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Abstract 

Electron beam lithography (EBL) and Nanoimprint Lithography (NIL) are the promising 

tools for today’s technology in terms of resolution capability, fidelity and cost of operation. 

Achieving highest possible resolution is a key concept for EBL where there is a huge request 

in applications of nanotechnology for sub-20 nm feature sizes. Defining features at these 

length scales is a challenge, and there is a large demand for resist that is not only capable of 

giving high resolution but also having low cost and ease of process. In this work I studied 

Polystyrene (PS) which is an alternative organic e-beam resist in terms of ease of process and 

resolution capability. I examined the process of electron-beam exposure and attempted to 

characterize the factors that affect the achieved resolution and sensitivity. Besides this work, 

I designed and fabricated a new type of mold for NIL since mold fabrication is a key factor 

for NIL technology. The resolution of NIL process depends on the mold features and 

polymer mold technology received great attention in terms of cost of fabrication and process, 

fidelity, and reliability. I used MD 700 Fluoropolymer as a new type of polymer mold which 

was believed to be a good candidate for the polymer mold of high throughput NIL. 
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Chapter 1 

Electron Beam Lithography 

 

1.1 Introduction 

Nanotechnology has started to attract attention in late 1960s as a new branch of technology. Richard 

Feynman has led people to think about entering a new field of physics when he gave his famous talk 

at California Institute of Technology (CalTech) on “There is plenty of room at the bottom” in 1959 

[Feynman, 1960]. After this talk, there has been much effort in the field of nano technology. 

Although making things smaller was seen imaginary in these days, Tom Newman achieved writing  

the first page of Charles  Dickens’s novel, “A tale of two cities”,  with a reduction factor of 25000 

using Electron Beam Lithography in 1985 [Newman, 1986]. Decreasing the dimensions of the 

patterned functional materials has opened a  new era in fabrication of high-performance and cost-

effective materials as integrated circuits (IC), storage devices, displays, bio sensors and advanced 

materials [Saavedra, 2010]. Photolithography, which is the process of the minimum feature size 

scales with the wavelength of exposure light, has been used for many years in patterning most of the 

functional materials as ICs, MEMS, sensors, LEDS, and so on. Although there has been improvement 

in photolithography for the last 3 decades that has pushed the production line into the 32 nm era 

[Wang, 2010], there is still a need for further improvement. At reduced wavelength, photolithography 

is hampered by the materials including masks, resists and lenses [Wang, 2010]. According to Moore’s 

Law, the numbers of transistors that are practically placed on an IC will double every two years 

[Moore, 1965]. Thus, new non-optical lithographic techniques such as electron beam lithography 

(EBL), ion beam lithography (IBL), and X-ray lithography etc. have superseded the optical technique 

[Pain, 2006; Yamomato, 2000; Lee, 1998]. EBL is a direct writing technique without using mask 

which is capable of obtaining a higher resolution than any other tools or optical microscopes 
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[Grigorescu, 2009, Saavedra, 2010]. In this work, we will give an overview on the working principle 

of EBL and its capabilities. After that, high resolution patterns by EBL using polystyrene (PS) 

negative tone resist will be discussed. 

 Electron Beam Lithography 1.2

Electron beam lithography (EBL), which is popular with its excellent resolution capability, low cost, 

high reliability and ability to write reproducible structures over large areas, is now capable of 

achieving sub-10 nm resolution patterns [Grigorescu, 2009]. Electron Beam Lithography (EBL), 

which is a maskless lithography technique based on the electron beam source, has its roots in 

Scanning Electron Microscopy (SEM) and becomes the most useful tool for nanofabrication due to its 

small wavelength and small probe size.  

 Electron beam can be focused to spot size less than 5 nm using electron optics which is extremely 

powerful more than photolithography. Associated with de Broglie wavelength, wavelength of the 

electron can be estimated by using equation 1 below: 

 

Wavelength of the photon beam is calculated by equation 2:  

 

For comparison, it can be said that an electron beam has 1.2 nm wavelength for 1 eV whereas a 

photon beam has thousand times larger (1.22 m) wavelength than the electron beam.  
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Electron beam resists that are basically polymeric materials are sensitive to the electron beam. One 

can create desired patterns by switching on and off the beam followed by the selective etch of resist 

by using solvent due to chemically modified structure of the resist. EBL has developed in late 1960s 

along with the Scanning Electron Microscope [Cui, 2005], and has been improved throughout the 

years with improvements of SEM. Figure 1.1 is a schematic view of an electron beam lithography 

system representing its complexity. Today, EBL is the most popular nano-patterning technique for 

academic research and prototyping.   
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Figure 1.1 Major components of high-energy electron beam lithography system [Wang, 2010] 
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 Fundamentals of Electron Beam Lithography (EBL) 1.3

This section gives an introduction to fundamental factors of EBL including electron beam source, 

electron accelerator, aberrations and limits on electron beam spot size, EBL systems, and proximity 

effect and how to reduce it, resists and developers and their properties, and important parameters for 

high resolution EBL resists. 

 Electron Beam Lithography Systems 1.3.1

 The usage of electron beam lithography (EBL) started in late 1960s when SEM system was 

developed [Cui, 2005]. The application of EBL system has basically relied on the invention of the 

electron sensitive resists, that is, some materials would be affected by exposure to the electrons where 

the principle is similar to the photolithography. There have been many improvements in EBL systems 

and materials used together with the semiconductor technology, and different types of EBL systems 

now have been developed and used for industry and research. Working principles of SEM-

based/converted EBL systems and e-beam direct writer systems are alike. In figure 1.2, Raith 150
Two

 

Direct Write EBL system is shown. 
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Figure 1.2 Raith 150
TWO

 Direct Write Electron Beam Lithography Systems [Raith, 2011] 

 

SEM based/converted systems have a beam blanker and hardware controller. Some has an additional 

laser system for height controller and focus correction with perfect integration to the system. The 

acceleration voltage can be increased up to 30 kV. In addition to the SEM based systems, Direct 

Write EBL systems can have 100 kV acceleration voltages with high reproducibility, automatic and 

continuous writing for few days, but it costs much more than SEM based systems.  

 Working scheme of the EBL  1.3.2

EBL process has three steps (figure 1.3); resist coating, exposure and development. Resists can be 

divided into two categories with respect to the reactions of the electron beam: positive and negative. 

Positive resists are removed by the developers after electron beam exposure, whereas negative ones 

remain. Resists and developers will be discussed in detail in the following sections. 
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Figure 1.3 Working scheme of EBL: resist coating, e-beam exposure and development by 

solvent 

 

For different applications, various substrates such as Si, SiO2, Si3N4, quartz crystal, etc. with distinct 

shapes up to 8” can be used in several EBL tools aforementioned. 

 Scan systems and beam shapes 1.3.3

In EBL writing systems, there are two different writing strategies that can create pattern on the resist: 

raster scan and vector scan (figure 1.4). For raster scan, the beam moves in one direction and desired 

pattern is written by switching on and off the beam by beam blanker. Raster scan is very simple, fast 

and repeatable operation, but during the exposure, it is very hard to adjust the focus. It is good for 

making photo mask where focus will not be a hard issue. For vector scan, beam is switched on only 
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over the desired area to be written, and the beam can move along x and y directions in order to write 

the next area. It leads to faster writing compared to raster scan for sparse patterns since unwritten 

parts are skipped. For vector scan, dose can vary easily from shape to shape which makes it useful for 

nanolithography and Research and Development [Madou, 1997].  

 

Figure 1.4 Scan systems for EBL 

 

In EBL system, beam shape can vary in two different ways: Gaussian (figure 1.5a) and shaped (figure 

1.5b) beams. Gaussian beam is a rounded beam, and focused to spot size as small as possible for high 

resolution, which is important for R&D, though it is slow due to small pixel size of the patterned area 

(about 10 nm). Shaped beam uses the combination of the apertures to make an electron beam 

rectangular yet variable shape to write faster for large pixel areas. The most IC pattern pixels are large 

(100 nm), therefore using shaped beam is much faster than using Gaussian beam [Cui, 2005]. Shaped 

beam only works for vector scan mode in EBL. 
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Figure 1.5 a) Gaussian type beam and b) Shaped beam system 

1.3.3.1 Principles of Electron Optics 

Electron-optical control system is the main part of the EBL system. It generates a highly focused 

electron beam with high current density allowing the patterning of resists. It consists of 9 different 

components as shown in the figure 1.6: electron gun, electron gun alignment, condenser lens, beam 

blanker, zoom lenses, stigmator, beam aperture, projection lenses, and deflectors. 

a) b) 



 

 10 

 

Figure 1.6 Scheme of complete electron optical system in e-beam lithography column 

 

 Electron Beam Source 1.3.4

An electron gun (source) is a portion of the electron optics of the SEM that extracts and accelerates 

electrons pulled out from the filament to a certain amount of energy. It consists of two components: a 

cathode for emitting electrons by gaining additional energy from heat or electrical field, and a lens to 

focus the emitted electrons into a beam, called as cathode lens [Wang, 2010, Gemma, 2008]. Figure 

1.7 is a schematic view of the electron beam source, and here C is the cathode, E is the extraction 

electrode and A1 and A2 are the lenses. 
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Figure 1.7 Electron Beam source scheme 

 

For the electron beam source, virtual source size, brightness and energy spread of emitted electrons 

are the three key parameters. For SEM applications, smaller virtual source size is desired due to the 

demagnification needs. In figure 1.8a and 1.8b, two different types of electron sources are shown, and 

it can be said that the field emission cathode is a better source due to its higher brightness.  

 

Figure 1.8 a) Thermionic cathode and b) Field emission cathode 

 

Principally, brightness, which is the current emitted per unit area per solid angle, is equivalent to 

intensity in optics, and it is an important parameter for high-emission intensity and high resolution 

[Gemma, 2008]. For tungsten (W) thermionic emission source brightness is around 10
5
 A/cm

2
/rad.  

The energy spread of a W thermionic emitter is about 2.5 eV, and 1eV for LaB6, thus LaB6 is a better 

emitter source, though it is also more costly then W source. Sharpness of the source size is an 
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important parameter to get the best focus of the beam for high resolution. Basically, there are 

three types of electron gun sources: thermionic emission, field emission and Schottky guns. 

In Table 1.1 and Table 1.2, some of the filaments used in electron gun sources and their 

properties are listed.  

In thermionic electron guns, electrons are extracted by the heating of conducting materials. 

Thermionic gun sources are listed in Table 1.1, as Tungsten (W) (figure 1.9) and LaB6. At 2700 K 

(for Tungsten material), electrons gain enough thermal kinetic energy at the cathode surface, to 

overcome the energy barrier (equal work function) and to free escape from the cathode into space, in 

order to become free electrons. Once they escape from the tip, they are extracted by electric field 

generated by nearby extraction electrodes. Current density of the beam strongly depends on the 

temperature of the tip and work function of the material. 

 

Figure 1.9 Tungsten (W) filament 
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Table 1-1 Characteristics of different types of filaments [Gemma, 2008] 
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Table 1-2 Characteristics of some filaments [Zhou, 2007] 

 

 

In field emission (cold) type guns, electrons are tunnelled out from Tungsten tip due to high electric 

field (10
8
 V/cm) obtained by using a very sharp tip (100 nm) and high voltage (figure 1.10). Field 

emission type gun operates at room temperature, thus it is called as cold type gun. As electrons are 

pulled out by electric field through a tunnelling process, current density of the emitted electrons is 

independent from the tip temperature.   
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Figure 1.10 Field Emission Gun 

 

For cold field emission gun, small beam spot size can be achieved since the high enough electric field 

exists only the tip apex. It needs an ultra-high vacuum, which is also important to keep the tip clean 

for an efficient field emitter source and to prevent arc-over at tip apex. At 10
-6

 Torr, a monolayer of 

gas which leads organic contamination and instability of the beam is deposited in just 5 seconds on 

the tip, and at 10
-10

 Torr within 5-10 minutes. In order to overcome this problem, a flashing process 

can be performed, where the tip is heated for a few seconds to desorb the gas. However, the process 

does not last long, typically 4-8 hours, which is considered ineffective for EBL; thus, cold field 

emission gun is not appropriate for EBL, whereas it is best for SEM imaging where current instability 

is act as a major issue. Advantages of this type of gun are having short switch time (less than ns), and 

being durable for 5 years which is good for SEM applications. 

Another type of the gun is called Thermic Field Emission (Schottky) type electron source. Tungsten 

is a typical source for this kind of gun. A Schottky is actually a field assisted thermionic source, and it 

is not truly an emission gun (figure 1.11) since the tip used is blunt and there is no emission without 

heating. 
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Figure 1.11 Schottky type electron source 

 

In Schottky emitter, electric field reduces the work function (energy barrier) of the source. Work 

function can be reduced further by adding ZrO3. In Schottky gun, cathode acts as a thermionic 

emitter, thus it has to be kept in operating condition at 1750 K, and its life time is 1-2 years. Schottky 

emitter has a high current density and stability, thus it is the best choice for electron beam 

lithography. One important issue in Schottky emitter is that there is no problem with contamination, 

which is undesirable in EBL, since it is always hot to burn of any organic contaminations.  

1.3.4.1 Electron Accelerator 

Once the electrons are emitted from the emission gun, beam enters into the acceleration system where 

acceleration can be reached up to 100 kV. Acceleration voltage is of great importance for high aspect 

ratio EBL patterning since the high aspect ratio pattern can be accomplished by the higher 

acceleration voltage as plainly seen in figure 1.12 [Wang, 2010]. 
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Figure 1.12 Patterns created by EBL with different acceleration voltages [Wang, 2010] 

 

1.3.4.2 Electromagnetic Lenses 

There are 4 magnetic lenses (figure 1.13) in the system. The 2
nd

 and 3
rd 

electromagnetic lenses that 

function as zoom lenses are placed after the focusing lens in order to keep focus point constant on the 

4
th
 lens called objective lens. 

                    

Figure 1.13 Cross-sectional drawing of electromagnetic lens system and lens structure 
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Once the current is applied on the wire around the cylindrical iron core, magnetic field is then created   

around the coil, and this makes the system to act as a magnetic lens.   

1.3.4.3 Aberrations and Limits on Electron Beam Spot Size 

 All lenses are not ideal, and they have some deviation from its ideal state called as aberration. 

Astigmatism is one of the aberrations arisen during the beam adjustment. It happens when electron 

beam is not equally focused in X and Y directions. In figure 1.14, the difference between elliptical 

shaped beam and astigmatism corrected beam is shown, and their differences in SEM images can 

readily be seen. The reason behind astigmatism is the error in the mechanical machining of the lens 

components which leads to the elliptical beam shape, and it can be amended by an astigmatism 

corrector located after the electromagnetic lenses [Wang, 2010, Cui, 2005]. 

 

Figure 1.14 Comparisons of beam-forms on the sample and resulted SEM images. a) Before 

stigmation correction and b) after stigmation correction [Wang, 2010] 

 

Ideal electron spot size is given by: 
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Where i is the beam current,  is the brightness of the electron beam, and  is the half angle 

subtended by the lens aperture. 

One aberration is the spherical aberration of the beam which is directly proportional to the spread 

angle of the beam. The spot size contribution of spherical aberration (ds) is given by: 

ds= 0.5  Cs.
3 

where Cs is the spherical aberration constant for a well-designed magnetic lens, and  is the 

numerical aperture of the lens. 

Chromatic aberration is caused by the energy dispersion of the electrons (E/E) of due to the energy 

spread of gun emission and Coulomb interactions of electrons. The spot size contribution of 

chromatic aberration (dc) is given by: 

dc= Cc.. (E/E)      (Cs is a constant) 

Diffraction is another sort of aberration. As known, electrons are waves, and diffraction limited 

crossover that they create at focal point by a minimum diameter is given by: 

df = / 

Diffraction is a significant factor when the beam energy is low. From de-Broglie wavelength, as 

energy of the beam decreases, wavelength of the beam increases (0.04 nm at 1 kV and 0.0078 nm for 

25 kV). 

Once all the contributions in quadrature are summed up, total beam diameter can be determined using 

the equation below: 

dtot
2= do

2 + ds
2 + dc

2 + df
2 
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It can be concluded that EBL system can be optimized by using a reasonable beam current, the 

highest stable voltage, and the smallest working distance in order to have high-resolution patterns. 

 Proximity Effect and How to Reduce It 1.3.5

When the electron beam enters the resist/substrate media, beam has an interaction with electrons and 

heavy particles such as substrate nucleus, and this interaction results in the elastic and inelastic 

collision of the beam with resist (figure 1.15) [Wiederrecht, 2010]. Many of the electrons face with 

elastic scattering known as small angle forward scattering which increases the electron beam size in 

the resist. Few electrons experience with backscattering which is referred to as inelastic scattering.  

 

Figure 1.15 Illustration of interaction of electrons (forward and backward scattered) with 

resist-coated wafer 

 

Most of the electrons penetrate into the substrate instead of being absorbed by the resist, leading to 

inelastic scattering. Depending on the atomic number of the substrate atoms, a 10 % to 40% of the 

high energy electrons are backscattered, and this results in an additional exposure of the resist besides 

the primary beam exposure (shown as in figure 1.16). This is called as electron beam lithography 

proximity effect [Gemma, 2008]. 
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Figure 1.16 Illustrations of patterns created by normal and additional exposure [Gemma, 2008] 

 

The sum of the backscattering and forward scattering electron beam distributions gives Gaussian 

distribution which was defined by Chang to calculate the result of the proximity effect on the 

exposure. The equation is given by [Chang, 1975, Cord, 2009]: 
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Where  is the ratio of the backscattering to the forward scattering  

f is the forward scattering range parameter, and 

b is the backscattering range parameter which determines the proximity effect. 

In order to reduce the proximity effect, one can make dose correction or adjust the pattern design. It 

can also be minimized by using high energy beam. As seen in figure 1.17, forward and back 

scattering are minimized or “diluted” at 100 kV compared to 30 kV beam energy [Wang, 2010]. 
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Figure 1.17 Illustration of scattered electron behaviour at 30 kV and 100 kV accelerated beam 

[Wang, 2010] 

 

Another way to minimize the proximity effect is to use specific systems as multilayer resist, inorganic 

resists or to do the lithography on membrane that is “transparent” to electrons. 

 High Resolution E-beam Resists 1.3.6

Many types of resists have been developed during the past decades for electron beam lithography, and 

categorized into two groups in terms of chemical behaviour: organic and inorganic resists. Organic 

resists which consist of carbonhydrates are typically polymeric materials, and Poly methyl 

methacrylate (PMMA), ZEP, polystyrene (PS), and poly l-butane sulfone (PBS) are common types of 

organic resists. Unlike organic resists, inorganic resists are monomeric materials, and under e-beam 

exposure, their chemical structure is changed leading to different dissolution rate during the 

development procedure. Some examples of inorganic resists are Hydrogen silsesquixane (HSQ), 

Lithium fluorine (LiF), and Aluminium floride (AlF3), etc [Saavedra, 2010]. Some of the resists are 

illustrated in figure 1.18. 
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Figure 1.18 Chemical structure of PMMA, PBS, PS, Calixarene, and HSQ 

 

Resists have basically two roles in lithography: they are used either to transfer the pattern by lift off 

or to protect the covered substrate from etching or ion implantation [Zhou, 2007].  

Electron Beam Lithography resists are classified as positive and negative resists, as seen in Table 1.3. 

Resists where exposed portions are removed by a suitable solution (developer) after e-beam exposure 

are called positive resists, and they usually have high molecular weights. PMMA is the first 

developed resist for e-beam lithography, and is still most commonly used e-beam resist. PMMA has 

high molecular weight which ranges from 50,000 to 2.2 million g/mol (Nano PMMA and Copolymer, 

PMMA Resist Data Sheet, MicroChem Corp.), and is mixed with chlorobenzene solvent [Zhou, 

2007]. It can be used as a positive and negative e-beam resist depending on the e-beam dose used. 

PMMA has high resolution capability, and Cord achieved 10 nm line width using PMMA as an e-

beam resist (figure 1.19) [Chang, 1975, Cord, 2009]. 

 

Figure 1.19 10 nm lines achieved by using PMMA positive resist [Cord, 2009] 
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Once exposed to e-beam, the polymeric chain are broken and form polymeric structure with lower 

molecular weight. Reduced Mw PMMA is soluble in the developer, whereas unexposed part of 

PMMA is insoluble. MIBK-IPA solution is the standard developer for PMMA. Last but not least, 

PMMA has a high contrast (4-8), low sensitivity (50-500 C/cm2), and unlimited shelf life.   

 

Table 1-3 Some popular e-beam resists and their properties [Wiederrecht, 2010] 

 

ZEP is one of the organic positive tone resists for EBL, which is developed by ZEON in Japan [Cui, 

2005]. It is composed of methyl styrene and chloromethyl acrylate copolymer. It possesses similar 

properties to PMMA. Anisole is a typical solvent for ZEP type e-beam resists. Nishida has achieved 

50 nm lines with 1.5 m pitch using ZEP-520 (figure 1.20). ZEP is five times more sensitive (20-50 

C/cm
2
) than PMMA, and it has very high contrast, as well [Nishida, 1992]. However, it is more 

expensive than PMMA with its shorter shelf-life (one year).  
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Figure 1.20 50 nm wide line with 1.5 micrometer depth achieved with ZEP resist [Nishida, 1992] 

 

Resists which are called negative e-beam resists are insoluble in developers after e-beam exposure. 

Negative e-beam resists form reverse patterning compared to positive e-beam resists. Calix[n] arene 

is a negative tone resist for e-beam lithography. Calix[n]arene has a cylic structure, and its molecular 

size is less than 1 nm [Saavedra, 2010].  Xylene is a typical developer for calixarene. Although the 

required dose for calixarene is 20 times higher than PMMA, calixarene is preferred for some 

applications such as pillar array fabrication. For instance, Fujita achieved 15 nm diameter and 35 nm 

period dot array for data storage applications by using calixarene resist (figure 1.21) [Fujita, 1996].

  

  

Figure 1.21 15 nm diameter and 35 nm period dot array with using calixarene resist 

[Fujita,1996] 
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SU-8 is one of the organic negative tone resists. It is chemically amplified resist which can also be 

used for photolithography applications and 3D structures due to its chemical properties. Although it 

has a low contrast and resolution, it is 100 times more sensitive than PMMA, which makes it 

extremely popular. Using SU-8 negative resist, Bilenberg achieved 24 nm line width using a 100 kV 

EBL system (figure 1.22) [Bilenberg, 2001]. 

      

Figure 1.22 24 nm wide line achieved by using SU-8 negative resist [Bilenberg, 2001] 

 

HSQ is an inorganic negative tone resist for e-beam lithography. It is provided by Dow Corning 

Corporation [Cui, 2005]. HSQ has a short shelf life and high cost in comparison to all other resists. 

HSQ is known as a resist that gives a high resolution, high contrast, and sensitivity as PMMA. For 

instance, Yang et al achieved 4.5 nm half pitch lines with 10 nm thick HSQ resist (figure 1.23) [Yang, 

2009]. 

 
 

Figure 1.23 4.5 nm half pitch lines with 10 nm thick HSQ negative resist [Yang, 2009] 
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On the other hand, HSQ is a very unusual resist because it is not developed by a solvent but a 

chemical reaction. After exposure, un-exposed HSQ reacts to diluted NH4OH or NaOH developer to 

produce H2 and the development stops once it reaches the saturation point. In addition, all the 

processes for EBL such as spin coating, baking, e-beam exposure and development has to be 

performed promptly due to its instability. 

 High Resolution Electron Beam Lithography 1.4

Resolution that means the capability of resolving very small features is the goal of nanofabrication. 

Electron Beam Lithography is capable of sub-10 nm resolution. Considering the properties of resists, 

there are several parameters that e-beam resists must possess in order to become a good candidate for 

high resolution nanolithography. 

Electron exposure dose is the number of electrons per unit area exposed on the resist to define a 

pattern. Electron dose is usually expressed in C/cm
2
, and each lithographic process has its own 

optimum conditions. 

Sensitivity is the response of the resist to the e-beam dose, and it varies depending on the substrate 

used, development temperature, and the strength of the developer. As seen in the Table 1.4, developer 

type and concentration affect the sensitivity and resolution of PMMA. The number of backscattered 

electrons increases due to high atomic number of the substrate, resulting in an increased the 

sensitivity of the resist. For high resolution e-beam resist, its sensitivity is usually low. So there exists 

trade-off between resolution and resist sensitivity. 
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Table 1-4 Influence of developer concentration on the sensitivity & resolution of the resist 

 

 

 

Resist’s contrast determines resist’s capability for high resolution and high-aspect ratio structures. It 

can be readily calculated from the remaining thickness of the resist after development with respect to 

exposed dose. Contrast, , is given by the equation: 

 

 

Where D1 is the dose at which resist is 100% removed by developer (for positive resist), and D0 is the 

dose at which 0 % of resist is removed. The contrast curve for positive resists will be resembled in 

figure 1.24a, in figure 1.24b for negative resist.  Sensitivity can also be defined from the same curve, 

typically equal to D1. Most resists have contrast range between 2-10, and PMMA has contrast range 

from 6 to 9 which  makes it a good resist for a high resolution EBL [Wiederrecht, 2010].  
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Figure 1.24 Contrast curves for a) positive and b) negative resists, respectively 
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Chapter 2 

High Resolution Electron Beam Lithography using Polystyrene 

Negative Tone Resist 

 

  Motivation  2.1

Modern lithographic techniques such as EBL, NIL and FIB lithography are being widely used as top-

down fabrication tools for research and development, nanostructured device fabrication such as ICs, 

biosensors, MEMS/NEMS, LEDs, biosensors, etc. [Grigorescu, 2009; Schift, 2008; Tseng, 2004] 

Among them, EBL is the most popular one since there is no need for mask as NIL which affects the 

cost of fabrication and capability, and it is faster than FIB. Also, e-beam can remain well focused 

below 10 nm beam size even with nA beam current which is desired for fast writing.  EBL is capable 

of direct writing with high resolution and dense pattern. For EBL, positive resists are typically used 

resists and PMMA is the most popular one since it is easy to process and it has low cost, unlimited 

shelf life, and good stability. However, negative resists can be preferable for some applications such 

as fabrication of hole arrays in a metal film. Unfortunately, there is no negative resist as popular as 

PMMA. As discussed in Chapter 1, there are popular negative resists such as HSQ, SU-8, and 

calixarene. SU-8 is chemically amplified resist which has good sensitivity but low contrast which 

affects the resolution besides its high cost. Calixarene is also chemically amplified resist and it 

generates acids. Although it has high resolution it is not preferable due to its low sensitivity. HSQ, 

which Yang et al achieved 9 nm pitch lines, is inorganic resist [Yang, 2009]. It is unstable and spin 

coating, baking, exposure, and development must be done quickly. In addition, since it has short shelf 

life, it has high cost. Thus, there is no negative resist that can be as popular as PMMA. Polystyrene,  

where chemical structure is in figure 2.1, is a negative resist that forms three dimensional networks by 

crosslinking upon exposure of e-beam, and this makes it a suitable resist for investigation on high 
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resolution EBL [Ma 2011, Ku, 1969]. Polystyrene has longer shelf life and much more stable than 

conventional resists such as HSQ. Austin et al has already achieved 40 nm period lines using low 

molecular weight polystyrene resist, however, there is a much need for investigation of the resolution 

and sensitivity. In this chapter, high resolution and high sensitivity PS negative resist have been 

studied. 

 

Figure 2.1 Chemical formula for Polystyrene 

 

 High resolution electron beam lithography using polystyrene negative 2.2

resist 

Polystyrene with 2000 g/mol with polydispersity Mw/Mn=1.10 was tested as negative EBL resist for 

contrast and resolution measurements. The powder (figure 2.2a) was purchased from Alfa Aesa and 

prepared as 1.2 wt/vol% solutions in chlorobenzene.  

 

Figure 2.2 a) PS as a powder b) Spin-coater 
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Silicon wafer was cleaned by acetone and 2-propanol followed by O2 plasma treatment. Polystyrene 

film was prepared around 30 nm thickness after spin coating at 2000 rpm for 40 sec and prebaked at 

60 degree for 1 hour. It has been seen that unlike high molecular weight polystyrene, low molecular 

weight polystyrene has formed non uniform “broken” films after baking. To resolve this problem, a 

thin layer of ARC (Anti Reflection Coating, from Brewer Science) has been used which is around 15 

nm thickness. Crossectional view of film is shown in figure 2.3. 

 

Figure 2.3 Crossectional view for film 

 

  Contrast and Sensitivity Measurement of 2K (2 kg/mol) PS 2.2.1

Exposure was performed by using a LEO 1530 field emission SEM equipped with Nabity Nanometer 

Pattern Generation System (NPGS) at acceleration voltages of 20 kV and 5 kV with 20 and 10 pA 

beam currents. Exposed parts of PS are insoluble in solvents since it changes its structure by 

crosslinking while unexposed regions are easy to be dissolved. In this study, xylene (o-, m-, p- 

mixed), chlorobenzene, and cyclohexane were used as developers. 

After development, thickness measurement were made by AFM. Contrast was calculated by using 

equation  γ = [log(D100/D0)]
-1

  where D100 and D0 is defined in figure 2.4. According to Charlesby 

Theory, gel point which means the threshold dose where the contrast curve starts to rise (D0) is 

inversely proportional to the molecular weight for the simple negative polymer resists since the 

number of cross-links necessary to make the resist insoluble in the developers decreases with higher 

molecular weight [Ku, 1969].  
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Figure 2.4 Contrast curves for PS at 20 kV exposure using a) xylene and b) cyclohexane 

developer 

a) 

b) 
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 For 20 kV exposures, contrast is found to be 4.4 when developed by xylene and cyclohexane for 90 

sec and rinsed by 2-propanol, and this result shows that PS has higher contrast than ZEP520 positive 

EBL resist. However, sensitivity of PS resist is rather low with D50~ 4000 C/cm
2
 which is thought to 

limit its application to small scale nanopatterning R&D (figure 2.4). Chlorobenzene was also used as 

a developer but there was no apparent difference for contrast measurement. To overcome the low 

sensitivity, 5 kV exposure is also carried out and sensitivity was increased to D50~ 1170 C/cm

 

(figure 2.5). This is in agreement with the fact that sensitivity is roughly proportional to the e-beam 

energy the Bethe equation for electron energy loss in the resist Eloss logwith constant 

Sensitivity can be increased further by using higher molecular weight PS but this will reduce the 

resolution. Contrast was found to be 3.4 for 5 kV exposure which is close to ZEP520 resist developed 

at room temperature. 

                      

Figure 2.5 Contrast curve for 5 kV exposure and 1.5minutes xylene development for PS 
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 Resolution Measurement of 2K PS 2.2.2

In order to study resolution of PS negative e-beam resist, we designed line arrays with different 

periods starting from 100 nm to 15 nm and dot array with 30 nm to 15 nm periods with NPGS. 

Electron beam exposure was done by using field emission SEM 1530 at 20 kV and 5 kV, 20 pA and 

10 pA, and 7.7 mm and 6.5 mm working distances. For line arrays, we used different doses at range 

20 nC/cm-40 nC/cm and we used xylene, chlorobenzene and cyclohexane as a developer. 

Developments were made at room temperature and rinsed by 2-propanol.  At 5 kV exposure, uniform 

PS grating of 30 nm, 25 nm, and 20 nm pitch arrays were achieved with 6 nC/cm, 10 nC/cm and 4 

nC/cm doses. It has been observed that type of developers used had no effect on the gratings. SEM 

images of line arrays developed by xylene at room temperature are shown in figure 2.6 a, b and c, and 

as seen the lines are very straight and smooth.   
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Figure 2.6 Dense line array with a period of (a) 30 nm (b) 25 nm; and (c) 20 nm. The 

polystyrene resist was exposed at 5 kV and developed using xylene for 1.5 min at room 

temperature 

 

At 20 kV exposure, dense line arrays with a 20 nm grating were achieved. From SEM images in 

figure 2.7, it can be seen that there is no obvious difference occurred by different developers. 
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Figure 2.7 Dense line arrays with a period of 20 nm exposed at 20 kV and developed at room 

temperature for 1.5 min using (a) xylene; (b) chlorobenzene; and (c) cyclohexane. The lines in 

(c) collapsed due to capillary force during resist drying 
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2D dot array formation is also important for research since they can be used for data storage 

applications. Here (figure 2.8), dot arrays with 15 nm period were achieved by 6.5 fC/dot e-beam 

exposure with xylene and chlorobenzene developments followed by 2-propanol rinse. 

 

 

Figure 2.8 Dense 2D dot array with a period of 15 nm exposed at 5 kV and developed by a) 

chlorobenzene and b) xylene for 1.5 min at room temperature. 

a) 

b) 
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Previously, 18 nm period 2D dot arrays (corresponding to 2.0 Tbits/in

2
) were achieved using ZEP 

resist. Our result is believed to be the highest pattern density ever obtained using organic EBL resists. 

However, it has poor sensitivity (4000 C/cm
2
) since more cross-links are needed to render the 

molecular weight Polystyrene insoluble in the developer. 

After studying the high resolution EBL by using PS  with molecular weight of 2 kg/mol, we have 

investigated possible increase in sensitivity of PS using higher molecular weight of PS as suggested 

by Charlesby theory. We dissolved 170 kg/mol (Mw/Mn=1.06 from Pressure Chemicals) polystyrene 

in chlorobenzene to obtain a film thickness of 42 nm. Exposure was carried out using a Raith 150
TWO

 

tool at 5 kV acceleration voltage. After exposure, the resist was developed using tetrahydrofuran 

(THF) and xylene (o-, m-, p- mixed), which are both solvents for (un-cross-linked) polystyrene. 

Figure 2.9 is the contrast curve of polystyrene that shows sensitivity (D50) of 12 µC/cm
2
, which is 97x 

improved over the 2 kg/mol case (1170 µC/cm
2
)  and this is in good agreement with Charlesby theory  

[Ku, 1969]. The sensitivity is also an order higher than PMMA. We want to point out that this is very 

different from positive resist such as PMMA for which in principle the sensitivity should be 

independent of its molecular weight because, though longer chain needs more chain scission to render 

it soluble in developer, it also receives more exposure dose proportionally. The contrast of the current 

resist is much lower than that of 2 kg/mol polystyrene (2.0 vs. 3.4), which is expected from the fact 

that generally high sensitivity comes with low contrast and achievable resolution [Ocola, 2006]. To 

find out its high resolution capability we wrote dense line arrays with 40-200 nm period range with 

Raith 150
TWO

 tool at 5 kV with dose range of 0.02 to 0.45 nC/cm and developed the film by using 

THF for 90 seconds. SEM image of the developed resist pattern is shown in figure 2.10. As seen, we 

can achieve 48 nm lines with 0.45 nC/cm doses using the 170 kg/mol polystyrene resist which is a 

rather good resolution for high molecular weight of PS resist.   
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Figure 2.9 Contrast curve for 170 kg/mol polystyrene exposed at 5 kV and developed by 

tetrahydrofuran for 1.5 min. The contrast (γ = (log10(D100/D0))
-1

) is calculated to be 2.0,and the 

sensitivity (D50) is 12 µC/cm2. 
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Figure 2.10 SEM image of polystyrene line array with line-width 48 nm, exposed at 5 kV and 

developed by tetrahydrofuran for 1.5 min. 

 

  Summary of high resolution EBL by using PS negative resist 2.3

Desirable properties for EBL resist include high sensitivity, high contrast and high dry etching 

selectivity to the substrate materials. Here, the exposure behaviour of low molecular weight (2000 

g/mol) polystyrene as a negative tone electron beam lithography (EBL) resist was studied, with the 

goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 

20 nm period line array and a 15 nm period dot array, which are the densest patterns ever achieved 

using organic EBL resists. Such dense patterns can be achieved both at 20 kV and 5 kV beam energy 

using different developers. In addition to its ultra-high resolution capability of low molecular weight 

of PS, we also investigated resolution and sensitivity of high molecular weight (170 kg/mol) of PS as 

we expect that 2 kg/mol PS film has poor sensitivity and it can be increased by using high molecular 
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weight. We achieved great sensitivity (12 C/cm
2
) with 48 nm half pitch resolution. For future work, 

we will investigate resolution and sensitivity capability of PS with 900 kg/mol molecular weight.  

To sum up, in addition to its ultra-high resolution capability, polystyrene is a simple and low-cost 

resist with easy process control and practically unlimited shelf life.   
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Chapter 3 

Thermal Nanoimprint Lithography using Fluoropolymer Mold 

 

  Introduction 3.1

In today’s technology, the ability to fabricate structures with nanoscale is extremely important, 

especially in semiconductor technology [Guo, 2007]. With reducing the size of the features, problems 

as resolution, reliability, speed, cost and overlay accuracy come out. Lithography techniques such as 

electron beam lithography, ion beam lithography, scanning probe based lithography and Nanoimprint 

lithography have been developed to overcome these issues [Chou, 1995, Grigorescu, 2009]. These 

lithography techniques are based on chemical reactions in certain polymers which make the polymer 

soluble in a solution after light or beam exposure. Among them, photolithography is popular for 

writing large areas which is important for integrated circuits (ICs), whereas its resolution limited by 

wavelength of the light being used. It is thus difficult to achieve sub-30 nm feature sizes with optical 

lithography. There is a demand to figure out cost of fabrication, limit of the feature sizes and practical 

fabrication. NanoImprint Lithography (NIL) developed by Chou in 1995 has low-cost and high 

throughput which makes it an alternative tool for photolithography and electron beam lithography 

[Chou, 1995, Chou, 1996]. After invention of NIL, there have been great efforts to achieve sub-30 nm 

resolution on large surfaces quickly and cost effectively in the past decades, and now NIL is capable 

of patterning sub-10 nm features, and it is accepted as a next generation top-down fabrication method 

with high throughput and low cost [Chou, 1997, Austin, 2004]. International Technology Roadmap 

for Semiconductors (ITRS) has announced NIL as one candidate technology for IC production [ITRS, 

2003]. In this chapter, NIL will be discussed in detail.  
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 Overview of Nanoimprint Lithography 3.2

Nanoimprint Lithography which is a mechanical way of lithography is a relatively new lithography 

technique with ultra-high resolution, high throughput and low cost [Khang, 2004]. First 

demonstration for NIL was done by Chou group in 1995 by using Poly methyl methacrylate (PMMA) 

resist with 10 nm feature sizes (figure 3.1), and after this achievement there has been much effort to 

improve the NIL capabilities [Cui, 2005]. Since there is no light diffraction or electron scattering as in 

photolithography and e-beam lithography, resolution of NIL depends only on the template feature 

size. Since there is no need for complex devices as in optical or e-beam lithography, it is a low cost 

technique and lithography can be done on large surfaces.  

 

Figure 3.1 10 nm diameter and 60 nm period hole array achieved by S. Chou using NIL      

[Chou, 1995] 

 

The key advantage of NIL is its capability of fabrication of structures over large area from micron to 

nanoscale sizes [Wang, 2010]. As a result, NIL is a promising tool in many application areas as 

nanoelectronics, nanooptoelectronics, data storage, electromechanical systems (MEMS/NEMS), LED 

(light emitting diode), quantum electronic devices, photodetectors, optical and biological devices 

[Wang, 2010; Zhang, 2003; Balla, 2008; Martini, 2000; Yu 1999; Lai, 2008]. 
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Figure 3.2 Scheme showing the application areas of NIL [Wang, 2010] 

 

  Principles of NIL  3.2.1

Principally, NIL mechanically modifies the polymer film (resist) by using a template (mold) having 

micro/nano sized features on it. Working principle of NIL is schemed in figure 3.3.  
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Figure 3.3 Working principle of NanoImprint Lithography: Imprint is done by whether heat 

treatment or UV-light exposure 

 

Basically, there are two types of nanoimprint lithography: Thermal (T-NIL) and UV-based (UV-NIL) 

nanoimprint lithographies and both of them are capable of fabrication sub-10 nm features.  

In Thermal NIL, a thin layer of imprint resist is spin-coated on the substrate and mold which has 

patterns on it is put on the substrate. Then, they are pressed together under certain pressure and heated 

up above glass transition temperature (Tg) of the resist. After being cooled down, the mold and 

substrate are separated and pattern can be transferred to substrate via RIE. Earliest thermal-NIL was 

done by Chou using PMMA resist and hole array mold [Chou, 1996].  
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In UV-based NIL, mold is usually made by transparent material like fused silica, quartz, 

Polydimethylsiloxane (PDMS) and substrate is covered by UV-curable liquid. After mold and 

substrate are pressed together, the resist is cured by applying UV light and the liquid becomes solid. 

After separation of the mold and substrate, similar pattern transfer can be applied as thermal-NIL 

process. The difference between two types of NIL is that resin that is used in UV-NIL is liquid at 

room temperature and shaped and cured upon pressed and UV light exposure. 

 

  Basics of NIL Process 3.2.2

The elements required for NIL are substrate, resists and mold. Si, SiC, silicon nitride, metals, 

diamonds, SiO2, even flexible materials are used as a substrate [Wang, 2010]. PMMA, Polystyrene 

(PS), Polyvinyl phenyl ketone (PVPK), SU-8, mr-I 9000E, MEH-PPV, ZEP-520, PAK01, and HSQ 

are just some of the popular resists for NIL process [Wang, 2010, Schift, 2008]. Since NIL makes 

pattern replication mechanically, the resist should be deformable under applied pressure and has good 

mechanical strength to keep its structural integrity during the demolding process. To be patterned 

well, the resist should have lower Young’s modulus than the mold. Low viscosity is also important 

for NIL resist since during curing or heating up, the resist will start to deform which is necessary for 

imprinting. Anti-sticking is another concern for NIL resists because during demolding mold has to be 

removed from the substrate without breaking. For some applications, Reactive Ion Etching (RIE) 

selectivity is an important properties of the resist for NIL process. 

  NIL Mold 3.2.3

 It can be said that the most crucial element for high resolution NIL is the mold (stamp) since the 

limits of resolution and pattern density is largely depend on the mold. Hence, fabrication of NIL mold 

is the greatest challenge for NIL process. There is a variety of features for a material to be considered 

as a good mold material. Mechanical strength is one of the important features of the mold, and the 
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material used as a mold should have high strength so that it can be pressured and demolded from the 

resist without being broken. On the other hand, flexibility is a major concern for some applications 

such as Organic Light Emitting Diodes (OLEDs), LEDs, etc. [Wang, 2010]. Thermal expansion 

coefficient and thermal stability are the important parameters for mechanical properties of the mold 

[Bhushan, 2007]. During heating, the mold and substrate will expand laterally and their expansions 

should be close enough to each other to maintain the imprinted pattern resolution. Other than 

mechanical properties, optical and chemical properties, transparency, conductivity, and anti-sticking 

property are important for the mold materials. Furthermore, high pattern fidelity, lifespan, and 

reliability of the mold are key factors since fabrication of the mold is expensive and time consuming.  

Si, SiO2, diamond, quartz, glass, and metals are usual materials for mold due to their hardness     

[Guo, 2007]. There are also some polymeric materials used for mold which are called as soft 

materials, such as Polydimethylsiloxane (PDMS), Polyvinyl chloride (PVC), Polyvinyl alcohol 

(PVA), Perfluoropolyether (PFPE), Ethylene tetrafluoroethylene (ETFE), and Teflon AF 2400 

[Wang, 2010; Canelas, 2009; Khang, 2004]. They have relatively good mechanical strength and 

formability compared to other sources and some has UV transparency which is important for UV-

NIL. NIL is called soft lithography once one of these materials is used as a mold.  

 NIL Tools 3.2.4

In this part, recent progress in NIL equipment and key components will be introduced. Currently, 

there are 5 different types of machines for NIL process: solid parallel plate (SPP) presses NIL, step-

and-repeat NIL, Roller Type NIL, Air Cushion Press (ACP) NIL, and Electric Field Assisted NIL 

(EFAN) as shown in figure 3.4 [Wang 2010, Hu, 2004]. 
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Figure 3.4 Solid Parallel Plate (SPP) system, Step-and-Repeat system, Roll-to-Roll system, Air 

Cushion Press (ACP) system, and Electric Field Assisted Nanoimprint (EFAN) system are five 

different of NIL systems [Bhushan, 2007, Hu, 2004] 

 

 Solid Parallel Plate Press system (SPPS) is a traditional NIL tool where surface of an entire wafer is 

patterned in one step by pressing from two sides: substrate and mold. For SPPS, mold and substrate 

should have same dimension. Some problems faced with SPPS are imperfect plate surfaces, non-

parallelism between plates and curved sample surfaces which leads undesired pattern on the substrate 

or broken mold/substrate. To overcome these problems, a piece of cleanroom paper, plastics or 

d} e} 
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graphite sheet can be put above and below the mold and substrate. Air Cushion Press (ACP) system is 

developed by Nanonex to resolve this problem [Hu, 2004]. In ACP, shown in figure 3.4d, air pressure 

is applied in all directions for conformal contact and imprint, and it has ultra-uniformity with respect 

to SPPS.  

In Step-and-Repeat NIL, small area is patterned one after the other. That is after one imprint process, 

stamp (mold) is moved to the next desired area to be patterned. Step-and-Repeat process has 

advantages that smaller area is patterned each time, and thus different molds can be used for the same 

substrate. 

Roller Type NIL is mostly used for flexible surfaces where it has many applications in area of 

electronics and optical devices on flexible substrates. In Roller-type NIL systems, mold can be in a 

cylindrical shape so that imprint is done by moving the mold or flat shape which is rotated by the 

system itself.  

EFAN (Electric Field Assisted Nanoimprint) system is designed to be an alternative for SPPS and 

ACP in order to overcome the problems as poor alignment and uniformity, and damage on mold and 

substrate. In EFAN, both mold and substrate have a conductive layer and electric field is generated by 

applied voltage which makes mold pressed onto the resist due to electrostatic force. To generate 1 atm 

pressure on the substrate, electric field with 5x10
5
 V/cm is needed [Liang, 2005]. 

There are five leading suppliers for NIL tool and process in the world: Obducat, Suss, EVG, 

Nanonex, and Molecular Imprints [Wang, 2010]. Obducat, Sweden based lithography tool supplier, is 

the first company to commercialize the NIL system [Wang, 2010, Obducat Sindre]. In figure 3.5, 

Sindre400® for high volume production series which has high yield and low maintenance cost is 

shown. Sindre® includes three embedded proprietary technologies: soft press, simultaneous UV and 

Thermal NIL and polymer stamp technologies. It has capability to pattern 30 wafers per hour with up 
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to 8 inch size wafer. Sindre® HVM (High Volume Production) is targeted for applications as LED, 

OLEDs, NEMS/MEMS, Displays, HDD, etc. [Obducat Sindre] 

 

 

Figure 3.5 Sindre400® for high volume production series [Sindre, 2011] 

 

Molecular Imprints, founded in Austin, Texas in 2001, has developed Imprio® 300 systems (figure 

3.6), which is referred as next generation Nanoimprint lithography tool. It is known as the industry’s 

highest resolution and lowest cost-of-ownership patterning solution for CMOS patterning and 

development [Wang 2010, Obducat Sindre]. It has capability of sub-32 nm half pitch resolution with 

sub10 nm alignment accuracy with multi-layer imprint capability. 
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Figure 3.6 Imprio® 300 systems [Imprio, 2011] 

 

  Basic Principles of Mold Fabrication 3.2.5

NIL molds are usually made in Si or SiO2 substrates and patterned by other lithography tools such as 

photolithography, and electron beam lithography.  Basic process is schematized below (figure 3.7). 

Firstly, resist is spun onto the substrate and lithography is done on this resist. Upon development, 

metal (usually Cr) is deposited as etching mask and lift off is carried out. After lift-off process, 

pattern is transferred to the substrate via RIE, and finally wafer is cleaned by RCA cleaning to 

remove all materials from the surface of the substrate. 
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Figure 3.7 Mold fabrication steps: i) polymer film is prepared on the substrate and  ii) 

patterned via EBL/ photolithography, iii) metal deposited on the substrate, iv) pattern is 

transferred via lift off, v) and RIE has been done to transfer pattern on substrate 

 

  Thermal NIL using Fluoropolymer Mold Material 3.3

  Motivation  3.3.1

Nanoimprint lithography is a high throughput and high resolution molding process. Though silicon 

and its derivatives are still the most popular NIL mold materials, they are brittle and thus susceptible 

to damage. Polymer molds are more robust materials and can usually be duplicated in one molding 

step from a hard master mold. Therefore, it is desirable to use the polymer mold to perform the 

imprint, while using the expensive silicon-based mold only to duplicate the polymer mold. PDMS, 

PTFE, Teflon AF 2400, PMMA and PS are known materials for soft lithography. Among them, 

Polydimethylsiloxane (PDMS) is undoubtedly the most widely used polymer mold material since it 

has flexible backbone structure, high degree of toughness and large elongation. However, it is not 

suitable for high resolution and high aspect ratio patterning due to its low Young’s modulus (1.5 

MPa) [Rolland, 2004]. Its surface energy (25 mN/m) is not low enough for non-destructive 
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demolding, and deformations and distortions occur during fabrication due to its high thermal 

expansion coefficient (260 m/m
0
C) and thermal curing [Rolland, 2004, Truong, 2006].   

Fluoropolymer, which is liquid at room temperature, can be an alternative material for soft molds 

[Rolland, 2004]. It is cross-linked under UV light exposure to yield elastomers with an extremely low 

surface energy (12 mN/m), leading to the selective filling into nanoscale cavities in the mold [Truong 

2007, Canelas, 2009]. PFPE (Perfluoropolyether) is the main component of Fluoropolymer that is 

composed of only carbon, fluorine and oxygen (figure 3.8). PFPE is first developed in the early 1960s 

and used in fuel and oil resistant lubricant applications [Uniflor]. It is chemically and thermally stable 

therefore it swells much less than PDMS when exposed to most organic compounds. It has wide 

temperature range (from -40 to + 288 
0
C) which is important to be used as soft mold for thermal NIL. 

Also, Teflon like structure of the PFPE makes the organic particles to be easily removed from the 

mold [Canelas, 2009, Uniflor]. PFPE is a non-toxic and biologically inert. Also, it can stand for high 

applied pressure. Thus, PFPE has received enough attention to become a popular soft lithography 

mold. In this work, we investigate the potential of using a PFPE mold for thermal-NIL which is more 

popular than UV-curing NIL because thermal NIL has high yield and works with simple 

thermoplastic polymers.  

 

 

Figure 3.8 Generalized structure for PFPE (Perfluoropolyether) 
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  Thermal NIL using PFPE Fluoropolymer mold 3.3.2

3.3.2.1  Materials Preparation 

To minimize the thermal expansion mismatch that is important for thermal NIL, we used a silicon 

wafer (opaque to UV) as a support for the fluoropolymer layer, and accordingly replaced the 

photoinitiator for UV-curing with a thermal curing agent 1,1'-azobis(cyclohexanecarbonitrile) 

(ABCN, figure 3.9).  

 

 

Figure 3.9 Chemical structure of 1,1’-azobis(cyclohexanecarbonitrile) (ABCN) 

 

ABCN was dissolved in ethanol to a concentration of 0.1M, and added 1 ml of this mixture into 50 ml 

of Fluoropolymer MD 700 (Cornerstone Technology, Inc.). The ethanol was subsequently removed 

by vacuum. To test fluoropolymer as a polymer mold material for NIL, we chose a Si mold with 200 

nm period and 100 nm depth grating pattern. Also, to support fluoropolymer mold we used silicon 

wafer. Thermal curing was carried out at 100
o
C for 3 hours in a nitrogen environment (figure 3.10). 

One critical issue is the adhesion of the fluoropolymer to the silicon support, which is very poor due 

to the low surface energy of the fluoropolymer. It is believed that this is also an issue for UV-curing 

NIL, though it was not previously mentioned in the literature. This problem solved by treating the 
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silicon wafer with (3-acryloxypropyl) trichlorosilane (SIA0199.0 from Gelest, see figure 3.11) in 

vapor phase.  

 

Figure 3.10 Schematic view of Fluoropolymer mold preparation 

 

 

Figure 3.11 Chemical structure of (3-acryloxypropyl) trichlorosilane (SIA0199.0 from Gelest) 

 

For thermal NIL using the fluoropolymer mold, we chose poly (vinyl phenyl ketone) (PVPK) as resist 

as it is 3 more resistant to plasma etching than PMMA with a relatively low glass transition 

temperature (58
o
C vs. ~105

o
C for PMMA). 
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Figure 3.12 House built solid parallel plate press system (SPPS) 

 

 

Figure 3.13 Side view of nanoimprint lithography using fluoropolymer mold 
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 Using Solid Parallel Plate Press System made by our group (figure 3.12), the NIL process was done 

at 90 
0
C for 10 min with pressure of 7 bars. After cooling down, we released the PFPE mold from the 

substrate (figure 3.13). For SEM imaging, we coated 10 nm Cr on top of the substrate. Figure 3.14 

and 3.15 are SEM images of a 200 nm period grating pattern over a 100 mm wafer surface. Some 

parts are not imprinted due to dust particles on the substrate. Once we zoomed in, we found that 

grating with 200 nm periods was imprinted very well (figure 3.16), though some lines are missing due 

to dust particles. The detail of the line-edge roughness of the master mold was duplicated into the 

resist, implying that the fluoropolymer mold is capable of resolution far better than 100 nm (figure 

3.17). 

 

 

Figure 3.14 NIL result made by Fluoropolymer mold 
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Figure 3.15 NIL result by using fluoropolymer mold on large scale. There are discrete lines due 

to dusty particles and inhomogeneous pressure. 

 

 

Figure 3.16 SEM image of 200 nm period grating with PVPK polymer 
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Figure 3.17 SEM image of NIL result by fluoropolymer mold. Line edge roughness is also 

duplicated into the resist well. 

 

  Conclusion 3.4

Nanoimprint lithography is flagged as a next generation lithography technique for nanofabrication 

and mold is a key component for NIL with high resolution and low cost, high fidelity and reliability. 

Fluoropolymer is a kind of polymeric material used as soft mold for thermal-NIL. Using 

fluoropolymer, we duplicated 4 inch wafer with 200 nm period with 100 nm depth of grating pattern. 
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