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Abstract

The use of two dimensional (2D) digital filters for real-time 2D data processing has
found important practical applications in many areas, such as aerial surveillance, satellite
imaging and pattern recognition. In the case of military operations, real-time image pro-
cessing is extensively used in target acquisition and tracking, automatic target recognition
and identification, and guidance of autonomous robots. Furthermore, equal opportuni-
ties exist in civil industries such as vacuum cleaner path recognition and mapping and
car collision detection and avoidance. Many of these applications require dedicated hard-
ware for signal processing. It is not efficient to implement 2D digital filters using a single
processor for real-time applications due to the large amount of data. A multiprocessor
implementation can be used in order to reduce processing time.

Previous work explored several realizations of 2D denominator separable digital filters
with minimal throughput delay by utilizing parallel processors. It was shown that regard-
less of the order of the filter, a throughput delay of one adder and one multiplier can be
achieved. The proposed realizations have high regularity due to the nature of the proces-
sors. In this thesis, all four realizations are implemented in a Field Programming Gate
Array (FPGA) with floating point adders, multipliers and shift registers. The implementa-
tion details and design trade-offs are discussed. Simulation results in terms of performance,
area and power are compared.

From the experimental results, realization four is the ideal candidate for implementation
on an Application Specific Integrated Circuit (ASIC) since it has the best performance,
dissipates the lowest power, and uses the least amount of logic when compared to other
realizations of the same filter size. For a filter size of 5 × 5, realization four can produce
a throughput of 16.3 million pixels per second, which is comparable to realization one and
about 34% increase in performance compared to realization one and two. For the given
filter size, realization four dissipates the same amount of dynamic power as realization one,
and roughly 54% less than realization three and 140% less than realization two. Further-
more, area reduction can be applied by converting floating point algorithms to fixed point
algorithms. Alternatively, the denormalization and normalization stage of the floating
point pipeline can be eliminated and fused together in order to save hardware resources.
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Chapter 1

Introduction

The application of Digital Signal Processing (DSP) algorithms impacts many aspects of
our contemporary standard of living [1].Much of our technological advancements in modern
wireless and wired communications, medical imaging equipment, audio and visual products
are driven by new and emerging DSP algorithms [2, 3]. The advent of more complex DSP
algorithms with smaller and faster Integrated Circuits (ICs) contribute to the eventuality
of complex systems. DSP algorithms typically, but not always, process real time data as
the data is acquired. This implies that DSP algorithms must produce a deterministic run
time to satisfy system-wide timing constraints.

A 2D digital filter is a type of DSP algorithm used to process 2D data and has found
important practical applications in many areas, including aerial surveillance, satellite imag-
ing, pattern recognition, target acquisition and tracking [1, 2, 4, 5].

Traditionally DSP algorithms are implemented using digital signal processors that ex-
ecute a set of instructions on a set of given input data. Special mathematical circuitry
is often found on digital signal processors in order to facilitate complex mathematical
functions. Designers are required to write in a low level language in order to produce op-
timized instructions for digital signal processors. However, in recent years, DSP designers
have been shifting toward the use of Field Programming Gate Arrays (FPGA) for hard-
ware development. Majority of the controversy between the digital signal processor versus
FPGA surrounds the issue of processing capability, as measured in millions of instructions
per second (MIPS) [6, 7]. Other inherent advantages of the FPGA, including reliability
and maintainability, are often ignored.

Since a digital signal processor is a special microprocessor that requires a stream of
instructions to execute, not all the instructions are data related. Some instructions are
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control related, some are protocol related, while some are DSP related. Resources in the
digital signal processor, such as internal registers, external memory, Direct Memory Access
(DMA) controller, transfer buses and external input/output (I/O) signals are shared by all
instructions. This can cause unexpected behavior as one instruction attempts to modify the
results of another instruction. DSP algorithms are often required to run in real-time and
any unexpected delays can result in system failure. FPGAs inherently negate this problem
by issuing dedicated resources to the executing instructions. Dedicated data and control
paths are placed and assigned to predetermined locations on the FPGA to ensure the
functionality correctness while meeting timing constraints. Memory blocks are distributed
throughout the FPGA and each instruction is allocated the proper amount of memory for
its execution. I/O signals are clearly defined from modules to modules, and eliminates
unexpected interactions between instructions. This also allows the designer to more easily
locate and isolate bugs [8]. Not only does FPGA guarantee dedicated run-time resources,
verification is much more simplified on the FPGA than digital signal processors.

Operating system (OS) , or more commonly called kernels, is used to control resource
sharing on the digital signal processor. Allowable execution time, memory allocation and
peripheral I/O access time are all managed by the operating system. However, there is
an inherent conflict of interest between instruction efficiency and operating system inter-
vention. For the instruction to work at optimal efficiency, it would be ideal to have zero
intervention from the operating system. Compounding these difficulties is the lack of abil-
ity to verify functional correctness. It is impossible to ensure all possible permutations
of the instructions plus OS interventions are tested during verification based on the large
number of test cases. Challenges arises from complete functional verification is equally
daunting on FPGAs. However, at the fundamental level, much of the design and verifica-
tion tools are shared between FPGA and its Application Specific Integrated Circuit (ASIC)
counterpart. The FPGA designers are able to benefit from this mutual relationship since
ASIC designers are extremely intolerant of design bugs. It would take millions of dollars
in fabrication cost to fix an implementation error [8]. From these arguments, it is clear
that FPGA is an excellent hardware development platform for DSP designers.

1.1 Research Contribution

In this thesis, multiple implementations of two dimensional (2D) digital filters are pre-
sented. The implementations are designed and optimized using Altera’s proprietary Quar-
tus II software and simulated using ModelSim. Results in this thesis show that with minor
modifications on the filter realization, the same throughput as derived from previous work
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can be obtained.

A framework for future 2D filter implementations is also presented in this thesis. The
2D digital filters are implemented as custom hardware blocks in the Altera System on
Programmable Chip (SOPC) Builder. This provides flexibility in customizing the DSP
system using additional SOPC components, such as Nios II processor, Phase Locked Loops
(PLLs), external Random Access Memory (RAM), and parallel I/Os that can be easily
integrated into the design to tailor to different applications.

Several optimization techniques pertaining to Hardware Register Transfer level (RTL)
are also discussed in the thesis. These techniques include selecting floating point (FP)
operators, secondary clock divider circuit, specifying synopsis design constraint (SDC)
file constraint for timing oriented fitting and using the Design Space Explorer (DSE) for
timing optimization. Future work carried out in the implementation of 2D digital filters
on FPGA will benefit from these optimization techniques as they are transferable across
different RTL lanaguges and hardware platforms.

1.2 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 presents the general form of
four different 2D denominator separable digital filters. Chapter 3 discusses the derivation
of filter coefficients from a sample impulse function as well as any architectural changes due
to complex poles. Chapter 4 discusses architectural changes related to these realizations
based on timing considerations. Chapter 5 describes how the digital filter fits into the
system from a top level perspective. Chapter 6 shows and analyzes the simulation results.
Finally, chapter 7 concludes the thesis.
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Chapter 2

Realization of 2D Separable
Denominator Digital Filters

A 2D separable denominator digital filter is a special class of the 2D digital filter, that has
a transfer function with a separable denominator. There are several advantages to this
type of filter. First, the design of such a filter is easier than the non-separable general
filter. Second, stability tests are simpler and more similar to the 1D filter stability tests.
Third, a general 2D non-separable filter can be approximated by a separable denominator
filter. Fourth, circularly symmetric and fan filters, which are widely used in practice,
have separable denominator transfer functions. Lastly, well established techniques for
implementing 1D filter realizations can be used to derive several realizations for the 2D
separable denominator filters.

In section 2.1, the general form of 2D separable denominator digital filter is presented.
In the four sections that follow, Sections 2.2 to 2.5, four realizations of the 2D separable
denominator digital filter are presented. These realizations take advantage of pipelined,
multi-processor parallel processing to achieve high throughput. The high level block dia-
gram and throughput are shown for each realization. This chapter is based on previous
work in [9].

2.1 General Form

The transfer function of a separable denominator 2D digital filter of order M1×M2 is given
by:
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H(z1, z2) =
G(z1, z2)

F (z1, z2)

=

∑M1

i=0

∑M2

j=0 bi,jz
−i
1 z

−j
2∑M1

i=0 αiz
−i
1

∑M2

j=0 βjz
−j
2

=
p(z1, z2)

q1(z1)q2(z2)

(2.1)

where F (z1, z2) and G(z1, z2) are the 2D Z-transforms of the input f(n1, n2) and the output
g(n1, n2). bi,j, αi and βj are constant coefficients that determine the characteristics of the
filter. The polynomials p(z1, z2), q1(z1) and q2(z2) are functions of the horizontal delay
(z−1

1 ) and the vertical delay (z−1
2 ). M1 is the horizontal dimension and M2 is the vertical

dimension of the 2D digital filter. Also, we assume that the numerator and denomiator
are coprime and α0 = β0 = 1.

2.2 Realization One

The transfer function H(z1, z2) in (2.1) can be rewritten as a product of two subfilters:

H(z1, z2) = H1(z1)H2(z1, z2) (2.2)

where

H1(z1) =
1

q1(z1)
=

1∑M1

i=0 αiz
−i
1

(2.3)

H2(z1, z2) =
p(z1, z2)

q2(z2)
=

∑M1

i=0

∑M2

j=0 bi,jz
−i
1 z

−j
2∑M2

j=0 βjz
−j
2

(2.4)

Equation (2.2) suggests the realization of H(z1, z2) as a cascade of two subfilters. The
first subfilter H1(z1) in (2.3) is an one dimensional (1D) Infinite Impulse Response (IIR)
filter. This filter can be realized using the transposed direct form II, which is suitable for
a multiprocessor implementation. The transfer function of the subfilter H2(z1, z2) can be
rewritten as:
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H2(z1, z2) =

∑M2

j=0 bj(z1)z
−j
2∑M2

j=0 βjz
−j
2

(2.5)

where

bj(z1) =

M1∑
i=0

bi,jz
−i
1 , j = 0, 1, ...,M2 (2.6)

Again, 1D realization structures can be used for the realization of this transfer function.
The transposed direct form II structure is used to realize the subfilter, where in Equation
2.5, bj(z1), j = 0, 1, ...M2 represents a set of 1D FIR filters.

1
-1

1
-1

1
-1

1
-1

1
-1

1
-1

1
-1

1
-1

2
-1

2
-1

2
-1

w(n1,n2)f(n1,n2)

g(n1,n2)

xh1(n1,n2)

-α1

-αM1

xhM1(n1,n2)

-βM2

bM1,0 b0,0bM1-1,0

-β1

bM1,1 b0,2bM1-1,1

bM1,M2 b0,M2bM1-1,M2

uM2(n1,n2)

u0(n1,n2)

u1(n1,n2)

Figure 2.1: Realization One

Assuming the input is f(n1, n2), output is g(n1, n2), while w(n1, n2) and uj(n1, n2)
(where j = 0...M2) are the intermediate state variables, the overall separable denominator
filter has a completely decomposed realization as shown in Figure 2.1. The decomposed
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realization consists of a cascade of three subfilters: a 1D horizontal IIR filter, a bank of
1D horizontal FIR filters, and a 1D vertical IIR filter. It can be seen that this realization
has the minimum number of vertical shifts, namely z−1

2 . A minimum number of vertical
shifts is a desired feature since the physical implementation of a vertical shift is far more
expensive in terms of hardware compared to a horizontal shift. For example, in a raster
scan image, a horizontal shift corresponds to a storage of one pixel of data, while a vertical
shift corresponds to storage of an entire row of pixels. Since an FPGA is limited in terms
of storage elements, be it RAM or registers, the less number of vertical shifts there are,
the more likely the design will fit on the FPGA.

Pipelining and parallelism can be exploited effectively in the implementation of the
decomposed realization in Figure 2.1. Since each subfilter consists of multiple repeating
instances of multipliers, adders and shift registers, a module can be created to include one
multiplier, one adder and one shift register. Cascading the module in parallel or series will
produce the desired filter. Modules can also be called processors. The temporary data
stored in the shift registers can also be called states.

The first subfilter has M1 horizontal states and single intermediate output w(n1, n2).
The states and the intermediate output have a computation structure that requires one
multiplication and two additions using M1 processors. The second subfilter has M1(M2+1)
horizontal states and (M2 + 1) intermediate outputs. These states and the intermediate
outputs can be computed in a single multiplication and a single addition using (M1 +
1)(M2 + 1) processors. The third subfilter has M2 vertical states and a single output
g(n1, n2). The computation of these states require the use of a processor that is composed of
two adders, one multiplier and one shift register, assuming the first and the second subfilters
are processing in parallel with the third subfilter. The required number of processors (P )
and the cycle time (T ) required for the realization are:

P = (M1 + 1)(M2 + 1) +M1 +M2 (2.7)

T = tmult + 2tadd + 1 (2.8)

2.3 Realization Two

The second realization is based on the decomposition of the numerator polynomial of
the transfer function in Equation (2.1) by the general decomposition theorem [10]. This
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theorem decomposes the 2D polynomial as a sum of products of simple 1D polynomials.
The numerator of the transfer function H(z1, z2) in Equation (2.1) can be rewritten as

p(z1, z2) =

M1∑
i=0

M2∑
j=0

bi,jz
−i
1 z

−j
2 = ZT

1 BZ2 (2.9)

where

ZT
1 = [1, z−1

1 , z−2
1 , ..., z−M1

1 ] (2.10)

Z2 = [1, z−1
2 , z−2

2 , ..., z−M2
2 ] (2.11)

B = [bi,j] (2.12)

B is a matrix of dimension (M1 +1)× (M2 +1). There are many decompositions for the
matrix B. In particular, it can always be decomposed as a product of two matrices. The
most commonly used decompositions in the literature are Singular Value Decomposition
(SVD) [11], the Jordan Decomposition (JD) [12], and the Lower-Upper Decomposition
(LUD) [13]. By decomposing the matrix B into a product of two matrices, multiplying,
then expanding gives:

p(z1, z2) =
r∑

k=1

pk1(z1)pk2(z2) (2.13)

where r is the rank of the matrix B, pk1(z1) and pk2(z2) are polynomials in z1 and z2,
respectively, given by:

pk1(z1) =

M1∑
i=0

gkiz
−i
1 (2.14)

pk2(z2) =

M2∑
j=0

hkjz
−j
2 (2.15)
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By using the decomposition in Equation (2.13), the transfer function H(z1, z2) in Equation
(2.1) is decomposed as the sum of products of 1-D IIR filters as:

H(z1, z2) =
r∑

k=1

Hk1(z1)Hk2(z2) (2.16)

where

Hk1(z1) =
pk1(z1)

q1(z1)
, Hk2(z2) =

pk2(z2)

q2(z2)
(2.17)

Equation (2.16) suggests a hybrid parallel-cascade realization of H(z1, z2) as shown in
Figure 2.2 below.

w1(n1,n2)

f(n1,n2)
g(n1,n2)

H11(z1) H12(z2)

H21(z1) H22(z2)

Hr1(z1) Hr2(z2)

w2(n1,n2)

wr(n1,n2)

v1(n1,n2)

v2(n1,n2)

vr(n1,n2)

Figure 2.2: Realization Two: A Hybrid Parallel-Cascade Realization.

Each cascade is implemented as a pipeline of two 1D IIR filters that can be realized in any
of the existing 1D realization. For example, Hk1(z1) (k = 1, 2, ... , r ) can be realized
in the observer canonical form, where f(n1, n2) and wk(n1, n2) are its input and output.
Similarly, the transfer function Hk2(z2) (k = 1, 2, ..., r) can be realized in the same
form, where wk(n1, n2) and vk(n1, n2) are its input and output respectively. The output of
the filter is then

g(n1, n2) = v1(n1, n2) + v2(n1, n2) + ...+ vr(n1, n2) (2.18)

9



It can be shown that the filter realization has a number of processors (P ) and a cycle
time (T ) given by:

P = r(2M1 + 1 + 2M2 + 1) (2.19)

T = tmult + 2tadd (2.20)

where the summation at the filter output in Figure 2.3 is excluded from the computation
of P in Equation (2.19). The number of processor required for realization two is almost
double the amount required for realization one. This is due to the multiple realization of
the denominator as can be seen in Equation (2.16).

Z1
-1

f(n1,n2)

Z1
-1

-β3

Z1
-1

Z2
-1 Z2

-1 Z2
-1

-β2

Z1
-1 Z1

-1 Z1
-1

Z2
-1 Z2

-1 Z2
-1

Z1
-1 Z1

-1 Z1
-1

Z2
-1 Z2

-1 Z2
-1

Z1
-1 Z1

-1 Z1
-1

Z2
-1 Z2

-1 Z2
-1

+ g(n1,n2)

-β3 -β2

-β3 -β2

-β3 -β2

-α3 -α2

-α3 -α2

-α3 -α2

-α3

g1,M1

-α2

g1,M1-1 g1,0

h1,M1 h1,M1-1 h1,0

h2,M1 h2,M1-1 h2,0

h3,M1 h3,M1-1 h3,0

h4,M1 h4,M1-1 h4,0

g2,M1 g2,M1-1 g2,0

g3,M1 g3,M1-1 g3,0

g4,M1 g4,M1-1 g4,0

Figure 2.3: Realization Two.
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2.4 Realization Three

For 1D filters, there always exists a diagonal state-space realization. The realization has
high parallelism, low throughput delay and low roundoff noise. The realization can be
obtained by applying partial-fraction expansion to the transfer function. In general, partial
fraction does not exist for 2D filters. This is due to the lack of a fundamental theorem of
algebra for factoring 2D and higher order polynomials. However, there is a partial-fraction
expansion for the special case of the separable denominator transfer function H(z1, z2)
in Equation (2.1). The separable denominator transfer function H(z1, z2) has a partial
fraction expansion given by:

H(z1, z2) =

M1∑
i=1

M2∑
j=1

Ki,j

(1− γiz−1
1 )(1− λjz−1

2 )
+

M1∑
i=1

Ki,0

1− γiz−1
1

+

M2∑
j=1

K0,j

1− λjz−1
2

+K0,0 (2.21)

where γi (i = 1, 2, ...,M1) are the distinct roots of q1(z1), and λj (j = 1, 2, ...,M2) are the
distinct roots of q2(z2) and Ki,j are constants that can be determined from H(z1, z2) in
Equation (2.1). The proof of this theorem is given in [9].

Similar to 1D filters, the above theorem can be extended to the case of multiple poles.
The expansion of H(z1, z2) in Equation (2.21) suggests a highly parallel structure, which
has an obvious multiprocessor realization as shown in Figure 2.4.

11



f(n1,n2)

g(n1,n2)

K0,0

K0,M2

1-λM2z2-1

K0,1
1-λ1z2-1

KM1,0

1-γM1z1-1

K1,0
1-γ1z1-1

KM1,M2

(1-γM1z1-1)(1-λM2z2-1)

K1,1
(1-γ1z1-1)(1-λ1z2-1)

Figure 2.4: Realization Three
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f(n1,n2) Z1
-1 Z2

-1

γ1 λ1

K1,1

Z1
-1 Z2

-1

γM1 λM2

KM1,M2

Z1
-1 Z2

-1

γ1 0

K1,0

Z1
-1 Z2

-1

γM1 0

KM1,0

Z1
-1 Z2

-1

0 λ1

Z1
-1 Z2

-1

0 λM2

K0,1

K0,M2

Z1
-1 Z2

-1

0 0

K0,0

g(n1,n2)

Figure 2.5: Realization Three Implementation
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The throughput delay of this implementation is limited by the realization of each of
the sub-transfer functions

Hi,j(z1, z2) =
Ki,j

(1− γiz−1
1 )(1− λjz−1

2 )
(2.22)

One realization is shown in Figure 2.5. The filter can be broken down into three
subfilters – two adder-multiplier processor connected back to back, followed by a single
multiplier and a final adder that sums up all the intermediate outputs. The implementation
of the filter has a number of processors (P ) and a cycle time (T ) given as:

P = 3M1M2 + 2(M1 +M2) (2.23)

T = tmult + tadd (2.24)

where the number of processor used does not include the number of adders required to
implement the pipelined summation adder. The number of processors required is higher
than both realization one and two due to the duplicate realization of the poles. This
structure, however, maintains a highly parallelized pipeline and is quite suitable for multi-
processor implementation.

2.5 Realization Four

This realization is a modified realization of the realization three. The improvement here
is that the multiple realization of the poles is avoided and hence the number of required
processors is reduced. The realization is based on writing the partial fraction expansion in
Equation (2.21) in matrix form as:

H(z1, z2) = P T (z1) ∗K ∗Q(z2) (2.25)

where

P (z1) =


1
1

1−γ1z−1
1

.

.
1

1−γM1
z−1
1

 , Q(z2) =


1
1

1−λ1z−1
2

.

.
1

1−γ
M2z

−1
2

 , K =


K0,0 K0,1 . . . K0,M2

K1,0 K1,1 .
. .
. .

KM1,0 . . . . KM1,M2

 (2.26)

14



Equation (2.25) suggests realizing H(z1, z2) as a pipeline of three stages. The first stage
is a parallel realization of the vector P (z1). The second stage is the vector-multiplication
operations on the columns of the matrix K followed by vector-summation operations. The
third stage is the parallel realization of the vector Q(z2) followed by summation operations.
The complete realization is shown in Figure 2.6.

f(n1,n2) Z1
-1

γ1

K0,0

Z1
-1

γM1

λM2

KM1,0

Z1
-1

0 K1,0

K0,1

KM1,1

K1,1

K0,M2

KM1,M2

K1,M2

Z2
-1

0

Z2
-1

λ1

Z2
-1

g(n1,n2)

Figure 2.6: Realization Four.

The elements in P (z1) can be realized in parallel in one addition and one multiplication.
The second stage involves parallel multiplication and addition, which can be implemented
in parallel and pipeline fashion such that the cycle time is not increased, except for an
initial delay. The third stage has a similar structure to the first stage, therefore it has the
same cycle time as the first stage. The required number of processors (P ) and the cycle
time (T ) are:

P = M1M2 + 2(M1 +M2) (2.27)

T = tmult + tadd (2.28)

It is worthwhile to note that the number of processors required is much less than

15



the previous realizations. In addition, this implementation can take advantage of highly
parallelized addition and multiplication when calculating the intermediate state variables.
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Chapter 3

Filter Coefficients Derivation

In order to apply a 2D separable denominator digital filter to two dimensional data, the
corresponding filter coefficients must be first derived before data can be processed. The
derived filter coefficients can then be used to verify the functional correctness of the imple-
mentation. A numerical example is taken out of existing publication in order to derive the
coefficients. The 2D impulse response specification for a Quarter-Plane Gaussian Filter
[14] is given by:

hd(m,n) = 0.256322 · exp[−0.103203(m− 4)2 + (n− 4)2] (3.1)

The resulting 2D separable denominator digital filter is given by Roesser local state-
space (LSS) matrices:[

xh(i+ 1, j)
xv(i, j + 1)

]
=

[
A1 A2

0 A4

] [
xh(i, j)
xv(i, j)

]
+

[
b1
b2

]
u(i, j) (3.2)

y(i, j) =
[
c1 c2

] [xh(i, j)
xv(i, j)

]
+ du(i, j) (3.3)

where xh(i, j) is a M1× 1 horizontal state vector, xv(i, j) is a M2× 1 vertical state vector,
u(i, j) is a scalar input, y(i, j) is a scalar output, and

A1 =

 0.86382 0.27191 0.03899
−0.27191 0.59513 −0.36079
0.03899 0.36079 0.35615

 (3.4)
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A2 =

 0.42903 0.33791 −0.12990
0.33791 0.26614 −0.10231
−0.12990 −0.10231 0.03933

 (3.5)

A4 =

0.86382 −0.27191 0.03899
0.27191 0.59513 0.36079
0.03899 −0.36079 0.35615

 (3.6)

bt1 =
[
0.06361 0.05010 −0.01926

]
(3.7)

bt2 =
[
0.65500 −0.51589 −0.19831

]
(3.8)

c1 =
[
0.65500 −0.51589 −0.19831

]
(3.9)

c2 =
[
0.06361 0.05010 −0.01926

]
(3.10)

D = 0.00943 (3.11)

To derive the coefficients required for the realizations, the local state-space matrices
need to be converted to a transfer function. Assume there is no loss of generality in
representing 2D separable denominator digital filters by the LSS model in Equation 3.2
and 3.3. The LSS model is assumed to be asymptotically stable and minimal. The transfer
function is given by [15]

H(z1, z2) =
[
c1 c2

] [z1IM1 − A1 −A2

0 z2IM2 − A4

]−1 [
b1
b2

]
+ d (3.12)

=
[
1 c1(z1IM1 − A1)

−1
] [d c2
b1 A2

] [
1

(z2IM2 − A4)
−1b2

]
(3.13)

By applying this transform, the resulting transfer function is:

H(z1, z2) =
i(z1, z2)

j(z1)× k(z2)
(3.14)
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where

i(z1, z2) = 0.009059397520z−3
1 z−3

2 + 0.007524922930z−3
1 z−2

2 + 0.002468223450z−3
1 z−1

2 +

0.009244024377z−3
1 + 0.007524922933z−2

1 z−3
2 + 0.006245656370z−2

1 z−2
2 +

0.00205458569z−2
1 z−1

2 + 0.007675175463z−2
1 + 0.002468223444z−1

1 z−3
2 +

0.00205458571z−1
1 z−2

2 + 0.000668282136z−1
1 z−1

2 + 0.00252151860z−1
1 +

0.009244024371z−3
2 + 0.00767517545z−2

2 + 0.00252151860z−1
2 +

0.00943

j(z1) =
1

1− 1.515100000z−1
1 + 1.236274491z−2

1 − 0.3133116076z−3
1

k(z2) =
1

1− 1.515100000z−1
2 + 1.236274491z−2

2 − 0.3133116076z−3
2

Factoring the denominator of j(z1) and k(z2) gives:

j(z1) =
1

(1− 0.3945011412z−1
1 )(1− 1.120598859z−1

1 + 0.7941969614z−2
1 )

=
1

(1− 0.3945011412z−1
1 )(0.560295295 + 0.6562328205iz−1

1 )
·

1

(0.560295295− 0.6562328205iz−1
1 )

and

k(z2) =
1

(1− 0.3945011412z−1
2 )(1− 1.120598859z−1

2 + 0.7941969614z−2
2 )

=
1

(1− 0.3945011412z−1
2 )(0.560295295 + 0.6562328205iz−1

2 )
·

1

(0.560295295− 0.6562328205iz−1
2 )
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so, the filter has two real poles at:

z1 = z2 = 0.3945011412

and four imaginary poles at:

z1 = z2 = 0.560295295± 0.6552328205i

3.1 Realization One

Since the transfer function of realization one can be written as a product of two functions
as shown in Equation 2.2, Equation 2.3, and Equation 2.4 , the filter coefficients can be
directly collected from the transfer function without any transformation as follows:

α0 = β0 = 1

α1 = β1 = −1.5151

α2 = β2 = 1.236274491

α3 = β3 = −0.3133116076
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b3,3 = 0.009059397520

b3,2 = 0.007524922930

b3,1 = 0.002468223450

b3,0 = 0.009244024377

b2,3 = 0.007524922933

b2,2 = 0.006245656370

b2,1 = 0.00205458569

b2,0 = 0.007675175463

b1,3 = 0.002468223444

b1,2 = 0.00205458571

b1,1 = 0.000668282136

b1,0 = 0.00252151860

b0,3 = 0.009244024371

b0,2 = 0.00767517545

b0,1 = 0.00252151860

b0,0 = 0.00943000000

3.2 Realization Two

The filter coefficients for realization two are obtained from the decomposition of the matrix
B into two submatrices. As shown in Equation 2.9, the numerator of the transfer function
is separated into three matrices. Lower-Upper (triangular) Decomposition is used here to
decompose the matrix B into a product of two matrices using Matlab.

p(z1, z2) =

M1∑
i=0

M2∑
j=0

bi,jz
−i
1 z

−j
2 = ZT

1 ·B · Z2 = ZT
1 · L · U · ZT

2 = (ZT
1 · L)(U · Z2) (3.15)

and from Matlab, matrix B is:
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L =


1 0 0 0

0.026739327677625 1 0 0
0.081391044114528 −0.385454286773350 1 0
0.980278299363733 0.598912923175959 0.166861870971349 1

 (3.16)

U =


0.0943 0.0025215186 0.00767517545 0.00924402437

0 −0.000005954980906 0.000001995405592 −0.000003566522894
0 0 −0.000000479927738 −0.000000259751483
0 0 0 −0.000000139588430


(3.17)

The denominator coefficients remain the same as realization one.

α0 = β0 = 1

α1 = β1 = −1.5151

α2 = β2 = 1.236274491

α3 = β3 = −0.3133116076

However, the numerator coefficients is less straightforward. According to Equation 2.14
and Equation 2.15, the filter coefficients that are z1-dependent are denoted gk1 and filter co-
efficients that are z2-dependent are denoted hkj, where k represents the corresponding filter
coefficients for each set of subfilters containing only one z1 subfilter and one z2 subfilter.
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g00 = 1

g01 = 0.0267393276

g02 = 0.0813910441

g03 = 0.9802782993

g10 = 0

g11 = 1

g12 = −0.3854542867

g13 = 0.5989129231

g20 = 0

g21 = 0

g22 = 1

g23 = 0.1668618709

g30 = 0

g31 = 0

g32 = 0

g33 = 1
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h00 = 0.0943

h01 = 0.0025215186

h02 = 0.00767517545

h03 = 0.00924402437

h10 = 0

h11 = −0.0000059549

h12 = 0.0000019954

h13 = −0.0000035665

h20 = 0

h21 = 0

h22 = −0.0000004799

h23 = −0.0000002597

h30 = 0

h31 = 0

h32 = 0

h33 = −0.0000001395

3.3 Realization Three

In order to produce the filter coefficients for realization three, the transfer function is
partial fraction expanded and then its fraction numerator is solved. The chosen transfer
function, however, contains four complex roots and two real roots. As a result, each two
complex conjugate roots are combined to produce a real second order polynomial.

According to Equation 2.21, a 2D separable denominator digital filter of order 3 × 3 has
the general partial fraction expanded form:
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H(z1, z2) =
K1

(1− γ1z−1
1 )(1− λ1z−1

2 )
+

K2

(1− γ1z−1
1 )(1− λ2z−1

2 )
+

K3

(1− γ1z−1
1 )(1− λ∗2z−1

2 )
+

K4

(1− γ2z−1
1 )(1− λ1z−1

2 )
+

K5

(1− γ2z−1
1 )(1− λ2z−1

2 )
+

K6

(1− γ2z−1
1 )(1− λ∗2z−1

2 )
+

K7

(1− γ∗2z−1
1 )(1− λ1z−1

2 )
+

K8

(1− γ∗2z−1
1 )(1− λ2z−1

2 )
+

K9

(1− γ∗2z−1
1 )(1− λ∗2z−1

2 )
+

K10

(1− γ1z−1
1 )

+
K11

(1− γ2z−1
1 )

+

K12

(1− γ∗2z−1
1 )

+
K13

(1− λ1z−1
2 )

+
K14

(1− λ2z−1
2 )

+
K15

(1− λ∗2z−1
2 )

+K16

=
K1

(1− γ1z−1
1 )(1− λ1z−1

2 )
+

(K2 +K3)z
−1
2 + (K2 +K3)

(1− γ1z−1
1 )(1− β1z−1

2 − β2z−2
2 )

+

(K4 +K7)z
−1
1 + (K4 +K7)

(1− α1z
−1
1 − α2z

−2
1 )(1− λ1z−1

2 )
+

{(K5 · γ∗2 · λ∗2 +K9 · −γ2 · −λ2)z−1
1 z−1

2 +

(K5 · −γ∗2 +K9 · −γ2)z−1
1 + (K5 · −λ∗2 +K9 · −λ2)z−1

2 + (K5 +K9)} ·
1

(1− α1z
−1
1 − α2z

−1
2 )(1− β1z−1

1 − β2z−1
2 )

+

{(K8 · −γ2 · −λ∗2 +K6 · −γ∗2 · −λ2)z−1
1 z−1

2 +

(K8 · −λ∗2 +K6 · −λ2)z−1
2 + (K8 · −γ2 +K6 · −γ∗2)z−1

1 + (K8 +K6)} ·
1

(1− α1z
−1
1 − α2z

−1
2 )(1− β1z−1

2 − β2z−1
2 )

+

K10

1− γ1z−1 1
+

(K11 · −γ∗2 +K12 · −γ2)z−1
1 + (K11 +K12)

1− α1z
−1
1 − αz−2

1

+

K13

1− λ1z−1
2

+
(K14 · −λ∗2 +K15 · −λ2)z−1

2 + (K14 +K15)

1− β1z−1
2 − βz−2

2

+K16

After collecting similar powers and reducing, this simplifies to:
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H(z1, z2) =
Az−1

1 z−1
2 +Bz−1

1 + Cz−1
2 +D

(1− α1z
−1
1 − α2z

−2
1 )(1− β1z−1

2 − β2z−2
2 )

+ (3.18)

E

(1− γ1z−1
1 )(1− λ1z−1

2 )
+ (3.19)

Fz−1
2 +G

(1− γ1z−1
1 )(1− β1z−1

2 − β2z−2
2 )

+ (3.20)

Hz−1
1 + I

(1− α1z
−1
1 − α2z

−2
1 )(1− λ1z−1

2 )
+ (3.21)

J

(1− γ1z−1
2 )

+ (3.22)

Kz−1
1 + L

(1− α1z
−1
1 − α2z

−2
1 )

+ (3.23)

M

(1− λ1z−1
2 )

+ (3.24)

Nz−1
2 +O

(1− β1z−1
2 − β2z−2

2 )
+ P (3.25)

Solving this system of 16 linear equations using matrices yields:

A · x = B (3.26)

where A is a matrix of dimension 16 × 16, and B is a column of dimension 16 × 1 and
x represents the filter coefficients of dimension 1 × 16. Furthermore, matrix A is divided
into four submatrices 1.

A =

[
A1 A2

A3 A4

]
(3.27)

1A1, A2, A3, and A4 displayed here are with reduced precision due to page size restriction. Actual
matrix precision is 10 digits after the decimal point.
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A1 =



0 0 0 1 1 0 1 0
0 0 1 −0.6636 −1.1514 1 −0.6636 0
0 0 −0.6636 0 0.4721 −0.6636 0 0
0 0 0 0 0 0 0 0
0 1 0 −0.6636 −1.1514 0 −1.1514 1
1 −0.6636 −0.6636 0.4403 1.3259 −1.1514 0.7641 −1.1514

−0.6636 0 0.4403 0 −0.5436 0.7641 0 0.4721
0 0 0 0 0 0 0 0


(3.28)

A2 =



1 1 0 1 1 0 1 1
1.1514 1.8151 0 1.8151 1.1514 1 0.6636 1.8151
0.4721 1.2362 0 1.2362 0.4721 −0.6636 0 1.2362

0 −0.3133 0 −0.3133 0 0 0 −0.3133
−0.6636 −1.1514 1 −0.6636 −1.8151 0 −1.8151 −1.8151
0.7641 2.0900 −1.8151 1.2045 2.0900 −1.8151 1.2045 3.2945
−0.3133 −1.4235 1.2362 −0.8203 −0.8569 1.2045 0 −2.2439

0 0.3607 −0.3133 0.2079 0 0 0 0.5686


(3.29)

A3 =



0 −0.6636 0 0 0.4721 0 0.4721 −0.6636
−0.6636 0.4403 0 0 −0.5436 0.4721 −0.3133 0.7641
0.4403 0 0 0 0.2229 −0.3133 0 −0.3133

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(3.30)
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A4 =



0 0.4721 −0.6636 0 1.2362 0 1.2362 1.2362
0 −0.8569 1.2045 0 −1.4235 1.2362 −0.8203 −2.2439
0 0.5836 −0.8203 0 0.5836 −0.8203 0 1.5283
0 −0.1479 0.2079 0 0 0 0 −0.3873
0 0 0 0 −0.3133 0 −0.3133 −0.3133
0 0 0 0 0.3607 −0.3133 0.2079 0.5686
0 0 0 0 −0.1479 0.2079 0 −0.3873
0 0 0 0 0 0 0 0.09816


(3.31)

and

B =



0.00943000000
0.00252151860
0.00767517545
0.00924402436
0.00252151860
0.00066828213
0.00205458571
0.00246822344
0.00767517546
0.00205458569
0.00624565635
0.00752492293
0.00924402436
0.00246822345
0.00752492293
0.00905939752



(3.32)

Solving the system of linear equations, by x = A \B , the solution is obtained.
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x =



−2.1399700728
2.6315602263
1.4059630793
−1.1315043079
−1.4883426863
−2.3631817875
2.2515878795
−2.3631817864
0.52898585339
−0.57836003994
−0.20336809040
0.45656755241
−0.57836003983
−0.20336809035
0.45656755231
0.092288236346



(3.33)

Referring to Equation 3.18 to Equation 3.25, the coefficients are then 2:

2Variable A and B presented here are coefficients for the partial fraction expanded 2D transfer function
in Equation 3.18
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A = −2.1399700728

B = 2.6315602263

C = 1.4059630793

D = −1.1315043079

E = −1.4883426863

F = −2.3631817875

G = 2.2515878795

H = −2.3631817864

I = 0.52898585339

J = −0.57836003994

K = −0.20336809040

L = 0.45656755241

M = −0.57836003983

N = −0.20336809035

O = 0.45656755231

P = 0.092288236346

3.3.1 Modification to Realization Three

In Section 2.4, an architecture suitable for M1 ×M2 filter order is presented. However, the
realization presented assume all the roots are real. As shown in Equation 3.18 to Equation
3.25, the roots are not all real. The roots shown in the numerical example are a single
real, a complex, and a complex conjugate root in both the z1 and z2 direction. Due to this
problem, the realization needs to be modified before it is suitable for implemention.

In order to accommodate complex roots, the complex roots are combined to form a real
polynomial of order two that is realized using transposed direct form II. Figure 3.1(a) is the
subfilter for realizing the combined complex roots in the z1 direction and Figure 3.1(b) for
the z2 direction. Since the numerator is no longer a constant, but also contains coefficients
multiplied by delays in z1 and z2 dimension, the numerator needs to to be modified as
well. The transposed direct form of FIR filter is suitable to implement the numerator.
Figure 3.1(c) shows the modified realization to implement the numerator portion of the
first double root containing coefficients A, B, C and D in the form:
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Az−1
1 z−1

2 +Bz−1
1 + Cz−1

2 +D

(1− αz−1
1 − αz−2

1 )(1− βz−1
2 − βz−2

2 )
(3.34)
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Figure 3.1: Implementation for the Numerator and the Denominator for Equation 3.34.

A detailed subfilter realization is shown in Appendix A.3.

3.4 Realization Four

Realization four is a modified version of realization three, where redundant implementation
of the same pole is avoided. Coefficients involving the same pole are summed using a tree
adder and then multiplied by the pole. As such, the coefficients used for realization four
are the same as the coefficients used for realization three, which are presented in Section
3.3.

Writing realization four in matrix form using the derived coefficients A to P:

H(z1, z2) = P T (z1) ·K ·Q(z2) (3.35)

where
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P (z1) =

 1
1

(1−γ1z−1
1 )

1
(1−α1z

−1
1 −α2z

−2
1 )

 , Q(z2) =

 1
1

(1−λz−1
2 )

1
(1−β1z−1

1 −β2z−2
1 )

 (3.36)

K =

 P M Nz−1
2 +O

J E Fz−1
2 +G

Kz−1
1 + L Hz−1

1 + I Az−1
1 z−1

2 +Bz−1
1 + Cz−1

2 +D

 (3.37)

The filter realization have the structure similar to realization three. The circuitry that
realizes the z1 and z2 poles and the coefficients is the same as the one shown in Figure
3.3.1. The difference, however, is that this realization does not realize the same pole
multiple times. As a result, the wire connection will be different for realization four from
realization three. A detailed subfilter realization is shown in Appendix A.4.
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Chapter 4

Timing Considerations on Filter
Implementation

Before the system architecture of the digital signal processor can be presented, the timing
of the filter realizations must be first investigated. As a whole, digital circuits are composed
of two types of paths: data paths and control paths. Data paths propagate the data along
an arithmetic channel while the control paths moderate the flow and the direction of the
data traveling on the data paths. Some paths are timing critical, which implies that the
paths are affecting the speed at which the design can operate. Therefore critical paths
must be identified and optimized in order to improve the filter throughput.

Since the feedback paths stipulate the shortest time for which the output of the previous
subfilter can be transferred to the input of the following subfilter, the feedback paths are
also considered the critical paths. In this chapter, the critical path for each of the four
realizations are identified and modifications are made to improve the performance.

4.1 Critical Data Path in Realization One

Since realization one is comprised of three subfilters, each subfilter will have a critical path.
The critical path of the implementation is therefore the maximum of the three critical
paths. For the first subfilter, the critical path is two adds and one multiply. For the second
subfilter, the critical path is one multiply and one add. For the third subfilter, the critical
path is two adds and one multiply. The three input adder in the third subfilter is broken
down into two adders connected in series. The critical paths for the first, second and third
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stages are shown in Figure 4.1. The actual throughput delay for the implementation is
therefore two adds, one multiply plus one additional clock cycle required for the horizontal
delay element to transfer the data from previous stage to the next stage. Next, since
the subfilters are connected in cascade, critical path for the overall realization must be
identified.
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Figure 4.1: Critical Paths in First, Second and Third Subfilter of Realization One.

In the original realization shown in Figure 2.1, the critical path with the three subfilters
combined is three add and one multiply, which is larger than the critical path of the indi-
vidual subfilters. If the design remains unchanged, the throughput of the implementation
will be three add and one multiply as shown in Figure 4.2(a) since the longest critical path
dictates how fast the entire realization can be clocked. To increase the throughput, an
additional horizontal delay is introduced at the output of the second subfilter. This hori-
zontal delay breaks the overall critical path such that the overall implementation retains a
throughput of two add and one multiply. However, since an extra horizontal delay is added,
the output ui(n1, n2) and g(n1, n2) now have an additional horizontal delay, as shown in
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Figure 4.2(b). This extra horizontal delay adds to the overall latency of the digital filter,
but does not affect the processed data in any way.
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Figure 4.2: Critical Path and Modified Critical Path for Realization One.
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4.2 Critical Data Path in Realization Two

Realization two contains two subfilters and a tree adder. Each subfilter has its own critical
path, while the tree adder can be adjusted to accommodate the critical path found in the
previous two subfilters. For the first subfilter, the critical path is one multiply and two
adds. For the second subfilter, the critical path is also one multiply and two adds. The
critical paths for the first and second subfilter is shown in Figure 4.2.
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Figure 4.3: Critical Paths in First, Second and Third Stages of Realization Two.

In the original realization shown in Figure 2.3, the critical path with the two subfilters com-
bined is two add and two multiply, which is larger than the critical path of the individual
subfilters. If the design remains unchanged, the throughput of the implementation will be
two add and two multiply as shown in Figure 4.4(a) since the longest critical path dictates
how fast the entire realization can be operated. To increase the throughput, an additional
horizontal delay is introduced at the output of the first subfilter. This horizontal delay
breaks the overall critical path so that the overall implementation retains a throughput of
two add and one multiply. Since an extra horizontal delay is added, the output g(n1, n2)
now has an additional horizontal delay, as shown in Figure 4.4(b). This extra horizontal
delay increases the overall latency of the digital filter by one, but does not affect the output
data. Since the minimum throughput is determined to be two add and one multiply, the
tree adder that sums up all the vr(n1, n2) can now be determined to have two adds in its
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critical path.
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Figure 4.4: Critical Path and Modified Critical Path for Realization Two.
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4.3 Critical Data Path in Realization Three and Four

Despite the structural difference between realization three and realization four, the basic
subfilter that is used to construct realization three and realization four is the same. The
z1 and z2 denominator realization is shown in Figure 4.5(a) and 4.5(b). In fact, this same
denominator realization is used in realization one. The critical path is then two adds and
one multiply as previously discussed.
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Figure 4.5: Denominator Realization for Realization Three and Four.

The numerator realization is similar to realization one. One horizontal delay is inserted at
the end of the FIR filter chain to ensure a throughput of two add and one multiply. The
numerator subfilter which realizes coefficient A, B, C, and D is shown in Figure 4.6.

Both realization three and four share the same subfilters for denominator and numera-
tor realization. The only difference is realization four eliminates multiple realization of
the same pole. This results in reduced hardware utilization and lower power dissipation.
Appendix A.3 shows the detailed realization three subfilters and Appendix A.4 shows the
detailed realization four subfilters.
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Figure 4.6: Numerator Realization
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4.4 Control Path

Since adders, multipliers and shift registers are connected in series for all the realizations,
control paths are required to reduce inadvertent data shifts. An example is provided to
illustrate the significance of control paths. The example used for this section is subfilter
one of realization one, as shown in Figure 4.7(a). It will be used to illustrate how incorrect
data can be inadvertently shifted without proper control paths.
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(b) Timing diagram without control path

Figure 4.7: Example Timing Diagrams Without Control Paths.

For the sake of simplicity, an adder latency of 2 clock cycles, multiplier latency of 3
clock cycles, and shift register latency of 1 clock cycle is assumed. Figure 4.7(b) shows
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the timing diagram of such a circuit assuming both adders, multiplier and shift register
are operating simultaneously. Before zero time unit (t0), IN is given the initial value of
0, A the value of 1, D the value of 3. Since OUT is the sum of IN and D, it is given the
value of 3. For the same reason, C is the sum of A and B, and is given the value of 3,
provided that the coefficient for the multiplier is 2 as shown. At zero time unit (t0), IN
switches from 0 to 1 and A switches from 1 to 2. After 2 time unit (t2), adder on the top
has finished calculating and OUT switches from 1 to 4. Since the adder on the bottom
is calculating simultaneously as the top adder, C switches from 3 to 4. After 1 time unit
(t3), C has propagated to D via shift register, and D switches from 3 to 4. After 2 time
unit (t5), the multiplier has finished calculating and B switches from 2 to 8. At the same
time, OUT switches from 4 to 5 due to a change on D. This result is undesirable since the
change on OUT is propagated due to toggling of A to C to D. The correct result is finally
attained after 5 time unit (t10), when OUT switches from 5 to 11. Without proper control,
the incorrect intermediate sum will propagate further down the signal processing pipeline
and results in rapid toggling at the output. Clearly a control circuit is needed to remedy
the problem.

To remedy the propagation of incorrect intermediate sums, a control circuitry is used to
enable the adders, multiplier and shift register at the proper time. To produce the correct
sum for the sample circuit in Figure 4.7(a), the top adder, the multiplier, the bottom adder,
and the shift register must be enabled in this order. Figure 4.8 shows the enable signals
that drive the corresponding output. ENA OUT signals the top adder to turn on for two
clock cycles to produce the correct sum at t2. Following that, ENA B signals the multiplier
to turn on for 3 clock cycles to produce the correct product at t5. ENA C and ENA D
signals are applied to the bottom adder and the shift register to produce the correct sum.
Notice the erroneous value of 5 no longer appears on OUT at t5 using this control scheme.

Since all the realizations use a similar configuration of a multiplier, adders, and shift
registers, the control scheme is applied to all the realizations to prevent incorrect calcula-
tions from propagating down the signal processing pipeline. This change in architecture is
of course subject to trade-offs. Since extra circuitry is used to produce the correct enable
signals for the corresponding adders, multipliers and shift registers, the hardware utiliza-
tion will increase. Furthermore, additional routing resources are needed to fit the design
as well.

Even though the same control scheme is applied to all four realizations, the exact cycle
time required is different from one realization to another. The timing sequence shown in
Figure 4.8 applies directly to realization one and realization two, since the critical path
is two adds, one multiply and one horizontal shift. For realization three and realization
four, however, the timing sequence is different. The critical path is actually one add, one
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Figure 4.8: Timing Diagram with Control Path.

Table 4.1: Cycle Time for Each Realization.
Realiation Cycle Time

One 2tadd + tmult + 1
Two 2tadd + tmult + 1

Three tadd + tmult + 1
Four tadd + tmult + 1

multiply and one horizontal shift. Table 4.1 summarizes the cycle time for each realization.
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Chapter 5

System Implementation Details

To implement a 2D separable denominator digital filter and use it to process two dimen-
sional data, a complete system is required to receive input from a source, buffer the input
data, process the data using the digital filter, buffer the output data, and send the output
data back to the source.

There are two ways to produce a robust and reusable system: full-custom ASIC flow
or FPGA flow. A full-custom ASIC flow is a long and arduous process involving many
specific design tools, as shown on the right hand side of Figure 5.1. The circuitry is first
designed, functionally simulated, synthesized, layed out, manufactured and then tested.
The entire process can occupy months for just one iteration of the design. The finished
product is much more compact and better optimized in both power and performance when
compared to an FPGA board.

On the contrary, the FPGA design flow is much more flexible and forgiving when
compared to the ASIC flow. One iteration of the design from synthesis, place and route
to testing can be done in a fraction of time that ASIC flow takes. The FPGA board can
be reused many times, unlike ASIC which needs to be replaced with each new revision.
Furthermore, many FPGA vendors handle both the front-end as well as back-end tasks in
one manageable piece of software, saving both cost and precious development time. As a
result, the digital signal processing system is built using a FPGA design flow, as shown on
the left hand side of Figure 5.1. In the next section, the advantages and disadvantages of
using fixed point versus floating point arithmetic for the digital signal processing system
is discussed.
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Figure 5.1: FPGA versus ASIC Design Flow
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5.1 Fixed Point versus Floating Point

Traditional digital filters are implemented with fixed point calculations in mind, with which
calculations are made with limited precision. Nowadays, hardware resources are becoming
much cheaper and it is not unconventional to find floating point digital filters with much
higher precision, albeit at the cost of higher hardware utilization as well. It is not an easy
choice to make when it comes down to using fixed point or floating point arithmetic units,
since both fixed point and floating point have advantages and disadvantages.

Fixed point processing is susceptible to finite word length effects, which occurs when
the word length of the registers is less than the required precision needed to store the actual
value. These effects introduce noise into the Digital Signal Processing system and create
undesirable behavior, such as input quantization noise, coefficient quantization noise and
arithmetic overflow [1].

Input quantization noise arises from the limited precision of the Analog to Digital
Converter, when a continuous time signal is converted to a discrete time signal. For the
case of filters, the input data is usually pre-sampled and quantized to acceptable levels
before it is fed to the processors. As a result, input quantization noise is less of an issue for
the matter at hand since it is assumed that this digital filter is a part of a larger system
that reduce input quantization noise to an acceptable level.

On top of input quantization noise, there can also be noise associated with the coeffi-
cients that are used to describe the transfer function of the filter. Usually the coefficients
assume the system has infinite precision. The Digital Signal Processing system has a lim-
ited amount of memory and is forced to truncate the coefficients. What is more, truncated
coefficients no longer retain the precision of the original coefficients and can affect pole/zero
locations, thus altering the frequency response of the digital filter. This effect is especially
critical for IIR filters where the movement of the pole locations may lead to instability.

Lastly, addition and multiplication are two common operations in a Digital Signal
Processing system. Multiplying two 16 bit number requires a 32 bit register to store the
result. If the result is then multiplied with another 16 bit number, 48 (32 + 16) bits is
required to store the result. If there are multiple multiplications within the systems, the
number of bits required to store the intermediate output can increase very quickly. As
a result, in a fixed point Digital Signal Processing system, results are usually rounded
or truncated. Unfortunately, rounding limits the growth of word length at the expense
of increased roundoff errors. The larger the Digital Signal Processing system, the more
roundoff errors the result can accumulate.

To deal with the shortcomings of fixed point Digital Signal Processing systems, floating
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Table 5.1: IEEE 745 Single and Double Precision Floating Point Internal Representation
Type Sign Exponent Signficant Total Bits

Single Precision 1 8 23 32
Double Precision 1 11 52 64

point adders and multipliers are used in the system. Floating point operations are intrin-
sically more expensive than fixed point operations since floating point numbers take more
bits to encode. Floating point operations require the operands to be aligned before calcula-
tion can begin, a process called denormalization. After calculation is performed, the result
needs to be converted back to single precision floating number, a process called normaliza-
tion. Researchers agree in a pipelined DSP system, the denormalization and normalization
stage of the floating point operators can be fused to reduce hardware complexity and in-
crease performance [16]. For this research, this particular optimization technique was not
applied since it requires C code. This idea, however, can be applied if the filter realizations
are to be implemented on ASIC since the designer typically has more control in the design
and layout on ASIC than a FPGA.

The standard IEEE 745 describes five floating point standards and two of these are
popular among modern computing hardware: single precision and double precision. The
internal representation of a single precision and a double precision floating point number
is shown in Table 5.1.

Single precision floating point numbers are much like numbers represented in scientific
notation. The sign bit represents the sign of the number. The exponent is an 8 bit signed
integer ranging from -128 to 127. The significant is stored with an implicit leading bit (to
the left of the binary point) with a value of 1 unless the significant is zero. The IEEE
745 standard also lists four floating point number special cases: signed zero, subnormal
numbers, infinities, and not a number.

• Signed zero: Zero can represented as +0 or -0 in the IEEE floating point standard.
The two values are numerically equal in computations. However, different operations
can produce either +0 or -0.

• Subnormal numbers: Subnormal values occur when the result of a floating point
operation is smaller in magnitude than the smallest possible representable value in
the floating point number representation. Subnormal numbers are usually handled
by the hardware.
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• Infinities: Positive or negative infinity can result when a divide by zero exception
occurs. It is not an error and can occur just as often as any regular number.

• Not a number (NaN): Not a number is the result of an invalid floating point operation.
For example, dividing zero by zero or taking the square root of negative one. Using
a NaN as an operand in an arthimetic operation will cause the result to be an NaN
as well.

Fortunately, the Altera Quartus II IP MegaCore library comes with Floating Point (FP)
adders and multipliers that can be configured to use single precision or double precision
floating point, including the option to flag signed zero, subnormal numbers, infinities and
NaNs. A design can also configure the FP multipliers and adders for different levels of
pipeline depth which can affect the overall operating speed, power and area of the Digital
Signal Processing system. For the implementation of this Digital Signal Processing system,
IEEE single precision FP multipliers and adders are used to construct the system, since
the system does not require the precision of double FP operators. In the next section, the
optimum level of pipeline for a floating point multiplier and an adder is discussed.

5.2 Multiplier and Adder Pipeline Depth

Altera Quartus II Megafunction Wizard provides different pipeline depths for the FP
Adders and Multipliers. For the FP Multiplier, pipeline depths of 5, 6, 10 and 11 can
be selected; for the FP Adder, pipeline depths of 7, 8, 9, 10, 11, 12, 13, and 14 can be
selected. This provides a trade-off between performance and register count. Figures 5.2
and 5.3 show the maximum operating frequency (fmax) and the register count versus the
number of pipeline stages for FP Adder and Multiplier, respectively.

For the FP Multiplier, a maximum speed of 440 MHz is achieved using pipeline depths
of 10 or 11. Since there is no performance increase by choosing a pipeline depth of 11, it
would save some hardware resource by using pipeline depth of 10 for the FP Multiplier.
For the FP Adder, a maximum speed of 482 MHz is achieved when the pipeline depth is
14. However, since the maximum speed of the design is restricted by the FP Multiplier’s
440 MHz, it is unnecessary to use pipeline depth of more than 12 for the FP Adder. For
constructing the Digital Signal Processing system, a pipeline depth of 10 is used for the FP
Multiplier and a pipeline depth of 12 is used for the FP Adder. It should be noted that a
speed difference of 100 MHz is observed when FP adder pipeline depth changes from 11 to
12. This sudden change in performance is unexpected. Documentations from Altera did
not explain this drastic difference in performance.
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The hardware resource utilization for the selected multiplier and adder is indicated
in Table 5.2. This information allows us to make a quantitative comparison on resource
utilization from the realization to the implementation later on.

Table 5.2: Hardware Utilization for FP Multiplier and FP Adder.
FP Operator Combinational ALUTs Register Count DSP 18 bit Multiplier Latency

Multiplier 535 756 4 10
Adder 126 357 0 12

5.3 Shift Registers

Since the horizontal shift (z1) is only one delay in pixel, it can be easily constructed using
flip flops in parallel. The vertical shift (z2), however, contains a line worth of pixels that
is the width of the image. For a 64 × 64 image, each vertical shift needs to be 64 pixels
deep. To accomplish this, a RAM-based shift register is used from the MegaWizard Plugin
manager. The shift register is 32 bits wide to accommodate the single precision floating
point algorithm used in the digital signal processing pipeline and is 64 elements deep to
accommodate the image width. The hardware resource utilization used for horizontal and
vertical shift register is shown in Table 5.3.
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Table 5.3: Hardware Utilization for Horizontal and Vertical Shift Register.
Shift Register Combinational ALUTs Register Count Block Memory Bits

Horizontal 0 32 0
Vertical 24 13 1984

5.4 Implementation of a DSP System

A generic system is required that allows test data to be passed into the 2D digital filter
and allows it to process and transport the processed data back for display. The system
must be able to transport the data in a timely manner and without fault. Furthermore,
the system must be relatively cheap to construct. First, the communication protocol must
be determined, which is discussed in subsection 5.4.1. Second, the overall DSP system
architecture must be studied and developed, which is discussed in Subsection 5.4.2.

5.4.1 Communication Protocol to the FPGA

The Altera DE4 board provides many ways to accomplish the communication task since
the board contains an array of high-speed IOs including Serial ATA, Gigabit Ethernet,
PCI Express, Universal Serial Bus 2.0, and JTAG. The relevant specifications for each IO
interface are listed below [17].

• Serial ATA 3.0: Support standard 6 Gbps signal rate.

• Gigabit Ethernet: Support Ethernet frame at 1 Gbps.

• PCI Express x8: Support speed for first generation at 2.5 Gbps/lane and second
generation at 5 Gbps/lane. Can interface with PC motherboard with x8 or x16 PCI
Express slot.

• USB 2.0: Support speed up to 480 Mbps. Also support both USB host and device.

• JTAG: Used to program and debug the FPGA via USB adapter. Speed is limited by
the USB medium.

In fact, all these communication protocols are all viable choices and the only difference is
the communication speed. Altera has also provided sample applications which conveniently
work out of the box. The choice is then arbitrary and can be easily converted if more
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communication protocols need to be included. The JTAG protocol is the ideal protocol
to start with since it uses the existing USB cable that configures the FPGA and is the
simplest protocol to use.

In essence, the USB cable is used to download a configuration bit stream to the FPGA
device. Once the device powers up, the USB cable switches over to JTAG mode and
enables debugging of onboard components using either the Avalon Memory Mapped (MM)
interface or Streaming (ST) interface. There are hardware IPs embedded on the FPGA
board that enable the required hardware transaction. The details of these hardware IPs
are not discussed since they are beyond the scope of this thesis. More details with regard
to Avalon MM interface and ST interface are discussed in Subsection 5.4.2.

5.4.2 DSP System Architecture

The proposed architecture of the digital signal processing system is shown in Figure 5.4.
The DSP system is first configured via a byte stream from the host PC using the USB
Blaster 1. JTAG to Avalon MM interface is used to write filter coefficients to the digital
filter. The actual image data is streamed into the input FIFO, processed by the digital
filter, streamed back to the output FIFO, and then returned to the host PC.

The image data used for digital filtering is a gray scale image of 64× 64 pixels. However,
the image data streamed into the digital filter is not binary due to the lack of an available
image encoder/decoder (CODEC) IP core. As a result, the image is first converted into
integer values ranging from 0 to 255 and then converted again into single precision floating
point numbers, since the digital filter operates using IEEE 754 single precision floating point
standard. The same process is used to reverse the data that is received from the digital
filter. This pseudo-CODEC is achieved using a mixture of Matlab and Java application
on the host PC. For the same reason, the coefficients are also converted to single precision
floating point numbers before they are written to the digital filter.

To write the filter coefficients to the digital filter, the Avalon MM interface is used
[19]. Generally speaking, the Avalon MM interface creates a read/write interface in a
memory-mapped system, where all the components are connected by interconnect fabric.

1For all intents and purposes, the USB Blaster is great for debugging. A new design can be quickly
loaded into the FPGA and have test cases executed. For long term usage of the hardware, it is highly
unlikely that a host PC will always be available to configure the FPGA every time the digital filter needs to
be used. Instead, the configuration files can be stored in the onboard flash memory and have the onboard
MAX II CPLD device automatically configure the FPGA on power-ups. [18]
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Components such as the Nios II softcore processor, memories, communication interfaces
and peripherals can all be interfaced using Avalon MM interface.
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A detailed input/output (IO) interface and timing relations between JTAG to Avalon
MM interface and digital filter is shown in Figure 5.5(a) and Figure 5.5(b) respectively.

1. address and read signals are asserted after the rising edge of clock by the master.

2. Address and read signals are sampled, and the slave responds with valid readdata.

3. Address, read and readdata lines are deasserted after read operation completes.

4. Address and write signal are asserted by the master. Valid data is asserted on the
writedata line.

5. Write operation completes and the master deasserts address, write and writedata
lines.

In total, four words are written to the slave. An actual Avalon MM interface transaction
is shown in Figure 5.5(c), where coefficient a1 from realization one is given the hexadecimal
value of bfe85332. Since coefficient a1 is the first of many coefficients in realization one,
the address line is given the value of 00.

The actual image data is sent and received via the Avalon ST JTAG interface. In
general, the Avalon ST interface is used for components that requires high bandwidth, low
latency and unidirectional data [19], such as multiplexed streams, packets and digital signal
processing data. The interface is capable of supporting complex protocols such as burst
transfers and packet transfers with packets interleaved across multiple channels. For the
proposed system, the Avalon ST interface is used as a traditional streaming interface where
it supports a single stream of data without knowledge of channels or packet boundaries.

A detailed input/output interface of the Avalon ST interface from the Avalon ST JTAG
interface to the digital fiter is shown in Figure 5.6(a), where the data flows from source
to the sink. The Avalon ST interface uses backpressure to regulate the flow of data.
Backpressure is a mechanism where the sink can signal to the source to stop sending data
due to a full FIFO or congestion in its output ports. Backpressure is extensively used in
this digital signal processing system to control data flow. Figure 5.6(b) illustrates a data
transfer with backpressure.

1. Source provides data and asserts valid, even though the sink is not ready.

2. The source asserts ready and the first data is captured immediately two cycles after
(1).
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3. The next data is captured and the source deasserts valid, but the sink does not
deassert ready until a cycle later.

In Figure 5.6(c), a transaction on the Avalon ST interface is shown where the input
FIFO sends pixel data to the Avalon ST sink in the digital filter. The input FIFO, also
called the ingress FIFO, asserts the hexadecimal value of 32353509 on the data lines. The
Avalon ST sink on the digital filter captures the data on the same clock cycle. Reg data
is the input register at the input of the actual filter implementation.

In conclusion, both the Avalon MM interface and the Avalon ST interface are used to
construct the digital signal processing system. The Avalon MM interface is used to write
and read filter coefficients to the 2D digital filter while the Avalon ST interface is used to
transfer the raw input data to the FPGA and processed output data from the FPGA.
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Chapter 6

Simulation Results

Given the derived coefficients in Chapter 3, the modifications made to the filter realization
due to timing in Chapter 4, and the completed DSP system architecture in Chapter 5,
filter realizations of various sizes can now be implemented in FPGA hardware. Once
implementation is complete, the corresponding logic utilization, performance and power
figures can be shown. In this chapter, images using the 3 × 3 filter coefficients derived
from Chapter 3 is displayed first to show the filter implementations are indeed functional.
Following that, performance, logic utilization, and power for other filter sizes are discussed.

6.1 Functional Correctness

As mentioned before, the input image used for the DSP system is a grayscale image of
dimension 64 × 64. There is no particular for selecting a image dimension of 64 × 64
except demonstration. It should be noted that an image dimension larger than 64 × 64
can be used as input. The only change needed is to increase the storage capacity of the
vertical shift registers (z2), since a vertical shift register must be able to store the number
of pixels equal to the width of the image. The sample image is shown in Figure 6.1. Since
the impulse response is a low pass filter, the processed image looks blurred. The four
processed images can be seen in Figure 6.2.

During experimentation, it was found that the filter impulse response is not normalized.
This translates directly to output pixel values in excess of maximum allowable display value
of 0 to 255. To ensure the output pixel values can be displayed, a Java program was written
to normalize the output pixel value by linear scaling. The scaling factor is determined based
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on the minimum and maximum values derived from the output pixel values. Any negative
pixel values are rounded up to 0. During this scaling procedure, some details in the image
are lost and can contribute to the perceived difference between the original image and the
processed images.

Figure 6.1: Original Sample Image

Lines of black and gray can be seen on the top portion of the processed images, which
were not present in the original image. This effect is commonly known as aliasing and
is due to the initial condition of the digital filter. When the digital filter comes out of
reset, all the intermediate pipeline registers are assigned a value of zero. Typically, when
the digital filter starts processing the input data, it takes some time before meaningful
information begins to arrive at the output of the digital filter. Inevitably some zeros will
be observed at the output before the pixel values start to change. For gray scale images, a
value of zero represents black and as a result, some black values are seen before the white
appears.

Furthermore, the amount of aliasing is also affected by the scaling operation performed
after the image is processed. Both realization three and realization four requires four times
as much scaling per pixel when compared to realization one and realization two. Visually
this can contribute to a processed image of higher contrast for realization three and four,
and consequently, less aliasing.

The issue of aliasing is not a problem easily solved. Aliasing is more likely to happen
to an image with a white background and processed right after the DSP system comes out
of a reset. If the image contains a black background, aliasing will not be observed since
the value of black is already zero in the pixel. Furthermore, if images are continuously
processed, such as a video clip, the pixel values will likely not differ from the current image
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to the previous image, and thus aliasing is less likely to occur.

It can also be seen that some of the image is warping from the right hand side to
the left hand side. This effect is directly contributed by the insertion of control paths as
discussed in Subsection 4.4. The control path dictates the transfer of a valid output every
fixed amount of clock cycles. However, in all the realizations, the latency is larger than
cycle time by several folds. Due to this difference, first few pixels output from the digital
filter can be safely ignored as they do not contain any useful information. This issue can
be easily fixed in software. As long as the software takes into account the latency of the
given digital filter after the initial reset, the number of pixels that need to be discarded is
equal to the number of cycles of latency divided by cycle time.
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Figure 6.2: Processed Sample Image
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6.2 Filters of Varying Sizes

Once the filter function correctness is confirmed, more filters of varying sizes can be con-
structed to observe the trend in performance, logic utilization, and power dissipation. It
should be noted that the coefficients used to derive the power figures for filters with di-
mension larger than 3 × 3 are not derived from a pre-existing or pre-designed filter. As
such, the power figures should only be considered as a general guideline of what power dis-
sipation could look like. For filter dimension less than 3 × 3, the filter coefficients derived
from Chapter 3 are truncated.

6.2.1 Performance

Opimitization of signal routing and module placement on FPGA is an intense and laborious
process. To assist in the design, tools often provide several optimization settings that can
significantly affect the performance, logic utilization and the power dissipation of the final
design. Since the FPGA hardware is traditionally not optimized for power, the goal for this
research is to optimize for maximum performance instead. A list of detailed settings for the
synthesizer and fitter can be found in Appendix B. The maximum operating speed achieved
using these settings is shown in Table 6.1. The maximum operating speed is limited to
375.09 MHz by the memory element used to construct the horizontal shift registers (z1).

Table 6.1: Maximum Operating Speed (MHz) for Realization One With and Without DSE
Optimization.

Filter Order 1x1 2x2 3x3 4x4 5x5 6x6 7x7
Without DSE 375.09 349.55 331.13 301.04 229.04 282.00 252.50

With DSE 375.09 375.09 375.09 375.09 375.09 345.07 329.49

With the aid of the Design Space Explorer (DSE), the performance can be increased
dramatically. DSE is capable of enumerating a list of possible synthesizer/fitter configu-
rations that can potentially give a better performance. A list of seed numbers is entered
into the DSE and the optimization goal can be selected. Since this research is focused on
performance enhancement, searching for the best performance option was selected. The
maximum operating speed for realization one after using DSE is shown in Table 6.1. As
one can see, the performance has improved dramatically and the fmax is close to 375.09
MHz for most filter sizes of realization one. The performance eventually deteriorates due
to the increasing size of the design. It is evident that DSE can significantly increase the
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performance of the design, and as a result, all realizations are DSE-optimized to ensure
the maximum operating frequency is attained.

Table 6.2 shows a summary of the maximum operating speed for realization two, real-
ization three, and realization four after DSE optimization has been applied. Realization
one shows the least amount of performance deterioration as the filter order increases. Re-
alization four performs better than realization three as filter order increases is no surprise,
since realization four is realization three without instantiating the same poles multiple
times. Realization two has the worst performance figure due to its hybrid parallel-cascade
realization, which has a tendency of increasing fan out at the input of the digital filter and
the input of the tree adder. If the intended field of application requires high performance
2D digital filter, realization one and realization four are preferred over realization two and
realization three.

Table 6.2: Maximum Operating Speed (MHz) for Realization One, Two, Three and Four
after Design Space Explorer.

Filter Order 1x1 2x2 3x3 4x4 5x5 6x6 7x7
One 375.09 375.09 375.09 375.09 375.09 345.07 329.49
Two 375.09 375.09 343.41 306.00 256.61 NA NA

Three 375.09 372.30 362.32 344.47 281.53 NA NA
Four 375.09 375.09 375.09 373.83 361.66 NA NA

Operating speed, however, is only a part of the story. Throughput is the better indicator
of performance, which is usually measured in bits per second, as it represents the maximum
possible quantity of data that can be transmitted under ideal circumstances. To calculate
throughput, maximum operating speed is multiplied by cycle time. The theoretical cycle
time for each realization is presented in Table 4.1 and is shown again in Table 6.3, combined
with the actual cycle time assuming tadd is 12, tmult is 10, and tshift is 1.

Table 6.3: Theoretical and Actual Cycle Time for Each Realization
Realization Theoretical cycle time Actual cycle time (clock cycles)

One 2tadd + tmult + 1 2× 12 + 10 + 1 = 35
Two 2tadd + tmult + 1 2× 12 + 10 + 1 = 35

Three tadd + tmult + 1 12 + 10 + 1 = 23
Four tadd + tmult + 1 12 + 10 + 1 = 23

Multiplying actual cycle time (from Table 6.3) by maximum operating frequency (from
Table 6.2), maximum throughput is obtained in Table 6.4 in terms of million pixels per
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second. As one can see, even though the maximum operating frequency is roughly the
same across realizations of smaller filter order, the throughput is dramatically different
due to cycle time. Realization four emerges as the definitive filter if performance is of
major concern. Realization three shows promise as a close second to realization one.
However, due to decrease in fmax as filter order increases, realization three is not as good
as realization four.

Table 6.4: Throughput (million pixels/second) for Each Realization.
Filter Order 1x1 2x2 3x3 4x4 5x5 6x6 7x7

One 10.72 10.72 10.72 10.72 10.72 9.86 9.41
Two 10.72 10.72 9.81 8.74 7.33 NA NA

Three 16.31 16.19 15.75 14.98 12.24 NA NA
Four 16.31 16.31 16.31 16.25 15.72 NA NA

6.2.2 Logic Utilization

As presented in Chapter 2, the number of processors required for each realization is derived
from previous work [9]. The number of processors required for each realization is reiterated
in Table 6.5, where M1, M2, and r are the horizontal dimension, vertical dimension and the
rank of the matrix B, respectively. To determine the correlation of logic utilization between
the realizations and the implementations, the number of processors used to construct each
realization is translated into the number of combinational ALUTs, logic registers and 18
bit DSP multipliers, which is what the Quartus II tool uses when describing the logic
utilization of a given implementation.

Table 6.5: Processors Required for Each Realization (does not include the final tree adder).
Filter Processors required
One (M1 + 1)(M2 + 1) +M1 +M2

Two r(2M1 + 1 + 2M2 + 1)
Three 3M1M2 + 2(M1 +M2)
Four M1M2 + 2(M1 +M2)

As aforementioned, four modules from the Quartus II Megawizard Library are used to
construct the filter implementations: FP adders, FP multipliers, horizontal shift registers
and vertical shift registers. The corresponding logic utilization required for each module is
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listed in Table 6.6. To determine the correlation of logic utilization between the realizations
and the implementations, the relationship between the mathematical realization and the
modules must be determined.

Table 6.6: Logic Utilization Required for Each Megawizard Library Module.
Megawizard module ALUTs Logic Registers 18 bit Multipliers Memory Bits

FP Adder 126 357 0 0
FP Multiplier 535 756 4 0
z1 Shift Register 0 32 0 0
z1 Shift Register 24 13 0 1984

For realization one, M1 processors are in the first subfilter, and each processor includes
two adders, one multiplier and one horizontal shift register. (M1+1)(M2+2) processors are
in the second subfilter, and each processor includes a multiplier, an adder, and a horizontal
shift register. M2 processors are in the third subfilter, and each processor includes 2 adders,
one multiplier, and one vertical shift register. Using these numbers, the expected hardware
utilization can be calculated. Table 6.7 summarizes the expected logic utilization based on
calculation versus actual logic utilization from the Quartus II tool for realization one.

Table 6.7: Expected versus Actual Logic Utilization for Realization One.
Filter Order 1x1 2x2 3x3 4x4 5x5 6x6 7x7

Expected Comb ALUT 4494 9271 15370 22791 31534 41599 52986
Actual Comb ALUT 6326 12653 21346 24614 33809 57081 70622

Expected Logic Register 8279 16632 27275 40208 55431 72844 92747
Actual Logic Register 8608 17272 28638 42028 57867 75763 96045
Expected 18 bit DSP 24 52 88 132 184 244 312

Actual 18 bit DSP 24 52 88 132 184 244 312
Expected memory bits 1984 3968 5952 7936 9920 11904 13888

Actual memory bits 1984 3968 5952 7936 9920 11904 13888

The 18 bit DSP multipliers and the memory bits used are the same between expected
and actual logic utilization, however, the number of combinational ALUT and logic registers
used are different. The actual implementation typically uses more logic than is required to
implement the filters due to many reasons. For example, one fitter setting, called logic cell
insert - logic duplication, enables the fitter to insert buffer logic cells and to duplicate logic
cells to improve timing. When the setting is turned on, the fitter automatically inserts
logic cells between two nodes without altering the functionality of the design. Buffer logic
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cells are created from unused combinational ALUT and logic registers in the device. Yet
another setting called duplicate logic for fan-out control duplicates logic or registers to
improve fan-out. Duplicating logic or registers can help improve timing in paths where
moving a register in a failing path to reduce routing delay creates another failing path, or
where there are timing problems due to high fan-out nodes. A combination of these fitter
settings helps to improve the maximum operating frequency of a design at the cost of higher
logic utilization. The same analysis can be applied to other realizations/implementations,
but the task would be redundant and is therefore not shown. Instead, the logic utilization
for all implementations is shown.

Table 6.8: Actual Logic Utilization for Each Realization.
Filter Order 1x1 2x2 3x3 4x4 5x5 6x6 7x7

One Comb ALUT 6326 12653 21346 24614 33809 57081 70622
Logic Register 8608 17272 28638 42028 57867 75763 96045

18 bit DSP 24 52 88 132 184 224 312
Memory bits 1984 3968 5952 7936 9920 11904 13888

Percentage (%) 5 10 17 24 33 46 58
Two Comb ALUT 3847 27571 50060 79191 92393 NA NA

Logic Register 6624 35550 65584 104926 123746 NA NA
18 bit DSP 24 120 224 360 528 NA NA

Memory bits 9920 17856 31744 49600 103168 NA NA
Percentage (%) 4 22 40 63 78 NA NA

Three Comb ALUT 6317 18130 31573 51747 78403 NA NA
Logic Register 8651 27708 42066 68302 101306 NA NA

18 bit DSP 24 84 136 228 344 NA NA
Memory bits 3968 11904 17856 27776 49600 NA NA

Percentage (%) 5 15 25 41 63 NA NA
Four Comb ALUT 4667 10730 21052 31967 36164 NA NA

Logic Register 6543 14702 28100 41683 57070 NA NA
18 bit DSP 24 84 136 228 344 NA NA

Memory bits 1984 3968 5952 7936 11904 NA NA
Percentage (%) 4 9 17 25 34 NA NA

Table 6.8 shows the logic utilization for all implementations of 2D digital filter for
different varying sizes. The percentage (%) indicated in the table is the amount of FPGA
hardware resource utilizated needed to fit the implementation. As it can be seen, all
implementations have nearly the same logic utilization when the filter size is small. The

64



amount of growth for each implementation is different and there are several reasons that
can contribute to the growth factor. A fixed amount of circuitry is required to construct the
filter when filter size increases both in the horizontal and vertical direction. This entails
additional FP multipliers, adders and shift registers are needed. Furthermore, as the
amount of circuitry increases, the more difficult it is to meet timing. With aforementioned
fitter settings, such as logic cell insert - logic duplication and duplicate logic for fan-out
control, timing can be more easily met at the cost of additional logic utilization. As the
filter size increases, these effect are compounded, and eventually contributes to significant
increase in logic utilization.

Overall, both realization one and four are suitable candidates for area reduction. Both
realizations use roughly the same amount of logic to synthesize and fit the design. If the
research is to be carried out in standard cell design flow, realization one and realization
four would be the ideal candidate since smaller logic utilization means less gate count and
quicker turn over. Realization two and realization three, however, are terrible candidates.
The logic utilization is twice as much or more for realization two and realization three, when
compared to realization one and realization four. In actuality, the problem for realization
two and realization three is similar. Both realizations implement the horizontal and vertical
poles multiple time in the filter structure. This occupies a substantial amount of logic and
leads to increase in logic utilization.

6.2.3 Power Dissipation

In the world of circuit design, trade offs are common. For FPGA design, this equates to
trading power and area for flexibility. This does not always appeal to the ASIC crowd
since area can translate directly to silicon cost and power can translate to heat. As a
result it is unfair to compare the results obtained from FPGA hardware directly to its
ASIC counterpart.

Power dissipation is linked directly to the input. Typically there is always a worst
case input vector that will trigger the worst power dissipation. In other words, the power
dissipation is directly related to the input vector. For example, a black image will dissipate
significantly less power than the sample image, since many of the data paths do not toggle.
To figure out the worst power vector, however, would take a long for a complex design.
For this research, a 3 × 3 sample impulse response from previous work is presented, and
2D digital filter coefficients are derived from various transformation. However, that means
there will not be enough coefficients for filter larger than 3 × 3. To cope with this problem,
coefficients are duplicated in order to have the right number of coefficients. In some cases
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the output is full of noise, or outright incorrect. Some may argue this produces bogus
power data. But one must keep in mind that the work presented in this thesis is on the
2D digital filter implementation on FPGA, not the design of 2D digital filter.

Table 6.9: Power Dissipation for each Realization in mW.
Filter Order 1x1 2x2 3x3 4x4 5x5 6x6

One Dynamic Power 236.79 513.65 862.10 1195.62 1720.07 2078.07
Static Power 2.70 2.67 2.67 2.73 2.73 2.72

Two Dynamic Power 134.73 717.84 1994.19 2671.14 3636.53 NA
Static Power 2.74 2.71 2.70 2.71 2.75 NA

Three Dynamic Power 261.92 793.77 1277.19 1489.56 2298.41 NA
Static Power 2.67 2.69 2.69 2.7 2.71 NA

Four Dynamic Power 187.8 435.11 828.69 1273.94 1729.01 NA
Static Power 2.70 2.70 2.71 2.72 2.73 NA

The dynamic and static power dissipation for all realizations are shown in Table 6.9.
The table shows realization one and realizations four are the more suitable candidate for
ASIC design since they dissipate less power than realization two and realizations three.
Typically power correlates very closely with logic utilization and switching frequency.
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Chapter 7

Conclusions and Future Work

Four 2D separate denominator digital filters implementations are presented in this thesis.
Due to timing constraint, optimization to the filter architecture is made by inserting regis-
ters in the DSP pipeline. With this change, the digital filter is able to achieve higher max-
imum operating speed. A flexible DSP system based on Altera System On Programmable
Chip technology is presented in this thesis. It is used to functionally verify the correctness
of the digital filter. Various synthesizer and fitter settings, such as logic duplication for
fan-out control and logic cell insertion - logic duplication, are discussed in detail. Design
Space Explorer is introduced and used to increase maximum operating frequency further.

7.1 Conclusions

Performance of the digital filter is directly related to the operating frequency and cycle time.
With the help of DSE optimization, operating frequency is roughly equal for all realizations
as filter size increases. However, the cycle time for realization three and four is much
smaller than one and two due to less logic on the critical path. These two factors combined
contributes to higher throughput for realization three and four. From the experimental
result presented, realization four is able to achieve the highest throughput of 15.72 million
pixels per second at 361.66 MHz for a filter size of 5 × 5. Realization three is a close second
with 12.24 million pixels per second at 281.53 MHz. For high performance applications,
realization three or realization four is recommended.

A smaller logic utilization translates to small area in ASIC. Since area directly trans-
lates to silicon cost, smaller logic utilization is better for low cost production. From the
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results presented, realization one and realization four occupies 33% and 34 % of the FPGA
resources for a 5 × 5 filter, respectively, which uses half as much resources as realization
two and realization three. Realization one and realization four are better choice if the goal
is to reduce production cost. Logic utilization also directly correlates with dynamic power
dissipation. The results show that realization one and realization four dissipates the lowest
amount of dynamic power at 1720.07 mW and 1729.01 mW for a filter size of 5 × 5.

7.2 Future Work

Realization four is the best candidate if the filter is to be implemented in ASIC flow. It
has excellent performance, occupies lower area and dissipates lower power compared to all
other realizations. For more area reduction on the ASIC implementation, floating point
algorithms could be converted to fixed point algorithms to eliminate hardware complexity.
Alternatively, the floating point pipeline can be customized so the denormalization and
the normalization stage of the floating point operator can be eliminated altogether.

The floating point adder speed versus pipeline depth anomaly observed in Figure 5.3
should be studied further. Pipelined floating point operators should see a gradual increase
in operating speed as pipeline increases. A sudden and large increase in operating speed
is unexpected and requires more careful examination.
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Appendix A

Detailed filter implementation on
FPGA

This section shows the complete and detailed filter realizations including the coefficients
and interconnects for realization one to realization four. The numerical example included
in this research assumes that each dimension, z1 and z2, contains three roots, one real
and two complex. αs and βs are used to denote the polynomial coefficients when the two
complex roots are combined in the z1 and z2 direction, respectively. λ and γ are used to
represent the single real root in the z1 and z2 directions, respectively.

A.1 Realization One

Realization one contains three separate stages. First stage is composed of three subfilters.
First subfilter is a 1D IIR filter in the z1 direction. Second subfilter is a bank of 1D
FIR filters. Third subfilter is composed of 1D FIR filter in the z2 direction. The filter
architecture is shown in Figure A.1.

73



2
-1

1
-1

1
-1

1
-1

1
-1

w(n1,n2)f(n1,n2)

g(n1,n2)

xh1(n1,n2) -α1

-α3
xhM1(n1,n2)

b3,0 b1,0b2,0

1
-1

-α2

-β3

1
-1

1
-1

1
-1

b3,1 b1,1b2,1

1
-1

1
-1

1
-1

b3,2 b1,2b2,2

1
-1

1
-1

1
-1

b3,3 b1,3b2,3

1
-1

2
-1

b0,0

b0,1

b0,2

b0,3

-β2

-β1

2
-1

1
-1

1
-1

1
-1

1
-1

Figure A.1: Realization One
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A.2 Realization Two

Realization two is a cascade of two filter banks as shown in Figure A.2. The number of
banks in each subfilter is equivalent to the number of the rank of matrix B.
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Figure A.2: Realization Two

A.3 Realization Three

Realization three is a combination of many parallel stages as shown in Figure A.3 to A.11
followed by a tree adder that sums up the intermediate results.
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Figure A.4: Realization Three Subfilter Two
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Figure A.5: Realization Three Subfilter
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Figure A.6: Realization Three Subfilter Four
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Figure A.7: Realization Three Subfilter Five
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Figure A.8: Realization Three Subfilter Six
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Figure A.9: Realization Three Subfilter Seven
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Figure A.10: Realization Three Subfilter
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Figure A.11: Realization Three Subfilter
Nine
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A.4 Realization Four

Since realization four is a modified version of realization three, many subfilters that were
used in realization three are reused in realization four. The interconnect between the
subfilters are rewired to reduce redundant realization of the same pole. Figure A.12 shows
the subfilter used to realize poles in the z1 direction and Figure A.13 shows the subfilter
used to realize the poles in the z2 direction. Figure A.14 to A.17 shows the subfilter used
to realize numerator coefficients A to P.

Z1-1

f(n1,n2)

-γ1

Z1-1

Z1-1

-α2

-α1

Z1-1

P

Z1-1

J

Z1-1 Z1-1

K L

Z1-1

Z1-1

Z1-1

M

Z1-1

E

Z1-1 Z1-1

H I

Z1-1

Z1-1

3 Input 
Tree adder

3 Input 
Tree adder

k1(n1,n2)

k2(n1,n2)

k3(n1,n2)

k1(n1,n2)

k2(n1,n2)

m1(n1,n2)

m2(n1,n2)

Figure A.12: Realization Four z1 Roots
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Figure A.13: Realization Four z2 Roots
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Figure A.14: Realization Four Numerator
Coefficients P, J, K, and L
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Figure A.15: Realization Four Numerator
Coefficients M, E, H and I
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Figure A.16: Realization Four Numerator
Coefficients B, D, G and O
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Figure A.17: Realization Four Numerator
Coefficients A, C, F, and N
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Appendix B

Synthesizer and Fitter Settings for
Performance Optimization

B.1 Synthesizer Settings

Optimization Technique: Speed
Timing-Driven Synthesis: Checked
Power-Up Don’t Care: Checked
PowerPlay power optimization: Off
Perform physical synthesis for combinational logic for performance: On
Perform register Duplication for Performance: On
Perform register retiminig for Performance: On
Logic cell insertion - logic duplication: On
Perform WYSIWYG (What You See Is What You Get) primitive resynthesis: On
Restructure multiplexers: Off
State machine processing: Auto

B.2 Fitter Settings

Seed number: 1
Optimize hold timing: All paths
Optimize multi-corner timing: Checked
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PowerPlay power optimization: Off
Fitter Effort: Standard Fit (highest effort)
Router timing optimization level: Maximum
Auto packed registers: Normal
Enable beneficial skew optimization: On
Optimize hold timing: All paths
Duplicate logic for fan out control: Not set
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