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Abstract

This thesis focuses on the use of minimal models to study biological molecules
such as proteins. The major aim of this work was the design and study of a
new minimal model that could be used to study the statistical properties of the
anisotropic interactions in helical forming segments. We discuss in detail v;'hat effect
the potential energy form has on these various states by systematically varying the
potential from strongly anisotropic to isotropic. The data demonstrates that the
foldability of a helix is strongly related to the anisotropic nature of the potential.

The model is further modified to examine the folding process of these segments
with emphasis on how nucleation and anisotropy affect folding. The folding times of
different helical systems are examined. The results demonstrate that the foldability
of the helix segments are strongly correlated to the interplay between nuclea.tioﬁ
and propagation. This interplay not only affects the foldability of the structure,
but significantly affects the scaling behavior of the folding times.

Finally, a classic minimal lattice model is implemented to study the folding
properties of prion-like sequences. With this simplified model we attempt to find
sequences that exhibit prion-like behavior. The sequences that are identified as
prion-like are further studied by analyzing the native state structures for the fea-

tures that give these sequences their unique properties.

iv
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Introduction

The human genome project has produced a tremendous amount of information
about the genetic sequences found in the human body. Although this data tells us
all the sequences of possible proteins, it tells us nothing about fhe three dimensional
(3D) structure of an individual protein. Determining the 3D-structure of a single
protein can be an extremely difficult problem, and some protein structures cannot
be determined with modern day techniques. For this reason, understanding proteins
presents one of the most challenging problems in the 21st century. \

Although biologists have made significant advances in understanding individual
proteins, there were no concentrated efforts to understand the general properties of
proteins as a whole until recently. In general, it appears that a protein sequence is
just an atypical random polymer chain, which for some unknown reason repeatedly
seeks out the same structure each time it is folded from any random configuration.
At first glance, there appear to be no similarities among the sequences of proteins
that fold to unique, biologically useful structures.

Perhaps the most significant breakthroughs in understanding the atypical prop-

erties of proteins have been made by those researchers who have taken the simplest
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yet most direct approach to the problem. As is the approach with many problems
that involve systems too complex to understand, it is advantageous to construct
‘simple idealist models that examine only a few important features of the system.
The only disadvantage to this method is that one must be careful of the conclusions
drawn from the model, otherwise they can shed light on problems cf enormous com-
plexity. The models that embody this approach are often referred to as “Minimal
Models”, as these models only contain a limited number of adjustable parameters
to simplify the system as much as pessible.

In the protein problem, the minimal models which present the simplest view of
the system are those which come from polymer physics. Proteins and many other
bioloéica.l structures can be represented at the most basic level by the models used
to describe generic polymers. For example, proteins are linear random heteropoly-
mers, while more complicated structures such as transfer-RNA can be represented
by a randomly branched polymer structure. Thus, for polymer physicists, the com-
plicated systems of the human body are merely specific cases of their simple generic
models. Therefore, these systems can be studied by examining appropriate models
of molecules of interest.

This is by far the most difficult part of the problem; designing a model that
represents the features of the biological system. In the past, numerous minimal
models of protein-like systems have been proposed to study various aspects of these
complex systems. The earliest and most successful models tackle the problem with
the use of lattice polymers, with simple binary potentials[2], or random energy

interactions[i]. Although these models have presented significant insight into the
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nature of protein systems, the underlying lattice causes key features to be lost that
are important to proteins. The most notable of these deficiencies is the lack of
-secondary structure, such as a-helices and B-sheets, in a lattice model.

In the spirit of the basic minimal models that have been so successful in exam-
ining generic protein properties, chapters 3 and 4 of this thesis examine a minimal
off-lattice model of helical secondary structures in proteins. The model uses a semi-
flexible polymer, often referred to as a worm-like chain, as the backbone structure
for mimicking protein segments. A potential is then designed to generate the helical
structures that are subsequently studied. Although the model contains none of the
specific features of a protein, by examining the eflect of adjusting the few param-
eters in our model we can learn much about the general characteristics of helical
structures and the nature of these structures in proteins. In chapter 5, the standard
lattices models for examining proteins are used to study a specific class of proteins
called prions. These molecules are the exceptions to the rules that characterize the
propérties of normal proteins. We attempt to understand these proteins by finding

a lattice model version of a prion, and characterizing its unique features.



Chapter 1

Basic Concepts in Proteins

Proteins are among the most complex molecules in an organism. These molecules
are constructed using the genetic information encoded in the cell that is stored
within long molecular stands of DNA. Each strand of DNA holds the sequences of
thousands of protein molecules in a linear format. Thus, a DNA molecule could
be compared to the ingredient list of a recipe; however, the DNA does not contain
the information about how to mix it all together. This is an intriguing problem:
How does the linear sequence stored in the DNA molecule end up in a 3-dimensional
useful structure? The thermodynamic hypothesis that was proposed by Anfinsen(3],
suggests that a sequence will obtain the shape that minimizes the free energy of the
system. Anfinsen won a Nobel Prize in Chemistry in 1972 for his work in the study
of protein folding. There is one catch to this -hypothesis. If a sequence of amino
acids is constructed randomly, it is not likely to Ofind its lowest energy state. This

leads to the question, what is special about a protein sequence that allows it to find
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its lowest energy state with such remarkable efficiency. This question of whether
there is a special pathway by which a protein folds was proposed by Lévinthal[:i]
"in 1968. This is referred to as Levinthal’s paradox: If a protein has to sample all
the possible Q¥ states available to it to find the lowest energy configuration, then a
protein would never fold. Here 2 represents the number of available configurations
per amino acid and N is the number of amino acids. To attempt to understand
this paradox, we need to examine the protein system and the factors that influence

their properties.

1.1 Introduction to Proteins

1.1.1 The Protein Sequence

Protein molecules belong to the general class of random heteropolymers. They are
considered polymers as they are built from sub-unit molecules called amino acids.
This polymer backbone is often referred to as the primary protein structure. There
are 20 different types of amino acids from which a protein is built with what appear
to be a random ordering of these molecules. All amino acids have the same basic
backbone structure that is shown in Fig. 1.1. The symbol ‘R’ represents a grouping
of molecules called the R-group that distinguishes the amino acids from each other.
This grouping of molecuies is connected to the amino acid at the a-carbon. The
left side of the a-carbon is attached to an amine group, and attached to the right
side is a carboxyl group.

To begin to form a protein chain, the backbones of the amino acids are connected
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H OH
NN
]

H O

Figure 1.1: The basic structure of an amino acid. The symbol 'R’ represents a
grouping of molecules that differentiate each amino acid.

via the chemical reaction shown in Fig. 1.2. This figure illustrates the release of
a water molecule in the reaction, while a nitrogen carbon bond is formed. This
process is continued to form the entire protein sequence. A protein sequence is
always labeled with the free amine group to the left and the free carboxyl group to
the right. The convention allows for the description of the degrees of freedom of
the polymer backbone of the protein. We first note that the double covalent bond
‘associated with the oxygen of the carboxyl group is not stationary and is transient
between the oxygen and nitrogen leading to two effective double bonds. The eﬁmt
of the double covalent bond is the removal of any rotational degrees of freedom,
which creates a planar geometry in the amino acid backbone as shown in Fig. 1.3.
This leaves only two separate degrees of freedom associated with the backbone
- bonds of the a-carbon, which are referred to as the Ramachandran angles ¢ and .
In addition to the rigidity introduced by the planar structure of the backbone, the
R-groups on the amino acid can interact with the backbone. This further reduces

the motion by restricting the allowed rotations, creating a rigid protein backbone.
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Figure 1.2: Reaction demonstrating the formation of a protein sequence. Water is
released as a byproduct of the reaction.

1.1.2 Forces within a Protein

Proteins are complex molecules with many interactions between different parti-
cles playing important roles in determining the structure. There are the complex
particle-particle interactions and the particle-solvent interactions. The later of the
two is regarded as the dominant factor in creating the protein structure; however,
it is not the only force required.

The most important particle-solvent interaction in the folding of a protein to
its three-dimensional structure is the hydrophobicity. This is the preference of the
molecule for water as a solvent. For example, a very kydrophobic substance is oil,
while any substance that readily dissolves in water is hydrophilic. These materials
are often referred to as non-polar and polar respectively. The hydrophobic forces

within a protein are not enthalpic, but are generated from an increase in the entropy
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Figure 1.3: Protein chain showing the degrees of freedom about the a-carbon. The
double bond to the oxygen on the carboxyl carbon becomes transient and oscillates
to from a double bond between the nitrogen and carbon (dashed bond). This
prohibits rotation about the nitrogen carbon bond, which fixes these atoms in a
planar structure.

of the solvent protein system as a whole. When non-polar molecules are placed in
water, an ordered cage of water molecules is created around them as water molecules
hydrogen bond to encapsulate the non-polar groups. This ordered cage is referred
to as a clathrate. When a protein is in an extended conformation, a large clathrate
is needed in order to enclose the non-polar residues. In a collapsed conformation,
the exposed surface area is Vmuch less, thus reducing the number of water molecules
that need to be ordered to encapsulate the structure. This reduction in the needed
surface area increases the entropy of the entire system making the collapsed state
preferred.

All other forces within a protein are enthalpic in nature and can be consid-
ered sho;t—ranged forces. These forces can be further subdivided into two groups,

isotropic and anisotropic. Dealing first with the isotropic interactions, there are
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Van der Waals and ionic bonds, which have the following respective potentials,

UIonic(r) = % (11)
a b,
Dvow(r) = 5% (1.2)

where a and b are constants specific to the molecular interaction, r is the distance
between particles, ¢q is the particle’s charge, and ¢ is the dielectric constant. The
ionic potential is considered short-ranged as the solvent screens the potential over
a long range. In addition, the second group of forces which are of an anisotropic
nature are those of dipoles and hydrogen bonds. The respective potential forms for

these interactions are,

1 {11 * il 3 7 iio *
UDipole('F) =¥ 2 [lesﬂz _ (#1 1:?5(”2 ﬂ] (1.3)

a b _
UHydrogen(T, 9) = I:TT’; - 7‘_]:)] e (

9l®

)? (1.4)

where [ is the dipole moment of the atom, 8 is the angle of alignment between the .
dipoles of the bonds, and o is a constant related to the angle 8. These interactions,
particularly hydrogen bonding, are responsible for the secondary structure forma-

tion and stability observed in a protein. It is these forces which are of most interest

in this v_vork.
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1.1.3 Structure of Proteins

The forces at play within a protein yield to complex behavior in terms of the
structures formed. Perhaps the most remarkable feature of protein systems is that
the sam;z structures are repeatedly observed throughout a variety of different protein
types. The three-dimensional structures observed can be broken into two categories,
secondary and tertiary. -

Secondary structures are the first set of sub-structures that are formed during
folding. There are three types of secondary structures: 1) helix, 2) 3-sheet, and
3) random coil. The helix is the most abundant secondary structure observed,ﬁ
and is formed by the hydrogen bonding c;f amino acids near each other along the
chain. Due to atomic constraints on the allowed ¢ and v angles in most sequence
combinations, helices tend to coil with a right-handed preference. The beta sheet
is another commonly observed structure, where segments of the protein arrange
themselves in extended conformation and bond into a sheet-like structure. Unlike
the helices, B-sheets are formed from hydrogen bonding of amino acids separated
by many other amino acids along the chain. The randorﬁ coil type of secondary
structure is the grouping of all remaining configurations. Although random coils do
not have any short ranged order, the structures they create usually have a specific
role-and cannot be replaced by any random sequence arrangement. The randomness
in the name applies only to the lack of definite structure, and does not mean that
any set of amino acid can replace a random coil segment. This is evident as the
random coil segments usually form the functional site of the protein, and replacing

it would lead to completely different functionality.
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Tertiary structures are the next level of complexity within the proteins overall
form, and are built out of the secondary formations discussed above. It is thesée
‘structures which come together to create the complex proteins observed. Some of
the common tertiary structures that are observed in a wide range of proteins are
the helix and (-sheet barrels. There are numerous tertiary structures ranging from
simple to complex, and they can contain an active site for biological processes or

provide structural support within a membrane.

1.2 Application of Minimal Models

As has been demonstrated, a single protein is a very complicated system, making it
nearly impossible to understand completely. The problem is further compounded
by the fact that there appears to be little correlation between different protein
molecules. Yet, there are similar features on another level. The key features of
all proteins are: 1) they have a single three-dimensional structural form called the
native state, 2) the protein can fold to the native state repeatedly, and 3) the time
scale of folding is exceptionally short[1].

There have been numerous models developed to study proteins from the very
simple to the extremely complex. We discuss a variety of models that demonstrate
some of the key features mentioned above and we also discuss their limitations.
We begin with the minimal models, those that model a protein on a lattice, and
then move to the more complicated models that attempt to account for all of the

possible forces.
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1.2.1 HP Model °

Perhaps the simplest model of those that attempt to model a protein’s predominant
.featmm is the HP model. This model is considered to be the Ising model of protein
systems. The model was first introduced by Lau and Dill[2] in 1989, and makes use
of the hydrophobicity believed to dominate force the folding process.

The model is constructed on a lattice to limit the total number of possible
configurations. Each amino acid is represented by a spherical monomer and is

designated as hydrophobic (H), or hydrophilic (P). The interaction potential is as

follows,
-1 forH—H
Ugp=4 0 forP—P _ (1.5)
—y forH-P

where 7 is a variable constant. The hydrophobic interactions (H-H) are attractive
in order to mimic the repulsive nature of the solvent monomer interactions that
cause these monomers to group together. The interaction is normalized to one to
simplify the potential. The hydrophilic interactions (P-P) are set to 0 to simulate
the molecule’s preference to be dissolved in the solvent. Cross interactions (H-P)
have an interaction strength somewhere between these two extremes, and ‘thus, v
is set between 0 and 1, and can be varied to study different properties.

Although this model is extremely simplistic, it is very powerful and captures
several key features of protein molecules. A study by Li et al.[5] showed that the HP
Model has remarkable correlation to a real protein system, by analyzing a matrix

of protein interactions. The matrix constructed by Miyazawa and Jernigan[6] con-
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tains experimental information approximating the intera.ctioﬁ potentials between
different amino acids. Li e’t al. showed that the strongest interaction is that of the
~hydrophobicity, while the next most dominant force is one of demixing. Demixing
is explained in the following way. If in the HP model the interaction parameter v
is zero, then it is clear that all the hydrophobic molecules will attempt to group
together and will form a central core. The hydrophilic molecules will then surround
the central core like a shell. The demixing term, which is characterized by the pa-
fa.meter v, allows the hydrophobic molecules to move to the outer shell and the
hydrophilic molecules to move to the core, while still resulting in -a. lower energy.
Thus, setting the parameter v to zero is not a physically acceptable condition.
Therfore, the HP Model in essence contains two very important features in a very
simple model.

This model has been successful in examining some interesting properties of
proteins. In another work using this model, Li et al.[7] attempted to show that
secondary structure results as a consequence of a sequence having the ability to fold
quickly to its native state. More importantly, this model has been used extensively
in the inverse protein folding problem, which is the problem of finding the sequence
that designs a specific structure(8, 9]. Although this model is successful, it is limited
in its scope of questions it can answer. For example, it lacks diversity in sequence
energies, as sequences that have degenerate native states frequently occur. These
sequences are typit;auy ignored in most studies. In addition, secondary structures
are difficult to define on a lattice, which makes it difficult to present conclusive

results on this topic{10].
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1.2.2 27-mer Model

A more advanced variant of the HP model is the 27-mer model. This model was

introduced by Sali et al.[1] in 1994. The model introduces an aspect of proteins
that the HP model disregards. The HP model only divides the interactions into
two types, while in reality there are twenty different amino acids that can have
their interactions influenced by their neighbors along the backbone and in the sur-
rounding area. This produces an extensive variety of interaction strengths, which
are featured through random energy interactions in the 27-mer model, and it is the
only addition to the basic HP model.

The 27-mer model is designed in the same way as the HP model, as it is a lattice
model. The difference lies in the choice of interaction energies. The interaction
between each set of monomers is chosen randomly from a Gaussian distribution to
generate a specific realization of a sequence. The distribution of interaction energies
chosen has a standard deviation of 1.0 and is centered about a value By, which is
usually negative. The added advantage of this model is that it will almost always
produce a single lowest energy native state, adding a more realistic feature to the
basic HP model.

This model has been one of the most successful minimal models in describ-
ing proteins. Work by Sali et al.[1, 11] was the first to demonstrate some of the
fundamental properties of protein sequences using this model. If one assembles a
protein sequence from a random combination of amino acids, the chances are that
the sequence will not fold to any particular native state. By generating a large

number of random sequences, Sali et al. showed that a small fraction of the se--
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quences could fold to the same compact structure when folded numerous times. In
addition, these sequences could reach their native state in a relatively short period
‘of computational time. What set these fast-folding sequences apart from the rest?
Through analysis of a representative spectrum of the low lying energy states in the
system, it was found that the sequences which folded quickly had a native state
energy that was much lower than that of any other low energy states. Thus, it was
concluded that in order to obtain a fast folding sequence which folds to a single
native state, the energy of the native state must be separated by a significant gap
from the continuum of low lying energy states.

The 27-mer model has been used to examine numerous other issues in regard to
protein folding. It has been used in evolutionary folding studies which study the im-
portance of a central nucleation site that is conserved in a mutation process[12, 13].
This model has also been used to examine the nature of the folding pathway[14, 15].
Does a protein fold via a two-state process of globular collapse then a structural
transition, or via a series of intermediate states? .These studies along with exper-
imental evidence[16] have shown that the two-state mechanism is the most likely
scenario. The model has been so widely used that it has become a standard model
for examining the dynamics of protein systems, and we make use of this model later

in chapter 5.

1.2.3 Go Type Models

The G6 type model[17, 18] is yet another minimal model of protein folding which
is an extension of the 27-mer model. The model was first introduced by Taketomi
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et al. in 1975[17]. In this model, the lattice constraints are removed and the
protein molecule is simulated off-lattice. The removal of the very restrictive lattice
‘constraints presents numerous other problems. The additional phase space now
available to molecule makes finding a sequence that is a good folder very difficult.

The model is usually constructed of a flexible or semi-flexible polymer chain
where the interaction strengths are drawn from the random distribution of energies.
Typically the model is used in the following way: a) a structure of interest is
selected, b) monomers are given random interaction strengths that are adjusted
such that the selected structure is the native state of the molecule. The result is a
model of a specific structure that has properties similar to that of a protein. The
model is ideal for capturing the characteristics of a specific protein, but the results
obtained from one structure are generally only transferable to another in a generic
way.

The G6 Model has been used in a number of different studies. For example,
Zhou et al.[19] studied the structural transitions in a three-helix bundle in a domain
of staphylococcus aureus protein. They were able to demonstrate the complex series
of structure phase transitions that the bundle undergoes. The model has also been
used by Dokholyan et al. [20, 21] to identify the folding nuclei within protein

structures and to study the thermodynamic importance of these contacts .

1.2.4 All-Atomic Models

A final class of models which are perhaps conceptually the easiest to construct, but
teéhnjcally the most difficult to implement, are those of all-atomic models. This
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class of model attempts to model all the atomic details of a protein. They are not
minimal models, but are the most used models for studying protein systems. These
‘models are typically used in conjunction with molecular dynamics techniques and
are used to examine the motion of various protein structures.

There are wide ranges of all-atomic models that have been created over the years.
Perhaps the most notable simulation packages and potentials are the CHARMM[22],
AMBER[23], and KNOF90[24]. These packages have been used in numerous stud-
ies that typically involve studying the structural behavior of proteins in which the
ground state is already known. These all-atomic models present the best method
for understanding the internal dynamic behavior of a structure. For example, how
hemoglobin captures and releases oxygen[25].

This class of protein models has drawbacks. The first is that although attempts
are made to capture the full behavior of the atoms being simulated, no one is
fully certain of the correct form of the potential. Although the potentials are very
sophisticated, the simulation results will still depend on the potential form, and
thus the results may not be as representative of actual systems as would be hoped.
However, there has been some suggestion that the potentials are robust, and that-
significant changes in tﬁe parameters produces minimal change in the calculated
results[26]. The second and more serious limitation of this class of model is the
resources required to run the simulation. The potentials are complex and can be
difficult to enumerate. Also, in order to capture the full nature of the system,
solvent atoms must bg simulated thereby making the total number c;f atoms that

need to be accounted for range into the thousands. This class of models is thus not
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ideal for folding simulations, as the time scales involved are orders of magnitude
larger than the typical internal motions within protein structures and require too

"many resources to be simulated.

1.2.5 Helices and Zimm-Bragg Theory

As haé been discussed, minimal models have been used extensively to understand
proteins. An understanding of proteins also requires knowledge of some of the
simpler structural components and their behavior. Helices are the most dominant
secondary structures observed in all proteins. For this reason many groups have
studied them analytically[27, 28, 29, 30, 31, 32] and with all-atomic models[33,
34, 35, 36], but not many have studied them with minimal models[37]. The most
notable of the analytical theories is one that was first presented by Zimm and
Bragg[27]. ‘

Zimm and Bragg's theory treats the system as a quasi one-dimensional Ising
system. In this model, each monomer is assumed to exist in one of two states,
coil, ‘c’, or helix, ‘h’, and two parameters are used to describe the interaction.
A parameter Af, represents the free energy of a monomer existing in a helical
state, and as the transition from the coil-to-helix occurs, this parameter goes to
zero. The other parameter A f, describes the loss of free energy due to nucleation
of the new helical segment. In the calculation of the relevant quantities, these
parameters are represented through the statistical weights of the various states as
s; = exp[-Af,/T] and o, = exp[-Af;/T] ~ 10~%. The values s, and o, can be
théught of as the proba:bility of propagating a helical region and the probability of
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nucleating a helical region, respectively.

Thus, in the simplest of Zimm and Bragg’s models, weights are assessed to each
‘segment based only on the preceding monomer in the sequence. It is assumed that
" the beginning of the chain is a coil, and the first three monomers are always in a
coil state. In a calculation, random sequences of ‘c’s and ‘h’s are consi&ered, and
each sequence combination is given a weight based on the following rules:

1) For each ‘c’ = 1

2) For each ‘h’ which follows a ‘h’ = s,

3) For each ‘h’ which follows a ‘= o

Rule one implies that the statistical weights are normalized such that all coil
segments are given a weight of unity. The second rule states that each helical
segment has a free energy different than that of the coil segment. By adjusting
" the temperature, this energy can be made greater or less than one. The final
rule suggests that there should be a loss of free energy when a helical segment is
formed due to a reduction in the entropy of the system. The model can be further
complicated to add in features of real helical forming protein segments. Changing
a single amino acid usually cannot break helical segments. Thus, in order to add
the idea that several amino acids must change to a coil state to break a helical
segment, a fourth rule is added.

4) For each ‘h’ which follows less than u ‘c’s = 0

This means that segments of less than p ‘c’s do not occur within a segment.
Using these rules a matrix describing the system caﬁ be written down and solved

for the largest eigenvalue. This value can be related to the properties of interest.
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For example, the average helicity can be obtained through the following equation,
O =dlIn \y/dlns,, (1.6)

where g is the largest eigenvalue, and © is the average helicity. Zimm and Bragg’s
result for this value demonstrates the strong cooperative nature of transition to a
helical state. Zimxﬁ and Bragg also showed that o must be zero in order to obtain a
true first order phase transition. Therefore, the coil-to-helix transition is not a true
,phase transition as o, cannot equal zero. The change to a helical state would occur
as a transition from a coil state to a state of a.lterna_ting helical and coil region,
followed by a transition to a nearly perfect helical state with occasional disorder.
Although the helix-coil transition has been studied analytically by other groups,
the conclusions are similar while attempting to improve the accuracy of the calcula-
tion. For example, Lifson and Roig[28] have introduced a very similar calculation,
but remove the directional dependence of the sequence in the Zimm and Braggv
method. In’ addition, the Zimm and Bragg model has also been used as a standard
in experimental studies of helical propensities of amino acids[38]. The model does
not have any predictive power because o must be determined from experiment,
but it does offer a method of comparison of all-atomic simulations to real protein

systems [33].
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1.2.6 Present Work

The extensive use of minimal models has provided a large amount of knowledge
.about the fundamental nature of proteins. In the study of more coml;licated issues
such as the formation of secondary é,nd tertiary structures, there have been few
minimal models constructed that address questions about them.

For helical secondary structures the number of minimal models is limited. One
new minimal model has been introduced by Potthast[37], who has constructed a
helical model by adding torsion bonding constraints between adjacent neighbors
along a polymer backbone. In chapter 3 of this work, we present a new minimal
model of a helix that can be used to examine the statistical properties of helical
secondary stmétureﬁ. In this model, adjacent neighbor interactions are ignored
in favor of studying anisotropic interactions that are typically seen in proteins. In
chapter 4, the model of chapter 3 is modified in order ’cb study the dynamic behavior
of helices. This is the only minimal model designed to study helical segments.

In the final chapter, prions, which are unique protein sequences, are studied.
These sequences have only recently become an area of study. We use the standard
27-mer model to study these structures at their most fundamental level, as previous
studies of these structures using minimal models have been limited[39]. This study
attempts to show that even the most simplified models can demonstrate the complex
behavior of prions, and to provide a method to study the issues relating to prion

dynamics.



Chapter 2

Simulation Techniques

Before discussing the models in this thesis, an examination of the technical aspects
of the simulations is in order. In this chapter, there will be a focus on the theory
‘behind the Monte Carlo technique used and the algorithms used to create the simu-
lation. In addition, a detailed look is taken at the advanced Monte Carlo technique
of using a multicanonical ensemble to conduct a simulation as it is employed in‘
chapter 3. |

There are numerous techniques to study different aspects of protein systems.
Largely, most studies are carried out using molecular dynamics techniques, and
to a lesser extent, Monte Carlo techniques. Molecular dynamics techniques focus
on the real time motion of particles and attempts to understand the behavior of
large molecules under certain conditions. Monte Carlo techniques focus more on
examining the statistical properties of these molecules, such as how quantities scale

with system size. The Monte Carlo techniques can also be applied to dynamics

22
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models. Despite the fact that the dynamics are no longer directly correlated to
real time motion of the particles, the dynamics obtained with this method present
-useful information about the general behavior of the system.

In simulations of models that involve the inclusion only the most minimal of
forces, Monte Carlo simulations seem to dominate due to the decrease in necessary
resources. The focus of this research revolves around studies based on Monte Carlo
techniques and advanced Monte Carlo techniques, which we will discuss in this
section. In addition, some classic polymers models that are also used to study

these systems are discussed in detail.

2.1 Monte Carlo Method

Monte Carlo has been around for over half a century, but only in the last twenty
years has it made its rise to the forefront of scientific research as computers have
become more powerful. Monte Carlo is a method of solving complicated integrals
based on generating numerous random possible outcomes. For example, the e(;ua—
tion

1
[= /o dz exp(—3?) | @2.1)

can be solved by generating random numbers between zero and one. The quantity
exp(—z?2) is then simply averaged to obtain the value of the integral. This is perhaps
the simplest application of the technique to solve an integral.
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2.1.1 Metropolis Method

In 1953, Metropolis et al.[40] developed an algorithm to calculate integrals from
"more complicated systems, such as equations of state. The method, often referred
to as importance sampling, chooses random points from a preset distribution based
on the previous history of the simulation as to allow the algorithm to sample states
in a region that contribute most to the integral. The problem lies in generating a
sequence of random states with the proper probability of occurring.
This problem is solved by introducing a Markov process. A Markov process is
a sequence of trial states that have two properties: 1) each trial belongs to a finite
set of outcomes, and 2) the outcome of each trial depends only on the outcome
that preceded it[41]. The transition between any two states is represented by a
stochastic matrix, #, which must satisfy the condition that a limiting distribution
can be reached, ie.
p=Tp, (2.2)

where p is the equilibrium distribution. Thus, any stochastic matrix that obeys
Eq. 2.2 and creates the desired distribution could be used in a simulation. A prob-
lem arises in determining the matrix that gives the desired distribution. Introducing
the condition of detailed balance, which is an unnecessarily strong condition[41],
solves this problem. Detailed balance is the condition of microscopic reversibility

and is represented by the equation,

PmTmn = PnTnm - (2.3)
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Using this condition, different possible matrices can be generated. Metropolis et

al.’s[40] choice for the transition matrix is given below; however, it should be noted
‘that this choice is not unique.

Tmn = & Prn = Pm 2.4)

Tnm = C(Pn/Pm) Pm < Pm

where m # n, and « is a constant usually set to one. In a simulation of a canonical

ensemble, the probabilities, p,, are the Boltzmann weight functions,

= eff? (2-.5)

| where E, is the energy of the n** configuration, and kp is the Boltzmann constant.
The final problem in the metropclis algorithm is generating all the possible trial
states. There have been hundreds of methods developed to generate the different
states of various systems. The one requirement for these methods is that it must |
obey ergocity. In other words, the algorithm must be able to generate all possible
states, from any initial starting configuration, within a finite amount of time. In
polymer physics, there are numerous possible ways to generate the available states;

however, we will only discuss three algorithms relevant to this thesis.

2.1.2 Non-local Markov Process: Pivot Method

The pivot algorithm is an excellent method for generating the possible configura-
tions of a polymer chain. The method was introduced by Madras and Sokal in
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1988[42], and has been used in a variety of studies. In the medel, a large cluster of
monomess is moved together producing a configuration significantly different than
‘the previous step, and thus, they are not locally related on the energy landscape.
This process can produce configurations that are uncorrelated structurally with
relatively little computational effort. This makes the technique ideal for studying
the conformational properties of polymer systems.

The basic pivot algorithm is described as follows for a polymer chain of N
bonds. A bond, i, is selected at random from the N available. The remaining N—z
bonds are then rotated together using an Euler rotation matrix which is generated
randomly such that a uniform distribution is attained in spherical coordinates. The
new configuration is the trial state. The energy of the trial state is then numerated
and the configuration is accepted or rejected based up.on the Metropolis criterion
discussed above. These steps can be repeated to generate the entire spectrum of

-configurations with excellent efficiency while maintaining a constant bond length,
which is ideal for many systems where the typical interactions are much weaker
than the covalent bonds connecting the monomers.

This algorithm can also be modified to simulate systems that include more
constraints. For example, in a simulation where the azimuthal angle has been fixed,
a single move is just slightly more complicated. In this case, the bond around which
the monomers are rotated must first be rotated to lie along the z-axis using an Euler
rotation. A second rotation in which the polar angle is changed is then carried out.
This is followed by an inverse rotation of the original rotation to restore the cham

so that it lies along its original axis. This ensures that a fixed azimuthal bond angle
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is maintained in addition to the fixed bond length.

These methods are particularly effective in studying the statistical properties of
‘polymers in general, and are perhaps the most efficient in cases such as the fixed
azimuthal bond angle. Although this algorithm is effective at sampling states at
high temperatures, depending on the type of system, it can be very ineffective at
sampling the low temperature region where smaller local moves are favored by the
energy constraints. For example, sampling the collapsed states of a polymer system
with a typical Monte Carlo pivot may not be possible as large movements of a large
number of molecules would probably be rejected, especially when the system size

is large and the probability of overlapping monomers is high.

2.1.3 Local Markov Process: Dynamic Motion of a Polymer

Another class of algorithms which can produce the spectrum of states of the system
are those that use only local moves. This is perhaps one of the oldest methods for
generating the states of a system. The method differs from those of the non-local
class as only one monomer is being moved at a time, which takes considerably longer
to generate structural uncorrelated structures; however, it adds the advantage that
it simulates the dynamic behavior of the molecule.

The type of local move algorithm used depends greatly on the constraints of
the system. If a monomer is not restricted in its movement by such things as
a constant bond length, then the algorithm is very simple. In this case, a move
consists of randomly selecting one of the N + 1 monomers, Z, and displacing it by a

small amount to obtain the new trial position. The trial position is then accepted
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based on the Metropolis criterion. If the common constraint of a fixed bond length is
added, then the approach differs slightly. The trial staﬁe is generated by creating an
-axis between the i —1 and i+ 1 monomers and then rotating the 7*® monomer about
this axis. This maintains the constant bond length constraint. More complicated
algorithms can be derived to handle constraints such as maintaining a fixed bond
angle, which is handled with the SHAKE algorithm[43].

2.1.4 Lattice Markov Process: 3D Cubic Lattice

The final algorithm of interest is one that is used to generate configurations for a
polymer chain when it is confined to a lattice. The algorithm is also designed to
use local moves so that the Markov process also mimics the dynamic motion of the
system. Generating the motion of a polymer chain on a lattice through a series of
local moves can be tricky, as some lattices can sometimes introduce problems with
ergodicity.

It has been shown that there are four types of moves that need to be included
in order to simulate the dynamic motion of a polymer correctly. These moves are
depicted in Fig. 2.1. Fig. 2.1a is called a crankshaft move and is a double monomer
move that must be included with the other three single monomer moves in order to
obtain the correct behavior[d4]. To conduct a simulation, the procedure of Sali et
al.[11] is used to mimic the folding of a protein. At the start of this procedure it is
randonfﬂy decided whether a single or double monomer move will be performed, with
respective probabilities of 20% and 80%. In a double move, an adjacent monomer

pair is selected and the configuration checked to determine if a crankshaft move
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Figure 2.1: The four required moves for a lattice, a) crankshaft, b) corner flip, c)
end move, and d) no move.

can be performed. If it cannot the move is rejected and the selection of a single
and double monomer move is repeated. In the case of a single monomer move a
random monomer is selected and the configuration is checked to determine if one
of the three single monomer moves can be performed. Once a double or single
monomer move is applied, the energy of the new trial configuration is calculated
and the move is further rejected or accepted based on the Metropolis criterion. This
procedure is a common method for simulating the lattice dynamics of the 27-mer

model discussed in chapter 1.
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2.2 Multicanonical Technique

The key assumption that is made in a Monte Carlo simulation is that the system
is able to sample the representative proportion of states that contribute most to
the integral. The Markov sequence generated during the simulation should sample
these states. This is not always the case. In solid state systems, temperature plays
a key role in the effectiveness of an algorithm to sample the available states. At
high temperatures, there are usually no obstacles to prevent the mévement between
states if the algorithm is ergodic. At low temperatures, energy barriers can play
a significant role in reducing the effectiveness of a Metropolis algorithm, as the
energy barriers artificially separate regions of configurational space.

In the low temperature regime, a polymer molecule has a high probability of be-
coming trapped in an energy minimum and not sampling the entire conformational
space available to it within a finite amount of computational time. Overcoming
this problem has been the focus of numerous simulation-methodology studies for
many years. Perhaps the most effective solution to this problem to date is the set
of algorithms that stem from the umbrella sampling technique[45]. The basic prin-
ciple is to find a more effective statistical weight than the conventional Boltzmann
weight used in a typical Monte Carlo simulation. The object is to bias the weights
in such a way that movement through the low temperature states is fa.vored so that
the polymer does not become trapped. This is done by guessing a weight function
based on such things as the density of states or the lowest energies of the system.
A few of the more recent algorithms of this class include simulated tempering[46],
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multicanonical annealing[47], and the multicanonical technique[48, 49, 50], all of
which have their particular advantages and disadvantages and are well suited for
"the systems to which they are applied.

In chapter 3, we use the multicanonical technique to study the statistical prop-
erties of our helix model. In the multicanonical procedure, we re-weight the tem-
perature of the system to produce a histogram that is relatively flat over all energies
in the model. In other words, the simulation visits each energy state of the sys-
tem an equal number of times during the production run. This is demonstrated
by eng Fig. 2.2 which illustrates two histograms. Fig. 2.2a shows a typical
histogram of the probability of visiting a specific energy state under a Boltzmann
distribution, while Fig. 2.2b shows a desired histogram of the probability of visiting
a specific energy state with our new distribution functions. This is done by making
temperature a function of energy, which removes the specific temperature from the
Boltzmann weight function and essentially creatés a simulation that is performed
at all temperatures at the same time. The procedure for creating this new weight
function is outlined below.

In this method, we are really interested in modifying the Boltzmann probability
of the energy states (Fig. 2.2a), which is given by, |

n(E)e P?

P(B) = ==

(26)

where n(FE) is the density of energy states, Z is the partition function, and g =

1/kgT. Of course, we are not looking for this distribution as we need a new dis-
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Figure 2.2: a) A representation of a histogram of a typical Boltzmann weighted
simulation. b) A respesentation of the same histogram preformed with a multi-
canonical weight. The histogram is approximately uniform. '

tribution that is constant (Fig. 2.2b) over all energies. This distribution is created
by writing the inverse temperatures as a function of the energy and by adding a
function a to the Boltzmann distribution in the following way,

ZI

P'(FE) = constant = (2.7)

where 3'(E) and o(FE) are functions of energy. In order to derive a method by
which P’(E) can be determined for the specific density of states of our system, it
is written as a function of P(E) by examining the ratio P'(E}/P(E). This leads

to the form {51],

P(E)e— (P (E)-B(E)E—(/(E)—a(E))
ps) ~ P& .

Z = Z P(E)e~® (B)-B(E)E~(’(E)-a(E)) (2.9)

(2.8)
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where Z is the new partition function. The functions B(E) and «(E) are chosen
to be those for the Boltzmann weight function, where B(F) is a constant function
‘of energy, B(E) = B, and a(FE) is zero for all energies. Thus, if P(F) is the known
Boltzmann probability ‘distribution, a probability distribution P’(E) that is flat can
be created; however, P(E) is not known a priori because the density of states is not
known for the system. If the density of states was known, all quantities could be
calculated directly and the problem would be trivial. We settle for a rough estimate
for P(E) and reply on a recursive method for determining the proper forms of the
functions §/(F) and o’(F). This recursion relation can be constructed by grouping
the energies of the system into bins as demonstrated in Fig. 2.2. If we create a
histogram to estimate P(E), and introduce the condition that the new histogram,
P'(E), has adjacent bins of equal magnitude, the new functions of o’ and 8’ can
be calculated. This condition implies,

P'(Eip1) — P'(E) =0, (2.10)

where E; are the energies of the i*® bin. This yields the necessary equations to
generate the o/ and g’ functions needed.

Solving Eq. 2.10 using Eq. 2.8 generates the method for obtaining P’(E) derived
by Hansmann & Okamoto[33].
1)We first perform a simulation under a simple canonical distribution, at a temper-
ature where the system is well above any transition. The energy scale is discretized

across the energy range of interest.
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2)We estimate the probability density by a histogram, P(E). For all P(E) that are

above an arbitrary cutoff, generate a function S(E) with,
S(E:) = In(P(E)) - (2.11)

3) From the function S(E) we generate the new multicanonical parameters o/(E)

and §'(FE), according to the following equations:

,BO Ei > Emax
B(E)=1q Bo+ %ﬂ Epin S E; < Ejq < Epax (2.12)
6’(Emjn) E,' < Emm
and,
0 Ei = Emax
o (E;) = (2.13)

o (Eip1) + [B(Ber1) — B'(E))Eiv1 Ei < Epax

Here E . and En;, respectively signify the upper and lower bounds of the energy
range which is to be re-weighted to a flat histogram. FEn.. is arbitrarily set to
a convenient value which is typically the energy at which the maximum in P(F)
occurs. This is chosen as all energies above this would be properly sampled by a
normal Monte Carlo simulation ;:onducted at a temperature Bg. Epniy is usually

chosen to be the ground state energy of the system, but this is not a requirement.
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4) Begin a new simulation with the Metropolis weighting function of
W (E) = e P (B)E-(E) (2.14)

There is a significant problem in this method. If P’ (E) could be accurately
determined using this method, the simulation could have been performed using
P(FE). Normally, P(E) is not determined accurately enough in a single attempt
to yield the desired histogram; thus, a recursion method is used to increase the
accuracy of the histogram. If the weight function from step 4, w'(E), is used to
conduct a new simulation, the same four steps can be used to construct a better
weight function w”(E); however, 3” and o’ will be a function of P (E), §', and .

4 N S .
I
o"(E;) = o'(Bia) — [0 (Bir) — o/(E)] (2.16)

+B"(Eir1) — B'(Binr) — B'(E:) — B'(E:)] Bia (2.17)

(2.15)

From Eq. 2.12 and Eq. 2.13 3" and o’ can be written in terms of the original

Boltzmann variables.

BUE) = fo+ 2B SgitSE(jsﬁl) B (2.18)

o (E;) = a”(Eiy1) + [B8"(Ein1) — B'(E;)] Eiva (2.19)
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Therefore by keeping a running tally of S(F) such that Eq. 2.11 is now
S(FE) < S(FE) + In(H(EF)) , (2.20)

where H(FE) is the histogram of the current probability distribution, then steps
2 through 4 can be repeated until a sufficiently flat histogram is achieved for all
energy bins of interest.

A single production run is then made with the final calculated weight function.
The averages collected from this simulation run are not weighted according to the
Boltzmann integral, but according to the following from,

[dE A w'(E)

[ a5 o (E) (2.21)

Therefore, the production run values need to be re-weighted back to the original
distribution. The averages under the Boltzmann distribution are calculated from
the multicanonical values with the following formula,

(4) = [dE A w(E)/w'(E)
~ [dEw(EB)/w(E) ’

(2.22)

where w(FE) is the Boltzmann weight function, and w'(E) is the multicanonical
weight function used in the production run. Eq. 2.22 shows how any temperature
can be examined, as the Boltzmann temperature is merely an adjustable parameter
in w(F). This allows the entire temperature range to be examined in a single

production run, as a Boltzmann temperature is not explicitiy used in the production
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run.

As has been shown above, this method has advantages for the calculation of
‘quantities at low temperatures over regular Monte Carlo techniques. This method
does have some limitations. It should be noted that the calculation of the new
weighting function could take considerable CPU time, which in the end does not
lead to significant advantages over typical Monte Carlo procedures. Also, in sys-
tems with glassy low temperature regimes, it can be difficult to obtain convergence
towards a uniform distribution when determining the proper weighting function.
Despite these disadvantages, the multicanonical technique is well suited for sys-
tems with first order phase transitions; as the technique can be used to accurately
determine the location of the transitions and properties of the specific heat and sus-
ceptibility curves for finite size scaling analysis. In this respect, the multicanonical
technique surpasses typical Monte Carlo.



Chapter 3

Minimal Helix Model

Helices are the most commonly occurring secondary structures in proteins. For
this reason fhey have been the focus of many studies for the past 40 years, as
researchers attempt to understand the intricacies of protein folding. Understanding
these secondary structures is a significant advance toward a complete understanding
of proteins in general. |

In this chapter, a minimal off-lattice model of a helical segment is constructed
using an anisotropic potential. The moael is examined in detail for the structural
states occurring, the scaling behavior of the different structural regicns, and the
effect the anisotropy of the potential has on the results. The construction and
analysis of this model is the main focus of this thesis.

The traditional view of the coil-helix transition has been to treat the system
as a quasi on&dimensioﬁal"lsing system{27, 28]. Using this idea, many mean-field :

theories describing the nature of the transition have been put forth, with the most

38
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well known being that of Zimm and Bragg[27] which is discussed in Chapter 1. The
understanding of these structures is that the system can be treated as a single first
order like transition of a coil to a helix, which, due to the one dimensional nature
of the problem, is not a true phase transition in the thermodynamic limit. This

leads to a maximum helical length that is inversely proportional to /7.

3.1 Recent Work

Some recent theoretical works have shown that the coil-helix transition can behave
as a phase transition when external media are conside;red. Carri and Muthukumar([52]
have suggested that the coil-helix transition in the presence of an absorbing mem-
brane will become a true second-order phase transition. Park and Sung have
studied transmembrane helix formation, with accompanied first-order adsorption
transition[53]. Buhot and Halperin[54] have examined helical brushes, which at a
critical density undergo a first order phase transition. On the experimental side,
much of the interest in the coil-helix transition has been in examining the propen-
sity of various amino acids to form helical structures[38]. Other interesting studies
include those by Kumar and Manju[55] who have recently examined the character-
istics of a-helices in globular proteins and characterized them as kinked, rigid, or
curved, with the largest fraction falling in the curved category. In Samulski’s[56]
study of the coil-helix transition, collapsed configurations were observed to occur
at a higher temperature than the coil-helix transition.

In recent years, it has become more popular to study these structures with the
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use of computer simulations in order to obtain a better physical picture of the
system. This has proven to be fruitful as these simulations have shown that the
coil-helix transition may involve multiple transitions[57], and that the system could
be characterized by critical exponents[58, 59]. It has also allowed helical structures
to be examined closely on a molecular scale through statistical analysis[33] and
dynamic simulations[34, 35].

To study helix formation via a computer simulation one must create a model
that has a helical ground state at low temperatures. This has typically been done by
attempting to mimic a protein’s interactions, and then choosing a protein sequence
that is known to be a helix former. This approach is referred. to as the all-atomic
method which is discussed in detail in chapter 1. The problem with this method
is that a protein’s potential energy function is extremely complex. It is not only a
function of the amino acids in the sequence, but also a function of the type of solvent
environment. Although helical ground states have been successfully simulated using
these models[33], they tend to require large amounts of computer resources. It is
therefore desirable to attempt to understand helix formation on a fundamental
level, and to determine the necessary interactions to create these helical structures.
As well, what is the effect of altering these interactions on the observed transitions?

Minimal models have become very popular in recent years for deciphering com-
plex systems. An example is the case of protein systems where minimal models
have proven very useful in yielding insights into the folding mystery[1]. While most
of the current research is still based on minimal lattice models, there have been

numerous off-lattice models developed as well[60, 37]. In this chapter, we propose a
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new model similar to those studied by several groups(61, 62, 63, 64] that examines
specifically the dipole type interactions in polymer chains. This model could also
be viewed as an experimental version of a Zimm-Bragg type model. An in depth
study is also conducted of this new simplified polymer model, which has a helical
ground state created from a limited number of adjustable parameters. We will also
demonstrate how the alteration of the fundamental nature of the potential affects

various aspects of the helix-coil transitions and the implication to the helix-coil

transitions in helical protein segments.

3.2 New Minimal Helix Model

Before constructing a simplified model, the forces that are of interest must first be
determined. In protein secondary structure, most of the stability of the structure
is generated from interactions not restricted to interact with their local monomers.
Therefore, these are the interactions that are captured in this model. The basic
backbone of the protein also needs to be simplified; therefore, the model is made
generic enough to describe a wide range of systems. The final step in creating the
model is designing a potential that has the desired system behavior. In this model,

a helical ground state structure is the requirement that must be implemented.

3.2.1 The Backbone

To examine the effects of directional binding on the entire structure of a polymer,

we first model each residue as a single monomer that might interact with another
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monomer through the excluded volume interaction, which we define as having a ra-
dius d, in addition to the attraction. Thus, the amino acids in Fig. 1.1 are treated as
single spheres, which is a valid approximation for polymer systems. We would like to
stress that in making such an approximation, we do not restrict ourselves to protein
systems as we are concerned about examining the fundamental aspects of helical
formation in all types of polymer chains. Therefore, in addition to helical form-
ing protein structures, this model would apply to other polymer systems that un-
dergo a coil-helix transition. Materials such as poly(gamma-benzyl-L-glutamate),
poly(B-benzyl-L-aspartate)[65], and poly(ethylene oxide){66] are examples of syn-
thetic molecules that undergo a coil-helix transition.

We must now consider the aspects of a polymer system that are mest important
to the formation of helical structures. First, the covalent bonds between monomers
in this polymer system are approximated as unbreakable, as these bonds will be
much stronger than the non-local interaction of interest. To further simplify the
model, the bond lengths are fixed to a length of a = 1, as these fluctuations would
be much smaller than those of the rest of the system. In addition to the fixed bond
length constraint, a persistence length is added to this backbone chain because
helical structures occur on a length scale of approximately the persistence length of
the polymer backbone; this effect should be included explicitly in the model. The
effect of persistence can be added to the system in many different ways. One of
the options is to fix the azimthutal bond angle between the adjacent bonds so that
the backbone of the polymer forms a worm-like chain(see Fig. 3.1). This creates

~ a relatively rigid structure not unlike a polypeptide chain which has the backbone
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Figure 3.1: A depiction of a worm-like chain molecule. The azimuthal bond angle
is fixed to give the chain a presistence length.

bond angles maintained by a potential an order of magnitude stronger than the non-
local dipole forces that are to be examined. These constraints create the overall

backbone of the system on which the helical model can be built.

3.2.2 The Potential

Clearly, an attraction now needs to be introduced between monomers in order
to obtain a stable helical structure at low temperatures. One could attempt to
construct such a potential by addressing the following questions: a) If an isotropic
attraction is introduced, what is the ground state? b) What kind of attractive forces
are needed to produce a helical ground state?, and c) Is there a unique potential
that produces helical states in such a system? These are intriguing questions to a
polymer physicist.

With some thought, it is clear that an isotropic potential interaction is not

sufficient to produce helical ground states. As we will discuss later in this arti-
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cle, an isotropic attraction binds monomers indiscriminately in any direction and
produces a collapsed ground state at low temperatures with no specific crystalline
structure[67, 68]. The question is then, what is needed to produce the desired he-
lical ground state? This can be answered by examining the type of interactions
in real protein systems. One of the most dominant forces in protein folding is the
hydrophobic interaction[5, 69]. Although this is an important force in the protein’s
overall structure, it is not responsible for stabilizing or generating the helical sec-
ondary structures in proteins. Simulations of all atomic models of homoalanine
have shown that helical states can be formed in a vacuum|33}, which suggests that
the hydrophobic interactions can be disregarded when creating a minimal poten-
tial. The remaining interactions left to stabilize the helix can be divided into two
categories, local and non-local. Local interactions are those between nearest neigh-
bor amino-acids such as torsional interactions, which are usually represented on
a Ramachandran plot. In such a plot, there is typically not one unique energy
minimum, meaning that several protein structures are available to the atom. It is
possible to create a minimal model of a helix using only these forces, as Potthast
has done[37]; however, these interactions are not generally considered the dominant
interaction in the stabilization of the helical structures[33]. For this reason, we have
chosen to exclude these types of interactions in order to consider only the dominant
stabilizing force.

The remaining forces are non-local, as these interactions can create bonds with
any molecule (not only with their immediate neighbors) along the chain. These

interactions are comprised of electrostatic forces, dipole interactions, and hydrogen



CHAPTER 3. MINIMAL HELIX MODEL 45

bonds. Hydrogen bonding is generally considered to have the largest contribution.
All of these forces contain a couple of common features. First, these forces are
considered to interact over short distances, as the electrostatic forces are screened
over long distances by the solvent molecules. Thus, in our model, we characterize
this range through a parameter, . Second, due to the planar structure of an amino
acid, the non-local interactions also contain an element of anisotropy in the overall
nature of the interaction. It is this directional binding that leads to the stable
formation of unique secondary structures (a-helix or G-sheet) in proteins.
Therefore, the only ingredient that we need in order to make up a helical ground
state is an anisotropic potential. The orientation of this anisotropy will produce
different secondary structures; thus, it is directed perpendicular to the bond angle
plane to produce a helix structure. To define the orientation of the i*" residue, we

consider the nearest neighbor and define a bond orientation unit vector ;.
@ = (7 — Tic1) X (Fig —71)/ 16, 3.1)

where 7; is the position of the i*" monomer, and @ is the fixed bond angle. This
vector is pictorially represented in Fig. 3.2.

The preference for various alignments of these bond orientation vectors generates
the anisotropic potential. In a helical state, these unit vectors should point in the

same direction. In the same spirit as the square well potential for other polymeric
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/N

Figure 3.2: Pictorial representation of the bond direction vector.

systems, we choose the binary potential to have the form

0 fOT' o< Ti5
‘/ij == —G[ﬁi - ,’:t_j]m _ E[ﬁj . f‘ij]m fOT‘ d S Tij <o (32)
oQ fO’)" 0< T < d
where d is the excluded volume radius, ¢ is the attraction radius, 7i; = (77 —

77)/|7:—7;| is the unit vector defining the relative positions between monomers, and
€ represents the strength of the attraction. Later, the parameter € is rescaled into

the temperature of the system and we consider the reduced temperature T = kgT/e.
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3.2.3 Simulation Details

This final form for the model contains only a few adjustable parameters. The most
significant one is the exponent m, which controls the strength of the anisotropy,
with m = 0 producing an isotropic attractive field. Note that the m = 0 case is
merely the square-well potential that has attracted considerable attention recently.
In the low temperature regime, the possible states of a polymer and the nature
of the transitions in these systems are of particular interest in this case. There is
some flexibility in value m, and in this study we consider several different values.
There are some considerations which should be kept in mind when deciding on an
appropriate choice. For this work, a symmetric potential is desired, and thus, m
is restricted to even values (2,4, 6,8,etc). When a sufficiently small value for the
fixed azimuthal bond angle is used, all of these choices create a helical ground state;
however, it is found that as the bond angle is increased to allow more monomers
per helical loop, the values 2 and 4 no longer produce a helical ground state. This
occurs because the potential is insufficiently anisotropic to favor a helical state
within the geometry of the system. The values 6 and 8 produce helical states, but
the value 8 requires more computational effort and should not produce significantly
different results from the value 6. Thus, m = 6 is chosen to represent our helical
polymer state.

The other parameters in the model, varying in a reasonable physical range,
have less profound effects on the nature of the transition. For this study, the
diameter of the monomers is chosen to have a value d = (3/2)a, where a is the

bond length between monomers so that we have a somewhat smooth monomer-
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monomer surface contour. The range of the attractive force is chosen to be 1/45/8a,
which is in line with the conventional choice of the attraction for a square well to
coincide with a Lennard Jones potential[67, 70]. The fixed bond angle also adds an
additional parameter to the model. For the data presented here, we have used an
angle of /3. In doing so, we keep to the typical bond angles observed along the
backbone of a protein molecule. With these choices of parameters, we consider the
thermodynamics of the minimal model as a function of N, m, T.

In order to sample the conformations of the worm-like chain, a Monte Carlo pivot
algorithm is used. Introduced by Madras and Sokal[42], this non-local algorithm
is an effective way to sample the configurational space of polymer chains. In the
case of a worm-like chain with both fixed bond length and azimuthal angle, it is
perhaps the most efficient as local moves are difficult to calculate because of the
fixed bonded angle restrictions. A detailed description of this algorithm is given in
chapter 2.

In addition to the pivot algorithm, the multicanonical technique was utilized to
obtain a clearer picture of the temperature dependence of the system. Once the
appropriate weight function was determined, a production run was conducted for
5 x 10® Monte Carlo steps. Data points were collected every 100 steps for a total of
5 x 10° data points for each production run. These points were then averaged with

the appropriate Boltzmann weight function in order to calculate the quantities of

interest.
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3.3 Definition of Measured Quantities

Among numerous quantities that can be measured in this type of simulation, the
most common is the the specific heat per molecule defined as

(B — (E)*

NT? (3.3)

C, =
The specific heat is an ideal quantity to examine because it provides direct infor-
mation about the free energy of the system. Any significant structural changes are
reflected by anomalous behavior in the specific heat. In a phase transition, this
anomaly in C, would increase with system size, while a simple crossover between
regions would manifest as a smooth hump that does not increase with system size.
In our model, we expect to see various types of behavior due to fluctuations of
the positional arrangement of molecules, and the ordering of the bond directional
vectors specified in Eq. 3.1.

To assess the overall arrangement of the monomers, the squared radius of gy-
ration is also used. This is an ideal measure of the size of the polymer because it
can be directly measured through light scattering experiments. This quantity will
reveal the major structural change that occurs, and is calculated using the following
equation,

2y _1‘_ al - = 2
(Rp) = 57 DA = Tem)?) (3.4)

where 7., is the vector defining the center of mass. One way to identify structural

changes within the polymer is to examine the scaling of the radius of gyration. At
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high temperatures, when a polymer’s structural characteristics are dictated by the
repulsive forces of the excluded volume interaction, it is well known that R, should
scale with system size with an exponent of v = 3/5. At cooler temperatures, when
attractive forces dominate over the repulsion, the polymer acts as a molten liquid
or globule and R, scales with an exponent v = 1/3. In extended or rod like phases,
R, would scale with the length and with an exponent v = 1.

It is also worth dissecting the radius of gyration further to examine the structural
changes, especially in the helix regime. We can define an overall helical axis for the
entire polymer as the vector which is the sum of all the bond direction vectors. By
breaking the radius of gyration into components both parallel and perpendicular

to this vector; we can define the following quantities,

) N-1 N-1

o = > a/|> (3.5)
L& e

(RY) = ~ Z [(Fi — Tem) - U] , (3.6)

(Rﬁi) = (Rﬁ) - (R§||> - (3-7)

During helix formation, we would expect these two parameters to diverge from
each other as the parallel component increases and the perpendicular component
decreases to approach the square diameter of the helix.

To describe the orientation luctuations of the bond directional vector, we need
to define an appropriate orientational order parameter. The question is, what is

the single parameter which correctly describes these types of fluctuations? In real
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protein models, the orientational order of an amino acid within the molecule is
described through its Ramachandran angles. For a specific type of structure, a
range of values is specified to describe the amino acid’s conformation. As our
model is not designed with the Ramachandran angles, we attempt to classify the
orientational fluctuations by several more quantitative methods. To do this, we
introduce a set of order parameters, each of which describes the different correlated
fluctuations of the system. The first parameter, H;, we create is similar to the
Ramachandran ¢ and i parameters used to describe a helix in a protein molecule.
Here the configuration of a group of atoms is examined to determine whether they
are in a helical configuration using a predetermined criterion. To determine if a
cluster is in a helical configuration, the distance between the 7 and ¢ + 3 monomer
is calculated. If this distance falls within the length criterion for a helix, then the
unit is counted as helical. We attempted several definitions of unit helicity that
showed little difference in the qualitative behavior of this order parameter.

The above order parameter relies on the arbitrary definition of a helical unit,
and for this reason, is somewhat unsatisfactory. It is worth defining order pa-
rameters that describe the ordering and do not use a predetermined criteria for
defining helicity. Thus, the other order parameters defined are based on the vector
properties which define the relative orientation of the bond directional vectors. As
mentioned earlier, these vectors should all approximately align when a helical state

is approached. Thus, we define,

N—2
Hy = Z Us - Uig1 (3.8)

i=2
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N-1

Hy = ) ;- flmia (3.9)
i=2
N-1 2

H = (zw) , .10

where fimq is the bond vector of the (X)* monomer (in practice, (&) is rounded
down if not an integer). The order parameter H, describes the local correlations
of the orientational order in the helix, and indicates the onset to helix formation.
However, this parameter will not yield any information on long range order, and
thus, it will not be useful in describing the nature of the transition. The parameter
H3 is similar to H» in that it examines the correlation of bonds, but in this case,
a central bond vector is correlated with all the other bond vectors along the chain.
We choose a central monomer because the end monomers are subject to large
fluctuations due to fewer constraints on the monomer’s conformation. A potential
drawback of using this parameter is the fact that the central monomer that is chosen
may be located at a fracture region while the rest of the chain is helical, a situtation
that would lead to an improper description of the chain. The final parameter, Hy,
is merely the sum of all the bond vectors. This order parameter is perhaps the best
for examining the nature of the coil-helix transition because it should accurately
describe the net helical growth within the molecule while accounting for fractured
regions that reduce the value of the order parameter.

We can calculate susceptibilities for the radius of gyration and for all of the
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orientational order parameters with the following equation,

Xa = g (A% = (4] (3.11)

where V4 is the number of units of the quantity A. These quantities will reveal
when fuctuations of the order parameters are significant. In the case of phase
transitions, all parameters should show anomalies that increase with system size.
Most importantly, the parameters will demonstrate the type of ordering that occurs
at various temperatures.

The most popular method for examining the coil-helix transition is through
thé use of the Zimm-Bragg parameters, s, and o.. These parameters are typically

obtained from the equations[33],

- 1= (3.12)

1
2 2/(1 —s.)? +4ds,0.
2s
)y = 1+ 2 3.13
(n) 1—s.+ /(1 —s:)2 +4s,0. (3-13)

(na)/Np =

where (n) is the average number of helical units, N} is the total possible number
of helical units, and (ls) is the average length of a helical segment. In order to
obtain these parameters, the only quantities needed are the average helicity and
the average helical segment length. Obtaining these values is not straightforward.
Although any of the four helical order parameters could be used to calculate the
average helicity, the parameter H; is the most suitable for calculating the segment

length. The other parameters require the introduction of an arbitrary condition to
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determine the length of a helical segment. This would leave the average helicity
as a constant and the average segment length a varying parameter depending on
the condition used to determine the break points in the helix. Therefore, H is left
as the best candidate to measure these parameters because the condition used to
define a segment as helical is the same one used to define helical length. However,
depending on the condition set for determining helicity, the values of the Zimm-
Bragg parameters could also be changed. For example, using two valid conditions to
determine the parameter H, generates a 35% difference in the Zimm-Bragg values
at the transition temperature. Thus, the Zimm-Bragg parameters in this model are
subject to inconsistencies from the particular specification of a unit being helical
in our model. Therefore, it is not instructive to calculate exact values for these
parameters, but rather to assess the temperature trends of these functions, which

are essentially unchanged by different conditions for helicity.

3.4 Observed Helical States

We now examine the behavior of our model as a function of temperature. First,
we describe the case in which the parameter, m, in the potential is 6, although
we can produce helical states with the other studied values of non-zero m. We
initially examine the heat capacity of our system. In Fig. 3.3, the heat capacity per
molecule for chains of N = 13, 19, 26, 33, 39, and 51, are displayed with symbols on
every tenth temperature unit. The figure presents several interesting features, as

the system appears to show three separate structural transitions. There are strong
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Figure 3.3: Specific heat for m = 6 for polymer sizes 13 (x), 19 (*), 26 (A), 33 (#),
39 (o), and 51 (M). The low temperature data for the N = 51 is missing in the
inset as we were unable to collect sufficiently accurate values at these temperatures.

peaks near temperatures T = 1 and T = 0.3. Around T = 2, we also observe a
weak shoulder that appears to be a third transition. The peak at T = 0.3 represents
a change between two helical regions, the peak at T = 1 represents the coil-helix
transition, and the shoulder represents a collapsing transition. These regions are
further studied using the other quantities mentioned above. We have depicted
structures believed to be representative of the different regions in Fig. 3.4 to assist

in visualizing the types of transitions in the system.
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(B) (®) (D)

Figure 3.4: Snapshots of the configurations of a 26mer at various temperatures:
(a) kgT/e = 4 (coil), (b) kgT'/e = 1.3 (globular) (c) kT /e = 0.8 (helix I) and (d)
kgT /e = 0.2 (helix II). The size of the beads represents the actual hard-core inter-
action between non-adjacent monomers, and the attraction force range is /45/8a,
where a is the bond length. A highly directionalized potential with m = 6 (see Eq.

(3.2)) is used.

3.4.1 Coil Region

In the high temperature regime, the polymer is in a random coil state (see Fig. 3.4a),
where the repulsion of the polymer dominates causing swollen conformations. In
this region, the polymer’s size is expected to scale with system size and to have
an exponent of v = 0.589(71] in the long chain limit. Calculating the radius of
gyration for polymers at a temperature of T = 10 (see Table 3.1), we obtain a
scaling exponent of v = 0.64(5) by fitting the data corresponding to the four largest
polymers to a power-law. The squares in Fig. 3.5 show the scaling of these values
vs. the polymer size on a log-log plot. The calculated exponent is larger than
expected, which can easily be accounted for as we are not in the asymptotic limit

of large polymers where the predicted exponent should be valid. Although we do
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Figure 3.5: Scaling of the squared radius of gyration for m = 6 in the coil (W),
globular (e), and helical (A) regimes.

not obtain precise agreement with the expected exponent, the relative values of the

exponents in the various temperature regions are important.

3.4.2 Molten Globular Region

Upon cooling to a temperature of approximately T = 2, there is a significant change
in the size of the polymer (see Fig. 3.4b). This is signified by the shoulder in the
peak at T = 1 of the heat capacity curve. In Fig. 3.6, the squared radius of gyration
demonstrates this collapse by showing a dramatic reduction in the polymers size. In
the larger sized polymers, we see the size increase again at the coil-helix transition.

This is caused by the rearrangement of atoms into a helical form that is elongated
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Table 3.1: The value of the squared radius of gyration at various temperatures for
the m = 6 case. The values for R, at T =~ 1.3 and 7 ~ 0.6 are based on the values
when R, reaches it minimum size and when R, is maximum (when in a helical
configuration) respectively.

N R(T=10) Ri(T~13) Ry(T=~06) R(T=0.25)

13 5.5573(2) - - 2.40618(6)
19 9.365(1) - - 3.8636(1)
26 14.256(2) 6.0334(5) 6.3567(2) 6.2080(2)
33 19.479(3) 7.8235(8) 9.5400(3) 9.2503(2)

39 24.184(4) 9.174(1) 12.8463(4)  12.4080(2)
51  34.083(5) 11.321(2)  21.0162(5)  20.4131(3)

in one direction and has a larger overall size than the collapsed globular. In the
smaller polymers, this collapse is not observed because the final helical states are
comparable in size to that of the collapsed state. This type of collapse has been
observed in real protein systems. Samulski’s experimental studies of the coil-helix
transition in polypeptide chains show this type of globular collapse prior to the
coil-helix transition[56]. Also, Pitard et al.[62] analytically considered anisotropic
potential forms in flexible polymers, and have shown that this type of polymer
undergoes a collapse before orientation ordering; however, the structures studied in
their work were not of a helical nature.

To determine whether the polymer is truly making a transition to a globular
state, we consider only the larger polymers and examine the scaling of the size of
a polymer when in its most compact state (defined by the minimum in the radius

of gyration). The results are displayed in Table 3.1, and by fitting this data to
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Figure 3.6: Squared radius of gyration for m = 6. Shown are thé polymer lengths
13 (x), 19 (*), 26 (A), 33 (#), 39 (), and 51 (I).

a power-law, we obtain a value of v = 0.45(15) for the scaling exponent. This
value of v is well below that of the exponent for the coil regime, but is still above
the value predicted for the globular phase (v = 1/3[72]). The circles in Fig. 3.5
demonstrate this scaling, and we observe that the exponent decreases for larger
system sizes. This is reasonable as we are still in the comparatively small size limit
for the polymer. To further examine this transition, we examine the parallel and
perpendicular squared radii of gyration. These are illustrated for the NV = 39 case
in Fig. 3.7. Both of these quantities show a smooth decrease in the temperature
range of interest. This confirms that the polymer is collapsing isotropically. In
Fig. 3.8, the four order parameters are displayed for the N = 39 chain. All four

show no significant increase about the temperature of the collapsing transition,
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15

Figure 3.7: Perpendicular (e) and parallel (l) components of the squared' radius
of gyration for the N = 39 polymer and potential m = 6.

indicating that there is no orientational ordering developing and that the collapse
is strictly a spatial phenomenon. We believe that for large polymers, the molecule
enters a true globular phase. In this phase, the monomers would be closely packed
and uniformly distributed, just like a liquid state for a collection of small molecules.

For an alternative perspective of the collapsing transition, we can examine the
susceptibility for the radius of gyration. Fig. 3.9 illustrates these curves for all of
the polymer sizes considéred. The figure shows a broad peak near T = 2.5 that
increases with system size, and the heights and locations of each of the peaks are
listed in Table 3.2. The location of the peak roughly represents the © temperature
of the molecule, which is the point where repulsive and attractive forces within the

polymer balance. This data reveals that the collapsing transition occurs prior to
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Figure 3.8: Order parameter H; (B), H, (#), H3 (o), and H, (A), for m = 6 and
N = 39.

any orientational ordering.

3.4.3 Helix I Region

The strongest peak on the C, plot corresponds to a transition from an isotropic
collapse state (Fig. 3.4b) to a helical state (Fig. 3.4c) observed near T ~ 1. The
exact locations of the peaks and their maximum values are given in Table 3.2. The
data shows that the height of the specific heat curves increase systematically with
polymer size. The scaling of these peaks will be examined later in this work when
the nature of the transitions is studied.

Accompanying the strong peak in the C, curve, we have observed drastic changes

in the orientational order parameters. In Fig. 3.8, the four helical order parameters,
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Table 3.2: Data on the transitions in the m = 6 case for various sizes. Shown is the
globular-helix transition temperature, T, the height of the C, at T, and the width
of C, when b = 0.9, I'(C,). Also shown is the © temperature, To, the susceptibility
of R, at Tg and the foldability parameter, o.

N Tc Cv (Tc) I-‘lC.,. Te XR, (e) ) g

13 1.25(1) L09(1) 037(2) 1.71(1) 0.0666(5) 0.27(1)
19 1.17(1) 1.42(3) 035(2) 2.13(1) 0.0936(7) 0.45(1)
26 1.16(1) 1.79(5) 0.25(2) 2.35(1) 0.136(1) 0.51(1)
33 1.13(1) 2.08(7) 0.18(2) 2.46(1) 0.184(2) 0.54(1)
39 1.12(1) 2.29(9) 0.17(2) 2.54(1) 0.226(2) 0.56(1)
51 1.09(1) 2.69(13) 0.13(2) 2.64(1) 0.318(2) 0.59(1)

H,, Hs, H3, and H, for the system size of N = 39, all show significant increases in
their values crossing this transitions. Susceptibility curves for these order param-
eters are illustrated in Fig. 3.10, with each clearly showing a distinct peak at the
transition. The maximum heights of each of the peaks are also listed in Table 3.3.

In addition, the squared radius of gyration also shows an increase at this tem-
perature as the polymer becomes extended along the helical axis. The extension
is further demonstrated by the sudden increase in Ry and decrease in R,,. For
larger polymers, we observe a turnover in the radius of gyration as R,; begins
to shrink in size causing the polymer to take on a more compact helical form. If
we scale the radius of gyration in the region where the turnover in the radius of
gyration occurs, this corresponds to scaling the helices of the helix I region. The
values for the square radius of gyration at the turnover are listed in Table 3.1, and

by fitting these values to a power-law, we obtain an exponent of v = 0.90(9). This
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Figure 3.9: Susceptibilities of the radius of gyration for sizes 13 (x), 19 (%), 26 (A),
33 (), 39 (o), and 51 (W).

is clearly larger than the exponent for the coil regime and agrees fairly well with

the predicted value of v = 1.

3.4.4 Helix IT Region

The final point of interest in Fig. 3.3 is the anomalous peak at T = 0.3, which is
enlarged in the inset. This peak in the heat capacity curve is due to a solid-solid type
transition between two helical states. The transition is accompanied by a second
change in the four order parameters as reflected by their susceptibilities (Fig. 3.10)
for N = 39. The susceptibility of the order parameter H; has a profound second

transition. This parameter is set to designate a group of monomers as helical,
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Figure 3.10: Susceptibilities xz, (M), xg, (#), X, (), and xy, (4), for m =6
and N = 39.

and can be modified tc be sensitive to the more perfectly formed helical states.
The increased fluctuations in this parameter demonstrate that the activity around
this transition temperature is probably related to a crystallization of the entire
polymer chain into a helical state. This solid-solid transition is known to occur
in related polymer systems, as Zhou et al.[19, 67] have demonstrated multiple-low
temperature transitions in polymer and protein-like systems. The structures of the
two states differ as the higher temperature helix I state has a high degree of helical
ordering yet is loosely packed, possibly with dangling end segments. The radius of
gyration does not display a significant change here as the polymer does not undergo
a major structural change. We calculate the Zimm-Bragg parameters (Fig. 3.11)

using the order parameter H;. H; is adjusted to be sensitive to perfectly formed
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Table 3.3: The maximum heights of the susceptibility, for m = 6. The blank entries
indicate no peak at the location of the helix-coil transition.

N XH, XH, XHay Xk,

13 - . - 0.232(7)
19 ; 0.561(5) 0.798(6) 0.353(1)
26 - 0.695(8) 1.299(9) 0.553(1)

33 0.320(7) 0.88(1) 1.88(1) 0.775(2)
39 0.366(12) 1.05(2) 2.36(2) 0.955(2)
51 0.454(14) 1.39(2) 3.36(2) 1.331(3)

helical states. The typical behavior for the Zimm-Bragg parameters is observed
in the figure, with a deviation in the standard shape of these curves due to the
second transition. In the parameter o, there is an initial decrease at the coil-helix
transition, as would normally be observed, followed by another sharp drop near the
second peak in the specific heat, confirming that there is a significant change in the
average number of breaking points of the helices in the two regions.

We can best describe the structural differences between the two helical states
by considering the very long chain limit. In this limit, we would expect the helix
I polymer to behave like a rescaled worm-like chain that would contain bendable
helix units, while the helix II polymer would behave like a rigid rod of perfectly
ordered helical units. Experimentally these two types of helices have been observed.
In a study of numerous protein helical segments by Kumar and Bansal[55], they
classify helices into three groups: kinked, curved, and rod. If we disregard the

kinked molecules, the curved and rod helices certainly correspond to our two helical
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Figure 3.11: Zimm-Bragg parameters s. () and o, (o) as a function of temperature
for N = 39.

regions. In our model, we examine the rescaled temperature that can be interpreted
in two ways. We may consider the system to have a constant interaction strength,
€, while we adjust the temperature, T, or we may consider a fixed T while we
allow € to vary. When comparing heteropolymers, the later is the more appropriate
view since experiments are usually conducted at constant temperature. Hence, we
can also consider experimentally observed helices as homopolymers with a constant
interaction parameter based on the average interaction between monomers. This
would mean that the curved helices observed experimentally correspond to the helix
I region, and have on average a weak interaction between monomers. Similarly, the
rods would correspond to the helix II region and would have a much stronger average

interaction. In Kumar and Bansal’s work, the largest fraction of observed helices are
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curved, which corresponds with helices just below the helix-coil transition. This
suggests a consistency between the two systems, as we would expect the higher
temperature helix I region to be more populated.

If we examine the parallel and perpendicular components of the squared radius
of gyration in the low temperature region (Fig. 3.7), we observe a continuous de-
crease in the perpendicular component and a turnover in the parallel component.
This is suggestive of a change in the structural behavior, as we would expect the
parallel component to increase to a constant value. We can also examine the scaling
of the radius of gyration at very low temperatures, which corresponds to the helix
IT region. The square radius of gyration is listed in Table 3.1 for the temperature
T = 0.25. The triangles in Fig. 3.5 show the scaling of the data with /V; fitting the
data corresponding to the four largest polvmers to a power-law yields an exponent
of v = 0.9(1). The exponent is the same as that of the helix I region; however, we
would expect to see some deviation if we could simulate longer helices because the
size of the helices in the helix I region would fluctuate more due to their flexibility.
We speculate that the change between the two states is generated by a change in
the allowed magnitude of energy fluctuations. At high temperatures, the helix can
flex in the interior of the chain, but this causes fluctuations, as the monomers move
collectively to bend the helix, which are of the order of 6AE (where AE is the en-
ergy fluctuation from a single monomer). When the chain is cooled, these collective

fluctuations can be frozen out leaving a rigid rod with end monomers that are only

able to fluctuate slightly.



CHAPTER 3. MINIMAL HELIX MODEL 68

3.5 Examination of Finite Size Scaling

3.5.1 Scaling of the Coil-Helix Transition

Although we are working on rather small system sizes, it is worth attempting some
finite size analysis of the data in order to examine the nature of the transitions. We
can examine several quantities to determine the critical exponents of the system.
We define a temperature gap for the transition I' = T, — 77 (where T} < T, < T3),
such that C(T1) = bC(T.) = C(T2), where b is some fraction less than one. This

gap should scale as,

~N-% | (3.14)

where d is the effective dimension, and v is the critical exponent for a correlation
length. The effective dimension of the system is not known thus, it is always used
in conjunction with the exponent v. From this point on dv is treated as a single

parameter. The maximum in the specific heat will then scale as
Cmaa: ~ Nﬁ‘: y (315)

and the maximum in the susceptibility of the proper order parameter for the system

will scale as

YXomaz ~ N& | (3.16)

where o and v have their usual meaning in critical phenomena{74].

The helix-coil transition is typically not considered to be a true phase transition
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in the thermodynamic limit of N — oo; however, for small system sizes, the system
should still behave as a first order phase transition due to system cooperativity[72,
73]. It is not realistic to ask whether our system exhibits a phase transition because
with this method, exceptionally large system sizes need to be studied. Despite this,
we examine the system to determine its scaling behavior, as this system should still
be characterizable by a set of effective critical exponents[58, 59].

From the data in Table 3.2, we have calculated the critical exponents for the
globular to helix transition as dv = 1.04(9), and « = 0.70(15). To obtain the
exponent vy, we use the susceptibility data of the H, order parameter in Table 3.3.
As mentioned earlier, we suspect that this order parameter will best describe the
fluctuations of the bond direction vectors as they align during the transition. From
this data, a value of v = 1.3(2) was obtained. In a typical first order phase transi-
tion, these exponents are expected to follow the relation dv = o = v = 1[75]. The
exponent dv appears to be in agreement with the notion that the system exhibits
a first order phase transition; however, the exponents o and -y appear to differ sig-
nificantly. The discrepancies in this system are likely due to the small system size
and large errors associated with the heights of the peaks. It appears for the specific
heat that any errors are likely to underestimate the peak height, which is more sig-
nificant within larger polymer sizes. It is also unclear what effect the coil-globular
transition has on the peak heights measured. Although the values differ from those
expected, the model does show some agreement with the scaling results of the all-
atom simulations of protein molecules (for details see Ref.[59]). This suggests that

the system is within this size range where the coil-helix transition can be treated
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Figure 3.12: Frequency of a particular value of the radius of gyration as a function
of temperature for N = 39.

as a first order phenomenon.

For a closer look at the transition, we re-examine the squared radius of gyration
as a function of temperature through the parameter Q(T, rg), which examines the
distribution of polymer sizes as a function of temperature. A diagram such as this
should reveal whether or not the polymer is making a discontinuous jump to the
helical state, which is predicted to occur for cooperative first order systems. A

histogram of the size of the polymer at a specific temperature is defined in the

following way,

QUL T) = < > S[RYT) - rg(T)]> , (3.17)

R(T)
where r, is a specific value of the radius of gyration. Figure 3.12 illustrates a

three-dimensional plot of this parameter in the temperature range of interest for
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the N = 39 case. Cooling the polymer from high temperatures shows that the
polymer’s structure localizes to a compact form prior to the helix-coil transition. At
the transition temperature, it appears that a double peak develops as the polymer
enters into a helical structure. This behavior would suggest a first order phase
transition because the system appears to make a discontinuous change in size at
the transition. This is supported by the increasing height of the radius of gyration
peak at a temperature T=1,in Fig. 3.9. We see that the three largest polymer
sizes have a well defined peak that is growing rapidly in size; however, there is
not enough data to attempt a meaningful finite size scaling analysis. Fig. 3.12
also demonstrates that at cooler temperatures, the polymer merely localizes into a

defined helical structure with a very narrow size distribution.

3.5.2 Scaling of Other Transitions

We now turn our attention to the nature of the coil-globular transition. The col-
lapsing transition in stiff polymer systems is typically believed to be first order{72],
due to a discontinuous change in the polymer’s size at the © temperature. From a
figure similar to Fig. 3.12 we see only a smooth crossover in system sizes. There are
two reasons why we may not observe this discontinuous change in our simulation.
First, the polymers that are modeled are very small, which has the tendency to
broaden the transition due to surface effects{72]. We would expect to see some
sort of first order behavior if we were in the range of N >> 100, therefore, there
are significant deviations due to the small polymer sizes. The second reason for

this discrepancy is that the polymer may not be fully collapsed prior to the helix
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Figufe 3.13: Foldability of the polymer as a function of the polymer’s length. The
figure shows that the foldability parameter is increasing with /V, suggesting the
polymer is becoming more difficult to fold.

transition because the coil-globular and globular-helix transitions occur so closely
together. Therefore, this effect may mask any discontinuous changes in the radius
of gyration. If we re-examine the susceptibility of the radius of gyration, we indeed
see that the peak height increases with polymer size; however, this peak is not well
defined. Although we do not observe the expected behavior in this case, we do
know that the polymer undergoes a change between scaling regimes, supporting

the argument for a phase transition.

An interesting result that arises from examining the location of the collapse
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transition is the calculation of the foldability condition[76],

Ty — T,
o=

ol (3.18)

where Tp is the collapsing transition temperature and 7, is the globular to helix
transition temperature. This parameter is typically used as a measure of folding
properties of protein-like molecules. The faster the molecule folds, the smaller the
value of o. We have calculated this parameter as a function of system size for our
model (Table 3.2). As the system size is increased, this parameter increases as
well, suggesting that dynamically, it becomes more difficult to fold these structures
as the system s.ize is increased. As the foldability parameter is related to the
cooperativity of the system[76], and in Zimm-Bragg’s helix-coil transition theory
the cooperativity is related to the nucleation parameter o.[73], the increase in the
foldability parameter implies that the cooperativity of the system has dropped. This
means that o. increases as this drop occurs. Although it appears (see Fig. 3.13)
that the rate of increase in o is slowing at large N, it is not clear whether it will
reach a finite asymptotic value. This increase in the foldability parameter may be

a manifestation of the instability of the system due to the one-dimensional nature

of the model.
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Figure 3.14: Spe&:iﬁc heat for N = 39 with varying values of m.

3.6 Importance of Anisotropy

3.6.1 Casesm = 2,4

It is of interest to try to understand the effect that the power of m has on the
heat capacity curves. Clearly, the smaller the value of m, the more isotropic the
interaction. When using these smaller powers of m, the other parameter values used
in the model affects the ground state. For example, if a slightly larger fixed bond
angle is used, the ground state can change from helical to a helical-like state that
has a high helical content but is not a properly formed helix. One will also notice
a larger number of compact globular structures are favored, making the sampling

of low energy states more difficult.
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Table 3.4: Temperature of the coil-helix transition, T, the specific heat at T, C,,
temperature of collapsing transition, Tg, maximum of the susceptibilities for the
radius of gyration at T, and foldability parameter. In the m = 0 case there is no
globular-helix transition. Therefore, the transition temperature, T, is the location
of the transition that follows the globular transition as the temperature is lowered.

N m Tc Cv (Tc) TG XRg (Te) g

19 4 1.39(1) 1.39(3) 2.63(1) 0.0762(7) 0.47(1)
39 4 1.29(1) 227(9) 3.19(1) 0.182(1) 0.60(1)
19 2 L72(1) 1.32(5) 3.56(1) 0.0569(6) 0.52(1)
39 2 142(1) 1.83(17) 4.46(1) 0.133(1) 0.68(1)
19 0 0.72(1) 157(14) 6.64(1) 0.0304(4) 0.89(2)
26 0 0.82(1) 1.36(17) 7.84(1) 0.0424(6) 0.89(2)
33 0 06201) 13(2) 8.62(1) 0.0552(8) 0.92(2)
39 0 1.30(2) 1I(3) 9.12(2) 0.0669(9) 0.85(2)

Simulating our model with a weaker anisotropic interaction in the potential
invokes a change in the coil to globular transition. An increase in the isotropic
nature of the potential creates a greater propensity for the molecule to exist in
the globular state, hence the transition occurs at a higher temperature as seen in
Fig. 3.14 for N = 39. The cusp in the heat capacity due to the globular transition
is enlarged for the lower m powers. We calculate the location and heights of these
peaks for m = 2,4 for the polymer sizes 19 and 39, which are displayed in Table 3.4.
The locations of these peaks are found through the susceptibility of the radius of
gyration, as was done for the m = 6 case. We also see that this isotropic nature of
the transition has little effect on the second helix transition (near T = 0.3) because
the net isotropic nature has little influence on the helical conformations.

One of the interesting debates in the field of helix folding is whether the col-
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lapsing transition would actually occur in protein helices. A direct transition is
assumed from the coil state to the helix state as suggested by the very name of the
transition[27]. As well, all-atomic simulations of protein models such as the ones
by Okamoto and Hansmann(33] do not show the globular collapse clearly, which
suggests that in these simulations, the nature of the amino acid interactions is
highly directionalized with few interactions not directed along the helical axis. The
data from Table 3.4 is plotted in Fig. 3.15 and shows that the coil-globular and
globular-helix transitions move closer together as the off-helical axis component is
reduced. In those particular all-atomic simulations, the solvent effects have been
ignored. Thus, our results suggest that in a predominately hydrophobic helix, one
would observe a collapsing transition prior to the helical transition.

The influence of the anisotropy potentially has a profound effect on the foldabil-
ity of the protein. As the value of ¢ becomes smaller, the foldability of the sequence
increases, as this parameter is believed to be closely linked to the cooperativity of
the transition. Using the data in Tables 3.2 and 3.4, the parameter o has been
calculated. The results suggest that as the value of m is decreased, the foldabil-
ity of the helix is also decreased. Hence, there should be marked improvement in
the folding times of helical structures whose overall potential has a large degree of
anisotropy. Fig. 3.16 shows the behavior of the parameter ¢ as a function of the
parameter m. The figure demonstrates that o is a decreasing function of m, and
that an asymptote is approached suggesting a limiting value of the cooperativity

for the transition.
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Figure 3.15: Separation of the coil-globular and globular-helix transitions as a func-
tion of the anisotropy. We see that the two transitions approach each other as the
anisotropy is increased. In the m = 0 case there is no globular-helix transition.
Therefore the separation is calculated as the difference between the high tempera-
ture globular transition and the second transition occurring at a lower temperature.

3.6.2 Case m=0: An Isotropic Potential

The other extreme case is an isotropic potential with m = 0. Here we are merely
dealing with the square well potential. This type of polymer has been studied
extensively in the past, most recently by Zhou et al.[67] and Irback et al.[68]. Zhou
et al. modeled a flexible, off-lattice polymer with a square well potential. They
show that the polymer first undergoes a collapsing transition followed by a first
order phase transition. In a similar manner, Irback et al. studied flexible and
semi-flexible, off-lattice polymers with a Lennard Jones potential. Here the results

confirm the same collapsing transition, but no evidence of a first order transition
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Figure 3.16: Foldability as a function of the anisotropy of the potential. The
function appears to reach a limiting value as the anisotropy is increased. In the m =
0 case there is no globular-helix transition. Therefore the foldability is calculated
from the difference between the high temperature globular transition and the second
transition occurring at a lower temperature.

following the collapse. Our mm = 0 case is equivalent to these two models because
we simulate a stiff polymer off-lattice with a square well potential. Our results
should yield some insight into these conflicting results.

For this type of system, we are not able to determine what is the native state
since the low energy states can have significant structural differences. This makes
sampling the low energy configurations difficult even with the multicanonical tech-
nique, as the number of low energy configurations is large and each configuration
is somewhat disconnected from the others on the energy landscape. This leads to

simulations which need to run longer in order to collect reasonable low temperature
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information. The multicanonical technique relies on the simulations entering and
leaving the low temperature states a repeated number of times. If the low tempera-
ture states are glassy, the simulation should technically enter and leave each of the
glassy states several times in order to obtain accurate results. Therefore, a system
with a large number of glassy states is not suited for the multicanonical technique
used here, as the production run needs to be run a very long time; however, due
to the fact that the model used here is so easily altered, to examine this case we
attempt to study the system.

The specific heat curves for all polymer sizes studied are shown in Fig. 3.17.
This figure illustrates two distinct features for the polymer sizes of interest. .The
first smaller hump in the specific heat is a collapsing transition, while the second has
been postulated to be a transition to a crystal-like state. We observe from the figure
that the collapsing transition now occurs at a much higher temperature (Table 3.4).
The location of the collapsing transition is calculated through the susceptibility of
the radius of gyration. This transition occurs at a higher temperature in this model
as the net potential on a monomer is greater. This translates into an increase in
our parameter € in Eq. 3.2.

The low temperature behavior is very interesting. In the study by Zhou et al.
of a square well potential with a flexible chain, a first order phase transition to
a crystalline structure is observed. Irback et al.’s simulations of a system with a
Lennard Jones potential suggest a transition, but the peaks in the specific heat
do not appear to be size dependent, thus implying no first order transition. Our

model of a stiff polymer with isotropic square well attraction demonstrates a low
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Figure 3.17: The specific heat for m = 0 for sizes 19 (%), 26 (a), 33 (#), and 39
(o).

temperature transition that does not appear to have a size dependent anomaly in
the specific heat. Due to the lack of a well-defined ground state, we are unable
in these simulations to accurately determine the peak heights and locations for
finite size scaling. The curves, however, do not show any significant difference
in peak height for the low temperature range, and the overall shape of the curve
demonstrates the same behavior as Irbédck et al.. Although these results are not
conclusive, they lend support to the conclusion that this system does not have a

first order phase transition.



CHAPTER 3. MINIMAL HELIX MODEL 81

3.7 Summary

We have presented a minimal model for examining the coil-helix transition in helical
forming molecules. The potential is based on the non-local anisotropic interactions
found in protein molecules, and it is versatile enough to allow one to study the var-
ious effects that it has on the coil-helix transition. We have successfully simulated
helical states using potentials with the parameter m = 2,4 6, which has enabled
us to obtain a systematic understanding of the structures generated by anisotropic
potentials.

We have concentrated the bulk of our analysis on the m = 6 case. This has
shown that the coil-helix transition involves four states: 1) coil, 2) molten-globular
3) helix I, and 4) helix II. The coil state is the typical repulsion-dominated state
of polymer molecules. The globular state is a collapsed state formed prior to the
transition to the helix. This state appears to be coupled to the helix transition
through the content of anisotropy in the potential. As the anisotropy of the po-
tential is increased the coil state is more likely to make a direct transition to the
helical state. The helix I state is a poorly formed helix that is highly flexible, while
the helix II state is a crystalline form of the helix. The final helix-helix transition
that is observed appears to be due to a crystallization process in the helix, whereby
the helix takes on a rigid rod-like conformation.

We have examined the nature of the coil-globular and globular-helix transitions
within the model. We have attempted to show that the coil-globular transition is

a first order phase transition, as expected for a semi-flexible polymer; however, the
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small size of the polymers used have obscured the results. The finite size scaling of
the globular-helix transition has demonstrated that this transition behaves like a
first order phase transition. We also see that the polymer undergoes a discontinuous
change in its size at the transition temperature, indicative of a first order transition.
In the case where we edit our potential to create an isotropic interaction, we do
not observe any phase transition-like behavior at low temperatures. Although the
data is not conclusive, there is no significant increase in the low temperature heat
capacity peaks to indicate a phase transition. These results lend support to the
recent conclusion about such systems.

One of the most interesting results is the relationship between the relative tem-
perature differences of the coil-globular and globular-helix transitions. These dif-
ferences can be altered by changing the content of anisotropic interactions in the
potential. Also, this content appears to control the cooperativity of the formation
of helices, and as the potential is made more anisotropic, the foldability of the helix
is increased. This suggests that the anisotropy in protein structures plays a key
role in the ability of the molecule to fold quickly to a specific ground state. Thus,

further study of the dynamic behavior and folding of the model is needed.



Chapter 4

Dynamic Helix Model

Attempting to understand the complex dynamic nature of proteins is one of the
most challenging problems in molecular biology. As is discussed in chapter 1, there
have been numerous minimal models created to attempt to understand the com-
plicated funnel-like landscapes of proteins; however, most of the work regarding
the study of secondary structure dynamics has been done with all-atomic models.
There have been no systematic simulation studies of secondary structure dynam-
ics; therefore, it is advantageous to create a minimal dynamic model to provide a
method for performing such studies.

The minimal model created in chapter 3 has provided a method for studying
the statistical properties of a helical segment; however, we have not been able to
determine any dynamic features of the system. Extending the helix model to simu-
late the dynamics presents a good opportunity for examining the features of actual

protein type objects through a minimal model. This would provide a systematic
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method by which these structures could be studied.

4.1 Introduction

The lattice protein models have provided a great deal of insight into the dynamic
behavior of proteins; however, they are limited in their comparison to a real protein
system. It would be more advantageous to study minimal models in an off-lattice
setting, where the system adopts more realistic protein structures. Perhaps the
most popular model for off-lattice folding studies of proteins is the G5 model[17, 18].
Here a heteropolymer with isotropic interactions is used, and the interaction matrix
is chosen such that the desired native state is the structure of interest. Although
this method can be applied to a wide range of problems[17, 18, 19, 20, 77], it too
has limitations. In this model, structures are created out of heterogeneity, which
plays a dominant role in structure selection, but secondary structures also occur
in homopolymers. This suggests that additional interactions should be included in
order to capture properties not dependent on the heterogeneity of the sequence.
In this chapter, the model of the previous chapter is extended to examine the
dynamics of helical structures. The dynamics of the model are simulated with
a dynamic Monte Carlo algorithm and the potential is modified to accommodate
for the local movement of monomers. The potential is still based on a non-local
anisotropic interaction that selects a helical ground state structure. The generic and
robust nature of this model allows for the systematic study of the folding properties

of helices, and the effect of different perturbations on the basic model. In addition,
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simple modifications, such as the addition of heterogeneity, could be made to the
potential to create alternative protein structures. For example, 8-sheets and helix-
barrel structures would be possible candidates, as this model would not only be

limited to the simulation of helices.

4.2 The Dynamic Model

To create the dynamic version of the model from chapter 3, the same steps are
implemented to devise the overall features of the model. In this model, we are
still interested in the non-local interactions within a helical segment; thus, to study
effects associated with these interactions the three basic considerations of chapter
3 must be included in a basic polymer model: 1) persistence, 2) excluded volume
interactions, and 3) an anisotropic potential directed perpendicular to the curvature
of the helix.

To create the persistence effect, we use the same worm-like polymer chain as
the backbone polymer. The sub-unit monomers, or amino acids, are represented as
- spheres of radius, d, and the monomers are connected together using rigid bonds of
length a. Fixing the azimuthal bond angle created the worm-like chain previously
used. This is a very restrictive constraint, as any small local movement of the
polymer would involve the rearrangement of numerous monomers to maintain the

constraint. To avoid this problem, we allow the bond angles to fluctuate slightly
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under the energy constraint,

N1 g
Usngle = Z ?(cos 6; — cosfy)? , (4.1)

=2

where K represents the strength of the bond restoring force, and §, represents the
average bond angle. This energy condition maintains the properties of the worm-
like chain backbone while allowing for small local movements, as the potential is
harmonic about the cosfy rather than 6. The potential could be constructed such
that the potential is harmonic about 6g; however, the backbone would not have the
properties of a worm-like chain. Also, the bond angle will only fluctuate a small
~amount, so both possibilities for the bond constraint would be nearly equivalent.
To create the last two effects for helix formation, that of an excluded volume
interaction and the anisotropic potential, we devise a modified Lennard Jones type
bond interaction. This will be beneficial for the dynamics over the square well
potential used earlier, as there will be no large discontinuities in the potential.
As stated above, this potential must be anisotropic. To include this effect in the
potential, a bond orientation vector, €, is defined from the vector @, which is a
unit vector perpendicular to the bond angle plane (see Fig. 3.2). The vector @ can
also be used to define the orientation of the potential as it was in the previous
model; however, both right and left handed helices are equally favored using this
definition. There are two reasons for wishing to break the symmetry in the helices in
this model. First, from a realistic perspective, left and right hand helices typically

do not form in the same protein helical segment. Therefore, breaking this symmetry
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is not an unreasonable addition. Second, the dynamics of folding are significantly
different if both hands are allowed to form in the same segment, as domains with
very long lifetimes would be created, thus constructing a rather unphysical picture
when examining protein folding. These domains are equivalent to the domains in
an Ising model that form at low temperatures with one up and one down. They
are never resolved because the probability that one of the domains could be flipped
is unlikely. To break the symmetry between the two helices the vector % is tilted
to correct for the pitch of the helix so that a new vector é points directly along the

helical axis when a helical structure is adopted. The vectors are defined as follows,

@y = [(Teg1 —73) x (7 — Ti1)] . (4.2)
[(Fiwr — Fima)| (4.3)

& = 1-— a; + dsé; (4.4)

D)
[

where d; is the separation of sub-units along the helical axis, such that the pitch

is p = nd; given that there are n monomers per loop. The form of the potential is

then specified as,

0 foro <rj<oo
Ui(r) =4 V(r)[(&:- ) - (& - 7)™ ford<ry <o (4.5)
00 for0<r; <d

where 7;; = (7; — 7;)/|7: — 75;|- The potential is truncated when r is beyond &, the

attraction radius, and a hard wall potential is used when r is below d, the excluded
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volume radius. These conditions are implemented to minimize computational time.

The function V(7) is a Lennard Jones potential of the form,

V(r) = —¢ (;?1% - ﬂ) , (4.6)

ré

where the parameters ag and a; are chosen to yield a continuous potential form be-
tween the limits d and o. The size of each monomer is selected to give a somewhat
smooth contour to the shape of the worm-like chain, and has a value of d = (3/2)a,
where a is the bond length between monomers. The radius of the attractive in-
teraction can have a range of valid values, and we select a value of o = /45/8a.
The parameter m controls the anisotropy of the potential and is set to m = 6 as
discussed in the previous chapter[57, 78]. The last two variables are € and K. Typ-
ically, the interactions governing the bond angle fluctuations tend to be an order
of magnitude larger than non-local interactions[22]. Therefore, K is selected as
K = 10e. The final adjustable parameter is € which is scaled into the temperature
to produce the reduced temperature unit T = kgT/e.

To simulate the dynamic motion of particles a Monte Carlo simulation with local
moves is used. In the simulation, a monomer is selected at random and rotated a
small amount around the & unit vector as is discussed in chapter 2. This condition
does not allow the bonds between adjacent monomers to fluctuate, thus keeping
the bond separation between monomers constant. This is a reasonable assumption
as covalent bond interactions are typically in the order of 100 times larger than the

non-local bonding effect of interest in this model[22]. The distance the monomer is
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pushed is randomly selected between —¢ and §, where ¢ is chosen such that the rate
of acceptance of moves is approximately 50% and has a value of 0.2. A single Monte
Carlo time step consists of IV attempted moves of randomly selected monomers.
This model presents an ideal way to examine the folding behavior of 2 helix. By
setting the temperature of our system below the coil-helix transition, we are able to
confirm that the native state of this model is a helix. We use a reduced temperature
of T = 0.6 to obtain a stable helical state. Knowing this, the dynamic behavior
of the model can be examined. Typically, in folding studies of minimal models of
proteins, an understanding of the folding properties can be obtained from a study
of the mean first passage times (MFPTs)[1, 11, 79]. The MFPT is defined as the
time required for a molecule ‘to first enter the native state when it is started in
an arbitrary configuration. This time will be dependent on the temperature of the
system[80], but this is not of interest in this study. The same temperature as above

is used for all the simulations because helices will be stable at this temperature.

4.3 Helical Order Parameters

In addition to setting the temperature, an order parameter that characterizes the
native state needs to be defined. Defining an order parameter that accurately
describes the helicity in our model is not difficult. The problem lies in determining
when the molecule is in the native helical state. To explain, the helical native state
is not a single state because fluctuations allow the helical segment to flex. It is

reasonable to assume that as long as the helical segment is not broken, then it can
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be defined as the native state although the energy is not completely minimized.
The only question that remains is, what defines a broken helical segment?

Ina protein segment, helicity is defined by the Ramachandran angles ¢ and 7. If
all the angles fall within a specified range, the segment is considered to be in a helical
form. The minimal model constructed here does not contain equivalent angles to
the Ramachandran angles. This leaves us to define an alternate order parameter for
helicity. For this model, we define two order parameters and use both as indicators
that a helical segment has been reached. The first order parameter measures the

local correlation of the bond orientation vectors and is defined as follows,

=,
H, = - é;-€iy1 , 4.7

1 Ns 1 ; 1 i+1 ( )
where N; is the number of helix forming monomers in the system. This parameter
ensures that adjacent monomers, including the ends, are nearly helical. The second

order parameter examines the net behavior of the bond orientation vectors and is

defined as,
1|
- 5. 4.
Hy =+ gle (4.8)

This vector determines whether or not the segment is fractured near the middle. A
break mid-segment may not produce a significant drop in the first order parameter,
but it could produce a large variation in the second.

As both of these order parameters are continuous, we define an arbitrary value
for each order parameter to define a segment as helical. When the values of both

parameters reach a value greater than 0.95, the segment is considered helical. Spec-
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Figure 4.1: Scaling of average folding time vs. polymer length. Helical segment
without tethered segments(M), and helical segment with two tethered segments (e).

ifying this value insures that the segments are near perfect helices, and should not
affect the general dynamic trends we have set out to observe. A range of values near
0.95 should be acceptable because a value that is set too high to be representative
of the allowable fluctuation should not affect the results significantly. This can be
explained as follows. When a segment enters the native well, it should quickly find
the bottom of the well on a time scale much shorter than the first passage time. It
will not remain in the bottom for a extended period of time, as the structure will
fluctuate within the well. Setting a high cutoff value should unsure accurate first
passage time results, as it will ensure that the structure is in its native energy well

with only marginal error to the MFPT.
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Table 4.1: The folding data for a helical segment. N is the total segment length,
N, is the number of helix forming segments, tme IS the mean first passage time,
tmax 1S the maximum folding time allowed, and % DNF, is the percentage that did
not fold.

N N, top(x10%)  tna(x108) % DNF

19 19 1202 10 33
25 25  4.3(6) 20 10
31 31 12.(2) 50 10
37 37 26.(4) 100 10
43 43 50.(7) 150 20
49 49  72.(8) 200 15

4.4 Nucleation and Folding

4.4.1 Model I

Using this condition, we study the MFPTs of helical segments. To do this, the
first passage times for 40 segments for each length of N, = 19, 25, 31, 37, 43, and
49 were calculated. The MFPT was then determined and the results are shown in
Table 4.1. Not all the segments reached a helical state in the maximum number of
steps allowed for the simulation, but the percentage of non-folding segments is low
when compared to other models[1]. In minimal lattice models, a segment which only
folds 40% of the time is still a good folding protein. By examining the percentage
of non-folding segments, we can conclude that our model is a good folder.

Work by Gutin et al.[79] showed that good folding protein sequences have MF-
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Figure 4.2: Illustration of a typical folding scenario in Model I for N, = 49.

PTs that obey a power-law behavior when scaled with system size,
tmfp ~ N* | (4.9)

where ¢,,, is the mean first passage time, and A is the characteristic eprnent. The
exponent A varied depending on how the sequences were designed. For example,
a randomly designed chain scaled with an exponent of A.., = 6, while a sequence
designed from a Miyazawa and Jernigan[6] potential scaled with an exponent of
Aarg = 4.5[79]. This showed that sequences designed from protein-like potentials
were better folders when the sequences being folded were longer. Using the data
from Table 4.1, we can determine the exponent associated with the helical model
by plotting the data on a log-log plot as in Fig. 4.1. By fitting the data with a least
squares method to Eq. 4.9, a value of Ap; = 3.7(2) is obtained. This exponent
suggests that the model demonstrates characteristics of a well-designed protein
sequence.

Knowing that the model dynamics are characteristic of a good folding protein,

the typical folding process of a helix can be examined. In Fig. 4.2, a time lapse im-
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age of the helical segment is shown as it folds. The figure clearly shows a nucleation
propagation process at work, which is the expected mechanism for a cooperative
system. In this model, the nucleation occurs at the ends of the chain and not in the
middle. This has the obvious explanation that the mobility of the end molecules
is significantly higher due to reduced confinement restrictions on movement of the
end monomers. Once the nucleation of the end of the segment occurs, the helices
propagate inwards. At some point, the two parts of the helical segment meet with a
discontinuity. The initial helical formation is only a small fraction of the net folding
time, while the resolution of the discontinuity requires the majority of the time.
This happens as propagation of the helical segment occurs along the contour of
the backbone. There is more freedom of movement in this direction, as the helical
segment moves through longitudinal fluctuations. In some cases, the formed helical
segment rotates in conjunction with the longitudinal motion facilitating the helical
propagation. This contour propagation is also responsible for generating the dis-
continuities in the helical segment, as propagation is usually halted by sharp bends
in the chain contour. Resolving the discontinuity requires transverse fluctuations,
which are limited by the helical confining geometry. Therefore, this step in the
folding process requires the largest fraction of the total folding time. This can be
further demonstrated by Fig. 4.3, which shows the behavior of the two order param-
eters for a typical folding event. The local helicity order parameter, H;, increases
rapidly at the beginning showing that the helical content is rising significantly. The
global order parameter, H,, also increases but then undergoes large variations as

transverse fluctuations of the molecule occur.
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Figure 4.3: Typical development of the order parameters with time for NV = 49.
The local parameter H; (e) and the global parameter A, (M) are shown on the
graph. The fluctuation in the global parameter demonstrates the resolution of a
discontinuity.

4.4.2 Model II

This leads to the question, can the folding times of the helical segments be improved
by altering the nucleation properties of the chain? More importantly, is the scaling
behavior of the chain altered by such changes? These questions are answered by
examining a slightly modified version of the helical model presented. In this model,
two segments of six monomers are attached to the ends of the helical segment, but
the segments only interact through an excluded volume interaction. This has two
effects on the system. First, the non-attractive monomers increase the weight of

the system, thereby creating a system with slower characteristic fluctuation times.
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This means an overall slower dynamic behavior. Second, the end monomers of the
attractive segment will no longer have increased mobility and will have nearly the
same likelthood of nucleation as the interior monomers. For this model, the chain
is now considered helical if the attractive monomers, not the added segments, meet
the requirements stated above for helicity.

It would appear that adding the two non-attractive segments would have a net
effect of slowing the dynamics of the segment; however, this is not the case. By
adding the additional segments, the MFPTs are decreased. Table 4.2 shows the
MFPTs and it is clear that for the larger segments, the folding times are nearly
50% shorter. This dramatic decrease in the folding times is accounted for in the
following way. The reduction of the ability of the end segments to nucleate the helix
causes a more uniform distribution of nucleation sites. Also, the net probability of
creating a nucleation site is now much lower. This means that the initial nucleation
is longer, but that a nucleation site that already exists has a much longer time
to propagate thr.ough the entire segment before a second nucleation site occurs.
Thus, there is a significant reduction in the folding times as a discontinuity in the
segment does not have to be resolved. Fig. 4.4 illustrates this folding process where
only a single nucleation site is formed and the segment propagates throughout the
segment. Note that the nucleation site is located in the middle of the segment. It
should be mentioned that multiple nucleation sites can still occur. This results in
a dislocation that needs to be resolved, and hence, an increase in the folding times;
however, these events occur less frequently. In the first model, a discontinuity was

formed in every simulation, while in the second model, a discontinuity only formed
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Figure 4.4: An illustration of a folding event for N, = 49 in Model II where only
a single nucleation site is formed. Note the central location of the nucleation site.

The dark monomers are those with no attractive potential.

in approximately 50% of the sirnulations. This is determined by Visual'inspection.
Also, the added segments have the unexpected effect of assisting the resolution
of discontinuities, as the end segments decrease the longitudinal motion and increase
the transverse motion. In rare events, a complete helical segment is formed with
the opposite hand. This keeps both order parameters small enough that a good
measure of the MFPT cannot be obtained, but this only occurs in a limited number
of simulations and these segments are therefore considered non-folders. These two
effects account for the observed folding times, and it is clear that the reduction in
the number of nucleation sites plays a very significant role in the folding times.
Using the data in Table 4.2, a log-log plot of the data has been made in Fig. 4.1.
The same power-law behavior that was observed for the previous model remains in
this model. The exponent, which is calculated from a least squares fit to the data,

has a value of Apr2 = 2.4(3). This is significantly lower than the exponent for the
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Table 4.2: The folding data for a helical segment with non-helix forming segments
tethered to both ends.

N N, top(Xx103)  fma(x10%) % DNF

31 19 4.5(5) 25 33
37 25 6.7(9) 50 20
43 31 13.(3) 100 25
49 37 16.3) 150 23
55 43  33.(6) 200 15
61 49  36.(8) 250 13

previous model, and demonstrates that the folding is fundamentally different for
this model. It shows that longer helices can be formed if the probability of seeding-

a segment is relatively small, and if there is only one nucleation site.

4.4.3 Model III

To fully understand the folding behavior of this type of model, we examine yet a
third similar model. In this model, we attach only a single non-attractive segment to
one end of the segment. In this case, we might expect to see a third set of dynamics.
We measure the helicity of a segment in the same way as the second model by only
considering the attractive segments. The folding times for this model are shown in
Table 4.3. The data in this table is calculated based on twenty simulations and is
not sufficiently accurate to obtain a reliable value for the exponent; however, the
exponent is estimated from this data and we believe it should lie between the values
of the other two models. The exponent calculated from a least squares fit has a

value of /\Mg = 3.5(1.0).
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Table 4.3: The folding data for a helical segment with a non-helix forming segment
tethered to one end.

N Ni tme(x10%)  tmax(x105) % DNF

25 19  3.0(5) 25 20
31 25  7.0(8) 50 35
37 31 10.(2) 100 35
43 37 39.(5) 150 40
49 43 28.(5) 200 15
55 49  73.(14) 250 10

The dynamics of this model are a combination of the two already discussed.
The nucleation of the helical segment occurs at the free end of the segment, as
in the first model. This is likely to be the only nucleation site thus reducing the
probability of having to resolve a discontinuity; however, the propagation of the
helical segment occurs through longitudinal fluctuations along the chain contour
and can be retarded by sharp changes in the chain contour. This slowing of the
propagation often provides an opportunity to generate a second nucleation site in
the remaining segment which gives rise to a discontinuity that retards the dynamics.
Only approximately 15% of the segments now fold with a single nucleation site. A
comparison of the folding times to the first and second models shows that this
model is relatively similar to the first model, but a slightly smaller exponent for
this model would be projected because 15% can fold with a single nucleation site.
Therefore, it appears that the exponent is far more sensitive to the probability of
multiple nucleation sites, as more than one nucleation site is likely to decrease the

foldability of the segment.
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These results also demonstrate the significance of “hot” sites, or conserved
residues[12, 13], within a protein. These sites are the key nucleation regions of
the folding process and form first in order to seed the creation of the native state.
The “hot” sites are also responsible for the stability of the structure as their muta-
tion has a large effect on foldability. The results above are in agreement with these
observations, but we can add an additional conclusion. It is not important to have
a dominating nucleation site as long as propagation can proceed throughout the
entire segment without an alternate nucleation site forming and conflicting with
the folding; however, the simplest way that this can be attained is to have a region
that has a higher probability of seeding the segment, which would increase the time

for propagation through the structure.

4.5 Potential Anisotropy and Folding

As discussed in chapter 3, the anisotropy of the potential was projected to play
a significant role in the foldability of the helical segment. The results of Klimov
and Thirumalai[76] projected that the foldability of a protein is related to the
relative separations of the coil-globular and globular-folded transition through the
parameter o(see Eq. 3.18). In chapter 3, we showed that decreasing the anisotropy
increases the value of o, which is projected to increase the folding times. This
dynamic model presents an ideal method for studying this proposal.

To conduct this simulation, will use the second model of a helical segment with

two non-interacting segments attached. This model is used as it demonstrates
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the best folding characteristics. In the above simulations, the potential used a
parameter of m = 6. For this simulation, a value of m = 2 is used. The MFPTs
were then collected for the same helical segment lengths as in Model II, using twenty
simulations in the average. The data collected is shown in Table 4.4. Further, the
exponent for this model was determined to be \,,—2 = 3.1(5).

Comparing the data from Tables 4.2 and 4.4, as well as the corresponding expo-
nents, shows the projected reduction in the folding times. The folding times for the
m = 2 model are much larger, and the exponent characterizing the scaling behav-
ior of the system is also larger. In this model, the folding dvnamics should be the
same as those observed in the m = 6 model; however, a much slower folding and
different scaling behavior is observed. What is different about the dynamics when
the anisotropy is reduced? As the results from the previous chapter suggest, the
stability of the globular state has been changed. This increased stability brought
on by the reduction in anisotropy should reduce the probability of nucleation and
decrease the rate of helical propagation. This would account for the observed in-
crease in the exponent and why the long helical segments require considerably more

time to fold.

4.6 Summary

In this chapter, a dynamic minimal model of a helix forming polymer segment was
presented. The model utilizes a non-local interaction to create a segment with a

helical ground state, similar to non-local interactions in proteins such as dipoles and
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Table 4.4: The folding data for a helical segment using a value of m = 2 for the
potential with non-helix forming segments tethered to both ends.

N Ny top(x10%)  tma(x10%) % DNF

31 19  2.4(4) 25 40
37 25 6.6(2) 50 15
43 31 14.(6) 100 30
49 37 29.(10) 150 40
55 43 59.(16) 200 40
61 49  69.(18) 250 35

hydrogen bonding. The model creates the helical ground state by using a persistent
polymer backbone and directionalized potential directed along the helical axis. This
model is sufficiently general that other protein structures could also be simulated
using this model.

By studying the dynamics of this model, we have shown that the MFPTs from
the coil state to the helical state scale as a power-law with system size, as is expected
for a protein-like system. The calculated power-law exponents were shown to be
consistent with other toy protein models. In addition, MFPTs are sensitive to the
nucleation probability of the segment, as is expected for a protein system; however,
not only are the times altered, but the scaling exponents for the system are altered
as well. It is also clear that nucleation is not the only important factor in folding,
and that the relationship between propagation and nucleation is the dominating
factor in creating segments with fast folding characteristics.

In addition to studying the effects of nucleation on helix formation, the effect

that anisotropy in the potential has on folding was also examined. The projection
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from the previous chapter of a increase in folding times due to a decrease in the
anisotropy of the potential was confirmed. Not only were folding times longer, but
the scaling exponent was also altered by the changes to the potential. These results
support the conclusion that fast-folding proteins prefer to fold in an “all or nothing”

type of process.



Chapter 5

Lattice Prions

Prions are perhaps the greatest challenge to theorists attempting to understand
proteins. As has already been discussed, proteins have the characteristic feature
of a funnel-like landscape that directs the folding of a sequence to a single native
state. Prions appear to be the exception to this rule, as these mysterious proteins
apparently have two native states. This presents a very perplexing problem: what
is different about the energy landscape of a prion that gives it this dual native state
property? Not only are there two native states, but one state is favored during
folding in such a way that it behaves similarly to a typical fast-folding protein. This

feature has probably given prions the chance to develop biological functionality.

104
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5.1 Introduction to Prions

Prions are protein structures that have just recently come to the forefront of scien-
tific interest. They have been implicated as the cause of some rare diseases, such
as Bovine Spongiform Encephalopathy ("Mad Cow Disease”), Creutzfeldt-Jakob
Disease, Kuru, and Scrapies. These diseases are caused by one of the two native
states of the prion. Most of the time, a prion will adopt one structure, but in odd
situations, the prion will take on the other form. For convenience, the state to
which a prion typically folds will be referred to as the native state. The other state
to which a prion folds on rare occasions, will be referred to as the prion state. It is
the prion state that causes the diseases mentioned above.

There is also a rather novel transmission mechanism that accompanies these
diseases. Stanley Prusiner(81] has proposed the protein only hypothesis for which
he won a Nobel Prize in 1997. Although this model is not completely proven,
there is mounting evidence to its validity[82]. In this model for the transmission
of an infectious agent, there is no need for nucleic acids such RNA and DNA,
as the infectious agent is the protein in the prion state. The term prion is used
to denote a proteinaceous infectious particle. The idea that proteins themselves
can transmit diseases is a novel and fascinating proposition. In the prion diseases
mentioned above, the protein in the prion state acts as a template to convert the
already present proteins, which are in the native state, to proteins in the prion
state. There are several possible scenarios for the conversion process, but none

have been proven correct[83]. In each of the conversion mechanisms, the process
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needs to be seeded by the infectious prion. There are several possible theories for
the origin of the infectious prion. One theory is that the infectious protein forms
are consumed and accumulated in the body because the infectious form of the prion
is protease resistant[83]. A second theory is that the infectious particles originate
spontaneously within the body through sufficient protein mutation causing the
protein to favor the infectious form over its regular structure. Another possibility
is the occurance of a rare kinetic event that causes the structure to adopt the
infectious form. All of these are possible scenarios for the origin of the infectious
prion particles.

In all of these diseases, there is a common prion protein PrP€, which is only
slightly genetically different in each disease. In each case, the prion gene sequence
PrP has two different protein conformations, PrP¢ and PrPS¢. PrPS¢ is the in-
fectious form of the PrP protein. These two proteins have no detectable sequence
differences and are formed from the same gene[84]. The only difference lies in the
conformation adopted. The PrPC state is predominately a-helix with little B-sheet
structure, while the PrPS¢ state contains a large fraction of S-sheet.

There are also some interesting properties to these proteins that are related to
their ability to transmit diseases. For example, the conversion process can occur
across species (i.e. "Mad Cow Disease” prions in cows can cause Creutzfeldt-Jakob
disease in humans); however, infection is more efficient if the genetic sequences of
the PrP genes of the two species differ only by a small amount. This implies that
the disease can only be transmitted between species in some special cases. For

example, humans would not be able to contract Creutzefeldt-Jakob disease from
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the PrP5° proteins in mice (Scrapies). Also, PrP% can be denatured using GdnSCN
into an unfolded state, but the process is not reversible[85]; however, under some
conditions such as altered salinity and acidity, the PrPSc infectious state can be
recovered(86].

Understanding the properties and folding mechanisms of prions has been of
great interest, especially in the last ten years, as these proteins have such unusual
properties. Lattice models have also been used to attempt to understand the novel
properties of these proteins, and work by Abkevich et al.[39] has shown that a
protein’s energy landscape can be kinetically partitioned. This simply means that
two states of similar energy could have different folding times such that one state
is more kinetically accessible than the other. This partitioning is believed to origi-
nate from the differences in the number of local and non-local contacts in the two
conformations({87]. In this chapter, we use lattice models to further examine the
landscape of prion molecules. In contrast to the approach of Abkevich et al., who
designed their prion molecules to have specific structural features, we attempt to
identify prion sequences in a simple 27-mer model based strictly on the sequence’s

energy spectrum and folding properties.

5.2 Model

For this study, the 27-mer model discussed in chapter 1 is used in conjunction
with the dynamic moves for a cubic lattice discussed in chapter 2. This model is

the same as those used by Sali et al.[1]. An interaction matrix representing the
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forces between the different amino acids in the chain is generated. The interactions
are chosen randomly from a Gaussian distribution centered at -2.0 and standard
deviation 1.0. Each matrix that is generated is a particular realization of a sequence.
The protein-like structures for these sequences are considered arrangements of the
sequence in a cubic structure, as cubes are the most compact chain arrangements
and contain the maximum number of contacts. The configuration that will be
adopted by the sequence as the native structure is the lowest energy cube. This
state is deemed the native state because it is probably the lowest possible energy
configuration, which does not have to be a cubic configuration. For most matrices,
the lowest energy cube is the lowest energy state, but this is not always the case.
The simulations of each sequence are conducted at different temperatures. The
temperature is set such that the following criterion is met{11],

> = | =02, (5.1)

. —%5T
i=CSA Ez:CSA € 8

where CSA are all the compact self-avoiding states or cubic arrangements. This
condition for determining the temperature has been suggested by Sali et al. to
be a good estimate for the ideal temperature at which the simulations should be
conducted|[1].

Sali et al. define a random sequence as protein-like as one that can reach its
native state 40% of the time in a simulation five times longer than the mean first
passage time (MFPT) for a typical fast-folding sequence. We use this criterion

to look for prion-like sequences in this 27-mer model. In order to examine the
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properties of prions, we first must determine the sequences that exhibit the behavior
of a prion. The criteria used to label a sequence as prion-like are as follows:

1) The two lowest energy compact states must have similar energies, and are referred
to as the native states of the sequence

2) The two native states must be significantly separated from the energy spectrum
of the other compact states by a large gap.

3) One of the native states must be a good folder.

4) The two native states must have considerably different structures.

5) A large energy barrier must kinetically separate the native states.

These conditions have the following meanings. Condition 1 originates from
experimental evidence that suggests the two conformations need only be marginally
different in stability[83]. The second condition arises from the work by Sali et al.
that shows protein-like sequences have large energy gaps separating the native state
from the spectrum of compact states. We require in condition 3 that at least one
sequence be a good-folding sequence. This implies that the two native states should
be separated by a significant energy gap from the spectrum of compact states.
Condition 4 comes from experimental evidence which shows that prion structures
have major structural differences. The final condition implies that if these two
sequences are to be kinetically partitioned, then the two native states must be
separated by a large energy barrier.

These rules are implemented in the simulation as follows. First, random se-
quences are generated and the energies of all the compact configurations are deter-

mined. Sequences with an energy spectrum similar to the one shown in Fig. 5.1a
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Figure 5.1: a) The energy spectrum of a prion-like sequence. b) The energy spec-
trum of a good folding sequence. Note the large gap between the lowest and second
lowest energy states. ¢) The energy spectrum of a sequence with glassy character-

istics.

are deemed possible prion candidates. The spectrum is based on conditions 1 and
2, and is constructed by accepting sequences that have two native states separated
by less than 0.5, and a gap of greater than 2.5 between the second and third lowest
energy cubes. The sequences that meet this criterion then have their native state
structures examined for similarities. These structural differences are accessed by
determining the number of monomers situated in the same positions of the cube.
To identify these monomers, the cubic structures are written out with the same
orientation. If structures have less than three monomers in the same position,
the structures are considered sufficiently different. This method is only one pos-

sible choice for determining whether two structures have different conformations
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that would give them a higher probability of being kinetically partitioned. This
method was chosen as it is computationally simple and does not constrain the type
of bonding that could occur, as bonding is believed to be important for kinetically
partitioning the two native states. About 0.03% of the sequences sampled meet
these energy and structural criteria.

The sequences that are obtained from the above method are then folded 50
times for 1 x 10° steps. The results of the simulation are studied to determine
if conditions 3 and 5 are met. Thoese sequences that meet these requirements are
called prion-like. To facilitate the discussion, the lowest energy native state will
be referred to as N; and the other native state will be N,. In the folding results,
we look for sequences that meet the good folding condition. If either the V] or IV,
state is reached in 40% of the simulations, then the sequence is considered a good
folder. We are only interested in sequences that exhibit good folding behavior to
one of the two native states, as PrPC is know to be a very fast-folding molecule[88].
We also look for the kinetic accessibility of the other native state in the folding
process. In other words, is the other state typically part of the folding pathway?
We are only interested in those sequences that are kinetically partitioned by a large
energy barrier. Therefore, the unpreferred native state should rarely be visited in
folding events when compared with the preferred native state. By keeping track of
the compact states visited during each folding event, we are able to obtain an idea

of the kinetic partitioning that occurs.
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5.3 Results

For this study, 273 different sequences were examined that had the required con-
straints on the energy spectrum and structural differences. Most of the sequences
fell into one of two categories. The majority of the sequences were good-folding
sequences, but also had the secondary native state visited during a large fraction of
the folding events. This implied that the secondary state was not very kinetically
partitioned from the primary native state, and would only be a transient state in
the folding pathway. We also found that in most of these cases, the primary native
state is the NV, state. In the other cases, the sequences did not appear to be good
folding sequences, as neither the N; nor the N, states were visited repeatedly.
Among these sequences, we found several sequences that demonstrated unusual
properties suggesting that these sequences are prion-like. We examined two of these
sequences in detail. Both sequences where given considerably more computational
effort and were folded 2000 times each. The first sequence (labeled Sequence 54)
demonstrates the characteristic properties of a prion that would be observed exper-
imentally. In real prion systems, the PrPC state is believed to be marginally less
stable than the infectious PrPS¢[83] state, and under typical biological conditions,
the PrPC is the favored state in the folding pathway. Sequence 54 shows the same
behavior as these proteins because 72.1% of the time the native state, N, (the higher
energy state), is reached without passing through the native state, N;. In addition,
in 6.8% of the folding simulations, the native state, Nj, is reached without pass-

ing though the IV, state. In approximately 1.7% of the simulations, the sequence
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Unfolded

Figure 5.2: Diagram displaying the successful folding percentages between the var-
ious states for Sequence 54. The remainder of the folding events not shown are
unsuccessful folding events where the target configurations were not reached. The
results beginning in the unfolded states are based on 2000 simulations, while the
results between the two native states are obtained from 100 simulations each. Each
simulation is 1 x 10° Monte Carlo steps.

passed through the N, state before entering the N; state. In the remainder of the
simulations, the lowest energy structures reached were a variety of higher energy
cubes in which we have little interest. To further understand the folding behavior
observed, 100 simulations of the same length were conducted, where the simulation
started from the N, state and was folded to the /V; state. Another 100 simulations
were conducted in the reverse direction, starting from the N; state and folded to
the IV, state. In the simulation from N, to Nj, only 3% of the simulations reached
the N; state. In the reverse situation, 19% of the simulations reached the N, state

from the IV; state. These results are depicted in a diagram in Fig. 5.2.
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The above results for Sequence 54 demonstrate prion-like behavior even in this
very simplified toy system of proteins. The native state, Ns, is a fast-folding struc-
ture. The alternate native state, Vi, also appears to be kinetically partitioned from
the general folding landscape as is suggested by the small percentage of crossovers
from one native state to the other. This data further suggests that there are two
separate folding funnel pathways which are depicted in Fig. 5.3; this idea was first
presented by Abkevich et al.[39]. We infer this from the fact that the percentage of
crossover events is not symmetric, and that there is a higher probability of moving
from N; to N,. Also, in an intermediate state model where a protein folds first
to a stable intermediate and then to its ground state, we would expect to observe
the percentages in the reverse order. This senario is highly unlikely as it has been
shown both in lattice models[10] and in experiments(89] that fast-folding proteins
do not fold with the aid of intermediates. The temperatures at which the simula-
tions are conducted do not exclude the possibility of the structure unfolding and
refolding. Therefore, once the structure has unfolded, there is a higher probability
to favor the N, funnel over the N; funnel. This explains the asymmetry in the
observed crossover folding results. To further study this behavior, the temperature
of the system was lowered by 5%. At the reduced temperature, folding to the two
native states was still achieved with approximately the same success rates, while the
crossover between the native states was nearly eliminated. This further supports
the idea of two seperate folding funnels.

Using the idea that the landscape of a prion is separated into separate funnels,

we estimate the MFPTs of the direct folding events to each of the native states.
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Figure 5.3: This is a representation of the landscape of a prion-like sequence. In
this landscape there are two deep energy minima separated by a significant energy
barrier.

The data for these times is shown in Table 5.1. From the data, it is clear that
folding to the native state, N>, occurs quickly, and that the folding times to the
N, state are of similar magnitude. These times are calculated based on the fact
that the other native state is not encountered during the simulation. This is not in
contradiction with previous results which suggest that the folding times for one of
the two native states should be much longer than the other in kinetically partitioned
landscapes[39]. Our results are based on the structure not encountering the kinetic
trap of the other native state. If we included the time spent in the other energy
minimum, then the folding times to the IN; state would be much longer. The
folding events in which the sequence becomes kinetically trapped in the other energy
minimum for some period of time are excluded from these results because a real

protein system would have significantly deeper energy minima. A very deep energy
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minimum wquld make an unassisted, spontaneous structure change unlikely. Thus,
the favoring of one funnel over the next is related to the availability of transition
states to the structure[39]. The folding times for the crossover events are presented
for only those that were able to make the transition in the time allotted, which is
about ten times longer than the average MFPTs for a typical fast-folding protein
sequence. These times, in theory, should vary greatly depending on the length of
time spent in the respective energy minima, and the probability of encountering
the alternate transition states to the other native state. Thus, the results are not
representative of the mean folding times between energy minima as we end the
simulations at 1 x 10° steps; however, comparing these results demonstrates the
kinetic partitioning of the two states because the mean crossover times for the
successful simulations are twice as long as the MFPTs. As these crossover times
are only representative of those simulations that fold the fastest, we expect the
actual crossover times to be much longer. Another point of interest in regards to
the MFPTs is that they are approximately three times longer than those sequences
that do not exhibit any kinetic partitioning. This suggests that the transition states
are quite structurally different, and that the added competition to direct the folding
slows the overall dynamics of these molecules.

The structures that this sequence adopts are not designed to have any particular
properties; this provides an opportunity to study the structural features for clues
as to the nature of the partitioning. The two states for the sequence are shown in
Fig. 5.4, and the energies for the N; and N, are -78.596 and -78.413 respectively.

This is an energy difference of 0.183, while the energy gap between the N, state
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Table 5.1: The folding times for Sequence 54. Shown is the number of events for
each average, followed by the mean first passage time.

Path No. Events Time
U— N 136 3.0(3) x 108
U— N, 1442 3.24(7) x 108
Ny — N, 19 6.0(6) x 108
N, - Ny 3 6.2(7) x 108

and the next lowest energy cube is 2.541. The analysis of direct structural features
such as preferred geometry is difficult to deduce because the system size is so small;
however, some speculation on the nature of the bonding occurring can be done.

To analyze the nature of the bonding it is constructive to break the types of
bonds down in the following way: 1) local vs. non-local, and 2) similar vs. dif-
ferent. Local bonds are defined as bonds that form between the 7** and i** + 3
monomers, and all the rest are considered non-local. This type of distinction has
been considered very important in understanding the folding nature of proteins[87].
Similar bonds are those bonds that occur in both native structures. Distinguishing
between the similar and different bonds will be important in discussions of prion
structures because the different bonds will probably play a role in determining the
folding behavior. In Fig. 5.4, the similar and different-local bonds are shown to
assist in a discussion of the folding process.

Table 5.2 presents a breakdown of the bonds into the various classes. The
number of bonds, the average bond strength, and the standard deviations in the

average, are all given. In this sequence, both the similar-local and similar-non-local
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Figure 5.4: The two native states of Sequence 54, where a) is the N} native state
and b) is the N, native state. Shown are the similar bonds (long dashes) and the
different local bonds (short dashes).

bonds have average interaction strengths that are much stronger than the average,
which is preset by the mean of the Gaussian to —2.0. These similar bonds probably
play a significant role in the observed good folding properties of the sequence, as
Abkevich et al.[87] have shown that dominant local and non-local contacts produce
faster folding sequences. It also appears that the similar-non-local bonds are much
stronger than the different-non-local contacts.

The different contacts should play a leading role in the kinetic partitioning of
the sequence. The different-non-local contacts appear only to be slightly stronger
than the average and are similar in value between the two native states, but the
N, state has a much wider variation in the bond strengths as is shown by the large
standard deviation. This variation in the different-non-local bonds probably has

some role in the kinetic partitioning, but it is not the only necessary condition.
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Table 5.2: Bonding breakdown for Sequence 54. Shown are the similar-local(SL),
similar-non-local(SNL), different-local(DL), and different-non-local(DNL), for the
N; and N, native states.

SL SNL DL (N;) DL (N;) DNL (V,) DNL (Va)

No. Bonds 4 6 2 4 16 14
Average Energy -3.11 -3.57 -1.65 -2.69 -2.59 -2.41
Stand. Dev. 0.70 0.97 0.55 0.52 0.53 1.08

The different-local contacts present a much different picture, as the variation
in the average energy is large. In the good folding N, native state, the bond
strengths are above average and there are more of them in this structure. This
is fully consistent with the conclusion that dominant local contacts generate the
kinetic partitioning in prions[39]. An interesting observation is that a large number
of different-local contacts are not needed, and that these contacts do not have to
be excessively strong. What role the different-local bonds have on partitioning is
unclear, but these bonds probably play some role in folding.

In studies of real prion systems, it is believed that the PrPS° state must be
marginally more stable than the PrPC state in order to obtain the observed disease
propagation behavior[83]. A second sequence, labeled Sequence 49, exhibits the
kinetic partitioning similar to Sequence 54, but with the difference that the N;
native state is the favored funnel over the N, state. For this sequence, out of the
2000 simulations conducted, 63.4% of the time the native state is reached without
encountering the secondary native state, No. In 4.65% of the simulations the N,

state is reached without encountering the state N;. For a small fraction of 0.4%,
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Ny is encountered while finally ending up in the primary native state of N;. In the
rest of the simulations, folding is not achieved. Further examination of the kinetic
partitioning was performed by conducting 100 simulations to observe the number
of times the alternate native state could be obtained in 1 x 10° steps. Starting in
the native state, N;, the state N, was reached 5% of the time, while in the reverse
situation, 15% of the simulations were able to obtain the N; state. These results are
represented in a diagram in Fig. 5.5. For this sequence, the temperature was also
lowered by 5% with near elimination of crossover between the two native states.
Similar folding precentages to the various native states were still obtained at this
temperature.

These results demonstrate a similar kinetic partitioning of the two native states
and suggest that the landscape is similar to the landscape of Sequence 54 discussed
above. The MFPTs for the various pathways are displayed in Table 5.3. These
results demonstrate similar folding times to Sequence 54, leading to the conclusion
that these two systems only differ in the fact that the preference for a particular
native state is reversed. This has the implication that in real prion systems, the
alternate native state (the PrPS¢ state) need not be more stable in order to observe
the conversion to the alternative conformation. If a catalytic process could alter
the accessiblity of the transition states to the various folding funnels, then it is
not a necessary requirement that the primary state be of higher energy. These two
structures provide an ideal opportunity for studying whether the transition state
accessibility could be altered to switch the observed behavior; however, this idea is

not explored in this work.
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Figure 5.5: Diagram displaying the folding percentages between the various states
for Sequence 49. The remainder of the folding events not shown are unsuccess-
ful folding events where the target configurations were not reached. The results
beginning in the unfolded states are based on 2000 simulations each, while the re-
sults between the two native states are obtained from 100 simulations each. Each
simulation is 1 x 10° Monte Carlo steps.

The structural similarities and differences between the two native structures of
Sequence 49 can be observed in Fig. 5.6. In this case, the energies of the native
states, N; and N,, are -78.705 and -78.677 respectively, which is a difference of
0.028. The energy gap between the N, state and the next lowest energy level is
2.504. The observed energy between the two states is much smaller in this case;
however, this probably has little effect on folding kinetics, as the energy barrier
between the two states is what is important. The smaller split in energy may
provide a slightly larger barrier in the transition from N» to N;.

If the bonding structure of this sequence is examined, a similar pattern to that
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Table 5.3: The folding times for Sequence 49. Shown is the number of events for
each average, followed by the mean first passage time.

Path No. Events Time
U— N 1268 3.80(7) x 10°
U— N, 93 3.6(3) x 108
Ny — N, 5 4.6(10) x 108
N> — N; 15 6.46(7) x 108

of Sequence 54 is found. The similar contacts are above average in strength with the
similar-local contacts only slightly lower in strength than those of Sequence 54. The
slightly lower similar-local bond strengths may account for the reduced percentage
of folding structures to the primary folding state. In terms of different-non-local
contacts, the same average energies are observed; these energies are lower than the
energies of the similar non-local contacts. The standard deviations show a different
result than Sequence 54, as the larger variation still lies with the IV, state not with
the primary folding state. In Sequence 49, the N; state is the favored folding state;
however, this does not discount the idea that the variation in the different-non-
local bonds plays an important role in partitioning because the standard deviations
in both structures’ different-non-local bonds are large. The different-local bonds
present a more interesting result. In these contacts, there are more contacts in the
" primary folding state (N;) than in the secondary folding state, but the energies of
the different-local contacts are much weaker than the energies of the contacts in
the secondary state. This is in contrast with the conclusion that local contacts play

a significant role in partitioning, which may mean that different-local bonding has
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Figure 5.6: The two native states of Sequence 49, where a) is the N; native state
and b) is the N, native state. Shown are the similar bonds (long dashes) and the
different local bonds (short dashes).

little to do with partitioning.

We have found several other sequences that demonstrate possible prion-like
behavior. The results of simulations with these structures are outlined in Table 5.5.
These sequences all show a preference toward one of the two native states, with most
of the sequences favoring the IV; native state. What makes these possible prion-like
candidates is the very small number of sequences that fold first to the N, state and
then to the IV, state. For sequences similar to Sequence 49, we need this number of
crossover events to be small, because there is probably less than a 20% chance that
the sequence can reach the N; state from the N, state if all 1 x 10° steps are used

to make this jump. Sequences that are similar to Sequence 54 should have even
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Table 5.4: Bonding breakdown for Sequence 49. Shown are the similar-local(SL),
similar-non-local(SNL), different-local(DL), and different-non-local(DNL), for the
N; and N, native states.

SL SNL DL (N, DL (N, DNL (N;) DNL (Vo)

No. Bonds 3 7 3 2 15 16
Average Energy -2.82 -3.07 -1.48 -2.62 -2.68 -2.47
Stand. Dev. 079 0.80 0.40 0.57 0.73 0.82

fewer crossover events; therefore, the number of these crossover events provides a
good screening method for picking out sequences with good kinetic partitioning.
Examining the bond breakdown in these sequences yields few common features,
which makes determining what is responsible for kinetic partitioning difficult. There
appear to be no common features in the different-local and similar-local bonds,
although the kinetic partitioning has a tendency to favor the structure with the
stronger different-local bonds. Another point worth mentioning is the relatively
small number of local bonds, and, in particular, the small number of different-local
bonds, in comparison to the number of different-non-local bonds. This suggests
that local bonding only plays a small role in the folding kinetics of these structures.
The only striking feature is that all the similar-non-local bonds appear to be much
stronger than the average, while the different-non-local bonds appear to be only
marginally stronger. These results suggest that the combination of strong similar-
non-local and marginally weaker different-non-local bonds are necessary in effective
kinetic partitioning; however, we find that this is not a sufficient condition for

observing prion-like behavior.
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In addition to the sequences discussed above, two sequences were found that
appear to exhibit two kinetically partitioned states, as there was little crossing
between the two native states; however, both native states were approximately
equal in the number of times they were visited, and both would be classed as good-
folders. In these sequences, the bonding analysis showed a large number of similar
bonds. The features discussed above were still present in these sequences, but the
failure to prefer a single native state is why they were not considered prion-like.
These sequences do demonstrate that the number of different bonds does affect
the accessibility of the transition states. This further implies that the bonding in
the native states is not necessarily of great importance in the overall dynamics,
but that it is the nature of the transition states that controls the overall behavior.
Therefore, the bonding that occurs in the transition states is important, but the

formation of transient bonds in this stage of folding also probably plays a key role.

5.4 Summary

Using the simplified 27-mer lattice model, we are able to sort through the possible
sequences and determine which of them exhibit prion-like behavior. Even at this
most basic level of complexity, we are able to observe sequences that mimic the
properties of real prions with remarkable similarity. Two sequences have been
studied in detail for their folding properties. Each sequence has a preferred native
state that is kinetically partitioned from its other native state. The direct MFPTs

to each state are approximately equal. An observed asymmetry in the ability to
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Table 5.5: Folding data and bond analysis for several prion-like sequences. Shown
are the percentages of folding events that are successful to a particular native state,
and the percentage of events that fold first to N; then to N2. A bonding breakdown
is also given for the similar-local(SL), similar-non-local(SNL), different-local(DL),

and different-non-local(DNL) bonds for the N; and N, native states.

151 171 204 218 220
%N, 86 88 10 72 71
%NV 3 4 49 13 6
%N, = Ny 2 2 1 3 5
No. SL/SNL _ 1/4 2/8 0/9 3/8 179
SL 40  -3.9(3) - 3.1(2) -20
SNL -3.8(6) -3.1(10) -3.1(6) -3.3(6) 3.0(7)
No. N;/N2 __ 6/2 3/4 476 3/2 3/1
DL(N:)  -2.6(9) -2.6(6) -2.5(6) -3.3(7) -2.6(11)
DL(N,)  -1.9(6) -2.2(3) -24(4) -23(1) -15
No. Ni/No 1721  15/14  15/13  14/15  15/17
DNL(N,)  -26(8) -2.7(7) -25(9) -2.5(7) -2.6(7)
DNL(N,)  -2.6(8) -2.8(9) -2.5(10) -2.7(10) -2.6(8)

cross between the two native states suggests that the landscape of these sequences
is broken into two separate funnels.

In addition to the analysis of the folding, a breakdown of the bonding within the
native states was conducted to find the features of those sequences that generate
prion-like behavior. The bonds were divided into similar vs. different and local
vs. non-local bonds. The only commonality found among the sequences were the
strong similar-non-local bonds with marginally weaker different-non-local bonds.
This feature was present in the structures; however, it was not a sufficient con-

dition to produce a prion-like sequence. Based on these analyses, we speculate
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that the nature of the native states plays a small role in creating the prion-like

characteristics, and that the nature of the bonding in the transition states of these

sequences is where the controlling behavior exists.



Conclusions

Throughout this thesis, minimal models have been used to study the features of
biological systems. The simplicity of the models has allowed certain fundamental
features to be understood without the inclusion of the atomic complexity. The
focus of the thesis has been to create minimal models and to use them to study
secondary helical structures in proteins. As well, a specific class of proteins called
prions were studied with a well defined minimal model.

In chapter 3, a minimal model of a helical forming segment was created with a
focus on anisotropic interactions that were not confined to bond with local neigh-
bors. The model uses a simple anisotropic potential in which the anisotropy can be
systematically varied. Using this model, we have studied the statistical properties
of the helical forming segment and have demonstrated several interesting features:
1) We have shown that the model contains four states: 1) coil, 2) globular, 3) helix
I, and 4) helix II. The transitions between these various states were studied in detail,
and the potential anisotropy was varied to observe the effect on the transition.

2) These results show that the relative locations of the coil-globular transition

and globular-helix transition can be altered as the anisotropy is varied. A strong
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anisotropy creates an " all-or-nothing” type transition as the coil-globular and globular-
helix transitions occur at nearly the same temperature. A weak anisotropy causes
these transitions to occur at significantly different temperatures.

3) We also predict that the anisotropy should have an effect on the folding dynamics
to a helical state. The foldability of the segment should be significantly altered by
changing the anisotropy, and a strong anisotropy leads to a faster folding helical
segment.

4) Finally by studying our model with an isotropic potential, we lend support to the
conclusions of other groups[68] that this system should not have a low temperature
first order phase transition.

To continue with the study of these helical segments, we modify our static helix
model in chapter 4 to create a dynamic model of a helix. The model is similar to the
model of chapter 3; however, it can be used to study a wider variety of problems.
Using this model, the mean first passage times of folding were calculated, and the
dynamic folding process was examined. Here we observed the interplay between
nucleation and propagation in the dynamics of folding.

5) We demonstrated that the folding times for the helical segments obeyed a power-
law behavior when scaled with system size.

6) When the nucleation properties were modified by adding small non-helical form-
ing segments to the ends of the helix, this power-law behavior was altered. It also
demonstrated the importance of a single nucleation site in the folding process.

7) In addition to the nucleation properties, the effect of anisotropy on the folding

times was explored. The results confirmed the conclusions of chapter 3, which
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projected better folding behavior with increased anisotropy.

Finally, in chapter 5, a well established minimal model is used to attempt to

study prions. These unique proteins have an energy landscape unlike other proteins,
as two kinetically stable native states exist. Using a minimal model that has been
used extensively to study proteins, we attempt to determine if prion-like sequences
exist at this simplified level.
8) We successfully determined several structures that exhibit similar behaviors to
a prion, and analyze the bond composition to determine what features separate
a prion sequence from a protein sequence. The results show no simple pattern in
structures, except that the bonds that are similar between the two native states
are stronger than the bonds that are different in these structures. At present, we
are unable to identify the criteria that will select out a prion sequence from those
generated randomly; however, finding sequences that exhibit prion-like behavior
provides a method for further studying these molecules.

These models have demonstrated the types of issues that can be addressed
through a simplified system. The creation of a model that contains some essential
features, yet can be systematically varied, provides a useful tool for studying protein
systems. The models in this work have yielded results that could not easily be

obtained with more complex all-atomic models.
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