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Abstract

In this thesis I present a mathematical tool for understanding the spin networks that
arise from the study of the loop states of quantum gravity. The spin networks that arise
in quantum gravity possess more information than the original spin networks of Penrose:
they are embedded within a manifold and thus possess topological information. There
are limited tools available for the study of this information. To remedy this I introduce
a slightly modified mathematical object - Braided Ribbon Networks - and demonstrate
that they can be related to spin networks in a consistent manner which preserves the
diffeomorphism invariant character of the loop states of quantum gravity.

Given a consistent definition of Braided Ribbon Networks I then relate them back to
previous trinion based versions of Braided Ribbon Networks. Next, I introduce a consis-
tent evolution for these networks based upon the duality of these networks to simplicial
complexes. From here I demonstrate that there exists an invariant of this evolution and
smooth deformations of the networks, which captures some of the topological information
of the networks.

The principle result of this program is presented next: that the invariants of the Braided
Ribbon Networks can be transferred over to the original spin network states of loop quan-
tum gravity.

From here we represent other advances in the study of braided ribbon networks, ac-
companied by comments of their context given the consistent framework developed earlier
including: the meaning of isolatable substructures, the particular structure of the capped
three braids in trivalent braided ribbon networks and their application towards emergent
particle physics, and the implications of the existence of microlocal topological structures
in spin networks.

Lastly we describe the current state of research in braided ribbon networks, the impli-
cations of this study on quantum gravity as a whole and future directions of research in
the area.
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Chapter 1

Introduction

In [11] Dirac laid out his vision of the future of mathematical physics. Despite the early

date of the paper, Dirac’s prediction was eerily accurate: mathematical physics has transi-

tioned from its traditional role (of finding solutions to more and more complicated differen-

tial equations) to a field which pushes into a large variety of pure mathematical disciplines.

Though he never explicitly mentioned topology in it, his paper actually laid out the com-

ponents that would one day lead to the foundations of this thesis: the introduction of a

gauge freedom in the phase of the wave function leading to flux quantization and - though

it was only in the introduction - the introduction of the concept of anti-matter.

Later, in [12], Dirac laid out what would become the canonical procedure for quanti-

zation. This procedure provided the basis for the study of quantum gravity.[28] Through

[30] this procedure bore fruit - using the same notion of fluxes as [11] - giving a loop space

representation for quantum gravity. Later in [31] these states were related to spin networks,
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leading to the picture of loop quantum gravity that is used today.[29]

These spin networks differed from the previous spin networks due to their connection to

the Wilson loops that gave Loop Quantum Gravity its name. The states of Loop Quantum

Gravity were found on the basis of trying to solve the three constraints of General relativity:

the Gauss constraint, the Diffeomorphism constraint and the Hamiltonian constraint. The

loop states satisfy the Gauss constraint directly, but it is by identifying all diffeomorphisms

of the loops with the same state that we solve the diffeomorphism constraint. Moving

over to the spin network picture from the loops it is then imperative that the embedding

information be taken over with it: otherwise we lose having solved the diffeomorphism

constraint and lose our ability to connect to the knotted Wilson loops. This gives the

modification of spin networks that we will examine in this thesis: embedded spin networks,

which are graphs embedded into a manifold together with some labelings on each edge and

vertex. We will make two simplifications in how we look at these states: we will ignore the

labelings and we will also fix the valence of a given graph so that each vertex has the same

number of edges. The last thing we will keep in mind is that the states of loop quantum

gravity are the identification of these networks up to diffeomorphism.

It is useful when considering the spin network states to have some understanding of the

basic physical interpretation associated with these embedded spin networks. The physical

picture comes from the action of the volume and area operators on these networks.[28] The

nodes of a spin network in this picture become associated with chunks of space - they are

the parts of the network that give rise to the volume spectrum. The edges which connect

these volumes then become associated with areas, giving us information about how these

volumes are connected. This picture is what gives rise to the understanding of a discrete

2



space-time.

In this thesis I will present braided ribbon networks, a deviation from the spin networks

of loop quantum gravity, which incorporate more structure. Braided ribbon networks were

informed from previous modifications of spin networks coming from studying quantum

gravity with a positive cosmological constant [32] and attempting to institute local causal-

ity [25]. These approaches combined with an attempt to construct particle states from

topological structures in a preon model[5], leading to the introduction of braided ribbon

networks as an attempt to have matter emerge from quantum gravity.[6] The braided rib-

bon network approach from here split into two programs: one studying 3-valent networks

[16, 3, 4] and one studying 4-valent networks [34, 33, 20, 19, 35, 17]. Though there was

some initial success in attempting to use this framework to construct emergent matter in

quantum gravity, more recent work has focused on the realization that results in braided

ribbon networks could have more direct applications in the spin network states of loop

quantum gravity.[18] This recent work has led to a restructuring of the framework in [14]

to allow both the three and four valent formalisms to be addressed together, and to apply

the results more universally to the states of loop quantum gravity [15].

In chapter 2 I will outline the unified framework of braided ribbon networks from [14].

This will include defining the dual of nodes as simplices, introducing the local evolution

moves and demonstrating how this unified framework connects to the original form of

braided ribbon networks from [6].

In chapter 3 I will present the result from [15] that there is a map from embedded spin

networks to a subset of the braided ribbon networks. I will also present a new - though

3



commonly assumed - result that there is a map from the braided ribbon networks to the

embedded spin networks.

In chapter 4 I will present the reduced link as defined in [14] as a topological property

of the Braided Ribbon Networks that is invariant under deformations and the evolution

moves. I will then relate this to the original concept of a reduced link from [6]. Lastly I

will present from [15] what could be considered the largest result towards the more recent

goals of braided ribbon networks: that the reduced link can be made into an invariant of

the embedded spin network states that emerge from loop quantum gravity through the

map of chapter 3.

In chapter 5 I will present the ideas from [16] of isolated substructures. These structures

represent parts of the topological structure of the braided ribbon networks that take a local

form with respect to the underling graph of the braided ribbon networks. I’ll also show

how the evolution moves can generate translations of these objects with respect to the

natural distance on the graph. Lastly I’ll compare this notion to the notion of a subsystem

introduced in [6].

In chapter 6 I will present the work from [3] and [4], which examines the properties

of a specific subclass of isolated substructures called capped 3-braids. Here I’ll present

a classification of the capped 3-braids and examine the implications of it on the original

goals of Braided Ribbon Networks as laid out in [6]. The work also goes further, creating a

proof-of-concept mapping from these structures to the quantum numbers of the standard

model of particle physics. Along with this I’ll give a critical appraisal of the implications of

this work for future attempts at looking for emergent particle physics in quantum gravity.

4



In chapter 7 I will present the results from [18] where Braided Ribbon Networks were

first used to connect back to the spin network states of loop quantum gravity. Here I will

demonstrate the existence of ultra-local structures (topological features of the embedding

that can be localized to a single edge of the graph) and discuss the implication of the

presence of these kinds of structures on the study of loop quantum gravity.

Finally in chapter 8 I will present an appraisal of the state of research and a vision for

the future of research in Braided Ribbon Networks as the subject continues.
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Chapter 2

Braided Ribbon Networks

In the past there have been two different approaches used under the title of Braided Ribbon

Networks (see for example [33] and [16]). In the following I will introduce a single formalism

which incorporates both of these results and therefore unifies them so that results from

one can be applied to the other. I originally presented these results in [14] and the content

that follows is mostly from that paper.

2.1 The Formalism

Here I introduce a new unified definition of Braided Ribbon Networks of valence n (with

n ≥ 3) as follows:

We begin by considering an n-valent graph embedded in a compact 3 dimen-

sional manifold. We construct a 2-surface from this by replacing each node by

6



a 2-sphere with n punctures (1-sphere boundaries on the 2-sphere), and each

edge by a tube which is then attached to each of the nodes that it connects to

by connecting the tube to one of the punctures on the 2-sphere corresponding

to the node.

Lastly we add to each tube n − 1 curves from one puncture to the other and

then continue these curves across the sphere in such a way that each of the n

tubes connected to a node shares a curve with each of the other tubes.

We will freely call the tubes between spheres edges, the spheres nodes and the

curves on the tubes racing stripes (terminology from [32, 10, 9]) or less formally

stripes.

We will call a Braided Ribbon Network the equivalence class of smooth defor-

mations of such an embedding that do not involve intersections of the edges or

the racing stripes.

We immediately face the following consequence: under this definition there are only

braided ribbon networks of valence 2,3 or 4 (with valence 2 being a collection of framed

loops). To see this fact we consider a 5-valent node - a 2-sphere with 5 punctures, with

each puncture connected to each other puncture by a non-intersecting curve. Taking each

puncture as a node, and the curves as edges, we then get that these objects would constitute

the complete graph on 5 nodes and as they lie in the surface of a 2-sphere, such a graph

would have to be planar. This is impossible by Kuratowski’s theorem[22]: the complete

graph on 5 nodes is non-planar. Likewise, we have for any higher valence n that the graph

that would be constructed would have the complete graph on 5 nodes as a subgraph, and so

7



they too can not be planar. If the reader desires an intuition for this, it may be instructive

to recall that these statements follow from the four colour theorem - the existence of such

a node would imply the existence of a map requiring five (or more) colours.

Figure 2.1: Three Valent Node

We will demonstrate later that this restriction is natural, and that it could be lifted

if we instead allowed the dimension of the manifold to increase, along with the dimension

of the surface which we extend the graph into. We can also introduce a modification to

the framework that allows for higher valence vertices. To do this we first make a few

definitions.

Definition 1. We define the natural valence of a braided ribbon network to be the

number of racing stripes on each edge.

Definition 2. We say that a node is natural if each of the tubes which intersect share a

racing stripe with each of the other tubes. Otherwise we will say that a node is composite.

We can then define a n-valent BRN with natural valence m (here n can take values

of n = km − 2(k − 1) for any integer k) as a braided ribbon network where each of the
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Figure 2.2: Four Valent Node

nodes has n tubes which intersect it but where each of the tubes has m− 1 racing stripes.

Likewise we can define a multi-valent BRN with natural valence m in a similar manner

but without fixing the value of k for all nodes. We then construct composite nodes by

connecting natural nodes in series by simple edges and shortening the edges which connect

them internally until all of these nodes combine into a single sphere with the appropriate

number of punctures (see figure 2.3). As these combined nodes are simply glued they are

then dual to gluings of simplices which when grouped together would be equivalent to

a polygon (for a natural valence of 3) or a polyhedron with triangular faces(for natural

valence of 4).
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Figure 2.3: Forming Composite nodes

2.1.1 Duality of Nodes to Simplices

The nodes of an n-valent braided ribbon network can each individually be considered dual

to an (n− 1)-simplex. The edges which intersect the node are identified with the (n− 2)-

faces of the simplex, and the curves on the edges are identified with the (n−3)-faces of the

simplex. We require that the map from the BRN node to the simplex be consistent in the

following way: when a curve is common to two edges that intersect a node, we require that

the (n − 3)-face that it is identified with is the (n − 3)-face common to the (n − 2)-faces

that the two edges are identified with.
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For 3-valent Braided Ribbon Networks this identification gives us that each node is

dual to a triangle (see figure 2.4), whereas for 4-valent Braided Ribbon Networks this

identification give us a tetrahedron for each node (see figure 2.5). This gives some insight

into the restriction on the natural valence of Braided Ribbon Networks: a 5-valent node

would be dual to a 4-simplex, which given that the graph is embedded in 3 dimensions would

be a significant feat, whereas if we extended to a higher dimensional surface embedded in

a higher dimensional manifold, this should be possible.

Figure 2.4: Three valent node dual to a triangle

Definition 3. An edge is knotted if there exists a closed compact 2-surface which intersects

the edge only at its boundary (the node) such that the contraction of the edge is a knotted

arc not equivalent to the unknotted arc.

Definition 4. An edge is twisted if there does not exist a smooth deformation of a plane

on which the racing stripes can be projected down onto without them intersecting.

We extend this notion of duality to multiple nodes in a significantly restricted manner.
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Figure 2.5: Four valent node dual to a tetrahedron

If an edge connecting two nodes has neither knotting nor twisting we will call the edge

simple - we extend the dual picture to gluings of simplices to allow the (n− 1)-simplex of

each node to be glued together along the (n − 2)-face corresponding to the shared edge.

We continue to require the consistency of all of the shared subsimplices in this scenario

(see figure 2.6). We will refer to a collection of nodes such that any edges which connect

them are simple as being simply glued.

2.1.2 The Evolution Moves

With the duality established in section 2.1.1 we define evolution moves on the graph by

making reference to the Pachner moves on the dual gluings of n− 1-simplices. The oper-
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Figure 2.6: Gluing of two simplices dual to nodes

ations are defined as preserving the external identifications of sub simplices, and we will

go through these explicitly for both 3 and 4-valent BRNs. These operations are referred

to as evolution moves due to the fact that the corresponding operations in spin-networks

are the result of the action of the Hamiltonian on the graphs - which would give rise to a

sense of evolution.

Pachner moves generate transformations between triangulations of piecewise linear

manifolds. They take the form of moves between triangulations which have the same

boundary. We label them by the number of glued simplices which the move has as its ori-

gin and the number that it has as its target. We will then construct from these operations

corresponding operations on collections of simply glued nodes.

For 3-valent networks, the corresponding simplices are triangles. The Pachner moves

on triangles are the 1− 3 move (figure 2.7), the 3− 1 move (figure 2.8) and the 2− 2 move

(figure 2.9). These correspond to similarly named evolution moves for the braided ribbon

networks (figures 2.10 and 2.11).
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Figure 2.7: The 1-3 Pachner Move

Figure 2.8: The 3-1 Pachner Move

Figure 2.9: The 2-2 Pachner Move

For 4-valent networks, the corresponding simplices are tetrahedra. Here the Pachner

moves are the 2− 3 and 3− 2 moves (figure 2.12), and the 1− 4 and 4− 1 moves (figure

2.13). The corresponding evolution moves on braided ribbon networks are then figures
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Figure 2.10: The 1-3 and 3-1 Evolution Moves

Figure 2.11: The 2-2 Evolution Move

2.14, and 2.15.

Figure 2.12: The 2-3 and 3-2 Pachner Moves

In all of these cases we require that the moves are only allowed if they can be performed

smoothly, that is to say that the operation can be performed through smooth deformations
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Figure 2.13: The 1-4 and 4-1 Pachner Moves

Figure 2.14: The 2-3 and 3-2 Evolution Moves

Figure 2.15: The 1-4 and 4-1 Evolution Moves

of the 2-surface together with point-like changes in genus of the surface which occur at

points which are in the interior of the 3-manifold. This restricts us from performing
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something like the 1 − 3 move in such a manner that the three nodes now encircle some

other part of the 2-surface or a feature of the topology of the 3-manifold (such as would

occur if the space were a 3 dimensional torus).

2.2 Ribbons vs. Tubes: an Equivalence

We will take this opportunity to explain why these graphs made from tubes and spheres

are referred to as braided ribbon graphs by demonstrating the connection to the graphs of

[6].

In [6] trivalent braided ribbon networks are defined as two dimensional surfaces em-

bedded in a 3-manifold constructed by taking the union of trinions (2-surfaces with three

distinct ‘legs’ along which they can be connected to one another) as shown in figure 2.16.

Each trinion defines a node, and each of the legs of the trinions is an edge. Like the edges of

braided ribbon networks the legs which connect the trinions to one another can be braided,

twisted or knotted. These ribbon graphs are considered up to equivalence class defined by

smooth deformations of the resulting surfaces.

Figure 2.16: From BRN to trinions
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We construct from one of these ribbon graphs a braided ribbon network as we’ve defined

in chapter 2 as follows: for each node of the network we consider a closed ball in the

embedding space which has the node on its surface but which has an empty intersection

with the rest of the ribbon graph. These spheres then define the nodes of the braided

ribbon network. The edges of the braided ribbon networks are then defined by similarly

constructing tubes between these spheres so that the boundaries of the edges of the ribbon

graph coincide with the boundary of the tubes. The boundaries of the surface of the ribbon

graph then become the racing stripes of the braided ribbon network.

Likewise we can construct a ribbon graph from a 3-valent braided ribbon network by

making the following observation: at each node the racing stripes divide the sphere into

two parts, likewise along each edge the tube is divided in two by the racing stripes. We can

consistently choose one side or the other and identify this as the surface of a ribbon graph

(alternatively we can think of ‘squishing’ the two halves together into a single surface, in

a sort defining one side to be the ‘front’ and the other the ‘back’).

It is often simpler to understand work done in the 3-valent case in terms of these trinion

BRNs, and so where the original work was done in the formalism of these trinion BRNs

we will remain in this formalism. This will not impact the validity of any of the results,

and the reader can easily translate the results between these pictures as needed.
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Chapter 3

The Relation of Braided Ribbon

Networks to Spin Networks

In order to make use of Braided Ribbon Networks, it is helpful to make contact between

them and the spin-network states of loop quantum gravity. We will make this contact

incrementally: in section 3.1 we will move from BRNs to spin networks (this step is the

easiest), in section 3.2 we will introduce a small mathematical formalism that will allow

us to establish a map from spin networks to BRNs in section 3.2. Through these maps

between BRNs and spin networks we will have a full picture of how we can use BRNs as

a tool study spin networks. In particular, this shall allow us to import the results that we

will develop in chapter 4 into our understanding of spin networks. For our purposes we

will take a definition of a spin network that corresponds to the origins of Loop Quantum

Gravity along with a further assumption of fixed valence.[31] To do this we will use the term

to refer to a graph of some fixed valence embedded in a 3-manifold, the edges and vertices
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of this graph could be labeled but we will ignore those labelings throughout as they can

be associated with the combinatorial structure of the graph rather than the topological.

3.1 Mapping from Braided Ribbon Networks to Spin

Networks

The construction of the map from braided ribbon networks to spin networks is a rather

straightforward process inherent to the definition of the BRNs. As the basic object under-

lying each BRN is a graph embedded in a 3-manifold, we can simply consider a map which

replaces each BRN with this underlying graph.

Though this map is easily defined, it is helpful to elaborate upon it. Though we can

define this map, it is illustrative to examine the ways in which one can construct it given

an arbitrary BRN. The first map is constructed from an arbitrary BRN to a spin network

through three steps. Firstly, for each edge and node of the BRN we define a radius r

(with the radii of the edges much smaller than the radii of the spheres) and deform these

tubes and spheres to have their respective radius with respect to an arbitrary metric on

the embedding space. Secondly, we smoothly contract each tube by taking the radii to 0

one by one while maintaining contact between each component. This will leave us with a

spin network embedded in the 3-manifold.

We observe two important details about this map. The first is that if we consider the

volume interior to the 2-surface of the BRN, this map is a retraction of this volume down

to its underlying graph. In fact, excluding the racing stripes this map is a deformation
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retract. The second detail that is important is that the map from BRN to spin network

exists regardless of twists in the BRN (the rotations of the racing stripes with respect

to the surface). As we are contracting the surface down to an infinitely thin edge, any

behaviour of the stripes disappear.

3.2 Mapping from Spin Networks to Braided Ribbon

Networks

We mention here - for future use - the idea of a blackboard embedding of a graph: an

embedding which places the nodes of a graph into a plane and keeps the edges of the

graph in the plane except for those locations where they cross one another. Such an

embedding is named for the fact that it is how graphs are drawn in practice. Such an

embedding introduces ambiguities for a four-valent (or higher) graph, and so we require

that a blackboard embedding of such a graph to also include a labeling of each node as

shown in figure 3.1 with a slash on one of the incident edges to move it up out of the plane

of embedding - giving an orientation to the node. Blackboard embeddings of higher valence

graphs can similarly be marked in order to make such an embedding unambiguous. With

this ambiguity removed we can define each node in such a graph to be locally dual to a

simplex (a triangle for a 3-valent node, or a tetrahedron for a 4-valent node) in the same way

as we did for BRNs in [14]. We do so in the manner prescribed by figures 3.2 and 3.3. We

also note that instead of this disambiguation we could instead not allow planar embeddings

of 4-valent nodes, but as this thesis is constrained to diagrams in two dimensions we will
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use this notation. The need to remove these planar embeddings comes from the fact that

there are two possible orientations of a tetrahedron: given a choice of a face there are

two possible orderings of the other three faces. Removing the planar embeddings of the

spin-networks allows us to have a well defined dual by fixing the orientation.

Figure 3.1: Unambiguous Blackboard Embedding of a 4 Valent Node

Figure 3.2: 3 Valent Spin Network Node Dual to a Triangle

As the content of the states of loop quantum gravity we are concerned with are not

dependent on the labelings of the edges or vertices of the graphs, we will ignore these label-

ings and consider instead only the equivalence classes of graphs of fixed valence embedded

in a 3-manifold under the restriction of the diffeomorphism group. The restriction of the

group is to omit a class of transformations which change the orientation of the nodes of the

graph - that is to say the transformation which takes a graph between two blackboard em-
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Figure 3.3: 4 Valent Spin Network Node Dual to a Tetrahedron (the Edge Opposite the
Slash Corresponds to the Rear Face)

beddings which have different cyclic orderings of the edges around each node (for a 3-valent

node) or the cyclic orderings of the edges around each node with one edge removed (for a

4-valent node) - these are demonstrated in figure 3.4 and 3.5. We will call such equivalence

classes diffnets and the different elements of the equivalence class will be called embed-

dings of a diffnet. We extend this notion to those graphs that don’t possess blackboard

embeddings by making the requirement that they not change the orientation of the dual

simplices of their nodes - this is equivalent to considering the blackboard embedding to be

a local property rather than a global one.

Figure 3.4: Allowed Ordering Changes

We now set about to demonstrate that there exists a map from 3 or 4-valent diffnets
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Figure 3.5: Disallowed Ordering Changes

in compact manifolds to BRNs. To do so we must first construct a map from a given

embedding of a fixed valence graph to an embedding of a BRN. To do this we first observe

that since our graph is embedded in a compact manifold that any open cover has a finite

subcover. We will construct an open cover as follows: around each node of the graph we

take an open ball, around each edge we take an open region which intersects the open balls

of the corresponding nodes but does not contain the nodes themselves (we also require

that the open region not contain any portion of any other edges), we then take some open

cover of the rest of the manifold of which none of the open sets contain any of the nodes

or portions of the edges. As the manifold is compact there exists some finite subcover of

this open cover, and by construction this subcover will contain each of the balls around

nodes and regions around edges. We now define on each part of the open cover (labeled

by i) a map Fi which will eventually be assembled into a map F on the entire space. On

each of the open balls the map Fi takes each node and replaces it with a BRN node which

is dual to the same simplex (demonstrated in figure 3.6. For each region containing an

edge the map Fi takes the edge and replaces it with a tube with racing stripes. We then
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require that the choice of racing stripes be one that does not introduce any twisting. This

is insufficient to fix the Fi for the edges, however by requiring these Fi to be compatible

with those on the open balls around the nodes we can fix them sufficiently. The maps Fi

on the open sets which don’t contain any portion of the graph are trivial. We thus can

construct the map F from this collection of maps Fi as a map from an embedding of a

diffnet to an embedding of a BRN.

Figure 3.6: Diffnet to BRN Transformation

Our next step is to show that the diffeomorphisms commute with this F , by which

we mean: that for any diffeomorphism (which preserves node orientation), φ, which takes

one embedding of a diffnet to embedding there exists a deformation, χ, between the cor-

responding elements of the BRN. To demonstrate this we need only realize that any such

diffeomorphism can be mapped consistently into a deformation of the corresponding em-

bedding of a BRN. We construct this map as follows: diffeomorphisms are continuous and

thus are continuous across the edges (or nodes) of the graph. We can ‘inflate’ this continu-

ity as we ‘inflate’ the edges and nodes - leaving the deformation constant across the surface

itself - but giving an identical transformation on the overall structure of the graph. This

deformation then exactly mimics the diffeomorphism, barring changing the orientation of a
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node (which is already forbidden). There is one other form of diffeomorphism which might

cause concern - diffeomorphisms which add twists to the edges - and so we will address it

specifically.

What we mean by a diffeomorphism introducing twists to edges should be clarified: the

edges here are simply curves in space and so cannot have twist in the same way that a tube

or any other 3-dimensional object would. Instead here we mean that the diffeomorphism

replicates the process described by the first Reidemeister move, shown in figure 3.7, or its

inverse. It is tempting to think that it would not be possible to map such a diffeomorphism

into a deformation of a BRN or that worse still should we do so we would be left with

an operation that introduces twist. This is not the case. As we show in figures 3.8 and

3.9 (for a pair of racing stripes) the corresponding deformation to this diffeomorphism

preserves twist (the same follows in four valent networks with three racing stripes). The

source of the confusion here is most likely due to the fact that the ribbon in figure 3.8 is

the corresponding inflation of the edge in figure 3.6, not the ribbon in figure 3.9 as might

be people’s first instinct.

Figure 3.7: The First Reidemeister Move

As F maps every embedding in the equivalence class of a diffnet to an embedding in a

single equivalence class of the BRNs, we can promote it to a map on the equivalence classes.
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Figure 3.8: An Untwisted Ribbon

Figure 3.9: A Twisted Ribbon

That is to say that F maps diffnets to BRNs in the same way that it maps members of

these equivalence classes. This gives us an important result: we have that the equivalence

classes of spin-networks embedded up to orientation preserving diffeomorphisms can be

mapped consistently into the braided ribbon networks. For clarity we point out that this

map is not onto for the space of Braided Ribbon Networks: by our construction we will

not map into any BRN with twisted edges.
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Chapter 4

Topological Objects in Braided

Ribbon Networks

With the relation between BRNs and spin networks as laid out in chapter 3, the next step

is to demonstrate the advantage of braided ribbon networks: their affinity for the study of

the embedding of the graphs. To do this we need to examine the kinds of structures that

can result from the embedding of these graphs, and then determine if there are properties

within the BRNs that can be used to study these structures.

In considering an embedded graph we are confronted with two topological structures:

linking of edges (including knotting when considering linking of an edge with itself) and

non-contractible cycles in the graph (for a manifold with a non-trivial fundamental group).

When one considers the additional structure of a BRN we also introduce the linking of

racing stripes, which is commonly referred to as twist of the edges.
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In this chapter we will introduce a property which captures some of this information -

the reduced link - and prove that it is invariant under the evolution moves.

4.1 The Reduced Link

We move now to the goal of this chapter: to demonstrate the existence of invariants of the

braided ribbon networks under these evolution moves. To do this we first observe the fact

that the evolution moves are defined in such a way that the external edges (and stripes) are

unchanged. We will first study trivalent networks and then demonstrate that the invariant

for these networks likewise works for 4-valent BRNs. We consider the set of curves defined

by the racing stripes in the manifold which the braided ribbon network is embedded in,

which we call the stripe diagram of the BRN.

Theorem 1. For a BRN generated from a finite graph, the curves which constitute the

stripe diagram is made up of loops.

Proof. Curves can either take the form of loops - those curves with no boundary points -

or terminating curves (which do have boundary elements. We prove by contradiction by

assuming that there is a curve which is not a loop. This curve can be parameterized and

- as the graph is finite - has an origin and a terminus. The racing stripes however are

formed by composing paths along the edges and the nodes - with the stripe along each

edge connecting two nodes and the stripe along each node connecting two edges. We thus

find that there are no points which could act as an origin or a terminus, and we thus have

a contradiction.
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The stripe diagram is thus a collection of loops embedded in a manifold. We now make

an observation: examining the 1 − 3 move we see that the operation changes the corre-

sponding stripe diagram by the introduction of a single loop. Also due to the restriction

we imposed in section 2.1.2, we see that this loop cannot be linked with any other loop, or

be a non-trivial element of the fundamental group. From this insight we ask the following:

what if we considered the stripe diagram, removing any such loops?

Definition 5. We construct the Reduced Link of the three valent BRN by removing from

the stripe diagram all unlinked and unknotted loops which are isotopic to the identity of the

fundamental group of the 3-manifold the BRN is embedded in.

The structure of the reduced link illustrates its promise of capturing the topological

information: being composed of loops from the stripe diagram it is capable of capturing

all three types of topological information we have identified. As the stripes on the edges

necessarily follow their path they can capture the linking of edges and non-trivial cycles

in the graph, and as they are in fact the stripes it should also capture any linking of the

stripes.

Now we demonstrate that the reduced link of the three valent BRN is in fact an invariant

of the evolution moves (the existence of this proof was originally mentioned in [16] for the

original picture of trivalent BRNs).

Theorem 2. The reduced link of a three valent BRNs is invariant under the 1− 3, 2− 2

and 3− 1 evolution moves dual to the Pachner moves.

Proof. To prove this, we consider the reduced link of a BRN both before and then after

the application of each of the evolution moves. The contributions from the involved nodes
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is unchanged as is demonstrated by the stripe diagrams in figure 4.1, and thus the reduced

link of a network is preserved under the evolution moves.

Figure 4.1: Stripe Diagrams of 3 valent moves

We now extend the definition of the reduced link to the four valent BRNs. This exten-

sion is obvious: there is nothing in the definition of the reduced link that would prevent us

from taking it - as is - for 4-valent BRNs as well. Thus all that remains is to demonstrate

that the reduced link is also invariant under the 4-valent evolution moves.

Theorem 3. The reduced link of a four valent BRN is invariant under the evolution moves.

Proof. We do this - as in the proof of theorem 2 - through looking at the stripe diagrams

in figure 4.2.
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Figure 4.2: Stripe Diagrams of 4 valent moves

Looking at these figures, we see that all the stripes connect the same exterior edges

as before (this corresponds to the exterior faces and edges of the glued tetrahedra being

unchanged by the Pachner move). It only remains to examine whether any linking, knotting

or non-trivially contractible curves have been introduced. We demonstrate this by going

step by step through the deformations (shown here again in figures 4.3 and 4.4)that give

rise to the evolution moves (we will only proceed in a single direction, as the processes are

invertible).

The 1 − 4 move is achieved, beginning with a single node, by introducing four closed

loops on the surface of the sphere one in each of the four regions bounded by the racing

stripes - these loops each correspond to the introduction of an edge in the dual Pachner
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move. From here we separate the sphere into four parts (this process is allowed under the

caveat of point-like changes in the genus in the interior of the manifold), leaving the only

aesthetic deformations remaining (straightening out the connections between the sphere

into tubes etc). In this process, the only changes to the stripe space were the introduction

of the four closed loops on the surface of the sphere. By definition these cannot have any

knotting or linking, and must be in the trivial element of the fundamental group. These

therefore are removed in the map from the stripe space to the reduced link, and so leave

the reduced link unchanged.

Figure 4.3: The 2-3 and 3-2 Evolution Moves

Figure 4.4: The 1-4 and 4-1 Evolution Moves
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The 2 − 3 move begins with 2 nodes connected by a single edge. To make the steps

clear we will label the edges as in the diagram, and though the steps we take will specify

particular edges they aren’t unique and so can be made general through relabeling. This

interior edge is expanded to combine it and the two spheres into a single sphere. We now

introduce a single closed loop corresponding to the introduction of the single edge in the

dual Pachner move. This loop is placed in the region interior to the stripes which connect

f to d, d to e, and e to f (or equivalently a to c, c to b, and b to a). Splitting the sphere

into a torus through the center of this loop, we then regroup the edges into pairs c with

d, b with e and a with f . For aesthetics we constrict the region of the sphere between the

pairs of edges into tubes, making our three nodes. We can see here that the only change

to the stripe space was the introduction of a single trivial loop. This change does not alter

the reduced link, completing the proof of the invariance of the reduced link.

From the identification in section 2.2 we can see the correspondence between the reduced

link defined on these two equivalent types of graph. In [6] the reduced link is defined

by considering the boundary of the 2-surface independently and removing unlinked and

unknotted curves. Here we’ve seen that the boundary of the 2-surface is equivalent to the

racing stripes of the BRN, and thus that this operation is equivalent to the reduced link

we’ve defined. We will review this in section 4.1.2.

Just as we have the reduced link for BRNs, we can define the reduced link for a spin

network through the map F between diffnets and BRNs. The reduced link of a spin

network is computed by first applying a diffeomorphism that puts the spin network into

a blackboard embedding, applying the map F and then taking the reduced link of the
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resulting BRN. As F commutes with the evolution moves on the graphs this reduced link

is also an invariant of the networks.

4.1.1 The Reduced Link for Spin Networks

The point of finding such a relation between spin networks and braided ribbon networks

in section 3.2 is to be able to bring just this type of object over to spin-networks. To

do this we need to show one further thing: that the evolution moves dual to the Pachner

moves also commute with the map F of section 3.2. This follows immediately if we impose

the same requirement on the evolution moves for embedded spin-networks that we used to

construct the evolution moves for BRNs: that the orientation of the simplices dual to the

nodes is reflected in the orientation of the nodes and that just as that orientation of the

external faces is preserved by the Pachner moves, it is preserved by the evolution moves.

Stated more formally: in section 3.2 we have shown that there exists a functor from

the category of diffnets with morphisms equal to the applications of the evolution moves

to the category of BRNs with morphisms equal to the applications of the evolution moves.

The category of BRNs can be considered as the sum of its connected subcategories (each

corresponding to the set of BRNs which are connected by a series of evolution moves). The

reduced link is a functor from the category of BRNs to the category of links embedded in

the manifold up to diffeomorphism (with all morphisms being identity morphisms). Due to

the lack of non-identity morphisms in this category of links, it assigns the same link to any

two connected elements of the BRN category. With these two functors we then construct

the composite functor - the reduced link of diffnets (or more generally, spin networks).
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It is worth noting that though the reduced link is an invariant which captures infor-

mation of how spin networks or BRNs are embedded in a manifold, it is not proven to

capture all of the topological information. Whether this is actually the case, or whether

there exists some other invariant which would capture all of the information remains an

open question.

4.1.2 The Reduced Link in the Trinion BRNs

As a large number of the results which occurred in the trinion BRNs relied heavily on the

reduced link, it is helpful to review how the reduced link was formulated in that context. In

the trinion picture the stripe space is instead the boundary of the 2-surface which defines

our graph.

Here the reduced link is taken by considering the boundary of the 2-surface, and then

removing the unlinked, unknotted curves which are trivial elements of the fundamental

group of the manifold. We can see this process in figure 4.5 which demonstrates the

process of taking the reduced link for a portion of a trinion BRN.

The invariance of the reduced links of the trinion BRNs follows directly from the proofs

of the reduced links of the standard BRNs through the fact that the stripe diagrams are

identical to the boundaries of the trinions.
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Figure 4.5: Taking the reduced link in Trinion BRNs
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Chapter 5

Subsystems and Isolated

Substructures: Localization of

Topological Information

The dual nature (here we use the term non-mathematically) of braided ribbon networks

is that they possess both the combinatorial information and topological information. This

dual nature makes understanding the properties of the networks difficult, especially as

the topological information is not somehow constrained to exist on particular parts of

the graph. With the reduced link from chapter 4 we can attempt to understand the

relationship between these two types of information, but to do so we must first lie down

some mathematical definitions. We do this in section 5.1, then in section 5.2 we will define

isolated substructures - a construction which illustrates the idea of a localized component of
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the topological structure - and introduce the concept of how they can translate with respect

to the concept of locality in the graph through the evolution moves. Then in section 5.3

we discuss the implication of these results on the attempts to have particle physics emerge

from braided ribbon networks, and how progress could be made in the matter. As all

of this work was originally presented in the trinion BRN formalism it is reproduced here

in the same. The trinion formalism also serves to help illustrate the concepts within.

These sections were originally presented by myself in [16] and we have only provided minor

alterations to them here.

Lastly in section 5.4 we present the concept of subsystem - originally from [6] - and

generalize it to work in the context of 4-valent BRNs.

Throughout this chapter and also chapter 6 we will refer to capped braids (or equiv-

alently encapsulated braids). This term will refer to a braid which exists in a BRN in a

particular format where all the strands involved in the braid have one end that connects

into a set of nodes disconnected from the rest of the graph. For an example of a capped

braid see the leftmost image in figure 5.1 below.

5.1 Mathematical Definitions

In order to properly discuss the idea of a translation we must first discuss the topology

with respect to which the translations shall occur.

The Microlocal Metric Space
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Consider a ribbon graph Γ consisting of N nodes and M ribbons having some

braiding and twisting content. We construct a new metrical space Γ̃ as follows:

let X be the set of trinions within the ribbon graph. We shall take each trinion x

within X as a node in a pseudograph, and construct edges for this pseudograph

in the natural way: by making an edge between two nodes if their respective

trinions share a ribbon. This is the reverse of the framing process that can be

used to construct a ribbon network.

The Microlocal Distance Function

Considering the set of all possible paths between two nodes on the

pseudograph, the distance between the nodes is the minimum number

of edges in any such path. This satisfies the four requirements for a

distance function: that it is non-negative for any choice of two nodes,

that it is strictly positive for any two non-identical nodes, that it is

reflexive and that it satisfies the triangle inequality. This metric is

equivalent to the standard metric of graph theory.

Thus, the set X of nodes, along with the microlocal distance function, create

a metric space and, therefore, have a standard topology defined by microlocal

distance function on X.
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5.2 Isolated Substructures and Microlocal Translations

We shall now demonstrate that there are indeed translations of braided-local structures

with respect to the microlocal distance function. Also, we shall demonstrate that even

when using a more general notion of microlocal distance we can nonetheless demonstrate

situations where braided-local structures have undergone a translation. These translations

are generated by the evolution moves.

We shall first introduce a series of definitions and then prove a result using them.

Definition 6. Two nodes a and b are Ribbon Connected if there exists a sequence of

N + 1 nodes xn such that x1 = a, xN+1 = b and for each n the trinion with node xn and

the trinion with node xn+1 share a ribbon. This is equivalent to the nodes being connected

in the graph Γ̃.

Definition 7. A Connected Ribbon Network is a set of nodes X, such that all nodes

in X are ribbon connected to all other nodes in X.

Definition 8. The edge space of a ribbon graph is a space made up by the boundary of

the ribbon graph. An edge segment is a connected subset of the edge space.

Definition 9. Two edge segments a and b are Edge Connected if there exists an edge

segment c such that both a and b are subsets of c.

5.2.1 Isolated Substructures

In order to demonstrate translations within ribbon networks we must first define a special

class of elements within ribbon networks.
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Definition 10. An Isolated Substructure is a ribbon connected set of nodes where a

closed surface can be placed around it with exactly one ribbon intersecting the surface. We

call this ribbon the Isolated Substructure’s “tether”.

It should be understood that isolated substructures are not the same as ‘subsystems’

as defined by [6] or in section 5.4. This is readily apparent by considering the form of the

reduced link of an isolated substructure.

It is interesting to note that, though the definition of an isolated substructure appears

to be restrictive at first glance, there are a significant number of structures that can be

‘packed up’ into the form of an isolated substructure. For instance, all of the example

definitions of particles from [6] can be changed into isolated substructures through the use

of the 2− 2 evolution move as shown in figure 5.1.

Figure 5.1: Transforming a capped braid into an isolated substructure

Definition 11. An edge segment is Replaceable if it can be replaced by an isolated sub-

structure’s tether without producing a node which is four valent. Specifically, a Replaceable
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Edge Segment cannot be an edge of a node (for instance the edge segment labeled A in

figure 5.2).

The purpose of defining replaceable edge segments is purely to keep a consistent for-

malism: we’ve defined ribbon networks only in terms of trinions. Though a four valent

node could be resolved into two different versions of two three valent nodes (and these

versions would be related by the 2− 2 move), such objects aren’t defined in our formalism

and so we exclude them.

Figure 5.2: Edge segment A is not replaceable without introducing a four valent node.

These definitions together allow us to consider the dynamics of isolated substructures

under the evolution moves. We can consider a graph Γ to be composed of a set of isolated

substructures attached to replaceable edge segments of a second graph Λ. As we do not

require that all such isolated substructures be so removed, this procedure can be done

without ambiguity.

Theorem 4. Given a finite closed network Γ with two edge connected replaceable edge

segments a and b, there exists a sequence of evolution moves such that a graph Γa - composed

of Γ with an isolated substructure A tethered to a - evolves to Γb, where Γb is composed of

the same graph Γ but with A now tethered to b.

Proof. We shall proceed by induction on the number of nodes between a and b, say N . As
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a and b are edge connected, the node created by A being tethered to a is ribbon connected

to the two nodes that are at either side of b. We shall label these nodes x0 (for the node

created by A at a) through xN+1 in such a way that each xj shares a single ribbon with

xj+1. The nodes on either side of b are then labeled xN and xN+1.

Before we proceed we need to show the ability to move an isolated substructure through

intermediate topological structures that are not composed of nodes. These are comprised

of three categories: knots, twists and braidings. Examples of each of these is shown in

figure 5.3. As isolated substructures only have a single connection to the outside network,

we can move it past this ‘terrain’ through the following procedures.

Figure 5.3: Examples of Terrain

For each knot the isolated substructure is pulled through the knot by stretching out

the knot until the substructure can pass through it. As the substructure is unconnected

except through its tether, this leaves the network unchanged other than the reversal of the

position of the knot and the substructure.
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For each twist (consisting of a rotation by π), the isolated substructure can run along

the edge of the twist. Alternatively, one can view the procedure as deforming the network

itself by twisting the segment with the isolated substructure in a manner that undoes the

twist on the one side and create a twist on the other.

For each braiding, we deform the ribbon of the braid by sliding it over the isolated

substructure to the other side. This is reminiscent of the Reidemeister move of the second

kind.

The above demonstrates that we can move an isolated substructure tethered to a node

R so that it is tethered with no intermediate ‘terrain’ between it and some edge segment t

(which is not a component of a piece of ‘terrain’) that connects the node R to its nearest

neighbours and is edge connected to the edge which the isolated substructure is tethered

to. This is proven by induction on the number of elements of ‘terrain’ between R and t

and the use of the above prescriptions. A consequence of this is that the same method

can be used for a node S which has microlocal distance 1 to R. This ability shall be used

heavily in our proof.

Now, returning to the proof, we shall first prove the case of N = 1. We apply the above

lemma to move the isolated substructure through any intermediate terrain between x0 and

x1, giving us A tethered to a new node x′0 (we shall use primes to denote nodes that have

undergone some change) that is immediately adjacent to x1 with no intermediate terrain.

We then perform an exchange move from Aevol on the node x′0 and x1 to move x′0 onto the

edge on the other side of x′1. We can then again use the above lemma (in its more general

case) to move x′0 to its final resting place at b.
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Now we shall assume that the case of N − 1 nodes is correct and prove the case of N

nodes. The prescription for this is analogous to the N = 1 case. Given that there is a

method for moving past N − 1 nodes (by inductive hypothesis), we shall use that method

to change the situation to a single intermediate node, and then invoke the method of the

N = 1 case to bypass the final node.

The preceding gives the inductive argument and completes the proof.

To demonstrate translations we will need a further tool. We therefore consider also the

following lemma:

Lemma 1. Translations Through an Isolated Substructures

Given an isolated substructure A that has been moved to the edge of the tether of another

substructure B, it is possible to translate A to the opposite edge of the tether of B.

Proof. Due to the above theorem, it only remains to show that the two edges of the tether

of an isolated substructure are edge connected. Proceeding by contradiction, we assume

that they are not edge connected. As we see that an edge of the network enters the isolated

substructure and does not exit, there must be some terminus of the edge within the isolated

substructure. However, such a situation is impossible, as the edges of a ribbon network

must form closed links or terminate at some boundary (which we have not introduced into

the theory of ribbon networks). We therefore have a contradiction. Thusly we see that if

an isolated substructure can be moved to the edge of a tether, by the above theorem, it

can be moved to the other edge.
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5.2.2 Microlocal Translations

The application of theorem 4 is straightforward and results in the ability to demonstrate

translations under the microlocal distance function. For instance, it is possible to construct

a sequence of evolution moves such that figure 5.4a evolves to figure 5.4b. Under the

microlocal distance function, the isolated substructure A is now less distant from the

isolated substructure C (measuring the distance between substructures from the node

at which they are tethered). It should be understood that there is no guarantee of a

correspondence between these microlocal translations and translations of objects within a

macroscopic space-time.

(a) (b)

Figure 5.4: Microlocal Translations

Even applying a more restrictive definition of distances, we can demonstrate translations

in some form. Consider the following definition of closeness:

Definition 12. An isolated substructure A is said to be α-closer to an isolated substruc-

ture B than it is to another substructure C, if for all paths along the ribbons of the network,

leaving the node at which A is tethered and intersecting the node at which C is tethered the

path intersects the node at which B is tethered.

By expanding our definitions slightly to allow us to consider isolated substructures
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with identical structure to be treated equally, we can show that it is possible to evoke a

translation. Specifically, it is possible to take a situation where a substructure A is α-

closer to substructures of type B than to those of type C and to apply a series of evolution

moves such that the reverse is true afterwards. For instance, consider figure 5.5a and figure

5.5b. Thus we see that we have translations even under stringent requirements, thereby

concluding our result.

(a) (b)

Figure 5.5: α-closer Translations

5.3 Macro, Micro and Braided Locality

The braided-local structure of the braid network can be characterized by the reduced link

of the structure. The reduced link of a braided ribbon network has been shown to be

invariant under the evolution moves. As a result, it is clear that the braided-local content

of a braid network is invariant under the evolution moves. This invariance is a double edged

sword. On one hand, it allows us to assign some meaning to these invariant structures,

as was done by the authors of [6]. On the other hand, it means that there is no way
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that these microlocal moves can provide any form of dynamics in this context. Any two

networks related by the evolution moves must necessarily have the same reduced link,

and hence would correspond to the same particle content. As a result, I suggest that, to

construct a theory of quantum gravity containing particle physics from a ribbon network,

it is necessary to consider the existence of a second evolution algebra, which I shall call

Abraid.

In [26] and [23], the concept of macrolocality in networks is put forward as the locality

derived from the classical metric that would arise for a network with a space-time as its

classical limit. In [26], the authors then remind us that there is no need for macrolocality

to be coincidental to microlocality. It seems to be a consequence of the ideas of [6] to

suggest that, though microlocality and macrolocality are not necessarily coincidental, the

braided-local content - the invariants that we associate with particles - should be part of

the bridge of the gap between the two. I therefore suggest that Abraid could be the bridge

between microlocality and macrolocality.

For future consideration, I outline some general possibilities of Abraid. Regardless, it

should be noted that any such algebra that could provide macrolocal dynamics, particle

interactions included, would need to alter the reduced link of the network if the identifica-

tions in [6] are to be considered seriously.

A candidate based upon the assumption that any move within the second evo-

lution algebra should be as close to being microlocal as possible is called a

Nearly Microlocal Algebra. This could be completed by introducing moves

involving next to nearest neighbor nodes. This suggestion corresponds to the
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idea that there is a degree of coincidence between microlocality and macrolo-

cality (again, we should remember that such a coincidence is not needed).[26]

An algebra based upon moves that alter the braiding content of the network

in ways that are roughly equivalent to elements of the standard braid group

is referred to as a Braid Algebra. Also, it can contain moves that allow the

composition of multiple braided isolated substructures.

An algebra premised upon the idea that microlocality should be dual or com-

pletely unrelated to macrolocality is called an Anti-Microlocal Algebra.

Such an algebra can be constructed from a set of moves that act upon the

reduced links of a graph. Such moves could be realized through the following

algorithm:

Take the reduced link of the graph Γ and apply a move that composes

or interacts parts of the reduced link (whether through cutting and

repairing links, or through allowing links that correspond in some

manner to annihilate each other). Then take the new reduced link

and equate it with a superposition of all graphs Γx′ which produce the

same reduced link. In this situation we use the term superposition

to mean a sum of weighted probabilities of each result. That any

such graph Γx′ should exist could be provable by a generalization

of the theorem that allows the construction of a closed braid that

corresponds to any link, though this is supposition. [1]
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It is also possible that a candidate could draw upon multiple such programs.

5.4 Subsystems

In [6] the concept of a subsystem of a BRN was introduced to refer to a portion of the

graph which has a reduced link composed of a closed link which is unconnected to the

reduced link of the rest of the BRN. Though this definition is correct, the lack of an

effective technique for testing if a portion of a BRN can be considered a subsystem causes

confusion. Not the least of these confusions is that the first example of a subsystem given

in [6] of encapsulated braids (which we call capped braids) as subsystems is in fact not

universally correct.

We present here a definition of a subsystem which should eliminate confusion through

it having a criteria which can be easily tested. It additionally works for both 3 and 4-valent

BRNs.

Definition 13. A portion of a BRN is a subsystem if there exists a compact 2-surface

which it is interior to, but which no racing stripe intersects.

This definition is of course in some ways constructive: we desire the reduced link

of a subsystem to separate from the reduced link of the rest of the graph, and this is

guaranteed through the requirement that the racing stripes are divided between the interior

and exterior of the surface. We can also see from this definition why capped braids (or

encapsulated braids) cannot be subsystems in general: they would need to have a reduced
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link which separates from the exterior racing stripe of the first and last strands of the

braid.
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Chapter 6

Twist Numbers: an Example of a

Localized Topological Structure

The content of this chapter is a result of a collaboration with Lee Smolin,

Sundance Bilson-Thompson, and Louis Kauffman previously published in [4]

and additionally in [3]. It was done in the context of the trinion BRNs, and is

reproduced here in the same. Some modifications have been made - primarily

to the motivations and conclusions - but nothing which alters the substance

of the results. The content presented here acts as an example of how we can

use the topological information within the reduced link to build structures that

could have physical interpretations.

Throughout what follows we will make reference to ‘Braided Belts’. This term was not

originally intended to be a mathematical one - rather it referred to a specific construction
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of a leather belt by way of cutting slits along the length of a belt and feeding the top of

the belt through the spaces created by these slits. If one desires to understand this more

formally it could be taken to be a compact two surface formed by taking a disk and adding

two holes to it. We refer to the belt as if it were a ribbon network by talking about the top

of the belt (above the slits) as the top node and the other end of the belt as the bottom

node.

The work that follows in this chapter was part of a program to demonstrate how matter

could emerge in the context of a theory of quantum gravity. The intent was to utilize the

fact that the topological structures of Braided Ribbon Networks could be studied more

easily than those of the spin networks in Loop Quantum Gravity to demonstrate that such

a result was possible. This approach was broken down into two parts. The first step was in

developing the tools with which we can understand the braids in BRNs, this allowed us to

study previous attempts to have matter encoded into braids [5] and to see if they could be

incorporated into the theory. The second part came from understanding that within the

context of BRNs the preon model of [5] breaks down and so a new construction is needed.

This second step is then focused on demonstrating that despite that setback there still

exists another map between the braids in BRNs and the observed states of matter.

6.1 Twists, Braids and Belts

A trinion may be converted into a structure with both crossings and twists, by keeping the

ends fixed and flipping over the node in the middle, as illustrated in Fig. 6.1 (we shall refer

to this process of flipping over a node while keeping the ends of the legs fixed as a “trinion
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Figure 6.1: Turning over a node induces crossings and twists in the “legs” of that node
(left). A trinion flip may be used to eliminate crossing while creating twists (right).

flip”, or “trip” for short). Conversely, on the right of Fig. 6.1 we show how a trinion with

untwisted ribbons, but whose upper ribbons are crossed, can be converted into a trinion

with uncrossed ribbons and oppositely-directed half-twists in the upper and lower ribbons

by performing an appropriate trinion flip (in the illustration, a negative half-twist in the

lower ribbon of the trinion and positive half-twists in the upper ribbons). In Fig. 6.2,

we show the same process performed on a trinion whose (crossed) upper ribbons have

been bent downwards to lie besides and to the left of the (initially) lower ribbon. This

configuration is nothing other than a framed 3-braid corresponding to the generator σ1

(with the extra detail that the tops of all three strands are joined at a node). Keeping the

ends of the ribbons fixed as before and flipping over the node so as to remove the crossings

now results in three unbraided (i.e. trivially braided) strands, with a positive half-twist on

the leftmost strand, a positive half-twist on the middle strand, and a negative half-twist on

the rightmost strand. Hence the associated twist-word is [1
2
, 1
2
,−1

2
]. This illustrates that

in the case of braids on three strands, each of the crossing generators can be isotoped to

uncrossed strands bearing half-integer twists. By variously bending the top two ribbons
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Figure 6.2: Trinion bent to form a generator of the braid group

down to the right of the bottom ribbon, and/or taking mirror images, and performing the

appropriate trinion flips we can determine that the generators may be exchanged for twists

according to the pattern:

σ1 →
[
1
2
, 1

2
, −1

2

]
σ−11 →

[
−1

2
, −1

2
, 1

2

]
σ2 →

[
−1

2
, 1

2
, 1

2

]
σ−12 →

[
1
2
, −1

2
, −1

2

]
(6.1)

All braids on three strands can be built up as products of these generators.

6.1.1 Framed braid multiplication

As mentioned above, a braid with several crossings is specified by its braid word, which

corresponds with several generators multiplied together. Unframed braids are multiplied

together by joining the tops of the strands of the second braid to the bottoms of the strands

of the first braid. Framed braids are multiplied in an analogous way, however there are extra
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complications introduced by the presence of twists. Therefore when forming the product

of two (or more) framed braids, we shall firstly join the bottom of the ribbons in the first

braid to the tops of the ribbons in the second braid, and so on (in the case of braided belts,

we must eliminate the intervening nodes first, while retaining the nodes at the “top” of the

first belt in the product, and the “bottom” of the last belt). Secondly we shall isotop the

twists from each of the component braids upwards to render the product into standard form

(as described above). They will get permuted in the process, according to the permutation

PB associated with the braid B that they pass through. Given a permutation PB and a

twist-word [x, y, z], we shall write the permuted twist-word as PB ([x, y, z]). Thus given

two braids [r, s, t]B1 and [u, v, w]B2, we can form their product by joining strands to form

[r, s, t]B1[u, v, w]B2, and then move the twists [u, v, w] upward along the strands of the

braid B1. Thus

[r, s, t]B1[u, v, w]B2 = [r, s, t]PB1 ([u, v, w])B1B2 (6.2)

where [r, s, t][x, y, z] = [r + x, s + y, t + z] and B1B2 denotes the usual product of braid

words. In general the twists will be permuted by all the braids they pass through. For

example, remembering that Pσi = Pi,(i+1),

[r, s, t]σ1σ2[x, y, z] = [r, s, t]σ1[x, z, y]σ2

= [r, s, t][z, x, y]σ1σ2

= [r + z, s+ x, t+ y]σ1σ2. (6.3)

It should also be clear to the reader that since crossings can be exchanged for twists, in the

case of braided belts - which we shall be discussing exclusively from this point onwards,
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we may go a step further and entirely eliminate the crossings from a 3-braid. When we

do so we uncross the strands (hence permuting them by the permutation associated with

the crossing being eliminated) and introduce the twists indicated in eqn. (6.1). In general,

this means that we iterate the process

[a1, a2, a3][b1, b2, b3]σiσj . . . σm → [a1 + b1, a2 + b2, a3 + b3]σiσj . . . σm

→ Pσi([a1 + b1, a2 + b2, a3 + b3])[x, y, z]σj . . . σm (6.4)

where [x, y, z] is the twist-word associated to σi (as listed in Eqn. 6.1, when i is specified).

We iterate this procedure until the braid word becomes the identity. Hence continuing the

example above, from Eqn. (6.3),

[r + z, s+ x, t+ y]σ1σ2 → Pσ1([r + z, s+ x, t+ y])

[
1

2
,
1

2
,−1

2

]
σ2

→ [s+ x, r + z, t+ y]

[
1

2
,
1

2
,−1

2

]
σ2

→
[
s+ x+

1

2
, r + z +

1

2
, t+ y − 1

2

]
σ2

→ Pσ2

([
s+ x+

1

2
, r + z +

1

2
, t+ y − 1

2

])
×
[
−1

2
,
1

2
,
1

2

]
→

[
s+ x+

1

2
, t+ y − 1

2
, r + z +

1

2

]
×
[
−1

2
,
1

2
,
1

2

]
→ [s+ x, t+ y, r + z + 1]. (6.5)
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We shall refer to the form of a braid in which all the crossings have been exchanged for

twists as the pure twist form. The list of three numbers which characterise the twists on

the strands in the pure twist form will be referred to as the pure twist-word. The pure

twist-word is of interest because it is a topological invariant (since it is obtained when a

braid is reduced to a particularly simple form i.e. all crossings removed).

6.1.2 Making 3-belts

Consider a braided belt (or framed braid) on three strands. In the particular (trivial)

case where the strands do not cross each other, the associated braid word is clearly the

identity, I. In the case where the strands are untwisted, the associated twist-word is also

the identity. Such an untwisted trivial braid - the identity braid on three strands - can be

made by cutting two parallel slits in a strip of leather, as shown on the left of Fig. 6.3.

The resulting surface is topologically equivalent to three parallel strips capped at the top

and bottom by an attached disk. We will refer to three strands (not necessarily unbraided)

attached to disks in this manner as a 3-belt. In Fig. 6.3, we show the consequence of trinion

flips in the making of a braided leather belt.

Recall that σ1 ≡ [1
2
, 1

2
, −1

2
], and so we may write I = [−1

2
, −1

2
, 1

2
]σ1. The right-hand

side of Fig. 6.3 illustrates that the strands are now crossed and twisted, but still the 3-

belt we have obtained is isotopic to the trivial 3-belt. Figure 6.4 shows the result of six

consecutive repetitions of this process (alternately to the first two strands and the last two

strands) of a 3-belt. The reader will note by direct observation that along each of the three
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Figure 6.3: A Trip performed on a closed 3-Belt

ribbon strands, all the twists cancel. Thus when we isotop all the twists to the top of the

braid we obtain a flat (untwisted) braided belt, with braid-word (σ−12 σ1)
3. Iteration of the

procedure that yields Fig. 6.4 is actually used by belt-makers.

Since the same physical structure can be isotoped to have the braid word I or (σ−12 σ1)
3,

it is clear that the braid word is not a topological invariant. However, as noted above, the

pure twist-word is a topological invariant. If any two braids [a, b, c]B1 and [x, y, z]B2 have

the same pure twist-word, then they are isotopic. For the remainder of this section we shall

be mostly interested in classifying braided, twisted 3-belts by their pure twist numbers,

rather than inducing twists and crossings on an initially trivial 3-belt. We are therefore

primarily interested in the procedure illustrated in Eqn. (6.4). We now apply this procedure

to the braid word (σ−12 σ1)
3, and confirm that its pure twist-word is I = [0, 0, 0]. This

corresponds with reversing the procedure (used by belt-makers) described in the previous

paragraph.
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Figure 6.4: Braiding a Belt
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Firstly we consider the braid word σ−12 σ1

σ−12 σ1 →
[

1

2
,−1

2
,−1

2

]
σ1

→ P1,2

([
1

2
,−1

2
,−1

2

])[
1

2
,
1

2
,−1

2

]
→

[
−1

2
,
1

2
,−1

2

] [
1

2
,
1

2
,−1

2

]
→ [0, 1,−1] (6.6)

To consider the full braid with six crossings we need to multiply this result with itself

three times, but also keep track of the permutations induced by the braid word σ−12 σ1.

This permutation will be P1,2(P2,3) = P(123), that is, the cyclic permutation which sends

[a, b, c]→ [c, a, b]. Hence,

(σ−12 σ1)
3 → [0, 1,−1](σ−12 σ1)

2

→ P(123)([0, 1,−1])[0, 1,−1]σ−12 σ1

→ [−1, 0, 1][0, 1,−1]σ−12 σ1

→ [−1, 1, 0]σ−12 σ1

→ P(123)([−1, 1, 0])[0, 1,−1]

→ [0,−1, 1][0, 1,−1]

→ [0, 0, 0] (6.7)

as expected.
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Figure 6.5: A braided belt can be embedded within a larger network, represented by the
box.

The reader will notice that it is unnecessary to keep track of the permutation induced

by the first generator in a braid word (or the first braid word in a product, when the

corresponding pure twist-word is known), as there is nothing for this permutation to act

upon.

The braided belts we consider in this section are of interest not only from a purely

topological basis, but also due to a possible connection with theoretical physics. In [6] it

was shown that braided belts attached at one end to a larger network of ribbons could

be used to represent the elementary quarks and leptons. In order to keep the discussion

here relevant to the work in [6], we shall henceforth treat the ordering of generators in a

braid word as indicative of a “top end” which is free to be trinion-flipped, and a “bottom

end” which is attached to a larger network (which for all practical purposes is fixed and

static). The left-most generator in a product is equated with the top end, and this is why

we shall always work from left to right when we resolve a braid word to find the associated
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Figure 6.6: Finding the pure twist-word for a braid [1
2
, 3
2
,−1

2
]σ1σ2σ

−1
1 σ−11 σ−12

pure twist-word. In diagrams of braided belts we shall henceforth include a box on the

boundary of the belt at the bottom end, to represent the presence of a larger network to

which the braided belt is attached, as shown in Fig. 6.5

There is a simple schematic technique for finding the pure twist-word associated with

a braid word, as follows:

• Replace each generator in the braid word by one of the following triples of symbols;

σ1 → + + −

σ−11 → − − +

σ2 → − + +

σ−12 → + − −

(6.8)

such that they form a vertical stack, leftmost generator at the top.

• Beneath each pair of similar symbols, place a cross, ×, connecting each symbol to

the diagonally opposite symbol in the pair below. Beneath each dissimilar symbol,
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Figure 6.7: The Positron, in fully-braided form (left), resolved in stages to its pure twist
form (right).

place a vertical bar, |, connecting it directly to the symbol below it. The lines below

the bottom row of symbols will end on three blank spaces.

• Sum up the symbols along each vertical path, starting at the top of the symbol stack,

and ending on the blank spaces at the bottom. Each + stands in for 1
2
. Each − stands

in for −1
2
. The resulting triplet of numbers is the pure twist-word.

In the case where the braid is written in standard form [a, b, c]B we construct the symbol

stack for the braid word as described above, and then place the twist word at the top, with

three vertical lines descending to the top of the symbol stack.

In Fig. 6.6 we give an example of using this process to find the pure twist-word cor-

responding to the braid [1
2
, 3
2
,−1

2
]σ1σ2σ

−1
1 σ−11 σ−12 . The three diagrams in the figure cor-

respond with the addition of twists along each of the three strands. The resulting pure

twist-word is found to be [1, 2,−1].
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A further example is given by the braid e+L = [1, 1, 1]σ1σ
−1
2 . This is the braid structure

assigned to the left-handed positron in [5]. We find that

e+L → [1, 1, 1]σ1σ
−1
2

→ [1, 1, 1]

[
1

2
,
1

2
,−1

2

]
σ−12

→
[

3

2
,
3

2
,
1

2

]
σ−12

→ Pσ−1
2

([
3

2
,
3

2
,
1

2

])[
1

2
,−1

2
,−1

2

]
→

[
3

2
,
1

2
,
3

2

] [
1

2
,−1

2
,−1

2

]
→ [2, 0, 1]. (6.9)

Thus [2, 0, 1] gives the framings on the equivalent parallel flat strip belt. See Fig. 6.7

for a graphical version of this calculation, and a depiction of the boundary of the surface

that corresponds to e+L . We denote the boundary of this surface by ∂e+L . Note that ∂e+L

is independent (topologically) of the deformation that we have applied to straighten out

the braiding from the original definition of e+L . Thus our algebraic reduction gives us an

algorithm for finding the boundary link for each particle in Bilson-Thompson’s tables.

In Fig. 6.9 - Fig. 6.12 we illustrate the correspondence between the braids proposed in

[5] to match the first-generation fermions of the Standard Model, and their pure twist form.

Notice that the pure twist forms are distinct in each illustrated case, except for the neutrino

and anti-neutrino. In this case, the left-handed “negative” neutrino is isomorphic to the

right-handed “positive” anti-neutrino. Likewise the left-handed “positive” anti-neutrino is
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Figure 6.8: By assuming that the outer edge of the braided belt is closed (when we trace it
through the rest of the network), we can equate a link (right) to the pure twist form (left)
of any braid, in this case the left-handed positron as illustrated in Fig 6.7

isomorphic to the right-handed “negative” neutrino. In other words, there are half as many

topologically distinct states for neutral particles as one would expect for charged particles.

This is in agreement with the Standard Model, where neutrinos are purely left-handed,

and anti-neutrinos are purely right-handed. The pure twist numbers in each case are listed

with the corresponding particles in the table below:

6.2 Algebra

In this section we give a representation of the three-strand braid group in terms of permu-

tation matrices. A permutation matrix P is a matrix whose columns are a permutation of

the columns of the identity matrix. Such a matrix acts as a permutation on the standard

basis (column vectors that have a single unit entry). We shall sometimes refer to P as a
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Figure 6.9: Left-handed negatively-charged fermions, as per the structure proposed by
Bilson-Thompson, and their associated pure twist form

Figure 6.10: Right-handed negatively-charged fermions, as per the structure proposed by
Bilson-Thompson, and their associated pure twist form
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Figure 6.11: Left-handed positively-charged fermions, as per the structure proposed by
Bilson-Thompson, and their associated pure twist form

Figure 6.12: Right-handed positively-charged fermions, as per the structure proposed by
Bilson-Thompson, and their associated pure twist form
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left-handed right-handed
e− [0,-2,-1] e− [-1,0,-2]
ūB [0,-1,-1] ūB [-1,1,-2]
ūG [1,-2,-1] ūG [-1,0,-1]
ūR [0,-2,0] ūR [0,0,-2]
dB [1,-2,0] dB [0,0,-1]
dG [0,-1,0] dG [0,1,-2]
dR [1,-1,-1] dR [-1,1,-1]
νL [1,-1,0] νR [0,1,-1]
d̄B [1,0,0] d̄B [0,2,-1]
d̄G [2,-1,0] d̄G [0,1,0]
d̄R [1,-1,1] d̄R [1,1,-1]
uB [2,-1,1] uB [1,1,0]
uG [1,0,1] uG [1,2,-1]
uR [2,0,0] uR [0,2,0]
e+ [2,0,1] e+ [1,2,0]

Table 6.1: Twist number identification of the Bilson-Thompson Model

permutation, rather than a permutation matrix, for brevity. For example,

P1,2 =


0 1 0

1 0 0

0 0 1

 (6.10)

and

P2,3 =


1 0 0

0 0 1

0 1 0

 . (6.11)
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Obviously 
0 1 0

1 0 0

0 0 1




1

0

0

 =


0

1

0


and so on.

If D is a diagonal matrix and P is a permutation matrix, then

PD = DPP (6.12)

where DP = P (D) denotes the result of permuting the elements of D along the diagonal

according to the permutation P . This is directly analogous to eqn. (6.2)

The permutation matrices P1,2 and P2,3 generate (by taking products) all permutations

on three letters. These permutations can be used to represent permutations induced by a

braid, and hence they can stand in for the braid word. A general twist word [a, b, c] may

be represented by the matrix

[a, b, c] =


ta 0 0

0 tb 0

0 0 tc

 .

The reader should be aware that the permutation matrices do not give a complete image

of the braid group, because they do not define the direction of crossing. Hence the P s

contain less information than the σis. However we can find the pure twist form of a braid
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using this matrix representation in a manner we will now describe.

Consider the identity 3-belt, as illustrated in fig. 6.3. If we perform trinion flips on the

top of the belt, we induce both crossings and twistings. When the crossings created in

this process correspond to a given generator, σi, the twists induced are the negative of the

twists corresponding to σi, as listed in eqns (6.1). The relative minus sign occurs because

eqns (6.1) list the twist words created when crossings are eliminated, rather than created.

In the interests of notational clarity, we shall therefore write ρi to denote the twists and

permutations induced on an initially trivial 3-belt by performing a trinion flip to cross

strand i over strand i+ 1. The corresponding twists and permutations are then;

ρ1 →
[
−1

2
, −1

2
, 1

2

]
P1,2

ρ−11 →
[
1
2
, 1

2
, −1

2

]
P1,2

ρ2 →
[
1
2
, −1

2
, −1

2

]
P2,3

ρ−12 →
[
−1

2
, 1

2
, 1

2

]
P2,3

(6.13)

compare this with eqns (6.1). Applying eqn. (6.12) we see that

P1,2[a, b, c] = [b, a, c]P1,2

and

P2,3[a, b, c] = [a, c, b]P2,3.

To find the pure twist-word corresponding to a given braid word, we first replace the
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σi with the equivalent ρi e.g.

σ1σ2σ
−1
1 → ρ1ρ2ρ

−1
1 .

We next substitute in the twist words and permutations from eqns (6.13), and apply

eqn. (6.12). Once all the twist words have been shifted to the far left of the resulting

expression and summed, we read off the negative of this twist word to find the pure twist-

word corresponding to our initial braid word.

Example: Let us find the pure twist word corresponding to the braid σ1σ2σ
−1
1 . We proceed

as follows;

ρ1ρ2ρ
−1
1 =

[
−1

2
, −1

2
,

1

2

]
P1,2

[
1

2
, −1

2
, −1

2

]
P2,3

[
1

2
,

1

2
, −1

2

]
P1,2

=

[
−1

2
, −1

2
,

1

2

] [
−1

2
,

1

2
, −1

2

]
P1,2P2,3

[
1

2
,

1

2
, −1

2

]
P1,2

=

[
−1

2
, −1

2
,

1

2

] [
−1

2
,

1

2
, −1

2

] [
−1

2
,

1

2
,

1

2

]
P1,2P2,3P1,2

=

[
−3

2
,

1

2
,

1

2

]
P1,2P2,3P1,2

We then take the negative of the computed twist word, to obtain our result, [3
2
,−1

2
,−1

2
].

These assignments of framed permutations to braids gives a representation of the framed

braid group into framed permutations. To see this we can directly verify that σ1σ2σ1 =
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σ2σ1σ2 at the level of the framed permutations as follows;

ρ1ρ2ρ1 =

[
−1

2
,−1

2
,
1

2

]
P1,2

[
1

2
,−1

2
,−1

2

]
P2,3

[
−1

2
,−1

2
,
1

2

]
P1,2

=

[
−1

2
,−1

2
,
1

2

] [
−1

2
,
1

2
,−1

2

]
P1,2P2,3

[
−1

2
,−1

2
,
1

2

]
P1,2

= [−1, 0, 0]P1,2P2,3

[
−1

2
,−1

2
,
1

2

]
P1,2

= [−1, 0, 0]P1,2

[
−1

2
,
1

2
,−1

2

]
P2,3P1,2

= [−1, 0, 0]

[
1

2
,−1

2
,−1

2

]
P1,2P2,3P1,2

=

[
−1

2
,−1

2
,−1

2

]
P1,2P2,3P1,2. (6.14)

Similarly, we find that ρ2ρ1ρ2 =
[
−1

2
,−1

2
,−1

2

]
P2,3P1,2P2,3. Since ρ1ρ2ρ1 and ρ2ρ1ρ2 yield

the same twist word we conclude that σ1σ2σ1 = σ2σ1σ2. It is noteworthy that P1,2P2,3P1,2 =

P2,3P1,2P2,3, however this has no bearing on the result because the twist words alone are

sufficient to define isomorphism.

6.2.1 Relation to the Reduced Link

It is worth noting that we can examine these results in the context of chapter 4. Looking

to the reduced link we can understand the twist numbers in this context: for a general

capped 3-braid the twist numbers correspond to the number of windings that the loops

of the reduced link have about one another. This description breaks down in certain
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Figure 6.13: Uniquely forming the product of two braids (left) by joining them box-to-box,
to yield a link (right).

situations: particularly those where some of the twist numbers are 0 and so one of the

loops may drop out of the reduced link.

On seeing this relationship between the reduced link and the twist numbers it is tempt-

ing to suggest that the twist numbers are therefore conserved. In making such a statement

though we must be careful to specify that what we mean is that the twist number is the

information within a capped braid that is conserved, not that such a capped braid will

always look like a capped braid after applications of the evolution moves.

6.3 Trying to Reach a Map to Particles

It now behooves us, equipped with a better understanding of the invariant content of the

capped three braids, to attempt to construct an embedding of the states of particle physics

into them which is compatible with this invariants. Though from table ?? we can see that

the first generation of the standard model from [5] is compatible with the twist numbers,
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it fails upon expanding to multiple generations. To see this fact we present the following

observation: the addition of a single pair of crossings as is done in [5] will only introduce a

single full twist difference to each of the twist numbers, whereas when we introduce positive

twisting on one generation and negative twisting on the other we more than make-up for

this difference. This leaves us with overlap between the assigned particles and the twist

numbers.

We thus set out to produce an example of how such an embedding can be found. We

shall proceed in as systematic of a matter as we can to avoid the construction becoming

artificial - an infinite number of such maps are easily constructible given that there are a

finite variety of particles in the standard model and a countable infinity of twist numbers.

In section 6.3.2 we will give a construction of the C, P and T transformations as operations

on the twist numbers and then in section 6.3.3 we will use this construction as a guiding

principle to construct our map. The guiding principle of this process will be that each twist

number should only correspond to a single particle variety, and thus that the generations

should form a sort of segmentation of the space of twist numbers.

6.3.1 A Caveat to the Twist Number

As was shown earlier in chapter 6 each capped braid is equivalent to one with trivial

braiding but various twists. This is illustrated in figure 6.14. Those three twists (ordered

clockwise) are an invariant (a,b,c) by which we label states. This invariant is generated by

the fact that fig.6.14a can be continuously deformed into fig.6.14b making the two surfaces

equivalent. This same identification can be made for the other generators of the group B3
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and thus we can iteratively remove all braiding from a capped three braid. The twists on

each of the three strands when all braiding has been removed define an invariant triplet of

half-integers, (a, b, c). Thus any capped three braid is deformable into any other capped

three braid that shares the same invariant triplet. Additionally if we restrict our attention

to braids which are orientable surfaces we find that our vectors will not mix integers and

half-integers.

(a) (b)

Figure 6.14: Equivalence move by which braids are equivalent to twists

There is a single exception to the uniqueness of this invariant: situations where the

ordering of the ribbons is not unique. This exception is demonstrated by a situation where

we can use the evolution algebra to isolate the braid in multiple ways each of which give a

distinct ordering to the invariant (fig.6.15), equivalent to choosing making different choices

for the left-most strand in a triplet. This exception will not be considered in the rest of

our discussion.
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Figure 6.15: Invariant special case

6.3.2 Discrete Symmetries of Capped Three Braids and C,P and

T .

In studying the invariants of capped three braids it is useful to determine the group of

symmetries which govern them. By considering the most general group we are initially

inclined to consider S3. However, if we consider the fact that left-handed and right-handed

twists are differentiated only by a minus sign within the invariant, we can also consider

the two element group as an additional symmetry, giving G = S3 × Z2.

We will write the group as follows:

Let a ∈ S3 and let +1 and −1 be the two elements of Z2 (with −1 being the

element of order 2). Then a+1 and a−1 ∀a ∈ S3 will be the elements of S3×Z2.

The group would act on the invariants as follows:

(12)−1 C [a, b, c] = [−b,−a,−c] (6.15)

(123)+1 C [a, b, c] = [c, a, b] (6.16)
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The task then becomes to determine whether there is a subgroup of G which yields

appropriate elements corresponding to C, P and T . The choice of these elements will give

us a foundation upon which to build a physical interpretation of these capped three braids.

Considering the idea that magnitude of charge should be invariant under these operations,

we find that charge must take on the form of:

Charge = χ(a+ b+ c) (6.17)

where χ is some function. To respect convention we are led to suggest that χ be related

to a factor of 1
3
. As charge is additive, and so is twist, we are led to expect that χ involves

only (a + b + c), and no other powers this sum. The simplest choice is then that charge

is 1
3
(a + b + c). C must then be an element of S3 combined with a factor of −1. Charge

conjugation, parity and time reversal each have order 2, and should, for the case of states

of massive particles at rest satisfy,

CPT = 1 (6.18)

Taking this into account, our only option is for (C,P, T ) to be the set (a−1, a1,1−1) for

some element a ∈ S3, with order two.

Considering the three options of (12), (13) and (23), (13) becomes the preferred option

as it corresponds to a mathematical operation that we can perform upon a Braided Ribbon

Network as a whole. A (13) permutation can be generated across the entire network by

looking at the network from ‘the other side’ - this will reverse the ordering of the invariant
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of all braids. Similarly a (13)−1 can be achieved through a reflection of the network in its

entirety, and a 1−1 by performing the two operations in succession.

Armed with this, we are left with our complete set of options: C can only be (13)−1 or

1−1, with P and T taking the other roles, as listed below.

We shall choose for the rest of the article the following definitions:

C = 1−1 (6.19)

P = (13) (6.20)

T = (13)−1 (6.21)

additionally the charge of a braid defined by the invariant [a, b, c] will be 1
3
(a+ b+ c).

6.3.3 Classification of Particle States

We are now ready to present the main result of [3], which is the complete scheme for the

identification of the standard model fermions and weak vector bosons with excitations of

quantum geometry.

Invariant Classes

By considering the action of the operators C, P and T upon classes of braids we can divide

the braids into four categories. The simplest category is that of braids which are invariant
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under both C and P (and hence also invariant under T ). These braids would then be

equivalent to charge-less particles that do not have left- or right-handed versions (either

scalars, or integer spin objects with secondary spin quantum number of zero). A second

class is objects which are invariant under T . These objects necessarily must have the form

(a, 0,−a). We can then identify the two parity states in this situation with being left- and

right-handed versions of the same object.

Class Invariant Number of Corresponding Objects Invariant under
I [0, 0, 0] One C,P ,T
II [a, 0,−a] Two T
III [a, b, a] Two P
IV [a, b, c] Four None

Table 6.2: Classes of Braids

Table 6.2 demonstrates these categories. We can see that the categories discussed above

fall exactly into class I and II. This leaves the other two categories to explain. Class III

braids are then in correspondence with particles that are invariant under parity - charged

scalars and objects with secondary spin quantum number of zero (i.e. the ms = 0 states of

integer spin objects). It is interesting to note that Class II braids respond to C and P in

the same manner, implying that their parity transforms are also their charge conjugates.

Class IV objects are then sets of four braids that map to one another under C,P and T

corresponding with fermions.
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Interaction Assumptions

We will assume that there is some mechanism that allows interactions between braids in

the three forms of:

[a, b, c] + [d, e, f ] = [a+ d, b+ e, c+ f ] (6.22)

[a, b, c] = [d, e, f ] + [g, h, i] , (6.23)

d+ g = a, e+ h = b, f + i = c

[a, b, c] + [d, e, f ] = [g, h, i] + [j, k, l] , (6.24)

a+ d = g + j, b+ e = h+ k, c+ f = i+ l

The Z

From this, we make a choice for the Z-boson. As the Z is a spin-1 particle without a

charge conjugation pair, it falls into the category of class I & II braids. Adding in a further

requirement that we desire our Z-boson to be representable by a braid which does not

contain any twists, we find that our first successful candidate for it is the [2, 0,−2] state

(the ms = 0 state necessarily becomes the [0, 0, 0] state). The W+ and W− states should

then take on the form of the Z states with an extra integer twist placed on each strand,

giving a set of eight objects (these are explicitly shown in table 6.3).

82



The Neutrino

We shall require that a neutrino be a particle, represented by a braid which does not

contain any twists, with a neutral charge. Additionally it should satisfy that its parity

conjugate is equal to its interaction with one of the Z bosons (i.e. given the evidence that

the neutrinos of at least two generations are massive, we expect that right-handed neutrinos

exist, and will interact with left-handed Z bosons to produce left-handed neutrinos). We

find a countable number of such particles satisfying:

[a, 2− 2a, a− 2] , a ∈ 2Z (6.25)

The first such example is then [2,−2, 0]] which corresponds to a left-handed neutrino. It

follows that all such objects are class IV braids, and therefore come in sets of four objects.

This implies that there are both left-handed and right-handed neutrinos in all generations

and that there are an infinite series of such neutrinos.

The Rest of the Scheme

Further particles are found by adding twists to the individual strands of the neutrinos

(without double twisting a single strand), the colour of a quark being determined by the

‘odd strand out’ (the untwisted strand when two strands are twisted, or the only twisted

strand when a single one is). This twisting gives them their expected charges, and the

colouring gives the expected results for interactions with the W ’s. Table 6.3 shows the

first two generations of particles, along with the bosons.
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This pattern then continues for infinitely many higher generations, each made from

successive neutrino states.

6.3.4 Conclusions

Though these results could be considered a positive step towards the emergence of matter

from quantum gravity, I hesitate to trumpet them as such. In reality what has been

demonstrated here is the existence of a consistent map from the set of particles from the

standard model to the infinite space of invariants of braided ribbon networks. That we

can do so is necessary, but nowhere near sufficient to demonstrate that particle physics can

emerge from quantum gravity.

The reality is that until there exists a means to introduce dynamics to such states -

even heuristically - all that can be done in such studies is to match quantum numbers to

countable invariants. This should be understood not as a failure, but instead as a clear

message of where future efforts should be directed.
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Particle Invariant
ZL ZR Z0 [2, 0,−2] [−2, 0, 2] [0, 0, 0]
W+
L W+

R W+
0 [3, 1,−1] [−1, 1, 3] [1, 1, 1]

W−
L W−

R W−
0 [1,−1,−3] [−3,−1, 1] [−1,−1,−1]

ν
(e)
L ν

(e)
R ν̄

(e)
L ν̄

(e)
R [2,−2, 0] [0,−2, 2] [−2, 2, 0] [0, 2,−2]

e−L e−R e+L e+R [1,−3,−1] [−1,−3, 1] [−1, 3, 1] [1, 3,−1]
dL,r dL,g dL,b [1,−2, 0] [2,−3, 0] [2,−2,−1]
dR,r dR,g dR,b [−1,−2, 2] [0,−3, 2] [0,−2, 1]
d̄L,r d̄L,g d̄L,b [−1, 2, 0] [−2, 3, 0] [−2, 2, 1]
d̄R,r d̄R,g d̄R,b [1, 2,−2] [0, 3,−2] [0, 2,−1]
uL,r uL,g uL,b [2,−1, 1] [3,−2, 1] [3,−1, 0]
uR,r uR,g uR,b [0,−1, 3] [1,−2, 3] [1,−1, 2]
ūL,r ūL,g ūL,b [−2, 1,−1] [−3, 2,−1] [−3, 1, 0]
ūR,r ūR,g ūR,b [0, 1,−3] [−1, 2,−3] [−1, 1,−2]

ν
(µ)
L ν

(µ)
R ν̄

(µ)
L ν̄

(µ)
R [4,−6, 2] [2,−6, 4] [−4, 6,−2] [−2, 6,−4]

µL µR µ̄L µ̄R [3,−7, 1] [1,−7, 3] [−3, 7,−1] [−1, 7,−3]
cL,r cL,g cL,b [4,−5, 3] [5,−6, 3] [5,−5, 2]
cR,r cR,g cR,b [2,−5, 5] [3,−6, 5] [3,−5, 4]
c̄L,r c̄L,g c̄L,b [−4, 5,−3] [−5, 6,−3] [−5, 5,−2]
c̄R,r c̄R,g c̄R,b [−2, 5,−5] [−3, 6,−5] [−3, 5,−4]
sL,r sL,g sL,b [5,−6, 2] [4,−7, 2] [4,−6, 1]
sR,r sR,g sR,b [1,−6, 4] [2,−7, 4] [2,−6, 3]
s̄L,r s̄L,g s̄L,b [−3, 6,−2] [−4, 7,−2] [−4, 6,−1]
s̄R,r s̄R,g s̄R,b [−1, 6,−4] [−2, 7,−4] [−2, 6,−3]

Table 6.3: Braid assignments for particles
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Chapter 7

Implications for Loop Quantum

Gravity

The content of this chapter is a result of a collaboration with Yidun Wan and

was originally published in [18]. It was originally presented in the context of

trinion BRNs and spin networks, and will be left as such here.

The intent of this chapter is to take a different tack from chapter 6 and to focus on

using the understanding derived from studying BRNs to point out implications for Loop

Quantum Gravity. The ability to do this comes from the intuition about the properties

of embedded spin networks derived from looking at BRNs where these properties can be

studied directly. In this way this chapter is more related to chapter 3 and should be

understood in that context.
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7.1 Conserved Structures in Embedded Networks

Given the existence of conserved structures in braided ribbon networks demonstrated in

chapter 4 we shall consider specifically the more local structures (in the sense of micro-

locality from section 5.1). This specifically shall ignore structures where ribbons are knot-

ted or braided with ribbons that are distant under the standard distance function of graph

theory. We can consider the local structures in order of reducing locality: the most local

are those that involve only a single ribbon (ultra local), then those that involve ribbons

sharing a node (1st degree local), then those that involve the ribbons of two adjacent nodes

(2nd degree local), and so on. In particular, we know from [24] that a structure such as that

in Fig. 7.2 is conserved as we are unable to perform the 2−2 move without first deforming

the knot away from these two nodes, and is therefore an ultra local conserved structure.

The only exception to this is if the ribbon we are concerned with connects two ‘halves’

of the network (i.e. that the ribbon divides the network between two parts that are not

connected to one another through anything other than that single ribbon - in the language

of the next section, it corresponds to both b and b′ being tethers of isolated substructures).

In this situation we are able to remove the knotting and twisting by isotopy. As this case

is artificial in nature and uninteresting, we shall ignore it for our investigation.

7.1.1 Isolating the Conserved Structures

In section 5.2 the concept of an isolated substructure was introduced as a means of un-

derstanding the ability to translate features through a braided ribbon graph. An isolated

substructure is a subset of a graph which connects to the rest of the graph only through
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Figure 7.1: The Reduced Link

a single ribbon (called its tether) and is not part of any larger topological features. If a

substructure can be evolved into an isolated substructure by a sequence of applications

of elements of the evolution algebra, we will call them isolatable. Isolatable substructures

are essentially propagating locally conserved quantities[16] able to move via the evolution

algebra to any point edge-connected to its tether, and having conserved structure inside of

it. We can also see via the form of the reduced link of an isolated substructure - and the

invariance of the reduced link under the evolution moves - that an isolatable substructure

corresponds to a ‘piece’ of the reduced link that is essentially cut and paste into the link

of the edge its tether is on (see for example fig.7.1). That a general reduced link can be

considered a direct product of these ‘pieces’ means that a structure being isolatable does

not require the evolution to acquire its meaning as a part of an invariant of the network,

and that this meaning is invariant under interpretation of the meaning of the evolution.

We shall demonstrate that a specific class of ultra-local conserved quantities are isolatable.

To do this we shall review some definitions and then introduce a few more.

Definition 14. Two edge segments are said to be edge connected if they are connected

in the space consisting of the edge of the network. Equivalently two edge segments are said

to be edge connected if they are part of the same link in the reduced link of the network.
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Figure 7.2: An example of an ultra-local structure

The path in the space of edges between the two edge segments is called the edge path.

Definition 15. Two ribbons or two nodes in a network have a path between them if there

exists a sequence of ribbons and nodes that can be traversed between them. The sequence

of ribbons and nodes taken is called the path.

Definition 16. A free path is a path which does not have any twists, knots or links along

it. Specifically, each ribbon connecting the nodes of the path does not have any knotting or

twisting on it, and there is no ribbon that crosses a ribbon in the path in such a way that

cannot be undone by the Reidemeister moves applied to the ribbons.

Definition 17. A free edge path is an edge path which does not have any knots or links

along it. This corresponds similarly to requiring that each ribbon the edges of the path

belong to does not have any knotting or twisting on it, and there is no ribbon that crosses

one of these ribbons in such a way that cannot be undone by the Reidemeister moves applied

to the ribbons.

We shall now prove that a general class of ultra-local structures (see Fig. 7.2) can be

made isolated.
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Figure 7.3: 0 Node Case

Figure 7.4: 1 Node Case

Theorem 5. An ultra-local structure in a BRN which possesses a free edge path between

one of the edges of each of the external ribbons can be isolated.

Proof. We shall prove this using induction on the number of intervening nodes. First we

shall prove for one intervening nodes, then assume true for n− 1 nodes and prove true for

n nodes. Consider the situation depicted in Fig. 7.4 (where the apparent orientation of

the nodes is for simplicity, and is in fact general), the application of the exchange move

between nodes v1 and v′ reduces the situation to that of Fig. 7.3 which can then be isolated

by using the exchange move on the two nodes involved. Now, we examine the situation

in Fig. 7.5 to demonstrate that the n node situation can be reduced to n − 1 nodes by

applying the exchange move on v′ and vn. We can then use the assumption of truth on

the n− 1 case to isolate the knot.

This result lets us examine a peculiar situation: that where a knot on a ribbon is not a

conserved quantity. Examining Fig. 7.6 (where the unattached ribbons connect to a larger

network) we can see that it is possible in certain situations to reduce the number of ultra
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Figure 7.5: n Node Case

Figure 7.6: Reduction of the number of ultra local structures

local structures, in the sense that two knots, e.g. the K1 and K2 in the figure, merge with

each other. From this we see that we can always obtain a graph with only conserved local

structures remaining.

Theorem 6. A knot in an embedded graph which possesses a free path between its two

external edges can be isolated.

Proof. The proof of this follows inherently from the above proof and the fact that in

an embedded graph - instead of a BRN - one can rotate an edge without introducing a
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twist.

We can apply the above theorems to reduce less local structures to more local situations.

Consider for example the situation in Fig. 7.7a, we can apply the results of the above

theorems to transform it to Fig. 7.7b if ribbons a and b, and a′ and b′ are connected by a

free edge path.

(a) (b)

Figure 7.7: Less Local knottings

We can also see from these results that if there is no (edge) free path between the two

edges of any of the knots in a network, there is no means to combine the knots onto single

edges. This leads us to conclude that if one isolates all isolatable knots on a graph the

remaining knots are completely invariant.

7.1.2 Immediate Results of Ultra-Local Structures

Considering the idea of ultra local structures, we find that there is only a single type of

conserved structure. A structure formed by the topological deformation of a single ribbon

can only possess two features: knots and twists. As twists can be passed through the

knotting of a ribbon by an isotopy, we can consider any ultra local structure to be exactly
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characterized by a half integer (corresponding to the number of rotations) and a knot or a

connected sum of knots.

This leads us to the following results:

The existence of countably infinite many species of local conserved

structures

There exist infinitely many species of local conserved structures.

Any edge can be replaced by an edge with an isolated edge with some half-

integer twist and a knot or a connected sum of knots. As there are infinitely

many half-integers and knots, there are therefore infinitely many such species

of structures.

Maximal number of local conserved quanities

For a closed 3-valent BRN with N nodes, the maximum number of ultra-local

conserved quantities is 3N
2

.

We can immediately lift these results to the scenario of un-framed spin networks: ex-

cepting the twists, all the results follow immediately. Additionally the first result does not

depend on the valence of the spin-network involved in any way and is therefore a general

result for embedded spin-networks.
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7.2 Conclusions and Discussion

We have demonstrated the existence of a countable infinity of species of local conserved

structures within Braided Ribbon Networks (and embedded spin-networks in general). We

have also provided several results of use for isolating these structures and understanding

when they are actually preserved.

In a theory of Quantum Gravity where the states are given by spin-networks embedded

in a 3-manifold all of these states will be part of the Hilbert space. The difficulty this

poses comes from the fact that these locally conserved structures correspond to an infinite

number of conserved quantities that don’t correspond with anything that commutes with

the constraints of general relativity. This poses a significant problem in any attempt to

recover the classical limit from a generic embedded spin-network - there is no reason to

believe that these conserved quantities will simply cease to exist in the classical limit. This

leaves a significant dilemma: we must change something in the theory for general relativity

to be the classical limit.

There are two immediately obvious alternatives for resolving this, the first being to

modify the Hamiltonian constraint in such a way that we introduce new generators or the

evolution algebra. The alternative to this is that we should reduce the physical Hilbert

space of a theory of quantum gravity to require that there do not exist any knots or link-

ing. Our ability to consider this super-selection rule and still do certain things (including

considering embedded spin networks) is questionable and requires investigation before this

can be adopted as an ‘easy’ solution.
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Chapter 8

Conclusions and Future Directions

The study of Braided Ribbon networks has come a significant way from their origins as

an attempt to have matter emerge from loop quantum gravity. We have outlined several

results which develop this transformation. In chapter 1 I presented a unified framework

for 3 and 4-valent BRNs and how they can be expanded to general valences. In chapter

3 I demonstrated the relationship between BRNs and the embedded spin network states

of loop quantum gravity. In chapter 4 I presented the concept of the reduced link and

demonstrated it as an invariant for both the 3 and 4-valent BRNs. In chapter 5 I presented

the concepts of subsystems and isolated substructures which allow us to understand way in

which the parts of the BRN contribute to the reduced link. With these tools I reproduced

the previous results which used the invariants from BRNs: the twist invariants of chapter

6 and the microlocal invariants of chapter 7.

Though the hopes of encoding particle physics in these invariants has made little head-
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way through this program, we have instead developed tools for studying embedded spin

networks. With this perspective we will discuss implications and possible avenues of further

research from it.

The first implication of having a tool with which we can study the embedding infor-

mation of BRNs or spin networks is that we now have a simpler object which we can use

to attempt to find physical interpretations of the embedding information. In analogy with

2+1 quantum gravity, those links which are non-trivial elements in the fundamental group

of the embedding space can already be assigned some meaning: they correspond to parts

of the network that grant cross-sectional area to different handles of the manifold. It is

possible that we can extend from this starting point and find physical meaning for all of

the embedding information.

The second implication comes from examining the objects which make up the reduced

link: the racing stripes. In the 3-valent case these are dual to nodes, and in the four valent

case they are edges of tetrahedra. Our ability to take the dual of a grouping of nodes is

reliant upon the triviality of the stripes of these nodes, and so we cannot construct the

dual of nodes which have a reduced link. With this understanding it is possible that we

could construct a dual which somehow combines glued tetrahedra and a modification from

the reduced link. Such work is indeed already underway.

Lastly we present one further possible application of these results, one which takes

a longer view. Some recent work, [13], has attempted to make contact between loop

quantum gravity and spin foams. This contact was made at the expense of working with

unembedded spin networks. It is possible that the development of the reduced link could
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allow for this work to be reproduced without this sacrifice. One particular approach would

be to consider cobordisms between embedded spin-networks, which could allow (depending

upon the genus of the four dimensional surface) the reduced link to change. This work is

only in its infancy, but should it succeed it would allow a connection between spin foams

and the actual states of loop quantum gravity. Additionally, allowing for an evolution

of this form could resolve the concerns of chapter 7 through the properties of cobordant

knots.

Having many paths forward and a significant body of results behind, the braided ribbon

network research program has a bright future. With the connection to the states of loop

quantum gravity demonstrated in chapter 3 this future can now be shared and I hope the

two research programs can both inform one another as they move forward.
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