e r a t o r i t e r = my vec . begin ( ) ;

10 my vec . push back ( 4 2 ) ;
11 int x = ∗ i t e r ;
12 return 0 ;
13 }

Figure 2.6: Simple iterator client.

At runtime, the first callback to the monitor occurs at line 8. This callback creates
a new binding and attempts to move it out of the initial state, but fails, as there is no
transition for “update vec” out of that state. We remove the newly created binding since
it did not advance (the monitor does not change states).

The first interesting callback occurs at line 9. This callback receives the my vec and
iter objects, as well as the symbol identifier for “create iter”. Since there are no bindings,
the monitor creates a binding using these two objects with its state set to the initial state.
Next, the binding successfully advances to state s1 and the monitor records the symbol
name (“create iter”) and debugging information (line 9).

The call to vector::push back at line 10 triggers a callback to the monitor with the
symbol identifier and the (address of the) vector my vec. The monitor looks up this address
in the bindings and finds the binding 〈my vec, iter〉 it just created. It therefore advances
the binding in the monitor to state s2 (ignoring the lack of “access iter”, which is allowed
to match zero times).

Finally, the iterator dereference *iter triggers another callback for “access iter” and
iterator iter. The monitor looks up bindings for iter and finds the same matching
binding, now at s2. It therefore advances the binding to the final state. This indicates
a complete match, which, according to the specification, should not happen. Figure 2.7
shows the output of Tracerory for this example.
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Tracematch ” Unsa f eVec to r I t e ra to r ” occurred , l i s t i n g t r a c e :
c r e a t e i t e r ( i t e r a t o r c l i e n t . cpp : 9 )
update vec ( i t e r a t o r c l i e n t . cpp : 1 0 )
a c c e s s i t e r ( i t e r a t o r c l i e n t . cpp : 1 1 )

Figure 2.7: Tracerory output for iterator client.

We see the trace does match the finite state machine in Figure 2.5. With our monitor,
we correctly report the symbols that occurred along with the corresponding caller line
numbers.

2.3.3 File Example

Another use of tracematches is to verify that proper usage patterns do occur during pro-
gram execution. An example of this is proper file usage in the C++ library. We demon-
strate this by specifying a property that enforces the constraint that any file opened is
closed. To express this, we use the all operating mode. Figure 2.8 shows our tracematch
for this property.

tracematch Fi leUsage ( ba s i c o f s t r e am o ) {
sym open before target ( o ) : ba s i c o f s t r e am : : open ;
sym c l o s e before target ( o ) : ba s i c o f s t r e am : : c l o s e ;
open c l o s e
{ a l l }

}

Figure 2.8: Tracematch for file usage.

The all operating mode ensures that all bindings reach the ending state of the regular
expression when the object(s) are destroyed or the program completes. The all operating
mode also includes the functionality of the only mode. This mode ensures the binding(s)
match throughout the program execution. For example, if the program starts by closing a
file, that would not advance the trace and our tool would report that. Figure 2.9 presents
a simple client which uses C++ files.
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1 #include <fstream>
2
3 using namespace std ;
4
5 int main ( int argc , char ∗argv [ ] )
6 {
7 ofstream out ;
8 out . open ( ”tmp/ f i l e . txt ” ) ;
9 out << ” He l lo ” << endl ;

10 return 0 ;
11 }

Figure 2.9: Simple file client.

During runtime the only callback made by the monitor is on line 8, which opens the file
out. Since there are no bindings, we create a new binding for out and attempt to advance
its trace from the initial state. This succeeds and records the symbol “open” on line 8.
The program then writes to the file and exits without closing the file. Tracerory scans the
bindings on the program exit and finds out, which is not at the ending state. Figure 2.10
shows the output of our tool.

Tracematch ”Fi leUsage ” did not hold , l i s t i n g t r a c e :
open ( f i l e c l i e n t . cpp : 8 )

Figure 2.10: Tracerory output for file client.

Using the output of Tracerory, we can easily observe that the open which occurs on
line 8 was never closed. The all and only operating modes allow users to express usage
constraints that must occur. Combined with the never operating mode, which ensures
a trace never occurs, users are able to specify safety properties which should hold during
execution. These modes allow users to express both positive and negative properties about
tracematches.
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2.4 Unread Memory

This section provides a high level overview of our unread memory detection. We restrict our
unread memory detection to only monitor binaries and libraries (called images) that the
user specifies. This allows the developer to only view memory which they are responsible
for and can remedy.

For the given images we monitor any memory they allocate and verify two properties.
First, that the memory (or object) is read at least once from any image. Otherwise the
allocation is never used and should be reported. Second, that any writes done to fields of
the memory are read. If not, the writes are never read, which again is unnecessary and
should be reported.

We explain our monitoring for unread memory at a high level in the next section. Next,
we present an example program which contains unread writes. We use this to explain our
tool and describe our output.

2.4.1 Monitoring

Our monitor must know which images it should watch for allocations and writes. Fig-
ure 2.11 shows an example input which monitors a single image. Note that our tool can
monitor multiple images if required by the user.

unread memory {
/home/ jon /bin / v a r i a b l e w r i t e s ;

}

Figure 2.11: Tracerory specification for unread memory.

The monitor records any allocation calls by instrumenting standard C/C++ allocation
functions. We also instrument deallocation functions to determine when memory is re-
leased. Along with these functions we instrument object constructors to provide the class
name for memory which represents an object.

Our monitor only records memory allocations which are made from a watched image.
Since the image is in the watched list, we know they are responsible for the object. However,
they may not be responsible for deallocation of the memory. Therefore, we allow the
memory to be deallocated in any image.
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To keep track of memory reads and writes, we instrument all instructions which read
or write memory. Our monitor records the destination of the memory operation for each
instruction.

For memory writes, similar to allocations, they must come from a watched image, as
any other memory writes are outside of the developer’s control. We record the location of
memory write and mark it as written.

We record memory reads from any image. This is because memory might only used by
an unwatched image (possibility an external library) and should not be reported as unread.
The first read to a memory location sets its read flag to true, since it was read at least
once. We also look at the memory locations within an allocated black. If we find a match,
we mark that memory location as read.

2.4.2 Variable Writes Example

Figure 2.12 shows an example program which we use to demonstrate our unread memory
detection. This program allocates two objects, performs some writes on them and deletes
them.

1 class X
2 {
3 public :
4 X() { }
5 int x ;
6 } ;
7
8 int main ( int argc , char ∗argv [ ] )
9 {

10 X∗ x1 = new X( ) ;
11 X∗ x2 = new X( ) ;
12 x1−>x = 1 ;
13 x2−>x = 2 ;
14 x1−>x = 3 ;
15 delete x1 ;
16 delete x2 ;
17 return 0 ;
18 }

Figure 2.12: Simple program with variable writes.
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First, the program allocates two memory regions for objects x1 and x2 on lines 10 and
11 respectively. The monitor initially marks these objects as unread.

Next, the program performs three writes to the objects. It writes to x1 on lines 12 and
14. It also writes to x2 on line 13. The monitor records the first two writes to x1 and x2

and marks this memory location as initially unread. The second write to x1 overwrites the
first write. Therefore, the first write cannot be read and the monitor records the write on
line 12 as unread.

Finally, the program deletes the objects on lines 15 and 16. After an object is deleted,
no further reads can be made to it. Therefore, if the object is completely unread, we report
it. We also report if the object has any unread writes. Figure 2.13 shows the output for
the program using Tracerory.

Unread Memory
=============
Class : X
Created : v a r i a b l e w r i t e s . cpp :10
Destroyed : v a r i a b l e w r i t e s . cpp :15
Unread : t rue
Unread Writes : 2
v a r i a b l e w r i t e s . cpp :12
v a r i a b l e w r i t e s . cpp :14

Class : X
Created : v a r i a b l e w r i t e s . cpp :11
Destroyed : v a r i a b l e w r i t e s . cpp :16
Unread : t rue
Unread Writes : 1
v a r i a b l e w r i t e s . cpp :13

Figure 2.13: Tracerory output for variable writes.

For each object which is unread or contains unread writes, we report the following: the
caller location that created and destroyed it, whether or not it is unread, and the number
of unread writes, along with their debugging locations. Note that an object may not have
a destroyed location, which indicates it was never deleted. Therefore our tool can also
detect memory leaks in a program.
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The output for the example correctly identifies that both objects are of type X, and
reports that they are unread along with their unread writes. Using this information, the
developer can identify the sources of potentially wasted memory.
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Chapter 3

Implementation

In Chapter 2 we described the high level operation of Tracerory. To validate our design,
we implemented it on top of Pin, a dynamic recompilation toolkit [17]. In this chapter, we
describe our Pin-based implementation on Linux systems using the x86-64 instruction set.
Our technique applies to other instruction sets as well, since Pin’s API provides a layer of
abstraction.

The goal of the instrumentation is to insert functions into a binary implementing our
tracematch and unread memory analyses. To accomplish our goal, we instrument binaries
at two levels: routine level, which sees all functions as they are loaded by the application;
and instruction level, which may execute instrumentation code before each instruction.
At each of these levels, we can inspect the code to determine whether or not we need to
add instrumentation. Pin recompiles sections of binary code just-in-time before running
instrumented versions of the code.

We present the simplified timeline for a Pin execution in Figure 3.1. Routine inspection
is done after the executable loads and before it is run. We are able to add instrumenta-
tion functions at routine entry and exit points. Instruction inspection occurs just before
instructions execute (while the program runs). For instructions we add instrumentation
functions before the instruction executes. The instrumentation functions added at a in-
spection point execute when they are encountered. When we give an overview of the tools,
we explain their inspection and instrumentation functions.
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Executable Pin

Tracerory

Load
executable

Routine
inspection

Execution
Instruction
inpsection

Execute
instrumentation

function

Figure 3.1: Timeline for Pin execution.

At the routine level we can instrument functions using the names included in a binary’s
symbol table. However, most C++ compilers, including the GNU compiler g++, “mangle”
function names to ensure (for linking purposes) that similar function names do not clash.
Our tool therefore unmangles these names, if necessary, to match them with the names
from tracematch signatures. Furthermore, we can insert monitoring calls after entering or
exiting a function using Pin. At the instruction level, we may also insert a monitoring call
before or after an instruction (however, we never insert a call after). We use a combination
of both levels for our implementation: routine level for function entry and exit points and
instruction level for just-in-time instrumentation.

Section 3.1 describes the parser for our tool. Section 3.2 describes the common de-
bugging information implementation for both the tracematches and unread writes tools.
Finally, Section 3.3 and 3.4 describe the low level instrumentation and algorithms for both
tools.
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3.1 Parser

Figure 3.2 shows how the parser interacts with the rest of the program. The parser receives
the input filename, containing specifications from the main program, and begins parsing.
The main program tracks flags for unread memory and tracematches. We set these flags
if we parse an unread memory rule or a tracematch rule.

Read input filename

Set unread memory
enabled flag

Set tracematches
enabled flag

Tracerory

Parse input file

Parse unread
memory

Parse tracematches

Parser
Add watched

images

Unread Memory

Add classes and
symbols

Add tracematches

Tracematches

Figure 3.2: Parser overview.

For every image name in the unread memory rule, we add it to the watched image names
in the unread memory tool. The unread memory tool does not require any additional input.

Tracematches consist of class names, symbols, a regular expression and a mode. When
we encounter a tracematch, we first add all of the classes mentioned in the specification to
the tracematch tool while parsing the variable rules. Next, while reading the symbol rule,
we add all of the symbols in the tracematch to the tool. Both of these steps are required
for proper instrumentation. For the regex rule, we collect tokens representing the regular
expression in postfix notion. Finally, we read the mode (all, only or never) the user
specified for the tracematch. Using tokens and the mode, we construct a tracematch which
is later used by our tool.
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3.2 Debugging Information

Both tools require accurate debugging information to help developers understand the source
of errors (either unread memory or tracematch specification violations). In this section,
we explain how we collect debug information to present it to the user. We use debugging
information provided by DWARF [12], which can be read natively by Pin. This is the com-
mon debugging information format which GNU compilers include when the user specifies
the -g flag.

For each monitored routine x(), we would like to know the debugging location and
image name which invoked x. We therefore record this information at every call instruction.
Figure 3.3 shows an overview. Note that this information is only valid at the entry point
of a monitored function: because we store only one debugging location at a time, any
subsequent calls in a routine will destroy the debugging information for that routine.

Instrument every call instruction
encountered

Instruction Inspection

Determine debugging location if needed
and update cache

Record debugging location as last call
location

Record image name as calling image

Instrumentation Function

Figure 3.3: Debugging overview.

To determine the location of function calls within the binary, we first instrument the
code at the instruction level, looking for call instructions. We add instrumentation which
records the instruction pointer at each call instruction. Next, using the recorded instruction
pointer in the instrumentation function, we determine and record the file and line number of
each executed call instruction. If we do not have debugging information, we instead record
the procedure name and its memory offset. We record this information in a hash map to
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avoid the need to recalculate debugging information for the same instruction pointer. Note
that all of the debugging information is computed on-demand.

Now, we are able to determine the caller information by reading the stored debugging
location on routine entry. We must record every call instruction since it is not possible
to determine which functions are called before execution. To see why, consider calls to
dynamically linked libraries. In this case, the program will execute a call instruction to
its procedure lookup table. The first time a function is called, the lookup table contains
invalid information. This is because the procedure lookup table uses lazy binding, and
only resolves external procedures as they are needed. Control flows to the dynamic loader,
which resolves the location of the external procedure.

In addition to having to instrument every call instruction, we are faced with another
challenge. Since control is passed to the dynamic loader, the operating system may use
calls to other procedures to resolve the function address. These procedure calls would
overwrite the last debugging location, causing it to be invalid. In order to prevent this,,
we ignore all call instructions to the underlying operating system. For 64-bit Linux, this
library is /lib64/ld-linux-x86-64.so.2.

Ignoring all system procedures and instructions does not negatively affect our tool.
Most applications use the standard C/C++ API. This API then interacts with the operat-
ing system. We need not instrument the operating system, because we’re still instrument-
ing the API. The operating system procedures and instructions mainly introduce noise for
user level applications, which we are not interested in. Also, since we ignore the operating
system, this allows our tool to be more easily used in other operating systems—we do not
depend on any functionality specific to Linux.
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3.3 Tracematches

Recall that tracematches consist of class names, symbols, a regular expression and a mode.
Therefore, we must represent symbols, individual states in the regular expression with
a debugging trace (history), and tracematch variable values (bindings). Our tracematch
implementation consists of the following phases: instrumentation, building an NFA for
the regular expression, advancing history and resolving bindings. Figure 3.4 shows an
overview of the execution. First, we instrument all relevant routines. These instrumenta-
tion functions either determine active objects or resolve a symbol (and possibly its target
and returning addresses). For symbols, we may create new bindings and then advance all
matching histories using the regular expression NFA.

Instrument all classes and symbols in
the tracematches

Routine Inspection

Record which objects are active

Resolve symbols along with target and
returning addresses (if needed) and

advance tracematch

Instrumentation Functions

Figure 3.4: Tracematches overview.

We use two global data structures while parsing the input file. First, we maintain a bidi-
rectional class mapping between a class name and its unique identifier. Also, we keep a list
of tracematch symbols, as defined in the input file. Symbols contain the following: symbol
name, tracematch identifier, symbol identifier, placement (before or after) and class and
variable identifiers of the target and returning objects. All identifiers are represented as a
unique number. These are required for the instrumentation phase outlined in Section 3.3.1.

During parsing, we maintain two mappings while parsing each tracematch. First, we
have a variable mapping for a string to class and variable identifier. Next, we have a symbol
mapping for a string to symbol identifier. Using these mappings we fill in the symbol entry,
outlined above, while parsing the symbol rule in the grammar, shown in Figure 2.3.
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While parsing regular expressions, we create a list of tokens representing each regular
expression. The tokens are as follows: symbol (with identifier), then, or, constant (with
number of repeats), question, plus and star. The symbol token represents a state tran-
sition for a particular symbol. We use then to represent the concatenation of two regular
expressions. As a short-hand, constant is a concatenation of a regular expression for a
specified number of repeats. The or token represents an alternation between two regular
expressions. Finally, the remaining tokens represent the number of times to match a regu-
lar expression; question (zero or one), plus (one or more) and star (zero or more). These
tokens are emitted in postfix notation by the parser. We outline their use in Section 3.3.2.

3.3.1 Instrumentation

The goal of the instrumentation is to call the monitor each time the program executes
a symbol. In the tracematch specification, the points before and after correspond to the
function entry and exit point respectively. The instrumentation is also responsible for
resolving the target and returning addresses for a symbol, if they are present. We use
these addresses to create bindings later in the program. This information is all we require
for the rest of our tool to handle tracematches.

Since we have all of the symbol information from the input file, we can find the corre-
sponding routines to instrument. Therefore, we iterate through all of the routine names,
searching for a matching symbol name. When a match is found, we can instrument the
entry and exit points of the function. This is done based on the location of the symbol,
which is either before or after.

Before symbols. For before symbols we insert a call to an instrumentation function,
which receives all of the identifiers for the tracematch/symbol/class/variable along with
the first two arguments of the function. We use the arguments to determine the address of
the target (if applicable), along with debugging information for the function, and call the
appropriate tracematch to advance its state.

For x86-64 programs, the calling convention is to use registers %rdi and %rsi as the
first and second argument, respectively. We found the first argument to constructors and
destructors is always “this”. However, this is not always true for other member functions;
we found that functions for single variable objects on the stack used a different parameter
passing convention depending on the presence of a destructor. Consider a call to the
function Foo::Bar. Figure 3.5 shows the convention when class Foo has no destructor. In
that case, the “this” object is located at the address -0x10(%rbp), and we see that the
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first argument (%rdi) is “this”. The function is called as expected. The final line can be
ignored for now.

On the other hand, Figure 3.6 shows the layout when there is a destructor. The object
which is being called is located at address -0x20(%rbp), which is actually the second
argument (%rsi). Therefore, we must keep track of all active objects in order to determine
which argument is “this”. We are uncertain as to the specific reason why “this” may be
the second argument.

lea −0x10(%rbp) ,%rax
mov %rax ,%rdi
cal lq <Foo : : Bar>
mov %eax ,−0x20(%rbp )

Figure 3.5: Assembly code for single variable objects without destructor.

lea −0x30(%rbp) ,%rax
lea −0x20(%rbp) ,%rcx
mov %rcx ,% rs i
mov %rax ,%rdi
cal lq <Foo : : Bar>

Figure 3.6: Assembly code for single variable objects with destructor.

We maintain a mapping between addresses and class types for currently active objects.
To keep track of active objects, we instrument calls to the constructor and destructor for
every class defined in the tracematch. For these methods, the first argument is always
the object being created or destroyed. We insert calls that pass the class identifier and
address to be added or removed, respectively, in the active object pool of our tool. Every
constructor will have a corresponding call to the destructor unless a destructor is not
automatically generated by the compiler and the object is a stack variable. Stack variables
can then be destroyed by checking the stack pointer and removing any objects which are
below the current address (assuming the stack grows downwards, as is the case for x86-64
code generated by gcc).

Now, since we have both arguments to a member function, we check if the first argument
corresponds to an active object for this class. If there is an entry we set this to the target.
Otherwise we are in a case where the class has a destructor; the second argument is the
target address.
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After symbols. The after symbols always instrument the function exit point, and
may instrument the entry point, if the symbol has a target. Recall that a target address
is equivalent to “this” within the member function. The “this” object is passed as an
argument to the method. However, the execution of the method may overwrite the value
of the “this” object, so our tool captures the value of “this” upon entry.

At each symbol function entry, we insert a call to an instrumentation function, which
passes it the class identifier of the target and the first two arguments of the function. Here,
we resolve the target, record the debugging information for the location of the call, and
push both onto our stack. We use the stack for temporary storage, so we can pop the
values at the exit point. At the exit point of the call, we note all of the identifiers for the
tracematch/symbol/variable, the class of the returning object and the return value.

Symbols containing returning in the tracematch signature present a difficulty. Func-
tions do not always conform to a standard calling convention when returning an object.
For most function calls returning an object, the return value is the address of the object.
However, when the object contains a single variable, the function may instead return the
value that is associated with the object. This is problematic, as we need the address of
the returning object. The examples used above for the member functions demonstrate this
point.

For instance, function Foo::Bar returns a Foo object. The expected case is shown in
Figure 3.6, where -0x30(%rbp) is the address of the returned object. The return value of
this function call is the address of -0x30(%rbp). Figure 3.5 instead shows the case where
the function returns the value of the single variable associated with the object. In this
situation -0x20(%rbp) is the address of the returned object, which is not passed to the
function. After the function call succeeds, the return value (%eax) is then written to the
address of the returned object. This address is the actual address of the returned object,
which is what we are looking for.

Therefore, in the instrumented exit function, we check if the return value corresponds
to an active object. If it is active, we pop any target information (if needed) and call the
appropriate tracematch to advance its state. Otherwise, the returned value is the value of
the object. In that case, we save the current identifiers and target (if applicable), then set a
flag to instrument the next memory write instruction. The address written to corresponds
to the location of the object. We add this address to the set of active objects and then use
all of the saved information to continue the tracematch.

In Table 3.1 we summarize all of the instrumentation needed for the before and after

symbols. The instrumentation points are at a function’s entry and exit points and the next
memory write instruction on exit (which we outlined in the previous paragraph).
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Point Before After
Entry Record debugging information and, if needed, re-

solve target address from first two arguments (for
before, also advance tracematch).

Exit N/A If needed, attempt to resolve the
returning address. If successful,
advance tracematch.

Next memory write after exit N/A If resolving the returning address
failed, the next write address is
the returning address. Record it
and advance the tracematch.

Table 3.1: Summary of symbol before and after instrumentation.

A tracematch allows users to specify which classes to track and use for resolving target
and returning addresses. In addition to handling classes, we allow the user to use void* as
the type of the variable. This skips any checks that a certain class exists. We use the first
argument of a function entry as the target address and return value at function exit as the
returning address. Hence, we do not need to instrument any class constructors/destructors
for this type of variable.

The void* type also allows us to apply our tool to C code. This is because C libraries
typically use first argument of a function as an equivalent to “this”; this is often a pointer
to some data structure.

Overall, we have 5 instrumentation functions for routines: class constructors and de-
structors, before entry, after entry and exit. Also, we have 1 instrumentation function
for memory write instructions, controlled by a flag. These allow us to handle all types of
symbols possible from the tracematch specification. Together, these functions can ensure
that the target and returning addresses used by the tracematch are valid.

3.3.2 Regular Expressions

Our goal is to create a directed graph representing the regular expression NFA. We create
an NFA because it can be created and navigated quickly, using the standard linear time
algorithm outlined in Section 3.3.3. Along with the graph, we record the start and end
vertices for the regular expression. While iterating through the tokens, we create a stack
of partial regular expressions, which are the start and end vertices of the current partial
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regular expressions. We can use this stack to push and pop regular expressions to handle
operations.

The symbol token represents the basic transition. This creates two vertices and an edge
between them, labeled with the symbol identifier. We then push this regular expression
onto the stack. Figure 3.7 also presents all other operations except the constant operation.
The start vertices are prefixed by s and the end vertices by e. The prime (′) indicates
that those start and end vertices are pushed onto the stack. Vertices without a prime
indicates they are arguments and popped off the stack. For operations which take two
regular expressions, the first argument is 0 and the other 1.

We implemented the constant operation by making a copy of the regular expression on
the top of the stack and performing the then operation between the copies as many times
as necessary. Since all of the regular expressions in the graph are disjoint, we perform a
depth first search at the starting vertex and make a copy of all vertices and edges. We
also maintain a mapping of vertices, so we can determine the start and end vertices for the
copy.

For the rest of the operations, it is a matter of popping from the stack, adding vertices
and edges and pushing the new start and end vertices onto the stack. The unlabeled
transitions in Figure 3.7 are the current transitions in the regular expression, which remain
unmodified. Since we only add vertices and edges and the rest of the term is unmodified,
this allows a clean implementation. The transitions we add are epsilon (ε) transitions.
As a reminder, these transitions can be taken for any symbol while transitioning between
states.

After iterating through all of the tokens, we ensure that our partial regular expression
stack contains a single entry. This single entry represents our complete regular expression.
We pop off the final start and end vertices which represent the entire regular expression.
Our directed graph fully represents the regular expression NFA.
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Figure 3.7: Regular expression transformations.

3.3.3 Advancing Bindings

For an individual binding we record a list of current states and a trace, which is a list of
symbol names and debugging information. The symbol names and debugging information
shows how a binding arrived at its current state(s). Using this, we can output a human
readable trace if it matches, as we explain later in this section.

Initially, we start the current state at the starting state in the NFA, with an empty
trace. Each time we advance a binding, the monitor gets the symbol identifier and its
associated debugging information. Note that we also have a target and returning address
(if applicable), which will be used in Section 3.3.4.

First, we must be able to advance a binding from its current state(s) to its next state(s),
using the symbol identifier given. The algorithm for moving a step is given in Figure 3.8.
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This algorithm is linear time in the number of states in the tracematch, based on Thomp-
son’s algorithm [25].

l i s t <Vertex> cur rent s t a t e s /∗ curren t s t a t e s o f the h i s t o r y ∗/
l i s t <Vertex> next s t a t e s /∗ i n i t i a l l y empty ∗/

while ( cur r ent s t a t e s i s not empty ) {
pop o f f cur r ent s t a t e
i f ( unv i s i t ed s t a t e ) {

for ( every outward edge from the s t a t e ) {
i f ( e p s i l o n t r a n s i t i o n ) {

add ta r g e t o f edge to cur rent s t a t e s
}
else i f ( t r a n s i t i o n matches symbol ) {

add ta r g e t o f edge to next s t a t e s
}

}
add s t a t e to v i s i t e d s t a t e

}
}

s e t cur rent s t a t e s to next s t a t e s

Figure 3.8: Pseudocode for advancing current state(s).

However, this is not the complete implementation, since we have to take into account
the modes, as well as debugging information. Recall that the modes control the output and
are either all, only or never. We have a helper function called current states is end,
which returns whether the ending state is reachable from any of the current states. We
use this to see if the trace matches in never mode and to make sure the trace makes it to
the ending state in all mode.

If we advance and new current states list is not empty, we know the symbol matched
and advanced the trace. We append the current symbol name and debugging information
to the trace. When the mode is never, we output all the debugging information if the
trace does indeed match. We check this by using current states is end. Otherwise, if
the new currents states list is empty, we know the symbol did not match. In this case,
when the mode is all or only, we output all the debugging information.

34



The final check we do is for tracematches using the all mode. When the program ends,
we check all of the current traces and check whether they can reach the ending state. For
any that do not match, we again output all of the debugging information which violates
the tracematch.

3.3.4 Bindings

A binding is a vector which keeps track of the address each tracematch variable is bound
to. Recall that each binding has its own unique current state(s) and trace. The address at
index n refers to the binding of the nth variable. Variables are allowed to be unbound, in
which case the address in the binding is equal to 0. Our implementation keeps a list of all
currently active bindings.

From our instrumentation we may call the monitor to advance a tracematch, passing
the following: symbol identifier, variable of the target, address of the target, variable of
the returning and address of the returning. Based on the presence of these parameters, we
may have to keep track of multiple bindings between variables.

We maintain a list of bindings with the following information: the binding itself, the
current states, the trace, and whether or not it is active. The active flag determines whether
or not to silence any output from the binding. For every advance call, we must compare
our current bindings to the inputs and determine which bindings we advance traces for, or
if we need to create new bindings. We define 3 properties on bindings: matching, bindable
and new signature.

For a binding to match, all variables which are not unbound must match exactly.
Unbound variables can match any address. This allows us to advance existing bindings.
For a binding to be bindable, at least one of the input variables must be unbound, while
the others match or are unbound themselves. In this case, we want to bind the unbound
variables and advance the history. We must also create new bindings if necessary. A new
binding signature has all variables unbound except for the input variables, which are bound
to their associated addresses.

With these properties in mind, we can outline how we advance the bindings. We create
a list of all current bindings, which is initially empty, and populate it during execution.
We present the pseudocode for advancing the bindings in Figure 3.9.
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c r e a t e new binding = true
t r i e d to advanced = f a l s e
for ( entry in b ind ings )

i f ( entry binding i s match )
t r i e d to advanced = true
advance the h i s t o r y o f the entry
i f ( advance s u c c e s s f u l )

i f ( entry binding i s new s i gn tu r e )
c r e a t e new binding = f a l s e

else
remove entry from bind ings

else i f ( entry binding i s b indable )
t r i e d to advanced = true
copy the cur rent entry
s e t cur rent entry to be i n a c t i v e
modify i t s b inding
s e t i t to be a c t i v e
advance i t s h i s t o r y
i f ( not s u c c e s s f u l )

remove copied entry from bind ings
else

i f ( copy binding i s new s i gn tu r e )
c r e a t e new binding = f a l s e

i f ( c r e a t e new binding )
c r e a t e new entry
s e t i t s b ind ings
s e t i t s s t a t e to the s t a r t i n g s t a t e
i f ( t r i e d to advanced )

s e t i t to be i n a c t i v e
else

s e t i t to be a c t i v e
advance i t s h i s t o r y
i f ( s u c c e s s f u l )

s e t i t to be a c t i v e
else

remove new entry

Figure 3.9: Pseudocode for advancing bindings.
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We keep two flags while advancing a binding: whether or not we need to create a new
binding and whether or not we tried to advance a binding. The first flag ensures that we
don’t have two bindings with the same values. For instance, assume we have a symbol
1. A tracematch’s regular expression may start with one or more matches for a symbol
(1+), and during execution may advance on this symbol twice (1 1). In this case we do not
want two histories, one being 1 and the other 1 1. After the first symbol, we have a single
history 1 with it’s binding. When the monitor receives the second symbol, we attempt to
advance the first history since it matches. It succeeds and we set the create new binding
flag to false since its binding matches the new binding signature. After, we just want the
single history 1 1, as expected.

The other variable controls whether or not the new binding is initially active or not.
If the input is a match or bindable to any of the current bindings, it tries to advance a
history. If we try to advance one history, it may be the case this symbol cannot advance
from the starting state. Therefore, we create a new binding and silence the output by
setting it invalid. If this new binding advances, we should set it to being active.

The final nuance is when we copy a binding. We only do this when the inputs are
bindable to a binding. In this case we copy the binding and set it to inactive. We do not
remove it since it may be used for another new binding with different arguments. Since it
is inactive, it will not output anything if it fails to advance. Otherwise, if it does advance,
it should be set to active since this is a valid history.

For example, consider a tracematch with the regular expression 1 2. Symbol 1 has a
target and symbol 2 has a different variable as a target. Our program first executes symbol
1, which creates a new binding and advances its history successfully. The program then
executes symbol 2. Since the current binding is bindable we copy the binding and set
the current binding to inactive. In the copied binding, we bind this target advance the
history. However, this is not a new binding signature, so we should create a new binding.
Figure 3.10 shows an illustration of this example. If we did this, we would create a new
binding and it would fail to advance. This would produce incorrect input in all or only

modes, since it would report this binding failed. Therefore, in the case that the current
symbol attempted to advance, we should silence the output. If it does advance, we should
set it to active since at that point we know we were correct.
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Tracematch

advance(1, variable=0, target=0x1BAD)

advance(2, variable=1, target=0xD00D)

s0 s1 s2
1 2

Binding           State(s)  Active
{0x1BAD, 0}       s         true

After, we try to create binding
{0, 0xD00D} and advance 
trace using the symbol 2

Binding           State(s)  Active
{0x1BAD, 0}       s         true

create new binding advance

0 1

binding is bindable, copy

Binding           State(s)  Active
{0x1BAD, 0}       s         true
{0x1BAD, 0}       s         true

set current to inactive

Binding           State(s)  Active
{0x1BAD, 0}       s         false
{0x1BAD, 0}       s         true

bind copy

Binding           State(s)  Active
{0x1BAD, 0}       s         false
{0x1BAD, 0xD00D}  s         true

advance

Binding           State(s)  Active
{0x1BAD, 0}       s         false
{0x1BAD, 0xD00D}  s         true

1

1

1

1

1

1

1

2

Figure 3.10: An example which shows when a new binding is inactive.

In summary, our instrumentation finds symbols and inserts code to determine target/re-
turning addresses. When any symbols occur in the program execution, we pass the symbol
identifier and address to the monitor, which maintains an NFA. Then, in the monitor we
iterate through the bindings and determine which should be advanced, or created then ad-
vanced. For each of these we advance the current state(s) and trace, and output debugging
information if the trace matches, depending on the mode.
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3.4 Unread Memory

In this section, we discuss the implementation of our unread memory detection analysis.
Our goal is to check whether memory allocated on the heap is ever read by the program, and
whether any writes done to memory are eventually read. We do this only for a particular
images (or binaries) specified by the user, since it is likely the developer only has control
over a subset of images.

Instrument all allocation functions and
memory reads/writes

Inspection

Record all allocated memory regions

Track individual reads/writes and
determine whether or not they are

unread

Instrumentation Functions

Figure 3.11: Unread Memory overview.

To utilize information from the instrumentation for use in the detection phase, we
record the following data: memory address, size, class (if applicable), created debug loca-
tion, destroyed debug location (if applicable), whether the memory is unread, any active
writes to this memory, and any unread writes. We maintain two structures which record
this information: one for currently allocated memory and another for previously unread
memory.

Figure 3.11 shows an overview the implementation of this tool. The allocated memory
is determined by the instrumentation of the allocation functions. We then instrument
every memory read/write and determine if any memory locations are unread.
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3.4.1 Instrumentation

To determine allocated memory we instrument function calls to the malloc functions (for
C) and new functions (for C++). Both types of calls have the same format: the caller
requests an amount of memory, and the call returns a pointer to the allocated memory.
We instrument these memory-requesting functions at their entry and exit points. At the
entry point, we record the size requested and store this value, to be used when the function
exits. We also record the debugging information of the function call at this point. When
the function exits, we read these values, along with the pointer returned, and add it to
the allocated memory. Note: for calls to new, we ignore any malloc calls made internally,
since the size and return values will be identical and we only want a single source for the
allocated memory.

We instrument the free function to determine when memory is unallocated. We look for
the function named free in the standard C library. We only instrument the function entry
point and capture the first argument, which is a pointer to the memory to be unallocated.
We simply record this pointer, along with the debugging information to be used in the
detection phase.

To record class information we scan every symbol loaded by the binary looking for
constructors and destructors for objects. We use a regular expression to determine if the
function name matches the object, with an optional ∼ prefix. If the regular expression
matches with the prefix the function is a destructor, otherwise the function is a constructor.
We extract the class name and add it to the class mapping. We use the this information
to report the class of an object to aid debugging.

We found that many programs had a large number of unread writes to objects with
virtual functions. We investigated further by looking at the assembly code, and found it
impossible to determine whether or not a memory write is to the virtual table, or a member
of the object. To ignore virtual table writes, we record the debugging location of every
function for an object. If we have debugging information, the line of the virtual table write
corresponds to the definition of the function. Therefore, if the debugging location matches
any of the debugging locations in the ignored list, this is likely a memory write to the
virtual table and should be ignored. We add this debugging location to our ignore list.

Finally, we instrument memory instructions which read or write memory. However,
since we determine unread memory on an image level, we only instrument instructions
which are in the watched image(s).
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3.4.2 Detection

For every allocation we initially record the allocated address, size and debugging informa-
tion for where the memory block was created. This comes directly from the instrumenta-
tion. After the initial allocation, if it was for an object, a constructor call happens using
the address as an argument. We look up the class of the first constructor call and set the
allocated memory to be an object of that class. We only use the first constructor call since,
if the class extends some other class, the base constructors are later called. These calls
would overwrite the most specific class of the object.

For every read we look up the address in our allocated memory structure and determine
if it falls in the range of [address, address + size) for any addresses. If it does, we mark the
memory as read, and clear any writes to this specific location. For writes, we do the same
lookup. If the current debug location is on the ignore list, we do nothing. Otherwise, we
check if this location is already part of the active write. If it is, the previous write never
got read, so we add it to the list of unread writes. Then, we add this write to the currently
active writes. Recall that we only track allocation and read/writes from watched images
specified by the user.

For a destructor or free, we look in the list of allocated memory and remove the address
the function refers to from the allocated memory set. We do not need to instrument the
delete function, since the destructor call happens first, and we can look it up in the allocated
memory. While removing the address, we declare all active writes to be unread, since they
can no longer be read. If the object is unread, or has unread writes, we move it to the
unread memory list to output on the program exit.

When the program exits, we output all of the unread memory. We also output any
allocated memory which is unread when the program terminates. For each entry, we
output the location of creation (which will be in one of the watched images), location of
destruction, whether or not it was unread and its unread write locations (which will also
be in one of the watched images).
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Chapter 4

Experimental Results

We describe our experience using the Tracerory tool to discover and verify properties of four
open-source applications: AbiWord, a word processing application; ImageMagick, an image
manipulation application; ffmpeg, an audio/video codec; and Xalan, a XSLT processor.

For tracematches and unread memory we record three runtimes: the runtime for a
normal execution of the program; the runtime for an execution of the program with Pin
present and no instrumentation; and the runtime of the application using our tool. Each
runtime is averaged over 10 runs. At the end of the chapter, we include the standard
deviation of the runs.

First, we begin by discussing our results for tracematches and unread memory in-depth
using AbiWord in Section 4.1. The propose of this section is to discuss and evaluate how
our tool can be used by developers.

Next, in Section 4.2, we describe our results for tracematches for each application.
Section 4.3, similarly discusses our results for unread memory. For both tools re dicuss
both qualivtative and quantitative results. Finally, in Section 4.4 we present a summary
of the overall overhead for our tool.

4.1 Case Study: AbiWord word processor

We investigated usage patterns for AbiWord and found the following comment on their
mailing list:
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However, I am pretty sure the initialisation at line 1122 needs to be to 0, because
1 results in a call to OpenTable even if there is no table in the document.

We inspected the AbiWord source code to determine the code the developer referred to
and extracted a finite-state property for table usage. The complete AbiWord source code
consists of 500,000 lines of code, however, we focused on the 15,000-line RTF import filter
code.

We presented the property which specified constrains on table importing in Figure 2.2.
To import a table, the import filter must open the table, handle the cells in the table,
and then close the table. They may be multiple tables, so this pattern can repeat. We
therefore specified an alphabet with symbols open, close, and handle. Our test program
read an RTF file with two tables and converted it to a PDF file. We verified the property
(open handle+ close)+; proper operation of the object requires it to (re-)open the table
before handling a cell.

This property holds in the latest version of AbiWord, as the original bug was fixed.
We were unable to obtain a version of AbiWord with the bug present. Therefore, to verify
our tool, we inserted a call to OpenTable in the constructor to emulate the original bug as
described on the list. Figure 4.1 shows the output of our tool for the modified version of
the program.

Tracematch ”TableUsage” did not hold , l i s t i n g t r a c e :
open (wp/impexp/xp/ ie imp RTF . cpp :1487 )
open (wp/impexp/xp/ ie imp RTF . cpp :5219 )

Figure 4.1: Modified AbiWord tracematch output.

From the output, we can easily identify the two calls to OpenTable. Inspecting both
call locations, we observe that the call on line 1487, which is in the constructor, should not
occur and needs to be removed. This demonstrates the use of our tool during development.
The developer can specify constraints using our tool, and quickly verify that they hold.

Next, we ran the unread memory detector with the same test inputs. We found 177
unique locations which created memory which was either unread or contained unread
writes, mostly involving strings.

Many unread writes arise from their grow function in the string implementation. This
indicates that there are unnecessary calls which grow a string and are never used. There
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are also many strings which are never read. This results in a wasted object creation, when a
null pointer would suffice. The output of our tool for these objects are shown in Figure 4.2.
The writes on line 187 are the object’s initialization list.

Class : UT StringImpl
Created : a f / u t i l /xp/ u t s t r i n g c l a s s . cpp :123
Destroyed : a f / u t i l /xp/ u t s t r i n g c l a s s . cpp :145
Unread : t rue
Unread Writes : 4
a f / u t i l /xp/ u t s t r i n gbu f . h :187
a f / u t i l /xp/ u t s t r i n gbu f . h :187
a f / u t i l /xp/ u t s t r i n gbu f . h :187
a f / u t i l /xp/ u t s t r i n gbu f . h :187

Figure 4.2: AbiWord unread memory output.

There were also many unread writes to memory involving graphics. This may indicate
unnecessary allocation to structures which are only used for the GUI. Since we are only
converting a document, we do not need any GUI elements. This code probably ought to
be disabled for document conversions.

4.2 Tracematches

For tracematches, we focused on stating and verifying domain-specific properties of the
4 selected applications, rather than verifying generic safety properties which apply to all
clients of a library, as is the case with most of the tracematches in [3]. We were particu-
larly interested in domain-specific properties because they can serve as additional, verified
program documentation through the course of the program’s lifecycle.

All of the applications described in this section were compiled without debugging infor-
mation included. Debugging information is only useful when a property does not hold. Our
tracematch tool can still run without debugging infromation. This allows us to analyze an
application without the need for recompilation. Another reason we do not use debugging
information is so we can compare the results to runs that do use debugging information to
see its effect.
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AbiWord. As discussed in the case study, we ran AbiWord in its document-conversion
mode using the table usage tracematch in Figure 2.2.

We found our input to AbiWord runs in 0.037 seconds without Pin, averaged over 10
runs. With Pin present our average runtime increases to 8.231 seconds, an overhead of
221.8x. When we enable the tracematch, we observe an average runtime of 10.043 seconds.
This corresponds to an overhead of 270.7x. However, without activating our monitoring,
we observe a slowdown exceeding 200x; we conclude that most of the monitoring overhead
is due to Pin.

ImageMagick. ImageMagick is an application for manipulating images, which consists
of over 400,000 lines of code. This application uses many external libraries to open and
process images, such as libjpeg. We read the documentation in the header files for this
library and found a function which referred the programmer to the documentation for its
usage. The document states:

You can write special markers immediately following the datastream header
by calling jpeg write marker() after jpeg start compress() and before the
first call to jpeg write scanlines().

We converted the documentation to its corresponding finite state machine. Figure 4.3
presents the tracematch representing this property.

tracematch Spec ia lMarkers ( void ∗ j ) {
sym s t a r t compre s s before target ( j ) : j p e g s t a r t c ompr e s s ;
sym write marker before target ( j ) : j peg wr i t e marke r ;
sym wr i t e s c a n l i n e s before target ( j ) : j p e g w r i t e s c a n l i n e s ;

s t a r t compre s s wr i te marker ∗ wr i t e s c a n l i n e s+
{ only }

}

Figure 4.3: libjpeg tracematch for markers.

As a reminder, the only operating mode just ensures the trace attempts to take an
unknown transition. We use only for this tracematch since the application may not use
write marker or write scanlines and therefore may not finish in an ending state.
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We resized a jpeg image which contained markers using ImageMagick and verified that
the property held. We found the program runs in 0.114 seconds without Pin. With Pin
present our average runtime increases to 2.028 seconds, an overhead of 14.11x. When we
enable the tracematch, we observe an average runtime of 2.315 seconds. This corresponds
to an overhead of 16.11x. We found the property did hold, and the overhead introduced
on top of Pin for our tool is minimal.

ffmpeg. The ffmpeg application, which encodes and decodes video/audio files, contains
over 500,000 lines of code. Interally the program uses a generic framework which codecs
use to perform decoding actions. Their framework contains complex usage patterns which
each codec must follow. One such pattern from the documentation is the following:

If the codec defines update thread context(), call this when they are ready
for the next thread to start decoding the next frame.

After calling it, do not change any variables read by the update thread context()

method, or call ff thread get buffer().

Since this is a C library, and ffmpeg reuses memory, we at least looked at all the calls
which initialized a codec frame. We made sure that one of these symbols occurred before
getting the buffer, or that the thread updated its context. Next, we state that any calls to
ff thread get buffer() must happen before moving to the next buffer. The tracematch
is shown in Figure 4.4.

tracematch I nva l i dBu f f e r ( void ∗ c ) {
sym i n i t before target ( c ) : f f t h r e a d i n i t ;
sym i n i t d e c od e before target ( c ) : f f h 2 6 3 d e c o d e i n i t ;
sym update before target ( c ) : f f mpeg update thread context ;
sym get before target ( c ) : f f t h r e a d g e t b u f f e r ;
sym next before target ( c ) : f f t h r e a d f i n i s h s e t u p ;

( ( i n i t | i n i t d e c od e | update ) ( get ∗ next )?)+
{ only }

}

Figure 4.4: ffmpeg tracematch for buffers.

We selected a video and used ffmpeg to reduce the framerate. This requires ffmpeg
to decode the video and re-encode it using the new settings. We found the program runs
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in 1.494 seconds without Pin. With Pin present our average runtime increases to 3.910
seconds, an overhead of 2.617x. When we enable the tracematch, we observe an average
runtime of 9.973 seconds. This corresponds to an overhead of 6.676x. The property held
over the program execution. The overhead for ffmpeg is the lowest we found, with less
than a 7x slowdown for both cases.

Xalan. The final application we tested was Xalan. Xalan is a XSLT processor written
in C++ containing approximately 250,000 lines of code. Xalan provides documentation
and examples. Looking at the examples, the developers noted a common error is leaving a
DOMDocument unreleased. Part of the documentation is the following:

Users must call the release() function when finished using any objects that
were created by the DOMImplementation::createXXXX (e.g. DOMLSParser,
DOMLSSerializer, DOMLSInput, DOMLSOutput, DOMDocument, DOMDocumentType).

We expressed this property using the tracematch in Figure 4.5. This property verifies
that each created DOMDocument (which is internally a DOMDocumentImpl) is released before
the program terminates.

tracematch UnreleasedDocument (DOMDocumentImpl d) {
sym c r e a t e after target (d ) : DOMDocumentImpl : : DOMDocumentImpl ;
sym r e l e a s e before target (d ) : DOMDocumentImpl : : r e l e a s e ;
c r e a t e r e l e a s e
{ a l l }

}

Figure 4.5: Xalan tracematch for releasing.

We converted a document using Xalan. During the conversation the program uses the
DOMDocument structure.

We found the program runs in 0.008 seconds without Pin. With Pin present our average
runtime increases to 3.504 seconds, an overhead of 445.5x. When we enable the tracematch,
we observe an average runtime of 3.586 seconds. This corresponds to an overhead of 455.9x.
The property held over the program’s execution. We found the overhead for just using Pin
resulted in a slowdown exceeding 440x. The additional overhead for tracematches was
minimal.

47



4.3 Unread Memory

We test our unread memory detection by running the 4 applications and monitoring their
binaries and associated libraries in the package. The unread memory detection requires
debugging information in order to accurately assess unread writes for C++ programs (due
to virtual functions). Also, we expect that these applications contain unread writes, and
we need debugging information to interpret the results.

To test the applications, we used the same inputs as in the previous section. We
do this so we can accurately compare the overhead between tracematches and unread
memory detection. We also rerun our tracematches on the program containing debugging
information as well in Section 4.4.

AbiWord. Previously, we discussed the output of our unread memory detection for Abi-
Word in Section 4.1. Now, we present the run times for the application. We found the
average runtime (with debugging information) to be 0.041 seconds. With Pin present the
runtime increases to 9.463 seconds, an overhead of 231.2x. With our tool the runtime
is 18.9 seconds. This gives an overhead of 461.7x. In this case, the overhead of unread
memory detection is approximately twice as much as with Pin alone.

ImageMagick. ImageMagick uses its own memory management, which masks the cre-
ation of memory allocations. So, for unread objects without writes, it is difficult to find
the source. However, with unread writes, we can easily identify the allocations.

There are several instances of unread memory in ImageMagick. There are 131 alloca-
tions involving semaphores, even when ImageMagick is used in a single thread. The ma-
jority of the other allocations involve strings and xml-tree elments, which are unread. The
largest source of unread writes came from coders/jpeg.c:585, with 950 unread writes.
We present the code snippet in Figure 4.6.

583 p=GetStringInfoDatum ( p r o f i l e ) ;
584 for ( i =( s s i z e t ) GetStr ingInfoLength ( p r o f i l e )−1; i >= 0 ; i−−)
585 ∗p++=(unsigned char ) GetCharacter ( j p e g i n f o ) ;

Figure 4.6: ImageMagick code showing an unread write.

This shows that the jpeg info, which contains 950 bytes, is written to a pointer and
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is never read. We do not have much knowledge of ImageMagick, but we believe this may
indicate a bug in the program since the jpeg information string is never read.

We found the average runtime to be 0.206 seconds. With Pin present the runtime
increases to 2.561 seconds, an overhead of 12.43x. With our tool the runtime is 43.854
seconds. This gives an overhead of 212.9x. In this case, the overhead of unread memory
detection is an order of magntitude over just Pin. We believe this is mostly due to the
large number of memory allocations.

ffmpeg. The ffmpeg application only showed 3 memory allocations which contained un-
read writes. The first involved the video’s metadata and contained two unread writes,
which may or may not be relevant. The conversion likely copies the data and does not need
to read it to perform the re-encoding. The other two allocations contained thousands of
unread writes each. The source of these unread writes came from the ff add index entry

which sets properties for an index entry. This indicates the application is adding many
index entries which are not used during execution.

We found the average runtime to be 1.502 seconds. With Pin present the runtime
increases to 3.834 seconds, an overhead of 2.553x. With our tool the runtime is 155.464
seconds. This gives an overhead of 103.5x. In this case, the overhead of unread memory
detection is approximately a 50x incease over Pin.

Xalan. Xalan uses its own memory management, like ImageMagick. We found no unread
writes for any memory allocations in the program. However, there are over 3000 memory
allocations which are never read and contain no writes. The default memory allocations
themselves consume 2 bytes. This indicates the developers may want to use a representation
of null, instead of a default allocation.

We found the average runtime to be 0.014 seconds. With Pin present the runtime
increases to 7.535 seconds, an overhead of 537.8x. With our tool the runtime is 11.117
seconds. This gives an overhead of 793.5x, which is less than a 50% increase over just Pin.
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4.4 Summary of Overhead

In this section we summarize the overhead of both tracematches and unread memory detec-
tion for the 4 open source projects. For each application, both with and without debugging
information, we report the average runtime for a normal run, a run with just Pin, and a
run with tracematches enabled and the associated overheads. Also, for each application
with debugging information enabled, we report the average runtime and overhead for our
unread memory detection. Note that these overheads do not make the program unusable.

Our results for AbiWord are shown in Table 4.1. We see that the overhead with
and without debugging information is approximately the same for Pin and Tracematches.
However, for unread memory detection the overhead doubles as compared to tracematches.

Time (s)
Standard
Deviation (s)

Overhead

No Debugging Information
Normal 0.037 0.005
Pin alone 8.231 1.093 221.8
Tracematches 10.043 0.977 270.7

Debugging Information

Normal 0.041 0.000
Pin alone 9.463 1.232 231.2
Tracematches 11.307 0.156 276.2
Unread Memory 18.900 0.082 461.7

Table 4.1: Overhead for AbiWord.

The overhead for ImageMagick is shown in Table 4.2. The overhead for Pin and trace-
matches is less then 20x, with and without debugging information. The unread memory
detection introduces an order of magnitude more overhead than for tracematches.
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Time (s)
Standard
Deviation (s)

Overhead

No Debugging Information
Normal 0.144 0.007
Pin alone 2.028 0.282 14.11
Tracematches 2.315 0.016 16.11

Debugging Information

Normal 0.206 0.020
Pin alone 2.561 0.195 12.43
Tracematches 3.657 0.027 17.75
Unread Memory 43.853 0.229 212.9

Table 4.2: Overhead for ImageMagick.

Table 4.3 presents the overhead for ffmpeg. For this application, we found a 3x increase
in the overhead (both with and without debugging information) for tracematches as com-
pared to just Pin. Similar to ImageMagick, the unread memory detection introduces an
order of magnitude more overhead than for tracematches.

Time (s)
Standard
Deviation (s)

Overhead

No Debugging Information
Normal 1.494 0.176
Pin alone 3.910 0.611 2.617
Tracematches 9.973 0.025 6.676

Debugging Information

Normal 1.502 0.188
Pin alone 3.834 0.604 2.553
Tracematches 10.203 0.027 6.793
Unread Memory 155.464 0.136 103.5

Table 4.3: Overhead for ffmpeg.

We present the overhead for Xalan in Table 4.4. The overhead for Pin and tracematches
increases by 20-25% going from no debugging information present to having debugging
information. The overhead of Pin for this application is quite substantial, and we are not
sure what the cause of this is. The additional overhead for unread memory detection is
approximately 40% more than tracematches.
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Time (s)
Standard
Deviation (s)

Overhead

No Debugging Information
Normal 0.008 0.001
Pin alone 3.504 0.270 445.5
Tracematches 3.586 0.038 455.9

Debugging Information

Normal 0.014 0.000
Pin alone 7.535 0.881 537.8
Tracematches 7.971 0.055 569.0
Unread Memory 11.117 0.071 793.5

Table 4.4: Overhead for Xalan.

In summary, we have found Pin adds slowdown which can range from 2-500x. For
tracematches, the additional overhead beyond Pin is less than 50%, except for a single
case were it was 300%. The unread memory detection overhead varies depending on the
application. It can be as low as 40% or may introduce an order of magnitude higher
overhead.
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Chapter 5

Related Work

We discuss related work in the areas of dynamic binary translators and other binary analysis
frameworks, as well as various approaches to verifying finite-state properties either at
runtime, ahead of time (statically), or through hybrid monitoring approaches.

5.1 Dynamic Binary Translators

We have chosen to build our tracematch engine on top of the Pin engine [17]. Because
we are (for the moment) not performing sophisticated program analyses but instead just
monitoring program executions, any of the other dynamic binary translation engines would
have worked equally well. For instance, DynamoRIO [7] and Valgrind [19] also expose
the necessary information to permit the monitoring of tracematches. Valgrind’s higher-
overhead instrumentation enables it to detect more sophisticated program properties; it is
usually used to detect memory errors, which can be thought of as typestate properties on
memory blocks (“must not access memory after it has been freed”).

Valgrind’s memcheck tool checks the following memory errors: accesses to unallocated
memory, uninitalized memory, memory leaks, double frees and overlapping memory. Our
tool involving memory, however, analyzes unread writes which are not detected by Valgrind.
While not as serious as memory errors (they don’t cause crashes), unread writes may lead
to bugs or at least wasted resources—they should qualify as a novel “code smell” [14].

Another possible approach is to dynamically rewrite the program source by inserting
monitoring calls rather than building a dynamic binary translator. Such an approach
could potentially be equally effective for our current class of runtime monitors; however,
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it appears that some of our program transformations would be difficult to carry out in a
binary rewriting system due to non-standard compilers. Also, because it is more difficult
to analyze, modify, and agressively instrument the program, we believe that our current
dynamic binary translation scheme will be more extensible in the future. Two rewriting
frameworks are Vulcan [24] and Dyninst [8].

BitBlaze [23] applies emulation techniques to carry out dynamic analysis of binaries,
primarily targetting security properties. BitBlaze illustrates a range of possible applications
of dynamic analysis tools; it can protect systems against security vulnerabilities and enables
the generation of exploits from security patches. A major difference between the translators
mentioned above and BitBlaze is that BitBlaze emulates at the whole-system level, rather
than at a per-binary level. Our tracematch analysis could also be implemented on top of
BitBlaze, but, for the types of properties that we seek to verify, Pin’s smaller overhead is
more appropriate—we are not verifying, for instance, security properties, which are only
valid if the entire system respects them.

5.2 Runtime Monitoring for Finite-state Properties

Our work implements the tracematch formalism for runtime monitoring. Other formalisms
include the ones available as JavaMOP [9] plugins, as well as query languages over pro-
grams, e.g. the Program Query Language, PQL [18], or program traces in the Program
Trace Query Language [15]. These formalisms enable developers to verify different classes
of program properties; the differences in expressive power affect the monitoring code and
any related static analyses. However, the dynamic approach in this paper should support
a range of formalisms.

5.3 Static and Hybrid Approaches

Code rewriting approaches also enable static verification and analysis of the rewritten code.
Compilers can, ahead of time, verify that a program never violates a stated property; but,
if that is not possible, they can insert monitoring code to ensure that all executions of the
program report violations of the property (or recover from the effects of the violation.)
The primary difficulty in verifying finite-state properties statically is in disambiguating
references to memory; analyses must use sophisticated pointer analyses to determine which
potential transitions apply to which heap objects at runtime.
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We list a number of examples of static and hybrid approaches. Bodden has imple-
mented [5] a “nop-shadows analysis” which can optimize runtime monitors and statically
verify that programs never violate tracematch properties by identifying instrumentation
points which never contribute to violations. Dwyer and Purandare [13] also statically
optimize runtime monitors; their approach groups together collections of transitions and
executes these transitions all at once, to save time. Other static approaches include those
of Bierhoff and Aldrich [4] and DeLine and Fähndrich’s [11], who statically check typestate
properties by leveraging type annotations which constrain aliasing.

All of the above approaches work on Java or .NET programs; it is easier to analyze
bytecode or source code than C++ code. We chose to use dynamic binary translation in
part to avoid the difficulties involved in building, parsing and analyzing C++ programs.

Xie et al. introduced the concept of using redundancies to find errors in programs [26].
They wrote a static checker in xgcc which looks for repeated operations. Similar to our
tool, a repeated memory write to the same location is reported as an indication of a bug.
However, their tool cannot detect bugs from a single write while ours can.

Seyster et al. have recently implemented an InterAspect extension to gcc [22], which
enables developers to write aspects for their C and C++ programs. It would be possible
to implement tracematches or other runtime monitors on top of InterAspect. Such
an approach would support static analysis and optimization more easily, but would also
require that it is possible to build the target programs with the augmented gcc compiler.

5.4 Leak Detection

Leak detection aims to find sources of memory inefficiency. Our tool reports any memory
which is leaked and not deallocated, similar to modern tools. However, we focus on unread
writes, which are beyond the scope of leak detection tools.

The most common approach is a staleness-based approach [6, 16]. For every allocation,
staleness-based tools record timestamps with every memory access. Any memory unac-
cessed for a period of time can be considered as a bloat or leak. Visualization techniques
using object ownership [21] allow developers to accurately pin-point more complex memory
leaks.

Cherem et al. perform leak detection using static analysis [10]. They wrote a checker
which records the flow of values from allocation to deallocation. They reduce the problem
to a reachability problem and check that there are no memory leaks.
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Novark et al. present Hound, which is a runtime system to track down memory leaks
and bloat [20]. They replace the default allocators with ones that perform data sampling.
They separate allocations based on age and take a fixed number of samples. Next, they used
a staleness-based approach. Their approach is practical with less than a 1.5× slowdown.
However, like other staleness approaches, they do not track individual memory reads or
writes.
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Chapter 6

Conclusions and Future Work

In this thesis, we have presented the concept of using runtime monitoring for finite-state
properties and unread memory detection using dynamic binary translation. Our unread
memory detection ensures that all memory and memory writes are read by a program.

We have implemented Tracerory, which monitors finite-state properties given in the
form of tracematches and unread memory. Finite-state properties of objects constrain
permissible actions on objects depending on the past history of those objects. Tracematches
are particularly suitable for specifying and verifying safety and usage properties which rely
on collaborations between associated objects. Our unread memory detection analyses
identifies any memory blocks which are unread or contain unread writes.

Our system uses dynamic binary translation to instrument executables compiled from
C++ source code. For tracematches, we have demonstrated that our system is able to
monitor a suite of application-specific properties on a number of benchmark programs
with acceptable run-time overhead. For unread memory detection, we have demonstrated
that our system is able to correctly monitor unread memory blocks. We showed that these
blocks are either wasteful, or may be a source of a bug. The overhead for this tool can be
up to an order of magnitude worse than tracematches, but is acceptable.
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6.1 Future Work

There are several improvements that can be made to our tool. Some libraries include usage
different usage contraints based on values passed to, or returned by functions. To cover
more librares, we could include bindings based on values with optional paths.

Our unread memory detection imposes a large overhead. We believe this is mainly due
to the fact we must check the address of every memory operation. To reduce the runtime
overhead, we could apply static analysis which indicate instructions which we can safely
ignore during execution.
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