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Abstract 

This thesis focuses on the use of minimal rnodels to study biological molecules 

such as proteins. The major aim of this work was the design and study of a 

new minimal model that could be used to study the statistical properties of the 

anisotropic interactions in helical forming segments. We discuss in detail what effect 

the potential energy form has on these various states by systematicdy varying the 

potential fiom strongly anisotropic to isotropie- The data demonstrates that the 

foldability of a helix is strongly related to the anisotropic nature of the potential. 

The model is further modified to examine the folding process of these segments 

with emphasis on how nucleation and anisotropy affect folding. The folding times of 

different helical systems are examined. The results demonstrate that the foldability 

of the helix segments are strongly correlatecl to the interplay between nucleation 

and propagation. This interplay not only affects the foldability of the structure, 

but significantly affects the scaling behavior of the folding times. 

Finally, a classic minimal lattice model is irnplemented to study the folding 

properties of prion-like sequences. With this simplified model we attempt to find 

sequences that exhibit prion-like behavior. The sequences that are identifid as 

prion-like are further studied by analyzing the native state structures for the fea- 

tures that give these sequences their unique properties. 
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Introduction 

The human genome project has produced a tremendous amount of information 

abolli the genetic sequences found in the human body. Although this data t e k  us 

a l l  the sequences of possible proteins, it tells us nothing about the three dimensional 

(3D) structure of an individual protein. Determining the 3D-structure of a single 

protein can be àn extremely dï.fEcult problem, and some protein structures cannot 

be determined with modem day techniques. For this reason, understanding proteins 

presents one of the most challenging problems in the 21st century. 

Mthough biologists have made signifiant advances in understanding individual 

proteins, there were no concentrated efforts to underst and the general properties of 

proteins as a whole until recently. Zn general, it appears that a protein sequence is 

just an atypical random polymer chain, which for some unknown reason repeatedly 

seeks out the same structure each time it is folded kom any random confiopration. 

At first glance, there appear to be no similarities among the sequences of proteins 

that fold to unique, biologically useful structures- 

Perhaps the most significant breakthroughs in understanding the'atypical p rop  

erties of proteins have been made by those researchers who have taken the sirnplest 



INTRODUCTION 2 

yet most direct approach to the problem. As is the approach with many problems 

that involve systems too complex to understand, it is adwmtageous to construct 

simple idealist models that examine only a few important features of the system. 

The only disadvantage to this method is that one must be careful of the conclusions 

drawn from the model, otherwise they can shed light on problems ~f enonnous com- 

plexity. The models that embody this approach are often referred to as "Minimal 

Models", as these models only contain a limited number of adjustable parameters 

to simptifv the system as much as possible. 

Ln the protein problem, the minimal modelq which present the 

the system are those which come hom polymer physics. Proteins 

biological structures can be represented at the most basic level by 

simplest view of 

and many other 

the models used 

to describe generic polymers. For example, proteins are linear random heteropoly- 

mers, while more complicated structures such as trader-RNA can be represented 

by a randomly Dranched polymer structure. Thus, for polymer physicists, the com- 

plicated systems of the human body are merely specific cases of their simple generic 

models. Therefore; these systems can be studied by examining appropriate models 

of molecules of interest. 

This is by far the most ~WEcult part of the problem; designing a model that 

represents the features of the biological system. In the past, numerous minimal 

models of protein-like systems have been proposed to study various aspects of these 

complex systems. The earliest and most successfd models tackle the problem with 

the use of lattice polymers, with simple binary potentials[2], or randorn energy 

interactions[l]. Although these models have presented significant insight into the 
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nature of protein systems, the underlying lattice causes key features to be Iost that 

are important to proteins. The most notable of these deficiencies is the lack of 

secondary structure, such as a-helices and P-sheets, in a lattice model. 

In the spirit of the basic minimal models that have been so successful in exam- 

ining generic protein properties, chapters 3 and 4 of this thesis e x h e  a minimal 

off-lattice model of helical secondary structures in proteins. The model uses a semi- 

flexible polymer, often referred to as a worm-like Chain, as the backbone structure 

for mimickïng protein segments. A potential is then designed to generate the helical 

structures that are subsequently studied. Although the model contains none of the 

specific features of a protein, by examining the effect of adjusting the few param- 

eters in our model we can learn much about the géneral characteristics of helicd 

structures and the nature of these structures in proteins. In chapter 5, the standard 

lattices models for examining proteins are used to study a specific class of proteins 

called prions. These molecules are the exceptions to the rules that characterize the 

properties of nomal proteins. We attempt to understand these proteins by finding 

a lattice model version of a prion, and characterizhg its unique features. 



Chapter 1 

Basic Concepts in Proteins 

Proteins are arnong the most complex molecules in an organism. These molecules 

are constructed using the genetic information encoded in the ceil that is stored 

within long molecular standsaof DNA. Each strand of DNA holds the sequences of 

thousands of protein molecules in a linear format. Thus, a DNA molecule could 

be compared to the ingredient List of a recipe; however, the DNA does not contain 

the information about how to mix it all together. This is an intriguing problem: 

How does the Linear sequence stored in the DNA molecule end up in a 3-dimensional 

useful structure? The thermodynamic hypothesis that was proposed by Anfinsen[3], 

suggests that a sequence will obtain the shape that minimizes the free energy of the 

system. Anfinsen won a Nobel Prize in Chemistry in 1972 for his work in the study 

of protein folding. There is one catch to this-hypothesis. If a sequence of amino 

acids is constructed randûmly, it is not likely to Ofind its lowest energy state. This 

leads to the question, what is special about a protein sequence that dows it to find 
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its lowest energy date  with such remarkable efficiency. This question of whether 
t 

there is a special pathway by which a protein fol& was proposecl by Levinthal[4] 

in 1968. This is referred to as Levinthal's paradox: If a protein has to sample al1 

the possible QN states available to it to find the lowest energy configuration, then a 

protein would never fold. Here $2 represents the number of available configurations 

per amho acid and N is the number of amino acids. To attempt to understand 

this paradox, we need to examine the protein system and the factors that influence 

their properties. 

1.1 Introduction to Proteins 

1.1.1 The Protein Sequence 

Protein molecules belong to the general class of random heteropolymers. They are 

considered polymers as they are built from sub-unit molecules c d e d  amino acids. 

This polymer backbone is often referred to as the primary protein structure. There 

are 20 different types of amino acids fiom which a protein is built with what appear 

to be a random ordering of these molecules. AU amino acids have the same basic 

backbone structure that is shown in Fig. 1.1. The symbol 'R' represents a grouping 

of molecules cded the R-group that distinguishes the amino acids fiom each other. 

Thiç grouping of molecules is C O M ~ C ~ ~  to the amino acid at the a-carbon. The 

left side of the a-carbon is attached to an amine group, and attached to the right 

side is a carboxyl group. 

To begin to form a protein chain, the backbones of the amino acids are connected 
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Figure 1.1: The basic structure of an amino acid. The symbol 'R' represents a 
grouping of moleciiles that differentiate each amino acid. 

via the chernical reaction sbown in Fig. 1.2. This figure iL1ustrates the release of 

a water molecule in the reaction, while a nitrogen carbon bond is formed. This 

process is continued to form the entire protein sequence. A protein sequence is 

always labeled with the free amine group to the left and the £ree carboxyl group to 

the right. The convention allows for the description of the degrees of fieedom of 

the polymer backbone of the protein. We h t  note that the double covalent bond 

associated with the oxygen of the carboxyl group is not stationary and is transient 

between the oxygen and nitrogen leading to two effective double bonds. The effect 

of the double covalent bond is the removal of any rotational degrees of freedom, 

which creates a planar geometry in the amho acid backbone as shown in Fig. 1.3. 

This Ieaves only two separate degrees of fieedorn associated with the backbone 

bonds of the a-carbon, which are referred to as the Rarnachandran angles q5 and $J. 

In addition to the rigidity introduced by the planar structure of the backbone, the 

R-groups on the amho acid can interact %vith the backbone. This further reduces 

the motion by restricting the aJlowed rotations, creating a rigid protein backbone. 
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Figure 1.2: Reaction demonstrating the formation of a protein sequence. Water is 
released as a byproduct of the reaction. 

1.1.2 Forces within a Protein 

Proteins are complex molecules with many interactions between different parti- 

des playing important roles in detennining the structure. There are the complex 

particle-particle interactions and the particlesolvent interactions. The later of the 

two is regwded as the dominant factor in creating the protein structure; however, 

it is not the only force requïred. 

The most important particle-solvent interaction in the folding of a protein to 

its three-dimensional structure is the hydrophobicity. This is the preference of the 

molecule for water as a solvent. For example, a very Eydrophobic substance is oil, 

while any substance that readily dissolves in water is hydrophilic. These materials 

are often referred to as non-polar and polar respecti~el~ The hydrophobic forces 

within a protein are not enthalpic, but are generated from an increase in the entropy 
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Figure 1.3: Protein chah showing the degrees of fieedorn about the a-carbon. The 
double bond to the oxygen on the carboxyl carbon becomes transient and oscillates 
to fiom a double bond between the nitrogen and carbon (dashed bond). This 
prohibits rotation about the nitrogen carbon bond, which fixes these atoms in a 
planar structure- 

of the solvent protein system as  a whole- When non-polar molecules are placed in 

water, an ordered cage of wat er molecules is created around them as water molecules 

hydrogen bond to encapsulate the non-polar groups. This ordered cage is referred 

to as a clathrate. When a protein is in an extended conformation, a large clathrate 

is needed in order to enclose the non-polar residues. In a collapsed conformation, 

the exposed surface area is much less, thus reducing the number of water molecules 

that need to be ordered to encapsulate the structiire. This reduction in the needed 

surface area increases the entropy of the entire system making the collapsed state 

preferred. 

All other forces within a protein are enthalpic in nature and can be consid- 

ered short-rangecl forces. These forces can be further subdivided into two groups, 

isotropic and anisotropic. Dealing k t  with the isotropic interactions, there are 



Van der Waals and ionic bonds, which have the foliowhg respective potentials, 

where a and b are constants specsc to the molecular interaction, r is the distance 

between particles, q is the particle's charge, and E is the die1ectric constant. The 

ionic potential is considered short-ranged as the solvent screens the potential over 

a long range. In addition, the second group of forces which are of an anisotropic 

nature are those of dipoles and hydrogen bonds. The respective potential forms for 

these interactions are, 

where ji is the dipole moment of the atom, 0 is the angle of alignment between the, 

dipoles of the bonds, and c is a constant related to the angle O. These interactions, 

particularly hydrogen bonding, are responsible for the secondary structure forma- 
\ 

tion and stability observed in a protein. It is these forces which are of most interest 

in this work. 
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1.1.3 Structure of Proteins 

The forces at play within a protein yield to complex behavior in terms of the 

structures formed. Perhaps the most remarkable feature of protein systems is that . 
the same structures are repeatedly observed throughout a variety of dinerent protein 

types. The three-dimensional structures observed can be broken into h o  cat egories, 

secondary and tertiary. 

Secondary structures are the set of sub-structures that are formed during 

folding. There are three types of secondary structures: 1) helix, 2) ,û-sheet, and 
- - 

3) random coil. The h e h  is the most abundant secondary structure observed, 

and is formed by the hydrogen bonding of amino acids near each other dong the 

chah. Due to atomic constraints on the dowed q5 and @ angles in most sequence 

combinations, helices tend to coil with a right-handed preference. The beta sheet 

is another commonly obsewed structure, where segments of the protein arrange 

t hemselves in ext ended conformation and bond int O a sheet-like structure. Unlike 

the helices, Psheets are formed from hydrogen bonding of amino acids separated 

by many other amino acids dong the chah The random coil type of secondary 

structure is the grouping of all remaining configurations. Although randorn coils do 

not have any short ranged order, the structures they create usuaJly have a specific 

role-and carinot be replaced by any random sequence arrangement. The randomness 

in the name applies only to the la& of definite structure, and does not mean that 

any set of amino acid can replace a random coil segment. This is evident as the 

randorn coil segments usually form the functional site of the protein, and replacing 

it would iead to completely Werent functionaIity- 
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Tertiary structures are the next level of complaciw within the proteins overd 

form, and are b d t  out of the secondary formations discussed above. It is these 

'structures which come together to create the complex proteins observed. Some of 

the common tertiary stmctures that are observed in a wide range of proteins are 

the helix and ,û-sheet barrels. There are numerous tertiary structures ranging from 

simple to complex, and they can contain an active site for biological processes or 

provide structural support within a membrane. 

1.2 Application of Minimal Models 

As has been demonstratecl, a single protein is a very complicated system, making it 

nearly impossible t O understand completely. The problem is furt her compounded 

by the fact that there appears to be little correlation between different protein 

molecules- Yet, there are simila. features on another level. The key features of 

all proteins are: 1) they have a single three-dimensional structural form called the 

native state, 2) the protein can fold to the native state repeatedly, and 3) the time 

scale of folding is exceptiondy short[l]. 

There have been numerous models developed to study proteins from the very 

simple to the extremely complex. We discuss a variety of models that demonstrate 

some of the key features mentioned above and we also discuss their limitations. 

We begin with the minimal models, those that mode1 a protein on a lattice, and 

then move to the more complicated models that attempt to account for all of the 

possible forces. 
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Model ' 

Perhaps the simplest mode1 of those that attempt to mode1 a protein's predominant 

features is the HP model- This model is considered to be the h g  model of protein 

systems. The model was nrst introduced by Lau and DïU[2] in 1989, and m&es use 

of the hydrophobicity believed to dominate force the foldhg process. 

The model is constructed on a lattice to limit the total number of possible 

configurations. Each nmino acid is represented by a sphericd monomer and is 

designated as hydrophobic (H), or hydrophilic (P). The interaction potential is as 

follows, 

-1 f o r H - H  

O f m P - P  (1.5) 

-7 f o r H - P  

where 7 is a variable constant. The hydrophobic interactions (H-H) are attractive 

in order to mimic the repulsive nature of the solvent monomer interactions that 

cause these monomers to group together. The interaction is normdked to one to 

simplify the potential. The hydrophilic interactions (P-P) are set to O to simulate 

the molecule's preference to be dissolved in the solvent. Cross interactions (H-P) 

have an interaction strength somewhere between these two extremes, andthus, 7 

is set between O and 1, and can be .variecl to study different properties. 

Although this model is extremely simplistic, it is very powerfd and captures 

several key features of protein molecules. A study by Li et al. (51 showed that the H P  

Model has remarkable correlation to a real protein system, by analyzing a matrix 

of protein interactions. The mat& constructed by Miyazawa and Jernigan[G] con- 
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tains experimentd information approximating the interaction potentiais between 
l 

different amino acids. Li et al. showed that the strongest interaction is that of the 

-hydrophobicity, while the next most dominant force is one of dembcing. Dembciug . 

is explaineci in the following way. If in the HP model the interaction parameter 7 

is zero, then it is clear that al l  the hydrophobic molecules will attempt to group 

together and wil l  form a central core. The hydrophilic mo1ecuies will then surround 

the central core like a shell. The demixing term, which is char~terized by the pa- 

rameter r, d o w s  the hydrophobic moIecules to move to the outer shell and the 

hydrophilic molecules to move to the core, while still resulting in a lower energy. 

Thus, setting the parameter 7 to zero is not a physicaUy acceptable condition. 

Therfore, the HP Mode1 in essence contains two very important features in a very 

simple model. 

This model has been successful in examining some interesting properties of 

proteins. In another work umng this model, Li et ai.[?] attempted to show that 

secondary structure results as a consequence of a sequence having the ability to fold . 

quickly to its native state. More importantly, this model has been used extensively 

in the inverse protein folding problem, which is the problem of h d i a g  the sequence 

that designs a specilic stnicture[8,9]. Although this model is successful, it is limited 

in its scope of questions it can answer. For example, it lacks diversity in sequence 

energies, as sequences that have degenerate native states frequently occur. These 

sequences are typically ignored in most studies. In addition, secondaq stmctures 

are difiicult to  define on a lattice, which makes it dif]Eicult to present conclusive 

results on this topic[lO]. 
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A more advanced variant of the HP mode1 is the 27-mer model. This model was 

introduced by Sali et d.[l] in 1994. The model introduces an aspect of proteins 

that the HP model disregards. The HP model only divides the interactions into 

two types, while in reality there are twenty different amino acids that c m  have 

their interactions iduenced by their neighbors dong the backbone and in the sur- 

rounding area. This produces an extensive variety of interaction strengths, which 

are featured through random energy interactions in the 27-mer model, and it is the - 

o d y  addition to the basic HP model. 

The 27-mer model is designed in the s m e  way as the HP model, as it is a Iattice 

model. The difference lies in the choice of interaction energies. The interaction 

between each set of monomers is chosen randomly from a Gaussian distribution to 

generate a specific realization of a sequence. The distribution of interaction energies 

chosen has a standard deviation of 1.0 and is centered about a value Bo, which is 

usudy negative. The added advantage of this model is that it WU almost always 

produce a single lowest energy native state, adding a more realistic feature' to the 

basic HP model. 

This model has been one of the most successful minimal models in describ- 

ing proteins. Work by Sal i  et al$, 111 was the first to demonstrate some of the 

fundamental properties of protein sequences using this model. If one assembles a 

protein sequence from a raodom combination of amino acids, the chances are that 

the sequence will not fold to any particular native state. By generating a large 

number of random sequences, Sali et al. showed that a s m d  fraction of the se- 
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quences could fold to the sarne compact structure when foIded numerous times. In 

addition, these sequences could reach their native state in a relatively short period 

-of computational tirne. What set these fast-folding sequences apart £rom the rest? 

Through analysis of a representative spectnim of the low lying energy states in the 

system, it was found that the sequences which folded quickly had a native state 

energy that was much lower than that of any other low energy states. Thus, it was 

concluded that in order to obtain a fast folding sequence which folds to a single 

native state, the energy of the native state must be separated by a significant gap 

from the continuum of low lying energy states. 

The 27-mer model has been used to examine numerous other issues in regard to 

protein folding. T t  has been used in evolutionq folding studies which study the im- 

portance of a central nucleation site that is conserved in a mutation process[l2, 131. 

This model has also been used to examine the nature of the folding pathway[l4,15]. 

Does a protein fold via a ho-state process of globular collapse then a structural 

transition, or via a series of intermediate States? .These studies dong with exper- 

imental evidence[lô] have shown that the two-state mechanism is the most iïkely 

scenario. The model has been so widely used that it has become a standard model 

for e x d g  the dynamics of protein systems, and we make use of this model later 

in chapter 5. 

1.2.3 Go Type Models 

The Go type model[l?, 181 is yet another minimal model of protein folding which 

is an extension of the 27-mer model. The model was first introduced by Taketomi 
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et al. in 1975[17]. In this model, the lattice constraints are removed and the 

protein rnolecule is simulated off-lattice. The removal of the very restrictive lattice 

-constraints presents numerous other problems. The additional phase space now 

available to molecule rnakes finding a sequence that is a good folder very djfEcuIt. . 

The model is usually constnicted of a flexible or semi-flexible polymer chain 

where the interaction strengths are drawn from the random distribution of extergis. 

Typically the model is used in the following way: a) a structure of interest is 

selected, b) monomers are given random interaction çtrengths that are adjusted 

such that the selected structure is the native state of the molecule. The r d t  is a 

model of a specific structure that has properties similar to that of a protein. The 

model is ideal for capturing the characteristics of a specifk protein, but the results 

obtained fiom one structure are generally only transferable to another in a generic 

way. 

The Go Mode1 has been used in a number of different studies. For example, 

Zhou et d.[19] studied the structural transitions in a three-helix bundle in a domain 

of staphylococcus aureus pro tein. They were able to demonstrate the complex series 

of structure phase transitions that the bundle undergoes. The model has also been 

used by Dokholyan et al. [20, 211 to identify the folding nuclei within protein 

structures and to study the thermodynamic importance of these contacts . 

1.2.4 All-Atoniic Models 

A final class of models which are perhaps conceptually the easiest to construct, but 

technidy the most difficult to implement, axe those of all-atomic rnodels. This 
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class of model attempts to model all the atomic details of a protein. They are not 

minimal models, but are the most used models for studying protein systems. These 

*models are typically used in conjunction with molecular dynamics techniques and 

are used to examine the motion of various protein struct-ues- 

There are wide ranges of dl-atomic models that have b e n  created over the years. 

Perhaps the most notable simulation packages and potentials are the CHARMM[22], 

AMBER[23], and KNOF90[24]. These packages have been used in numerous stud- 

ies that typically iavolve studying the structural behavior of proteins in which the 

ground state is already known. These all-atomic models present the best method 

for understanding the interna1 dynamic behavior of a structure. For example, how 

hemoglobin captures and releases oqgen[25]. 

This class of protein models has drawbacks. The first is that although attempts 

are made to capture the full behavior of the atoms being simulated, no one is 

hlly certain of the correct fonn of the potential. Although the potentials are very 

sophisticated, the simulation results will stiU depend on the potential form, and 

thus the r e d t s  may not be as representative of actual systems as would be hoped. 

However, there has been some suggestion that the potentials are robust, and that- 

significant changes in the parameters produces minimal change in the calculated 

results[26]. The second and more serious limitation of this class of model is the 

resources required to run the simulation. The potentials are complex and can be 

difficdt to enumerate. Also, in order to capture the full nature of the system, 

solvent atoms must be simulated thereby making the total number of atoms that 

neëd to be accounted for range into the thousands. This class of models is thus not 
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ideal for folding simulations, as the time scales involved are orders of magnitude 

larger than the typical internd motions within protein structures and require too 

- many resources to  be simdated. 

1.2.5 Helices and Zimrn-Bragg Theory 

As has been discussed, minimal models have been used extensively to understand 

proteins. An understanding of proteins also requires knowledge of some of the 

simpier structural components and their behavior. Helices are the most dominant 

secondary structures observed in al1 proteins. For this reason many groups have 

studied them analytically[27, 28, 29, 30, 31, 321 and with d-atomic models[33, 

34, 35, 361, but not many have studied them with minimal models[37]. The most 

notable of the analytical theories is one that was first presented by Zimm and 

Bragg[27]. 

Zimm and Bragg's theory treats the system as a quasi one-dimensional Ising 

system. In tbis model, each monomer is assumed to exist in one of two states, 

mil, 'c', or helix, 'h', and two parameters are used to describe the interaction. 

A parameter Afs represents the fiee energy of a monomer d i n g  in a helical 

state, and as the transition fkom the coil-to-helix occurs, this parameter goes to 

zero. The other parameter A f ,  describes the loss of fiee energy due to nucleation 

of the new helical segment. In the cdculation of the relevant quantities, these 

parameters are represented through the statistical weights of the various states as 

S. = exp[-A fs/T] and oz = exp[-A f,/T] - 10-~. The values s, and oz can be 

th*ught of as the probability of propagating a helicd region and the probability of 
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nucleating a helical region, respectively. 

Thus, in the simplest of Zimm and Bragg's models, weights are assessed to each 

'segment based only on the precdng monomer in the sequence- It is assumed that 

the beginning of the chain is a coil, and the first three monomers are always in a 

coil state. In a dculation, random sequences of 'c's and 'h's are considered, and 

each sequence combination is given a weight based on the following d e s :  

1) For each 'c' + 1 

2) For each 'h' which foliows a 'h' + s, 
3) For each 'h' which follows a 'c7=+ o,s, 

Rule one implies that the statistical weights are normalized such that all coil 

segments are given a weight of unity. The second rule states that each helical 

segment has a free energy different than that of the coil segment. By adjusting 

' the temperature, this energy can be made greater or less than one, The final 

rule suggests that there should be a loss of fiee energy when a helical segment is 

forrned due to a reduction in the entropy of the system. The mode1 c m  be further 

complicated to add in features of real helical forming protein segments. Changing 

a single amho acid usualiy cannot break helicd segments. Thus, in order to add 

the idea that several amino acids must change to a coil state to break a helical 

segment, a fourth d e  is added. 

4) For each 'h' which follows l e s  than p 'c's + O 

This means that segments of Iess than p 'c's do not occur within a segment. 

Using these d e s  a matrix describing the system can be written down and solved 

for the largest eigenvalue. This value can be related to the properties of interest. 
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For example, the average helicity can be obtained through the following equation, 

8 = d ln Ao/dln s,, (1-6) 

where & is the largest eigenvalue, and 8 is the average helicity. Zimm and Bragg's 

result for this value demonstrates the strong cooperative nature of transition to a 

helicd state- Zimm and Bragg also showed that c must be zero in order to obtain a 

true first order phase transition. Therefore, the coil-teheluc transition is not a true 

,phase transition as a, cannot equal zero. The change to a helicd state would occur 

as a transition from a coil state to a state of alternathg helical and coil region, 

foilowed by a transition to a nearly perfect helical state with occasional disorder. 

Although the helix-coi1 transition has been studied analyticdy by other groups, 

the conclusions are similar while atternpting to irnprove the accuracy of the calcula- 

tion. For example, L&on and Roig[28] have introduced a very similar calculation, 

but remove the directional dependence of the sequence in the Zimm and Bragg 

method. In' addition, the Zimm and Bragg model has also been used as a standard 

in experimental studies ofhelical propensities of amino acids[38]. The model does 

not have a q  predictive power because a must be determined f?om experiment, 

but it does offer a method of cornparison of all-atomic simulations to real protein 

systems [33]. 



CHAPTER 1. BASIC CONCEPTS lN PROTEINS 

1.2.6 Present Work 

The extensive use of minimal models has provided a large amount of knowledge 
- 

about the fundamentai nature of proteins. In the study of more complicated issues 

such as the formation of secondary and tertiary structures, there have been few 

minimal models constmcted that address questions about them. 

For helical secondq structures the number of minimal models is limited. One 

new minimal model has been introduced by Potthast[37], who bas constmcted a 

helical model by adding tomon bonding constraints between adjacent neighbors 

dong a polymer backbone. In chapter 3 of this work, we present a new minimal 

model of a helix that can be used to examine the statistical properties of helicd 

secondary structures. In this model, adjacent neighbor interactions are ignored 

in favor of studying anisotropic interactions that are typically seen in proteins. In 

chapter 4, the mode1 of chapter 3 is modifieci in order to study the dynamic behavior 

of'heiices. This is the only minimal model designed to study helical segments. 

In the final chapter, prions, which are unique protein sequences, are studied. 

These sequences have only recently become an area of study. We use the standard 

27-mer model to study these structures at their most fundamental level, as previous 

studies of these structures using minimal models have been Iimited[39]. This study 

attempts to show that even the most simplifieci models can demonstrate the complex 

behavior of prions, and to provide a rnethod to study the issues relating to prion 

dynamics. , 



Chapter 2 

Simulation Techniques * 

Before discussing the models in this thesis, an examination of the technical aspects 

of the simulations is in order. In this chapter, there will be a focus on the theory 

behind the Monte Carlo technique used and the dgorithrns used to create the simu- 

lation. In addition, a detailed look is taken at the advancecl Monte Carlo technique 

of using a multicanonical ensemble to conduct a simulation as it is employed in 

chapter 3. 

There are numerous techniques to study different aspects of protein systexns. 

Largely, most studies are carried out using molecular dynamics techniques, and 

to a Iesser extent , Monte Ca10 techniques. Molecular dynamics techniques focus 

on the real time motion of particles and attempts to understand the behavior of 

large molecules under certain conditions. Monte Carlo techniques focus more on 

examining the statistical properties of these molecules, such as how quantities scale 

with system size. The Monte Carlo techniques c m  &O be applied to dynamics 



C ' E R  2- SIMULATTON TECaZVIQUES 23 

models, Despite the fact that the dynamics are no longer directly correlated to 

real time motion of the particles, the dynamics obtained with this method present 

-useful information about the general behavior of the system. 

In simulations of modeis that involve the inclusion only the most minimal of 

forces, Monte Carlo simulations seem to dominate due to the decrease in necessary 

resources. The focus of this research revolves around studies based on Monte Car10 
- 

techniques and advanced Monte Carlo techniques, which we will discuss in this 

section. In addition, some classic polymers models that are also used to study 

these systems are discussed in detail. 

2.1 Monte Carlo Method 

Monte Carlo has been around for over half a century, but only in the Iast twenty 

years has it made its rise to the forefront of scientific research as cornputers have 

become more powerful. Monte Carlo is a method of solving complicated integrah 
/ 

based on generating numerous random possible outcomes. For example, the equa- 

tion 

can be solved by generating random numbers between zero and one. The quantity 

exp(-x2) is then simply averaged to obtain the value of the integral. This is perhaps 

the simplest application of the technique to solve an integral. 
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2.1.1 Metropolis Method 

In 1953, Metropolis et d.[40] developed an algorithm to calculate integrals fiom 

more complicated systems, such as equations of state. The method, often referred 

to as importance sampling, chooses random points fkom a preset distribution based 

on the previous history of the simulation as to allow the algorithm to sample states 

in a region that contribute most to the integral. The problem lies in generating a 

sequence of random states with the proper probability of occurring. 

This problem is solved by introducing a Markov process. A Markov process is 

a sequence of trial states that have two properties: 1) each trial belongs to a finite 

set of outcornes, and 2) the outcome of each trial depends only on the outcome 

- that p r d e d  it[41]. The transition between any two states is represented by a 

stochastic mat&, ?r, which must sati& the condition that a limiting distribution 

can be reached, ie. 

p=rTTP, (2.2) 

where p is the equilibrium distribution. Thus, any stochastic matrix that obeys 

Eq. 2.2 and creates the desired distribution could be used in a simulation- A prob 

lem arises in determining the matrix that gives the desired distribution. Introducing 

the condition of detailed balance, which is an unnecessarily strong condition[41], 

solves this problem. Detailed balance is the condition of microscopie reversibiiity 

and is represented by the equation, 



CHAPTER 2- SIMULATION TECHNIQUES 25 

Using this condition, different possible matrices can be generated. Metropolis et 

al.'s[40] choice for the transition mat& is given below; however, it should be noted 

- that this choice is n6t unique. 

where m # n, and ci! is a constant usudy set to one. In a simulation of a canonical 

ensemble, the probabilities, p,,, are the Boltzmann weight functions, 

where En is the energy of the nth configuration, and kB is the Boltzmann constant. 

The final problem in the metropolis algorithm is generating aJl the possible trial 

states. There have been hundreds of methods developed to generate the different 

- states of various systerns. The one requirement for these methods is that it must 

obey ergocity. In other words, the dgorithm must be able to generate alI possible 

states, fkom any initial starting configuration, within a finite amount of time. In 

polymer physics, there are numerous possible ways to generate the available states; 

however, we will only discuss three algorithm relevant to this thesis. 

2.1.2 Non-local Markov Process: Pivot Method 

The pivot algorithm is an excellent method for generating the possible configura- 

t iok  of a polymer ch-. The method was introduced by Madras and Sokal in 
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1988[42], and has been used in a vafiety of studies. In the model, a large cluster of 

monomes is moved together producing a configuration significantly different than 

-the previous step, and thus, they are not locally related on the energy Iândscape. 

This process can produce configurations that are uncodated structurally with 

relatively little computational effort. This rnakes the technique ideal for studying 

the conformational properties of polymer systems. 

The basic pivot algorithm is described as foUows for a polymer chain 

bonds. A bond, i, is selected at random fiom the N available. The remaining 

bonds are then rotated together using an Euler rotation matrix which is generated 

randomly such that a uniform distribution is attained in spherical coordinates. The 

new codiguration is the trial state. The energy of the tnal state is then numerated 

and the configuration is accepted or rejected based upon the Metropolis critenon 

discussed above. These steps can be repeated to generate the entire spectnim of 

configurations with excellent efficiency while maintaining a constant bond length, 

whicb is ideal for many systems where the Spical interactions are much weaker 

than the covalent bonds comecting the monomers. 

This algorithm can also be modifieci to simulate systems that include more 

constraints. For example, in a simulation where the azimutha1 angle has been fixed, 

a single move is just slightly more complicated. In this case, the bond around which 

the monomers are rotated must first be rotated to lie dong the z-mcis using an Euler 

rotation- A second rotation in which the polar angle is changed is then carried out. 

This is followed by an inverse rotation of the original rotation to restore the ch& 

so that it lies dong its original &S. This ensures that a fixed azimuthal bond angle 



is maintaineci in addition to the fixed bond length- 

These methods are particularly effective in studying the statistical properties of 

-polymers in general, and are perhaps the most efficient in cases such as the fixed 

azimuthal bond angle. Although this algorithm is effective at sampling states at 

hi& temperatures, depending on the type of system, it can be vexy ineffective at 

sampling the low temperature region where smaller local moves are favored by the 

energy constraints. For example, sampling the collapsed states of a polymer system 

with a mical  Monte Car10 pivot may not be possible as large movements of a large 

number of molecules would probably be rejected, especially when the system size 

is large and the probability of overlapping monomers is hi&- 

2.1.3 Local Markov Process: Dynaniic Motion of a Polymer 

Another class of algorithms which can produce the spectnim of states of the system 

are those that use only local moves. This is perhaps one of the oldest methods for 

generating the states of a system. The method m e r s  fiom those of the non-local 

class as only one monomer is being moved at a time, which takes considerably longer 

to generate structural uncorrelated structures; however, it adds the advant age that 

it simulates the dynamic behavior of the molecule. 

The type of local move algorithm used depends greatly on the constraints of 

the system. If a monomer is not restricted in its movement by such things as 

a constant bond length, then the algorithm is very simple- In thiq case, a move 

consists of randornly selecting one of the N + 1 monomers, i, and displacing it by a 

mal1 amount to obtain the new trial position. The trial position ïs then accepted 
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based on the Metropolis criterion. If the cornmon constraint of a fixecl bond length is 

added, then the approach differs slightly. The trial state is generated by creating an 

a>oS between the i - 1 and i+ 1 monomers and then rotating the P monomer about' 

this axis. This maintains the constant bond length constraint- More complicated 

algorithms can be deriveci to handle constraints such as maintaining a h e d  bond 

angle, which is handled with the SHAKE algorithm[43]. 

2.1.4 Lattice Markov Process: 3D Cubic Lattice 

The final algorithm of interest is one that is used to generate configurations for a 

polymer -chah when it is confinecl to a lattice. The algorithm is also designeci to 

use local moves so that the Markov process also mimirs the dynamic motion of the 

system. Generating the motion of a polymer chain on a lattice through a series of 

local rnoves can be tricky, as some lattices c m  sometimes introduce problems with 

ergodicity. 

It has been shown that there are four types of moves that n d  to be included 

in order to simulate the dynamic motion of a polymer correctly. These moves are 

depicted in Fig. 2.1. Fig. 2.la is callecl a craxhhaft move and is a double monomer 

move that must be included with the other three single monomer moves in order to 

obtain the correct behavior[44j. To conduct a simulation, the procedure of et 

al. [ll] is used to mimic the folding of a protein. At the &art of this procedure it is 

randomly decidecl whether a single or double monomer move will be performed, with 

respective probabiliti& of 20% and 80%. In a double move, an adjacent monomer 

pair is selected and the configuration checked to determine if a crankshaft move 



Figure 2.1: The four required rnoves for a Iattice, a) crankshaft, b) corner flip, c )  
end move, and d) no move. 

can be performed. If it camot the move is rejected and the selection of a single 

and double monomer move is repeated. In the case of a single monomer move a 

randorn monomer is selected and the configuration is checked to determine if one 

of the three single monomer moves can be performed. Once a double or single 

monomer move is applied, the energy of the new trial configuration is calculated 

and the move is further rejected or accepted bas& on the Metropolis criterion. This 

procedure is a common method for simdating the lattice dynamics of the 27-mer 

mode1 discussed in chapter 1. 
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2.2 Multicanonical Technique 

The key assumption that is made in a Monte Cado simulation is that the system 

is able to  sample the representative proportion of states that contribute most to 

the integral- The Ma,rkov sequence generated during the simulation should sample 

these states. This is not always the case. In solid state systems, temperature plays 

a key role in the effectiveness of an algorithm to sample the available states. At 

high temperatures, there are umdy no obstacles to prevent the movement between 

states if the algorithm is ergodic. At low temperatures, energy barriers can play 

a significant role in reducing the effectiveness of a Metropolis algorithm, as the 

energy barriers artificially separaie regions of configurational space. 

In the low temperature regime, a polymer rnolecule has a high probabiiity of be- 

coming trapped in an energy minimum and not sampling the entire conformational 

space available to it within a finite mount  of computationd time. Overcoming 

this problem has been the focus of numerous simulation-methodology studies for 

many years. Perhaps the most effective solution to this problem to date is the set 

of dgorithms that stem fiom the umbrella sampiing technique[45]. The basic prin- 

ciple is to find a more effective statistical weight than the conventional Boltzmann 

weight used in a Spical Monte Car10 simulation. The object is to bias the weights 

in such a way that movement through the low temperature states is favored so that 

the polymer does not become trapped. This is done by guessing a weight function 

based on such things as the density of states or the lowest energies of the system. 

A few of the more recent algorithms of th% class include simulated tempering[46], 
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mdticanonical annealing[47], and the multicanonical technique[48, 49, 501, aJl of 

which have their particular advantages and disdvantages and are well suited for 

'the systems to which they are applied. 

In chapter 3, we use the multicanonical technique to study the statistical prop 

erties of our heluc model. In the multicanonical procedure, we re-weight the tem- 

perature of the system to produce a histogram that is relatively flat over all energies 

in the model. In other words, the simulation visits each energy state of the sys- 

tem an equal number of times during the production run. This is demonstrated 

by examining Fig. 2.2 which illustrates two histograms. Fig. 2.2a shows a typical 

histogram of the probability of visiting a specXc energy state under a Boltzmann 

distribution, while Fig. 2.2b shows a desired histogram of the probabiiiw of visiting 

a specifi& energy state with our new distribution hinctions. This is done by making 

temperature a function of energy, which removes the specific temperature from the 

Boltzmann weight function and essentially creates a simulation that is perforrned 

at al1 temperatures at the same time. The procedure for creating this new weight 

function is outlined below. 

In this method, we are really interested in modifving the Boltzmann probability 

of the energy states (Fig. 2.2a), which is given by, 

where n(E) is the density of energy states, Z is the partition fùnction, and P = 

l /kBT. Of course, we are not lookuig for this distribution as we need a new dis- 



CHAPTER 2. SIMULATION TECHNIQUES 

Energy Energy 

Figure 2.2: a) A representation of a histogram of a typical Boltzmann weighted 
simulation. b) A respesentation of the same histogram preformed with a multi- 
canonical weight. The histogram is approximately uniform. 

tribution that is constant (Fig. 2.2b) over all energies. This distribution is created 

by writing the inverse temperatures as a function of the energy and by adding a 

function a to the Boltzmann distribution in the following way, 

where B'(E) and a l (E)  are functions of energy. In order to d e ~ v e  a method by 

which P1(E) can be determined for the specifk de&ity of states of our system, it 

is written as a function of P(E)  by examinhg the ratio Pf(E) /P(E) .  This leads 

to the form 1511, 
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where 2 is the new partition function. The functions P(E) and a(E)  are chosen 

to be those for the Boltzmann weight function, where ,û(E) is a constant function 

. of energy, P(E) = P, and a(E) is zero for a l l  energies. Thus, if P(E) is the known 

Boltzmann probability distribution, a probability distribution P'(E) that is fiat c m  

be created; however, P(E) is not known a fior% because the density of states is not 

known for the system. If the density of states was known, all quantities codd be 

calculated directly and the problem would be trivial- We settle for a rough estimate 

for P(E)  and reply on a recwsive method for detennlliing the proper forms of the 

functions $(E)  and a'(E). This recursion relation can be constructed by grouping 

the energies of the system into bins as demonstrated in Fig. 2.2. If we create a 

histogram to estimate P(E) , and uitroduce the condition that the new histogram, 

Pf(E) ,  has adjacent bins of equal magnitude, the new functions of cd and 0' can 

be calculated. This condition irnplies, 

where Ei. are the energies of the ith bin. This yields the necessary equations to 

generate the a' and p' functions needed. 

Solving Eq. 2.10 using Eq. 2.8 generates the method for obtaining P'(E) denved 

by Hansmann & Okamoto[33]. 

1) We fkst perform a simulation under a simple canonical distribution, at a temper- 

ature where the system is well above any transition. The energy s a l e  is discretized * 

across the energy range of interest. 
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2)We estimate the probability density by a histogrsm, P(E).  For all P(E) that are 

above an arbitrary cutoff, generate a function S(E) with, 

S(Ec) = h(P(Ei)) . (2. il) 

3) Rom the h c t i o n  S(E) we generate the new multicanonical parameters at(E) 

and ,ûr(E), accordhg to the following equations: 

respectively s i g n e  the upper and lower bounds of the energy Here E,, and E- I 

range which is to be re-weighted to a flat histogram. E,, is arbitrady set to 

a convenient value which is typically the energy at which the maximum in P(E)  

occurs. This is chosen as aU energies above this would be properly sampled by a 

normal Monte Ca10 simulation conducted at a temperature ,&. E,, is usually 

chosen to be the ground state energy of the system, but this is not a requirement. 
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4) Begin a new simulation with the Metropolis weighting function of 

wf(E) = e -B'(E)E-a'(E) - 

There is a significant problem in this method. If Pf(E) could be accurateiy 

determinecl using t h  method, the simulation could have been performed using 

P(E). Normdy, P(E)  is not determineci accurately enough in a single attempt 

to yield the desired histogram; thus, a recursion method is used to increase the 

accuracy of the histogram. If the weight function from step 4, wf(E), is used to 

conduct a new simulation, the same four steps c m  be used to construct a better 

weight function d' (E); however, /3" and a" will be a function of P(E),  of, and a'. 

F'rom Eq. 2-12 and Eq. 2.13 /3" and a" can be written in terms of the onginal 

Boltzmann variables. 
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Therefore by keeping a ninning t d y  of S(E) such that Eq. 2.11 is now 

where H ( E )  is the histogram of the current probability distribution, then steps 

2 through 4 c m  be repeated until a sufliciently flat histogram is achieved for all 

energy bins of interest. 

A single production run is then made with the final calculated weight function. 

The averages collectecl fiom this simulation nui are not weighted according to the 

Boltzmann integral, but according to the following from, 

Therefore, the production run values need to be reweighted back to the original 

distribution. The averages under the Boltzmann distribution are calculated from 

the multicanonical values with the following formula, 

where w(E)  is the Boltzmann weight function, and wr(E) is the multicanonical 

weight function used in the production run. Eq. 2.22 shows how any temperature 

can be examined, as the Boltzmann temperature is merely an adjustable parameter 

in w(E). This allows the entire temperature range to be examined in a single 

production run, as a Boltzmann temperature is not explicitly used in the production 



m. 

As has been shown above, this method has adwtages for the calculation of 

quantities at low temperatures over regular Monte Carlo techniques. This method 

does have some limitations. It shodd be noted that the calculation of the new 

weighting function could take considerable CPU time, which in the end does not 

lead to  significant advantages over typical Monte Carlo procedures. Also, in sys 

tems with glassy low temperature regimes, it can be difEcult to obtain convergence 

towards a uniform distribution when detennining the propo weighting function. 

Despite these disadvantages, the mdticanonical technique is well suited for sys- 

tems with first order phase transitions, as the technique can be used to accurately 

determine the location of the transitions and properties of the specific heat and sus- 

ceptibility c w e s  for finite size scaling analysis. In this respect, the mdticanonical 

technique surpasses typical Monte Carlo. 



Chapter 3 

- Minimal Helix Mode1 

Helices are the most commonly occurring secondary structures in proteins. For 

this reason they have been the focus of many studies for the past 40 years, as 

researchers attempt to understand the întricacies of protein folding. Understanding 

these secondary structures is a significant advance toward a complete understanding 

of proteins in general. 

In this chapter, a minimal off-lattice model of a helical segment is constructed 

using an aaisotropic potential. The model is exnmined in detail for the structural 

states occuming, the scaling behavior of the difFerent structural regicns, and the 

effect the anisotropy of the potential has on the results. The construction and 

analysis of this mode1 is the main focus of this thesis. 

The traditional view of the coil-helix transition has been to treat the system 

as a quasi one-d ime~~~iond~s in~  systern[27, 281. Using this idea, rnany mean-field 

theories describing the nature of the transition have been put fortb, with the most 
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well knonm being that of Zimm and Bragg1271 which is discussed in Chapter 1. The 

understanding of these stnictures is that the system c m  be treated as  a single first 

order like transition of a coi1 to a helk,  mhich, due to the one dimensional nature 

of the problern, is not a true phase transition in the thermodynamic iimit. This 

Ieads t o  a maximum helical length that is inversely proportional to fi. 

3.1 Recent Work 

Some recent theoretical works have shown that  the coil-helix transition can behave 

as a phase transition when exqernal media are considered. Carri and Muthukumar[52] 

have suggested that the coil-helis transition in the presence of an absorbing mem- 

brane will become a true second-order phase transition. Park and Sung have 

studied transmembrane heliu formation, with accompanied first-order adsorption 

transition[53]. Buhot and Halperin[54] have examined helical bnishes, which a t  a 

critical density undergo a first order phase transition. On the experimental side, 

much of the interest in the coil-helix transition bas been in examining the propen- 

sity of various amino acids to form helical structures[38]. Other interesting studies 

include those by Kumar and Manjii[55] who have recently examined the character- 

istics of a-helices in globular proteins and characterized them as kinked, ngid, or 

curved, with the largest fraction falling in the curved category. In Samulski's[56] 

study of the coil-hellu transit ion, collapsed configurations nrere observed t o  occur 

a t  a higher temperature than the coil-helix transition. 

In recent years, it has become more popular to study these structures with the 
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use of computer simulations in order to obtain a better physical picture of the 

system. This has proven to be fruithl as these simulations have shown that the 

coil-helix transition may involve multiple transitions[57], and that the system could 

be characterized by critical exponents[58, 591. It has also allowed helical structures 

to be examined closely on a molecular scale through statistical analysis[33] and 

dynamic sirnulations[34, 351. 

To study helk formation via a computer simulation one rnust create a mode1 

that has a helical ground state a t  low temperatures. This has typically been done by 

attempting to mimic a protein's interactions, and then choosing a protein sequence 

that is known to be a helix former. This approach is referred. Co as the all-atomic 

method which is discussed in detail in chapter 1. The problem with this method 

is that a protein's potential energy function is extremely cornplex. It is not only a 

fiinction of the amino acids in the sequence, but aIso a function of the type of solvent 

environment. Although helical ground states have been successfulIy simulated using 

these models[33], they tend to require large amounts of computer resources. It is 

therefore desirable to attempt to understand heliv formation on a fundamental 

level, and to determine the necessary interactions to create these helical structures. 

As well, what is the effect of altering these interactions on the observed transitions? 

Ivlinimal models have become very popular in recent years for deciphering com- 

plex systems. An example is the case of protein systems where minimal models 

have proven very useful in yielding insights into the folding mystery[l]. While most 

of the current research is still b s e d  on minimal lattice models, there have been 

numerous off-lattice models developed as we11[60,37]. In this chapter, we propose a 



new model similar to those st-udied by several groups[61, 62, 63, 641 that examines 

specifically the dipole type interactions in polymer chains. This model could also 

be viewed as an experimental version of a Zimm-Bragg type model. An in depth 

study is also conducted of this new simplified polymer rnodel, which has a heIical 

ground state created from a limited number of adjustable parameters- UTe \vil1 also 

demonstrate how the alterat ion of the fundament al nature of the potential affects 

various aspects of the helk-coi1 transitions and the implication to the helix-coi1 

transitions in helical protein se,pents. 

3.2 New Minimal Helix Mode1 

Before constructing a simplified model, the forces that are of interest must first be 

determined. In protein secondary structure, most of the stability of the structure 

is generated from interactions not restricted to interact with t heir local monomers. 

Therefore, these are the interactions that are captured in this model. The basic 

backbone of the protein also needs to be simplified; therefore, the mode1 is made 

generic enough to describe a wide range of systems. The final step in creating the 

model is designing a potential that has the desired system behavior. In this model, 

a helical ground state s tructüre is the requirement that must be implemented. 

3.2-1 The Backbone 

To examine the effects of directional binding on the entire structure of a polymer, 

we first model each residue as a single monomer that might interact with another 
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rnonomer through the excluded volume interaction: which we define as having a ra- 

dius d, in addition to the attraction. Thus, the amino acids in Fig. 1-1 are treated czs 

single spheres, which is a valid approximation for poIymer systems- We wotrld like to 

stress that in rnaking such an approximation, we do not restrict ourselves to protein 

systems as ive are concerned about examining the fundamental aspects of helical 

forrnation in a11 types of polyrner chains. Therefore, in addition to heiicaI form- 

ing protein structures, this mode1 would apply to other polymer systems that un- 

dergo a coil-helis transition. 'laterials such as poly(gamma-benzyl-L-glutamate), 

poly(0-benzyl-L-aspartate) [65] ; and poly(et hylene oside) (661 are examples of ç4n- 

thetic molecules that iindergo a coil-helis transition. 

We rnust now consider the aspects of a polyrner system that are most important 

to the formation of helical structures. First. the covalent bonds between monomers 

in this pol-vmer system are approsimated C?S unbreakable, as these bonds wiil be 

much stronger than the non-local interaction of interest. To Further simplik the 

rnodel, the bond lengths are fixed to a length of a = 1, as these fluctuations would 

be much smaller than those of the rest of the system. In addition to the fixed bond 

length constraint, a persistence length is added to this backbone chain because 

helical stmctures occur on a length scale of approximately the persistence Iength of 

the polyrner backbone; this effect should be included explicitly in the model. The 

effect of persistence can be added to the system in many different ways. One of 

the options is to  fix the azimthutal bond angIe between the adjacent bonds so that 

the backbone of the polyrner forms a worm-like chain(see Fig. 3.1). This creates 

a relatively rigid structure not unlike a polypeptide chain which has the backbone 
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Figure 3.1: A depiction of a worm-like chain rnolecule- The azimutha1 bond angle 
is fixed to give the chain a presistence length. 

bond angles maintained by a potential an order of magnitude stronger than the non- 

local dipole forces that are to be examined. These constraints crcate the overd1 

backbone of the system on which the helical mode1 can be built. 

3.2.2 The Potential 

Clearly, an attraction now needs to be introduced between rnonorners in order 

to  obtain a stable helical structure a t  low temperatures. One could attempt to 

construct such a potential by addressing the following questions: a) If an isotropic 

attraction is introduced, what is the ground state? b) What kind of attractive forces 

are needed to produce a helical ground state?, and c) 1s there a unique potential 

that produces helical states in such a system? These are intriguing questions to a 

polymer physicist . 

With some thought, it is clear that an isotropic potential interaction is not 

sufficient to produce helical ground states. As we d l  discuss later in this arti- 



cle, an isotropic attraction binds monomers indiscnminately in any direction and 

produces a collapsed ground state at  low temperatures with no specific crystalline 

stmcture[67, 681. The question is then, what is needed to produce the desired he- 

lical ground state? This can he answered by esarnining the t.ype of interactions 

in real protein systerns. One of the most dominant forces in protein folding is the 

hydrophobic interaction[5, 691. Although this is an important force in the protein's 

overall structure, it is not responsible for stabilizing or generating the  helical sec- 

ondary structures in proteins. Simulations of al1 atomic models of homoalanine 

have s h o w  that lielical states can be formed in a i-rrcuum[33], whicli suggests that 

the hydrophobic interactions can be disregarded when creating a minimal pot en- 

tial. The rernaining interactions ieft to stabilize the helix can be divided into two 

categories, local and non-local. Local interactions are those between nearest neigh- 

bor amino-acids such as torsional interactions, which are usually represented on 

a Ramachandran plot. In such a plot, there is typically not one unique energy 

minimum, meaning that several protein structures are available to the atom. It is 

possible to create a minimal mode1 of a helix using only these forces, as Potthast 

has done[37]; however, these interactions are not generally considered the dominant 

interaction in the stabilization OF the helical structures[33]. For this reason, we have 

chosen to exclude these types of interactions in order to consider only the dominant 

stabilizing force. 

The remaining forces are non-local, as these interactions csn create bonds with 

any molecule (not only with their immediate neighbors) along the chain. These 

interactions are comprised of electrostatic forces, dipole interactions, and hydrogen 
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bonds. Hydrogen bonding is generdly considered to have the largest contribution. 

Al1 of these forces contain a couple of common features. First, these forces are 

considered to interact over short distances, as the electrostatic forces are screened 

over long distances by the solvent molecules. Thus, in our model, we characterize 

this range through a parameter, a. Second, due to the planar structure of an amino 

acid, the non-local interactions a h  contain an element of anisotropy in the overall 

nature of the interaction. It is this directional binding that leads to the stabIe 

formation of unique secondary structures (a-helix or 0-sheet ) in proteins. 

Therefore, the only ingredient that we need in order to make up a helical grorind 

state is an anisotropic potential. The orientation of this anisotropy ni11 produce 

different secondary structures; thus: it is directed perpendicular to the bond angle 

plane to produce a helix structure. To define the orientation of the ith resitloe7 Ive 

consider the nearest neighbor and define a bond orientation unit vector 6;. 

where 6 is the position of the ith rnonomer, and 0 is the fixed bond angle. This 

vector is pictorially represented in Fig. 3.2. 

The preference for various alignments of these bond orientation vectors generates 

the anisotropic potential. In a helical state, these unit vectors should point in the 

same direction. In the same spirit as the square well potential for other polymeric 



Figure 3.2: PictoriaI representation of the bond direction vector. 

systems, we choose the binary potential to have the form 

where d is the excluded volume radius, a is the attraction radius, fij = (< - 

c)/l< - 5 1 is the unit vector defining the relative positions between monomers, and 

E represents the strength of the attraction. Later, the parameter .E is rescaled into 

the temperature of the system and we consider the reduced temperature T = kBT/e.  
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3.2-3 Simulation Details 

This final form for the mode1 contains oniy a few adjustable parameters. The rnost 

significant one is the exponent m, which controls the strength of the anisotropy, 

\?th m = O producing an isotropie attractive field. Note that the m = O case is 

merely the square-well potential that has attracted considerable attention recently- 

In the low temperature regime, the possible states of a polymer and the nature 

of the transitions in these systems are of particular interest in this case. There is 

some flexibility in value rn; and in t.his study we consider several different valiies. 

There are some consideratioris which should be kept in mind when deciding on an 

appropriate choice. For this work, a symmetric potential is desired, and thus, m 

is restricted to even values (2,4,6,8,etc). m e n  a sufficiently small value for the 

fixed azimuthal bond angle is used, al1 of these choices create a helical gound  state; 

however, it is found that as the bond angle is increased to allow more monoiners 

per helical loop, the values 2 and 4 no longer produce a helical ground state- This 

occurs because the potent ial is insufficiently anisotropic t O favor a helical state 

within the geometry of the system. The values 6 and 8 produce helical states, but 

the value 8 requires more cornputational effort and should not produce significantly 

difFerent results frorn the value 6. Thus, m = 6 is chosen to represent our helical 

polyrner state. 

The other parameters in the modeI, varying in a reasonable physical range, 

have less profound effects on the nature of the transition. For this study, the 

diameter of the monomers is chosen to have a value d = (3 /2)a ,  where a is the 

bond length between monomers so that we have a somewhat smooth monomer- 
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monomer surface contour. The range of the attractive force is chosen to be J5/8a, 
which is in Iine with the conventional choice of the attraction for a square well to 

coincide with a Lennard Jones potential[67, 701. The fixecl bond angle also adds an 

additional parameter to the model. For the data presented here, me have used an 

angle of ~ / 3 .  ln doing so, we keep to the typical bond angles observed along the 

backbone of a protein moiecule. With these choices of parameters, we consider the 

thermodynamics of the minimal model as a function of iV, m, p. 

In order to sample the conformations of the worm-like chain, a Monte CarIo pivot 

algorithm is used. Introduced by Madras and Soka1[42], this non-local algorithm 

is an effective way to sample the configurational space of polyrner chains. In the 

case of a wonn-like chain with both fixed bond length and azimuthal angle, it is 

perhaps the most efficient as local moves are difficult to calculate because of the 

fixed bonded angle restrictions. A detailed description of this algorithm is given in 

chapter 2. 

In addition to the pivot algorithm, the multicanonical technique ws utilized to 

obtain a clearer picture of the temperature dependence of the system. Once the 

appropriate weight function was determined, a production run was conducted for 

5 x log Monte Carlo steps. Data points were collected every 100 steps for a total of 

5 x 106 data points for each production run. These points were then averaged with 

the appropriate Boltzmann weight function in order to calculate the quantities of 

interest. 



3.3 Definition of Measured Quantities 

Among nurnerous quantities that can be rneasured in this type of simulation, the 

most cornmon is the the specific heat per molecule defined as 

The specific heat is an ideal quantity to examine because it provides direct infor- 

mation about the free energy of the system. Any significant structural changes are 

reflected by anomalous behavior in the specific heat. In a phase transition, this 

anornaiy in C, would increase with system size, while a simple crossover between 

regions would manifest as a smooth hump that does not increase with system size. 

In our model, Ive expect to see various types of behavior due to fluctuations of 

the positional arrangement of molecules7 and the ordering of the bond directional 

vectors specified in Eq. 3.1. 

To assess the overall arrangement of the monomers, the squared radius of gy- 

ration is also used. This is an ideal measure of the size of the polymer because it 

c m  be directly measured through 

reveal the major structural change 

equation, 

Iight scattering experiments- This quantity will 

that occurs, and is calculated using the following 

where Fm is the vector defining the center of mass. One way to identify structural 

changes within the polymer is to examine the scaling of the radius of gyration. At 



hi& temperat ures, when a polymer's structural characteristics are dictated by the 

repulsive forces of the excluded volume interaction, it is well known that R, should 

scale with system size with an exponent of u N 315. At cooler ternperatures, when 

attractive forces dominate over the repiilsion, the polyrner acts as a molten liquid 

or globule and R, scales with an exponent v = 1/3. In extended or rod like phases, 

R,nrould scale with the length and with an exponent u = 1. 

It is also worth dissecting the radius of gyration further to examine the structural 

changes, especially in the helix regime. We can define an overall helical axis for the 

entire polyrner as the vector which is the sum of al1 the bond direction vectors. By 

breaking the radius of gyration into components both parallel and perpendicular 

to this vector; we can define the following quantities, 

During helis formation, we would expect these two parameters to diverge from 

each other as the parallel component increases and the perpendiciilar component 

decreases to approach the square diameter of the helix. 

To describe the orientation fluctuations of the bond directional vector, tve need 

to define an appropriate orientational order parameter. The question is, what is 

the single parameter which correctly describes these types of fluctuations? In real 
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protein models, the orientational order of an amino acid within 

described through its Ramachandran angles. For a specific type 

the molecule is 

of structure, a 

range of values is specified to describe the amino acid's conformation. As our 

mode1 is not designed with the Rarnachandran angles, we attempt to classify the 

orientational fluctuations by several more quantitative methods. To do this, we 

introduce a set of order parameters, each of which describes the different correlated 

fluctuations of the system. The first parameter, H l ,  we create is similar to the 

Ramachandran q5 and $J parameters used to describe a helk in a protein molecule. 

Here the configuration of a group of atoms is examined to determine whether they 

are in a helical configuration using a predetermined criterion. To determine if a 

cluster is in a helical configuration, the distance between the i and i + 3 rnonomer 

is calculated. If this distance falls within the length criterion for a helix, then the 

unit is counted as helical. We attempted several definitions of unit helicity that 

showed littie difference in the qualitative behavior of this order parameter. 

The above order parameter relies on the arbitrary definition of a helical unit, 

and for this reason, is somewhat unsatisfactory- It  is morth defining order pa- 

rameters that describe the ordering and do not use a predetermined criteria for 

defining helicity. Thus, the other order parameters defined are based on the vector 

properties which define the relative orientation of the bond directional vectors. As 

mentioned earlier, these vectors should al1 approximately align when a helical state 

is approached. Thus, we define, 
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th 
where Ûmid is the bond vector of the (g) rnonomer (in practice, (g) is roundetl 

down if not an integer). The order parameter H2 describes the local correlations 

of the orientational order in the helk, and indicates the onset to helix formation. 

However, this parameter will not yield any information on long range order, ancl 

thus, it tvill not be useful in descnbing the nature of the transition. The parameter 

H3 is similar to H2 in that it examines the correlation of bonds, but  in this case, 

a central bond vector is correlated-with al1 the other bond vectors dong the chain. 

We choose a central monorner because the end monorners are subject to large 

fluctuations due to fewer constraints on the monomer's conformation. A potential 

drawback of using this parameter is the fact that the central monomer that is chosen 

may be located a t  a fracture region while the rest of the chain is helical, a situtation 

that would Iead to an improper description of the chain. The final parameter, Hq,  

is merely the sum of al1 the bond vectors. This order parameter is perhaps the best 

for examining the nature of the coil-helix transition because it should accurately 

describe the net helical growth within the molecule while accounting for fractured 

regions that reduce the value of the order parameter. 

We can calculate susceptibilities for the radius of gyration and for al1 of the 
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orientational order parameters with the following equation , 

where NA is the number of units of the quantity A. These quantities tvill reveal 

when fluctuations of the order parameters are significant. In the case of phase 

transitions, al1 parameters should show anomalies that increase with system size. 

Most importantly, the parameters niIl demonstrate the type of ordenng that occurs 

a t  various ternperatures- 

The most popular method for exarnining the coil-he1i.x transition is through 

the use of the Zimm-Bragg parameters, s, and a,. These parameters are typicalIy 

obtained from the equations[33], 

where (nh) is the average number of helical units, Nh is the total possible number 

of helical units, and (b) is the average length of a helical segment. In order to 

obtain these parameters, the only quantities needed are the average helicity and 

the average helical segment length. Obtaining these values is not straightforward. 

Although any of the four helical order parameters codd be used to  calculate the 

average helicity, the parameter Hl is the most suitable for calculating the segment 

length. The other parameters require the introduction of an arbitrary condition to 
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determine the length of a helical segment. This would leave the average helicity 

as a constant and the average seornent length a varyïng parameter depending on 

the condition used to detennine the break points in the helùc. Therefore, H L  is Ieft 

as the best candidate to  mecsure these parameters because the condition used to 

clefine a segment as helical is the sâme one used to define helical length. However, 

depending on the condition set for determining helicity, the values of the Zimm- 

Bragg parameters could also be changed. For example, using two valid conditions to 

determine the parameter HL generates a 35% difference in the Zimm-Bragg values 

a t  the transition temperature. Thus, the Zimm-Bragg parameters in this model are 

subject to inconsistencies from the particular specification of a unit being helicaI 

in our model. Therefore, it is not instructive to calculate exact values for these 

parameters: but rather to assess the temperature trends of these functions, which 

are essentially unchanged by different conditions for helicity. 

3.4 Observed Helical States 

We now examine the behavior of our mode1 as a function of temperature. First, 

we describe the case in which the parameter, m, in the potential is 6, although 

we can produce helical states with the other studied values of non-zero m. We 

initially examine the heat capacity of our system. In Fig. 3.3, the heat capacity per 

molecule for chains of N = 13, 19, 26, 33,39, and 51, are displayed with symbols on 

every tenth temperature unit. The figure presents several interesting features, as 

the system appears to show three separate structural transitions. There are strong 



Figiire 3.3: Specific heat for rn = 6 for polymer sizes 13 ( x ) ,  19 (*), 26 (A), 33 (+), 
39 (O) ,  and 51 (W). The low temperature data for the N = 51 is rnissing in the 
inset as we were unable to coIlect sufficiently accurate values at these ternperatures. 

peaks near temperatures = 1 and ;r 0.3. Around 5? - 2, we also observe a 

weak shoulder that  appears to  be a third transition. The peak at zz 0-3 represents 

a change between two helical regions, the peak at  x 1 represents the coil-heliu 

transition, and the shoulder represents a collapsing transition. These regions are 

further studied using the other quantities mentioned above. We have depicted 

structures believed to  be representative of the different regions in Fig. 3.4 to assist 

in visudizing the types of transitions in the system. 
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Figure 3-4: Snapshots of the configurations of a 26mer a t  various temperatures: 
(a) liBT/€ 4 (coil), (b) kaT/c 1.3 (globular) (c) kBT/e - 0.8 (helk 1) and (d) 
ksT/c  = 0.2 (helk II). The size of the beads represents the actual hard-core inter- 
action between non-adjacent monomers, and the attraction force range is J45/8a, 
where a is the bond length. A highly directionalized potential with rn = 6 (see Eq. 
(3.2)) is used. 

3.4.1 Coi1 Region 

In the high temperature regime, the polyrner is in a random coil state (see Fig. 3.4a), 

where the repulsion of the polymer dominates causing swollen conformations. In 

this region, the polymer's size is expected to scale Rrith system size and to have 

an exponent of v = 0.589[71] in the long chain limit. Calculating the radius of 

gyration for polymers at a temperature of T = 10 (see Table 3-11, we obtain a 

scaling exponent of v = 0.64(5) by fitting the data corresponding to the four largest 

poIyrners to a power-law. The squares in Fig. 3.5 show the scaling of these values 

vs. the polymer size on a log-log plot. The calculated exponent is larger than 

expected, which can easily be accounted for as we are not in the asymptotic limit 

of large polymers where the predicted exponent should be valid. Although we do 
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Figure 3.5: Scaling of the squared radius of gyration for m = 6 in the coi1 (a), 
globular (O) ,  and helicaI ( A )  regimes. 

not obtain precise agreement with the espected exponent, the relative values of the 

exponents in the various temperature regions are important. 

3.4.2 Molten Globular Region 

Upon cooling to a temperature of approxirnately T = 2, there is a significant change 

in the size of the poIymer (see Fig. 3.4b). This is signified by the shoulder in the 

peak a t  5? ;;: 1 of the heat capacity curve. In Fig. 3.6, the squared radius of gyration 

demonstrates this collapse by showing a dramatic reduction in the polymers size. In 

the larger sized polyrners, we see the size increase again a t  the coil-helix transition. 

This is caused by the rearrangement of atoms into a helical form that is elongated 



Table 3.1: The value of the squared radius of gyration at  various temperatures for 
the rn = 6 case. The values for Rg at  5? = 1.3 and T - 0.6 are based on the values 
when R, reaches it minimum size and when R, is maximum (when in a helical 
configuration) respectively 

in one direction and has a larger overall size than the colIapsed globular. In the 

smaller polymers~ this collapse is not observed because the final helical states are 

comparable in size to that of the co!lapsed state. This type of collapse hm been 

observed in real protein systems. Sarnulski's experimental studies of the coil-helix 

transition in poIypeptide chains show this type of globular colIapse prior to the 

coil-helix transition[56]. Also, Pitard et al. [62] analytically considered anisotropic 

potential forms in flexible polymers, and have shown that this type of polymer 

undergoes a collapse before orientation ordering; however, the structures studied in 

their work were not of a helical nature. 

To determine whether the polymer is truly making a transition to a globular 

state, we consider only the larger polymers and examine the scaIing of the size of 

a poiyrner when in its most compact state (defined by the minimum in the radius 

of gyration). The results are displayed in Table 3.1, and by fitting this data to 
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Figure 3.6: Squared radius of gyration for m = 6. Shown are the polymer lengths 
13 (x): 19 (*), 26 (A) ,  33 (+), 39 (O),  and 51 (D). 

a power-law, 1.e obtain a value of v = 0.45(15) for the scaling exponent. This 

value of v is well belon. that of the esponent for the coi1 regime, but is still above 

the value predicted for the globular phase (v = 1/3[72]). The circles in Fig. 3.5 

demonstrate this scaling, and we observe that the exponent decreases for larger 

system sizes. This is reasonable as we are still in the comparatively small size limit 

for the polymer. To further examine this transition, we examine the paralle1 and 

perpendicular squared radii of gyration. These are illustrated for the IV = 39 case 

in Fig. 3.7. Both of these quantities show a smooth decrease in the temperature 

range of interest. This confirms that the polyrner is collapsing isotropically. In 

Fig. 3.8, the four order paxameters are displayed for the IV = 39 chain. Al1 four 

show no significant increase about the temperature of the collapsing transition, 
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Figure 3.7: Perpendicular (O) and parallel (m) components of the squared radius 
of gyration for the N = 39 polymer and potential m = 6. 

indicating that there is no onentationa! ordering developing and that the collapse 

is strictly a spatial phenornenon- We believe that  for large polymers, the rnolecule 

enters a true globular phase. In this phase, the rnonomers would be closely packed 

and uniformly distributed, just like a liquid state for a collection of small molecules. 

For an alternative perspective of the collapsing transition, we can examine the 

susceptibility for the radius of ,vation. Fig. 3.9 illustrates these curves for al1 of 

the polyrner sizes considered. The figure shows a broad peak near T = 2.5 that 

increases with system size, and the heights and locations of each of the peaks are 

listed in Table 3.2. The location of the peak roughly represents the O temperature 

of the  molecule, mhich is the point where repulsive and attractive forces within the 

polymer balance. This data reveals that the collapsing transition occurs prior to 
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Figure 3.8: Order parameter Hl (H): & (+): H3 (a) and H4 (A) ,  for rn = 6 and 
N = 39. 

a q  orientational ordering. 

The strongest peak on the C, plot corresponds to a transition from an isotropic 

collapse state (Fig. 3.4b) to a helical state (Fig. 3 .4~)  observed near T ;- 1. The 

exact locations of the peaks and their ma'cirnum values are given in Table 3.2. The 

data shows that the height of the specific heat curves increase systematically with 

polymer size. The scaling of these peaks wi11 be examined later in this work when 

the nature of the transitions is studied. 

Accompanying the strong peak in the C, curve, we have observed drastic changes 

in the orientational order parameters. In Fig. 3.8, the four helical order parameters, 



Table 3.2: Data on the transitions in the rn = 6 case for various sizes. Shown is the 
globular-he1i-x transition temperature, Tc, the height of the C, a t  Tc, and the width 
of Cu when b = 0.9, r(C,,). Aiso shown is the O temperature. Te, the susceptibility 
of R, a t  Te and the foldability parameter, a. 

Hl ,  H2, H3, and HLt for the system size of 1V = 39, al1 show significant increczses in 

their values crossing this transitions. Susceptibility cunres for these order pararn- 

eters are illustrated in Fig. 3-10? with each clearIy shoming a distinct peak at the 

transition. The maximum heights of each of the peaks are also Iisteci in Table 3.3. 

In addition, the squared radius of gyration also shows an increase a t  this tem- 

perature as the polyrner becomes extended dong the helical axis. The extension 

is further demonstrated by the sudden increase in RgII and decrease in Rgl. For 

larger polymers, ~ v e  observe a turnover in the radius of gyration as R,I begins 

to  shrink in size causing the polyrner to take on a more compact helical form. If 

we scale the radius of gyration in the region where the turnover in the radius of 

gyration occurs, this corresponds to scaling the helices of the helîx 1 region. The 

vaIues for the square radius of gyration at  the turnover are listed in Table 3.1, and 

by fitting these values to a power-law, we obtain an exponent of u = 0.90(9). This 
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Figure 3.9: 
33 (+): 39 

0.4 

0.0 

T 

Susceptibilities of the radius of gyration for sizes 13 ( x ), 19 
(a), and 51 (B). 

is clearly larger than the esponent for the coi1 regime and agrees fairly well with 

the predicted value of v = 1. 

3.4.4 Helix II Region 

The final point of interest in Fig. 3.3 is the anornalous peak at ;r: 0.3, which is 

enlarged in the inset. This peak in the heat capacity curve is due to a solid-solid type 

transition between two helical states. The transition is accornpanied by a second 

change in the four order parameters as reflected by their susceptibilities (Fig. 3.10) 

for N = 39. The susceptibility of the order parameter Hi has a profound second 

transition. This parameter is set to designate a group of monomers as helical, 



Figure 3.10: Susceptibilities xx, (m)7 xH2 (+), xH3 ( O ) ,  and xfI4 ( A ) ,  for rn = 6 
and N = 39. 

and can be modified to be sensitive to the more perfectly formed helical states- 

The increased fluctuations in this parameter demonstrate that the activity around 

this transition temperature is probably related to a crystallization of the entire 

polyrner chain into a helical state. This solid-solid transition is known to occur 

in related polymer systems, as Zhou et al.[19, 671 have demonstrated multiple-low 

temperature transitions in p o l p e r  and protein-like systems. The structrires of the 

two states differ as the higher temperature h e h  1 state has a high degree of helica1 

ordering yet is loosely packed, possibly with dangling end segments. The radius of 

gyration does not display EL significant change here as the polymer does not undergo 

a major structural change. We calculate the Zimm-Bragg parameters (Fig. 3.11) 

using the ordèr parameter Hi. Hl is adjiisted to be sensitive to  perfectly formed 
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Table 3.3: The maximum heights of the susceptibility, for rn = 6. The blank entries 
indicate no peak a t  the location of the helix-coi1 transition. 

helical states. The typical behavior for the Zimm-Bragg parameters is observed 

in the figure, with a deviation in the standard shape of these curves due to the 

second transition. In the parameter a, there is an initial decrease at  the coil-helis 

transition, as woiild normally be observed, foIIowed by another sharp drop near the 

second peak in the specific heat, confirming that there is a significant change in the 

average number of breaking points of the helices in the two regions. 

We cari best describe the structural differences bettveen the two helical states 

by considering the very long chain limit. In this limit, we would expect the helk 

I polymer to behave like a rescaied worm-like chain that would contain bendable 

helix units, while the heliu II polymer would behave like a rigid rod of perfectly 

ordered helical units. Experimentally these turo types of helices have been obsenred. 

In a study of numerous protein helical segments by Kumar and Bansa1[55], they 

classify helices into three groups: kinked, curved, and rod. If we disregard the 

kinked molecules, the curved and rod helices certainly correspond to Our two helical 
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Figure 3.11: Zimm-Bragg parameters s, (m) and af (O) as a funct-ion of temperature 
for N = 39. 

regions. In our model, we examine the rescaled temperature that can be interpreted 

in two ways. We may consider the system to have a constant interaction strength, 

E, while we adjust the temperature, T, or we may consider a fixed T while Ive 

allow E to Vary. When cornparing heteropolymers, the later is the more appropriate 

view since experiments are usually conducted at constant temperature. Hence, we 

can also consider experimentally observed helices as homopolymers with a constant 

interaction parameter based on the average interaction between monomers. This 

would mean that the curved helices observed experimentally correspond to the helix 

1 region, and have on average a weak interaction between monomers. Similarly, the 

rods would correspond to the helix II region and would have a much stronger average 

interaction. In Kumar and Bansal's work, the largest fraction of observed helices are 



curved, which corresponds with helices just below the helix-coi1 transition. This 

suggests a consistency between the two systems, as we ivould expect the higher 

temperature helLx 1 region to be more populated. 

If we examine the parallel and perpendicular components of the squsrecl radius 

of gyration in the low temperature region (Fig. 3.7): we observe a continuous de- 

crease in the perpendicular component and a turnover in the parallel cornponent. 

This is suggestive of a change in the structural behavior, as we would expect the 

parallel component to increase to a constant value. We can aiso examine the scaling 

of the radius of ,oyration at very low ternperatures, which corresponds to the helix 

II region. The square radius of gyration is listed in Table 3.1 for the temperature 

T = 0.25. The triangles in Fig. 3.5 show the scaling of the data with N; fitting the 

data corresponding to the four largest pol-vrners to a power-laiv yields an exponent 

of v = 0.9(1)- The exponent is the same as that of the helis I region; however, ive 

would expect to see some deviation if we could simulate longer helices because the 

size of the helices in the helix 1 region urould fluctuate more due to their flex<bility. 

We speculate that the change between the two states is generated by a change in 

the allowed magnitude of energy fluctuations. At high ternperatures, the heIix can 

flex in the interior of the chain, but this causes fluctuations, as the monorners move 

collectively to  bend the helk, which are of the order of 6AE (where A E  is the en- 

ergy fluctuation £rom a single monomer). When the c h a h  is cooled, these collective 

fluctuations can be fiozen out leaving a rigid rod with end monomers that are only 

able to fluctuate slightly. 
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3.5 Examination of Finite Size Scaling 

3.5.1 Scaling of the Coil-Helix Transit ion 

Although we are working on rather small system sizes, it is worth attempting some 

finite size analysis of the data in order to examine the nature of the transitions. We 

can examine several quantities to determine the critical exponents of the systern. 

We define a temperature gap for the transition l? = T2 - Tl (where Ti < Tc < Tz),  

such that C(T1) = bC(T,) = C(G), where b is some fraction Iess than one. This 

gap should scale as, 

nrhere d is the effective dimension, and Y is the critical exponent for a correlation 

length. The effective dimension of the system is not known thus, it is aIways rised 

in conjunction with the exponent v. From this point on dv is treated as a single 

parameter. The maximum in the specific heat nrill then scale as 

and the maximum in the susceptibility of the proper order parameter for the systern 

wiH scale as 

where a and y have their usual meaning in critical phenomena[74]. 

The helix-coi1 transition is typically not considered to be a true phase transition 
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in the thermodynamic limit of N -t oo; however, for small system sizes, the system 

should still behave as a first order phase transition due to system cooperativity ['72, 

731. It is not realistic to ask whether our system exhibits a phase transition because 

with this method, exceptionaIly large system sizes need to be studied- Despite this, 

we examine the system to determine its scaling behavior, as this system should still 

be characterizable by a set of effective critical exponents[58, 591. 

From the data in Table 3.2, Ive have calculated the critical exponents for the 

globular to  helL~ transition as du = 1.04(9), and CY = 0.70(15). To obtain the 

exponent y, we use the susceptibility data of the H4 order parameter in Table 3.3. 

As mentioned eadier, Ive suspect that tIiis order parameter wÏll best describe the 

fluctuations of the bond direction vectors as they align during the transition. From 

this data, a value of y = 1.3(2) \vas obtained. In a typical first order phase transi- 

tion, these exponents are expected to follow the relation du = n = y = 1 [75]. The 

exponent dv appears to be in agreement with the notion that the system exhibits 

a first order phase transition; however, the exponents a! and y appear to differ sig- 

nificantly. The discrepancies in this system are likely due to the small system size 

and large errors associated with the heights of the peaks. It  appears for the specific 

heat that any errors are iikely to underestimate the peak height, which is more sig- 

nificant within larger polymer sizes. It is also unclear what effect the coil-globular 

transition has on the peak heights measured. Although the values diEer from those 

expected, the mode1 does show some agreement with the scaling results of the all- 

atom simulations of protein molecules (for details see Ref. [59]) . This suggests t hat 

the system is within this size range where the coil-helix transition can be treated 
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Figure 3.12: Frequency of a particular value of the radius of gyration as a function 
of temperature for N = 39. 

as a first order phenomenon. 

For a closer look at the transition, we re-examine the squared radius of gyration 

as a function of temperature through the parameter Q(S, r i ) ,  which examines the 

distribution of polymer sizes as a function of temperature. A diagram such as this 

should reveal whether or not the polymer is making a discontinuous jump to the 

helical state, which is predicted to  occur for cooperative first order systems. A 

histogram of the size of the polymer at  a specific temperature is defined in the 

where r, is a specific value of the radius of gyration. Figure 3.12 illustrates a 

three-dimensional plot of this parameter in the temperature range of interest for 
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the N = 39 case. Cooling the polymer from high temperatures shows that the 

polymer's structure locaiizes to a compact form prior to the helk-coi1 transition. At 

the transition temperature, it appears that a double peak develops as  the polymer 

enters into a helical structure. This behavior would suggest a first order phase 

transition because the system appears to make a discontinuous change in size at 

the transition. This is supported by the increasing height of the radius of gyration 

peak a t  a temperature 5? = 1, in Fig. 3.9. We see that the three largest polymer 

sizes have a well defined peak that is growïng rapidly in size; however, there is 

not enough data to attempt a meaningful finite size scaling analysis. Fig. 3.12 

- also demonstrates that at cooler ternperatures, the polymer merely localizes into a 

defined helical structure with a very narrow size distribution. 

3.5.2 Scaling of Other Transitions 

We now turn our attention to the nature of the coil-globular transition. The col- 

lapsing transition in stiff polymer systems is typically believed to be first order[72], 

due to a discontinuous change in the polymer's size at  the O temperature. From a 

figure similar to Fig. 3.12 we see only a smooth crossover in system sizes. There are 

two reasons why we rnay not observe this discontinuous change in our simulation. 

First, the polyrners that are modeled are very small, which has the tendency to 

broaden the transition due to surface effects[72]. We would expect to see some 

sort of first order behavior if we were in the range of N >> 100, therefore, there 

are significant deviations due to the small polymer sizes. The second reason for 

this discrepancy is that the polymer may not be fully collapsed prior to the helix 
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Figure 3.13: Foldability of the polymer as a function of the polyrner's length. The 
figure shows that the foldability parameter is increasing with N, suggesting the 
po1ymer is becoming more difficult to fold. 

transition because the coil-globular and globular-helix transitions occur so closely 

together. Therefore, this effect may mask any discontinuous changes in the radius 

of gyration. If we re-examine the susceptibility of the radius of gyration, we indeed 

see that the peak height increaçes with polymer size; however, this peak is not well 

defined. Although we do not observe the e4xpected behavior in this case, we do 

know that the polymer undergoes a change between scaling regimes, supporting 

the argument for a phase transition. 

An interesting result that anses from examining the location of the collapse 
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transition is the calculation of the foldability condition[76], 

where TQ is the collapsing transition temperature and Tc is the globular to helix 

transition temperature. This parameter is typicalry used as a measure of folding 

properties of protein-iike molecules. The faster the molecule folds, the smaller the 

value of a- We have calculated this parameter as a function of system size for Our 

rnodel (Table 3.2). A s  the system size is increased, this parameter increases as 

well, suggesting t hat dynamically, it becomes more difficult to fold t hese structures 

as the system size is increased. As the foidability parameter is related to the 

cooperativity of the system[76], and in Zimm-Bragg's helix-coi1 transition theory 

the cooperativity is related to the nucleation parameter a, [73], the increase in the 

foldability parameter implies that the cooperativity of the system hm dropped. This 

means that a, increases as this drop occurs. Although it appectrs (see Fig- 3.13) 

that the rate of increase in o is slowing at large IV, it is not clear whether it will 

reach a finite asymptotic value. This increase in the foldability parameter rnay be 

a manifestztion of the instability of the system due to the one-dimensional nature 

of the model. 
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Figure 3.14: Specific heat for N = 39 with varying values of m. 

3.6 Importance of Anisotropy 

3.6.1 Cases m = 2,4 

It is of interest to try to understand the effect that the power of rn has on the 

heat capacity curves. Clearly, the smaller the value of m, the more isotropic the 

interaction. When using these smaller powers of m, the other parameter values used 

in the mode1 affects the ground state. For example, if a slightly larger fixed bond 

angle is used, the ground state can change frorn helical to a helical-like state that 

has a high helical content but is not a properly formed helix. One will also notice 

a larger number of compact globular structures are favored, making the sampling 

of low energy states more difficult. 
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Table 3-4: Temperature of the coil-helis transition: Tc, the specific heat at Tc, C,, 
temperature of collapsing transition, Te, maximum of the susceptibilities for the 
radius of gyration a t  Te, and foldability parameter. In the m = O case there is no 
globular-helix transition. Therefore, the transition temperature, Tc, is the location 
of the transition that foIlows the globular transition as the temperature is lowered. 

Simulating our mode1 with a weaker anisotropic interaction in the potential 

invokes a change in the coi1 to globular transition. An increase in the isotropic 

nature of the potential creates a greater propensity for the molecule to exist in 

the globular state, hence the transition occurs a t  a higher temperature as seen in 

Fig. 3.14 for N = 39. The cusp in the heat capacity due to the globular transition 

is enlarged for the lower m powers. We calculate the location and heights of these 

peaks for m = 2,4 for the polymer sizes 19 and 39, which are displayed in Table 3.4. 

The locations of these peaks are found through the susceptibility of the radius of 

gyration, as was done for the m = 6 case. We also see that this isotropic nature of 

the transition has little effect on the second helix transition (near 5? = 0.3) because 

the net isotropic nature has little influence on the helical conformations. 

One of the interesting debates in the field of helix folding is whether the col- 
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lapsing transition would actually occur in protein helices. A direct transition is 

assumed from the coi1 state to the helix state as suggested by the very name of the 

transition(271. As well, all-atomic simulations of protein models such as the ones 

by Okamoto and Hansmann[33] do not show the globular collapse clearly, which 

suggests that in these simulations, the natiire of the amino acid interactions is 

highly directionalized with few interactions not directed dong the helical axis. The 

data from Table 3-4 is plotted in Fig. 3.15 and shows that the coil-globular and 

globular-helix transitions move closer toget her as the off-helical axis component is 

reduced. In those particular all-atomic simulations, the solvent effects have been 

ignored. Thus! our  results suggest that in a predominately hydrophobic h e l ~ ~ ,  one 

woiild observe a collapsing transition prior to the helical transition. 

The infi uence of the anisotropy potentially hc?s a profound effect on the foldabil- 

ity of the protein. As the value of a becornes smalIer, the foldability of the sequence 

increases, as this parameter is believed to be closely linked to the cooperativity of 

the transition. Using the data in Tables 3.2 and 3.4, the parameter a has  been 

calculated. The results suggest that as the value of m is decreased, the foldabil- 

ity of the helix is also decreased. Hence, there should be marked improvement in 

the folding times of helical structures whose overall potential has a large degree OF 

anisotropy. Fig. 3.16 shows the behavior of the parameter c as a function of the 

parameter m. The figure demonstrates that CT is a decreasing function of m, and 

that an asymptote is approached suggesting a limiting value of the cooperativity 

for the transition. 
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Figure 3.15: Separation of the coil-globular and globular-helis transitions as a func- 
tion of the anisotropy- We see t hat the two transitions approach each other as the 
anisotropy is increased. In the m = O case there is no globular-helk transition. 
Therefore the  separation is calculateci as the difference between the high tempera- 
ture globular transition and the second transition occurring at  a Iower temperature. 

3-6.2 Case m=O: An Isotropic Potential 

The other extrerne case is an isotropic potential with m = O. Here we are merely 

dealing with the square well potential- This type of polymer has been studied 

extensively in the past, most recently by Zhou et a1.[67] and Irback et a1.[68]. Zhou 

et  al. modeled a flexible, off-lattice polymer with a square well potentia1. They 

show that the polyrner first undergoes a collapsing transition followed by a first 

order phase transition. In a similar rnanner, Irback et al. studied flexible and 

semi-flexible, off-lat tice polyrners wi t h a Lennard Jones potential. Here the results 

confirm the same collapsing transition, but no evidence of a first order transition 
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Figure 3.16: Foldability as a function of the anisotropy of the potential. The 
function appears to reach a limiting value as the anisotropy is increased. In the m = 
O case there is no globular-helis transition. Therefore the foldability is calculated 
from the difference between the high temperature globular transition and the second 
transition occumng at a lower temperature- 

following the collapse. Our m = O case is equivdent to these two models because 

ive simulate a stiff poljmer off-lattice with a square well potential. Our results 

should yield some insight int O these conflicting results. 

For this type of system, we are not able to determine what is the native state 

since the low energy states can have significant stmctural differences. This makes 

sampling the low energy configurations difficult even with the multicanonical tech- 

nique, as the number of low energy configurations is large and each configuration 

is somewhat disconnected frorn the others on the energy landscape. This kads to 

simulations which need to run longer in order to coliect reasonable low temperature 
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information. The rnulticanonical technique relies on the simulations entering and 

leaving the low temperature states a repeated number of times. If the low tempera- 

ture states are glassy, the simulation should technically enter and leave each of the 

glassy states several times in order to obtain accurate results. Therefore. a system 

with a large nurnber of glassy states is not suited for the multicanonical technique 

used here, as the production run needs to be run a very long time; however, due 

to the fact that the model used here is so easily dterecl, to examine this case we 

attempt to study the system. 

The specific heat curves for al1 polymer sizes studied are shown in Fig. 3.17- 

This figure illustrates two distinct Çeatures for the polymer sizes of interest. .The 

first smaller hump in the specific heat is a collapsing transition, while the second has 

been postulated to be a transition to a crystal-like state. We observe from the figure 

that the collapsing transition now occurs at a much higher temperature (Table 3.4). 

The location of the collapsing transition is calculated through the siisceptibility of 

the radius of   ration. This transition occurs at  a higher temperature in this model 

as the net potential on a monomer is greater. This translates into an increase in 

our parameter E in Eq. 3.2. 

The low temperature behavior is very interesting. In the study by Zhou et al. 

of a square weIl potential with a flexible chain, a first order phase transition to 

a crystalline structure is observed. Irback et aL7s simulations of a system with a 

Lennard Jones potential suggest a transition, but  the peaks in the specific heat 

do not appear to be size dependent, thus implying no first order transition. Our 

model of a stiff polymer with isotropie square well attraction demonstrates a low 



Figure 3.17: The specific heat for rn = O for sizes 19 (*), 26 (A), 33 (+), and 39 
(4- 

temperature transition that cloes not appear to have a size dependent. anomaly in 

the specific heat. Due to the lack of a well-defined ground state, we are unable 

in these simulations to accurately determine the peak heights and locations for 

finite size scaling. The curves, hotvever, do not show any significant difference 

in peak height for the low temperature range, and the overall shape of the curve 

demonstrates the same behavior as Irback et al.. Although these results are not 

conclusive, they lend support to the concIusion that this system does not have a 

first order phase transition. 
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3.7 Summary 

We h m  presented a minimal model for examining the coil-heIix transition in helical 

forming molecules. The potential is based on the  non-local anisotropic interactions 

found in protein molecules, and it is versatile enough to allow one to study the var- 

ious effects that it hcas on the coil-helk transition. We have successfdly simulated 

helical states using potentials with the parameter rn = 3: 4 6 :  which has enabled 

us to obtain a systernatic understanding of the structures generated by anisotropic 

potentials. 

We have concentrated the bulk of Our analysis on the m = 6 c'zçe. This has 

shown t hat the coil-helk transition involves four states: 1) coil, 2) mol ten-globular 

3) he1i.x 1, and 4) helix II. The coil state is the typical repulsion-dominated state 

of polymer molecules. The globular state is a collapsed state fornied prior to the 

transition to the helix. This state appears tu be coupled to the helix transition 

through the content of anisotropy in the potential. As the anisotropy of the po- 

tential is increased the coil state is more likely to make a direct transition to the 

helical state. The helix I state is a poorly formed helk that is highly flexible, while 

the helk II state is a crystalline form of the helix. The final helk-helis transition 

that is observed appears to be due to a crystallization process in the helix, whereby 

the heliu takes on a rigid rod-like conformation. 

We have examined the nature of the coil-globular and globular-helix transitions 

within the model. We have attempted to show that the coil-globular transition is 

a first order phase transition, as expected for a semi-flexible polymer; however, the 
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small size of the p o l p e r s  used have obscured the results. The finite size scaling of 

the globular-helix transition has demonstrated that this transition behaves like a 

l d  fZUOUS first order phase transition. We also see that the p o l p e r  undergoes a discon'i 

change in its size at the transition temperature, indicative of a first order transition. 

In the case where Ive edit our potential to create an isotropic interaction, \Ire do 

not observe any phase transition-like behavior at ION* temperatures. Although the 

data is not conclusive, there is no significant increase in the low temperature heat 

capacity peaks to indicate a phase transition. These results lend support to the 

recent conclusion about such systems. 

One of the most interesting results is the relationship between the relative tem- 

perature differences of the coil-globular and globular-helix transitions. These dif- 

ferences can be altered by changing the content of anisotropic interactions in the  

potential. Also, this content appears to control the cooperativity of the formation 

of helices, and as the potential is made more anisotropic, the foldability of the helix 

is increased. This suggests that the anisotropy in protein structures plays a key 

role in the ability of the molecule to fold quickly to a specific ground state. Thus, 

hr ther  study of the dynâmic behavior and folding of the mode1 is needed. 



Chapter 4 

Dynamic Helix Mode1 

Attempting to understand the cornples dynamic nature of proteins is one of the 

most challenging problems in molecular biology. As is discussed in chapter 1, there 

have been numeroris minimal models created to attempt to understand the corn- 

plicated funnel-like landscapes of proteins; however, most of the  work regarding 

the study of secondary structure dynamics has been done with all-atornic models. 

There have been no systematic simulation studies of secondary structure dynam- 

ics; therefore, it is advantageous to create a minimal dynamic mode1 to provide a 

method for performing such studies. 

The minimal rnodel created in chapter 3 h a ,  provided a method for studying 

the statistical properties of a helical segment; however, we have not been able to 

determine any dynamic features of the system. Extending the helix mode1 to simu- 

late the dynamics presents a good opportunity for examining the features of actual 

protein type objects through a minimal model. This mould provide a systematic 



method by which these structures could be studied. 

4.1 Introduction 

The lattice protein models have provided a great deal of insight into the dynamic 

behavior of proteins; however, they are limited in their comparison to a real protein 

systern. It. would be more advantageous to stridy minimal models in an off-lattice 

set ting, where the system adopts more realistic protein structures. Perhaps the 

most popular model for off-Iattice folding studies of proteins is the Go model[l7, 18). 

Here a heteropolymer with isotropic interactions is usecl, and the interaction ma t rk~  

is chosen such that the desired native state is the structure of interest. Although 

this method can be applied to a wide range of problems[l7, 18, 19' 20: 771: it too 

has limitations. In this model, structures are created out of heterogeneity, which 

plays a dominant role in structure selection, but secondas- structures also occur 

in homopolymers. This suggests that additional interactions should be included in 

order to capture properties not dependent on the heterogeneity of the sequence. 

In this chapter, the mode1 oE the previous chapter is extended to examine the 

dynarnics of helical structures. The dynamics of the model are simulated with 

a dynamic Monte Car10 algorithm and the potential is modified to accommodate 

for the local rnovement of monomers. The potential is still based on a non-local 

anisotropic interaction that selects a helical ground state structure. .The generic and 

robust nature of this model allows for the systematic study of the folding properties 

of helices, and the effect of different perturbations on the basic model. In addition, 
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simple modifications, such as the addition of heterogeneity, could be made to the 

potential to create alternat ive protein structures. For esample, B-sheets and helix- 

barre1 structures would be possible candidates, as this model would not only be 

limited to the simulation of helices- 

4.2 The Dynarnic Mode1 

To create the dynamic version of the model from chapter 3: the same steps are 

implemented to  devise the overall features of the model. In this model, we are 

still interested in the non-local interactions wit hin a helical se,o;ment; t.hus, to study 

effects associated with these interactions the three basic considerations of chapter 

3 must be included in a basic polymer model: 1) persistence, 2) excludeci volume 

interactions, and 3) an anisotropic potential directed perpendicular to  the curvature 

of the helix. 

To create the pertistence effect, we use the same worm-like polymer châin cas 

the backbone polymer. The sub-unit monomers, or amino acids, are represented as 

spheres of radius, d, and the monomers are connected together using rigid bonds of 

length a. Fixing the azimuthal bond angle created the worm-like chain previously 

used. This is a very restrictive constraint, as any small local movement of the 

polyrner would involve the rearrangement of numerous monomers to maintain the 

constraint. To avoid this problem, tve allow the bond angles to fluctuate slightly 
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under the energy constraint , 

where K represents the strength of the bond restoring force, and Bo represents the 

average bond angle. This energy condition maintains the properties of the wonn- 

like chain backbone while allowing for small local movements, as the potential is 

harmonic about the cosBo rather than OO. The potential could be constructed such 

that the potential is harrnonic about OO; however, the backbone would not have the 

properties of a tvorm-like chain. Also, the bond angle will only Ructuate a small 

amount, so both possibiiities for the bond constraint would be nearly equivalent. 

To create the last two effects for heliv formation, that of an excludeci voIume 

interaction and the anisotropic potential, we devise a modified Lennard Jones type 

bond interaction. This will be beneficial for the dynarnics over the square well 

potential used earlier, as there will be no large discontinuities in the potential. 

As stated above, this potential must be anisotropic. To include this effect in the 

potential, a bond orientation vector, ê, is defined from the vector û, which is a 

unit vector perpendicular to the bond angle plane (see Fig. 3.2). The vector û can 

also be used to define the orientation of the potential as it was in the previous 

model; however, both right and left handed helices are equally favored using this 

definition. There are two reasons for wishing to break the symmetry in the helices in 

this model. First, from a realistic perspective, left and right hand helices typically 

do not form in the same protein helical segment. Therefore, breaking this symmetry 



is not an unreasonable addition. Second, the dynamics of folding are significantly 

different if both hands are dlowed to fom in the same se,ment, as domains with 

very long lifetimes would be created, thus constnicting a rather unphysical picture 

when examining protein folding. These domains are equivalent to the dornains in 

an king mode1 that forrn at  low temperatures with one up and one down- They 

are never resolved because the probability that one of the dornains could be flipped 

is unlikely. To break the symmetry between the two helices the vector û is tilted 

to correct for the pitch of the helix so that a nenr vector ê points directly dong the 

helical axis when a helicaI structure is adopted. The vectors are defined as follows, 

where d,  is the separation of sub-units dong the helical axis, such that the pitch 

is p = nd, given that there are n monomers per loop. The form of the potential is 

then specified as, 

where î, = ( E  - %)/le - 61. The potential is truncated when r is beyond a, the 

attraction radius, and a hard wall potential is used when r is below d, the excluded 
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volume radius. These conditions are implemented to minimize computational time. 

The function V(r)  is a Lennard Jones potential of the form, 

where the parameters a0 and ccl are chosen to yield a continuous potential forrn be- 

tween the limits d and a. The size of each monomer is selected to give a somewhat 

smooth contour to the shape of the worm-like chain, and has a value of d = (3 /2)a ,  

where a is the bond length between monorners. The radius of the attractive in- 

teraction can have a range of valid values, and ive select a value of O- = J45/8a. 

The parameter m controls the anisotropy of the potential and is set to m = 6 as 

discussed in the previous chapter[57, 781. The last two variables are E and K. Tpp- 

ically, the interactions governing the bond angle fluctuations tend to be an order 

of magnitude larger than non-local interactions[22]. Therefore, K is selected as 

-?Y = 10e The final adjustable parameter is E which is scaled into the temperature 

to  produce the reduced temperature unit 3? = ksT/e.  

To simulate the dynamic motion of particles a Monte Car10 simulation with local 

moves is used. In the simulation, a monomer is selected at  random and rotated a 

small amount around the & unit vector as is discussed in chapter 2. This condition 

does not allow the bonds between adjacent monomers to fluctuate, thus keeping 

the bond separation between monorners constant. This is a reasonable assumption 

as covalent bond interactions are typically in the order of 100 times larger than the 

non-local bonding effect of interest in this mode1[22]. The distance the monorner is 
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pushed is randomly selected between -6 and 6, nrhere S is chosen such that the rate 

of acceptance of moves is approximately 50% and has a value of 0-2. A single Monte 

Carlo time step consists of N attempted moves of randomly selected monomers. 

This model presents an ideal way to examine the folding behavior of s helis. By 

setting the ternperature of our system below the coil-helïu transition, we are able to 

confirrn that the native state of this model is a helix. We use a reduced ternperature 
- 

of T = 0.6 to obtain a stable helical state. Knowing this, the dynamic behavior 

of the model can be examined- Typically, in folding studies of minimal models of 

proteins: an understanding of the foiding properties can be obtained from a study 

of the mean first passage times (MFPTs)[l, 11, 791. The MFPT is defined as the 

time required for a molecule -to first enter the native state when it is started in 

an arbitrary configuration. This time will be dependent on the temperature of the 

system[80], but this is not of interest in this study. The same temperature as above 

is used for al1 the simulations because helices will be stable at  this temperature. 

4.3 Helical Order Parameters 

In addition to setting the ternperature, an order parameter that characterizes the 

native state needs to be defined. Defining an order parameter that accurately 

describes the helicity in our model is not difficuIt. The problern lies in determining 

when the molecule is in the native helical state. To explain, the helical native state 

is not a single state because fluctuations allow the helical segment to  flex. It is 

reasonable to assume that as long as the helical segment is not broken, then it can 
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be defined as the native state although the energy is not completely minimized. 

The only question that remains is, what defines a broken helical segment? 

In a protein segment, helicity is defined by the Ramachandran angles 4 and $. If 

al1 the angles fa11 within a specified range, the segment is considered to be in a helical 

form. The minimal mode1 constructed here does not contain equivalent angles to 

the Ramachandran angles. This leaves us t o  define an alternate order parameter for 

helicity. For this model, Ive define two order parameters and use both as indicators 

that a helical segment has been reached. The first order pararneter measures the 

local correlation of the bond orientation vectors and is defined as follows, 

., N-1 

where 1V, is the number of helix Çorming monomers in the system. This parameter 

ensures that adjacent monomers, including the ends, are nearly helica:. The second 

order parameter examines the net behavior of the bond orientation vectors and is 

defined as, 

This vector determines whether or not the segment is fractured near the middle. A 

break mid-segment may not produce a significant drop in the first order parameter, 

but it could produce a large variation in the second. 

As both of these order parameters are continuous, we define an arbitrary value 

for each order parameter to define a segment as helicd. When the values of both 

parameters reacfi a value greater than 0.95, the segment is considered helical. Spec- 
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Figure 4.1: Scaling of average folding time vs. polymer length. Helical segment 
without tethered segments(M), and helical segment-with two tethered segments (O). 

iflring this value insures that the se,ments are near perfect helices, and should not 

affect the general dynarnic trends we have set out to observe. A range of values near 

0.95 should be acceptable because a value that is set too high to be representative 

of the allowable fluctuation should not affect the results significantly. This can be 

explained as follows. When a segment enters the native well, it should quickly find 

the bottom of the well on a time scale much shorter than the first passage time. It 

will not remain in the bottom for a ex3ended penod of time, as the structure will 

fluctuate within the well. Setting a high cutoff value shodd unsure accurate first 

passage time results, as it will ensure that the structure is in its native energy well 

with only marginal error to the MFPT. 
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Table 4.1: The folding data for a helical segment. N is the total segment length, 
N, is the number of helix forming segments, tmf, is the mean first passage time, 
t,, is the maximum folding time allowed, and % DNF, is the percentage that did 
not fold. 

4.4 Nucle-ion and Folding 

Using this condition, we study the MFPTs of helical segments. To do this, the 

first passage times for 40 segments for each length of N, = 19, 25, 31, 37, 43, and 

49 were calculated. The MFPT was then deterrnined and the results are shown in 

Table 4.1. Not al1 the segments reached a helical state in the maximum number of 

steps allowed for the simulation, but the percentage of non-folding segments is low 

when compared to other models[l]. In minimal lattice models, a segment which only 

folds 40% of the time is still a good folding protein. By exarnining the percentage 

of non-folding segments, we can conclude that our mode1 is a good folder. 

Work by Gutin et a1.[79] showed that good folding protein sequences have MF- 



Figure 4.2: Illustration of a typical folding scenario in Mode1 1 for 1V, = 49. 

PTs that obeÿ a power-law behavior when scaled with system size, 

where t,!, is the mean first passage tirne, and X is the characteristic exponent. The 

exponent X varied depending on how the sequences were designed. For example, 

a randomly designed chain scaled with an exponent of A,,, = 6, while a sequence 

designed From a Riliyazawa and Jernigan[G] potential scaled Nith an exponent of 

XnrJ = 4.5[79]. This showved that sequences designed from protein-like potentials 

were better folders when the sequences being folded were longer. Using the data 

from Table 4.1, we can determine the exponent associated with the helical mode1 

by plotting the data on a log-log plot as in Fig. 4.1. By fitting the data with a least 

squares method to Eq. 4.9, a value of Xhfi = 3.7(2) is obtained. This exponent 

suggests that the model demonstrates characteristics of a well-designed protein 

sequence. 

Knowing that the model dynamics are characteristic of a good folding protein, 

the typical folding process of a helix can be examined. In Fig. 4.2, a time lapse im- 



age of the helical segment is s h o w  as it folds. The figure clearly shows a nucleation 

propagation process at work, which is the expected mechanism for a cooperative 

system. In this model, the nucleation occurs a t  the ends of the chain and not in the 

rnidclle. This has the obvious explanation that the mobility of the end rnolecuies 

is significantly higher due to reduced confinement restrictions on movement of the 

end monomers- Once the nucleation of the end of the segment occurs, the helices 

propagate inwards. At some point, the two parts of the helical seornent meet with a 

discontinui ty. The initial helical formation is only a small Çraction of the net folding 

time, while the resolution of the discontinuity requires the majority of the tirne. 

This happens as propagation of the helkal segment occurs along the contour of 

the backbone- There is more freedorn of movement in this direction, as the helical 

segment moves through longitudinal fluctuations. In some cases, the formed heIical 

segment rotates in conjunct ion with the longitudinal motion facilitating the helical 

propagation. This contour propagation is also responsible for generating the dis- 

continuities in the helical segment, as propagation is usually halted by sharp bends 

in the chain contour. Resolving the discontinuity requires transverse fluctuations, 

which are Iimited by the helical confining geometry. Therefore, this step in the 

folding process requires the largest fraction of the total folding time. This can be 

further demonstrated by Fig. 4.3, which shows the behavior of the two order param- 

eters for a typical folding event. The local helicity order parameter, f i ,  increases 

rapidly a t  the beginning showing that the helical content is rising significantly. The 

global order parameter, f i ,  also increases but then undergoes large variations as 

transverse fluctuations of the molecule occur. 
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Figure 4.3: Typical development of the order parameters with time 

IO 

for N = 49. 
The local parameter Hi (a) and the global parameter HÎ (a) are shown on the 
graph. The fluctuation in the global parameter demonst.rates the resolution of a 
discontinuity. 

This Ieads to the question, can the folding times of the helical segments be improved 

by altering the nucleation properties of the chain? More importantly, is the scaling 

behavior of the chain altered by such changes? These questions are answered by 

examining a slightly rnodified version of the helical model presented. In this model, 

two segments of six monorners are attached to the ends of the helical segment, but 

the segments only interact through an excluded volume interaction. This has two 

effects on the system. First, the non-attractive monomers increase the weight of 

the systern, t hereby creating a system with slower characteristic fluctuation times. 
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This means an overaI1 slotver dynamic behavior. Second, the end monomers of the 

attractive semament will no longer have increased mobiIity and tvill have nearly the 

same Iikelihood of nucleation as the interior monomers. For this model, the chain 

is now considered helical if the attractive monomers, not the added segments, rneet 

the requirements stated above for helici ty. 

I t  would appear that adding the ttvo non-attractive segments would have a net 

effect of slowing the dynamics of the segment; however, this is not the case. By 

adding the additional se,aments, the MFPTs are decreased. Table 4.2 shows the 

MFPTs and it is clear that for the larger segments, the folding times are nearly 

50% shorter. This dramatic decrease in the folding times is accounted for in the 

following tvay. The reduction of the ability of the end segments to nucleate the helix 

causes a more uniform distribution of nucleation sites. Also, the net probability of 

creating a nucleation site is now much lower. This means that the initial nucleation 

is longer, but that a nucleation site that already exists has a much longer time 

to propagate through the entire segment before a second nucleation site occurs- 

Thus, there is a significant reduction in the folding times as a discontinuity in the 

segment does not have to be resolved. Fig. 4.4 illustrates this folding process where 

only a single nucleation site is formed and the segment propagates throughout the 

se,o;ment. Note that the nucleation site is located in the middle of the segment. I t  

should be mentioned that multiple nucleation sites can still occur. This results in 

a dislocation that needs to be resolved, and hence, an increase in the folding times; 

however, these events occur less frequently. In the first model, a discontinuity was 

formed in every simulation, while in the second model, a discontinuity only formed 



Figure 4.4: An illustration of a folding event for Ns = 49 in Mode1 II where only 
a single nucleation site is fcmed. Note the central location of the nucleation site. 
The dark monomers are those with no attractive potential. 

in approximately 50% of the simulations. This is determined by visual inspection. 

Also, the adcled segments have the unexpected effect of assisting the resoIution 

of discontinuities, as the end segments decrease the Iongitudinal motion and increase 

the transverse motion. In rare events, a complete helicsl segment is formerl with 

the opposite hand. This keeps both order parameters small enough that a good 

mesure  of the MFPT cannot be obtained, but this only occurs in a limited number 

of simulations and these segments are therefore considered non-folders. These two 

effects account for the observed folding times, and it is clear that the reduction in 

the number of nucleation sites plays a very significant role in the folding times. 

Using the data in Table 4.2, a log-log plot of the data has been made in Fig. 4.1. 

The same power-law behavior that was observed for the previous model rernains in 

this model. The exponent, which is calculated from a least squares fit to the data, 

has a value of X h f P  = 2.4(3). This is significantly lower than the exponent for the 



Table 4-2: The folding data for a helical segment with non-helix forming segments 
tethered to  both ends. 

previous model, and demonstrates that the folding is fundarnentally different for 

this model. It shows that longer helices can be formed if the probability of seeding. 

a segment is relatively small, and if there is only one nucleation site. 

4-4.3 Mode1 III 

To fully understsnd the folding behavior of this type of model, we examine yet a 

third similar model. In this model, we attach only a single non-at tractive segment to 

one end of the segment. En this case, we might espect to see a third set of dynamics. 

We measure the helicity of a segment in the same way as the second model by only 

considering the attractive segments. The folding tirnes for this model are shown in 

Table 4.3. The data in this table is calculated based on twenty simulations and is 

not sufficiently accurate to obtain a reliable value for the exponent; however, the 

exponent is estimated from this data and we beiieve it should lie between the values 

of the other two models. The exponent calculated from a least squares fit has a 

value of XM3 = 3.5(1.0). 
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Table 4.3: The folding data for a helical segment with a non-helix forming segment 
tethered to one end- 

N IV, tmfP(x1O3) t m a - ( ~ 1 0 6 )  % DNF 
25 19 3.0(5) 25 20 
31 25 7.0 ( 8 )  50 35 
37 31 10. (2) 100 35 
43 37 3945) 150 40 
49 43 28.(5) '200 15 
55 49 73.(14) 250 10 

The d_vnamics of this model are a combination of the two already dircussed. 

The nucleation of the helical segment occurs a t  the free end of the segment, as 

in the first model. This ie iikely to be the only nucleation site thus reducing the 

probability of having to resolve a discontinuity; however, the propagation of the 

helical segment occurs through longitudinaI fluctuations along the chah  contour 

and can be retarded by sharp changes in the chain contour. This slowing of the 

propagation often provides an opportunity to generate a second nucleation site in 

the remaining segment which gives rise to a discontinuity that retards the dynamics. 

Only approximately 15% of the segments now foId wïth a single nucleation site- A 

cornparison of the folding times to the first and second models shows that this 

model is relatively similar to the first model, but a slightly smaller esponent for 

this model would be projected because 15% can fold with a single nucleation site. 

Therefore, it appears that the exponent is far more sensitive to the probability of 

multiple nucleation sites, as more than one nucleation site is likely to decrease the 

foldability of the segment. 
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These results also demonstrate the significance of "hot" sites, or conserved 

residues[ll, 131, within a protein. These sites are the key nucleation regions of 

the folding process and form first in order to seed the creation of the native state. 

The "hot" sites are also responsible for the stabiIity of the structure as their muta- 

tion has a large effect on foldability. The results above are in agreement with these 

observations, but we can add an additional conclusion. It is not importCmt to have 

a dominating nucleation site as long as propagation can proceed throughout the 

entire segment without an alternate nucleation site forming and conflicting with 

the folding; hotvwer, the simplest way t hat this can be attained is to have a region 

that has a higher probability of seeding the segment, which would increase the time 

for propagation through the structure. 

4.5 Potential Anisotropy and Folding 

As discussed in chapter 3, the anisotropy of the potential was projected to play 

a significant role in the foldability of the helical segment. The results of Klimov 

and Thirurnalai[76] projected that the foldability of a protein is related to the 

relative separations of the coil-globular and globular-folded transition through the 

parameter o(see Eq. 3.18). In chapter 3, we showed that decreasing the anisotropy 

increases the value of CI-, which is projected to increase the folding times. This 

dynamic model presents an ideal method for studying this proposal. 

To conduct this simulation, will use the second model of a helical segment with 

two non-interacting segments attached. This model is used as i t  demonstrates 



the best folding characteristfcs. In the above simulations, the potential used a 

parameter of m = 6. For this simulation, a value of m = 2 is used- The MFPTs 

were then collected for the same helical segment lengths as in Mode1 II, using twenty 

simulations in the average. The data collected is shown in Table 4.4- Further, the 

exponent for this model was determined to be = 3.1(5). 

Comparing the data from Tables 4.2 and 4.4, as well as the corresponding expo- 

nents, shows the projected reduction in the folding times. The folding times for the 

m = 2 mode1 are much larger, and the exponent characterizing the scaling behav- 

ior of the system is also larger. In this model, the folding dynamics should be the 

same as those obsenred in the m = 6 model; hotvever, a much slower folding and 

different scaling behavior is observed. What is different about the dynamics when 

the anisotropy is reduced? As the results from the previous chapter suggest: the  

stability of the globular state has been changed. This increased stability brought 

on by the reduction in anisotropy should reduce the probability of nucleation and 

decrease the rate of helical propagation. This would account for t h e  observed in- 

crease in the esponent and why the long helical segments require considerably more 

time to fold. 

4.6 Summary 

In this chapter, a dynamic minimal model of a helk forming polymer segment was 

presented. The model utilizes a non-local interaction to create a segment with a 

helical ground state, similar t o  non-local interactions in proteins such as dipoles and 
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Table 4.4: The folding data for a helical segment using a value of m = 2 for the 
potential with non-helix fonning se,.;ments tethered to both ends. 

N Ns tmfp(x103) tma(x106) % DNF 
31 19 2.4(4) 25 40 

hydrogen bonding. The model creates the helical ground state by using a persistent 

polymer backbone and directionalized potential directed along the helical a.xis. This 

model is sufficiently general that other protein structures could also be simulated 

using t his model. 

By studying the dynamics of this model, we have shown that the MFPTs from 

the coi1 state to the helical state scale as a power-law with system size, as is expected 

for a protein-like system. The calculated power-law esponents were shown to be 

consistent with other toy protein models. In addition, MFPTs are sensitive to the 

nucleation probability of the segment, as is expected for a protein system; however, 

not only are the times altered, but the scaling exponents for the system are altered 

as welL It is also clear that nucleation is not the only important factor in folding, 

and that the relationship between propagation and nucleation is the dominating 

factor in creating segments with fast folding characteristics. 

In addition to studying the effects of nucleation on helix formation, the effect 

that anisotropy in the potential has on folding was also examined. The projection 
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from the previous chapter of a increase in folding times due to a decrease in the 

anisotropy of the potential was confirmed- Not only were folding times longer, but 

the scaling exponent was also altered by the changes to the potential. These results 

support the conclusion that fast-folding proteins prefer to fold in an "al1 or nothing" 

type of process. 



Chapter 5 

Lat t ice Prions 

Pnom are perhaps the greatest challenge to theorists atternpting to understand 

proteins. As hm already been discussed, proteins have the characterist ic feature 

of a funnel-like landscape that directs the folding of a sequence to a single native 

state. Prions appear to be the exception to this rule, as these mysterious proteins 

apparently have two native states. This presents a very perplexing problem: what 

is different about the energy landscape of a prion that gives it this dual native st ate 

property? Not only are there two native states, but one state is favored during 

folding in such a way that it behaves similarly to a typical fast-folding protein. This 

feature has probably given prions the chance to develop biological functionality. 
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5.1 Introduction to Prions 

Prions are protein structures that have just rece~tly corne to the forefront of scien- 

tific interest. They have been implicated as the cause of some rare diseases, such 

as Bovine Spongiform Encephalopat hy (" Mad Cow Disease" ) , Creutzfeldt-Jakob 

Disease, Kuru, and Scrapies. These diseases are caused by one of the two native 

states of the prion. Most of the time, a prion will adopt one structure, but in odd 

situations, the prion will take on the other form. For convenience, the state to 

which a prion typically folds will be referred to as the native state. The other state 

to which a prion folds on rare occasions, will be referred to as the prion state. It is 

the prion state that causes the diseases mentioned above. 

There is also a rather novel transmission mechanism that accompanies these 

diseases. Stanley Prusiner[8 11 has proposed the protein only hypot hesis for which 

he won a Nobel Prize in 1997. Although this model is not completely proven, 

there is mounting evidence to its validity[82]. In this model for the transmission 

of an infectious agent, there is no need for nucleic acids such RNA and DNA, 

as the infectious agent is the protein in the prion state. The term prion is used 

to denote a proteinaceous infectious particle. The idea that proteins themselves 

can transmit diseases is a novel and fascinating proposition. In the prion diseases 

mentioned above, the protein in the prion state acts as a template to  convert the 

already present proteins, which are in the native state, to proteins in the prion 

state. There are several possible scenarios for the conversion process, but none 

have been proven correct[83]. In each of the conversion mechanisms, the process 
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needs to be seeded by the infectious prion. There are severd possible theories for 

the origin of the infectious prion. One theory is that the infectious protein forms 

are consumed and accumulated in the body because the infectious form of the prion 

is protease resistant [83]. A second theory is that the infectious particles originate 

spontaneously within the body through suficient protein mutation causing the 

protein to favor the infectious forrn over its regular structure. h o t h e r  possibility 

is the occurance of a rare kinetic event that causes the structure to adopt the 

infectious fom. Al1 of these are possible scenarios for the origin of the infectious 

prion particles. 

In al1 of these diseases, there is a common prion protein prPC, which is only 

slightly genetically difEerent in each disease. In each case, the prion gene sequence 

PrP has two different protein conformations, prpC and prPSC. prpSC is the in- 

fectious form of the PrP protein. These two proteins have no detectable sequence 

differences and are formed £rom the same gene[84]. The only difference lies in the 

conformation adopted. The PrpC state is predominately a-helix with little ,O-sheet 

structure, while the PrPSC state contains a large fraction of psheet. 

There are also some interesting properties to these proteins t hat are related to 

their ability to transmit diseases. For example, the conversion process can occur 

across species (i.e. " Mad Cow Disease" prions in cows can cause Creutzfeldt-Jakob 

disease in humans); however, infection is more efficient if the genetic sequences of 

the PrP genes of the two species differ only by a small amount. This ixnplies that 

the disease can only be transmitted between species in some special cases. For 

example, humans would not be able to contract Creutzefeldt-Jakob disease £rom 
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the PrPSC proteins in mice (Scrapies). Also, PrpSC can be denatured using GdnSCN 

into an unfolded state, but the process is not reversible[85]; however, under some 

conditions such as altered salinity acd acidity, the PrpSc infectious state can be 

recovered [86]. 

Understanding the properties and folding mechanisrns of prions has been of 

great interest, especially in the last ten years, as these proteins have such unusual 

properties. Lattice models have also been used to attemp t to undersiand the novel 

properties of these proteins, and work by -4bkevich et d.[39] has shown that a 

protein's energy landscape can be kinetically partitioned. This simply means that 

two states of similar energy could have different folding times such that one state 

is more kinetically accessible than the other. This partitioning is believed to origi- 

nate from the differences in the number of local and non-local contacts in the two 

conformations[87]. In this chapter, we use Iattice modeIs to further examine the 

landscape of prion molecules. In contrast to the approach of Abkevich et al., who 

designed their prion molecules to have specific structural features, we attempt to 

identify prion sequences in a simple 27-mer model based strictly on the sequence's 

energy spectrum and folding properties. 

Fbr this study, the 27-mer model discussed in chapter 1 is used in conjunction 

with the dynamic moves for a cubic lattice discussed in chapter 2. This model is 

the s m e  as those used by Sali et al.[l]. An interaction matrix representing the 
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forces between the different amino acids in the chain is generated. The interactions 

are chosen randomly from a Gaussian distribution centered at  -2.0 and standard 

deviation 1.0. Each matrix that is generated is a particular realization of a sequence. 

The protein-like structures for these sequences are considered arrangements of the 

sequence in a cubic structure, as cubes are the rnost compact chah arrangements 

and contain the maximum number of contacts. The configuration that will be 

adopted by the sequence as the native structure is the lowest energy cube. This 

state is deemed the native state because it is probably the lowest possible energy 

configuration, which does not have to be a cubic configuration. For rnost matrices, 

the lowest energy cube is the lowest energy state, but this is not always the case. 

The simulations of each sequence are conducted at difFerent temperatures. The 

t emperature is set such that the following criterion is met (1 11, 

where CSA are all the compact self-avoiding states or cubic arrangements. This 

condition for determining the temperature has been suggested by Sali et al. to 

be a good estimate for the ideal temperature at  which the simulations should be 

conducted [l] . 

Sali et al. define a random sequence as protein-like as one that can reach its 

native state 40% of the time in a simulation five times longer than the mean first 

passage time (MFPT) for a typical fast-folding sequence. We use this criterion 

to look for prion-like sequences in this 27-mer rnodel. In order to examine the 
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properties of prions, we &rst must determine the sequences that exhibit the behavior 

of a prion. The criteria used to label a sequence as prion-like are as follows: 

1) The two lowest energy compact states must have similar energies, and are referred 

to as the native states of the sequence 

2) The two native states must be significantly separated from the energy spectrum 

of the other compact states by a large gap. 

3) One of the native states must be a good folder. 

4) The two native states must have considerably different structures. 

5 )  A large energy barrier must kinetically separate the native states. 

These conditions have the following meanings. Condition 1 originates from 

experimental evidence that suggests the two conformations need only be marginally 

different in stability[83]. The second condition arises h-orn the work by Sali et al. 

that shows protein-like sequences have large energy gaps separating the native state 

from the spectrum of compact states. We require in condition 3 that at least one 

sequence be a good-folding sequence. This implies that the two native states should 

be separated by a significant energy gap £rom the spectrum of compact states. 

Condition 4 cornes from experimental evidence which shows that prion structures 

have major structural differences. The final condition implies that if these two 

sequences are to be kinetically partitioned, then the two native states must be 

separated by â large energy barrier. 

These rules are implemented in the simulation as follows. First, random se- 

quences are generated and the energies of al1 the compact configurations are deter- 

mined. Sequences with an energy spectrum similar to the one shown in Fig. 5.la 
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Seq uences 

Figure 5.1: a) The energy spectrum of a prion-like sequence. b) The energy spec- 
tnim of a good folding sequence. Note the large gap between the lowest and second 
lowest energy states. c) The energy spectrum of a sequence with glassy character- 
istics. 

are deemed possible prion candidates. The spectrum is based on conditions 1 and 

2, and is constructed by accepting sequences that have two native states separated 

by less than 0.5, and a gap of greater than 2.5 between the second and third lowest 

energy cubes. The sequences that meet this criterion then have their native state 

structures examined for sirnilarities. These structural differences are accessed by 

determining the number of monomers situated in the same positions of the cube. 

To identify these monomers, the cubic structures are written out with the same 

orientation. If structures have less than three monomers in the sarne position, 

the structures are considered sufficiently different. This method is only one pos- 

sible choice for detennining whether two structures have different conformations 



that would give them a higher probability of being kinetically partitioned. This 

method was chosen as it is cornputationally simple and does not constrain the type 

of bonding that could occur, as bonding is believed to be important for kinetically 

partitioning the two native states. About 0.03% of the sequences sampled rneet 

these energy and structural criteria. 

The sequences that are obtained from the above method are then folded 50 

times for 1 x 109 steps. The results of the simulation are studied to determine 

if conditions 3 and 5 are met. Those sequences that meet these requirements are 

called prion-like. To facilitate the discussion, the lowest energy native state will 

be referred to as NI and the other native state will be IV2- In the folding results, 

we look for sequences that rneet the good folding condition. If either the NI or N2 

state is reached in 40% of the simulations, then the sequence is considered a good 

folder. We are only interested in sequences that exhibit good folding behavior to 

one of the two native states, as P~P' is know to be a very fast-folding rnolecule[88]. 

We also look for the kinetic accessibility of the other native state in the folding 

process. In other words, is the other state typicdy part of the folding pathway? 

We are only interested in those sequences that are kinetically partitioned by a large 

energy barrier. Therefore, the unpreferred native state should rarely be visited in 

foiding events when compared with the preferred native state. By keeping track of 

the compact states visited during each folding event, we are able to obtain an idea 

of the kinetic partitioning that occurs. 
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5.3 Results 

For this study, 273 different sequences were examined that had the required con- 

straints on the energy spectmm and structural difFerences. Most of the sequences 

fell into one of two categories. The majority of the sequences were good-folding 

sequences, but also had the secondary native state visited during a large fraction of 

the folding events. This implied that the secondary state was not very kineticdy 

partitioned kom the primary native state, and would only be a transient state in 

the folding pathway. We also found that in most of these cases, the primary native 

state is the NI state. In the other cases, the sequences did not appear to be good 

folding sequences, as neither the NI nor the N2 states were visited repeatedly. 

Among these sequences, we found several sequences that demonstrated unusual 

properties suggesting that these sequences are prion-like. We examined two of these 

sequences in detail. Both sequences where given considerably more computational 

effort and were folded 2000 times each. The first sequence (labeled Sequence 54) 

dernonstrates the characteristic properties of a prion that would be O bserved exper- 

imentally. In real p ion  systems, the P~P' state is believed to be marginally less 

stable than the infectious PrPsc[83] state, and under typical biological conditions, 

the PrPC is the favored state in the folding pathway. Sequence 54 shows the same 

behavior as these proteins because 72.1% of the time the native state, N2 (the higher 

energy state), is reached without passing through the native state, N I .  In addition, 

in 6.8% of the folding simulations, the native state, N I ,  is reached without pass- 

h g  though the N2 state. In approximately 1.7% of the simulations, the sequence 
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Figure 5.2: Diagram displaying the successful folding percentages between the var- 
ious states for Sequence 54. The remainder of the folding events not shown are 
unsuccessful folding events where the target configurations were not reached. The 
results beginning in the unfolded states are based on 2000 simulations, while the 
results between the two native states are obtained hom 100 simulations each. Each 
simulation is 1 x 10' Monte Carlo steps. 

passed through the & state before entering the IVl state. In the remainder of the 

simulations, the lowest energy structures reached were a variety of higher energy 

cubes in which we have little interest. To further understand the folding behavior 

observed, 100 simulations of the same length were conducted, where the simulation 

started from the N2 state and was folded to the Nl state. Another 100 sirnulations 

were conducted in the reverse direction, starting from the NI state and folded to 

the 1V2 state- In the simulation from N2 to IVl, only 3% of the simulations reached 

the Nl state. In the reverse situation, 19% of the simulations reached the Ns state 

fiom the NI state. These results are depicted in a diagram in Fig. 5.2. 
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The above results for Sequence 54 denonsirate prion-like behavior even in this 

very simplified toy system of proteins. The native state, N2 Y is a fast-folding struc- 

ture. The alternate native state, NI,  also appears to be kinetically partitioned from 

the general folding landscape as is suggested by the small percentage of crossovers 

from one native state to the other. This data further suggests that there are two 

separate folding funnel pathways which are depicted in Fig. 5.3; this idea was first 

presented by Abkevich et al.[39]. We infer this from the fact that the percentage of 

crossover events is not syrnmetric, and that there is a higher probability of moving 

from NI to N2. Also, in an intermediate state mode1 nrhere a protein folds first 

to a stable intermediate and then to its ground state, we would expect to observe 

the percentages in the reverse order. This senario is highly unlikely as  it has been 

shown both in lattice models [lO] and in experiments[89] that fast-folding proteins 

do not fold with the aid of intermediates. The temperatures at which the simula- 

tions are conducted do not exclude the possibility of the structure unfolding and 

refolding. Therefore, once the structure has unfolded, there is a higher probability 

to favor the N2 funnel over the NI funnel. This explains the asymrnetry in the 

observed crossover folding results. To further study this behavior , the t emperature 

of the system was lowered by 5%. At the reduced temperature, folding to the two 

native states was still achieved with approximately the same success rates, while the 

crossover between the native states was nearly elirninated. This further supports 

the idea of two seperate folding funnels. 

Using the idea that the landscape of a prion is separated into separate funnels, 

we estimate the MFPTs of the direct folding events to each of the native states. 



Configurations 

Figure 5.3: This is a representation of the landscape of a prion-like sequence. In 
this landscape there are two deep energy minima separated by a significant energy 
barrier . 

The data for these times is shown in Table 5.1. From the data, it is clear that 

folding to the native state, N2, occurs quickly, and that the folding times to the 

NI state are of similar magnitude. Shese times are calculated based on the fact 

that the other native state is not encountered during the simulation. This is not in 

contradiction with previous results which suggest that the folding times for one of 

the two native states should be much longer thm the other in kinetically partitioned 

landscapes[39]. Our results are based on the structure not encountering the kinetic 

trap of the other native state. Tf we included the time spent in the other energy 

minimum, then the folding times to the NI state would be much longer. The 

folding events in which the sequence becomes kinetically trapped in the other energy 

minimum for sorne period of time are excluded from these results because a real 

protein system would have significantly deeper energy minima. A very deep energy 



CHAPTER 5. LATTICE PRIONS 116 

minimum would make an unassist ed, sp ont aneous structure change unlikely. Thus, 

the favoring of one funnel over the next is related to the availability of transition 

states to the structure[39]. The folding times for the crossover events are presented 

for only those that were able to make the transition in the time allotted, which is 

about ten times longer than the average MFPTs for a typical fast-folding protein 

sequence. These times, in theory, should Vary greatly depending on the length of 

time spent in the respective energy minima, and the probability of encountering 

the alternate transition states to the other native state. Thus, the results are not 

representative of the mean foldùig times between energy minima as we end the 

simulations at 1 x log steps; however, comparing these results demonstrates the 

kinetic partitioning of the two states because the mean crossover times for the 

successful simulations are twice as long as the MFPTs. As these crossover times 

are only representative of those simulations that fold the fastest, we expect the 

actual crossover times to be much longer. Another point of interest in regards to 

the MFPTs is that they are approxirnately three times longer than those sequences 

that do not exhibit any kinetic partitioning. This suggests that the transition states 

are quite stncturally different, and that the added cornpetition to direct the folding 

slows the overall dynamics of t hese molecules. 

The structures that this sequence adopts are not designed to have any particular 

properties; this provides an opportunity to study the structural features for clues 

as to the nature of the partitioning. The two states for the sequence are shown in 

Fig. 5.4, and the energies for the NI and f i  are -78.596 and -78.413 respectively. 

This is an energy difference of 0.183, while the energy gap between the N2 state 



Table 5.1: The folding times for Sequence 54. Shown is the number of events for 
each average, followed by the mean Erst passage time. 

Path No. Events Time 
U -+ NI 136 3.0(3) x 10a 
U + IV2 1442 3.24(7) x 10' 
Ni + N2 19 6.0(6) x 10' 

and the next lowest energy cube is 2.541. The analysis of direct structural features 

such as preferred geometry is difficult to deduce because the system size is so small; 

however, some speculation on the nature of the bonding occun-ing can be done. 

To analyze the nature of the bonding it is constructive to break the types of 

bonds d o m  in the following way: 1) local vs. non-local, and 2) similar vs. dif- 

ferent. Local bonds are ùefined as bonds that form between the ith and ith + 3 

monomers, and al1 the rest are considered non-local. This type of distinction has 

been considered very important in underst anding the folding nature of proteins[87]. 

Similar bonds are those bonds that occur in both native structures. Distinguishing 

between the similar and different bonds will be important in discussions of prion 

structures because the different bonds will probably play a role in determining the 

folding behavior. In Fig. 5.4, the similar and different-local bonds are shown to 

assist in a discussion of the folding process. 

Table 5.2 presents a breakdown of the bonds into the various classes. The 

number of bonds, the average bond strength, and the standard deviations in the 

average, are all given. In this sequence, both the sirnilar-local and similar-non-local 



Figure 5.4: The two native states of Sequence 54, where a) is the NI native state 
and b) is the & native state. Shown are the similar bonds (long dashes) and the 
different local bonds (short dashes). 

bonds have average interaction strengths that are much stronger thui  the average, 

which is preset by the mean of the Gaussian to -2.0. These similar bonds probably 

play a significant role in the observed good folding properties of the sequence, as 

Abkevich et al.[87] have shown that dominant local and non-local contacts produce 

faster folding sequences. It also appears that the sirnilar-non-local bonds are much 

stronger t han the different-non-local contacts. 

The different contacts should play a leading role in the kinetic partitioning of 

the sequence. The different-non-local contacts appear only to be slightly stronger 

than the average and are similar in value between the two native states, but the 

N2 state has a much wider variation in the bond strengths as is shown by the large 

standard deviation. This variation in the different-non-local bonds probablÿ has 

some role in the kinetic partitioning, but it is not the only necessary condition. 



Table 5.2: Bonding breakdown for Sequence 54. Shown are the similar-local(S1) , 
similar-non-local(SNL) , different-local (DL), and different-non-local(DNL) , for the 
NI and N2 native states. 

SL SNL DL (N,) DL (A$) DNL ( N I )  DNL (fi) 
No. Bonds 4 6 2 4 16 14 

Average Energy -3.11 -3.57 -1.65 -2.69 -2.59 -2.41 
Stand: Dev. 0.70 0.97 0.55 0.52 0.53 1.08 

The different-local contacts present a much different picture, as the variation 

in the average energy is large. In the good folding N2 native state, the bond 

strengths are above average and there are more of them in this structure. This 

is fully consistent with the conclusion that dominant local contacts generate the 

kinetic partitioning in prions[39]. An interesthg observation is t hat a large nurnber 

of different-local contacts are not needed, and that these contacts do not have to 

be excessively strong. \ma t  role the different-local bonds have on partitioning is 

unclear, but these bonds probably play some role in folding. 

In studies of real prion systems, it is believed that the PrpSC state must be 

margindly more stable than the prpC state in order to obtain the observed disease 

propagation behavior[83]. A second sequence, labeled Sequence 49, exhibits the 

kinetic partitioning sirnilar to Sequence 54, but with the difference that the NI 

native state is the favored funnel over the N2 state. For this sequence, out of the 

2000 simulations conducted, 63.4% of the time the native state is reached without 

encountering the secondary native state, N2. In 4.65% of the simulations the & 

state is reached without encountering the state NI.  For a small fraction of 0.4%, 
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N2 is encountered while ha l ly  ending up in the p r i r n q  native state of N I .  In the 

rest of the simulations, folding is not achieved. Further examination of the kinetic 

partitioning was performed by conducting 100 simulations to observe the number 

of times the alternate native state could be obtained in 1 x 10' steps. Starting in 

the native state, N I ,  the state Ns was reached 5% of the time, while in the reverse 

situation, 15% of the simulations were able to obtain the N, state. These results are 

represented in a diagram in Fig. 5.5. For this sequence, the temperature was dso 

lowered by 5% with near elimination of crossover between the two native states. 

Similar folding precentages to the various native states were stiU obtained at this 

temperature. 

These results demonstrate a similar kinetic partitioning of the two native states 

and suggest that the landscape is sirnilar to the landscape of Sequence 54 discussed 

above. The MFPTs for the various pathways are displayed in Table 5.3. These 

results demonstrate similar folding times to Sequence 54, leading to the conclusion 

that these two systems only differ in the fact that the preference for a particular 

native state is reversed. This has the implication that in real prion systems, the 

alternate native state (the prpSC state) need not be more stable in order to observe 

the conversion to the alternative conformation. If a catalytic process could alter 

the accessiblity of the transition states to the various folding funnels, then it is 

not a necessary requirement that the primaxy state be of higher energy. These two 

structures provide an ideal opportunity for studying whether the transition state 

accessibility could be altered to switch the observed behavior; however, this idea is 

not explored in this work. 
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Figure 5 -5: Diagram displaying the folding percent ages between the various stat es 
for Sequence 49. The remainder of the folding events not shown are unsuccess- 
ful folding events where the target configurations were not reached. The results 
beginning in the unfolded states are based on 2000 simulations each, while the re- 
sults between the two native states are obtained from 100 simulations each. Each 
simulation is 1 x 10' Monte Carlo steps. 

The structural similarities and differences between the two native structures of 

Sequence 49 can be observed in Fig. 5.6. In this case, the energies of the native 

states, NI and IV2, are -78.705 and -78.677 respectively, which is a difference of 

0.028. The energy gap between the N2 state and the next lowest energy level is 

2.504. The obsemed energy between the two states is much smaller in this case; 

however, this probably has little effect on folding kinetics, as the energy barrier 

between the tw states is what is important. The smaller split in energy rnay 

provide a slightly larger barrier in the transition from N2 to NI.  

If the bonding structure of this sequence is examined, a similar pattern to that 
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Table 5.3: The folding times for Sequence 49. Shown is the number of events for 
each average, followed by the mean first passage t h e .  

Path No. Events Time 
U 4 NI 1268 3.80(7) x 108 
U 4 N2 93 3.6(3) x 10' 
Ni + N;! 5 4.6(10) x 10' 
N2 -' NI 15 6.46(7) x 108 

of Sequence 54 is found. The simila contacts are above average in strength with the 

similar-local contacts only slightly lower in strength than those of Sequence 54. The 

slightly lower similar-local bond strengths may account for the reduced percentage 

of folding structures to the primary folding state. In terms of different-non-local 

contacts, the sarne average energies are observed; these energies are Iower than the 

energies of the similar non-local contacts. The standard deviations show a different 

result than Sequence 54, as the larger variation stiU Lies with the N2 state not with 

the primary folding state. In Sequence 49, the NI state is the favored folding state; 

however, this does not discount the idea that the variation in the different-non- 

local bonds plays an important role in partitioning because the standard deviations 

in both structures? different-non-local bonds are large. The different-local bonds 

present a more interesting result. In these contacts, there are more contacts in the 

primary folding state ( N I )  than in the secondary folding state, but the energies of 

the different-local contacts are much weaker than the energies of the contacts in 

the secondary state. This is in contrast with the conclusion that local contacts play 

a significant role in partitioning, which may mean that different-local bonding has 



Figure 5.6: The two native states of Sequence 49, where a) is the f i  native state 
and b) is the IV2 native state. Shown are the similar bonds (long dashes) and the 
different local bonds (short dashes) . 

little to do with partitioning. 

We have found several other sequences that demonstrate possible prion-like 

behavior. The results of simulations with these structures are outlined in Table 5.5. 

These sequences al1 show a preference toward one of the two native states, with most 

of the sequences favoring the NI native state. What makes these possible prion-like 

candidates is the very small number of sequences that fold first to the N2 state and 

then to the NI state. For sequences similar to Sequence 49, we need this number of 

crossover events to be s m d ,  because there is probably less than a 20% chance that 

the sequence can  reach the NI state from the N2 state if al1 1 x 10' steps are used 

to make this jump. Sequences that are similar to Sequence 54 should have even 
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Table 5.4: Bonding breakdown for Sequence 49. Shown are the similar-local(S1) , 
simfiar-non-local(SNL), different-local(DL), and different-non-local(DNL), for the 
NI and N2 native states. 

SL SNL DL (NL) DL (N2) DNL ( N i )  DNL (N2) 
No. Bonds 3 7 3 2 15 16 

Average Energy -2.82 -3.07 -1.48 -2.62 -2.68 -2 -47 
Stand. Dev. 0.79 0.80 0.40 0.57 0.73 0.82 

fewer crossover events; therefore, the number of these crossover events provides a 

good screening method for picking out sequences with good kinetic partitioning. 

Examining the bond breakdown in these sequences yields few comrnon features, 

which makes determining what is responsible for kinetic partitioning difficult. There 

appear to be no common features in the different-local and sirnilar-local bonds, 

although the kinetic partitioning bas a tendency to fa.vor the structure with the 

stronger different-local bonds. Another point worth rnentioning is the relatively 

small number of local bonds, and, in particular, the small number of different-local 

bonds, in cornparison to the number of different-non-local bonds. This suggests 

that local bonding only plays a s m d  role in the folding kinetics of these structures. 

The only striking feature is that all the similar-non-local bonds appear to be much 

stronger than the average, while the different-non-local bonds appear to be only 

marginally stronger. These results suggest that the combination of strong similar- 

non-local and marginally weaker different-non-local bonds are necessary in effective 

kinetic partitioning; however, we find that this is not a sufficient condition for 

O bserving prion-like behavior . 
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In addition to the sequences discussed above, two sequences were found that 

appear to exhibit two kinetically partitioned states, as there was little crcissing 

between the two native states; however, both native states were approximately 

equd in the number of times they were visited, and both would be classed as good- 

folders. In these sequences, the bonding andysis showed a large number of similar 

bonds. The features discussed above were stiU present in these sequences, but the 

failure to prefer a single native state is why they were not considered prion-like. 

These sequences do demonstrate that the number of different bonds does affect 

the accessibility of the transition states. This hrther implies that the bonding in 

the native states is not necessady of great importance in the overall dynamics, 

but that it is the nature of the transition states that controls the overall behavior. 

Therefore, the bonding that occurs in the transition states is important, but the 

formation of transient bonds in this stage of folding also probably plays a key role. 

5.4 Summary 

Using the simplified 27-mer lattice model, we are able to sort through the possible 

sequences and determine which of them exhibit prion-like behavior. Even at this 

rnost basic level of complexity, we are able to observe sequences that mimic the 

properties of real prions with remarkable similarity. Two sequences have been 

studied in detail for their folding properties. Each sequence has a preferred native 

state that is kinetically partitioned from its other native state. The direct MFPTs 

to each state are approximately equal. An observed asymmetry in the ability to 
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Table 5.5: Folding data and bond analysis for several prion-like sequences. Shown 
are the percentages of folding events that are successful to  a particular native state, 
and the percentage of events that fold first to f i  then to K .  A bonding breakdom 
is also given for the similar-local(SL), similar-non-local(SNL), difFerent-local(DL), 
and different-non-local(DNL) bonds for the NI and N2 native states. 

15 1 171 204 218 220 
%NI 86 88 10 72 71 
%N2 3 4 49 13 6 

%N2 =+ NI 2 2 1 3 5 
NO. SLISNL 114 218 019 318 119 

SL -4.0 -3.9(3) - -3.1(2) -2.0 
SNI, -3.8(6) -3l(lO) -3.1(6) -3.3(6) 3.0(7) 

No. N I N 2  612 314 4/6 312 3/1 
DL(Nl) -2.6(9) -2.6(6) -2.5(6) -3.3(7) -2-6(11) 
DL(N2) -1.9(6) -2.2(3) -2.4(4) -2.3(1) -1.5 

NO. Nl/N2 17/21 15/14 15/13 14/15 15/17 
DNL(N1) -2.6(8) -2.7(7) -2.5(9) -2.5(7) -2.6(7) 
DNL(N2) -2.6(8) -2.8(9) -2.5(10) -2.7(10) -2.6(8) 

cross between the two native states suggests that the Iandscape of these sequences 

is broken into two separate funnels. 

In addition to the analysis of the folding, a breakdown of the bonding within the 

native states was conducted to find the features of those sequences éhat generate 

prion-like behavior. The bonds were divided into similar vs. different and local 

vs. non-local bonds. The only commonality found arnong the sequences were the 

strong sirnilar-non-local bonds with marginally weaker different-non-local bonds. 

This feature was present in the structures; however, it was not a sufficient con- 

dition to produce a prion-like sequence. Based on these analyses, we speculate 
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that the nature of the native states plays a small role in creating the prion-Iike 

characteristics, and that the nature of the bonding in the transition states of these 

sequences is where the controlling behavior exiists. 



Conclusions 

Throughout this thesis, minimal modeIs have been used to study the features of 

biological systems. The sirnpLcity of the models has allowed certain fundamental 

features to be understood without the inclusion of the atomic complexity. The 

focus of the thesis has been to create minimal models and to use them to study 

secondary helical structures in proteins. As well, a specific class of proteins called 

prions were studied with a well defined minimal model. 

In chapter 3, a minimal model of a helical forming segment was created with a 

focus on anisotropic interactions that were not confined to bond with local neigh- 

bors. The model uses a simple anisotropic potential in which the anisotropy can be 

systematically varied. Using this model, we have studied the statistical properties 

of the helical forming segment and have demonstrated several interesting features: 

1) We have shown that the model contains four states: 1) coil, 2) globular, 3) helix 

1, and 4) helix II. The transitions between these various states were studied in detail, 

and the potential anisotropy was varied to observe the effect on the transition. 

2) These results show t hat the relative locations of the coil-globular tramition 

and globular-helix transition can be altered as the anisotropy is varied. A strong 
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anisotropy creates an " dl-or-nothing" type transition as the coil-globular and globular- 

helix transitions occur at  nearly the same temperature. A weak anisotropy causes 

these transit ions t O occur at  siodficant Iy difkent temperatures. 

3) We also predict that the anisotropy should have an effect on the folding dynamics 

to a helical state. The foldability of the segment should be significantly altered by 

changing the anisotropy, and a strong anisotropy leads to a faster folding helical 

segment. 

4) Finally by studying our model with an isotropic potentid, we lend support to the 

conclusions of other groups[68] that this system should not have a low temperature 

first order phase transition. 

To continue with the study of these helical segments, we modiS. Our static helix 

model in chapter 4 to create a dynamic model of a h e l k  The model is sirnilar to the 

model of chapter 3; however, it can be used to study a wider variety of problems. 

Using this model, the mean first passage times of folding were calculated, and the 

dynamic folding process was exarnined. Here we observed the interplay between 

ndeat ion  and propagation in the dynamics of folding. 

5) We demonstrated that the folding times for the helical segments obeyed a power- 

law behavior when scaled with system size. 

6) When the nucleation properties were modified by adding small non-helical form- 

ing segments to the ends of the helix, this power-law behavior was altered. It also 

demonstrated the importance of a single nucleation site in the folding process. 

7) In addition to the nucleation properties, the effect of anisotropy on the folding 

tirnes was explored. The results c o n h e d  the conclusions of chapter 3, which 
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pro jected bet ter folding behavior with increased anisotropy. 

Finally, in chapter 5, a well established minimal model is used to attempt to 

study prions. These unique proteins have an energy landscape unlike other proteins, 

as two kinetically stable native states exist. Using a minimal model that has been 

used ext;ensively to study proteins, we attempt to determine if prion-like sequences 

exist at this simplified level. 

8) We successfulIy deterrnined several structures that exhibit similar behaviors to 

a prion, and analyze the bond composition to determine what features separate 

a prion sequence from a protein sequence. The results show no simple pattern in 

structures, except that the bonds that are s i d a r  between the ~ G V O  native states 

are stronger than the bonds that are different in these structures. At present, we 

are unable to identi@ the critena that wiLl select out a prion sequence T-om those 

generated randomly; however, finding sequences that exhibit prion-like behavior 

provides a method for further studying these molecules. 

These models have demonstrated the types of issues that can be addressed 

through a sirnplified system. The creation of a model that contains some 'essential 

features, yet can be systematicsJly varied, provides a useful tool for studying protein 

systems. The models in this work have yielded results that could not easily be 

obtained with more complex all-atomic models. 
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