
The optimality of a dividend barrier
strategy for Lévy insurance risk

processes, with a focus on the univariate
Erlang mixture

by

Javid Ali

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Actuarial Science

Waterloo, Ontario, Canada, 2011

© Javid Ali 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In insurance risk theory, the surplus of an insurance company is modelled to monitor
and quantify its risks. With the outgo of claims and inflow of premiums, the insurer
needs to determine what financial portfolio ensures the soundness of the company’s fu-
ture while satisfying the shareholders’ interests. It is usually assumed that the net profit
condition (i.e. the expectation of the process is positive) is satisfied, which then implies
that this process would drift towards infinity. To correct this unrealistic behaviour, the
surplus process was modified to include the payout of dividends until the time of ruin.

Under this more realistic surplus process, a topic of growing interest is determining
which dividend strategy is optimal, where optimality is in the sense of maximizing the
expected present value of dividend payments. This problem dates back to the work
of Bruno De Finetti (1957) where it was shown that if the surplus process is modelled
as a random walk with ±1 step sizes, the optimal dividend payment strategy is a bar-
rier strategy. Such a strategy pays as dividends any excess of the surplus above some
threshold. Since then, other examples where a barrier strategy is optimal include the
Brownian motion model (Gerber and Shiu (2004)) and the compound Poisson process
model with exponential claims (Gerber and Shiu (2006)).

In this thesis, we focus on the optimality of a barrier strategy in the more general
Lévy risk models. The risk process will be formulated as a spectrally negative Lévy pro-
cess, a continuous-time stochastic process with stationary increments which provides an
extension of the classical Cramér-Lundberg model. This includes the Brownian and the
compound Poisson risk processes as special cases. In this setting, results are expressed
in terms of “scale functions”, a family of functions known only through their Laplace
transform. In Loeffen (2008), we can find a sufficient condition on the jump distribution
of the process for a barrier strategy to be optimal. This condition was then improved
upon by Loeffen and Renaud (2010) while considering a more general control problem.

The first chapter provides a brief review of theory of spectrally negative Lévy pro-
cesses and scale functions. In chapter 2, we define the optimal dividends problem
and provide existing results in the literature. When the surplus process is given by
the Cramér-Lundberg process with a Brownian motion component, we provide a suffi-
cient condition on the parameters of this process for the optimality of a dividend barrier
strategy.

Chapter 3 focuses on the case when the claims distribution is given by a univariate
mixture of Erlang distributions with a common scale parameter. Analytical results for
the Value-at-Risk and Tail-Value-at-Risk, and the Euler risk contribution to the Condi-
tional Tail Expectation are provided. Additionally, we give some results for the scale

v

function and the optimal dividends problem. In the final chapter, we propose an expec-
tation maximization (EM) algorithm similar to that in Lee and Lin (2009) for fitting the
univariate distribution to data. This algorithm is implemented and numerical results on
the goodness of fit to sample data and on the optimal dividends problem are presented.

vi

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Jean-François Renaud of
the Université du Québec à Montréal for his time, for introducing me to this new liter-
ature and for guiding me throughout the course of my research. Additionally, I would
like to thank David Landriault and Gordon Willmot of the University of Waterloo for
reviewing my thesis and for providing insightful and informative suggestions. This
research has been supported by the University of Waterloo, the Natural Sciences and
Engineering Research Council of Canada and the Dominion of Canada General Insur-
ance Company.

vii

Table of Contents

List of Tables xi

List of Figures xiii

1 Lévy Insurance Risk Processes 1

1.1 Introduction . 1

1.2 Properties of the Laplace Transform . 6

1.3 Scale Functions . 7

2 The Optimality of a Barrier Strategy 15

2.1 Introduction . 15

2.2 Definition of the Problem . 16

2.3 Useful Results . 17

2.4 Conditions for the Optimality of a Barrier Strategy 19

2.5 A Sufficient Condition on the Parameters of the Surplus Process 23

2.6 Insights into the Sufficient Condition . 25

3 The Univariate Erlang Mixture 27

3.1 Introduction . 27

3.2 Definitions . 28

3.2.1 Univariate Erlang Mixture . 29

ix

3.2.2 Multivariate Erlang Mixture . 29

3.3 Risk Measures . 30

3.3.1 Value-at-Risk (VaR) . 30

3.3.2 Conditional Tail Expectation (CTE) 31

3.4 Euler Risk Contributions . 33

3.4.1 The Aggregate Loss . 33

3.4.2 The Euler Risk Contribution to CTE 34

3.5 The Optimal Dividends Problem . 37

3.5.1 Jump-Diffusion Processes Revisited 37

3.5.2 Analysis of the Roots . 39

3.6 On the optimality of a barrier strategy . 42

4 An Algorithm for Fitting Univariate Erlang Mixtures to Data 45

4.1 Introduction . 45

4.2 The Expectation Maximization (EM) Algorithm 46

4.3 Parameter Initialization . 48

4.4 Final Model Selection . 50

4.5 A note on the model selection algorithm . 50

4.6 Numerical Results . 51

4.7 Conclusions on the Goodness of Fit . 59

4.8 A Jump-Diffusion Process with an Erlang Mixture
Claims Distribution . 60

5 Concluding Remarks 63

APPENDICES 65

A Parameters of the Fitted Distributions 67

B A C++ Implementation of the Model Selection Algorithm 69

References 91

x

List of Tables

4.1 Statistical tests for the uniform distribution 53

4.2 Statistical tests for the Generalized Pareto distribution 55

4.3 Statistical tests for the mixture of two gamma distributions 56

4.4 Statistical tests for the inverse gamma distribution 58

4.5 Statistical tests for the log-normal distribution 59

A.1 Fitted Parameters for the uniform distribution 67

A.2 Fitted Parameters for the generalized Pareto distribution 67

A.3 Fitted Parameters for the mixture of two gamma distributions 68

A.4 Fitted Parameters for the inverse gamma distribution 68

A.5 Fitted Parameters for the log-normal distribution 68

xi

List of Figures

1.1 A sample path of the Cramér-Lundberg process 3

1.2 ψ(θ)− q . 4

1.3 A sample path of the jump-diffusion process 6

2.1 A sample path of the surplus process under a barrier strategy at a 17

2.2 The behaviour of W (q)′(x) as σ increases . 21

2.3 The behaviour of W (q)′(x) as α increases . 21

3.1 The closed curve γ on the complex plane 40

4.1 Histogram for the uniform distribution with an overlay of a mixture of 6
Erlangs . 52

4.2 PP and QQ plots for the uniform distribution 53

4.3 Histogram for the generalized Pareto distribution with an overlay of a
mixture of 6 Erlangs . 54

4.4 PP and QQ plots for the generalized Pareto distribution 54

4.5 Histogram for the mixture of two gamma distributions with an overlay
of a mixture of 3 Erlangs . 55

4.6 PP and QQ plots for the mixture of two gamma distributions 56

4.7 Histogram for the inverse gamma distribution with an overlay of a mix-
ture of 8 Erlangs . 57

4.8 PP and QQ plots for the inverse gamma distribution 57

xiii

4.9 Histogram for the log-normal distribution with an overlay of a mixture
of 9 Erlangs . 58

4.10 PP and QQ plots for the log-normal distribution 59

4.11 The behaviour of W (q)′(x) with respect to σ for a jump-diffusion process . 60

4.12 W (q)′(x) when Φ(q) < q/c . 61

xiv

Chapter 1

Lévy Insurance Risk Processes

1.1 Introduction

For an insurance company, it is important that a “sufficient” premium is charged in or-
der to cover any losses and achieve a profit. Due to competition in the industry, the com-
pany cannot charge too high a premium. On the other hand, if the premium is too low,
the company may not be able to cover any losses and will run the risk of bankruptcy1.
The problem of quantifying this risk, amongst other problems, has been addressed in
the field of ruin theory or collective risk theory.

In order to quantify the insurer’s risks, it is necessary to model the insurer’s surplus
over time. While this surplus may be difficult to model in reality, the simplest model
should take into account the premium income, claims outgo and initial capital of the
company. We will now look at a classical collective risk model that was introduced by
Cramér and Lundberg in 1930, and which serves as a foundation for more complex risk
models.

1In this thesis, we will use the terms bankruptcy and ruin interchangeably, and define them to be the
first time that the insurer’s surplus becomes negative.

1

The Cramér-Lundberg Process

In this model, the surplus process {Xt}t≥0 is of the form

Xt = x+ ct−
Nt∑
i=1

Ci . (1.1)

The probability law and expectation of X when X0 = x will be denoted respectively
by Px and Ex, where we write P0 = P and E0 = E.

The model assumes that the insurance company has an initial capital of x ≥ 0 and
that premiums are collected at a continuous constant rate of c over time. The last term
represents the total claims payment by time t. It is given by a compound Poisson pro-
cess where the number {Nt}t≥0 of claims by time t is a Poisson process with rate λ.
Additionally, the claim sizes {Ci}i≥1 are a sequence of independent and identically dis-
tributed (i.i.d.) positive random variables independent of {Nt}t≥0 and with probability
distribution function fC .

It is usually assumed that the net profit condition c − λE(C) > 0 is satisfied. Under
this condition, there is a positive probability that the company will not become bankrupt
in the future. A consequence of this condition is that the surplus process would drift
towards infinity. If we denote the time to ruin as τ = inf{t > 0|Xt < 0}, then Cramér
showed that the probability of ruin

Px(τ <∞) = Px(Xt < 0 for some t <∞)

decays exponentially with respect to the initial capital, x. Figure 1.1 depicts a sample
path of the Cramér-Lundberg process from t = 0 to t = τ .

Lévy Insurance Risk Processes

In modern risk theory, a class of processes that have been recently considered for mod-
elling the insurer’s surplus is the class of spectrally negative Lévy processes, which are
Lévy processes2 with no positive jumps. It provides a generalization of the Cramér-
Lundberg process and allows for a more realistic modelling of the surplus process. Let
X = {Xt, t ≥ 0} be a spectrally negative Lévy process with Lévy triplet (µ, σ2, v) where

2For readers unfamiliar with Lévy Processes, we refer you to [18] for a comprehensive look at the
theory and applications of Lévy processes.

2

x

Xt

tτ

Figure 1.1: A sample path of the Cramér-Lundberg process

µ ∈ R , σ ≥ 0 and v is a Lévy measure on (0,∞) satisfying
∫

(0,∞)
(1 ∧ x2)v(dx) < ∞. In

the literature, when we exclude from the definition the case of a negative subordinator
or a deterministic drift, these processes are usually referred to as Lévy insurance risk
processes.

For a spectrally negative Lévy process X , the Laplace exponent exists and is given
by

ψ(θ) =
1

t
log
(
E
(
eθXt

))
= µθ +

1

2
σ2θ2 −

∫ ∞
0

(
1− e−θx − θx1(x<1)

)
v(dx) (1.2)

and is properly defined for θ ≥ 0 since the Lévy measure is concentrated on (0,∞).

We denote the right inverse of ψ as Φ(q) = sup{θ ≥ 0 : ψ(θ) = q}. Some properties
of the Laplace exponent are:

• ψ(θ) is strictly convex and tends to infinity as θ tends to infinity.

• On [0,∞), for q ≥ 0, the equation ψ(θ) − q = 0 has at most one real root given by
Φ(q).

The shape of the Laplace exponent on [0,∞) depends on ψ
′
(0) = E(X). The two

cases are shown in Figure 1.2 for the function ψ(θ)− q, where q ≥ 0.

3

ψ(θ)− q

θ

(a) E(X1) < 0

ψ(θ)− q

θ

(b) E(X1) > 0

Figure 1.2: ψ(θ)− q

The Lévy-Itô Decomposition Theorem (see Theorem 3.1 of [18]) states that we can
write X = X(1) + X(2) + X(3) + X(4), where X(1) corresponds to a linear drift, X(2) is
Brownian motion, X(3) is a compound Poisson process and X(4) is a square integrable
martingale with a countably infinite number of jumps of size less than 1 over each finite
time horizon. Denoting, for i = 1, 2, 3 and 4, the characteristic exponent ofX(i) by ψ(i)(θ),
we have that

ψ(1)(θ) = µθ , (1.3)

ψ(2)(θ) =
1

2
σ2θ2 , (1.4)

ψ(3)(θ) = −
∫
x≥1

(1− e−θx)v(dx) , and (1.5)

ψ(4)(θ) =

∫
x<1

(θx− (1− e−θx))v(dx). (1.6)

For an insurance company, we can interpret X as a generalization of the classical
surplus process. X(1) may represent the flow of premium income at a rate µ that more
or less matches X(3), the outgo due to large, occasional claims. X(4) can also be seen as
the outgo with respect to a countably infinite number of small claims that are offset by

4

different drift rates. Finally, X(2) introduces extra variation in the system of premium
inflow and claims outgo.

In this thesis, we will focus on a sub-class of these Lévy insurance risk processes.
The risk process will be given by the Cramér-Lundberg process with a Brownian mo-
tion component. For convenience, we will refer to this sub-class of processes as jump-
diffusion risk processes.

Jump-Diffusion Processes

For a jump-diffusion process, X is given by

Xt = x+ σBt + ct−
Nt∑
i=1

Ci (1.7)

where x ≥ 0 is the initial capital, σ ≥ 0, {Bt, t ≥ 0} is a standard Brownian motion
process and {Nt}t≥0 is a Poisson process with rate λ. The claim sizes {Ci}i≥1 are a se-
quence of independent and identically distributed (i.i.d.) positive random variables
independent of {Nt}t≥0 and with probability distribution function fC . Furthermore, all
components in the above expression are independent of each other.

The corresponding Laplace exponent is

ψ(θ) = cθ +
1

2
σ2θ2 − λ

∫ ∞
0

(
1− e−θx

)
fC(x)dx. (1.8)

The Laplace exponent above can be obtained from (1.2) by setting v(dx) = λfC(x)dx
and c = µ+

∫∞
0
x1(x<1)v(dx).

Remark 1.1.1. While we will assume σ > 0, it should be noted that we can recover the Cramér-
Lundberg process by setting σ = 0 in (1.8).

Compared to the Cramér-Lundberg process, this jump-diffusion process introduces
extra volatility in the surplus process. Figure 1.3 depicts a sample path of the jump-
diffusion process from t = 0 to t = τ (the time to ruin).

We will now discuss the Laplace transform and its properties, followed by a note on
scale functions, which are both very useful tools in this literature.

5

x

Xt

tτ

Figure 1.3: A sample path of the jump-diffusion process

1.2 Properties of the Laplace Transform

Definition 1. The Laplace transform LY (θ) of a real-valued random variable Y with probability
law v is defined as

LY (θ) = E(e−θY) =

∫
R
e−θyv(dy) (1.9)

for some set of θ ∈ R for which the integral converges.

Denoting the Laplace transform of the kth derivative of the positive, real-valued
function f(x) by Lfk , where we write Lf0 = Lf , we have the following useful prop-
erties from [1] and [8]:

• Laplace transform of the kth derivative:

Lfk(θ) = θkLf (θ)− θk−1f(0)− · · · − f (k−1)(0). (1.10)

• Given that g(x) is another positive, real-valued function, the Laplace transform of
the convolution of f and g, i.e. (f ∗ g)(x) =

∫∞
0
g(x− y)f(y) dy, is

Lf∗g(θ) = Lf (θ)Lg(θ). (1.11)

6

• Initial Value Theorem:

f(0) = lim
θ→∞

θLf (θ). (1.12)

• Final Value Theorem:
If the poles of θLf (θ) lie either in the open left half plane or at the origin, with at
most a single pole at the origin, then

lim
x→∞

f(x) = lim
θ→0

θLf (θ). (1.13)

• Cauchy Residue Theorem:
Suppose C is a simple closed positively oriented contour. If eθxLf (θ) is analytic
as a function of θ on and inside C except for a finite number of singular points
θ1, θ2, . . . , θn inside C, then the inverse Laplace transform of Lf (θ) is given by

L−1
f (x) =

n∑
i=1

Res[eθxLf (θ), θi] (1.14)

where

Res[eθxLf (θ), θi] =
1

(k − 1)!
lim
θ→θi

[
dk−1

dθk−1
(θ − θi)keθxLf (θ)

]
if Lf has a pole of order k at θi.

1.3 Scale Functions

Denote by {W (q); q ≥ 0} the q-scale functions of X ; we assume sufficient smoothness for
these functions when necessary. When q = 0, we write W (0) = W . The q-scale function
W (q)(x) is the unique, strictly increasing and continuous function on [0,∞) with Laplace
transform given by

∫ ∞
0

e−θxW (q)(x) dx =
1

ψ(θ)− q , for θ ≥ Φ(q), (1.15)

and W (q)(x) = 0 for all x ≤ 0.

7

The scale function has been utilized widely in this literature ([7], [19], [23]) and two
popular results (see [19]) from which this function derives its name are provided below.

Two sided exit problem. Let a ∈ R+, q ≥ 0, τ+
a = inf{t > 0: Xt > a} and τ−0 =

inf{t > 0: Xt < 0}. Then

Ex(e−qτ
+
a 1(τ−0 >τ

+
a)) =

{
W (q)(x)

W (q)(a)
, 0 ≤ x ≤ a

0 , x < 0
. (1.16)

One sided exit below. Define, for q ≥ 0,

Z(q)(x) =

{
1 + q

∫ x
0
W (q)(y) dy , 0 ≤ x ≤ a

1 , x < 0
. (1.17)

Then, for any x ∈ R,

Ex(e−qτ
−
0 1(τ−0 <∞)) = Z(q)(x)− q

Φ(q)
W (q)(x). (1.18)

When q = 0, this result gives an expression for the probability of ruin in terms of the
0-scale function. We have

P(τ−0 <∞) =

{
1− ψ′(0)W (x) , if ψ′(0) > 0

1 , if ψ′(0) ≤ 0
. (1.19)

Thus, ruin is certain when E(X1) = ψ
′
(0) ≤ 0, i.e. when the process drifts down-

wards.

We can also define the scale function under the following change of measure.

Exponential Change of Measure. If we define a change of measure

dPΦ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt,

then the process X under this new measure PΦ(q) is still a spectrally negative Lévy pro-
cess, but with a Lévy measure e−Φ(q)xv(dx). Additionally, the Laplace exponent is given
by

ψΦ(q)(θ) = ψ(θ + Φ(q))− q. (1.20)

The scale function under PΦ(q) is also an increasing function and is given by

WΦ(q)(x) = e−Φ(q)xW (q)(x) (1.21)

with a Laplace transform LWΦ(q)
(θ) defined for all θ ≥ 0. Note that WΦ(q)(x) is analogous

to the 0-scale function under our original measure P.

8

Useful Properties

We will now discuss some useful properties of the scale function for the special case
when X is a jump-diffusion process:

• The initial value theorem for Laplace transforms (see (1.12)) allows us to deter-
mine the value of the scale function and its derivative at x = 0. In general, for a
spectrally negative Lévy process with Laplace exponent given by (1.2), we have
the following results which can also be found in [23]:

W (q)(0) =

{
0 , σ > 0

1/c , σ = 0
(1.22)

W (q)′(0) =

{
2/σ2 , σ > 0

∞ , σ = 0
(1.23)

• The function W (q)(x)

W (q)′ (x)
is increasing to 1

Φ(q)
on (0,∞) (see [4]). This property also

implies that W (q)(x) is log-concave on (0,∞), or equivalently, that log
(
W (q)(x)

)
is

concave on (0,∞) .

• Since the poles of the Laplace transform of WΦ(q) lie in the left half plane with a
single pole θ = Φ(q) at the origin, we can use the final value theorem for Laplace
transforms (see (1.13)) to deduce the following properties of WΦ(q) for large values
of x:

– limx→∞WΦ(q)(x) = 1
ψ′ (Φ(q))

.

– limx→∞W
′
Φ(q)(x) = 0.

– limx→∞
∫ x

0
WΦ(q)(x− y)fC(y) dy = 1

ψ′ (Φ(q))
.

• The scale function W (q)(x) is asymptotically equivalent to

eΦ(q)x

ψ′(Φ(q))
as x→∞. (1.24)

9

This follows from the property above that WΦ(q)(x) is bounded above by 1
ψ′ (Φ(q))

.

Since WΦ(q)(x) is more well behaved than W (q)(x) for large values of x, numeri-
cal analysis is usually performed on WΦ(q)(x) and the results transformed back to
the original measure by (1.21). A robust algorithm which uses this property for
inverting the scale function’s Laplace transform is provided in [28].

Scale Functions and Integro-Differential Equations

In this section, we link the scale function methodology to the classical methodology for
the jump-diffusion process when σ > 0. We will show that we can find an integro-
differential equation for the scale function for this model. In classical ruin theory, an
integro-differential equation is usually solved to determine the probability of ruin; this
equation is very similar to the one derived below. Specifically, solving the integro-
differential equation below and using (1.19), we can obtain the ruin probability in this
Lévy setting.

For this model, {Xt, t ≥ 0} and its Laplace exponent are respectively given by (1.7)
and (1.8). By (1.15),

LW (q)(θ) =
1

cθ + 1
2
σ2θ2 + λ(LC(θ)− 1)− q . (1.25)

Rearranging and using the property (1.10), we have

1

2
σ2LW (q)′′ (θ) + cLW (q)′ (θ)− (λ+ q)LW (q)(θ) + λLW (q)(θ)LC(θ)

= 1− (c+
1

2
σ2θ)W (q)(0)− 1

2
σ2W (q)′(0).

Since σ > 0, recall that W (q)(0) = 0 and W (q)′(0) = 2/σ2. This allows us to simplify
the right hand side, and we obtain the following differential equation:

1

2
σ2LW ′′ (θ) + cLW ′ (θ)− (λ+ q)LW (θ) + λLW (θ)LC(θ) = 0.

Finally, after inverting the Laplace transforms, we have

1

2
σ2W (q)′′(x) + cW (q)′(x)− (λ+ q)W (q)(x) + λ

∫ x

0

W (q)(x− y)fC(y) dy = 0. (1.26)

10

Remark 1.3.1. The above integro-differential equation holds for σ > 0. For σ = 0, we can show,
using similar steps, that the scale function is the solution to the following non-homogeneous
integro-differential equation:

cW (q)′(x)− (λ+ q)W (q)(x) + λ

∫ x

0

W (q)(x− y)fC(y) dy = 1(x=0). (1.27)

Examples

Two examples have been provided to show that the spectrally negative Lévy process
can be viewed as an extension of the classical Cramér-Lundberg process.

Brownian motion process with drift

The Brownian motion process with a drift coefficient is obtained by setting λ = 0 in
(1.8), and therefore, X is given by

Xt = x+ σBt + ct−
Nt∑
i=1

Ci , t ≥ 0. (1.28)

Given that

ψ(θ) =
1

2
σ2θ2 + cθ, (1.29)

the Laplace transform of the scale function is

LW (q)(θ) =
1

1
2
σ2θ2 + cθ − q , θ > Φ(q) (1.30)

which is equivalent to the differential equation

σ2

2
W (q)′′(x) + cW (q)′(x)− qW (q)(x) = 0. (1.31)

An explicit form of the scale function can be derived for this model as follows. We
have

LW (q)(θ) =
1

1
2
σ2θ2 + cθ − q

11

=
1√

c2 + 2qσ2

(
1

θ − r −
1

θ − s

)
where

r =
−c+

√
c2 + 2qσ2

σ2
and s =

−c−
√
c2 + 2qσ2

σ2
.

Inverting the Laplace transform, the scale function is given by

W (q)(x) =
erx − esx√
c2 + 2qσ2

, x > 0. (1.32)

When q = 0, we have

W (q)(x) =
1

c
(1− e−2cx/σ2

) , x > 0. (1.33)

Since ψ′(0) = c > 0, by (1.19), the probability of ruin is

P(τ−0 <∞) = e−2cx/σ2

(1.34)

which corresponds to the expression provided in [11].

Cramér-Lundberg process with exponential claims

Another common tractable model in classical ruin theory is the Cramér-Lundberg pro-
cess with exponential claims. Assuming that the rate parameter of the exponential dis-
tribution is α, this process is obtained by setting σ = 0 and fC(x) = αe−αx in (1.8). Given
that

ψ(θ) = cθ + λ

(
α

α + θ
− 1

)
, (1.35)

the Laplace transform of the scale function is

LW (q)(θ) =
1

cθ + λ
(

α
α+θ
− 1
)
− q , θ > Φ(q). (1.36)

12

An explicit form of the scale function can also be derived for this model as follows.
We have

LW (q)(θ) =
α + θ

cθ2 + (cα− λ− q)θ − αq

=
1

c · (r − s)

(
r + α

θ − r −
α + s

θ − s

)
where we assume that r and s (r > s) are the distinct roots of the equation

θ2 +

(
α− λ+ q

c

)
θ − αq

c
= 0.

Inverting the Laplace transform, the scale function is given by

W (q)(x) =
1

c · (r − s) ((r + α)erx − (α + s)esx) , x > 0. (1.37)

When q = 0, we have

r = 0 and s = −αc− λ
c

,

and

W (q)(x) =
αc− λe−(αc−λ)x/c

(αc− λ)c
, x > 0. (1.38)

Supposing that ψ′(0) = c− α/λ > 0, by (1.19), the probability of ruin is

P(τ−0 <∞) =
λ

αc
e−(αc−λ)x/c (1.39)

which corresponds to the expression provided in [3].

We refer the reader to [16] for more results and tractable examples on scale functions
for spectrally negative Lévy processes.

13

Chapter 2

The Optimality of a Barrier Strategy

2.1 Introduction

As mentioned in the previous chapter, under the assumption of the net profit condition,
the surplus process drifts to infinity. This is not realistic in practice. While the solvency
of a company is important, the payout of dividends is also of significance especially
from the point of view of shareholders. In 1957, De Finetti [10] proposed that the surplus
process be modified to include the payout of dividends to shareholders. Specifically, he
aimed to maximize the expected present value of dividend payments until the time of
ruin, and showed that a barrier strategy was the optimal strategy when the surplus
process was modelled by a discrete random walk. Since then, considerable research
has been done on this topic using the more general Lévy insurance risk models and
under more realistic assumptions. While the optimal dividend strategy can be complex,
a simple barrier strategy has been found to be the optimal strategy for a large sub-class
of Lévy insurance risk surplus processes.

In this chapter, our objective is to provide sufficient conditions for the optimality
of a dividend barrier strategy. We will first define the problem and then present and
explain some existing results in this literature. Finally, when the surplus is modelled by
a jump-diffusion process, we conclude with a sufficient condition on the parameters of
the surplus process for the optimality of a barrier strategy.

15

2.2 Definition of the Problem

The notation in this chapter has been adapted from [23]. LetX = {Xt, t ≥ 0} be the Lévy
insurance risk process introduced in Chapter 1. Denoting π as the dividend strategy,
and Dπ

t as the total amount of dividends paid up to time t, the net surplus process
{Uπ

t , t ≥ 0} is defined by Uπ
t = Xt − Dπ

t . Given the ruin time τπ = inf{t > 0 : Uπ
t < 0}

and appreciation rate q ≥ 0, the main function of interest, called the value function, is

vπ(x) = Ex
[∫ τπ

0

e−qt dDπ
t

]
. (2.1)

We aim to find an optimal strategy π∗ where

vπ∗(x) = sup
π∈C

vπ(x). (2.2)

and C is the set of admissible dividend strategies. Roughly speaking, a dividend strat-
egy is admissible if at time t, the payment of dividends does not result in ruin under the
modified/net surplus process.

We denote the barrier strategy at level a as πa, and define the cumulative dividends
paid until time t to be

Da
t = (sup

0≤s≤t
Xs − a)+. (2.3)

Also, if the barrier strategy at level a is applied, then we denote the value function
by va(x). If at any time the surplus is above a, such a strategy pays out immediately
the excess of the surplus over a as dividends to shareholders. Figure 2.1 depicts the
sample path of the original ({Xt}t≥0) and modified ({Uπ

t }t≥0) surplus processes when a
horizontal barrier strategy is applied at a.

Our objective of maximizing the present value of dividend payments is mainly from
the view of the shareholders. Additionally, if too low a barrier level is applied, then ruin
can occur early. On the other hand, if the barrier level is too high, then there will be too
few payments of dividends to shareholders as the surplus process would take too long
to hit the barrier.

It is also important to note that various dividend strategies1 can be employed by an
insurance company. However, we will only focus on the conditions for the optimality of

1For the interested reader, we refer you to [2] for a summary of some well known strategies in this
literature.

16

x

a

tττπa

Legend

Xt

Uπa
t

Figure 2.1: A sample path of the surplus process under a barrier strategy at a

a dividend barrier strategy. In [11] and [9], it was proven that a dividend barrier strategy
is optimal for the Brownian motion process with drift and the Cramér-Lundberg process
with exponential claims (the two examples provided at the end of the previous chapter).

2.3 Useful Results

In this section, we present a few interesting results from [5], [27], [17] and [23], some of
which will be used in later sections.

Theorem 2.3.1 (Avram, Palmowski and Pistorius (2007), and Renaud and Zhou (2007)).
Assume W (q) is continuously differentiable on (0,∞). The value function of the barrier strategy
at level a ≥ 0 is given by

va(x) =


W (q)(x)

W (q)′ (a)
if x ≤ a

x− a+ W (q)(a)

W (q)′ (a)
if x > a

. (2.4)

From the above theorem, if x ≤ a, we see that an optimal barrier level is given by

a∗ = sup{a ≥ 0 : W (q)′(a) ≤ W (q)′(x)∀x ≥ 0}. (2.5)

17

Additionally, assuming a barrier strategy is applied at level a, we can interpret the
expression for the value function as follows: if the initial capital is not more than the
barrier level (that is, x ≤ a), then the present value of dividends is given by W (q)(x)

W (q)′ (a)
.

Alternatively, if the initial capital is greater than the barrier level (that is, x > a), then
the amount x − a is paid out as dividends immediately at time 0 and the present value
of the remaining dividends is given by W (q)(a)

W (q)′ (a)
(which is consistent with the expression

for the present value of dividends for a surplus process starting at x = a).

We will now proceed with the results for the optimality of a barrier strategy. The
first result can be found in Loeffen (2008) and involves the scale function which was
introduced earlier.

Theorem 2.3.2 (Loeffen (2008)). Suppose that W (q) is sufficiently smooth and W (q)(a) ≤
W (q)(b) for all a∗ ≤ a ≤ b. Then the barrier strategy at a∗ is an optimal strategy.

In words, it states that if the global minimum of the first derivative of the scale func-
tion is the last local minimum, then an optimal strategy is a barrier strategy. This forms
the basis of all results in this chapter. In general, it is difficult to determine if this theo-
rem is satisfied as scale functions for which explicit expressions exist are few. This leads
to theorem 3 of Loeffen (2008) which provides us with a condition on the Lévy measure
for the optimality of a barrier strategy.

Theorem 2.3.3 (Loeffen (2008)). Suppose that the Lévy measure v ofX has a completely mono-
tone density, that is, v(dx) = µ(x) dx, where µ : (0,∞) → (0,∞) has derivatives µ(n) of all
orders which satisfy

(−1)nµ(n)(x) ≥ 0 for n = 0, 1, 2, (2.6)

Then W (q)′ is strictly convex on (0,∞) for all q > 0. Consequently, Theorem 2.3.2 holds and
the barrier strategy at a∗ is an optimal strategy for the control problem.

In the case of the Cramér-Lundberg model with a Brownian component, there exists
an optimal barrier strategy if the claims distribution is completely monotone. Examples
of such distributions include the exponential, Weibull, Pareto and hyper-exponential
distribution, or any distribution that is a mixture of these distributions. Throughout the
past two years, researchers have succeeded in providing weaker conditions on the Lévy
measure for the optimality of a barrier strategy.

Before we proceed to the next two theorems, note that a function f : R → R+ is
log-convex if log f(x) is a convex function. Additionally, the tail of a Lévy measure is
defined as a function x 7→ v(x,∞) where x ∈ (0,∞).

18

Theorem 2.3.4 (Kyprianou, Rivero, Song (2008)). Suppose that X has a Lévy density that is
log-convex. Then the barrier strategy at a∗ is optimal.

This theorem is an improvement of the previous theorem as it only places a restric-
tion on the second derivative. Therefore, we only need to calculate the second derivative
(instead of all derivatives) of the log of the Lévy density to determine if the theorem is
satisfied. Note that the examples of completely monotone distributions are also log-
convex. The above result was pushed further by Loeffen and Renaud in 2010 in a more
general setting by providing an even weaker condition on the Lévy measure.

Theorem 2.3.5 (Loeffen, Renaud (2010)). Suppose the tail of the Lévy measure is log-convex.
Then, for all q ≥ 0, W (q) has a log-convex first derivative.

Since the log-convexity of W (q)′ implies the convexity of W (q)′ , theorem 2.3.2 is sat-
isfied and the optimal strategy is a barrier strategy. It should also be noted that log-
convexity of the Lévy measure implies the log-convexity of the tail of a Lévy measure.
As such, the class of densities that satisfy this condition contains the class of log-convex
densities. Note that for jump-diffusion processes, the requirement of log-convexity of
the tail of the Lévy measure is equivalent to having log-convexity of the tail/survival
probability of the claims distribution.

2.4 Conditions for the Optimality of a Barrier Strategy

Objectives

Theorems 2.3.3, 2.3.4 and 2.3.5 provide conditions on the Lévy measure for the opti-
mality of a barrier strategy. While these conditions may apply to a wide class of dis-
tributions, there are still some important distributions in insurance theory such as the
log-normal and Erlang distributions that do not satisfy such conditions.

For example, if we consider an Erlang(2, α) claims distribution, then the tail proba-
bility is

SC(x) = 1− FC(x) = e−αx + αxe−αx (2.7)

and

∂2

∂x2
SC(x) = α2e−αx(−1 + αx). (2.8)

19

Note that ∂2

∂x2SC(x) < 0 for x < 1
α

and therefore, the tail probability is not convex on
x ∈ (0, 1

α
). Since log-convexity implies convexity, this implies that the tail probability is

not log-convex. Hence, we cannot conclude that a barrier strategy is optimal in the case
of an Erlang(2, α) claims distribution.

Remark 2.4.1. In [6], Azcue and Muller (2005) considered a jump-diffusion process with an
Erlang(2, α) claims distribution. When σ = 1.4, c = 21.4, λ = 10, α = 1 and q = 0.1, they
found that an optimal strategy was given by a band strategy with the following value function:

vπ∗(x) =


x+ 2.119 , x ∈ [0, 1.803)

0.0944e−1.4882x − 9.431e−0.0793x + 11.257e0.03957x , x ∈ [1.803, 10.22)

x+ 2.456 , x ∈ [10.22,∞)

. (2.9)

For the rest of this chapter, we provide conditions on the parameters of the surplus
process for an optimal barrier strategy, and also look at the asymptotic behaviour of
these parameters on the existence of a barrier strategy.

Motivation

Our motivation for finding sufficient conditions on the parameters of the surplus pro-
cess that result in an optimal barrier strategy stems from a numerical example provided
in [23]. In this example, the surplus process is a jump-diffusion process with an Er-
lang(2, α) claims distribution. Fixing the parameters to c = 21.4, λ = 10, α = 1 and
q = 0.1, the derivative of the scale function was considered when σ = 1.4 and σ = 2. We
reproduce the graphs for these two cases in Figure 2.2.

Note that for the first case, the band strategy given in remark 2.4.1 is an optimal
strategy. However, in the latter case, by theorem 2.3.2, we see that a barrier strategy
is optimal. The graphs also give us the impression that a barrier strategy at level a∗

becomes optimal when σ increases. Alternatively, if we consider the case when σ = 1.4
and increase the value of α from 1 to 1.01, a barrier strategy is once again optimal as
shown in Figure 2.3. Thus, there seems to be some relationship between the model
parameters and the existence of an optimal barrier strategy. We now look at the Laplace
exponent to obtain an explanation of this relationship.

For each of the scenarios described earlier, note that the process is drifting upwards
(i.e. ψ′(0+) = E(X1) > 0) so the Laplace exponent has a shape similar to that of Figure
2.2b. However, what is not apparent is that the value of Φ(q) had decreased in the

20

x

W (q)′(x)

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0 5 10 15 20

(a) σ = 1.4

x

W (q)′(x)

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0 5 10 15 20

(b) σ = 2.0

Figure 2.2: The behaviour of W (q)′(x) as σ increases

x

W (q)′(x)

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0 5 10 15 20

(a) α = 1.00

x

W (q)′(x)

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0 5 10 15 20 25 30

(b) α = 1.01

Figure 2.3: The behaviour of W (q)′(x) as α increases

21

latter case of each scenario when a barrier strategy became optimal. Our explanation
is as follows: since a barrier strategy is optimal for the Brownian motion process, a
sufficiently large σ will introduce enough volatility in the jump-diffusion process such
that a barrier strategy is eventually optimal.

Mathematically speaking, for this jump-diffusion process, we have

ψ(θ) = cθ +
1

2
σ2θ2 + λ

(
α2

(α + θ)2
− 1

)
. (2.10)

and

ψ
′
(θ) = c+ σ2θ − 2λα2

(α + θ)3
. (2.11)

Since the Laplace exponent is a convex function on (0,∞), its derivative is an in-
creasing function. Assuming ψ′(0+) = (c − 2λ

α
) > 0, then (2.11) implies that the overall

derivative increases if either σ or α increases. We can now see from Figure 1.2b that an
overall increasing derivative results in a smaller value of Φ(q).

In addition, we have that

W (q)(x) =
4∑
i=1

Die
θix (2.12)

where (θi)
4
i=1 are the roots of

(ψ(θ)− q)(α + θ)2 = 0 (2.13)

and for i = 1, . . . , 4,

Di =
1

ψ′(θi)
. (2.14)

Therefore,

W (q)′(x) =
4∑
i=1

Diθie
θix. (2.15)

Remark 2.4.2. Since one of the roots of (2.13) is Φ(q), the expressions (2.12) and (2.15) always
contain the terms eΦ(q)x

ψ′ (Φ(q))
and Φ(q)eΦ(q)x

ψ′ (Φ(q))
respectively.

22

Hence, we can conclude that the largest real component of the roots (θi)
4
i=1 is Φ(q)

and as a result, the set (Re(θi))
4
i=1 is bounded above by Φ(q). It will be shown in the

next section (in a more general setting) that the real components of all other roots are
negative. As such, we believe that a second consequence of a small Φ(q) is that, for small
x, the term in Φ(q) would not have much effect on the derivative of the scale function
and thus, the other terms (which are exponentially decreasing) would determine its
behaviour. This implies that the scale function’s derivative would be decreasing for
earlier values of x and then be eventually increasing due to the term in Φ(q) having a
stronger effect for large x. As such, W (q)′(x) would be convex and by Theorem 2.3.2, a
barrier strategy would be an optimal dividend strategy.

2.5 A Sufficient Condition on the Parameters of the Sur-
plus Process

Corollary 2.5.1. When the surplus is modelled by a jump-diffusion process, a barrier strategy
is an optimal strategy if Φ(q) < q

c
.

The above corollary is a result of theorem 2.3.2. While the bound on Φ(q) can be seen
numerically as too tight a bound and is more or less an asymptotic result, it provides
useful insights on the existence of an optimal dividend barrier strategy as we will see in
the next section. We will now look at the proof of this corollary.

Proof. For a jump-diffusion process, we obtained an alternative representation of the
scale function in the previous chapter in the form of an integro-differential equation. By
(1.26), we have

1

2
σ2W (q)′′(x) + cW (q)′(x)− (λ+ q)W (q)(x) + λ

∫ x

0

W (q)(x− y)fC(y) dy = 0

where fC(y) is the p.d.f. of the claims distribution.

If a∗ denotes the optimal barrier level, then theorem 2.3.2 states that a barrier strategy
is optimal if W (q)′(b) ≥ W (q)′(a) for b ≥ a ≥ a∗. Therefore, if W (q)′′(x) ≥ 0 on (a∗,∞),
then a barrier strategy is optimal. Using this condition and the above equation, if

cW (q)′(x)− (λ+ q)W (q)(x) + λ

∫ x

0

W (q)(x− y)fC(y) dy ≤ 0

23

on (a∗,∞), then a barrier strategy is optimal.

SinceW (q)′(x) > 0 (the scale function is a strictly increasing function), we can rewrite
the above inequality as

W (q)′(x)

[
c− (λ+ q)

W (q)(x)

W (q)′(x)
+ λ

∫ x

0

W (q)(x− y)

W (q)′(x)
fC(y) dy

]
≤ 0

which implies that

c− (λ+ q)
W (q)(x)

W (q)′(x)
+ λ

∫ x

0

W (q)(x− y)

W (q)′(x)
fC(y) dy ≤ 0. (2.16)

We look at the third term in the inequality (2.16). Again, since W (q)(x) is an increas-
ing function,

λ

∫ x

0

W (q)(x− y)

W (q)′(x)
fC(y) dy ≤ λ

W (q)(x)

W (q)′(x)

∫ x

0

fC(y) dy

≤ λ
W (q)(x)

W (q)′(x)

∫ ∞
0

fC(y) dy

= λ
W (q)(x)

W (q)′(x)

≤ λ

Φ(q)

where in the last line, we use the fact that W (q)(x)

W (q)′ (x)
is bounded by 1

Φ(q)
. Thus, this third

term is an increasing function with a maximum value of λ
Φ(q)

.

Consider now the first two terms in the inequality (2.16). As mentioned in the last
chapter (alternatively, see [4]), the function W (q)(x)

W (q)′ (x)
is an increasing function on (0,∞).

Therefore, for x ∈ (a∗,∞),

c− (λ+ q)
W (q)(x)

W (q)′(x)

is a decreasing function with a maximum of

c− (λ+ q)
W (q)(a∗)

W (q)′(a∗)

24

attained at a∗.

To ensure that (2.16) holds, we set the sum of the maximum of the first two terms
and the maximum of the third term to be less than or equal to zero. Thus,

c− (λ+ q)
W (q)(a∗)

W (q)′(a∗)
+

λ

Φ(q)
≤ 0

or

W (q)(a∗)

W (q)′(a∗)
≥
c+ λ

Φ(q)

λ+ q
.

Again, since W (q)(a∗)
W (q)′ (a∗)

≤ 1
Φ(q)

, we have

1

Φ(q)
≥
c+ λ

Φ(q)

λ+ q

which implies that

1

Φ(q)
>
c

q
or Φ(q) <

q

c
.

2.6 Insights into the Sufficient Condition

In words, we can interpret the bound provided in the previous section as requiring Φ(q)
to be sufficiently small for the existence of an optimal barrier strategy. In this section,
we will look at the implications of this bound on the Brownian motion component and
the claims distribution.

Recall that the function

ψ(θ)− q =
σ2

2
θ2 + cθ + λ(LC(θ)− 1)− q

is increasing and convex on (0,∞).

25

Assuming E(X1) = c − λE(C1) > 0, ψ(θ) − q exhibits the shape depicted in 1.2b,
with Φ(q) given by the x-intercept. We now look at the first derivative of the function
ψ(θ)− q. We have

∂

∂θ
(ψ(θ)− q) = σ2θ + c+ λL

′
C(θ)

= (c− λE(C)) + σ2θ + λ(E(C) + L
′
C(θ))

> (c− λE(C)) + σ2θ (2.17)

since E(C) + L
′
C(θ) > 0.

If the overall derivative of the scale function is increased, then the positive root Φ(q)
is smaller. Since the Laplace exponent is convex on (0,∞), this implies that the deriva-
tive is an increasing function. By (2.17), we see that we can decrease Φ(q) by either
decreasing the expected value of the claims distribution, or more importantly, by in-
creasing σ. Therefore, as σ is increased, eventually Φ(q) < q

c
and a barrier strategy

becomes optimal. A numerical example is provided in the last section of our final chap-
ter.

26

Chapter 3

The Univariate Erlang Mixture

3.1 Introduction

In this chapter, we focus on the univariate Erlang mixture. This mixture of Erlang dis-
tributions possesses several appealing properties that makes it useful in modelling in-
surance losses. The univariate and multivariate mixtures can converge pointwise to
any positive univariate and multivariate continuous distribution respectively. After
providing definitions of these Erlang mixtures, we discuss and provide closed form
expressions for some risk measures such as Value-at-Risk (VaR) and Conditional Tail
Expectation (CTE), and for the Euler risk contribution to CTE.

Additionally, as we noted in the first chapter, tractable examples of scale functions
are few and numerical algorithms are usually required to invert the Laplace transform.
In the latter part of this chapter, we will give a closed-form expression for the scale
function when the process is a jump-diffusion process with a univariate Erlang Mix-
ture claims distribution, and also present analytical results with respect to the optimal
dividends problem.

27

3.2 Definitions

In [30], it was proven that for any positive continuous distribution with density f(x)
and distribution function F (x),

f̂(x|θ) =

∞∑
i=1

[F (iθ)− F ((i− 1)θ)]
xi−1e−x/θ

θi(i− 1)!
, x > 0 (3.1)

the distribution function of (3.1) converges to F (x) pointwise, as θ → 0. An alternative
proof is given in [21] and is reproduced below.

Proof (from [21]). Let Φ(z) =

∫ ∞
0

eizxf(x)dx, where i =
√
−1, represent the characteristic

function of f(x), and φθ(z) represent the characteristic function of (3.1). Then

φθ(z) =

∞∑
i=1

[F (iθ)− F ((i− 1)θ)](1− iθz)−1

=

∞∑
i=1

∫ iθ

(i−1)θ

(1− iθz)−if(x)dx

=

∞∑
i=1

∫ iθ

(i−1)θ

(1− iθz)−dx/θef(x)dx

=

∫ ∞

0

(1− iθz)−dx/θef(x)dx.

Note that (1 − iθz)−dx/θe is bounded from above when θ|z| < 1 and additionally,
that limθ→0(1 − iθz)−dx/θe = eizx. Therefore, by the Dominated Convergence Theorem,
limθ→0 φθ(z) = Φ(z) for all z. Furthermore, by the Lévy Continuity Theorem, the distri-
bution function of (3.1) converges to that of f(x) pointwise.

28

3.2.1 Univariate Erlang Mixture

The univariate Erlang mixture is defined as a mixture of Erlang distributions with a
common scale parameter. The density function is given by

f(x|θ, ~α) =

M∑
i=1

αi
xri−1e−x/θ

θri(ri − 1)!
, x > 0 (3.2)

where M ∈ Z+ and r1 < r2 < · · · < rM are positive integers. Additionally, ~α = {αi}Mi=0

and αi ≥ 0 with
∞∑
i=1

αi = 1. The parameter αi can be interpreted as the weight corre-

sponding to an Erlang distribution with shape parameter ri and scale parameter θ.

We can see that (3.2) bears a similar form to (3.1). Therefore, this finite mixture allows
us to approximate any positive continuous distribution to some specified accuracy.

3.2.2 Multivariate Erlang Mixture

The multivariate counterpart to (3.2) is

f(~x|θ, ~α) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~m

k∏
i=1

xmi−1
i e−xi/θ

θmi(mi − 1)!
, ~x > 0 (3.3)

where ~x = (x1, . . . , xk), and ~m = (m1, . . . ,mk) ∈ Z+k. Moreover, the weights are given

by ~α = (α~m|α~m ≥ 0;mi = 1, 2, . . . ; i = 1, 2, . . . , k) and satisfy
∞∑

m1=1

· · ·
∞∑

mk=1

α~m = 1.

This distribution can also approximate any positive continuous multivariate distri-
bution to some specified accuracy. In the next section, we will present some analytical
results based on both the multivariate and univariate Erlang mixtures.

29

3.3 Risk Measures

Let X be a random variable with a univariate Erlang mixture distribution. For simplic-
ity, we assume that the probability density function of X is given by

fX(x) =

M∗∑
i=1

αi
xi−1e−x/θ

θi(i− 1)!
, x > 0. (3.4)

Note that (3.4) differs from (3.2) in the shape parameters. In (3.4), the shape parameters
are (1, . . . ,M∗), whereas in (3.2), they are given by (r1, . . . , rM). If we assume that rM ≤
M∗, to retrieve (3.2) from (3.4), we simply set αi = 0 for i 6∈ (r1, . . . , rM). Some of the
results in this section can be found in [21].

3.3.1 Value-at-Risk (VaR)

The Value-at-Risk (VaR) of a univariate Erlang mixture at some confidence level p, Vp is
the solution to the equation

e−Vp/θ
M∗−1∑
i=0

M∗∑
j=i+1

αj
V i
p

θii!
= 1− p. (3.5)

Proof. To obtain the expression for VaR, we use the result that∫ ∞

x

yk−1e−x/θ

θk(k − 1)!
dy =

k−1∑
j=0

e−x/θxj

θjj!
.

Note that the survival distribution of X can now be written as

SX(x) =

∫ ∞

x

fX(x) dx =

∫ ∞

x

M∗∑
i=1

αi
xi−1e−x/θ

θi(i− 1)!
dx

=

M∗∑
i=1

αi

∫ ∞

x

xi−1e−x/θ

θi(i− 1)!
dx

30

=

M∗∑
i=1

αi

i−1∑
j=0

e−x/θxj

θjj!
(3.6)

Therefore, Vp is such that

1− p = SX(Vp) =

M∗∑
i=1

αi

i−1∑
j=0

e−x/θxj

θjj!

=

M∗−1∑
j=0

M∗∑
i=j+1

αi
e−x/θxj

θjj!

=

M∗−1∑
i=0

M∗∑
j=i+1

αj
e−x/θxi

θii!

where we rename the indices of summation in the last line.

Remark 3.3.1. The expression in [21] should be corrected for the extra term in the most outer
sum since the index in their first summation ends at i = M∗ instead of i = M∗ − 1.

3.3.2 Conditional Tail Expectation (CTE)

The conditional tail expectation (CTE) at a confidence level p is given by

CTE(100p) =
θe−Vp/θ

1− p

M∗−1∑
i=0

M∗−1∑
j=i

M∗∑
k=j+1

αk
V i
p

θii!
+ Vp. (3.7)

Proof. Using the expression (3.6) for SX(x), we have

CTE(100p) = E(X|X > Vp)

= E(X − Vp|X > Vp) + Vp

=
1

1− p

∫ ∞

Vp

SX(x) dx+ Vp

31

=
1

1− p

M∗∑
i=1

αi

i−1∑
j=0

∫ ∞

Vp

e−x/θxj

θjj!
dx+ Vp

=
θ

1− p

M∗∑
i=1

αi

i−1∑
j=0

∫ ∞

Vp

e−x/θxj

θj+1j!
dx+ Vp

=
θ

1− p

M∗∑
i=1

αi

i−1∑
j=0

∫ ∞

Vp

e−x/θxj

θj+1j!
dx+ Vp

=
θ

1− p

M∗∑
i=1

αi

i−1∑
j=0

j∑
k=0

e−Vp/θVp
k

θkk!
+ Vp

=
θe−Vp/θ

1− p

M∗∑
i=1

i−1∑
j=0

j∑
k=0

αi
Vp

k

θkk!
+ Vp

=
θe−Vp/θ

1− p

M∗−1∑
j=0

j∑
k=0

M∗∑
i=j+1

αi
Vp

k

θkk!
+ Vp

=
θe−Vp/θ

1− p

M∗−1∑
k=0

M∗−1∑
j=k

M∗∑
i=j+1

αi
Vp

k

θkk!
+ Vp

where we once again rename the indices of summation in the last line.

Remark 3.3.2. The formula in [21] should be corrected for the extra term in the most outer sum
since the index in their first summation ends at i = M∗ instead of i = M∗ − 1.

Remark 3.3.3. Note that we can derive an alternative form for the CTE of X at a confidence
level p by using E(X|X > Vp) = 1

1−p

{
E (X)− E

(
X · I{X<Vp}

)}
. It is given by

CTE(100p) =
θ2

1− p

∞∑
n=0

∞∑
i=n

αi · i · p(v, n+ 1, θ). (3.8)

32

3.4 Euler Risk Contributions

3.4.1 The Aggregate Loss

Given a multivariate Erlang mixture (3.3), the aggregate loss S = X1 +X2 + · · ·+Xk has
a univariate Erlang mixture with weights

αSi =
∑

m1+···+mk=i

α~m.

Proof. The moment generating function (m.g.f.) of an Erlang random variable with
shape parameter mj and scale parameter θ is given by

(1− θtj)−mj .

Therefore, the m.g.f. of ~X = (X1, . . . Xk) is

M ~X(t1, . . . , tk) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~m

k∏
i=1

(1− θtj)−mj

and the m.g.f. of S is

MS(t) = M ~X(t, . . . , t) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~m

k∏
i=1

(1− θt)−mj

=

∞∑
i=1

∑
m1+···+mk=i

α~m(1− θt)−i

=

∞∑
i=1

αSi (1− θt)−i.

Inverting the m.g.f, we have

fS(s) =

∞∑
i=1

αSi p(s, i, θ)

33

where

p(s, i, θ) =
si−1e−s/θ

θi(i− 1)!
, s > 0. (3.9)

3.4.2 The Euler Risk Contribution to CTE

Given that V aRp(S) = v, the Euler risk contribution of the j-th loss (1 ≤ j ≤ k) to CTE
at some specified confidence level p is given by

E(Xj|S > V) =
θ2

1− p

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj

m1+...mk∑
n=0

e−v/θvn

θn+1n!
.

Proof. We calculate the risk contribution of Xj to the CTE. The proof of the risk contri-
bution is similar to that in [13]. Since S = X1 +X2 + · · ·+Xk, the m.g.f. of the bivariate
distribution of (S −Xj, Xj) is given by

∞∑
m1=1

· · ·
∞∑

mk=1

α~m(1− θtj)−mj(1− θt)−(m1+···+mk−mj)

=

∞∑
i=1

∞∑
mj=1

∑
m1+···+mk−mj=i

α~m(1− θtj)−mj(1− θt)−i.

Using expression (3.9), we have

f(S−Xj ,Xj)(τ, x) =

∞∑
i=1

∞∑
mj=1

∑
m1+···+mk−mj=i

α~m p(x,mj, θ) p(τ, i, θ).

We want to find E(Xj|S > v) = 1
1−p{E(Xj)− E(XjI{S<v})}.

34

E(XjI{S<v}) =

∫ ∞

0

∫ v

0

x f(S−Xj ,Xj)(s− x, x) ds dx

=

∞∑
i=1

∞∑
mk=1

∑
m1+···+mk−mj=i

α~m

∫ ∞

0

∫ v

0

x p(s− x, i, θ) p(x,mj, θ) ds dx.

Consider the multiple integral inside the sum. We have∫ ∞

0

∫ v

0

x p(s− x, i, θ) p(x,mj, θ) ds dx

=

∫ v

0

∫ v

0

x p(s− x, i, θ) p(x,mj, θ) ds dx

and with a change of variables x = u and s = u+ w, it can be written as∫ v

0

∫ v−u

0

u p(w, i, θ) p(u,mj, θ) dw du

= mj θ

∫ v

0

∫ v−u

0

p(w, i, θ) p(u,mj + 1, θ) dw du

= mj θ FY ∗(v)

where FY ∗(v) is the c.d.f. of an Erlang distribution with shape parameter i + mj + 1 =
m1 + · · · + mk + 1 and scale parameter θ. The last line follows from the fact that the
multiple integral in the previous line is the convolution of two Erlang random variables.
Furthermore, the sum of Erlang random variables with a common scale parameter is an
Erlang random variable with the same scale parameter, but with a shape parameter
equal to the sum of the shape parameters of the two Erlang random variables. Thus,

FY ∗(v) = 1−
m1+···+mk∑

n=0

e−v/θvn

θnn!

and

E(XjI{S<v}) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj θ

1−
m1+···+mk∑

n=0

e−v/θvn

θnn!


35

Since

E(Xj) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj θ,

we have

E(Xj)− E(XjI{S<v}) =

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj θ

m1+···+mk∑
n=0

e−v/θvn

θnn!


= θ2

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj

m1+···+mk∑
n=0

p(v, n+ 1, θ)


and so,

E(Xj|S > v) =
1

1− p
{
E(Xj)− E(XjI{S<v})

}
=

θ2

1− p

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj

m1+···+mk∑
n=0

p(v, n+ 1, θ)

 .

Additionally, we show below that the sum of the individual risk contributions to
CTE gives the CTE of the aggregate loss.

E

 k∑
j=1

Xj|S > v

 =
θ2

1− p

k∑
j=1

∞∑
m1=1

· · ·
∞∑

mk=1

α~mmj

m1+···+mk∑
n=0

p(v, n+ 1, θ)


=

θ2

1− p

∞∑
m1=1

· · ·
∞∑

mk=1

α~m(m1 + · · ·+mk)

m1+···+mk∑
n=0

p(v, n+ 1, θ)


=

θ2

1− p

∞∑
i=1

∞∑
m1+···+mk=i

α~m i

 i∑
n=0

p(v, n+ 1, θ)


=

θ2

1− p

∞∑
i=1

αSi i

 i∑
n=0

p(v, n+ 1, θ)


36

=
θ2

1− p

∞∑
i=1

i∑
n=0

αSi i p(v, n+ 1, θ)

=
θ2

1− p

∞∑
n=0

∞∑
i=n

αSi i p(v, n+ 1, θ)

= CTEp(S)

where the second to last line follows from a change in the order of summation. Note
that the formula for CTE is the second to last line follows from (3.8).

3.5 The Optimal Dividends Problem

3.5.1 Jump-Diffusion Processes Revisited

Henceforth, we change the argument of the Laplace transform from θ to t to prevent
any conflicts with the scale parameter of the univariate Erlang distribution, and we
also assume that q > 0. For a jump-diffusion process where Ci has a univariate Erlang
distribution given by

fC(x) =

M∑
i=1

αi
xi−1e−x/θ

θi(i− 1)!
, x > 0, (3.10)

we can obtain an explicit expression for the scale function. By (1.8), the Laplace expo-
nent becomes

ψ(t) =
1

2
σ2t2 + ct+ λ

(
M∑
k=1

αk(1 + θt)−k − 1

)
− q (3.11)

and we can write the Laplace transform of the scale function as

LW (q)(t) =
1

ψ(t)− q . (3.12)

Multiplying both the numerator and denominator by (1 + θt)M , we have

LW (q)(t) =
(1 + θt)M

(ψ(t)− q)(1 + θt)M
(3.13)

37

and so the Laplace transform is a rational function with a polynomial of order M in the
numerator, and one of order M + 2 in the denominator. Assuming that the (possibly
complex) roots (ti)

M+2
i=1 of

(ψ(t)− q)(1 + θt)k = 0 (3.14)

are distinct, (3.12) can be rewritten using a partial fraction decomposition as

M+2∑
i=1

Di

t− ti
(3.15)

where {Di}M+2
i=1 are given by

Di =
1

ψ′(θi)
. (3.16)

Inverting the Laplace transform, we have

W (q)(x) =

M+2∑
i=1

Die
θix. (3.17)

Remark 3.5.1. The expression for theDi’s are obtained by the Cauchy residue theorem (see 1.14)
and a simple application of L’Hôpital’s rule. An alternate representation for the D′is is given by

Di =
(1 + θti)

(M+2)

σ2/2
∏M+2

j=1,j 6=i(ti − tj)
. (3.18)

Remark 3.5.2. If the roots are not distinct, we can still obtain an expression for the scale function
by means of Cauchy residue theorem or the method of partial fraction decomposition.

Remark 3.5.3. We can see that (3.17) is infinitely differentiable and so, our function of interest
W (q)′ is given by

W (q)′(x) =

M+2∑
i=1

Diθie
θix. (3.19)

38

Since most quantities of interest in this literature are provided in terms of scale func-
tions, given this expression forW (q)(x), it is easy to find closed form expressions for such
quantities. For example, the expression (1.16) for the two sided exit problem under this
process is given by

Ex(e−qτ
+
a 1(τ−0 >τ

+
a)) =


∑

M+2

i=1
Die

θix∑
M+2

i=1
Dieθia

, 0 ≤ x ≤ a

0 , x < 0
(3.20)

and setting q = 0, the expression (1.19) for the probability of ruin can be written as

P(τ−0 <∞) =

1− (c− λθ∑M
i=1 αiri)

M+2∑
i=1

Die
θix , if c− λθ∑M

i=1 αiri > 0

1 , otherwise

. (3.21)

3.5.2 Analysis of the Roots

For notation purposes, for any z ∈ C (where C is the set of all complex numbers), <(z)
denotes the real part of z, whereas =(z) denotes the imaginary part of z.

There are at most M + 1 complex roots of (3.14), which occur in conjugate pairs. The
largest and only positive real root is Φ(q) and for convenience, we let t1 = Φ(q). We also
have that the real part of all other roots is negative; that is, <(ti) < 0 for i = 2, . . .M + 2.
As such, Φ(q) = t1 = sup{ti, i = 1, . . . ,M + 2}.

To prove that Re(ti) < 0 for i = 2, . . . ,M + 2, we use Rouché’s theorem which is
given below (alternatively, see [1]).

Theorem 3.5.1 (Rouché’s theorem). Let γ be a simple closed curve, and let the functions f(z)
and g(z) be analytic both in the region enclosed by γ and on the curve γ. Assume that f and g
satisfy |g(z)| < |f(z)| on the curve γ. Then f(z) and f(z)+g(z) have the same number of zeros
in the region enclosed by γ.

The proof of our claim is provided below.

Proof. Suppose that γ is a semi-circular contour of radiusR in the complex plane centred
at the origin. The closed curve is given by the arc Reit that extends from t = −π/2 to t =
π/2, and also by the line segment on the imaginary axis from−iR to iR. Mathematically,

39

<

=

γ

−R

R

R

Figure 3.1: The closed curve γ on the complex plane

γ = {Reit | − π/2 ≤ t ≤ π/2} ∪ {t | − iR ≤ t ≤ iR}. The contour is shown graphically in
Figure 3.1. We denote

f(z) =
1

2
σ2z2 + cz − (λ+ q) , and g(z) = λ

M∑
k=1

αk(1 + θz)−k

so that f(z) + g(z) = ψ(z)− q.
When <(z) ≥ 0, |1 + θz| ≥ 1 since θ > 0. Therefore, for <(z) ≥ 0,

|g(z)| ≤ λ
M∑
k=1

αk
∣∣(1 + θz)−k

∣∣ (by the triangle inequality)

= λ
M∑
k=1

αk(|1 + θz|)−k

≤ λ
M∑
k=1

αk(1)−k

= λ

since
∑M

k=1 αk = 1. This implies that |g(z)| ≤ λ on γ and inside the region enclosed by γ
when <(z) ≥ 0.

To analyse f(z) on the line segment, let z = it for t ∈ [−R,R]. We have

|f(z)| =
∣∣∣∣12σ2z2 + cz − (λ+ q)

∣∣∣∣
40

=

∣∣∣∣− 1

2
σ2t2 + cit− (λ+ q)

∣∣∣∣ (by substituting z = it)

=

∣∣∣∣ (−1

2
σ2t2 − (λ+ q)

)
+ cit

∣∣∣∣
≥
∣∣∣∣ (−1

2
σ2t2 − (λ+ q)

) ∣∣∣∣ (since |z| ≥ |<(z)|)

=
1

2
σ2t2 + (λ+ q)

> λ (since q > 0).

Finally, we analyse f(z) on the semi-circular contour {Reit | − π/2 ≤ t ≤ π/2}. On
this semi-circle,

|f(z)| ≥
∣∣∣∣12σ2z2 + cz

∣∣∣∣− (λ+ q) (by the triangle inequality)

=

∣∣∣∣z∣∣∣∣ · ∣∣∣∣12σ2z + c

∣∣∣∣− (λ+ q) (since |z1z2| = |z1||z2| for z1, z2 ∈ C)

= R ·
∣∣∣∣12σ2z + c

∣∣∣∣− (λ+ q) (since |z| = |Reit| = R)

≥ R ·
∣∣∣∣<(1

2
σ2z + c

) ∣∣∣∣− (λ+ q) (since |z| ≥ |<(z)|)

= R ·
∣∣∣∣12σ2R cos(t) + c

∣∣∣∣− (λ+ q) (since z = R cos(t) + iR sin(t))

≥ R · c− (λ+ q) (since cos(t) ≥ 0 for −π/2 ≤ t ≤ π/2).

Therefore, |f(z)| > λ if R > 2λ+q
c

.

Overall, we have shown that |f(z)| > λ ≥ |g(z)| on the curve γ for some R > 2λ+q
c

.
Suppose that we set R to be large enough so that the positive root of the quadratic
equation f(z) lies in the region enclosed by γ. Therefore, by Rouché’s theorem, f(z) and
f(z) + g(z) = ψ(z)− q have the same number of roots in the region enclosed by γ. Since
f(z) has one root in this semi-circle, then so does ψ(z) − q. If we let R → ∞, the proof
still holds and hence, we can conclude that ψ(z)−q has exactly one root in the right-half
plane which is given by z = Φ(q). As such, all other roots lie in the left-half plane.

From the above analysis, only one term (the term in Φ(q)) in (3.17) is exponentially
increasing while the other terms are exponentially decreasing.

41

Remark 3.5.4. Similar proofs of this result under more general settings can be found in [16]
and [22].

3.6 On the optimality of a barrier strategy

A sufficient condition

Suppose that M → ∞ in (3.2). Then, by (3.6), the tail probability for the univariate
Erlang mixture is given by

∞∑
i=1

αi

i−1∑
j=0

e−x/θxj

θjj!

=

∞∑
j=0

 ∞∑
i=j+1

αi

 e−x/θxj

θjj!

=

∞∑
j=0

P̄j
e−x/θxj

θjj!
(3.22)

where

P̄j =

∞∑
i=j+1

αi. (3.23)

Note that 1 = P̄1 ≥ P̄2 ≥ P̄3 ≥ . . . , which implies that {P̄j}j≥1 is a non-decreasing
sequence. By theorem 3.2 of [12], (3.22) has a density which is logarithmically convex
on (0,∞) if αk+1/αk is increasing in k = 1, 2, This condition on the weights of the
mixture is equivalent to having αkαk+2 − α2

k+1 ≥ 0, k = 1, 2, . . . , i.e. {αk}k≥1 is a log-
convex sequence.

Therefore, if {αk}k≥1 is a log-convex sequence, then the density of the univariate
Erlang mixture given by (3.2) is log-convex. By theorem 2.3.4, for a jump-diffusion
process with a claims distribution given by this mixture, a dividend barrier strategy is
an optimal strategy.

42

An asymptotic condition

From the previous chapter, recall that we provided a sufficient condition on the pa-
rameters of the surplus process for the optimality of a barrier strategy. Specifically, if
Φ(q) < q

c
, then a barrier strategy is an optimal strategy. With respect to the surplus

being modelled by a jump-diffusion process with a univariate Erlang mixture claims
distribution, we expect that a barrier strategy becomes optimal when either the volatil-
ity σ or scale parameter θ is sufficiently large. A numerical example is provided in the
last section of the next chapter.

43

Chapter 4

An Algorithm for Fitting Univariate
Erlang Mixtures to Data

4.1 Introduction

In the last chapter, we have dealt with the univariate Erlang mixture and showed that
many quantities of interest in the insurance industry have closed form expressions.
Moreover, a tractable form for the scale function translates into closed form expressions
for many quantities in the literature on Lévy insurance risk processes. We will now see
how this mixture performs from a numerical point of view.

In this chapter, we propose an alternative algorithm to that provided in [20] for fit-
ting the univariate Erlang distribution to data. This algorithm uses the same EM algo-
rithm as in [20] for determining the weights (αi, i = 1, . . . ,M) and scale parameter (θ),
but we employ a different method for selecting the shape parameters (ri, i = 1, . . . ,M).
For completeness and convenience, the entire algorithm is provided. Using this algo-
rithm, we will then show the goodness of fit of this distribution to data from some com-
mon distributions. Finally, to summarize our work in the past chapters, we will provide
a numerical example for the optimal dividends problem where the optimal strategy is a
barrier strategy.

45

4.2 The Expectation Maximization (EM) Algorithm

The EM algorithm is a popular and useful tool in statistical estimation problems. It is
used to compute maximum likelihood estimates for incomplete data problems, where
with some additional data, the maximum likelihood estimation procedure would be
simpler. This general iterative algorithm, which was proposed by Dempster, Laird,
and Rubin in 1977, allows us to reformulate an incomplete data problem to a complete
data problem where the maximum likelihood estimation is more tractable. Addition-
ally, compared to other iterative algorithms such as the Newton-Raphson and Fisher’s
scoring methods, it is numerically stable and has reliable convergence.

We will now look at the EM algorithm presented in [20] for a univariate Erlang mix-
ture.

The univariate distribution (3.2) can be written as

f(x|~Φ) =
M∑
i=1

αip(x|ri, θ)

where

p(x|ri, θ) =
xri−1e−x/θ

θri(ri − 1)!
, x > 0. (4.1)

Assume that the dataset is given by ~x = (x1, . . . , xn). The log-likelihood is

l(~Φ|~x) =
n∑
j=1

log

(
M∑
i=1

αip(x|ri, θ)
)
.

However, this is difficult to maximize as it involves the logarithm of a sum. We
assume that there exists some unobservable data Yj ∈ (r1, . . . , rM), j = 1, . . . , n. The
complete data set is now (~x, ~Y) = {(x1, Y1), . . . , (xn, Yn)}. When Yj = ri, this indicates
that the j-th data point xj was generated from an Erlang distribution with density func-
tion p(x|ri, θ). Incorporating the unobservable data into our model, the complete-data
log-likelihood function is now given by

l(~Φ|~x, ~Y) =
n∑
j=1

log p(xj, Yj|~Φ).

46

Given current estimates of the parameters ~Φ(k−1) = {~α(k−1), θ(k−1)}, the density func-
tion of Yj is

q(y|xj, ~Φ(k−1)) =
p(xj, y|~Φ(k−1))

p(xj|~Φ(k−1))

where p(x|~Φ(k−1)) is the marginal density function of X .

We can now determine the expectation of the complete-data log-likelihood function
(this step is called the E-step). We have

Q(~Φ|~Φ(k−1)) =
n∑
j=1

∫
log p(xj, y|~Φ) · q(y|xj, ~Φ(k−1))dy

=
n∑
j=1

M∑
i=1

log p(xj, ri|~Φ) · q(ri|xj, ~Φ(k−1)).

The M-step involves maximizing the expectation calculated in the E-step. That is,

~Φ(k) = max
~Φ

Q(~Φ|~Φ(k−1)).

Given that we can write

q(ri|xj, ~Φ(k−1)) =
p(xj, ri|~Φ(k−1))

p(xj|~Φ)

=
αix

ri−1
j · e−xj/θ/[θri(ri − 1)!]∑M

m=1 αmx
rm−1
j · e−xj/θ/[θrm(rm − 1)!]

, (4.2)

we can find (by setting the score function to zero) that the parameters that maximize
this likelihood are given by

α
(k)
i =

1

n

n∑
j=1

q(ri|xj, ~Φ(k−1)) , i = 1, . . . ,M, (4.3)

θ(k) =

∑n
j=1 xj/n∑M
i=1 riα

(k)
i

. (4.4)

Therefore, since we have expressions for the parameters at each iteration, this algo-
rithm is purely iterative. As proposed in [29], at the end of each iteration, we can check
for convergence by either

47

• computing the maximum distance of the estimated parameters of successive iter-
ations, or

• computing the relative change in the log-likelihood Q(~Φ, ~Φ(k−1)) at successive iter-
ations

and stopping when some predefined tolerance level is reached.

As also proposed in [29], since large factorials may be required, to prevent numerical
underflow or overflow, we compute the logarithm of the factorials using

log(n!) =
n∑
i=1

log(i)

and rewrite p(xj, ri|~Φ(k−1)) in the form

p(xj, ri|~Φ(k−1)) = αi exp{(ri − 1) log(xj)− xj/θ − ri log(θ)− log((ri − 1)!)}.

We can also prevent numerical underflow or overflow in the algorithm by scaling
the values appropriately in the dataset. For example, suppose we scale the values by a
factor of β, where β ∈ R and obtain a new dataset (βx1, . . . , βxn). Furthermore, suppose
that, for this scaled dataset, the maximum likelihood estimate of the scale parameter is θ̂.
Then, for our regular dataset, the maximum likelihood estimate of the scale parameter
will be θ̂/β.

4.3 Parameter Initialization

We set M equal to the number of data points n and ri = i, i = 1, 2, . . . ,M . Based on
the Tijms’ approximation (3.1), given θ, αi is estimated as the frequency of data points
on the interval ((i − 1)θ, iθ]. We keep only non-zero αi’s since any zero αi’s will stay
at zero throughout the iterations. Initializing the scale parameter θ is most challenging
since the other parameters are dependent on its value. To select an initial value for θ,
we consider n possible values for θ, which are given by

θ̂j =

∑n
i=1 xi
n · j , j = 1, . . . , n

For j = 1, . . . , n, we do the following:

48

• Given θ̂j , we initialize ri and αi, i = 1, . . . ,M as above. We “refine” θ̂j once by
computing (4.4), and then re-estimating αi, i = 1, . . . ,M as above.

• After removing the Erlang branches with zero weights (i.e. with αi = 0), to prevent
overfitting, if the total number of parameters is less than n, run the EM algorithm
on these initial parameter estimates with a weak convergence tolerance criterion.

• Compute the Consistent Akaike Information Criterion (CAIC) as

CAIC = −2l + k(ln(n) + 1),

where k is the number of parameters, n is the number of data points and l is the
log likelihood. Denote the value as CAICj .

• Compute the difference between the fifth moments of the sample data and model.
Denote the value as dj .

We now have two sets of model selection criteria, namely C = {CAICj}nj=1 and
D = {dj}nj=1. If any element in D is negative, discard it along with the corresponding el-
ement in C. Find the statistical ranks of elements of C andD, and choose the initial value
of theta that has the minimum average rank. This is best explained by example. For sim-
plicity, suppose that n = 4, and we have C = {760, 925, 800, 810} andD = {20, 16, 10, 12}.
Therefore, rank(C) = {1, 4, 2, 3} and rank(D) = {4, 3, 1, 2}, which implies that the aver-
age ranked set is {2.5, 3.5, 1.5, 2.5}. Since the third element is the minimum of the set,
we will choose θ3 as the initial value of the scale parameter.

Remark 4.3.1. The CAIC considers the balance between likelihood and model complexity and
penalizes more for extra parameters than the Akaike Information Criterion (AIC). Since we have
started with a large number of Erlangs, we may have insignificant Erlang branches in our mix-
ture. As such, this criteria alone is most likely to choose a value of θ that corresponds to a small
number of Erlang branches. This is the reason for considering the second criteria of comparing
the fifth moments of the sample data and the model. This criteria focuses more on the tail of
the distribution, and there is a trade-off between fitting the tail well and the number of initial
Erlangs. We discarded any negative dj’s above because we prefer to initially overestimate the
probability in the tail rather than underestimate it. Underestimating the tail is most likely to
occur if the initial number of Erlangs is large. The value of θ which performs the “best” with
respect to these two criteria is chosen as the initial value.

49

4.4 Final Model Selection

Currently, we may be using too many branches in the mixture and need to remove some
branches to compensate for overfitting. We address this overfitting issue by once again
using the CIAC. We aim to minimize this criterion. After finding our initial parameters,
a "greedy" backward elimination procedure is used where we remove the Erlang branch
with the least weight (the smallest αi), re-run the above EM algorithm and recalculate
the CAIC. We continue removing Erlang branches with the least weight until the CAIC
cannot be improved (i.e. until the CAIC starts to increase).

At this point, we have a mixture of Erlangs where the removal of the least weight
does not decrease the CAIC. We will sort the remaining Erlang branches in order of their
corresponding weight, from smallest to largest. Denote this set of sorted branches by
{e(1), . . . e(M∗)}, where M∗ is the number of remaining branches. The remainder of the
algorithm is outlined below:

1. Set k = 1.

2. Remove the branch e(k), re-run the EM algorithm and recalculate the CAIC.

3. If the CAIC decreases, go to step 1. Otherwise, re-insert the branch e(k) and con-
tinue to step 4.

4. Set k = k+1. If k is less than or equal to the number of remaining Erlang branches,
go to step 2. Otherwise, stop and select the current set of parameters as the optimal
parameters.

4.5 A note on the model selection algorithm

An implementation of the algorithm in C++ has been provided in Appendix B for the
interested reader. It was written using a free and open source, cross-platform C++ li-
brary named Eigen [15]. Our convergence criterion for the EM algorithm was stopping
when the relative change in the log-likelihood was less than tol = 10−4. To find the
initial value of θ, we parallelize the algorithm provided in section 4.3. While this algo-
rithm produces fairly good initial estimates of θ, this initial procedure is very subjective.
Additionally, the user may desire control over the initial number of Erlangs or the ini-
tial fit to the data. Therefore, for each of the values of θ considered in section 4.3, the

50

corresponding number of Erlangs and other goodness-of-fit information is output to a
file. Using this information, the user can have better control over the initial parameters.

In the implementation of EM algorithm, we remove any Erlang branches that were
less than tol

M
, which is a very conservative tolerance. Apart from this, we did not use any

other convergence acceleration methods. The final part of the algorithm (which was
outlined at the end of the previous section) also uses multi-threading to take advantage
of the acceleration that is provided on computers with multiple and quad-core proces-
sors. Any parallel programming is done using the OpenMP API specification, which is
already implemented by many popular C++ compilers.

4.6 Numerical Results

For each of the following distributions, a sample of size 1000 was generated and the
model selection algorithm was used to find the optimal set of parameters:

• The uniform distribution over the range (0, 1),

• The generalized Pareto distribution with a location parameter of 2 and scale pa-
rameter of 2,

• A mixture of two gamma distributions with shape parameters 2.6 and 6.3, scale
parameters 0.3125 and 0.8333, and corresponding weights 0.2 and 0.8,

• The inverse gamma distribution with a rate parameter of 30 and shape parameter
of 0.2, and

• The log-normal distribution whose logarithm has mean equal to 0.03 and standard
deviation 0.2.

To show visually the goodness of fit, we present the histogram of the data with an
overlay of the fitted Erlang mixture, and more importantly, the percentile-percentile
(PP) and quantile-quantile (QQ) plots. Since the histogram may be subjective with re-
spective to the number/size of bins used, the reader should focus more on the PP and
QQ plots when assessing the quality of fit to the data. Additionally, to quantify this
goodness of fit, we perform the Anderson-Darling and Kolmogorow-Smirnov tests. The
descriptions of these plots and tests are provided in [20]. The optimal set of parameters
are provided in Appendix A.

51

Uniform distribution

A mixture of 6 Erlangs has been fitted to the 1000 sample points that were generated
from the uniform distribution. The results are presented below.

Histogram with Erlang Mixture Overlay

Sample Data

R
el

at
iv

e
Fr

eq
ue

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0

Legend
Histogram
Fitted Density

Figure 4.1: Histogram for the uniform distribution with an overlay of a mixture of 6
Erlangs

52

P-P Plot

Theoretical Percentile

Em
pi

ri
ca

lP
er

ce
nt

ile

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Legend
45 Degree Line
P-P Plot

(a) PP Plot

Q-Q Plot

Theoretical Quantile

Em
pi

ri
ca

lQ
ua

nt
ile

1.0

1.2

1.4

1.6

1.8

2.0

1.2 1.4 1.6 1.8

Legend
45 Degree Line
Q-Q Plot

(b) QQ Plot

Figure 4.2: PP and QQ plots for the uniform distribution

Test Statistic P-Value Pass/Fail
Two-sample Kolmogorov-Smirnov test 0.015 0.9999 Pass
Anderson-Darling Test -1.00397 0.62867 Pass

Table 4.1: Statistical tests for the uniform distribution

Generalized Pareto distribution

A mixture of 6 Erlangs has been fitted to the 1000 sample points that were generated
from the generalized Pareto distribution. The results are presented below.

53

Histogram with Erlang Mixture Overlay

Sample Data

R
el

at
iv

e
Fr

eq
ue

nc
y

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

Legend
Histogram
Fitted Density

Figure 4.3: Histogram for the generalized Pareto distribution with an overlay of a mix-
ture of 6 Erlangs

P-P Plot

Theoretical Percentile

Em
pi

ri
ca

lP
er

ce
nt

ile

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Legend
45 Degree Line
P-P Plot

(a) PP Plot

Q-Q Plot

Theoretical Quantile

Em
pi

ri
ca

lQ
ua

nt
ile

2

3

4

5

6

7

8

3 4 5 6 7 8 9

Legend
45 Degree Line
Q-Q Plot

(b) QQ Plot

Figure 4.4: PP and QQ plots for the generalized Pareto distribution

54

Test Statistic P-Value Pass/Fail
Two-sample Kolmogorov-Smirnov test 0.048 0.1995 Pass
Anderson-Darling Test 1.40240 0.08638 Pass

Table 4.2: Statistical tests for the Generalized Pareto distribution

Mixture of two gamma distributions

A mixture of 3 Erlangs has been fitted to the 1000 sample points that were generated
from the mixture of two gamma distributions. The results are presented below.

Histogram with Erlang Mixture Overlay

Sample Data

R
el

at
iv

e
Fr

eq
ue

nc
y

0.00

0.05

0.10

0.15

0 2 4 6 8 10 12

Legend
Histogram
Fitted Density

Figure 4.5: Histogram for the mixture of two gamma distributions with an overlay of a
mixture of 3 Erlangs

55

P-P Plot

Theoretical Percentile

Em
pi

ri
ca

lP
er

ce
nt

ile

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Legend
45 Degree Line
P-P Plot

(a) PP Plot

Q-Q Plot

Theoretical Quantile

Em
pi

ri
ca

lQ
ua

nt
ile

2

4

6

8

10

12

2 4 6 8 10

Legend
45 Degree Line
Q-Q Plot

(b) QQ Plot

Figure 4.6: PP and QQ plots for the mixture of two gamma distributions

Test Statistic P-Value Pass/Fail
Two-sample Kolmogorov-Smirnov test 0.021 0.9802 Pass
Anderson-Darling Test -1.02723 0.63529 Pass

Table 4.3: Statistical tests for the mixture of two gamma distributions

Inverse gamma distribution

A mixture of 8 Erlangs has been fitted to the 1000 sample points that were generated
from the inverse gamma distribution. The results are presented below.

56

Histogram with Erlang Mixture Overlay

Sample Data

R
el

at
iv

e
Fr

eq
ue

nc
y

0

50

100

150

200

250

300

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Legend
Histogram
Fitted Density

Figure 4.7: Histogram for the inverse gamma distribution with an overlay of a mixture
of 8 Erlangs

P-P Plot

Theoretical Percentile

Em
pi

ri
ca

lP
er

ce
nt

ile

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Legend
45 Degree Line
P-P Plot

(a) PP Plot

Q-Q Plot

Theoretical Quantile

Em
pi

ri
ca

lQ
ua

nt
ile

0.006

0.008

0.010

0.012

0.014

0.016

0.004 0.006 0.008 0.010 0.012 0.014 0.016

Legend
45 Degree Line
Q-Q Plot

(b) QQ Plot

Figure 4.8: PP and QQ plots for the inverse gamma distribution

57

Test Statistic P-Value Pass/Fail
Two-sample Kolmogorov-Smirnov test 0.015 0.9999 Pass
Anderson-Darling Test -1.21674 0.68711 Pass

Table 4.4: Statistical tests for the inverse gamma distribution

Log-normal distribution

A mixture of 9 Erlangs has been fitted to the 1000 sample points that were generated
from the log-normal distribution. The results are presented below.

Histogram with Erlang Mixture Overlay

Sample Data

R
el

at
iv

e
Fr

eq
ue

nc
y

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

Legend
Histogram
Fitted Density

Figure 4.9: Histogram for the log-normal distribution with an overlay of a mixture of 9
Erlangs

58

P-P Plot

Theoretical Percentile

Em
pi

ri
ca

lP
er

ce
nt

ile

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Legend
45 Degree Line
P-P Plot

(a) PP Plot

Q-Q Plot

Theoretical Quantile

Em
pi

ri
ca

lQ
ua

nt
ile

0.6

0.8

1.0

1.2

1.4

1.6

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Legend
45 Degree Line
Q-Q Plot

(b) QQ Plot

Figure 4.10: PP and QQ plots for the log-normal distribution

Test Statistic P-Value Pass/Fail
Two-sample Kolmogorov-Smirnov test 0.01 1 Pass
Anderson-Darling Test -1.24060 0.69334 Pass

Table 4.5: Statistical tests for the log-normal distribution

4.7 Conclusions on the Goodness of Fit

We see in the last section that the univariate Erlang mixture provides a good fit to the
sample data from the various distributions. In the histograms, the overlay is seen to
cover the tails of the distributions. With respect to the PP and QQ plots, the bulk of the
points lie on the fitted line, and these results agree with the Kolmogorov-Smirnov and
Anderson-Darling tests. We must remember that we can improve the goodness of fit by
starting with a larger number of Erlangs (which is more or less synonymous with using
a smaller initial value for the scale parameter). Alternatively, to prevent overfitting, we
can start with a smaller number of Erlangs (which is more or less synonymous with
using a larger initial value for the scale parameter).

59

4.8 A Jump-Diffusion Process with an Erlang Mixture
Claims Distribution

In this section, we will provide a numerical example of the behaviour ofW (q)′(x) with re-
spect to σ when the surplus process is a jump-diffusion process. The claims distribution
is the univariate Erlang mixture produced from running the model selection algorithm
on the sample data from the mixture of two gamma distributions. Specifically, we have

fC(x) =

3∑
i=1

αi
xri−1e−x/θ

θri(ri − 1)!
(4.5)

where for i = 1, 2 and 3, αi, ri and θ are given in Table A.3. Additionally, we set c = 46.9,
λ = 10 and q = 0.1. Note that the c − λE(C1) > 0 and so the net profit condition
holds. The derivative of the scale function is a mixture of 18 exponentials with possibly
complex exponents and is given by (3.19) with M = 16. The graphs of W (q)′(x) for
σ = 2.8 and σ = 5.4 are given in figure 4.11.

-0.002

0.000

0.002

0.004

0.006

0.008

0.010 W (q)′(x)

x

-20 0 20 40 60 80 100

(a) σ = 2.8

-0.002

0.000

0.002

0.004

0.006

0.008

0.010 W (q)′(x)

x

-20 0 20 40 60 80 100

(b) σ = 5.4

Figure 4.11: The behaviour of W (q)′(x) with respect to σ for a jump-diffusion process

In figure 4.11a, the optimal barrier level is approximately a = 0.00471 when x ≈ 0.82,
but we cannot conclude that the barrier strategy at a is the optimal strategy. When

60

σ is increased to 5.4, we see in figure 4.11a that the last local minimum is the global
minimum and by theorem 2.3.2, a barrier strategy is an optimal strategy. Moreover, the
optimal barrier level is approximately a∗ = 0.00463 when x ≈ 29.48.

If we let σ be sufficiently large so that Φ(q) < q/c, then figure 4.12 depicts the shape of
logW (q)′(x). Additionally, since the log function is monotone increasing, we can see that
the last local minimum is the global minimum and by theorem 2.3.2, a barrier strategy
is once again an optimal strategy. Moreover, the optimal barrier level is approximately
a∗ = 3.17× 10−5 when x ≈ 37.92.

x

logW (q)′(x)

-10.359

-10.358

-10.357

-10.356

-10.355

-10.354

0 20 40 60 80 100

Figure 4.12: W (q)′(x) when Φ(q) < q/c

61

Chapter 5

Concluding Remarks

In the past two years, there have been considerable advancements in the challenging
field of Lévy insurance risk processes. It turns out that the barrier strategy is optimal
for a wide class of Lévy measures. In this thesis, we provided a bound on the parameters
of the surplus process for the optimality of a dividend barrier strategy when the surplus
was modelled by a jump diffusion process. This bound was mainly asymptotic and can
be improved upon in the future to achieve a better understanding of the relationship
between the Brownian motion component and the jump distribution, and its effect on
the existence of an optimal barrier strategy. Additionally, it was shown numerically
at the end of the previous chapter for a specific jump-diffusion process that a barrier
strategy is optimal when the Brownian motion component is increased, and this agrees
with our earlier analysis.

Many results in this field are provided in terms of scale functions and there are a few
cases where it’s Laplace transform is analytically invertible. As such, we turned our
focus to the case when the claims distribution of the jump diffusion process was given
by a mixture of Erlangs. This claims distribution allows us to approximate any positive
continuous distribution to any desired accuracy. Under this specific surplus process,
the scale function admits a closed form representation and is given by a sum of expo-
nential terms. The exponents are the roots of a polynomial, and thus, the scale function
can be easily derived in practice. Moreover, we saw that closed form expressions can
be derived for risk measures, and for the Euler risk contribution to Conditional Tail Ex-
pectation. Overall, for these features, this univariate Erlang mixture seems like a viable
and tractable model for the claims process.

In the last chapter, we proposed an algorithm for fitting the univariate Erlang mix-

63

ture to data. Furthermore, an implementation of this algorithm in C++ was provided
in Appendix A. The algorithm’s structure allows us to use parallel programming tech-
niques to achieve better performance on multi-core processors. It is important to note
that the degree of overfitting can be controlled by the initial value of the scale parame-
ter; a smaller initial value usually results in a larger number of Erlangs being fitted to
the data, and vice-versa. Numerical results have also been provided to show that this
distribution fits well to sample data from various distributions.

In the future, the current surplus process could be modified to include solvency
constraints. The original problem may produce barrier levels that are too low and in
reality, there exist solvency measures and requirements, internal and external, which
may prevent such a strategy from being implemented. In [26], we can find results for
diffusion processes when the probability of a negative surplus is restricted to be below
some desired level. In addition to this restriction, another possible constraint that can
be imposed is a VaR constraint. As many institutions have used VaR as a risk man-
agement tool to determine, for example, their regulatory capital and the adequacy of
surplus, such a constraint will result in more acceptable and more realistic dividend
barrier levels.

64

APPENDICES

65

Appendix A

Parameters of the Fitted Distributions

Table A.1: Fitted Parameters for the uniform distribution

i Shape Parameter, ri Weight, αi
1 369 0.15647697930800109
2 419 0.13162608369306494
3 464 0.17278119487835644
4 523 0.17943433053112884
5 583 0.16679480481929373
6 643 0.19288660677015473
Scale Parameter, θ 0.0029420252125011391

Table A.2: Fitted Parameters for the generalized Pareto distribution

i Shape Parameter, ri Weight, αi
1 73 0.59754633925241762
2 98 0.258276980750832
3 130 0.058377087038487631
4 154 0.052565776308206101
5 193 0.022051441166845528
6 241 0.011182375483211757
Scale Parameter, θ 0.032591372951062007

67

Table A.3: Fitted Parameters for the mixture of two gamma distributions

i Shape Parameter, ri Weight, αi
1 2 0.21406401214945295
2 10 0.45172930549903734
3 16 0.33420668235150935
Scale Parameter, θ 0.41877847415502589

Table A.4: Fitted Parameters for the inverse gamma distribution

i Shape Parameter, ri Weight, αi
1 247 0.063117836046342496
2 281 0.15404344468519354
3 318 0.26707468196859258
4 362 0.23050369897960649
5 406 0.20087520249933072
6 475 0.065868334874041909
7 547 0.017517799947890836
8 881 0.00099900099900099878
Scale Parameter, θ 1.9935560855250973e-005

Table A.5: Fitted Parameters for the log-normal distribution

i Shape Parameter, ri Weight, αi
1 243 0.0034072257115805868
2 291 0.091941680764468625
3 325 0.088443301325459564
4 354 0.11641001074839706
5 391 0.17525584216878654
6 432 0.21577396755272912
7 488 0.20855269871596979
8 562 0.082431908375046367
9 653 0.017783364637562603
Scale Parameter, θ 0.0025405392162721214

68

Appendix B

A C++ Implementation of the Model
Selection Algorithm

The implementation consists of three files which have been commented for ease of read-
ability. The files include:

1. The header file “EMData.h” which contains the declaration of the “EMData” class.
This class consists of an object which will represent a mixture of Erlangs, and also
methods which are useful for executing the EM algorithm.

2. The file “Emdat.cc” in which the objects and methods declared in the “EMData”
class are implemented.

3. The main file “emalg.cpp” which contains the main method, the stepwise algo-
rithm and other methods which are not specific to the “EMData” class.

The header file - EMData.h

/ / Th i s c o d e u s e s t h e f r e e Eigen l i b r a r y a v a i l a b l e a t h t t p : / / e i g e n . t u x f a m i l y . org .
include <iostream >
include <fstream >
include < l i m i t s >
include <iomanip>
include <vector >
include <algorithm >

69

include <time . h>
include <Eigen/Dense>
include <Eigen/StdVector >
include <omp. h>

ifndef EMData_h__
define EMData_h__

/ * *
* The Emdat C l a s s . The c o n s t r u c t o r r e t u r n s an o b j e c t wi th t h e p a r a m e t e r s o f t h e u n i v a r i a t e
* Er lang mixture , and o t h e r i n f o r m a t i o n r e q u i r e d f o r t h e EM a l g o r i t h m . The methods in t h i s
* c l a s s a l l o w us t o e x e c u t e t h e EM a l g o r i t h m on an Emdat o b j e c t . To u n d e r s t a n d t h e methods ,
* i t i s b e s t t o f i r s t u n d e r s t a n d t h e p r i v a t e members . As such , p l e a s e s c r o l l t o t h e end o f
* t h e f i l e t o l e a r n a b o u t t h e s e p r i v a t e members .
* /
c l a s s EMData {
public :

/ * *
* D e f a u l t c o n s t r u c t o r . C r e a t e s an empty Emdat o b j e c t . I t i s i n c l u d e d f o r c o m p l e t e n e s s .
* /

EMData (void) ;

/ * *
* Main C o n s t r u c t o r . C o n s t r u c t s an Emdat o b j e c t t h a t r e p r e s e n t s a mix ture o f E r l a n g s .
* @param numErlangs The number o f E r l a n g s in t h e mix ture .
* /

EMData (i n t numErlangs) ;

/ * *
* D e f a u l t D e s t r u c t o r . D e l e t e s an Emdat o b j e c t .
* /

v i r t u a l ~EMData (void) ;

/ * *
* S e t s t h e number o f E r l a n g s .
* @param newM The new number o f E r l a n g s .
* /

void setM (i n t newM) ;

/ * *
* Gets M, t h e number o f E r l a n g s .
* @return M.
* /

i n t getM () ;

/ * *
* S e t s t h e v a l u e o f t h e t a from e i t h e r t h e p r e v i o u s or c u r r e n t i t e r a t i o n s .
* @param f r o m P r e v I t e r a t i o n I f t rue , t h e v a l u e o f t h e t a from t h e p r e v i o u s i t e r a t i o n w i l l
* be s e t , o t h e r w i s e t h e v a l u e o f t h e t a from t h e c u r r e n t
* i t e r a t i o n w i l l be s e t .
* @param t h e t a The new v a l u e f o r t h e t a .
* /

void setTheta (bool fromPrevIteration , double theta) ;

/ * *
* Gets t h e v a l u e o f t h e t a from e i t h e r t h e p r e v i o u s or c u r r e n t i t e r a t i o n s .
* @param f r o m P r e v I t e r a t i o n I f t rue , t h e v a l u e o f t h e t a from t h e p r e v i o u s i t e r a t i o n w i l l

70

* be r e t u r n e d , o t h e r w i s e t h e v a l u e o f t h e t a from t h e c u r r e n t
* i t e r a t i o n w i l l be r e t u r n e d .
* @return p r e v T h e t a i f f r o m P r e v I t e r a t i o n == true , c u r r T h e t a o t h e r w i s e .
* /

double getTheta (bool fromPrevIteration) ;

/ * *
* S e t s t h e v a l u e s o f t h e w e i g h t s (a l p h a s) from e i t h e r t h e p r e v i o u s or c u r r e n t i t e r a t i o n s .
* @param f r o m P r e v I t e r a t i o n I f t rue , t h e w e i g h t s from t h e p r e v i o u s i t e r a t i o n (p r e v A l p h a s)
* w i l l be s e t , o t h e r w i s e t h e w e i g h t s from t h e c u r r e n t i t e r a t i o n
* (c u r r A l p h a s) w i l l be s e t .
* @param [in] v a l u e s The new w e i g h t s .
* /

void setAlphas (bool fromPrevIteration , Eigen : : ArrayXd& values) ;

/ * *
* Gets t h e v a l u e s o f t h e w e i g h t s (a l p h a s) from e i t h e r t h e p r e v i o u s or c u r r e n t i t e r a t i o n s .
* @param f r o m P r e v I t e r a t i o n I f t rue , a r e f e r e n c e t o t h e w e i g h t s from t h e p r e v i o u s ←↩

i t e r a t i o n
* (p r e v A l p h a s) w i l l be r e t u r n e d , o t h e r w i s e a r e f e r e n c e t o t h e
* w e i g h t s from t h e c u r r e n t i t e r a t i o n (c u r r A l p h a s) w i l l be
* r e t u r n e d .
* @return A non−c o n s t a n t r e f e r e n c e t o p r e v A l p h a s i f f r o m P r e v I t e r a t i o n == true ,
* c u r r A l p h a s o t h e r w i s e .
* /

Eigen : : ArrayXd& getAlphas (bool fromPrevIteration) ;

/ * *
* R e b a l a n c e t h e w e i g h t s (a l p h a s) . Pe r f o rmed i f a branch i s t o be removed . The we igh t
* c o r r e s p o n d i n g t o t h e branch t h a t i s t o be removed w i l l be r e a l l o c a t e d t o e i t h e r t h e
* nex t branch or t h e p r e v i o u s branch in t h e mix ture .
* @param pos The p o s i t i o n o f t h e branch t o be removed .
* @param f r o m P r e v I t e r a t i o n I f t rue , t h e w e i g h t s from t h e p r e v i o u s i t e r a t i o n (p r e v A l p h a s)
* w i l l be r e b a l a n c e d , o t h e r w i s e t h e w e i g h t s from t h e c u r r e n t
* i t e r a t i o n (c u r r A l p h a s) w i l l be r e b a l a n c e d .
* @return True i f t h e r e a r e a t l e a s t two b r a n c h e s in t h e mixture , f a l s e o t h e r w i s e .
* /

bool rebalanceAlphas (i n t pos , bool fromPrevIteration) ;

/ * *
* Gets t h e v a l u e s o f t h e s h a p e p a r a m e t e r s .
* @return A non−c o n s t a n t r e f e r e n c e t o sample .
* /

Eigen : : ArrayXi& getShapeParams (void) ;

/ * *
* S e t s t h e v a l u e o f t h e l o g l i k e l i h o o d .
* @param newLogLik The new v a l u e o f t h e l o g l i k e l i h o o d .
* /

void setLogLikelihood (double newLogLik) ;

/ * *
* Gets t h e v a l u e o f t h e l o g l i k e l i h o o d .
* @return l o g L i k e l i h o o d .
* /

double getLogLikelihood (void) ;

71

/ * *
* Computes t h e l o g f a c t o r i a l s .
* /

void computeLogFactorials (void) ;

/ * *
* Gets t h e v a l u e s o f t h e l o g f a c t o r i a l s .
* @return A non−c o n s t a n t r e f e r e n c e t o l o g F a c t o r i a l s .
* /

Eigen : : ArrayXd& getLogFactorials (void) ;

/ * *
* Removes a branch from t h e Er lang mix ture .
* @param pos The i n d e x o f t h e branch t o be removed .
* @return True i f ' pos ' i s a v a l i d index , f a l s e o t h e r w i s e .
* /

bool removeBranch (i n t pos) ;

/ * *
* Computes t h e CAIC .
* @param s a m p l e S i z e The s i z e o f t h e sample data , i . e . t h e number o f d a t a p o i n t s .
* @return The CAIC .
* /

double computeCaic (i n t sampleSize) ;

/ * *
* Computes t h e p r o b a b i l i t i e s f o r e i t h e r c o n d i t P r o b s or j o i n t P r o b s , g i v e n a sample d a t a
* p o i n t .
* @param j The j−th sample d a t a p o i n t , 0 <= j < sampleData . s i z e () .
* @param n o r m a l i z e I f t rue , t h e p r o b a b i l i t i e s f o r c o n d i t P r o b s w i l l be computed ,
* o t h e r w i s e t h e p r o b a b i l i t i e s f o r j o i n t P r o b s w i l l be computed .
* @param [in] sampleData The v e c t o r o f t h e sample d a t a .
* @param [in] logSampleData The v e c t o r o f t h e l o g g e d sample d a t a .
* /

void computeProbs (i n t j , bool normalize , Eigen : : ArrayXd& sampleData ,
Eigen : : ArrayXd& logSampleData) ;

/ * *
* E x e c u t e t h e EM Algor i thm . I t i s t h e i t e r a t i v e a l g o r i t h m t o f i n d t h e p a r a m e t e r s t h a t
* maximize t h e e x p e c t a t i o n o f t h e c o m p l e t e−d a t a l i k e l i h o o d f u n c t i o n .
* P r e r e q u i s i t e : The method se tParams s h o u l d be e x e c u t e d f i r s t t o s e t t h e i n i t i a l
* p a r a m e t e r s f o r t h e a l g o r i t h m .
* @param t o l e r a n c e The t o l e r a n c e o f c o n v e r g e n c e o f t h e log− l i k e l i h o o d .
* @param [in] sampleData The v e c t o r o f t h e sample d a t a .
* @param [in] logSampleData The v e c t o r o f t h e l o g g e d sample d a t a .
* @param meanSampleData The mean o f t h e sample d a t a .
* @return True i f t h e a l g o r i t h m c o m p l e t e s s u c c e s s f u l l y , f a l s e o t h e r w i s e . The a l g o r i t h m
* w i l l c o m p l e t e s u c c e s s f u l l y i f
* 1) t h e log− l i k e l i h o o d c o n v e r g e s ,
* 2) t h e s c a l e p a r a m e t e r i s non−ze ro ,
* 3) t h e r emova l o f any i n s i g n i f i c a n t b r a n c h e s and r e b a l a n c i n g o f t h e r ema in ing
* w e i g h t s a r e c o m p l e t e d s u c c e s s f u l l y .
* /

bool emAlg (double tolerance , Eigen : : ArrayXd& sampleData , Eigen : : ArrayXd& logSampleData ,
double meanSampleData) ;

/ * *

72

* S e t s t h e p a r a m e t e r s o f t h i s EMData o b j e c t t o t h o s e p a r a m e t e r s o f a n o t h e r EMData o b j e c t .
* Usua l ly done i m m e d i a t e l y b e f o r e t h e EM a l g o r i t h m i s e x e c u t e d . S p e c i f i c a l l y , t h e
* p a r a m e t e r s f o r t h e p r e v i o u s i t e r a t i o n o f t h i s EMData o b j e c t t o t h o s e p a r a m e t e r s f o r t h e
* c u r r e n t i t e r a t i o n o f t h e o t h e r EMData o b j e c t .
* @param [in] d a t Another EMData o b j e c t .
* /

void setParams (EMData* dat) ;

/ * *
* C o p i e s t h e p a r a m e t e r s o f a n o t h e r EMData o b j e c t t o t h i s EMData o b j e c t . Usua l ly done
* i m m e d i a t e l y a f t e r t h e EM a l g o r i t h m i s e x e c u t e d , but on ly i f t h e p a r a m e t e r s o f t h e o t h e r
* EMData o b j e c t a r e more o p t i m a l than t h o s e in t h i s EMData o b j e c t . S p e c i f i c a l l y , t h e
* p a r a m e t e r s f o r t h e c u r r e n t i t e r a t i o n o f t h i s EMData o b j e c t t o t h o s e p a r a m e t e r s f o r t h e
* c u r r e n t i t e r a t i o n o f t h e o t h e r EMData o b j e c t .
* @param [out] d a t Another EMData o b j e c t .
* /

void copyParams (EMData* dat) ;

/ * *
* Removes any b r a n c h e s wi th " i n s i g n i f i c a n t " w e i g h t s . A branch i s removed i f t h e
* c o r r e s p o n d i n g w e i gh t i s l e s s than " t o l e r a n c e d i v i d e d by M" , but on ly when
* t o l e r a n c e i s l e s s than 0 . 0 1 .
* @param t o l e r a n c e The t o l e r a n c e used in d e t e r m i n i n g i f a branch i s i n s i g n i f i c a n t .
* @return t r u e i f t h e r emova l o f t h e branch and r e b a l a n c i n g o f t h e r ema in ing w e i g h t s a r e
* c o m p l e t e d s u c c e s s f u l l y , f a l s e o t h e r w i s e .
* /

bool filterWeights (double tolerance) ;

private :
/ / The number o f Er lang b r a n c h e s .
i n t M ;
/ / The s c a l e p a r a m e t e r v a l u e s from t h e p r e v i o u s and c u r r e n t EM i t e r a t i o n s r e s p e c t i v e l y .
double prevTheta , currTheta ;
/ / The v e c t o r s o f M we ig h t p a r a m e t e r s from t h e p r e v i o u s and c u r r e n t EM i t e r a t i o n s
/ / r e s p e c t i v e l y . For t h i s s t o r a g e c o n t a i n e r and any o t h e r s t h a t a r e used , we do not r e s i z e
/ / t h e c o n t a i n e r t o s i z e M; we s im p ly use t h e f i r s t M p o s i t i o n s t o s t o r e t h e v a l u e s .
Eigen : : ArrayXd prevAlphas , currAlphas ;
/ / The v e c t o r o f M s h a p e p a r a m e t e r s .
Eigen : : ArrayXi shapeParams ;
/ / The v a l u e o f t h e l o g l i k e l i h o o d .
double logLikelihood ;
/ / A v e c t o r o f M e l e m e n t s where t h e i−th e l e m e n t i s l o g ((r [i] − 1) !) , and r [i] i s t h e
/ / s h a p e p a r a m e t e r o f t h e i−th Er lang branch .
Eigen : : ArrayXd logFactorials ;
/ / A v e c t o r o f M e l e m e n t s where t h e i−th e l e m e n t i s t h e c o n d i t i o n a l p r o b a b i l i t y
/ / q (r [i] | x [j]) , r [i] i s t h e s h a p e p a r a m e t e r o f t h e i−th Er lang branch , and x [j] i s t h e
/ / j−th sample d a t a p o i n t , 0 <= i < M, 0 <= j < sampleData . s i z e () . I t i s c a l c u l a t e d us ing
/ / t h e p a r a m e t e r s o f t h e p r e v i o u s EM i t e r a t i o n .
Eigen : : ArrayXd conditProbs ;
/ / A v e c t o r o f M e l e m e n t s where t h e i−th e l e m e n t i s j o i n t p r o b a b i l i t y p (x [j] , r [i]) , r [i]
/ / i s t h e s h a p e p a r a m e t e r o f t h e i−th Er lang branch , and x [j] i s t h e j−th sample d a t a
/ / p o i n t , 0 <= i < M, 0 <= j < sampleData . s i z e () . I t i s c a l c u l a t e d us ing t h e p a r a m e t e r s o f
/ / t h e c u r r e n t EM i t e r a t i o n .
Eigen : : ArrayXd jointProbs ;

} ;

endif / / EMData_h__

73

The implementation of the EMData class - Emdat.cc

/ / Th i s c o d e u s e s t h e f r e e Eigen l i b r a r y a v a i l a b l e a t h t t p : / / e i g e n . t u x f a m i l y . org .
include <EMData . h>

/ * *
* " E r a s e " an e l e m e n t in a s t o r a g e c o n t a i n e r . The e l e m e n t i s e r a s e d in t h e s e n s e t h a t a l l
* e l e m e n t s t o t h e r i g h t o f t h i s e l e m e n t a r e s h i f t e d one p o s i t i o n t o t h e l e f t .
* @param a r r A r e f e r e n c e t o a c o n t i g u o u s s t o r a g e c o n t a i n e r ,
* e . g . s t d : : v e c t o r , Eigen : : ArrayXd , e t c .
* @param pos t h e p o s i t i o n o f t h e e l e m e n t t o be e r a s e d
* @return True i f ' pos ' i s a v a l i d p o s i t i o n , f a l s e o t h e r w i s e .
* /

template <typename T> bool erase (T& arr , i n t pos) {
i f (pos < 0 || pos > arr .size () − 1) {

std : : cout << " Error , unable to erase p o s i t i o n . Out of bounds . " << std : : endl ;
return f a l s e ;

}
e lse i f (pos != arr .size () − 1) {

std : : copy (arr .data () + pos + 1 , arr .data () + arr .size () , arr .data () + pos) ;
}
return true ;

}

EMData : : EMData () { }

EMData : : EMData (i n t numErlangs) {
M = numErlangs ;
currAlphas .setZero (numErlangs) ;
prevAlphas .setZero (numErlangs) ;
conditProbs .setZero (numErlangs) ;
jointProbs .setZero (numErlangs) ;
logFactorials .setZero (numErlangs) ;
shapeParams .setZero (numErlangs) ;
logLikelihood = 0 . 0 ;
prevTheta = 0 . 0 ;
currTheta = 0 . 0 ;

}

EMData : : ~EMData () { }

void EMData : : setM (i n t newM) {
M = newM ;

}

i n t EMData : : getM () {
return M ;

}

void EMData : : setTheta (bool fromPrevIteration , double theta) {
i f (fromPrevIteration) {

prevTheta = theta ;
}
e lse currTheta = theta ;

74

}

double EMData : : getTheta (bool fromPrevIteration) {
i f (fromPrevIteration) {

return prevTheta ;
}
e lse return currTheta ;

}

void EMData : : setAlphas (bool fromPrevIteration , Eigen : : ArrayXd& values) {
i f (fromPrevIteration) {

std : : copy (values .data () , values .data () + M , prevAlphas .data ()) ;
}
e lse {

std : : copy (values .data () , values .data () + M , currAlphas .data ()) ;
}

}

Eigen : : ArrayXd& EMData : : getAlphas (bool fromPrevIteration) {
i f (fromPrevIteration) {

return prevAlphas ;
}

return currAlphas ;
}

bool EMData : : rebalanceAlphas (i n t pos , bool fromPrevIteration) {
Eigen : : ArrayXd& alphas = getAlphas (fromPrevIteration) ;

i f (pos != M − 1) {
alphas (pos + 1) += alphas (pos) ;
alphas (pos) = 0 . 0 ;

}
e lse i f (pos != 0) {

alphas (pos − 1) += alphas (pos) ;
alphas (pos) = 0 . 0 ;

}
e lse {

std : : cout << " Error , unable to rebalance alphas . M = " << M << std : : endl ;
return f a l s e ;

}
return true ;

}

Eigen : : ArrayXi& EMData : : getShapeParams () {
return shapeParams ;

}

void EMData : : setLogLikelihood (double newLogLik) {
logLikelihood = newLogLik ;

}

double EMData : : getLogLikelihood () {
return logLikelihood ;

}

void EMData : : computeLogFactorials () {

75

double cumulativeLogFactorial = 0 . 0 ;
logFactorials .resize (M) ;
i n t m = 0 ;
i f (shapeParams (0) − 1 == 0) {

logFactorials (0) = 0 . 0 ;
m++;

}
for (i n t i = 1 ; i < shapeParams (M−1) ; i++) {

cumulativeLogFactorial += log ((double)i) ;
i f (i == shapeParams (m) − 1) {

logFactorials (m) = cumulativeLogFactorial ;
m++;

}
}

}

Eigen : : ArrayXd& EMData : : getLogFactorials () {
return logFactorials ;

}

bool EMData : : removeBranch (i n t pos) {
/ / E r a s e t h e e l e m e n t a t i n d e x ' pos ' from e a c h o f t h e s t o r a g e c o n t a i n e r s .
i f (! erase (currAlphas , pos)) {

return f a l s e ;
}
i f (! erase (prevAlphas , pos)) {

return f a l s e ;
}
i f (! erase (shapeParams , pos)) {

return f a l s e ;
}
i f (! erase (logFactorials , pos)) {

return f a l s e ;
}

/ / Find t h e r e v i s e d v a l u e o f M.
M = M − 1 ;

return true ;
}

double EMData : : computeCaic (i n t sampleSize) {
double caic = −2*logLikelihood + (2 *M + 1) * (log ((double) sampleSize) + 1) ;
return caic ;

}

void EMData : : computeProbs (i n t j , bool normalize , Eigen : : ArrayXd& sampleData ,
Eigen : : ArrayXd& logSampleData) {

double theta = getTheta (normalize) ;

i f (normalize) {
/ / Compute t h e c o n d i t i o n a l p r o b a b i l i t i e s .
conditProbs .head (M) = prevAlphas .head (M) *

exp ((shapeParams .head (M) .cast<double > () − 1 . 0) * (logSampleData (j) − log (theta))
− logFactorials .head (M) − sampleData (j) /theta − log (theta)) ;

double normalizingFactor = conditProbs .head (M) .sum () ;
/ / Normal i z e on ly i f t h e sum o f t h e p r o b a b i l i t i e s a r e not c l o s e t o z e r o .

76

i f (normalizingFactor > std : : numeric_limits<double > : :min ()) {
conditProbs .head (M) /= normalizingFactor ;

}
}
e lse {

/ / Compute t h e j o i n t p r o b a b i l i t i e s .
jointProbs .head (M) = currAlphas .head (M) *

exp ((shapeParams .head (M) .cast<double > () − 1 . 0) * (logSampleData (j) − log (theta))
− logFactorials .head (M) − sampleData (j) /theta − log (theta)) ;

}
}

bool EMData : : emAlg (double tolerance , Eigen : : ArrayXd& sampleData ,
Eigen : : ArrayXd& logSampleData , double meanSampleData) {

/ / Th i s v e c t o r o f 2 e l e m e n t s w i l l r e p r e s e n t t h e v a l u e s o f t h e e x p e c t e d log− l i k e l i h o o d
/ / a t t h e c u r r e n t and p r e v i o u s i t e r a t i o n s r e s p e c t i v e l y .
std : : vector<double> expLogLik (2 , −std : : numeric_limits<double > : :infinity ()) ;
bool isOptimal = f a l s e ;

/ / Loop u n t i l t h e log− l i k e l i h o o d canno t be improved .
while (! isOptimal) {

setLogLikelihood (0 . 0) ;
expLogLik .at (1) = expLogLik .at (0) ;
expLogLik .at (0) = 0 . 0 ;

/ / Find t h e new o p t i m a l s e t o f w e i g h t s .
for (i n t i = 0 ; i < (i n t)sampleData .size () ; i++) {

computeProbs (i , true , sampleData , logSampleData) ;
currAlphas .head (M) += conditProbs .head (M) ;

}

currAlphas /= (double)sampleData .size () ;

/ / Find t h e new o p t i m a l v a l u e o f t h e t a .
setTheta (fa lse , getTheta (f a l s e) + currAlphas .head (M) .matrix () .

dot (shapeParams .head (M) .matrix () .cast<double > ())) ;

/ / Stop and r e t u r n f a l s e i f t h e v a l u e o f t h e t a i s z e r o or ve ry c l o s e t o z e r o .
i f (getTheta (f a l s e) < std : : numeric_limits<double > : :min ()) {

std : : cout << " Theta i s equal to zero ! " << std : : endl ;
return f a l s e ;

}

setTheta (fa lse , meanSampleData/getTheta (f a l s e)) ;

/ / Compute t h e new v a l u e o f t h e log− l i k e l i h o o d .
for (i n t i = 0 ; i < (i n t)sampleData .size () ; i++) {

computeProbs (i , fa lse , sampleData , logSampleData) ;
computeProbs (i , true , sampleData , logSampleData) ;
expLogLik .at (0) += (log (jointProbs .head (M)) .matrix ()) .

dot (conditProbs .head (M) .matrix ()) ;
setLogLikelihood (getLogLikelihood () + log (jointProbs .head (M) .sum ())) ;

/ / Stop and r e t u r n f a l s e i f t h e log− l i k e l i h o o d i s not f i n i t e .
i f (abs (expLogLik .at (0)) > std : : numeric_limits<double > : :max () ||

abs (getLogLikelihood ()) > std : : numeric_limits<double > : :max ()) {
std : : cout << " The log−l i k e l i h o o d i s not f i n i t e f o r t h e t a = "

77

<< getTheta (f a l s e) << " . " << std : : endl ;
return f a l s e ;

}
}

/ / Remove any i n s i g n i f i c a n t w e i g h t s .
i n t prevM = M ;

i f (! filterWeights (tolerance)) {
return f a l s e ;

}

/ / I f no w e i g h t s were removed , c h e c k f o r c o n v e r g e n c e o f t h e log− l i k e l i h o o d . I f
/ / c o n v e r g e n c e has not o c c u r r e d , c o n t i n u e with t h e a l g o r i t h m , o t h e r w i s e e x i t t h e
/ / l o o p .
i f (prevM == M) {

double rel_diff = (expLogLik .at (0) − expLogLik .at (1)) /abs (expLogLik .at (0)) ;
isOptimal = (rel_diff <= tolerance) ;

i f (! isOptimal) {
setTheta (true , getTheta (f a l s e)) ;
setTheta (fa lse , 0 . 0) ;
std : : copy (currAlphas .data () , currAlphas .data () + M , prevAlphas .data ()) ;
std : : fill (currAlphas .data () , currAlphas .data () + M , 0 . 0) ;

}
}

}
return true ;

}

void EMData : : setParams (EMData* dat) {
setM (dat−>getM ()) ;
setTheta (true , dat−>getTheta (f a l s e)) ;
setTheta (fa lse , 0 . 0) ;

/ / R e s i z e t h e c o n t a i n e r s i f t h e y a r e not a t l e a s t o f s i z e M.
i f (currAlphas .size () < M) {

currAlphas .resize (M) ;
prevAlphas .resize (M) ;
shapeParams .resize (M) ;
logFactorials .resize (M) ;
conditProbs .resize (M) ;
jointProbs .resize (M) ;

}

setAlphas (true , dat−>getAlphas (f a l s e)) ;
std : : fill (currAlphas .data () , currAlphas .data () + M , 0 . 0) ;
setLogLikelihood (0 . 0) ;
std : : copy (dat−>getShapeParams () .data () , dat−>getShapeParams () .data () + M ,

shapeParams .data ()) ;
std : : copy (dat−>getLogFactorials () .data () , dat−>getLogFactorials () .data () + M ,

logFactorials .data ()) ;
}

void EMData : : copyParams (EMData* dat) {
setM (dat−>getM ()) ;
setTheta (fa lse , dat−>getTheta (f a l s e)) ;

78

/ / R e s i z e t h e c o n t a i n e r s i f t h e y a r e not a t l e a s t o f s i z e M.
i f (currAlphas .size () < M) {

currAlphas .resize (M) ;
prevAlphas .resize (M) ;
shapeParams .resize (M) ;
logFactorials .resize (M) ;
conditProbs .resize (M) ;
jointProbs .resize (M) ;

}

setAlphas (fa lse , dat−>getAlphas (f a l s e)) ;
setLogLikelihood (dat−>getLogLikelihood ()) ;
std : : copy (dat−>getShapeParams () .data () , dat−>getShapeParams () .data () + M ,

shapeParams .data ()) ;
std : : copy (dat−>getLogFactorials () .data () , dat−>getLogFactorials () .data () + M ,

logFactorials .data ()) ;
}

bool EMData : : filterWeights (double tolerance) {
i f (tolerance < pow (1 0 . 0 , −2)) {

i n t i = 0 ;
while (i < M) {

i f (getAlphas (f a l s e) (i) < tolerance/M) {
i f (! rebalanceAlphas (i , f a l s e)) {

return f a l s e ;
}
i f (! removeBranch (i)) {

return f a l s e ;
}

}
e lse {

i++;
}

}
}
return true ;

}

The main file - emalg.cpp

/ / Th i s c o d e u s e s t h e f r e e Eigen l i b r a r y a v a i l a b l e a t h t t p : / / e i g e n . t u x f a m i l y . org .
include <iostream >
include <fstream >
include < l i m i t s >
include <iomanip>
include <vector >
include <algorithm >
include <time . h>
include <Eigen/Dense>
include <Eigen/StdVector >
include <omp. h>
include "EMData . h"

79

/ * *
* Compares two p o i n t e r s us ing t h e v a l u e s t h e y p o i n t t o .
* @param [in] i A p o i n t e r t o a d o u b l e .
* @param [in] j A p o i n t e r t o a d o u b l e .
* @return t r u e i f t h e v a l u e p o i n t e d t o by ' i ' i s l e s s than t h e v a l u e p o i n t e d t o by ' j ' , f a l s e
* o t h e r w i s e .
* /

i n l in e bool compareByPointer (double * i , double * j) {
return (*i<*j) ;

}

/ / Rank or o r d e r t h e v e c t o r
/ / I f r a nk ed == 0 , t h e o r d e r i s r e t u r n e d

/ * *
* Rank or o r d e r v e c t o r e l e m e n t s .
* For a v e c t o r , say { 1 , 4 , 5 , 2 } , t h e rank w i l l be { 1 , 3 , 4 , 2 } wher eas t h e o r d e r w i l l be
* { 1 , 4 , 2 , 3 } .
* @param [in] p t r A p o i n t e r t o a v e c t o r o f d o u b l e s .
* @param M The number o f v e c t o r e l e m e n t s .
* @param [out] r a n k s A v e c t o r o f i n t e g e r s t h a t w i l l s t o r e t h e r a n k s / o r d e r .
* @param [out] pRanks A v e c t o r o f p o i n t e r s o f t y p e d o u b l e t h a t w i l l s t o r e t h e r an ke d / o r d e r e d
* p o i n t e r s .
* @param ra nk ed I f t rue , th en t h e v e c t o r e l e m e n t s w i l l be ranked , o t h e r w i s e t h e
* e l e m e n t s w i l l be o r d e r e d .
* /

void rankVectorElements (double * ptr , i n t M , std : : vector< int >* ranks ,
std : : vector<double * >* pRanks , bool ranked) {

/ / S o r t t h e p o i n t e r s .
for (i n t i = 0 ; i < M ; i++) {

pRanks−>at (i) = ptr + i ;
}
double * p_init = pRanks−>at (0) ;
std : : sort (pRanks−>data () , pRanks−>data () + M , compareByPointer) ;

/ / Compute t h e r a n k s / o r d e r .
i f (ranked) {

for (i n t i = 0 ; i < M ; i++) {
ranks−>at (pRanks−>at (i) − p_init) = i ;

}
}
e lse {

for (i n t i = 0 ; i < M ; i++) {
ranks−>at (i) = pRanks−>at (i) − p_init ;

}
}

}

/ * *
* P r o c e s s t h e d a t a .
* S o r t t h e sample data , remove any z e r o v a l u e s , and compute t h e l o g o f t h e sample d a t a .
* @param [in , out] sampleData A r e f e r e n c e t o t h e v e c t o r o f t h e sample d a t a .
* @param [out] l ogSampleData A r e f e r e n c e t o a v e c t o r t h a t w i l l s t o r e t h e l o g g e d sample
* d a t a .
* /

void processData (Eigen : : ArrayXd& sampleData , Eigen : : ArrayXd& logSampleData) {

80

/ / S o r t t h e sample d a t a .
i n t sampleSize = (i n t)sampleData .size () ;
std : : sort (sampleData .data () , sampleData .data () + sampleData .size ()) ;

/ / Remove any z e r o v a l u e s .
i n t start = 0 ;
while (! sampleData (start) && start < sampleSize) {

start++;
}
std : : cout << start/sampleSize << " zero values were removed from the data .\n"

<< std : : endl ;

i f (! start) {
std : : copy (sampleData .data () + start , sampleData .data () + sampleData .size () ,

sampleData .data ()) ;
sampleData .conservativeResize (sampleData .size () − start) ;

}
sampleSize = (i n t)sampleData .size () ;

/ / Compute t h e l o g o f t h e sample d a t a .
logSampleData .resize (sampleSize) ;
std : : transform (sampleData .data () , sampleData .data () + sampleSize , logSampleData .data () ,

(double (*) (double))log) ;
}

/ * *
* I n i t i a l i z e t h e p a r a m e t e r s o f t h e Er lang mixture , g i v e n an i n i t i a l v a l u e o f t h e t a .
* @param [in] sampleData The v e c t o r o f t h e sample d a t a .
* @param i n i t T h e t a The i n i t i a l v a l u e o f t h e t a .
* @return A p o i n t e r t o an EMData o b j e c t wi th t h e i n i t i a l p a r a m e t e r e s t i m a t e s .
* /

EMData* initParams (Eigen : : ArrayXd& sampleData , double initTheta) {
/ / S e t i n i t i a l v a l u e o f M e q u a l t o t h e number o f d a t a p o i n t s .
i n t M = (i n t)sampleData .size () ;
double meanSampleData = sampleData .mean () ;
double theta = initTheta ;
i n t tempM = M ; / / Used t o s t o r e t h e new v a l u e o f M, a f t e r z e r o w e i g h t s a r e removed .
std : : vector<double> tempInitAlphas (M) ;
std : : vector< int > tempInitShapeParams (M) ;
i n t numRefined = 2 ;

/ / Find i n i t i a l v a l u e s o f t h e w e i g h t s and " r e f i n e " t h e v a l u e o f t h e t a once .
for (i n t m = 0 ; m < numRefined ; m++) {

tempM = 0 ;
i n t i = 1 ; / / Used t o i t e r a t e through t h e Er lang b r a n c h e s (1 <= i <= M) .
i n t j = 0 ; / / Used t o i t e r a t e through t h e sample d a t a (0 <= j <= s a m p l e S i z e − 1) .
i n t freq = 0 ; / / Used t o s t o r e t h e f r e q u e n c y o f d a t a p o i n t s in an i n t e r v a l .

/ / Compute t h e w e i g h t s f o r i = 1 t o M − 1 .
while (j < sampleData .size () && i <= sampleData .size ()) {

i f (sampleData (j) < i*theta) {
j++;
freq++;

}
e lse {

i f (freq) {
tempInitShapeParams .at (tempM) = i ;

81

tempInitAlphas .at (tempM) = (double)freq/(double)sampleData .size () ;
tempM++;

}
i++;
freq = 0 ;

}
}

/ / Compute t h e we ig h t f o r i = M.
i f (freq) {

tempInitShapeParams .at (tempM) = i ;
tempInitAlphas .at (tempM) = (double)freq/(double)sampleData .size () ;
tempM++;

}

/ / Find t h e r e v i s e d v a l u e o f M.
M = tempM ;

Eigen : : Map<Eigen : : VectorXi> mapTempInitShapeParams(&tempInitShapeParams .at (0) , M) ;
Eigen : : Map<Eigen : : VectorXd> mapTempInitAlphas(&tempInitAlphas .at (0) , M) ;

/ / R e f i n e t h e v a l u e o f t h e t a .
i f (m != numRefined − 1) {

theta = meanSampleData/
(mapTempInitShapeParams .cast<double > () .dot (mapTempInitAlphas)) ;

}
}

/ / S t o r e t h e i n i t i a l p a r a m e t e r e s t i m a t e s in an EMData o b j e c t .
EMData* initEMData = new EMData (M) ;
std : : copy (tempInitShapeParams .begin () , tempInitShapeParams .begin () + M ,

initEMData−>getShapeParams () .data ()) ;
std : : copy (tempInitAlphas .begin () , tempInitAlphas .begin () + M ,

initEMData−>getAlphas (f a l s e) .data ()) ;
initEMData−>setTheta (fa lse , theta) ;

/ / Compute t h e l o g f a c t o r i a l s b a s e d on t h e i n i t i a l e s t i m a t e s .
initEMData−>computeLogFactorials () ;

return initEMData ;
}

/ * *
* Computes an i n i t i a l v a l u e o f t h e t a .
* From t h e p o s s i b l e v a l u e s o f t h e t a , t h e r e a r e two c r i t e r i a f o r s e l e c t i n g an i n i t i a l v a l u e :
* 1) The CAIC s h o u l d be r e l a t i v e l y low , and
* 2) The v a l u e o f t h e d i f f e r e n c e be tween t h e 5 th moment o f t h e f i t t e d model and t h a t o f t h e
* d a t a s h o u l d be r e l a t i v e l y s m a l l and p o s i t i v e .
* The v a l u e o f t h e t a t h a t p e r f o r m s " b e s t " in t h e s e two c a t e g o r i e s i s c h o s e n . A d d i t i o n a l l y ,
* i n f o r m a t i o n on o t h e r v a l u e s o f t h e t a a r e ou tp ut t o t h e f i l e " i n f o . t x t " .
* @param [in] sampleData A v e c t o r o f t h e sample d a t a .
* @param [in] logSampleData A v e c t o r o f t h e l o g g e d sample d a t a .
* @return An i n i t i a l v a l u e o f t h e t a .
* /

double computeInitTheta (Eigen : : ArrayXd& sampleData , Eigen : : ArrayXd& logSampleData) {
/ / I n i t i a l i z e t h e v e c t o r s o f t h e s e l e c t i o n c r i t e r i a .
i n t sampleSize = sampleData .size () ;

82

std : : vector<double> caics (sampleSize , std : : numeric_limits<double > : :infinity ()) ;
std : : vector<double> diffMoments (sampleSize , std : : numeric_limits<double > : :infinity ()) ;

std : : ofstream info ;
info .open (" i n f o . t x t " , std : : ofstream : : out) ;
info << " t h e t a \ t M \ t l o g _ l i k e l i h o o d \ t CAIC \ t model_moment_minus_data_moment "

<< std : : endl ;

/ / Compute t h e f i f t h moment o f t h e d a t a .
double data_mom5 = sampleData .pow (5) .sum () /sampleSize ;

#pragma omp p a r a l l e l for schedule (dynamic)
for (i n t i = 0 ; i < sampleSize ; i++) {

/ / E s t i m a t e t h e i n i t i a l p a r a m e t e r s g i v e n a v a l u e o f t h e t a
double theta = sampleData .mean () /(double) (i+1) ;
EMData* initEMData = initParams (sampleData , theta) ;

/ / C o n s i d e r t h i s v a l u e o f t h e t a on ly i f t h e number o f p a r a m e t e r s i s l e s s than t h e
/ / s i z e o f t h e sample d a t a (t o p r e v e n t over− f i t t i n g) .
i f (initEMData−>getM () *2 + 1 < sampleSize) {

/ / E x e c u t e t h e EM a l g o r i t h m once t o f i n d an " o p t i m a l " s e t o f p a r a m e t e r s .
initEMData−>setParams (initEMData) ;
bool isWithoutError = initEMData−>emAlg (0 . 1 , sampleData , logSampleData ,

sampleData .mean ()) ;

/ / Cont inue on ly i f t h e EM a l g o r i t h m c o m p l e t e s s u c c e s s f u l l y .
i f (isWithoutError) {

initEMData−>copyParams (initEMData) ;
theta = initEMData−>getTheta (f a l s e) ;
i n t M = initEMData−>getM () ;

/ / Compute t h e f i f t h moment o f t h e f i t t e d model .
double first = initEMData−>getAlphas (f a l s e) .matrix () .

dot (initEMData−>getShapeParams () .cast<double > () .matrix ()) *theta ;
double second = initEMData−>getAlphas (f a l s e) .head (M) .matrix () .

dot (initEMData−>getShapeParams () .head (M) .cast<double > () .pow (2) .matrix ()) *
pow (theta , 2 . 0) ;

double third = initEMData−>getAlphas (f a l s e) .head (M) .matrix () .
dot (initEMData−>getShapeParams () .head (M) .cast<double > () .pow (3) .matrix ()) *
pow (theta , 3 . 0) ;

double fourth = initEMData−>getAlphas (f a l s e) .head (M) .matrix () .
dot (initEMData−>getShapeParams () .head (M) .cast<double > () .pow (4) .matrix ()) *
pow (theta , 4 . 0) ;

double fifth = initEMData−>getAlphas (f a l s e) .head (M) .matrix () .
dot (initEMData−>getShapeParams () .head (M) .cast<double > () .pow (5) .matrix ()) *
pow (theta , 5 . 0) ;

double mod_mom5 = fifth + 10*fourth*theta + 35*third*pow (theta , 2 . 0) +
50*second*pow (theta , 3 . 0) + 24*first*pow (theta , 4 . 0) ;

i f (mod_mom5 > data_mom5) {
caics .at (i) = initEMData−>computeCaic (sampleSize) ;
diffMoments .at (i) = mod_mom5 − data_mom5 ;

}

/ / S t o r e t h e i n f o r m a t i o n in t h e f i l e " i n f o . t x t " .
#pragma omp critical
{

83

info << std : : setprecision (2 0) << sampleData .mean () /(double) (i+1) << "\ t "
<< initEMData−>getM () << "\ t "<< initEMData−>getLogLikelihood ()
<< "\ t " << initEMData−>computeCaic (sampleSize) << "\ t "
<< mod_mom5 − data_mom5 << std : : endl ;

}
}

}

delete initEMData ;
}

/ / Rank t h e model c r i t e r i a .
std : : vector<double*> pCaics (caics .size ()) ;
std : : vector< int > ranksCaics (caics .size ()) ;
std : : vector<double*> pDiffMoments (diffMoments .size ()) ;
std : : vector< int > ranksDiffMoments (diffMoments .size ()) ;
rankVectorElements (caics .data () , caics .size () , &ranksCaics , &pCaics , t rue) ;
rankVectorElements (diffMoments .data () , diffMoments .size () , &ranksDiffMoments ,

&pDiffMoments , t rue) ;

/ / Reuse t h e c a i c s v e c t o r t o f i n d t h e a v e r a g e rank .
for (i n t i = 0 ; i < (i n t)caics .size () ; i++) {

caics .at (i) = (ranksCaics .at (i) + ranksDiffMoments .at (i)) / 2 . 0 ;
}

/ / Find t h e i n d e x o f t h e t h e t a wi th t h e b e s t / l o w e s t rank .
i n t bestRankIndex = std : : min_element (caics .begin () , caics .end ()) − caics .begin () ;

info .close () ;
return (sampleData .mean () /(double) (bestRankIndex + 1)) ;

}

/ * *
* The s t e p w i s e a l g o r i t h m f o r s e l e c t i n g t h e most o p t i m a l p a r a m e t e r s .
* @param [in] EMDataVector The v e c t o r o f EMData o b j e c t s .
* @param [in , out] f inalEMData The f i n a l EMData o b j e c t which w i l l s t o r e t h e most o p t i m a l
* p a r a m e t e r s .
* @param [in] initEMData The i n i t i a l EMData o b j e c t which s t o r e s t h e i n i t i a l p a r a m e t e r s .
* @param t o l e r a n c e The t o l e r a n c e o f c o n v e r g e n c e o f t h e l i k e l i h o o d f u n c t i o n .
* @param [in] sampleData The v e c t o r o f t h e sample d a t a .
* @param [in] logSampleData The v e c t o r o f t h e l o g g e d sample d a t a .
* @return True i f t h e a l g o r i t h m c o m p l e t e s s u c c e s s f u l l y , f a l s e o t h e r w i s e . The a l g o r i t h m
* w i l l c o m p l e t e s u c c e s s f u l l y i f
* 1) t h e log− l i k e l i h o o d c o n v e r g e s ,
* 2) t h e s c a l e p a r a m e t e r i s non−ze ro , and
* 3) t h e r emova l o f any i n s i g n i f i c a n t b r a n c h e s and r e b a l a n c i n g o f t h e r ema in ing
* w e i g h t s a r e c o m p l e t e d s u c c e s s f u l l y .
* /

bool stepwise (std : : vector<EMData>* EMDataVector , EMData* finalEMData , EMData* initEMData ,
double tolerance , Eigen : : ArrayXd& sampleData , Eigen : : ArrayXd& logSampleData) {

/ / S e t t h e number o f t h r e a d s t o t h e number o f p r o c e s s o r s on t h e u s e r ' s computer .
i n t numThreads = omp_get_num_procs () ;
omp_set_num_threads (numThreads) ;

/ / Opt imize t h e i n i t i a l s e t o f p a r a m e t e r s and s t o r e in t h e f inalEMData o b j e c t .
i n t sampleSize = sampleData .size () ;
double meanSampleData = sampleData .sum () /(double)sampleSize ;

84

finalEMData−>setParams (initEMData) ;
finalEMData−>emAlg (tolerance , sampleData , logSampleData , meanSampleData) ;
finalEMData−>copyParams (finalEMData) ;
bool isOptimal = f a l s e ;

/ / The f i r s t major s t e p o f t h e s t e p w i s e a l g o r i t h m .
/ / Th i s l o o p removes t h e s m a l l e s t we ig h t one a t a t ime u n t i l t h e CAIC cannot be
/ / improved .
while (! isOptimal) {

/ / Find t h e i n d e x o f t h e s m a l l e s t we ig h t .
i n t minIndex = 0 ;
for (i n t i = 1 ; i < finalEMData−>getM () ; i++) {

i f (finalEMData−>getAlphas (f a l s e) (i) <
finalEMData−>getAlphas (f a l s e) (minIndex)) {
minIndex = i ;

}
}

/ / Use t h e f i r s t e l e m e n t o f EMDataVector t o p e r f o r m t h e c o m p u t a t i o n s .
EMDataVector−>at (0) .setParams (finalEMData) ;

/ / R e b a l a n c e t h e w e i g h t s .
i f (! EMDataVector−>at (0) .rebalanceAlphas (minIndex , t rue)) {

return f a l s e ;
}

/ / Remove t h e branch with t h e s m a l l e s t we ig h t .
i f (! EMDataVector−>at (0) .removeBranch (minIndex)) {

return f a l s e ;
}

/ / E x e c u t e t h e EM a l g o r i t h m on t h e mix ture w i t h o u t t h e s m a l l e s t w e ig h t .
i f (! EMDataVector−>at (0) .emAlg (tolerance , sampleData , logSampleData ,

meanSampleData)) {
return f a l s e ;

}

i f (finalEMData−>computeCaic (sampleSize) <
EMDataVector−>at (0) .computeCaic (sampleSize)) {
/ / I f t h e r emova l o f t h e s m a l l e s t we ig h t d o e s not improve t h e CAIC , th en we
/ / p r o c e e d t o t h e nex t major s t e p o f t h e a l g o r i t h m . B e f o r e p r o c e e d i n g , we
/ / r e s i z e t h e EMDataVector t o t h e number o f E r l a n g s in t h e f inalEMData v e c t o r .
isOptimal = t rue ;
for (i n t m = 1 ; m < finalEMData−>getM () ; m++) {

EMDataVector−>push_back (EMData (finalEMData−>getM ())) ;
}

}
e lse {

/ / I f t h e r emova l o f t h e s m a l l e s t we ig h t im p r o v e s t h e CAIC , c o n t i n u e t h e l o o p .
finalEMData−>copyParams(&EMDataVector−>at (0)) ;

}
}

/ / The s e c o n d major s t e p o f t h e s t e p w i s e a l g o r i t h m .
/ / Find t h e " s m a l l e s t " we ig h t in t h e s e t o f w e i g h t s t h a t can be removed so t h a t t h e
/ / CAIC i s improved .

85

/ / C r e a t e v e c t o r s t o rank t h e w e i g h t s and s t o r e t h e r a n k s .
std : : vector< int > ranks ;
std : : vector<double*> pRanks ;
ranks .resize (finalEMData−>getM ()) ;
pRanks .resize (finalEMData−>getM ()) ;

/ / The branch t h a t , once removed , i m p r o v e s t h e CAIC w i l l be r e f e r r e d t o a s an
/ / i n s i g n i f i c a n t branch .
bool foundInsignificantBranch = f a l s e ;
/ / The number o f b r a n c h e s c h e c k e d u n t i l an i n s i g n i f i c a n t branch was found .
i n t numBranchesChecked = 0 ;
isOptimal = f a l s e ;

while (! isOptimal) {
/ / Rank t h e w e i g h t s and s t o r e in t h e v e c t o r " rank " .
rankVectorElements (finalEMData−>getAlphas (f a l s e) .data () , finalEMData−>getM () ,

&ranks , &pRanks , f a l s e) ;
foundInsignificantBranch = f a l s e ;
numBranchesChecked = 0 ;
bool isWithoutError = t rue ;

/ / Per form p a r a l l e l e x e c u t i o n o f t h e EM a l g o r i t h m u n t i l t h e r emova l o f a branch
/ / i m p r o v e s t h e CAIC .

#pragma omp p a r a l l e l for shared (foundIns igni f i cantBranch , isWithoutError) schedule (dynamic)
for (i n t m = 0 ; m < finalEMData−>getM () ; m++) {

/ / The EM a l g o r i t h m i s not e x e c u t e d i f a p r e v i o u s branch was found t o be
/ / i n s i g n i f i c a n t , o r i f t h e r e was an e r r o r in any p r e v i o u s e x e c u t i o n s o f t h e
/ / EM a l g o r i t h m .
i f (! foundInsignificantBranch && isWithoutError) {

numBranchesChecked++;

/ / Run t h e EM a l g o r i t h m when t h e branch with t h e m−th s m a l l e s t w e i gh t i s
/ / removed .
EMDataVector−>at (ranks .at (m)) .setParams (finalEMData) ;

/ / R e b a l a n c e t h e w e i g h t s .
i f (! EMDataVector−>at (ranks .at (m)) .rebalanceAlphas (ranks .at (m) , t rue)) {

isWithoutError = f a l s e ;
}

/ / Remove t h e branch with t h e m−th s m a l l e s t w e i gh t .
i f (! EMDataVector−>at (ranks .at (m)) .removeBranch (ranks .at (m))) {

isWithoutError = f a l s e ;
}

/ / E x e c u t e t h e EM a l g o r i t h m on t h e mix ture w i t h o u t t h e m−th s m a l l e s t
/ / we igh t .
i f (! EMDataVector−>at (ranks .at (m)) .emAlg (tolerance , sampleData ,

logSampleData , meanSampleData)) {
isWithoutError = f a l s e ;

}

/ / Check i f t h e branch i s t h e f i r s t i n s i g n i f i c a n t branch .
i f (! foundInsignificantBranch && isWithoutError) {

foundInsignificantBranch = finalEMData−>computeCaic (sampleSize) >
EMDataVector−>at (ranks .at (m)) .computeCaic (sampleSize) ;

}

86

}
}

/ / Return f a l s e i f any e r r o r s o c c u r .
i f (! isWithoutError) {

return f a l s e ;
}

i f (foundInsignificantBranch) {
/ / I f an i n s i g n i f i c a n t branch i s found , s t o r e t h e new o p t i m a l p a r a m e t e r s in
/ / t h e f inalEMData o b j e c t and c o n t i n u e t h e l o o p .
i n t minCaicIndex = ranks .at (0) ;
double minCaicValue = EMDataVector−>at (minCaicIndex) .computeCaic (sampleSize) ;

/ / S i n c e t h e a l g o r i t h m was e x e c u t e d in p a r a l l e l , t h e r e may be m u l t i p l e
/ / i n s i g n i f i c a n t b r a n c h e s . Find t h e most i n s i g n i f i c a n t branch .
for (i n t m = 1 ; m < numBranchesChecked ; m++) {

double temp = EMDataVector−>at (ranks .at (m)) .computeCaic (sampleSize) ;
i f (temp < minCaicValue) {

minCaicValue = temp ;
minCaicIndex = ranks .at (m) ;

}
}

/ / S t o r e t h e most o p t i m a l p a r a m e t e r s in t h e f inalEMData o b j e c t .
finalEMData−>copyParams(&EMDataVector−>at (minCaicIndex)) ;

}
e lse {

/ / I f no i n s i g n i f i c a n t branch i s found , th en t h e f inalEMData o b j e c t c o n t a i n s
/ / t h e most o p t i m a l s e t o f p a r a m e t e r s . E x i t t h e l o o p .
isOptimal = t rue ;

}
}

return true ;
}

/ * *
* Main method f o r t h i s a p p l i c a t i o n . Most o f t h e c o d e in t h i s method i s used t o communicate t o
* t h e u s e r . As such , comments a r e on ly i n c l u d e d f o r t h e most i m p o r t a n t c o d e .
* @return The e x i t c o d e f o r t h e p r o c e s s − 0 f o r s u c c e s s , o t h e r w i s e an e r r o r c o d e .
* /

i n t main () {
/ / Read t h e sample d a t a .
std : : ifstream data ;
data .open (" data . t x t " , std : : ofstream : : in) ;
std : : vector<double> tempSampleData ;

i f (data .is_open ()) {
double temp = 0 . 0 ;

while (! data .eof ()) {
data >> temp ;
tempSampleData .push_back (temp) ;

}
}
e lse {

87

std : : cout << " Data f i l e could not be opened ! " << std : : endl ;
return 0 ;

}

Eigen : : ArrayXd sampleData , logSampleData ;
double tolerance = pow (1 0 . 0 , −3) ;
sampleData .resize ((i n t)tempSampleData .size ()) ;
std : : copy (tempSampleData .begin () , tempSampleData .end () , sampleData .data ()) ;

std : : cout << "\nPlease s p e c i f y the t o l e r a n c e of convergence (e . g . 0 . 0 0 0 1) : " ;
std : : cin >> tolerance ;
std : : cout << "\n" << std : : endl ;

/ / Get t h e number o f t h r e a d s on t h e u s e r ' s computer .
i n t numThreads = omp_get_num_procs () ;
omp_set_num_threads (numThreads) ;
std : : cout << " This program w i l l use " << numThreads << " threads . \n" << std : : endl ;

/ / P r o c e s s t h e sample d a t a .
processData (sampleData , logSampleData) ;

time_t start , end ;
double bestInitTheta = 0 . 0 ;
i n t shouldFindInitTheta = 1 ;

std : : cout << " To provide an i n i t i a l value , type 0 . " << std : : endl ;
std : : cout << " Otherwise , type 1 i f you have no preference . " << std : : endl ;
std : : cout << " Note t h a t t h i s process my take a long time to complete i f the " << std : : endl ;
std : : cout << " sample s i z e i s very l a r g e " << std : : endl ;
std : : cout << " Enter 1 or 0 here : " << std : : endl ;
std : : cin >> shouldFindInitTheta ;
std : : cout << std : : endl ;

i f (shouldFindInitTheta) {
time(&start) ;
/ / I f t h e u s e r has no p r e f e r e n c e , f i n d an i n i t i a l v a l u e o f t h e t a b a s e d on t h e
/ / p r e v i o u s l y ment ioned c r i t e r i a .
bestInitTheta = computeInitTheta (sampleData , logSampleData) ;

time(&end) ;
std : : cout << std : : setprecision (2 0) << " I t took " << difftime (end , start)

<< " seconds to compute the i n i t i a l e s t i m a t e s .\n" << std : : endl ;
}
e lse {

std : : cout << " Enter t h e t a here : " << std : : endl ;
std : : cin >> bestInitTheta ;
std : : cout << std : : endl ;

}

std : : ofstream results ;
results .open (" r e s u l t s . t x t " , std : : ofstream : : out) ;
i n t isFirstRun = 1 ;
i n t quit = 0 ;
i n t hasRunOnce = 0 ;

while (! quit) {
i f (! isFirstRun) {

88

std : : cout << " I f the r e s u l t s are s a t i s f a c t o r y , p lease enter −1 to qui t . "
<< std : : endl ;

std : : cout << " Otherwise , enter an i n i t i a l value f o r the s c a l e parameter , t h e t a . "
<< std : : endl ;

i f (! hasRunOnce && shouldFindInitTheta) {
std : : cout << " The f i l e i n f o . t x t may aid in your i n i t i a l choice of t h e t a . "

<< std : : endl ;
std : : cout << " (The f i l e i s b e t t e r viewed using a spreadsheet program) . "

<< std : : endl ;
hasRunOnce = 1 ;

}
std : : cout << "\n Enter t h e t a (or −1) here : " << std : : endl ;
std : : cin >> bestInitTheta ;
std : : cout << std : : endl ;
i f (bestInitTheta == −1) {

quit = 1 ;
return 0 ;

}
std : : cout << "\nPlease s p e c i f y the t o l e r a n c e of convergence (e . g . 0 . 0 0 0 1) : " ;
std : : cin >> tolerance ;
std : : cout << "\n" << std : : endl ;

}
e lse {

isFirstRun = 0 ;
}

time(&start) ;

/ / C o n s t r u c t t h e i n i t i a l EMData o b j e c t b a s e d on t h e i n i t i a l v a l u e o f t h e t a .
EMData* initEMData = initParams (sampleData , bestInitTheta) ;

i n t M = initEMData−>getM () ;
std : : cout << " The number of Erlangs t h a t w i l l be used to f i t t h i s data i s "

<< M << std : : endl ;
std : : cout << " The i n i t i a l s c a l e parameter i s " << bestInitTheta << std : : endl ;

/ / A v e c t o r o f EMData o b j e c t s t o be used f o r p a r a l l e l p r o c e s s i n g .
std : : vector<EMData> EMDataVector ;
EMDataVector .push_back (EMData (M)) ;

/ / C o n s t r u c t t h e f i n a l EMData o b j e c t t o be used f o r s t o r i n g t h e most o p t i m a l
/ / p a r a m e t e r s .
EMData* finalEMData = new EMData (M) ;

/ / Per form t h e s t e p w i s e a l g o r i t h m f o r f i n d i n g t h e most o p t i m a l p a r a m e t e r s
bool isWithoutError = stepwise(&EMDataVector , finalEMData , initEMData , tolerance ,

sampleData , logSampleData) ;

/ / Output r e s u l t s t o t h e f i l e " r e s u l t s . t x t " i f t h e a l g o r i t h m c o m p l e t e d w i t h o u t e r r o r .
i f (isWithoutError) {

M = finalEMData−>getM () ;

time(&end) ;

std : : cout << std : : setprecision (2 0) << " I t took " << difftime (end , start)
<< " seconds to complete the algorithm .\n" << std : : endl ;

89

i f (results .is_open ()) {
for (i n t i = 0 ; i < M ; i++) {

results << std : : setprecision (2 0) << finalEMData−>getShapeParams () (i)
<< "\ t " << finalEMData−>getAlphas (f a l s e) (i) << std : : endl ;

}
results << std : : setprecision (2 0) << finalEMData−>getTheta (f a l s e) << "\ t "

<< finalEMData−>getLogLikelihood () << "\n" << std : : endl ;

std : : cout << " Resul t s have been wri t ten . " << std : : endl ;
std : : cout << " All but the l a s t number in the f i r s t column " ;
std : : cout << " are the shape parameters . " << std : : endl ;
std : : cout << " All but the l a s t number in the second column " ;
std : : cout << " are the weights (alpha) . " << std : : endl ;
std : : cout << " In the l a s t l i n e i s the s c a l e parameter , t h e t a " ;
std : : cout << " followed by the log−l i k e l i h o o d .\n" << std : : endl ;

}
e lse {

std : : cout << " Resul t s could not be wri t ten ! \n" << std : : endl ;
}

}
e lse {

std : : cout << " The algorithm cannot be executed f o r t h e t a = " << bestInitTheta
<< " . " << std : : endl ;

}

/ / Clean−up .
delete initEMData ;
delete finalEMData ;

}

system ("PAUSE") ;
return 0 ;

}

90

References

[1] Mark J. Ablowitz and Athanassios S. Fokas. Complex variables: introduction and ap-
plications. Cambridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, second edition, 2003.

[2] Hansjörg Albrecher and Stefan Thonhauser. Optimality results for dividend prob-
lems in insurance. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM,
103(2):295–320, 2009.

[3] Søren Asmussen and Hansjörg Albrecher. Ruin probabilities. Advanced Series on
Statistical Science & Applied Probability, 14. World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, second edition, 2010.

[4] Florin Avram, Zbigniew Palmowski, and Martijn R. Pistorius. On the optimal divi-
dend problem for a spectrally negative Lévy process. Ann. Appl. Probab., 17(1):156–
180, 2007.

[5] Florin Avram, Zbigniew Palmowski, and Martijn R. Pistorius. On the optimal divi-
dend problem for a spectrally negative Lévy process. Ann. Appl. Probab., 17(1):156–
180, 2007.

[6] Pablo Azcue and Nora Muler. Optimal reinsurance and dividend distribution poli-
cies in the cramÉr-lundberg model. Mathematical Finance, 15(2):261–308, 2005.

[7] Jean Bertoin. Exponential decay and ergodicity of completely asymmetric Lévy
processes in a finite interval. Ann. Appl. Probab., 7(1):156–169, 1997.

[8] J Chen, K H Lundberg, D E Davison, and D S Bernstein. The final value theorem
revisited - infinite limits and irrational functions. Control Systems Magazine IEEE,
27(3):97–99, 2007.

91

[9] Eric C. K. Cheung. On optimal dividend strategies in the compound Poisson model
by Elias S. W. Shiu and Hans U. Gerber, April 2006 [mr2328638]. N. Am. Actuar. J.,
11(1):158–161, 2007.

[10] Bruno De Finetti. Su un’impostazione alternativa della teoria colletiva del rischio.
Transactions of the XVth International Congress of Actuaries, vol. 2., pages 433–443,
1957.

[11] Olivier Deprez and Hansjörg Albrecher. “Optimal dividends: analysis with Brow-
nian motion,” Hans U. Gerber and Elias S. W. Shiu, January 2004. N. Am. Actuar.
J., 8(2):111–115, 2004.

[12] J. D. Esary and A. W. Marshall. Shock models and wear processes. The Annals of
Probability, 1(4):pp. 627–649, 1973.

[13] Edward Furman and Zinoviy Landsman. Risk capital decomposition for a multi-
variate dependent gamma portfolio. Insurance Math. Econom., 37(3):635–649, 2005.

[14] T.W. Gamelin. Complex analysis. Springer Verlag, 2001.

[15] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[16] A. Kuznetsov, A. E. Kyprianou, and V. Rivero. The theory of scale functions for
spectrally negative Le vy processes. ArXiv e-prints, April 2011.

[17] A. E. Kyprianou, V. Rivero, and R. Song. Convexity and smoothness of scale func-
tions and de finetti’s control problem, 2008.

[18] Andreas E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with
applications. Universitext. Springer-Verlag, Berlin, 2006.

[19] Andreas E. Kyprianou and Zbigniew Palmowski. A martingale review of some
fluctuation theory for spectrally negative Lévy processes. In Séminaire de Probabil-
ités XXXVIII, volume 1857 of Lecture Notes in Math., pages 16–29. Springer, Berlin,
2005.

[20] S. Lee and S. Lin. Modelling insurance losses and calculating risk measures via a
mixture of erlangs. 2009.

[21] S.C.K. Lee and X.S. Lin. Modeling and evaluating insurance losses via mixtures of
erlang distributions. North American Actuarial Journal, 2010.

92

[22] Alan L. Lewis and Ernesto Mordecki. Wiener-hopf factorization for l’evy processes
having negative jumps with rational transforms, 2005.

[23] R. L. Loeffen. On optimality of the barrier strategy in de Finetti’s dividend problem
for spectrally negative Lévy processes. Ann. Appl. Probab., 18(5):1669–1680, 2008.

[24] Ronnie L. Loeffen and Jean-François Renaud. De finetti’s optimal dividends prob-
lem with an affine penalty function at ruin. Insurance: Mathematics and Economics,
46(1):98 – 108, 2010. Gerber-Shiu Functions / Longevity risk and capital markets.

[25] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM algorithm and exten-
sions. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley &
Sons], Hoboken, NJ, second edition, 2008.

[26] J. Paulsen. Optimal dividend payouts for diffusions with solvency constraints.
Finance and Stochastics, 7(4):457–473, 2003.

[27] Jean-François Renaud and Xiaowen Zhou. Distribution of the present value of
dividend payments in a Lévy risk model. J. Appl. Probab., 44(2):420–427, 2007.

[28] B. A. Surya. Evaluating scale functions of spectrally negative Lévy processes. J.
Appl. Probab., 45(1):135–149, 2008.

[29] Axel Thümmler, Peter Buchholz, and Miklós Telek. A novel approach for phase-
type fitting with the em algorithm. IEEE Transactions on Dependable and Secure Com-
puting, 3:245–258, 2006.

[30] Henk C. Tijms. Stochastic models. Wiley Series in Probability and Mathematical
Statistics: Applied Probability and Statistics. John Wiley & Sons Ltd., Chichester,
1994. An algorithmic approach.

[31] David Vernon Widder. The Laplace Transform. Princeton Mathematical Series, v. 6.
Princeton University Press, Princeton, N. J., 1941.

93

	List of Tables
	List of Figures
	Lévy Insurance Risk Processes
	Introduction
	Properties of the Laplace Transform
	Scale Functions

	The Optimality of a Barrier Strategy
	Introduction
	Definition of the Problem
	Useful Results
	Conditions for the Optimality of a Barrier Strategy
	A Sufficient Condition on the Parameters of the Surplus Process
	Insights into the Sufficient Condition

	The Univariate Erlang Mixture
	Introduction
	Definitions
	Univariate Erlang Mixture
	Multivariate Erlang Mixture

	Risk Measures
	Value-at-Risk (VaR)
	Conditional Tail Expectation (CTE)

	Euler Risk Contributions
	The Aggregate Loss
	The Euler Risk Contribution to CTE

	The Optimal Dividends Problem
	Jump-Diffusion Processes Revisited
	Analysis of the Roots

	On the optimality of a barrier strategy

	An Algorithm for Fitting Univariate Erlang Mixtures to Data
	Introduction
	The Expectation Maximization (EM) Algorithm
	Parameter Initialization
	Final Model Selection
	A note on the model selection algorithm
	Numerical Results
	Conclusions on the Goodness of Fit
	A Jump-Diffusion Process with an Erlang Mixture Claims Distribution

	Concluding Remarks
	APPENDICES
	Parameters of the Fitted Distributions
	A C++ Implementation of the Model Selection Algorithm
	References

